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Abstract 

Fast Computation of Supermaximal Repeats in DNA Sequences 

Chen Na Lian 

Searching for repetitive structures in DNA sequences is a major problem in bioinfor-

matics research. We propose a novel index structure, called Parent-of-Leaves (POL) 

index and an algorithm for finding supermaximal repeats (SMR) which uses the index. 

The index is derived from and designed to replace the more versatile, but considerably 

larger suffix tree index STTD64. The results of our experiments using 24 homo sapi­

ens chromosomes indicate that SMR significantly outperforms the Vmatch tool, the 

best known software package. Using constructed POL index, SMR is 2 times faster 

than Vmatch in searching for supermaximal repeats of size at least 10 bases. SMR 

is 7 times faster for repeats of minimum length of 25 nucleotide bases, and about an 

order of magnitude faster for repeats of length at least 200 basis. We also studied 

the cost of constructing the POL index, and the number of times we need to run 

SMR in order for the cost to payoff. The results indicate that our proposed technique 

outperforms Vmatch after two runs on a particular sequence using the POL25 index 

which has minimum index length (MIL) of 25 nucleotides, 3 runs with POLIO, 5 runs 

with POL100, and 10 runs with POL200. The storage requirements of various POL 

indexes are much less than the suffix tree index used, about 200 times smaller for 

POL200 and POL100, and 25 times smaller for POL25. POLIO requires the largest 

storage space, which is one quarter the size of the STTD64 index. 
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Chapter 1 

Introduction 

In this chapter, we first briefly review the history of molecular biology and bioinfor-

matics, and consider some repetitive structures in human DNA and protein. We also 

discuss some popular bioinformatics applications in detecting repeats. The outline of 

this thesis appears at the end of this chapter. 

1.1 Molecular biology: a general view 

Since 1930s, numerous physicists and chemists have taken their interests in under­

standing life in its most fundamental level. Molecular biology, named by Warren 

Weaver of the Rockefeller Foundation in 1938, is one of the research fields that tries 

to explain the phenomena of life from the macromolecular viewpoint. 

As described by William Astbury [Astbury, 1961], molecular biology is: 

"... not so much a technique as an approach, an approach from the viewpoint of 

the so-called basic sciences with the leading idea of searching below the large-scale 

manifestations of classical biology for the corresponding molecular plan. It is con­

cerned particularly with the forms of biological molecules and is predominantly 

three-dimensional and structural - which does not mean, however, that it is merely 
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a refinement of morphology - it must at the same time inquire into genesis and func­

tions" . 

In particular, molecular biologists focus on two categories of macromolecules, 

one of which is nucleic acids. The most famous nucleic acid is deoxyribonucleic 

acid (DNA), which carries the genetic information in the cell and is capable of self-

replication. It is a chain of 4 types of molecules, which are adenine (abbreviated A), 

cytosine (C), guanine (G) and thymine (T). They are packaged in units known as 

chromosomes. Some hereditary units in chromosomes that occupy specific locations 

and determine particular characteristics in an organism are called genes. A set of 

chromosomes or genes are called the genome, which is known as the blue-print of life. 

It's known that human haploid genome contains 3,000,000,000 DNA nucleotide pairs, 

divided among twenty two (22) pairs of autosomes and one pair of sex chromosomes. 

The other category of macromolecules is proteins. Proteins are fundamental compo­

nents of all living cells and include many substances, such as enzymes, hormones, and 

antibodies, which are necessary for the proper functioning of an organism. Proteins 

are made of 20 amino acids, represented by letters [Nair, 2007]. 

1.2 Research in bioinformatics 

In the past decade, information-heavy and computer driven research has been de­

veloped at a very fast pace. As the size of genetic information available is rapidly 

growing, molecular biologists need effective and efficient computational tools to store 

and retrieve such information from databases, to analyze the sequence patterns and 

to obtain the biological characteristic from the sequence. As a result, mathemati­

cal methods and computational techniques are strongly needed for the challenging 

computational tasks in biological research, such as constructing three-dimensional 
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structure of the molecules from the sequence data. 

It is obvious that performing tasks mentioned above manually is practically im­

possible. Researchers therefore resort to bioinformatics, which refers to the use of 

computer science and related technologies in solving problems of molecular biology 

such as modeling, analyzing, comparing, graphically displaying, storing, systemizing, 

searching, and ultimately distributing biological information. For example, some ap­

plications are developed to analyze DNA sequence data in order to locate genes. 

Research in bioinformatics includes several aspects. A critical research area in 

bioinformatics is sequence analysis which uses computer programs to search the 

genomes of thousands of organisms, to align related DNA sequences, to assem­

ble genome fragments, etc. One representative problem in this area is the assem­

bly of high-quality genome sequences from fragmentary shotgun DNA sequencing 

[Weber et al., 1997] which is a method used for sequencing long DNA strands. 

Genome annotation, which identifies the genes and other biological features in a 

DNA sequence, is another research area in bioinformatics. A number of software tools 

are developed for biologists to explore genomic annotations at many levels of detail in 

a graphical environment, such as the popular genome annotation viewer and editor, 

Apollo Genome Annotation Curation Tool [Lewis et al., 2002]. Bioinformatics also 

assists evolutionary biologists to trace the evolution of a large number of organisms by 

measuring changes in their DNA, as well as comparing entire genomes for the study 

of more complex evolutionary events, such as gene duplication, lateral gene transfer, 

etc. 

Biological databases collect the species names, descriptions, distributions, genetic 

information, status and size of populations, habitat needs, and the methods that 

organism interacts with other species. Moreover, through biological databases, the 

entire DNA sequences, or genomes of endangered species can be preserved on com­

puter and possibly reused in the future, even if that species is extinctive. 
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Besides our discussion above, there are other exciting and important research in 

bioinformatics, such as analysis of mutations in cancer [Cairns, 1998], prediction of 

protein structure [Zhang, 2008], and so on. 

With the booming of computer technologies such as databases, graphical user 

interface(GUI) design, distributed object computing, storage area networks (SAN), 

data compression, network and communication and remote management, bioinfor­

matics plays more important roles in biological research and science than ever. 

1.3 Repetitive DNA sequences 

Repetitive DNA sequence occurring in the genome is one of the most striking fea­

tures of DNA, especially in higher-order organisms such as eukaryotes. For example, 

[McConkey, 1993] indicates that families of reiterated sequences account for about 

one third of the human genome. Besides their considerable quantity, the variety of 

repetitive structures in DNA sequences and their hypothesized biological functions 

are also intriguing. Some repeats are discovered to play important roles in muta­

tion and evolution. For example, Alu repeats [Alkes et al., 2004] which are the most 

abundant mobile elements in the human genome, can cause mismatching in DNA 

duplication. 

Since the role of most repetitive structures is mainly unknown, there are numerous 

difficulties in genome sequencing and analysis. For example, the presence of a small 

number of copies of repeats can confuse a sequence assembly algorithm, especially for 

whole genome shotgun sequencing [Weber et al., 1997]. Therefore, identification and 

characterization of repetitive structures are critical tasks in sequence assembly and 

genome analysis. 

Generally, repetitive DNA sequences are divided into two types: 
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• tandem repeated DNA 

• interspersed repetitive DNA 

Tandem repeated DNA, known as satellite DNA, consists of large number of repeats 

of a short sequence. Satellite DNAs are classified into three groups based on their 

repeat lengths [Charlesworth et al., 1994], described as follow. 

Satellites are very highly repetitive with repeat lengths of one to several thousand 

base pairs (bp). They are typically organized as large (up to 100 million bp) 

clusters in the genome. 

Minisatellites are moderately repetitive structures with medium-sized repeat lengths 

from 9 to 100 bp, but usually about 15 bp. 

Microsatellites are also moderately repetitive of short (2-6 bp) repeats found in 

vertebrate, insect and plant genomes. The human genome contains at least 

30,000 microsatellite loci located in euchromatin [Zheng et al., 2003]. 

The main functions of satellite DNAs are still unknown, but some biologists are con­

vinced that certain satellite DNA has some vital functions such as malfunctioning in 

mutation. 

Repetitive DNA that is interspersed throughout all eukaryotic genomes, is gener­

ally divided into two classes: 

• SINEs 

• LINEs 

SINEs stand for Short Interspersed Nuclear Elements. Alu repeat [Alkes et al., 2004] 

is one of the classic examples of SINEs. The Alu repeats occur about 300,000 times 

in the human genome and account for as much as 5% of the DNA of human and other 
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mammalian genomes [Gusfield, 1997]. LINEs which stand for Long Interspersed Nu­

clear Elements are not as common in the human genome as SINEs. But as they are 

much larger, they make up more of the total DNA. While there are about 1.5 million 

SINEs making up about 13% of the genome sequence, the 870,000 or so copies of 

LINEs constitute more than 20% of human DNA [Gregory, 2008]. 

1.4 Maximal repeats and supermaximal repeats 

A maximal repeat in a sequence 5 is a substring that occurs at least twice in S, and 

that cannot be further extended to the left and/or right without destroying it being 

a repeat. For example, consider the DNA sequence: 

S = AACGTCGACGTTAACGTC. 

This sequence includes two maximal repeats: ACGT, which occurs three times (shown 

in boldface), and AACGTC, which occurs twice (shown with underlines). 

A supermaximal repeat is a maximal repeat that never occurs as a substring of 

any other maximal repeat. In the above example, the sequence AACGTC is a super-

maximal repeat, but ACGT is not, since ACGT occurs as a substring of AACGTC. 

Searching for maximal repeats and supermaximal repeats is a basic analysis task 

which biologists often perform for finding repeated patterns in a new DNA sequence. 

With the exponential rate at which new DNA sequences are being acquired, we need 

more efficient techniques to find repetitive structures. Some effective search tech­

niques use indexes to speed up the search process. The STTD64 index scheme 

[Halachev et al., 2007] is one of search techniques for indexing large sequences ef­

ficiently in bioinformatics applications. Using this indexing technique to support 

repeats search tasks are considered a way to improve searching performance. Our 
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supermaximal repeats search technique is based on STTD64 index system. 

As discussed above, there are many more maximal repeats than supermaximal 

repeats, and hence maximal repeats are less considered in finding repeats. Super-

maximal repeats can filter out the abundant relatively shorter repeats that mostly 

occur by chance and do not carry structural or functional information. Therefore, 

providing a required minimum length of the discovered supermaximal repeats helps 

in collecting useful information, and improving the search performance. 

In this thesis, we thus focus on providing a fast SuperMaximal Repeat (SMR) 

algorithm and its supporting index technique called Parent-of-Leaves (POL), which 

is derived from the STTD64 indexing scheme. 

1.5 Related work 

1.5.1 Bio-sequence repeat search tools 

There are several software tools developed for finding repeats in genomic sequences, 

including REPuter [Kurtz et al., 1999], RepeatMatch [Delcher et al., 1999], Repeat-

Masker [Smit et al., 2008], MaskerAid [Bedell et al., 2000]. 

REPuter is a popular software tool for computing various kinds of repeats, in­

cluding supermaximal repeats. It provides efficient and complete detection of vari­

ous types of repeats with an evaluation of significance and interactive visualization 

[Kurtz et al., 1999]. The search engine REPfind of REPuter uses an efficient and 

compact suffix trees implemented in improved linked list to locate exact repeats in 

linear space and time. It has been estimated in [Kurtz, 1999] that this time-critical 

task can be done in linear time for sequences up to the size of the human genome. 

The output of the search engine REPfind is displayed in the form of a repeat graph by 

the interactive visualization program REPvis. More running time and space cost of 
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REPuter are reported in [Kurtz et al., 2000]. An online version of REPuter provid­

ing some basic functionality is available from the Bielefeld Bioinformatics web server 

(http://bibiserv.techfak.uni-bielefeld.de/reputer/). 

RepeatMatch is another highly efficient computational tool that can find all exact 

repeats in genome sequences. This tool is also based on suffix trees, but does not 

support supermaximal repeat search. 

RepeatMasker is a program that sifts DNA sequences for interspersed repeats and 

masks low complexity DNA sequence. The program outputs a detailed annotation of 

the repeats. On average, almost 50% of a human genomic DNA sequence currently 

will be masked by the program [Smit et al., 2008]. 

RepeatMasker performs string comparisons by the program cross^match, which 

implements the Smith-Waterman-Gotoh algorithm [Gotoh, 1982] efficiently. Repeat­

Masker is another approach for detecting repeats, which identifies repeats by perform­

ing exact or approximate string match of the sequence data against known repetitive 

patterns previously stored in its database. The interspersed repeat databases screened 

by RepeatMasker are based on the Repbase Update database which is copyrighted by 

the Genetic Information Research Institute (G.I.R.I.) [Jurka et al., 2005]. The Rep­

base Update database contains annotation of most repeats with respect to divergence 

level, affiliation, etc. 

MaskerAid is an implementation of the same approach of RepearMasker. It is a 

drop-in accelerator that increases the speed of RepeatMasker about 30 times while 

maintaining sensitivity. Both of these tools find already known repeats in a given 

sequence, which is different from the problem we address in this thesis, i.e., finding 

supermaximal repeats in a sequence without any prior knowledge. 

Vmatch [Kurtz, 2000] searches for supermaximal repeats using enhanced suffix ar­

ray (ESA) index structure [Abouelhoda et al., 2004]. Vmatch can process very large 

DNA sequences. It is claimed in [Kurtz, 2000] that the 32-bit version of Vmatch can 
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process up to 400 million symbols, if enough memory is available. For large server 

class machines (e.g. SUN-Sparc/Solaris, Intel Xeon/Linux, Compaq-Alpha/Tru64), 

Vmatch is available as a 64-bit version, enabling gigabytes of sequences to be pro­

cessed. 

Vmatch preprocesses sequences to create index structures which are stored as a 

collection of several files. The index efficiently represents all substrings of the prepro-

cessed sequences. Different matching tasks require different parts of the index, but 

only the required parts of the index are accessed during the matching process. 

Vmatch can process not only DNA or protein sequences, but also sequences over 

any user defined alphabet of up to 250 symbols. Vmatch fully implements the con­

cept of symbol mappings, denoting alphabet transformations. It allows a multitude 

of different matching tasks to be solved using the index, such as maximal repeats, 

branching tandem repeats, supermaximal repeats, maximal substring matches, and so 

on. The solutions for maximal and supermaximal repeat search included in Vmatch 

subsume the ones in REPuter. 

There are more than 20 completed or ongoing projects which are using Vmatch. 

For example, GenomeThreader, which computes gene structure predictions, uses the 

matching capabilities of Vmatch to efficiently map the reference sequence to a genomic 

sequence [Gremme et al., 2005]. The KPATH system [Slezak et al., 2003], developed 

at the Lawrence Livermore National Laboratories, uses Vmatch to detect unique sub­

strings in large collection of DNA sequences. 

After evaluating the above software tools for repeats detection, we choose Vmatch 

as our experimental benchmark to compare our work with, for the following reasons. 

First, as mentioned in Vmatch homepage [Kurtz, 2000], Vmatch subsumes REPuter 

and has better space utilization and faster search performance comparing to REPuter. 

Further, Vmatch is a general software tool for solving various search problems in 

large-scale sequence data, where supermaximal repeats search is just one of the func-
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tionalities it provides. Since our on-going FASST project also aims at providing a 

unified underlying index structure for various types of search tasks in large biological 

sequences, we consider the supermaximal repeat search comparison to Vmatch as yet 

another opportunity to evaluate and compare the two competing multipurpose alter­

natives. 

1.5.2 Various index data structures 

Recently, suffix trees (ST) and suffix arrays (SA) received considerable interest from 

research community as data structures suitable for indexing large DNA sequences. 

Each suffix is a string starting at a certain position in the sequence and ending at 

the end of the sequence. Suffix trees are introduced in the next chapter. Suffix array 

is simply an array containing all the pointers to the sequence suffixes sorted in lex­

icographical order. Searching a string can be performed by binary search using the 

suffix array [Manber et al., 1993]. 

A major drawback of suffix trees and suffix arrays index structures is their con­

siderably large size, especially evident for ST. For a sequence of n symbols, suffix 

arrays require An bits for storing each symbol [Manber et al., 1993], while suffix trees 

require 8.5n bits [Giegerich et al., 1997]. 

In order to overcome the space problem, several compressed suffix arrays and suffix 

trees representations [Grossi et al., 2005, Ferragina et al., 2000, Niko et al., 2007] are 

proposed. For example, FM-index [Ferragina et al., 2000] is based upon the Burrows-

Wheeler compression algorithm [Burrows et al., 1994] and the suffix array data struc­

ture. The major advantage of the compressed index representation is their smaller 

size, which makes it possible to fit entirely in the main memory available on regular 

desktop computers, However, this gain in space requirements comes at the cost of less 

efficient search support. As discussed in [Hon et al., 2004], compressed suffix arraj' 
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[Grossi et al., 2005] and FM-index are much slower than suffix tree and suffix array 

for exact match search. 

1.6 Organization of the thesis 

In this thesis, we first review STTD64 (Suffix Tree Top Down 64 bits), proposed in 

[Halachev et al., 2007], which is the foundation of our FASST project. Then, we re­

view a well-known supermaximal repeats search algorithm in [Gusfield, 1997], which 

uses a suffix tree index structure. Next, we demonstrate our supermaximal repeats 

search algorithm (SMR) and technique. We propose a novel parent-of-leaves (POL) 

index structure, which is derived from and replaces the STTD64 index for searching 

supermaximal repeats. 

This thesis focuses on development of a novel Parent of Leave (POL) index and 

an efficient algorithm for finding supermaximal repeats (SMR) which uses POL. In 

our experiments and results, we assume the STTD64 and Vmatch indexes are al­

ready built and available, and hence we do not consider their construction cost in our 

measured figures. The time and space requirements of constructions of STTD64 and 

Vmatch indexes are studied and compared in [Halachev et al., 2007]. 

We conduct numerous experiments using real-life biological data to evaluate the 

performance of the proposed supermaximal repeats search algorithm (SMR). We 

study the cost both in terms of construction time and storage space of the proposed 

POL index. We then compare the search time performances of SMR with Vmatch 

under different situations. Furthermore, we study the number of supermaximal re­

peats and its impact on performance according to different minimum repeat lengths. 

Finally, we evaluate the POL construction cost and SMR performance for searching 

supermaximal repeats in synthetic DNA sequences. 
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The outline of this thesis is as follows. Suffix trees are discussed in Chapter 2, 

where we review the STTD64 suffix tree indexing technique. In Chapter 3, we review 

basic concepts of repeats as well as the Gusfield's supermaximal repeat algorithm. 

In Chapter 4, we propose our POL index structure, followed by the description of 

POL construction algorithm and corresponding SMR algorithm. Chapter 5 evaluates 

the POL index construction cost and compares performance of SMR algorithm with 

Vmatch in different perspectives. The SMR application is developed and incorporated 

as part of the FASST project at http://sepehr.cs.concordia.ca/. We also developed 

the web-based interface to this search tool, which is presented in Chapter 6. Chapter 

7 draws conclusions and outlines future work. 
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Chapter 2 

Suffix Trees 

In this chapter we review the suffix tree (ST) data structure and its construction al­

gorithm. We present several ST representations, discuss their advantages and short­

comings, and explain the STTD64 representation used as a basis in this work. 

2.1 History and applications of suffix trees 

The first linear-time suffix tree construction algorithm was proposed by [Wenior, 1973]. 

A few years later, McCreight proposed a more space efficient algorithm [McCreight, 1976]. 

In 1995, Ukkonen developed a conceptually different linear-time on-line suffix tree 

construction algorithm [Ukkonen, 1995], which is easier to implement and allows for 

easier proof of bounds. 

A suffix tree is a versatile data structure which supports efficient solutions for 

many problems on strings (sequences of characters). One of the typical problems is 

exact string matching, which for a pattern sequence P, finds the matching patterns 

in 0(m + k) time, where m is the size of pattern sequence P and k is the number of 

occurrences of P in T. Another problem solved efficiently by suffix trees is Longest 

Common Substring problem, which is to find the longest string (or strings) that is a 
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substring (or are substrings) of two or more strings. The longest common substrings 

of a set of strings can be found by building a generalized suffix tree for the set of 

strings, and then finding the deepest internal nodes which has leaf nodes from all the 

strings in the subtree below it [Gusfield, 1997]. 

Bioinformatics applications based on suffix trees are often used for searching for 

patterns in DNA or protein sequences. For example, REPuter which searches for 

maximal repeats in complete genomes [Kurtz et al., 1999], is based on suffix trees. 

Another popular software tool based on suffix trees is MUMmer [Delcher et al., 1999], 

which is a system that supports fast alignment of entire genomes. Another use of suf­

fix trees is data clustering used in some search engines, e.g. [Zamir et al., 1998]. Re­

cently, suffix trees have been used in data compression which is the process of encoding 

information using fewer bits (or other information-bearing units) than a normal rep­

resentation through the use of specific encoding schemes. Sadakane [Sadakane, 2007] 

proposed a compressed suffix trees with full functionality of suffix trees. 

2.2 Basic definitions 

In this section, we review some definitions which are taken from [Gusfield, 1997]. 

Definition Given an input sequence S of size n characters, a suffix tree ST is a 

rooted directed tree with exactly n leaves numbered from 1 to n. Each internal 

node, other than the root, has at least two children and each edge is labeled 

with a nonempty substring of S. No two edges out of a node can have edge-

labels beginning with the same character [Gusfield, 1997]. 

For any leaf node i, the concatenation of the edge-labels on the path from the root 

to node i exactly spells out the substring of S starting from position i. i.e., S[i..n]. 
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For any node v in a suffix tree, the string-depth of v (or depth of v, for short) is the 

number of characters of the labels on the path from root to the parent of v. 

For example, Figure 2.1 shows the graphical representation of ST for S = banana. 

In this figure, the path from root to the leaf node numbered 2 spells out the string 

s — anana, which starts at position 2 of S, while the depth of node 2 is 3. 

As described above, if one suffix of S matches a prefix of another suffix of S, 

Figure 2.1: Suffix tree for string S = banana 

the first suffix would not end at a leaf according to the definition of suffix tree. For 

example, in string banana in the figure, suffix na is a prefix of nana, so the path 

spelling out na would not end at a leaf. To solve this problem, we assume that last 

character in a string appears nowhere else in the string. That is, no suffix is a prefix 

of another suffix. To achieve this in practice, we add a termination character at the 

end of string. In this thesis, we use $ as the termination symbol and extend every 

string with this symbol, even if the symbol is not explicitly shown. 
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2.3 Suffix trees representations 

There are a number of suffix trees representations, including level-compressed Patricia 

tree [Andersson, 1995], write only top-down suffix tree (wotd) [Giegerich et al., 2003], 

suffix binary search tree [Irving et al., 2003]. 

Level-compressed Patricia tree is a compact representation of suffix tree that com­

bines path compressed and level compressed techniques. At each internal node, an 

index indicates the character used for branching at the node. With this additional 

information available at each node, we can remove all internal nodes with an empty 

subtree. This path-compressed binary tree is called a Patricia tree [Morrison, 1968]. 

Level compression can be used to reduce the size of the Patricia tree. That is, each 

internal node of degree two that has an empty subtree is removed, and at each inter­

nal node we use an index that indicates the number of bits skipped. 

The write only top-down suffix trees (wotd) [Giegerich et al., 2003] is another suf­

fix tree representation in which each node is 32 bits. It requires 8.5n bytes on average 

which is much larger than the input sequence. To index very large sequences, suffix 

trees need either large memory or require disk based construction algorithms. 

In this section, we first introduce wotd as proposed in [Giegerich et al., 2003]. 

Then, we describe STTD64, which is an extension of wotd that overcomes some of 

its limitations. 

2.3.1 wotd representation 

To illustrate the structure of suffix trees, let us consider the following sample sequence 

5" = AGAGAGC%, where $ is used as a terminal symbol to ensure no suffix is a pre­

fix of another suffix. A graphical representation of a ST for sequence S is shown in 

Figure 2.2, in which the numbers in squares indicate the order in which the ST nodes 
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are evaluated and recorded. The number below each leaf node shows the starting 

position of the suffix of S represented by this leaf node, and this suffix is encoded by 

the edge-labels on the path from the root to this leaf node. 

Next, we introduce some concepts taken from [Giegerich et al., 2003]. 

Figure 2.2: Graphical Suffix tree (ST) for the sample sequence S = AGAGAGCS 

Concept 1: For a leaf node s in a suffix tree (ST), the leaf set of s, denoted l(s), 

contains the position i in sequence S where the string starting from S[i], is 

denoted by the edge-labels from root to s. 
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For example, for leaf node 12 in Figure 2.2, we have Z(12) = 3. 

Concept 2: For a branch node u in a ST, the leaf set of w is defined as the set of 

the leaf sets of the children of u, i.e., l(u) = {l(s)\s is a leaf node in the subtree 

rooted at u}. 

For instance, the leaf set of node 9 in Figure 2.2 would be 1(9) = {1(H), '(12)} = 

{1,3}-

Concept 3: For a node v, its left pointer, denoted lp(v), is defined as minimum value 

of l(v) plus the number of characters on the path from the root to the parent 

of v. 

For example, lp(9) = min 1(9) + 1 = 1 + 1 = 2. 

In wotd representation, an internal node u occupies two adjacent elements. The first 

element contains the Ip value of u and two additional bits, called the rightmost bit 

and leaf bit. If the rightmost bit is set to 1, it indicates that node u is the rightmost 

child of a branch node. For instance, in Figure 2.2, node 6 is the rightmost child of 

node 1. Therefore, its rightmost bit is 1. A leaf bit 1 indicates the node is a leaf. For 

each internal node, its leaf bit is always 0. The second element of an internal node 

u stores a pointer to its first child. The pointer points to the address in wotd index 

where the first child of u is stored. A leaf node in ST occupies one element in wotd 

index, where stores the same information as the first element of a branching node(ie. 

Ip value, rightmost bit, and leaf bit). 

Figure 2.3 shows the wotd representation of the ST for sequence S, where the 

first row is node number of ST used for illustration purpose only; the number in the 

second row indicates the order of elements in the wotd index, and the third row is the 

content stored in the index file. In this figure, superscript 'R' indicates a rightmost 
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Figure 2.3: wotd representation for S = AG AG AG C$ 

bit, and a grey cell indicates a leaf bit. For example, in Figure 2.3, the internal node 

2 is stored in the third and fourth elements, i.e.. wotd[2] and wotd[3]. Its first child is 

node 9 (see Figure 2.2). Hence, the value in third element allocated for node 2 points 

to the position 12, which is the first of the two elements storing node 9. 

As already illustrated, 2 bits are reserved for the rightmost bit and leaf bit in 

wotd representation. In a 32-bit system, an element in wotd structure occupies 32 

bits. Only 30 bits are available for storing the Ip value. That is, the sequence we can 

index using this structure is limited to 230 — 1 bits, i.e., about 1 billion characters. 

This limitation is a bottleneck of using wotd to index very large sequences. 

To overcome this limitation, [Halachev et al., 2007] propose an alternative ST rep­

resentation, called STTD64, presented in next section. 

2.3.2 STTD64 representation 

In this section, we present STTD64 representation proposed in [Halachev et al., 2007]. 

This index shares some common properties with wotd [Giegerich et al., 2003]. First, 

they both use a top-down traversal manner. Second, they use pointers pointing to 

the first child of branch (internal) nodes. Finally, the rightmost bit and leaf bit are 

used in both ST representations. 

Next, we illustrate the differences between the two ST structures. First, every 
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node in STTD64 is 64 bits record, no matter if it is an internal node or a leaf node, 

while an internal node in wotd occupies 64 bits, and a leaf node occupies 32 bits. 

Secondly, the size of each element in STTD64 is 64 bits, whereas it is 32 bits in wotd 

as the names indicate. Figures 2.4 and 2.5 depict the structure of internal node and 

leaf node in STTD64, respectively. 

32 1 1 30 

lp le
af

 

•±* 
in 
O 
< - * pointer 

64 bits 

Figure 2.4: Branch node in STTD64 representation 

32 1 1 30 

lp 
© 

depth 

64 bite 

Figure 2.5: Leaf node in STTD64 representation 

For both branch nodes and leaf nodes, the first 32 bits store lp value, bits 33 and 

34 record leaf bit and rightmost bit, respectively. The last 30 bits for a branch node 

are available for a pointer to its first child. In a leaf node, the last 30 bits record its 

depth value. The depth of a leaf node s is defined as the number of characters on the 
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path from the root to the parent of s. For example, the depth of node 8 in Figure 2.2 

is 4, labeled by four characters | AG AG |) on the path. 

For our running sequence S = AGAGAGC$, Figure 2.6 shows its STTD64 index 
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Figure 2.6: STTD64 representation of sequence S = AGAGAGCS 

representation. The numbers on the top (used for illustration purpose only) indicate 

the node number in the suffix tree of Figure 2.2. The 32 bits Ip values are shown 

in the second row and the following two rows indicate leaf bit and rightmost bit, 

respectively. The pointer/depth values are shown in the last row. For clarity, leaf 

nodes are shown in gray and branch node pointers are illustrated by the arrows above 

the table. 

As illustrated above, the second difference from wotd is that STTD64 records 

the depth values for leaf nodes, which leads to efficient indexing. We will further 

explain this in the next section when we describe our algorithm. Another advantage 

of STTD64 is its capability to index sequences of up to 4 GB, i.e., 4 times larger than 

wotd. 

On the other hand, STTD64 needs more storage space than wotd. For a given 

sequence of size n symbols, there are exactly n leaf nodes, and at most n internal 

nodes. In the worst case, STTD64 occupies 16n bytes per symbol, and on average, 
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the space required is 13n as shown in [Halachev et al., 2007], while wotd occupies Yin 

bytes in the worst case and 8.5n bytes on average. 
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Chapter 3 

Maximal Repeats and 

Super maximal Repeats 

In this chapter, we review some concepts and techniques related to maximal and 

supermaximal repeats. We then introduce existing algorithms for finding maximal 

repeats and supermaximal repeats which use suffix tree index. Finally, we analyze 

the supermaximal repeat search algorithm, and discuss their limitations. 

3.1 Maximal repeats 

As initial illustration of maximal repeats was given in 1.4. Here we give a more formal 

definitions, taken from [Gusfield, 1997]. 

Definition 1: A maximal pair of strings in a sequence S is defined as a pair of 

identical substrings a and (5 of S such that the character to the immediate 

left(right) of a is different from the character to the immediate left(right) of /3 

[Gusfield, 1997](R143). 
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That is, extending a and (5 in either direction would destroy the equality of the two 

strings. A maximal pair is represented by the triple (pl,p2,l), where pi and p2 are 

the starting positions of the two substrings a and /?, and I is their length. For a string 

S, we use 3l(S) to denote the set of all triples describing maximal pairs in S. 

For example, consider the string S = wr axy ttrveocebvgaxy, which includes three 

occurrences of substring ax. The first and second occurrences are represented by 

maximal pairs as (3,10,2), and the second and third occurrences are represented as 

(10,16,2). However, the first and third occurrences of ax do not form a maximal pair 

since their immediate right characters are the same. Hence, the two occurrences of 

axy form a new maximal pair (3,16,3). Also the definition of maximal pairs allows 

the two strings to overlap each other. For instance, string xxyxxyxx has a maximal 

pair (1,4,5) whose representative substring is xxyxx. Generally, in this thesis, we 

assume the immediate left (right) of the first (last) character of a string differs from 

any other characters in this string. 

In some cases, the full set of maximal pairs 5R(S") is explicitly found and presented. 

Note that in some situations, ^R:(S) may be too enormous to be displayed or used. 

Therefore, a more compact representation of maximal pairs is provided below. 

Definition 2: A maximal repeat a is a substring of S that occurs in a maximal pair 

in S. That is, a is a maximal repeat in 5" if there is a triple (pl,p2, \a\) E ^R(S) 

and a occurs in S starting at position pi and p2. We use 'Si.'(S) to denote the 

set of maximal repeats in S [Gusfield, 1997](P.143). 

In our above example string S, substrings ax and axy are both maximal repeats. 

Note that the number of maximal repeats ^'(.S)! is less than or equal to the number 

24 



of maximal pairs |5ft(,S)|, and is generally much smaller since a string is represented 

only once no matter how many times it participates in maximal pairs in S. 

3.2 Supermaximal repeats 

Maximal repeats form one type of repetitive structures. However, in some applica­

tions, they are not a desired repetitive structure. For example, in string xaysd.akx.ay, 

xay and a are both maximal repeats, but xay includes a. In this case, it may not 

be desired to report a as a repetitive structure, since xay may be more informative. 

This leads to the concept of supermaximal repeats defined as follow. 

Definition 1: A supermaximal repeat is a maximal repeat that never occurs as a 

substring of any other maximal repeat [Gusfield, 1997] (P. 144). 

From our example above, xay is a supermaximal repeat but a is not, since it is a 

substring of xay. 

Another repetitive structure is near-supermaximal repeats defined as follow. 

Definition 2: A substring a of S is a near-supermaximal repeat if a is a maximal 

repeat in S that occurs at least once in a location where it is not contained 

in another maximal repeat. Such an occurrence of a is said to witness the 

near-supermaximality of a [Gusfield, 1997] (P. 146). 

For example, in string xaysdakxay, substring a is not a supermaximal repeat, but 

a near-supermaximal repeat. The second occurrence of a witnesses the fact. 

According to the above definition, a supermaximal repeat a is a maximal repeat in 

which every occurrence of a is a witness to its near-supermaximality [Gusfield, 1997]. 
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3.3 Finding maximal repeats using suffix trees 

Before discussing an algorithm to find supermaximal repeats, we first illustrate an al­

gorithm of finding maximal repeats by using suffix tree which is taken from [Gusfield, 1997]. 

Finding maximal repeats is a simpler problem and forms a basis for finding super-

maximal repeats. 

Let ST be a suffix tree for string S. If a string a is a maximal repeat in S then a 

is the path-label of an intended node v in ST. To see this, we review the definition of 

maximal repeats. If a is a maximal repeat, there must be at least two occurrences of 

a in S where the character to the immediate right of the first occurrence differs from 

that of the second occurrence. According to the definition of suffix trees, no two edges 

out of a node can have edge-labels beginning with the same character. Therefore, a 

is a path-label of a node v in ST. 

From the above discussion, we concluded that to find maximal repeats we only 

need to consider substrings (i.e.,path-labels) that end at nodes of the suffix tree ST. 

But what kind of specific nodes are representatives of maximal repeats? 

Before answering this question, we need to introduce some concepts first. 

Concept 1: For each position i in string S, character S[i — 1] is called the left 

character of i. The left character of a leaf is the left character of the suffix 

position represented by that leaf [Gusfield, 1997] (P. 144). 

Concept 2: A node v of a suffix tree ST is called left diverse if at least two leaves 

in the subtree at v have different left characters [Gusfield, 1997](P.144). 

By definition, a leaf cannot be left diverse. If a node is left diverse, all its ancestors 

in the tree are also left diverse. Then a theorem comes out. 

Theorem: Let S be a string and ST be a suffix tree. A string a labeling the path to a 

node v in ST is a maximal repeat if and only ifv is left diverse [Gusfield, 1997] (P. 144). 
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For example, we suppose a node v is left diverse. That means there are at least two 

substrings xa and ya of S. Then assume first that xa is followed by character p. If 

the second substring is followed by any character other than p, then a is a maximal 

repeat. In another case, if the second substring ya is also followed by p. That is, the 

two occurrences are xap and yap. By definition of suffix trees, a branching node v 

must have at least two children. Hence, there must be a substring aq in S for some 

character q other than p. If the occurrence of aq is preceded by character x, then 

xaq forms a maximal pair with yap. And if it is preceded by character y, then yaq 

forms a maximal pair with xap. In either case, a is a maximal repeat. The details 

of proof are described in [Gusfield, 1997]. 

3.4 Finding supermaximal repeats using suffix trees 

In this section, we introduce an algorithm to compute supermaximal repeats in linear 

time proposed in [Gusfield, 1997]. The proposed algorithm uses a suffix tree ST of 

string S to search for the supermaximal repeats in S. 

The following theorem described in [Gusfield, 1997] forms a basis for computing 

supermaximal repeats, to which we refer as Gusfield's algorithm. 

Theorem: A left diverse internal node v in a suffix tree represents a supermaximal 

repeat a if and only if all children of v are leaves, and each has a distinct left 

character. 

To discuss this theorem, we assume a node v in ST corresponds to a maximal repeat 

a, and v has two children w and u. Let L(w) denote some (but not all) occurrences 

of a in S which are located in the subtree of ST rooted at w. 

We consider two possibilities of node w. First, suppose w is an internal node in 

ST, and substring r is the label of edge (v,w). Every element in L(w) identifies an 
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occurrence of ar. Since w is an internal node, |Z/(to)| > 1, and ar is the prefix of a 

maximal repeat. Therefore, all the occurrences of a specified by L(w) are involved in 

a maximal repeat that begins with ar. Hence, a is not a supermaximal repeat. 

Secondly, suppose w is a leaf node. Let i be the starting position of the substring 

corresponding to the leaf w and x be the left character of leaf w. In this case, we con­

sider node u. if u is an internal node, as we discussed above, a is not a supermaximal 

repeat. 

If u is also a leaf, let j be the starting position of the substring corresponding to 

the leaf u. We discuss two cases. First, assume node u has left character x. Then 

xa occurs twice in S. Therefore, a is contained in a maximal repeat. Thus, a is 

not a supermaximal repeat. Second, assume u is preceded by any character but x, 

say y. Then a has different left characters at the positions i and j . Since w and u 

are both leaves, according to the definition of suffix trees, the first character labeled 

between v and w differs from that between v and u. That is, substrings a in posi­

tions i and j are followed by distinct characters. Therefore, the occurrences of a at i 

and j are involved in a supermaximal repeat, and hence a is the supermaximal repeat. 

3.5 Computing supermaximal repeats 

According to Gusfield theorem, we derived an algorithm named Gusfield algorithm. 

A pseudo code of Gusfield's algorithm is shown as Algorithm 1. As inputs it takes 

a sequence S to be searched and its suffix tree index ST. The algorithm returns the 

starting positions of all supermaximal repeats in S and their lengths. 

The algorithm traverses the nodes in ST sequentially, and performs two major 

steps while traversing the ST index. In the first step, it examines ST branch nodes in 

ST, checking if a particular branch node v has only leaf node children (i.e., from steps 
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Algorithm 1 Gusfield's Algorithm (Sequence S, suffix tree index ST) 

1: v points to first ST node 

2: while there are unexamined ST nodes do 

3: while v is a branch do 

4: v = the first child of v 

5: end while 

6: if v is the first child then 

7: retrieve position of v in S 

8: retrieve left character of position in S, i.e., S[position — 1] 

9: t> points to next node 

10: while v is not the rightmost node do 

11: if v is not a leaf then 

12: break from while loop 

13: else 

14: retrieve position of v in S 

15: retrieve left character of position in S 

16: end if 

17: end while 

18: if all v's children are leaves then 

19: compare left characters of all occurrences 

20: if all left characters are distinct then 

21: output corresponding length and positions of this repeat 

22: end if 

23: end if 

24: v points to next node; 

25: end if 

26: end while 
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3 to 17). If yes, the second step is executed, in which it compares the left characters 

of all children node of v, i.e., the left diverse check (i.e., step 20). If successful, the 

starting positions of the suffixes represent the starting positions of a supermaximal 

repeat, and are returned to the user, together with its length, which in fact is the 

depth of the u's leaf nodes. The time complexity of the algorithm is 0(n), where n 

is the number of nodes in the ST. 

As shown in the pseudo code, Gusfield's algorithm has to traverse and examine 

all ST nodes. This results in a significant amount of disk I/Os to read into main 

memory the whole ST index from disk, which is an order of magnitude larger than 

the sequence size. To overcome this problem, we propose an auxiliary index and a 

novel algorithm in chapter 4. 
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Chapter 4 

Our Proposed Technique for 

Computing Supermaximal Repeats 

In the previous chapter, we discussed Gusfield's algorithm for finding supermaximal 

repeats (SMR), which returns the starting positions and the lengths of all supermax­

imal repeats in a sequence, by performing full sequential scan of its entire ST index. 

However, very often in practice, biologists are interested in repeats of size longer than 

a particular threshold value. For example, [Miki et al., 1980] studies different species 

for repeats whose sizes are longer than 200 base pairs. Gustfield's algorithm examines 

the entire ST index, which is about 13 times larger than the data sequence, cannot 

take advantage of this additional information on threshold size, and hence performs 

a constant and significant amount of disk I/O operations. 

The supermaximal repeats search technique (SMR) that we propose here uses 

Gusfield's algorithm as a basis but extends it to a more efficient solution. It uses our 

proposed index structure, called Parent-Of-Leaf (POL), which is derived from and 

replaces the STTD64 index. The new POL index is considerably smaller than the 

STTD64 index. We organize and store the information in POL in such a way that the 

number of required disk I/O operations is much reduced, resulting in considerably 
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shorter search time. Next, we present the structure of the POL index, followed by a 

description of its construction algorithm. We will then propose our SMR algorithm, 

which uses the POL index of a sequence to find the supermaximal repeats. 

4.1 POL index structure and representation 

As discussed earlier, each ST node v whose children are all leaf nodes, is a candidate of 

supermaximal repeats that has to be further examined. If all the suffixes represented 

by the leaves of v have distinct left characters (i.e., the nodes are left diverse), then a 

supermaximal repeat is found, which is the common prefix of all the leaf nodes (i.e., 

the characters on the path from the root to v). 

Our POL index is a collection of records related to such candidate nodes v. Each 

record consists of two parts, the header and data, as shown in Figure 4.1. 

31 bits 
< • 
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length \ No.ofocc. 

Data 

occurrence 1 occurrence 2 

4 p.^ p.* , , M 
27 bits 5 bits 32bits 32 bits 

Figure 4.1: POL index representation 

Header par t : In the first 27 bits of the header, we store the number of characters 

on the path from the root of the ST index to node v, which represents the length 

of the potential supermaximal repeat. In the remaining 5 bits of the header, 
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we record y, the number of the leaf children of v, which also indicates to the 

number of occurrences of the repeat in the input sequence S. 

Data part: The data part of the record for candidate node v contains exactly y 

blocks, each of size 32 bits. In each block, we store the start location in sequence 

S at which the suffix represented by a particular leaf of v occurs. 

The chosen sizes of the index fields allow for POL indexing of DNA and protein 

sequences of sizes up to 232 characters (4GB), in which the length of the longest su-

permaximal repeat is at most 134 million characters. First, the 4 GB limit is due to 

the fact that in each data block, we have 32 bits available for recording a sequence 

location, i.e., the sequence size is limited to 232. Next, recall from the ST definition, 

that no two edges out of a node can have labels which start with the same character. 

Thus, the number of children of any ST node is bounded by the alphabet size, i.e., 5 

for DNA data (A, C, G, T, and the terminal symbol $) and 21 for proteins. In order 

for POL index to be applicable for both DNA and protein data, we allocate 5 bits for 

the second part of the header in which we record the value y, i.e., the number of leaf 

children for each candidate node v. Thus, our POL index can handle sequences whose 

alphabet is of size at most 32 symbols. Last, the remaining 27 bits in the header part 

are used for recording the length of the repeat, which leads to the limitation on the 

supermaximal repeat length of 227 characters, i.e., around 134 million nucleotides or 

amino acids. 

The POL index is implemented as an array of 32 bit blocks. Figure 4.2 shows 

4 : 2 0 2 3 : 2 1 3 
v y v ^ . s 

Record for node 5 Record for node 9 

Figure 4.2: The POL Index for sequence S = AGAGAGC% 

the POL index for our example sequence S = AGAGAGCS. There are two ST nodes 
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(nodes 5 and 9 in Figure 2.2) satisfying POL index selection of the ST. The in­

formation about candidate nodes 5 and 9 is recorded respectively in the first 3 and 

the last 3 POL blocks of the index. The length of the repeat represented by node 

5 is 4 nucleotides (i.e., size of "AGAG"), and node 5 has 2 leaf children. Thus, in 

the header of the record for node 5, we store values 4 and 2 (Figure 4.2). The next 

2 blocks, as indicated by the last 5 bits of the header, are used for recording the 

starting locations in the sequence at which this repeat occurs. The children of node 

5 are nodes 7 and 8, which represent suffixes starting at locations 0 and 2, which are 

stored in the second and third blocks of the POL index respectively. Similarly, since 

the length of the repeat "GAG" represented by node 9 is 3 nucleotides, and node 9 

has 2 leaf children, we store values 3 and 2 in the header of the record for node 9 

(Figure 4.2). The children of node 9 are nodes 11 and 12, which represent suffixes 

starting at locations 1 and 3, stored in the last 2 POL blocks. 

To further improve the search performance for supermaximal repeats of length 

greater than a particular threshold value, we store the POL records in descending or­

der with respect to the length of each potential supermaximal repeat (recorded in the 

first 27 bits of its header). Once the length of a particular supermaximal candidate 

becomes smaller than the threshold value, the SMR terminates without processing 

the remaining POL index. 

4.2 POL index construction algorithm 

In the previous chapter, we explained the general idea of the POL index. However, if 

we are to record all ST candidate nodes, this will result in large POL index sizes (com­

parable to the size of the STTD64 index), leading to high POL construction costs. 

Given that biologists are usually interested in supermaximal repeats greater than cer-
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tain minimum length, we use this information in POL index creation. Therefore, our 

implementations of the POL construction algorithm and SMR search algorithm are 

flexible and allow for creating and using a desired POL index with minimum index 

length (MIL) that is relevant to the requirements of a particular application. 

In our experiments, we consider 4 POL index structures with different MIL: 

POLIO, POL25, POL100, and POL200. In POLIO, we record all candidate nodes 

with repeat length of at least 10 nucleotides (i.e., MIL = 10). This POL index allows 

for improving the search time for supermaximal repeats of size at least 10 nucleotides. 

Similarly, in POL25, POL100, and POL200, we record all candidate nodes with length 

greater or equal to their MIL (i.e., 25, 100, 200) respectively, which will result in faster 

search for supermaximal repeats of at least 25, 100, and 200 nucleotides, respectively. 

In the next chapter, we study the construction cost of these 4 indexes, both in terms 

of construction time and storage space. 

The POL index construction algorithm [Lian et al., 2008] is presented as Algo­

rithm 2 . The algorithm takes as input: 

1. The STTD64 index of the sequence to be searched for supermaximal repeats. 

2. A user-defined minimum index length (MIL) of the candidate nodes that are 

to be recorded. 

The output is an index, called POLMIL, which supports efficient search for super-

maximal repeats of size at least MIL. 

The construction algorithm traverses the STTD64 index sequentially, examining 

the leaf nodes. For a leaf node u, the algorithm compares its depth to MIL (Step 6) 

to eliminate ineligible nodes. Recall that the depth of a node is defined as the number 

of characters on the path from the root to the parent of the node. Thus, this step 

correctly identifies if a branch node v - the parent of u, meets the minimum length 

criterion. In steps 9 to 17, the algorithm checks if all siblings of u are leaf nodes. If 
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Algorithm 2 POL Construction Algorithm (STTD64 index ST, minimum index 
length MIL) 

1: v points to first ST node 

2: while there are unexamined ST nodes do 

3: while v is a branch node do 

4: v points to the first child of v 

5: end while 

6: while DEPTHS) < MIL do 

7: v points to next node 

8: end while 

9: repeat 

10: if v is a leaf then 

11: leaf counter + + ; allleaves = true 

12: else 

13: allleaves = false 

14: end if 

15: v points to next node 

16: until all children are examined || allleaves = = false 

17: if allleaves is true then 

18: v.header.length = DEPTH(w) 

19: v.header.numof occurrences = leaf counter 

20: for i = 0 to leaf counter do 

21: data[i] = LP(u) - DEPTH(w) 

22: end for 

23: end if 

24: v points to next node: 

25: end while 

26: sort records in descending order of v.header.length 

27: write records to disk 
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this is the POL record for this candidate v is created (steps 18 to step 24). In 

step 27, we sort the candidates records in descending order, to speed up the search 

algorithm (as described in previous section). Finally, after sorting the POL records, 

the construction algorithm writes sorted records into disk as the POLMIL index. 

In this algorithm, there are two functions named LP() and DEPTH(). Function 

LPQ is used to retrieve Ip value from a STTD64 unit, and DEPTHQ returns the 

depth value of a leaf node storing in suffix tree ST. 

Next, we describe how to compute the starting position of a suffix represented by 

a leaf node. As mentioned in Chapter 2, the starting locations of the suffixes in S are 

not explicitly stored in the STTD64 representation (Figure 2.6), but rather calculated 

as follows. For each leaf node u, the starting position of the suffix represented by u 

is determined by subtracting the depth value of u from its Ip value, since Ip value is 

the starting position in S of the substring encoded from the root to u plus the depth 

of node u. In the STTD64 index structure, we store the depth values in leaf nodes 

directly. Therefore, the calculation of starting position becomes simple and efficient. 

Consider the suffix tree in Figure 2.2 with MIL = 2. For node 7, which is a left­

most leaf with depth > 2, the algorithm performs the while loop in step 10 to check 

if node 8 (the right sibling of node 7) is a leaf node. Since this is the case and node 

8 is a rightmost child, the algorithm goes to Step 19 to create a record representing 

the branch node 5 - the parent of leaf nodes 7 and 8 (see Figure 4.2). The same steps 

are executed when node 11 is processed, which results in creating a record in the 

POL index representing node 9. Last, the candidate node records are sorted based 

on the repeat length in descending order, but in our example this is already the case. 

Figure 4.2 shows the final POL2 index for this example. 

Assuming that the STTD64 index has already been created, the POL construction 

algorithm reads the entire STTD64 index in sequential order, which results in 0(n) 

constant time operations, where n is the number of nodes in STTD64. The sorting 
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in Step 27 is done in time 0(r logr), where r is the number of records in POL. Since 

r is much less than n, the overall time complexity of POL construction algorithm is 

0(n log n). 

4.3 SMR algorithm 

Our proposed SMR algorithm [Lian et al., 2008] is presented as Algorithm 3. It takes 

as input the sequence to be searched, its POL index, and a user-defined parameter, 

which indicates the requested minimum length of the supermaximal repeats. The out­

put of the algorithm contains the starting positions in the sequence and the lengths 

of all supermaximal repeats satisfying minimum repeat length constraint. 

The SMR algorithm first examines the minimum repeat length (MRL) parame­

ter with the POL minimum index length (MIL). In case that MRL is less than the 

POL MIL, the SMR algorithm loads the STTD64 index instead of POL index and 

runs Gusfield's algorithm. Otherwise, SMR loads the POL index and compares the 

length of each candidate to the minJen value (Step 7) starting from beginning of 

the index. If the current record represents a candidate with a length at least equal 

to vain Jen, the algorithm reads the repeat occurrence positions from the data blocks 

of this record (steps 8 to 12). In Step 13, the left diversity of these occurrences is 

examined, and if successful, the discovered supermaximal repeats are returned as out­

put (Step 15). The sequential examining of POL records proceeds until all the POL 

records are examined or until the length of a candidate becomes smaller than the 

rain Jen. Since the records are sorted in descending order of lengths of candidates, 

no other supermaximal repeats which would satisfy the specified length constraint 

exist after the length comparison fails. Thus, the SMR algorithm correctly termi­

nates without examining unnecessary nodes. This feature optimizes the search time 

38 



Algorithm 3 SMR Search Algorithm (Sequence S, index POL, requested minimum 
length minJen) 

1: if minJen < MIL then 

2: load STTD64 index 

3: run Algorithm 1 

4: else 

5: load POL index 

6: unit = first POL record; 

7: while unit.header.length > minJen do 

8: y = unit, header.numof occurrences 

9: for i = 0 to y do 

10: position[i] = unit.data[i] 

11: retrieve left character for the position from sequence S 

12: end for 

13: compare left characters of all occurrences 

14: if all left characters are distinct then 

15: output array position and unit.header.length 

16: end if 

17: unit = next POL record; 

18: end while 

19: end if 
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performance at the SMR algorithm especially when the MRL is much greater than 

the MIL. For example, searching for supermaximal repeats larger than 2000 and us­

ing the POLIO index, it is possible that most records in this index do not satisfy the 

length condition, and hence examining only the few possible candidates improves the 

search performance in this case. 

Let us consider the running sample sequence S = AGAGAGCS (shown in Fig­

ure 2.2) and a minJen value 4. The SMR algorithm starts with reading the first POL 

record, which represents the candidate repeat at node 5, whose length is 4 charac­

ters and satisfies the minJen constraint. Then SMR reads the two subsequent data 

blocks (as instructed by y = 2) and retrieves the two positions S[0] and S[2], where 

the candidate of supermaximal repeat starts. Since the left character of the suffix 

starting at position S[0], i.e., S[— 1], is different by default from any characters in the 

sequence, the two suffixes are left diverse and thus SMR outputs the supermaximal 

repeat found, which is of length 4 and its two occurrences start at positions S[0] and 

S[2]. The algorithm then reads the next POL block, which is the header for the 

candidate repeat at node 9. Since its length is 3, which is less than minJen, there is 

no need to further examine the POL index and the search process terminates. 

The main advantage of our SMR algorithm over the Gusfield's algorithm (Algo­

rithm 1) is that it does not read the entire ST index for a sequence but rather only 

a considerably smaller POL index. By using POL, which replaces the ST index, the 

SMR algorithm avoids the first step of Gusfield's algorithm for finding suitable parent 

nodes from ST, which is rather costly in terms of search time. Further, in some cases 

(i.e., MRL > > MIL), even not the full POL index has to be processed in order to 

find all existing supermaximal repeats. As a result, our SMR algorithm exhibits a 

considerable decrease in the number of disk I/O operations, which in turn leads to 

faster supermaximal repeats search time, compared to Gusfield's solution, as shown 

in the chapter 5. 
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Chapter 5 

Experiments and Results 

In this chapter, we first study the cost of construction of POL index for different 

minimum lengths (10, 25, 100, 200) both in terms of time and storage requirements. 

We then evaluate the performance of our proposed SMR technique on real-life DNA 

sequences using the four POL indexes. We compare our search times with Vmatch 

[Kurtz, 2000], a suffix array based search tool. Also, we investigate the number of 

supermaximal repeats found. Finally, we conduct additional experiments with syn­

thetic DNA sequences in order to further evaluate SMR technique. 

All experiments are performed on a typical desktop computer with Intel Pentium 

4@3GHz, 2GB RAM, 300GB HDD, and 2MB L2 cache, running Linux kernel 2.6.14. 

The construction and search times reported are real times in seconds (measured using 

the time command in Linux). The POL index construction and SMR search algo­

rithms are implemented in C. The SMR search service is available online for evaluation 

and use from the web site of the FASST project at http://sepehr.cs.concordia.ca. 

As real-life DNA data, we used the 24 homo sapiens chromosomes which include 

22 autosomes, X and Y chromosomes as sequences to be searched for supermaxi­

mal repeats. The data was obtained from NCBI (National Center for Biotechnology 

Information). We removed all the unknown nucleotides (indicated by character N), 
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resulting in sequences of size range 26 to 238 million bases. As for synthetic sequences, 

we build 24 sequences with the same size as 24 real human chromosomes, but generate 

letters " A, C, G, T" randomly. 

5.1 POL index construction 

As discussed in Chapter 4, recording all candidate nodes from ST will result in huge 

POL index size. Instead, in our first set of experiments, we consider 4 alternative 

minimum index lengths (MIL): 10, 25, 100, and 200 nucleotides, for which we con­

struct the corresponding POL indexes POLIO, POL25, POL100, and POL200. For 

example, POL200 records all candidate ST nodes whose repeat lengths are at least 

200 nucleotides. 

Figure 5.1 shows construction time for these four indexes. The construction time 

for each POL index is the sum of the construction time for all 24 chromosomes. The 

POL200 index has the fastest construction time, while POLIO is the slowest, being 

about twice slower than POL200. 

Next, we study the sizes of these four POL indexes. To show the relationship 

between the index size and sequence size, we consider the ratio of POL index size 

and sequence size in Figure 5.2, in which we show the average sizes for all the 24 

chromosomes. POL200 has the smallest storage requirement, which is on average 

about 6% of the sequence size. Note that the size of STTD64 index is 13 times of the 

sequence size on average. That is, POL200 index is more than 200 times smaller than 

the STTD64 index. The POLIO index is the largest among the four indexes, nearly 4 

times bigger than the sequence, and about one third of the STTD64 index. POL100 

is comparable to POL200, and POL25 is about half size of the input sequence. 

In conclusion, the POL200 index has the fastest construction time and the small-
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est storage requirement. This index can be used to improve the search performance 

of SMR only if the minimum repeat length (MRL) of supermaximal repeats is at 

least 200 nucleotides. POL100, POL25, and POLIO can be used for smaller MRL 

values, at the cost of increased construction time and storage space, since decreasing 

43 



minimum repeat length leads to more candidate nodes to be identified from STTD64 

and recorded in POL index. For example, POL25 requires additional 140 seconds in 

order to record 8 times more candidate nodes compared to POL200, but supports 

efficient SMR search for threshold value 25 or more nucleotides. Constructing the 

POLIO index requires almost twice the construction time of POL200 and results in a 

60 times larger index (but still 3 times smaller than STTD64), and supports search­

ing for supermaximal repeats of almost all practical sizes. We remark that for the 24 

human chromosomes considered, searching for repeats with minimum lengths smaller 

than 10 nucleotides is not practical in general, as discussed later in section 5.3. 

The choice of an "appropriate" minimum repeat length for the POL index con­

struction is application dependent. Our construction algorithm allows the user to 

specify a value for this parameter which suits the needs of a particular application, 

thus providing a suitable trade-off between construction time and storage space on 

one hand, and search time on the other. 

5.2 SMR search performance 

In our second set of experiments, we evaluate the search time performance of SMR 

when using the 4 POL indexes and compare our results with Vmatch [Kurtz, 2000]. 

In these experiments, we used 14 different threshold values for the supermaximal 

repeats, ranging from 1 to 10,000 nucleotides. If the threshold is smaller than the 

MIL in a particular POL index, the SMR algorithm uses the general STTD64 index 

instead. Figure 5.3 reports the measured cumulative search times (for all 24 chromo­

somes) for the four SMR runs and Vmatch. 

We make the following two important observations. First, if the MRL is greater 

than the MIL of two or more POL indexes, the SMR algorithm provides the similar 
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Figure 5.3: Vmatch vs. SMR with different POL index 

search time performance, regardless of which POL index is used. For example, SMR 

exhibits very similar search times using either POLIO or POL25 for MRL larger than 

24 nucleotides. Also, SMR exhibits identical performance using any of the 4 POL 

indexes for MRL above 199 nucleotides. This is explained by noting that regardless 

of which particular POL index is used, the number of candidate nodes that represent 

supermaximal repeats of desired lengths is the same. Since the records in the POL 

index about the candidate nodes are kept in descending order, the SMR algorithm 

processes the same number of POL records, which leads to identical search times 

using any of the 4 POL indexes. This observation implies that if a particular search 

application requires only finding supermaximal repeats of size hundreds or thousands 

of nucleotides, then POL200 would be a suitable index choice due to its fast construc­

tion time and small storage requirement. 

Second, we note that provided with a suitable POL index, SMR is significantly 

faster in finding supermaximal repeats compared to Vmatch. For example, for MRL 
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value of 10 nucleotides, SMR with POLIO is 2 times faster than Vmatch; for a MRL 

value 25, SMR is 7 times faster using either POLIO or POL25. SMR is more than 8 

times faster than Vmatch for searching MRL value of 100 nucleotides using any one 

of POLIO, POL25, or POL100 indexes. We are about an order of magnitude faster 

for MRL values at least 200 nucleotides, using any of the four POL indexes. On the 

other hand, for threshold values less than 10 nucleotides, the construction of a POL 

index is not recommended for being too costly. While cases with threshold values 

less than 10 may not be frequent in practice, our proposed SMR algorithm in such 

cases can directly use the STTD64 index, resulting in only about 10% slower times 

compared to Vmatch. Appendix A shows detail experimental data. 

The above results are based on the assumption that a POL index has already 

been constructed and is available to SMR. However, an important practical question 

is: how many requests for computing supermaximal repeats should be posed against 

a particular sequence so that the cost constructing the POL index by processing the 

available STTD64 index is justified and amortized, and SMR would be preferable to 

Vmatch solution? We consider this question from two points of view, as follows. 

First, Figure 5.4 answers this question at a higher level. It reports SMR search per­

formance including the POL index construction time, for various number of searches 

in a particular sequence. The depicted search time is the average for 12 different MRL 

values of the supermaximal repeats, ranging from 10 to 10,000 nucleotides for all the 

24 chromosomes. We observe that the search cost reduces as the number of SMR 

searches increases. The SMR algorithm using POL25 outperforms Vmatch when per­

forming two or more on a particular sequence. SMR with POLIO costs less than 

Vmatch over 3 searches. Also, performance of SMR with POL100 exceeds Vmatch 

after 5 searches. In the worst case, SMR with POL200 has comparable performance 

with Vmatch after 10 searches. We observe that SMR using POL25 has the best per­

formance in our four POL indexes to compete with Vmatch when considering POL 
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Figure 5.4: Vmatch vs. SMR considering POL index construction time 

index construction cost. But is it always true whatever minimum repeat length we 

request? 

To answer this question, we evaluate the performance at more detailed level. Fig­

ures 5.5, 5.6, 5.7, and 5.8 illustrate the performance results for various MRL value in 

POLIO, POL25, POL100, and POL200, respectively. 

In Figure 5.5, we observe that SMR with POLIO (including construction time) 

outperforms Vmatch when performing at least 4 searches of minimum size of 10 nu­

cleotides supermaximal repeats. SMR+POL10 is compared to Vmatch more than 3 

searches of minimum 25 nucleotides. As can be seen in Figure 5.6, SMR with POL25 

has better performance than Vmatch after 2 searches for supermaximal repeats of 

minimum 25 nucleotides. Similarly, in Figure 5.7, SMR with POL100 performs better 

than Vmatch at more than 2 searches of minimum 100 nucleotides of supermaximal 

repeats. As shown in Figure 5.8, SMR with POL200 is better than Vmatch when 

searching at least twice of supermaximal repeats of minimum 200 nucleotides. 
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From our results above and their analysis, we conclude that our approach of using 

SMR with proper POL index is better when there are 2 or more search tasks with 

length at least 25 nucleotides or there are 4 or more searches with length at least 10 

nucleotides on the same sequence. 

5.3 Number of supermaximal repeats 

We also studied the number and the size of supermaximal repeats in the 24 human 

chromosomes and present the results in Figure 5.9. 

Figure 5.9: Occurrences found in 24 human chromosomes 

As can be seen from the figure, increasing the minimum repeat length in the range 

from 1 to 10 nucleotides does not lead to a significant decrease in the number of su­

permaximal repeats found. For such small MRL values, we find almost half a billion 
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repeats in the collection of 24 chromosomes with total size of around 2.8 billion bases. 

The size of search results contradicts the idea of supermaximal repeats search, which 

is intended as a high-level and concise investigation tool for initial analysis of repeti­

tive structures in biological sequences. Further, there is a high possibility that most 

supermaximal repeats of size less than 10 nucleotides found in sequences containing 

tens and hundreds million bases occur purely by chance, and thus may not carry any 

structural or functional information. For these reasons, we believe searching with 

MRL values less than 10 nucleotides should not be viewed as a primary application 

of supermaximal repeats search in large DNA sequences. Thus, the slower SMR per­

formance in such cases (up to 10% slower than Vmatch) would not pose a restriction 

in its use. 

5.4 Synthetic DNA data 

To further evaluate the performance of SMR, we study how the POL construction and 

SMR technique work with synthetic DNA sequences in this section. Does the POL 

index for synthetic data occupy reasonable space and have satisfying construction 

time? Does SMR have comparable performance running with synthetic data as with 

real-life DNA data? Does it still outperform Vmatch solution? 

To answer these questions, we evaluate the POL index construction, SMR search 

performance, and number of supermaximal repeats and their sizes using a set of 

synthetic DNA sequences, which are generated randomly by computer program and 

have the same character set as real-life DNA, i.e. A, C, G, T. We build 24 synthetic 

DNA sequences with the same sizes as corresponding human chromosomes. Then 

we compare the performance of our POL construction algorithm and SMR search 

algorithm running on synthetic sequences against real-life DNA sequences. We also 
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compare SMR to Vmatch on synthetic sequences. Finally, we study the occurrences 

of supermaximal repeats for synthetic data. 

5.4.1 POL index construction 

We construct various POL indexes for synthetic DNA sequences, which are POLIO, 

POL15, POL20. Figure 5.10 shows the ratio of average POL index size/original 

sequence size for synthetic and real DNA data. The ratio of synthetic data is similar 

to the real DNA data in POLIO, but size of POL15 of synthetic data is only half 

of its original sequence, while that of real data is one and half times of its original 

sequence. For POL20, synthetic data has much less size than real data. This result 

implies that the occurrences of supermaximal repeats in DNA data are much more 

than synthetic data. Thus, efficient techniques for repeats finding, such as SMR, are 

needed. 
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Furthermore, we evaluate POL index construction time for synthetic data and 

real data. As shown in Figure 5.11, they have similar construction time for POLIO. 
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Figure 5.11: POL index construction time : synthetic vs. real 

but POL15 and POL20 index constructions for synthetic data are much faster than 

real data due to their less occurrences of repeats. 

5.4.2 SMR search performance 

In this set of experiments, we evaluate the SMR search time performance using 

POLIO, POL15, and POL20 indexes running with synthetic data, and then com­

pare our results with Vmatch [Kurtz, 2000] and real-life data. In these experiments, 

we used 8 different threshold values for the supermaximal repeats, ranging from 1 to 

25 nucleotides. 

Figure 5.12 reports SMR search performance using POLIO, POL15, and POL20, 

comparing with Vmatch performance. We observe that SMR is significantly faster 

than Vmatch when the requested minimum length is greater than or equal to the 
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threshold of POL index. This observation is in accord with our finding for real-life 

DNA. 
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Next, we evaluate SMR search performance on synthetic DNA sequences and 

human chromosomes. Figures 5.13, 5.14, and 5.15 exhibit SMR performance on 

synthetic DNA data and real-life human DNA data. As shown in the Figures, SMR 

with POLIO working on synthetic data performs as good as running on real data. 

And SMR using POL15 or POL20 on synthetic data is even faster than it runs on 

real data. 

5.4.3 Number of supermaximal repeats 

As already discussed in section 5.4.1, there are much fewer supermaximal repeats in 

synthetic data compared to real DNA. In this section, we study this issue in more 

details. Figure 5.16 shows the number of repeats found in synthetic data for different 

length thresholds. We observe that about 360 million supermaximal repeats have 

10 to 15 characters, which represent more than 75% of all supermaximal repeats in 

the sample sequences. Also, in synthetic data, supermaximal repeats longer than 20 

nucleotides are very rare. This observation shows the difference between synthetic 

random DNA sequences and real-life DNA sequences, and explains why POL15 and 

POL20 indexes of synthetic data are much smaller than real-life DNA data. 

From above experiments and discussions, we observe that repeats in DNA occur 

much more often than in randomly generated strings. Therefore, repeats are biologi­

cally important, and efficient techniques for their finding, such as SMR, are needed. 

Moreover, SMR search algorithm using POL index exhibits outstanding performance 

in real DNA data, as well as in random strings. 
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Chapter 6 

Web Based Interface 

In this chapter, we briefly introduce FASST project (Fast And Scalable Search Tool 

for biological sequence data) and its web site http://sepehr.cs.concordia.ca/ developed 

using HTML, PHP and Perl languages. We then demonstrate the SMR application 

through this web interface. 

6.1 FASST project 

FASST (Fast And Scalable Search Tool for biological sequence data), is an integrated 

research project for modeling and processing genome and protein sequence data and 

which provides support for various search applications. The tool uses the STTD64 

index, proposed and developed by [Halachev et al., 2007] in our project. 

FASST is designed to efficiently handle sequences of various sizes, including some 

very long ones, such as the entire human genome (of size approximately 2.8 billion 

bases) on a typical desktop computers. 

The search tasks currently implemented and supported as part of the FASST 

project include: 
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exact match and approximate (k-mismatch) search; 

search for structured motifs (represented as patterns); 

computing supermaximal repeats in DNA sequences. 

S FASST - Windows Intel net Exploiei 

t - , "- ^ j http://sepehr.cs.concordia.ca/ 

& \'& FASST $% Home - Q " ;@!Pririt ~ ujfPage•»• Q Tools•• 

« N i v e « s i 

^ C o n c o r d i a 
2 I* ! V £ J 5 | ? Y FASST 

FASST is an integrated research project for modeling and processing genome and protein 
sequence data through search operations useful in numerous bioinformau'cs applications. 

FASST is designed to efficiently handle sequences of various sizes, including some very 
long ones, such as the entire human genome (of size approximately 2.8 billion bases) on 
regular desktop computers. 

At the core of our technique lies a powerful, suffix tree-based index, called STTD64 (for 
Suffix.Tree. Top-Down, 64 bits). The one-time index construction cost is reasonable and 
comparable, with the best known alternatives, both m terms of construction time and storage 
space. 

STTD64 provides a basis for the implementation of numerous bioinformau'cs search 
applications The search tasks currently implemented include: 

• exact match and approximate (k-mismatch) search: 
• search for structured motifs (represented as patterns); 
• computing supermaximal repeats in DNA sequences. 

Figure 6.1: The home page of FASST web interface 

The FASST tool has interactive interfaces for our exact match and k-mismatch 

search, motif search, and supermaximal repeat search applications. We also provide 

quick references for these bioinformatics search applications and other relevant infor­

mation on the web site. Figure 6.1 is a screenshot of the FASST home page. 

As this thesis focusing on development of SMR for finding supermaximal repeats, 

we next illustrate the FASST interface for this search task. 
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6.2 Supermaximal repeats search demonstration 

In this section, we demonstrate a supermaximal repeats search through FASST web 

interface. From the home page of FASST (Figure 6.1), we select supermaximal repeats 

option on the left menu. This opens the interface related to the supermaximal repeats 

search, shown in Figure 6.2. There are three options to select a sequence and proceed 

with a search: 

Option 1: Search in the following sample sequences that are already uploaded to 

our server and their indexes are created. All header lines, comments, sym­

bols that do not represent a nucleotide (e.g., blanks, new line characters, etc.), 

and Ns (unknown nucleotides in DNA data) are being removed prior to index 

construction. The sample sequences currently available are as follows: 

• chr_Y (25 MB) - Human chromosome Y; 

• chr_15 (81 MB) - Human chromosome 15; 

• chr_8 (143 MB) - Human chromosome 8; 

• chr.l (225 MB) - Human chromosome 1; 

Option 2: Search in a new sequence. For this, the following steps are to be taken: 

1. Choose a sequence (in FASTA format) from local computer, mark its type 

(i.e., DNA), and upload it to our server. 

2. From the uploaded sequence the following will be removed: 

• All header and comment lines; 

• Symbols that do not represent a nucleotide (e.g., blanks, new line 

characters, etc.) and all Ns (i.e., unknown nucleotides); 
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3. Construct the POL index for the sequence. 

Although our technique can handle sequences of up to 4GB, due to storage 

constraints, the limit on the size of a user uploaded sequence is 10MB. For the 

same reason, the uploaded sequence and its index will be kept on the server for 

no longer than 72 hours. 

Option 3: Search in existing sequences uploaded by any web users in the last 72 

hours. These sequences have been preprocessed as mentioned in Option 2, and 

the size of user sequence is at most 10MB. We set up this option to provide 

convenience for users who would like to reuse their uploaded sequence within 

72 hours of the original loading process. 

r 
I 'A FASST - Windows Internet Explorer •!f 

%^§\~ ; ~ £L http://sepehr.cs.Concordia.ca/repeat,php v j * t X 

fi]|Home » C] - ." - (gOPrint - :.»Paoe - •;]} Tools -

P -

U N I V E » 5 ! T t 

KConcordia FASST 

1 . Select a sequence to be searched 

W A sample sequence 

ES^SSSH A/iff K>„ 

Choose a sequence from the list «>, 
DMA 

chr_Y 
chr_15 \ 
chr 8 •*'' 

O A User sequence 

O Upload your sequence 
(must be in FASTA format). 

Figure 6.2: Supermaximal repeats search interface - select options 

After a sequence is selected in the first step, the user is prompted to input a minimum 

length of repeats to search for. as well as the output options, shown in Figure 6.3. 
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O Save the number, location, and length of repeats found (to file) 

Start Searching 

Figure 6.3: Supermaximal repeats search interface - select parameters 
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Since it is not uncommon for a search to return millions of occurrences, displaying 

and/or saving the results could take considerable amounts of time. For convenience, 

we provide 2 output options: 

• Option 1: Display on the screen, only the number of repeats found; 

• Option 2: Save to a file, the number, locations, and lengths of the repeats found. 

Figure 6.4 is the screen-shot of the page displaying the result of searching chr_Y with 

minimum length 2000 of the repeats and output option 1. Output option 2 stores 

detailed information such as locations and lengths of repeats. If the output size is 

reasonable, the user can view it directly on our server. Otherwise, he/she has to 

download the result file on his/her local machine. The screenshots of output page 

for detailed results in text format are shown in Figures 6.5 and 6.6. We also provide 

graphic annotations for the result, which will be described in the next section. 

'4S FASST - Windows Internet Exploiei 

-, -» p t http //sepehr.cs.concordia.ca/repeat_process.php 

< !»M Print 

[P\ 
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Super maximal Repeats 

Nr<e -

St] 

Search in progress 
Please wait. 

Search Result : 

Sequence f i l e liaise: /cnr_Y 
type = DNA, iBinimuis l e n g t h = 2000 

T o t a l nuitibfer o f supermexlrsal r e p e a t s i s 163 

Go Back 

: 0 Internet *i 100% 

Figure 6.4: Supermaximal repeats search interface - display brief results 
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Figure 6.5: Supermaximal repeats search interface - display detailed results 
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Figure 6.6: Supermaximal repeats search interface - display detailed text results 
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6.3 Graphic annotations 

In order to view the results conveniently, we provide an alternative graphic output 

option for supermaximal repeats by embedding a third party viewer named GBrowse 

[Stein et al., 2002] into our user interface. The version of GBrowse we use in FASST 

is 1.68. 

GBrowse is a specified browser which combines database and interactive web 

page to manipulate and display annotations on genomes. It is a popular viewer 

in GMOD(Generic Model Organism Database project) which is a collection of open 

source software tools for creating and managing genome-scale biological databases. 
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Figure 6.8: Graphic output page part 2 - detailed distribution 

^ \ ^Sqpepmaxinia} Repeats ^ H o m e : imprint *•: . Page. . Tools ' 

Sfnr1_ 

smrl 
smr2_ 

smr2 

smr3 
smr3 

smrf 
smr4 

smr5 

smr5 
smr6 
smi6_ 
smr7. 

smr7 

smrB 

smr8 

smr9 

smr9 
s m r l 8 

smr10_ 

smr11 

smr11 

smr12 
smr12 

smr13 
smr13 

smrl 4 
smr14 

smr15 

_1 smrepeat 

_2smrepeat 

Ismrepeat 

_2smrepeat 

1 smrepeat 

_2smfepeat 

_1 smrepeat 

Jsmrepeat 

1 smrepeat 

_2smrepeat 

_t smrepeat 

_2 smrepeat 

_t smrepeat 

2 smrepeat 

1 smrepeat 

2 smrepeat 

1 smrepeat 

2smrepeat 

1 smrepeat 

2 smrepeat 

Ismrepeat 

2sm repeat 

1 smrepeat 

2smrepeat 

1 smrepeat 

2smrepeat 

1 smrepeat 

2smrepeat 

1 smrepeat 

chr_15:61.64..61.66Mbp(25.71kbp) 

chr_15:61.96..61.99 Mbp (25.71 kbp) 

chr_15:6l.63..61J Mbp (15.19 kbp} 

chr_15:62.01..62.02 Mbp (15.19 kbp,* 

chr_15:61.67'..61.68 Mbp (10 39 kbp) 

chr_15:62 .62.01 Mbp (10.39 kbp} 

chr_15 61.72.61.73 Mbp (10.07 kbp} 

chr_15:62.05...62.06 Mbp (10.07 kbp) 

chr_15:61 S3 .61.64 Mbp(S..496 kbp) 

chr_15.:61.96...61..96 Mbp (8.496 kbp) 

chr_15:61.75.61.76 Mbp (6.325 kbp} 

chr.1i62.09_.62.09 Mbp(6.325 kbp} 

chr_15:285.4..2S1.6 kbp (6.165 kbp} 

chrJ5_1..297..1.303 Mbp (6.165 kbp) 

chr_15:61.7. .61.7 Mbp (6.034 kbp} 

chr_15::62,02..62.03 Mbp (6.034 kbp) 

chr_15:13.6l . 13.62 Mbp(5.905 kbp) 

chr_15:13.76..13.76 Mbp (S.905 kbp) 

chr_15:61.66.61.67 Mbp (5.753 kbp) 

chr_15:61.9S..62 Mbp (5 753 kbp) 

chr_1_i:61.74.6175 Mbp (5.706 kbp) 

chr_15:62.08..62.08 Mbp (5.706 kbp) 

ch-_15:22,79..22,8 Mbp (5.508 kbp) 

chr_15:22.89..22.9 Mbp (5.508 kbp) 

chr_15:61.71 .61.72 Mbp (4 945 kbp) 

chr_15:62.04..62.04 Mbp (4 945 kbp} 

chr_15:61.82...61.82 Mbp (4.58 kbp) 

chr_15:61 9.61.9 Mbp (4.58 kbp) 

chr_15:61 73.61.74 Mbp (4.373 kbp} 

score=25713 

score=25713 
score=15186 
score=15186 

score=10389 

scofe=10389 

score=10072 

score=10072 

score=8495 

score=8495 

score=6324 

scDre=6324 

scote=6164 

score=6164 
score.=6033 

score-6033 

score=5904 

score=5904 

scote=5752 

score=5752 

score=5705 

scofe=5705 

score=5507 

score=5507 

score =4944 

score=4944 
score=4579 

score=4579 

score=4372 

Figure 6.9: Graphic output page part 3 - lists 
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Figures 6.7 to 6.9 illustrate in GBrowse the result of supermaximal repeats for 

sequence chr_15 with minimum length 2000. Figure 6.7 shows the overview of super-

maximal repeats, where we can see the distribution of supermaximal repeats intu­

itively. Each "|" marks a location of supermaximal repeat. Following the overview, 

GBrowse lists the name of the repeats corresponding to its location in the overview 

part, which is shown in Figure 6.8. The last part of the GBrowse output is a detailed 

information list of supermaximal repeats which includes name, starting position, end­

ing position, and its length, shown in Figures 6.9. 

The above graphic annotations are displayed when we invoke GBrowse in Fig­

ure 6.5. In this GBrowse viewer, we can perform some specific search operations 

on the result obtained. For example, if we are interested in the supermaximal 

repeats located between IMbp to 2Mbp of the input sequence S, we can write 

S : 1,000,000.-2,000,000 in landmark or region field located in top of the graphic 

web page, and then start the searching. Furthermore, wildcard character "*" is also 

allowed in this browser. For example, searching "Repeat:smrl_*" returns the loca­

tions of the first pair of supermaximal repeats in the result file (note that this is also 

the longest pair of repeats found since our output is arranged in descending order). 

Finally, we could click the ruler in overview section to identify interesting positions 

so that we can see detailed information about these positions. Screenshots of some 

examples are shown in Figures 6.10 and 6.11. 
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Figure 6.11: Graphic output of searching using wildcard (*) 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

We studied the problem of finding supermaximal repeats in large DNA sequences, 

which is a fundamental task in bioinformatics. We proposed a new index structure, 

POL (parent-of-leaf) and an efficient SMR (SuperMaximal Repeats) search algorithm, 

which uses the POL index. We provide the user with the ability to generate POL index 

with his/her preferred minimum index length. We also developed a web-based inter­

face to SMR within the FASST project, available at http://sepehr.cs.concordia.ca/, 

and explore the supermaximal repeat search results conveniently by using GBrowse 

[Stein et al., 2002]. 

The POL index is derived from and replaces a more powerful, but considerably 

larger suffix tree index. Our experiments revealed that a practical POL index for large 

DNA sequences, such as the 24 human chromosomes can be constructed in reasonable 

time and space by processing the STTD64 index of the sequence. Further, our results 

show that the proposed SMR algorithm which is based on POL index outperforms the 

enhanced suffix array based solution, provided as part of the Vmatch search package 

[Kurtz, 2000]. The search time improvement achieved by SMR over Vmatch ranges 
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from 2 to 9 times faster, when searching for supermaximal repeats of size at least 10 

and at least 200 nucleotides, respectively. 

Other advantages of our technique are its flexibility and applicability. The POL 

index can be tailored towards the needs of a specific supermaximal repeats search 

application. Depending on a desired minimum length of the supermaximal repeats 

for which a sequence is to be searched, the user has control over the amount of infor­

mation stored in the POL index in the process of POL construction, thus providing 

a trade-off between index construction time and storage space on one hand, and the 

search time performance on the other. Further, a POL index created for a specific 

MIL is not used only for searching repeats with that particular length. Rather, SMR 

uses this POL index for search of any repeats of at least the given length. This 

feature could be extremely useful in the process of iterative supermaximal repeats 

search, until the user finds a desirable balance between the number of repeats found 

and their lengths. 

7.2 Future plan 

Providing the user the application with more control and flexibility is our first effort 

in the future. For example, we can provide an option which allows users to search 

supermaximal repeats between a minimum length and a maximum length. We also 

can improve our SMR search for searching the repeats containing a paticular string. 

Furthermore, we can extend our POL index and develop search algorithms to 

support other types of repetitive structures search, such as maximal repeats, tandem 

repeats, approximate repeat search, etc. 

Another direction of our future work is extending our technique to handle protein 

sequence. Since suffix trees of protein are partitioned into 23 index files and our cur-
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rent program can only handle suffix trees stored in a single file, extending our POL 

construction program to deal with partitioned suffix trees may be considered in the 

future. 
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Appendix A 

Experimental Data 

A.l SMR Vs Vmatch search performance 

Below we provide the details of raw data obtained in our experiments of SMR search 

and Vmatch performance, which were represented as graphs and charts in Chapter 5. 

Minimum repeat 
length 

1 
2 
3 
4 
5 
6 
7 
8 
9 

SMR Algorithm 
(sec) 

860.89 
860.80 
860.78 
860.82 
859.89 
859.78 
859.03 
859.92 
859.92 

Vmatch 
(sec) 

826.14 
814.01 
804.42 
795.78 
788.84 
780.11 
775.42 
768.78 
760.49 

SMR performance 
vs. Vmatch 

4.2% slower 
5.6% slower 
7.0% slower 
8.1% slower 
9.0% slower 
10.1% slower 
10.8% slower 
11.8% slower 
13.1% slower 

Table A.l: SMR algorithm Vs Vmatch at the minimum repeat length from 1 to 9 
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Minimum repeat 

length 

10 
25 
50 
100 
200 
1000 
2000 
5000 
10000 

SMR Algorithm 
(sec) 

358.23 
92.68 
71.07 
61.92 
59.84 
57.33 
56.78 
55.68 
55.97 

Vmatch 
(sec) 

752.04 
645.78 
541.71 
519.18 
509.96 
501.47 
507.83 
502.55 
503.15 

SMR performance 
vs. Vmatch 

2 times faster 
7 times faster 

7.6 times faster 
8.4 times faster 
8.6 times faster 
8.8 times faster 
9 times faster 

9.1 times faster 
9 times faster 

Table A.2: SMR + POLIO Vs Vmatch with MRL > 10 

Minimum repeat 
length 

10 
24 
25 
50 
100 
200 
1000 
2000 
5000 
10000 

SMR Algorithm 
(sec) 

859.31 
846.86 
92.04 
70.51 
62.11 
59.27 
57.21 
56.75 
55.71 
55.95 

Vmatch 
(sec) 

752.04 
647.96 
645.78 
541.71 
519.18 
509.96 
501.47 
507.83 
502.55 
503.15 

SMR performance 
vs. Vmatch 

14% slower 
31% slower 

7 times faster 
7.6 times faster 
8.4 times faster 
8.6 times faster 
8.8 times faster 
9 times faster 

9.1 times faster 
9 times faster 

Table A.3: SMR + POL25 Vs Vmatch with MRL > 10 
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Minimum repeat 
length 

10 
25 
50 
99 
100 
200 
1000 
2000 
5000 
10000 

SMR Algorithm 
(sec) 

859.31 
848.83 
847.52 
848.25 
62.11 
59.27 
57.13 
56.06 
55.67 
55.89 

Vmatch 
(sec) 

752.04 
645.78 
541.71 
519.18 
519.18 
509.96 
501.47 
507.83 
502.55 
503.15 

SMR performance 
vs. Vmatch 

14% slower 
31% slower 
56% slower 
63% slower 

8.4 times faster 
8.6 times faster 
8.8 times faster 
9 times faster 

9.1 times faster 
9 times faster 

Table A.4: SMR + POL100 Vs Vmatch with MRL > 10 

Minimum repeat 
length 

10 
25 
50 
100 
199 
200 
1000 
2000 
5000 
10000 

SMR Algorithm 
(sec) 

859.31 
848.83 
847.52 
845.10 
820.84 
58.91 
56.54 
56.14 
55.79 
55.25 

Vmatch 
(sec) 

752.04 
645.78 
541.71 
519.18 
508.17 
509.96 
501.47 
507.83 
502.55 
503.15 

SMR performance 
vs. Vmatch 

14% slower 
31% slower 
56% slower 
62% slower 
66% slower 

8.6 times faster 
8.8 times faster 
9 times faster 

9.1 times faster 
9 times faster 

Table A.5: SMR + POL200 Vs Vmatch with MRL > 10 
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