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ABSTRACT 

A Multi-matching Technique for Combining Similarity Measures in 

Ontology Integration 

Ahmed Khalifa Alasoud, Ph.D. 

Concordia University, 2009 

Ontology matching is a challenging problem in many applications, and is a major issue 

for interoperability in information systems. It aims to find semantic correspondences 

between a pair of input ontologies, which remains a labor intensive and expensive task. 

This thesis investigates the problem of ontology matching in both theoretical and 

practical aspects and proposes a solution methodology, called multi-matching. The 

methodology is validated using standard benchmark data and its performance is 

compared with available matching tools. 

The proposed methodology provides a framework for users to apply different 

individual matching techniques. It then proceeds with searching and combining the match 

results to provide a desired match result in reasonable time. 

In addition to existing applications for ontology matching such as ontology 

engineering, ontology integration, and exploiting the semantic web, the thesis proposes a 
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new approach for ontology integration as a backbone application for the proposed 

matching techniques. 

In terms of theoretical contributions, we introduce new search strategies and 

propose a structure similarity measure to match structures of ontologies. In terms of 

practical contribution, we developed a research prototype, called MLMAR - Multi-Level 

Matching Algorithm with Recommendation analysis technique, which implements the 

proposed multi-level matching technique, and applies heuristics as optimization 

techniques. Experimental results show practical merits and usefulness of MLMAR. 
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1. Introduction 

The proliferation of information on the World Wide Web (WWW) has made it necessary 

to make all this information not only available to people, but also to machines. 

Ontologies are widely being used to enrich the semantics of the web, and the 

corresponding technology is being developed to take advantage of them. An ontology is 

defined as "a formal, explicit specification of a. shared conceptualization" [Gruber, 1993], 

where formal refers to the meaning of the specification which is encoded in a logic-based 

language, explicit means concepts, properties, and axioms are explicitly defined, shared 

indicates that the specification is machine readable, and conceptualization models how 

people think about things of a particular subject area. 

Ontologies are likely to be everywhere, and constitute the core of many emerging 

applications in database integration, peer-to-peer systems, e-commerce, semantic web 

services, and social networks [Fensel, 2004]. With the infrastructure of the semantics web, 

we witness a continuous growth in both the number and size of available ontologies 

developed to annotate knowledge on the web through semantics markups to facilitate 
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sharing and reuse by machines. This, on the other hand, has resulted in an increased 

heterogeneity in the available information as different parties adopt different ontologies. 

The ontologies are developed with different purpose in mind, therefore we end up with 

different ways entities are modeled. For example, the same entity could be given different 

names in different ontologies or it could be modeled or described in different ways. The 

Ontology Matching Problem (OMP) attempts to find similar entities in different 

ontologies, described as follows: given ontologies Oj and O2, each of which describes a 

collection of discrete entities, such as classes, properties, individuals, etc., we want to 

find the semantic correspondences that exist between the components of these entities. 

This problem has been the subject of numerous studies, and a number of solution 

techniques have been proposed. These matching techniques are often domain-dependent, 

as they are mainly based on a single similarity measure, such as names, structures, logic 

satisfiability, etc. This makes them useful and efficient in specific domains. For example, 

matching techniques which are based on syntactic similarity provide good results in 

domains where there is a high probability that whenever the matched entities agree on 

their syntax, they also agree on their semantics. However, such techniques based solely 

on name similarity might not work well in application domains where similar entity 

names are used with different meanings. Consequently, some researchers consider using 

a number of matching techniques, and then aggregating the results of individual matching 

methods in order to compute the final matching result. 

The matcher composition systems (matching systems that use more than one 

similarity technique) are not clear about the suitability of their reused matching 

techniques for different kinds of matching domains. It is therefore difficult for a regular 
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user to decide, among the vast number of matching techniques, which one is preferred for 

matching the given ontologies. Consequently, the choice of the user might affect the 

matching process in both time and quality. 

Example 1. Through this example we illustrate the main ideas of the technique proposed 

in this thesis. Fig.l shows two sample taxonomies "subsumption relationships between 

the concepts" for two person ontologies Oi and O2. For ease of presentation, we use two 

very simple and small taxonomies. 

To reduce the manual work involved, we use a matching algorithm to identify the 

matching entities. As can be seen in Fig.l, entities Si, S2, S3, and Ti, T2, T3 are concepts, 

which are high-level entities in the input ontologies. The goal is to find the corresponding 

matches among the entities in the two input ontologies. 

Figure 1: Person ontologies 

There exist many methods to measure similarities between two entities, such as 

string similarity, linguistic similarity, etc. However, when we use a single matching 

measure for an input pair of ontologies, we may not be satisfied with the final match 

result. For instance, if we use a string similarity measure only, the concepts MALE and 

FEMALE in Oi have no matches in 02 . On the other hand, a string similarity measure is 

the basis for some other methods of measuring similarities between entities, and it works 

well in some domains where a match in the entities on their syntax would most probably 

mean agreement on their semantics. 
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However, we can use a stronger semantic measure, such as a linguistic-based 

measure. For instance, we find out that the concept PERSON in Oi is mapped to concepts 

PERSON, MAN and WOMAN in O2. So, by recommending many matches to validate, this 

will not help the user to focus on his/her intention. As a result, if we use both measures 

(string and linguistic), the concept PERSON in O] will be mapped to the concept 

PERSON in O2 with a very high confidence, concept MALE in O] will be mapped to 

MAN in O2, and concept FEMALE in Oi will be mapped to WOMAN in O2. 

Furthermore, for matcher composition systems, using a recommended subset 

among their similarity measures list should improve the final matching results in terms of 

time and quality. 

Moreover, recommendation techniques improve the overall running time as it is 

unnecessary to reuse and combine all their underlying similarity measuring methods, 

instead, using only a recommended subset should decrease the average running times. 

Furthermore, the reason that recommendation techniques can enhance the matching 

quality is that they exclude the unpractical similarity matching methods to be used for a 

task at hand. For instance, if there is no string, linguistic, or structure similarity between a 

given input pair of ontologies, then including, combining, and aggregating the matching 

results retrieved by a string, linguistic, or structure similarity measuring method should 

negatively affect the overall quality of the matching result. 

We studied the ontology matching problem and introduced a new method that 

uses a multi-match search technique together with our flexible similarity measure and a 

framework for analyzing the reused similarity measure techniques to obtain the best 
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possible matching results. A main characteristic of our technique is that it combines the 

matching techniques to provide a solution to a given ontology matching problem. 

1.1 Motivations for ontology matching 

Ontology matching is considered to be a prerequisite for many real-life applications. In 

this section, we describe such applications illustrating the need for and use of ontology 

matching. 

1.1.1 Ontology engineering 

In general, ontology engineering refers to activities where users design, implement and 

maintain ontology-based applications, for which they apply ontology matching 

algorithms to find similarities in multiple ontologies. For instance, suppose we want to 

build an ontology about tourism in Montreal that contains relevant information about 

transportation, hotels, restaurants, etc. One way to do this is to construct this ontology 

from scratch. In this case we do not make use of any existing ontologies, if there are any. 

This method requires a lot of effort. This problem is further aggravated by the fact that 

ontologies are normally huge and complex. A better approach is to reuse available 

ontologies on the topics, such as transportation, restaurants, and hotels in Montreal, to 

build the desired ontology. These ontologies may share some entities and consequently, 

the ontology engineers require support for identifying the relevant ontologies and 

matching their entities. Another scenario where ontology matching is crucial is in the 

presence of multiple versions of the same ontology. For example, some users keep 

updating their ontologies, which often leads to having more than one version of the same 
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ontology. In such cases, ontology matching helps identify what entities have been 

changed (added, deleted, or renamed) from on version of an ontology to another [Noy 

and Klein, 2004, Noy and Musen, 2004, Noy and Musen, 2002, Roddick, 1995]. 

1.1.2 Web navigation 

The matching process is important for navigating the semantic web. An example is the 

browser Magpie [Dzbor et al, 2004, Dzbor et al, 2003], which extends Internet Explorer 

by annotating web pages. In such scenarios, the matching operation is needed to help 

match the terms in web pages and the corresponding terms in on-line ontologies. 

1.1.3 Peer-to-peer information sharing 

Peer-to-Peer (P2P) is a distributed communication model in which parties (also called 

peers) have equivalent functional capabilities in providing each other with data and 

services [Zaihrayeu, 2006]. Currently, there are several P2P file sharing systems, such as 

Kazaa, Edonkey, BitTorrent, and Semantic P2P [Staab and Stuckenschmidt, 2006]. In 

order to establish exchanging and sharing information between different peers in such 

applications, a matching operation is necessary to identify correspondences in 

terminologies used by different peers. 

1.1.4 Information Integration 

Matching is also important in the context of information integration. There are different 

problems of information integration, such as schema integration [Batini et al, 1986, 

Parent and Spaccapietra, 1998, Sheth and Larson, 1990, Spaccapietra and Parent, 1991], 
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data warehousing [Bernstein and Rahim, 2000], data integration [Chawathe et al, 1994, 

Draper et al, 2001, Halevy et al, 2005, Wache et al, 2001], and catalogue integration 

[Agrawal and Srikant, 2001, Bouquet et al, 2003b, Giunchiglia et al, 2005, Ichise et al, 

2003]. 

Generally, providing single portal of access to resources implies a need for 

integrated ontology, companies merge implies need for ontology integration, etc. 

Information integration is an abstraction which provides and uses an integrated view. 

Suppose we have a company that has branches, dealers, etc, distributed all over the world. 

The main branch needs to get some information from the other branches, such as 

customers, sellers, and some statistics about the employees, sales, etc. In this case, we can 

provide a unified view (or global ontology) in the main branch through which we can 

query the local ontologies in various branches using proper mappings and wrappers. All 

in all, the matching step in such scenarios is to relate the correspondences between the 

entities in both the global ontology and the local ontologies (source ontologies). 

Ontology merging is another scenario where the matching operation is important. 

Suppose there are many ontologies on the same topic, such as medical, which may 

contain overlapping information. For example, we might want to build a new single 

ontology in a medical field which "unifies" the various concepts, terminologies, 

definitions, constraints, etc., from existing ontologies. For instance, among existing 

medical ontologies, we consider the Unified Medical Language System (UMLS) and the 

Galen COding REference (CORE) model. As a result of integrating these two ontologies, 

we obtain a new, single, unified ontology in the medical field. As another example of 

merging, consider a bottom-up construction of ontologies, which could be done by 
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merging the ontologies of several companies. For example, two car companies may 

merge to form a new larger company. Merging these companies may lead to merging 

their ontologies. As an initial step before merging ontologies, the related entities to be 

merged from different ontologies have to be identified, done through a matching step. 

1.2 Contributions 

We have made the following contributions: 

1. Under the context of ontology integration in particular, we introduce an approach 

for ontology integration, which is a hybrid of materialized (data warehouse) and 

virtual views [Alasoud et al, 2005]. 

2. In order to support the proposed approach with a matching strategy, we develop a 

multi-matching strategy which benefits from existing individual matching 

techniques and "combines" their match results to provide enhanced ontology 

matching results [Alasoud et al, 2007]. 

3. We further extend the multi-matching strategy with a multi-level matching 

strategy, which assumes that there is a partial order on the collection of measures 

defined by the user [Alasoud et al, 2007]. 

4. We devise a structure similarity measure to be used for matching the structure of 

the ontologies based on the adoption of the Dice coefficient [Alasoud et al, 2007]. 

5. We propose using the neighbor search strategy to find the correspondences 

between entities in the given ontologies and to optimize the multi-matching 

strategy developed [Alasoud et al, 2008]. 
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6. We propose a recommendation analysis of ontology matching techniques. The 

users often have little knowledge about the suitability of matching strategies for a 

given matching task. As a result, the quality of the matching end result and 

processing time will be affected by the user's choice. The main characteristics of 

the proposed work are (1) assisting the user to choose the appropriate matching 

teclinique(s) for a given matching task, (2) inferring a hidden structure 

relationship between the entities of the input ontologies and consequently making 

the structure-based similarity measure more precise, and (3) improving the 

average matching process time considerably, as shown in our experimental 

evaluations [Alasoud et al, 2009]. 

1.3 Thesis organization 

The remainder of the thesis is organized as follows. Chapter 2 provides the background 

knowledge and reviews related work. Chapter 3 presents the hybrid approach for 

ontology integration. Chapter 4 describes the multi-matching strategy. The multi-level 

and reasoning-based neighbor search matching strategies are introduced in Chapter 5, 

followed by a performance evaluation of the proposed framework in terms of quality and 

processing time. The conclusion and future work are discussed in Chapter 6. 
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2. Background and Related work 

This chapter provides a background for our work and reviews related work. Section 1 

gives an overview of description logics, and Section 2 introduces ontologies. Then, 

Section 3 discusses approaches to ontology integration. We study these approaches as to 

present our novel approach in the next chapter. Section 4 classifies techniques that can be 

used for solving the ontology matching problem, and basic techniques used to find 

similarities between the entities of two ontologies. Finally, Section 5 reviews available 

ontology matching systems. 

2.1 An Overview of Description Logics 

Description Logics (DLs) refer to a family of knowledge representation languages that 

are capable of encapsulating the main characteristics of many class-based representation 

formalisms in Artificial Intelligence. Lately, DLs are becoming a standard for the 

semantic web, specifically the Web Ontology Language with its correspondence to 

description logics (OWL-DL). An advantage of these logics is that they are equipped 
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with powerful reasoning algorithms, and practical systems, such as RACER [Haarslev 

and Moeller, 2001a, Haarslev and Moeller, 2001b], that implement such algorithms. 

In this section, we briefly describe the families of DL Languages and their main 

constructs. Also, we will show how they differ in these constructs. 

We begin by explaining the constructs of the attributive language (AL) presented 

in [Baader et ah, 2005]. We use the letters A and B for atomic concepts, R for atomic 

roles, and C and D for concept descriptions. The concept descriptions in AL are defined 

according to the following syntax: 

C,D^>A | (atomic concept) 

T | (top/universal concept) 

± | (bottom/null concept) 

-A I (atomic negation) 

C C\D | (intersection) 

VR.C | (value restriction) 

3R. T | (limited existential quantification). 

Note that in AL, negation can only be applied to atomic concepts, and only the top 

concept is allowed in the scope of an existential quantification over a role. As examples 

of expressions in AL, assume that Product and PC are atomic concepts. Then 

Product n PC and Product n -iPC are AL concepts denoting those Products that are PC, 

and those that are not PC, respectively. Furthermore, assume that hasMaker is an atomic 
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role. Then we can form the concepts Product n 3 hasMaker.T and Product n 

V hasMaker.A, denoting products that have a maker and all products produced by A, 

respectively. 

We now move to more expressive languages by adding new constructs, such as 

the union of concepts (CKJD), indicated by the letter \J,full existential quantification 

(3R.C) indicated by e, number restrictions (at least restriction) > nR indicated by the 

letter N, and number restrictions (at most restriction) as < nR, where n is a positive 

integer, and negation of arbitrary concepts ( ->D ) indicated by the letter C (for 

"complement"). We name each AL-language by a string of the form AL [U] [s] [N] [C], 

where a letter in the name stands for the presence of the corresponding construct. For the 

semantics of the AL language and its family members, see Appendix A. By adding more 

expressive concept constructs, as well as role constructs, we define more expressive DLs. 

A notable example for an expressive DL is ALCQI, which provides concept constructs 

for complement, intersection, union, existential restriction, universal quantification, 

qualified number restrictions (indicated by the letter Q), and a construct for inverse roles, 

indicated by the letter I. 

2.2 Ontologies 

Ontologies aim at capturing static domain knowledge in a generic way and provide a 

commonly agreed upon understanding of that domain, which may be reused and shared 

across applications and groups. Therefore, one can define an ontology as a shared 

specification of a conceptualization [Gruber, 1993]. An ontology contains terms, the 
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definitions of these terms, and specifications of multiple, rich relationships among these 

terms. Consider the computer ontology example shown in Fig. 2. 

Laptop 

has-HD 

Hard Disk 

Is-a ^^ Computer 
^ \ ^ Is-a 

Monitor Maker 

PC 

Is-a 

Used-PC 

Figure 2: Computer Ontology 

The main components of an ontology 

1. Classes or concepts 

These are concepts of the domain or task, usually organized in taxonomies. In our 

ontology example, Computer, PC, Laptop, Hard Disk, etc. are examples of classes, 

shown as rectangles in the Fig. 2. 

2. Roles or properties 

Role is a type of interaction between instances of concepts in the domain. For 

example, has-HD, has-monitor, and has-maker are roles, shown as links in the figure. 

Furthermore, roles can have the following characteristics: 

• Transitivity : P(x,y) A P(y,z) => P{x,z) 

For example, consider a transitive role (has-part). We can define (PC has-part 

motherboard) and (motherboard has-part RAM). Then, we can conclude from the 

definition of the transitive role (has-part) that (PC has-part RAM). 
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• Symmetry : P(x,y) <=> P(y,x) 

For example, consider a symmetric role (partnerwith). So, given the definition 

(Enterprise-A partnerwith Enterprise-B), we conclude that (Enterprise-B 

partnerwith Enterprise-A). 

• Functional : P(x, y) A P{X,Z) => y = z 

For instance, we might assume that the (has-maker) role is a functional role. This 

implies that computers have a unique maker. 

• Inverse: P(x, y) <=> Q{y, x), where P is the inverse of Q and vice-versa. 

We can define a role called (maker_of) as an inverse to the role (hasmaker). 

• Inverse functional: P(x,y) A P(z,y) => x = z 

We can consider, for instance, that the role (hasmaker) is the inverse functional 

of the role (makerof). In other words, each maker can produce more than one 

computer, but for each computer there is a unique maker. 

3. Axioms 

Axioms model sentences that are always true. For example, if the price of some PC is 

equal to 50% of the original PC, then we can conclude that it is a used PC. 

4. Individuals or instances 

Individuals or instances represent specific elements. For example, Enterprise-A could 

be an instance of class Maker. 

2.3 Approaches to Ontology Integration 

In this section, we review the main approaches to ontology integration, including 

ontology reusing, merging, and mapping. 
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The term "ontology integration" designates the operations and the process of 

building ontologies from other ontologies, available in some ontology development 

environments. This involves following methodologies that specify how to build 

ontologies using other, publicly available, ontologies [Pinto, 1999]. 

Ontology integration is motivated by the following three factors. First, the use of 

multiple ontologies. For example, suppose we want to build an ontology about tourism in 

Montreal that contains information about transportation, hotels, restaurants, etc. We could 

construct this ontology from scratch. This requires a lot of effort, especially since 

ontologies are huge and complex. A more reasonable approach is to reuse available 

ontologies on the topics, such as transportation, restaurants, and hotels in Montreal, to 

build a desired "integrated" ontology. 

The second motivation is the use of an integrated view. Suppose we have a 

company that has branches, dealers, etc, distributed around the world. The main branch 

needs information from the other, such as customers, sellers, and some statistics about the 

employees, sales, etc. In this case, we can query the ontologies at various branches 

through proper mappings and wrappers, thus providing a unified view in the main branch. 

The third motivation for ontology integration is the merge of source ontologies. 

Suppose there are many ontologies on the same topic, such as medicine, covering 

different aspects of the field, which may contain overlapping information. We might want 

to build a new, single ontology about the medical field, which "unifies" the various 

concepts, terminologies, definitions, constraints, etc., from the existing ontologies. For 

instance, among many existing medical ontologies, we consider the Unified Medical 

Language System (UMLS) and the Galen COding REference (CORE) models. As a 
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result of integrating these two ontologies, we obtain a new, single, unified ontology in the 

medical field. As another example of merging, suppose several car companies are merged 

into a new car company, for which we want to construct an ontology. This could be done 

by merging the existing ontologies of these companies. 

2.3.1 Ontology Reuse 

The use of existing ontologies can be considered as a 'lower' level integration, because it 

does not modify the ontologies, but merely uses the existing concepts. Since the survey in 

[Pinto, 1999], there have been some developments in using/reusing ontologies, such as 

the On-To-Knowledge project [Fensel et al, 2002]. This project resulted in a software 

toolkit for ontology development, maintenance, and (re)use. In [Stumme and Madche, 

2001b], they proposed to combine ontology reuse and merging, consisting of merging 

local (federated) ontologies at some stage. These "federated ontologies" are analogous to 

federated databases. Another interpretation of reusing existing ontologies, in conjunction 

with formal integration, is the architecture of Fisheries ontology [Gangemi et al, 2002] 

by the Food and Agriculture Organization (FAO), found in Appendix B. We next explain 

the main ideas of the ontology reuse approach. 

Ontology reuse attempts to make use of existing ontologies to build a new 

ontology, instead of building one from scratch [Pinto, 1999]. Fig. 3 illustrates ontologies 

O] and O2, as well as the result of their integration by reuse, named O. It is important to 

note that the reused ontologies Oi and O2 are part of the resulting ontology O. Also note 

that, in this case, the resulting ontology can be seen as consisting of different ontologies. 
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In general, the domains of the reused ontologies O] and O2 are different from the 

domain of the resulting "integrated" ontology (O), but there may be a relationship 

between the domains. When ontologies are integrated by the reuse approach, the concepts 

from O] or O2 may be (1) used as they are (no change), (2) adapted (or modified), (3) 

specialized (leading to a more specific ontology on the same domain), or (4) augmented 

by new concepts (at the same level or by more general concepts). 

The domains of different reused ontologies, such as transportation, hotels, and 

restaurants, may be different from each other; that is, each ontology Oj contributing to the 

integration has a domain Dj which is different from domain D of the resulting 'tourism' 

ontology O (Fig. 3). As can be seen in the figure, a concept X in Oi is deleted in the 

integration process, and several new concepts, shown in gray, are introduced in the final 

result. Through reusing, the resulting ontology is expected to be unique, i.e., no such 

ontology already exists. 

Figure 3: Ontology Reuse 
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The ontologies to be reused should be selected from those available ontology 

sources that meet the requirements, such as domain, type, and generality. A resulting 

"target" ontology, on the other hand, should have features of a "good" ontology, i.e., it 

should be clear, concise, and have some adequate level of detail. 

When building a new ontology by reusing existing ones, some problems, such as 

consistency and level of detail should be dealt with. To solve such problems, we need to 

specify a group of reuse operations which indicate how knowledge in the source ontology 

will be included and combined into the "target" ontology. Some reuse operations are 

composing, combining, and assembling operations. On the other hand, such operations 

should be applied only onto those ontologies which have some common features. These 

features guarantee that a selected source ontology is suitable, that the reuse operations 

can be successfully applied, and that the "target" ontology will have the "preferred" 

features. 

2.3.2 Ontology Mapping 

[Heflin and Hendler, 2000] divide ontology integration methods into three categories: 

mapping ontology, mapping revisions, and intersection ontology. In mapping ontologies, 

a created ontology OM contains the rules that map concepts between ontologies 0\ and O2. 

In the mapping revisions method, o] contains rules that map objects in O2 to 

terminologies in Oi and vice versa. In an intersection ontology, where the created 

ontology ON includes the intersection of concepts common to 0/ and O2, and renames 

terms where necessary. See Fig. 4 for an illustration of their integration methods. 
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[Calvanese et al, 2002] consider mapping between one global ontology (O) and several 

local ontologies (Oi, O2, ...), leaving the local ontologies intact by querying them and 

converting the result into a concept in the global ontology. The basic idea proposed in 

[Kalfoglou and Schorlemmer, 2002] is to map two local ontologies by looking at how 

these are mapped from a common ontology. It is assumed that such a common ontology 

is not populated with instances, while local ontologies usually are. Then, the obtained 

results are placed in a new global ontology, which is progressively created. 

Mapping Ontology Mapping Revisions Intersection Ontology 

o, 

* * 

OM 

o2 o, 

ir A. 

o[ 

o2 

-A. " 

o2 

O M Contains rules O, Contains rules that map 02 

that map concepts objects to O, terminologies, 
between ontologies. ' 

(?2 does the reverse. 

0, 

V A"'"' 

0; 

oN 

o2 

"A '̂ 

o2 

ON contains intersection of concepts. 

O, and Oj rename terms where necessary. 

Key: • revised by 
• Extended by 

Figure 4: Integration methods according to [Heflin and Hendler, 2000] 

The survey in [Wache et al, 2001] divides the ontology mapping into three 

approaches: single, multiple, and hybrid approaches, as shown in Fig. 5. 

The single ontology approach uses a global ontology with shared semantics. All 

information sources are related to this one global ontology. With multiple ontologies, 

there are inter-ontology mappings, but no global ontology. The Hybrid Approach is 

similar to the multiple ontology approach in that the semantics of each source is 
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described by its own ontology, but, in order to make the source ontologies comparable to 

each other, they are built using one global shared vocabulary. 

Figure 5: Mapping integration methods [Wache etaL, 2001] 

The rest of this section explains the main concept of the ontology mapping approach. 

The mapping approach deals with situations where there are different ontology 

sources, created independently of each other by different users. We need to construct a 

global ontology or "virtual view" for accessing the required information from these 

different ontologies. 

The idea of this "virtual view" is to provide a general framework in which we can 

query the local source ontologies. Moreover, in order to use the "virtual view" for 

answering queries, it is important to specify the mappings between the global ontology 

and the source ontologies. The global ontology is used to formulate queries. To evaluate 
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queries, the query processing scheme requests access to information in the source 

ontologies, instead of simply using them. 

In reality, different source ontologies are constructed by various users for 

different purposes over time. Therefore, the same information may be expressed in 

different forms at different levels of abstraction in the source ontologies. Thus, mapping 

the concepts in one ontology to another means that a concept in one ontology may 

correspond to a view "query" over the other ontologies. Actually, suitable query 

languages should be supported by the ontology specification language, in order to express 

mappings among concepts in different ontologies. One can view query processing in this 

context to be closely related to answering queries by using views in data integration 

systems. An ontology integration system (OIS) in this case is defined as a triple <G, S, 

M>, where G represents the global ontology, S = {Si..., S„} represents the set of local 

ontologies, and M represents the mapping between G and the sources in S. 

Based on [Calvanese et ah, 2002], there are three basic approaches for defining 

this mapping: 

1. The global-centric approach, where concepts in the global ontology G are mapped to 

concepts in the local ontologies in S. 

2. The local-centric approach, where concepts of the local ontologies in S are mapped 

to queries over the global ontology G. 

3. The combined global-centric and local-centric approach. 

Global-As-View approach (GAV) 

This approach is widely used in data integration systems [Calvanese and Giacomo, 2005, 

Lenzerini, 2002, Ullman, 1997]. In such systems, the global ontology is a database 

21 



schema, and the mapping is designed by relating one relational query over the source 

relations to each relation in the global schema. It is well-known that this approach leads 

to a simple query processing policy, which reduces to unfolding the query using the 

definition in the mapping, so as to expand the query in terms of definition of the sources. 

Example 2. An ontology integration system (OIS) is defined as O = <G, S, MG,S>, where 

1. G is the global ontology expressed in the Entity-Relationship model. 

2. S contains the local sources over which a relational database is created. 

3. MG,S is the mapping between G and S given by a set of correspondences of the 

form <C, Vs>, where C is a concept in G and Vs is a query or view over S. 

Fig. 6 shows the global schema G of a data integration system, where Age is a functional 

attribute; Employee has a mandatory participation in the relationship Works-in, Works-in 

is-a Member, and Company is-a Union. The schema models persons who can be 

members of one or more unions, and employees who work in companies. 

Person 

Employee 

Union 

Company 

Age 

Figure 6: Global Schema G [Calvanese etaL, 2002] 

Suppose that S includes sources Si... Ss, and that the mapping Mis given as follows: 
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Person(x)^ Si(x) 

Union(x) <- S2(x) 

Member(x, y) <- S7(x, z), S8 (z, y) 

Employee(x) <- S3(x, y) OR S4(x) 

Age(x,y) <r S3(x, y) OR S6(x, y, z) 

Company(x)<- Ss(x) 

Works-in(x, y)<- S4(x, y) 

Local-As-View approach (LAV) 

The main difference between the LAV and GAV approaches is the direction of the 

mapping. In the GAV approach, the mapping between the global and the local ontologies 

is given by associating to each concept in the global ontologies a view, which is a query 

over a local ontology. However, in the LAV approach, the mapping direction is reversed, 

i.e., associated to each concept in a local ontology is a view, which is a query over the 

global ontology. 

The main advantage of the LAV approach over GAV is its flexibility and ease of 

modality, which allows sources to be added or removed from the integrated framework 

more readily. That is, if we build a global schema and then a new source is to be added to 

our system, we do not need to reconstruct the global schema from scratch. The challenge, 

however, with the LAV approach is answering queries posed in terms of the global 

schema. This is a challenge because we first need to reformulate the queries in terms of 

queries over the sources. Query processing in the GAV approach is addressed by simply 

unfolding the queries. 
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Example 3. Consider for example the OIS, O = <G, S, MG,S> defined as follows: 

1. The global ontology G is an ALCQI knowledge base 

Canadian f] (^ \Has relative.Doctor) c: Wealthy 

Surgeon cz Doctor 

which asserts that every Canadian who has a doctor as a relative is wealthy, and that 

each surgeon is also a doctor. 

2. The set S of local ontologies consists of two ontologies, containing the relations Ti 

and T2, with extensions Tj = {arm, bill} and T2 = {arm, dan}. 

3. MG.S is the mapping between G and S given by a set of correspondences of the form 

< Vg, C>, where Vg is a query or view over G and C is a concept in S. 

The mapping MQ,S is {<Vi, Tj>, <V2, T2>} with 

V,(x) <r RELATIVE(x,y) and Surgeon(y) 

V2(x) <- Canadian(x) 

Vj associates to each concept in Ti a query over G. In this example, V] expresses that 

each individual x in Ti has a relative y who is a surgeon, and V2 expresses that each 

individual in T2 is Canadian. 

Given a query Wealthy(x) over G, we find ann as the only answer. Consider an 

additional local ontology T3 with an extension not containing bill, defined by the 

following mapping in MG,S: 

V3(x) <r Wealthy(x) 

From the constraints in G and the information we have on the mappings, we can conclude 

that bill is not an answer to the query Canadian(x) over G. 
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Combining Global-as-view and Local-As-View approaches (GLAV) 

The global and local centric approaches can be combined to yield the so-called GLAV 

approach, using unrestricted mappings in order to overcome the restrictions on 

communication directions between global and local ontologies. In the GLAV approach, 

we have both a query language Vs over the alphabet As, a query language VG over the 

alphabet AG, and a mapping between the global and local ontologies, given by relating 

views over the global ontology to views over the local ontologies. The intention behind 

relating VG to Vs is that Vs represents the best way to characterize the objects satisfying 

VG in terms of the concepts in S. 

Example 4. Consider for example the OIS O = <G, S, MG,S>, where both the global 

schema and source ontologies S\ and S2 are sets of relations with extensions. 

1. The global ontology G contains two binary relations: relation WorksFor to record 

researchers and projects they work on, and relation Area to record projects and 

research areas they belong to. 

2. The local ontology S\ contains a binary relation Interestedln, which denotes people 

and the fields they are interested in, while the local ontology S2 contains the binary 

relation GetGrant, which denotes researchers and their assigned grants, and the 

binary relation GrantFor, which denotes the grants and projects they refer to. 

3. The mapping MG,S is formed by the following correspondences: 

- (Vj, Interestedlri), with \\{r,f)<r WorksFor(r, p) and Area(p,f). 

- (WorksFor, V^), with V2(r, p)<r GetGrant(r,g) and GrantFor(g,/?). 

This kind of mapping representation cannot be achieved using only the GAV or the 

LAV approach. Query answering using the GLAV approach is largely unexplored 
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[Calvanese et al, 2002], as it combines the difficulties of the GAV and LAV approaches. 

On the other hand, this may be the only approach that has the appropriate expressive 

power. 

To summarize, the two approaches of GAV and LAV are compared based on two aspects: 

modeling and query processing. 

1. In the GAV approach, query processing is easier since it uses query unfolding, but 

modeling is more difficult and maintaining the model G when local sources change 

often requires the redesigne of G. 

2. In the LAV approach, modeling is easier, but query processing is more difficult since 

it needs query reformulation and reasoning. 

2.3.3 Ontology Merging 

[Pinto, 1999] defines merging as combining different ontologies with the same subject 

domain to create a unified ontology. Synonymous with this definition, [Sowa, 1997] 

defines the unification process. Moreover, the proposal in [Kalfoglou and Schorlemmer, 

2002] defines the merger of two ontologies as their intersection, and the knowledge 

engineer is in charge of making merger decisions. The authors [Noy and Musen, 2000] 

use the concept of merge synonymous with unification. Their intention is to create a 

massive governmental knowledge base. While the process of ontology merging defined 

in [Stumme and Madche, 2001a] yields a merged ontology from input ontologies, it is not 

clear how the performance is affected by various assumptions about the input ontologies 

when their subjects are the same, similar, or complementary. In what follows, we explain 

the main idea of the ontology merging approach. 
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In the case of merging ontologies, one wants to build ontologies using concepts, 

distinctions, axioms, etc., from existing ontologies on the same subject. For instance, 

when two companies merge into a larger company, their ontologies will be merged by 

considering similar matching terms. In most cases, there are differences between the 

input ontologies, not only in their basic features but also in the way their terms are 

defined (in the meaning behind those terms). When such different ontologies are 

"integrated" by merging, a new ontology is created in the same domain. The integrated 

ontology contains unified concepts, terminology, definitions, constraints, etc., from the 

input ontologies. 

In the merging process, we have, on the one hand, at least two ontologies that are going 

to be merged (0],02, Fig. 7), and on the other hand, the resulting ontology (O, Fig. 7). 

02 ,D, 

Figure 7: Ontology Merge 
The goal is to make a more general resulting ontology by gathering knowledge from 

several input ontologies on the same subject. The domains of the input and resulting 
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ontologies are the same (Di, Fig. 7). Ontology matching is a prerequisite for any 

approach of ontology integration. In the following section, we review existing techniques 

for ontology matching. 

2.4 Ontology matching techniques 

This section reviews techniques currently used for ontology matching. These techniques 

are classified into element level and structure level techniques [Euzenat and Shvaiko, 

2007]. 

2.4.1 Element-level techniques 

These techniques view ontology entities or their instances as isolated from other entities 

or instances. They are classified into string-based, language-based, and constraints-based, 

described as follows: 

• String-based techniques 

These techniques are used to match names of the entities in ontologies. Such techniques 

are based on the similarity of the names of entities, considered strings. The more similar 

the strings, the more likely they denote the same concepts. There are numerous methods 

introduced for string similarity matching. The most frequently used methods are: 

I. Edit distance: in this method of matching two entities, a minimal cost of operations to be 

applied on one entity in order to obtain the other entity is considered. Examples of such 

well-known measures are Levenshtein distance [Levenshtein, 1966], Needleman-Wunch 

distance [Needleman and Wunsch, 1970], Smith-Waterman [Smith and Waterman, 1981], 
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Gotoh [Gotoh, 1981], Monge-Elkan [Monge and Elkan , 1997], Jaro measure [Jaro, 1989, 

Jaro, 1976], and Smoa [Stoilos et al, 2005]. 

II. Normalization: To improve the matching results between strings, a normalization 

operation is performed, usually before matching. In particular, these operations are case 

normalization, diacritics suppression, blank normalization, link stripping, digital 

suppression, and punctuation elimination. 

III. String equality: the string equality method basically returns 0 if the input strings 

compared are not identical, and 1 if they are. An example of such a method is the 

Hamming distance [Hamming, 1950]. 

IV. Substring test: This identifies the ratio of common subparts between two strings. Also, it 

is used to compute if a string is a substring of another string, i.e., a prefix or suffix. 

V. Token-based distances: Such a method considers a string as a set of words. These 

methods are used to split long strings (strings that are composed of many words) into 

independent tokens. 

• Language-based techniques 

These techniques measure the relatedness of concepts, for which they consider names as 

words in some natural language, e.g. English. They use Natural Language Processing 

(NLP) techniques to extract meaningful terms from the text. Usually, they are applied to 

words (names) of entities. The matching similarity is determined based on linguistic 

relations between words, such as synonyms and hyponyms. Many language-based 

methods have been implemented in the WordNet [Pedersen et al, 2004]. 
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• Constraints-based techniques 

In order to calculate the similarity between entities, these techniques are mainly applied 

to the definitions of entities, such as their types, attributes, cardinality and ranges, and the 

transitivity or symmetry of their properties. There are different methods proposed based 

on constraints [Rahm and Bernstein, 2001], which compare the properties, data types, and 

domains of entities. 

I. Property comparison: When the properties of two classes are similar (similar names 

and types), it is more likely that these two classes are similar. 

II. Data type comparison: This compares the way in which the values are represented, e.g. 

integer, float, string. 

III. Domain comparison: Depending on the entities to be considered, what can be reached 

from a property can be different: in classes, these are domains, while in individuals, 

these are values. 

2.4.2 Structure-level techniques 

In contrast to element-based techniques, structure-based techniques compare the two 

entities from two ontologies with regards to the relations of these entities with other 

entities in the ontologies: the more similar the two entities are, the more alike their 

relation would be. Mainly, there are two well-known structure level techniques: graph-

based techniques and taxonomy-based techniques, described as follows: 

• Graph-based techniques 

These techniques consider the ontologies to be matched as labeled graphs. The basic idea 

here is that, if two nodes from two ontologies are similar, their neighbors should also 
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somehow be similar [Euzenat et al, 2004]. 

• Taxonomy-based techniques 

These techniques are basically graph-based techniques which consider only the 

specialization relation. The basic idea they focus on is that an is-a relationship links terms 

that are already similar, therefore their neighbors may also be similar [Euzenat and 

Valtchev, 2004, Valtchev and Euzenat, 1997, Valtchev, 1999, Wu and Palmer, 1994]. 

Matching ontologies using their structure information is important as it allows all the 

relations between entities to be taken into account. The most common techniques used for 

ontology matching are taxonomy-based, since taxonomies play a pivotal role in 

describing ontologies. 

2.5 Ontology matching systems 

This section reviews ontology matching systems. The approaches of these systems can be 

classified into: (1) schema-based, (2) instance-based, and (3) combined, schema and 

instance based. 

2.5.1 Schema-based implementations 

Schema-based systems are those which rely on schema information in the input in order 

to match ontologies. We now describe some schema-based systems. 

• SKAT (Semantic Knowledge Articulation Tool) [Mitra et al, 1999] 

In SKAT, the input ontologies are represented by graphs. It is a rule-based tool which 

discovers matching results through a semi-automatic process. Domain experts provide 

rules that are encoded in first order logic. Initially, experts also specify desired 
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similarities and dissimilarities. For instance, the rule "President is equivalent to 

Chancellor" specifies that we want President to be an appropriate match for Chancellor. 

SKAT uses string matching as well as structure matching. In the structure matcher, 

SKAT matches graph slices, i.e. matching the nodes near the root in the first ontology 

against the nodes near the root in the second ontology. 

• ONION (ONtology compositlON) [Mitra et al, 2000] 

ONION is an extended version of SKAT. It performs a number of matching techniques 

and suggests articulation rules to users. Users can accept, modify, or delete the 

suggestions. The structure-based matching in ONION is performed based on the results 

of linguistic matching. It looks for structural iso-morphism between subgraphs of the 

ontologies, taking into account linguistic clues. The structural matcher tries to match only 

the pairs which were not matched by the linguistic matcher, hence complementing its 

results. 

• H-Match [Castano et al, 2006] 

H-Match takes OWL ontologies as its input. Internally, these input ontologies are 

represented by graphs using the H-model representation [Castano et al, 2005]. Moreover, 

H-Match computes two types of similarities: linguistic and contextual. These are then 

combined using weighting schemas to yield a final measure, called semantic similarity. In 

determining the contextual similarity, H-match considers neighboring concepts, e.g., 

linked through the taxonomy of the actual concept. 

• Anchor-Prompt [Noy and Musen, 2001] 

Ancor-Prompt is an extension of Prompt and was originally called SMART [Noy and 

Musen, 2000]. Basically, it is an algorithm for matching concept names. If there is a 
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match between two concepts in the source ontologies, and there are paths connecting 

these two concepts, then there should be similarities between these paths as well. Fig. 8 

shows that there is a match "anchor" between concept A from one source ontology and 

concept B from another source ontology. It also shows that there is a match "anchor" 

between concept names H and J. In this case, the tool would suggest that there are some 

similarities between those concepts which lie between the two anchors, such as concepts 

G and F, and that concepts E and D may share some properties with concept C. All in all, 

these are only suggestions made by the tools; the user may confirm the suggestion, and 

hence merge the concepts, or reject the suggestion. 
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Figure 8: Prompt Algorithm |Noy and Musen, 2001] 

• MapOnto [An et al., 2006, An et al, 2005a, An et al, 2005b] 

The MapOnto is a tool for recommending matches between ontologies and relational or 

XML schemas. The input schema and ontology are both represented internally as labeled 
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graphs. Then, the system looks for similarities or relationships between these graphs, and 

produces a set of complex mapping formulas, expressed as Horn clauses, in a semi

automatic way. These logical formulas are ordered by the tool, thereby suggesting the 

most reasonable mappings. Finally, the user can inspect this list and choose the best 

mappings. 

• CtxMatch [Bouquet et al., 2003a, Bouquet et al, 2003b] 

CtxMatch deals with the ontology matching problem by translating it into the logical 

validity problem. It determines the logical relationship, such as equivalence and 

subsumption, between concepts and properties. The first version of CtxMatch uses only 

WordNet to find initial matches for classes. In the next version, CtxMatch2 [Bouquet et 

al., 2006], it also considers properties. Basically, it employs description logics reasoners, 

such as Pellet [Sirin et al., 2007] and FaCT [Tsarkov and Horrocks, 2006] to compute the 

final alignment. 

• S-Match [Giunchiglia et al, 2003] 

S-Match takes two graph-like structures, e.g., classifications, XML schemas, or 

ontologies, as input and returns logical relationships, e.g., equivalence and subsumption, 

found between the nodes of the graphs. Ontology entities are converted to logical 

formulas. Then, the match manager uses various basic element-level matchers and logic 

provers to find relationships between these formulas, which in turn correspond to the 

relationships between entities. 

• ASCO[Bache/a/.,2004] 

The first version of ASCO deals with ontologies represented in an RDF schema, while its 

new version, ASC02, deals with ontologies represented in OWL [Bach and Kuntz, 2005]. 
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ASCO performs in three phases. In phase 1, it computes the similarity between the 

entities of the ontologies using linguistic matchers. In phase 2, it applies a fixpoint 

computation algorithm that propagates similarity to the neighbours (subclasses, 

superclasses and siblings). Similarities between sets of objects are computed through 

single linkage. The propagation terminates when class similarities and relation 

similarities no longer change in a subsequent iteration or when a certain iteration step is 

reached. Finally, in phase 3, ASCO aggregates the results of linguistic and structural 

matchers using a weighted sum. 

• OMEN (Ontology Mapping ENhancer) [Mitra et al, 2005] 

The OMEN system is based on a Bayesian network. It is an enhancing tool for ontology 

matching, which improves existing ontology matching algorithms using probability 

inferences. The matching process for OMEN can be described as follows: 

1. OMEN builds a Bayesian network, where a node represents the mapping between 

classes or properties of the input ontologies. Edges represent the influences of the 

Bayesian network between these nodes. 

2. OMEN generates the conditional probability tables for the Bayesian network. It 

accomplishes this by using a set of meta-rules that capture the influence of the 

structure of the input ontologies on the neighborhood of the input mappings. 

3. OMEN makes inferences using Bayesian Network tools, in order to provide 

newly determined probabilities for each node. 

4. Finally, the new probabilities, which are larger than a certain threshold, are 

selected to generate the resulting alignment. 
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2.5.2 Instance-based implementations 

This section reviews major ontology matching systems, which consider instances to 

determine the matching entities of input ontologies. 

• T-tree [Euzenat, 1994] 

This system uses instances of the input ontologies to determine the matching classes. 

It infers "bridges" between classes of different ontologies sharing the same set of 

instances. Given a source and destination taxonomy, T-tree returns all "bridges" for 

which the instances in every source class are present in the destination class. 

• CAIMAN [Lacher and Groh, 2001] 

CAIMAN is a system for document exchange, which focuses on lightweight ontologies. 

It determines a probability measure between concepts of two ontologies by applying 

machine learning techniques for text classification. In particular, based on the documents, 

a representative feature vector is created for each concept in an ontology. Then, the 

matching similarity is determined for these class vectors. Finally, with the help of a 

threshold, the matching result is produced. 

• FCA-merge [Stumme and Madche, 2001b] 

The FCA-merge has three main steps for merging two ontologies: instance extraction, 

concept lattice computation, and generation of the final merged ontology. Actually, the 

FCA-merge uses the formal concept analysis technique in the second step. The idea 

behind this technique is to compare classes which share instances by testing the 

intersection of their instances. 
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• GLUE [Doan et al, 2004] 

GLUE is an extended version of Learning Source Descriptions (LSD). It uses multiple 

learners and exploits information in concept instances and taxonomy structures of 

ontologies. GLUE works in three steps. First, it learns the joint probability distributions 

of classes in the input taxonomies. Then, it estimates the similarity between these classes. 

This results in a similarity matrix between classes of the input taxonomies. Finally, 

GLUE filters some of the matches from the similarity matrix and keeps only the best ones. 

2.5.3 Combined schema- and instance-based implementation 

This section explores the ontology matching systems which use both schema and 

instances from the input ontologies to find their matching entities. 

• IF-MAP (Information-Flow-based Map) [Kalfoglou and Schorlemmer, 2003] 

IF-Map matches two input ontologies with respect to a reference ontology. In other words, 

it considers that the reference ontology represents an agreed understanding, which 

facilitates knowledge sharing. Moreover, IF-Map assumes that the given input ontologies 

include portions which match the reference ontology. It also assumes that the reference 

ontology does not need to be populated with instances. The matching process proceeds as 

follows. If the instances of the input ontologies can be assigned concepts in the reference 

ontology and the reference ontology can be expressed in each of the input ontologies, 

then IF-Map uses the three ontologies in order to extract the matching entities (using the 

formal concept analysis technique). When a matching (between the three ontologies) is 

not found, IF-Map returns the matching candidates using string-based and structure-based 

methods. 
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• oMAP [Straccia and Troncy., 2005] 

oMap deploys a number of matchers in order to find the correspondences between 

entities of the input ontologies. The matchers include a string similarity measure, learning 

methods used on instance data, and a matcher that propagates preliminary weights 

through the ontology constructors used in the definitions of ontology entities. At the end, 

the results are aggregated using a weighted average. 

• OLA (OWL Lite Aligner) [Euzenat and Valtchev, 2004] 

OLA is a system that takes an equal contribution of each component of the ontologies, 

e.g., classes, instances ... etc in order to find the matching entities of the input ontologies. 

It considers ontologies as graphs, and determines the similarity of the graph nodes based 

on string, language, and structure based similarities. These similarities are aggregated. 

For computing these similarities, OLA starts with base distance measures computed from 

labels and concrete data types. Then, it iterates a fixpoint algorithm until it no longer 

yields an improvement. 

• Falcon-AO [Hu et al, 2007] 

Falcon-AO has three elementary matchers: two linguistics matchers (V-DOC and I-sub) 

and a structural matcher (GMO). GMO is a bipartite graph matcher which starts by 

considering the RDF representation of the ontologies as a bipartite graph, represented by 

its adjacency matrix. The results of Falcon-AO mainly derive from the alignments 

generated by linguistic or structural matchers, depending on which has better results. 

Otherwise, the Falcon-AO generates the results by combining both linguistic and 

structural matchers using a weighting scheme. 
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• RiMOM (Risk Minimization based Ontology Mapping) [Li etal, 2007] 

The RiMOM system integrates multiple strategies, such as edit distance, statistical 

learning, and three similarity propagation-based strategies. Then, it applies a strategy 

selection method in order to decide on which strategy it will rely more. As a result, 

RiMOM combines the conducted alignment. RiMOM offers three possible structural 

propagation strategies: concept-to-concept propagation strategy (CCP), property-to-

property propagation strategy (PPP), and concept-to-property propagation strategy (CPP). 

To choose between them, RiMOM uses heuristic rules. For example, if the structure 

similarity factor is lower than some threshold, then RiMOM does not use the CCP and 

PPP strategies, but uses CPP. The basic idea of CCP, PPP, and CCP is to propagate the 

similarities of (concept pairs or property pairs) across the concept/property hierarchy 

structure. For instance, in CCP, similarities of concept pairs are propagated across the 

concept hierarchy structure. 

2.6 Summary 

> We reviewed the DLs, which are widely used as the formalism for the semantic 

web, specifically the Web Ontology Language with its correspondence to 

description logics (OWL-DL). We described the families of DL Languages and 

their main constructs, and explained how they differ in the constructs they use. 

> We described the main components of ontologies, such as classes or concepts, 

roles or properties, axioms, individuals or instances along with an illustrative 

example for the meaning of each component. 
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> We reviewed the approaches to ontology integration: reusing, mapping, and 

merging. 

I. First, the reusing approach refers to the reuse of widely available ontologies 

as main parts to build a new ontology instead of creating it from scratch. 

II. Second, the mapping approach refers to the situations where there are 

different ontologies, created separately from each other by different users, 

and we need to construct a global ontology or "virtual view" for accessing 

the required information from these ontology sources. The main goal of the 

"virtual view" is to provide a general view, in which we can query the 

different source ontologies. Basically, there are three basic approaches for 

defining this mapping: Global-As-View approach (GAV), Local-As-View 

approach (LAV), and Combining Global-as-view and Local-As-View 

(GLAV). 

III. Third, the merging approach refers to the process as the intersection 

between the two given ontologies and the engineer is in charge of making 

the final decisions. 

> We classified a variety of ontology matching techniques into two main levels: 

element and structure level techniques. The element level techniques have been 

further classified into three basic techniques, string-based techniques, language-

based techniques, and constraint-based techniques. The structure level techniques 

have been classified into graph-based techniques and taxonomy-based techniques. 
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> We also classified ontology matching implementations (matching systems) on the 

basis of their input information level, which could be: schema-based, instance-

based, and the combined schema- and instance-based matching systems. 

> From the point of view of architecture, following the proposals for information 

integration, we can classify the approaches to ontology integration into two: (1) 

the data warehouse (DW) or materialized approach, and (2) the virtual (mediator-

based) approach. Accordingly, 

I. Ontology reuse and merging in the ontology integration approaches are 

similar to the materialized approach in information integration. In both 

ontology and information integration approaches, information is gathered 

from more than one source and is stored into a single source (warehouse). 

II. The ontology mapping approach can be considered similar to the virtual 

approach to information integration (mediator-based), since they both use an 

integrated virtual view through which we can query the information sources. 

III. The data warehouse approach supports decision making and querying data, 

as it explicitly stores information from heterogeneous sources locally. 

However, maintenance is a major issue when a data source frequently 

changes. 

IV. Another approach to information integration is to provide an integrated view. 

This is preferred over the DW approach when the information sources 

change often. On the other hand, the DW approach is more suitable for data 

mining. 
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> Most ontology matching systems focus on one-to-one matching, i.e., they match 

one pair of entities at a time. They do not match n entities to m entities 

simultaneously, and hence use several similarity measures to solve the ontology 

matching problem. 

> A single similarity measure, such as name similarity, graph matching, etc., for 

matching ontologies is useful and efficient in some specific domains. For 

example, matching techniques which are based on syntactic similarity measures 

provide good results in domains, where there is a high probability that whenever 

the matched entities agree on their terms, they also agree on their semantics. 

However, such techniques, which are solely based on name similarity, might not 

work well in application domains where similar entity names and terms are used 

with different meanings. To improve this situation, it has been proposed to use 

multiple measures at the same time. 

> Many matching systems provide a library for the matching techniques that can be 

used for given input ontologies. However, the user often has no knowledge about 

which matching technique is more appropriate for the application at hand. In the 

following chapter, we study these techniques and suggest improvements. 
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3. Ontology Integration: A Hybrid 

Approach 

This chapter introduces, in Section 1, an overview of the hybrid approach we proposed in 

[Alasoud et at, 2005] for ontology integration, which is a hybrid between the fully 

materialized and fully virtual approaches. Section 2 motivates the proposed approach 

with an example, while Section 3 describes its architecture. Section 4 explains the 

method used for mapping global and local ontologies. Section 5 describes our 

implementation. 

3.1 Overview of the Hybrid Approach 

Extracting information from ontologies created by different users is an important and 

challenging task for answering queries originate from the Web. In this section, we 

propose a framework for ontology integration which is a hybrid of materialized (data 

warehouse) and virtual views. 
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The rapid increase in the number of information sources requires efficient and 

flexible frameworks for their integration. Such frameworks should provide a way for 

extracting, transforming, and loading data from these sources, and presenting them to the 

user in an appropriate way. There are two major approaches for the integration of 

information: (1) the data warehouse (DW) or materialized approach and (2) the virtual 

(mediator-based) approach. In the DW approach, a huge amount of historical data is 

stored in the DW. In the virtual approach, on the other hand, the data is not materialized, 

but rather is globally manipulated using views. Each of these approaches is suitable for 

some applications. 

DW is a powerful tool for decision support and querying data because it explicitly 

stores information from (possibly heterogeneous) sources locally. However, some 

external data, such as new product announcements from competitors and currency 

exchange rates, may be needed to help in business decisions. We should not neglect the 

importance of such data to avoid the problems of incomplete, inexact, or sometimes 

wrong results. Warehousing huge and frequently changing information is a big challenge 

for the following reasons. Firstly, the data in the DW is loaded in snapshots and the DW 

is a huge information repository. Secondly, as the data sources change frequently, 

maintenance becomes a complicated and costly issue. 

The other approach to information integration is to provide a virtual integrated 

view. In this approach, the actual data resides in the sources, and queries against the 

integrated 'virtual' view will be decomposed into sub-queries and posed to the sources. 

This approach is preferred over the DW approach when information sources change very 

often. On the other hand, the DW approach may be desired in case quick answers to 
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queries are required and the information sources change rarely. In order to keep both 

advantages, we consider a third approach which is a hybrid between fully materialized 

and fully virtual approaches. 

A framework for warehousing web contents has also been discussed in [Zhu, 

1999]. It uses a hybrid approach in order to integrate DW data with the "required" web-

based information. This framework considers ontologies which express domain 

knowledge related to web sources and the logical model of the data warehouse. 

Moreover, an ontology engine is being deployed as an intermediate layer by defining the 

mapping rules between the web data and attributes of the DW in the ontologies to aid the 

DW structure and repairing requirements. In [Zhu, 1999], some web data are selected for 

materialization. However, some queries may not be answered using only materialized 

data in the DW. In [Calvanese et al, 2002], a framework for ontology integration was 

introduced based on the fully virtual approach. They constructed the integrated 'virtual' 

view based on the mapping between the local ontologies and the global ontology. This 

maps a concept in one ontology to a query over other ontologies. Then, when a query is 

posed based on the global 'virtual' ontology, which uses the mapping, it is unfolded and 

evaluated against sources. [Calvanese and Giacomo, 2005] extend the ontology 

integration framework by using the Description Logic DL-Lite for expressing the global 

schema, and using the LAV approach for mapping between the local source ' databases' 

and the global ontology schema. There are some noticeable differences between our work 

and theirs. First, we consider the global ontology as partially materialized to improve 

query evaluation time, and to keep the advantages of the fully materialized and fully 
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virtual approaches. Second, data sources considered are expressed in ontologies. In the 

next section, we will describe some motivating examples for our hybrid approach. 

3.2 Motivating Examples 

The following examples illustrate these approaches to integration. Consider an ontology 

of an enterprise "A", which offers different types of electronic products. For simplicity, 

we consider only two products, PCs and laptops. Fig. 9(a) introduces this ontology for 

items at enterprise "A." It includes the concept COMPUTER which represents the 

desktop and laptop computers. Other concepts in this ontology, such as MONITOR, 

PROCESSOR, and PRICE represent some specifications of the computers. Also, suppose 

there is an external data source for the same products, which is enterprise "B", shown in 

Fig. 9(b). The following three examples will illustrate how the integrated view could be 

supported as: 

• Fully materialized: where a posed query needs to be answered only using 

materialized views. 

• Fully virtual: where all sources are defined as views, i.e., non-materialized. This 

is useful when queries are infrequent or data changes frequently, and hence a 

query should be evaluated using the source ontologies. 

• A hybrid of both: where the answers to queries are retrieved from materialized 

views as well as virtual views. 

For simplicity, we assume the ontology of enterprise "A" is part of a larger ontology 

restricted to a branch of this enterprise. Moreover, the designer can create a global 

ontology, "an integrated view", in which clients can pose queries against branches. In 
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addition, the company wants to get external information about their competitors, such as 

enterprise "B." This global ontology, or "integrated view", is shown in Fig. 10. 
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Figure 9: Source ontologies 

Furthermore, designing a global ontology depends on many factors such as: (1) 

which data are very frequently queried and rarely change, and (2) which are not 

frequently queried and/or frequently change. In some cases, however, the designer may 

not materialize frequently queried data if it is frequently changing. For example, in bank 

applications, an account balance is frequently queried, but it also changes frequently. 

Therefore, by materializing such data, the up-to-date status of clients may not be 

available. It would be more appropriate in this case that the client use a virtual view, 

through which he/she can access up-to-date data from the sources. These issues and 

factors should be taken into consideration during the design phase. 
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Figure 10: The global ontology 

Example 5. In this example, we illustrate the case where the end user query is answered 

from the materialized view only. First of all, deciding which data in enterprise "A" 

should be materialized is decided by the designer, based on the aforementioned issues. 

We will assume the following: 

• The most frequently queried and infrequently changed data are the prices of 

the computers. 

• A computer price is affected by specifications, such as its processor type and 

speed, the size of its hard disk, the size and kind of main memory, and the 

monitor type and size. 

• Other specifications, such as types of the main board, sound card, mouse, 

video card, etc., may not affect the price much and are not frequently queried. 

Based on these assumptions, the concepts of FEE, SPEED, HARDDISK, MAIN-

MEMORY, and SCREEN can be fully materialized, and the concept COMPUTERS can 

be partially materialized. In partially materialized concepts, only one model of each 
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category of computers, with the same specifications of speed, hard disk size, main 

memory, and screen, will be materialized. 

Whenever the user asks for the price of a computer with particular specifications for the 

enterprise "A", the answer will be retrieved from the materialized data only. 

Example 6. Let us consider a situation where important information about products by 

other enterprises is required in order to make business decisions in enterprise "A." We 

therefore need to query some selected ontologies, which may not be in materialized form, 

such as the enterprise "B" ontology in our running example. This process of evaluating 

such queries is fully virtual, as it queryies the sources through the integrated view. In 

other words, the global ontology of the integrated view is used as an intermediate layer to 

decompose the queries into sub-queries and to get the answers to each sub-query from the 

relevant sources. 

Example 7. In this example, we consider that the global ontology of the integrated view 

is partially materialized. The frequently accessed data is materialized and the rest are 

provided as sources. For instance, we could decide to not materialize the infrequently 

queried data, such as main board type, case material, sound card specifications, and video 

card type, or any other types of data sources which are not frequenly queried by users. 

Another case is when enterprise "A" needs to compare the prices of its computers with 

those produced by enterprise "B." Such queries would be answered from the materialized 

prices for "A" and the virtual prices for "B." 
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3.3 An Architecture to Support Ontology Integration 

As shown in Fig. 11, the framework includes a Global Ontology (GO) and a set of 

wrappers. In this framework, GO follows a Local as View (LAV) approach [Calvanese 

and Giacomo, 2005] to represent the mapping between the concepts in the source 

ontologies (Ontology 1, Ontology 2, ... ) and the GO. We will discuss this mapping in 

the next section. The Transformation Processor (TP) transforms the data from the data 

source model to the materialized data model. In our implementation, we consider the 

materialized data being represented as an ontology. During the maintenance of the 

materialized ontology, according to the update occurring in the data sources, the 

Incremental Maintenance Processor (IMP) will determine which data in the materialized 

ontology may be updated. After the IMP receives the data from the GO, it will compare 

the new data with the old data in the materialized ontology to decide which parts need to 

be updated (during the regular-based updates). 

The two modules TP and IMP in the dashed box in the Fig. 11 form the Maintenance 

module for the Materialized Ontology (MMO). The task of the Query Processor QP in 

our architecture determines if a user query could be answered from the materialized 

ontology (MO), source ontologies, or both. If the query needs the actual data, i.e. data 

from the sources, then the query is decomposed and rewritten based on the mapping of 

the concepts between the global ontology and the source ontologies. As soon as the QP 

gets the answer from the source ontologies and the materialized ontology, it "merges" the 

answers into one answer and returns it to the user. The MetaData (MD) module is a 

repository for the matching terms for the concepts, roles, and individuals used by both 

GO and the source ontologies. 
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Figure 11: An architecture for the hybrid framework 

3.4 Mapping between the Global Ontology (GO) and the 
Source Ontologies 

We can think of GO as consisting of two main parts. The first part is the materialized one, 

and it is responsible for updating the materialized ontology when required. The second 

part of the GO is the virtual one, and it is responsible for providing the extra information 

from the sources which is not materialized nor partially materialized. In other words, this 

virtual part collects answers to queries that could not be answered using only the 

materialized ontology. As reviewed in [Ullman, 1997], there have been different 

approaches proposed for modeling a global view, such as, Global as View (GAV), Local 
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as View (LAV), and Global-Local as View (GLAV). In the GAV approach, a concept in 

the global ontology is mapped to a query over the source ontologies. In other words, 

when the user poses a query over the global ontology, the data corresponds to a concept 

in the global ontology, which can actually be answered from the source ontologies 

through a specific query. Since it uses unfolding, query processing in GAV is easy by 

associating each concept in the global ontology mentioned in the user query with a query 

over the sources. This approach, however, makes the modeling of a global ontology 

difficult when the sources change or grow very often, since these changes affect the 

mappings in general. In contrast, the LAV approach defines the mapping the other way 

around: each concept in the source ontologies is defined as a query over the global 

ontology. This makes query processing more complex since the system does not 

explicitly know how to reformulate the concepts in the global ontology expressed in the 

user query in terms of source ontologies. On the other hand, modeling of global and 

source ontologies is easier since changes or incremental growth in the sources will not 

lead to a reconstruction of the entire global ontology, but only to modifying the mappings. 

The GLAV approach combines the GAV and LAV approaches, where there are 

unrestricted mappings in which the restrictions on the direction of the association 

between integrated and local schema are overcome. Query answering in this approach is 

largely unexplored, mainly because it combines the difficulties of the GAV and LAV 

approaches. 

Regardless of its difficulties, many researchers show [Calvanese and Giacomo, 

2005, Calvanese et al, 2004, Calvanese et al, 2002, Ullman, 1997] that the LAV 
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approach better supports a dynamic environment where data sources can be added to or 

removed from the system without restructuring the global ontology. 

3.5 Implementation of Research Prototype 

This section describes general ideas and technical details of the implementation of a 

prototype of the framework. We illustrate this by building a framework which integrates 

the source ontologies for enterprises A and B. 

We follow the LAV approach for representing the mapping between the global ontology 

and the source ontologies. This mapping is expressed in nRQL (New RACER Query 

Language) [Haarslev et al, 2004] as follows: 

Enterprise _ A(x) c (retrieve(?x) 

(?x | EnterpA | | hasmaker | )) 

Enterprise _ B(x) c (retrieve (?x) 

(?x | EnterpB | | hasmaker | )) 

where x is a variable, EnterpA and EnterpB are individuals of the concept 

MAKER, and hasmaker is a binary role between the instances of the concepts 

COMPUTERS and MAKER in the global ontology. Furthermore, the mapping of the 

products of the source ontology EnterpriseA over the global ontology is defined as all 

individuals that have EnterpriseA as their maker. Similar mapping definitions are used 

for EnterpriseB. 

In the above mapping, we represent the concepts in source ontologies over the 

global ontology. This means that we map the products of enterprises A and B to queries 

over the global ontology by defining the concept MAKER and adding the relation has

maker between the instances of the concepts COMPUTERS and MAKER in the global 
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ontology. This mapping gives a hint to the query processor module QP to determine to 

which source a query should be sent to for evaluation. For instance, QP will send the 

query to the ontology of enterprise A, if it detects the hasmaker relationship in the query 

is associated with the individual EnterpA. Also, QP will query the ontology of 

enterprise B in case the has_maker relationship in the query is associated with the 

individual EnterpB. However, QP will send the query to the both sources (ontology of 

enterprise A and ontology of enterprise B) in case the hasmaker relationship is not 

associated with any one of them. 

Moreover, the semantic web deals with diverse types of query answering with 

access to information represented in different formats. To allow complex queries over the 

global ontology, mapping these concepts to the global ontology is essential. We use 

RACER [Haarslev and Moeller, 2001b] together with nRQL, to support flexible 

construction of queries. Also, we use the OWL-DL Web Ontology Language with 

correspondence to description logics (DL) as the formalism for the global and source 

ontologies. We use Protege version 3.0 [Protege, 2008] as an editor to develop the 

knowledge bases. 

The following are three query examples written in the nRQL syntax. Each 

example shows a different scenario for query processing, rewriting, and answering. 

Furthermore, the examples will show different cases for answering queries: answering 

using a materialized ontology only, source ontologies only, or both. 

The following example shows a query whose answer is generated from the 

materialized ontology only. Consider the query "list the price of all laptops made by 

enterprise A, with the specifications: hard disk = 40 GB, screen type LCD with size = 21", 
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main memory type is SD with size =560 KB, and processor type is Pentium-4 with speed 

= 2 GHZ." Considering the global ontology provided, this query would be formulated in 

nRQL as follows: 

(retrieve (?y) 

(and (?y ?c |price-of]) 

(?c |pnt4-2| |has-speed|) 

(?c |hard-disk-40| |hard-disk|) 

(?c |lcd-21| |has-screen|) 

(?c |sd-560| |has-ram|) 

(?c |notebook|)( ?c |A| |has-maker|) ) ) 

Based on the mappings, the QP can easily figure out that the query should be sent 

to and evaluated at enterprise A. Then, considering our previous assumptions that the 

concepts FEE, SPEED, HARDDISK, MAIN-MEMORY, and SCREEN are materialized, 

the QP will compute the answer using the materialized ontology only and send the 

answer to the end user. 

The second query we consider is similar to the first, except we ask the answers to 

be retrieved purely from the source ontologies. In this case, the query answers should be 

retrieved from data sources, i.e., the ontology of enterprise B "( ?c |B| |has-maker|)", or 

the non-materialized concepts in the global ontology for the enterprise A, such as main 

board type, case material, sound card specifications, and video card type, etc. For such 

queries, the QP will rewrite them according to source ontologies, and send them to the IV 

module. Once the answers are obtained, the QP merges the results and sends them back 

to the user. 
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The third query scenario, shown in Fig. 12, is a combination of the previous two 

scenarios. Here, the query is the same as in the first example except that we want to 

compare the prices of the laptops made by A and B with the specifications mentioned 

above. 

In the formulation of this query, we might not wish to specify the has-maker 

relation. In that case, the QP will decompose the original query, rewrite it, and evaluate 

the query using both materialized and source ontologies for evaluation. After receiving 

the results from both types of sources, the QP merges these results and sends the final 

answer to the user. 

Enter the query: 

(retrieve (?y) 

(and (?y ?c |price-of|) 

(?c |pnt4-2| |has-speed|) 

(?c |hard-disk-40| |has-hard 

(?c |lcd-21| |has-screen|) 

-disk|) 

(?c |sd-560| |has-ram|)(?c |notebook|))) 

Query answer: 

Enterprise A: (((?|5500 $|))) 

Enterprise B:(((?| 1100$|))) 

Figure 12: nRQL query with its answer 
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3.6 Summary 

In this chapter, we presented a hybrid approach to ontology integration, to combine the 

advantages of both the virtual and materialize approaches. Furthermore, we discussed our 

architecture to support ontology integration, mapping between global and local 

ontologies, and the implementations of the proposed approach. 

In order to build the global ontology (which has a common vocabulary among the 

sources), a matching module is necessary. This allows the query processing (QP) 

component to extract information from the ontology sources. To support this capability, 

we need to build the mapping for the proposed framework, for which effective matching 

techniques should be developed. 

In the next chapter, we propose the multi-match technique for this purpose. 
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4. Multi-Match strategy 

The motivation for our research in the integration of source ontologies was to develop 

tools and techniques for situations where the information sources are expressed as 

ontologies. In order to support queries over these sources, we need to build a global 

ontology, which has a common vocabulary among the sources. This allows the query 

processing (QP) component in the framework, introduced in the previous chapter (Sec 

3.3), to extract information from the ontology sources. To support this capability, we 

need to build the mapping for the proposed framework, for which effective matching 

techniques should be developed. 

In this chapter, we study the ontology matching problem and propose a solution 

technique called the multi-matching algorithm (MMA), which uses a multi search 

algorithm to find the correspondences between entities in the input ontologies. An 

important feature of this method is that it benefits from existing individual match 

techniques and "combines" their match results to provide enhanced ontology matching. 
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4.1 Motivating example 

In this section, we focus on the ontology matching problem and introduce some concepts 

and techniques. Let us consider the following examples. Suppose source ontology "S", 

shown in Fig. 13, offers different types of electronic products. For simplicity, we 

consider only two products: PCs and laptops. As can be seen, S includes the concept 

COMPUTERS, which represents the desktop and laptop computers. Other concepts in 

this ontology, such as MONITOR, PROCESSOR, and PRICE, represent technical 

specifications of computers. As the target ontology, consider ontology "T", shown in Fig. 

14. The goal is to find the corresponding matches between the entities in S and T. 

There are numerous methods to measure similarities between two entities, such as string 

similarity, linguistic similarity, etc. However, when we use a single match measure for 

the input pair of ontologies, we may not be satisfied with the final match result. For 

instance, if we only use a string similarity measure, the concepts PC and Z,r in S have no 

matches in T. On the other hand, a string similarity measure works fine in domains where 

a match in the entities on their syntax would most probably mean agreement on their 

semantics. 

Another example is when we use a more semantic measure, such as linguistic-

based. For instance, using such a measure, we can find that the concept PC in S is 

matched to concept desktop in T and to concept computer in T. This will not help the user 

much in deciding the correspondences and the matched entities. However, if we use both 

measures (string and linguistic), the concept computers in S will be matched with the 

concept computers in T with a higher confidence. Consequently, the concept PC in S will 

be matched to desktop in T, and the concept LT'm S will be matched to portable in T. 
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We propose a multi-match search algorithm that combines different measures in one 

unified framework to improve the matching results. Further, it minimizes the user's 

interaction with the system and suggests, for a collection of n elements in S, a collection 

of m elements inT. 

Subscription relationship 

Objects relationship 

Figure 13: Source ontology "S" 

Figure 14: Target ontology "T" 
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4.2 Background definitions 

We describe the ontology mapping problem as identifying pairs of similar nodes (also 

called vertices) in the input ontologies, modelled as labeled directed graphs. The nodes 

in the input graph correspond to entities in the ontologies, and the edges indicate the 

relationships between the pairs of nodes they connect. The labels indicate the kind of 

relationship, e.g. "domain" or "range." 

Before introducing the multi-match framework, in this section we provide some 

notations and definitions. 

Definition 1 (Entity-relationships) 

Let S be a source ontology, and T be a target ontology. We use E = {si, S2,..., sn} and E 

= {ti, t.2,..., tm} to denote the sets of entities in S and T, respectively. Entities may refer to 

classes, properties, or individuals for which we want to find matches in the input 

ontologies. 

Definition 2 (Relationship Matrix) 

This relationship matrix, denoted R(rtj), represents the relationship between ontologies S 

and T, i.e., r,y indicates the similarity relationship between entity st in S and entity (, in T. 

Using R, we define another matrix (see Def. 3), called the similarity matrix L(10, which 

captures a different relationship between S and T. In the matrix R(rtj), .s, r tj says that 

entity st in the source ontology S matched with entity tj in the target ontology T, based on 

relationship r, where r could be any of the existing similarity measuring methods, such as 

string similarity measure, linguistic similarity measure, ... etc. 

J | J I | J | f i j s,rt, j , r / , ... 5,/"/,. 

s,rt. s.rt-, ... s.rt, 
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Definition 3 (Similarity Matrix) 

This relational matrix, denoted L(ljj), includes entries in the interval [0,1], which are 

called the similarity coefficients and denote the degree of similarity between st and tj. R 

and L are nxm matrices. 

£('„) = 

/., 1,2 - hi 

'n In - . I, 

Moreover, the similarity matrix L(ly) captures the similarity coefficients between E and 

E based on the defined relationship matrix R(rtj). For example, if R(ry) is defined to be a 

string similarity relationship between Es and ET, then the similarity coefficient ly in the 

similarity matrix L(ly) says that entity s, in the source ontology S matched with entity (,• in 

the target ontology T based on a string similarity measure, with a similarity coefficient ly. 

As a result, for each R(ry), we compute its L(ljj). 

Definition 4 (Matching Matrix) 

A matching matrix, denoted Mapo-i, is an nxm matrix with entries r.. e {0,1}. If ry = 1, it 

means that s\ and tj are "matchable." They are not matchable if ry = 0. 

Definition 5 (Matching Space) 

All the possible assignments for the matching matrix form a matching space, also called 

the mapping space. Every assignment is a state in the matching space, i.e. a state 

represents a solution for ontology matching. 

The following example illustrates the above concepts and terms. 

Example 8. Let S and T be a given pair of ontologies, and Es = {si, S2,..., sn} and ET = 

{tj, t2,..., tm} be the sets of entities. A matching matrix Mapo-i indicates the similarity 

relation between the elements of £? and ET. The number of relationship matrices Mapo-i 
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10 

0 0 

11 

01 
;•••, 

11 

11 

is 2nxm, i.e. the matching space has 2nxm states. These matrices form the matching space. 

For instance, when Mapo-i is 2x2, the matching space would have 16 states. Some of 

these mapping states are as follows, in which the rows are entities in S and the columns 

are entities in T. 

"oo 
00 

The first matrix indicates no mapping. The third matrix indicates that entity s/ is matched 

with t] or /?, and that S2 is matched with t2, etc. 

4.3 A Multi-Match Algorithm 

The main steps of the Multi-match algorithm (MMA) are shown in Fig. 15. The 

algorithm is mainly divided into two phases. In phase 1, which is the initialization phase, 

an initial assignment for the matching matrix Map is provided, as well as similarity 

functions to evaluate the similarity matrix. Phase 2 of MMA, which is the search phase, 

is an iterative refinement for the Map matrix. The algorithm iteratively constructs 

matching searches for entities in both S and T (see illustrative example in the next 

section). Then, the Map matrix will be evaluated according to the (re)used similarity 

matching techniques, such as name and linguistic techniques, and finally the Map matrix 

with the highest evaluation value will be suggested to the user. 

If we only search with one matching technique, the algorithm behaves as a regular 

similarity procedure and is considered as a single matcher; otherwise, it is indeed a multi-

matcher. This design is useful as it provides a flexible and convenient way to use various 

relevant information about input ontologies, and to combine feasible matching methods 
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to obtain better results than those obtained by each individual method. The method can 

deploy any desired search algorithm. 

Algorithm MMA(S,T) 
Phase 1 Initialization 

Pick an initial assignment matching matrix. 
/* For example, let diagonal elements in Map be 
equal to 1, and so on.*/ 
Use the similarity functions to evaluate the 
similarity matrix. 

Phase 2 Search Matching techniques 
begin 

Enter a similarity matching technique 
/* such as the name matching technique */ 
Evaluate an intermediate matching state 
begin 
Enter another similarity matching technique 
/* such as the linguistic matching technique */ 
Evaluate an intermediate matching state 
Begin 

/* various available matching techniques, 
i.e. many feasible matching techniques */ 

end; 
end; 
if the intermediate matching state is not 

the final solution 
/* the matching result does not satisfy 

the evaluation function */ 
then use it as an intermediate solution 

in the next iteration; • 
if the matching state satisfies the 

evaluation function 
then return the final solution 

end; 

Figure 15: Multi-Matching Algorithm (MMA) description 

4.4 Illustrative Example 

In this section, we illustrate our solution approach. Fig. 16 shows two sample taxonomies 

for Computer Science Departments (CSDs) of different universities. We have to integrate 

the ontologies into a single ontology [Alasoud et al, 2005]. To reduce the manual work 

involved, we use a matching algorithm to identify the matching entities, and then help the 
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middleware to integrate the schemas. For ease of presentation, we use simple, small 

taxonomies. 

As can be seen in Fig. 16, the representations of the source ontology S and the 

target ontology T are different. Here, entities s,, s2, sg and tt, t2, t6 are concepts, which 

are high-level entities in the ontologies. Other entities are properties. Given 

that|S|=13and|T|=9, the number of states is 213*9, indicating the number of possible 

matching results. Clearly, it is not practical to evaluate all the mapping states to compare 

the relationships and similarities between the entities. 

Sj Faculty 

s2 Assistant 

Professor 

- 5V Name 

- Si Degree 

-S5 ID 

S8 Associate 

Professor 

- s9 name 

- s\o 

-Sg Granting institution 

- Sj Address -sn 

t± Academic Staff 

^2 Lecturer £6 Senior Lecturer 

- £3 first-name - tj given name 

- ti last-name - tg surname 

-1 5 education - 1 9 degree 

Figure 16: CSDs Ontologies 

We thus need to find ways to reduce the search space. In this example, we allow concepts 

in S to be compared only with concepts in T, and, accordingly, the other entities in S, 

such as properties and instances, can be matched only with the corresponding entities in 

T. 

We only use two similarity measures to compare the entities in S and T, name similarity 

(Levenshtein distance) and linguistic similarity (WordNet). We thus obtain the following 

similarity matrices for the concepts. 
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name _ concept 

s}rt} sxrt2 sxrt6 

s2rtx s2rt2 s2rt6 

ssr'i s%r*2 s&r*6 

''ling concept 

sxrtx sirt2 s^rt6 

s%rt^ s%rt2 sirt6 

0.15 0.25 0.14 

0.38 0 0.14 

0.31 0.11 0.21 

1 0.07 0.06" 

0.07 0.2 0.1 

0.08 0.06 0.05 

When an assignment is found for the matching state, we check the similarities of entities 

to see whether they exceed a user-defined threshold, denoted as th. In this example, we 

use the following evaluation function: 

v = \{Map^-L)lk\ = Y^Map0_x (i,j)l(i,j)lY^Map^ (i,j) 
7=1 > 1 / /=1 7=1 

, and v>th 

k > min(n,m) is the number of matched pairs, n is the number of entities in S, and m is the 

number of entities in T. 

The choice of threshold value is application dependent and should be adjusted and 

suitably chosen for each matcher. 

We now provide a description of the search process. The initial state of the mapping 

matrix is a zero matrix. Then, if the search process exceeds the given maximum number 

of iterations, the maximum similarity states (Mapmax) will be offered as the final mapping 

result. Also, we need to set the additive constraints in the search process. In this example, 

since the number of concepts in S is equal to that in T, we assume that the ontologies S 

and T have been fully matched. So, the mapping states of concepts now 

include 6 entries, ei, e2, ..., e6, as shown in Fig. 17. 
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Figure 17: Searching in the matching space 

As shown in Table 1, e} indicates the optimal matching result. Also, we can see that 

different values for name similarity v, and linguistic similarity v2 for each entry are 

determined as follows. We show this fore,: 

v l = 

V2 = 

0.15 

0.38 

0.31 

"l 

0.07 

0.08 

0.25 

0 

0.11 

0.07 

0.2 

0.06 

0.14 

0.14 

0.21 

0.06 

0.1 

0.05 

"1 0 0" 

0 1 0 

0 0 1 

"1 0 0" 

0 1 0 

0 0 1 

The following table shows the individual and combined similarity match results for each 

entry state. 
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Name Concept Name + Concept Normalized cost 

State v, v2 V )+ v2 v = ( v . + v 2 ) / 2 

ei 

e2 

e3 

e4 

e5 

e6 

0.12 

0.13 

0.28 

0.21 

0.23 

0.15 

0.42 

0.38 

0.06 

0.06 

0.08 

0.11 

0.54 

0.51 

0.34 

0.27 

0.31 

0.26 

0.27 

0.25 

0.17 

0.13 

0.15 

0.13 

Table 1: Individual and combined similarity match results 

Note here that if we only use the name similarity technique, the mapping result 

would be e3. In the same way, if we only use the linguistic technique, we would obtain 

e, as the result. Also, using Mapname_concep, ,Maphngconcep,, and the threshold value thconcep,, 

we obtain the final solution. Consequently, the output result state ex means that we 

matched n concepts from the source ontology S to m concepts in the target ontology T. 

That is, si is matched with tj, s2 with t2, and ss with t6. Accordingly, the algorithm 

matches the properties and/or instances of each matched pair of the concepts. 

Finally, the mapping result will be introduced in OWL format. OWL can be 

considered as a language for expressing correspondences between ontologies. As a matter 

of fact, the equivalentClass and equivalentProperty primitives have been introduced for 

relating elements in ontologies. For example, the following OWL ontology fragment 

<owl:Class rdfabout = "&ol ;#Faculty"> 

<owl:equivalentClass rdf:resource = "&o2;# Academic Staff > 

</owl:Class> 
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<owl:Class rdf:about = "&ol;#Assitant Professor"> 

<owl:equivalentClass rdf:resource = "&o2;#Lecturer"> 

</owl:Class> 

<owl:Class rdf:about = "&ol;#Associate Professor"> 

<owl:equivalentClass rdf:resource = "&o2;#Senior Lecturer"> 

</owl:Class> 

4.5 Experiments and Results 

In our evaluation, we used three pairs of ontologies: 

1. The MIT bibtex ontology [Knouf, 2003] (which contains 43 named classes, 22 

object properties, and 24 data properties) and the UMBC [UMBC-Ontology] 

publication ontology (which contains 15 named classes, 5 object properties, 27 

data properties), both of which are publicly available. 

2. Computer ontologies (the first onltology contains 17 named classes, 11 object 

properties, 15 data properties, and the second one contains 15 named classes, 10 

object properties, and 14 data properties). 

3. Ontologies about computer science departments (the first ontology contains 16 

named classes, 12 object properties, 10 data properties, and the second ontology 

contains 18 named classes, 14 object properties, 9 data properties). We created the 

second and third pairs of ontologies. 

We consider the matching of classes and properties based on their labels and the 

taxonomy structures of the input OWL-ontologies. As match quality measures, we use 
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the following indicators: precision, recall, and F-measure. Fig. 18 illustrates the idea of 

the matching comparison. 

> Precision is a value in the range [0, 1]; the higher the value, the fewer the wrong 

mappings (false positives) computed. 

\B\ Precision = , , , , 
\B\ + \C\ 

where B represents true positives, and C false positives. 

The precision measure could also be defined as follows: 

. . number of correct found alignments (by tools) 
precision= =—= = = 

numberoffoundalignments (by tools) 

> Recall is a value in the range [0, 1]; the higher this value, the smaller the set of 

correct mappings which are not found (also called true positives). 

\B\ 
Recall =• 

\A\ + \B\ 

where A is the set of false negatives. The recall measure could also be defined as follows: 

numberofcorrectfoundalignments (by tools) 
rccHii 

numberofexistingalignments (by experts) 

> F-measure is a value in the range [0,1], which is a global measure of the matching 

quality. For this, we use the harmonic mean of precision and recall [Do et ah, 2002]. 

„ m, 2x precision x recall 
FMeasure = 

precision + recall 

existing matches J, ^ f g \ Q U derived matches 
(defined by experts) \ \ J (by tools) 

Figure 18: Comparing existing matches and derived matches 
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In our method, we are concerned with providing a ground for evaluating the quality of 

match results. For this, we have determined and used expert matches for all the input 

pairs of ontologies. The results produced by the match algorithm are compared with these 

expert matches. 

The evaluation results are shown in Figs. 19, 20, and 21. From the point of view of the 

quality of the matching results, it is clear that MMA outperforms each individual 

technique. 

The key point to note in MMA is that, for each entity from the source ontology, it gives 

only one corresponding entity match in the target ontology. This enables MMA to 

achieve, in these cases, high precision and recall numbers. For instance, in the case of the 

computer ontologies, since both ontologies contain either the same names for the 

corresponding entities, or they use totally different names, we see that string-based 

techniques provided a high precision rate (no wrong matches returned to the user), that is, 

the concept 'Computers' in the source ontology is matched to 'Computers' in the target 

ontology. However, string-based techniques provided a low recall rate because they 

failed to identify semantic mappings. For example, the string-based techniques missed to 

match the concepts (PC, Price, and Monitor) in the source ontology to their 

corresponding concepts (desktop, cost, and display) in the target ontology. 

The linguistic-based techniques showed a low precision (some even returned incorrect 

mappings to the user). For instance, the concept "Computers" in the source ontology will 

also be matched with the desktop and laptop concepts in the target ontology. Another 

reason for the low recall rate is that it gives a large set of wrong mappings compared to 

the expert defined matches. The MMA algorithm, on the other hand, benefits from these 
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existing techniques. Since each concept from the source ontology will be matched with 

only one concept from the target ontology, the concept "Computers" in the source and 

target ontologies will be matched to each other. Moreover, the "PC", "Price", and 

"Monitor" concepts in the source ontology will be matched to the "desktop", "cost", and 

"display" concepts in the target ontology. Consequently, the MMA algorithm produces a 

better final result for its higher precision and recall rates. 

Bibtex ontologies 
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Figure 19: Results using Bibtex ontologies 
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Figure 20: Results using Computer ontologies 
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Figure 21: Results using Computer science departments' ontologies 
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4.6 Summary 

In this chapter, we introduced the multi-matching strategy, which could be used to 

support the hybrid approach. The following is a summary of the chapter: 

> We introduced the multi-match strategy to support the hybrid approach. The matching 

step in this proposed approach finds and relates the correspondences between the 

entities in both the global ontology and the local (source) ontologies. For this, we 

introduced the Multi-Matching Algorithm (MMA). The important features of this 

algorithm are that it benefits from existing individual matching techniques and it 

helps "combine" their match results to provide enhanced ontology matching. 

Furthermore, it matches a collection of n elements in the source ontology to a 

collection of m elements in the target ontology. 

> We developed a prototype of the proposed MMA, and tested it using different input 

pairs of ontologies. Our results indicated that the proposed framework yields 

improved match results, as compared to individual match techniques, in terms of 

precision, recall, and Fmeasure. 

74 



5. Extending the Multi-Matching 

Strategy 

This chapter introduces, in Section 1, the multi-level extension of MMA, called MLMA 

[Alasoud et al, 2007], which assumes that the collection of similarity measures are 

partitioned by the user, and that there is a partial order to the partitions, also defined by 

the user. Section 2 provides the neighbor search strategy [Alasoud et al, 2008] which 

uses the MLMA as a backbone and performs a neighbor search to find the 

correspondences between entities in the given ontologies. Section 3 discusses the 

advantages of incorporating the reasoning techniques in order to achieve a satisfactory 

matching result [Alasoud et al, 2009]. A summary is given in Section 4. 

5.1 Multi-level matching strategy 

This section introduces an ontology matching approach based on the idea of a multi-level 
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match algorithm, in which each level may use different similarity measure(s). 

Fig. 22 illustrates the main idea of the multi-level method for the case of two levels. It 

shows various similarity measures {mi, m2 ... mi} divided into two groups, each of 

which is applied at one level. 

Level 1 

O, 

0 2 

Level 2 

Candidate 
results 

m i iri2 mk 

1 J - 1 
MLMA 
Level-1 

Can 

» 

Candidate results 
r ei 

e2 

en 

rrik+i mK+2 nil 

O, 

0 2 

• 

1 ' 1 ' 1 r 

M L M A 
Level-2 

Output 
1 
1 =Mef} 

Figure 22: A schematic description of the multi-level method 

For ease of presentation, suppose we use three similarity measures divided into two levels. 

The name and linguistic similarity measures are applied at the first level. We then apply a 

structural similarity measure at the second level on the resulting candidate states {ei, 

e2 ... en} from the first level. As the output, this method will produce the state which has 

the highest similarity score value. Moreover, the resulting mapping state {ef} is measured 

based on its rich structure and the highest number of correspondences between the input 

ontologies. As a result, the order of applying the similarity measures will not affect the 

overall quality, see Appendix C. 
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5.1.1 Tradeoff between structure and size of the mapping states 

Many similarity measures have been introduced for a keyword set representation of text, 

such as {ontology, matching, algorithm}. Examples of such methods include the Dice 

coefficient, the Jaccard coefficient, and the Cosine coefficient [Rasmussen, 1992]. The 

Dice coefficient is defined as follows: 

s7 i,r2
 = (2l7inr2|)/<|7i|+ |r

2 |> 

where |Tj| is the number of terms in set Tj, and |TiH T2I is the number of common terms in 

Tj and T2. We will use this to develop our structure similarity measure. 

Let 0\ and O2 be a pair of ontologies represented as labeled graphs, and OMMA be 

the ontology induced by the similarity result SMMA, obtained by applying the basic MMA 

match algorithm (which combines the similarity measures in a single step/level 

operation). Let Ss,rc be the structural similarity measure S, calculated as follows, which 

defines the similarities between the concepts in OMMA and those in the original input 

ontologies 0\ and Oi. 

Sstrc=2 h°yWMp|/( 

where ^(OMMA)! is the number of relationships in the ontology OMMA, and |r(OMMA(Oi))| is 

the number of relationships in the "immediate" neighborhood of OMMA in 0\. This 

neighborhood of OMMA consists of the relationships of 0/ with at least one end (one of the 

edge's ends) belonging to OMMA-

We can view Sstrc as a complementary measure to the output of MMA, applied at the 

second level. This is justified as follows. 

'(<W°>» r(0 
MMA 

(0 , ) ) 
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• The structure similarity Sstrc is mainly based on the presence of common concepts 

between the matched ontologies, induced by the states calculated by MMA. 

• The similarity degree between the matched ontologies may still exist, even when 

there is no structural match in the result of MMA, i.e., when Sstrc = 0. 

Accordingly, the combined similarity measure S is relative to SMMA, and should 

not be zero in the case where Sslrc = 0. We further "smooth" the effect ofSslrc as follows: 

S = SMMA + (x * Sstrc), where x = (1 - SMMA) 

In the combined similarity S, suppose Sstrc= 0. This then means that the value S 

depends only on the similarity measure of MMA. On the other hand, if Sstrc = 1, the 

neighborhood of the concepts matched by MMA is the same, and, consequently, S will 

take the maximum value. Also, since SMMA + x = 1, we have that x = 1 - SMMA, 

representing the complementary part of the information described in the relationships 

between the concepts in a desired state found by MMA. 

As we do not want to miss a found matching state that includes a large number of 

concepts matched, SMMA provides possible good matches in the input ontologies with their 

similarity degrees. The extended method will determine the same collection of matched 

states, but with better differentiation among them, by taking into account the structural 

measures in the second level. An extension of this two level method to a multi-level 

method is straightforward when the user can identify which measure(s) could or should 

be applied at which level. 
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5.1.2 The MLMA Algorithm 

There are many algorithms for matching techniques. The notion of multi-match 

"combines" all techniques involved into a single, unified method. By searching from 

technique to technique, the matching algorithm can eventually find a reasonable solution. 

The main idea of our Multi-Level matching algorithm is sketched in Fig. 23. 

Algorithm MLMA(S,T) 
Phase 1 Initialization 

Pick an initial assignment matching matrix. 
/* For example, let diagonal elements in Map be equal to 1, 
and so on.*/ 
Use the similarity functions to evaluate the similarity-
matrix. 

Phase 2 Search Matching techniques 
begin 

Enter a similarity matching technique 
/* such as the name matching technique */ 
Evaluate an intermediate matching state 
begin 

Enter another similarity matching technique 
/* such as the linguistic matching technique */ 
Evaluate a better intermediate matching state 

Begin 

/* various available matching techniques, 
i.e. many feasible matching techniques */ 

end; 
end; 
if the intermediate matching state is not 

the final solution 
/* the matching result does not satisfy 

the evaluation function */ 
then use it as an initial solution in the 
next iteration; 
if the matching state satisfies the 

evaluation function 
then it is a candidate for the final state 

end; 

Phase 3 Apply the Complementary measures 
/* Apply the structure similarity measure to the 

candidate states of phase 2, and return the final state */ 

end; 

Figure 23: The Multi-Level Match Algorithm 

The MLMA algorithm is an update to the MMA algorithm Fig. 15. It is divided into three 

phases. In phase 1, which is the initialization phase, an initial assignment for the 
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matching matrix Map is provided, as well as the functions of similarity to evaluate the 

relationship matrix. In phase 2, MMA performs a search operation, which is an iterative 

refinement of the Map matrices. In phase 3, the resulting mapping states from MMA will 

be qualified based on the connectivity among their concepts. Then, the best possible final 

state will be offered to the user. 

5.1.3 Illustrative Scenario 

The following example illustrates the main idea of the MLMA. For ease of 

presentation, we use simple and small taxonomies. Fig. 24 shows two sample taxonomies 

for Researchers (Oi) and Students (O2) of different universities. 

Oi 0 2 

Figure 24: Researchers (Oj) and Students (O2) ontologies 

The goal is to integrate the ontolgies into a single ontology. To reduce the manual 

work involved, we use a matching algorithm to identify matching entities, and then help 

the middleware to integrate the schemas. 

As can be seen in Fig. 24, entities Si, S2, S3, and Ti, T2, T3 are concepts, which are high-

level entities in the input ontologies Oi and O2. 

For this explanation, we only use two different similarity measures to compare the 

entities in S and T: name similarity (Levenshtein distance) and linguistic similarity 

(WordNet). This yields the following similarity matrices for the concepts. 
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name _ concept 

0.0 0.2 0.308 
0.2 0.2 0.0 
0.308 0.308 1.0 

Zing concept 

0.75 0.181 0.307 
0.4 0.181 0.0 
0.307 0.166 1.0 

We use the evaluation function v defined in Section 4.4, which measures the threshold 

value for the states obtained in the second phase of the MLMA algorithm. The outputs 

are states ej, e2, ..., e6, shown in Fig. 25, which are represented as labeled directed graphs. 

It shows that ei has obtained one common edge, and no common edges have been 

obtained by the other states. 

«2 c 
K 

(jh,T3 

5^D 
>̂ (jh, :rT) 

e3 

(J. 2/ 
j^iO 
^(^rT) 

Figure 25: The states determined by MMA 

As shown in Table 2, ei is the "best" match found. Using the formula for 

computing 'v' values for the name and linguistic similarity matrices Lname_concept and 
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Liing_concept, we obtain values 0.4 and 0.64 for name similarity vi and linguistic similarity 

V2, respectively. Each entry is determined as follows. We show this for ei: 

Map0. 
1 o o 
o l o 
o o l 

0.0 0.2 0.308 

0.2 0.2 0.0 

0.308 0.308 1.0 

1 0 0 

0 1 0 

0 0 1 

,and 
0.75 0.181 0.307 

0.4 0.181 0.0 

0.307 0.166 1.0 

1 0 0 

0 1 0 

0 0 1 

Then, v is computed by normalizing the cost of v/ and v?as follows: 

n 

V(eJ = XW/V'(0 ' and fOT e>' V (e') = ( W ] * V l ) + ( W 2 * V2) 
/=] 

where Vj is the matching score obtained by the similarity measuring technique i, 

Wj is the weight of the similarity measuring technique i, and v(em) is the score for state 

em. Consequently, in this example, we used W] = W2 = 0.5. 

To measure Sstrc for the mapping state Q\, we proceed as follows: 

• The number of common relationships that connect common concepts to other 

common concepts is 1 "works ". 

• The number of relationships in Oj, with at least one end belonging to the common 

concepts is 2 "works, department". 

• The number of relationships in O2, with at least one end belonging to the common 

concepts is 2 "works, registeredin". As a result, we obtain Sstrc = ((2*l)/(2+2)) = 0.5. 

Table 2 shows the individual and combined similarity matching results for each state ej. 

Note that, using only the name similarity technique, the mapping result would be e3. In 

the same way, using only the linguistic technique, we would obtain ej. Also, using 

Mapname_concePt, Mapijng concept, and the threshold value th, we obtain SMMA. Consequently, 

the output result is state ei, which indicates that we matched the n concepts in the source 

ontology S to the m concepts in the target ontology T. To be more precise, S] is matched 
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with ti, S2 with t2, and S3 with t3. Accordingly, the algorithm matches the properties and/or 

instances of each pair of matched concepts. 

Level 1 

State 

ei 

e2 

e3 

e4 

es 

ee 

Name 

0.4 

0.103 

0.466 

0.272 

0.169 

0.269 

Concept 
V2 

0.64 

0.305 

0.527 

0.291 

0.163 

0.265 

SMMA 

Normalized cost 
v = (v, +v 2 ) /2 

0.52 

0.204 

0.497 

0.282 

0.166 

0.267 

Level 2 

Sstrc 

0.5 

0.0 

0.0 

0.0 

0.0 

0.0 

S=SMMA+(X* 

0.77 

0.204 

0.497 

0.282 

0.166 

0.267 

Ss,rc) 

Table 2: Two-level individual and combined similarity match results 

We can also notice the recognized quality performance of the structure measure 

and how the similarity values SMMA and Sslrc are combined to compute the final measure 5. 

This scenario indicates that S is always greater than or equal to SMMA for our similarity 

measures. This reveals that S increases the weight of states with connected common 

concepts, as opposed to the states of common concepts that are not connected. 

As a result, using S, we gain the following: 
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• 5 maintains as many matched concepts as possible. 

• iS can improve the matching quality of SMMA if the ontologies that are to be 

matched are structurally similar. However, it will not affect SMMA at all if there is 

no structure similarity in the given input ontologies. 

5.1.4 Experimentation and Results 

The quality comparison between the basic MMA and MLMA methods is shown in Fig. 

26. As there are structural similarities between the ontologies in the first and second pair, 

the MLMA increases the matching quality of their final states. Even though the 

ontologies in the third test pair are structurally dissimilar, the MLMA maintains the 

matching quality of the MMA without any changes, as desired. 

MMA VS MLMA 

I 

1 1 

0.9 

0.8 

0.7 

0.5 

0.4 

n 1 

0 

*• . "• 

"' • 

— - | | : " • • • • - • • • - • • 

• • " ' " » ^ " " " ; ' - , " • • • • • -

Bibtex ontologies Computer 
ontologies 

Cs-depts 
ontologies 

I MMA A MLMA 

Figure 26: Quality comparison between the basic MMA and MLMA methods 
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5.2 Neighbor search strategy 

A neighbor search strategy uses the multi-level matching technique we proposed earlier 

as a backbone and performs the neighbor search to find the correspondences between 

entities in the given ontologies. An important feature of this algorithm is its fast 

convergence, while providing quality results, obtained by searching the neighborhood of 

some initial match result. We introduce a neighbor search algorithm, with a proper 

initialization as an optimization for the multi-level matching algorithm, which decreases 

the computation time. We will refer to this optimized version of the MLMA algorithm as 

MLMA+ [Alasoud etal, 2008]. 

5.2.1 Motivating Example 

To illustrate the main idea of the neighbor search algorithm, consider the simple 

examples shown in Fig. 27, which are taxonomies for computer ontologies Oi and O2. 

O, 0 2 

Figure 27: Computer Ontology Examples 

As can be seen in Fig. 27, entities Si, S2, S3, and T], T2, T3 are concepts, which 

are high-level entities in the input ontologies. Here |S|=3 and |T|=3, and hence the size of 

the matching space would be 2 x . In general, our goal is to find a way to reduce the 

search space for larger ontologies. 
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There are several methods to measure similarities between two entities, including 

string similarity and linguistic similarity. We start with some similarity measure(s) in the 

first level as the initial state, and then perform the neighbor search algorithm. The search 

process focuses on the given initial state and expands the search through the neighbors 

(Section 5.2.3 gives an illustrative example,). 

5.2.2 The Neighbor Search Algorithm 

The neighbor search algorithm has three phases, described in Fig. 28. 

Algorithm Match(S, T) 
begin 

/* Initialization phase */ 

end 

K<- 0 ; 
St0 <—preliminary matching te 
St£ <-St0 ; 
/* Neighbor Search phase */ 
St <-All_Neighbors(StJ ; 
While (K++ < Max_iteration) 
/* Evaluation phase */ 

If score(StJ > score 
Stf<-Stn; 

end if 
Pick the next neighbo 

chniques(S,T); 

do 

(StJ 

r St 
St<- St - {StJ; 
If St = 0 then Return Stf 

end 
Return St£ ; 

then 

G St; 

f 

Figure 28: The Neighbor Search Algorithm 

First, in the initialization phase, a partial set of similarity measures is applied to the input 

ontologies to determine a single initial state Sto for the search algorithm. In the second 

phase, we search in the neighborhood of this initial state Sto. Its neighbors are the 

mapping states that can be computed either by adding to or removing from Sto a couple of 

vertices, obtained by toggling a bit in the similarity matrix L. So, the total number of the 
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neighbor states will be n*m. We evaluate the neighbor states using the evaluation 

function v defined in Section 4.4. In the third phase (the evaluation phase), the algorithm 

will apply the next level(s) similarity techniques in order to find Stf, the best possible 

matching state solution. 

5.2.3 Illustrative Example 

Following our running example, shown in Fig. 27, we are given that entities S\, S2, S3, 

and T], T2, T3 are concepts, which are high-level entities in the input ontologies. 

For ease of explanation, we only use three different similarity measures applied in two 

different phases. We use two similarity measures in the first phase to compute the initial 

state Sto: name similarity (Levenshtein distance) and linguistic similarity (WordNet). 

This yields the following similarity matrices for the concepts in this example. 

name _ concept 

1.0 0.1 0.375 
0.125 0.167 0.0 
0.125 0.0 0.0 

ling concept 

1.0 0.7 0.154 
0.8 0.9 0.166 
0.6 0.315 1.0 

Suppose th > 0.45. After normalizing the cost of the two similarity matrices, we get the 

matrix L. Then L is transformed into the matching matrix Mapo-i. Note that we are using 

Mapo-i and Stn as synonyms. 

1.0 0.4 0.265 
0.463 0.534 0.083 
0.363 0.158 0.5 

Map,,., = 
1 0 0 
1 1 0 
0 0 1 

The binary matrix Mapo-i above corresponds to state Sto={(si, ti), (S2, ti), (S2, t2), (S3, t3)}, 

which indicates that entity si is matched to tj, S2 is matched to both ti and t2, and S3 is 

matched to t3. Table 3 indicates the binary matrix for other neighboring states and their 
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score values. In the search phase (the second phase), 9 neighbors of Sto will be evaluated, 

from which the algorithm picks the best candidate(s) for the next level. 

To reduce the cost of the evaluation phase, we keep \x%~\ of the states with the 

highest weight for the next level. The reasons for using x% rather than, e.g., using a 

threshold value for filtering the candidate states, are as follows. First, this ensures that 

there will be some candidate states in the next level to evaluate. This may not be possible 

if we consider a high value as the threshold, leaving no candidate for the next iteration. A 

second reason is that, in general, users may have no knowledge of the computed score 

values to pick a suitable threshold value. Now, choosing x=50%, the candidate states for 

the next level will include Stn2, Stn4, Stns, St„7, and Stn9. In phase three, we apply more 

similarity measures to the state neighbor candidate(s) Stn. For this phase, we apply the 

structure similarity measure proposed in (Section 5.1.1) to define the structural 

similarities between the states identified in phase two and those in the original ontologies 

S and T. This measure is defined as follows. 

vgtrc=2 \r(Stn)\/(\r(S)\+\r(T)\) 

where | r(Stn) | is the found number of relationships in the candidate(s) state neighbors 

St„, and | r(S) | is the number of relationships in the immediate neighborhood of St„ in S. 

This neighborhood of St„ consists of the relationships of {S or T) with at least one end 

(one of the edge's ends) belonging to Stn. Finally, the search algorithm will yield St4, 

which has a highest overall score value V for being structurally more similar. 

V = Vstn+(y*Vstrc">> where 0<y^] 

In the combined similarity V, suppose Wsirc
= 0. This then means that V depends 

only on the similarity measures used in the first phase. On the other hand, if Vstrc=\, the 
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neighborhood of the concepts matched by the second phase for state St„ is the same as 

those in the original ontologies S and T, and consequently V will take the maximum 

value. 

Neighbor 

number 

St„, 

Stn2 

Stn3 

St„4 

Stn5 

St„6 

stn 7 

Stn8 

Stn9 

Matched pairs 

{(S2, t i ) , (S2, t2), (S3, t3)} 

{(Si, t i) , (Si, t2) , (S2, t]), (S2, t2), (S3, t3)} 

{(Si, t , ) , (Si, t3) , (S2, t i ) , (S2, t2), (S3, t3)} 

{(Si, t]), (S2, t2), (S3, t3)} 

{(Si,ti) , (S2, ti), (S3 , t3)} 

{(S], t , ) , (S2, t , ) , (S2, t2), (S2, t3) , (S3, t3)} 

{(S], t i) , (S2, t , ) , (S2, t2), (S3, t i) , (S3, t3)} 

{(S], t i) , (S2, t i) , (S2, t2), (S3, t2) , (S3, t3)} 

{(S],ti), (S2 , t i ) , (S2, t2)} 

Score value based on 

v s t n 

0.499 

0.5794 

0.5524 

0.678 

0.6543 

0.516 

0.572 

0.531 

0.6656 

Table 3: Score value for each state neighbor 

5.2.4 Experiments and Results 

We have evaluated the performance of our proposed framework using two factors: 

quality and time. For the quality of match results, we compare our result with ten 

algorithms presented in the Ontology Alignment Evaluation Initiative OAEI-06 and 

OAEI-07 [OAEI, 2007]. In this comparison study, we used the OAEI 2007 benchmark 

test samples suite. The test numbers of the ontologies we used from this benchmark suite 
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included 101, 103, 104, 206, 228, and 230. Ontology 101 is the reference ontology, and, 

hence, in test case 101, ontology number 101 is matched to itself, and in test 103, 

ontology 101 is matched to ontology 103, etc. 

For the running time, we conducted numerous experiments to show the impact of the 

proposed framework on the overall performance. 

All these tests have been performed on a Pentium 4, 2800, with 768 MB of RAM, 

running Windows XP, and with no applications running but a single matcher. To measure 

a match quality, we used precision, recall, and F-measure presented in Section 4.5. 

Case study (1): In this case study, we used the benchmark test samples suite OAEI 2007 

[OAEI, 2007]. Except for case 206 in the suite, which is related to French translation, in 

all other cases considered, we noted that when the precision value was less than 1, the 

recall value was equal to 1. This indicates that the systems found all the correct mappings 

expected by the experts and added extra unwanted mappings. The precision of our search 

algorithm, on the other hand, did not fall below the recall value, i.e., no extra unwanted 

mappings were returned by our framework. For test case 230, ontology 101 was matched 

to ontology 230. Basically, ontology 230 is a modified version of ontology 101, with a 

changed structure, but the same entity names. In this test case, the main reason why the 

matching results of all other systems included unwanted mappings is that these systems 

combine different similarity measures in one shot. Moreover, they combine name, 

linguistic, and structure similarities at one level and aggregate their results in order to 

provide the output mappings. However, as our algorithm uses different levels for 
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different similarities, its result was not affected by the structure changes in the input 

ontology 230. 

For test case 206, the reason why the matching result of our search algorithm was not 

fulfilled was that it did not use translating techniques as one of its underlying techniques. 

Fig. 29 shows the comparison of the matching quality between our algorithm and the 

other ten systems. 

Moreover, Fig. 30 shows an approximate time comparison, indicating the scalability of 

our search algorithm (logarithmic scale). 

Case study (2): In this case study, we used three pairs of ontologies: (1) the MIT bibtex 

ontology and the UMBC publication ontology, which are both publicly available, (2) 

computer ontologies, and (3) ontologies about computer science departments. We created 

the second and third pairs. The execution time, in seconds, for the neighbor search 

algorithm over these test cases was measured as 4.68, 0.547, and 1.719, respectively. A 

naive implementation of MLMA would not perform as desired. The MLMA+ is 

polynomial with respect to the size of the search space 0((|E1x|E'|)z), where |Ea| is the 

number of entities in S. All in all, we consider the neighbor search algorithm as an 

optimization for MLMA. We called it MLMA+. 

91 



MLMA+: Quality-evaluation 
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Figure 29: Quality Comparison 
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Figure 30: Efficiency Comparison 

5.3 Recommendation Analysis for Ontology Matching 

Techniques 

In the following we propose a framework for analyzing and recommending matching 

techniques. A main feature of this framework is that it improves the structure matching 

techniques and the end result accordingly. We will refer to this improved version of the 

MLMA+ algorithm as MLMAR [Alasoud et al, 2009]. 
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5.3.1 Motivating example 

Through the following example, we illustrate the main ideas of the proposed technique. 

Fig. 31 shows two sample taxonomies for two computer ontologies Oj and O2. 

O, 0 2 

Figure 31: Computer Ontologies 

Given the input ontologies and the matching techniques, it is difficult to specify that 

concept LT in Oi corresponds to concept PORTABLE in O2. Suppose the input ontologies 

Oi and O2 are represented in description logic as follows: 

LT c COMPUTER PORTABLE c 3has _ cpu.CPU 
O,: COMPUTER ^THING 02 : 3has_cpu.CPU^COMPUTER 

PROCECCOR c THING CPU c THING 

where cz denotes subsumption relationships such as is-a, 3 denotes the existential 

quantification (see Section 2.1), and hascpu is a binary relationship (see Section 2.2). 

Now, using description logic (DL) reasoning techniques on these ontologies 

before matching them can help infer useful information to be used by a matching 

technique. For instance, applying DL reasoning technique on O2 yields RO2, which is 

shown in Fig. 32. However, no further inferences can be obtained from O]. In other 

words, RO] is 0\. 
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As a result, matching ROj to RO2 assists the similarity matching technique 

(structure-based technique) to identify the relationship between the concept LT in ROi 

and the concept PORTABLE in R02. 

R02 

Figure 32: O2 after reasoning 

Fig. 33(a) shows the initial taxonomy of ontology number 232 from the benchmark test 

samples suite of the Ontology Alignment Evaluation Initiative OAEI-07 (Section 5.3.5 

gives more details). After applying the DL reasoning technique, we get more structural 

information. Therefore, this technique supports the structure-based matching techniques 

in providing better matching results when ontology 232 is matched to reference ontology 

101. Fig. 33(b) shows the results of applying DL reasoning techniques to ontology 232. 

All in all, the user should be supported in deciding which underlying technique, or 

combination of techniques, is best suited for the matching task at hand. 
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5.3.2 A Framework for Recommendation Analysis 

In this section, we introduce a technique for the analysis and reuse of matching methods, 

in order to identify and recommend matching methods for a given pair of ontologies. 

Furthermore, the technique assists the structural similarity measuring methods, optimizes 

the matching process by omitting the unpractical matching methods, and therefore 

improves the end result's matching quality and efficiency. 

Fig. 34 illustrates the main idea of the technique. It shows the different similarity 

measures {mi, ni2 ... mk}, together with ROi and RO2, that are fed into the 

recommendation process, which will return a rank of the similarity measures considered 

(Mj). Moreover, users have the option to use the recommended similarity measures list 

(Mj) or to ignore it and use their own ranked similarity measure list (the user's list). 

°1 
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m2 
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Recommendation 
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Figure 34: A recommendation analysis framework 
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Mj is based on the appropriate similarity methods considered for matching the entities of 

Oi to the entities of O2. Furthermore, ROi and RO2 are obtained by applying RACER 

[Haarslev and Moeller, 2001b]. As a result, the Multi-Level Matching Algorithm 

(MLMA+) that performs a neighbour search takes these recommendations into account, 

in order to find the correspondences between entities in the given ontologies. 

5.3.3 Specific techniques used in the proposed framework 

For ease of presentation, we focus on the techniques we have so far implemented in our 

framework. The framework, however, is flexible, and thus could incorporate any other 

matching techniques. In our work, we considered a string-based technique (Levenshtein 

distance), linguistic-based technique (WordNet), and structure-based technique. 

The string and linguistic based techniques evaluate the given entities by analyzing their 

names, labels and comments. They consider both the lexical and linguistic features as 

terms of comparison. Moreover, the structure-based techniques take into account the 

structural layout of the ontologies considered, e.g., graph matching. In this work, we are 

improving the structure similarity presented in [Alasoud et al., 2007] by considering the 

inferred input ontologies (ROi and RO2) by using a DL reasoner, i.e., RACER on the 

input pair of ontologies (CM and O2). Consequently, our structure similarity measure will 

be updated as follows: 

Sstrc~2 r(O0„m )\/[\r(0^ (ROl ))| + \r(0^ (R02 )) 

where | r(0outPut) | is the number of relationships in the output ontology (a 

neighbour/candidate result), and | r(0output(ROj)) | is the number of relationships in the 

immediate neighborhood of 0outPut in the inferred input ontology ROj. This 
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neighbourhood of 0outPut consists of the relationships of RO; with at least one end (one of 

the edge's ends) belonging to 0outPut- In other words: 

• | r(Ooutput) | is the number of common relationships that connect common concepts 

to other common concepts (immediate neighbors). The resulting correspondences 

between entities (concepts/relationships) in ROi and RO2 are what is meant by 

common. 

• I r(0output(RO])) I is the number of relationships in ROj, with at least one end 

belonging to the common concepts belonging to O0UtPut-

• I r(0outPut(R02)) I is the number of relationships in RO2, with at least one end 

belonging to the common concepts belonging to 0outPut-

5.3.4 Similarity recommendation technique 

In this subsection, we illustrate a heuristic technique which we used in our framework, in 

order to offer users a ranked list (Mj) of appropriate techniques for the matching task at 

hand. The string/linguistic based techniques are evaluated as follows: 

M = [(number of concept pairs with the same label/synonym) / (max ( d , C2))] 

where "number of concept pairs with the same label/synonym" represents the number of 

pairs that have the same label for the name-based techniques and the same synonym for 

the linguistic-based technique, such that {(c,,c2 )| c, e RO, and c2 e R02} . 

We use labels for string-based techniques and synonyms for linguistic-based techniques. 

Further, max (Ci, C2) stands for the maximum number of concepts either in RO] or RO2. 

The structure-based techniques are evaluated as follows: 

M = (number of common concepts) / (maxnumberofnonleaf (Cj, C2)) 
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Where, number of common concepts represents the cardinality of the set 

{(c,,c2)\ c, s ROt and c2 e R02}, such that both ci and C2 have the same number of sub-

concepts and the same depth. The maxnumberofnonleaf (Ci, C2) denotes the 

maximum number of concepts that have sub concepts either in ROi or RO2. 

These heuristic techniques are not a precise measure of the real matching similarities of 

the entities for the input pair of ontologies. However, they can estimate the features of the 

two ontologies and provide the ranked list of the appropriate matching techniques, to be 

used accordingly. 

5.3.5 Experiments and results 

We used our experimental setup described in Section 5.2.4, and compared our result with 

ten algorithms presented in the OAEI-06 and OAEI-07. For the time factor, we conducted 

numerous experiments to show the impact of the proposed framework on overall 

performance. We use MLMAR to refer to MLMA+ with the recommendation analysis 

technique included. 

The test numbers of the ontologies we used from the OAEI 2007 benchmark test suit 

included 101, 103, 104, 205, 206, 209, 224, 228, 230, 232, and 239. Fig. 35 shows the 

comparison of the matching quality of our algorithm with the other ten systems. 

In addition, Fig. 36 shows a time comparison indicating the scalability of our framework 

(please note the logarithmic scale). 

Table 4 shows the initial estimation for the similarity measures, as well as a 

description of each test number. As can be noted, in test numbers 101, 103, 104, 224, 228, 

and 230, the modifications made to the reference ontology did not affect the string, 
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linguistic, and structure similarities, and hence all the matchers obtained the highest 

similarity value. Accordingly, our framework will take advantage of not running all the 

matchers and will offer only a single matcher to the user. In such scenarios, we can often 

use string similarity because it is the most efficient one and it is the backbone for other 

matchers. 
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Figure 35: Quality Comparison 
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Furthermore, in test numbers 205 and 209, the framework offers both the 

linguistic and the structural measures. In test 206, both string and structure similarity 

measures were used. Moreover, test 232 shows the best scenario where there is no 

hierarchy, and using the DL reasoning technique (RACER), the structure similarity jumps 

from 0.0 to 0.7. Consequently, we applied both the string and structure similarities in this 

test. Lastly, in test number 239, the string similarity was applied. 

In general, these recommendations greatly affected the performance time and placed our 

framework (MLMAR) at the top of the compared algorithms, based on average time. 

Also, they considerably improved the efficiency of MLMA+ by using only the 

recommended similarity techniques, rather than using all of them. Moreover, applying 

different order of the similarity matching techniques will not affect the matching quality. 

However, it will slightly affect the running time, see Appendix D. 
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The reason that MLMAR may not perform as a first rate system is that, in some 

test cases, i.e. 205, 206, 209, and 232, a combination of low efficiency similarity measure 

techniques, such as linguistic and structural, should be used. These ontologies, in some 

sense, were considered as a worst case scenario where all matching techniques needed to 

be applied. However, in general, matching tools are equipped with numerous underlying 

similarity measuring techniques and using the recommended techniques will reduce the 

number of candidate techniques for a matching task at hand. Consequently, the matching 

process time decreases remarkably. 

Test 
No. 

101 

103 

104 

205 

206 

209 

224 

228 

230 

232 

239 

String 
Similarity 

1 

1 

1 

0.125 

0.1 

0.125 

Linguistic 
Similarity 

1 

1 

1 

0.85 

0.1 

0.85 

1 

1 

1 

1 

1 

Structure 
Similarity 

1 

1 

1 

1 

1 

1 

1 

1 

0.78 

0.7 

0.55 

Test 
Description 

Ontology 101 is matched to itself 

The generalization basically removes 
owl:unionOf and owlroneof and the 
Property types (owhTransitiveProperty). 
This test compares the ontology with its 
restriction in OWL Lite (where unavailable 
constraints have been discarded). 
Labels are replaced by synonyms. 
Comments have been suppressed. 

The ontology translated into French 

Synonyms are used 
All individuals have been suppressed from 
the ontology. 
Properties and relations between objects 
have been suppressed. 
Some components of classes are expanded 
in the class structure (e.g., year, month, day 
attributes instead of date). 

No Hierarchies and no instances 

Flattened Hierarchy and no properties 

Table 4: Initia estimations for the similarity measures 

All in all, for the matcher composition systems, using a recommended subset of 

their similarity measures list should improve the final matching results in terms of time 
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and quality. Moreover, the recommendation techniques improve the overall running time, 

as it is unnecessary to reuse and combine all their underlying similarity measuring 

methods. Using only a recommended subset should decrease the average running times. 

Furthermore, the recommendation techniques can enhance the matching quality by 

excluding the unworkable similarity matching methods for a task at hand. For instance, if 

there is no string, linguistic, or structural similarity between a given pair of input 

ontologies, then including, combining, and aggregating the matching results retrieved by 

string, linguistic, or structural similarity measuring methods would affect the overall 

matching result quality in a negative manner. 

5.4 Summary and Remarks 

In this chapter, we discussed the following: 

> We proposed a multi-level extension of MMA, called MLMA, which assumes 

that the collection of similarity measures are partitioned by the user, and that there 

is a partial order in the partitions, also defined by the user. 

> A main characteristic of the MLMA technique is that it combines existing 

matching techniques to provide a solution to a given ontology matching problem. 

Moreover, the optimal matching state has been considered, based on its rich 

structure on one hand, and the number of common concepts of the matched 

ontologies on the other. 

> Applying the MLMA method will not decrease the number of matching concepts 

(size) and will increase the similarity measure of the state that has high structural 

similarity among its concepts (structure). 
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> In contrast to some other approaches, our proposed similarity measure ensures 

that MLMA works even in a case where there are no structural similarities in the 

given input ontologies. 

> We further investigated the efficiency improvements of MLMA by introducing an 

optimization step. We call the result MLMA+. 

> MLMA+ improves the efficiency of MLMA considerably due to its use of the 

neighbor search algorithm. It proceeds by computing an initial state and then 

performing a search in its neighboring states. 

> Moreover, we studied the impact of different choices of strategies for matching 

ontologies and proposed a framework for analyzing the reused matching 

techniques (MLMAR). 

> MLMAR shows the importance of assisting the user by suggesting appropriate 

matching strategies. The user often has little or no idea about the suitability of 

matching strategies for a given matching task. As a result, the quality of matching 

results and processing times will be affected by the method chosen. 

> The main advantages of the MLMAR are that (1) it is independent from any 

individual matching technique, (2) it infers a hidden structural relationship among 

the entities of the input ontologies, and consequently makes the structure-based 

similarity measure more precise, and (3) it considerably improves the efficiency 

of the matching process in terms of time. 
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6. Conclusion and Future Work 

6.1 Conclusion 

The motivation for this research was the need for ontology matching (Sec 1.1) in many 

emerging applications. We studied different matching techniques (Sec 2.4) and their 

implementations (Sec 2.5). Also, we presented a novel framework (Sec 3.1) to support 

information integration from ontology data sources. Furthermore, we discussed different 

approaches to ontology integration, and how a combination of virtual and materialized 

approaches, called the hybrid approach, can be used in order to combine the advantages 

of both. 

In order to support the hybrid approach with a matching strategy, we proposed the 

multi-matching strategy (Sec 4.3). This strategy benefits from existing ontology match 

techniques and "combines" their match results to provide enhanced ontology matching 

results. 

To obtain better quality matching results, we extended the multi-matching 

strategy by introducing a multi-level matching strategy (Sec 5.1). This technique 
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assumes that the collection of similarity measures is partitioned by the user, and that there 

is a partial order on these partitions, also defined by the user. The main characteristic of 

the MLMA technique is that its application will not decrease the number of matching 

concepts (size), but will increase the similarity measure of states that have high structural 

similarity among their concepts (structure). Our proposed similarity measure also ensures 

that MLMA works well even when there are no structural similarities in the given input 

ontologies. 

We investigated the efficiency of MLMA by introducing a neighbor search 

algorithm (Sec 5.2) which, given an initial mapping state among entities in two 

ontologies, searches the neighboring states and returns a list of candidate states, ranked 

based on their evaluation scores. We incorporated this search algorithm into MLMA, and 

refer to it as MLMA+, which proceeds by computing an initial state and then performing 

a search in neighboring states. We have developed a running prototype of MLMA+ and 

conducted experiments using well-known benchmark ontologies. 

In this work, we studied the impact of the choice of matching strategies and 

proposed a framework for analyzing the reused matching techniques (Sec 5.3). The user 

often has little or no idea about the suitability of the particular matching strategies for a 

given matching task. Consequently, the quality of matching results and processing times 

are affected by the method chosen. The main advantages of the proposed framework are 

(1) it is independent from the individual matching techniques used, (2) it infers a hidden 

structural relationship among the entities of the input ontologies, and consequently makes 

the structure-based similarity measure more precise, and (3) it considerably improves the 

matching process time. 
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We evaluated our framework against other approaches using different pairs of 

ontologies. Our results indicated better performance in terms of both quality and time. 

6.2 Future Work 

This section highlights some possible future directions for advancing the ontology 

matching techniques we have proposed. 

• It is not easy for the user to identify different weights of individual matchers 

in order to get acceptable matching results. As a result, it would be interesting 

to automate the process of combining the individual matchers and libraries of 

matchers. 

• Each individual matcher has parameters that should be properly set to get the 

best possible match results. However, users cannot be expected to know or 

find correct parameters by themselves. Assisting tools are required to alleviate 

the situation. Machine learning techniques could be used to achieve this. 

• Packaging MLMAR and making it available for other users to evaluate and 

compare the provided results. Also, providing a user interface would help 

users interact with the system to effectively review matching results and to 

modify them in an interactive manner. 
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Appendix A: Semantics of Description Language AL 

Constructor 

Atomic Concept 

Atomic Role 

Top/Universal Concept 

Bottom Concept 

Negation 

Intersection 

Value Restriction 

Limited Existential 
Quantification 

Syntax 

A 

R 

T 

_L 

--A 

CnD 

VR.C 

3R.T 

Semantics 

/ c A ' 

J f ' c A ' x A1 

T' = A' 

l ' = 0 

c^y=A1 \ A1 

(C n Dj = C*nD] 

(Vtf.Q1 = {a e A11 V6: (a, b)eR]^> bGC]} 

(3 R. 7)1 = {a G A11 3be A1: (a, b^R1} 

Semantics of more constructors in AL 

• Union(U) 

Union (U) CuD (C u£>)' = C ' u D ' 

• Full Existential Quantification s 

Full Existential 

Quantification s 
3R.C (3 R.C)] = {a e A11 3Z>e A1: (a, 6)Gi?' A beC]} 
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• Number Restrictions (N) 

Number Restrictions (N) 
3*,* 

\nR 

(3an/?)I = { a G A , | ||{b| (a,b)GR I}||>n} 

(3sn7?)* = { a G A ' | ||{b| (a,b)eR I}| |<n} 

• Qualified Number Restrictions (Q) 

Qualified Number 

Restrictions (Q) 

B^R.C 

3 S n * 

(3>nR .C)1 = { a | # {b:(a, b) eR1 and b e C1} > n} 

(3S„7?.C) ' = { a | # {b:(a, b) GR1 and b e C'} < n} 

where, # denotes the set cardinality 

• Inverse Role (I) 

Inverse Role (I) R~ (R-)1 = {(b, a} G A1 x A11 (a, b) e R1) 

123 



Appendix B: (Re)use of Ontologies 

Devices 
ontology 

Biological 
ontology 

Representation 
ontology 

Upper 
ontology 

Core 
ontology 

Management 
ontology 

Legal 
ontology 

Domain Ontologies 

Fishing devices 
ontology 

Institutions 
ontology 

Species 
ontology 

Fishing and 
farming 

techniques 
ontology 

Farming 
systems 
ontology 

Geographic 
ontology 

Fishery 
regulations 
ontology 

Fishery 
Management 

ontology 

Architecture of the fishery ontology library [Gangemi etal, 2002]; double frames mean 

use of external ontology 
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Appendix C: Applying different similarity orders 

Following the illustrative scenario given in Sec 5.1.3. 

Consider applying three similarity measures mi, m2, and m3. Where, mi indicates the 

string similarity measure, m2 indicates the linguistic similarity measure, and m3 indicates 

the structure similarity measure. So, applying different orders of the similarity measures 

on the matching states will not affect the states' rank, but the states overall score value. 

1- In this case: first we applied mj and iri2 in level 1. Then 1113 is applied in level 2. 

Level 1 

State 

ei 

e2 

e3 

e4 

es 

e& 

String 

0.4 

0.103 

0.466 

0.272 

0.169 

0.269 

Linguistic 

0.64 

0.305 

0.527 

0.291 

0.163 

0.265 

Level 2 

Structure 

0.5 

0.0 

0.0 

0.0 

0.0 

0.0 

Over all score 

S 

0.77 

0.204 

0.497 

0.282 

0.166 

0.267 

The states rank based on their overall score is: ej, e3, e4, e6, e2, and es 
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2- In this case: we first applied mi and ni3 in level 1. Then ni2 is applied in level 2. 

Level 1 

State 

ei 

e2 

e3 

e4 

es 

e6 

String 

0.4 

0.103 

0.466 

0.272 

0.169 

0.269 

Structure 

0.5 

0.0 

0.0 

0.0 

0.0 

0.0 

Level 2 

Linguistic 

0.64 

0.305 

0.527 

0.291 

0.163 

0.265 

Over all score 

S 

0.802 

0.3407 

0.6372 

0.3874 

0.2337 

0.3639 

The states rank based on their overall score is: ei, e3, e4, e6, ̂ 2, and es 
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3- In this case: we first applied rri2 and ni3 in level 1. Then mi is applied in level 2. 

Level 1 

State 

ei 

e2 

e3 

e4 

e5 

ee 

Structure 

0.5 

0.0 

0.0 

0.0 

0.0 

0.0 

Linguistic 

0.64 

0.305 

0.527 

0.291 

0.163 

0.265 

Level 2 

String 

0.4 

0.103 

0.466 

0.272 

0.169 

0.269 

Over all score 

S 

0.77 

0.204 

0.497 

0.282 

0.166 

0.267 

The states rank based on their overall score is: ej, e3, e4, e6, Ci, and es 
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Appendix D: Time of different similarity orders 

- (String +Linguistic) + Structure: shows that the string and linguistic similarities were 

applied at the first level, then, the structure similarity was applied in the second level. 

- (String +Structure) + Linguistic: shows that the string and structure similarities were 

applied at the first level, then, the linguistic similarity was applied in the second level. 

- (Linguistic +Structure) + String: shows that the linguistic and structure similarities were 

applied at the first level, then, the string similarity was applied in the second level. 

\ Similarity 
\Combinations 

Test No. \ 

101 

103 

104 

(String +Linguistic) 
+ 

Structure 

8.81 (Sec) 

8.25 (Sec) 

8.25 (Sec) 

(String + Structure) 
+ 

Linguistic 

11.6 (Sec) 

11.05 (Sec) 

11.1 (Sec) 

(Linguistic + Structure) 
+ 

String 

6.81 (Sec) 

6.7 (Sec) 

6.3 (Sec) 
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