
NOTE TO USERS

This reproduction is the best copy available.

UMI'

A Multi-Matching Technique for Combining Similarity Measures in Ontology

Integration

Ahmed Khalifa Alasoud

A Thesis

In the department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy (Computer Science)

Concordia University

Montreal, Quebec, Canada

February 2009

©Ahmed Khalifa Alasoud

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Vote r6f6rence
ISBN: 978-0-494-63399-1
Our file Notre reference
ISBN: 978-0-494-63399-1

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lntemet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

ABSTRACT

A Multi-matching Technique for Combining Similarity Measures in

Ontology Integration

Ahmed Khalifa Alasoud, Ph.D.

Concordia University, 2009

Ontology matching is a challenging problem in many applications, and is a major issue

for interoperability in information systems. It aims to find semantic correspondences

between a pair of input ontologies, which remains a labor intensive and expensive task.

This thesis investigates the problem of ontology matching in both theoretical and

practical aspects and proposes a solution methodology, called multi-matching. The

methodology is validated using standard benchmark data and its performance is

compared with available matching tools.

The proposed methodology provides a framework for users to apply different

individual matching techniques. It then proceeds with searching and combining the match

results to provide a desired match result in reasonable time.

In addition to existing applications for ontology matching such as ontology

engineering, ontology integration, and exploiting the semantic web, the thesis proposes a

iii

new approach for ontology integration as a backbone application for the proposed

matching techniques.

In terms of theoretical contributions, we introduce new search strategies and

propose a structure similarity measure to match structures of ontologies. In terms of

practical contribution, we developed a research prototype, called MLMAR - Multi-Level

Matching Algorithm with Recommendation analysis technique, which implements the

proposed multi-level matching technique, and applies heuristics as optimization

techniques. Experimental results show practical merits and usefulness of MLMAR.

IV

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisors, Dr. Volker Haarslev and Dr.

Nematollaah Shiri, for their guidance, insightful discussion, encouragement, and support

throughout the development of this thesis.

I would like to express my deepest gratitude for the constant support, understanding and

love that I received from my parents, my wife Hasna, my sisters, my uncle Ali's family,

and my brothers during the past years.

I would like to express my gratitude to my fellow students in Database research lab, with

whom we spent countless time in the lab in the past few years.

I would like to dedicate this thesis to the soul of my grandmother Fodha Abd Alsaid.

Finally, I would like to thank all the people who assisted me in completing this work.

This work is as much theirs as it is mine. Thank you all.

v

Contents

List of Figures ix

List of Tables xi

1. Introduction 1

1.1 Motivations for ontology matching 5

1.1.1 Ontology engineering 5

1.1.2 Web navigation 6

1.1.3 Peer-to-peer information sharing 6

1.1.4 Information Integration 6

1.2 Contributions 8

1.3 Thesis organization 9

2. Background and Related work 10

2.1 An Overview of Description Logics 10

2.2 Ontologies 12

2.3 Approaches to Ontology Integration 14

2.3.1 Ontology Reuse 16

2.3.2 Ontology Mapping 18

2.3.3 Ontology Merging 26

2.4 Ontology matching techniques 28

2.4.1 Element-level techniques 28

2.4.2 Structure-level techniques 30

2.5 Ontology matching systems 31

vi

2.5.1 Schema-based implementations 31

2.5.2 Instance-based implementations 36

2.5.3 Combined schema- and instance-based implementation 37

2.6 Summary 39

3. Ontology Integration: A Hybrid Approach 43

3.1 Overview of the Hybrid Approach 43

3.2 Motivating Examples 46

3.3 An Architecture to Support Ontology Integration 50

3.4 Mapping between the Global Ontology (GO) and the Source Ontologies 51

3.5 Implementation of Research Prototype 53

3.6 Summary 57

4. Multi-Match strategy 58

4.1 Motivating example 59

4.2 Background definitions 61

4.3 A Multi-Match Algorithm 63

4.4 Illustrative Example 64

4.5 Experiments and Results 69

4.6 Summary 74

5. Extending the Multi-Matching Strategy 75

5.1 Multi-level matching strategy 75

5.1.1 Tradeoff between structure and size of the mapping states 77

5.1.2 The MLMA Algorithm 79

5.1.3 Illustrative Scenario 80

vii

5.1.4 Experimentation and Results 84

5.2 Neighbor search strategy 85

5.2.1 Motivating Example 85

5.2.2 The Neighbor Search Algorithm 86

5.2.3 Illustrative Example 87

5.2.4 Experiments and Results 89

5.3 Recommendation Analysis for Ontology Matching Techniques 93

5.3.1 Motivating example 94

5.3.2 A Framework for Recommendation Analysis 97

5.3.3 Specific techniques used in the proposed framework 98

5.3.4 Similarity recommendation technique 99

5.3.5 Experiments and results 100

5.4 Summary and Remarks 104

6. Conclusion and Future Work 106

6.1 Conclusion 106

6.2 Future Work 108

References 109

Appendix A: Semantics of Description Language AL 122

Appendix B: (Re)use of Ontologies 124

Appendix C: Applying different similarity orders 125

Appendix D: Time of different similarity orders 128

vin

List of Figures

Figure 1: Person ontologies 3

Figure 2: Computer Ontology 13

Figure 3: Ontology Reuse 17

Figure 4: Integration methods according to [Heflin and Hendler, 2000] 19

Figure 5: Mapping integration methods [Wache et al, 2001] 20

Figure 6: Global Schema G [Calvanese et al, 2002] 22

Figure 7: Ontology Merge 27

Figure 8: Prompt Algorithm [Noy and Musen, 2001] 33

Figure 9: Source ontologies 47

Figure 10: The global ontology 48

Figure 11: An architecture for the hybrid framework 51

Figure 12: nRQL query with its answer 56

Figure 13: Source ontology "S" 60

Figure 14: Target ontology "T" 60

Figure 15: Multi-Matching Algorithm (MMA) description 64

Figure 16: CSDs Ontologies 65

Figure 17: Searching in the matching space 67

Figure 18: Comparing existing matches and derived matches 70

Figure 19: Results using Bibtex ontologies 72

Figure 20: Results using Computer ontologies 73

Figure 21: Results using Computer science departments' ontologies 73

ix

Figure 22: A schematic description of the multi-level method 76

Figure 23: The Multi-Level Match Algorithm 79

Figure 24: Researchers (Oi) and Students (O2) ontologies 80

Figure 25: The states determined by MMA 81

Figure 26: Quality comparison between the basic MMA and MLMA methods 84

Figure 27: Computer Ontology Examples 85

Figure 28: The Neighbor Search Algorithm 86

Figure 29: Quality Comparison 92

Figure 30: Efficiency Comparison 93

Figure 31: Computer Ontologies 94

Figure 32: O2 after reasoning 95

Figure 33: Taxononmies of onotology 232 96

Figure 34: A recommendation analysis framework 97

Figure 35: Quality Comparison 101

Figure 36: Time Comparison 102

x

List of Tables

Table 1: Individual and combined similarity match results 68

Table 2: Two-level individual and combined similarity match results 83

Table 3: Score value for each state neighbor 89

Table 4: Initial estimations for the similarity measures 103

xi

1. Introduction

The proliferation of information on the World Wide Web (WWW) has made it necessary

to make all this information not only available to people, but also to machines.

Ontologies are widely being used to enrich the semantics of the web, and the

corresponding technology is being developed to take advantage of them. An ontology is

defined as "a formal, explicit specification of a. shared conceptualization" [Gruber, 1993],

where formal refers to the meaning of the specification which is encoded in a logic-based

language, explicit means concepts, properties, and axioms are explicitly defined, shared

indicates that the specification is machine readable, and conceptualization models how

people think about things of a particular subject area.

Ontologies are likely to be everywhere, and constitute the core of many emerging

applications in database integration, peer-to-peer systems, e-commerce, semantic web

services, and social networks [Fensel, 2004]. With the infrastructure of the semantics web,

we witness a continuous growth in both the number and size of available ontologies

developed to annotate knowledge on the web through semantics markups to facilitate

1

sharing and reuse by machines. This, on the other hand, has resulted in an increased

heterogeneity in the available information as different parties adopt different ontologies.

The ontologies are developed with different purpose in mind, therefore we end up with

different ways entities are modeled. For example, the same entity could be given different

names in different ontologies or it could be modeled or described in different ways. The

Ontology Matching Problem (OMP) attempts to find similar entities in different

ontologies, described as follows: given ontologies Oj and O2, each of which describes a

collection of discrete entities, such as classes, properties, individuals, etc., we want to

find the semantic correspondences that exist between the components of these entities.

This problem has been the subject of numerous studies, and a number of solution

techniques have been proposed. These matching techniques are often domain-dependent,

as they are mainly based on a single similarity measure, such as names, structures, logic

satisfiability, etc. This makes them useful and efficient in specific domains. For example,

matching techniques which are based on syntactic similarity provide good results in

domains where there is a high probability that whenever the matched entities agree on

their syntax, they also agree on their semantics. However, such techniques based solely

on name similarity might not work well in application domains where similar entity

names are used with different meanings. Consequently, some researchers consider using

a number of matching techniques, and then aggregating the results of individual matching

methods in order to compute the final matching result.

The matcher composition systems (matching systems that use more than one

similarity technique) are not clear about the suitability of their reused matching

techniques for different kinds of matching domains. It is therefore difficult for a regular

2

user to decide, among the vast number of matching techniques, which one is preferred for

matching the given ontologies. Consequently, the choice of the user might affect the

matching process in both time and quality.

Example 1. Through this example we illustrate the main ideas of the technique proposed

in this thesis. Fig.l shows two sample taxonomies "subsumption relationships between

the concepts" for two person ontologies Oi and O2. For ease of presentation, we use two

very simple and small taxonomies.

To reduce the manual work involved, we use a matching algorithm to identify the

matching entities. As can be seen in Fig.l, entities Si, S2, S3, and Ti, T2, T3 are concepts,

which are high-level entities in the input ontologies. The goal is to find the corresponding

matches among the entities in the two input ontologies.

Figure 1: Person ontologies

There exist many methods to measure similarities between two entities, such as

string similarity, linguistic similarity, etc. However, when we use a single matching

measure for an input pair of ontologies, we may not be satisfied with the final match

result. For instance, if we use a string similarity measure only, the concepts MALE and

FEMALE in Oi have no matches in 02 . On the other hand, a string similarity measure is

the basis for some other methods of measuring similarities between entities, and it works

well in some domains where a match in the entities on their syntax would most probably

mean agreement on their semantics.

3

However, we can use a stronger semantic measure, such as a linguistic-based

measure. For instance, we find out that the concept PERSON in Oi is mapped to concepts

PERSON, MAN and WOMAN in O2. So, by recommending many matches to validate, this

will not help the user to focus on his/her intention. As a result, if we use both measures

(string and linguistic), the concept PERSON in O] will be mapped to the concept

PERSON in O2 with a very high confidence, concept MALE in O] will be mapped to

MAN in O2, and concept FEMALE in Oi will be mapped to WOMAN in O2.

Furthermore, for matcher composition systems, using a recommended subset

among their similarity measures list should improve the final matching results in terms of

time and quality.

Moreover, recommendation techniques improve the overall running time as it is

unnecessary to reuse and combine all their underlying similarity measuring methods,

instead, using only a recommended subset should decrease the average running times.

Furthermore, the reason that recommendation techniques can enhance the matching

quality is that they exclude the unpractical similarity matching methods to be used for a

task at hand. For instance, if there is no string, linguistic, or structure similarity between a

given input pair of ontologies, then including, combining, and aggregating the matching

results retrieved by a string, linguistic, or structure similarity measuring method should

negatively affect the overall quality of the matching result.

We studied the ontology matching problem and introduced a new method that

uses a multi-match search technique together with our flexible similarity measure and a

framework for analyzing the reused similarity measure techniques to obtain the best

4

possible matching results. A main characteristic of our technique is that it combines the

matching techniques to provide a solution to a given ontology matching problem.

1.1 Motivations for ontology matching

Ontology matching is considered to be a prerequisite for many real-life applications. In

this section, we describe such applications illustrating the need for and use of ontology

matching.

1.1.1 Ontology engineering

In general, ontology engineering refers to activities where users design, implement and

maintain ontology-based applications, for which they apply ontology matching

algorithms to find similarities in multiple ontologies. For instance, suppose we want to

build an ontology about tourism in Montreal that contains relevant information about

transportation, hotels, restaurants, etc. One way to do this is to construct this ontology

from scratch. In this case we do not make use of any existing ontologies, if there are any.

This method requires a lot of effort. This problem is further aggravated by the fact that

ontologies are normally huge and complex. A better approach is to reuse available

ontologies on the topics, such as transportation, restaurants, and hotels in Montreal, to

build the desired ontology. These ontologies may share some entities and consequently,

the ontology engineers require support for identifying the relevant ontologies and

matching their entities. Another scenario where ontology matching is crucial is in the

presence of multiple versions of the same ontology. For example, some users keep

updating their ontologies, which often leads to having more than one version of the same

5

ontology. In such cases, ontology matching helps identify what entities have been

changed (added, deleted, or renamed) from on version of an ontology to another [Noy

and Klein, 2004, Noy and Musen, 2004, Noy and Musen, 2002, Roddick, 1995].

1.1.2 Web navigation

The matching process is important for navigating the semantic web. An example is the

browser Magpie [Dzbor et al, 2004, Dzbor et al, 2003], which extends Internet Explorer

by annotating web pages. In such scenarios, the matching operation is needed to help

match the terms in web pages and the corresponding terms in on-line ontologies.

1.1.3 Peer-to-peer information sharing

Peer-to-Peer (P2P) is a distributed communication model in which parties (also called

peers) have equivalent functional capabilities in providing each other with data and

services [Zaihrayeu, 2006]. Currently, there are several P2P file sharing systems, such as

Kazaa, Edonkey, BitTorrent, and Semantic P2P [Staab and Stuckenschmidt, 2006]. In

order to establish exchanging and sharing information between different peers in such

applications, a matching operation is necessary to identify correspondences in

terminologies used by different peers.

1.1.4 Information Integration

Matching is also important in the context of information integration. There are different

problems of information integration, such as schema integration [Batini et al, 1986,

Parent and Spaccapietra, 1998, Sheth and Larson, 1990, Spaccapietra and Parent, 1991],

6

data warehousing [Bernstein and Rahim, 2000], data integration [Chawathe et al, 1994,

Draper et al, 2001, Halevy et al, 2005, Wache et al, 2001], and catalogue integration

[Agrawal and Srikant, 2001, Bouquet et al, 2003b, Giunchiglia et al, 2005, Ichise et al,

2003].

Generally, providing single portal of access to resources implies a need for

integrated ontology, companies merge implies need for ontology integration, etc.

Information integration is an abstraction which provides and uses an integrated view.

Suppose we have a company that has branches, dealers, etc, distributed all over the world.

The main branch needs to get some information from the other branches, such as

customers, sellers, and some statistics about the employees, sales, etc. In this case, we can

provide a unified view (or global ontology) in the main branch through which we can

query the local ontologies in various branches using proper mappings and wrappers. All

in all, the matching step in such scenarios is to relate the correspondences between the

entities in both the global ontology and the local ontologies (source ontologies).

Ontology merging is another scenario where the matching operation is important.

Suppose there are many ontologies on the same topic, such as medical, which may

contain overlapping information. For example, we might want to build a new single

ontology in a medical field which "unifies" the various concepts, terminologies,

definitions, constraints, etc., from existing ontologies. For instance, among existing

medical ontologies, we consider the Unified Medical Language System (UMLS) and the

Galen COding REference (CORE) model. As a result of integrating these two ontologies,

we obtain a new, single, unified ontology in the medical field. As another example of

merging, consider a bottom-up construction of ontologies, which could be done by

7

merging the ontologies of several companies. For example, two car companies may

merge to form a new larger company. Merging these companies may lead to merging

their ontologies. As an initial step before merging ontologies, the related entities to be

merged from different ontologies have to be identified, done through a matching step.

1.2 Contributions

We have made the following contributions:

1. Under the context of ontology integration in particular, we introduce an approach

for ontology integration, which is a hybrid of materialized (data warehouse) and

virtual views [Alasoud et al, 2005].

2. In order to support the proposed approach with a matching strategy, we develop a

multi-matching strategy which benefits from existing individual matching

techniques and "combines" their match results to provide enhanced ontology

matching results [Alasoud et al, 2007].

3. We further extend the multi-matching strategy with a multi-level matching

strategy, which assumes that there is a partial order on the collection of measures

defined by the user [Alasoud et al, 2007].

4. We devise a structure similarity measure to be used for matching the structure of

the ontologies based on the adoption of the Dice coefficient [Alasoud et al, 2007].

5. We propose using the neighbor search strategy to find the correspondences

between entities in the given ontologies and to optimize the multi-matching

strategy developed [Alasoud et al, 2008].

8

6. We propose a recommendation analysis of ontology matching techniques. The

users often have little knowledge about the suitability of matching strategies for a

given matching task. As a result, the quality of the matching end result and

processing time will be affected by the user's choice. The main characteristics of

the proposed work are (1) assisting the user to choose the appropriate matching

teclinique(s) for a given matching task, (2) inferring a hidden structure

relationship between the entities of the input ontologies and consequently making

the structure-based similarity measure more precise, and (3) improving the

average matching process time considerably, as shown in our experimental

evaluations [Alasoud et al, 2009].

1.3 Thesis organization

The remainder of the thesis is organized as follows. Chapter 2 provides the background

knowledge and reviews related work. Chapter 3 presents the hybrid approach for

ontology integration. Chapter 4 describes the multi-matching strategy. The multi-level

and reasoning-based neighbor search matching strategies are introduced in Chapter 5,

followed by a performance evaluation of the proposed framework in terms of quality and

processing time. The conclusion and future work are discussed in Chapter 6.

9

2. Background and Related work

This chapter provides a background for our work and reviews related work. Section 1

gives an overview of description logics, and Section 2 introduces ontologies. Then,

Section 3 discusses approaches to ontology integration. We study these approaches as to

present our novel approach in the next chapter. Section 4 classifies techniques that can be

used for solving the ontology matching problem, and basic techniques used to find

similarities between the entities of two ontologies. Finally, Section 5 reviews available

ontology matching systems.

2.1 An Overview of Description Logics

Description Logics (DLs) refer to a family of knowledge representation languages that

are capable of encapsulating the main characteristics of many class-based representation

formalisms in Artificial Intelligence. Lately, DLs are becoming a standard for the

semantic web, specifically the Web Ontology Language with its correspondence to

description logics (OWL-DL). An advantage of these logics is that they are equipped

10

with powerful reasoning algorithms, and practical systems, such as RACER [Haarslev

and Moeller, 2001a, Haarslev and Moeller, 2001b], that implement such algorithms.

In this section, we briefly describe the families of DL Languages and their main

constructs. Also, we will show how they differ in these constructs.

We begin by explaining the constructs of the attributive language (AL) presented

in [Baader et ah, 2005]. We use the letters A and B for atomic concepts, R for atomic

roles, and C and D for concept descriptions. The concept descriptions in AL are defined

according to the following syntax:

C,D^>A | (atomic concept)

T | (top/universal concept)

± | (bottom/null concept)

-A I (atomic negation)

C C\D | (intersection)

VR.C | (value restriction)

3R. T | (limited existential quantification).

Note that in AL, negation can only be applied to atomic concepts, and only the top

concept is allowed in the scope of an existential quantification over a role. As examples

of expressions in AL, assume that Product and PC are atomic concepts. Then

Product n PC and Product n -iPC are AL concepts denoting those Products that are PC,

and those that are not PC, respectively. Furthermore, assume that hasMaker is an atomic

11

role. Then we can form the concepts Product n 3 hasMaker.T and Product n

V hasMaker.A, denoting products that have a maker and all products produced by A,

respectively.

We now move to more expressive languages by adding new constructs, such as

the union of concepts (CKJD), indicated by the letter \J,full existential quantification

(3R.C) indicated by e, number restrictions (at least restriction) > nR indicated by the

letter N, and number restrictions (at most restriction) as < nR, where n is a positive

integer, and negation of arbitrary concepts (->D) indicated by the letter C (for

"complement"). We name each AL-language by a string of the form AL [U] [s] [N] [C],

where a letter in the name stands for the presence of the corresponding construct. For the

semantics of the AL language and its family members, see Appendix A. By adding more

expressive concept constructs, as well as role constructs, we define more expressive DLs.

A notable example for an expressive DL is ALCQI, which provides concept constructs

for complement, intersection, union, existential restriction, universal quantification,

qualified number restrictions (indicated by the letter Q), and a construct for inverse roles,

indicated by the letter I.

2.2 Ontologies

Ontologies aim at capturing static domain knowledge in a generic way and provide a

commonly agreed upon understanding of that domain, which may be reused and shared

across applications and groups. Therefore, one can define an ontology as a shared

specification of a conceptualization [Gruber, 1993]. An ontology contains terms, the

12

definitions of these terms, and specifications of multiple, rich relationships among these

terms. Consider the computer ontology example shown in Fig. 2.

Laptop

has-HD

Hard Disk

Is-a ^^ Computer
^ \ ^ Is-a

Monitor Maker

PC

Is-a

Used-PC

Figure 2: Computer Ontology

The main components of an ontology

1. Classes or concepts

These are concepts of the domain or task, usually organized in taxonomies. In our

ontology example, Computer, PC, Laptop, Hard Disk, etc. are examples of classes,

shown as rectangles in the Fig. 2.

2. Roles or properties

Role is a type of interaction between instances of concepts in the domain. For

example, has-HD, has-monitor, and has-maker are roles, shown as links in the figure.

Furthermore, roles can have the following characteristics:

• Transitivity : P(x,y) A P(y,z) => P{x,z)

For example, consider a transitive role (has-part). We can define (PC has-part

motherboard) and (motherboard has-part RAM). Then, we can conclude from the

definition of the transitive role (has-part) that (PC has-part RAM).

13

• Symmetry : P(x,y) <=> P(y,x)

For example, consider a symmetric role (partnerwith). So, given the definition

(Enterprise-A partnerwith Enterprise-B), we conclude that (Enterprise-B

partnerwith Enterprise-A).

• Functional : P(x, y) A P{X,Z) => y = z

For instance, we might assume that the (has-maker) role is a functional role. This

implies that computers have a unique maker.

• Inverse: P(x, y) <=> Q{y, x), where P is the inverse of Q and vice-versa.

We can define a role called (maker_of) as an inverse to the role (hasmaker).

• Inverse functional: P(x,y) A P(z,y) => x = z

We can consider, for instance, that the role (hasmaker) is the inverse functional

of the role (makerof). In other words, each maker can produce more than one

computer, but for each computer there is a unique maker.

3. Axioms

Axioms model sentences that are always true. For example, if the price of some PC is

equal to 50% of the original PC, then we can conclude that it is a used PC.

4. Individuals or instances

Individuals or instances represent specific elements. For example, Enterprise-A could

be an instance of class Maker.

2.3 Approaches to Ontology Integration

In this section, we review the main approaches to ontology integration, including

ontology reusing, merging, and mapping.

14

The term "ontology integration" designates the operations and the process of

building ontologies from other ontologies, available in some ontology development

environments. This involves following methodologies that specify how to build

ontologies using other, publicly available, ontologies [Pinto, 1999].

Ontology integration is motivated by the following three factors. First, the use of

multiple ontologies. For example, suppose we want to build an ontology about tourism in

Montreal that contains information about transportation, hotels, restaurants, etc. We could

construct this ontology from scratch. This requires a lot of effort, especially since

ontologies are huge and complex. A more reasonable approach is to reuse available

ontologies on the topics, such as transportation, restaurants, and hotels in Montreal, to

build a desired "integrated" ontology.

The second motivation is the use of an integrated view. Suppose we have a

company that has branches, dealers, etc, distributed around the world. The main branch

needs information from the other, such as customers, sellers, and some statistics about the

employees, sales, etc. In this case, we can query the ontologies at various branches

through proper mappings and wrappers, thus providing a unified view in the main branch.

The third motivation for ontology integration is the merge of source ontologies.

Suppose there are many ontologies on the same topic, such as medicine, covering

different aspects of the field, which may contain overlapping information. We might want

to build a new, single ontology about the medical field, which "unifies" the various

concepts, terminologies, definitions, constraints, etc., from the existing ontologies. For

instance, among many existing medical ontologies, we consider the Unified Medical

Language System (UMLS) and the Galen COding REference (CORE) models. As a

15

result of integrating these two ontologies, we obtain a new, single, unified ontology in the

medical field. As another example of merging, suppose several car companies are merged

into a new car company, for which we want to construct an ontology. This could be done

by merging the existing ontologies of these companies.

2.3.1 Ontology Reuse

The use of existing ontologies can be considered as a 'lower' level integration, because it

does not modify the ontologies, but merely uses the existing concepts. Since the survey in

[Pinto, 1999], there have been some developments in using/reusing ontologies, such as

the On-To-Knowledge project [Fensel et al, 2002]. This project resulted in a software

toolkit for ontology development, maintenance, and (re)use. In [Stumme and Madche,

2001b], they proposed to combine ontology reuse and merging, consisting of merging

local (federated) ontologies at some stage. These "federated ontologies" are analogous to

federated databases. Another interpretation of reusing existing ontologies, in conjunction

with formal integration, is the architecture of Fisheries ontology [Gangemi et al, 2002]

by the Food and Agriculture Organization (FAO), found in Appendix B. We next explain

the main ideas of the ontology reuse approach.

Ontology reuse attempts to make use of existing ontologies to build a new

ontology, instead of building one from scratch [Pinto, 1999]. Fig. 3 illustrates ontologies

O] and O2, as well as the result of their integration by reuse, named O. It is important to

note that the reused ontologies Oi and O2 are part of the resulting ontology O. Also note

that, in this case, the resulting ontology can be seen as consisting of different ontologies.

16

In general, the domains of the reused ontologies O] and O2 are different from the

domain of the resulting "integrated" ontology (O), but there may be a relationship

between the domains. When ontologies are integrated by the reuse approach, the concepts

from O] or O2 may be (1) used as they are (no change), (2) adapted (or modified), (3)

specialized (leading to a more specific ontology on the same domain), or (4) augmented

by new concepts (at the same level or by more general concepts).

The domains of different reused ontologies, such as transportation, hotels, and

restaurants, may be different from each other; that is, each ontology Oj contributing to the

integration has a domain Dj which is different from domain D of the resulting 'tourism'

ontology O (Fig. 3). As can be seen in the figure, a concept X in Oi is deleted in the

integration process, and several new concepts, shown in gray, are introduced in the final

result. Through reusing, the resulting ontology is expected to be unique, i.e., no such

ontology already exists.

Figure 3: Ontology Reuse

17

The ontologies to be reused should be selected from those available ontology

sources that meet the requirements, such as domain, type, and generality. A resulting

"target" ontology, on the other hand, should have features of a "good" ontology, i.e., it

should be clear, concise, and have some adequate level of detail.

When building a new ontology by reusing existing ones, some problems, such as

consistency and level of detail should be dealt with. To solve such problems, we need to

specify a group of reuse operations which indicate how knowledge in the source ontology

will be included and combined into the "target" ontology. Some reuse operations are

composing, combining, and assembling operations. On the other hand, such operations

should be applied only onto those ontologies which have some common features. These

features guarantee that a selected source ontology is suitable, that the reuse operations

can be successfully applied, and that the "target" ontology will have the "preferred"

features.

2.3.2 Ontology Mapping

[Heflin and Hendler, 2000] divide ontology integration methods into three categories:

mapping ontology, mapping revisions, and intersection ontology. In mapping ontologies,

a created ontology OM contains the rules that map concepts between ontologies 0\ and O2.

In the mapping revisions method, o] contains rules that map objects in O2 to

terminologies in Oi and vice versa. In an intersection ontology, where the created

ontology ON includes the intersection of concepts common to 0/ and O2, and renames

terms where necessary. See Fig. 4 for an illustration of their integration methods.

18

[Calvanese et al, 2002] consider mapping between one global ontology (O) and several

local ontologies (Oi, O2, ...), leaving the local ontologies intact by querying them and

converting the result into a concept in the global ontology. The basic idea proposed in

[Kalfoglou and Schorlemmer, 2002] is to map two local ontologies by looking at how

these are mapped from a common ontology. It is assumed that such a common ontology

is not populated with instances, while local ontologies usually are. Then, the obtained

results are placed in a new global ontology, which is progressively created.

Mapping Ontology Mapping Revisions Intersection Ontology

o,

* *

OM

o2 o,

ir A.

o[

o2

-A. "

o2

O M Contains rules O, Contains rules that map 02

that map concepts objects to O, terminologies,
between ontologies. '

(?2 does the reverse.

0,

V A"'"'

0;

oN

o2

"A '̂

o2

ON contains intersection of concepts.

O, and Oj rename terms where necessary.

Key: • revised by
• Extended by

Figure 4: Integration methods according to [Heflin and Hendler, 2000]

The survey in [Wache et al, 2001] divides the ontology mapping into three

approaches: single, multiple, and hybrid approaches, as shown in Fig. 5.

The single ontology approach uses a global ontology with shared semantics. All

information sources are related to this one global ontology. With multiple ontologies,

there are inter-ontology mappings, but no global ontology. The Hybrid Approach is

similar to the multiple ontology approach in that the semantics of each source is

19

described by its own ontology, but, in order to make the source ontologies comparable to

each other, they are built using one global shared vocabulary.

Figure 5: Mapping integration methods [Wache etaL, 2001]

The rest of this section explains the main concept of the ontology mapping approach.

The mapping approach deals with situations where there are different ontology

sources, created independently of each other by different users. We need to construct a

global ontology or "virtual view" for accessing the required information from these

different ontologies.

The idea of this "virtual view" is to provide a general framework in which we can

query the local source ontologies. Moreover, in order to use the "virtual view" for

answering queries, it is important to specify the mappings between the global ontology

and the source ontologies. The global ontology is used to formulate queries. To evaluate

20

queries, the query processing scheme requests access to information in the source

ontologies, instead of simply using them.

In reality, different source ontologies are constructed by various users for

different purposes over time. Therefore, the same information may be expressed in

different forms at different levels of abstraction in the source ontologies. Thus, mapping

the concepts in one ontology to another means that a concept in one ontology may

correspond to a view "query" over the other ontologies. Actually, suitable query

languages should be supported by the ontology specification language, in order to express

mappings among concepts in different ontologies. One can view query processing in this

context to be closely related to answering queries by using views in data integration

systems. An ontology integration system (OIS) in this case is defined as a triple <G, S,

M>, where G represents the global ontology, S = {Si..., S„} represents the set of local

ontologies, and M represents the mapping between G and the sources in S.

Based on [Calvanese et ah, 2002], there are three basic approaches for defining

this mapping:

1. The global-centric approach, where concepts in the global ontology G are mapped to

concepts in the local ontologies in S.

2. The local-centric approach, where concepts of the local ontologies in S are mapped

to queries over the global ontology G.

3. The combined global-centric and local-centric approach.

Global-As-View approach (GAV)

This approach is widely used in data integration systems [Calvanese and Giacomo, 2005,

Lenzerini, 2002, Ullman, 1997]. In such systems, the global ontology is a database

21

schema, and the mapping is designed by relating one relational query over the source

relations to each relation in the global schema. It is well-known that this approach leads

to a simple query processing policy, which reduces to unfolding the query using the

definition in the mapping, so as to expand the query in terms of definition of the sources.

Example 2. An ontology integration system (OIS) is defined as O = <G, S, MG,S>, where

1. G is the global ontology expressed in the Entity-Relationship model.

2. S contains the local sources over which a relational database is created.

3. MG,S is the mapping between G and S given by a set of correspondences of the

form <C, Vs>, where C is a concept in G and Vs is a query or view over S.

Fig. 6 shows the global schema G of a data integration system, where Age is a functional

attribute; Employee has a mandatory participation in the relationship Works-in, Works-in

is-a Member, and Company is-a Union. The schema models persons who can be

members of one or more unions, and employees who work in companies.

Person

Employee

Union

Company

Age

Figure 6: Global Schema G [Calvanese etaL, 2002]

Suppose that S includes sources Si... Ss, and that the mapping Mis given as follows:

22

Person(x)^ Si(x)

Union(x) <- S2(x)

Member(x, y) <- S7(x, z), S8 (z, y)

Employee(x) <- S3(x, y) OR S4(x)

Age(x,y) <r S3(x, y) OR S6(x, y, z)

Company(x)<- Ss(x)

Works-in(x, y)<- S4(x, y)

Local-As-View approach (LAV)

The main difference between the LAV and GAV approaches is the direction of the

mapping. In the GAV approach, the mapping between the global and the local ontologies

is given by associating to each concept in the global ontologies a view, which is a query

over a local ontology. However, in the LAV approach, the mapping direction is reversed,

i.e., associated to each concept in a local ontology is a view, which is a query over the

global ontology.

The main advantage of the LAV approach over GAV is its flexibility and ease of

modality, which allows sources to be added or removed from the integrated framework

more readily. That is, if we build a global schema and then a new source is to be added to

our system, we do not need to reconstruct the global schema from scratch. The challenge,

however, with the LAV approach is answering queries posed in terms of the global

schema. This is a challenge because we first need to reformulate the queries in terms of

queries over the sources. Query processing in the GAV approach is addressed by simply

unfolding the queries.

23

Example 3. Consider for example the OIS, O = <G, S, MG,S> defined as follows:

1. The global ontology G is an ALCQI knowledge base

Canadian f] (^ \Has relative.Doctor) c: Wealthy

Surgeon cz Doctor

which asserts that every Canadian who has a doctor as a relative is wealthy, and that

each surgeon is also a doctor.

2. The set S of local ontologies consists of two ontologies, containing the relations Ti

and T2, with extensions Tj = {arm, bill} and T2 = {arm, dan}.

3. MG.S is the mapping between G and S given by a set of correspondences of the form

< Vg, C>, where Vg is a query or view over G and C is a concept in S.

The mapping MQ,S is {<Vi, Tj>, <V2, T2>} with

V,(x) <r RELATIVE(x,y) and Surgeon(y)

V2(x) <- Canadian(x)

Vj associates to each concept in Ti a query over G. In this example, V] expresses that

each individual x in Ti has a relative y who is a surgeon, and V2 expresses that each

individual in T2 is Canadian.

Given a query Wealthy(x) over G, we find ann as the only answer. Consider an

additional local ontology T3 with an extension not containing bill, defined by the

following mapping in MG,S:

V3(x) <r Wealthy(x)

From the constraints in G and the information we have on the mappings, we can conclude

that bill is not an answer to the query Canadian(x) over G.

24

Combining Global-as-view and Local-As-View approaches (GLAV)

The global and local centric approaches can be combined to yield the so-called GLAV

approach, using unrestricted mappings in order to overcome the restrictions on

communication directions between global and local ontologies. In the GLAV approach,

we have both a query language Vs over the alphabet As, a query language VG over the

alphabet AG, and a mapping between the global and local ontologies, given by relating

views over the global ontology to views over the local ontologies. The intention behind

relating VG to Vs is that Vs represents the best way to characterize the objects satisfying

VG in terms of the concepts in S.

Example 4. Consider for example the OIS O = <G, S, MG,S>, where both the global

schema and source ontologies S\ and S2 are sets of relations with extensions.

1. The global ontology G contains two binary relations: relation WorksFor to record

researchers and projects they work on, and relation Area to record projects and

research areas they belong to.

2. The local ontology S\ contains a binary relation Interestedln, which denotes people

and the fields they are interested in, while the local ontology S2 contains the binary

relation GetGrant, which denotes researchers and their assigned grants, and the

binary relation GrantFor, which denotes the grants and projects they refer to.

3. The mapping MG,S is formed by the following correspondences:

- (Vj, Interestedlri), with \\{r,f)<r WorksFor(r, p) and Area(p,f).

- (WorksFor, V^), with V2(r, p)<r GetGrant(r,g) and GrantFor(g,/?).

This kind of mapping representation cannot be achieved using only the GAV or the

LAV approach. Query answering using the GLAV approach is largely unexplored

25

[Calvanese et al, 2002], as it combines the difficulties of the GAV and LAV approaches.

On the other hand, this may be the only approach that has the appropriate expressive

power.

To summarize, the two approaches of GAV and LAV are compared based on two aspects:

modeling and query processing.

1. In the GAV approach, query processing is easier since it uses query unfolding, but

modeling is more difficult and maintaining the model G when local sources change

often requires the redesigne of G.

2. In the LAV approach, modeling is easier, but query processing is more difficult since

it needs query reformulation and reasoning.

2.3.3 Ontology Merging

[Pinto, 1999] defines merging as combining different ontologies with the same subject

domain to create a unified ontology. Synonymous with this definition, [Sowa, 1997]

defines the unification process. Moreover, the proposal in [Kalfoglou and Schorlemmer,

2002] defines the merger of two ontologies as their intersection, and the knowledge

engineer is in charge of making merger decisions. The authors [Noy and Musen, 2000]

use the concept of merge synonymous with unification. Their intention is to create a

massive governmental knowledge base. While the process of ontology merging defined

in [Stumme and Madche, 2001a] yields a merged ontology from input ontologies, it is not

clear how the performance is affected by various assumptions about the input ontologies

when their subjects are the same, similar, or complementary. In what follows, we explain

the main idea of the ontology merging approach.

26

In the case of merging ontologies, one wants to build ontologies using concepts,

distinctions, axioms, etc., from existing ontologies on the same subject. For instance,

when two companies merge into a larger company, their ontologies will be merged by

considering similar matching terms. In most cases, there are differences between the

input ontologies, not only in their basic features but also in the way their terms are

defined (in the meaning behind those terms). When such different ontologies are

"integrated" by merging, a new ontology is created in the same domain. The integrated

ontology contains unified concepts, terminology, definitions, constraints, etc., from the

input ontologies.

In the merging process, we have, on the one hand, at least two ontologies that are going

to be merged (0],02, Fig. 7), and on the other hand, the resulting ontology (O, Fig. 7).

02 ,D,

Figure 7: Ontology Merge
The goal is to make a more general resulting ontology by gathering knowledge from

several input ontologies on the same subject. The domains of the input and resulting

27

ontologies are the same (Di, Fig. 7). Ontology matching is a prerequisite for any

approach of ontology integration. In the following section, we review existing techniques

for ontology matching.

2.4 Ontology matching techniques

This section reviews techniques currently used for ontology matching. These techniques

are classified into element level and structure level techniques [Euzenat and Shvaiko,

2007].

2.4.1 Element-level techniques

These techniques view ontology entities or their instances as isolated from other entities

or instances. They are classified into string-based, language-based, and constraints-based,

described as follows:

• String-based techniques

These techniques are used to match names of the entities in ontologies. Such techniques

are based on the similarity of the names of entities, considered strings. The more similar

the strings, the more likely they denote the same concepts. There are numerous methods

introduced for string similarity matching. The most frequently used methods are:

I. Edit distance: in this method of matching two entities, a minimal cost of operations to be

applied on one entity in order to obtain the other entity is considered. Examples of such

well-known measures are Levenshtein distance [Levenshtein, 1966], Needleman-Wunch

distance [Needleman and Wunsch, 1970], Smith-Waterman [Smith and Waterman, 1981],

28

Gotoh [Gotoh, 1981], Monge-Elkan [Monge and Elkan , 1997], Jaro measure [Jaro, 1989,

Jaro, 1976], and Smoa [Stoilos et al, 2005].

II. Normalization: To improve the matching results between strings, a normalization

operation is performed, usually before matching. In particular, these operations are case

normalization, diacritics suppression, blank normalization, link stripping, digital

suppression, and punctuation elimination.

III. String equality: the string equality method basically returns 0 if the input strings

compared are not identical, and 1 if they are. An example of such a method is the

Hamming distance [Hamming, 1950].

IV. Substring test: This identifies the ratio of common subparts between two strings. Also, it

is used to compute if a string is a substring of another string, i.e., a prefix or suffix.

V. Token-based distances: Such a method considers a string as a set of words. These

methods are used to split long strings (strings that are composed of many words) into

independent tokens.

• Language-based techniques

These techniques measure the relatedness of concepts, for which they consider names as

words in some natural language, e.g. English. They use Natural Language Processing

(NLP) techniques to extract meaningful terms from the text. Usually, they are applied to

words (names) of entities. The matching similarity is determined based on linguistic

relations between words, such as synonyms and hyponyms. Many language-based

methods have been implemented in the WordNet [Pedersen et al, 2004].

29

• Constraints-based techniques

In order to calculate the similarity between entities, these techniques are mainly applied

to the definitions of entities, such as their types, attributes, cardinality and ranges, and the

transitivity or symmetry of their properties. There are different methods proposed based

on constraints [Rahm and Bernstein, 2001], which compare the properties, data types, and

domains of entities.

I. Property comparison: When the properties of two classes are similar (similar names

and types), it is more likely that these two classes are similar.

II. Data type comparison: This compares the way in which the values are represented, e.g.

integer, float, string.

III. Domain comparison: Depending on the entities to be considered, what can be reached

from a property can be different: in classes, these are domains, while in individuals,

these are values.

2.4.2 Structure-level techniques

In contrast to element-based techniques, structure-based techniques compare the two

entities from two ontologies with regards to the relations of these entities with other

entities in the ontologies: the more similar the two entities are, the more alike their

relation would be. Mainly, there are two well-known structure level techniques: graph-

based techniques and taxonomy-based techniques, described as follows:

• Graph-based techniques

These techniques consider the ontologies to be matched as labeled graphs. The basic idea

here is that, if two nodes from two ontologies are similar, their neighbors should also

30

somehow be similar [Euzenat et al, 2004].

• Taxonomy-based techniques

These techniques are basically graph-based techniques which consider only the

specialization relation. The basic idea they focus on is that an is-a relationship links terms

that are already similar, therefore their neighbors may also be similar [Euzenat and

Valtchev, 2004, Valtchev and Euzenat, 1997, Valtchev, 1999, Wu and Palmer, 1994].

Matching ontologies using their structure information is important as it allows all the

relations between entities to be taken into account. The most common techniques used for

ontology matching are taxonomy-based, since taxonomies play a pivotal role in

describing ontologies.

2.5 Ontology matching systems

This section reviews ontology matching systems. The approaches of these systems can be

classified into: (1) schema-based, (2) instance-based, and (3) combined, schema and

instance based.

2.5.1 Schema-based implementations

Schema-based systems are those which rely on schema information in the input in order

to match ontologies. We now describe some schema-based systems.

• SKAT (Semantic Knowledge Articulation Tool) [Mitra et al, 1999]

In SKAT, the input ontologies are represented by graphs. It is a rule-based tool which

discovers matching results through a semi-automatic process. Domain experts provide

rules that are encoded in first order logic. Initially, experts also specify desired

31

similarities and dissimilarities. For instance, the rule "President is equivalent to

Chancellor" specifies that we want President to be an appropriate match for Chancellor.

SKAT uses string matching as well as structure matching. In the structure matcher,

SKAT matches graph slices, i.e. matching the nodes near the root in the first ontology

against the nodes near the root in the second ontology.

• ONION (ONtology compositlON) [Mitra et al, 2000]

ONION is an extended version of SKAT. It performs a number of matching techniques

and suggests articulation rules to users. Users can accept, modify, or delete the

suggestions. The structure-based matching in ONION is performed based on the results

of linguistic matching. It looks for structural iso-morphism between subgraphs of the

ontologies, taking into account linguistic clues. The structural matcher tries to match only

the pairs which were not matched by the linguistic matcher, hence complementing its

results.

• H-Match [Castano et al, 2006]

H-Match takes OWL ontologies as its input. Internally, these input ontologies are

represented by graphs using the H-model representation [Castano et al, 2005]. Moreover,

H-Match computes two types of similarities: linguistic and contextual. These are then

combined using weighting schemas to yield a final measure, called semantic similarity. In

determining the contextual similarity, H-match considers neighboring concepts, e.g.,

linked through the taxonomy of the actual concept.

• Anchor-Prompt [Noy and Musen, 2001]

Ancor-Prompt is an extension of Prompt and was originally called SMART [Noy and

Musen, 2000]. Basically, it is an algorithm for matching concept names. If there is a

32

match between two concepts in the source ontologies, and there are paths connecting

these two concepts, then there should be similarities between these paths as well. Fig. 8

shows that there is a match "anchor" between concept A from one source ontology and

concept B from another source ontology. It also shows that there is a match "anchor"

between concept names H and J. In this case, the tool would suggest that there are some

similarities between those concepts which lie between the two anchors, such as concepts

G and F, and that concepts E and D may share some properties with concept C. All in all,

these are only suggestions made by the tools; the user may confirm the suggestion, and

hence merge the concepts, or reject the suggestion.

Source 1

A

Par

C

t_of

F

Par

H

4

t of

Source 2

»

-*—

•4

. B

Partof

D

Is i

E

Par

• G

Par

. J

— • /

• s

i

t Df

t o f

chor

*gestion

Figure 8: Prompt Algorithm |Noy and Musen, 2001]

• MapOnto [An et al., 2006, An et al, 2005a, An et al, 2005b]

The MapOnto is a tool for recommending matches between ontologies and relational or

XML schemas. The input schema and ontology are both represented internally as labeled

33

graphs. Then, the system looks for similarities or relationships between these graphs, and

produces a set of complex mapping formulas, expressed as Horn clauses, in a semi

automatic way. These logical formulas are ordered by the tool, thereby suggesting the

most reasonable mappings. Finally, the user can inspect this list and choose the best

mappings.

• CtxMatch [Bouquet et al., 2003a, Bouquet et al, 2003b]

CtxMatch deals with the ontology matching problem by translating it into the logical

validity problem. It determines the logical relationship, such as equivalence and

subsumption, between concepts and properties. The first version of CtxMatch uses only

WordNet to find initial matches for classes. In the next version, CtxMatch2 [Bouquet et

al., 2006], it also considers properties. Basically, it employs description logics reasoners,

such as Pellet [Sirin et al., 2007] and FaCT [Tsarkov and Horrocks, 2006] to compute the

final alignment.

• S-Match [Giunchiglia et al, 2003]

S-Match takes two graph-like structures, e.g., classifications, XML schemas, or

ontologies, as input and returns logical relationships, e.g., equivalence and subsumption,

found between the nodes of the graphs. Ontology entities are converted to logical

formulas. Then, the match manager uses various basic element-level matchers and logic

provers to find relationships between these formulas, which in turn correspond to the

relationships between entities.

• ASCO[Bache/a/.,2004]

The first version of ASCO deals with ontologies represented in an RDF schema, while its

new version, ASC02, deals with ontologies represented in OWL [Bach and Kuntz, 2005].

34

ASCO performs in three phases. In phase 1, it computes the similarity between the

entities of the ontologies using linguistic matchers. In phase 2, it applies a fixpoint

computation algorithm that propagates similarity to the neighbours (subclasses,

superclasses and siblings). Similarities between sets of objects are computed through

single linkage. The propagation terminates when class similarities and relation

similarities no longer change in a subsequent iteration or when a certain iteration step is

reached. Finally, in phase 3, ASCO aggregates the results of linguistic and structural

matchers using a weighted sum.

• OMEN (Ontology Mapping ENhancer) [Mitra et al, 2005]

The OMEN system is based on a Bayesian network. It is an enhancing tool for ontology

matching, which improves existing ontology matching algorithms using probability

inferences. The matching process for OMEN can be described as follows:

1. OMEN builds a Bayesian network, where a node represents the mapping between

classes or properties of the input ontologies. Edges represent the influences of the

Bayesian network between these nodes.

2. OMEN generates the conditional probability tables for the Bayesian network. It

accomplishes this by using a set of meta-rules that capture the influence of the

structure of the input ontologies on the neighborhood of the input mappings.

3. OMEN makes inferences using Bayesian Network tools, in order to provide

newly determined probabilities for each node.

4. Finally, the new probabilities, which are larger than a certain threshold, are

selected to generate the resulting alignment.

35

2.5.2 Instance-based implementations

This section reviews major ontology matching systems, which consider instances to

determine the matching entities of input ontologies.

• T-tree [Euzenat, 1994]

This system uses instances of the input ontologies to determine the matching classes.

It infers "bridges" between classes of different ontologies sharing the same set of

instances. Given a source and destination taxonomy, T-tree returns all "bridges" for

which the instances in every source class are present in the destination class.

• CAIMAN [Lacher and Groh, 2001]

CAIMAN is a system for document exchange, which focuses on lightweight ontologies.

It determines a probability measure between concepts of two ontologies by applying

machine learning techniques for text classification. In particular, based on the documents,

a representative feature vector is created for each concept in an ontology. Then, the

matching similarity is determined for these class vectors. Finally, with the help of a

threshold, the matching result is produced.

• FCA-merge [Stumme and Madche, 2001b]

The FCA-merge has three main steps for merging two ontologies: instance extraction,

concept lattice computation, and generation of the final merged ontology. Actually, the

FCA-merge uses the formal concept analysis technique in the second step. The idea

behind this technique is to compare classes which share instances by testing the

intersection of their instances.

36

• GLUE [Doan et al, 2004]

GLUE is an extended version of Learning Source Descriptions (LSD). It uses multiple

learners and exploits information in concept instances and taxonomy structures of

ontologies. GLUE works in three steps. First, it learns the joint probability distributions

of classes in the input taxonomies. Then, it estimates the similarity between these classes.

This results in a similarity matrix between classes of the input taxonomies. Finally,

GLUE filters some of the matches from the similarity matrix and keeps only the best ones.

2.5.3 Combined schema- and instance-based implementation

This section explores the ontology matching systems which use both schema and

instances from the input ontologies to find their matching entities.

• IF-MAP (Information-Flow-based Map) [Kalfoglou and Schorlemmer, 2003]

IF-Map matches two input ontologies with respect to a reference ontology. In other words,

it considers that the reference ontology represents an agreed understanding, which

facilitates knowledge sharing. Moreover, IF-Map assumes that the given input ontologies

include portions which match the reference ontology. It also assumes that the reference

ontology does not need to be populated with instances. The matching process proceeds as

follows. If the instances of the input ontologies can be assigned concepts in the reference

ontology and the reference ontology can be expressed in each of the input ontologies,

then IF-Map uses the three ontologies in order to extract the matching entities (using the

formal concept analysis technique). When a matching (between the three ontologies) is

not found, IF-Map returns the matching candidates using string-based and structure-based

methods.

37

• oMAP [Straccia and Troncy., 2005]

oMap deploys a number of matchers in order to find the correspondences between

entities of the input ontologies. The matchers include a string similarity measure, learning

methods used on instance data, and a matcher that propagates preliminary weights

through the ontology constructors used in the definitions of ontology entities. At the end,

the results are aggregated using a weighted average.

• OLA (OWL Lite Aligner) [Euzenat and Valtchev, 2004]

OLA is a system that takes an equal contribution of each component of the ontologies,

e.g., classes, instances ... etc in order to find the matching entities of the input ontologies.

It considers ontologies as graphs, and determines the similarity of the graph nodes based

on string, language, and structure based similarities. These similarities are aggregated.

For computing these similarities, OLA starts with base distance measures computed from

labels and concrete data types. Then, it iterates a fixpoint algorithm until it no longer

yields an improvement.

• Falcon-AO [Hu et al, 2007]

Falcon-AO has three elementary matchers: two linguistics matchers (V-DOC and I-sub)

and a structural matcher (GMO). GMO is a bipartite graph matcher which starts by

considering the RDF representation of the ontologies as a bipartite graph, represented by

its adjacency matrix. The results of Falcon-AO mainly derive from the alignments

generated by linguistic or structural matchers, depending on which has better results.

Otherwise, the Falcon-AO generates the results by combining both linguistic and

structural matchers using a weighting scheme.

38

• RiMOM (Risk Minimization based Ontology Mapping) [Li etal, 2007]

The RiMOM system integrates multiple strategies, such as edit distance, statistical

learning, and three similarity propagation-based strategies. Then, it applies a strategy

selection method in order to decide on which strategy it will rely more. As a result,

RiMOM combines the conducted alignment. RiMOM offers three possible structural

propagation strategies: concept-to-concept propagation strategy (CCP), property-to-

property propagation strategy (PPP), and concept-to-property propagation strategy (CPP).

To choose between them, RiMOM uses heuristic rules. For example, if the structure

similarity factor is lower than some threshold, then RiMOM does not use the CCP and

PPP strategies, but uses CPP. The basic idea of CCP, PPP, and CCP is to propagate the

similarities of (concept pairs or property pairs) across the concept/property hierarchy

structure. For instance, in CCP, similarities of concept pairs are propagated across the

concept hierarchy structure.

2.6 Summary

> We reviewed the DLs, which are widely used as the formalism for the semantic

web, specifically the Web Ontology Language with its correspondence to

description logics (OWL-DL). We described the families of DL Languages and

their main constructs, and explained how they differ in the constructs they use.

> We described the main components of ontologies, such as classes or concepts,

roles or properties, axioms, individuals or instances along with an illustrative

example for the meaning of each component.

39

> We reviewed the approaches to ontology integration: reusing, mapping, and

merging.

I. First, the reusing approach refers to the reuse of widely available ontologies

as main parts to build a new ontology instead of creating it from scratch.

II. Second, the mapping approach refers to the situations where there are

different ontologies, created separately from each other by different users,

and we need to construct a global ontology or "virtual view" for accessing

the required information from these ontology sources. The main goal of the

"virtual view" is to provide a general view, in which we can query the

different source ontologies. Basically, there are three basic approaches for

defining this mapping: Global-As-View approach (GAV), Local-As-View

approach (LAV), and Combining Global-as-view and Local-As-View

(GLAV).

III. Third, the merging approach refers to the process as the intersection

between the two given ontologies and the engineer is in charge of making

the final decisions.

> We classified a variety of ontology matching techniques into two main levels:

element and structure level techniques. The element level techniques have been

further classified into three basic techniques, string-based techniques, language-

based techniques, and constraint-based techniques. The structure level techniques

have been classified into graph-based techniques and taxonomy-based techniques.

40

> We also classified ontology matching implementations (matching systems) on the

basis of their input information level, which could be: schema-based, instance-

based, and the combined schema- and instance-based matching systems.

> From the point of view of architecture, following the proposals for information

integration, we can classify the approaches to ontology integration into two: (1)

the data warehouse (DW) or materialized approach, and (2) the virtual (mediator-

based) approach. Accordingly,

I. Ontology reuse and merging in the ontology integration approaches are

similar to the materialized approach in information integration. In both

ontology and information integration approaches, information is gathered

from more than one source and is stored into a single source (warehouse).

II. The ontology mapping approach can be considered similar to the virtual

approach to information integration (mediator-based), since they both use an

integrated virtual view through which we can query the information sources.

III. The data warehouse approach supports decision making and querying data,

as it explicitly stores information from heterogeneous sources locally.

However, maintenance is a major issue when a data source frequently

changes.

IV. Another approach to information integration is to provide an integrated view.

This is preferred over the DW approach when the information sources

change often. On the other hand, the DW approach is more suitable for data

mining.

41

> Most ontology matching systems focus on one-to-one matching, i.e., they match

one pair of entities at a time. They do not match n entities to m entities

simultaneously, and hence use several similarity measures to solve the ontology

matching problem.

> A single similarity measure, such as name similarity, graph matching, etc., for

matching ontologies is useful and efficient in some specific domains. For

example, matching techniques which are based on syntactic similarity measures

provide good results in domains, where there is a high probability that whenever

the matched entities agree on their terms, they also agree on their semantics.

However, such techniques, which are solely based on name similarity, might not

work well in application domains where similar entity names and terms are used

with different meanings. To improve this situation, it has been proposed to use

multiple measures at the same time.

> Many matching systems provide a library for the matching techniques that can be

used for given input ontologies. However, the user often has no knowledge about

which matching technique is more appropriate for the application at hand. In the

following chapter, we study these techniques and suggest improvements.

42

3. Ontology Integration: A Hybrid

Approach

This chapter introduces, in Section 1, an overview of the hybrid approach we proposed in

[Alasoud et at, 2005] for ontology integration, which is a hybrid between the fully

materialized and fully virtual approaches. Section 2 motivates the proposed approach

with an example, while Section 3 describes its architecture. Section 4 explains the

method used for mapping global and local ontologies. Section 5 describes our

implementation.

3.1 Overview of the Hybrid Approach

Extracting information from ontologies created by different users is an important and

challenging task for answering queries originate from the Web. In this section, we

propose a framework for ontology integration which is a hybrid of materialized (data

warehouse) and virtual views.

43

The rapid increase in the number of information sources requires efficient and

flexible frameworks for their integration. Such frameworks should provide a way for

extracting, transforming, and loading data from these sources, and presenting them to the

user in an appropriate way. There are two major approaches for the integration of

information: (1) the data warehouse (DW) or materialized approach and (2) the virtual

(mediator-based) approach. In the DW approach, a huge amount of historical data is

stored in the DW. In the virtual approach, on the other hand, the data is not materialized,

but rather is globally manipulated using views. Each of these approaches is suitable for

some applications.

DW is a powerful tool for decision support and querying data because it explicitly

stores information from (possibly heterogeneous) sources locally. However, some

external data, such as new product announcements from competitors and currency

exchange rates, may be needed to help in business decisions. We should not neglect the

importance of such data to avoid the problems of incomplete, inexact, or sometimes

wrong results. Warehousing huge and frequently changing information is a big challenge

for the following reasons. Firstly, the data in the DW is loaded in snapshots and the DW

is a huge information repository. Secondly, as the data sources change frequently,

maintenance becomes a complicated and costly issue.

The other approach to information integration is to provide a virtual integrated

view. In this approach, the actual data resides in the sources, and queries against the

integrated 'virtual' view will be decomposed into sub-queries and posed to the sources.

This approach is preferred over the DW approach when information sources change very

often. On the other hand, the DW approach may be desired in case quick answers to

44

queries are required and the information sources change rarely. In order to keep both

advantages, we consider a third approach which is a hybrid between fully materialized

and fully virtual approaches.

A framework for warehousing web contents has also been discussed in [Zhu,

1999]. It uses a hybrid approach in order to integrate DW data with the "required" web-

based information. This framework considers ontologies which express domain

knowledge related to web sources and the logical model of the data warehouse.

Moreover, an ontology engine is being deployed as an intermediate layer by defining the

mapping rules between the web data and attributes of the DW in the ontologies to aid the

DW structure and repairing requirements. In [Zhu, 1999], some web data are selected for

materialization. However, some queries may not be answered using only materialized

data in the DW. In [Calvanese et al, 2002], a framework for ontology integration was

introduced based on the fully virtual approach. They constructed the integrated 'virtual'

view based on the mapping between the local ontologies and the global ontology. This

maps a concept in one ontology to a query over other ontologies. Then, when a query is

posed based on the global 'virtual' ontology, which uses the mapping, it is unfolded and

evaluated against sources. [Calvanese and Giacomo, 2005] extend the ontology

integration framework by using the Description Logic DL-Lite for expressing the global

schema, and using the LAV approach for mapping between the local source ' databases'

and the global ontology schema. There are some noticeable differences between our work

and theirs. First, we consider the global ontology as partially materialized to improve

query evaluation time, and to keep the advantages of the fully materialized and fully

45

virtual approaches. Second, data sources considered are expressed in ontologies. In the

next section, we will describe some motivating examples for our hybrid approach.

3.2 Motivating Examples

The following examples illustrate these approaches to integration. Consider an ontology

of an enterprise "A", which offers different types of electronic products. For simplicity,

we consider only two products, PCs and laptops. Fig. 9(a) introduces this ontology for

items at enterprise "A." It includes the concept COMPUTER which represents the

desktop and laptop computers. Other concepts in this ontology, such as MONITOR,

PROCESSOR, and PRICE represent some specifications of the computers. Also, suppose

there is an external data source for the same products, which is enterprise "B", shown in

Fig. 9(b). The following three examples will illustrate how the integrated view could be

supported as:

• Fully materialized: where a posed query needs to be answered only using

materialized views.

• Fully virtual: where all sources are defined as views, i.e., non-materialized. This

is useful when queries are infrequent or data changes frequently, and hence a

query should be evaluated using the source ontologies.

• A hybrid of both: where the answers to queries are retrieved from materialized

views as well as virtual views.

For simplicity, we assume the ontology of enterprise "A" is part of a larger ontology

restricted to a branch of this enterprise. Moreover, the designer can create a global

ontology, "an integrated view", in which clients can pose queries against branches. In

46

addition, the company wants to get external information about their competitors, such as

enterprise "B." This global ontology, or "integrated view", is shown in Fig. 10.

"f

•

•

©AUB-CARD

©COMPUTERS

(g) desktop

importable

i£}CQST

(©CPU

©DISPLAY

(glHARDDISK

©MQTHER-BOARD

@RAM

©STATUS

©VIP-CARO

a) Ontology of enterprise A b) Ontology of enterprise B

Figure 9: Source ontologies

Furthermore, designing a global ontology depends on many factors such as: (1)

which data are very frequently queried and rarely change, and (2) which are not

frequently queried and/or frequently change. In some cases, however, the designer may

not materialize frequently queried data if it is frequently changing. For example, in bank

applications, an account balance is frequently queried, but it also changes frequently.

Therefore, by materializing such data, the up-to-date status of clients may not be

available. It would be more appropriate in this case that the client use a virtual view,

through which he/she can access up-to-date data from the sources. These issues and

factors should be taken into consideration during the design phase.

f

•

•

©COMPUTER

© L T

©PC

© H D

© MONITOR

© PRICE

i Cj PROCESSOR

©RAM

i C) SOLD-DATE

(C) STATUS

© M0THER-80ARD

(§} AUDIO-CARD

\ c) VIDEO-CARD

47

• (CJ COMPUTERS

i C| DT

(g) NOTEBOOK

(C)FEE

©HARDDISK

(^) MAM-MEMORY

(©MAKER

©SCREEN

(S) SPEED

(g)MAJN-BQARD

©SOUND-CARD

(§) VIDEO-CARD

Figure 10: The global ontology

Example 5. In this example, we illustrate the case where the end user query is answered

from the materialized view only. First of all, deciding which data in enterprise "A"

should be materialized is decided by the designer, based on the aforementioned issues.

We will assume the following:

• The most frequently queried and infrequently changed data are the prices of

the computers.

• A computer price is affected by specifications, such as its processor type and

speed, the size of its hard disk, the size and kind of main memory, and the

monitor type and size.

• Other specifications, such as types of the main board, sound card, mouse,

video card, etc., may not affect the price much and are not frequently queried.

Based on these assumptions, the concepts of FEE, SPEED, HARDDISK, MAIN-

MEMORY, and SCREEN can be fully materialized, and the concept COMPUTERS can

be partially materialized. In partially materialized concepts, only one model of each

48

category of computers, with the same specifications of speed, hard disk size, main

memory, and screen, will be materialized.

Whenever the user asks for the price of a computer with particular specifications for the

enterprise "A", the answer will be retrieved from the materialized data only.

Example 6. Let us consider a situation where important information about products by

other enterprises is required in order to make business decisions in enterprise "A." We

therefore need to query some selected ontologies, which may not be in materialized form,

such as the enterprise "B" ontology in our running example. This process of evaluating

such queries is fully virtual, as it queryies the sources through the integrated view. In

other words, the global ontology of the integrated view is used as an intermediate layer to

decompose the queries into sub-queries and to get the answers to each sub-query from the

relevant sources.

Example 7. In this example, we consider that the global ontology of the integrated view

is partially materialized. The frequently accessed data is materialized and the rest are

provided as sources. For instance, we could decide to not materialize the infrequently

queried data, such as main board type, case material, sound card specifications, and video

card type, or any other types of data sources which are not frequenly queried by users.

Another case is when enterprise "A" needs to compare the prices of its computers with

those produced by enterprise "B." Such queries would be answered from the materialized

prices for "A" and the virtual prices for "B."

49

3.3 An Architecture to Support Ontology Integration

As shown in Fig. 11, the framework includes a Global Ontology (GO) and a set of

wrappers. In this framework, GO follows a Local as View (LAV) approach [Calvanese

and Giacomo, 2005] to represent the mapping between the concepts in the source

ontologies (Ontology 1, Ontology 2, ...) and the GO. We will discuss this mapping in

the next section. The Transformation Processor (TP) transforms the data from the data

source model to the materialized data model. In our implementation, we consider the

materialized data being represented as an ontology. During the maintenance of the

materialized ontology, according to the update occurring in the data sources, the

Incremental Maintenance Processor (IMP) will determine which data in the materialized

ontology may be updated. After the IMP receives the data from the GO, it will compare

the new data with the old data in the materialized ontology to decide which parts need to

be updated (during the regular-based updates).

The two modules TP and IMP in the dashed box in the Fig. 11 form the Maintenance

module for the Materialized Ontology (MMO). The task of the Query Processor QP in

our architecture determines if a user query could be answered from the materialized

ontology (MO), source ontologies, or both. If the query needs the actual data, i.e. data

from the sources, then the query is decomposed and rewritten based on the mapping of

the concepts between the global ontology and the source ontologies. As soon as the QP

gets the answer from the source ontologies and the materialized ontology, it "merges" the

answers into one answer and returns it to the user. The MetaData (MD) module is a

repository for the matching terms for the concepts, roles, and individuals used by both

GO and the source ontologies.

50

MetaData r
(MD)

Query Answer

Materialized
pntology (MO)

1
Query Processor (QP)

Maintenance of the MO (MMO)

Transformation Processor (TP)

Incremental Maintenance
Processor (IMP)

i
Global Ontology (GO)

Wrapper 1 Wrapper 2 ... [Wrapper n

Ontology 1 Ontology 2 Ontology n

Figure 11: An architecture for the hybrid framework

3.4 Mapping between the Global Ontology (GO) and the
Source Ontologies

We can think of GO as consisting of two main parts. The first part is the materialized one,

and it is responsible for updating the materialized ontology when required. The second

part of the GO is the virtual one, and it is responsible for providing the extra information

from the sources which is not materialized nor partially materialized. In other words, this

virtual part collects answers to queries that could not be answered using only the

materialized ontology. As reviewed in [Ullman, 1997], there have been different

approaches proposed for modeling a global view, such as, Global as View (GAV), Local

51

as View (LAV), and Global-Local as View (GLAV). In the GAV approach, a concept in

the global ontology is mapped to a query over the source ontologies. In other words,

when the user poses a query over the global ontology, the data corresponds to a concept

in the global ontology, which can actually be answered from the source ontologies

through a specific query. Since it uses unfolding, query processing in GAV is easy by

associating each concept in the global ontology mentioned in the user query with a query

over the sources. This approach, however, makes the modeling of a global ontology

difficult when the sources change or grow very often, since these changes affect the

mappings in general. In contrast, the LAV approach defines the mapping the other way

around: each concept in the source ontologies is defined as a query over the global

ontology. This makes query processing more complex since the system does not

explicitly know how to reformulate the concepts in the global ontology expressed in the

user query in terms of source ontologies. On the other hand, modeling of global and

source ontologies is easier since changes or incremental growth in the sources will not

lead to a reconstruction of the entire global ontology, but only to modifying the mappings.

The GLAV approach combines the GAV and LAV approaches, where there are

unrestricted mappings in which the restrictions on the direction of the association

between integrated and local schema are overcome. Query answering in this approach is

largely unexplored, mainly because it combines the difficulties of the GAV and LAV

approaches.

Regardless of its difficulties, many researchers show [Calvanese and Giacomo,

2005, Calvanese et al, 2004, Calvanese et al, 2002, Ullman, 1997] that the LAV

52

approach better supports a dynamic environment where data sources can be added to or

removed from the system without restructuring the global ontology.

3.5 Implementation of Research Prototype

This section describes general ideas and technical details of the implementation of a

prototype of the framework. We illustrate this by building a framework which integrates

the source ontologies for enterprises A and B.

We follow the LAV approach for representing the mapping between the global ontology

and the source ontologies. This mapping is expressed in nRQL (New RACER Query

Language) [Haarslev et al, 2004] as follows:

Enterprise _ A(x) c (retrieve(?x)

(?x | EnterpA | | hasmaker |))

Enterprise _ B(x) c (retrieve (?x)

(?x | EnterpB | | hasmaker |))

where x is a variable, EnterpA and EnterpB are individuals of the concept

MAKER, and hasmaker is a binary role between the instances of the concepts

COMPUTERS and MAKER in the global ontology. Furthermore, the mapping of the

products of the source ontology EnterpriseA over the global ontology is defined as all

individuals that have EnterpriseA as their maker. Similar mapping definitions are used

for EnterpriseB.

In the above mapping, we represent the concepts in source ontologies over the

global ontology. This means that we map the products of enterprises A and B to queries

over the global ontology by defining the concept MAKER and adding the relation has

maker between the instances of the concepts COMPUTERS and MAKER in the global

53

ontology. This mapping gives a hint to the query processor module QP to determine to

which source a query should be sent to for evaluation. For instance, QP will send the

query to the ontology of enterprise A, if it detects the hasmaker relationship in the query

is associated with the individual EnterpA. Also, QP will query the ontology of

enterprise B in case the has_maker relationship in the query is associated with the

individual EnterpB. However, QP will send the query to the both sources (ontology of

enterprise A and ontology of enterprise B) in case the hasmaker relationship is not

associated with any one of them.

Moreover, the semantic web deals with diverse types of query answering with

access to information represented in different formats. To allow complex queries over the

global ontology, mapping these concepts to the global ontology is essential. We use

RACER [Haarslev and Moeller, 2001b] together with nRQL, to support flexible

construction of queries. Also, we use the OWL-DL Web Ontology Language with

correspondence to description logics (DL) as the formalism for the global and source

ontologies. We use Protege version 3.0 [Protege, 2008] as an editor to develop the

knowledge bases.

The following are three query examples written in the nRQL syntax. Each

example shows a different scenario for query processing, rewriting, and answering.

Furthermore, the examples will show different cases for answering queries: answering

using a materialized ontology only, source ontologies only, or both.

The following example shows a query whose answer is generated from the

materialized ontology only. Consider the query "list the price of all laptops made by

enterprise A, with the specifications: hard disk = 40 GB, screen type LCD with size = 21",

54

main memory type is SD with size =560 KB, and processor type is Pentium-4 with speed

= 2 GHZ." Considering the global ontology provided, this query would be formulated in

nRQL as follows:

(retrieve (?y)

(and (?y ?c |price-of])

(?c |pnt4-2| |has-speed|)

(?c |hard-disk-40| |hard-disk|)

(?c |lcd-21| |has-screen|)

(?c |sd-560| |has-ram|)

(?c |notebook|)(?c |A| |has-maker|)))

Based on the mappings, the QP can easily figure out that the query should be sent

to and evaluated at enterprise A. Then, considering our previous assumptions that the

concepts FEE, SPEED, HARDDISK, MAIN-MEMORY, and SCREEN are materialized,

the QP will compute the answer using the materialized ontology only and send the

answer to the end user.

The second query we consider is similar to the first, except we ask the answers to

be retrieved purely from the source ontologies. In this case, the query answers should be

retrieved from data sources, i.e., the ontology of enterprise B "(?c |B| |has-maker|)", or

the non-materialized concepts in the global ontology for the enterprise A, such as main

board type, case material, sound card specifications, and video card type, etc. For such

queries, the QP will rewrite them according to source ontologies, and send them to the IV

module. Once the answers are obtained, the QP merges the results and sends them back

to the user.

55

The third query scenario, shown in Fig. 12, is a combination of the previous two

scenarios. Here, the query is the same as in the first example except that we want to

compare the prices of the laptops made by A and B with the specifications mentioned

above.

In the formulation of this query, we might not wish to specify the has-maker

relation. In that case, the QP will decompose the original query, rewrite it, and evaluate

the query using both materialized and source ontologies for evaluation. After receiving

the results from both types of sources, the QP merges these results and sends the final

answer to the user.

Enter the query:

(retrieve (?y)

(and (?y ?c |price-of|)

(?c |pnt4-2| |has-speed|)

(?c |hard-disk-40| |has-hard

(?c |lcd-21| |has-screen|)

-disk|)

(?c |sd-560| |has-ram|)(?c |notebook|)))

Query answer:

Enterprise A: (((?|5500 $|)))

Enterprise B:(((?| 1100$|)))

Figure 12: nRQL query with its answer

56

3.6 Summary

In this chapter, we presented a hybrid approach to ontology integration, to combine the

advantages of both the virtual and materialize approaches. Furthermore, we discussed our

architecture to support ontology integration, mapping between global and local

ontologies, and the implementations of the proposed approach.

In order to build the global ontology (which has a common vocabulary among the

sources), a matching module is necessary. This allows the query processing (QP)

component to extract information from the ontology sources. To support this capability,

we need to build the mapping for the proposed framework, for which effective matching

techniques should be developed.

In the next chapter, we propose the multi-match technique for this purpose.

57

4. Multi-Match strategy

The motivation for our research in the integration of source ontologies was to develop

tools and techniques for situations where the information sources are expressed as

ontologies. In order to support queries over these sources, we need to build a global

ontology, which has a common vocabulary among the sources. This allows the query

processing (QP) component in the framework, introduced in the previous chapter (Sec

3.3), to extract information from the ontology sources. To support this capability, we

need to build the mapping for the proposed framework, for which effective matching

techniques should be developed.

In this chapter, we study the ontology matching problem and propose a solution

technique called the multi-matching algorithm (MMA), which uses a multi search

algorithm to find the correspondences between entities in the input ontologies. An

important feature of this method is that it benefits from existing individual match

techniques and "combines" their match results to provide enhanced ontology matching.

58

4.1 Motivating example

In this section, we focus on the ontology matching problem and introduce some concepts

and techniques. Let us consider the following examples. Suppose source ontology "S",

shown in Fig. 13, offers different types of electronic products. For simplicity, we

consider only two products: PCs and laptops. As can be seen, S includes the concept

COMPUTERS, which represents the desktop and laptop computers. Other concepts in

this ontology, such as MONITOR, PROCESSOR, and PRICE, represent technical

specifications of computers. As the target ontology, consider ontology "T", shown in Fig.

14. The goal is to find the corresponding matches between the entities in S and T.

There are numerous methods to measure similarities between two entities, such as string

similarity, linguistic similarity, etc. However, when we use a single match measure for

the input pair of ontologies, we may not be satisfied with the final match result. For

instance, if we only use a string similarity measure, the concepts PC and Z,r in S have no

matches in T. On the other hand, a string similarity measure works fine in domains where

a match in the entities on their syntax would most probably mean agreement on their

semantics.

Another example is when we use a more semantic measure, such as linguistic-

based. For instance, using such a measure, we can find that the concept PC in S is

matched to concept desktop in T and to concept computer in T. This will not help the user

much in deciding the correspondences and the matched entities. However, if we use both

measures (string and linguistic), the concept computers in S will be matched with the

concept computers in T with a higher confidence. Consequently, the concept PC in S will

be matched to desktop in T, and the concept LT'm S will be matched to portable in T.

59

We propose a multi-match search algorithm that combines different measures in one

unified framework to improve the matching results. Further, it minimizes the user's

interaction with the system and suggests, for a collection of n elements in S, a collection

of m elements inT.

Subscription relationship

Objects relationship

Figure 13: Source ontology "S"

Figure 14: Target ontology "T"

60

4.2 Background definitions

We describe the ontology mapping problem as identifying pairs of similar nodes (also

called vertices) in the input ontologies, modelled as labeled directed graphs. The nodes

in the input graph correspond to entities in the ontologies, and the edges indicate the

relationships between the pairs of nodes they connect. The labels indicate the kind of

relationship, e.g. "domain" or "range."

Before introducing the multi-match framework, in this section we provide some

notations and definitions.

Definition 1 (Entity-relationships)

Let S be a source ontology, and T be a target ontology. We use E = {si, S2,..., sn} and E

= {ti, t.2,..., tm} to denote the sets of entities in S and T, respectively. Entities may refer to

classes, properties, or individuals for which we want to find matches in the input

ontologies.

Definition 2 (Relationship Matrix)

This relationship matrix, denoted R(rtj), represents the relationship between ontologies S

and T, i.e., r,y indicates the similarity relationship between entity st in S and entity (, in T.

Using R, we define another matrix (see Def. 3), called the similarity matrix L(10, which

captures a different relationship between S and T. In the matrix R(rtj), .s, r tj says that

entity st in the source ontology S matched with entity tj in the target ontology T, based on

relationship r, where r could be any of the existing similarity measuring methods, such as

string similarity measure, linguistic similarity measure, ... etc.

J | J I | J | f i j s,rt, j , r / , ... 5,/"/,.

s,rt. s.rt-, ... s.rt,

61

Definition 3 (Similarity Matrix)

This relational matrix, denoted L(ljj), includes entries in the interval [0,1], which are

called the similarity coefficients and denote the degree of similarity between st and tj. R

and L are nxm matrices.

£('„) =

/., 1,2 - hi

'n In - . I,

Moreover, the similarity matrix L(ly) captures the similarity coefficients between E and

E based on the defined relationship matrix R(rtj). For example, if R(ry) is defined to be a

string similarity relationship between Es and ET, then the similarity coefficient ly in the

similarity matrix L(ly) says that entity s, in the source ontology S matched with entity (,• in

the target ontology T based on a string similarity measure, with a similarity coefficient ly.

As a result, for each R(ry), we compute its L(ljj).

Definition 4 (Matching Matrix)

A matching matrix, denoted Mapo-i, is an nxm matrix with entries r.. e {0,1}. If ry = 1, it

means that s\ and tj are "matchable." They are not matchable if ry = 0.

Definition 5 (Matching Space)

All the possible assignments for the matching matrix form a matching space, also called

the mapping space. Every assignment is a state in the matching space, i.e. a state

represents a solution for ontology matching.

The following example illustrates the above concepts and terms.

Example 8. Let S and T be a given pair of ontologies, and Es = {si, S2,..., sn} and ET =

{tj, t2,..., tm} be the sets of entities. A matching matrix Mapo-i indicates the similarity

relation between the elements of £? and ET. The number of relationship matrices Mapo-i

62

10

0 0

11

01
;•••,

11

11

is 2nxm, i.e. the matching space has 2nxm states. These matrices form the matching space.

For instance, when Mapo-i is 2x2, the matching space would have 16 states. Some of

these mapping states are as follows, in which the rows are entities in S and the columns

are entities in T.

"oo
00

The first matrix indicates no mapping. The third matrix indicates that entity s/ is matched

with t] or /?, and that S2 is matched with t2, etc.

4.3 A Multi-Match Algorithm

The main steps of the Multi-match algorithm (MMA) are shown in Fig. 15. The

algorithm is mainly divided into two phases. In phase 1, which is the initialization phase,

an initial assignment for the matching matrix Map is provided, as well as similarity

functions to evaluate the similarity matrix. Phase 2 of MMA, which is the search phase,

is an iterative refinement for the Map matrix. The algorithm iteratively constructs

matching searches for entities in both S and T (see illustrative example in the next

section). Then, the Map matrix will be evaluated according to the (re)used similarity

matching techniques, such as name and linguistic techniques, and finally the Map matrix

with the highest evaluation value will be suggested to the user.

If we only search with one matching technique, the algorithm behaves as a regular

similarity procedure and is considered as a single matcher; otherwise, it is indeed a multi-

matcher. This design is useful as it provides a flexible and convenient way to use various

relevant information about input ontologies, and to combine feasible matching methods

63

to obtain better results than those obtained by each individual method. The method can

deploy any desired search algorithm.

Algorithm MMA(S,T)
Phase 1 Initialization

Pick an initial assignment matching matrix.
/* For example, let diagonal elements in Map be
equal to 1, and so on.*/
Use the similarity functions to evaluate the
similarity matrix.

Phase 2 Search Matching techniques
begin

Enter a similarity matching technique
/* such as the name matching technique */
Evaluate an intermediate matching state
begin
Enter another similarity matching technique
/* such as the linguistic matching technique */
Evaluate an intermediate matching state
Begin

/* various available matching techniques,
i.e. many feasible matching techniques */

end;
end;
if the intermediate matching state is not

the final solution
/* the matching result does not satisfy

the evaluation function */
then use it as an intermediate solution

in the next iteration; •
if the matching state satisfies the

evaluation function
then return the final solution

end;

Figure 15: Multi-Matching Algorithm (MMA) description

4.4 Illustrative Example

In this section, we illustrate our solution approach. Fig. 16 shows two sample taxonomies

for Computer Science Departments (CSDs) of different universities. We have to integrate

the ontologies into a single ontology [Alasoud et al, 2005]. To reduce the manual work

involved, we use a matching algorithm to identify the matching entities, and then help the

64

middleware to integrate the schemas. For ease of presentation, we use simple, small

taxonomies.

As can be seen in Fig. 16, the representations of the source ontology S and the

target ontology T are different. Here, entities s,, s2, sg and tt, t2, t6 are concepts, which

are high-level entities in the ontologies. Other entities are properties. Given

that|S|=13and|T|=9, the number of states is 213*9, indicating the number of possible

matching results. Clearly, it is not practical to evaluate all the mapping states to compare

the relationships and similarities between the entities.

Sj Faculty

s2 Assistant

Professor

- 5V Name

- Si Degree

-S5 ID

S8 Associate

Professor

- s9 name

- s\o

-Sg Granting institution

- Sj Address -sn

t± Academic Staff

^2 Lecturer £6 Senior Lecturer

- £3 first-name - tj given name

- ti last-name - tg surname

-1 5 education - 1 9 degree

Figure 16: CSDs Ontologies

We thus need to find ways to reduce the search space. In this example, we allow concepts

in S to be compared only with concepts in T, and, accordingly, the other entities in S,

such as properties and instances, can be matched only with the corresponding entities in

T.

We only use two similarity measures to compare the entities in S and T, name similarity

(Levenshtein distance) and linguistic similarity (WordNet). We thus obtain the following

similarity matrices for the concepts.

65

name _ concept

s}rt} sxrt2 sxrt6

s2rtx s2rt2 s2rt6

ssr'i s%r*2 s&r*6

''ling concept

sxrtx sirt2 s^rt6

s%rt^ s%rt2 sirt6

0.15 0.25 0.14

0.38 0 0.14

0.31 0.11 0.21

1 0.07 0.06"

0.07 0.2 0.1

0.08 0.06 0.05

When an assignment is found for the matching state, we check the similarities of entities

to see whether they exceed a user-defined threshold, denoted as th. In this example, we

use the following evaluation function:

v = \{Map^-L)lk\ = Y^Map0_x (i,j)l(i,j)lY^Map^ (i,j)
7=1 > 1 / /=1 7=1

, and v>th

k > min(n,m) is the number of matched pairs, n is the number of entities in S, and m is the

number of entities in T.

The choice of threshold value is application dependent and should be adjusted and

suitably chosen for each matcher.

We now provide a description of the search process. The initial state of the mapping

matrix is a zero matrix. Then, if the search process exceeds the given maximum number

of iterations, the maximum similarity states (Mapmax) will be offered as the final mapping

result. Also, we need to set the additive constraints in the search process. In this example,

since the number of concepts in S is equal to that in T, we assume that the ontologies S

and T have been fully matched. So, the mapping states of concepts now

include 6 entries, ei, e2, ..., e6, as shown in Fig. 17.

66

/

\sxrtx sxrt2 sxrt6

S2fti ^ 2 ^ 2 S2™6

L^grtj Ssrl2 ^8^6

000

000

000_

A
-*•

X

"100"

000

000_

000

100

000

"000"

000

1 00

-*

"100"

010

000

"100"

000

010_

010

100

\ 000

[0 00"

\s
\

\

100

010

"010"

000

100

000"

010

100_

-m

-»

->

- •

"10 0"

010

001

"100"

001

010_

010

100

001_

"oor
100

010

"010"

001

10 0_

"oor
010

100_

sl

e2

e 3

e*

e5

36

Figure 17: Searching in the matching space

As shown in Table 1, e} indicates the optimal matching result. Also, we can see that

different values for name similarity v, and linguistic similarity v2 for each entry are

determined as follows. We show this fore,:

v l =

V2 =

0.15

0.38

0.31

"l

0.07

0.08

0.25

0

0.11

0.07

0.2

0.06

0.14

0.14

0.21

0.06

0.1

0.05

"1 0 0"

0 1 0

0 0 1

"1 0 0"

0 1 0

0 0 1

The following table shows the individual and combined similarity match results for each

entry state.

67

Name Concept Name + Concept Normalized cost

State v, v2 V)+ v2 v = (v . + v 2) / 2

ei

e2

e3

e4

e5

e6

0.12

0.13

0.28

0.21

0.23

0.15

0.42

0.38

0.06

0.06

0.08

0.11

0.54

0.51

0.34

0.27

0.31

0.26

0.27

0.25

0.17

0.13

0.15

0.13

Table 1: Individual and combined similarity match results

Note here that if we only use the name similarity technique, the mapping result

would be e3. In the same way, if we only use the linguistic technique, we would obtain

e, as the result. Also, using Mapname_concep, ,Maphngconcep,, and the threshold value thconcep,,

we obtain the final solution. Consequently, the output result state ex means that we

matched n concepts from the source ontology S to m concepts in the target ontology T.

That is, si is matched with tj, s2 with t2, and ss with t6. Accordingly, the algorithm

matches the properties and/or instances of each matched pair of the concepts.

Finally, the mapping result will be introduced in OWL format. OWL can be

considered as a language for expressing correspondences between ontologies. As a matter

of fact, the equivalentClass and equivalentProperty primitives have been introduced for

relating elements in ontologies. For example, the following OWL ontology fragment

<owl:Class rdfabout = "&ol ;#Faculty">

<owl:equivalentClass rdf:resource = "&o2;# Academic Staff >

</owl:Class>

68

<owl:Class rdf:about = "&ol;#Assitant Professor">

<owl:equivalentClass rdf:resource = "&o2;#Lecturer">

</owl:Class>

<owl:Class rdf:about = "&ol;#Associate Professor">

<owl:equivalentClass rdf:resource = "&o2;#Senior Lecturer">

</owl:Class>

4.5 Experiments and Results

In our evaluation, we used three pairs of ontologies:

1. The MIT bibtex ontology [Knouf, 2003] (which contains 43 named classes, 22

object properties, and 24 data properties) and the UMBC [UMBC-Ontology]

publication ontology (which contains 15 named classes, 5 object properties, 27

data properties), both of which are publicly available.

2. Computer ontologies (the first onltology contains 17 named classes, 11 object

properties, 15 data properties, and the second one contains 15 named classes, 10

object properties, and 14 data properties).

3. Ontologies about computer science departments (the first ontology contains 16

named classes, 12 object properties, 10 data properties, and the second ontology

contains 18 named classes, 14 object properties, 9 data properties). We created the

second and third pairs of ontologies.

We consider the matching of classes and properties based on their labels and the

taxonomy structures of the input OWL-ontologies. As match quality measures, we use

69

the following indicators: precision, recall, and F-measure. Fig. 18 illustrates the idea of

the matching comparison.

> Precision is a value in the range [0, 1]; the higher the value, the fewer the wrong

mappings (false positives) computed.

\B\ Precision = , , , ,
\B\ + \C\

where B represents true positives, and C false positives.

The precision measure could also be defined as follows:

. . number of correct found alignments (by tools)
precision= =—= = =

numberoffoundalignments (by tools)

> Recall is a value in the range [0, 1]; the higher this value, the smaller the set of

correct mappings which are not found (also called true positives).

\B\
Recall =•

\A\ + \B\

where A is the set of false negatives. The recall measure could also be defined as follows:

numberofcorrectfoundalignments (by tools)
rccHii

numberofexistingalignments (by experts)

> F-measure is a value in the range [0,1], which is a global measure of the matching

quality. For this, we use the harmonic mean of precision and recall [Do et ah, 2002].

„ m, 2x precision x recall
FMeasure =

precision + recall

existing matches J, ^ f g \ Q U derived matches
(defined by experts) \ \ J (by tools)

Figure 18: Comparing existing matches and derived matches

70

In our method, we are concerned with providing a ground for evaluating the quality of

match results. For this, we have determined and used expert matches for all the input

pairs of ontologies. The results produced by the match algorithm are compared with these

expert matches.

The evaluation results are shown in Figs. 19, 20, and 21. From the point of view of the

quality of the matching results, it is clear that MMA outperforms each individual

technique.

The key point to note in MMA is that, for each entity from the source ontology, it gives

only one corresponding entity match in the target ontology. This enables MMA to

achieve, in these cases, high precision and recall numbers. For instance, in the case of the

computer ontologies, since both ontologies contain either the same names for the

corresponding entities, or they use totally different names, we see that string-based

techniques provided a high precision rate (no wrong matches returned to the user), that is,

the concept 'Computers' in the source ontology is matched to 'Computers' in the target

ontology. However, string-based techniques provided a low recall rate because they

failed to identify semantic mappings. For example, the string-based techniques missed to

match the concepts (PC, Price, and Monitor) in the source ontology to their

corresponding concepts (desktop, cost, and display) in the target ontology.

The linguistic-based techniques showed a low precision (some even returned incorrect

mappings to the user). For instance, the concept "Computers" in the source ontology will

also be matched with the desktop and laptop concepts in the target ontology. Another

reason for the low recall rate is that it gives a large set of wrong mappings compared to

the expert defined matches. The MMA algorithm, on the other hand, benefits from these

71

existing techniques. Since each concept from the source ontology will be matched with

only one concept from the target ontology, the concept "Computers" in the source and

target ontologies will be matched to each other. Moreover, the "PC", "Price", and

"Monitor" concepts in the source ontology will be matched to the "desktop", "cost", and

"display" concepts in the target ontology. Consequently, the MMA algorithm produces a

better final result for its higher precision and recall rates.

Bibtex ontologies

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0 1

0

l l Precision

m Recall

D F-measure

'

;

* . ' . ..-
' i •'' ,v ' " "

• • : . ' • ' • • -

•

t-.-rnmm i
semantic-based

matcher only

0.04

0.045

0.04

- Ini i • J i l l

4
! String-based matcher
! only

! 0.37

~] 0.58
—

i 0.45

-, ' L-
',;:

, ; .

MMA

0.88

1

0.94

B Precision m Recall n F-measure

Figure 19: Results using Bibtex ontologies

72

Computers ontologies

\m Precision

B Recall

'DF-measure

semantic-based
matcher only

0.46 !

0.46

0.46

String-based
matcher only

1

0.416

0.59

MMA

1

1

1

DPrecision • Recall DF-measure

Figure 20: Results using Computer ontologies

|D F-measure i

Cs-depts ontologies

1

0 9

08 -

0 7

0 6

0.5

0.4

0.3

0.2

0.1

0

1 r , • •

H Precision
m Recall

, 1 ' " '1"- ' ' " ' ' • ' " " ' • ' " ' " " ' ' • "^" ' ' ' ' • " [' " ' • ' - > " - ™ " - " " • ' • " « • " • " " " <'=-'.i-'M-rii'-

:£:••
semantic-based

matcher only

0.46

0.46

~ — ~

j s t
!
1

' H I • •• "' ' ..•

jjL

•'••;,• 1

: :: iJlJIM

•in j l l l

'??•• i i i i i

--••;<|||H
'.M"T'WH

ing-based matcher 3 . MMA
only !

0.5 0.83

0.33 0.74

0.46 0.40 0.78

l l Precision m Recall • F-measure

Figure 21: Results using Computer science departments' ontologies

73

4.6 Summary

In this chapter, we introduced the multi-matching strategy, which could be used to

support the hybrid approach. The following is a summary of the chapter:

> We introduced the multi-match strategy to support the hybrid approach. The matching

step in this proposed approach finds and relates the correspondences between the

entities in both the global ontology and the local (source) ontologies. For this, we

introduced the Multi-Matching Algorithm (MMA). The important features of this

algorithm are that it benefits from existing individual matching techniques and it

helps "combine" their match results to provide enhanced ontology matching.

Furthermore, it matches a collection of n elements in the source ontology to a

collection of m elements in the target ontology.

> We developed a prototype of the proposed MMA, and tested it using different input

pairs of ontologies. Our results indicated that the proposed framework yields

improved match results, as compared to individual match techniques, in terms of

precision, recall, and Fmeasure.

74

5. Extending the Multi-Matching

Strategy

This chapter introduces, in Section 1, the multi-level extension of MMA, called MLMA

[Alasoud et al, 2007], which assumes that the collection of similarity measures are

partitioned by the user, and that there is a partial order to the partitions, also defined by

the user. Section 2 provides the neighbor search strategy [Alasoud et al, 2008] which

uses the MLMA as a backbone and performs a neighbor search to find the

correspondences between entities in the given ontologies. Section 3 discusses the

advantages of incorporating the reasoning techniques in order to achieve a satisfactory

matching result [Alasoud et al, 2009]. A summary is given in Section 4.

5.1 Multi-level matching strategy

This section introduces an ontology matching approach based on the idea of a multi-level

75

match algorithm, in which each level may use different similarity measure(s).

Fig. 22 illustrates the main idea of the multi-level method for the case of two levels. It

shows various similarity measures {mi, m2 ... mi} divided into two groups, each of

which is applied at one level.

Level 1

O,

0 2

Level 2

Candidate
results

m i iri2 mk

1 J - 1
MLMA
Level-1

Can

»

Candidate results
r ei

e2

en

rrik+i mK+2 nil

O,

0 2

•

1 ' 1 ' 1 r

M L M A
Level-2

Output
1
1 =Mef}

Figure 22: A schematic description of the multi-level method

For ease of presentation, suppose we use three similarity measures divided into two levels.

The name and linguistic similarity measures are applied at the first level. We then apply a

structural similarity measure at the second level on the resulting candidate states {ei,

e2 ... en} from the first level. As the output, this method will produce the state which has

the highest similarity score value. Moreover, the resulting mapping state {ef} is measured

based on its rich structure and the highest number of correspondences between the input

ontologies. As a result, the order of applying the similarity measures will not affect the

overall quality, see Appendix C.

76

5.1.1 Tradeoff between structure and size of the mapping states

Many similarity measures have been introduced for a keyword set representation of text,

such as {ontology, matching, algorithm}. Examples of such methods include the Dice

coefficient, the Jaccard coefficient, and the Cosine coefficient [Rasmussen, 1992]. The

Dice coefficient is defined as follows:

s7 i,r2
 = (2l7inr2|)/<|7i|+ |r

2 |>

where |Tj| is the number of terms in set Tj, and |TiH T2I is the number of common terms in

Tj and T2. We will use this to develop our structure similarity measure.

Let 0\ and O2 be a pair of ontologies represented as labeled graphs, and OMMA be

the ontology induced by the similarity result SMMA, obtained by applying the basic MMA

match algorithm (which combines the similarity measures in a single step/level

operation). Let Ss,rc be the structural similarity measure S, calculated as follows, which

defines the similarities between the concepts in OMMA and those in the original input

ontologies 0\ and Oi.

Sstrc=2 h°yWMp|/(

where ^(OMMA)! is the number of relationships in the ontology OMMA, and |r(OMMA(Oi))| is

the number of relationships in the "immediate" neighborhood of OMMA in 0\. This

neighborhood of OMMA consists of the relationships of 0/ with at least one end (one of the

edge's ends) belonging to OMMA-

We can view Sstrc as a complementary measure to the output of MMA, applied at the

second level. This is justified as follows.

'(<W°>» r(0
MMA

(0 ,))

77

• The structure similarity Sstrc is mainly based on the presence of common concepts

between the matched ontologies, induced by the states calculated by MMA.

• The similarity degree between the matched ontologies may still exist, even when

there is no structural match in the result of MMA, i.e., when Sstrc = 0.

Accordingly, the combined similarity measure S is relative to SMMA, and should

not be zero in the case where Sslrc = 0. We further "smooth" the effect ofSslrc as follows:

S = SMMA + (x * Sstrc), where x = (1 - SMMA)

In the combined similarity S, suppose Sstrc= 0. This then means that the value S

depends only on the similarity measure of MMA. On the other hand, if Sstrc = 1, the

neighborhood of the concepts matched by MMA is the same, and, consequently, S will

take the maximum value. Also, since SMMA + x = 1, we have that x = 1 - SMMA,

representing the complementary part of the information described in the relationships

between the concepts in a desired state found by MMA.

As we do not want to miss a found matching state that includes a large number of

concepts matched, SMMA provides possible good matches in the input ontologies with their

similarity degrees. The extended method will determine the same collection of matched

states, but with better differentiation among them, by taking into account the structural

measures in the second level. An extension of this two level method to a multi-level

method is straightforward when the user can identify which measure(s) could or should

be applied at which level.

78

5.1.2 The MLMA Algorithm

There are many algorithms for matching techniques. The notion of multi-match

"combines" all techniques involved into a single, unified method. By searching from

technique to technique, the matching algorithm can eventually find a reasonable solution.

The main idea of our Multi-Level matching algorithm is sketched in Fig. 23.

Algorithm MLMA(S,T)
Phase 1 Initialization

Pick an initial assignment matching matrix.
/* For example, let diagonal elements in Map be equal to 1,
and so on.*/
Use the similarity functions to evaluate the similarity-
matrix.

Phase 2 Search Matching techniques
begin

Enter a similarity matching technique
/* such as the name matching technique */
Evaluate an intermediate matching state
begin

Enter another similarity matching technique
/* such as the linguistic matching technique */
Evaluate a better intermediate matching state

Begin

/* various available matching techniques,
i.e. many feasible matching techniques */

end;
end;
if the intermediate matching state is not

the final solution
/* the matching result does not satisfy

the evaluation function */
then use it as an initial solution in the
next iteration;
if the matching state satisfies the

evaluation function
then it is a candidate for the final state

end;

Phase 3 Apply the Complementary measures
/* Apply the structure similarity measure to the

candidate states of phase 2, and return the final state */

end;

Figure 23: The Multi-Level Match Algorithm

The MLMA algorithm is an update to the MMA algorithm Fig. 15. It is divided into three

phases. In phase 1, which is the initialization phase, an initial assignment for the

79

matching matrix Map is provided, as well as the functions of similarity to evaluate the

relationship matrix. In phase 2, MMA performs a search operation, which is an iterative

refinement of the Map matrices. In phase 3, the resulting mapping states from MMA will

be qualified based on the connectivity among their concepts. Then, the best possible final

state will be offered to the user.

5.1.3 Illustrative Scenario

The following example illustrates the main idea of the MLMA. For ease of

presentation, we use simple and small taxonomies. Fig. 24 shows two sample taxonomies

for Researchers (Oi) and Students (O2) of different universities.

Oi 0 2

Figure 24: Researchers (Oj) and Students (O2) ontologies

The goal is to integrate the ontolgies into a single ontology. To reduce the manual

work involved, we use a matching algorithm to identify matching entities, and then help

the middleware to integrate the schemas.

As can be seen in Fig. 24, entities Si, S2, S3, and Ti, T2, T3 are concepts, which are high-

level entities in the input ontologies Oi and O2.

For this explanation, we only use two different similarity measures to compare the

entities in S and T: name similarity (Levenshtein distance) and linguistic similarity

(WordNet). This yields the following similarity matrices for the concepts.

80

name _ concept

0.0 0.2 0.308
0.2 0.2 0.0
0.308 0.308 1.0

Zing concept

0.75 0.181 0.307
0.4 0.181 0.0
0.307 0.166 1.0

We use the evaluation function v defined in Section 4.4, which measures the threshold

value for the states obtained in the second phase of the MLMA algorithm. The outputs

are states ej, e2, ..., e6, shown in Fig. 25, which are represented as labeled directed graphs.

It shows that ei has obtained one common edge, and no common edges have been

obtained by the other states.

«2 c
K

(jh,T3

5^D
>̂ (jh, :rT)

e3

(J. 2/
j^iO
^(^rT)

Figure 25: The states determined by MMA

As shown in Table 2, ei is the "best" match found. Using the formula for

computing 'v' values for the name and linguistic similarity matrices Lname_concept and

81

Liing_concept, we obtain values 0.4 and 0.64 for name similarity vi and linguistic similarity

V2, respectively. Each entry is determined as follows. We show this for ei:

Map0.
1 o o
o l o
o o l

0.0 0.2 0.308

0.2 0.2 0.0

0.308 0.308 1.0

1 0 0

0 1 0

0 0 1

,and
0.75 0.181 0.307

0.4 0.181 0.0

0.307 0.166 1.0

1 0 0

0 1 0

0 0 1

Then, v is computed by normalizing the cost of v/ and v?as follows:

n

V(eJ = XW/V'(0 ' and fOT e>' V (e') = (W] * V l) + (W 2 * V2)
/=]

where Vj is the matching score obtained by the similarity measuring technique i,

Wj is the weight of the similarity measuring technique i, and v(em) is the score for state

em. Consequently, in this example, we used W] = W2 = 0.5.

To measure Sstrc for the mapping state Q\, we proceed as follows:

• The number of common relationships that connect common concepts to other

common concepts is 1 "works ".

• The number of relationships in Oj, with at least one end belonging to the common

concepts is 2 "works, department".

• The number of relationships in O2, with at least one end belonging to the common

concepts is 2 "works, registeredin". As a result, we obtain Sstrc = ((2*l)/(2+2)) = 0.5.

Table 2 shows the individual and combined similarity matching results for each state ej.

Note that, using only the name similarity technique, the mapping result would be e3. In

the same way, using only the linguistic technique, we would obtain ej. Also, using

Mapname_concePt, Mapijng concept, and the threshold value th, we obtain SMMA. Consequently,

the output result is state ei, which indicates that we matched the n concepts in the source

ontology S to the m concepts in the target ontology T. To be more precise, S] is matched

82

with ti, S2 with t2, and S3 with t3. Accordingly, the algorithm matches the properties and/or

instances of each pair of matched concepts.

Level 1

State

ei

e2

e3

e4

es

ee

Name

0.4

0.103

0.466

0.272

0.169

0.269

Concept
V2

0.64

0.305

0.527

0.291

0.163

0.265

SMMA

Normalized cost
v = (v, +v 2) /2

0.52

0.204

0.497

0.282

0.166

0.267

Level 2

Sstrc

0.5

0.0

0.0

0.0

0.0

0.0

S=SMMA+(X*

0.77

0.204

0.497

0.282

0.166

0.267

Ss,rc)

Table 2: Two-level individual and combined similarity match results

We can also notice the recognized quality performance of the structure measure

and how the similarity values SMMA and Sslrc are combined to compute the final measure 5.

This scenario indicates that S is always greater than or equal to SMMA for our similarity

measures. This reveals that S increases the weight of states with connected common

concepts, as opposed to the states of common concepts that are not connected.

As a result, using S, we gain the following:

83

• 5 maintains as many matched concepts as possible.

• iS can improve the matching quality of SMMA if the ontologies that are to be

matched are structurally similar. However, it will not affect SMMA at all if there is

no structure similarity in the given input ontologies.

5.1.4 Experimentation and Results

The quality comparison between the basic MMA and MLMA methods is shown in Fig.

26. As there are structural similarities between the ontologies in the first and second pair,

the MLMA increases the matching quality of their final states. Even though the

ontologies in the third test pair are structurally dissimilar, the MLMA maintains the

matching quality of the MMA without any changes, as desired.

MMA VS MLMA

I

1 1

0.9

0.8

0.7

0.5

0.4

n 1

0

*• . "•

"' •

— - | | : " • • • • - • • • - • •

• • " ' " » ^ " " " ; ' - , " • • • • • -

Bibtex ontologies Computer
ontologies

Cs-depts
ontologies

I MMA A MLMA

Figure 26: Quality comparison between the basic MMA and MLMA methods

84

5.2 Neighbor search strategy

A neighbor search strategy uses the multi-level matching technique we proposed earlier

as a backbone and performs the neighbor search to find the correspondences between

entities in the given ontologies. An important feature of this algorithm is its fast

convergence, while providing quality results, obtained by searching the neighborhood of

some initial match result. We introduce a neighbor search algorithm, with a proper

initialization as an optimization for the multi-level matching algorithm, which decreases

the computation time. We will refer to this optimized version of the MLMA algorithm as

MLMA+ [Alasoud etal, 2008].

5.2.1 Motivating Example

To illustrate the main idea of the neighbor search algorithm, consider the simple

examples shown in Fig. 27, which are taxonomies for computer ontologies Oi and O2.

O, 0 2

Figure 27: Computer Ontology Examples

As can be seen in Fig. 27, entities Si, S2, S3, and T], T2, T3 are concepts, which

are high-level entities in the input ontologies. Here |S|=3 and |T|=3, and hence the size of

the matching space would be 2 x . In general, our goal is to find a way to reduce the

search space for larger ontologies.

85

There are several methods to measure similarities between two entities, including

string similarity and linguistic similarity. We start with some similarity measure(s) in the

first level as the initial state, and then perform the neighbor search algorithm. The search

process focuses on the given initial state and expands the search through the neighbors

(Section 5.2.3 gives an illustrative example,).

5.2.2 The Neighbor Search Algorithm

The neighbor search algorithm has three phases, described in Fig. 28.

Algorithm Match(S, T)
begin

/* Initialization phase */

end

K<- 0 ;
St0 <—preliminary matching te
St£ <-St0 ;
/* Neighbor Search phase */
St <-All_Neighbors(StJ ;
While (K++ < Max_iteration)
/* Evaluation phase */

If score(StJ > score
Stf<-Stn;

end if
Pick the next neighbo

chniques(S,T);

do

(StJ

r St
St<- St - {StJ;
If St = 0 then Return Stf

end
Return St£ ;

then

G St;

f

Figure 28: The Neighbor Search Algorithm

First, in the initialization phase, a partial set of similarity measures is applied to the input

ontologies to determine a single initial state Sto for the search algorithm. In the second

phase, we search in the neighborhood of this initial state Sto. Its neighbors are the

mapping states that can be computed either by adding to or removing from Sto a couple of

vertices, obtained by toggling a bit in the similarity matrix L. So, the total number of the

86

neighbor states will be n*m. We evaluate the neighbor states using the evaluation

function v defined in Section 4.4. In the third phase (the evaluation phase), the algorithm

will apply the next level(s) similarity techniques in order to find Stf, the best possible

matching state solution.

5.2.3 Illustrative Example

Following our running example, shown in Fig. 27, we are given that entities S\, S2, S3,

and T], T2, T3 are concepts, which are high-level entities in the input ontologies.

For ease of explanation, we only use three different similarity measures applied in two

different phases. We use two similarity measures in the first phase to compute the initial

state Sto: name similarity (Levenshtein distance) and linguistic similarity (WordNet).

This yields the following similarity matrices for the concepts in this example.

name _ concept

1.0 0.1 0.375
0.125 0.167 0.0
0.125 0.0 0.0

ling concept

1.0 0.7 0.154
0.8 0.9 0.166
0.6 0.315 1.0

Suppose th > 0.45. After normalizing the cost of the two similarity matrices, we get the

matrix L. Then L is transformed into the matching matrix Mapo-i. Note that we are using

Mapo-i and Stn as synonyms.

1.0 0.4 0.265
0.463 0.534 0.083
0.363 0.158 0.5

Map,,., =
1 0 0
1 1 0
0 0 1

The binary matrix Mapo-i above corresponds to state Sto={(si, ti), (S2, ti), (S2, t2), (S3, t3)},

which indicates that entity si is matched to tj, S2 is matched to both ti and t2, and S3 is

matched to t3. Table 3 indicates the binary matrix for other neighboring states and their

87

score values. In the search phase (the second phase), 9 neighbors of Sto will be evaluated,

from which the algorithm picks the best candidate(s) for the next level.

To reduce the cost of the evaluation phase, we keep \x%~\ of the states with the

highest weight for the next level. The reasons for using x% rather than, e.g., using a

threshold value for filtering the candidate states, are as follows. First, this ensures that

there will be some candidate states in the next level to evaluate. This may not be possible

if we consider a high value as the threshold, leaving no candidate for the next iteration. A

second reason is that, in general, users may have no knowledge of the computed score

values to pick a suitable threshold value. Now, choosing x=50%, the candidate states for

the next level will include Stn2, Stn4, Stns, St„7, and Stn9. In phase three, we apply more

similarity measures to the state neighbor candidate(s) Stn. For this phase, we apply the

structure similarity measure proposed in (Section 5.1.1) to define the structural

similarities between the states identified in phase two and those in the original ontologies

S and T. This measure is defined as follows.

vgtrc=2 \r(Stn)\/(\r(S)\+\r(T)\)

where | r(Stn) | is the found number of relationships in the candidate(s) state neighbors

St„, and | r(S) | is the number of relationships in the immediate neighborhood of St„ in S.

This neighborhood of St„ consists of the relationships of {S or T) with at least one end

(one of the edge's ends) belonging to Stn. Finally, the search algorithm will yield St4,

which has a highest overall score value V for being structurally more similar.

V = Vstn+(y*Vstrc">> where 0<y^]

In the combined similarity V, suppose Wsirc
= 0. This then means that V depends

only on the similarity measures used in the first phase. On the other hand, if Vstrc=\, the

88

neighborhood of the concepts matched by the second phase for state St„ is the same as

those in the original ontologies S and T, and consequently V will take the maximum

value.

Neighbor

number

St„,

Stn2

Stn3

St„4

Stn5

St„6

stn 7

Stn8

Stn9

Matched pairs

{(S2, t i) , (S2, t2), (S3, t3)}

{(Si, t i) , (Si, t2) , (S2, t]), (S2, t2), (S3, t3)}

{(Si, t ,) , (Si, t3) , (S2, t i) , (S2, t2), (S3, t3)}

{(Si, t]), (S2, t2), (S3, t3)}

{(Si,ti) , (S2, ti), (S3 , t3)}

{(S], t ,) , (S2, t ,) , (S2, t2), (S2, t3) , (S3, t3)}

{(S], t i) , (S2, t ,) , (S2, t2), (S3, t i) , (S3, t3)}

{(S], t i) , (S2, t i) , (S2, t2), (S3, t2) , (S3, t3)}

{(S],ti), (S2 , t i) , (S2, t2)}

Score value based on

v s t n

0.499

0.5794

0.5524

0.678

0.6543

0.516

0.572

0.531

0.6656

Table 3: Score value for each state neighbor

5.2.4 Experiments and Results

We have evaluated the performance of our proposed framework using two factors:

quality and time. For the quality of match results, we compare our result with ten

algorithms presented in the Ontology Alignment Evaluation Initiative OAEI-06 and

OAEI-07 [OAEI, 2007]. In this comparison study, we used the OAEI 2007 benchmark

test samples suite. The test numbers of the ontologies we used from this benchmark suite

89

included 101, 103, 104, 206, 228, and 230. Ontology 101 is the reference ontology, and,

hence, in test case 101, ontology number 101 is matched to itself, and in test 103,

ontology 101 is matched to ontology 103, etc.

For the running time, we conducted numerous experiments to show the impact of the

proposed framework on the overall performance.

All these tests have been performed on a Pentium 4, 2800, with 768 MB of RAM,

running Windows XP, and with no applications running but a single matcher. To measure

a match quality, we used precision, recall, and F-measure presented in Section 4.5.

Case study (1): In this case study, we used the benchmark test samples suite OAEI 2007

[OAEI, 2007]. Except for case 206 in the suite, which is related to French translation, in

all other cases considered, we noted that when the precision value was less than 1, the

recall value was equal to 1. This indicates that the systems found all the correct mappings

expected by the experts and added extra unwanted mappings. The precision of our search

algorithm, on the other hand, did not fall below the recall value, i.e., no extra unwanted

mappings were returned by our framework. For test case 230, ontology 101 was matched

to ontology 230. Basically, ontology 230 is a modified version of ontology 101, with a

changed structure, but the same entity names. In this test case, the main reason why the

matching results of all other systems included unwanted mappings is that these systems

combine different similarity measures in one shot. Moreover, they combine name,

linguistic, and structure similarities at one level and aggregate their results in order to

provide the output mappings. However, as our algorithm uses different levels for

90

different similarities, its result was not affected by the structure changes in the input

ontology 230.

For test case 206, the reason why the matching result of our search algorithm was not

fulfilled was that it did not use translating techniques as one of its underlying techniques.

Fig. 29 shows the comparison of the matching quality between our algorithm and the

other ten systems.

Moreover, Fig. 30 shows an approximate time comparison, indicating the scalability of

our search algorithm (logarithmic scale).

Case study (2): In this case study, we used three pairs of ontologies: (1) the MIT bibtex

ontology and the UMBC publication ontology, which are both publicly available, (2)

computer ontologies, and (3) ontologies about computer science departments. We created

the second and third pairs. The execution time, in seconds, for the neighbor search

algorithm over these test cases was measured as 4.68, 0.547, and 1.719, respectively. A

naive implementation of MLMA would not perform as desired. The MLMA+ is

polynomial with respect to the size of the search space 0((|E1x|E'|)z), where |Ea| is the

number of entities in S. All in all, we consider the neighbor search algorithm as an

optimization for MLMA. We called it MLMA+.

91

MLMA+: Quality-evaluation

0.96

0.86

0.76

„ 0.66

U
05

| 0.56
1

0.46 •

0.36

—•—Lily

^ — A S M O V

— — DSSim

—•—falcon

- - • - hmatch

—A- jhuapl

_ ^ _ S E M A

* PiMftM

B—
• - - -

101

0.9796

1.0000

1.0000

1.0000

1.0000

0.9529

1.0000

1.0000

1.0000

1.0000

1.0000

1
;5j

- - - - - - -

103

0.9796

1.0000

1.0000

1.0000

1.0000

0.9529

1.0000

1.0000

1.0000

1.0000

1.0000

iv
• \ ,

k \ \

1 \1»
1 11

k

k

1

k

104

0.9796

1.0000

1.0000

1.0000

1.0000

0.9529

1.0000

1.0000

1.0000

1.0000

1.0000

— * — -

i x / /
v \ J?

V
k J L - _ _ . i . . L f

i

* j

• •

• a

• .

* j

• • •
206

0.5346

0.9950

0.9950

0.5563

0.9637

0.2800

0.7385

0.9548

0.8096

0.9950

0.5818

/ / :
£ a

M i

i? J

•

j

j

j /

J /

• /

228

0.5507

1.0000

1.0000

1.0000

1.0000

0.9700

1.0000

1.0000

1.0000

1.0000

1.0000

\

/

230

0.8304

0.9691

0.9950

0.9848

0.9691

0.9305

0.9583

0.8571

0.9691

0.9691

1.0000

Figure 29: Quality Comparison

92

Time- c omp aris on

J—K

A
H

100 -|

10 -

1 -

0.1 -

—•—COMA

—a—FALCON
—A—.. Q P M A

^—RiMOM

- • - M L M A +

- + » i ».

101

15.9

2.7

10

4.72

8.812

103

16.5

1.2

9

2.84

8.25

104

13.7

1.2

8

2.52

8.25

^ . • ••

206

14

1.1

11

5.1

6.218

228

11.8

0.5

16

1

8.266

230

11.8

1.1

8

2.19

8.25

Figure 30: Efficiency Comparison

5.3 Recommendation Analysis for Ontology Matching

Techniques

In the following we propose a framework for analyzing and recommending matching

techniques. A main feature of this framework is that it improves the structure matching

techniques and the end result accordingly. We will refer to this improved version of the

MLMA+ algorithm as MLMAR [Alasoud et al, 2009].

93

5.3.1 Motivating example

Through the following example, we illustrate the main ideas of the proposed technique.

Fig. 31 shows two sample taxonomies for two computer ontologies Oj and O2.

O, 0 2

Figure 31: Computer Ontologies

Given the input ontologies and the matching techniques, it is difficult to specify that

concept LT in Oi corresponds to concept PORTABLE in O2. Suppose the input ontologies

Oi and O2 are represented in description logic as follows:

LT c COMPUTER PORTABLE c 3has _ cpu.CPU
O,: COMPUTER ^THING 02 : 3has_cpu.CPU^COMPUTER

PROCECCOR c THING CPU c THING

where cz denotes subsumption relationships such as is-a, 3 denotes the existential

quantification (see Section 2.1), and hascpu is a binary relationship (see Section 2.2).

Now, using description logic (DL) reasoning techniques on these ontologies

before matching them can help infer useful information to be used by a matching

technique. For instance, applying DL reasoning technique on O2 yields RO2, which is

shown in Fig. 32. However, no further inferences can be obtained from O]. In other

words, RO] is 0\.

94

As a result, matching ROj to RO2 assists the similarity matching technique

(structure-based technique) to identify the relationship between the concept LT in ROi

and the concept PORTABLE in R02.

R02

Figure 32: O2 after reasoning

Fig. 33(a) shows the initial taxonomy of ontology number 232 from the benchmark test

samples suite of the Ontology Alignment Evaluation Initiative OAEI-07 (Section 5.3.5

gives more details). After applying the DL reasoning technique, we get more structural

information. Therefore, this technique supports the structure-based matching techniques

in providing better matching results when ontology 232 is matched to reference ontology

101. Fig. 33(b) shows the results of applying DL reasoning techniques to ontology 232.

All in all, the user should be supported in deciding which underlying technique, or

combination of techniques, is best suited for the matching task at hand.

95

^Thing
©Academic
IS Address

•-•Article
"•••Book
- •Booklet
•-•Chapter
""•Collection
••"•Conference
••••Date

""•Deliverable
x* InBook
f InCollection
" InProceedings

Informal
Institution
Journal

' 'LectureNotes
List

C Manual
f»MastersThesis
",Misc
* Monograph

C-MotionPicture
• Organization

PageRange
•-•Part
' # Person

-•#PersonList
•#PhdThesis
- ! ! Proceedings

••••% Publisher
••"•Reference
••Report

••"•School
••"•TechReport
""•Unpublished
""•genid84

•••••••Thing

f © Nothing
\ ©Address
\ ©Booklet
r ©Chapter
[t# Collection
I- ©Conference
j- #Date
r 8 Deliverable
f ©Institution

Journal
f Q LectureNotes

t - # L i s t
1 <:JPersonList

\ UMastersThesis
\ 0Misc
\ €? Monograph
| <jMotionPicture
\ •£> Organization
f WPageRange
| O Person
f #PhdThesis
J Proceedings
[O Publisher

t'-#Reference
[# Academic

| ? HIBook
\ # Informal
? # Manual

\ t - -#Par t
j j I--©Article
! | I I I InBook

[l i t InCollection
1 InProceedings

[• Report
- # Unpublished

H I P School
1 #TechReport
1 •genic)84

(a) before applying DL reasoning (b) after applying DL reasoning

Figure 33: Taxononmies of onotology 232

96

5.3.2 A Framework for Recommendation Analysis

In this section, we introduce a technique for the analysis and reuse of matching methods,

in order to identify and recommend matching methods for a given pair of ontologies.

Furthermore, the technique assists the structural similarity measuring methods, optimizes

the matching process by omitting the unpractical matching methods, and therefore

improves the end result's matching quality and efficiency.

Fig. 34 illustrates the main idea of the technique. It shows the different similarity

measures {mi, ni2 ... mk}, together with ROi and RO2, that are fed into the

recommendation process, which will return a rank of the similarity measures considered

(Mj). Moreover, users have the option to use the recommended similarity measures list

(Mj) or to ignore it and use their own ranked similarity measure list (the user's list).

°1

o,

nri,

m2

IIIL — •

R(

—^

1 f y r

Ontology
Reasoner

3i
1 r 1

R02

Recommendation
Module

MLMA+

1

User's list

L

Recommended list

M, c { m , , m2... mk)

L

Output
w~

Figure 34: A recommendation analysis framework

97

Mj is based on the appropriate similarity methods considered for matching the entities of

Oi to the entities of O2. Furthermore, ROi and RO2 are obtained by applying RACER

[Haarslev and Moeller, 2001b]. As a result, the Multi-Level Matching Algorithm

(MLMA+) that performs a neighbour search takes these recommendations into account,

in order to find the correspondences between entities in the given ontologies.

5.3.3 Specific techniques used in the proposed framework

For ease of presentation, we focus on the techniques we have so far implemented in our

framework. The framework, however, is flexible, and thus could incorporate any other

matching techniques. In our work, we considered a string-based technique (Levenshtein

distance), linguistic-based technique (WordNet), and structure-based technique.

The string and linguistic based techniques evaluate the given entities by analyzing their

names, labels and comments. They consider both the lexical and linguistic features as

terms of comparison. Moreover, the structure-based techniques take into account the

structural layout of the ontologies considered, e.g., graph matching. In this work, we are

improving the structure similarity presented in [Alasoud et al., 2007] by considering the

inferred input ontologies (ROi and RO2) by using a DL reasoner, i.e., RACER on the

input pair of ontologies (CM and O2). Consequently, our structure similarity measure will

be updated as follows:

Sstrc~2 r(O0„m)\/[\r(0^ (ROl))| + \r(0^ (R02))

where | r(0outPut) | is the number of relationships in the output ontology (a

neighbour/candidate result), and | r(0output(ROj)) | is the number of relationships in the

immediate neighborhood of 0outPut in the inferred input ontology ROj. This

98

neighbourhood of 0outPut consists of the relationships of RO; with at least one end (one of

the edge's ends) belonging to 0outPut- In other words:

• | r(Ooutput) | is the number of common relationships that connect common concepts

to other common concepts (immediate neighbors). The resulting correspondences

between entities (concepts/relationships) in ROi and RO2 are what is meant by

common.

• I r(0output(RO])) I is the number of relationships in ROj, with at least one end

belonging to the common concepts belonging to O0UtPut-

• I r(0outPut(R02)) I is the number of relationships in RO2, with at least one end

belonging to the common concepts belonging to 0outPut-

5.3.4 Similarity recommendation technique

In this subsection, we illustrate a heuristic technique which we used in our framework, in

order to offer users a ranked list (Mj) of appropriate techniques for the matching task at

hand. The string/linguistic based techniques are evaluated as follows:

M = [(number of concept pairs with the same label/synonym) / (max (d , C2))]

where "number of concept pairs with the same label/synonym" represents the number of

pairs that have the same label for the name-based techniques and the same synonym for

the linguistic-based technique, such that {(c,,c2)| c, e RO, and c2 e R02} .

We use labels for string-based techniques and synonyms for linguistic-based techniques.

Further, max (Ci, C2) stands for the maximum number of concepts either in RO] or RO2.

The structure-based techniques are evaluated as follows:

M = (number of common concepts) / (maxnumberofnonleaf (Cj, C2))

99

Where, number of common concepts represents the cardinality of the set

{(c,,c2)\ c, s ROt and c2 e R02}, such that both ci and C2 have the same number of sub-

concepts and the same depth. The maxnumberofnonleaf (Ci, C2) denotes the

maximum number of concepts that have sub concepts either in ROi or RO2.

These heuristic techniques are not a precise measure of the real matching similarities of

the entities for the input pair of ontologies. However, they can estimate the features of the

two ontologies and provide the ranked list of the appropriate matching techniques, to be

used accordingly.

5.3.5 Experiments and results

We used our experimental setup described in Section 5.2.4, and compared our result with

ten algorithms presented in the OAEI-06 and OAEI-07. For the time factor, we conducted

numerous experiments to show the impact of the proposed framework on overall

performance. We use MLMAR to refer to MLMA+ with the recommendation analysis

technique included.

The test numbers of the ontologies we used from the OAEI 2007 benchmark test suit

included 101, 103, 104, 205, 206, 209, 224, 228, 230, 232, and 239. Fig. 35 shows the

comparison of the matching quality of our algorithm with the other ten systems.

In addition, Fig. 36 shows a time comparison indicating the scalability of our framework

(please note the logarithmic scale).

Table 4 shows the initial estimation for the similarity measures, as well as a

description of each test number. As can be noted, in test numbers 101, 103, 104, 224, 228,

and 230, the modifications made to the reference ontology did not affect the string,

100

linguistic, and structure similarities, and hence all the matchers obtained the highest

similarity value. Accordingly, our framework will take advantage of not running all the

matchers and will offer only a single matcher to the user. In such scenarios, we can often

use string similarity because it is the most efficient one and it is the backbone for other

matchers.

ASMOV

falcon

LiLY

OntoDNA

OWL-CM

priorplus

RiMOM

sambo

- - -SEMA

• - - xsom

MLMAR

Figure 35: Quality Comparison

101

Furthermore, in test numbers 205 and 209, the framework offers both the

linguistic and the structural measures. In test 206, both string and structure similarity

measures were used. Moreover, test 232 shows the best scenario where there is no

hierarchy, and using the DL reasoning technique (RACER), the structure similarity jumps

from 0.0 to 0.7. Consequently, we applied both the string and structure similarities in this

test. Lastly, in test number 239, the string similarity was applied.

In general, these recommendations greatly affected the performance time and placed our

framework (MLMAR) at the top of the compared algorithms, based on average time.

Also, they considerably improved the efficiency of MLMA+ by using only the

recommended similarity techniques, rather than using all of them. Moreover, applying

different order of the similarity matching techniques will not affect the matching quality.

However, it will slightly affect the running time, see Appendix D.

1000

-A—OntoDNA 6.63;6.3616.14

-e—RiMOM ; 4

! SEMA

4 I 4

10 ! 9 ' 8 I 9 I 11
I L I

59.2 60.1,62.4 |75.8|71.2 |71.6

6.16 4.95 5.97 6.42;4.94

8 I 16 i 8 16

59 :17.2:58.2 54.516.4

-MLMAR 0.2 0.3 j 0.3 ' 3.8 6.21 3.85! 0.3 ; 0.3 0.3 3.8 0.3

-MLMA+ 8.81 8.25 8.25! 8.8 6.22 7.85i 8.2 8.27 8.25 8.2 8.24

Figure 36: Time Comparison

-»—ASMOV

- • — falcon

- * — OntoDNA

_e RiMOM

SEMA

- - • - - x s o m

—a—MLMAR

—MLMA+

102

The reason that MLMAR may not perform as a first rate system is that, in some

test cases, i.e. 205, 206, 209, and 232, a combination of low efficiency similarity measure

techniques, such as linguistic and structural, should be used. These ontologies, in some

sense, were considered as a worst case scenario where all matching techniques needed to

be applied. However, in general, matching tools are equipped with numerous underlying

similarity measuring techniques and using the recommended techniques will reduce the

number of candidate techniques for a matching task at hand. Consequently, the matching

process time decreases remarkably.

Test
No.

101

103

104

205

206

209

224

228

230

232

239

String
Similarity

1

1

1

0.125

0.1

0.125

Linguistic
Similarity

1

1

1

0.85

0.1

0.85

1

1

1

1

1

Structure
Similarity

1

1

1

1

1

1

1

1

0.78

0.7

0.55

Test
Description

Ontology 101 is matched to itself

The generalization basically removes
owl:unionOf and owlroneof and the
Property types (owhTransitiveProperty).
This test compares the ontology with its
restriction in OWL Lite (where unavailable
constraints have been discarded).
Labels are replaced by synonyms.
Comments have been suppressed.

The ontology translated into French

Synonyms are used
All individuals have been suppressed from
the ontology.
Properties and relations between objects
have been suppressed.
Some components of classes are expanded
in the class structure (e.g., year, month, day
attributes instead of date).

No Hierarchies and no instances

Flattened Hierarchy and no properties

Table 4: Initia estimations for the similarity measures

All in all, for the matcher composition systems, using a recommended subset of

their similarity measures list should improve the final matching results in terms of time

103

and quality. Moreover, the recommendation techniques improve the overall running time,

as it is unnecessary to reuse and combine all their underlying similarity measuring

methods. Using only a recommended subset should decrease the average running times.

Furthermore, the recommendation techniques can enhance the matching quality by

excluding the unworkable similarity matching methods for a task at hand. For instance, if

there is no string, linguistic, or structural similarity between a given pair of input

ontologies, then including, combining, and aggregating the matching results retrieved by

string, linguistic, or structural similarity measuring methods would affect the overall

matching result quality in a negative manner.

5.4 Summary and Remarks

In this chapter, we discussed the following:

> We proposed a multi-level extension of MMA, called MLMA, which assumes

that the collection of similarity measures are partitioned by the user, and that there

is a partial order in the partitions, also defined by the user.

> A main characteristic of the MLMA technique is that it combines existing

matching techniques to provide a solution to a given ontology matching problem.

Moreover, the optimal matching state has been considered, based on its rich

structure on one hand, and the number of common concepts of the matched

ontologies on the other.

> Applying the MLMA method will not decrease the number of matching concepts

(size) and will increase the similarity measure of the state that has high structural

similarity among its concepts (structure).

104

> In contrast to some other approaches, our proposed similarity measure ensures

that MLMA works even in a case where there are no structural similarities in the

given input ontologies.

> We further investigated the efficiency improvements of MLMA by introducing an

optimization step. We call the result MLMA+.

> MLMA+ improves the efficiency of MLMA considerably due to its use of the

neighbor search algorithm. It proceeds by computing an initial state and then

performing a search in its neighboring states.

> Moreover, we studied the impact of different choices of strategies for matching

ontologies and proposed a framework for analyzing the reused matching

techniques (MLMAR).

> MLMAR shows the importance of assisting the user by suggesting appropriate

matching strategies. The user often has little or no idea about the suitability of

matching strategies for a given matching task. As a result, the quality of matching

results and processing times will be affected by the method chosen.

> The main advantages of the MLMAR are that (1) it is independent from any

individual matching technique, (2) it infers a hidden structural relationship among

the entities of the input ontologies, and consequently makes the structure-based

similarity measure more precise, and (3) it considerably improves the efficiency

of the matching process in terms of time.

105

6. Conclusion and Future Work

6.1 Conclusion

The motivation for this research was the need for ontology matching (Sec 1.1) in many

emerging applications. We studied different matching techniques (Sec 2.4) and their

implementations (Sec 2.5). Also, we presented a novel framework (Sec 3.1) to support

information integration from ontology data sources. Furthermore, we discussed different

approaches to ontology integration, and how a combination of virtual and materialized

approaches, called the hybrid approach, can be used in order to combine the advantages

of both.

In order to support the hybrid approach with a matching strategy, we proposed the

multi-matching strategy (Sec 4.3). This strategy benefits from existing ontology match

techniques and "combines" their match results to provide enhanced ontology matching

results.

To obtain better quality matching results, we extended the multi-matching

strategy by introducing a multi-level matching strategy (Sec 5.1). This technique

106

assumes that the collection of similarity measures is partitioned by the user, and that there

is a partial order on these partitions, also defined by the user. The main characteristic of

the MLMA technique is that its application will not decrease the number of matching

concepts (size), but will increase the similarity measure of states that have high structural

similarity among their concepts (structure). Our proposed similarity measure also ensures

that MLMA works well even when there are no structural similarities in the given input

ontologies.

We investigated the efficiency of MLMA by introducing a neighbor search

algorithm (Sec 5.2) which, given an initial mapping state among entities in two

ontologies, searches the neighboring states and returns a list of candidate states, ranked

based on their evaluation scores. We incorporated this search algorithm into MLMA, and

refer to it as MLMA+, which proceeds by computing an initial state and then performing

a search in neighboring states. We have developed a running prototype of MLMA+ and

conducted experiments using well-known benchmark ontologies.

In this work, we studied the impact of the choice of matching strategies and

proposed a framework for analyzing the reused matching techniques (Sec 5.3). The user

often has little or no idea about the suitability of the particular matching strategies for a

given matching task. Consequently, the quality of matching results and processing times

are affected by the method chosen. The main advantages of the proposed framework are

(1) it is independent from the individual matching techniques used, (2) it infers a hidden

structural relationship among the entities of the input ontologies, and consequently makes

the structure-based similarity measure more precise, and (3) it considerably improves the

matching process time.

107

We evaluated our framework against other approaches using different pairs of

ontologies. Our results indicated better performance in terms of both quality and time.

6.2 Future Work

This section highlights some possible future directions for advancing the ontology

matching techniques we have proposed.

• It is not easy for the user to identify different weights of individual matchers

in order to get acceptable matching results. As a result, it would be interesting

to automate the process of combining the individual matchers and libraries of

matchers.

• Each individual matcher has parameters that should be properly set to get the

best possible match results. However, users cannot be expected to know or

find correct parameters by themselves. Assisting tools are required to alleviate

the situation. Machine learning techniques could be used to achieve this.

• Packaging MLMAR and making it available for other users to evaluate and

compare the provided results. Also, providing a user interface would help

users interact with the system to effectively review matching results and to

modify them in an interactive manner.

108

References

[Agrawal and Srikant, 2001] Agrawal, R. and Srikant, R. On integrating catalogs. In Proc.

10th International WWW Conference, pages 603-612 Hong Kong (CN), 2001.

[Alasoud et al, 2009] Alasoud, A., Haarslev, V. and Shiri, N. An Empirical Comparison

of Ontology Matching Techniques. Accepted for publication in Journal of

Information Science. 2009. 20 pages.

[Alasoud et al, 2008] Alasoud, A., Haarslev, V. and Shiri, N. An Effective Ontology

Matching Technique. In: "Foundations of Intelligent Systems", Proc. of ISMIS'08, A.

An et al. (Eds.), Toronto, Canada, LNAI, Vol. 4994, Springer, pp. 585-590. 2008.

[Alasoud et al, 2007] Alasoud, A., Haarslev,V., and Shiri, N. A Multi Level Matching

Algorithm for Combining Similarity Measures in Ontology Integration, in ODBIS

VLDB-Workshop Post-proceedings, LNCS 4623, Springer-Verlag, Berlin,

Heidelberg, pp. 1-17, 2007.

[Alasoud et al, 2005] Alasoud, A., Haarslev,V., and Shiri, N. A hybrid approach for

ontology integration. In Proc. VLDB Workshop on Ontologies-based techniques for

DataBases and Information Systems (ODBIS), Trondheim, Norway, September, pp.

18-23,2005.

[An et al., 2006] An, Y., Borgida, A., and Mylopoulos, J. Discovering the semantics of

relational tables through mappings. Journal on Data Semantics, VII: 1-32, 2006.

[An et al, 2005a] An, Y., Borgida, A., and Mylopoulos, J. Constructing complex

semantic mappings between XML data and ontologies. In Proc. 4th International

109

Semantic Web Conference (ISWC), volume 3729 of Lecture notes in computer

science, pp. 6-20, Galway (IE), 2005.

[An et al, 2005b] An, Y., Borgida, A., and Mylopoulos, J. Inferring complex semantic

mappings between relational tables and ontologies from simple correspondences. In

Proc. 4th International Conference on Ontologies, Databases and Applications of

Semantics (ODBASE), vol. 3761 of LNCS, pp. 1152-1169, Agia Napa (CY), 2005.

[Baader et al, 2007] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-

Schneider, P. (eds). The Description Logic Handbook: Theory, Implementation, and

Applications (Cambridge University Press, 2007, 2nd edition).

[Bach and Kuntz, 2005] Bach, T. and Kuntz, R. Measuring similarity of elements in

OWL ontologies. In Proc. AAAI Workshop on Contexts and Ontologies (C&O), pp.

96-99, Pittsburgh (PA US), 2005.

[Bach et al, 2004] Bach, T., Kuntz, R., and Gandon, F. On ontology matching problems

(for building a corporate semantic web in a multi-communities organization). In Proc.

6th International Conference on Enterprise Information Systems (ICEIS), pp. 236-243,

Porto (PT), 2004.

[Batini et al, 1986] Batini, C , Lenzerini, M., and Navathe, S. A comparative analysis of

methodologies for database schema integration. ACM Computing Surveys,

18(4):323-364, 1986.

[Bernstein and Rahim, 2000] Bernstein, P. and Rahm, E. Data warehouse scenarios for

model management. In Proc. 19 International Conference on Conceptual

Modeling(ER), LNCS 1920, pp. 1-15, Salt Lake City (UTUS), 2000.

110

[Bouquet et al, 2003a] Bouquet, P., Magnini, B., Serafini, L., and Zanobini, S. A SAT-

based algorithm for context matching. In Proc. 4th International and Interdisciplinary

Conference on Modeling and Using Context (CONTEXT), volume 2680 of Lecture

notes in computer science, pp. 66-79, Stanford (CA US), 2003.

[Bouquet et al, 2003b] Bouquet, P., Serafini, L., and Zanobini, S. Semantic coordination:

A new approach and an application. In Proc. 2nd International Semantic Web

Conference (ISWC), volume 2870 of Lecture notes in computer science, pp. 130-145,

Sanibel Island (FL US), 2003.

[Bouquet et al, 2006] Bouquet, P., Serafini, L., Zanobini, S., and Sceffer, S.

Bootstrapping semantics on the web: meaning elicitation from schemas. In Proc. 15l

International WWW Conference, pp. 505-512, Edinburgh (UK), 2006.

[Calvanese and Giacomo, 2005] Calvanese, D. and De Giacomo, G. Data Integration: A

Logic Based Perspective. Al Magazine, 26(1), 2005.

[Calvanese et al, 2004] Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R., and

Vetere, G. DL-Lite: Practical reasoning for rich DLs. In Proc. Description Logic

Workshop, pp. 92-99, 2004.

[Calvanese et al, 2002] Calvanese, D., De Giacomo, G., Lenzerini, M. A framework for

ontology integration. In I. Cruz, S. Decker, J. Euzenat, and D. McGuinness, editors,

The Emerging Semantic Web — Selected Papers from the First Semantic Web

Working Symposium, pp. 201-214. IOS Press, 2002.

[Castano et al, 2006] Castano, S., Ferrara, A., and Montanelli, S. Matching ontologies in

open networked systems: Techniques and applications. Journal on Data Semantics, V:

25-63, 2006.

I l l

[Castano et al, 2005] Castano, S., Ferrara, A., and Montanelli, S. Dynamic knowledge

discovery in open, distributed and multi-ontology systems: Techniques and

applications. In David Taniar and Johanna Rahayu, editors, Web semantics and

ontology, chapter 8, pp. 226-258. Idea Group Publishing, Hershey (PA US), 2005.

[Chawathe et al, 1994] Chawathe, S., Molina, H., Hammer, J., Ireland, K.,

Papakonstantinou, Y., Ullman, J., and Widom, J. The TSIMMIS project: Integration

of heterogeneous information sources. In Proc. 16th Meeting of the Information

Processing Society of Japan (IPS J), pp. 7-18, Tokyo (JP), 1994.

[Cohen et al, 2003] Cohen, W., Ravikumar, P., Fienberg, S. A Comparison of String

Distance Metrics for Name-Matching Tasks. IJCAI-03: 73-78, 2003.

[Doan et al, 2004] Doan, A., Madhavan, J., Domingos, P., and Halevy, A. Ontology

matching: a machine learning approach. In Staab, S. and Studer, R., editors Handbook

on ontologies, ch.18, pp. 385-404. Springer Verlag, Berlin (DE), 2004.

[Do et al, 2002] Do, H., Melnik, S., Rahm, E. Comparison of schema matching

evaluations. Proceedings of workshop on Web and Databases, pp. 221-237. 2002.

[Draper et al, 2001] Draper, D., Halevy, A., and Weld, D. The nimble integration engine.

In Proc. 20th International Conference on Management of Data SIGMOD pp. 567-

568, Santa Barbara (CA US), 2001 .

[Dzbor et al, 2004] Dzbor, M., Motta, E., and Domingue, J. Opening up Magpie via

semantic services. In Proc. 3rd International Semantic Web Conference (ISWC), vol.

3298 of LNCS, pp. 635-649, Hiroshima (JP), 2004.

[Dzbor et al, 2003] Dzbor, M., Domingue, J., and Motta, E. Magpie - towards a

semantic web browser. In Proc. 2nd International Semantic Web Conference (ISWC),

112

volume 2870 of Lecture notes in computer science, pp. 690-705, Sanibel Island (FL

US), 2003.

[Euzenat and Shvaiko, 2007] Euzenat, J., Shvaiko, P. Ontology matching, Springer

Verlag, Heidelberg (DE), 333 p., 2007

[Euzenat et al, 2007] Euzenat, J., Isaac, A., Meilicke, C , Shvaiko, P., Stuckenschmidt,

H., Svab, O., Svatek, V., Robert, W., Hage, V. and Yatskevich, M. Results of the

ontology alignment evaluation initiative. Proc. of the ISWC workshop on Ontology

Matching, Busan, Korea, Nov. 2007.

[Euzenat et al, 2006] Euzenat, J., Mochol, M., Shvaiko, P., Stuckenschmidt, H., Svab, O.,

Svatek, V., Robert, W., Hage, V., and Yatskevich, M. Results of the ontology

alignment evaluation initiative 2006. Proc. of ISWC workshop on Ontology Matching,

Athens, pp. 73-95, 2006.

[Euzenat et al, 2004] Euzenat, J., Le Bach, T., Barrasa, J., Bouquet, P., Bo, J., Kuntz, R.,

Ehrig, M., Hauswirth, M., Jarrar, M., Lara, R., Maynard, D., Napoli, A., Stamou, G.,

Stuckenschmidt, H., Shvaiko, P., Tessaris, S., Acker, S., and Zaihrayeu, I. State of

the art on ontology alignment. Deliverable D2.2.3, Knowledge web NoE, 2004.

[Euzenat and Valtchev, 2004] Euzenat, J. and Valtchev, P. Similarity-based ontology

alignment in OWL-lite. In Proc. 15th European Conference on Artificial Intelligence

(ECAI), pp. 333-337, Valencia (ES), 2004.

[Euzenat, 1994] Euzenat, J. Brief overview of T-tree: the Tropes taxonomy building tool.

In Proc. 4th ASIS SIG/CR Workshop on Classification Research, pp. 69-87

Columbus (OH US), 1994.

113

[Fensel, 2004] Fensel, D. Ontologies: a silver bullet for knowledge management and

electronic commerce. Springer, Heidelberg (DE), 2nd edition, 2004.

[Fensel et al, 2002] Fensel, D., Harmelen, F., Ding, Y., Klein, M., Akkermans, H.,

Broekstra, J., Kampman, A., Meer, J., Sure, Y., Studer, R., Krohn, U., Davies, J.,

Engels, R., Iosif, V., Kiryakov, A., Lau, T., Reimer, U., and Horrocks, I. On-To-

Knowledge in a Nutshell. Special Issue of IEEE Computer on Web Intelligence (WI).

2002.

[Gangemi et al, 2002] Gangemi, A., Fisseha, F., Pettman, I., Pisanelli, D., Taconet, M.,

Keizer, J. A Formal Ontological Framework for Semantic Interoperability in the

Fishery Domain. Proceedings of the ECAI-02 Workshop on Ontologies and Semantic

Interoperability, pp. 16-30, Lyon, France. 2002.

[Giunchiglia et al, 2005] Giunchiglia, F., Shvaiko, P., and Yatskevich, M. Semantic

schema matching. In Proc. 13th International Conference on Cooperative Information

Systems (CoopIS), vol. 3761 of LNCS, pp. 347-365, AgiaNapa (CY), 2005.

[Giunchiglia et al, 2003] Giunchiglia, F. and Shvaiko, P. Semantic matching. The

Knowledge Engineering Review, 18(3):265-280, 2003.

[Gotoh, 1981] Gotoh, O. An improved algorithm for matching biological sequences.

Journal of Molecular Biology, 162(3):705-708, 1981.

[Gruber, 1993] Gruber. T. A Translation Approach to Portable Ontology Specifications.

In: Knowledge Acquisition, An International Journal of Knowledge Acquisition for

Knowledge Based Systems, Vol. 5, No. 2, pp. 199-220. June 1993.

114

[Haarslev et al, 2004] Haarslev, V., Moller, R., and Wessel, M. Querying the Semantic

Web with Racer + nRQL. Proceedings of the KI-2004 International Workshop on

Applications of Description Logics (ADL'04), Ulm, Germany, September 24, 2004.

[Haarslev and Moeller, 2001a] Haarslev, V. and. Moeller, R. High performance

reasoning with very large knowledge bases: A practical case study. In B. Nebel H.

Levesque, editor, International Joint Conference on Artificial Intelligence

(IJCAI'2001), Washington, USA. Morgan- Kaufmann, pp. 161-166 August 2001.

[Haarslev and Moeller, 2001b] Haarslev, V. and Moeller, R. RACER system description.

In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001), vol. 2083 of

LNAI, pp. 701-705. Springer, 2001.

[Halevy et al, 2005] Halevy, A., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock,

J., Rosenthal, A., and Sikka, V. Enterprise information integration: successes,

challenges and controversies. In Proc. 24th International Conference on Management

of Data (SIGMOD), pp. 778-787, Baltimore (MD US), 2005.

[Hamming, 1950] Hamming, R. Error detecting and error correcting codes. Technical

Report 2, Bell System Technical Journal, 1950.

[Heflin and Hendler, 2000] Heflin, J. and Hendler, J. Dynamic ontologies on the Web.

Proceedings of 17th National Conference on Artificial Intelligence (AAAI-2000).

[Hu et al, 2007] Hu, W., Zhao, Y., Li, D., Cheng, G., Wu, H., and Qu, Y. The results of

Falcon-AO. In Proc. International workshop on Ontology Matching (OM), Busan,

Korea. Pp.170-178. November 11, 2007.

115

[Ichise et ai, 2003] Ichise, R., Takeda, H., and Honiden S. Integrating multiple internet

directories by instance-based learning. In Proc. 18th International Joint Conference on

Artificial Intelligence (IJCAI), pp. 22-30, Acapuico (MX), 2003.

[Jaro, 1989] Jaro, M. Advances in record-linkage methodology as applied to matching the

1985 census of Tampa, Florida. Journal of the American Statistical Association

84(406):414-20, 1989.

[Jaro, 1976] Jaro, M. UNIMATCH: A record linkage system: User's manual. Technical

report, U.S. Bureau of the Census, Washington (DC US), 1976.

[Kalfoglou and Schorlemmer, 2003] Kalfoglou, Y. and Schorlemmer, M. IF-Map: an

ontology mapping method based on information flow theory. Journal on Data

Semantics 1:98-127,2003.

[Kalfoglou and Schorlemmer, 2002] Kalfoglou, Y., and Schorlemmer, M. Information-

Flow-based Ontology Mapping. Proc. of 1st Conf. on Ontologies, Databases and

Application of Semantics (ODBASE'02), CA, USA, pp. 1132-1151, 2002.

[Lacher and Groh, 2001] Lacher, M. and Groh, G. Facilitating the exchange of explicit

knowledge through ontology mappings. In Proc. 14th International Florida Artificial

Intelligence Research Society Conference (FLAIRS), pp. 305-309, Key West (FL

US), 2001.

[Lenzerini, 2002] Lenzerini, M. Data integration: A theoretical perspective. In Proc. 21st

ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS

2002), pp. 233-246, 2002.

116

[Levenshtein, 1966] Levenshtein, V. Binary codes capable of correcting deletions,

insertions, and reversals. Doklady akademii nauk SSSR, 163(4):845-848, 1965. In

Russian. English Translation in Soviet Physics Doklady, 10(8) pp. 707-710, 1966.

[Li et al, 2007] Li, Y., Zhong, Q., Li, J., and Tang, J. Results of ontology alignment

with RiMOM. In Proc. International workshop on Ontology Matching (OM), Busan,

Korea. Pp. 227-235. November 11, 2007.

[Mitra et al, 2005] Mitra, P., Noy, N., and Jaiswal, A. Ontology mapping discovery with

uncertainty. In Proc. 4th International Semantic Web Conference (ISWC), vol. 3729

of LNCS, pp. 537-547, Galway (IE), 2005.

[Mitra et al, 2000] Mitra, P., Wiederhold, G., and Kersten, M. A graph oriented model

for articulation of ontology interdependencies. In Proc. 8th Conference on Extending

Database Technology (EDBT), vol. 1777 of LNCS, pp. 86-100, Praha (CZ), 2000.

[Mitra et al, 1999] Mitra, P., Wiederhold, G., and Jannink, J. Semi-automatic integration

of knowledge sources. In Proc. 2nd International Conference on Information Fusion,

pp. 572-581, Sunnyvale (CA US), 1999.

[Knouf, 2003] Knouf, N. MIT bibtex ontology. 2003. Available at:

http://visus.mit.edu/bibtex/0.1/bibtex.owl.

[Monge and Elkan , 1997] Monge, A. and Elkan, C. An efficient domain independent

algorithm for detecting approximately duplicate database records. In Proc. SIGMOD

Workshop on Data Mining and Knowledge Discovery, Tucson (AZ US), 1997.

[Needleman and Wunsch, 1970] Needleman, S. and Wunsch, C. A general method

applicable to the search for similarities in the amino acid sequence of two proteins.

Journal of Molecular Biology, 48(3)-443-53, 1970.

117

http://visus.mit.edu/bibtex/0.1/bibtex.owl

[Noy and Klein, 2004] Noy, N. and Klein, M. Ontology evolution: Not the same as

schema evolution. Knowledge and Information Systems, 6(4):428-440, 2004.

[Noy and Musen, 2004] Noy, N. and Musen, M. Ontology versioning in an ontology

management framework. IEEE Intelligent Systems, 19(4):6-13, 2004.

[Noy and Musen, 2002] Noy, N. and Musen, M. PromptDiff: A fixed-point algorithm for

comparing ontology versions. In Proc. 18th National Conference on Artificial

Intelligence (AAAI), pp. 744-750, Edmonton (CA), 2002.

[Noy and Musen, 2001] Noy, N. and Musen, M. Anchor-PROMPT: Using non local

context for semantic matching. In Proc. IJCAI Workshop on Ontologies and

Information Sharing, pp. 63-70, Seattle (WA US), 2001.

[Noy and Musen, 2000] Noy, N. and Musen M. PROMPT: Algorithm and Tool for

Automated Ontology Merging and Alignment. In Proc. of the 17th National

Conference on Artificial Intelligence (AAAI-2000), pp. 450-455, Austin, Texas, USA.

[OAEI, 2007] Ontology Alignment Evaluation Initiative (2007). Available at:

http://oaei.ontologymatching.org/2007/benchmarks/ (accessed October 5, 2008).

[Parent and Spaccapietra, 1998] Parent, C. and Spaccapietra, S. Issues and approaches of

database integration. Communications of the ACM, 41(5): 166-178, 1998.

[Pedersen et al, 2004] Pedersen, T., Patwardhan, S., Patwardhan, S. WordNet::Similarity

- Measuring the Relatedness of Concepts. In Proc. of 19th National Conf.on AI, San

Jose, CA. 1024-1025.2004.

[Pinto, 1999] Pinto, H. Some issues on ontology integration. In: Proceedings of the

IJCAI-99 Workshop on Ontologies and Problem-Solving methods (KRR5),

Stockholm, Sweden, pp. 7-1-7-12, 1999.

118

http://oaei.ontologymatching.org/2007/benchmarks/

[Protege, 2008] Protege : an ontology editor and a knowledgebase editor developed by

Stanford University. 2008. Available at: http://protege.stanford.edu/.

[Rahm and Bernstein, 2001] Rahm, E. and Bernstein, P. A survey of approaches to

automatic schema matching. The VLDB Journal, 10(4):334-350, 2001.

[Rasmussen, 1992] Rasmussen, E. Clustering Algorithms. In Information Retrieval: Data

Structures & Algorithms. William B. Frakes and Ricardo Baeza -Yates (Eds.),

Prentice Hall, 1992.

[Roddick, 1995] Roddick, J. A survey of schema versioning issues for database systems.

Information and Software Technology, 37(7):383-393, 1995.

[Sheth and Larson, 1990] Sheth, A. and Larson, J. Federated database systems for

managing distributed, heterogeneous, and autonomous databases. ACM Computing

Surveys, 22(3): 183-236, 1990.

[Sirin et al, 2007] Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., and Katz, Yarden. Pellet:

a practical OWL-DL reasoner. Journal of Web Semantics, 5, 2007.

[Smith and Waterman, 1981] Smith, T. and Waterman, M. Identification of common

molecular subsequences. Journal of Molecular Biology, 147(1): 195-197, 1981.

[Sowa, 1997] Sowa, F. Principles of ontology, onto-std.archive, Knowledge Systems

Laboratory Stanford University 1997. http://www-ksl.stanford.edu/onto-

std/mailarchive/0136.html

[Spaccapietra and Parent, 1991] Spaccapietra, S. and Parent, C. Conflicts and

correspondence assertions in interoperable databases. SIGMOD Record 20(4)-49-54

1991.

119

http://protege.stanford.edu/
http://www-ksl.stanford.edu/onto-

[Staab and Stuckenschmidt, 2006] Staab, S. and Stuckenschmidt, H, editors. Semantic

web and peer-to-peer. Springer, Heidelberg (DE), 2006.

[Stoilos et al, 2005] Stoilos, G., Stamou, G., and Kollias, S. A string metric for ontology

alignment. In Proc. 4th International Semantic Web Conference (ISWC), vol. 3729 of

LNCS, pp. 624-637, Galway (IE), 2005.

[Straccia and Troncy., 2005] Straccia, U. and Troncy, R. oMAP: Combining classifiers

for aligning automatically OWL ontologies. In Proc. 6th International Conf. on Web

Information Systems Engineering (WISE), pp. 133-147, New York (NY US) 2005.

[Stumme and Madche, 2001a] Stumme, G. and Madche, A. Ontology Merging for

Federated Ontologies on the Semantic Web. IJCAI'01 Workshop on Ontologies and

Information Sharing (2001).

[Stumme and Madche, 2001b] Stumme, G. and Madche, A. FCA-Merge: Bottom-up

merging of ontologies. In Proc. 17th International Joint Conference on Artificial

Intelligence (IJCAI), pp. 225-234, Seattle (WA US), 2001.

[Tsarkov and Horrocks, 2006] Tsarkov, D. and Horrocks, 1. FaCT++ description logic

reasoner: system description. In Proc. 3rd International Joint Conf. on Automated

Reasoning (IJCAR), vol. 4130, Springer, LNCS, pp. 292-297 Seattle (WA US), 2006.

[Ullman, 1997] Ullman, J. Information integration using logical views. In Proc. of the 6th

Int. Conf. on Database Theory (ICDT'97), vol. 1186 of LNCS, pp. 19-40. 1997.

[UMBC-Ontology] eBiquity Publication Ontology. UMBC ontology. Available at:

http://ebiquity.umbc.edu/ontology/publication.owl.

120

http://ebiquity.umbc.edu/ontology/publication.owl

[Valtchev and Euzenat, 1997] Valtchev, P. and Euzenat, J. Dissimilarity measure for

collections of objects and values. In Proc. 2nd Symposium on Intelligent Data

Analysis (IDA), vol. 1280 of LNCS, pp. 259-272, London (UK), 1997.

[Valtchev, 1999] Valtchev, P. Construction automatique de taxonomies pour I'aide a la

representation de connaissances par objets. These d'informatique, Universite

Grenoble 1 Grenoble (FR), 1999.

[Wache et al, 2001] Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster,

G., Neumann, H., and Hubner, S.. Ontology-based integration of information - a

survey of existing approaches. In Proc. IJCAI Workshop on Ontologies and

Information Sharing, pp. 108-117, Seattle (WA US), 2001.

[Wu and Palmer, 1994] Wu, Z. and Palmer M. Verb semantics and lexical selection. In

Proc. 32nd Annual Meeting of the Association for Computational Linguistics (ACL),

pp. 133-138, Las Cruces (NM US), 1994.

[Zaihrayeu, 2006] Zaihrayeu, I. Towards Peer-to-Peer Information Management Systems.

PhD thesis. International Doctorate School in Information and Communication

Technology, University of Trento, Trento (IT), March 2006.

[Zhu, 1999] Zhu, Y. A Framework for Warehousing the Web Contents. In proc. of the 5th

Int. Computer Science Conference (ICSC'99), vol. 1749 of LNCS, pp. 773-799,

Hong Kong, China, December 1999.

121

Appendix A: Semantics of Description Language AL

Constructor

Atomic Concept

Atomic Role

Top/Universal Concept

Bottom Concept

Negation

Intersection

Value Restriction

Limited Existential
Quantification

Syntax

A

R

T

_L

--A

CnD

VR.C

3R.T

Semantics

/ c A '

J f ' c A ' x A1

T' = A'

l ' = 0

c^y=A1 \ A1

(C n Dj = C*nD]

(Vtf.Q1 = {a e A11 V6: (a, b)eR]^> bGC]}

(3 R. 7)1 = {a G A11 3be A1: (a, b^R1}

Semantics of more constructors in AL

• Union(U)

Union (U) CuD (C u£>)' = C ' u D '

• Full Existential Quantification s

Full Existential

Quantification s
3R.C (3 R.C)] = {a e A11 3Z>e A1: (a, 6)Gi?' A beC]}

122

• Number Restrictions (N)

Number Restrictions (N)
3*,*

\nR

(3an/?)I = { a G A , | ||{b| (a,b)GR I}||>n}

(3sn7?)* = { a G A ' | ||{b| (a,b)eR I}| |<n}

• Qualified Number Restrictions (Q)

Qualified Number

Restrictions (Q)

B^R.C

3 S n *

(3>nR .C)1 = { a | # {b:(a, b) eR1 and b e C1} > n}

(3S„7?.C) ' = { a | # {b:(a, b) GR1 and b e C'} < n}

where, # denotes the set cardinality

• Inverse Role (I)

Inverse Role (I) R~ (R-)1 = {(b, a} G A1 x A11 (a, b) e R1)

123

Appendix B: (Re)use of Ontologies

Devices
ontology

Biological
ontology

Representation
ontology

Upper
ontology

Core
ontology

Management
ontology

Legal
ontology

Domain Ontologies

Fishing devices
ontology

Institutions
ontology

Species
ontology

Fishing and
farming

techniques
ontology

Farming
systems
ontology

Geographic
ontology

Fishery
regulations
ontology

Fishery
Management

ontology

Architecture of the fishery ontology library [Gangemi etal, 2002]; double frames mean

use of external ontology

124

Appendix C: Applying different similarity orders

Following the illustrative scenario given in Sec 5.1.3.

Consider applying three similarity measures mi, m2, and m3. Where, mi indicates the

string similarity measure, m2 indicates the linguistic similarity measure, and m3 indicates

the structure similarity measure. So, applying different orders of the similarity measures

on the matching states will not affect the states' rank, but the states overall score value.

1- In this case: first we applied mj and iri2 in level 1. Then 1113 is applied in level 2.

Level 1

State

ei

e2

e3

e4

es

e&

String

0.4

0.103

0.466

0.272

0.169

0.269

Linguistic

0.64

0.305

0.527

0.291

0.163

0.265

Level 2

Structure

0.5

0.0

0.0

0.0

0.0

0.0

Over all score

S

0.77

0.204

0.497

0.282

0.166

0.267

The states rank based on their overall score is: ej, e3, e4, e6, e2, and es

125

2- In this case: we first applied mi and ni3 in level 1. Then ni2 is applied in level 2.

Level 1

State

ei

e2

e3

e4

es

e6

String

0.4

0.103

0.466

0.272

0.169

0.269

Structure

0.5

0.0

0.0

0.0

0.0

0.0

Level 2

Linguistic

0.64

0.305

0.527

0.291

0.163

0.265

Over all score

S

0.802

0.3407

0.6372

0.3874

0.2337

0.3639

The states rank based on their overall score is: ei, e3, e4, e6, ̂ 2, and es

126

3- In this case: we first applied rri2 and ni3 in level 1. Then mi is applied in level 2.

Level 1

State

ei

e2

e3

e4

e5

ee

Structure

0.5

0.0

0.0

0.0

0.0

0.0

Linguistic

0.64

0.305

0.527

0.291

0.163

0.265

Level 2

String

0.4

0.103

0.466

0.272

0.169

0.269

Over all score

S

0.77

0.204

0.497

0.282

0.166

0.267

The states rank based on their overall score is: ej, e3, e4, e6, Ci, and es

127

Appendix D: Time of different similarity orders

- (String +Linguistic) + Structure: shows that the string and linguistic similarities were

applied at the first level, then, the structure similarity was applied in the second level.

- (String +Structure) + Linguistic: shows that the string and structure similarities were

applied at the first level, then, the linguistic similarity was applied in the second level.

- (Linguistic +Structure) + String: shows that the linguistic and structure similarities were

applied at the first level, then, the string similarity was applied in the second level.

\ Similarity
\Combinations

Test No. \

101

103

104

(String +Linguistic)
+

Structure

8.81 (Sec)

8.25 (Sec)

8.25 (Sec)

(String + Structure)
+

Linguistic

11.6 (Sec)

11.05 (Sec)

11.1 (Sec)

(Linguistic + Structure)
+

String

6.81 (Sec)

6.7 (Sec)

6.3 (Sec)

128

file:///Combinations

