
Fast Computation of Supermaximal Repeats in
DNA Sequences

Chen Na Lian

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at

Concordia University
Montreal, Quebec, Canada

January 2009

© Chen Na Lian, 2009

I T ^ H
Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63238-3
Our file Notre reference
ISBN: 978-0-494-63238-3

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

Abstract

Fast Computation of Supermaximal Repeats in DNA Sequences

Chen Na Lian

Searching for repetitive structures in DNA sequences is a major problem in bioinfor-

matics research. We propose a novel index structure, called Parent-of-Leaves (POL)

index and an algorithm for finding supermaximal repeats (SMR) which uses the index.

The index is derived from and designed to replace the more versatile, but considerably

larger suffix tree index STTD64. The results of our experiments using 24 homo sapi­

ens chromosomes indicate that SMR significantly outperforms the Vmatch tool, the

best known software package. Using constructed POL index, SMR is 2 times faster

than Vmatch in searching for supermaximal repeats of size at least 10 bases. SMR

is 7 times faster for repeats of minimum length of 25 nucleotide bases, and about an

order of magnitude faster for repeats of length at least 200 basis. We also studied

the cost of constructing the POL index, and the number of times we need to run

SMR in order for the cost to payoff. The results indicate that our proposed technique

outperforms Vmatch after two runs on a particular sequence using the POL25 index

which has minimum index length (MIL) of 25 nucleotides, 3 runs with POLIO, 5 runs

with POL100, and 10 runs with POL200. The storage requirements of various POL

indexes are much less than the suffix tree index used, about 200 times smaller for

POL200 and POL100, and 25 times smaller for POL25. POLIO requires the largest

storage space, which is one quarter the size of the STTD64 index.

iii

Acknowledgments

I would like to express my sincere appreciation to my supervisor Professor, Dr. Ne-

matollaah Shiri, for his guidance, support, documents, and patience, for completing

my thesis. Also, I am particularly thankful to Mihail Halachev, to whom I am very

much indebted. This thesis would have never appeared without their help and en­

couragement.

IV

Contents

List of Figures viii

List of Tables x

List of Algorithms xi

1 Introduction 1

1.1 Molecular biology: a general view 1

1.2 Research in bioinformatics 2

1.3 Repetitive DNA sequences . 4

1.4 Maximal repeats and supermaximal repeats 6

1.5 Related work 7

1.5.1 Bio-sequence repeat search tools 7

1.5.2 Various index data structures 10

1.6 Organization of the thesis 11

2 Suffix Trees 13

2.1 History and applications of suffix trees 13

2.2 Basic definitions 14

2.3 Suffix trees representations 16

2.3.1 wotd representation 16

2.3.2 STTD64 representation 19

3 Maximal Repeats and Supermaximal Repeats 23

v

3.1 Maximal repeats 23

3.2 Supermaximal repeats 25

3.3 Finding maximal repeats using suffix trees 26

3.4 Finding supermaximal repeats using suffix trees 27

3.5 Computing supermaximal repeats 28

4 Our Proposed Technique for Computing Supermaximal Repeats 31

4.1 POL index structure and representation 32

4.2 POL index construction algorithm 34

4.3 SMR algorithm 38

5 Experiments and Results 41

5.1 POL index construction 42

5.2 SMR search performance 44

5.3 Number of supermaximal repeats 50

5.4 Synthetic DNA data 51

5.4.1 POL index construction 52

5.4.2 SMR search performance 53

5.4.3 Number of supermaximal repeats 56

6 Web Based Interface 58

6.1 FASST project 58

6.2 Supermaximal repeats search demonstration 60

6.3 Graphic annotations 65

7 Conclusions and Future Work 69

7.1 Conclusions 69

7.2 Future plan 70

Bibliography 72

vi

A Experimental Data 78

A.l SMR Vs Vmatch search performance 78

VI1

List of Figures

2.1 Suffix tree for string S = banana 15

2.2 Graphical Suffix tree (ST) for the sample sequence S = AGAGAGCS 17

2.3 wotd representation for S = AGAGAGCS 19

2.4 Branch node in STTD64 representation 20

2.5 Leaf node in STTD64 representation 20

2.6 STTD64 representation of sequence S = AGAGAGCS 21

4.1 POL index representation 32

4.2 The POL Index for sequence S = AGAGAGC% 33

5.1 Construction time for various POL index lengths 43

5.2 Index size/sequence size ratio for various POL index lengths 43

5.3 Vmatchvs. SMR with different POL index 45

5.4 Vmatch vs. SMR considering POL index construction time 47

5.5 Vmatch vs. SMR + POLIO with construction time 48

5.6 Vmatch vs. SMR + POL25 with construction time 48

5.7 Vmatch vs. SMR + POL100 with construction time 49

5.8 Vmatch vs. SMR + POL200 with construction time 49

5.9 Occurrences found in 24 human chromosomes 50

5.10 POL index size analysis : synthetic vs. real 52

5.11 POL index construction time : synthetic vs. real 53

5.12 SMR vs. Vmatch performance on synthetic data 54

viii

5.13 SMR search + POLIO : synthetic vs. real 54

5.14 SMR search + POL15 : synthetic vs. real 55

5.15 SMR search + POL20 : synthetic vs. real 55

5.16 Number of supermaximal repeats 57

6.1 The home page of FASST web interface 59

6.2 Supermaximal repeats search interface - select options 61

6.3 Supermaximal repeats search interface - select parameters 62

6.4 Supermaximal repeats search interface - display brief results 63

6.5 Supermaximal repeats search interface - display detailed results . . . 64

6.6 Supermaximal repeats search interface - display detailed text results 64

6.7 Graphic output page part 1 - overview 65

6.8 Graphic output page part 2 - detailed distribution 66

6.9 Graphic output page part 3 - lists 66

6.10 Graphic output of searching within a range 68

6.11 Graphic output of searching using wildcard (*) 68

IX

List of Tables

A.l SMR algorithm Vs Vmatch at the minimum repeat length from 1 to 9 78

A.2 SMR + POLIO Vs Vmatch with MRL > 10 79

A.3 SMR + POL25 Vs Vmatch with MRL > 10 79

A.4 SMR + POL100 Vs Vmatch with MRL > 10 80

A.5 SMR + POL200 Vs Vmatch with MRL > 10 80

x

List of Algorithms

1 Gusfield's Algorithm (Sequence S, suffix tree index ST) 29

2 POL Construction Algorithm (STTD64 index ST, minimum index

length MIL) 36

3 SMR Search Algorithm (Sequence S, index POL, requested minimum

length minJen) 39

xi

Chapter 1

Introduction

In this chapter, we first briefly review the history of molecular biology and bioinfor-

matics, and consider some repetitive structures in human DNA and protein. We also

discuss some popular bioinformatics applications in detecting repeats. The outline of

this thesis appears at the end of this chapter.

1.1 Molecular biology: a general view

Since 1930s, numerous physicists and chemists have taken their interests in under­

standing life in its most fundamental level. Molecular biology, named by Warren

Weaver of the Rockefeller Foundation in 1938, is one of the research fields that tries

to explain the phenomena of life from the macromolecular viewpoint.

As described by William Astbury [Astbury, 1961], molecular biology is:

"... not so much a technique as an approach, an approach from the viewpoint of

the so-called basic sciences with the leading idea of searching below the large-scale

manifestations of classical biology for the corresponding molecular plan. It is con­

cerned particularly with the forms of biological molecules and is predominantly

three-dimensional and structural - which does not mean, however, that it is merely

1

a refinement of morphology - it must at the same time inquire into genesis and func­

tions" .

In particular, molecular biologists focus on two categories of macromolecules,

one of which is nucleic acids. The most famous nucleic acid is deoxyribonucleic

acid (DNA), which carries the genetic information in the cell and is capable of self-

replication. It is a chain of 4 types of molecules, which are adenine (abbreviated A),

cytosine (C), guanine (G) and thymine (T). They are packaged in units known as

chromosomes. Some hereditary units in chromosomes that occupy specific locations

and determine particular characteristics in an organism are called genes. A set of

chromosomes or genes are called the genome, which is known as the blue-print of life.

It's known that human haploid genome contains 3,000,000,000 DNA nucleotide pairs,

divided among twenty two (22) pairs of autosomes and one pair of sex chromosomes.

The other category of macromolecules is proteins. Proteins are fundamental compo­

nents of all living cells and include many substances, such as enzymes, hormones, and

antibodies, which are necessary for the proper functioning of an organism. Proteins

are made of 20 amino acids, represented by letters [Nair, 2007].

1.2 Research in bioinformatics

In the past decade, information-heavy and computer driven research has been de­

veloped at a very fast pace. As the size of genetic information available is rapidly

growing, molecular biologists need effective and efficient computational tools to store

and retrieve such information from databases, to analyze the sequence patterns and

to obtain the biological characteristic from the sequence. As a result, mathemati­

cal methods and computational techniques are strongly needed for the challenging

computational tasks in biological research, such as constructing three-dimensional

2

structure of the molecules from the sequence data.

It is obvious that performing tasks mentioned above manually is practically im­

possible. Researchers therefore resort to bioinformatics, which refers to the use of

computer science and related technologies in solving problems of molecular biology

such as modeling, analyzing, comparing, graphically displaying, storing, systemizing,

searching, and ultimately distributing biological information. For example, some ap­

plications are developed to analyze DNA sequence data in order to locate genes.

Research in bioinformatics includes several aspects. A critical research area in

bioinformatics is sequence analysis which uses computer programs to search the

genomes of thousands of organisms, to align related DNA sequences, to assem­

ble genome fragments, etc. One representative problem in this area is the assem­

bly of high-quality genome sequences from fragmentary shotgun DNA sequencing

[Weber et al., 1997] which is a method used for sequencing long DNA strands.

Genome annotation, which identifies the genes and other biological features in a

DNA sequence, is another research area in bioinformatics. A number of software tools

are developed for biologists to explore genomic annotations at many levels of detail in

a graphical environment, such as the popular genome annotation viewer and editor,

Apollo Genome Annotation Curation Tool [Lewis et al., 2002]. Bioinformatics also

assists evolutionary biologists to trace the evolution of a large number of organisms by

measuring changes in their DNA, as well as comparing entire genomes for the study

of more complex evolutionary events, such as gene duplication, lateral gene transfer,

etc.

Biological databases collect the species names, descriptions, distributions, genetic

information, status and size of populations, habitat needs, and the methods that

organism interacts with other species. Moreover, through biological databases, the

entire DNA sequences, or genomes of endangered species can be preserved on com­

puter and possibly reused in the future, even if that species is extinctive.

3

Besides our discussion above, there are other exciting and important research in

bioinformatics, such as analysis of mutations in cancer [Cairns, 1998], prediction of

protein structure [Zhang, 2008], and so on.

With the booming of computer technologies such as databases, graphical user

interface(GUI) design, distributed object computing, storage area networks (SAN),

data compression, network and communication and remote management, bioinfor­

matics plays more important roles in biological research and science than ever.

1.3 Repetitive DNA sequences

Repetitive DNA sequence occurring in the genome is one of the most striking fea­

tures of DNA, especially in higher-order organisms such as eukaryotes. For example,

[McConkey, 1993] indicates that families of reiterated sequences account for about

one third of the human genome. Besides their considerable quantity, the variety of

repetitive structures in DNA sequences and their hypothesized biological functions

are also intriguing. Some repeats are discovered to play important roles in muta­

tion and evolution. For example, Alu repeats [Alkes et al., 2004] which are the most

abundant mobile elements in the human genome, can cause mismatching in DNA

duplication.

Since the role of most repetitive structures is mainly unknown, there are numerous

difficulties in genome sequencing and analysis. For example, the presence of a small

number of copies of repeats can confuse a sequence assembly algorithm, especially for

whole genome shotgun sequencing [Weber et al., 1997]. Therefore, identification and

characterization of repetitive structures are critical tasks in sequence assembly and

genome analysis.

Generally, repetitive DNA sequences are divided into two types:

4

• tandem repeated DNA

• interspersed repetitive DNA

Tandem repeated DNA, known as satellite DNA, consists of large number of repeats

of a short sequence. Satellite DNAs are classified into three groups based on their

repeat lengths [Charlesworth et al., 1994], described as follow.

Satellites are very highly repetitive with repeat lengths of one to several thousand

base pairs (bp). They are typically organized as large (up to 100 million bp)

clusters in the genome.

Minisatellites are moderately repetitive structures with medium-sized repeat lengths

from 9 to 100 bp, but usually about 15 bp.

Microsatellites are also moderately repetitive of short (2-6 bp) repeats found in

vertebrate, insect and plant genomes. The human genome contains at least

30,000 microsatellite loci located in euchromatin [Zheng et al., 2003].

The main functions of satellite DNAs are still unknown, but some biologists are con­

vinced that certain satellite DNA has some vital functions such as malfunctioning in

mutation.

Repetitive DNA that is interspersed throughout all eukaryotic genomes, is gener­

ally divided into two classes:

• SINEs

• LINEs

SINEs stand for Short Interspersed Nuclear Elements. Alu repeat [Alkes et al., 2004]

is one of the classic examples of SINEs. The Alu repeats occur about 300,000 times

in the human genome and account for as much as 5% of the DNA of human and other

5

mammalian genomes [Gusfield, 1997]. LINEs which stand for Long Interspersed Nu­

clear Elements are not as common in the human genome as SINEs. But as they are

much larger, they make up more of the total DNA. While there are about 1.5 million

SINEs making up about 13% of the genome sequence, the 870,000 or so copies of

LINEs constitute more than 20% of human DNA [Gregory, 2008].

1.4 Maximal repeats and supermaximal repeats

A maximal repeat in a sequence 5 is a substring that occurs at least twice in S, and

that cannot be further extended to the left and/or right without destroying it being

a repeat. For example, consider the DNA sequence:

S = AACGTCGACGTTAACGTC.

This sequence includes two maximal repeats: ACGT, which occurs three times (shown

in boldface), and AACGTC, which occurs twice (shown with underlines).

A supermaximal repeat is a maximal repeat that never occurs as a substring of

any other maximal repeat. In the above example, the sequence AACGTC is a super-

maximal repeat, but ACGT is not, since ACGT occurs as a substring of AACGTC.

Searching for maximal repeats and supermaximal repeats is a basic analysis task

which biologists often perform for finding repeated patterns in a new DNA sequence.

With the exponential rate at which new DNA sequences are being acquired, we need

more efficient techniques to find repetitive structures. Some effective search tech­

niques use indexes to speed up the search process. The STTD64 index scheme

[Halachev et al., 2007] is one of search techniques for indexing large sequences ef­

ficiently in bioinformatics applications. Using this indexing technique to support

repeats search tasks are considered a way to improve searching performance. Our

6

supermaximal repeats search technique is based on STTD64 index system.

As discussed above, there are many more maximal repeats than supermaximal

repeats, and hence maximal repeats are less considered in finding repeats. Super-

maximal repeats can filter out the abundant relatively shorter repeats that mostly

occur by chance and do not carry structural or functional information. Therefore,

providing a required minimum length of the discovered supermaximal repeats helps

in collecting useful information, and improving the search performance.

In this thesis, we thus focus on providing a fast SuperMaximal Repeat (SMR)

algorithm and its supporting index technique called Parent-of-Leaves (POL), which

is derived from the STTD64 indexing scheme.

1.5 Related work

1.5.1 Bio-sequence repeat search tools

There are several software tools developed for finding repeats in genomic sequences,

including REPuter [Kurtz et al., 1999], RepeatMatch [Delcher et al., 1999], Repeat-

Masker [Smit et al., 2008], MaskerAid [Bedell et al., 2000].

REPuter is a popular software tool for computing various kinds of repeats, in­

cluding supermaximal repeats. It provides efficient and complete detection of vari­

ous types of repeats with an evaluation of significance and interactive visualization

[Kurtz et al., 1999]. The search engine REPfind of REPuter uses an efficient and

compact suffix trees implemented in improved linked list to locate exact repeats in

linear space and time. It has been estimated in [Kurtz, 1999] that this time-critical

task can be done in linear time for sequences up to the size of the human genome.

The output of the search engine REPfind is displayed in the form of a repeat graph by

the interactive visualization program REPvis. More running time and space cost of

7

REPuter are reported in [Kurtz et al., 2000]. An online version of REPuter provid­

ing some basic functionality is available from the Bielefeld Bioinformatics web server

(http://bibiserv.techfak.uni-bielefeld.de/reputer/).

RepeatMatch is another highly efficient computational tool that can find all exact

repeats in genome sequences. This tool is also based on suffix trees, but does not

support supermaximal repeat search.

RepeatMasker is a program that sifts DNA sequences for interspersed repeats and

masks low complexity DNA sequence. The program outputs a detailed annotation of

the repeats. On average, almost 50% of a human genomic DNA sequence currently

will be masked by the program [Smit et al., 2008].

RepeatMasker performs string comparisons by the program cross^match, which

implements the Smith-Waterman-Gotoh algorithm [Gotoh, 1982] efficiently. Repeat­

Masker is another approach for detecting repeats, which identifies repeats by perform­

ing exact or approximate string match of the sequence data against known repetitive

patterns previously stored in its database. The interspersed repeat databases screened

by RepeatMasker are based on the Repbase Update database which is copyrighted by

the Genetic Information Research Institute (G.I.R.I.) [Jurka et al., 2005]. The Rep­

base Update database contains annotation of most repeats with respect to divergence

level, affiliation, etc.

MaskerAid is an implementation of the same approach of RepearMasker. It is a

drop-in accelerator that increases the speed of RepeatMasker about 30 times while

maintaining sensitivity. Both of these tools find already known repeats in a given

sequence, which is different from the problem we address in this thesis, i.e., finding

supermaximal repeats in a sequence without any prior knowledge.

Vmatch [Kurtz, 2000] searches for supermaximal repeats using enhanced suffix ar­

ray (ESA) index structure [Abouelhoda et al., 2004]. Vmatch can process very large

DNA sequences. It is claimed in [Kurtz, 2000] that the 32-bit version of Vmatch can

8

http://bibiserv.techfak.uni-bielefeld.de/reputer/

process up to 400 million symbols, if enough memory is available. For large server

class machines (e.g. SUN-Sparc/Solaris, Intel Xeon/Linux, Compaq-Alpha/Tru64),

Vmatch is available as a 64-bit version, enabling gigabytes of sequences to be pro­

cessed.

Vmatch preprocesses sequences to create index structures which are stored as a

collection of several files. The index efficiently represents all substrings of the prepro-

cessed sequences. Different matching tasks require different parts of the index, but

only the required parts of the index are accessed during the matching process.

Vmatch can process not only DNA or protein sequences, but also sequences over

any user defined alphabet of up to 250 symbols. Vmatch fully implements the con­

cept of symbol mappings, denoting alphabet transformations. It allows a multitude

of different matching tasks to be solved using the index, such as maximal repeats,

branching tandem repeats, supermaximal repeats, maximal substring matches, and so

on. The solutions for maximal and supermaximal repeat search included in Vmatch

subsume the ones in REPuter.

There are more than 20 completed or ongoing projects which are using Vmatch.

For example, GenomeThreader, which computes gene structure predictions, uses the

matching capabilities of Vmatch to efficiently map the reference sequence to a genomic

sequence [Gremme et al., 2005]. The KPATH system [Slezak et al., 2003], developed

at the Lawrence Livermore National Laboratories, uses Vmatch to detect unique sub­

strings in large collection of DNA sequences.

After evaluating the above software tools for repeats detection, we choose Vmatch

as our experimental benchmark to compare our work with, for the following reasons.

First, as mentioned in Vmatch homepage [Kurtz, 2000], Vmatch subsumes REPuter

and has better space utilization and faster search performance comparing to REPuter.

Further, Vmatch is a general software tool for solving various search problems in

large-scale sequence data, where supermaximal repeats search is just one of the func-

9

tionalities it provides. Since our on-going FASST project also aims at providing a

unified underlying index structure for various types of search tasks in large biological

sequences, we consider the supermaximal repeat search comparison to Vmatch as yet

another opportunity to evaluate and compare the two competing multipurpose alter­

natives.

1.5.2 Various index data structures

Recently, suffix trees (ST) and suffix arrays (SA) received considerable interest from

research community as data structures suitable for indexing large DNA sequences.

Each suffix is a string starting at a certain position in the sequence and ending at

the end of the sequence. Suffix trees are introduced in the next chapter. Suffix array

is simply an array containing all the pointers to the sequence suffixes sorted in lex­

icographical order. Searching a string can be performed by binary search using the

suffix array [Manber et al., 1993].

A major drawback of suffix trees and suffix arrays index structures is their con­

siderably large size, especially evident for ST. For a sequence of n symbols, suffix

arrays require An bits for storing each symbol [Manber et al., 1993], while suffix trees

require 8.5n bits [Giegerich et al., 1997].

In order to overcome the space problem, several compressed suffix arrays and suffix

trees representations [Grossi et al., 2005, Ferragina et al., 2000, Niko et al., 2007] are

proposed. For example, FM-index [Ferragina et al., 2000] is based upon the Burrows-

Wheeler compression algorithm [Burrows et al., 1994] and the suffix array data struc­

ture. The major advantage of the compressed index representation is their smaller

size, which makes it possible to fit entirely in the main memory available on regular

desktop computers, However, this gain in space requirements comes at the cost of less

efficient search support. As discussed in [Hon et al., 2004], compressed suffix arraj'

10

[Grossi et al., 2005] and FM-index are much slower than suffix tree and suffix array

for exact match search.

1.6 Organization of the thesis

In this thesis, we first review STTD64 (Suffix Tree Top Down 64 bits), proposed in

[Halachev et al., 2007], which is the foundation of our FASST project. Then, we re­

view a well-known supermaximal repeats search algorithm in [Gusfield, 1997], which

uses a suffix tree index structure. Next, we demonstrate our supermaximal repeats

search algorithm (SMR) and technique. We propose a novel parent-of-leaves (POL)

index structure, which is derived from and replaces the STTD64 index for searching

supermaximal repeats.

This thesis focuses on development of a novel Parent of Leave (POL) index and

an efficient algorithm for finding supermaximal repeats (SMR) which uses POL. In

our experiments and results, we assume the STTD64 and Vmatch indexes are al­

ready built and available, and hence we do not consider their construction cost in our

measured figures. The time and space requirements of constructions of STTD64 and

Vmatch indexes are studied and compared in [Halachev et al., 2007].

We conduct numerous experiments using real-life biological data to evaluate the

performance of the proposed supermaximal repeats search algorithm (SMR). We

study the cost both in terms of construction time and storage space of the proposed

POL index. We then compare the search time performances of SMR with Vmatch

under different situations. Furthermore, we study the number of supermaximal re­

peats and its impact on performance according to different minimum repeat lengths.

Finally, we evaluate the POL construction cost and SMR performance for searching

supermaximal repeats in synthetic DNA sequences.

11

The outline of this thesis is as follows. Suffix trees are discussed in Chapter 2,

where we review the STTD64 suffix tree indexing technique. In Chapter 3, we review

basic concepts of repeats as well as the Gusfield's supermaximal repeat algorithm.

In Chapter 4, we propose our POL index structure, followed by the description of

POL construction algorithm and corresponding SMR algorithm. Chapter 5 evaluates

the POL index construction cost and compares performance of SMR algorithm with

Vmatch in different perspectives. The SMR application is developed and incorporated

as part of the FASST project at http://sepehr.cs.concordia.ca/. We also developed

the web-based interface to this search tool, which is presented in Chapter 6. Chapter

7 draws conclusions and outlines future work.

12

http://sepehr.cs.concordia.ca/

Chapter 2

Suffix Trees

In this chapter we review the suffix tree (ST) data structure and its construction al­

gorithm. We present several ST representations, discuss their advantages and short­

comings, and explain the STTD64 representation used as a basis in this work.

2.1 History and applications of suffix trees

The first linear-time suffix tree construction algorithm was proposed by [Wenior, 1973].

A few years later, McCreight proposed a more space efficient algorithm [McCreight, 1976].

In 1995, Ukkonen developed a conceptually different linear-time on-line suffix tree

construction algorithm [Ukkonen, 1995], which is easier to implement and allows for

easier proof of bounds.

A suffix tree is a versatile data structure which supports efficient solutions for

many problems on strings (sequences of characters). One of the typical problems is

exact string matching, which for a pattern sequence P, finds the matching patterns

in 0(m + k) time, where m is the size of pattern sequence P and k is the number of

occurrences of P in T. Another problem solved efficiently by suffix trees is Longest

Common Substring problem, which is to find the longest string (or strings) that is a

13

substring (or are substrings) of two or more strings. The longest common substrings

of a set of strings can be found by building a generalized suffix tree for the set of

strings, and then finding the deepest internal nodes which has leaf nodes from all the

strings in the subtree below it [Gusfield, 1997].

Bioinformatics applications based on suffix trees are often used for searching for

patterns in DNA or protein sequences. For example, REPuter which searches for

maximal repeats in complete genomes [Kurtz et al., 1999], is based on suffix trees.

Another popular software tool based on suffix trees is MUMmer [Delcher et al., 1999],

which is a system that supports fast alignment of entire genomes. Another use of suf­

fix trees is data clustering used in some search engines, e.g. [Zamir et al., 1998]. Re­

cently, suffix trees have been used in data compression which is the process of encoding

information using fewer bits (or other information-bearing units) than a normal rep­

resentation through the use of specific encoding schemes. Sadakane [Sadakane, 2007]

proposed a compressed suffix trees with full functionality of suffix trees.

2.2 Basic definitions

In this section, we review some definitions which are taken from [Gusfield, 1997].

Definition Given an input sequence S of size n characters, a suffix tree ST is a

rooted directed tree with exactly n leaves numbered from 1 to n. Each internal

node, other than the root, has at least two children and each edge is labeled

with a nonempty substring of S. No two edges out of a node can have edge-

labels beginning with the same character [Gusfield, 1997].

For any leaf node i, the concatenation of the edge-labels on the path from the root

to node i exactly spells out the substring of S starting from position i. i.e., S[i..n].

14

For any node v in a suffix tree, the string-depth of v (or depth of v, for short) is the

number of characters of the labels on the path from root to the parent of v.

For example, Figure 2.1 shows the graphical representation of ST for S = banana.

In this figure, the path from root to the leaf node numbered 2 spells out the string

s — anana, which starts at position 2 of S, while the depth of node 2 is 3.

As described above, if one suffix of S matches a prefix of another suffix of S,

Figure 2.1: Suffix tree for string S = banana

the first suffix would not end at a leaf according to the definition of suffix tree. For

example, in string banana in the figure, suffix na is a prefix of nana, so the path

spelling out na would not end at a leaf. To solve this problem, we assume that last

character in a string appears nowhere else in the string. That is, no suffix is a prefix

of another suffix. To achieve this in practice, we add a termination character at the

end of string. In this thesis, we use $ as the termination symbol and extend every

string with this symbol, even if the symbol is not explicitly shown.

15

2.3 Suffix trees representations

There are a number of suffix trees representations, including level-compressed Patricia

tree [Andersson, 1995], write only top-down suffix tree (wotd) [Giegerich et al., 2003],

suffix binary search tree [Irving et al., 2003].

Level-compressed Patricia tree is a compact representation of suffix tree that com­

bines path compressed and level compressed techniques. At each internal node, an

index indicates the character used for branching at the node. With this additional

information available at each node, we can remove all internal nodes with an empty

subtree. This path-compressed binary tree is called a Patricia tree [Morrison, 1968].

Level compression can be used to reduce the size of the Patricia tree. That is, each

internal node of degree two that has an empty subtree is removed, and at each inter­

nal node we use an index that indicates the number of bits skipped.

The write only top-down suffix trees (wotd) [Giegerich et al., 2003] is another suf­

fix tree representation in which each node is 32 bits. It requires 8.5n bytes on average

which is much larger than the input sequence. To index very large sequences, suffix

trees need either large memory or require disk based construction algorithms.

In this section, we first introduce wotd as proposed in [Giegerich et al., 2003].

Then, we describe STTD64, which is an extension of wotd that overcomes some of

its limitations.

2.3.1 wotd representation

To illustrate the structure of suffix trees, let us consider the following sample sequence

5" = AGAGAGC%, where $ is used as a terminal symbol to ensure no suffix is a pre­

fix of another suffix. A graphical representation of a ST for sequence S is shown in

Figure 2.2, in which the numbers in squares indicate the order in which the ST nodes

16

are evaluated and recorded. The number below each leaf node shows the starting

position of the suffix of S represented by this leaf node, and this suffix is encoded by

the edge-labels on the path from the root to this leaf node.

Next, we introduce some concepts taken from [Giegerich et al., 2003].

Figure 2.2: Graphical Suffix tree (ST) for the sample sequence S = AGAGAGCS

Concept 1: For a leaf node s in a suffix tree (ST), the leaf set of s, denoted l(s),

contains the position i in sequence S where the string starting from S[i], is

denoted by the edge-labels from root to s.

17

For example, for leaf node 12 in Figure 2.2, we have Z(12) = 3.

Concept 2: For a branch node u in a ST, the leaf set of w is defined as the set of

the leaf sets of the children of u, i.e., l(u) = {l(s)\s is a leaf node in the subtree

rooted at u}.

For instance, the leaf set of node 9 in Figure 2.2 would be 1(9) = {1(H), '(12)} =

{1,3}-

Concept 3: For a node v, its left pointer, denoted lp(v), is defined as minimum value

of l(v) plus the number of characters on the path from the root to the parent

of v.

For example, lp(9) = min 1(9) + 1 = 1 + 1 = 2.

In wotd representation, an internal node u occupies two adjacent elements. The first

element contains the Ip value of u and two additional bits, called the rightmost bit

and leaf bit. If the rightmost bit is set to 1, it indicates that node u is the rightmost

child of a branch node. For instance, in Figure 2.2, node 6 is the rightmost child of

node 1. Therefore, its rightmost bit is 1. A leaf bit 1 indicates the node is a leaf. For

each internal node, its leaf bit is always 0. The second element of an internal node

u stores a pointer to its first child. The pointer points to the address in wotd index

where the first child of u is stored. A leaf node in ST occupies one element in wotd

index, where stores the same information as the first element of a branching node(ie.

Ip value, rightmost bit, and leaf bit).

Figure 2.3 shows the wotd representation of the ST for sequence S, where the

first row is node number of ST used for illustration purpose only; the number in the

second row indicates the order of elements in the wotd index, and the third row is the

content stored in the index file. In this figure, superscript 'R' indicates a rightmost

18

1

0 7

2

1 12

t *
3

6

4

7*

5

2 10

6

$ •

7

4

|

8

<F

9

2 15

*

10

6R

11

4

12

6R

Figure 2.3: wotd representation for S = AG AG AG C$

bit, and a grey cell indicates a leaf bit. For example, in Figure 2.3, the internal node

2 is stored in the third and fourth elements, i.e.. wotd[2] and wotd[3]. Its first child is

node 9 (see Figure 2.2). Hence, the value in third element allocated for node 2 points

to the position 12, which is the first of the two elements storing node 9.

As already illustrated, 2 bits are reserved for the rightmost bit and leaf bit in

wotd representation. In a 32-bit system, an element in wotd structure occupies 32

bits. Only 30 bits are available for storing the Ip value. That is, the sequence we can

index using this structure is limited to 230 — 1 bits, i.e., about 1 billion characters.

This limitation is a bottleneck of using wotd to index very large sequences.

To overcome this limitation, [Halachev et al., 2007] propose an alternative ST rep­

resentation, called STTD64, presented in next section.

2.3.2 STTD64 representation

In this section, we present STTD64 representation proposed in [Halachev et al., 2007].

This index shares some common properties with wotd [Giegerich et al., 2003]. First,

they both use a top-down traversal manner. Second, they use pointers pointing to

the first child of branch (internal) nodes. Finally, the rightmost bit and leaf bit are

used in both ST representations.

Next, we illustrate the differences between the two ST structures. First, every

19

node in STTD64 is 64 bits record, no matter if it is an internal node or a leaf node,

while an internal node in wotd occupies 64 bits, and a leaf node occupies 32 bits.

Secondly, the size of each element in STTD64 is 64 bits, whereas it is 32 bits in wotd

as the names indicate. Figures 2.4 and 2.5 depict the structure of internal node and

leaf node in STTD64, respectively.

32 1 1 30

lp le
af

•±*
in
O
< - * pointer

64 bits

Figure 2.4: Branch node in STTD64 representation

32 1 1 30

lp
©

depth

64 bite

Figure 2.5: Leaf node in STTD64 representation

For both branch nodes and leaf nodes, the first 32 bits store lp value, bits 33 and

34 record leaf bit and rightmost bit, respectively. The last 30 bits for a branch node

are available for a pointer to its first child. In a leaf node, the last 30 bits record its

depth value. The depth of a leaf node s is defined as the number of characters on the

20

path from the root to the parent of s. For example, the depth of node 8 in Figure 2.2

is 4, labeled by four characters | AG AG |) on the path.

For our running sequence S = AGAGAGC$, Figure 2.6 shows its STTD64 index

0

0

0
5

2
1
0

0
9

3
6
1

0

0

4
7
1
1

0

*
5
2
0

0
7

6
6
1

0
2

*

7
4
1

0
4

*

8
6

1
1

4

9
2

0

0
11

10
6

1 !

1
1

i
11
4
1

0
3

12
6
1

1
3

Figure 2.6: STTD64 representation of sequence S = AGAGAGCS

representation. The numbers on the top (used for illustration purpose only) indicate

the node number in the suffix tree of Figure 2.2. The 32 bits Ip values are shown

in the second row and the following two rows indicate leaf bit and rightmost bit,

respectively. The pointer/depth values are shown in the last row. For clarity, leaf

nodes are shown in gray and branch node pointers are illustrated by the arrows above

the table.

As illustrated above, the second difference from wotd is that STTD64 records

the depth values for leaf nodes, which leads to efficient indexing. We will further

explain this in the next section when we describe our algorithm. Another advantage

of STTD64 is its capability to index sequences of up to 4 GB, i.e., 4 times larger than

wotd.

On the other hand, STTD64 needs more storage space than wotd. For a given

sequence of size n symbols, there are exactly n leaf nodes, and at most n internal

nodes. In the worst case, STTD64 occupies 16n bytes per symbol, and on average,

21

the space required is 13n as shown in [Halachev et al., 2007], while wotd occupies Yin

bytes in the worst case and 8.5n bytes on average.

22

Chapter 3

Maximal Repeats and

Super maximal Repeats

In this chapter, we review some concepts and techniques related to maximal and

supermaximal repeats. We then introduce existing algorithms for finding maximal

repeats and supermaximal repeats which use suffix tree index. Finally, we analyze

the supermaximal repeat search algorithm, and discuss their limitations.

3.1 Maximal repeats

As initial illustration of maximal repeats was given in 1.4. Here we give a more formal

definitions, taken from [Gusfield, 1997].

Definition 1: A maximal pair of strings in a sequence S is defined as a pair of

identical substrings a and (5 of S such that the character to the immediate

left(right) of a is different from the character to the immediate left(right) of /3

[Gusfield, 1997](R143).

23

That is, extending a and (5 in either direction would destroy the equality of the two

strings. A maximal pair is represented by the triple (pl,p2,l), where pi and p2 are

the starting positions of the two substrings a and /?, and I is their length. For a string

S, we use 3l(S) to denote the set of all triples describing maximal pairs in S.

For example, consider the string S = wr axy ttrveocebvgaxy, which includes three

occurrences of substring ax. The first and second occurrences are represented by

maximal pairs as (3,10,2), and the second and third occurrences are represented as

(10,16,2). However, the first and third occurrences of ax do not form a maximal pair

since their immediate right characters are the same. Hence, the two occurrences of

axy form a new maximal pair (3,16,3). Also the definition of maximal pairs allows

the two strings to overlap each other. For instance, string xxyxxyxx has a maximal

pair (1,4,5) whose representative substring is xxyxx. Generally, in this thesis, we

assume the immediate left (right) of the first (last) character of a string differs from

any other characters in this string.

In some cases, the full set of maximal pairs 5R(S") is explicitly found and presented.

Note that in some situations, ^R:(S) may be too enormous to be displayed or used.

Therefore, a more compact representation of maximal pairs is provided below.

Definition 2: A maximal repeat a is a substring of S that occurs in a maximal pair

in S. That is, a is a maximal repeat in 5" if there is a triple (pl,p2, \a\) E ^R(S)

and a occurs in S starting at position pi and p2. We use 'Si.'(S) to denote the

set of maximal repeats in S [Gusfield, 1997](P.143).

In our above example string S, substrings ax and axy are both maximal repeats.

Note that the number of maximal repeats ^'(.S)! is less than or equal to the number

24

of maximal pairs |5ft(,S)|, and is generally much smaller since a string is represented

only once no matter how many times it participates in maximal pairs in S.

3.2 Supermaximal repeats

Maximal repeats form one type of repetitive structures. However, in some applica­

tions, they are not a desired repetitive structure. For example, in string xaysd.akx.ay,

xay and a are both maximal repeats, but xay includes a. In this case, it may not

be desired to report a as a repetitive structure, since xay may be more informative.

This leads to the concept of supermaximal repeats defined as follow.

Definition 1: A supermaximal repeat is a maximal repeat that never occurs as a

substring of any other maximal repeat [Gusfield, 1997] (P. 144).

From our example above, xay is a supermaximal repeat but a is not, since it is a

substring of xay.

Another repetitive structure is near-supermaximal repeats defined as follow.

Definition 2: A substring a of S is a near-supermaximal repeat if a is a maximal

repeat in S that occurs at least once in a location where it is not contained

in another maximal repeat. Such an occurrence of a is said to witness the

near-supermaximality of a [Gusfield, 1997] (P. 146).

For example, in string xaysdakxay, substring a is not a supermaximal repeat, but

a near-supermaximal repeat. The second occurrence of a witnesses the fact.

According to the above definition, a supermaximal repeat a is a maximal repeat in

which every occurrence of a is a witness to its near-supermaximality [Gusfield, 1997].

25

http://xaysd.akx.ay

3.3 Finding maximal repeats using suffix trees

Before discussing an algorithm to find supermaximal repeats, we first illustrate an al­

gorithm of finding maximal repeats by using suffix tree which is taken from [Gusfield, 1997].

Finding maximal repeats is a simpler problem and forms a basis for finding super-

maximal repeats.

Let ST be a suffix tree for string S. If a string a is a maximal repeat in S then a

is the path-label of an intended node v in ST. To see this, we review the definition of

maximal repeats. If a is a maximal repeat, there must be at least two occurrences of

a in S where the character to the immediate right of the first occurrence differs from

that of the second occurrence. According to the definition of suffix trees, no two edges

out of a node can have edge-labels beginning with the same character. Therefore, a

is a path-label of a node v in ST.

From the above discussion, we concluded that to find maximal repeats we only

need to consider substrings (i.e.,path-labels) that end at nodes of the suffix tree ST.

But what kind of specific nodes are representatives of maximal repeats?

Before answering this question, we need to introduce some concepts first.

Concept 1: For each position i in string S, character S[i — 1] is called the left

character of i. The left character of a leaf is the left character of the suffix

position represented by that leaf [Gusfield, 1997] (P. 144).

Concept 2: A node v of a suffix tree ST is called left diverse if at least two leaves

in the subtree at v have different left characters [Gusfield, 1997](P.144).

By definition, a leaf cannot be left diverse. If a node is left diverse, all its ancestors

in the tree are also left diverse. Then a theorem comes out.

Theorem: Let S be a string and ST be a suffix tree. A string a labeling the path to a

node v in ST is a maximal repeat if and only ifv is left diverse [Gusfield, 1997] (P. 144).

26

For example, we suppose a node v is left diverse. That means there are at least two

substrings xa and ya of S. Then assume first that xa is followed by character p. If

the second substring is followed by any character other than p, then a is a maximal

repeat. In another case, if the second substring ya is also followed by p. That is, the

two occurrences are xap and yap. By definition of suffix trees, a branching node v

must have at least two children. Hence, there must be a substring aq in S for some

character q other than p. If the occurrence of aq is preceded by character x, then

xaq forms a maximal pair with yap. And if it is preceded by character y, then yaq

forms a maximal pair with xap. In either case, a is a maximal repeat. The details

of proof are described in [Gusfield, 1997].

3.4 Finding supermaximal repeats using suffix trees

In this section, we introduce an algorithm to compute supermaximal repeats in linear

time proposed in [Gusfield, 1997]. The proposed algorithm uses a suffix tree ST of

string S to search for the supermaximal repeats in S.

The following theorem described in [Gusfield, 1997] forms a basis for computing

supermaximal repeats, to which we refer as Gusfield's algorithm.

Theorem: A left diverse internal node v in a suffix tree represents a supermaximal

repeat a if and only if all children of v are leaves, and each has a distinct left

character.

To discuss this theorem, we assume a node v in ST corresponds to a maximal repeat

a, and v has two children w and u. Let L(w) denote some (but not all) occurrences

of a in S which are located in the subtree of ST rooted at w.

We consider two possibilities of node w. First, suppose w is an internal node in

ST, and substring r is the label of edge (v,w). Every element in L(w) identifies an

27

occurrence of ar. Since w is an internal node, |Z/(to)| > 1, and ar is the prefix of a

maximal repeat. Therefore, all the occurrences of a specified by L(w) are involved in

a maximal repeat that begins with ar. Hence, a is not a supermaximal repeat.

Secondly, suppose w is a leaf node. Let i be the starting position of the substring

corresponding to the leaf w and x be the left character of leaf w. In this case, we con­

sider node u. if u is an internal node, as we discussed above, a is not a supermaximal

repeat.

If u is also a leaf, let j be the starting position of the substring corresponding to

the leaf u. We discuss two cases. First, assume node u has left character x. Then

xa occurs twice in S. Therefore, a is contained in a maximal repeat. Thus, a is

not a supermaximal repeat. Second, assume u is preceded by any character but x,

say y. Then a has different left characters at the positions i and j . Since w and u

are both leaves, according to the definition of suffix trees, the first character labeled

between v and w differs from that between v and u. That is, substrings a in posi­

tions i and j are followed by distinct characters. Therefore, the occurrences of a at i

and j are involved in a supermaximal repeat, and hence a is the supermaximal repeat.

3.5 Computing supermaximal repeats

According to Gusfield theorem, we derived an algorithm named Gusfield algorithm.

A pseudo code of Gusfield's algorithm is shown as Algorithm 1. As inputs it takes

a sequence S to be searched and its suffix tree index ST. The algorithm returns the

starting positions of all supermaximal repeats in S and their lengths.

The algorithm traverses the nodes in ST sequentially, and performs two major

steps while traversing the ST index. In the first step, it examines ST branch nodes in

ST, checking if a particular branch node v has only leaf node children (i.e., from steps

28

Algorithm 1 Gusfield's Algorithm (Sequence S, suffix tree index ST)

1: v points to first ST node

2: while there are unexamined ST nodes do

3: while v is a branch do

4: v = the first child of v

5: end while

6: if v is the first child then

7: retrieve position of v in S

8: retrieve left character of position in S, i.e., S[position — 1]

9: t> points to next node

10: while v is not the rightmost node do

11: if v is not a leaf then

12: break from while loop

13: else

14: retrieve position of v in S

15: retrieve left character of position in S

16: end if

17: end while

18: if all v's children are leaves then

19: compare left characters of all occurrences

20: if all left characters are distinct then

21: output corresponding length and positions of this repeat

22: end if

23: end if

24: v points to next node;

25: end if

26: end while

29

3 to 17). If yes, the second step is executed, in which it compares the left characters

of all children node of v, i.e., the left diverse check (i.e., step 20). If successful, the

starting positions of the suffixes represent the starting positions of a supermaximal

repeat, and are returned to the user, together with its length, which in fact is the

depth of the u's leaf nodes. The time complexity of the algorithm is 0(n), where n

is the number of nodes in the ST.

As shown in the pseudo code, Gusfield's algorithm has to traverse and examine

all ST nodes. This results in a significant amount of disk I/Os to read into main

memory the whole ST index from disk, which is an order of magnitude larger than

the sequence size. To overcome this problem, we propose an auxiliary index and a

novel algorithm in chapter 4.

30

Chapter 4

Our Proposed Technique for

Computing Supermaximal Repeats

In the previous chapter, we discussed Gusfield's algorithm for finding supermaximal

repeats (SMR), which returns the starting positions and the lengths of all supermax­

imal repeats in a sequence, by performing full sequential scan of its entire ST index.

However, very often in practice, biologists are interested in repeats of size longer than

a particular threshold value. For example, [Miki et al., 1980] studies different species

for repeats whose sizes are longer than 200 base pairs. Gustfield's algorithm examines

the entire ST index, which is about 13 times larger than the data sequence, cannot

take advantage of this additional information on threshold size, and hence performs

a constant and significant amount of disk I/O operations.

The supermaximal repeats search technique (SMR) that we propose here uses

Gusfield's algorithm as a basis but extends it to a more efficient solution. It uses our

proposed index structure, called Parent-Of-Leaf (POL), which is derived from and

replaces the STTD64 index. The new POL index is considerably smaller than the

STTD64 index. We organize and store the information in POL in such a way that the

number of required disk I/O operations is much reduced, resulting in considerably

31

shorter search time. Next, we present the structure of the POL index, followed by a

description of its construction algorithm. We will then propose our SMR algorithm,

which uses the POL index of a sequence to find the supermaximal repeats.

4.1 POL index structure and representation

As discussed earlier, each ST node v whose children are all leaf nodes, is a candidate of

supermaximal repeats that has to be further examined. If all the suffixes represented

by the leaves of v have distinct left characters (i.e., the nodes are left diverse), then a

supermaximal repeat is found, which is the common prefix of all the leaf nodes (i.e.,

the characters on the path from the root to v).

Our POL index is a collection of records related to such candidate nodes v. Each

record consists of two parts, the header and data, as shown in Figure 4.1.

31 bits
< •

Header
•

length \ No.ofocc.

Data

occurrence 1 occurrence 2

4 p.^ p.* , , M
27 bits 5 bits 32bits 32 bits

Figure 4.1: POL index representation

Header par t : In the first 27 bits of the header, we store the number of characters

on the path from the root of the ST index to node v, which represents the length

of the potential supermaximal repeat. In the remaining 5 bits of the header,

32

we record y, the number of the leaf children of v, which also indicates to the

number of occurrences of the repeat in the input sequence S.

Data part: The data part of the record for candidate node v contains exactly y

blocks, each of size 32 bits. In each block, we store the start location in sequence

S at which the suffix represented by a particular leaf of v occurs.

The chosen sizes of the index fields allow for POL indexing of DNA and protein

sequences of sizes up to 232 characters (4GB), in which the length of the longest su-

permaximal repeat is at most 134 million characters. First, the 4 GB limit is due to

the fact that in each data block, we have 32 bits available for recording a sequence

location, i.e., the sequence size is limited to 232. Next, recall from the ST definition,

that no two edges out of a node can have labels which start with the same character.

Thus, the number of children of any ST node is bounded by the alphabet size, i.e., 5

for DNA data (A, C, G, T, and the terminal symbol $) and 21 for proteins. In order

for POL index to be applicable for both DNA and protein data, we allocate 5 bits for

the second part of the header in which we record the value y, i.e., the number of leaf

children for each candidate node v. Thus, our POL index can handle sequences whose

alphabet is of size at most 32 symbols. Last, the remaining 27 bits in the header part

are used for recording the length of the repeat, which leads to the limitation on the

supermaximal repeat length of 227 characters, i.e., around 134 million nucleotides or

amino acids.

The POL index is implemented as an array of 32 bit blocks. Figure 4.2 shows

4 : 2 0 2 3 : 2 1 3
v y v ^ . s

Record for node 5 Record for node 9

Figure 4.2: The POL Index for sequence S = AGAGAGC%

the POL index for our example sequence S = AGAGAGCS. There are two ST nodes

33

(nodes 5 and 9 in Figure 2.2) satisfying POL index selection of the ST. The in­

formation about candidate nodes 5 and 9 is recorded respectively in the first 3 and

the last 3 POL blocks of the index. The length of the repeat represented by node

5 is 4 nucleotides (i.e., size of "AGAG"), and node 5 has 2 leaf children. Thus, in

the header of the record for node 5, we store values 4 and 2 (Figure 4.2). The next

2 blocks, as indicated by the last 5 bits of the header, are used for recording the

starting locations in the sequence at which this repeat occurs. The children of node

5 are nodes 7 and 8, which represent suffixes starting at locations 0 and 2, which are

stored in the second and third blocks of the POL index respectively. Similarly, since

the length of the repeat "GAG" represented by node 9 is 3 nucleotides, and node 9

has 2 leaf children, we store values 3 and 2 in the header of the record for node 9

(Figure 4.2). The children of node 9 are nodes 11 and 12, which represent suffixes

starting at locations 1 and 3, stored in the last 2 POL blocks.

To further improve the search performance for supermaximal repeats of length

greater than a particular threshold value, we store the POL records in descending or­

der with respect to the length of each potential supermaximal repeat (recorded in the

first 27 bits of its header). Once the length of a particular supermaximal candidate

becomes smaller than the threshold value, the SMR terminates without processing

the remaining POL index.

4.2 POL index construction algorithm

In the previous chapter, we explained the general idea of the POL index. However, if

we are to record all ST candidate nodes, this will result in large POL index sizes (com­

parable to the size of the STTD64 index), leading to high POL construction costs.

Given that biologists are usually interested in supermaximal repeats greater than cer-

34

tain minimum length, we use this information in POL index creation. Therefore, our

implementations of the POL construction algorithm and SMR search algorithm are

flexible and allow for creating and using a desired POL index with minimum index

length (MIL) that is relevant to the requirements of a particular application.

In our experiments, we consider 4 POL index structures with different MIL:

POLIO, POL25, POL100, and POL200. In POLIO, we record all candidate nodes

with repeat length of at least 10 nucleotides (i.e., MIL = 10). This POL index allows

for improving the search time for supermaximal repeats of size at least 10 nucleotides.

Similarly, in POL25, POL100, and POL200, we record all candidate nodes with length

greater or equal to their MIL (i.e., 25, 100, 200) respectively, which will result in faster

search for supermaximal repeats of at least 25, 100, and 200 nucleotides, respectively.

In the next chapter, we study the construction cost of these 4 indexes, both in terms

of construction time and storage space.

The POL index construction algorithm [Lian et al., 2008] is presented as Algo­

rithm 2 . The algorithm takes as input:

1. The STTD64 index of the sequence to be searched for supermaximal repeats.

2. A user-defined minimum index length (MIL) of the candidate nodes that are

to be recorded.

The output is an index, called POLMIL, which supports efficient search for super-

maximal repeats of size at least MIL.

The construction algorithm traverses the STTD64 index sequentially, examining

the leaf nodes. For a leaf node u, the algorithm compares its depth to MIL (Step 6)

to eliminate ineligible nodes. Recall that the depth of a node is defined as the number

of characters on the path from the root to the parent of the node. Thus, this step

correctly identifies if a branch node v - the parent of u, meets the minimum length

criterion. In steps 9 to 17, the algorithm checks if all siblings of u are leaf nodes. If

35

Algorithm 2 POL Construction Algorithm (STTD64 index ST, minimum index
length MIL)

1: v points to first ST node

2: while there are unexamined ST nodes do

3: while v is a branch node do

4: v points to the first child of v

5: end while

6: while DEPTHS) < MIL do

7: v points to next node

8: end while

9: repeat

10: if v is a leaf then

11: leaf counter + + ; allleaves = true

12: else

13: allleaves = false

14: end if

15: v points to next node

16: until all children are examined || allleaves = = false

17: if allleaves is true then

18: v.header.length = DEPTH(w)

19: v.header.numof occurrences = leaf counter

20: for i = 0 to leaf counter do

21: data[i] = LP(u) - DEPTH(w)

22: end for

23: end if

24: v points to next node:

25: end while

26: sort records in descending order of v.header.length

27: write records to disk
36

this is the POL record for this candidate v is created (steps 18 to step 24). In

step 27, we sort the candidates records in descending order, to speed up the search

algorithm (as described in previous section). Finally, after sorting the POL records,

the construction algorithm writes sorted records into disk as the POLMIL index.

In this algorithm, there are two functions named LP() and DEPTH(). Function

LPQ is used to retrieve Ip value from a STTD64 unit, and DEPTHQ returns the

depth value of a leaf node storing in suffix tree ST.

Next, we describe how to compute the starting position of a suffix represented by

a leaf node. As mentioned in Chapter 2, the starting locations of the suffixes in S are

not explicitly stored in the STTD64 representation (Figure 2.6), but rather calculated

as follows. For each leaf node u, the starting position of the suffix represented by u

is determined by subtracting the depth value of u from its Ip value, since Ip value is

the starting position in S of the substring encoded from the root to u plus the depth

of node u. In the STTD64 index structure, we store the depth values in leaf nodes

directly. Therefore, the calculation of starting position becomes simple and efficient.

Consider the suffix tree in Figure 2.2 with MIL = 2. For node 7, which is a left­

most leaf with depth > 2, the algorithm performs the while loop in step 10 to check

if node 8 (the right sibling of node 7) is a leaf node. Since this is the case and node

8 is a rightmost child, the algorithm goes to Step 19 to create a record representing

the branch node 5 - the parent of leaf nodes 7 and 8 (see Figure 4.2). The same steps

are executed when node 11 is processed, which results in creating a record in the

POL index representing node 9. Last, the candidate node records are sorted based

on the repeat length in descending order, but in our example this is already the case.

Figure 4.2 shows the final POL2 index for this example.

Assuming that the STTD64 index has already been created, the POL construction

algorithm reads the entire STTD64 index in sequential order, which results in 0(n)

constant time operations, where n is the number of nodes in STTD64. The sorting

37

in Step 27 is done in time 0(r logr), where r is the number of records in POL. Since

r is much less than n, the overall time complexity of POL construction algorithm is

0(n log n).

4.3 SMR algorithm

Our proposed SMR algorithm [Lian et al., 2008] is presented as Algorithm 3. It takes

as input the sequence to be searched, its POL index, and a user-defined parameter,

which indicates the requested minimum length of the supermaximal repeats. The out­

put of the algorithm contains the starting positions in the sequence and the lengths

of all supermaximal repeats satisfying minimum repeat length constraint.

The SMR algorithm first examines the minimum repeat length (MRL) parame­

ter with the POL minimum index length (MIL). In case that MRL is less than the

POL MIL, the SMR algorithm loads the STTD64 index instead of POL index and

runs Gusfield's algorithm. Otherwise, SMR loads the POL index and compares the

length of each candidate to the minJen value (Step 7) starting from beginning of

the index. If the current record represents a candidate with a length at least equal

to vain Jen, the algorithm reads the repeat occurrence positions from the data blocks

of this record (steps 8 to 12). In Step 13, the left diversity of these occurrences is

examined, and if successful, the discovered supermaximal repeats are returned as out­

put (Step 15). The sequential examining of POL records proceeds until all the POL

records are examined or until the length of a candidate becomes smaller than the

rain Jen. Since the records are sorted in descending order of lengths of candidates,

no other supermaximal repeats which would satisfy the specified length constraint

exist after the length comparison fails. Thus, the SMR algorithm correctly termi­

nates without examining unnecessary nodes. This feature optimizes the search time

38

Algorithm 3 SMR Search Algorithm (Sequence S, index POL, requested minimum
length minJen)

1: if minJen < MIL then

2: load STTD64 index

3: run Algorithm 1

4: else

5: load POL index

6: unit = first POL record;

7: while unit.header.length > minJen do

8: y = unit, header.numof occurrences

9: for i = 0 to y do

10: position[i] = unit.data[i]

11: retrieve left character for the position from sequence S

12: end for

13: compare left characters of all occurrences

14: if all left characters are distinct then

15: output array position and unit.header.length

16: end if

17: unit = next POL record;

18: end while

19: end if

39

performance at the SMR algorithm especially when the MRL is much greater than

the MIL. For example, searching for supermaximal repeats larger than 2000 and us­

ing the POLIO index, it is possible that most records in this index do not satisfy the

length condition, and hence examining only the few possible candidates improves the

search performance in this case.

Let us consider the running sample sequence S = AGAGAGCS (shown in Fig­

ure 2.2) and a minJen value 4. The SMR algorithm starts with reading the first POL

record, which represents the candidate repeat at node 5, whose length is 4 charac­

ters and satisfies the minJen constraint. Then SMR reads the two subsequent data

blocks (as instructed by y = 2) and retrieves the two positions S[0] and S[2], where

the candidate of supermaximal repeat starts. Since the left character of the suffix

starting at position S[0], i.e., S[— 1], is different by default from any characters in the

sequence, the two suffixes are left diverse and thus SMR outputs the supermaximal

repeat found, which is of length 4 and its two occurrences start at positions S[0] and

S[2]. The algorithm then reads the next POL block, which is the header for the

candidate repeat at node 9. Since its length is 3, which is less than minJen, there is

no need to further examine the POL index and the search process terminates.

The main advantage of our SMR algorithm over the Gusfield's algorithm (Algo­

rithm 1) is that it does not read the entire ST index for a sequence but rather only

a considerably smaller POL index. By using POL, which replaces the ST index, the

SMR algorithm avoids the first step of Gusfield's algorithm for finding suitable parent

nodes from ST, which is rather costly in terms of search time. Further, in some cases

(i.e., MRL > > MIL), even not the full POL index has to be processed in order to

find all existing supermaximal repeats. As a result, our SMR algorithm exhibits a

considerable decrease in the number of disk I/O operations, which in turn leads to

faster supermaximal repeats search time, compared to Gusfield's solution, as shown

in the chapter 5.

40

Chapter 5

Experiments and Results

In this chapter, we first study the cost of construction of POL index for different

minimum lengths (10, 25, 100, 200) both in terms of time and storage requirements.

We then evaluate the performance of our proposed SMR technique on real-life DNA

sequences using the four POL indexes. We compare our search times with Vmatch

[Kurtz, 2000], a suffix array based search tool. Also, we investigate the number of

supermaximal repeats found. Finally, we conduct additional experiments with syn­

thetic DNA sequences in order to further evaluate SMR technique.

All experiments are performed on a typical desktop computer with Intel Pentium

4@3GHz, 2GB RAM, 300GB HDD, and 2MB L2 cache, running Linux kernel 2.6.14.

The construction and search times reported are real times in seconds (measured using

the time command in Linux). The POL index construction and SMR search algo­

rithms are implemented in C. The SMR search service is available online for evaluation

and use from the web site of the FASST project at http://sepehr.cs.concordia.ca.

As real-life DNA data, we used the 24 homo sapiens chromosomes which include

22 autosomes, X and Y chromosomes as sequences to be searched for supermaxi­

mal repeats. The data was obtained from NCBI (National Center for Biotechnology

Information). We removed all the unknown nucleotides (indicated by character N),

41

http://sepehr.cs.concordia.ca

resulting in sequences of size range 26 to 238 million bases. As for synthetic sequences,

we build 24 sequences with the same size as 24 real human chromosomes, but generate

letters " A, C, G, T" randomly.

5.1 POL index construction

As discussed in Chapter 4, recording all candidate nodes from ST will result in huge

POL index size. Instead, in our first set of experiments, we consider 4 alternative

minimum index lengths (MIL): 10, 25, 100, and 200 nucleotides, for which we con­

struct the corresponding POL indexes POLIO, POL25, POL100, and POL200. For

example, POL200 records all candidate ST nodes whose repeat lengths are at least

200 nucleotides.

Figure 5.1 shows construction time for these four indexes. The construction time

for each POL index is the sum of the construction time for all 24 chromosomes. The

POL200 index has the fastest construction time, while POLIO is the slowest, being

about twice slower than POL200.

Next, we study the sizes of these four POL indexes. To show the relationship

between the index size and sequence size, we consider the ratio of POL index size

and sequence size in Figure 5.2, in which we show the average sizes for all the 24

chromosomes. POL200 has the smallest storage requirement, which is on average

about 6% of the sequence size. Note that the size of STTD64 index is 13 times of the

sequence size on average. That is, POL200 index is more than 200 times smaller than

the STTD64 index. The POLIO index is the largest among the four indexes, nearly 4

times bigger than the sequence, and about one third of the STTD64 index. POL100

is comparable to POL200, and POL25 is about half size of the input sequence.

In conclusion, the POL200 index has the fastest construction time and the small-

42

POL Index Construction Time

w 2000
c o

j | 1500

E
i - 1000

C
on

st
ru

ct
io

r

en

o

o

o

• POL Index Construction
Time (seconds)

POI_index200

860

POLindex100

869

POLindex25

1001

PuLmdexlO

1525

POL Index of Various Minimum Lengths

Figure 5.1: Construction time for various POL index lengths

POL Index Size / Sequence Size Ratio
o
IS
cc

<s>
b!

CO
<B o c
&

W
^3
N

CO
X
a>
c
O
0_

400%

350%

300%

250%

200%

150%

100%

50%

0%

• POL Index Size /Sequence
Size Ratio

POLindex200 POLindex100 POLindex25 POLindexlO

6.36% 9.56% 48.43% 379.94%

POL Index of Various Minimum Lengths

Figure 5.2: Index size/sequence size ratio for various POL index lengths

est storage requirement. This index can be used to improve the search performance

of SMR only if the minimum repeat length (MRL) of supermaximal repeats is at

least 200 nucleotides. POL100, POL25, and POLIO can be used for smaller MRL

values, at the cost of increased construction time and storage space, since decreasing

43

minimum repeat length leads to more candidate nodes to be identified from STTD64

and recorded in POL index. For example, POL25 requires additional 140 seconds in

order to record 8 times more candidate nodes compared to POL200, but supports

efficient SMR search for threshold value 25 or more nucleotides. Constructing the

POLIO index requires almost twice the construction time of POL200 and results in a

60 times larger index (but still 3 times smaller than STTD64), and supports search­

ing for supermaximal repeats of almost all practical sizes. We remark that for the 24

human chromosomes considered, searching for repeats with minimum lengths smaller

than 10 nucleotides is not practical in general, as discussed later in section 5.3.

The choice of an "appropriate" minimum repeat length for the POL index con­

struction is application dependent. Our construction algorithm allows the user to

specify a value for this parameter which suits the needs of a particular application,

thus providing a suitable trade-off between construction time and storage space on

one hand, and search time on the other.

5.2 SMR search performance

In our second set of experiments, we evaluate the search time performance of SMR

when using the 4 POL indexes and compare our results with Vmatch [Kurtz, 2000].

In these experiments, we used 14 different threshold values for the supermaximal

repeats, ranging from 1 to 10,000 nucleotides. If the threshold is smaller than the

MIL in a particular POL index, the SMR algorithm uses the general STTD64 index

instead. Figure 5.3 reports the measured cumulative search times (for all 24 chromo­

somes) for the four SMR runs and Vmatch.

We make the following two important observations. First, if the MRL is greater

than the MIL of two or more POL indexes, the SMR algorithm provides the similar

44

SMR vs. Vmatch Performance

1000

900

800

700

600

r 500
sz
a

00

400

300

200

100

0

25 50 99 100 199 200 1000 2000 5000 10000

Minimum Size of Supermax Repeats

— • - Vmatch—Q—SMR+POL10 •SMR+POL25 •SMR+POL100 X SMR+POL200

Figure 5.3: Vmatch vs. SMR with different POL index

search time performance, regardless of which POL index is used. For example, SMR

exhibits very similar search times using either POLIO or POL25 for MRL larger than

24 nucleotides. Also, SMR exhibits identical performance using any of the 4 POL

indexes for MRL above 199 nucleotides. This is explained by noting that regardless

of which particular POL index is used, the number of candidate nodes that represent

supermaximal repeats of desired lengths is the same. Since the records in the POL

index about the candidate nodes are kept in descending order, the SMR algorithm

processes the same number of POL records, which leads to identical search times

using any of the 4 POL indexes. This observation implies that if a particular search

application requires only finding supermaximal repeats of size hundreds or thousands

of nucleotides, then POL200 would be a suitable index choice due to its fast construc­

tion time and small storage requirement.

Second, we note that provided with a suitable POL index, SMR is significantly

faster in finding supermaximal repeats compared to Vmatch. For example, for MRL

45

value of 10 nucleotides, SMR with POLIO is 2 times faster than Vmatch; for a MRL

value 25, SMR is 7 times faster using either POLIO or POL25. SMR is more than 8

times faster than Vmatch for searching MRL value of 100 nucleotides using any one

of POLIO, POL25, or POL100 indexes. We are about an order of magnitude faster

for MRL values at least 200 nucleotides, using any of the four POL indexes. On the

other hand, for threshold values less than 10 nucleotides, the construction of a POL

index is not recommended for being too costly. While cases with threshold values

less than 10 may not be frequent in practice, our proposed SMR algorithm in such

cases can directly use the STTD64 index, resulting in only about 10% slower times

compared to Vmatch. Appendix A shows detail experimental data.

The above results are based on the assumption that a POL index has already

been constructed and is available to SMR. However, an important practical question

is: how many requests for computing supermaximal repeats should be posed against

a particular sequence so that the cost constructing the POL index by processing the

available STTD64 index is justified and amortized, and SMR would be preferable to

Vmatch solution? We consider this question from two points of view, as follows.

First, Figure 5.4 answers this question at a higher level. It reports SMR search per­

formance including the POL index construction time, for various number of searches

in a particular sequence. The depicted search time is the average for 12 different MRL

values of the supermaximal repeats, ranging from 10 to 10,000 nucleotides for all the

24 chromosomes. We observe that the search cost reduces as the number of SMR

searches increases. The SMR algorithm using POL25 outperforms Vmatch when per­

forming two or more on a particular sequence. SMR with POLIO costs less than

Vmatch over 3 searches. Also, performance of SMR with POL100 exceeds Vmatch

after 5 searches. In the worst case, SMR with POL200 has comparable performance

with Vmatch after 10 searches. We observe that SMR using POL25 has the best per­

formance in our four POL indexes to compete with Vmatch when considering POL

46

SMR + POL construction vs. Vmatch Performance

1800

o
e(

s
Ti

m

sz

3e
ar

<
A

ve
ra

IUUU

1400

1200

1000

800

600
400

200

5 10 20
Number of Searches

50 100 200

• -Vmatch
-•—SMR+POL100

-H-—SMR+POL10
- *— SMR+POL200

- *— SMR+POL25

Figure 5.4: Vmatch vs. SMR considering POL index construction time

index construction cost. But is it always true whatever minimum repeat length we

request?

To answer this question, we evaluate the performance at more detailed level. Fig­

ures 5.5, 5.6, 5.7, and 5.8 illustrate the performance results for various MRL value in

POLIO, POL25, POL100, and POL200, respectively.

In Figure 5.5, we observe that SMR with POLIO (including construction time)

outperforms Vmatch when performing at least 4 searches of minimum size of 10 nu­

cleotides supermaximal repeats. SMR+POL10 is compared to Vmatch more than 3

searches of minimum 25 nucleotides. As can be seen in Figure 5.6, SMR with POL25

has better performance than Vmatch after 2 searches for supermaximal repeats of

minimum 25 nucleotides. Similarly, in Figure 5.7, SMR with POL100 performs better

than Vmatch at more than 2 searches of minimum 100 nucleotides of supermaximal

repeats. As shown in Figure 5.8, SMR with POL200 is better than Vmatch when

searching at least twice of supermaximal repeats of minimum 200 nucleotides.

47

Vmatchvs. SMR+POL10

3000

2500

* 1—» *" 1

10 25 50 100 200 1000 2000 5000 10000

Minimum Length of Supermaximal Repeats

— •— Vmatch • 1 Search • 2 Searches — » — 3 Searches — * — 4 searches

Figure 5.5: Vmatch vs. SMR + POLIO with construction time

Vmatch vs. SMR+POL25

2000

1800

_ 1600

E 1400 o
<j> 1 2 0 0

| 1000

£ 800
o
I 600

400

200

0

10 24 25 50 99 100 199 200 1000 2000 5000 10000

Minimum Length of Supermaximal Repeats

— A— Vmatch • 1 Search • • 2 Searches • 3 Searches

Figure 5.6: Vmatch vs. SMR + POL25 with construction time

48

Vmatch vs. SMR+POL100

nd
s)

<D

<B

Ti
m

ar

ch

1800

1600

1400

1200

1000

800

600

400

200

• m K

„ . ' . : • \ \

_ ^

...:~.̂ -..:. A \
\ * V

~ i —
. ^

jn

4 *

10 25 50 99 100 199 200 1000 2000 5000 10000

Minimum Length of Supermaximal Repeats

— i— Vmatch • 1 Search -2 Searches -3 Searches

Figure 5.7: Vmatch vs. SMR + POL100 with construction time

1800

1600

•GT 1400

§ 1200

^ 1 0 0 0

j f 800

2 600 -
CO

a>
(f> 400 -

200

Vmatch vs. S M R + P O L 2 0 0

10 25 50 100 199 200 1000 2000 5000 10000

Minimum Length of Supermaximal Repeats

—•— Vmatch • •1 Search — • — 2 Searches - 3 Searches

Figure 5.8: Vmatch vs. SMR + POL200 with construction time

49

From our results above and their analysis, we conclude that our approach of using

SMR with proper POL index is better when there are 2 or more search tasks with

length at least 25 nucleotides or there are 4 or more searches with length at least 10

nucleotides on the same sequence.

5.3 Number of supermaximal repeats

We also studied the number and the size of supermaximal repeats in the 24 human

chromosomes and present the results in Figure 5.9.

Figure 5.9: Occurrences found in 24 human chromosomes

As can be seen from the figure, increasing the minimum repeat length in the range

from 1 to 10 nucleotides does not lead to a significant decrease in the number of su­

permaximal repeats found. For such small MRL values, we find almost half a billion

50

repeats in the collection of 24 chromosomes with total size of around 2.8 billion bases.

The size of search results contradicts the idea of supermaximal repeats search, which

is intended as a high-level and concise investigation tool for initial analysis of repeti­

tive structures in biological sequences. Further, there is a high possibility that most

supermaximal repeats of size less than 10 nucleotides found in sequences containing

tens and hundreds million bases occur purely by chance, and thus may not carry any

structural or functional information. For these reasons, we believe searching with

MRL values less than 10 nucleotides should not be viewed as a primary application

of supermaximal repeats search in large DNA sequences. Thus, the slower SMR per­

formance in such cases (up to 10% slower than Vmatch) would not pose a restriction

in its use.

5.4 Synthetic DNA data

To further evaluate the performance of SMR, we study how the POL construction and

SMR technique work with synthetic DNA sequences in this section. Does the POL

index for synthetic data occupy reasonable space and have satisfying construction

time? Does SMR have comparable performance running with synthetic data as with

real-life DNA data? Does it still outperform Vmatch solution?

To answer these questions, we evaluate the POL index construction, SMR search

performance, and number of supermaximal repeats and their sizes using a set of

synthetic DNA sequences, which are generated randomly by computer program and

have the same character set as real-life DNA, i.e. A, C, G, T. We build 24 synthetic

DNA sequences with the same sizes as corresponding human chromosomes. Then

we compare the performance of our POL construction algorithm and SMR search

algorithm running on synthetic sequences against real-life DNA sequences. We also

51

compare SMR to Vmatch on synthetic sequences. Finally, we study the occurrences

of supermaximal repeats for synthetic data.

5.4.1 POL index construction

We construct various POL indexes for synthetic DNA sequences, which are POLIO,

POL15, POL20. Figure 5.10 shows the ratio of average POL index size/original

sequence size for synthetic and real DNA data. The ratio of synthetic data is similar

to the real DNA data in POLIO, but size of POL15 of synthetic data is only half

of its original sequence, while that of real data is one and half times of its original

sequence. For POL20, synthetic data has much less size than real data. This result

implies that the occurrences of supermaximal repeats in DNA data are much more

than synthetic data. Thus, efficient techniques for repeats finding, such as SMR, are

needed.

POL Index Size

CD
O
C
CD
rs
cr
CD

CO

^ !<?

Q ~
CD

.b!
tf)

_ l
O
Q.

1000.00%

100.00%

10 00%

1.00%

0.10%

0.01%

- " "i '

: "-v. r——

POL10 POL15

Various POL index

POL20

• Synthetic DNA • Real DNA

Figure 5.10: POL index size analysis : synthetic vs. real

Furthermore, we evaluate POL index construction time for synthetic data and

real data. As shown in Figure 5.11, they have similar construction time for POLIO.

52

POL Index Construction Time

o

(s
e

0)

F
j = :

R
=

tru
e

o
o
(D

nd

i

o Q_

1800

1600

1400

1200

1000

800

600

400

200

0
POL10 P0L15 POL20

Various POL index

B Synthetic DNA BRealDNA

Figure 5.11: POL index construction time : synthetic vs. real

but POL15 and POL20 index constructions for synthetic data are much faster than

real data due to their less occurrences of repeats.

5.4.2 SMR search performance

In this set of experiments, we evaluate the SMR search time performance using

POLIO, POL15, and POL20 indexes running with synthetic data, and then com­

pare our results with Vmatch [Kurtz, 2000] and real-life data. In these experiments,

we used 8 different threshold values for the supermaximal repeats, ranging from 1 to

25 nucleotides.

Figure 5.12 reports SMR search performance using POLIO, POL15, and POL20,

comparing with Vmatch performance. We observe that SMR is significantly faster

than Vmatch when the requested minimum length is greater than or equal to the

53

threshold of POL index. This observation is in accord with our finding for real-life

DNA.

900

800

^ 700

i2. 600

£ 500
400

300
JZ
o
l _
(D
0>

«> 200
100

0

SMR vs. Vmatch on Synthetic Data

- ^

10 14 15 19

Various minimum search lengths

20

• Vmatch •POL10 •POL15 •POL20

25

Figure 5.12: SMR vs. Vmatch performance on synthetic data

o
<n

Q>

£

o
TO

00

1000

800

600

400

200

POL10: Synthetic vs. Real DNA

10 15

Various Minimum Lengths

20

•Synthetic DNA —— Real DNA

25

Figure 5.13: SMR search + POLIO : synthetic vs. real

54

POL15: Synthetic vs. Real DNA

(s
ec

)
"c

hT
im

e
S

ea
t

1000

800

600

400

200

0

10 14 15
Various Minimum Lengths

20

•Synthetic DNA - • - R e a l DNA

25

Figure 5.14: SMR search + POL15 : synthetic vs. real

POL20: Synthetic vs. Real DNA

1000

o
in

9
 O

IL

se
ar

ch
 1

800

600

400

200

*

GO

10 15 19
Various Minimum Lengths

20

-Synthetic DNA - « - R e a l DNA

25

Figure 5.15: SMR search + POL20 : synthetic vs. real

55

Next, we evaluate SMR search performance on synthetic DNA sequences and

human chromosomes. Figures 5.13, 5.14, and 5.15 exhibit SMR performance on

synthetic DNA data and real-life human DNA data. As shown in the Figures, SMR

with POLIO working on synthetic data performs as good as running on real data.

And SMR using POL15 or POL20 on synthetic data is even faster than it runs on

real data.

5.4.3 Number of supermaximal repeats

As already discussed in section 5.4.1, there are much fewer supermaximal repeats in

synthetic data compared to real DNA. In this section, we study this issue in more

details. Figure 5.16 shows the number of repeats found in synthetic data for different

length thresholds. We observe that about 360 million supermaximal repeats have

10 to 15 characters, which represent more than 75% of all supermaximal repeats in

the sample sequences. Also, in synthetic data, supermaximal repeats longer than 20

nucleotides are very rare. This observation shows the difference between synthetic

random DNA sequences and real-life DNA sequences, and explains why POL15 and

POL20 indexes of synthetic data are much smaller than real-life DNA data.

From above experiments and discussions, we observe that repeats in DNA occur

much more often than in randomly generated strings. Therefore, repeats are biologi­

cally important, and efficient techniques for their finding, such as SMR, are needed.

Moreover, SMR search algorithm using POL index exhibits outstanding performance

in real DNA data, as well as in random strings.

56

Number of Sup

1 nnri nnn nnn r-
I ,UUU,UUU,UUU

100.000,000
•s 10,000,000
1 1,000,000
^ 100,000
£ 10,000
f 1,000
i 100

10
1

—

ermaximal Repeats

•

1 10 15 20 25

Minimum Length of Repeats

Figure 5.16: Number of supermaximal repeats

57

Chapter 6

Web Based Interface

In this chapter, we briefly introduce FASST project (Fast And Scalable Search Tool

for biological sequence data) and its web site http://sepehr.cs.concordia.ca/ developed

using HTML, PHP and Perl languages. We then demonstrate the SMR application

through this web interface.

6.1 FASST project

FASST (Fast And Scalable Search Tool for biological sequence data), is an integrated

research project for modeling and processing genome and protein sequence data and

which provides support for various search applications. The tool uses the STTD64

index, proposed and developed by [Halachev et al., 2007] in our project.

FASST is designed to efficiently handle sequences of various sizes, including some

very long ones, such as the entire human genome (of size approximately 2.8 billion

bases) on a typical desktop computers.

The search tasks currently implemented and supported as part of the FASST

project include:

58

http://sepehr.cs.concordia.ca/

exact match and approximate (k-mismatch) search;

search for structured motifs (represented as patterns);

computing supermaximal repeats in DNA sequences.

S FASST - Windows Intel net Exploiei

t - , "- ^ j http://sepehr.cs.concordia.ca/

& \'& FASST $% Home - Q " ;@!Pririt ~ ujfPage•»• Q Tools••

« N i v e « s i

^ C o n c o r d i a
2 I* ! V £ J 5 | ? Y FASST

FASST is an integrated research project for modeling and processing genome and protein
sequence data through search operations useful in numerous bioinformau'cs applications.

FASST is designed to efficiently handle sequences of various sizes, including some very
long ones, such as the entire human genome (of size approximately 2.8 billion bases) on
regular desktop computers.

At the core of our technique lies a powerful, suffix tree-based index, called STTD64 (for
Suffix.Tree. Top-Down, 64 bits). The one-time index construction cost is reasonable and
comparable, with the best known alternatives, both m terms of construction time and storage
space.

STTD64 provides a basis for the implementation of numerous bioinformau'cs search
applications The search tasks currently implemented include:

• exact match and approximate (k-mismatch) search:
• search for structured motifs (represented as patterns);
• computing supermaximal repeats in DNA sequences.

Figure 6.1: The home page of FASST web interface

The FASST tool has interactive interfaces for our exact match and k-mismatch

search, motif search, and supermaximal repeat search applications. We also provide

quick references for these bioinformatics search applications and other relevant infor­

mation on the web site. Figure 6.1 is a screenshot of the FASST home page.

As this thesis focusing on development of SMR for finding supermaximal repeats,

we next illustrate the FASST interface for this search task.

59

http://sepehr.cs.concordia.ca/

6.2 Supermaximal repeats search demonstration

In this section, we demonstrate a supermaximal repeats search through FASST web

interface. From the home page of FASST (Figure 6.1), we select supermaximal repeats

option on the left menu. This opens the interface related to the supermaximal repeats

search, shown in Figure 6.2. There are three options to select a sequence and proceed

with a search:

Option 1: Search in the following sample sequences that are already uploaded to

our server and their indexes are created. All header lines, comments, sym­

bols that do not represent a nucleotide (e.g., blanks, new line characters, etc.),

and Ns (unknown nucleotides in DNA data) are being removed prior to index

construction. The sample sequences currently available are as follows:

• chr_Y (25 MB) - Human chromosome Y;

• chr_15 (81 MB) - Human chromosome 15;

• chr_8 (143 MB) - Human chromosome 8;

• chr.l (225 MB) - Human chromosome 1;

Option 2: Search in a new sequence. For this, the following steps are to be taken:

1. Choose a sequence (in FASTA format) from local computer, mark its type

(i.e., DNA), and upload it to our server.

2. From the uploaded sequence the following will be removed:

• All header and comment lines;

• Symbols that do not represent a nucleotide (e.g., blanks, new line

characters, etc.) and all Ns (i.e., unknown nucleotides);

60

3. Construct the POL index for the sequence.

Although our technique can handle sequences of up to 4GB, due to storage

constraints, the limit on the size of a user uploaded sequence is 10MB. For the

same reason, the uploaded sequence and its index will be kept on the server for

no longer than 72 hours.

Option 3: Search in existing sequences uploaded by any web users in the last 72

hours. These sequences have been preprocessed as mentioned in Option 2, and

the size of user sequence is at most 10MB. We set up this option to provide

convenience for users who would like to reuse their uploaded sequence within

72 hours of the original loading process.

r
I 'A FASST - Windows Internet Explorer •!f

%^§\~ ; ~ £L http://sepehr.cs.Concordia.ca/repeat,php v j * t X

fi]|Home » C] - ." - (gOPrint - :.»Paoe - •;]} Tools -

P -

U N I V E » 5 ! T t

KConcordia FASST

1 . Select a sequence to be searched

W A sample sequence

ES^SSSH A/iff K>„

Choose a sequence from the list «>,
DMA

chr_Y
chr_15 \
chr 8 •*''

O A User sequence

O Upload your sequence
(must be in FASTA format).

Figure 6.2: Supermaximal repeats search interface - select options

After a sequence is selected in the first step, the user is prompted to input a minimum

length of repeats to search for. as well as the output options, shown in Figure 6.3.

61

http://sepehr.cs

:# FASST - Windows Internet Exploier tJSl
i gT http://5epehr.CS.COnCOrdia.Ca/repeat.php V | : * ? M X :

* <fe i g FASST

P - :

SfS! Print - ^ P a g e - 0 Tools »•

is « 1 ¥ £ is s 1 T t

Concordia
U S I f l S S S I T T

Superntaxinial Repeats

FASST

1. Select a sequence to be searched

@ A sample sequence O A User sequence

WNA ' M -

I chr_15
chr_S

« ch f_1 iffi-

2. Set Minimum Repeat Length

Minimum Length: 12000

3. Select Onrpat Format

© Display the number of repeats found (on screen)

O Save the number, location, and length of repeats found (to file)

Start Searching

Figure 6.3: Supermaximal repeats search interface - select parameters

62

http://5epehr.CS.COnCOrdia.Ca/repeat.php

Since it is not uncommon for a search to return millions of occurrences, displaying

and/or saving the results could take considerable amounts of time. For convenience,

we provide 2 output options:

• Option 1: Display on the screen, only the number of repeats found;

• Option 2: Save to a file, the number, locations, and lengths of the repeats found.

Figure 6.4 is the screen-shot of the page displaying the result of searching chr_Y with

minimum length 2000 of the repeats and output option 1. Output option 2 stores

detailed information such as locations and lengths of repeats. If the output size is

reasonable, the user can view it directly on our server. Otherwise, he/she has to

download the result file on his/her local machine. The screenshots of output page

for detailed results in text format are shown in Figures 6.5 and 6.6. We also provide

graphic annotations for the result, which will be described in the next section.

'4S FASST - Windows Internet Exploiei

-, -» p t http //sepehr.cs.concordia.ca/repeat_process.php

< !»M Print

[P\

? Page * {Or Tools *•

U N I V E R S I T Y

Concordia FASST
U N ! V S R S t T f

Super maximal Repeats

Nr<e -

St]

Search in progress
Please wait.

Search Result :

Sequence f i l e liaise: /cnr_Y
type = DNA, iBinimuis l e n g t h = 2000

T o t a l nuitibfer o f supermexlrsal r e p e a t s i s 163

Go Back

: 0 Internet *i 100%

Figure 6.4: Supermaximal repeats search interface - display brief results

63

'<0 FASST - Windows Internet Exptorei IsJiiilE
k?#s.—y • i | , http://sepehr.cs.concordia.ca/repeat_process.php

i? 4t J_f FASST i ^ Home * £ j - g^9 Print ' ,* ' Page *• ^ Tools ~

V N i V l i t . l

\grJConcordia FASST

Sup^rmajama. Repeats

Search in progress
Please wait.

File name: A^w\\nv,,'htmt'result're_ultsml2273S9415

File sire: 4858 bytes

|..0pen | Download

Gbrowse

Go Back;

%ioo%

Figure 6.5: Supermaximal repeats search interface - display detailed results

i ? Ŝr ^ F A S S T f

^ C o n c o r d i a

Search Result:

l e n g t h
1 1 5 0 1

' ' 1 0 8 5 0
1 0 0 9 0
9 3 9 6
9 0 S 1
8 9 6 ?
8 9 6 2
8 9 5 6
8 7 3 0
8 5 1 4
3 3 9 8
7 7 8 6
7 7 3 1
7 4 1 8
6 9 8 6
6 9 3 2
692 9
6 3 3 3

Littp://www.concordia.ca/

p c s i t i c n l
21-954196
2 1 1 3 5 4 7 0
2 1 5 2 0 9 2 8
1 9 5 6 1 4 7 9
2 0 0 4 9 6 1 5
2 1 I S S 1 8 6
2 1 1 8 0 7 9 8
2 1 5 7 0 6 9 3
2 1 5 0 4 2 9 7
2 1 5 5 5 0 9 3
2 1 8 1 1 3 3 3
2 1 1 1 0 6 9 3
2 1 8 2 3 1 6 6
2 1 3 1 9 6 6 0
2 1 0 5 6 1 3 3
2 1 1 3 9 7 6 1
6 2 3 3 3 7 1
2 1 3 1 2 0 1 6

: <££ Home T

p c s i t i o n 2
2 3 0 8 7 9 3 7
2 4 * 0 9 3 9 9
2 3 1 S 4 6 7 2
1 9 6 0 3 3 3 3
2 0 0 7 3 1 S S
2 4 6 3 2 6 2 1
2 4 6 5 5 2 1 6
2 3 2 0 4 4 3 7
2 3 1 3 8 0 4 0
2 3 1 8 8 8 3 7
2 3 4 2 6 9 9 8
2 4 5 8 5 1 1 5
2 3 4 4 3 3 2 5
2 3 4 3 5 3 1 9
2 4 5 3 0 5 8 4
2 4 6 6 4 1 7 9
6 2 4 9 1 4 7
2 2 9 4 5 7 6 4

D~* EM? Print - t- r Page •*•

• *

^ Interne*

\"J^ Tools w

$ &

\ 100%

»

A

' V

Figure 6.6: Supermaximal repeats search interface - display detailed text results

64

http://sepehr.cs.concordia.ca/repeat_process.php
file:///grJConcordia
http://www.concordia.ca/

6.3 Graphic annotations

In order to view the results conveniently, we provide an alternative graphic output

option for supermaximal repeats by embedding a third party viewer named GBrowse

[Stein et al., 2002] into our user interface. The version of GBrowse we use in FASST

is 1.68.

GBrowse is a specified browser which combines database and interactive web

page to manipulate and display annotations on genomes. It is a popular viewer

in GMOD(Generic Model Organism Database project) which is a collection of open

source software tools for creating and managing genome-scale biological databases.

M V* IgSbupermaxiniaiKepeats h'^fli = Oft""""' ' W '""•'"*!.'•' >35s>-rou. - jsy roye - ly i ium> -

Supermaximal Repeats
B Instructions
Search using a sequence name, gene name, locus, or other landmarfe The wildc3fd:chaf3cter' ts allowed. To" center on a location, click
the ruler. Use the Scroll/Zoom buttons to change magnification and position.; :••,'.'.•

Examples' Repeatsmr1_*, Repeatsmr*. chr_'
[Hide banner] [Bookmark this] [Link to Image) [Help]
S Search
Landmark or Region
(Repeat; s m r S e a r c h J
0a^^pjrrce___
i Supermaximal Repeats i v j

The following 96 regions match your request.
Matches on chr 15

ReNatioveMie*llt«:l* :.:4;i£ll';--•"•• I ::•:•.£:• ' .i'h-,<£'<•', -S!£': •;,::.-"Si-S "v%"'l=mSS4"

;•; :;#:>;:;; :. HV,:;:/;;; ":•-:?-• t<: . : - : ••[.••::
:.:;.,;• -\fiL •:.;.<:::;;::T:.: •^W--:';:-**^

':i£ifr:i-' ? I W - .::^i? •:'•;-: 'I ••Jv=> :::Vte=!;;':3;;:wft ;" :.;/:&<•-4:.;^ •:;;?:.^il. . < = S f t * .
'^:-r<M<ti-^.-,^j:--n, • • :!--:V^V;.-f:::-:r. » ' \L' I -WWII:.

; j ; ; * . / - : : > ; . . : : ' ; . ' :;,-•• T ~ . ^ o f ; . p ; ; • • ; , : » , • • • • , ; • • ; . ; ; ; ; ; r ; 3 : l l ' :

. . : • : . : , • • : - : . . | • • • ; • ! ; : : H

; ; ; ; ; ' ; v , . • : . . : , - ; . • ; . - • . h • ' ^ : •••r,\H:,-;.,- • ; ; • • : ; . ; ; ; • ; • I I
: ; ' ; ' ; ;«& • ;;;';•;;;.;-;-•;•;• ;i:i:.:- ' f .v.;.;.. : | f • ; ; ; >.y:^?:rrew:^:-- ! '":r-vi.-W ! ; * ; ; ; . 0:^K::- II

t . ; " ; - : I : • : . • • : : • : . . . ; , ; ; . , ; - s i : ; ™ . - ' ; : ; ; ; t l ;
.;;.;. r •-;;:• : : -; V:*; r^a i i :

. . • • . : • : . : • : . - . ; ; j . : - : , ; ; ;:.: • ; : . . " . ; . ; ; . ; ; M I

;:v: <;;i; vi i r j i i: Tt i i i.it: r;n \ i i i f t t;vi »z t :t 1i r r r v v • |~.i;t v:> j;x;i! i :\ t T :I V I r;> :*̂ i: I n »i. I;:I ri ;t. r :j i

Figure 6.7: Graphic output page part 1 - overview

65

M a t c h e s s n r 3 8 _ i smr39_2 s « r 3 2 _ l
.:. • • • " . • . - • • , ! * . "

-M-3 i_ j . smr39_i sm-9_ l - . " ' . .

• :-.•-. •
Sf l r42_ l

-.' • • : • •
sflr7__l

• . : • > . • • • - : .

: S B T 2 0 _ 1

,::.:••:... . • : » : ' -w ;
: s« r46^1 '

' • • • ; - • < * _ ; . : • . . :

: smr29_i
• v . • • : • •

S M T 4 8 _ 1 :
• • • : " • . • . • •

. : • • " : s w 3 7 _ i
; . : . . : : « - ' . • • . ^ • • : . - : : - :

•:.."'• si»r7_2 '
: ..-J- * . ' . -:,--

Si»T38_2 .
.:..'v : , • . • ;> ,
-•:.":•" 5i«r3J=_2 '--.•

: .• , : . . I",.
• • ' • •• f " : SMT42.2 ::l

: '• shr46_2 :'

: S B T 2 C L 2 •
. : : • . ; « ; . • • : "

:.. i : Sfltr37 2

'.--. • ;..:-
: ' i : ;S"fe29_2

vJx :: smr48 2 ^
K ? / : : : : - ; - r : ; : . - : : ; i l v r : - : •••*%•: ;• :

•.,:-• •
S B T 4 t _ i "

•..-siw41_2
, • • • ' .

: SRT3011 :
• - • • f t - . ; : * \

•••• W . 3 2 L 2 •:.•
:.

: ; : • • • : . : •

: s w 9 _ 2 :
. • : . " • : •

" J 5Hr30__2 '.
. • : • ; • ••;

smr23_l
. - • • ! • :

SM"33_1
•.: • . " • '... •

SRT12 1
•' ••••:
v s w - Z t l
•; • • • •

s»r3S_ i
/ • • : • • : • • • • • : . : •

s n r 2 7 _ l
. : • • • : •

SBT28 1
- • • •
: s w l S _ l

;. » .. ••SM"23_2

. . ̂ , ... : sra-24_2

.• SBr3£j2
. • . - •

s«r28 2
' - . • • '
: SW"27_.2

; : : ' • • - : : : . r
;;:'. s « r 3 3 j 2

sa r i 2_2
, : • • • • • • • . -

i:: s t t r l 9_2
I : " . * - " : .

smr25 1

Sl(r25_2
• .

S«r34_l

smr44_l

S«r26 1
•
spr35_l
•
str22_l

sar45_l
• : ..'
smr40_l
• .:.:::'
sw21_l,

• : . • - • •
SBT16_:i
• " :

StM"17^1 :
• . : -J .v .

* . - . • • . : :

:sar8_l ;
• ' • ' . • • • : , : . : • '

* • ; : " : : . : ; •

siarl_i
4,....:.,.::
S*~i3_i

• * . • • ; • ; • : • : - , • •

Sijri5_.l.i:
• .::...-:'..:h
: SBT3_1^;

sBris_i::

5l«r4_.l :•„•-
..Ift'fti.:.:••:'
: snr2_i ;:'

. * S d . " . :

•IKM:1:'::;::::
s«rl7_2:

Figure 6.8: Graphic output page part 2 - detailed distribution

^ \ ^Sqpepmaxinia} Repeats ^ H o m e : imprint *•: . Page. . Tools '

Sfnr1_

smrl
smr2_

smr2

smr3
smr3

smrf
smr4

smr5

smr5
smr6
smi6_
smr7.

smr7

smrB

smr8

smr9

smr9
s m r l 8

smr10_

smr11

smr11

smr12
smr12

smr13
smr13

smrl 4
smr14

smr15

_1 smrepeat

_2smrepeat

Ismrepeat

_2smrepeat

1 smrepeat

_2smfepeat

_1 smrepeat

Jsmrepeat

1 smrepeat

_2smrepeat

_t smrepeat

_2 smrepeat

_t smrepeat

2 smrepeat

1 smrepeat

2 smrepeat

1 smrepeat

2smrepeat

1 smrepeat

2 smrepeat

Ismrepeat

2sm repeat

1 smrepeat

2smrepeat

1 smrepeat

2smrepeat

1 smrepeat

2smrepeat

1 smrepeat

chr_15:61.64..61.66Mbp(25.71kbp)

chr_15:61.96..61.99 Mbp (25.71 kbp)

chr_15:6l.63..61J Mbp (15.19 kbp}

chr_15:62.01..62.02 Mbp (15.19 kbp,*

chr_15:61.67'..61.68 Mbp (10 39 kbp)

chr_15:62 .62.01 Mbp (10.39 kbp}

chr_15 61.72.61.73 Mbp (10.07 kbp}

chr_15:62.05...62.06 Mbp (10.07 kbp)

chr_15:61 S3 .61.64 Mbp(S..496 kbp)

chr_15.:61.96...61..96 Mbp (8.496 kbp)

chr_15:61.75.61.76 Mbp (6.325 kbp}

chr.1i62.09_.62.09 Mbp(6.325 kbp}

chr_15:285.4..2S1.6 kbp (6.165 kbp}

chrJ5_1..297..1.303 Mbp (6.165 kbp)

chr_15:61.7. .61.7 Mbp (6.034 kbp}

chr_15::62,02..62.03 Mbp (6.034 kbp)

chr_15:13.6l . 13.62 Mbp(5.905 kbp)

chr_15:13.76..13.76 Mbp (S.905 kbp)

chr_15:61.66.61.67 Mbp (5.753 kbp)

chr_15:61.9S..62 Mbp (5 753 kbp)

chr_1_i:61.74.6175 Mbp (5.706 kbp)

chr_15:62.08..62.08 Mbp (5.706 kbp)

ch-_15:22,79..22,8 Mbp (5.508 kbp)

chr_15:22.89..22.9 Mbp (5.508 kbp)

chr_15:61.71 .61.72 Mbp (4 945 kbp)

chr_15:62.04..62.04 Mbp (4 945 kbp}

chr_15:61.82...61.82 Mbp (4.58 kbp)

chr_15:61 9.61.9 Mbp (4.58 kbp)

chr_15:61 73.61.74 Mbp (4.373 kbp}

score=25713

score=25713
score=15186
score=15186

score=10389

scofe=10389

score=10072

score=10072

score=8495

score=8495

score=6324

scDre=6324

scote=6164

score=6164
score.=6033

score-6033

score=5904

score=5904

scote=5752

score=5752

score=5705

scofe=5705

score=5507

score=5507

score =4944

score=4944
score=4579

score=4579

score=4372

Figure 6.9: Graphic output page part 3 - lists

66

http://chr.1i62.09_.62.09

Figures 6.7 to 6.9 illustrate in GBrowse the result of supermaximal repeats for

sequence chr_15 with minimum length 2000. Figure 6.7 shows the overview of super-

maximal repeats, where we can see the distribution of supermaximal repeats intu­

itively. Each "|" marks a location of supermaximal repeat. Following the overview,

GBrowse lists the name of the repeats corresponding to its location in the overview

part, which is shown in Figure 6.8. The last part of the GBrowse output is a detailed

information list of supermaximal repeats which includes name, starting position, end­

ing position, and its length, shown in Figures 6.9.

The above graphic annotations are displayed when we invoke GBrowse in Fig­

ure 6.5. In this GBrowse viewer, we can perform some specific search operations

on the result obtained. For example, if we are interested in the supermaximal

repeats located between IMbp to 2Mbp of the input sequence S, we can write

S : 1,000,000.-2,000,000 in landmark or region field located in top of the graphic

web page, and then start the searching. Furthermore, wildcard character "*" is also

allowed in this browser. For example, searching "Repeat:smrl_*" returns the loca­

tions of the first pair of supermaximal repeats in the result file (note that this is also

the longest pair of repeats found since our output is arranged in descending order).

Finally, we could click the ruler in overview section to identify interesting positions

so that we can see detailed information about these positions. Screenshots of some

examples are shown in Figures 6.10 and 6.11.

67

<$? !^Superm3xinalRepeats:.chfJi':2l423720..2l1[79978 j I Q H o m e - g j j ?,:-:dsO> sKSPrint ' - «gPage - ^ T o o l s •

Supermaxsmal Repeats
Showing 58.26 kbp from chr_Y, positions 21,423,720 to 21,479,978

B Instructions
Search using a sequence name, gene name, locus, of other landmarkThewildcard character *is.allowed. Tocenter.on a.location-, click the ruler. Use the
ScroU/Zoom buttons to change magnification and position

Examples; Repe3t:smr1_*, Rapeatsmr*. chr*. _____
{Hide banner] [Bookmark this] [Link to Image] [HetpJ m i l
B Search
Landmark or Region:
jchr_Y:21423720..21479978 Search [

Data Source -J,W < " ~'"i ' • *->iV
I S ^ a x i n ^ ^ p e a t s : : : i 3 Scroll/Zoom: .«!.<! '• ' | a o * 5 ^ k b p J y J V & # ; p Flip

B Overview
:... Overv iew o f ch i \ .Y ,:T^:-'-'V:^: ;-=

'.;' ^iiu«i(initi i i i l i i)i i i i<i|i iDmg|ini|i i i i lnibiiHi|iniin}miniii| i i i i | i i iLli i i inil i| i i i i. ipo|«iii inii| in lg.ii i ini|iwiiinii ipii i»|ti l rjtiUntw|lfPtiiLw|n|iijij^fijmn.t^1M iii]|iiiintit|i|i.tBHi>j«iiiijt|iiri> V :

; on mm 3h; 4h 5n at 7n: en an iwi l i n 12H: i m 1411; • :M : \ iW- : i ^ i : ' ^ - : iSB : ; ^ v^ | ^5 : ^ : : . \ ' ZW:Z8 i ' ' . - : . v - i

Repeat Overview ' . " • : ' I: -.; I1 '. 1 1; I-'•• :•- '/;. I l l I • " • • • i i t ^ i • • ; : ; . ' I . . /:.' V i;̂
B Details

(' • ' I | i i i i i
21430k 21440k 21450k 21460k

Repeat Fea tu re
srarl07_l smrl58_l srcr86_l smr68,l smrl55_l smrl_ l

ci€27 highiisMirg Update Image

j Q f trfteniet •. . ^ ' j b t f t i

Figure 6.10: Graphic output of searching within a range

ist & jjfsuperrnaximal Repeats • . i | ! S i t H £ m e " | 3 R""-5:? : # Prit* v i ^ Page T I f ' T o o l s . -

Supermaximal Repeats
B Instructions
Search using a sequence name, gene name, locus; or other landmark. The wildcard character * is allowed. To center on a location, click the niter; Use the
Scroll/Zoom buttons to change magnification and position.

Examples: Re|seat:Srrir1_"„ Repeat smr*,s:hf_* _____
[Hide banner] JBpoJkmark this] [Link So image] [Help] ^ S l l
B Search
Landmark or Region;

[liepealsmrr* Search [
Data Source
Supermaximal Repeats |Vf

The following 2 regions match your request
batches on chr Y

<itMHt]nii>.tp]tiait)<,ftiit»iiijiiii.tiii]t,m».>l j . i i IBMIJ»M rn»»|i »H«»«I |I itnti njii iiwnfn^niiiTliii n»^ in . i initi«i«icir>«ir.ii w|i)'inwn^Ta»tt«l»<M»^i i wi *I4«MJII i i^tt i twn itnr»iijiH^n ititi«tn>i >::

;;. 'tm iri 211; mm \m en m ••, BM :m i«i -tin lai i3ti .1441 ;;
:-i5ii:"vi^ ITH ; ^ v : i 9 a : - ^ • : ^ ^ ^ / : ; ^ : 2 w ^<:;:

Repeat OverwieH '•;.'•.'_:. . ' I - - . ; ; |
r: "." X I I . \ ;; ':i ;v ::"":M IT ^ X i ' : l > P > - " l . " * i :' '.t-My^-vl

Hatches - K -̂!i:L.":. i:= !.^!T^ $Jp^Q&iaiitX£g'-. :X-1?&{.
•;'•:••'.•";';-.-••:"•''; •" :,}^-\ - " :;K

:V;; \-«\r '''•;-• y^. .^EP:^}^:&J\vli ::?':'-M-

smr1_1 s m r e p e a t c h r j f 21.45 21.47 Mbp (1 1 5 kbp} score=115G1

s m r 1 _ 2 s m r e p e a t chr_Y 23 OS, 23.1 Mbp (11.5 kbp) score=11501

B T racks

B O v e r v i e w F AM on F AH off

$? Repeat Overview

B G e n e r a l F Alt or, F AH off

P Repeat Feature

Figure 6.11: Graphic output of searching using wildcard (*)

68

Chapter 7

Conclusions and Future Work

7.1 Conclusions

We studied the problem of finding supermaximal repeats in large DNA sequences,

which is a fundamental task in bioinformatics. We proposed a new index structure,

POL (parent-of-leaf) and an efficient SMR (SuperMaximal Repeats) search algorithm,

which uses the POL index. We provide the user with the ability to generate POL index

with his/her preferred minimum index length. We also developed a web-based inter­

face to SMR within the FASST project, available at http://sepehr.cs.concordia.ca/,

and explore the supermaximal repeat search results conveniently by using GBrowse

[Stein et al., 2002].

The POL index is derived from and replaces a more powerful, but considerably

larger suffix tree index. Our experiments revealed that a practical POL index for large

DNA sequences, such as the 24 human chromosomes can be constructed in reasonable

time and space by processing the STTD64 index of the sequence. Further, our results

show that the proposed SMR algorithm which is based on POL index outperforms the

enhanced suffix array based solution, provided as part of the Vmatch search package

[Kurtz, 2000]. The search time improvement achieved by SMR over Vmatch ranges

69

http://sepehr.cs.concordia.ca/

from 2 to 9 times faster, when searching for supermaximal repeats of size at least 10

and at least 200 nucleotides, respectively.

Other advantages of our technique are its flexibility and applicability. The POL

index can be tailored towards the needs of a specific supermaximal repeats search

application. Depending on a desired minimum length of the supermaximal repeats

for which a sequence is to be searched, the user has control over the amount of infor­

mation stored in the POL index in the process of POL construction, thus providing

a trade-off between index construction time and storage space on one hand, and the

search time performance on the other. Further, a POL index created for a specific

MIL is not used only for searching repeats with that particular length. Rather, SMR

uses this POL index for search of any repeats of at least the given length. This

feature could be extremely useful in the process of iterative supermaximal repeats

search, until the user finds a desirable balance between the number of repeats found

and their lengths.

7.2 Future plan

Providing the user the application with more control and flexibility is our first effort

in the future. For example, we can provide an option which allows users to search

supermaximal repeats between a minimum length and a maximum length. We also

can improve our SMR search for searching the repeats containing a paticular string.

Furthermore, we can extend our POL index and develop search algorithms to

support other types of repetitive structures search, such as maximal repeats, tandem

repeats, approximate repeat search, etc.

Another direction of our future work is extending our technique to handle protein

sequence. Since suffix trees of protein are partitioned into 23 index files and our cur-

70

rent program can only handle suffix trees stored in a single file, extending our POL

construction program to deal with partitioned suffix trees may be considered in the

future.

71

Bibliography

[Abouelhoda et al., 2004] M.I. Abouelhoda, S. Kurtz, E. Ohlebusch. Replacing suffix

tree with enhances suffix arrays. Journal of Discrete Algorithm 2, pp. 53-86,

2004.

[Alkes et al., 2004] L. P. Alkes, E. Eleazar, A.P. Pavel. Whole-genome analysis of

Alu repeat elements reveals complex evolutionary history. Genome Res. 14, pp.

2245-2252, 2004.

[Andersson, 1995] A. Andersson, S. Nilsson. Efficient implementation of suffix trees.In

In Software-Practice and Experience 25(2), pp. 129-141, 1995.

[Astbury, 1961] W.T. Astbury. Molecular biology or ultrastructural biology? Nature

190, pp. 1124-1125 ,1961.

[Baxevanis et al., 2005] A.D. Baxevanis, B.F.F Ouellette. (Eds.), Bioinformatics: a

practical guide to the analysis of genes and proteins, third edition, Wiley, 2005.

[Bedell et al., 2000] J.A. Bedell, I. Korf, W. Gish. MaskerAid: a performance en­

hancement to Repeat-Masker. Bioinformatics 16, pp. 1040-1041, 2000.

[Burrows et al., 1994] M. Burrows, D. Wheeler. A block sorting lossless data com­

pression algorithm. Technical Report 124, Digital Equipment Corporation, 1994.

[Cairns, 1998] J. Cairns. Mutation and Cancer: The Antecedents to Our Studies of

Adaptive Mutation. Genetics, Vol. 148, pp. 1433-1440, 1998

72

[Charlesworth et al., 1994] B. Charlesworth, P. Sniegowski, W. Stephan. The evo­

lutionary dynamics of repetitive DNA in eukaryotes. Nature 371, pp. 215-220,

1994.

[Delcher et al., 1999] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O.

White, S.L. Salzberg. Alignment of whole genomes. Nucleic Acids Res. 27, pp.

2369-2376, 1999.

[Ferragina et al., 2000] P. Ferragina, G. Manzini. Opportunistic data structures with

applications. In Proc. of the 41st IEEE Symposium on Foundations of Computer

Science, pp. 390-398, 2000.

[Halachev et al., 2007] M. Halachev, N. Shiri, A. Thamildurai. Efficient and scalable

indexing techniques for biological sequence data. In Proc. of BIRD'07, LNBI

4414, Hochreiter S. and Wagner, R (Eds.), Springer Verlag, Germany, pp. 464-

479, 2007.

[Hon et al., 2004] W.K Hon, T.W. Lam, W.K. Sung, W.L. Tse, C.K. Wong, S.M. Yiu.

Practical aspects of compressed suffix arrays and FM-index in searching DNA

sequences. In the 6th Workshop on Algorithm Engineering and Experiments

(ALENEX), 2004.

[Irving et al., 2003] R.W. Irving, L. Love. The suffix binary search tree and suffix

AVL tree. Journal of Discrete Algorithms. 1, pp. 387-408, 2003.

[Giegerich et al., 1997] R. Giegerich, S. Kurtz. From Ukkonen to McCreight and

Weiner: a unifying view of linear-time suffix tree construction. Algorithmica

19(3), pp. 331-353, 1997.

[Giegerich et al., 2003] R. Giegerich, S. Kurtz, J. Stoye. Efficient implementation of

lazy suffix trees. In Software-Practice and Experience 33, pp. 1035-1049, 2003.

73

[Gotoh, 1982] O. Gotoh. An improved algorithm for matching biological sequences.

Journal of Molecu-lar Biology, 162, pp. 705-708 ,1982.

[Gregory, 2008] T.R. Gregory, quotes of interest: SINEs and LINEs.

http://genomicron.blogspot.com/2008/02/quotes-of-interest-sines-and-

lines.html

[Gremme et al , 2005] G. Gremme, V. Brendel, M.E. Sparks, S. Kurtz. En gmeermg a

software tool for gene prediction in higher organisms. Information and Software

Technology, 47(15), pp. 965-978, 2005.

[Grossi et al., 2005] R. Grossi, J.S. Vitter. Compressed suffix arrays and suffix trees

with applications to text indexing and string matching. SIAM Journal on Com­

puting, 2005.

[Gusfield, 1997] D. Gusfield. Algorithms on strings, trees, and sequences: computer

sciences and computational biology. Cambridge University Press, 1997.

[Jurka et al., 2005] J. Jurka, V.V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany,

J. Walichiewicz. Repbase Update, a database of eukaryotic repetitive elements.

Cytogenetic and Genome Research 110, pp. 462-467, 2005.

[Kurtz, 1999] S. Kurtz. Reducing the space requirement of suffix trees. SoftwarePrac-

tice and Experience, vol. 29, pp. 1149-1171, 1999.

[Kurtz et al., 1999] S. Kurtz, C. Schleiermacher. REPuter: fast computation of max­

imal repeats in complete genomes. In Bioinformatics, pp. 426-427, 1999.

[Kurtz, 2000] S. Kurtz. Vmatch: large scale sequence analysis software.

http://www.vmatch.de/

[Kurtz et al., 2000] S. Kurtz, E. Ohlebusch, C. Schleiermacher, J. Stove, R. Giegerich.

Computation and visualization of degenerate repeats in complete genomes. In

74

http://genomicron.blogspot.com/2008/02/quotes-of-interest-sines-and-
http://www.vmatch.de/

Proceedings of the International Conference on Intelligent Systems for Molecular

Biology. AAAI Press, Menlo Park, CA, pp. 228-238, 2000.

[Lian et al., 2008] C.N. Lian, M. Halachev, N. Shiri. Searching for supermaximal re­

peats in large DNA sequences. In Proc. of BIRD'08, CCIS 13, Elloumi, M. et

al.(eds.), Springer Verlag, Germany, pp. 87-101, 2008.

[Lewis et al., 2002] S.E. Lewis, S.M.J. Searle, N. Harris, M. Gibson, V. Iyer, J. Ricter,

C. Wiel, L. Bayraktaroglu, E. Birney, M.A. Crosby, J.S. Kaminker, B. Matthews,

S.E. Prochnik, CD. Smith, J.L. Tupy, C M . Rubin, S. Misra, C.J. Mungall,

N.E. Clamp. Apollo: a sequence annotation editor. Genome Biology 3(12), re-

search0082, 2002.

[Manber et al., 1993] U. Manber, E. Myers. Suffix arrays: A new method for on-line

string searches. SICOMP Vol. 22 Issue 5, pp. 935-948, 1993.

[McConkey, 1993] E. McConkey. Human Genetics: The Molecular Revolution. Jones

and Bartlett, Boston, MA, 1993.

[McCreight, 1976] E.M. McCreight. A Space-Economical Suffix Tree Construction

Algorithm. Journal of the ACM 23 (2), pp. 262-272, 1976.

[Miki et al., 1980] B.L. Miki, J.M. Neelin. DNA repeat lengths of erythrocyte chro­

matins differing in content of histones HI and H5. Nucleic Acids Res. 8(3), pp.

529-542, 1980.

[Morange et al., 1998] M. Morange. A History of Molecular Biology. Cambridge, MA,

Harvard University Press, 1998.

[Morrison, 1968] D.R. Morrison. PATRICIA - Practical Algorithm to Retrieve Infor­

mation Coded in Alphanumeric. Journal of the ACM, 15(4) pp. 514-534, 1968.

75

[Nair, 2007] A. S. Nair. Computational Biology & Bioinformatics: A Gentle

Overview. Communications of the Computer Society of India, January 2007.

[Niko et al., 2007] V. Niko, G. Wolfgang, D. Kashyap, M. Veli. Compressed suffix

tree-a basis for genome-scale sequence analysis. Bioinformatics 23(5), pp. 629-

630, 2007.

[Sadakane, 2007] K. Sadakane. Compressed Suffix Trees with Full Functionality. The­

ory of Computing Systems. 41(4), pp. 589-607, 2007.

[Slezak et al., 2003] T. Slezak, T. Kuczmarski, L. Ott, C. Torres, D. Medeiros, J.

Smith, B. Truitt, N. Mulakken, M. Lam, E. Vitalis, A. Zemla, C.E. Zhou, and S.

Gardner. Comparative Genomics Tools Applied to Bioterrorism Defense. Brief­

ings in Bioinformatics, 4(2), pp. 133-149, 2003.

[Smit et al., 2008] A.F.A. Smit, R. Hubley, P. Green. RepeatMasker:

http://repeatmasker.org

[Stein et al., 2002] L.D. Stein, C. Mungall, S. Shu, M. Caudy, M. Mangone, A. Day,

E. Nickerson, J.E. Stajich, T.W. Harris, A. Arva, S. Lewis. The generic genome

browser: a building block for a model organism system database. Genome Res.

12(10), pp. 1599-1610, 2002.

[Ukkonen, 1995] E. Ukkonen. On-line construction of suffix trees. Algorithmica 14

(3), pp. 249-260, 1995.

[Weber et al., 1997] J. Weber, W. Myers. Human Whole Genome Shotgun Sequenc­

ing. Genome Res. 7, No. 5, pp. 401-409, 1997.

[Wenior, 1973] P. Wenior. Linear pattern matching algorithm. Proc. of the 14th IEEE

Symposium on Switching and Automata Theory, pp. 1-11, 1973.

76

http://repeatmasker.org

[Zamir et al., 1998] O. Zamir, O. Etzioni. Web document clustering: a feasibility

demonstration. SIGIR '98, Proceedings of the 21st annual international ACM

SIGIR conference on Research and development in information retrieval, pp.

46-54, ACM. 1998.

[Zhang, 2008] Y. Zhang. Progress and challenges in protein structure prediction. Curr

Opin Struct Biol 18 (3), pp. 342-348, 2008

[Zheng et al., 2003] C. Zheng, J. Hayes. Structures and interactions of the core his-

tone tail domains. Biopolymers 68 (4), pp. 539C546, 2003

77

Appendix A

Experimental Data

A.l SMR Vs Vmatch search performance

Below we provide the details of raw data obtained in our experiments of SMR search

and Vmatch performance, which were represented as graphs and charts in Chapter 5.

Minimum repeat
length

1
2
3
4
5
6
7
8
9

SMR Algorithm
(sec)

860.89
860.80
860.78
860.82
859.89
859.78
859.03
859.92
859.92

Vmatch
(sec)

826.14
814.01
804.42
795.78
788.84
780.11
775.42
768.78
760.49

SMR performance
vs. Vmatch

4.2% slower
5.6% slower
7.0% slower
8.1% slower
9.0% slower
10.1% slower
10.8% slower
11.8% slower
13.1% slower

Table A.l: SMR algorithm Vs Vmatch at the minimum repeat length from 1 to 9

78

Minimum repeat

length

10
25
50
100
200
1000
2000
5000
10000

SMR Algorithm
(sec)

358.23
92.68
71.07
61.92
59.84
57.33
56.78
55.68
55.97

Vmatch
(sec)

752.04
645.78
541.71
519.18
509.96
501.47
507.83
502.55
503.15

SMR performance
vs. Vmatch

2 times faster
7 times faster

7.6 times faster
8.4 times faster
8.6 times faster
8.8 times faster
9 times faster

9.1 times faster
9 times faster

Table A.2: SMR + POLIO Vs Vmatch with MRL > 10

Minimum repeat
length

10
24
25
50
100
200
1000
2000
5000
10000

SMR Algorithm
(sec)

859.31
846.86
92.04
70.51
62.11
59.27
57.21
56.75
55.71
55.95

Vmatch
(sec)

752.04
647.96
645.78
541.71
519.18
509.96
501.47
507.83
502.55
503.15

SMR performance
vs. Vmatch

14% slower
31% slower

7 times faster
7.6 times faster
8.4 times faster
8.6 times faster
8.8 times faster
9 times faster

9.1 times faster
9 times faster

Table A.3: SMR + POL25 Vs Vmatch with MRL > 10

79

Minimum repeat
length

10
25
50
99
100
200
1000
2000
5000
10000

SMR Algorithm
(sec)

859.31
848.83
847.52
848.25
62.11
59.27
57.13
56.06
55.67
55.89

Vmatch
(sec)

752.04
645.78
541.71
519.18
519.18
509.96
501.47
507.83
502.55
503.15

SMR performance
vs. Vmatch

14% slower
31% slower
56% slower
63% slower

8.4 times faster
8.6 times faster
8.8 times faster
9 times faster

9.1 times faster
9 times faster

Table A.4: SMR + POL100 Vs Vmatch with MRL > 10

Minimum repeat
length

10
25
50
100
199
200
1000
2000
5000
10000

SMR Algorithm
(sec)

859.31
848.83
847.52
845.10
820.84
58.91
56.54
56.14
55.79
55.25

Vmatch
(sec)

752.04
645.78
541.71
519.18
508.17
509.96
501.47
507.83
502.55
503.15

SMR performance
vs. Vmatch

14% slower
31% slower
56% slower
62% slower
66% slower

8.6 times faster
8.8 times faster
9 times faster

9.1 times faster
9 times faster

Table A.5: SMR + POL200 Vs Vmatch with MRL > 10

80

