Query Processing and Optimization in Deductive

Databases with Certainty Constraints

JinzAN Lal

A THESIS
IN
THE DEPARTMENT
OF

CoxpUTER: SCIENCE & SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FoR THE DEGREE OF MASTER OF COMPUTER SCIENCE AT
ConNcORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

DECEMBER 2008

© Jinzan Lal, 2009

Library and Archives Bibliothéque et
* Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Volre référence
ISBN: 978-0-494-63321-2
Our file Notre référence
ISBN: 978-0-494.63321-2

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur a accordé une licence non exclusive
permettan: 3 la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télecommunication ou par l'internet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electromque et/ou
autres formats.

L'auteur conserve la propriété du droit d’auteur
et des droits moraux qui protége cette thése. Ni
fa thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément & la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

ABSTRACT

Query Processing and Optimization in Deductive Databases with

Certainty Constraints

Jinzan Lai

Uncertainty reasoning has been identified as an important and challenging issue in
the database research presented in the Lowell report [ea05]. Many logic frameworks
have been proposed to represent and reason about uncertainty in deductive databases.
Based on the way in whicli uncertainties are associated with the facts and rules in
programs, these frameworks have been classified into: "annotation based” (AB) and
“implication based” (IB). [Shi05] has investigated the relative expressive powers of
AB and IB frameworks and has intreduced the notion of certainty constraints, which
makes them equivalent in terms of expressive power. Due to this equivalence, we
developed transformation algorithms operating between AB and IB frameworks.
With presence of certainty constraints in rule bodies in logic programs, query
processing and optimizations become more complicated. The bottom-up query eval-
uation algorithms Naive, Semi-Naive, and Semi-Naive with Partition in parametric
framework [SZ04, SZ08] do not consider certainty constraints. We extend these al-
gorithms by incorporating a new checker module and develop extended evaluation
algorithms which deal with certainty constraints. We have developed the proposed
techniques and conducted many experiments to measure efficiency. Our results and
benchmarks indicate that the proposed techniques and strategies vield a useful and

efficient evaluation engine for deductive databases with certainty constraints.

i

Acknowledgments

I express my deep gratitude and respect to my supervisor Prof. Nematollaah Shirt,
whose wisdom, knowledge and experiences shape numerous insightful conversations,
without which many ideas in this research would have not been well developed. His
support, guidance and patience helped me to make this thesis possible.

My father Chuanzu Lai, my mother Meixue Wang and my sister Niwang Lai
deserve my special thanks and affections. Their boundless love and dedication have
always been the inspiration throughout my life. To them I dedicate this thesis.

1 am grateful to Qiong Huang for his many discussions and suggestions in this
thesis. 1 would also like to thank my friends Jiewen \Wu, Heng Keng and Shu Zhang
for their helpful comments in this thesis.

I would like to express my gratitude to the faculty members and staff in our de-
partment for their teaching. research seminars and services. I also wish to express my
sincere thanks to my colleagues Ahmed Alasoud. Jocelyne Faddoul. Nasim Farsinia

for providing a stimulating and fun working environment.

iv

Contents

List of Figures viii
List of Tables X
List of Algorithms xi
1 Introduction 1
1.1 Motivation e e 2
1.2 Contributions of The Thesis, 4
1.3 ThesisOQutline e q
2 Background and Related Work 6
2.1 Implication Based Approach, T
2.2 Annotation Based Framework 8
2.3 Parametric Framework o oL 9
2.4 Stratified Evaluation Lo 13
3 Deductive Databases with Certainty Constraints 16
3.1 Certainty Constraints 16
3.2 Extended Parametric Framework (EGIB) 18
3.3 Extended Generic AB Framework (EGAB) 21
3.4 Equivalence of EGIB and EGAB Frameworks 22

3.5 Advantages and Disadvantages: A Discussion

3.5.1 Continuity and Expressive Tradeoff

...............

3.5.2 Reducing the cost of evaluation

.................

3.5.3 Termination

............................

Evaluation of Deductive Databases with Certainty Constraints
4.1 Query Processing in the Parametric Framework
4.1.1 A Multiset-based Naive Algorithm

...............

............

4.1.2 A Multisct-based Semi-Naive Algorithm
4.1.3 A Multiset-based SN with Partition Algorithm

.........

4.2 Handling Certainty Constraints

.....................

4.3 Incorporating CC-Checker within Evaluation Process

System Architecture
5.1 Coordinator Module e
5.2 Data Transformation Module

5.3 Data Management Module L

(o1]

4 Query Evaluation Moduleo

5.5 Query Processing Module oo

System Implementation

6.1 DataStructure« o o i o e e e e
6.1.1 Structureof Tuple o o o
6.1.2 Structurc of Relations and Fact table
6.1.3 Structure of Rules and Ruletable
6.1.4 Storage Structure for Multisets

6.2 Query Compilation

6.2.1 SCAIICT & v v v v vt e e e e e e e e e e e e e

vi

6.3

6.4

6.2.2 PAarser . . - . o v e e e e e e e e e e e e e e e e e e e

Query Optimization.

6.3.1 Relation Partitioning o
6.3.2 Stratification
Query Evaluation e
6.4.1 Materialized Evaluation

.....................

6.4.2 Argument Constraint

6.4.3 Stratified Evaluation oo

6.4.4 Precision Control e e e e e e

7 Experiments and Results

7.1
7.2
7.3
74
7.5

7.6

Experiment Environmento Lo

Test Programs and Benchmarks

.....................

Test Data Selection and Generation
CC-checker Performance Evaluation oo
EN, ESN and ESNP Performance Evaluation
Stratification Performance Evaluation

8 Conclusion and Future Research

Bibliography

vii

91

100

102

List of Figures

Program Poy - - . . o . oo e e 14
The dependency graph of program 2, 15
System architecture 45
General sequence diagram of the system prototype 48
Data Transformation procedure 49
Program evaluation procedure 53
Internal representation of fact tables 59
Internal representation of ruletable 61
The parsing process v o v v v v b i e e e G5
Stratified program P2 L oo 73
Program P3 e 75
Predicate dependency graph of program 23 75
Program FPog . . v v v o i e 81
Program Pgs« « o oo e e 82
Lincar SGC program /1 with uncertainty 85
A Non-linear example of the SGC program P2 86
A 2x1 structured program P1 Lo 87
Dataset A, . . . o v o o e e e e 88
Dataset By, .« o o o o i e e e e e e e 88
Dataset Cn o v v v v v v e e e e e e e e e e e 89

7.7 Dataset Fi, . . . o o o o e e e e e e e e e e e e e e e e 89

T8 Dataset Sy v v v v i e e e e e e e e e e e e e e e 90
79 Dataset Thum - - - o v o 0 o e e e e a0
710 Datasct Upm - - - o o o o o o e e e 91
7.11 CC-Checker overhead evaluation: running P1 and Pl on A4, 92
7.12 CC-Checker overhead evaluation: running Pl and Pl'on Uy 93
7.13 ESN and ESNP performance: running Plon 4, 95
7.14 Stratification performance: running Pliyon Adg . o . o o L oL L. L 98

1x

List of Tables

7.1 CC-Checker overhead evaluation: running Pl and P1'on 4,, 92
7.2 CC-Checker overhead evaluation: running Pl and Pl'on U, pn 93
7.3 CC-Checker overhead evaluation L. 94
7.4 . ESN and ESNP performance: running Plon 4, 95
7.5 ESN and ESNP performance evaluation. 97
7.6 ESN and ESNP with Partition performance: running Pl;x; on Ag . . 98
7.7 Stratification performance evaluationo 99

List of Algorithms

[o

©w oo ~] o b W N

Multiset-based Naive Algorithm [LS96] 30
A Multiset-based Semi-Naive Evaluation [SZ04] 32
Multiset-based Semi-Naive with Partition Algorithm [SZ08] 36
Certainty Constraints Checker 37
Satisfiable_l e e 39
Satisfiable 2 e e 40

Extended Multiset-based Naive Algorithm with Certainty Constraints 44

Strongly_Connected_Components 76
Stratify SCC e 77

xi

Chapter 1

Introduction

Uncertainty pervades life and can arise from many sources. It is present in most
tasks that require intelligent behavior, such as planning, reasoning, problem solving,
decision making, classification and many others dealing with real world entities and

data. The following are some typical examples of uncertainty applications in real life:

e Bank risk analysis: based on a client’s age, financial conditions, and credit

history, banks estimate the risk of loan to the client.

e Medical diagnosis: estimation of multiple paramcters of different nature vary-
ing from linguistic information to images and from sociological knowledge to

signal data.

o Weather forecasting: uses particular weather information including temper-
ature, humidity, wind speed, and cloud ceiling and distribution to predict short

and long term weather.

e HIV vaccine modeling: Microsoft researchers use machine learning tech-

niques to model uncertain information for HIV vaccine.

Consequently, management of uncertain data is central to the development of
computer based systems that can successfully execute these tasks. In order to deal
with uncertainty, we need to be able to represent it and reason about it efficiently.
Uncertainty reasoning has been identified as an important database research direction
in Lowell report [ea05], which is an assessment of the state of the databasc research as
well as a prediction concerning what problems and problem areas deserve additional
focus.

Ideas from Al and databases merged to give birth to deductive databases technol-
ogy, a confluence of virtues of Al and DB technologies which was intended [GKT91] in
the area of uncertainty reasoning. Deductive databases are developed by combining
logic programming with relational databases to manage and handle large amount of

data cfficiently.

1.1 Motivation

During the last two decades, there has been numerous rescarch and development
on uncertainty reasoning, which resulted in a number of frameworks being proposed.
Classical logic database programming, with its advantages of modularity and its pow-
erful top-down and bottom-up query processing techniques, has been a primary choice
for incorporating uncertainty. These frameworks vary in different ways including the
way in which uncertainty values are associated with the facts and rules in the pro-
grams. Based on this, [LS96] classified the approaches of these frameworks into
“annotation based” (AB) and “implication based” (IB).

AB and IB frameworks seem somewhat orthogonal and unrelated. They may have
different mathematical foundation of uncertainty and use different combination func-
tions. There are many research conducted on them independently, but the relation

between AB and IB frameworks has not been completely studied. In [Shi05], the

author investigated the rclation between these two frameworks and introduced the
notion of certainty constraints. It builds a bridge between these two frameworks. The
purpose of this notion has two fold: first, it supports the operations of selection and
join by certainty, which are often useful in query formulation and processing in the
context of uncertainty; second, it “relates” the expressive power of the two approaches
and provides a basis to establish their equivalence.

When AB and IB frameworks are allowed to extend certainty constraints in the
rule body, they become equally expressive. This is an important result “connecting”
IB and AB frameworks. We should point out that AB and 1B frameworks refer to two
families of frameworks, rather than two spccific languages. The parametric framework
[LS96] is a generic IB framework that unifies and generalizes all the IB frameworks.
It is thus a good choice as the representative of 1B frameworks. Motivated by the
cquivalence built by certainty constraints, the objective of our work was to provide a
uniform environment to evaluate and experiment with logic programs in AB and IB
frameworks at the same time. This uniform evaluation scheme is also useful towards
developing tools for uncertainty reasoning.

There have been some implementations of logic frameworks with uncertainty. In
[LL96], Leach and Lu implemented a top-down query processing system containing
ca-resolution for annotated logic programming which uses sct as semantics structure.
For set-based IB frameworks, a top-down implementation was introduced in [LS90]
to evaluate programs in parametric framework on top of the XSB system [SSWO4.
CORAL [RSSS94] has some capability to support uncertainty reasoning, but is lim-
ited to fuzzy logic. In [SZ04], a fragment of parametric framcwork was developed,
which supports the multiset-bascd reasoning system o cvaluate parametric programs
efficiently in a bottom-up fashion. In this rescarch, we extend logic programs with

cerlainty constraints. However, query processing is more complicated in our context

due to the presence of certainty constraints in the rule bodies and no existing query
processing can handle certainty constraints. We proposed a new one by reusing the

existing query processing techniques from the context of parametric framework [LS96]

and incorporating them with certainty constraints checker.

1.2 Contributions of The Thesis

The main contributions of this research are summarized as follows:

1. We develop a unified query processing scheme which can evaluate any AB and
IB frameworks with certainty constraints at the same time. In addition, we

develop the transformation between AB and IB frameworks (Section 3.4)

o

We extend query processing to handle deductive databases with certainty con-
straints in Chapter 4. In addition, we develop a stratification technique which

will further improve the efficiency for some programs (Section 6.3.2).

3. We develop a prototype system (Chapter 5), called AILOG, and study its per-
formance. For this, we created a number of test cases, conducted numerous

experiments. The experiments and results are reported in Chapter 7.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we provide background
knowledge about logic frameworks with uncertainty. This includes a classification
of logic frameworks with uncertainty and a review of parametric frameworks. Some
existing implementations of AB and IB frameworks are also discussed in this chapter.

Stratified evaluation of programs datalog with negation is presented in section 2.4.

In Chapter 3, we review the concepts of certainty constraints, and study extended
generic IB framework (EGIB) and extended generic AB framework (EGAB). We also
present the transformation from the EGAB program to the EGIB program, and vice
versa.

In Chapter 4, we study performance and cfficiency query processing for programs
with certainty constraints. We propose an algorithm to deal with the Certainty
Constraints and incorporate it different evaluation methods, e.g., Naive, Semi-Naive
and Semi-Naive with Partition algorithms.

Our system prototype AILOG is introduced in Chapters 5 and 6. Chapter 5 gives
the system architecture and describes the interconnection among its different modules:
Chapter 6 discusses the imnplementation details. We specially discuss the issues: (1)
data representation,(2) relation representation, and (3) evaluation techniques.

In Chapter 7, we report details of our experiments to study the efficiency of
different query processing techniques. We report the experimental results together
with analysis which provide insight to the proposed query processing scheme to handle

certainty constraints. Chapter 8 provides concluding remarks and discusses possible

future research directions.

Chapter 2

Background and Related Work

In this chapter, we review basics of logic programming and deductive databases with
uncertainty, and introduce the concepts and notations we use in our work. We begin
with a review of the parametric framework [LS96], which is a generic 1B framework
that unifies and/or generalizes the IB frameworks. \We also review an implementation
of the parametric framework [SZ04)] and its query optimization techniques. We assume
the reader is familiar with the foundations of logic programming [L1o87] and deductive
databases [CGT89], such as rules, facts, EDB and IDB predicates, model and fixpoint
theories.

Logic database programming, with its declarative and modular advantages, and
with its powerful top-down and bottom-up query processing techniques, has been
a primary choice for modeling uncertainty. Numerous frameworks have been pro-
posed by extending the standard logic programming and deductive databases with
uncertainty. As in the standard case, these frameworks offer declarative semantics of
programs, and are supported by a sound and complete (or sometimes weakly com-
plete) proof theory and corresponding fixpoint semantics.

These frameworks differ in several ways. In terms of mathematical bases, these

frameworks combine deduction with different forms of uncertainty, including fuzzy,

probabilities, possibilities, hybrid of numeric and symbolic formalism. These frame-
works may also differ in the way in which uncertainties are associated with the facts
and rules in a program and the way in which they manipuiate uncertainties. On the
basis of reporting uncertainty in the programs, these frameworks are classified into
annotation based {AB, for short) and implication based (IB, for short) [LS96]. Ex-
amples of the AB frameworks include annotated logic programming of Subrahmanian
[Sub87], Kifer and Li [KL88], probabilistic logic programming of Ng and Subrahma-
nian [N$92, NS93], and the generalized theory of annotated logic programming (GAP)
proposed by Kifer and Subrahmanian [KS§92], Examples of 1B frameworks include van
Emden [vES6a], Fitting [Fit88. Fit31], Dubois et al. [DLP91], Lakshmanan and Sadri
[LS94b, LS94a), Lakshmanan and Shiri [LS96]. For a comprehensive comparison of

these approaches, please refer to [LS96, LS0la]. Next we review the basis of IB and

AB frameworks from [LS01a}.

2.1 Implication Based Approach

In the IB approach, a rule is an expression of the form:
r: A<—B,....Bn

where A and B;’s are atomic formulas of the form p(X,,....Xn), each X; is either
a variable or a constant symbol, and a is a value in the range {0,1] indicating the
certainty of the rule. As in the standard case, when n=0, we refer to r as a fact.
Intuitively, this rule asserts that “the certainty that the conjunction in the rule body
implies the head is a.” In a sense, a controls the “propagation” of truth from the
rule body to the head. Van Emden [vE86b] was the first to propose a framework,

based on fuzzy logic, in which deduction is combined with certainty. Rule evaluation

in Van Emden’s framework is as follows. For this, we use the notion of valuation
v which is basically a function that associates with each ground atom a certainty
value. To evaluate a rule, we first determine the certainty of the rule body as a whole
obtained by using the minimum of the certainties of B;’s which is given by a valu-
ation v, which maps a ground atom to a certainty value in [0,1]. The certainty of
the body so obtained is then multiplied (x) by the rule certainty a, which generates
a certainty for the atom A derived by the rule. Alternative derivations of the same
ground atom A are combined into a single certainty. This is the basic rule evaluation
in any IB framework, but the certainty domain and/or certainty functions could be
different in different frameworks, There is a triplet of certainty functions {(fy, fp, fc)
involved in an evaluation of logic programs with uncertainty, in which fy is the dis-
junction funetion, f, is the propagation function, and f. is the conjunction function.
The order of functions in this triplet also indicates, from right to left, the order in
which these functions are applied when evaluating a rule, as described above. The
collection of these functions in a program is referred to as “certainty functions.” Asin
the Van Emden’s language, if all the rules in a program have the same triplet of dis-
junction, propagation, and conjunction functions, we do not need to explicitly show
combination functions with every rule for ease of presentation. In addition to these
three types of combination functions, the uncertainty domain is the fourth parameter

describing or distinguishing among different frameworks.

2.2 Annotation Based Framework

In the AB approach, a rule is an expression of the form:

T Aif(ﬁl,...,ﬁn)f—Bl:ﬁl,...,Bﬂ:ﬁn.

In this approach, the implication in a rule is like the standard case, but cach atom
in the rule is associated with a certainty value or certainty variable. Symbol f in the
rule head is a computable n_ary function, which combines the role of conjunction and
propagation functions in IB frameworks, and 3;s are annotation constants or variables
ranging over an appropriate certainty domain. This rule asserts that “the certainty
of A is at least(or is in) f(8,...,Bn), where the certainty of B; is at least (or is in)
Bi, for 1 € ¢ < n.” Alternative derivations of the same atom from a program are
“combined” using a disjunction function associated with the head predicate.

It has been discussed that the AB approach is more expressive in general than the
IB approach to some extent, because a limited relationship between two annotations
can be expressed in the AB approach. For instance, a rule in an AB framework could
use annotation constants or use repeated annotaiion variables. Through variables,
the AB approach can simulate the 1B approach.

Even though there have been numerous frameworks proposed for AB frameworks,
there has been little progress in their effective and efficient implementation. In [LL96)],
Leach and Lu discuss technical and implementation issues in the context of an AB
framework with set-based semantics. A top-down query procesting, containing cle-
ments of constraint solving called ca-resolution, was developed for annotated logic
programming {ALPs). A computer implementation of ca-resolution for ALPs was
built, and many query optimization techniques were developed and/or used to im-

prove its cfficiency.

2.3 Parametric Framework

In this section, we review the parametric framework [LS96], an IB framework, which
unifies and/or generalizes all the 1B frameworks to uncertainty. By “tuning” the pa-

rameters of the parametric framework appropriately, it can simulate the computation

of any known IB framework.

Definition 2.3.1. A parumetric program (p-program) P is a 5-tuple (T,R,D,P,C),

whose componenls are defined as follows:

(T,=,®,®D) is assumed to be a complete lattice, where T is a set of truth values,
partially ordered by <, ® is the meet operator, and ® is the join. The least

element of the lattice is denoted by L, and the greatest element is denoted by T.

R is a finite set of parametric rules (p-rules), each of which is o statement of

the form:

r: A - By,...,Ba; (fdsfp,fc)
where A, By,. .., By, are atomns, and a € T — {1} 1s the certainty of r.

D is a mapping from the predicate symbol s in the program P lo the collection
F4 of disjunction functions, which associates with cach predicate symbol in P a

disjunction function fq.

P is a mapping from the rules in the program P to the collection F, of propa-

gation functions, which associates with each p-rule in P a propagation function

S

C is a mapping from the rules in the program P to the collection F. of conjunc-

tion functions, which associates with each p-rule in P a conjunclion function

Je.

Atom A in the p-rule r above is called the rule head, and the conjunction By,..., By,

is called the rule body. A fact is a special case of a p-rule in which n=0s. We use

m(A) to denote the predicate symbol of atom A, and use Disj(m(A)) to denote the

disjunction function associated with w(A). We use rules and p-rules interchangeably.

10

Let £ be an arbitrary first order language that contains infinitely many variable
symbols, finitely many predicates and constants, and no function symbols. While £
does not contain function symbols, it contains symbols for the families of disjunction
F4, conjunction F,, and propagation F,, functions, to all of which we collectively refer
as “combination functions” denoted by F = F4U F,U F.. We refer to each element
in F as a combination function. In order to make derivations in the parametric
framework meaningful, some conditions are assumed to hold on the combination
functions in F. We will introduce or list these conditions in general and indicate for

which family of functions they are assumed to hold.

1. Monotonicity: f(ay,az) = f(B,0:2), whenever o; X 3;, for i=1,2.
2. Continuity: f is continuous w.r.t. each one of its arguments.

3. Bounded — Above : f{ay,a2) = o, for i=1,2. That is, the result of f cannot be

“more” than any one of its arguments,

4. Bounded — Below : (o,) > o, for i=1,2. That is, the result of f cannot

be “less” than any one of its arguments.

5. Commutativity : f(o,B8) = f(B,a),Va,8€ T.

6. Associativity : f(a, f(8,7)) = f(f(a,B),7),Ya,B8,7v€T.

7. f{lel} =a,YVa €T,

8. f(@) = L, where L is the least clement in 7, and i denote the cnpty multiset.
9. f(é)) = T, where T is the greatest clement in 7.
10. fla, T)=a,Vae€T.
11. f(a,B8) > L,¥Yo,8 > 1.

11

Let 7 be a certainty lattice and B(7) be the set of finite muitiset over 7. Then
a disjunction or conjunction function is a mapping from B(7) to 7, a propagation

function is a mapping from 7 x 7 to 7.

Postulate 1. Every disjunction function in F4 should satisfy properties 1, 2, 4, 5,
g, 7, and 8.

Postulate 2. Fvery propagation function in F, should satisfy properties 1, 2, 3, 10,
and 11.

Postulate 3. Every conjunction function in F. should satisfy properties 1, 2, 3, 5,

0,7 9 10, and 11.

In [LS01a], the family of disjunction functions in Fy are classified into three, called

types 1 to 3, defined as follows.

Definition 2.3.2. (Types of Disjunction Functions) Let fy € Fy be a disjunction

function in the parametric framework. Then we say:
(1) fais of type 1 provided fy = @, i.c, fy coincides with the lattice join.
(2) fuis of type 2 provided ®(a,8) < fu(e,8) < T, Ve, € T — {T, 1}

(3) fqis of type 3 provided @(a, 8) < fa(a,8) X T, Vo, 8 € T - (1,1}

Note the difference between types 2 and 3. Whenever « and 8 are different from T
and L, the certainty value returned by a type 2 disjunction function is always better
when supplied with “better” argument values, while a type 3 disjunction function may
return T for some such values. For example, the probability independence function,
defined on ind(a, 8) = o + B — af is type 2, whereas [= min(a + B, T) is of type
3. As shown in [LS01a], The presence of type 2 or type 3 disjunction functions may

cause a fixpoint evaluation of p-program not to terminate in finite time.

12

A restricted top-down and bottom-up implementations of the parametric frame-
work have been introduced in [SV97). The top-down implementation was built on
top of the XSB system [SSW94]-a powerful logic programming system. The bottom
up implementation mentioned uses CORAL, which is a deductive system with many
useful features and directives, such as multiset and aggregation annotations, through
which a user can “influence” the run-time environment and evaluation process. These
two prototype systems casily support type 1 disjunction functions, however more work
is required to develop systems which support manipulation of multisets in the context
of the parametric framework with type 2 and type 3 disjunction functions.

Another implementation of a fragment of the parametric framework is [SZ04],
which extends the standard bottom-up evaluation to allow multisets. This resulted in
multiset-based Semi-Naive and Semi-Naive with Partition over the certainty domain

[0, 1].

2.4 Stratified Evaluation

In this section, we discuss the stratification technique which was originally proposed
to evaluate standard Datalog programs with negation (denoted by Datalog™). It
computes the perfect model of such programs.

To increase the expressive power of pure Datalog, several extensions of pure Data-
log have been proposed in the literature, including incorporation of negation in the so
called Datalog™. Such programs may have more than one minimal Herbrand model,
which explains the source of problems. for the semantics of Datalog™ programs: this
raiscs the question which minimal Herbrand meodel should be chosen as the per-
fect model of the program. One way Lo compute this perfect model is stratification

when possible, which approximates the Close World Assumption (CWA). Stratified

13

evaluation is based on predicate dependency graph induced by a program. The pro-

gram evaluation then proceeds stratum-by-stratum in the order of lower stratum first
[CGL86). Figure 2.1 shows a Datalog™ program and Figure 2.2 shows its predicate

dependency graph.

o P —Q,-R.
ro: RS A

r3: 5 «— R, B.

ri:C — A, B.

T5:Q « C.

Figure 2.1: Program /%,

Definition 2.4.1. Let P be a Datalog™ program. A predicate dependency graph
obtained from P is a directed graph pdg(P), in which vertices are predicates in P and

edges are defined as follows:

e The pdg(P) has a positive edges (p, g) if there is a rule in P in which q is the

predicate of a positive subgoal and p is the head predicate

e The pdg(P) has a negative cdge (p, q) if there is a rule in P in which q is the

predicate of a negative subgoal and p is the head predicate

Not all Datalog™ programs are stratified. A Dalalog™ program P is stratified iff
its predicate dependency graph docs not contain a cycle involving a negative edge. If
P is stratified, then there is a procedure construct a stratification of P. Any stratified
program P can be partitioned into disjoint sets of clauses P = Plu...uPu...uP",
where ' is called a stratum. Each IDB predicate of P has its defining rules within one

stratum. Each stratum of P* contains only clauses whose negative literals correspond

14

Ve PN
©
\

N
N

b) Dependency graph of P2.1
Figure 2.2: The dependency graph of program P,

to predicates defined in a lower stratum. The partition of P into P'....,P"is called

a stratification of P.

Definition 2.4.2. A stratification of a Datalog™ program P partitions P into a set
of disjoint rules. It is 2 mapping m from the set of rules in P to a set of nonnegative

integers such that:
1. if a positive edge (p, g) is in pdg(P), then m(r,)> m(r,)
2. if a negative edge (p, g) is in pdg(P), then m(ry)> m(r,)
Where 1, is a rule in P whose head is predicate P.

A valid stratified evaluation always cvaluates a negative subgoal in a rule defin-
ing P before defining P. Note that a stratified program may have scveral different
stratifications. For example, P has the following stratification: P, = {r2,73},
Py = {r1,r4,r5}, where P, = 2, U P». Another alternative stratification of Py is
Py = {r4}, Po = {r2,73,r5}, Ps={r1}, where P, = P UL UP;. All these stratifica-
tions are cquivalent [ABW88], i.¢, the result of evaluation of a stratified Datalog™ is
independent of the stratification used. Many algorithms have been proposed to find

a desired stratification of a given program in Datalog™ [CGT90, U1189].

15

Chapter 3

Deductive Databases with

Certainty Constraints

Numerous Jogic frameworks have been proposed for management of uncertainty in
logic programming and deductive databases. As previously mentioned, these frame-
works vary in various ways including the way uncertainties are associated with the
facts and the rules in programs. On the basis of this, these frameworks are classified
into annotation based (AB) and implication based (1B) frameworks, with relative pros
and cons [LS01a]. Another way to compare these two approaches is their relative
expressive power. This was studied in [Shi05], in which it was shown that certainty
constraints in a key notion that connects and relates the two approaches which were
otherwise considered as orthogonal and unrelated. This chapter provides details and

revicws the results on expressive power.

3.1 Certainty Constraints

A uscful operation in deductive databases and logic programming with uncertainty

is to select from a relation, every tuple whose associated certainty value is not “less”

16

than some specified threshold, c.g., as in the query “find all red objects whose degree
of redness is at least 0.75.” This operation is called select by certainty. Another useful
operation is join by certainty, which amounts to prescribing that a pair of tuples from
two relations can be joined provided their associated certainties stand in a certain
relationship. These select/join by certainty operations can be viewed as a filtering
mechanism, using which we can determine a (possibly empty) subset of tuples which
may contribute to the final answer, when processing a query.

A certainty constraint in an IB framework is a built-in predicate of the following

forms:
o wi(A) O o
o wt(A) 0 wi(B)

where A and B arc atoms, 0 is a comparison operator in {<,X,=,#,>, =}, wt(A)
is a special predicate weight indicating certainty of A, and ¢ is value in the certainty
domain.

A certainty constraint is a conjunction of one or more such expressions above. We
may also consider wt(A) as a function call, returning the current certainty associated
with A during the query processing. We assume throughout this thesis that o always
appears on the right side of 8.

In order for the comparison of the expressive power of IB frameworks and AB
frameworks to be fair and justified, we also allow certainty constraints in AB frame-

works. A certainty constraint in an AB framework is of the following forms:
e V00
o VOV,

where Vi is a certainty constant or certainty variable, 0 is a comparison operator as

before, and o is a certainty value in 7.

17

A permissible program P must satisfy the following safety conditions:
¢ Each fact is ground.
¢ Each variable that occurs in a rule head must also oceur in the rule body.

s A predicate that occurs in a certainty constraint in a rule must also occur as a

subgoal in the body of the same rule.

We will use CC as an abbreviation for Certainty Constraints.

3.2 Extended Parametric Framework (EGIB)

As mentioned earlier, when we compare the expressive power of IB and AB frame-
works, we they refer to two families of frameworks, rather than two specific frame-
works. Since the parametric framework [LS96] unifies and/or generalizes the 1B
frameworks, it was taken as the representative of all IB frameworks, the generic
IB framework (GIB), and extended with certainty constraints [Shi03]. We refer to
the extended generic IB framework as EGIB.

An EGIB rule (i—rule, for short) in the EGIB framework is an expression of the

form:

T p(?] & Ql(?-l)v . sQn(Vn)- Cri (fas for fe)-

where C, is a (possible empty) conjunction of IB Certainty Constraints. The defini-
tions of rule head, rule body and combination function is the same as in the parametric
framework. For consistency reason. we require that all the i-rules in an EGIB program
with the same head predicate to be associated with the same disjunction function.
As in [LS01a] a declarative semantic of EGIB programs is defined on the notions

of satisfaction of EGIB programs by valuations.

18

Definition 3.2.1. (Valuation) A valuation v of an EGIB program is 2 mapping from
the Herbrand base B, of P to the certainty domain 7, which assign: . each ground

atom A in B, a certainty value in 7, that is, ¥(A) € 7.

Definition 3.2.2. (CC-satisfaction) Let C, = Cy,..., i be the conjunction of CC
specified in the body of a rule r € P, where C,1 < | < k, is either a certainty
constraint of the form (1) wt(g:(Y;)) 8 o, or (2) wt(a:(Y7)) 8 wi(g;(Y;)), where 0 is a

comparison operator, and o € 7. Then we say:

(a) v satisfies Cj, denoted =, C), iff C; = v(B;) 0 ¢ is true in case (1), and C; =
v(B;) 8 v(B;) is true in case (2), where B; and B; are ground instances of

subgoals ¢;(Y;) and ¢;(Y;), respectively.

(b) &, C. iff =, C), for all [,1 <! < k. That is, v satisfies C, iff v satisfies every

certainty constraint C; in C,.

We use the definitions of CC-satisfaction and satisfaction of p—program to for-

malize programs satisfaction in EGIB framework.

Definition 3.2.3. (Satisfaction) Let P be any EGIB program,
L— (p(X) (_0_ QI(?I)a s ,QH(?ﬂ)a C‘r; (fdy fp&fce))

be any i—rule in P, and v be any valuation of P. We use P* to denote the ground
instantiation of P. Let p= A & By,..., Bu,Cri {fa, for [c) € P"
be any ground instance of . Let C. = C),...,C} be the conjunction of CC specified

in the body of r € P. Then,

(a) v satisfies p, denoted |=, p, iff ¥(4) = folay, fe({|v(B1),...,v(By)[})) and |,
Cr.

(b) [z, r iff v satisfies every ground instance of r.

19

(c) v satisfies P, denoted &=, P,ift (1) Vr€ P: |, r, and (2) V A€ By : v(A) =
fa(X), where X={{f,(a, f({l¥(B1),-- ., ¥(B KA & By, ..., Ba, Crs
(fa fpr fer}) € P™ and =, G}

We point out that unlike in standard logic programming and deductive database,
a valuation v which satisfies every i—rule r in P is not guaranteed to satisfy P itself
[KL88, LS0la]. In order for v to also satisfy P. condition ¢(2} above must also be
satisfied, i.e, v satisfies P if for every each atom A € B,, the certainty assigned to A
by v is not less than fs(X), where X is the multiset of certainties associated with A

derived from all ground instances of p in P* such that}=, p and whose head is A.

Example 3.2.1. Consider a medical application where uncertain knowledge about
particular diseases and symptoms are represented as the following EGIB rules, in
which we assume the triplet of certainty functions associated with each rule is

“(max, pro, min)”.

ry: disease(X,D) & has(X,S), symptom(D,S), wt(has(X,5))= 0.8,
wt(symptom(D,S))= 0.9;(maz, pro,min)

ro: disease(X,D) &2 famaly_history(X,D), hereditary(D),
wt(family_history(X,D))= 0.8,
wifhereditary(D})>= 0.7;(mazx, pro, min).

The use of certainty constraints can be viewed as a filtering mechanism. The cer-
tainties that do not satisfy the constraint will be automatically filtered. For instance,
1 determines the likelihood that a person X has disease D. It asserts that if X has
a symptom S with a certainty of at least 0.8, then S is correlated with D with a
certainty of at least 0.9. Note that this also results in filtering out conclusions with

“insignificant” certainties.

3.3 Extended Generic AB Framework (EGAB)

To compare AB and IB approaches, we need a suitable, comparable representative
of AB frameworks. However there is no such framework. For this, we consider
the proposed generic AB framework (GAB) in {Shi05], which does not correspond
exactly to any existing AB framework, but includes essential features of the AB
approach. In order for the comparison of GAB and GIB to make sense, we extend
the GAB framework to use multiset as its underlying semantic structure, as the GIB
framework. Moreover, the combination functions allowed in the GAB framework are
required to have properties as in the GIB framework described in Section 2, such
as monotonicity, continuity, associativity, an commutativity, etc. The annotation
functions allowed in the GAB framework satisfy the corresponding postulates on the
combination functions in the GIB parametric framework.

Next we extend the GAB framework further to allow CCs in the rule bodies. Let
us call the result as EGAB framework. An a—rule r in the EGAB framework is an

expression of the form:
p(V): f(M,.. . Vo) — (YD)t Viy oo, g (Y2) : Vi, G

where annotation V; is either certainty constant or a certainty variable, and for 1 <
i < n, ¢;(Y;) is an atom. All variables (object or annotation) appearing in an a—rule
are implicitly universally quantified. The constraints C is a conjunction of boolean
expressions of the form V; 8 V; or V; @ o, where 8 is a comparison operator in {<, =
,=,%,>,>}, and ¢ is a certainty value in 7. Note that the annotation function f
used in the rule head of an AB framework (including GAB) plays the roles of both
conjunction and propagation functions. Therefore, we replace the annotation function

f(V4,..., V) in the rule head with fy(ar, fe(V1,..., Vu)).

21

In an EGAB program [Shi05], disjunction functions are not explicitly indicated.
In order to be compatible with the EGIB framework, we explicitly indicate the dis-
junction functions in the EGAB program. Therefore an EGAB rule {a—rule, for

short) after this modification is an expression of the form:

r:p(Y): folow SV, Vo)) fa = as(11) 1 Vi, 0a(Y3) £ VA, Cr

Note that the EGAB framework so defined is strictly more expressive than the
GAB framework, and hence more expressive than any existing AB framework. This
is because in EGAB, we can express any comparison relation between two annota-
tions, while in existing AB frameworks, relationship between annotations can only be
expressed by using annotation constants or by repeated annotation variables, which
introduces cquality “=" on certainty variables. To see why this is more expressive,
suppose we want to perform a join operation on relation q and r for tuples ¢, € g and
t. € r, such that the certainty of ¢, is not “less” (w.r.t. the ordering <X on 7) than
the certainty of ¢,. While this cannot be expressed in any AB framework, including

the basic GAB, it can be expressed as a—rule, as follows:

P(X) ¢ folar fe(Vi Vo)), fa — q(X) : Vl,r(fj Vo,V > Vo

3.4 Equivalence of EGIB and EGAB Frameworks

In this section, we review the results from [Shi05] which mainly establish the equiv-
alence of the EGAB and EGIB frameworks. We use D to denote the extensional
database, which is a collection of input atom-certainty pairs. Given an (EGIB or

EGAB) program P and a collection D of facts, we use (D) to denote the set of

22

atom-certainty pairs derived by applying P to D. Using the bottom-up Naive evalu-

ation method, we have the following results [Shi05).

Propositon 3.4.1. Given any program P4 in the EGAB framework, there exists a
program P; in EGIB such that P4 and P; produce the same atom-certainty pairs on

every input database D. That is, P4(D)=P;(D), for every database instance D.

This is established by showing how an a—rule in EGAB is transformed into an
i—rule in EGIB, and vice versa. We first describe the process to transform an a—rule
r in the EGAB framework into a i—rule 7’ in the EGIB framework. Any a—rule 7 in

P, is of the following form:

P(?) : fp(ar’fC(Vls ' "aV-'I)) - QI(VI) . ‘/ls'“ aqn(-}-l;;) . V;;,Cr

As a normalization step, we replace every annotation constant V; in r with a
certainty variable V;, and add the certainty constraint Vj = V; to C,. For the
constraints C., every annotation variable V; in C; is replaced with wit(q;(Y;)), for
1 € i € n. This yields C’, to be used in r’. The combination functions of 7' and the
rule certainty for v’ are extracted from the annotation associated with the head of r.
From left to right, f, is the propagation function in ', a, is the rule certainty a, in
', and f. is the conjunction function in #’. Using the above method, the transformed

i—rule 7’ is as follows:

e P(“X_) - q1 (?1)1 cee aq::(?n),c:-; (fd: fp! fc)

Next, we describe the transformation from an i—rule s in the EGIB framework to

an a—rule s’ in the EGAB framework. Consider the following input i—rule s:

S p(?) & QID_/I): RN] ‘In(?n)s Cs; (fdv fp: fc)

23

Corresponding to this i—rule, we have the following a—rule s in the EGAB frame-

work:

s p((Y)): folas, fel(Va,y.. .. V) =i (Yh) - W, . .. L gu(Yy) : Vi, C.

where C are the certainty constraints C, in which the weight term wi(gi(Vs)) is
replaced by annotation variable V;, for 1 <z < n.

The resulting rule s’ obtained through the above transformation procedure is
equivalent to the given rule s. That is, s and s’ derive the same atom-certainty pairs
on any database instance. This equivalence at the rule level implies equivalence at the
program level, since both rules define the same atom certainty pairs and use the same
disjunction function. The following example illustrates the transformation method.

Following the proposed transformation method, P4 is transformed into the EGIB
program /%, assuming that in P4, max is the disjunction function associated with the

predicate disease. Note that we can also view this as the transformation from P to

Pa.

Example 3.4.1. Consider the followingEGAB program P4 and its transformed EGIB

program P,

r1: disease(X,D): pro(0.8, min(Vi,Va)) & has(X, S):V\,
symptom(D, §):Va, V) 2 0.8,V2 > 0.9.

ry: disease(X,D): pro(0.9, min(V\,Va)) < family_history(X,D): Vi,
hereditary(D):Vy, V) > 0.8,V 2 0.7.

24

-

r: disease(X,D) < has(X,S), symptom(D,S), wi(has(X,5))> 0.8,
wi(symptom(D,S))> 0.9;(maz, pro, min)

ry: disease(X,D) & family_history(X,D), hereditary(D),

wt(family_history(X,D})> 0.8,

wifhereditary(D))> 0.7;{max, pro, min).

-

3.5 Advantages and Disadvantages: A Discussion

In this section, we will discuss the advantages and disadvantages when incorporating
certainty constraints within logic programs: first, it breaks the continuity of the
fixpoint operator 7}, of the EGIB framework, while increasing its expressive power;
second, it reduces the cost of the program evaluation; third, it changes the termination

behavior of the program evaluation.

3.5.1 Continuity and Expressive Tradecoff

Adding certainty constraints strictly increases the expressive power of GIB and GAB
frameworks. This addition also provides a common ground for comparing these two
frameworks. When certainty constraints are added, it has been shown that EGAB
and EGIB have the same expressive power [Shi05]. However, the increased expressive
power of the GIB framework obtained by adding certainty constraints comes at a
price: the continuity of the fixpoint operator T}, of the EGIB framework is lost. This
is consistent with the fact that T, is not continuous in general for the AB {rameworks.

The following example llustrates this point.

Example 3.5.1. Consider the following EGIB program P, in which the underlying

[\
(1]

certainty lattice is 7 = [0, 1].

e p(X,Y) & e(X,Y); (ind, pro, min).
ra: p(X,Y) & (X, Z),p(Z,Y); {ind, pro, min).

Ty :7(X,Y) - p(X,Y), q(X,Y), wt(p(X,Y)) 2 1; {ind, pro, min).

where ind(a, 8) = a+ 3 —af is the disjunction function associated with predicate

p and r. Suppose the EDB is:
D ={e(1,1):0.5,¢(1,2): 0.5,¢(1,2) : 1}

Using a fixpoint evaluation technique, the certainty associated with r(1,2) is 0, ob-
tained at the limit w. That is, T%((1,2)) = 0. However, we can easily sce that
Tpt'((1,2)) = 1, indicating that the fixpoint operator T}, is not continuous — a de-

sired property that is lost.

3.5.2 Reducing the cost of evaluation

If a certainty constraint enforces restrictions on rule deductions, the compilation of
certainty constraints, together with the corresponding rules, reduces the cost of query
evaluation. This can be easily shown by noting the cffectiveness of the compilation
of certainty constraints with its corresponding deduction rule(s) if the rule set is
nonrecursive or is a bounded recursion. We examine the case of linear recursions.

Consider such a rule below:

T‘(X) o p(y), 7'(Z); (ffh frn fc)

where X, Y, and Z are arguments, and p is an EDB predicate. Suppose we add the

certainty constraints C = Cj,. .., Cy to the rule body, which yields:

T(X) ?_r p(Y),T(Z),Cl,. . ack; (fd: fp: fc)

This addition of constraints C form a conjunction with the rule body. Since C restricts
derivation of the rule, if they are evaluated together with the normal subgoal, stronger
certainty constraints are enforced on the rule, which reduces the number of tuples we
may set for r in every iteration, and, thus reducing the cost of query evaluation.

The case of a non-lincar recursive rule can be deduced similarly.

3.5.3 Termination

Another impact of adding constraints to rule bedics is on termination and complexity
properties. Evaluation terminates in some programs in the EGIB framework, while
the corresponding programs without certainty constraints may not terminate. This
is illustrated in the following example.

Consider an EGIB program that includes rules =y and r defined in Example 3.5.1.
The fixpoint evaluation of this program does not terminate on the input set D, defined
in Example 3.5.1. Now consider the EGIB program Q in which rule r; is replaced

with 5 below:
ry . p(X,Y) &e(X, 2),p(Z,Y), wt(e(X, Z)) > 1,wi(p(Z,Y)) > 1; (ind, pro, min).

That is, Q={r,,r5}. The fixpoint evaluation of @ on D terminates in two itera-
tions. This is because the first certainty constraint in rj cnsures that this rule never
fives, since wt(e(X,Z)) > 1 will only be satisfied at step w, when the fixpoint is

reached.

27

Chapter 4

Evaluation of Deductive Databases

with Certainty Constraints

Numerous query processing and optimization techniques have been proposed in stan-
dard logic programming and deductive databases, and implemented in many existing
systems. Please refer to [CGT89)] for a detailed description of these techniques. These
techniques are often set-based and, hence, duplicate derivations of the same atom do
not affect the query results in the standard case. However, one of the major sources
of inefficiency in the bottom-up Naive evaluation method is duplicate derivations of
atoms after their first derivation. The conventional bottom-up Semi-Naive technique
was designed for reducing such redundancy. Several versions of this method can be
found in the literature [Ban86, CGLS6).

However, when extending deductive databascs to incorporate uncertainty, it may
be crucial for correctness to collect derivations as multisets, since otherwise it might
result in an incorrect final model. In [LS96], the authors developed a Naive evaluation
with multiset as the semantic structure in the context of the parametric framework,
which collects “all” derivations as a multiset, lo which a user defined disjunction

function is then applied at the end of each iteration. Furthermore, considering the

28

source of inefficiency in Naive evaluation, they also proposed a multiset-based Semi-
Naive (SN) evaluation technique for parametric programs, which was implemented
in [SZ04]). They also proposed a refinement of the SN evaluation, called Semi-Naive
with Partition {SNP), which further impraves the performance.

When the parametric framework is further extended with certainty constraints, the
aforementioned Naive, Semi-Naive, and Semi-Naive with Partition methods should
also be extended to handle certainty constraints. A desired evaluation scheme should
be applicable in both cases when certainty constraints are present or absent.

In this chapter, we review basis of multiset-based evaluation technique N, SN
and SNP in the parametric framework in section 4.1. We then discuss some details
of implementation of the Certainty Constraint Checker (CC-Checker, for short) in
section 4.2. In scction 4.3, we discuss two strategies of embedding CC-Checker into

multiset-based N, SN and SNP evaluation techniques.

4.1 Query Processing in the Parametric Frame-
work

When uncertainty is present in deductive databases, existing inference systems, such
as CORAL and XSB, are limited to non-recursive programs, or recursive programs
with type 1 disjunction functions associated with recursive predicates. Unlike type 1
disjunction functions, type 2 disjunction functions are sensitive to duplicates. When
atom-—certainty pairs are collected as a set S, multiple occurrences of the same atom-
certainty pair (A : @} will only be counted once, and, hence, the combined certainty
of A, after applying the corresponding disjunction function will be a. For example,
if the disjunction function is ind, then ind (o, @) = 20 — a? # . Thus, the derived

atom-certainty pairs need to be collected as a multiset rather than a set.

29

Certainty constraints are treated as built-in predicates, so evaluation of the EGIB
rule consists of two parts. The first part focuses on regular subgoals evaluation, which
is done in the same as evaluation of p-programs. The second part focuses on evalu-
ating ceriainty constraints. We use the evaluation method proposed for p-program
to cvaluate regular predicates and implement a module to check the certainty con-

straints. In the following section, we briefly discuss the bottom-up evaluation methods

in the parametric framework, and then extend them for our EGIB framework.

4.1.1 A Multiset—based Naive Algorithm

The basic bottom-up fixpoint evaluation in the standard datalog is called Naive evalu-
ation. By considering the presence of certainties, the multiset-based Naive algorithm
[LS96] was obtained by a “straightforward” extension of the standard case. The steps

are shown in Algorithm 1.

Algorithm 1 Multiset-based Naive Algorithm [LS96]

Input: P, D
// P is a parametric-program, a set of p-rules
// D is the input instance database of atom-certainty pairs as the EDDB.
Output: {fp(Tpup)
: for all A€ Bp do
=21
My = {lal{A:) € D|}
n(A) = fa(My(A)), where f, = Disj(r(A))
end for
newset) ;= {A|(A: a) € D}ii=1;
while (newset; # @) do
i:=1+1
for all (r: A<= By,...,Bn,Cr; {Ju, [o, fe)) € P*; do
M;(A) == {|fp(ar, fe({li1(B1), - - - s via(Bu))}
vi(A) == fa(Mi(A)),where fy:= Disj(n(A))
end for
newset; := {A|A € By, vi(A) = v;1(A)};
: end while
: U p(Tpup) == v

e B U Y

— et et et e
A AT a4

30

Initially, every atom is assigned the least certainty value, 1, i.e, every atom is ini-
tially assumed to be false. In each following iteration, all facts and rules are applied,
and the derived atom-certainty pairs are collected as a multiset. Note that when firing
a rule, the best certainty found in the previous iteration of each subgoal in the rule
body is used to compute the certainty of the rule head. The multiset of certainties of
each atom A, shown as M;(A), derived at iteration i are combined into a single cer-
tainty for A. More precisely, T,,(v)(A) = fa(M:(A}), where fy is the disjunction func-
tion associated with the predicate A, and M;(A) is a multiset of certainties such that,
MA) = {lfolar, fl{WB), .. v(BIDIA & By, Bui{fa S f)) € P}
The bottom-up cvaluation of T}, is then defined as in the standard case. It was
also shown that T}, is monotone and continuous for any p-program P, and that the
least fixpoint of T}, denoted Ifp(T}), is equivalent to the declarative semantics of P.
This evaluation process continues until some iterations in which no atom is derived

with a “better” certainty [LS01al.

4.1.2 A Multiset—-based Semi-Naive Algorithm

As shown in [LS90], since some disjunction functions are sensitive to duplicates, a
“straightforward” extension of the Semi-Naive evaluation from the standard deduc-
tive database will not be suitable for evaluating p-programs. The following example
illustrates what may go wrong.

Steps 10 and 11 in the Naive cvaluation above is a source of the inefficiency of
the evaluation, similar to its counterpart in standard deductive databases; an atom
derived at iteration ¢ will continue to be derived in every subsequent iteration. This
redundant computation also includes atoms whose certainties did not change in the
previous iteration. To improve this situation, we need to identify and fire only the

rules which have “new” subgoals in the body, i.c., the subgoal is “new derivations”

31

either a new fact or a fact which was derived before but its certainty was improved in
the previous iteration. Firing rules will then be restricted to only those which have
something new in the rule body. This helps minimize useless computation, and * nce
leads to increased efficiency of evaluation {SZ04]. This multiset-based, Semi-Naive

evaluation is presented in Algorithm 2, to which we refer as SN. In this algorithm,

Algorithm 2 A Multiset-based Semi-Naive Evaluation [SZ04]
Input: P,D

// P is a parametric-program

// D is the set of atom-certainty pairs.

Output: [fp(Tpup)
1: for all A€ Bp do

2: vo:= 1
3: My = {la|(A: a) € D|}
a; 1 (A) := fa(M(A)),where f;:= Disj(m(A))
5 end for
6. newset; := {A|(A:a) € D};i:=1;
7: while (newset; # @) do
B: 1:=1+1
9: for all A€ Bp: do
10: if3r: A= By, ..., Bo; (fa fon fo)) € P
such that AB; € newset;, for some j € {1,...,n}:
then
1l ﬂ’f,(A) = 1\’,‘_1(:4)
12: for all (r: A<= By,...,Bn;{f0. fo. fo)) € P
such that 3B; € New;, forsomej € {1,...,n}: do
13: Mi(A) .= Mi(A) = {la7_,(A)|}U{|o] (A)|},where
14: UI(A) = fp(ar" fC({’Vi—l(Bl)i vy Vi-l(BnN}))
15: end for
16: vi(A) i= fo{ M;(A)), wherefy := Disj(m(A))
17: else
18: vi(A) == v (A);
19: end if
20: end for

21: newset; := {A|A € By, vi(A) > vi-1(A)}
22: end while
23: Ifp(Cpyp) = v

every ground atom A is associated with a pair (M;,0;), where M; is a multiset which

32

includes all certainties of atom A derived so far from different rules. Each element in
M;(A) is of the form (r : @), indicating a derivation of atom A with certainty « from
rule r. It also includes different derivations of the same atom through the same rule
and within the same iteration. If the SN algorithm does not take into account these
multiple derivations, and collects them as a set, it will lead to wrong results. The
value g; is the certainty of A obtained by aggregating the certainties in Af;. If in the
next iteration, we apply a rule r which uses A as a subgoal in the body, o; is used as
the certainty of A in deriving the certainty of the rule head.

At the beginning, each ground atom is associated with a pair (@,.1). Then, the
certainties of some atoms will be improved by the EDB facts. This is done in lines
1 to 4. The “new"” atom-certainty pair {a new atom or an old atom with a “better”
certainty compared to the last iteration) will be recorded in set newset;. This is
initially done in line 6, and updated in subsequent iterations in line 21. Every rule
which has at least one improved subgoal (included in newset;) will be selected and
fired. This is done in line 10. At step i + 1, we remove from M, all atom—certainty
pairs (A : a) derived by r, and replace them by new atom-certainty pair (4 : §)
derived by r. In line 16, we apply the disjunction function Disj(n(A)) associated
with the predicate symbol of A to obtain a single certainty for A. Rules that do not
have anything new as a subgeal in the body will not be applied new derivations, and,
hence their old derivations are preserved (line 18). After applicable rules are fired at
iteration i, the atoms with improved certainties will be identified and added to set
newset; (line 12). If this set is empty, then the evaluation terminates and the result
v; will be returned, as shown in line 23. Otherwise, the execution proceeds to the
next iteration.

There is a correctness requirement as tollows. If disjunction functions of type 2

and/or type 3 are presented in a p-program, derivations by the same rule should not be

33

combined across different iterations. This is also required in our context of certainty
constraints. Note that combining derivations across iterations is an optimization that,
for example, the Coral system takes advantage of, which also explains the need for

new evaluation systems in our context.

4.1.3 A Multiset-based SN with Partition Algorithm

As discussed in the previous section, SN evaluation is more efficient compared to
Naive method since it avoids the computation of some derivations that do not yield
“hetter” certainties. More accurately, the algorithm only fires those rules which have
at least one “new” subgoal obtained in the last iteration. However, not all redundant
computations can be avoided by the SN evaluation. For example, if there are several
derivations in a rule r, it is possible that only some of these derivations by r which
have improved subgoal(s). But for correctness, the proposed SN algorithm removes
“all” the derivations by r whose uncertainties have not improved. Therefore, some
unnecessary computations are repeated. The following example explains this point.

Let 7 be a rule in a p-program FP:

rip(X,Y) & q(X, 2),HZ,Y); {far fos fo)-

where p and g ar 1DB predicates, and t is an EDB predicate. Suppose there are
three instances c . r which generates three derivations dj, ds, and d; of atom p(1,2) at

iteration 7, as shcwn below, with certainty values 5, 2, and fs, respectively.

dy : p(1,2) & q(1,3), (3, 2); {fu, fypfe)-
dy : p(1,2) < g(1,4),t(4,2); {fa fp» fo)-

ds : p(1,2) < g(1,5),(5,2); {far for fe)-

34

In the SN algorithm described above, the multiset associated with p(1,2) at it-
eration i would be Mi(p(1,2)) = {|r : Bi,7 : Ba,7 : B3]}. Suppose that at the end
of iteration 1, only the certainty of q(1,5) is improved, say from ¢ to v. When the
evaluation proceeds to the next iteration, all these three derivations by r in the SN
algorithm are removed from M;(p(1,2)), since q is used in r. Clearly evaluation d3
again may yield something new, but not d; and d. Based on this observation, the
Semi-Naive with Partition algorithm (SNP, for short) was proposed to eliminate this
redundant re-evaluation of d; and d, in SN. It partitions every IDB relation, e.g. p and
g, into two parts: the “improved” part and the “non-improved” part. The improved
part contains all atom-certainty pairs that are generated or improved in the last iter-
ation, while the non-improved part contains the rest of atom-certainty pairs. In the
SNP algorithm, every ground fact A is associated with a pair (C;,0:), where C; is a
multiset containing all certainties of A derived so far, and o; is A’s certainty obtained
by applying the disjunction function fy associated with A. That is, o; = fa(Ci(A)).
The elements in C;(A) are of the form (& : Sg), where « is a derived certainty, and
Sy is a set containing all IDB subgoals in this derivation, which somehow records the
information about the “source” of a derived certainty. In other words, it helps track
the subgoal contributed to the derivations. In case a fact B is improved at iteration
i, we check C;(A) to see whether some element of C;(A) indicating B € Sp. If so,
it implies that the certainty of this element depends on the certainty of B. We then
remove this element from C;(A4). The SNP algorithm only focuses on derivations
in which at least one of their subgoals is improved in the last iteration. The SNP
evaluation is shown in Algorithm 3. An extention of this partitioning technique will

be introduced in section 6.3.1 to handle certainty constraints.

35

Algorithm 3 Multiset-based Semi-Naive with Partition Algorithm [SZ0S]
Input: P, D

// P is a parametric-program

// D is the set of atom-certainty pairs

Output: {fp(Teup)
1: for all A€ Bp do

2 Gi(A):={lla:)|(A:a) € D]}

3: v (A) = fiCi(A)(a)),where fa:= Disj(m(A))

4; end for

5 newset; ;= {A|(A:a) € D}ii:=1;

6: while (newset; # @) do

7 t:=1+1

8: for all A € Bp:do

9: Ci(A) = Ci1(A)

10: for all B € newsety A (o, Sg) € Ci_1(A)A B € 5p: do

11 Ci(A) := C(A) — {|(a, SB[}

12: end for

13: for all (r: A<= By,..., Bu; {fa, fon fo)) € P* 3B; € New,
where j € {1,...,n}: do

14: Ci(A) := Ci(A) U {|(e7(A), S},

15: where ¢7(A) := folar, fl{lvi1(B1), ..., ¥i1(Bx)]})), and

16: Sp:={B;|B; € IDBAje{l,...,n}}

17: end for

18: v;(A) = fi(Ci(AMa)), where fq:= Disj(m(A))

19: end for

20: newset; 1= {A|A € By, vi(A) = vio1(A)}
21: end while
22: Ifp(Tryp) i=wi

4.2 Handling Certainty Constraints

We develop a module, called the Certainty Constraints Checker (or CC-Checker, for
short) to test the satisfiability of certainty constraints in the EGIB programs. Recall
that C, is a conjunction of certainty constraints in the form of “wt(A) & wi(B)"
or “wt(A) 8 o". In order to test the satisfiability of C;, each certainty constraint
in C. has to be tested. Unsatisfiability of any certainty constraint in C, implies
unsatisfiability of C,.

There is only one C, associated with each EGIB-rule, but each rule may have many

36

ground instances. If C. is a ground instance of a certainty constraint in such a ground
rule, the satisfiability test of other ground rules should not reuse the grounded C,. We
need a mechanism to avoid this reuse problem. For this, we first ground C according
to the ground rule. After the satisfiability test, we reset C; to the original “empty”
state. To be compatible with evaluation of the parametric program, the proposed
CC-Checker will always return true when the certainty constraint C, associated with
the EGIB rule is empty.

Algorithm 4 provides details of the CC-Checker. 1t returns the value truc when
the conjunction of certainty constraints in the corresponding ground rule is satisfied,

and returns false otherwise.

Algorithm 4 Certainty Constraints_Checker

Input: A conjunction of certainty constraint C,, a ground instance of rule r
[] Cr=Cr ACyg, Gy = CiA, ..., ACL,Crp = CB/\, ca ,/\C;-
// Cr1 is a conjunction of certainty constraints wt(A)fc,
// Cra is a conjunction of certainty constraints wt{A)fwt(B3).
QOutput: Boolean
1: if C, is empty then
2 return true
3: end if
4: Initialize C, using corresponding ground atoms in instantiated rule r.
// Check the satisfiability of the first type certainty constraints.
fori=0to k do
if ('Satisfiable1(C;)) then
Reset C, to its original form in r
return false
end if
10: end for
// Check the satisfiability of the second type certainty constraints.
11: fori=0to j do
12: if (!Satisfiable2(C;)) then

w e

13: Reset C, to its original form in 1
14; return false

15: end if

16: end for

17: Reset C, to its original form in r
18; return true

37

Recall that the certainty constraint of the form wt(p(X)) 8 o is actually a selection
by certainty operation, which selects tuples from a relation, whose associated certainty
value holds true with respect to the operator ¢, and the specified threshold o. A
certainty constraint of type wi(p(X)) 8 wi(g(Y)) is a join by certainty operation,
which prescribes that a pair of tuples from two relations can be joined, provided their
associated certainties stand in the relationship defined by the operator . We can
view the operations of sclection and join by certainty as a filtering mechanism, which
can determine a (possibly empty) intermediate relation during the evaluation process.
We can also consider wi(p(X)) as a function call, returning the “current” certainty
associated with the ground instance of p(X) during rule evaluation,

For certainty constraint wt(p(X)) 6 o, we develop the algorithm “Satis fiable_1"
to test its satisfiability. Il the certainty of a ground atom satisfies the relationship
defined by the operator with a specified threshold o, the algorithm returns true;
otherwise, it returns false. The description of this algorithm is shown in Algorithm 5.

For certainty constraint of type wi(p(X)) 0 wt(g(Y)), the algorithm “Satis fiable 2"
is used to test its satisfiability. I not all arguments of both predicates in this con-
straint are grounded, we return “true” as a strategy to postpone its constraint cvalu-
ation until all arguments are instantiated. When both of arguments are grounded, we
test the certainties of these two predicates to sec whether they stand in the relation-
ship defined by the operator 8. The test result returned is true if the condition holds;

otherwise, it returns false. The details of this algorithm is shown in Algorithm G.

38

Algorithm § Satisfiable_1

Input: Certainty constraint 1 C; = wt(A)fc
// Ci is an expression of the form wi(A)fo
QOutput: Boolean
1: Let operator=map(0)
// map 0 to a corresponding integer
// 0 is a member of {<, X, =, #,,=} with values 0, 1, 2,..., 5, respectively

2: if A is not a ground atom then
3: return true

1: end if

5: if operator=(0 then

6: return wi{A) <o
7. end if

8: if operator=1 then

9: return wi(4) X0
10: end if

11: if operator=2 then

12: return wi(A) =o
13: end if

14; if operator=3 then

15: return wi(A) #o
16: end if

17: if operator=4 then

18: return wi(A4) > o
19: end if

20: if operator=5 then

21: return wi(A) = o
22: end if

4.3 Incorporating CC-Checker within Evaluation
Process

There are two ways to invoke the module CC-Checker. First, the evaluation algorithm
calls this module after regular subgoals in the rule body are evaluated. 1f it returns
true, then it generates the atom-certainty pair for the head predicate. Otherwise, it
moves on to the next derivation. As the second way, the evaluation algorithmn invokes

the CC-Checker on the fly while il is evaluating regular subgoals of the rule body,

39

Algorithm 6 Satisfiable_2
Input: Certainty constraint 2: C; // wt(A)6wi(B)
Qutput: Boolean
// map 0 to a corresponding integer
// 0 is a member of {<,=%,=,#,>,>} with values 0, 1, 2,..., 5, respectively

1: if A and B are not ground atoms then
2: return true

3: end if

4: if operator=0 then

5: return wi(A) < wi(B)
6: end if

7: if operator=1 then

8: return wi{A) X wi(B)
9: end if

10: if operator=2 then

11 return wi(A) = wi(B)
12: end if

13: if operator=3 then

14: return wt(A) # wi(B)
15: end if

16: if operator=4 then

17: return wit{A) > wi(B)

18: end if
19: if operator=5 then
20: return wit{A) > wi(3)

21: end if

rather than postponing checking constraints.

The advantage of the first way is its simple implementation by directly adding the
CC-Chiecker to the evaluation algorithm. Its disadvantage is that we can only find
out that the certainty constraints are not satisfiable when evaluation of the body is
done, i.c., perhaps after some useless computations. The second way is more efficient,
as it terminates derivation immediately when the CC-Checker fails during the rule
cvaluation.

We usc the following rule | to illustrate the advantage and disadvantage of these

40

two ways.
1 (X, Y) < p(X, X)), a(X,Y), wt(p(X, X)) > 0.5 (fa, fon So).

Suppose EDB={p(1,1) : 0.5, p(2,2) : 0.5, p(3,3) : 0.6, ¢(1,5) : 0.6, ¢(2,7) :
0.6, ¢(2,8) : 0.6, ¢(3,9) : 0.6}. Adopting the first way, we construct the following

fragment of the rule r, during the join process:

p(1,1), ¢(1,5), wi(p(l,1)) > 0.5

However, this fails when we perform the CC-Checker, due to the unsatisfiability of
certainty constraint wt(p(1,1)) > 0.5. Similarly, the following partial evaluations

will be built during the evaluation process, but none of them will contribute to the

{p(1,1),4(1,6), wt(p(1,1) > 0.5}
{p(2,2),4(2,7), wi(p(2,2)) > 0.5}
{p(2,2),p(2,8), wi(p(2,2)) > 0.5}

head predicate because of the unsatisfiability of the associated certainty constraint.
Only derivation {p(3,3),4(3,9), wt(p(3,3)) > 0.5} will produce atom-certainty pair
{¢(3,9) : 0.36} for the head predicate. Therefore, if we can prune in advance, the
tuples in relation P which do not satisly certainty constraints, the unproductive work
above could be avoided.

The second way overcomes the unproductive work above. There are two types of
certainty constraints in an EGIB rule, which are checked separately. We apply the
“gelect-before-join™ principle. For cvery predicate, we perform a “sclect” preprocess,
which will prune the unnecessary tuples from a relation according to the predicate

arguments, before the relation participates in the join process. For instance, for the

41

predicate p(X, X) in the rule ry, the tuples p(1,2) : 0,5, p(2,3) : 0.5 will be pruned
from the select process, since these tuples do not satisfy the constraint that the first
argument should equal the second argument. The “select” module was developed to
perform this task. Now we also need to consider the first type of certainty constraint
checking in the “select” module. We develop a new module, “extend_select”, using
which not only can check constraints based on predicate arguments, but also can chek
the first type of certainty constraints.

Consider again the above predicate p(X, X) as an example. After “select” mod-
ule, tuples p(1,1) : 0.5, p(2,2) : 0.5, p(3,3) : 0.6 will be kept. However, after
“extend_sclect” module, only {p(3,3) : 0.6} will be kept, because the other two do
not satisfy wi(p(X, X)) > 0.5.

The second type of certainty constraints are checked during the join process, rather

than postponing them to the end. Let us use rule r; below to illustrate this case.

ri p(X,Z) & a(X,Y),q(Y, Z),wt{a(X,Y)) > 0.6,
wi(a(X,Y)) > wi(g(Y, Z)); {ind, pro, pro).

Suppose EDB={a(1,2) : 0.5, a(2,3) : 0.6, a(3,4) : 0.7, ¢(4,6) : 0.6, ¢(5,6): 0.8,
q(4,7) : 0.8}. We assume the order of occurrence of subgoals in the rule body is the
same as the order of the evaluation order of subgoals. When performing the join of the
subgoals , we first sclect predicate a, and then apply the “extend_select” module to its
corresponding relation . This yields tuple a(3,4) : 0.7. Then we select predicate p,
and invoke the “extend_select” module to the corresponding relation g, which yields
the tuples: g(4,6) : 0.6, ¢(5,6) : 0.8, ¢(4,7) : 0.8. In the join process, the tuples in
the left relation are chosen one by one to join with suitable tuples in the right relation.
Now, we select a(3,4):0.7, which matches the tuples in relation g as it satisfies the

“join constraint” in g, which requires that the first argument of relation g is the same

42

as the second argument of relation a. This means tuples q(4,6): 0.6,9(4,7): 0.8 are
suitable to join with a(3,4). Actually, g(4, 6): 0.6 will not contribute since condition
wt{a(X,Y)) > wt(q(Y, Z)) does not hold. Thus we incorporate this type of certainty
constraint checking in the join process.

In our system prototype, we implemented the second way instead of the first one,
because it can save time and space by avoiding some unproductive computations of
intermediate relations. We integrate the above procedure within a Multiset-based
Naive algorithm for p-programs, and develop the Extended Multiset-based Naive
algorithm for EGIB programs. Algorithm 7 provides details of this algorithm. For
this, we add line 10 of Algorithm 7 between lines 12 and 13 in Algorithm 2. We also
add the line 10 of Algorithm 7 between lines 13 and 14 in Algorithm 3, and develop an
Extended Multiset-based Semi-Naive with Partition algorithm for evaluating EGIB

programs.

43

Algorithm 7 Extended Multiset-based Naive Algorithm with Certainty Constraints

Input: P,D

// P is the set of p-rules with Certainty constraints.
// D is the set of atom-certainty pairs.

Output: !fp(P(D))

@

— =
[S

[A
S oLl

-
=

= B A o

._.
=9

._.
= &

// P(D) denote the set of atom-certainty pairs derived by applying P to D.
for all A€ Bp do
vy:=L1
M = {la|(A: a) € Di}
v1(A) == f4(M(A)), where [y = Disj(n(A))
end for
newset, = {w(A)}(A:a) € D}ii:=1;
while (newset; # @) do
1i=141
for all (r: A <= By,...,Bu,Cs; (fa, [p. fe)) € P*; do
if (CertaintyConstraint_Checker(C,)) then
Mi(A) = {|foar, fel{lviea(Br), .. s via(Ba)I))
end if
end for
newset; := {A|A € B,,v;i(A4) = v;-1(A)};
vi{A) = fi{M;(A)), where f; := Disj(m{A))

: end while

Lfp(P(D)) := vi

44

Chapter 5

System Architecture

This chapter presents a system prototype of deductive databases with uncertainty,
called AILOG, which implements the certainty constraints checking and the optimiza-
tion techniques proposed. AILOG is a single user, in-memory deductive database sys-
tem. It also serves as a test bed for evaluating the optimization techniques proposed

in chapter 4. To cnsure portability, this system is implemented in Java. Figure 5.1

gives an overview of the system architecture.

4 mogam » Transformation

query/program

= Coordinator
Modute

User Interface

g

anwser

anwser

| Query Processing |

!

Module

USSPV

. Query Optimization

Module

Data program
. »
Module Module i
E 1
s
ol optimized program g v
: a .
E
i §' i
- T I SR
ion !
¥ facts .meﬂ Management ». Query Evaluation |
|
i

| Module -

Figure 5.1: System architecture

&
i
]

v e M
| Gertainty Constraint .
checker

As shown in the figure, AILOG consists of six main modules:

1. Coordinator Module (CM) which is the central part of the system and is re-
sponsible for the overall program evaluation flow. It takes input from the User
Interface and creates subtasks for the Data Transformation Module, Query Op-
timization Module, Query Processing Module ,and Data Management Module
to process user queries. This module also returns the result to tk. user through

the interface.

2. Data Transformation Module (DTM) is actually a “parser”. As the input,
it takes a logic program with uncertainty in either the EGIB or the EGAB
language, already stored on disk as a text file. It checks the input for correct
syntax and transform it into an internal representation. Furthermore, the DTM
can be used to transforms an EGIB program to an equivalent EGAB program,

and vice versa.

3. Data Management Module (DMM) is responsible for maintaining and ma-
nipulating the in-memory data in relations and storing the “optimized” pro-

grams.

4, Query Evaluation Module (QEM) takes as an input the internal represen-
tation of the program produced by DTM. It also takes database relations. The
annotations in the program provide execution hints and directives. The QEM

interprets the internal representation of the optimized program.

5. Query Processing Module (QPM) accepts the query, parses its syntax, and
then executes the query represented in some internal form. The user program
interacts with QPM, which in turn, interacts with the DMM. The QPM isolates
the user from exccution details. The user specifies a query, and the QPM

determines how to compute the answers.

46

In the following sections, we will explain these modules and their interactions in

more details.

5.1 Coordinator Module

The Coordinator Module, which acts as the heart of AILOG, is responsible for the
overall evaluation process.

Figure 5.2 shows an sequence diagram indicating how the CM interacts with the
user and the other five modules in a time sequence diagram. As shown in the figure,
the CM first gets program and configuration parameters from the user. It then
stores the configuration parameters in a “Config” table, a data structure which saves
the user preference for later use, and invokes the Data Transformation Module to
parse the input program and transform it into an internal representation for further
processing. The CM module then calls QOM to optimize the program based on the
optimization parameter specified in the “Config” table. After the optimization, the
CM will choose the corresponding strategy to evaluate the “optimized” program by
sending the optimized program to QEM.

Queries typed by the user in the user interface do not require rewriting. For
such queries, CM calls QPM and returns the result to the user. Complex queries
are typically defined and stored in advance as some “program modules” that export
predicates (view) with associated “query forms”. For such queries, QOM will optimize
the program module and a query form, and generate a rewritten program. QEM

evaluates the optimized program and returns the result back to the user.

47

Coordinatoc || Data Vra
L] ¥
i |
Top P ge User [|
i | [
! | !
L i l
input program
input parameters :
parse program |
Cater mom o e
1
query resuit |
_——— e K - -
~K— L~ T
l | I
1 !]
1 |
Input query parsc query 1
+
e ———
quety result
s oy o —

0.2

Figure 5.3 shows the model diagram of DTM. The input (EGIB or EGAB) program
is usually stored in the secondary memory as a text file, before it is submitted to the
system for evaluation. Once submitted, the DTM will call the corresponding (EGAB

or EGAB) parser in DTM. Since there are two types of input programs in our system,

Query Opfimization

optimiting progam
1

-
]

5
4
— G v — A p— — —— — — A
—
———

| perform evaluating |

|
|
|
4
|
|
|

process guery

e ¥ o - — — e

3

— i ERTE e) il mka e — i il AL RS
[

-

—_————

— s e a —— —— — — — — Tk D w— m— ——

— — — — — - — — —

U

Figure 5.2: General sequence diagram of the system prototype

Data Transformation Module

48

i.e, EGIB and EGAB programs, we develop a parser for each kind of syntax. They are
called Parser_IB and Parser_AB. The appropriate parser is chosen and the program
is then checked for its syntax. If there is no syntactic error in the input program, it
is separated into three parts: facts and rules, certainty constraints, and the query.
Every part is passed to corresponding transformation procedures, which transforms
the input into its internal representation. In this transformation procedure, we take
advantage of the object-oriented data model, such as inheritance, for presentation
and manipulation ease. The output of DTM, which contains transformed facts and
rules, certainty constraints, and the query, is then passed to modules DMM, QOM,
and QPM, respectively. In addition, based on the user configuration parameters
specified, the input logic program could be transformed into its desired EGIB or

EGAB program and stored in the secondary memory as a text file.

! eeB ! | EGAB |
) .l : .“
—— —_

Parser_IB { Parser AB !

N S, . R SN, SN, S
1B Rule/Fact i " Cenamty | Query IF AB Cerainly | 'AB RuIeIFac
converter | Constraint converier | l convener IConstramt converter| | converter

|

| A, A ;~|:_. s AU
- - J Y / f me e mm e

: internal | EeB |

n ‘—f . I‘_.-_-_-’
EGAE gonverter 7 Representaion | converter

.,_____\
£

a—n e,

Figure 5.3: Data Transformation procedure

49

In the parsing process, regardless of which of Parser_IB or Parser-AB is used, we
perform program safety checks. The program safety checking consists of rule safety
checking, fact safety checking, and certainty constraints safety checking. If any one
of these three safety checks fails, the program safety checks fails. This terminates the

parsing process and a suitable error message is displayed through the User Interface.

5.3 Data Management Module

AILOG currently supports only in-memory data. The DMM is responsible for main-
taining and manipulating relations and programs that are in-memory. The facts,
rules, and query are represented as Java classes. In order to have efficient search and
access, we integrate these classes and provide uniform access for other modules. The
DM creates EDB relations for the transformed facts from the DT facts converter. It
also stores and manages IDB relations defined during the evaluation process dynami-
cally. We store and manage IDB and EDB relations uniformly in our system. We use
a data structure called fact_table to “link together” the relations. Furthermore, the
“optimized” program generated by the QOM is stored in the data structure rule.table.

We create and use a workspace called SymbolTable, also called a workspace, to
manage database relations and program. A user can have several named workspaces,
copy relations from one workspace to another (or simply make a relation in one
workspace visible from another without copying), update rclations in a workspace, or
run queries against a workspace. It is also possible to save a workspace as a text file;
persistency is left as a possible future work.

We use hash-based indices for in-memory relations, in order to speed up query
evaluation. These indices include two levels. At the relation level, we use hash tables
to store the key and the reference to a relation. At the tuple level, we use hash tables

to store the key and the reference to a tuple. We create and use indices to access the

a0

relation and tuples during the query evaluation.

The DMM offers a well defined “get-next-tuple” interface to other modules, espe-
cially to QEM, which accesses relations frequently. This interface is independent of
how the relations are defined, so it is quite flexible. Such a high-level interface is quite

useful, since it allows different modules to be evaluated using different strategies.

5.4 Query Evaluation Module

This module is the central component for the efficiency of AILOG. It takes the “op-
timized” program from the QOM and the EDB facts as input. Based on the uscr
parameters and execution hints in the “optimized” program, QEM will apply the ap-
propriate strategies to execute the program. The QEM derives the selected rules by
populating the matched facts iteration by iteration until no “new” fact-certainty pair
is produced. Recall that definition of “new” is extended from the standard case to our
context of uncertainties to include not only the new facts, but also an old fact with a
“better” certainty. When the least fixpoint is reached, the evaluation terminates and
returns the least model, which consists of atom-certainty pairs.

Qur Extended Multiset-based Naive (EN) algorithm, Extended Multiset-based
Semi-Naive (ESN) algorithm, and Extend Multiset-based Semi-Naive with Partition
(ESNP) algorithm, described in Chapter 4, are implemented in the QEM, which calls
the CC-checker. The stratification method is also implemented here, but cannot be
applied in isolation. This method should be used in conjunction with one of the three
evaluation algorithms for improved performance.

Since the notion of “new” is extended in our context of uncertainty, the termina-
tion behavior of the evaluation changes as well, that is, the cvaluation continues if the
certainty of any fact is improved. Because of the continuity property of the fixpoint

operator T}, in some cases, the evaluation will take w steps to reach the fixpoint. For

51

practical reason, we take advantage of this property to allow an evaluation to proceed
until a desired precision is achieved. When the amount of improvement of certainty
is less than a user specificd error, the evaluation process will be terminated.

The CC-Checker is a sub-module of QEM. When a rule of an “optimized” program
has certainty constraints in the rule body, the CC-checker is invoked during query

processing to evaluate the certainty constraint parts.

5.5 Query Processing Module

Our QPM accepts a query, chooses a good execution plan, and executes. Simple
queries (selecting facts from a single relation or multiple joined relations, for instance),
which - un be typed in at the user interface, is dealt with by the QPM in our system.
In this case, QPM only nceds to verify the query syntax, and exccute it against the
database, since it it already derived all atom-certainty pairs from the program. We
use ”?” to indicate a query, e.g.,“7p(a, Y), wt(p(a,Y)) = 0.57, which asks for a variable
Y such that p(aY) is true with a certainty of at least 0.5. The database (which is
the least fixpoint model) is represented by a set of relations linked together. The
QPM needs to find the corresponding relation through the DMM for the query, and
creates a view of the corresponding relation according to the query and its bindings

expressed in the query predicate. The query result is then returned to the user.

=)

Y

rule selector

A

Certainty constraint

checker o
2 —facts——
¥ Data
Management
-+ rule evaluator Module

h

LGeneraled atoms—»

Fixpoint checker

le———Fac! table———

Figure 5.4: Program cevaluation procedure

Chapter 6

System Implementation

Our system prototype AILOG was implemented in Java. Following the system archi-
tecture described in chapter 5, we split the system implementation into subsystemns,
and develop proper interfaces for these subsystems. In this chapter, we explain some

Lechnical details of our implementation.

6.1 Data Structure

We use Java which is an object-oriented programming language, in order to take
advantage of object oriented data model in representing data structures in our im-
plementation. The efficiency with which such data can be processed depends largely

on our representation. The relations are represented as follows:

1. Each workspace is a collection of relations

o

. Each relation is a collection of tuples

o]

. Each tuple is a list of arguments

N

. Each argument has a type, such as Integer (int), String, ctc.

5. Rule table is a list of rules

6. Each rule is implemented as a list of predicates, certainty constraints, and com-

bination functions.

6.1.1 Structure of Tuple

The notion of fact in logic programming and deductive databases corresponds to a
tuple in relational databases. There are two types of facts in logic programming
and deductive databases: an Extensional Databasc (EDB) fact, which is explicitly
mentioned in the program, and an Intensional Database (IDB) fact, which is implicitly
mentioned in the program and is derived from the rules and facts in the program. In
our implementation, we treat them the same and use class Tuple to represent both
types of facts.

With the presence of uncertainty in deductive databases, each fact is then asso-
ciated with a certainty, represented as an fact—certainty pair. The major difference
{from the standard case is that we need to record the certainty of each fact, To develop
the corresponding structure for fact-certainty pairs, we add the “certainty” part to
the Tuple class.

For each object of the Tuple class, we associate a list of all terms that the object
holds. Since we have a program safety chiecker in the parsing stage, we do not allow
non-ground facts in our work, and, hence, the terms in the list associated with an ob-
ject arc all constants. It is convenient to use list to implement the list of terms, which
is also fast in search. The Tuple class defines a number of methods to access and ma-
nipulate tuple objects. These methods include addColumn(String s), setColumn(ini
indez, String s), comparesTo(Tuple t) and factSafeCheck(String name).

Note that each object of the Tuple class need not explicitly have a relation name,

because all the tuples will be clustered according to their predicate name to form a

(9]
9}

relation, and the relation name is exactly the same as the predicate name.

6.1.2 Structure of Relations and Fact table

A relation is a collection of tuples which have the same predicate name, and the
name of the relation is the same as that of the predicate. Although diflerent fixpoint
evaluation techniques may require different information to be kept for each relation,
the basic structure is more or less the same for all. For example, cach relation has a
name, a structure containing its tuples and member funetions. There are two kinds of
structures in our system: list and hash table. For the tuples stored in the list, we do
not nced any index. Each clement of a list stores a reference to the tuple object. The
disadvantage of this structure is that, il we request a specific tuplc from a relation, it
needs to go through cach element in the list, which could be lengthy. Hash table is
widely used as an efficient storage structure for in-memory data[HGMW02, Sha00).

Actually, in our system prototype, we provide a mechanism to take advantage of
both list and hash table. First, we add the tuples to the list based on their oceurrence,
since we usce a nested loop join mechanism for performing join of the body predicates.
It is thus convenient to go through the list [rom top to bottom. Second, we use a
key-gencrator to generate a key for every tuple in the list, and to map the key values
to the corresponding references of the tuples using a hash table. The hash table
structure supports an efficient look-up operation: given a key {generated from the
tuple), it finds the corresponding value (reference of the tuple) efliciently.

To construct a hash table, the first task is to determine the hash key. In our
system prototype, we combine the relation name to which the tuple belongs with the
values of arguments. The result of this combination is a string, which is converted

to an integer. We do this by using the default hashcode() method of the Java String

class. That is, the hash code for a String objcct is computed as
s[0] * 3171 4 5[1] #3102 4+ . + s[n — 1]

where s[i] is the ith character of the string, n is the length of the string (the hash
value of the empty string is zero). For example, the string “abc”, “cba”, “ach” are
converied to integers 96354, 98274, 96384, respectively.

After converting the key from string to integer, a hash function is applied to get

the index corresponding to the key in the hash table, as follows.
Wkey) = (key & 0x7FFFFFFF) % hash_size

Note that no hash function is collision-frec. At the same time, the hash table is open,
i.c., in case of a collision, a single bucket stores multiple hashed values, which must
be scarched sequentially. The size of multiple entries in a single bucket is determined
by the distribution of tuples and the hash-size, since searching in a single bucket, is
sequential. Therefore, a smaller munber of entries in a bucket and a larger hash-size
are preferred. However, too large a hash-size may result in a waste of space and a
high maintenance cost. Depending on the input program, an EDB relation has a
fixed size, which can be obtained in advance. When we create a hash table for an
EDB relation, we can set the initial size. The size of an IDB relation, on the other
hand, increases during an evaluation, for which we create a hash table using a default
initial size. When a higher hash table eapacity is needed, its size will automatically
increase. To achieve this, we can control the initial cepacity and load factor when we
initialize the hash table.

For the Naive and Semi-Naive algorithms, relations are integrated, i.c., there arc

no partitions. However, in the Semi-Naive algorithm with Partition, an IDB relation

is partitioned into two parts: the “improved” part and the “non-improved” part. We
use two lists to: one to store the “improved” part and the other one to store the
“non-improved” part. Actually, we divide the references of tuples into two parts.
The tuples move from the nonimproved to the improved part. We only need to move
their references accordingly , rather than them, which results in great time saving.
We integrate all the relations as a collection, to which we refer as fact_table. 1t
includes the EDB and IDDB relations of the user program. For efficiency, a new
relation is simply inserted at the end of the collection. The faci_table provides a
unified access to the relations. For the collection structure, it offers sequential search
to a relation. If an input program has a large number of relations, such a sequential
search (without index) would result in low cfficiency. Therefore, we build a hash table
for the relations, using relation names as keys and the references to the relations as
values. The building hash table overhead for faci_table pays off well when the number
of input relations is large. Figure 6.1 shows relations and how they are linked to cach

other.

6.1.3 Structure of Rules and Rule table

Each rule in our system prototype is implemented as a list of predicates. It contains
three parts: rule head, rule body and parameters. The rule head contains a predicate,
which indicates the relation that the derived facts belong to. The rule body consists
of three parts: a list of normal predicates, a list of first type certainty constraints and
a list of seccond type certainty constraints. The first part indicates how the relations
join to generate facts for the head relation. The sccond and the third parts indicate
the restriction applied during the process of joining relations. Note that, the result of
the join of relations is independent. from the sequence of joins. Qur system prototype

evaluates joins from left to right as the defanlt order. The parameters include the

Faet Table list

Ratalion
P name
H 1
{ 1 Tuple
key
: X certaity
- 4
: : Argument 1
) L 4
Relation
A - » name Argument n
!]
§ 1
1 |
1 1
! I
e - 1
l 1
' i
| SR 1

Figure 6.1: Internal representation of fact tables

rule certainty and the combination functions associated with the rule.

Note that cach fact is considered as a special rule with an empty body, interpreted
as being true, and hence there is no need for disjunction, propagation and conjunction
functions. In our implementation, we do not treat facts differently from the rules.
We parse and store them directly into relations when parsing the program. This is
because we do not need to re-cvaluate these facts once they are stored into relations
at compile time, and their associated certaintics will never change during fixpoint
evaluation. Therefore, our rule table only stores rules that have some EDB or IDB

predicate(s) in the body. Figure 6.2 shows the internal representation of the rules in

for following program Fg;

p(X,Y) 2 e(X,Y),wt(e(X,Y)) > 0; (ind, pro, pro).
p(X,Y) 22 e(X,Y),p(Y, Z), wt(e(X,Y)) > O, wi(p(Y, Z)) > O,

wt(e(X,Y)) > wi(p(Y, Z)); (ind, pro, pro).

In our implementation, the predicate is the basic component in the rule head and
body. The predicate structure has a predicate name and arguments (variables and
constants). Since different predicates may have different arities, we use a dynamic
array as the underlying container for arguments, for convenience.

As shown in Figure 6.2, the rule head contains a head predicate, and its body
is made up of three collections. The first collection contains a list of predicates in
a particular order. Since different rules may have different numbers of subgoals, a
dynamic array is suitable to represent it. The second and third collections contain
first type certainty constraints and second type certainty constraints, respectively.
They could also be null if the rule does not contain the corresponding constraint. All
the predicates appearing in the CCs must appear in the first collection, otherwise
it violates the program safety condition. This situation will be detected at compile
time and reported as an error. In the CCs structure, to save space, we do not store
the predicate, but rather store on. - the reference of a predicate, which points to the
predicate in the rule body. The last part of a rule stores parameters, which includes
rule certainty, and its associated disjunction, propagation, and conjunction functions.

All these aforementioned structures are wrapped as members of the Rule class.
We have also defined some other useful operations in the Rule class, including mem-
ber functions. The rule class is the internal representation of both the EGIB and

EGAB programs, so transformation between an EGIB rule and an EGAB rule is

60

Rule table

Rule 1

Rute 2

Rula haad

Rule bocy

Nult

Certianty: 0.9

bl

Ruile haad

Rulo body

-.i

e

N

Predcate

Name: p

Argument: X

Argunent Y

Predicate

Nasrne: e

Argument X

Amgument: Y

Cenainty constrain: 1

Precicate 1

Operaior. >

Containty0

S =]
cale

Name:. p

Argument: X
Argument: Y

Predicate

! Pred:cate

Name: p

o

Nains: &

Argument: Y

NQIJT\'IQ!T X

Argument: Z

Argument: Y

Cerainty coneraint |«

-

Predicate 1

Cperator: »

Cartainty constrairt

(
{
t
i
\
i
|
o b
t

Predicate 1

e

Operator; >

Certalnty 0

Certainty:0

Cenafly Consiram ¢

3

Pradlcate 1

Cenainty: 0.9

Operator: «

Preticate 2

i

61

Figure 6.2: Internal representation of rule table

actually implemented here. We define an to_IB function to transfer the internal rep-
resentation into an EGIB rule, and define an to_AB function to transfer the internal
representation into an EGAB rule.

The program safety check contains three parts: the fact safety checking, rule safety
checking, and certainty constraints safety checking. Irn the Rule class, we define
a rule_safety_check function to check rule safety and a certainty_constraint_check func-
tion to check certainty constraint safety.

The data structure rule_table was implemented as a collection. When the stratifi-
cation technique does not apply, all the rules are stored in one collection, as a specific
order of rules is not required. The evaluation technique gets rules from this collection
one by one. If stratification applies, the input rules are reordered according to the
determined order, and the order of applying rules in the same stratum is immate-
rial. We create several stratum tables corresponding to the strata of rules, and each
stratum table stores the references of the rules in the rule_table . The evaluation

technique proceeds by evaluating the rules stratum by stratum.

6.1.4 Storage Structure for Multisets

In deductive databases with certainty constraints, we are interested in multisets over
B=Bp x T, where Bp is the Herbrand base of the given logic program P, and 7 is
the set of certainty values used. If X is a multiset over B, then every element in X
is of the form (A : @) : m, where A € Bp is a ground atom, o € 7 is a certainty
associated with A, and m > 0 is the multiplicity of the basic part (A4,a) in X,
When uncertainty is present, the fixpoint evaluation is sensitive to duplicates.
Therefore, we need to use a multiset to store derived facts and, after every iteration,
we need to combine duplicate derivations of an atom into a certainty using the dis-

junction function associated with the predicate of the atom. This procedure is called

62

normalization [SV97], which intuitively combine the certainty of each atom A into a
certainty value, for all atoms A € Bp. Formally, given a multiset X over Bp X 7, the
normalization of X is defined a set X’ whose content is “equivalent” to the multiset

X as follows:

X ={{(A:B8)|(A:a;):mj€ X, 1 <j<lsn(A)=piB= [i(Y)|}

where p,...,p. are all the predicate symbols in the program, f; is the disjunction
function associated with p;, 1 <7 < k, and Y is a multiset that includes m; copies of
a certainty value a;, for all derivations of atom A. Recall that for an atom A, 7(A)
denotes the predicate symbol of A.

We need a data structure that can serve as a container of the multiset, and can
perform normalization on the multiset. This motivates our design of multiset storage.
Since the Semi-Naive with Partition algorithm has a different need for a multiset from
the Naive and Semi-Naive algorithms, we create Multiset] structure for the former
and Multiset2 structure for the latter two.

For the data structure Multiset2, we use a dynamic array as a container for the
input program, in which each rule has a corresponding element in the dynamic array.
Each element of the array stores a data structure, which is similar to the relation
structure we defined in section 6.1.2, but allows duplicate tuples for multiple deriva-
tions of different fact-certainty pairs obtained by rule r at some iterations. If none
of the subgoals of a rule has something “new”, we keep the fact—certainty pairs un-
changed in the relation structure for next iteration. If there is some subgoal in the rule
whose certainty is improved, the fact—certainty pairs obtained in the last iteration will
be removed and replaced by the new fact-certainty pairs obtained by re-evaluation of
the rule.

We define a member function in the Multiset2 to perform disjunction function

63

on the multiset structure. The fact—certainty pairs, after applying disjunction, are
stored in a hash table, which is actually a set whose content is “equivalent” to the
original multiset.

For Multisetl, we use a dynamic array to store a list of hash tables, one for each
rule. Each entry of the hash table is a pair (Sg, tuple), where Sp is a set of all the
IDB subgoals in one derivation, indicating data contributed to a derived certainty.
This bookkeeping helps track the derivation sources and is crucial for efficient SNP
evaluation by limiting re-evaluation to derivations with improved subgoals. Consider
a hash table corresponding to a rule r. For a ground instance of r, if there is no
new subgoal, we do not re-evaluate r, and keep the fact—certainty pair unchanged. If
there is a new subgoal in a ground instance of the rule, we generate Sy for any such
this derivation and use it as an index to get the corresponding old fact—certainty pair
derived by r, remove it, and replace it with the new fact-certainty pair.

We also define a function in the Multiset]l structure to perform disjunction func-

tions. The description of this function is the same as the one described for Multiset2.

6.2 Query Compilation

The Query compilation module is responsible for parsing the user input, checking if it
is well-formed, and, at the same time, transforms them into the internal representation
defined in section 6.1. There are two parsers in our system, which are transparent
to the user. One parser is responsible for the EGIB programs, and the other one
is responsible for the EGAB programs. Figure 6.3 shows the parsing process, which
consists of two phases. The first phase is scanning or token generation, by which
the input program viewed as a character stream is divided into meaningful symbols
defined by the grammar. The sccond phase is parsing or syntactic analysis, which

checks whether the tokens form an ailowable expression. This is usually done with

64

reference to a context-free grammar, which recursively defines components that can
make up an expression and the order in which they must appear. The second phrase

outputs an abstract parse tree.

/ Source Sting /
e

arser K7 \

Lexical Analysis
(Create Woken)

<z

[]
<z

Syntactic Analysis
(Create Tree)

NZ

Abstract .
parsing trea

Figure 6.3: The parsing process

6.2.1 Scanner

As in conventional parsers, the scanner is a Lexical Analyzer which reads the char-
acters of the source language, treat as a stream of characters. Morcover, it collects
consccutive characters into basic logical units of the source language. A logical unit,
which is meaningful in the source language, is called a token. In our system prototype,
we represent a token by the Token class, which has a field to specify the type of token.

A simple token, such as “ > ", may be represented by a token whose type field is set

65

to an integer value, e.g, 18 in our implementation. We associate each possible type
appearing in our program with a corresponding Integer (int) in the Ipub interface,
which allows us to use tokens in Java switch statements {Dep].

The language we deal with contains names of predicates and arguments. Names
are also called identifiers. A name in this sense is typically a nonempty sequence of
letters and digits, beginning with a letter. For clarity and ease of implementation,
our logic programming language has so-called keywords or reserved names, which
are sequences of letters that should not be used as names of arbitrary objects. For
instance, we have the keywords “begin”, “end”, “max”, “min”, etc., which cannot
be used as predicate names or arguments. Each keyword should be represented by a
distinet token. For these keywords, the corresponding tokens may be BEGIN, END,
MAX, MIN, defined as suitable integer constants, such as:

finul static int BEGIN = 1 ;

final static int END = 2;

final static int MAX = 51;

final static int MIN= 52 ;

A token may distinguish names from keywords as follows: whenever a token that
looks like a name is found, its string value is compared to the keywords in a list. The
token is classified as a keyword if it is in the list; otherwise it is classified as a name.
If the set of keywords becomes larger, we should use more efficient means, such as a
hash table, to find the token corresponding to a given string. Ior instance, by using
a hash table.

There are several member functions defined in the scanner to perform the key

functions, as follows.

o char Nextchar(): it gets the next character of the input stream of the source

66

program, and also keeps track of the character position.

e int CheckCharType(char c): it is a character classification method. If the given
character is a letter, it returns 1; if the given character is a digit, it returns
2: if the given character is the horizontal tab, the new line feed, or carriage
return, it returns 3; if the given character is null, it returns 4; for any other

given characters, it returns 5.

o Token GetNextToken(): it constructs the next token from the input character

stream and returns it as the next token.

6.2.2 Parser

In our implementation, the scanner we built is shared by the IBParser and the AB-
Parser, which are LL(1) parsers for EGIB and EGAB programs, respectively. An
LL(1) parser is a top-down parser for a subset of context-free grammars. It parses
the input string Irom left to right, and produezs leftmost derivation of the input string
using one token of look-ahead . In addition to parsing the input token stream, our
parser also transforms the input into an abstract syntax tree for increased flexibility,
as described in scction G.1. A desired parser class in our context should have the

following features:
e Provide an interface Lo other classes involved
e Parse through all tokens in the token stream and properly report errors

e Parse all rules, facts and query into an abstract syntax tree, which is imple-

mented as java classes and subclasses

To achicve the above mentioned performance, cach parser consists of a set of

mutually recursive parsing methods for nonterminals in the language. Each parsing

67

method is a member function of the Parser class,

6.3 Query Optimization

A number of top-down and bottom-up query optimization strategies have been in-
troduced for standard deductive databases. However, when uncertainty is present,
those techniques are not applicable directly mainly because their underlying semantics
are set based. Therefore, in [SZ04], which implements a fragment of the parametric
framework, a Multiscl-based Semi-Naive algorithm and Multiset-based Semi-Naive
algorithm with Partition were developed and shown to be effective. These proposed
evaluation methods cannot be directly applied in our context with certainty con-
straints. In our work, we consider various techniques introduced in [SZ04] and extend
them to handle CCs. In chapter 4, we introduced the Extended Multiset-based Semi-
Naive and Extended Multiset-based Semi-Naive with Partition algorithms. We will
describe important implementation details in this section. We will also deseribe de-

tails of our implementation of the stratification cvaluation technique.

6.3.1 Relation Partitioning

The Semi-Naive algorithim with Partition focuses on derivations that may generate
improved fact-certainty pairs. Derivations of new fact-certainty pairs may result from
joining relations which have, in the last iteration, at least a new fact or a fact with
improved certainty. Evaluation of program will be restricted to those derivations in
which new facts may contribute. This is done through partitioning every IDB relation
R into two parts in our implementation: A and A, where A is the improved part of R,
and A is the non-improved part of R which includes the rest of fact-certainty pairs,

For a relation R, we use R|0] to refer to A and use R[1] to refer to A, Let P be

68

an EGIB program using EDB predicates Bjs and IDB predicates T}s. Consider the

following generic rule r in the input program I:

T S(nu’) fi Bl(ui):- .-y Bﬂ(un)a 711 (Tl)slp.!('r‘.!)s .. -;Tm(Tm)g Cr'; (fd: fp? fc)

We associate a counter with IDB predicates Ti(71), T2(72),. .., Tin(Tm), which
ranges from 0 to 2™ — 1, incremented cach time. It has corresponding states from
00...00,00...01, ..., 11...11. Using a data structure to store the state, each cle-
me;ﬁ, in the Eata struct.ur(,}“corrcsponds to an IDB predicate, in the order in which
the predicale appears in the rule body. If the value of the element is 0, the improved
part A of the relation corresponding to an 1DB predicate should be used in the join
process. If this value is 1, it means that the unimproved part of the relation should
be used in the join process.

The evaluation of the rule r is divided into 2™ steps. Iach state has a correspond-
ing step, used to guide the evaluation at cach step, determining which part of the
IDB relation should participate in the join process. Before we perform the join, we
check the corresponding part of the 1DB relation denoted by the state element. If
any one of them is empty, the evaluation of this step terminates, and we continue to
check the next state, because an empty relation does not contribute to any successful
derivation. Furthermore, the last state 11...11 means every 1DB predicate should
use the part A in its corresponding relutim:"to participate in the join process. But
this join does not have any new fact -certainty pairs involved and hence it does not,
generate any new fact-cerfainty pairs either. Thus when the counter reaches 2™ — 1,
we do not evaluate the corresponding step.

For rule 7 : p(X,Y) & p(X.Y),q(Z,YY; {fa» fp Jo), Only the joins of improved

[T} WM

fact-certainty pairs in “p” or “q" may yicld new fact-certainty pairs. Using rewriting

technigue [SZ04], this rule can be rewritten as follows:

(X, Y) S Ap(X,Y), (2, Y); s for fer s
ry (XYY & Ap(XCY), g(Z,Y) {fs S S Vs

7‘;’5 :])(X, Y) - /\p(ﬂ,‘, Y),Q(Z‘Y); (ffh fpa fE‘l);

Using Relation Partitioning (RP, for short), every rule has a series of corresponding
states pattern, and each state has a corresponding rewritten rule. The rule v’ has
states pattern 00, 01, 10, and 11. These states have corresponding rules, using state
pattern as suffix, rgg, 75, T, and r{y. In our RP method, 0 stands for A and 1 stands

for A, so these rewritten rules have the following concrete forms:

0t PIXLY) < Ap(X,Y), Aq(Z,Y) (S S [
r{]l : p(/\r'r },) < Ap("\"),)! AQ(Zo Y)v (f(h fps fcr)s
g s (X, Y) & Ap(X, YY), Aq(Z,Y) (fas Jon fer)i

7'11 :P(X,)/) *1 AP(JY, Y)v NI(Z, }/); (fd!fpy f‘tr);

Between the above two groups of rules, we can sec that 1) = 1y, 1% = 7y, 1] = 159Ury,.
The rule level equivalence means that these two groups of rules produce the same
results on the same input set of fact-certainty pairs, we thus have the [ollowing

results, which extends the one in [SZ08].

Theorem 6.3.1. The RP method proposed above produces the same result as the

rewritten rule gencrated from the rule rewriting technique in [SZ0S].

Proof 1. First of all, note that the rewriting technique is not concerned with com-
bination functions in the rule. These functions are used when evaluating the rules.
Therefore, if all the inferences of the original rule are kept by corresponding rewritten

rules, the theorem is proved.

70

The result of the evaluation of a rule ¢an be considered as the multiset-based
extension of the head predicate. This multiset contains results of the joins of body
predicates. For the general rule r above, the rule body can be considered as a sequence

of joins (for convenience, we ignore EDB predicates and the argument list of the
predicates):

TiaToaTs.. . Tha Ty Ty, (1)

Using the rewriting technique [SZ04], expression 1 can be further transformed into:

M ATV T a1y, Do Ty 2 Ty

T ATV AT Ty, 1o T, T,

Pyt ATV ATy AT Ty Ty,

Tmes t ATy RAATo o ATy . AT 2 Ty T,
Ty AT RAAT A ATy - AT, o AT, _ T,
T ATV DAAT DAATy - AT _a AT,y AT,

Tmt - ATI > AT‘J B AT3 A T.m-'z > /\Tm—l < AT,

In R method, the generic rule R has a series of state patterns, and cach state has

a corresponding rewritten rule. The state patterns of R are 00...00, 00...01, ...,

m T
11...11, so the corresponding rewritien rules are r , T R & .
— 00...00:700...01 11...11

m i T

"
For each rule r; in the rule group ry, ..., ryp, we can find an equivalent subset of rules

71

in rule group , T yeeun T .
00...00-700...01 11...11

™ m ™m

Tm+1 =71, 1
N’

"

Tm =T7T1,.. 10

m-1

Tmo1 =71, lox =T1...100YT1... 100
N N e’ e

me2 m-1 m-2

Tm—2=T7] . loxx =T1...1000Y71... Ury. .. Ury oL,
m 1 loxx 1 000 1om 1 loi0 1 lLon

m-3 -3 m-3 -3 m-3

']"i=1‘ i Y
1...16X ... X

i=1 m-—t

m=r Le -
I...1e X ... A

0 m-1

where 1... 10X ... X indicates the state pattern which has ¢ — 1 1 as the prefix, 0 in
-1 ni—1i
the ith position. X means this position could be 1 or 0. 7y 1, v x 1s a multiset

-1 [T

union of all the rules which have 1...10 as prefix.
i-1

The correctness of the theorem follows noting that rule level equivalence implies

the equivalence of two groups of rules, O

If we look at the rewritten rule ry41, we can see that no joins in this rule involve
any new facts. That is, evaluation of this rule is redundant for not contributing to
anything new. If we can identify such rules, redundant computation can be avoided.

That is actuaily the essence of our rule rewriting technique.

6.3.2 Stratification

Stratified evaluation in deductive databases with negation helps select a distinguished

minimal model of Datalog™, in a natural and intuitive way. In that context, we have

72

concerned with correctness and not efficiency. In our work, we observe that a “desired”
stratification could result in the increased efficiency in evaluation of programs with

certainty constraints. The following example illustrates this point.

) p(X,Y)«l— e(X,Y), wt(e(X,Y))>0;(ind, pro, pro).
9! p(X,Y)«:—l— ¢(X,Y),p(X,Y),wt(e(X,Y))>0,wt(p(X,Y))>0;{ind, pro, pro).
ry: XYY p(X,Y),wi(p(X,Y))>0;(, ind, pro, pro).

~
)

Figure 6.4: Stratified program P2

Let {e(1,2) : 0.8} be the EDB. We note that P2 has a stratification with strata:
P! = {ry,r2}, and P? = {r3}, where P2 = P'UP2 Let us first consider evaluation of
P@ in the usual way using the Naive method. The evaluation results at each iteration

are as follows.

I = {p(1,2):0.8,¢(1,2) : 0.8}

I, ={p(1,2):0.928,¢(1,2): 0.8,9(1,2) : 0.8}

I; = {p(1,2) : 0.94848,¢(1,2) : 0.8,q(1,2) : 0.928}

I = {p(1,2) : 0.9517568, (1, 2) : 0.8, g(1,2) : 0.94848)
Is = {p(1,2) : 0.9517568,¢(1,2) : 0.8, g(1,2) : 0.9517568}

Lfp(P) = {p(1,2) : 0.9517568,2(1,2) : 0.8,4¢(1,2) : 0.95175G8}

We can casily sce that the certainty of q(1,2) depends on the certainty of p(1,2). When
the certainty of p(1,2) also improves, the certainty of q{1,2) improves accordingly.
This process repeats until p(1,2) reaches its “best™ possible certainty. At iterations
2, 3, and 4, rule ry is evaluated using the certainties of p(1,2) in Iy, Jp, and Iy,

respectively, which is less than the certainty of p(1,2) in f;. Clearly, the evaluation of

73

rule r3 using these intermediate values of p(1,2) is redundant. If we postpone these
evaluations of r; until p(1,2) reachgs its “best” possible value, we can save time by
avoiding the computation of rule r3 in iterations 2, 3, and 4. This efficiency could
be achieved by evaluating program P2 stratum by stratum. The result of stratified

evaluation is shown as follows. We use I”* to denote the result of evaluating P by

restricting to rules in stratum P*.

IP' = {p(1,2): 0.8,¢(1,2) : 0.8}

1P = {p(1,2): 0.928,e(1,2) : 0.8}

IF' = {p(1,2) : 0.94848,¢(1,2) : 0.8}

1P = {p(1,2) : 0.9517568,¢(1,2) : 0.8}

I7* = {q(1,2) : 0.9517568}

Lfp(Po) = IF' U IF” = {p(1,2) : 0.9517568,€(1,2) : 0.8,q(1,2) : 0.9517568}

We first evaluate stratum P! iteration by iteration until we reach the fixpoint of P!
under certain precision control, explained in section 6.4.4. We then record the result
and apply it as the input for evaluation of the next stratum P2, The least fixpoint of
P2 is the union of the interpretations of each stratum. Through this example, we can
see that stratified evaluation could improve efficiency by avoiding the computation
using an intermediate result. Note that while more iterations may be needed by a
higher strata to compute the final result, more computations using intermediate result

can be avoided by stratified evaluation.

Definition 6.3.1. Let P be an EGIB program. The predicate dependency graph of
P, denoted by pdg(P), is a graph whose vertices are the IDB predicates in P and
forarule H &B,,....B0,Th,. . T, Cri (fa, for fc), where B;s are EDB predicates

74

and T;s are IDB predicates, and there is an edge in pdg(P) from =(T;) to w(H), for

0<i<m.

H & Li {fa, for fo)-

G & H,F,C; (fa. o fo)-
L& G E;{fa [p fe)-

E & Fi{fas for fo)-

D & E, B (fa, for fe)-
F & D,C; {fa, for fo).
B & A; (fa, for fo)-

A ZE Ci{fas for fo-

C & B; {fu, for fo)-

Figure 6.5: Program P3

cl‘ H
\ /
e A

s AR ’\‘
I L A G &
s K 5

J e’ ! - A

; / .

Vd Ay
A
/7 A
SN P e S .
[E . F $Cch
N - —/
- % -
/
L
C
s /s t.
T D »~ ({ B = A

Figure 6.6: Predicate dependency graph of program 3

Definition 6.3.2. A Strongly Connected Component (SCC) of a directed graph
G=(V, E) is a maximal set of vertices C C V/, such that for every pair of vertices u

and v in C, there is a path from u to v, and vice versa.

75

Stratification of a program contains two steps: first, it identifies SCCs in the
predicate dependency graph of the program; second, it identifies the levels between
every two SCCs, and then puts them into different levels accordingly.

We propose the following algorithm for step 1, which is slightly modified from

Tarjan’s algorithm [Tar72].

Algorithm 8 Strongly_Connected_Components
Input: P

// P is the abstract representation of input program with certainty constraints.
Output: SCCs
// SCCs is a vector which contains SCC in the generating order.
construct predicate dependency graph G=pdg(P) from P
perform a depth-first search to compute ending times e[u] for each node.
compute the transpose G7 of G.
call DFS_SCC(GT), but in the main loop of DFS_SCC, consider the nodes
in the order of decreasing efu](as computed in line 2), generate strongly connected
component, and then store them in vector SCCs.

I 3 B s

Algorithm 8 basically includes two graph traversals: first, using a dcpth-first search
method, it traverses all the edges and creates a depth-first spanning forest; sccond, it
performs a depth-first search again and traverses the transpose® of the original graph
based on the descending ending-time marked by the first DFS traversal. Once a so-
called root of a SCC is found, its descendants which are not members of previously
found components are recorded as a member of tnis component.

After running Algorithm 8 on the graph of Figure 6.6, it outputs a stratification
consisting of three SCCs; SCC_1 contains vertices {H, L, G}, SCC 2 contains vertices
{E, F, D}, and SCC.3 contains vertices {C, B, A}.

The final step of our stratification method is to stratify SCCs. The principle of
stratification is to include all dependants of a predicate P in some stratum below the

one which contains P.

1'The transpose of a directed graph G=(V, E) is the graph GT=(V, ET), where ET={(v,u) €
V x V:{u,v) € E). That is, G is G with all its edges reversed.

76

Algorithm 9 Stratify SCC
Input: SCCs
// SCCs is a collection of Strongly Connected Components in the input program
partitioned into strata.
Output: SCCs
// SCCs is a vector which contains SCC in a stratification order
1: YX € SCCs set X.level=0
2: repeat
3 for all X € SCC do
4 X.check=true
5 let z € {ylye Y AY € SCC}
6 if z€ {br:he—byba....b0h € RAh e X fori€{l,...,n}} then
7 Y level=X.level+1
8-
9
0
1

Y .check=false
end if
. end for
: until X.check=true, VX € SCC.

In this algorithm, we initially set the level property of all strata to zero. If a
member X of a SCC depends on a member Y of another SCC, the algorithm then
moves the latter to a higher level. The process repeats until no SCC needs to be relo-
cated. For instance, in Figure 6.6, the level property of SCCs {H, L,G}, {E, F, D},
{C, B, A} are set to zero initially. Since F depends on C, which is a member of
{C, B, A}, the level of {C, B, A} is changed to 1. Similarly, the level of {E,F,D}
is changed to 1 because L depends on E. The SCC {E, F, D} needs to be checked
again because of the change in its level. Since F depends on C, which is a member
of {C, B, A}, the level of {C, B, A} is reset to 2, which is obtained from level of SCC
{E,F, D} plus one. Finally, no SCC needs to be relocated and the stratification is

obtained as follows:

Stratum 2: {C, B, A}
Stratum 1: {E,F,D}

Stratum 0: {H,L,G}

77

Based on predicate stratification, we develop a mapping from predicate to rule
stratification. Therefore, every rule defining predicates C, B or A is mapped to
stratum 2; every rule defining E, F or D is mapped to stratum 1; and every rule

defining H, L, and G is mapped to stratum 0, the lowest level.

6.4 Query Evaluation

There are numerous query processing techniques proposed in standard deductive
databases. The two main approaches of such techniques are: top-down and bottom-
up. In our work, we considered the bottom up, fixpoint evaluation, which derives
“all” possible fact—certainty pairs from the program. This is done through a series of
rule evaluations, each of which involves a series of join operations. We apply a mate-
rialization mechanism to perform these joins. We will discuss this in detail in section
6.4.1. The basic join mechanism used in our current implementation is nested-loops.
During the joins, Argument Constraints are created to provide a matching pattern
to filter out useless facts. Argument Constraints will be discussed in section 6.4.2.
When stratification is used in our work, an input program may be divided into several
strata, and, therefore, we should develop a corresponding stratified evaluation. We
will discuss stratified evaluation in section 6.4.3. The fixpoint evaluation of programs
with uncertainty may not terminate in finite time in general. To compute a desired
model, the user can provide an error threshold for practical reasons. We will discuss

this control mechanism in section 6.4.4.

6.4.1 Materialized Evaluation

The Materialized evaluation executes joins in a rule body as a sequential process. The

join process is divided into several joins, each between two consecutive predicates, and

78

cach is independent and completed before starting the next. A temporary relation
is created to store the result of a join, which is then joined with the next predicate.
The result is stored as another temporary relation. This process is repeated until the
last predicate in the body is joined.

Borrowing the heuristic “push selection in join” used in performing join operation
in relational database, we apply a select operation to the relation corresponding to
the selected predicate. The selected tuples in the relation must not only follow the
predicate Argument Constraint, but also Certainty Constraints of first type related
to the predicate. The selected tuples are a subset of the original relation, called view.
This select operation prunes unsuccessful joins in advance, and, hence, results in in-
creased efficiency. This operation can be incorporated within materialized evaluation

seamlessly.

6.4.2 Argument Constraint

There are two groups of Argument Constraints in our implementation. The first
group is created from an individual predicate, which is used to obtain a subset of
relations corresponding to the predicate, by filtering out the unsatisfiable tuples. The
second group is created between two predicates, which is used to facilitate the join

process. Consider the following rule:
p(X,Y) & q(X,1,Y),8(Y, Z, Z),Cy; (maz, pro, min).

Suppose EDB={p(2,1,3) : 0.5,p(2,2,3) : 0.5,5(3,5,5) : 0.5,(4,5,5) : 0.5,5(3,5,6) :
0.5}. Executing the join manually, we note that q(2,2,3): 0.5 will not participate in
any successful join; only those tuples in relation g that have value “1" as the second

argument are considered as candidates for the join. The so-called constant constraint

79

for q is that the value of its second argument must be 1.

In addition to constant constraint, there is another Argument Constraint in the
first group, which is referred to as equality constraint. I{ is also clear that the fact
5(3,5,6):0.5 never participates in a successful join, since its sccond and third arguments
are different. This kind of fact also needs to be excluded from the join process. The
equality constraint that requires the second and the third argument to be equal can
filter out useless tuples. Like constant constraint, only a subset of relation “s” in
which the tuples satisfy the equality constraint may be fruitful to keep.

The second group of Argument Constraint, to which we refer as cormmon argument
constraint, needs to be considered during the join process. As shown in the above
example, the third argument Y of predicate q and the first argument Y of predicate
s are the same. We thus create a cornmon argument constraint for predicate q and
s, based on the common argument Y. It means that the value of argument Y in
predicates q and s need to be equal in order to have a successful join. Let us consider
a mechanism to perform a join. To complete a join of two relations, all tuples on
the left-hand-side need to be scanned one by one [HGMWO02]. If a tuple ¢ from the
relation on the left is selected, then the common argument(s) would be bound by
some value. Using this, all the tuples in the other subgoal are examined. Only the

tuples that have the same bound arguments will be joined with tuple ¢.

6.4.3 Stratified Evaluation

Stratification partitions an input program into several strata, which should be evalu-
ated stratum-by-stratum, from the highest stratum to the lowest. During the eval-
uation, each stratum is considered as an independent sub-program. Since the 1DB
predicates in the higher strata will not change when evaluating lower strata, such

IDB predicates can be considered as EDB for some lower strata.

80

This stratified evaluation improves efficiency by avoiding computations of using
intermediate certainty and by considering all the 1DB predicates in higher strata as
EDB for the lower strata. However, there are some restrictions on when stratifica-
tion can be applied. When all the following three conditions hold, the stratification

technique of an EGIB program may go wrong.

1. Data contains cycle.
2. Recursive predicates (direct recursive or indirect recursive)

3. Type 2 or 3 disjunctive function associated with 1IDB predicates.

Program P satisfies the second and third conditions. When there is a cycle in
the EDB, the stratified cvaluation may go wrong. Program ;3 is a stratification
of P;3. Both programs have the following EDB: {a(1,2) : 0.5,a(2,1) : 0.5,a(1,1) :
0.5,q(1) : 1.0}. Under precision control set to 10=%, if we use the Naive method to

cvaluate these two programs, we get Lwo different results:

Lip(Ps2) ={p(1,2) : 0.314746, p(1,1) : 0.3413093, (2, 2) : 003888607,
p(2,1) : 0.1623307, ¢(1) : 1.0, ¢(2) : 0.5}
Up(Psa) ={p(1,2) : 0.314746, p(1, 1) : 0.34158635, p(2, 2) : 0.03888607,

p(2,1): 0.16175783,¢(1) : 1.0,4(2) : 0.5}

p(X,Y)¥2q(X), a(X,Y), wt(q(X))>0, wt(a(X,Y))>0;(ind, pro, pro).
q(Z)2q(X), a(X,Z), wt(a(X)}>0, wt(a(X,2))>0; (ind, pro, pro).
p(X,Y)3q(X), a(X,Z), p(Z,Y)}, wt(q(X))>0, wi(a(X,Z))>0, wt(p(Z,Y))>0;(ind, pro, pro).

Figure 6.7: Program P52

81

Level O
p(X,Y)Eﬁq(X), a(X,Y), wi(q(X))>0, wit(a(X,Y))>0;{ind, pro, pro).

p(X,Y)Eq(X), a(X,2), p(Z,Y), wt(q(X))>0, wt(a(X,2))>0, wit(p(Z,Y)})>0;{ind, pro, pro).
Level 1

q(Z)l'—gq(X), a(X,Z), wi{q{X))>0, wt(a(X,2))>0; {ind, pro, pro).

Figure 6.8: Program I3

Practically, if any of these above conditions is violated, then the stratification
technique can be applied. For condition 2 or 3, deciding whether there is a violation
is casy, but for condition 1, it may be expensive to determine if the data is cyclic,
especially when the EDB is large. Furthermore, when the arity of a predicate is larger
than 2, the definition of cycle in the data may become unclear, which makes deciding,

whether the data is cyclic even more difficult.

6.4.4 Precision Control

Evaluation of some EGIB programs may terminate only at w. This may happen
when the disjunction function associated with a recursive predicate is type 2 or type
3. The result returned by such disjunction functions is often “better” than its input
arguments {LS01a], and a “better” certainty for a fact contributes to a derivation with
better certainty. The underlying fixpoint operator is also monotone and continuous
[LS01a]. This makes the least fixpoint of the program achieved most at w. Bvaluations
of programs often terminate due to the finite precision of computer memory. We need
alternative fixpoint evaluations to obtain an approximation of least fixpaint model,
Therefore, we introduce the notion “precision control™. This control essentially takes
advantage of the coutinuity property of a fixpoint operator to reach the fixpoint.
A certainty precision, represented as precision, is specified by the user. In other

words, a certainly precision is also the maximum error range that can be tolerated.

82

For example, precision=10"3. At each iteration, Our system checks whether the
amount of certainty improved is greater than the user-specified precision. If so, it is
considered as a new fact, and the evaluation continues to the next iteration; otherwise,

the evaluation terminates, since we have already computed an approximate model.

83

Chapter 7

Experiments and Results

In order to measure the performance of the query processing techniques for dealing
with constraints developed in our work, a number of experiments have been conducted
under different EGIB programs. The evaluation time has been measured as the main
paramcter of performance. In our experiments, the following techniques for certainty

constraints are implemented and cevaluated:

Extended Naive (EN): an extended multisei-based Naive evaluation iechnique,
which extends mudtiset-based Naive cvaluation proposed in [SZ04] to handle

certainty constraints.

o Extended Semi-Naive (ESN): an extended multiset-based Semi-Naive evaluation
technique by avoiding evaluation of rules that do not include subgoals with

improved certainty.

e Extended Semi--Naive with Partition (ESNP): the Extended multisel-based Semi-
Naive evaluation technique is further improved by partitioning the IDB subgoal

into “improved” and “non-improved” parts to avoid redundant computation.

e Stratification: This technique partitions the input program into strata, and

81

evaluates them stratum by stratum. This technique is applied together with

ESN or ESNP, thus called as ESN+S or ESNP+4S.

7.1 Experiment Environment

For our experiments, we used Java running time cnvironment {JRE} 1.5.0 installed
on a regular Dell desktop computer with Pentium 4 CPU of 2.4GHz, 3.25G RAM,

189G hard disk, and runs under Windows XP professional 2003.

7.2 Test Programs and Benchmarks

Recursion is an attractive feature and power of standard logic program and deductive
databases, and our system prototype inherits this feature. There are {wo kinds of
recursions: lincar and non-linear. In a linear recursion, the head predicate appears
at most once in the body. In case there are more than one such subgoals, it is then
called non-linear recursion.

Figure 7.1 is an example of a lincar recursive program used in our experiments
program. Program FP1 compute the same-generation cousin (SGC) with uncertainty,
which has been widely used for evaluating query optimization techniques in standard
deductive databases [BR8G, DMP93, 3§592, RSS90]. It defines the pairs of individ-
uals which are in the same level of a family tree il their parents are in the same level.

In 1, “person” and “par” are EDB predicates, and “sge” is an 1DB predicate.

ri: 5ge(X,N) < person(X), wt{person(X))> 0,
wt(person(X))= wi(person (X)) {(far [on fe)-

ra: sqe(N, Y= par(Z,X), sgc(Z,W), par(W,Y),wi(par(Z,X))>0,
wi(sge(Z,W)) 2 wifsyc(Z,W)); {fa, [ps o)

. {Relevant facts }

Figure 7.1: Linear SGC program F1 with uncertainty

Figure 7.2 shows an example of a nonlinear recursive program used in our experi-
ments. This program P2 is slightly different from the SGC P1. Notice that program
P2 cannot find all same generation pairs unless a specific path is satisfied in the sec-
ond rule. This program was chosen in our performance evaluation because the second
rule includes a long chain of EDB and 1DB predicates in the body. In P2, “up”,

“flat”, and “down” are EDDB predicates, and “sgc™ is an IDB predicate.

ri: s9e(X,Y) & flat(X,Y), wi(flat(X,Y)) > 0:(fa, fur fe)-

ra: sgc(X,Y) & up(X,21), sge(21,22), flat(22,23), syc(Z8,24), doun(Z4,Y),
wt(up(X, Z1)) > 0, wt(flat(Z2,23)) > 0, wi{down(Z4,Y)) > 0,
wt(s9e(Z21,22)) > wit(sgc(Z1,Z22)) {(fa, fps fe}-

... {Relevant facts }

Figure 7.2: A Non-linear example of the SGC program P2

Each of the above two programs 1 and P2 has two rules. To evaluate the per-
formance of the stratification technique, we define a Nx1 structure which represents
a SGC program holding N sets of rules. A Nx1 SGC program has N sets of rules.
Each set Ry, where 1 <4 < N, contains two rules. If i = 1, Ry includes rules r!
and 73! shown in Figure 7.1 and Figure 7.2. If 1 < i < N, R;; also includes two rules:
ril and a new rule below, denoted as 73

7y 1 89 (X, Y) &= sgeu_in (X, Y); (nax, min, min).

For example, a 2x1 EGIB program for P1 is shown in Figure 7.3, denoted as
“Plox,”. In the graph, the program includes 4 rules divided into two sets and cach
set contains 2 rules. In the evaluation, sges; cannot be derived until sgeyy is prepared.
We apply the combination functions “(rmax,min, min}" in ry in order to initialize the

certainty of sgey to 0.5 at the start point.

R.,

8L (X VY= sge, (XY LC, < max. min, min >

s, (LYY 62 par(X . 2) swe, (ZW), party W).C,.<ind, pro, pro>

"

il

AL UL Y e persor(XN). C, < ind | pro, pro >

A, (X) E— part 2. X)), see, (20, par(W 1) C o< ind, pro, pro >

Figure 7.3: A 2x1 structured program P1
7.3 Test Data Selection and Generation

A number of EDI3 data sets have been widely used to measure the efliciency of query
processing and optimization techniques for standard deductive database [RSS94,
DMP93, BRSG, KNSSS90]. We adopt these data sets in our context of deductive
databases with certainty constraints and develop program modules to generate suit-
able large test data sets with uncertainty. In total, we use 7 data sets in our experi-
ments, described as {ollows.

(1) An @ Figure 7.4 shows the structure of the data set A,,. 1t looks like a triangle
constructed by layers of nodes. As the munber of layers increases, the size of bottom
layer increases. There is at most one matched path from a node to its same generation
node. That is, il there is an inference for an answer Tuple, there is at most one match.
To find a same generation node at level i, the derivation process goes up to the top-

level layer and then down to layer i. The more layers we have, the more computation

87

is required to find the match.

x
/ﬂat\/_\ i
[\ "‘"ﬂat--’?“'\-'ﬂ\ l

down up down up

/-—f‘at—-‘_ flat. — ,}//‘ﬂat —~ |:|

-
l/(v’*‘—ﬂat—”\-f \‘--ﬂat Vh\“-ﬂat “-—*5

down op down up down UP down up

At flat— L —flat \ flat flat
ﬂat/mﬂat_.«? \4:)”/ \x / r\; X

--‘_ — e AN
/ flat—"7 [t flat / flat- /

down up down up down up down up down up down up

Vo ! \
—/ Y\/ Y \10’ < J iof/
Figure 7.4: Data set A,

(2) B, : Figure 7.5 shows the structure of the data set B,. It is constructed by n
layers of nodes. Each layer has 8 nodes, which are connected by a double linked list.
There are four edges connecting a lower layer and its immediate higher layer. Edges

in column 1 and 5 are upward nd those in columns 4 and 8 are downward.

flat

> O 0 DO O oo O
5 idown

0000000{2

Figure 7.5: Data set B,

(3) C, : Figure 7.6 shows the structure of the data set C,, which is very similar
to the data set B,. It has n layers, each of which is a single linked list of 8 nodes.
Each node in C, has a bi-directional edge connecting to the corresponding node in

the immediate higher layer. Even though all nodes have an edge connecting the

88

corresponding node in higher lavers, the number of derivations of P2 using the data
set C, may be less, compared to B;,. There exists no derivation from a node on the

right to a node on the left since the flat edge are single directional.

fat

S 0 D D O D

«Cr

Figure 7.6: Data set C,

(4) F, : Figure 7.7 shows the structure of the data set F3;, which is a variant of
Ch. Unlike Cy, the length of each layer and the number of layers in F, are flexible
and equal. This structure makes F;, a square shape. Each node in the lowest layer
has an extra edge to the corresponding node at each higher layer. The number of

query answers increases when n increases.

fiat

QR *?
KRR
RO

cb
1
Figure 7.7: Data set F,

(5) S, : Figure 7.8 shows the structure of the data set Sy. 1t includes n upward

linked lists and n downward linked lists. There is only one link between two nearest

89

linked lists. It is easy to see that there is only one path from node I to its corre-

sponding same generation node 2n. The derivation proceeds recursively from top to

bottom.

"? Q ¢ < 0 °© ¢
@ 9 + 9 ¢ & &m0 9
s . ;

S o— ¢ ? 5 4 0 o
X ! b4 b4 '

>0 o 6 o O S b
wl 1 . .
o o o & & & o

1 2 n e 2

Figure 7.8: Data set S,

(6) Thn @ Figure 7.9 shows the structure of the data set T}, . 1t is an m-ary tree
of height n with m children per node. Figure 7.9 is an example of Ta3. When the
height n increases by 1, the total number of edges in the trees increases by 3m"~1.

That is, the data set grows exponentially in the height.

Figure 7.9: Data set T}

(7) Upnm : Figure 7.10 shows the structure of the data set U, . which is a variant

of C,. It has n layers and each layer has m nodes. Each layer is linked by a cycle list.

90

There are more connections between two nearest layers than C,. From Figure 7.10,
we can see that each node has two bi-directional edges to nodes at its immediate
higher layer. The number of derivations in a given program increases larger since the

paths between two same generations nodes increase.

%

ool

P

o=
| L]

@j
™

Figure 7.10: Data sct U,

i)
b?" > us.d =
5 AT
=3
]
¥
L4
i

?

R
81 ,éq_rﬁags'- - ':-.5

. ¥
flat

- BB
£

3

7.4 CC-checker Performance Evaluation

To measure the overhead of adding CC-Checker to the Naive algorithm. we imple-
mented Naive algorithm in [SZ04] and compared its performance with our Extended-
Naive (EN) algorithm. If we remove the certainty constraints from P1 and P2, they
become P1' and P2, respectively. We ran P1, P2, P1', and P2 on the data sets
introduced in previous section 7.3. The execution time is used as the performance
parameter. These evaluation results will be reported in this section. Column “Data
set” in each result table denotes the type of data set used. Column “Iterations” gives
the number of iterations needed to reach the fixpoint. Column “Output” shows the
number of answer tuples found for the query. Columns “EN" and “N" correspond to
the execution time (in seconds) when using Extend-Naive algoritl.im and Naive algo-

rithm, respectively. The ratio (EN-N)/N of execution time indicates the overhead of

91

execution time, shown as “overhead ratio” in the last column of each result table.

Data set | Iterations | Input | Output | EN N overhead ratio
Ag T 342 793 1.547 | 1.485 | 4.18%
A 7 420 1024 29219 | 2.141 | 3.64%
Ay 7 506 1294 3.406 | 3.312 | 2.84%
Aj T 600 1607 5.004 | 4.984 | 2.21%
A 8 702 1965 9.106 | 9.188 | 2.37%

Table 7.1: CC-Checker overhead evaluation: running P1 and P1" on A,

—

e

Times in second
o - N I oh m -~ 0 o
1

342 420 506 600 702

Input Tuples

Figure 7.11: CC-Checker overhead evaluation: running P1 and Pl on A,

Table 7.1 and Figure 7.11 show the experiment results of running P1 and PY
on different size of data set A,. The certainty assigned to each EDB fact is 0.5.
The disjunction function is ind, and propagation and conjunction functions are pro
(the product). The results indicate a range of overhead from 2.21% to 4.18%. As
expected, the overhead of adding CC-Checker to Naive algorithm is not large, and in
fact, reasonable. Table 7.1 also shows that as the size of input data set A, increases,

the number of derived facts increases as well.

92

Data set | Iterations | Input | Output | EN N overhead ratio
Us.a0 4 210 560 0.719 | 0.703 | 2.28%
Uzo,10 4 460 1310 2.006 | 2.781 § 4.49%
Uiz.10 4 560 1610 4.0 3.828 | 4.49%
Uss.ao 4 710 2060 5.875 | 5.641 | 4.15%
Uso.10 4 960 2810 9.67119.375 | 3.16%

Table 7.2: CC-Checker overhead evaluation: running Pl and P1" on Upm

12 4

16 4

Times in secontl
o

210 450 580 70 960
inxit Tuples

Figure 7.12: CC-Checker overhead cvaluation: running 1 and Pl on U, .

Table 7.2 and Figure 7.12 show the experiment result of running P1 and P1" on
data set U,,,. The certainty assigned to each EDB fact is 0.5. The combination
functions used are (ind, pro,pro). As indicated in the table, the ranges from 2.287%
to 4.49%. Generally speaking, the overhead ratio decreases as the input data set
increasces.

We ran P1 and P1', P2 and P2 on the data scts proposed in section 7.3. Each
data set has 5 test cases with different sizes. The result is reported in Table 7.3,

in which we only show data sets and corresponding overhead ratio observed. We

93

Data set | overhead ratio || Data sct | overhead ratio
Cs 6.90% Tis 6.82%
CIG 1 08% T32 488%
Css 5.39% Ter 5.92%
Ces 4.14% T8 5.18%
Clgs 224% 'Fgﬁs 3.95%
S3o 6.67% Us 10 2.28%
Ses 6.85% Uvo.10 4.49%
S12s 6.28% Uhs 1o 4.49%
Soss 5.44% Uss,10 4.15%
8512 2.93% Ugo.m 3.16%
Fs 6.78% Fao 4.8™%
Fig 4.43% Fé4 3.68%
F3e 3.67%

Table 7.3: CC-Checker overhead evaluation

note that all the test cases yield more or less similar overhead for dealing with CC-
Checker in Naive algorithm, in despite of data size. The results in this table show
that the overhead of adding CC-Checker is acceptable, and the Naive algorithm is
still scalable with addition of CC-Checker. Furthermore, we observe that the larger
the set of derived facts generated, the less overhead we have for handling certainty
constraints. The evaluation of EN algorithm require more time than Naive algorithm

for all types of data sets.

7.5 EN, ESN and ESNP Performance Evaluation

A main component in this research is the performance evaluation of our extended
algorithms of ESN and ESNP for logic programs with certainty constraints. We
designed and implemented these algorithms in our system prototype, and conducted
numerous experiments by running P1 and P2 on various data sets of different size
introduced earlier in this section. As a benchmark as well as basis for correctness, we

also evaluated EN algorithm using the same test cases. To evaluate the CC-Checker,

94

the execution time is used as the performance measure again. The table structure
and discussion is the same as discussed in section 7.4. In addition, we add three
more columns. Column “ESNP" corresponds io the execution time when using the
ESNP algorithm. The time ratios EN/ESN and EN/ESNP of execution time are
indicated in Column “Speed-Up (EN/ESNY” and Column “Speed-Up (EN/ESNP)”,

respectively.
Data set | Iterations | Qutput | EN ESN | ESNP | Speed-Up | Speed-Up
(EN/ESN) | (ESN/ESNP)
Ag 7 451 1.578 | 1.422 | 0.75 1.11 2.10
Ao 7 604 2.265 | 2.187 | 1.156 | 1.04 1.96
An 7 788 3.547 1 3.391 { 1.719 | 1.05 2.06
Aa 7 1007 5.272 | 5,125 | 2.547 | 1.03 2.03
A 8 1263 9753) 9.5 4.172 11.03 2.28

Table 7.4: ESN and ESNP performance: running I’1 on A,

12'|

Times ie second

342 420 506 600 702
nput Tugies

Figure 7.13: ESN and ESNP performance: running 1 on A,

95

The experimental result of running P1 on data set A, is shown in Table 7.4 and
Figure 7.13. The ESN algorithm is 5% faster than EN algorithm. We ran programs
P1 and P2 on the data sets described in section 7.3, and used five test cases in each
data set. These results are shown on Table 7.5 in a compact form, which only shows
data sets name, speed—-up of ESN over EN, and specd-up of ESNP over ESN. As can
be scen from this table, the speed-up achieved by ESN over EN ranges from 1.01 to
2.66, and the speed-up achieved by ESNP over ESN ranges from 1.02 to 3.13.

From these experimental results, we find that the efficiency improvement of ESN

over EN is not significant, since il only avoids the computation of rule:

sge{ X, X) <2 person(X), wt(person(X)) > 0,

wi{person(X)) > wi{person(X)); {fa, fps fc)

but the time spent on the computation of this rule takes only a small fraction of
the total computation, so the exccution time of ESN and EN are very close to cach
other. The efficiency however, is further improved by ESNP. The speed~up achieved
by ESNP over ESN is about 2.65. We also observe that the speeds-up of ESN over
EN, and ESNP over ESN may be different under difierent test cases. ESNP results
in greater efficiency compared to both EN and ESN for most test cascs. We remark
that the trends of ESN over EN, and ESNP over ESN are very similar to trends of
SN over N and SNP over SN, as reported in [SZ04].

7.6 Stratification Performance Evaluation

Another objective of this research was to evaluate the performance of our stratification
technique. For this, we use structured programs 1) to test the various data sets

introduced earlier. First, we remark that the stratification technique needs to be

96

Test case | Speed-Up Speed-Up Input Tuples
(ESN/EN) | (ESNP/ESN)
DBy 2.66 1.47 140
By 0.99 1.21 284
By, 1.12 1.23 572
B, 1.08 1.30 1148
Bioy 1.04 1.30 2300
Cy 1.00 1.94 168
Cis 1.06 1.41 352
Cas 1.05 1.24 720
Cos 1.00 1.14 1456
Cras 1.03 1.18 2928
F 1.24 1.02 224
Fig 1.01 1.27 960
Fay 1.04 1.57 3968
Fao 1.05 217 6240
Fea 1.09 1.43 16128
San 1.52 1.00 1567
Se4 1.16 1.21 6207
Shag 1.12 1.03 24703
S1o8 1.12 1.03 24703
Sose 1.13 0.98 98559
Us.10 0.09 1.12 210
UlO,lO 1.00 1.06 460
Uiz,10 1.00 1.07 560
Uisao 1.03 1.10 710
Uass 10 1.00 1.06 360
T 1.00 3.13 Gl
Ty 1.14 2.44 125
Tes 1.01 2.49 253
Tios 1.07 2.86 309
Tosg 1.02 2.35 1021

Table 7.5: ESN and ESNP performance evaluation

97

used in conjunction with ESN or ESNP. We used the EN algorithm as a basis for

correctness benchmark. The execution time is used as the performance parameter.

Data set | Iterations | Qutput | EN ESN | ESNP | Speed-Up | Speed-Up
+S +S (E.S{;I\}r’is (ESEIT’-»S

Ag 7 451 1.562 | 1.406 | 0.766 { 1.11 2.04

Ay 8 902 3.203 2328 | 1.484 | 1.38 2,16

Ag 9 1353 5375 {2641} 1813 |2.04 2.96

Ag 10 1804 7.735 2922|2172 | 2.65 3.56

Ag 11 2255 10.641 | 3.234 | 2.5 3.29 4.206

Table 7.6: ESN and ESNP with Partition performance: running P1,,, on Ag

12
10
—A—EN

- =)= —ESN+S
= ESNP+S

Timesin second
=]

Figure 7.14: Stratification performance: running P1;x, on As

Table 7.6 and Figure 7.14 show the experiments result of running programs P1;x,
on the data set Ag. The speed-up of ESN with stratification over EN ranges from 1.11
to 3.29, and the speed-up of ESNP with stratification over EN ranges {rom 2.04 to
4.26. We find that the speed-up increases when the number of strata of the programs

increases, as expected by our analysis results.

98

Test case | Speed-Up Speed-Up “ Test case | Speed-Up Speed-Up
(EN/ESN+S) | (EN/ESNP+S) (EN/ESN+S) | (EN/ESNP+S)
Bgs 1.03 1.30 Se4 1.00 1.26
Bga 1.41 1.60 Sea 1.71 1.71
B,y 2.02 2.26 Ses 2.13 2.00
Bg,y 2.59 2.82 u Sea 2.7 2.60
By 3.13 ' 3.24 Sea 3.17 3.17
Cea 1.01 1.18 Tis 1.32 2.00
Cées 1.72 1.91 Sea 1.38 2.21
Cea 2.34 2.61 Sea 1.28 2.25
Cea 2.92 3.09 Sea 1.77 2.46
Ce 3.47 3.63 Se4 2.13 3.41
Fig 1.01 1.31 Us.10 0.94 1.06
Fig 1.32 2.06 Us 1o 1.08 1.21
Fig 1.90 2.54 Uso 1.57 1.72
F]ﬁ 2.48 3.25 UE,]O 2.05 2.23
Fig 2.96 3.67 Us.o 2.56 2.73

Table 7.7: Stratification performance evaluation

We ran thesc set of programs with strata from 1 to 5 on data sets Bgs, Cos, Fie,
and Ty4, respectively. The results are shown in Table 7.7. The speed-up of ESN
with stratification over EN ranges from 1 to 3.47, and the speed-up of ESNP with
stratification over EN ranges from 1.06 to 3.67. The ESNP with stratification perform
better than ESN with stratification in every case. The cfficiency improvement is more
visible when the number of strata is large.

These experiments showed that our implementation of query processing tech-
niques, which deal with the presence of certainty constraints in the rule body, are
correct and reasonably efficient. What is also important to note is that the algorithm
proposed and implemented provide a uniform environment to evaluate and cxperi-
ment with logic programs and deductive databases of AB and IB approach at the
same time. This uniform evaluation mechanism is useful towards developing tools for

uncertainty reasoning.

99

Chapter 8

Conclusion and Future Research

In order to be able to handle real-life applications, it is essential not only to model
and reason with uncertainty, but also do this efficiently with massive amounts of data
[SSU91]. The goal of this research was to develop query processing and optimization
techniques for dealing with certainty constraints. In this chapter, the work done
towards this goal and the contributions of the thesis is summarized. We also provide
possible directions to explore.

To reach our goal, we studied the Certainty Constraints as a key concept in-
troduced in [Shi05], which relates the IB and AB approaches to uncertainty. The
Parametric Framework [LS96, LS01b}, which unifies and generalizes the existing 1B
frameworks to uncertainty in logic programming and deductive databases. With
the presence of Certainty Constraints in the rule bodies, the Multiset-based Naive,
Multisct-based Semi-Naive and Multiset-based Semi-Naive with Partition algorithms
need to be extended accordingly to handle certainty constraints. Motivated by this,
we developed these extended cvaluation schemes with support for checking certainty
constraints.

We also proposed stratified evaluation in our context, which originates from Datalog™

100

to further improve query processing, by avoiding computation of intermediate cer-
tainties for some classes of programs. A desired stratification algorithm is defined for
stratified programs which proceeds stratum-by stratum to compute the least fixpoint.

In addition to efficient evaluation of programs, we also studied and developed
transformation modules beﬁween the EGIB and the EGAB frameworks, based on
the study in [Shi05] which established equivalence of the two approaches in terms of
expressive power when certainty constraints are allowed in both frameworks. Through
this transformation, an EGAB program can be transformed into an equivalent EGIB
program, and vice versa, which is then evaluated by our system cfficiently.

To study the performance of our system, we designed and implemented extended
fixpoint algorithms which handles certainty constraints. A number of experiments
have been conducted to measure the benefits of the proposed techniques. Our ex-
periments and results show that the overhead of adding CC-Checker to evaluation
algorithms is reasonable. The extended algorithm ESNP results in greater efficiency
compared to both extended Naive (EN) and semi-naive (ESN) for most test cases,
and does not perform worse than ESN in any case. The scalability of ESN and ESNP
to larger data sets arc promising in our results. The efficiency has been further im-
proved for some classes of programs by applying stratification technique with ESN or
ESNP methods.

Our system currently supports in-memory data and runs in a stand-alone mode.
We plan to extend it to support disk-resident data. Much of the design effort should
focus on buffer management.

Another research direction of the query optimization is to bring in “Magic set”
rewriting technique into the EGIB framework. In [HuaO8], “Magic set” rewriting

technique was incorporated within an implementation of the parametric framework,

101

which results in great efficiency improvement, obtained by extending from the stan-
dard case. To further bring “Magic set” rewriting into EGIB framework, we need to

pay more attention to the certainty constraints when rewrite the rules.

Bibliography

[ABWSS]

[Bang6]

[BRS6]

(CGLS6)

[CGT89]

[CGT90]

K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative
knowledge. pages 89-148, 1988.

Francois Bancilhon. Naive evaluation of recursively defined relations.

pages 165-178, 1986.

Francois Bancilhon and Raghu Ramakrishnan. An amateur’s introduc-
tion to recursive query processing strategies. SIGAMOD Rec., 15(2):16-52,

1986.

Stefano Ceri, Georg Gottlob, and Luigi Lavazza. Translation and opti-
mization of logic queries: The algebraic approach. In VLDB ’'86: Pro-
ceedings of the 12th International Conference on Very Large Data Bases,

pages 393--102, San Francisco, CA, USA, 1986. Morgan Kaufmann Pub-

lishers Inc.

S. Ceri, G. Gottlob, and L. Tanca. What you always wasited 10 kmow
about datalog (and never dared to ask). IEEE Transact:.ns on Kngt’

edge and Data Engineering, 1(1):146-166, 1989.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic programming and

databases. Springer-Verlag New York, Inc., New York, NY, USA, 1990.

103

[Dep]

[DLPY1]

[DMP93]

[ea03]

[Fit88]

[Fit91]

[GKTO1]

[HGMWO2]

{Hua08]

[KL8S]

Peter Sestoft Department. Grammars and parsing with java.

Didier Dubois, Jérome Lang, and Henri Prade. Towards possibilistic

logic programming. In ICLP, pages 581-595, 1991.

Marcia A. Derr, Shinichi Morishita, and Geoffrey Phipps. Design and
implementation of the glue-nail database system. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data,
pages 147-156, Washington, D.C., USA, 1993.

Serge Abiteboul et al. The lowell database research self-assessment. Com-

mun. ACM, 48(5):111-118, 2005.

Melvin Fitting. Logic programming on a topological bilattice. Funda-

mentel Information, 11:209-218, 1988.

Melvin Fitting. Bilattices and the semantics of logic programming. Jour-

nal of Logic Programming, 11(1&2):91-116, 1991.

Ulrich Guntzer, Werner Kiesling, and Helmut Thone. New directions for
uncertainty reasoning in deductive databases. In SIGMOD Conference,

pages 178-187, 1991.

Jeff Ullman Hector Garcia-Molina and Jennifer Widom. Database Sys-

tems: The Complete Book. Prentice Hall, 2002.

Qiong Huang. Extending magic sets techniques to deductive databases

with uncertainty. Master’s thesis, Montreal, QC, Canada, 2008.

M. Kifer and A. Li. On the semantics of rule-based expert systems with
uncertainty. In Lecture notes in computer science on ICDT 88, pages

102-117, New York, NY, USA, 1988. Springer-Verlag New York, Inc.

104

[KNSSS90] Juhani Kuittinen, Otto Nurmi. Seppo Sippu, and Eljas Soisalon-

[KS92)

[LL96)

[L1087]

[LS94a]

[LS94b]

[LS96]

Soininen. Efficient implementation of loops in bottom-up evaluation
of logic queries. In VLDB '90: Proceedings of the 16th International
Conference on Very Large Data Bases, pages 372-379, 1990.

Michael Kifer and V. S. Subrahmanian. Theory of generalized annotated
logic programming and its applications. J. Log. Program., 12(4):335-367,
1992,

Sonia M Leach and James J Lu. Query processing in annotated logic
programming: Theory and implementation. Journal of Intelligent Infor-

mation Systems, 6(1):33-58, 1996.

J. W. Lloyd. Foundations of logic programming; (2nd ertended ed.).
Springer-Verlag New York, Inc., New York, NY, USA, 1987.

Laks V. S. Lakshmanan and Fercidoon Sadri. Modeling uncertainty in
deductive databases. In D. Karagiannis, editor, Proc. Int. Conf. on
Database and Expert Systems Applications, DEXA’94, Athens, Greece,
volume 856, pages 724-733, 1994.

Laks V. S. Lakshmanan and Fereidoon Sadri. Probabilistic deductive

databases. In Symposium on Logic Programming, pages 254-2068, 1994.

Laks V. S. Lakshmanan and Nematollaah Shiri. A parametric approach
to deductive databases with uncertainty. In LID '96: Proceedings of the

International Workshop on Logic in Databases, pages 61-81, London,

UK, 1996. Springer-Verlag.

105

[LS01a)

[LSO1b)

[NS92]

[NS93]

[RSS90]

[RSS92]

[RSS94]

(RSSS94]

Laks V. S. Lakshmanan and Nematollaah Shiri. A parametric approach
to deductive databases with uncertainty. JEEFE Transactions on Know!-

edge and Data Engineering, 13(4):554-570, 2001.

Laks V. S. Lakshmanan and Nematollaah Shiri. A parametric approach
to deductive databases with uncertainty. /EEE Transactions on Knowl-

edge and Data Engineering, 13(4):554-570, 2001.

Raymond T. Ng and V. S. Subrahmanian. Probabilistic logic program-
ming. Information and Computation, 101(2):150-201, 1992.

Raymond T. Ng and V. S. Subrahmanian. A semantical framework
for supporting subjective and conditional probabilities in deductive

databases. J. Autom. Reasoning, 10(2):191-235, 1993.

R. Ramakrishnan, D. Srivastava, and S. Sudarskan. Rule ordering in
bottom-up fixpoint evaluation of logic programs. In Proceedings of the
16th Conference on Very Large Databases, Morgan Kaufman pubs. (Los
Altos CA), Brisbane, 1990.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Efficient bottom-up

evaluation of logic programs, 1992.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Rule ordering in
bottom-up fixpoint evaluation of logic programs. JEEE Trans. on Knowl.

and Data Eng., 6(4):501-517, 1994.

Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, and Praveen
Seshadri. The CORAL deductive system. VLDB Journal: Very Large
Data Bases, 3(2):161-210, 1994.

106

[Sha00]

(Shi03]

[SSU91]

[SSW94]

[Sub87]

[SV97]

[S204]

Cliffiord A. Shaffer. A Practical Introduction te Data Structures and
Algorithm Analysis. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2000.

Nematollaah Shiri. Expressive power of logic frameworks with certainty
constraints. In 78th Int'l FLAIRS Conference, Special Track on Uncer-

tainty Reasoning, pages 759-765, Florida, USA, 2005.

Avi Silberschatz, Michael Stonebraker, and Jeff Ullman. Database sys-

tems: achicvements and opportunities. Commun. ACM, 34(10):110-120,
1991.

Konstantinos F. Sagonas, Terrance Swift, and David Scott Warren. Xsb
as an efficient deductive database engine. In Proceedings of the 199/
ACM SIGMOD International Conference on Management of Data, pages
442-453, Minneapolis, Minnesota, USA, 1994. ACM Press.

V. S. Subrahmanian. On the semantics of quantitative logic programs.

In SLP, pages 173-182, 1987.

Nematollaah Shiri-Varnaamkhaasti. Towards a generalized theory of de-
ductive databases with uncertainty. PhD thesis, Montreal, P.Q., Canada,

Canada, 1997.

Nematollaah Shiri and Zhi Hong Zheng. Challenges in fixpoint com-
putation with multisets. In In Proc. 3rd Int’l Symp. Foundations of
Information and Knowledge Systems (FolKS), pages 273-290, Vienna,
Austria, 2004.

107

{SZ08] Nematollaah Shiri and ZhiHong Zheng. Optimizing fixpoint evaluation
of logic programs with uncertainty. In Proc. 13 CSI Int’l Comp. Conf.
(CSICC), Kish, Iran, 2008.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Compulting, 1(2):146-160, 1972.

[U1189] Jeffrey D. Uliman. Principles of Database and Knowledge-Base Systems,

Volume I. Computer Science Press, 1989.

[VEB6a)] Maarten H. van Emnden. Quantitative deduction and its fixpoint theory.

Journal of Logic Programming, 3(1):37-53, 1986.

[VESGD] Maarten H. van Emden. Quantitative deduction and its fixpoint theory.

J. Log. Program., 3(1):37-53, 1986.

108

