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ABSTRACT 

Two Cases of Symmetry Breaking of Free Surface Flows 

Hamid AIT ABDERRAHMANE, Ph.D. 

Concordia University, 2008 

The present thesis consists of two parts; both are devoted to two 

celebrated old problems in fluid dynamics. The first deals with symmetry 

breaking in a liquid layer flowing down an inclined plane. The second problem 

concerns the equilibrium and symmetry breaking of interfacial polygonal 

patterns generated by a system of vortices arranged on a circular ring. 

The first problem dates back to Nusselt (1916) who obtained the 

solution for the basic flow. Since then, thin layers of liquid falling down 

inclined plane continues to be the subject of extensive studies for both their 

practical applications and theoretical value. In this thesis, the problem is 

approached analytically. Three new mathematical models are proposed. The 

first two involve three and four equations respectively. These produce linear 

stability results that agree fairly with past experimental outcomes and results 

obtained with similar models. For a deeper and qualitative analysis a lower 

dimension model that retains the physics is needed. Hence, a two-equation 

model (involving only two fundamental flow parameters namely the film 

thickness and flow rate) is derived. The new model taking account of the 
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shear stress at the free surface is shown to be superior to the existing two-

equation model of Usha and Uma in Phys Fluid (2004). 

The influence of electrical and magnetic fields on the stability of falling 

film of an electrically conductor fluid is also investigated. In comparison with 

the model of Korsunsky (Eur.J.F.M.1999) for higher Reynolds numbers. The 

proposed model takes account of the inertia terms, which are of second order 

with respect to a small parameter namely the long wave parameter. As 

shown through the chapter four of the part one, the proposed two-equation 

model improves significantly Korsunsky's model. 

The second problem dates back to Kelvin (1867) who hypothesized 

atoms to be point vortices arranged in circular ring forming symmetrical 

polygonal patterns. Although, the atomic vortex model is long abandoned, 

the problem of system of point vortices has become of great interest in 

superfluidity and by analogy in plasma physics. Moreover, polygonal patterns, 

which are the signature of the presence of vortices, equally distributed in 

rings were also observed in several engineering problems and geophysical 

flows in nature. In fluid dynamics, polygonal patterns become clearly visible 

in swirling flows where the vortex core is hollow. The empty core can 

eventually support polygonal shapes (up to hexagonal). The first 

experimental report on the phenomenon was by Vatistas in 1990. In this 

thesis the phenomenon is revisited using image-processing technique that 

allows a deeper and more precise investigation. The dynamics of the patterns 
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is investigated and for the first time the transition from one pattern to 

another is explored in detail. The stability condition for a system of point 

vortices on circular ring derived first by J.J Thomson (1897) and generalized 

later by Havelock (1931) for N point vortices including the influence of 

circular boundaries surrounding the equilibrium is confirmed. Frequency 

locking between the pattern and the disk frequencies which are suspected in 

the previous experiments is established and quantified. Moreover, the 

transition from the elliptical to the hexagonal pattern is found that it follows a 

"devil's staircase" scenario. Due to the similarity between the problem under 

the scope and other fields of physics, the present experimental results are 

anticipated to go beyond the field of fluid mechanics. 
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General Introduction 

For any given problem in fluid mechanics and in physics, one of the 

fundamental questions is the identification and characterization of its 

transition from order to disorder. In fluid mechanic problems, transition 

towards turbulence continues to fascinate researchers and has become the 

one favorable subject of several well known fluid dynamics laboratories over 

the world. Theoretical, numerical and experimental approaches were 

undertaken to deepen understanding of the transition towards turbulence. 

One of these theoretical approaches is the determinist approach which 

consists of the elaboration of a low dimensional model which captures the 

fundamental mechanisms leading to chaos or turbulence. This determinist 

approach of the transition towards chaos started in 1960 with the work of 

Lorenz, who discovered the concept of strange attractor. This fundamental 

concept was elaborated after by Ruelle and Takens (1971). These two 

authors unified the study of irregular behaviors on one concept which 

nowadays is known as nonlinear dynamic or deterministic chaos. Nonlinear 

dynamics has become a paradigm through which problems in several fields of 

physics are investigated. 

The two problems considered in this thesis are investigated within this 

paradigm. The first problem was to model the flow of a thin layer of liquid 

down an inclined plane, investigate and identify the bifurcations which lead to 

the chaotic behavior of the free surface. The second problem that deals with 

vortex polygonal patterns espoused by a hollow vortex core was 
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experimentally investigated. The equilibrium and their transition towards next 

equilibrium were explored. Our contributions to the research on these two 

problems can be considered as significant. 

A thin layer of fluid flowing along an inclined plane, tackled in the first 

part of this thesis, dates back to Nusselt (1916); this problem continues to be 

the subject of extensive studies for its theoretical interests and industrial 

relevance. The problem is experimentally within reach; thus constituting an 

interesting test problem for nonlinear and bifurcations theories. Also falling 

film fluid down inclined planes or cylinders is found in several engineering 

applications such as precision coating, heat exchangers and evaporators. The 

free surface is the place where momentum, heat and mass transfers take 

place; these exchanges depend strongly on the instabilities of the free 

surface. Understanding their development is of primary importance. The 

stability of a thin film fluid flowing down an inclined plane remains the subject 

of numerous theoretical, numerical an experimental studies. The competition 

between gravity, surface tension, viscosity, and inertia makes the dynamics 

at the free surface complex, exhibiting generic bifurcation scenarios. The 

interface of a falling film of fluid undergoes a primary instability in the form of 

hydraulic jump (heteroclinic bifurcation) or oscillator waves (Hopf 

bifurcation). This initial instability is followed, more often, by secondary 

instabilities leading to spatiotemporal chaos through a cascade of periodic 

doubling or homoclinic bifurcations (solitary waves). 
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The experimental investigation of the problem started with Kapitza & 

Kapitza (1949). In order to trigger the free surface instabilities, they 

introduced sinusoidal perturbations with different amplitudes and frequencies 

at the entrance. They found that depending on the perturbations, the wave at 

the free surface can exhibit quasi-sinusoidal or solitary wave behaviour. The 

elaborate experiments revealed that the evolving flow could become chaotic 

downstream if the inclined plane is sufficiently long. 

Analytical studies on the stability of this problem began with the work 

of Yih (1955) and Benjamin (1957). Using a perturbation method to reduce 

the Navier-Stokes equation into a well known Orr-Sommerfeld equation, the 

two authors found that the basic flow of Nusselt becomes unstable if < — 

R 6 

where 0 is the incline angle and /?is Reynolds number. Linear stability which 

is valid only for infinitesimal perturbation gives only the stability thresholds 

and cut-off frequency, but it does not inform us on what happens when the 

amplitude of the perturbation grows becomes finite and nonlinear effects turn 

out to be no long negligible. To consider the nonlinear effects, weak nonlinear 

theories were developed and several model where proposed. 

At small Reynolds numbers, Benney (1966) proposed the first single-

equation model for the spatiotemporal evolution of the film fluid thickness. 

Afterwards, a simplified version of the Benney equation was derived and 

called the Kuramoto-Sivashinsky equation. Although, Benney (1966) 

predicted the stability threshold it suffers from finite-time blow 

up and furthermore it is valid only in narrow region around the critical 
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Reynolds number. Recently, some authors proposed other single-equation 

models; see Ooshida (1999) and Panga & Balakotaiah (2003). However, none 

of these two models are free from the finite-time blow up impediment, thus 

making the search for an accurate single-equation model representation 

hopeless, see Ruyer and Manneville (2004). 

At relatively high Reynolds numbers, perturbation method is no longer 

valid; hence an ad hoc method based on the integral method was developed. 

Shkadov (1968) was the first who used the momentum integral method to 

reduce the Navier-Stokes equations into a two-equation model which involves 

the film thickness and flow rate. The Shkadov's model suffers from two major 

drawbacks. It does not predict a stability threshold nor does it foresee the 

oscillatory waves (Hopf bifurcation). Lee and Mei (1996), including second 

order terms in Navier-Stokes equation and using similar integral method, 

derived a two-equation model. This model exhibits a Hopf bifurcation but also 

fails to predict the stability threshold. Recently, following the same strategy 

as Lee and Mei (1996), Usha and Uma (2004), using an energy integral 

method instead of the momentum integral method, developed a two-equation 

model which predicts the stability thresholds and exhibits generic bifurcations 

scenarios observed during the experiments. However, this last model does 

not satisfy one of the boundary conditions at the free surface up to the 

second order, with respect to the long wave parameter, as claimed. In this 

thesis, this inconsistency is corrected. It shows that the correction introduced 

to the model of Usha and Uma (2004) is significant. 
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Higher dimension models, such as the four-equation models of Ruyer-

Quil & Manneville (2000) and Amaouche et al (2005) can also be found in the 

literature. Besides the film fluid thickness and the flow rate, these models 

include two more terms, which are associated with the corrections to the flow 

rate. In this thesis, four- and three-equation models are proposed, both 

involving only physical quantities such as free surface and shear stress at the 

free surface in addition to the film fluid thickness and the flow rate. As 

shown, the results of the linear stability obtained with these two models 

agree with results obtained by more involved numerical methods, 

experimental results and those obtained using Ruyer-Quil & Manneville's 

model. 

Although, these higher dimension models exhibit accurate linear 

stability results; they complicate the qualitative analysis of the nonlinear 

effects. In order to achieve such a qualitative examination Ruyer-Quil & 

Manneville (2000), Amaouche et al (2005) were forced to use simplified 

models which involve only film fluid height and the flow rate which are two-

equation models. 

The second part of the present thesis deals with the exploration of the 

vortex polygonal pattern espoused by a hollow-vortex in high swirl flows. 

These patterns are laboratory models of the equilibrium of a system of point 

vortices, equally distributed on circular ring. Indeed, the apexes of the 

polygonal pattern are equally distributed on a circular ring and host satellite 
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vortices. The problem was tackled experimentally. When the swirl is imparted 

to a thin liquid layer confined in a stationary cylinder, by rotating a disk near 

the bottom of the cylindrical container, the centrifugal force due to the rotary 

motion of the liquid along with gravity causes the free surface to form an 

inverted bell shape. Its central depression grows deeper as the disk speed 

increases. Eventually, the receding liquid exposes part of the disk's central 

surface to air whereby, the line of intersection between the surfaces of the 

disk, liquid, and air outlines the core shape. With the increase of the disk 

speed, the circular shape of the core first becomes elliptical and then acquires 

different polygonal equilibrium patterns, called Kelvin's stationary equilibria. 

This symmetry breaking was reported for the first time by Vatistas (1990), 

subsequently confirmed by Janssen et al. (2006). 

Interest in the problem, of a system of vortices equally distributed on 

circular ring, arose one hundred and fifty years ago with celebrated vorticity 

theorems of Helmholtz (1858). This seminal work inspired several prominent 

scientists of the Victorian era, such as Kelvin (1867), to consider eddies as 

paradigms in explaining the atomic structure of matter; Kelvin (1867) 

remarked that "Helmholtz's vortex rings are the only true atoms". The era 

that began with Kelvin's (1867) "vortex atoms" ended by Einstein (1905) who 

rendered Ether obsolete which led to the desertion of the "vortex atoms" 

idea. However, the ensued impetus on the subject matter contributed 

significantly towards the growth of hydrodynamics, and led J. J. Thomson 
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(1897) to the discovery of the electron. Detailed historical accounts can be 

found in the fine contributions of Aref (1983) and Aref et al.(1992). 

Although the vortex atom theory was deserted; the theoretical 

developments vis-a-vis the stability of point vortices arranged in a ring 

become of great interest in superfluidity and plasma physics. Indeed, 

arrangements of vortices within a circular ring are found in swirling 

superfluids, see Yarmuck et al (1979) and by analogy in electron columns, 

Durkin and Fajans (2000). Durkin and Fajans showed that the 2-D drift-

Poisson equations describing the evolution of electron columns, under the 

influence of magnetic and electrical fields, are dynamically analogous to those 

developing in an ideal fluid. In 1883, J.J. Thomson dealt with the general 

situation of three, four, five, six, and seven vortices. He forecasted instability 

to occur for seven vortices. Havelock (1931) extended the approach to the N-

vortex problem, deducing that with no boundary, the case of seven vortices 

was neutrally stable. The presence of confining outer or inner boundaries 

could destabilize the flow, while a sufficiently strong central vortex could 

stabilize an unstable ring. 

A first experimental confirmation of this more than a century old 

theory on the stability of a ring is given in this thesis. Our experimental 

results confirmed that modes N < 6 are stable while N > 7 are unstable. Also, 

the stability condition given by Havelock (1931) is confirmed. This condition 

stipulates that for a system of N < 6 vortices, confined in circular domain, to 

7 



be stable, the vortices should be equally distributed on circular ring situated 

at equidistance from the center and the external boundaries. A detailed 

analysis of the dynamics of the system of satellites with respect to the 

"parent vortex" is included in the present thesis. For the first time the 

transition from N- to N+l-gons is thoroughly investigated. Regarding the 

similitude of the polygonal pattern with those found in plasma physics and 

rotating superfluid Helium (4He- 4 must be a superscript) below the X point 

(temperature at which normal fluid becomes superfluid), the present 

experimental results become very elaborative. 

The first part of the thesis which is dedicated to the falling film fluid 

problem starts with a literature review (chapter 1). In chapter 2, we describe 

our attempts to develop accurate four- and three-equation models. These 

two models involve only physical flow parameters namely, the film thickness, 

flow rate, shear stress and velocity at the free surface. The accuracy of 

these two models is shown by comparisons of the results with experimental 

data and simulations obtained with more involved numerical investigation 

and the outcomes obtained with the four-equation model of Ruyer and 

Mannevile (2000). Higher dimension models are found not to allow a deeper 

investigation of the bifurcation scenarios. These investigations are provided in 

chapter 3 using a two-equation model. As indicated above, the two-equation 

model is an improvement of an existing model. A qualitative analysis using 

bifurcation theory is carried out and numerical simulations were also 

performed to illustrate the different bifurcation scenarios exhibited by a 
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falling film flow. In chapter 4, we extend the analysis to the 

Magnetohydrodynamics case, showing the influence of both magnetic and 

electrical fields on the stability of falling electrically conducting film. Here we 

have also improved an existing model proposed by Korsunsky (1999). 

The second part of the thesis begins with an extensive but not 

exhaustive literature review on the problem of vortex pattern, its 

manifestation in different fields of physics and its presence in nature (in 

chapter 1). Chapter 2 is devoted to the confirmation of Kelvin's equilibria J.J 

Thomson (1883). Moreover, the influence of flow dynamics around the 

troughs and apexes were also investigated; preliminary results on the 

surrounding dynamics are provided. In chapter 3, we examine for the first 

time the transition between two subsequent polygonal patterns. The 

transition is investigated in absolute and relative frames of reference 

whereby original findings are presented. 
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Chapter I: Introduction 

There are a score of situations in nature and industry where a thin 

layer of fluid with a free surface flows down inclined or vertical walls. At the 

free surface, mass, momentum, and heat transfers take place. These 

transfers depend on the dynamics of the free surface, which can be complex. 

Industrial situations can be found in coating, photography, casting, 

evaporators, condensers and heat exchangers. On one hand, instabilities can 

have a beneficial effect on the industrial process and therefore are 

encouraged. On the other hand, they can have a negative effect and hence 

are to be suppressed. For example, instabilities trigger turbulence and 

increase heat exchange in heat exchangers. While in coating and 

photography industry a wavy free surface is to be avoided. 

The applications mentioned above, and others, were the motivation 

behind the countless theoretical, numerical and experimental studies on the 

instabilities of the thin layer of the fluid flowing down inclined plane and 

vertical walls. One of the objectives of these studies is the derivation of 

simplified models capable of describing accurately, the flow and hence 

improves industrial process. The other objective is academic. Thin film flow 

exhibits a complex nonlinear phenomena and hydrodynamic chaos; therefore 

this problem can be used to better understand the bifurcation scenarios 

leading to the symmetry breaking. 



As mentioned earlier, research on this topic started with the analytical 

work of Nusselt (1916), who derived the basic flow solution for the 

unperturbed flow. The competition between gravity and surface tension yields 

interfacial waves. Kapitzas & Kapitza (1949) are the first researchers who 

studied experimentally the stability of the interface; they reported that the 

free surface can undergo several types of deformations. There, the free 

surface deformations depend on the perturbations at the flow entrance. They 

reported that perturbations with small amplitude and high frequencies induce 

a quasi-sinusoidal wave train, while perturbations with relatively high 

amplitudes produce solitary waves and chaos. Several other experimental 

results can be found in Tailby & Portalsky (1965), Stainhorp & Allen (1965), 

Jones & Whitaker (1966), Strobel & Whitaker (1969), Takahama & Kato 

(1980), and Brauner & Maron (1982). The relatively more recent tests were 

conducted by Liu, Paul & Gollub (1993). These authors considered relatively 

small incline angles (4°< /9<10°) and used an optical technique which is 

more precise. They have shown that depending on Reynolds, Weber and 

incline angle, the downstream film flow can become chaotic and three 

dimensional. 

The film flow is subjected to two kinds of instabilities; namely surface 

and shear mode instabilities. The surface mode instabilities are due to gravity 

and grow slowly. The surface modes are triggered by Reynolds number 

exceeding a critical value of where& is the angle of inclination. This 

critical Reynolds number is obtained through linear stability investigations of 

11 



the problem worked out by Yih (1955) and Benjamin (1957). Performing an 

asymptotic examination of the Orr-Sommerfeld equation for long waves, 

these two authors found that the stationary solution of Nusselt becomes 

unstable for long wave perturbation when the Reynolds number exceeds a 

critical value. They also computed the critical wave number below which the 

film flow becomes unstable. A more sophisticated linear stability analysis, 

based on wave packets and pseudo-spectral method, was conducted by 

Brevdo et al (1999). Moreover, using collision Briggs' criteria, they have 

shown that the instability of the thin film flow is convective. This propriety 

indicates that instabilities are amplified as they are swept far downstream. 

Their research showed fair agreement with the experimental results obtained 

by Liu et. al (1993). 

The second kind of instability is due to shear modes arising at high 

Reynolds numbers and at very small incline angles («0.5°) ; they have finite 

wave number and strong amplification rate. The cause of this instability is 

attributed to viscosity. Debruin (1974) and Florian (1987) showed that the 

amplification rate of this instability can be reduced by increasing the surface 

tension or by reducing the incline angle. They also indicate that the critical 

Reynolds numbers for the shear mode instability does not vary monotonically 

with the surface tension and the incline angle. 

Weak nonlinear stability analyses were implemented. Taking 

advantage of small thickness to length ratio, several researchers employed a 

! 
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perturbation method and proposed one-equation models for the 

spatiotemporal evolution of the film thickness. The most well known 

equations are those of Benney (1966) and Kuramoto-Sivashinsky (1980); the 

latter is the simplification of the first. Benney's equation failed in capturing all 

the inertial effects in both the flow domain and at the free surface confining 

the efficacy of the model to a narrow region around the critical Reynolds 

number. Furthermore, Benney's equation suffers from finite-time blow up. 

Several others like Ooshida (1999) and Panga & Balakotaiah (2003) 

attempted to derive a single-equation model, which is free from a finite-time, 

blow up. Yet, none of these models are free from the last impediment, thus, 

making the search for an accurate single-equation model representation 

hopeless, see Ruyer and Manneville (2004). 

The perturbation method is no longer valid for high Reynolds numbers. 

In an attempt to extend the analysis to higher Reynolds numbers, an ad hoc 

method, similar to the integral boundary layer approximation, was employed 

to reduce the number of governing equations to two. Shkadov (1968) was 

the first to employ this technique and reduced the governing equations to a 

two-equation model involving film thickness and flow rate. Unfortunately, 

Shkadov's model suffers from two major drawbacks. First, it predicts a 

stability threshold that is different from the one of Yih (1955) and 

R 

Benjamin (1957), and second, it does not predict periodic waves (Hopf 

bifurcation). To improve the approximation of Shkadov (1968), Steinhuk & 

Duckler (1989) included terms of second order with respect to the long wave 
13 



parameter, but they considered a uniform pressure distribution along the film 

thickness. This hypothesis is inconsistent with the required second order 

accuracy. Similar studies were conducted by Prokopiou et. al (1991). These 

authors assumed a hydrostatic distribution along the film thickness and used 

normal form theory to find analytical solutions for limit cycles and homoclinic 

orbits, but they did not succeed in predicting a stability threshold. Later, 

second order terms with respect to a long wave parameter were included by 

Lee and Mei (1996). They captured the Hopf bifurcations, but were 

unsuccessful in predicting the stability threshold. Recently, the same 

parabolic velocity profile used in Lee and Mei (1996) were employed along 

with the energy integral method by Usha and Uma (2004) and they 

recovered the instability threshold given by Benjamin (1957) and Yih (1955). 

Yet, the velocity profile used by Usha and Uma (2004), and Mei and Lee 

(1996) cancels the shear stress at the free surface and prevents the 

tangential component of the dynamic interfacial condition to be satisfied at 

the second order level. The flaw of the Usha and Uma model is corrected and 

the consistency of the approximate solution at 0(s2), is insured, where e is 

a wave length parameter, in all governing equations and boundary 

conditions. This is achieved by introducing the shear stress at the free 

surface as an additional variable in the velocity profile. Fortunately, the 

introduction of this new degree of freedom does not increase the number of 

modeling equation at the accuracy order considered in this thesis (0(s2)). I t 

was shown that for the case of stationary long waves, this correction has 
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significant implications on the condition of occurrence of Hopf and heteroclinic 

bifurcations. 

A Four-equation model was derived by Ruyer-Quil and Manneville 

(2002) using the Galerkin method with specific test functions. This model 

correctly predicts the condition for the onset of instability. Following the same 

strategy, and including the smaller inertia terms, Amaouche et al (2005) 

improved the accuracy of the model proposed by Ruyer-Quil and Manneville 

(2000) in the high Reynolds number range. It is important to note that the 

models of Ruyer-Quil and Manneville (2000), and Amaouche et al (2005) 

involve four nonlinear differential equations for the film thickness, the flow 

rate, as well as two corrections to the last parameter. 

Despite the simplifications introduced by the long wave hypothesis, the 

equations that model the problem remain complex. More simplifications were 

made when a frame of reference moving with the perturbation celerity is 

considered. In this frame, the waves are stationary, their celerity and form 

remain unchanged. This simplification allows a qualitative analysis with the 

aim to examine the influence of the flow parameters on the bifurcations 

scenarios. Several numerical studies were reported for the case of stationary 

waves. These investigations have identified the existence of periodic waves 

and periodic doubling. Most of the studies were restricted to the case of low 

Reynolds numbers and have used the finite element method, Bach and 

Villadsen (1984), Kheshgi & Scriven (1987), and Armstrong & Brown (1994). 
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Chapter II: Four-equation Model and Three-
equation Model 

1. Introduction 

In this chapter, two models that consist of four and three equations 

respectively are proposed. The four-equation model describes the 

spatiotemporal evolution of the flow rate, q(x,t), film thickness, h(x,t), shear 

stress at the wall rO(x,t) and free-surface velocity s(x,t) . While the three-

equation model involves the spatiotemporal evolution of the film height, 

shear stress at the wall and flow rate. The results of the linear stability 

conducted with these two models are compared with those obtained with 

four-equation model of Ruyer and Maneville (2000), which involves besides 

the flow rate and the film thickness two correcting parameters of the flow 

rate. Moreover, the results are also compared with the results of Brevdo et al 

(1999) who tackled the linear stability of a falling film of fluid numerically 

using the mathematically involved spectral method. The results of the linear 

stability are also validated using the experimental results of Liu et al (1993). 

For long wave approximation, low Reynolds number and high Weber 

number, the Navier-Stokes equations are first simplified by neglecting terms 

of order higher than two with respect to the long wave parameters. These 

equations are reduced subsequently into four and three equations, using the 

integral momentum method of Karman-Polhausen. The momentum integral 
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method requires the presumption of a velocity profile; hence the model 

depends on the choice of the velocity field. Having first used polynomials of 

order two and three, we have crystallized a four-order polynomial that 

represents the velocity profile with which we found the stability threshold to 

be Rc = — cot6 , as in Benjamin (1957) and Yih (1955). A velocity profile in the 
6 

form of a polynomial of order two and three gives the following stability 

threshold Rc = cot<9 and Rc = ~ c o t # / respectively. Note that the stability 

threshold is slightly different from the value ( / ? c = - c o t 6 > ) predicted by 
6 

Benjamin (1957) and Yih (1955). 

This chapter is organized in the following way. First the formulation of 

the problem is presented in section two, followed by the presentation of our 

models in section three. Subsequently linear stability of four-equation and 

three-equation models is investigated. The effectiveness of the proposed 

models is shown through the comparison of our results with experimental 

observations given by Liu et al (1993), the theoretical results presented in 

Brevdo et al (1999) and those obtained with the four equation model of 

Ruyer and Mannevile (2000). Finally concluding remarks are given in section 

four. 
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2. Formulation of the problem 

Figure 2.1 Schematic of the problem. 

A two-dimensional flow of a thin layer of fluid down an inclined plane, 

making an angle 6 with the horizontal, under the action of gravity is 

considered; see in figure 2-1. The fluid is assumed incompressible and 

Newtonian. The upper half space consists of air having a negligible density. A 

Cartesian coordinate system is adopted in which the x-axis is parallel to the 

bottom plane with the positive axis along the streamwise direction, and the z-

axis normal to the incline plane directed away from the film. The gravitational 

acceleration is g = (gs in0, -gcos6) . The governing equations are: 

V.F = 0 (2-1) 

- - 1 - _ 
— + V.VV = —VP + vAV + g 
d p a (2-2) 
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Where V,P,p and v are the velocity vector, static pressure, density, and 

kinematic viscosity, respectively. The boundary conditions for the problem 

under consideration consist of the non-slip condition between the fluid and 

solid wall, along with the kinematic and stress conditions imposed at the free 

surface. 

V(x,0,0 = 0 (2-3) 

w{x,z,t)\ Ht + (2-4) 
'!*=//(*.») dt 8x 

1 + 2/4xDx)n = (-/> J + 2 j u 2 D ) n - (;ydivn)n (2-5) 

Where H{x,t) , , n ,5 and D represent the film depth, dynamic 

viscosity, surface tension coefficient, normal unit vector directed away from the 

film, unity tensor and deformation tensor, respectively. The subscripts (1) and 

(2) indicate the inner and outer regions of the fluid domain, respectively. 

Since air is considered inviscid, the equation (2-5) reduces to: 

{-PH + 2//Z),) n = (•-Pa - ydivn)En (2-6) 

Pa is the ambient pressure. The projection of this equation on the local 

frame, attached to the free surface, (n,t) provides the following two equations: 

P-Pa= y.divn + 2 /j(D.n).n (2-7) 
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{D.n).t= 0 (2-8) 

With 1 is the tangent to the free surface and D is the deformation 

tensor defined as. 

D 

"x 
0 
u, +w. 

0 

0 

0 w, 

The projection of the equations (2-7 and 2-8) in the x and z directions 

yields: 

M{uz + wx- 2uxHx +(P-Pa- y(V.n))Hx) = 0 

/u{{wx + uz)Hx + P - P a - r.(V.n)) = 0 

with 

(2-9) 

(2-10) 

n =- —r-

M , 2 ) 

-3 

V.(n) = -Hxx(\ + H2
x)> 

(2-11) 

(2-12) 

Subscripts, x and z , indicate partial derivatives of the variables with 

respect to jc and z . For normalisation we choose the scales based on the 

Nusselt flow: H0 , L and c0 = s i " ^ which are the initial film depth, 
3v 

characteristic length and Nusselt velocity, respectively. The variables are thus 
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normalized as follows: 

u * x * z * wL * p-pa * tcQ H 
u = — , x = - , z = —,w =——,p = Y , t H = 

c0 L / /„ # 0 c 0 pc 0 L H o 

The non-dimensional equations involve now the following fundamental 

u r. c0H0 „. y ^ gH0 COS0 3cot0 , H0 numbers: R = ——- , We = ——- , Fr = -— = and s = —- which are 
v pH0c0 c0 R L 

the Reynolds, Weber, and Froude numbers, and a long wave parameter. Note 

that for the problem under consideration, the last dimensionless parameter is 

relatively small. This hypothesis allows us to neglect the higher order terms and 

simplify, appreciably, the governing equations. In addition to the shallow water 

condition, we assume the following order of magnitude for the Reynolds and 

Weber numbers: /? = 0(l)and We = 0(s~2). The simplified governing equations in 

dimensionless form (subscripts are omitted henceforth) are: 

1 1 3 ut +UUX +WU. =-px (£U,a + —M-, + —) (2-13) 
R e e 

s 3 
£2{W! +UWx + wwx) = -p2 +—(wZ2 —cot<9) (2-14) 

R s 

ux+w= 0 (2-15) 

z = 0: u = w = 0 (2-16) 

z = H{x,t): w = H,+uHx (2-17) 
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r^W RH H 
uz + sRPH + s2 (wx-2uxHx) + -—e- = 0 

(1 + £2HXY 

(2-18) 

P + L(UzHx-2Wz) + 
E WeH XX = 0 (2-19) 

R 
a + S2H2

XY 

3. Models 

3.1 Four-equation model 

Within certain ranges of flow parameters, the basic solution loses its 

stability thus giving rise to solutions for which inertial effects are of paramount 

importance. The basic flow solution that corresponds to the zero order of the 

system of equations (2-13-2-19) assumes that 

u = U(z), p = P(z) ,w = 0 ,H = H0I where U(z) and P{z) are the solutions to the 

problem: 

PZ =+I(-3cot0) (2-20) 
R 

u2Z +3 = 0 (2-21) 

w(0) = 0 uz(H) = 0 p(H) = 0 (2-22) 

The basic flow solution for the velocity is then: 

C/(z) = 3 ( z - - z 2 ) (2-23) 
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The solution of the problem is approximated via the integral method of 

Karman-Polhausen, and the following velocity profile is assumed in order to 

initiate the analysis. 

u(x,z,t) = a{x,t)z + b(x,t)z2 +c(x,/)z3 +d(x,t)z4 (2-24) 

From the definitions of velocity at the free surface, the flow rate, shear 

stress at the wall and free surface, and the following unknown coefficients 

a(x,t) , b(x,t) , c(x,t) and d(x,t) can be related by four equations to the 

previously mentioned parameters q(x,t) ,rO(x,t) ,rs(x,t) and s(x,t). 

b{x,t) = 

c(x,t) 

d(x,t) = -

a(x,t) - rO(x,t) 

3 - h(x,t)2 Ts(x,t) + 3.T0(x,t).h(x,t)2 +8.h(x,t).s(x,t)-20.q(x,t) 
2 h(x,t)2 

2.(14,h(x, t).s(x, t) + 3r0(x, t).h(x, t)2 - 30,q{x, t) - 2.h(x, t)2 ts (x, t) 
h(x,t)4 

5 -\2.q(x,t) + r0(x,t).h(x,t)2 - h(x,t)2Ts(x,t) + 6.h(x,t).s(x,t) 
h(x,t)5 

Four equations are required to determine the unknown physical 

quantities q(x, t), TS (X, t) r0(x,0and h(x,t). Combining the continuity equation 

(2-15) and the kinematic boundary condition (2-17) with Leibniz's rule yields 

the first equation: 
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h,+qx= 0 (2-25) 

Integrating equation (2-14) from a z -coordinate somewhere inside the 

film to the free surface and using the boundary condition (2-19) we obtain the 

pressure. Substituting the expression for the pressure into equation (2-13) and 

integrating over the entire film thickness with the boundary condition (2-18), 

we produce the second required equation. Using the method of moments with a 

monomial of order one and two respectively we deduce both the third and the 

fourth equations. The three nonlinear equations are given in appendix A. 

3.1.1 Linear stability 

Linear analysis provides the location of the bifurcation points in the 

parameters space, and predicts the qualitative characteristics of developing 

disturbances. The four nonlinear equations (see appendix A) are linearized 

around the basic solution: 

(q(x, t), h(x, t), TO(X, t), S(x, t)) = (1,1,3, | ) + (Q(x, t), H{x, t), T(X, t), S(x, t)) 

given as: 

Ht+Qx= 0 (2-26) 

24 



R 2 7 35 35 R (2-27) 

+±(tx-Mx) = 0 
K 

ln,.jLT ^ 1 \ JS9„ 1 _ 3 1 137 639 — Wee HrYrA— (— orvr rir„—ltirr, Trrr)+£l—Hr, o„ +rrnTrr H Tr, J,, H rL 
2 /? 10 20 60 35 10 160 120 560 1120 (2-28) 

l r „ j „ £^.61 169 11 1 . 183 13 1 1 13 - Wee1 Bxxxx+—(— Sxxx Hxxx—H. r ) + 4 — Hx. Sx. +— r„ +— r,. 5 
3 105 70 7 70 280 105 80 140 56 (2-29) 

39 1 2 2 
+— H ~H.cotf+-Ht)—{Sx +H,) =0 

112 R 1 " R x ' 

Subsequently, the perturbation quantities are expanded in the form of 

normal modes and the equations are rescaled in the streamwise direction in 

order to drop the parameter e and to be consistent with the long wave 

hypothesis. 

(Q(x,t),H(x,t),r(x,t),S{x,t)) * (A,B,C,D).enk x'cl) (2.30) 

where A,B,C,D are arbitrary constants, while c = cr +I.cj and k = kr +I.ki are 

the complex angular frequency and complex wave number, respectively. 

Then, the four linear partial differential equations (2-26-2-29) are 

transformed into four algebraic equations with the four constants A,B,C,D . 

The condition for a nontrivial solution for the algebraic system leads to the 
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dispersion equation, which relates the angular frequency c to the wave 

numberk. The last equation is a polynomial of seventh order and is given in 

appendix B. In the frame of long waves (the wave number A; is very small), 

the angular frequency can be expanded as: c = axk + a2k2 + a3&3 +0(kA) . 

Substituting this series of angular frequency into the dispersion equation and 

solving for the coefficients ax,a2, yields a, =3 which is the angular frequency 

of the long waves and a2 = -j(6./?-5cot6>)./ , where / i s the pure imaginary 

complex number. At the marginal stability condition, the imaginary part of 

the angular frequency is null; hence, the imaginary coefficient a2 should be 

null. This condition leads to the stability threshold^ = - c o t 0 , which is already 
6 

given in Benjamin (1957) and Yih (1995). Note that the latter condition is 

independent from the Weber number, which is expected because the 

curvature of the free surface is small (long wave approximation). Separating 

the real and the imaginary parts of the dispersion equation, we obtain two 

equations which can be solved fork r . In the spatial and temporal marginal 

stability conditions ( c ,= 0 and k t = 0 ) the variation of the cut-off wave 

number kr with the Reynolds number for different value of the Kapitza 

number ( K a = — ' ) , is shown in the figure 2-2. The critical wave 
pg v 

number is compared to the results given in Nguyen & Balakotaiah (2000) 

for Ka =100. The present results are seen to be nearer to those given by the 

solution of the Orr-Sommerfeld equation. 
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Q 
The cut-off frequency ( — ), which separates the stable from the 

2 7t 

unstable region is also calculated and compared to the experimental results 

in the figures 2-3 and 2-4. A good agreement with experimental results is 

amply evident. The angular frequency for the marginal stability conditions is 

compared to the experimental results in figures 2-5. Once more, the 

agreement between the numerical and experimental results is good. 

The accuracy of the proposed model is further verified using the 

formalism of absolute-convective stability based on the Briggs' collision criteria. 

Solutions have been obtained by Brevdo et al (1999). Using Fourier-Laplace 

transformation, they reduced the linearized Navier-Stokes around the parabolic 

profile to an inhomogeneous Orr-Sommerfeld equation with inhomogeneous 

boundary conditions. The resulting boundary value problem is solved using the 

spectral method. The temporal growth rate and angular frequency as a 

function of the wave number are represented in the figure 2-6 and 2-7. These 

are found to be similar to figure 2 in Brevdo (1999). As in Brevdo, we 

consideri? = 40, We = 41.46,0 = 4.6°. For a given growth rate, c,, the solution of 

the dispersion relation is displayed in the (kr,kj) plane as the oscillation 

frequency, cr, is varied. Like in Brevdo et al (1999), we show through figures 2-

7 and 2-8 the solution curves when the growth rate is decreased fromc, =0.02 

to cl: = 0. No pinching of the spatial branches is observed, which, according to 

the collision criteria implies that the film flowing down an inclined plane is 

absolutely stable and convectively unstable, see Huerre and Monkewitz (1998). 

The results hold true for Reynolds numbers up toR = 100. 
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Figure 2- 6 : Temporal growth rate - c , function of the wave n u m b e r ^ : 

0 = 4.6 , v = 5.02.10_6w2j_1 , p = H30.kg.m'}, a = 69.\0'2N.m~]. (1) : R=10, We=104.4. 

(2) : Rc, We=77.88. (3) : R=20, We=65.8. (4): R=40,We=41.46. (5) : R=60,We=31.6. (6) : 
R=100, We=22.5. (7) R=200, We=14.18 
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Figure 2-7: Angular frequency cr function of the frequency 

0 = 4 .6 ,v = 5.02.10 -6/w2 j"1, /o = 11301g.m-3, a = 69.10-3 . (1) : R=10, We=104.4. (2) : Rc, 

We=77.88. (3) : R=20, We=65.8. (4): R=40,We=41.46. (5): R=60,We=31.6. (6): R=100, 

We=22.5. (7) R=200, We=14.18 
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The resemblance between figure 2-8(a, b), 2-9(a, b) and figures 3(a, b, 

c, d) in Brevdo, is clear. The agreement between our results and those given by 

Brevdo et al is further verified when a reference frame, moving at speeds 

F = 1.15 and V = 1.16 with respect to the laboratory frame, is considered. The 

similitude between the results shown in the figures 2-10, 2-11, 2-12 and 2-13 

and those displayed in the figures 5 and 6 given by Brevdo is encouraging. 

Figure 2-12a shows the three solution branches noted by (1), (2) and (3) for 

c ,=0 .01 . The solution (1) is located in the positive half plan. When the 

growth rate c, decreases to c, =0.0079 (see figure 2-12b) the collision of the 

solution branches (1) and (3) run into the point marked by k,. When the 

spatial growth rate is decreased, further, to c, =0.0078, the collision is found 

between branches (1) and (2) (see figure 2-13b). This collision point is denoted 

by k„. The same similitude is found among figure 2-10a, 2-10b, 2 - l l a and 2-

11b with figure 6 in Brevdo et al. 
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Figure 2-8 a Image of different branches when the growth rate is c, =0.02 

b - Close view on the curve (1) R=40 
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Figure 2-9 a Image of different branches when the growth rate is c, = 0 

b - Close view on the curve (1) R=40 
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(b) 

Figure 2-12 Pinching process in the complex wave number p l a n e k r ) f o r V=1.16 

R = 200 We = 14.18 : 0 = 4 .6 , v = 5 . 0 2 . 1 0 V 1 , p = 1130.%.m"3, cr = 69.10"3 N.m 
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Figure 2-13: Pinching process in the complex wave number p l ane ( k j , k r ) f o r V = l . 
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The positions of the two saddle points or collision points are recovered 

with remarkable precision. The results are summarized in the following table. 

Collision points V = 1.15 V = 1.16 

c, 

Brevdo & al I 0.0062 0.0079 

Present model I 0.0061 0.007889 

Brevdo & al I I 0.0073 0.0078 

Present model I I 0.00732 0.00779 

It was shown above that in the range of moderate Reynolds and high 

Weber numbers respectively, the instability of a liquid film flowing down an 

inclined plane is convective, which means that the perturbations are swept 

downstream. Therefore, studying spatial instabilities is more appropriate than 

temporal. In figures 2-14 and 2-15 the spatial growth rate and angular frequency 

are calculated and represented for the same values of the incline angle, Reynolds 

number, and Weber number considered in Brevdo et al. There are no noticeable 

differences between our results with those presented in the figure 9 in Brevdo et 

al. Furthermore, the spatial growth rate calculated is compared to the 

experimental results in figure 16. Here again, there is fair agreement. 
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Figure 2-14: Spatial growth rate -ki function of the frequency cr: 

# = 4.6 , v = 5.02.10"6w25_1 , p = \ XZQ.kg.m'3, cr = 69.KT3 N.m~]. (1) : R=10, We=104.4. (2) : 
Rc, We=77.88. (3) : R=20, We=65.8. (4) : R=40,We=41.46. (5): R=60,We=31.6. (6) : 
R= 100, We=22.5. (7) R=200, We=14.18 

Figure 2-15: Wave number kr function of the frequency cr: 

6 = 4.6, v = 5.Q2.10~6m2s~l, p = WhOkgrn'3, <J = 69.10"3 N.m'1. (1) : R=10, We=104.4. (2) : Rc, 
We=77.88. (3) : R=20, We=65.8. (4): R=40,We=41.46. (5): R=60, We=31.6. (6) : R=100, 
We=22.5. (7) R=200, We=14.18 
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Figure 2-16 Spatial growth rate -k,as function of wave number kr 

Q = 4.6 , v = 5 . 0 2 . 1 0 V , p = 1130.kg.m'1, a = 69.10-3 N.m~] 
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3.1.2 Conclusion 

Four nonlinear differential equations are proposed to describe the 

motion of a liquid film flowing down an inclined plane. The formulation 

involves four equations that portray the development, flow rate, film 

thickness, shear stress, and velocity on the free surface. The results obtained 

were found to follow closely those calculated solving the Orr-Sommerfeld 

equation numerically. The model was further validated using past 

experimental observations and the outcome of more encompassing linear 

analyses. 

3.2. Three-equation model equation 

In the following sub section, a three-equation model, one dimension 

less than the one described in the sub section above, is proposed. In the 

same way, as before, we use the integral method and similar velocity profile 

(2-24). Using the cross derivative of the pressure, we relate the coefficient 

c(x,t) to the coefficient a(x,t) in the velocity profile, hence, reducing the 

number of equations from four to three. The three-equation model involves 

only measurable physical quantities: the film depth, flow rate, and wall shear 

stress. The momentum integral method is used to reduce the Navier-Stokes 

equations. The adequacy of the proposed model is shown by comparing the 

present linear stability results with the four-equation model of Ruyer and 

Manneville (2000) as well as with the numerical solutions of the linear 



dynamics of wave packets by Brevdo et al (1999). Moreover, the present 

solutions compare well with the experiment measurements of Liu et al (993). 

Cross differentiating the pressure, and eliminating it from x -

and z - momentum equations (2-1) and (2-2), yields the two following 

equations. 

i \ 1 , 1 
-(w, + uu x + wu. j H—(eu^ + — uzz + —) 

R £ £ 

dz 

(f 2 (w, + uwx + wwx )) + ~ (wzz - ~ c o t 

dx 

Using equation (2-8) and the continuity equation (2-3), we deduce the 

vertical component, w of the velocity field. Substituting the two velocity 

components in the two cross derivative equations of pressure above and 

evaluating the obtained equation at z = 0, we acquire the following relation 

between the coefficients c(x,t) and a{x,t). 

3 dx 6 dt 

From the definitions of the flow rate q{x,t) , shear stress at the 

wall r0(x,t) , and shear stress at the free surface rs(.x,t) , the unknown 
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coefficients a(x,t) , b(x,t) , and d(x,t) can be related to the film height 

h(x,t) and the physical quantit ies q(x,t) rO(x,t) and rs(x,t) by the three 

following expressions: 

a(x,t) = rO (x,t) 

. . . 3 h(x,t)2z(x,t) + 9.T0(x,t).h(x,t)2+2.c(x,t).h(x,t)4-20.q(x,t) 
b(x,t) = r 

14 h(x,t)3 

5 -I2.q(x,t) + 4.z0(x,t).h(x,t)2 -3.c(x,t).h(x,t)4 +2.h(x,t)2 zs(x,t) 
~ 28 h{x,tf 

Since rs(x,t) is given by the equation (3-6), only three equations are 

required to determine the unknown physical quantities q(x,t) , rQ(x,t) 

and h(x,t) . Combining the continuity equation (2-3) and the kinematic 

boundary condition (2-5) along with Leibniz rule we obtain 

Integrating equation (2-2) along the z-coordinate from somewhere in the 

film to the free surface and using the boundary condition (2-7) to find the 

constant of integration we find pressure to be. 

(2.32) 

P = 
z 

(-ax{h + z)-bx.(h2 +z2)-cx(hi +z3)-dx(h4 + z 4 ) ) 3 .cot (0)(h-z) 
p = -e2 We.ha + 

s I 
R R 
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Substituting the pressure,/*, into equation (2-1) and using the method 

of moments with a monomial of first and second order with the boundary 

condition (2-6), we deduce both the second and the third equations. 

These two nonlinear equations are given in appendix C. Note that the 

long wave parameter e is not a supplementary parameter, one can get rid of it 

by rescaling the equations. 

3.2.1 Linear stability 

The system of three nonlinear equations (see appendix C) is linearized 

around the basic solution: 

(q(x, t), h(x, t), T0(X, 0 ) = (1,1,3) + (Q(x, t), H(x, t), T(X, t)) 

and leads to: 

H,+Qx= 0 (2-33) 
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67 H ^ 137.R 13_ 
- . _ _ - - l rrt _ . . 14 R 94080 84./? r, r,„ H 1680 14.7? (2-34) 

(2-35) 

Note that equation (2-11) was used to eliminate q(x,t) from the two 

linearized equations (2-12) and (2-13). The perturbation quantities are 

expanded in the form of normal modes and the equations are rescaled in the 

streamwise direction in order to drop the parameters . 

Where A and B are arbitrary constants, while c = cr +i.c,: and k = kr +i.ki are 

the complex angular frequency and complex wave number, respectively. 

Subsequently, the two linear partial differential equations (2-12) and (2-13) 

are transformed into two algebraic equations with two constants A and B . 

The condition for a nontrivial solution for the algebraic system leads to the 

dispersion equation, which relates the angular frequency c to the wave 

number k . The dispersion equation is a polynomial of sixth order and it is 

given in appendix B. In the frame of long waves ( & - > o ) , the angular 

frequency can be expanded as: c = axk + a2k2 +aiki . Thus, solving the 

dispersion equation for ax,a2, yields a, = 3 which is the angular frequency of 

(H(x,t),r{x,t))*(A,B).e i(k.x-cl) 
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the long waves and a2 = ^(6.R-5cot0).i. At the marginal stability condition, 

the imaginary coefficient a2 should be null; this condition leads to the 

stability threshold Rc=-cot0, given in Yih (1955) and Benjamin (1957). Note 

6 

that the latter condition is independent from the Weber number, which is 

expected because the curvature of the free surface is small. Separating the 

real and the imaginary parts of the dispersion equation, we obtain two 

equations for four unknowns, kr , k, , coj and cor . The marginal stability 
conditions for both spatial and temporal formulation are ensured for c,= 0 

and ki = 0. In order to compare our results with those given by Brevdo et al 

(1999) and those obtained with the model of Ruyer and Manneville (2000) 

the transformation (c,R,We)->(-c,-R,~—) is performed. Then the two previous 

2 3 2 R 

equation that resulted from the dispersion equation are solved for &rand cr. 

The results are presented in the form of a cut-off frequency that separates 

the stable region from the unstable one. The results are compared to the 

experimental results provided by Liu et al (1993) and to those obtained with 

the dispersion equation given by Ruyer and Manneville (2002), given in the 

figures 2-16 and 2-17 for two different angles of 0 . Our results are in 

excellent agreement with the ones obtained with the four-equation model of 

Ruyer and Manneville (2002). It is worth noting that the same discrepancy 

with experimental results of Liu et al (1993) is observed in Brevdo et al 

(1999) (see figure 12 in Brevdo et al (1999)). 
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Diamond Point: Experimental Results f rom fig 4 in Liu et al (1993) 
Dashed Line: Present model 
Doted Line: Four equation model of Ruyer and Manneville (2000) 

Stable region 

Stable region 

fc(Hz) 

Unstablinstgitolie region 

R 

R 

Figure 2-17- Cutoff frequency 0 = 5.6, v = 5.02.l(T6w V , p = 1130.kg.rn'1 a = 69.1CT3TV.™-' 

fc(Hz) 

Diamond Point: Experimental Results f rom fig 18 in Liu et al (1993) 

Continuous Line: Present mot je f ' 

Stable region 

Unstable region 

1 10 12 14 16 18 20 22 24 26 28 3D 

R 

Figure 2-18 Cutoff frequency * = 4.6, v = 5.02.10"6
 w V > P = 1130kgrn^ # 
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Figure 2-19 : Temporal growth rate -c (. function of the wave numberA:,.: 

9 = 4.6 , v = 5.02.10~6ot25_1 , p = 1130.&g.m~3, a = 69.10~3/V.m-1. (1) : R=10 , W e = 1 0 4 . 4 . (2) : Rc, W e = 7 7 . 8 8 
(3) : R=20 , W e = 6 5 . 8 . (4): R = 4 0 , W e = 4 1 . 4 6 . (5): R = 6 0 , W e = 3 1 . 6 . (6): R = 1 0 0 , W e =22 .5 . 

Figure 2-20: Angular frequency c r function of the frequency : 

9 = 4.6 ,v = 5.Q2A0'6m2s'{ , p = \m.kg.m-} , <7 = 69.10N.m~ ] . (1) : R=10, We= 104.4. (2) : Rc, 
We=77.88. (3): R=20, We=65.8. (4): R=40,We=41.46. (5) : R=60,We=31.6. (6): R=100, 
We=22.5. 
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wave number are calculated and represented in the figure 2-18 and 2-19. 

These are found to be similar to figure 2 in Brevdo et al (1999). The 

comparison of our results for the temporal growth rate with the model of Ruyer 

and Manneville for two values of the Reynolds number shows a good 

agreement between the two models, see figures 2-20 and 2-21. In figure 2-21 

the curves coincide very well. As in Brevdo et al (1999) we have displayed in 

figures 2-22 and 2-23 the numerical solutions of the dispersion equation in the 

(kr,ki) plane, for R = 40 ,We = 41.46,(9 = 4.6° and given growth rate c,, while the 

oscillation frequency,c r, is varied. As in Brevdo et al (1999) we show through 

figures 2-22 and 2-23 the motion of the solution curves when the growth rate 

is decreased from c, = 0.02 to c,, = 0 . No pinching of the spatial branches 

occurs; according to the collision criteria, the film flowing down an inclined 

plane is absolutely stable and convectively unstable, see Huerre and Monkewitz 

(1998). In figure 2-22 and 2-23 our results are also compared to those 

obtained with the four-equation model of Ruyer and Manneville (2002). The 

resemblance between figure 2-22(a, b), 2-23(a, b) and figures 3(a, b, c, d) in 

Brevdo et al (1999) is clear, and the agreement with the results in Ruyer and 

Manneville (2002) is again evident. 
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Figure 2-21 : Temporal growth rate - c , function of the wave n u m b e r ^ : 

# = 4.6 , v = 5.02.10-6m2s~1, p = WhQ.kg.m~1, a = 69.10-3N.m~l. R=20, We=65.8. (1): R=40,We=41.46. (2). 

Figure 2-22: Angular frequency cr function of the frequency*:, : 

6 - 4.6, v = 5.02.10-6wj2,s-1 , p = W3Q.kg.m~3, a = 69.10"3 ̂ .m"1 . R=20, We=65.8. (1) : 
R=40,We=41.46. (2). 
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kr 

Figure 2-23 a - Image of different branches in (&,.,/::,)plan when the growth rate is 

ci = 0.02 , b - Close view on the curve (1) R=40 
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Solid line: Present model 

Cross points: Ruyer and Manneville ( 2000) 

Figure 2.24 a - Image of different branches when the growth rate is c, = 0 

b - Close view on the curve (1) R=40 
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Since the perturbations are swept down (convective instability), 

studying spatial instabilities is more appropriate than temporal ones. In 

figures 2-24 and 2-25 we present the spatial growth rate and the angular 

frequency for the same values of the incline angle, Reynolds, and Weber 

considered by Brevdo et al (1999). There are no noticeable differences 

between our results with those presented in figure 9 in Brevdo et al (1999). 

Furthermore, the spatial growth rate and the angular frequency are 

calculated and compared to the experimental results and with those obtained 

from the model proposed by Ruyer and Manneville (2002) see figure 3-26 

and figures 3-27. Here again, the agreement with the four-equation model of 

Ruyer and Manneville is very good, and fairly good with experimental data. 
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Figure 2-25 : Spatial growth rate -kj function of the frequency cr: 

0 = 4.6 = 5.02.1(T6m2s~], p = \\30.kg.m'3, a = 69.10"3 N.m'x. (1) : R=10, We=104.4. 

(2) : Rc, We=77.88. (3) : R=20, We=65.8. (4) : R=40,We=41.46. (5) : 
R=60,We=31.6. (6): R=100, We=22.5. (7) R=200, We= 14.18 

Figure 2-26 : Wave number kr function of the frequency cr: 

9 = 4.6, v = 5.02.10~6m25_1, p = \\30.kg.m~3, <r = 69. l O - 3 ^ - 1 . (1) : R=10, We=104.4. (2) : Rc, 
We=77.88. (3) : R=20, We=65.8. (4): R=40,We=41.46. (5): R=60, We=31.6. (6): R=100, 
We=22.5. (7) R=200, We= 14.18 
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Diamond Point: Experimental Results f rom fig 14 in Liu et al (1993) 

Continuous Line: Present model 

Cross point: Model of Ruyer and Mannevile (2000) 

k 
a < '0.003 

0.002 

0.001 

Figure 2-27 Spatial growth rate as function of wave number kr 

e = 4.6 , v = 5.02. 10~6w V 1 , p = 1130.Ag-.rn"3, cr = 69.10"3 N.m~] 

2.1 

2.05 

1.9-

1.85-

Diamond Point: Experimental Results from fig 14 in Liu et al (1993) 

Continuous Line: Present model 

Cross point: Model of Ruyer and Mannevile (2000) 

0.05 0.1 0.15 

k. 
0.2 0.25 0.3 

Figure 2-28 Phase velocity — a s function of wave number^ , . 
kr 

0 = 4.6, v = 5.02.10~6m2s~], p = 1 U0.kg.m~3, a = 69.10~3N.m~^ 
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3.2.2 Conclusion 

In the frame of long wave approximation, the Navier-Stokes equations, 

accurate up to second order with respect to the long wave parameter, are 

reduced with the momentum integral method into three equations which 

involve three measurable quantities: the flow rate, film thickness, and shear 
5 

stress. This model predicts the stability threshold, Rc =-cot0 , and linear 
6 

stability results are in perfect agreement with the outcome of more 

encompassing linear analyses of Brevdo et al (1999). Furthermore, our 

results agree very well with those obtained with the four-equation model of 

Ruyer and Manneville (2002). Similar to the named contributions, the 

measured cut-off frequency, spatial growth rate and phase velocity are 

satisfactory recovered. 
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Chapter III: Two-equation Model 

Our contribution depicted in this chapter consists of the improvement 

of the two-equation model of Usha and Uma (2004). The two authors have 

claimed that their model is accurate up to the second order with respect to 

the long wave parameter (ratio between film height and wave length). 

However a close examination of their model indicates that, although it is of 

second order, they have neglected the variation of shear stress at the free 

surface. In this chapter, this inconsistency is corrected by including the shear 

stress in the velocity profile. This third degree of freedom, besides the flow 

rate and film thickness in the equations, induce significant differences in the 

occurring conditions of the bifurcations (symmetry breaking), as well as on 

the wave profiles. 

1. The Model 

As before, let us consider the two-dimension flow of the thin liquid layer 

down an inclined plane, see Figure 2.1. The air above the film fluid is 

considered to have a negligible density. The governing equations, accurate up 

to the second order in dimensionless form, are given as follow 

(3-1) 

(3-2) 

(3-3) 

1 . 1 3. 
u +uu +wu. = -p H— {su^ +—m__ + —) 

R £ " £ 

£ 3 
£2{wt +UWX + WWx) = -pz + - ( W z z C O t 0 ) 

R £ 

ux + w2 =0 
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z = 0: u = w = 0 (3-4) 

z = H(x, 0 : w = Ht + uHx (3-5) 

Mz + £2(wx-2uxHx) + £iWeRHxxHx = 0 (3-6) 

P + -(uzHx-2wz) + £2WeHxx=0 (3-7) 

Subscripts, x and z , indicate partial derivatives of the variables with 

respect to x and z , respectively. For normalisation, the scales based on the 

Nusselt flow are used; which are: H0IL and c0. Initial film is represented by 

H0r Lis the characteristic length and c0is the Nusselt velocity, which is defined 

by cq = s i n ^ . The non-dimensional equations now involve the following 
3v 

dimensionless parameters: r = , We = — , Fr = 8HaC0S& = 3cot6> g n c ] V pH0c0 c; R 

H £=-$- which are the Reynolds, Weber, Froude numbers and a long wave 
L 

parameter. Note that for the problem under consideration, the last 

dimensionless parameter, e , is relatively small. In addition, the equations (3-1-

3-7), we have assumed that the Reynolds number is relatively high R = 0(s~{). 

For most fluids, such as water and mercury, the corresponding Weber number 

is We = 0(1) . In a certain range of flow parameters the basic solution, 

corresponding to the zero order solution of the system (3-1-3-7), loses its 

stability and gives rise to solutions for which inertial effects are important. In 

order to initiate the analysis via the energy integral method and momentum 

integral method, Usha and Uma (2004) and Lee and Mei (1996) considered a 

58 



parabolic velocity profile similar to the basic solution of Nusselt (1916). This 

= 0 while the remaining terms du parabolic velocity profile leads to r(x,H,t) = — 
dz z=H 

in equation (3-6) are not null, which is inconsistent with the second order 

accuracy with respect to the long wave parameter e . To remedy this 

inconsistency, the following velocity profile is assumed 

u(x,z,t) = a(x,t)z + b(x,t)z2 (3-9) 

From the definitions of the flow rate, Q(x,t), shear stress at the free 

surface, rs(x,t), and unknown coefficients a{x,t) and b(x,t)can be related by 

the following two equations. 

1 H(x,t)2rs(x,t)-6Q(x,t) a(x,t) = ^ 
2 H(x,t)2

 (3_10) 

3 - 2Q(x, t) + H(x, t)2
 t s (x, t) b(x,t) , 

4 H(x,t)3 
(3-11) 

Hence, three equations are required to determine the unknown physical 

quantities Q(x,t) , rs(x,t) and H(x,t) . The equation (3-6) can be rewritten 

explicitly in term of variables Q(x,t) and H(x,t),as: 
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Ts(x,t) = e l&LsL) + 0 ( e * ) (3-12) 

Then, only two equations are required to describe the problem of thin 

film flow over an inclined plane. The first equation is obtained by combining 

the continuity equation (3-3) and the kinematic boundary condition (3-5) along 

with Leibniz rule. 

Integrating the equation (3-2) for pressure and using the boundary 

condition (3-7) to eliminate the constant. The pressure is derived with 

respect to x and substituted in equation (3-1). The latter equation is 

multiplied by the velocity profile (3-9) and averaged over the film depth in 

the normal direction. Finally the shear stress rs{x,t), given by (3-12), is 

substituted in the last equation and the second equation is obtained. 

H,+Qx= 0 (3-13) 

(3-14) 

where, 
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h = I u(— + u ' A d; dx 
du du du.. o yy, oy n.y 

dz 5 H 40 h2 

12 

6 gg, 69 HtQ2 ^ 333 g2gx 54 HXQ3
 | 

2 280 H2 35 //3 

-±£H1QL + ± q H Q - ± Q H l Q x x +
 6-H'H-Ql + — QHQ, +±HQQxx, 40 * * ' 20 H 40 20 ' ** 5 H2 40 x x! 40 vi£xxl 8 H 

40 16 H 

HQQxx , 129QH X Q X 123//2g2
 | 129//^g 

10 //./? 20 /?.//2 20 40 R.H-

9 QH,HXQ 

J> dx R 

+ 448 H 280 280 ~ " " 
73 QHXQ2

 | 533 Q ^ H ^ 9 HXHX 

112 H 448 H 35 H 

M.c/z = —— 

V 

W \\3QXH2Q2 \01 9 g / / , / / ^ 95 Q2HXQXX H I 2 333 / / , /^g 3 

V3 112 //2 280 " 3 5 H 224 H *** 3 "" 448 H2 

" " " " I j l ^ ^ g 2
 + l£ l g 2/ / - i l / z e e , . + l g g ^ _ 39 

W 280 140 70 //2 

1 1 2 / / 

241 / /^g 3 107OJy 0 + i°Zo// o '23 HxxHl 

280 280 140 H 

9 HxHxtQ2 | 87 g//2g, 33 
140 H 140 ' 

3 

/4 = 
fl J) 

e2u 
d2x 

69 / / ^ g 2 6 g g ^ | 69 QHXQX 63 / / 2 g 2 

40 /f.//2 5 tf.J? 20 R.H2 20 R.H1 

15 ~ L f . A 
_ 3g2 g 

a2
z £«//3 * 

9QXQ.HX + 9 H j Q ^ + 9 H x x Q 3 gg* 
2 /?.//2 2 tf.//32 ' 4 R.H2 2 /?.// 

Comparing the above terms with the corresponding ones given in Usha 

and Uma (2004), our model includes additional second order terms in, t}. At 

this stage, the spatial-temporal evolution of film fluid falling down an inclined 

plane is described with two fundamental nonlinear equations (3-13-3-14). In 

the following, the dynamics of the stationary waves, which are analytically 

tractable in contrast with non-stationary, are explored. 
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2. Dynamic system formulation of stationary waves 

Stationary waves are the waves that travel with constant celerity and 

keep their shape constant. Equations (3-13) and (3-14) are rescaled and 

rewritten in the moving frame of reference by introducing a new phase 

variable £ = £~\x-c.t). Hence, from equation (3-13) the flow rate can be 

given as: 

Q = c(H-1) + 1 (3-15) 

Substituting this expression for the flow rate into equation (3-14), we obtain 

one nonlinear equation for the film height. 

+D2H„ +DxH, +D0 = 0 (3-16) 

~ i f , , 3 797c//3 ( -c) 41c2//4 187// (c-l)' D-> = c(//-l)+l] -WeHi + i ' + + i J v v ; A 3360 1344 448 
i2 A 

Di = 
495//(c - l)3 8c//2 (c-l)2 1485 

448 448 •H(c- 0- 25//3c2(c-l) 
192 //,+^-(c(//- l)+ lXc//+4(l-c)) H 44 

D, = 54(c-3)3 6c3//3 162c(c -1) 3.//3coti9 
35 + 35 35 R + — : — M / / - 0 + 1 ) H, 

Dn 4cH, _n2 +23_ciHi 1 l(c - l)3 r3(ctf + 8(C-l)Xc(//-l)+l)V/2 3(// -\\c(H - l))(//2 + H-c +1) 
7 V ; 560 16 * I 5/? J # /? 
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In order to apply dynamics system and bifurcation theory to 

investigate the complex dynamics exhibited by the film fluid falling down, we 

transform the equation (3-16) into a third order dynamic system. Introducing 

the phase var iab les ,H,H i a n d H ( ( , the equation (3-16) can be rewritten in 

the form : 

J O 
= H) (3-17) 

H = (H,H4,H^) 

F(H) = (H4,H44,f/D3)r 

D} = (c(H -1) + 1 {-WeHU mSUtA + + l ^ M l l l (3-18) 
3 v v ; \ 3360 1344 448 J 7 

-D2H4i-DxH(-D0 (3-19) 
D-i 

The dynamic system is of third order and it is nonlinear; therefore all 

the conditions for exhibiting dynamic chaos are met. 

3. Linear stability 

In this section linear analysis is conducted; it consists of the 

investigation of the evolution of small perturbation h superposed to the basic 

flow H = \ . Hence, substituting H = ! + /?(£) in the equations (3-16) and 

neglecting nonlinear terms we obtain: 
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187 „ , 251 59 2 We c + c 
, 4 4 8 420 280 

9 u 3c/! n h+ = 0 R R 

36 1 27 c , f 102 3 

35 R 
54 6 2 . c \nf 
35 5 (3-20) 

We look for the solution of the equation (3-20) in wave like form: 

h(<^) = e~ik4 where k is the wave number, which can be considered a complex 

numberk = kr +ik,where ^and/c, are the wave number and spatial growth 

rate of the perturbation. Similarly, the wave's celerity in (3-20) can also be 

written as c = cr+i.cit where cr and c, are the wave celerity and temporal 

growth rate of the perturbation, respectively. Therefore equation (3-20) 

becomes: 

. , 3 0 8 7 ,,, 251 59 2 ̂  f 36 1 21c -ik I wP. r-i cr l + l 
1,448 

•We - C H C" 
420 280 + {s R 

2 / 1 0 2 3 . . . 54 6 2 i, \kA - i c + —cot((9) c \k 
R ^ 35 R 35 5 

R R 

(3-21) 

At the marginal stability condition the spatial and temporal growth rates 

of the perturbation are null {kj =0and c, =0 ) . Separating the real part from the 

imaginary part in equation (3.21), we deduce the critical wave celerity and 

marginal stability conditions. The critical wave celerity is given as: 

_ 3(4A:2+5) 
9k2+5 c = I 2 (3-22) 
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For the long wave perturbation ( k -> 0 ) the critical celerity can be 

expanded in terms of series: 

c = 3 - 3k2 + — k4 + 0(k6) 
5 (3-23) 

The marginal stability curve is given by the following equation, 

R 5 
= - + 

cot(0) 6 16128 108 eJ 

The stability threshold predicted by the present model for the long waves 

(&-» 0 ) is — which corresponds to the value given by Benjamin (1957) and 
6 

Yih (1955). The correction introduced (the shear stress) is of the second order; 

its effect is of order of magnitude three (0(k3)) with respect to the long wave 

parameter, k . The neutral stability curve is similar to the one obtained by Usha 

and Uma (2004), see Figure 3-1. Moreover, the wave celerity of the neutrally 

stable waves provided by the present model is compared with the one observed 

experimentally and the one obtained by Usha and Uma (2004), see Figure 3-2. 

The linear stability results also agree with those obtained using the 

models of Amaouche et al (2005), and Nguyen and Balakotaiah (2000). 

Indeed, as shown in Figures 3-3 and 3-4, the neutral stability curves (evolution 

of the critical wave number with the Reynolds number) obtained with the 

present two-equation model shows a good agreement with the three-equation 

model proposed by Nguyen and Balakotaiah (2000) and the simplified two-

equation model obtained by Amaouche et al (2005). 
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Figure 3-1: Neutral stability curves for two value of a Weber number 
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Continuous line: present model). 

20 40 EO 00 100 

Figure 3-2 Dimensionless wave speed for vertically falling water fi lm 
experimental results. 

66 



1 

0.6 

0 . 2 

Stable region 
—* 

A/ 
/ / Unstable region 

// 
^/'Dashed line: Nguyen and Balakotaiah (2000) 
f Continues line: Present model 

Dots: Amaouche et al (2005) 

' Re 

Figure 3-4: Critical wavenumber against Reynolds Number 
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Figure 3-5: Critical wavenumber against the inverse of the Weber number 
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When the amplitude of the small perturbations exceeds a certain value 

the nonlinear terms are not longer small; and the linear stability analysis is 

not longer valid. The influence of the nonlinear terms will influence the 

stability of the stationary solution of the fixed point of the dynamic system. 

4. Fixed points 

The fixed points of the dynamic system (3-17) are by definition the 

constant solution in the phase space. The constant solutions are those that 

make the term D0 equal to zero in equation (3-16). The dynamic system 

posses two fixed points or two stationary solutions. The first fixed point 

corresponds to the unperturbed solution =1 , and the second one is 

H2 =^-(4c-3) l , which exists only for c> 1. This second stationary solution 

can be considered an asymptotic limit for a propagating wave. It is worth 

noticing that at c = 3the two fixed points coincide, suggesting a possible 

exchange of their stability (transcritical bifurcation). This bifurcation occurs if 

on both sides of this critical value, c = 3, one of the fixed points is stable 

while the other one is unstable. For a given flow parameters, the existence of 

the unstable and stable stationary solution implies a possible transition from 

the unstable to the stable solution. This transition is depicted in the phase 

space with a heteroclinic orbit, connecting the two fixed points. Examples of 

heteroclinic bifurcations will be shown later through numerical simulations of 

the dynamic system. According to the dynamic system (3-17), the 
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heteroclinic bifurcation can only occur if there is no singular height intruded 

between the two fixed points. The singular height cancels the denominator!^ 

in (3-16). 

4.1 Stability and bifurcations of the stationary solutions. 

Before discussing the stability properties of the two fixed points, we 

examine first the singularities of the dynamic system (3-17). The singularities 

correspond to the film height that zeros the denominator D} , given in 

equation (3-18). The singular heights are given by the two following 

equations: 

, 1594c(c - 1 ) + 6720We + 5 0 4 6 c 2 ( c - 1 ) 2 +1338960cW e ( c -1) + 2822400We
2 rn ->c\ = (J-^b) 

410c 2 

_ 1594c(c - \)+6720We + 4-^15046 c 2 ( c - l ) 2 +1338960cW e (c - 1 ) + 2822400W e
2 ^ 2 6 ) 

410c 2 

The singular heights depend on the Weber number and wave celerity, 

c. The singular height prevents heteroclinic connection between the two fixed 

points. In figure 3-6, we show the variation of singular heights and the two 

stationary solutions with the wave celerity c for three values of Weber 

number, We. Figure 3-6 shows that for a given value of the Weber number 

there is a range of wave celerity c where the fixed points are not separated 

with a singular plane. Certainly for a Weber number value of 0.02, the 

heteroclinic bifurcation is possible for values of celerity, c, ranging from 1 to 
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9, see Figure 3-6a. At slightly higher Weber numbers (0.65) the range where 

heteroclinic bifurcations are possible shrinks to the interval [1, 3], see Figure 

3-6b. For a Weber number equal to 2, the range where heteroclinic 

bifurcations are possible expands to the interval [1, 8.5]. (see Figure3-6c). 

This dependency can also be shown in the (We,c) plane, where the 

region bounded by the two curves D\(c,We,H^) = 0 andD3
2(c,We,H2) = 0, are 

the regions where no singular height is inserted between the two fixed 

points. These two curves are defined respectively by the following two 

equations, 

„ 59 2 251 187 , , We = .c .c + (3-28) 
280 420 448 

4 l ( -3 + 4.c)(5/2) 187 5993.c 1131.C2 415.(-3 + 4.c)(3/2) 625V-3 + 4.c , , We = —i + + i '- (3-29) 
43008 896 13440 4480 7168 14336 

The regions where heteroclinic bifurcations are possible, are shown in 

Figure 3-7. This figure shows that the areas where heteroclinic bifurcation are 

possible is underestimated by the Usha and Uma (2004) model. Outside 

these regions other kinds of bifurcation such as Hopf, homoclinic, and 

cascades of period doubling bifurcations can occur. These bifurcations are 

investigated through the analysis of the local stability of the fixed points. 

Each bifurcation is a qualitative change of the flow, which occurs when the 

real part of eigenvalues of the Jacobian matrix of the dynamic system (3.17) 

become null, when the control parameter is varied. In order to investigate 
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the bifurcation issued from the two fixed points we linearize the system 

(3.17) around the fixed points. 

We = 0.02 We = 0.65 

£ 

Figure 3-6: Singulars heights and fixed points. Continuous line: fixed solution. 
Dashed line: singular plane 
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Figure 3-7 ; Regions (+) are regions where heteroclinic orbits are possible 
We: value from the present model 
Weu: Value from the model in Usha and Uma (2004) 
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To achieve this we consider H = H* +/?(£), where //'indicates one of 

the two fixed points Hx and H2 . The linearized system describing the 

evolution of the small perturbation /?(£) is give by: 

dh 
d{ 

= Jh (3.30) 

Where J is the Jacobian matrix: 

j = 
o 1 o 
0 0 1 

•Pi -Pi -P\ 

(3.31) 

The characteristic equation of the Jacobian matrix is: 

d e t ( J - A / ) = 0 or + J3,A2 +J32A + J3i = 0 (3.32) 

Where the /? coefficients are given by the following expressions: 

9 / / 2 ( c - l ) 
R - (6c(l + //(c-1)))-12// 

R 

„ , „ 3 797c/ / ( l - c ) 4 1 c 2 / / 4 187// ( c - l ) 1 - ffe//J + - - + + * — 
3360 1344 448 

( c ( / / - l ) + l ) 

(3.31) 

Pi ~ 
——————————^ h——— (l + c ( / / — 9 ( c — l)^ + / /c (c ( ( / / + l)—l))j R 35 

r/3 7 9 7 c / / 3 ( l - c ) 4 1 c 2 / / 4 1 8 7 / / 2 ( c - l ) - We// + i i + + * '— 

3360 1344 448 
(c(//-l)+l) 

(3.32) 

73 



P\ = 7 

9 / / ( l + c ( / / - l ) X c r t - 4 ( c + l ) ) 

5 R (3.33) 
-Well 

The analytical solutions of the characteristic equations are too lengthy to be 

given here. However, at high Reynolds number the eigenvalues of the 

Jacobian can be set as: 

4.1.1 Transcritical bifurcation 

In Equation 3-34, the coefficient /?, monitors the crossing of the real 

eigenvalue of the imaginary axis. At the critical value c = 3 the coefficient 

/?3 becomes null for the two fixed points and the Jacobian matrix is singular. 

At this critical value, the bifurcation is transcritical and the two fixed points 

collapse and exchange their stability. Indeed, for the given problem, the fixed 

point // , is stable while H2 is instable for c< 3 and for c> 3 the fixed point 

H2 is stable and Hx is unstable. When the critical value c = 3 is crossed, one 

of the fixed points losses its stability in favor of the other one. 

(3.34) 
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4.1.2 Hopf bifurcation. 

In the case when two complex conjugate eigenvalues cross the 

imaginary axes and the other real eigenvalue is negative, the occurring 

bifurcation is of the Hopf type. At this bifurcation point the Jacobian remains 

non-singular and periodic trajectory centered at the fixed point appears. 

According to the equations (3-20) we deduce the conditions for the Hopf 

bifurcation as follows: 

P\ >0 
J32> 0 (3.35) 

PxPt =Pi 

The condition /?,/?2 = /?3 represents the Hopf threshold that is located between 

the critical curve c = 3 and the curve /?2 =0 . The influence of the flow 

parameters on the Hopf bifurcation is shown in Figure 3-7. Figure 3-7 

illustrates the influence of the Weber number on the Hopf bifurcation 

threshold (/?,/?2 = /?3) represented by curves C, for and C2 for H2 . The 

region where the two fixed points are stable are located between the curve 

c = 3 and the curves C, and C2. 

Figures 3-8 indicates that when the Weber number is high the Hopf 

bifurcation thresholds lies between the curves c = 3 and (32 =0 . As the Weber 

number decreases the Hopf bifurcation threshold approaches the curve 

P2 =0 until the threshold stands outside the curve /?2 =0 . This suggests that 

there is a minimum Weber number that triggers the Hopf bifurcation. For a 
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given value of this minimum Weber number is obtained by solving 

simultaneously /?,/?2=/?3 and J32=0 . Since, for the problem is 

equivalent to zeros, /Ts denominator will be D 3 =0and D\ = 0 , respectively 

for / / , and H2 . The elimination of the celerity, c , between these two 

equations allows us to express the minimum Weber as function of —j^- • This 

necessary minimum Weber number that triggers the Hopf bifurcation is 

shown in Figure 3-9. Note that the present model predicts a higher minimum 

Weber, which is required to destabilize the second stationary solution H2 via 

Hopf Bifurcation, than the one predicted in Usha and Uma (2004). However, 

the difference is relatively small for the first stationary solution, / / , . 

Besides the singular curves, D\ and D3 , the Hopf and transcritical 

bifurcations thresholds are indicated respectively by c w a n d c r . There is also 

another important curve which separates saddle spirals from saddle node 

points. This curve designate by CB corresponds to the coalescence of the two 

complex conjugate eigenvalues on the real axis and its expression is obtained 

by rewriting the characteristic equation (3-18) in the form: 

(l-a)2\l-b) = 0 (3-36) 

with both a and b being real. Hence, the corresponding expression of the 

curve CB separating saddle, spirals, and saddle nodes is given as: 

AP! - 3/?2 hi - 3 A A ) - [fi\Pi - 9/?3 )2 = 0 (3-37) 
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In order to attain a deep insight into the effect of the various 

parameters on the bifurcations scenarios and their corresponding attractors, 

qualitative analysis of the properties of the eigenvalues in the parameters 

plane is conducted. This qualitative analysis helps the anticipations of the 

numerical solutions. According to the equations (3-35) and (3-37) we notice 

that the distribution of the eigenvalues depends on the We,R, cand . A 
R 

typical value for Weber and Reynolds are chosen to illustrate their effects on 

the distribution of the eigenvalues in (c,c o t (^) plane. In figure 3-10, we 
R 

displays the distributions of the eigenvalues of the Jacobian evaluated, first, 

at the fixed point / / ,and/ /2 for We = 1 and /? = 10. 

Figure 3-10 shows that in regions delimited by the transcritical curve 

cyand the Hopf bifurcation thresholds cm, the first stationary solution Hx is 

stable whereas the second stationary solution H2 is unstable. Since there is 

no singular plane inserted between the two fixed points a heteroclinic orbit 

connecting H2 and //, is possible. Decreasing the value of the control 

parameter c (wave celerity) bellow the Hopf bifurcation threshold the first 

stationary solution (the horizontal free surface) may undergo a bifurcation to 

limit cycle (periodic solution). Decreasing further the control parameter c 

while remaining above curvecm , the limit cycle may also undergo complex 

bifurcations to complex orbits such as cascade of periodic doubling and 

homoclinic bifurcation. In Figure 3-10 we also draw the curve cs, where the 
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sum of real eignenvalues and the real parts of the complex ones vanish. This 

curve is given by the following equation: 

2 /? 1
3 +/?3+AA=0 (3-38) 

According to the first theorem of Shilnikov, crossing the curve cs may 

lead to homoclinic chaos. Indeed, the Shilnikov theorem stipulates that in the 

case of saddle spiral fixed point, when the magnitude of the real eignenvalue 

is higher than the magnitude of the real part of the complex eignenvalues 

there is homoclinic orbits at this fixed points. The homoclinic orbit spiral out 

(or in) on the unstable (stable) manifold spanned by the two eigenvectors 

corresponding to the two complex conjugate eignenvalues and come back 

into (or out off) the fixed point along the stable (unstable) direction of the 

eigenvectors corresponding to the real eignenvalues which is transverse to 

unstable manifold. Figure 3-10 shows that homoclinic chaos can occur in the 

whole region delimited by the curve cm and cm since the curve cs do not 

intersect the curve cBX. Increasing the value of the control parameterc, the 

fixed point HX loses its stability when c cross the curve CT and it might 

bifurcate to H2 if the wave celerity does not cross the singular curve D2 . 

Between the curve D2 and the Hopf bifurcation threshold CB2 the second 

stationary solution is stable. It loses its stability when the value of the control 

parameter crosses the bifurcation threshold. 
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Figure 3-10: Distribution of the eigenvalues for We= l ,R 
a) H = H1, b) H = H2 
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At this time the second stationary solution undergoes a Hopf 

bifurcation into limit cycle. In the region surrounded by the curves CH2 and 

CB2 the second stationary solution might undergo a cascade of Hopf 

bifurcations. When the control parameter crosses the curve CB2 the unstable 

spiral node becomes an unstable saddle node. The figures 3-11-3-13 display 

the effects of the Reynolds and Weber numbers on the eignenvalue positions. 

Figure 3-11-3-13 show that the curves CB], CB2, CH] and Cw2strongly depend 

on the Reynolds number; the regions delimited by these curves shrink 

reducing the routes toward chaos through Hopf bifurcation to small values of 

E£l£. Figure 3-11-3-13 also depict the influence of the Weber n u m b e r ^ ; 
R 

they show that increasing the Weber number reduces the area of stability 

region of the two fixed points, delimited by the curves cT, cHX and cH2. 

However, an increase in the value of the Weber number augments the 

regions inserted between cm, cm andcH2l cB2. Hence, the Weber number 

increases the possibilities of the bifurcation to chaos through Hopf 

bifurcation. An increase of Weber number influences also singular curves 

£>, and D2 ; we notice that augmenting the Weber number multiplies the 

possibilities of heteroclinic connections from the stable solution toward the 

unstable one. 
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Figure 3-11: Distribution of the eigenvalues for We= l ,R=100 
a) H = H1 b) H = H2 
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a) H = H1 b) = H2 
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5. Numerical Simulations 

5.1 Illustration Bifurcation scenarios. 

In light of the qualitative analysis performed in the previous 

subsection, a non exhaustive but rather qualitative illustration of the 

heteroclinic, homoclinic and Hopf bifurcations mentioned above is presented 

in this subsection. The dynamic system (3-17) is integrated using ODE 15s 

available in MATLAB, this integrator handles stiff problems. As pointed out 

above the bifurcation scenarios depend on Weber We, Reynolds R numbers 

and c , and are displayed through numerical simulation. We have 

reported above that when the critical curve c = 3 is crossed the two fixed 

points of the dynamic system (17) interchange their stability properties. 

For the following flow c o n d i t i o n s = l00, We = \, - ^ - ^ = 0.4 and c = 3.3, 

R 

the first stationary solution ( / / , ) is unstable while the second stationary 

solution ( H 2 ) is stable. Since there is no singular height intruded between 

these two fixed points, a heteroclinic orbit issued from//, towards H2 can be 

found. The heteroclinic orbit and the wave profile of the free surface are 

shown in the figure 3-14. Similarly, when the celerity is c = 2.5, the two fixed 

points interchange their stability and the heteroclinic orbit will now be issued 

from the unstable fixed point (H 2 ) towards ( / / , ) , see Figure 3-15. Seen in 

Figures 3-14-3-15, the wave profile is a hydraulic jump. 

The fixed points can also undergo Hopf bifurcations that lead to limit 

cycles in phase space or to an oscillatory motion of the free surface. For the 
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flow conditions defined by R = 10, We = 1, and c = 2 , the first stationary 
R 

solution / / , is located in the unstable region between the curve CHX and CBX. 

This point is near the Hopf bifurcation threshold. The numerical simulations 

corresponding to these flow conditions are displayed in the Figure 3-16. 

Figure 3-16 shows a limit cycle in the phase plane and periodic wave profile 

on the free surface. 

Keeping the same flow condition but gradually lowering the value of 

the control parameter c from 2 to 1.92, the period of limit cycle augments 

incrementally and the wavelength increases until a second limit cycle takes 

places and the period of the traveling wave doubles, see Figure 3-17. 

Decreasing further the value of the control parameter, the solution in phase 

portrait and the wave profile remains similar until the critical value is crossed 

and the second period doubling appears, see Figure 3-18 at c = 1.917 . 

According to Feigenbaum's scenarios, decreasing further the value of the 

control parameter leads to a cascade of periodic doubling until full chaos 

takes place, see Figure 3-19 where the dynamics portrayed approach chaos. 
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Fig 3-14: Heteroclinic orbit Hl toward H I R=100;B=0.4*R;We=l ;c=3 .3 
a) phase trajectory b) wave profile 
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Figure 3-15 : Heteroclinic orbit H2 toward H I R=100;B=0.4*R;We = l , c=2 .5 
a) phase trajectory b) wave profile 
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Figure 3-16: Periodic wave R=10 ;B=0*R ;We= l ; c=2 
a) limit cycle b) wave profile 
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Figure 3-17: Periodic wave R=10 ;B=0*R;We= l ;c=1 .92 
a) limit cycle b) wave profile 
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Figure 3-18: Periodic wave R=10;B=0*R;We= l ;c=1 .917 
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Figure 3-19: Periodic wave R=10;B=0*R;We= l ;c=1 .87 
a) limit cycle b) wave profile 
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As pointed out through the qualitative analysis the film flowing down 

an inclined plane can undergo several complex bifurcation scenarios. The 

complexities of the bifurcation scenarios are summarized in figure 3-20 

through bifurcation diagrams for some particular value of the flow 

parameters. The bifurcation diagrams show the evolution of the maximum 

height of the film / /mwith the control parameter c (wave celerity) for various 

parameter values of the parameter . In figure 3-20a we observed a 

continuous increase of the period of the limit cycle until it becomes a 

homoclinic orbit, (see figure 3-25 c). Figure 3-20b shows a series of period 

doubling followed by a homoclinic orbit at the value of the control parameter 

equal to 2.44. In figure 3-20c homoclinic orbits with multiple humps follows a 

periodic doubling. In figure 3-20d the bifurcation diagram indicates that the 

free surface undergoes a series of periodic doubling, later leading to chaos, 

as depicted in figures 3-16 to 3-19. 

5.2 Numerical implication of the correction 

5.2.1 Transcritical bifurcation 

Above we have shown the implication of the correction introduced to 

the model of Usha and Uma (2004) on the occurring conditions of the 

bifurcations. In this subsection, we will portray its implication through 

numerical simulations. The wave profiles obtained using our model is 

compared to the ones obtained using the model of Usha and Uma (2004). In 

figure 3-21, we compare a wave profile issued after heteroclinic bifurcation or 

hydraulic jumps obtained with the two models. It can be noticed that the 



correction does not affect the heteroclinic bifurcation from Hx toward H2, the 

two wave profiles coincide. However, the wave profiles issued from 

H2 toward Hx through heteroclinic bifurcations are different. Figure 3-21b 

shows that the shear stress (which is the added to ensure accuracy up to the 

second order) smoothens slightly the hydraulic jump H2toward//,. 

5.2.2 Hopf bifurcation. 

In figure 3-22a, we display the periodic waves issued after the Hopf 

bifurcation from the first stationary solution Hx for a value of the control 

parameter c = 1.95. We observe that the periodic waves predicted by the 

model of Usha and Uma have a larger amplitude and their period is almost 

double that of the one predicted by our model. The current model predicts 

periodic waves while the model of Usha and Uma predicts a flat free surface, 

see figure 3-22b. Here again the effect of shear stress is significant on the 

periodic waves issued from the stationary solutions. 
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Figure 3-20: Bifurcation diagrams from the stationary solution H I 
a) R= l / 0 .075 ;B=0 .9 *R ;We= l ; b) R= l / 0 .075 ;B=0 .55*R ;We= l ; 
c) R= l /0 .075 ;B=0 .48*R ;We= l ;d ) R = l / 0 . 0 7 5 ; B = 0 * R ; W e = l ; 
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5 

Figure 3-21: a) Wave profile during heteroclinic orbit from HI toward H2 
R = 100 cot6 = QAR We = 1 c = 3.3 

b) Wave profile during heteroclinic orbit from H2 toward H I 
/? = 100 cote = 0.4/? We = 1 c = 2,5 
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Figure 3-22: a) Wave profile after Hopf bifurcation from H I 
= 1/0.075 cot # = 0 We = 1 c = 1.95 

b) Wave profile during heteroclinic orbit from H2 
R = 1/0.075 cot 0 = 0 We = 5 c = 7 
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From this last observation, we can infer that the shear stress triggers 

Hopf bifurcations, in particular, from the second stationary solutions. Let us 

consider the first fixed point Hx and decrease the value of the control 

parameter to c = 1.93. The numerical simulations using the model of Usha and 

Uma predicts a cascade of periodic doubling, while our model predicts just 

one periodic doubling, see the phase portraits and wave profiles displayed in 

figure 3-23. Here we observe that the shear stress inhibits the cascade of the 

symmetry breaking from the first stationary solution. Similar trends hold 

when the value of the control parameter was further decreased. At the value 

of the control parameter of c = 1.92 our model predicts a second periodic 

doubling while the model of Usha and Uma predicts more periodic doubling 

than the precedent case, see figures 3-24. According to the results displayed 

in figures 3-22, 3-23 and 3-24, we can conclude that the model of Usha and 

Uma (2004) anticipates the symmetry breaking or the route to chaos through 

periodic doubling scenarios. In figure 3-25, we show the wave profile after a 

homoclinic bifurcation; the train of solitary waves predicted with our model 

and the model of Usha and Uma are similar; the amplitude of the solitary 

waves is identical, while their period is slightly different. The period of the 

solitary waves predicted with the model of Usha and Uma is slightly higher 

than the one predicted with the present formulation. The difference between 

the two models occurs also at the beginning of the solitary waves; our model 

predicts a smoother bifurcation, see figure 3-25c. 

As a conclusion to this subsection, the shear stress introduced in the 

velocity profile, to ensure the consistency of the model up to the second 
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order with respect to the long wave parameter, influences the bifurcation 

scenarios. It renders the hydraulic jump smoother and it triggers a Hopf 

bifurcation scenario from the second stationary solution. However, the shear 

stress inhibits symmetry breaking through a periodic doubling cascade of the 

first stationary solutions. As shown in the figure 3-26, the shear stress 

triggers the Hopf bifurcation from the second stationary solution. 
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Figure 3-23: Phase trajectory from HI , R = 1/0.075 cot(9 = 0 We = \ c = 1.93 
a) Present model b) Usha and Uma model 
c) Wave profile after periodic doubling from H I 
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Figure 3-24: Phase trajectory from HI , i? = 1/0.075 cot<9 = 0 We = 1 c = 1.92 
a ) Present model b) Usha and Uma model 
c) Wave profile after periodic doubling from H I 
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(b) 

0.02 -0.04 

(C) 

0.02 

Figure 3-25: a) Phase trajectory from HI , R = 1/0.075 cot<9 = 0.9R We = 1 c = 2.7699 
b)Wave profile after homoclinic bifurcation from H I 

c) Wave profilebeginning of the homoclinic bifurcation from H I 
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Figure 3-26: Wave profile from H2 

a) c = 5 R = 1/0.075 cot0 = O.75 We = 1 
b) c = 5.03 R = 1/0.075 cot<9 = 0.755 We = 
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6. Conclusion 

The implication of the correction introduced to the two-equation model 

of Usha and Uma for the thin film fluid flowing down inclined plane is shown 

through qualitative and numerical analysis. The impact of the corrections is 

shown through its influence on the bifurcation scenarios. We have shown that 

the shear stress at the free surface influences the occurrence conditions of 

the two generic bifurcations namely the heteroclinic and Hopf bifurcations. 

We have also shown through the numerical simulation that the shear stress 

does not have the same effect on the solutions issued from the two 

stationary solutions. While its effect is insignificant on the hydraulic jump 

issued from the first stationary solution, it is found that the shear 

smoothness the hydraulic jump from the second towards the first stationary 

solution. We found that the shear stress has opposite effects on the 

symmetry breaking through Hopf bifurcation. While it inhibits the symmetry 

breaking through a cascade of periodic doubling from the first stationary 

solution, it triggers and enhances such bifurcation from the second 

bifurcation. We have also shown that the shear stress slightly delays the 

symmetry breaking through homoclinic bifurcations. 
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Chapter IV: Effect of magnetic and electrical fields 
on falling film stability 

1. Introduction 

The interaction of a thin layer liquid metal, moving under the influence 

of an electromagnetic field, is of practical importance to several technological 

applications such as the casting industry, and in nuclear reactors. In the 

casting industry, magnetic fields are used in electromagnetic braking while in 

belt strip casting they serve as a damping mechanism, Lofgren and Akerstedt 

(1998). In fusion devices, flow of a thin layer of liquid metal is employed 

against erosion and thermal loads of the reactor's walls, Narula et al (2005). 

The reliability and efficacy of the protection depend on the stability of the 

flowing liquid-metal layer under extreme conditions characterized by a strong 

surrounding magnetic field, high heat fluxes, and a significant amount of 

evaporation. The magnetic field has three components that vary in space and 

time. The flow of the liquid-metal film is three-dimensional and the fusion 

environment has a complex geometry, which renders the analytical approach 

to this problem difficult if not impossible. For design purposes, numerical and 

experimental means are preferred to the analytical approaches. As a result, 

researchers have developed over the past years solvers, which simulate 

liquid wall protections in nearly operating conditions. An overview of progress 

made in this direction is summarized in Morely (2004). Experiments have 

also been conducted to better understand the effect of magnetic fields on the 
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film thickness and its stability, see for example Narula et al (2005), Feng-

Chen Li, and Akimi Serizawa (2004). 

A better grasp of the mechanisms that lead to layer instability requires 

a detailed examination of the individual effect of the three components of the 

magnetic field. Most of the studies in the field have focused on the major 

cause of instability which is the toroidal (spanwise) component of the 

magnetic field. The contribution of this component on the thin liquid metal 

layer response, initiated by Aitov et al (1988), has been the concern of 

several subsequent analytical studies. A strong toriodal magnetic field makes 

the flow variation in the spanwise direction relatively insignificant thus 

rendering the problem to be two-dimensional. The toroidal component of the 

magnetic field strongly affects the main flow and its stability. Although the 

surface normal and the longitudinal components are less important in 

comparison with the transverse components, it nevertheless exerts a 

significant influence on the stability of the metal layer. Our interest focuses 

on the effect of the normal magnetic field component on the stability of the 

metal layer and the possibility of controlling the film stability via a transverse 

electrical field. In order to simplify the analysis, we omit the contributions of 

the spanwise magnetic field component. 

Pioneering work on the stability of electrically conducting thin films of 

fluid moving down an inclined plane, under the action of gravity an a 

magnetic field, was carried out by Hsieh (1965), and Ladikov (1966). Their 

studies showed that a surface normal magnetic field stabilizes the flow. 

106 



Korsunsky (1999) investigated the long wave development on the free 

surface under the influence of electromagnetic fields at high and low 

Reynolds numbers. He found that the combination of electrical and magnetic 

fields could either stabilize or destabilize the flow. 

At a high Reynolds number, other terms such as inertia, viscous and 

forcing terms, although of small magnitude, contribute significantly to the 

dynamic evolution of the problem, and hence affect greatly its stability 

characteristics. The second order terms, with respect to long-wave parameter 

e (ratio of the film height to the wave length), are incorporated in the 

analysis of Korsunsky (1999) for flow at high Reynolds numbers, (see 

equation (39-40) in Korsunsky (1999)). The model (equations (44)) obtained 

by Korsunsky (1999) is similar to the Shkadov's (1968) formulation for the 

pure hydrodynamic case, which is known to overestimate the cut-off wave-

number that separates the stable from unstable regions. Moreover, similarly 

to Shkadov's model, it does not predict the Hopf bifurcation, which leads to 

stationary periodic waves at the free surface. Consequently, Korsunsky's 

formulation suffers from the same drawback. Incorporating second order 

terms, we remedy the weakness of Korsunsky's approach. We also show that 

the proposed model reduces to a model similar to the one proposed by Lee 

and Mei (1996) for the pure hydrodynamic case, which features both a Hopf 

bifurcation and a hydraulic jump. It is worth mentioning that the hydraulic 

jump, in a metal layer flowing under the influence of a spatially varying 
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magnetic field, has already been observed experimentally by Narula et al 

(2005). 

The present chapter is organized as follows. In section 2, we recall the 

formulation of the problem and, similarly to Korsunsky, we use the 

momentum integral approach of Karman-Polhausen to reduce the 

Magnetohydrodynamics equations into two coupled spatiotemporal evolution 

equations for the film depth and flow rate. In section 3 we perform the linear 

stability analysis. The two spatiotemporal evolution equations for the film 

depth and the flow rate are linearized around the basic flow solution. We 

show the effects of magnetic and electrical fields on the linear stability 

conditions and we compare our results with those obtained with Korsunsky's 

model. In section four, we tackle the influence of the electrical and magnetic 

field on the occurring conditions of the transcritical and Hopf bifurcations. 

This investigation was conducted in frame of reference moving with the 

celerity of the perturbation. In section five some concluding remarks are 

given. 

2. Formulation of the problem 

We consider a flow of a thin layer of liquid metal under the combined 

effects of gravity, and constant and uniform electrical and magnetic fields. The 

fluid is assumed an incompressible, electrically conducting, Newtonian fluid. 

The metal liquid flows down an inclined plane that makes an angle, 0, with the 
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horizontal, and assumed it to be an electrical insulator. As depicted in Figure 4-

1, the magnetic and electric fields are, respectively, normal and transvers to 

the plane of flow (5(0,0,-6) and E(0,E,0)), where <p is the incline angle of the 

magnetic field. In this study we consider, <p = —. 

For almost all electrically conducting liquid metals in both laboratory 

and operating conditions within the fusion power reactors, the magnetic 

Reynolds number is small i.e. Rm = ju0.a.L.c0 «1, where ju0 , a and c0are the 

electrical conductivity, magnetic permeability of the fluid, and the characteristic 

velocity, respectively. Under these conditions, the perturbations of the 

electromagnetic fields due to the fluid motion can be neglected. 

Figure 4-1 . Schematic of the problem. 

The flow is supposed to be two-dimensional, described by 

Magnetohydrodynamics evolution equations along with the associated 

boundary conditions: 
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v . f = 0 (4-1) 

^ . + y.VF = -VP+vAV + g + ^ ( £ + /u0pAff0)AH0 (4-2) 
d p p 

E = E0-V<f> (4-3) 

A(* = / / 0 . ( V a K ) ( 4 - 4 ) 

v ( x , 0 , t ) = 0 ( 4 - 5 ) 

z = H(x,t) W = ̂  + (4-6) 
a ck 

(-PS + 2/uD)n = (~Pa -Tdiv.n)5.n (4-7) 

Where Pa and p are the atmospheric and fluid pressures, /u is the dynamic 

viscosity of a fluid, d is the deformation tensor and r i s the surface tension 

coefficient. The projection of equations (5-6) and (5-7) in Cartesian 

coordinate leads to: 

M(uz + wx- 2uxHx +(P-Pa- T(y.n))Hx) = 0 

Li{{wx+uz)Hx+P-Pa-T{VM))= 0 

with, 

_ (- Hx ,0,l) 
n= j-

V.{n) = -Hx(\ + H2
x) 2 
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(4-9) 

(4-10) 

(4-11) 



The governing equations are rewritten in dimensionless form using the 

following dimensionless quantities: 

u =— * £ z * -— p = £ z t l r - ^ e - / / * - -
C0 L d dco Pc o L d 

Where c0 = g d sin6> is the Nusselt velocity, and L and d are the characteristic 
3v 

length in stream and normal directions. In the following equations, subscripts 

are skipped. 

1 / 1 
U, + UUX + wuz = -px H H Uzz 

R £ 
H2sin2<p 3 aHlsmm Hlsm2 <p . + —2 Z.w + — + 2 r. 2 

l e e e 

(4-12) 

£2(W, +UWx+WWz)=-pz +4(WZZ + 
K 

H2sin2(p tj2 2 3 t . aH2
acos(p. " -•-—^u-H^ cos <pw cotg0 2 —) 

(4-13) 

2f " ' e £ 

ux+wz= 0 (4-14) 

z = 0 : : W = 0 (4-15) 

z = H(x,t) w = H, + uHr (4-16) 

wz(l -£:2//2) + ̂ ( v ^ - ^ / Z J = 0 

p = 2-w-£2WeHx R 

(4-17) 

(4-18) 
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The subscript indicates derivatives with respect to the stream-wise and 

normal coordinates. Furthermore, u , w and p indicate the streamwise 

components, normal velocity components, and the static pressure, 

respectively. Equations (4-12-4-18) involve the following fundamental 

c d v nr 
parameters: R = , We = — r , h a = mohoJ—

 a n d « = — ~ r which are 
v p.d.cQ V/"-

Reynolds, Weber, and Hartman numbers, and the dimensionless number 

measuring the influence of the electrical field. Parameters d, ju , v ,p ,h0 £0and 

y are, respectively, the initial film thickness, dynamics viscosity, kinematics 

viscosity, density, intensity of the magnetic field, intensity of the electrical 

field and surface tension coefficient. In the dimensionless equations given 

above, we considered high velocity flow, where the order of magnitude of the 

Reynolds number is R = 0(e~l) (e= — , in this study is equivalent to the wave 

L 

number). The Reynolds number is related to the Weber number, which for 

most of the liquid metals a high Reynolds number corresponds to a small 

Weber number, We = 0(l). 

3. Linear stability 

Similar to Korsunsky (1999), the solution for the unperturbed flow that 

corresponds to the solution of the zero order with respect to s of the 

governing system equations (4-12-4-18) is given by: 
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cosh[(z-1)//„ sine?], . , a US=D(\ -—" —) with £>= — + — — 
c o s h ( / / a s in (p) sin<p H2

asml <p 

In a certain range of values of both the flow and electromagnetic parameters, 

the basic solution looses its stability and undergoes bifurcation in favour of 

other stable solutions. The approximate solution to the problem is obtained, 

using the integral method of Karman-Polhausen, which requires the 

presumption of a velocity profile. The following profile has been chosen for 

this study: 

u (x, Z, t) = A(x, t).fx (Z) + B(x, t).f2 (Z) (4-19) 

f l ( Z ) = D . ( f 2 (Z) =sinh(//a sin<p.Z) 
cosh(rt sin̂ z?) 

with Z = Z 

H(x, t) 

Using the definitions for the flow rate and shear stress at the free surface, 

the unknown coefficients ^(x,0and B(x,t) are related to the flow rate, Q{x,t), 

the layer thickness, H(x,t), and the shear stress at the interface, r(x,H,t), as 

shown in the following. 
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IQ(x, t) r(x, t)H(x, f )[cosh(//a sin(^)) - 1 ] 
/iyX) t ) = 

Ha sin(<p) Ha sin(^) 

Ha sin(<p) cosh(//a sin(̂ c»)) 

Hence, three independent equations are then needed to determine the 

spatial-temporal evolutions of the fundamental variables Q(x,t) , H(x,t) and 

r(x,t). Fortunately, the shear stress at the free surface is of order two with 

respect to the long wave parameter, e . Indeed, equation (4-17) can be 

rewritten in the following form: 

r(x,t) = £2 (4 .ux Hx-wx) + 0(e4) (4 20) 

Therefore, the shear stressr(x, t) can be expanded in terms of a series 

with respect toe, {j{x,t) = s2TX(x,t) + 0(£4)). As a result, the shear stress could be 

expressed as a function of Q(x,t) and H(x,t): 

r(x,0 = 
S2D 

H(x, t) Q0N cosh(A') 

[2NH(x, t)QxHx-2NH2Q(X, t)-NQH(x, t)H2
x](cosh(N)-1) + 

(4-21) 

Therefore, the flow rate and the film height are the dependent variables 

and only two equations are needed to completely describe the problem. The 
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first equation is derived from continuity (4-14), and the kinematics condition at 

the free surface (4-16): 

dH(x,t) | dQ{x,t)^Q 

dt dx (4.22) 

The second equation is obtained as follows. First, the pressure is 

obtained by integrating equation (4-13) in the normal direction from a given 

point in the fluid to the free surface. The condition (4-18) at the free surface is 

used to determine the constant of integration. Second, the expression for 

pressure is differentiated with respect to x along with equation (4-21), and the 

result is incorporated in equation (4-12). Averaging the latter over the film 

depth in the normal direction, we obtain the second equation. This second 

equation, which is a nonlinear functional of Q(x,t),H(x,t) and their derivatives, 

is too lengthy to be given here. Out of convenience, we state it in its general 

form: 

G(Q(x,t),H(x,t)) = 0 (4.23) 

As a means of verification, we argue that when the Hartman number//,, 

and the coefficient a tend to zero the model should reduce to the pure 

hydrodynamics case. In the limit, equations (4-22-4-23) reduce to the pure 

hydrodynamic model: 
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=o 
dx dt 

(4-24-a) 

219/? 
280 

+ -WR + 
153 R 

\ 280 
h + 

y 
ni? 
40 

27 5A , + — tocx 
XXI ^ 

\ 

/ 

+ -Rhtt + n 6 R 
3 cot <9 \ X2Ru K — r - ^ x y 3 -9hx =0 

(4-24-b) 

Comparing the equation above with the corresponding of Lee and Mei 

(1996) (Equations 3.1 and 3.2) we notice a slight difference in the second and 

third order terms. It is worth noting that our equation is more accurate than 

those given in Lee and Mei (1996). The reason being, the velocity profile used 

in Lee and Mei (1996) does not exactly satisfy the tangential dynamic condition 

at the free surface up to the second order with respect to the long wave 

parameter. However, the velocity profile deduced from equation (4-19) does. 

The velocity deduced from (4-19) is given as follow. 

u(x, z, t) = a(x, t)z + b(x, t)z2 

, . 1 h(x,t)2r(x,t)-6q(x,t) 
where a(x,t) = — , 

2 h(x,t)2 

and 

3 - 2q(x,t) + h(x,t)2 r(x,t) 
b(x,t) = 

h(x,tf 
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This profile reduces to the velocity profile of Lee and Mei when the shear 

stress is neglected. Therefore the slight difference between our pure 

hydrodynamic model, deduced from equation (4-22 and 4-23) and the 

corresponding equations in Lee and Mei (1996) is expected since the shear 

stress at the free surface is of second order. In contrast, the hydrodynamic 

model deduced from eq. (44) in Korsunsky (1999) corresponds to the 

Shkadov's model given by the following equations. 

dx dt (4-25-a) 

dq__ 3_ 
dt ~ R «(*> t) - h{x, t) — : cot 9 

h(x,tY dx 

\ 6 q(x,t) 
+ 

5 

dH(x,t) 
dx 

h{x,ty 

h(x,t) a3x (4-25-b) 

It is worth noting that differentiating equation (4-25-b) with respect to 

the longitudinal coordinate x and using the equation (4-25-a) we find that 

Shkadov's model is included in our hydrodynamics model. 

First we explore the influence of the electromagnetic parameters on the 

evolution of small disturbances, h(x,t), added to initial film thickness. Using 

equation (4-20), the linearized form of equation (4-23) is given by: 

117 



Khm + C2.hxxu + CyhxJ.e3 + (C4.hxx, + C5.hxxx).s2 + {C6.h„ + C7.hxl + C,hJ£ + CX0.hx + C9.h, = 0 

(4-26) 

The coefficients c, depends on the hydrodynamic and electromagnetic 

parameters as well as the wave celerity (these coefficients are too lengthy to be 

given in this paper). We seek a solution of equation (4-26) in the wave like 

form: h(x,t) = where c = cr+i.cl is a complex phase velocity. The 

dispersion equation rewritten in terms of the imaginary and the real parts is 

given by: 

£3 (c, - C3 .c r - C2 .cf + C2 ,c2
r)~ £2 .C4 + £ (c6 .c2 - CS- C6.c2 + C7.cr)+ C9.ci + 

i(e3 (c, - C3 .cr - C2 .c2 + C2 .c2 )-£2.C4 .c(. + e(c6 .cf - C7 - C7c2 + C7 .cr)) = 0 

The dispersion equation at marginal stability conditions (c, = 0) reduces 

into: 

( - c r
2 . C 6 - C 8 + cr.C7)ff + j ( ( c r . C 4 - C 5 y -cr.C9 +Cw)+0(£i) = 0 (4-27) 

Therefore the imaginary and the real part should be null. From the 

imaginary part the celerity of the neutrally stable wave is: 

cr=£e. + o(£2) 
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Substituting the expression for cr into the real part of (4-27) we deduce the 

critical Reynolds number for the onset of the long wave instability, 

corresponding to a small wave number, e. 

Cg Cg 

The influence of the magnetic and electrical fields on the critical Reynolds 

number is displayed in Figure. 4-2 and Figure. 4-3. Figure 4-2 corresponds to 

the case where the electrical field is directed towards the interior of the fluid 

and the magnetic field is normal to the flow. The same figure shows that 

magnetic field pushes the critical Reynolds number up while the electrical 

field pulls it down. This result confirms the stabilization and destabilization 

effects of the magnetic and electrical field, respectively. Figure 4-3 indicates 

that when the direction of the electrical field is reversed it stabilizes the flow. 

It indicated also that an increase in electric field intensity raises the value of 

the critical Reynolds number. The maximum stability condition is obtained 

3 
when the parameter, D = a+—^-, is zero. 
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Figure 4-2 : Critical Reynolds number versus Hartman number for different intensity of the 
electrical field directed towards the fluid interior while the magnetic field is normal to the flow 

The continuous line : Korsunsky model, The dots : Present model 
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Figure 4-3 : Critical Reynolds number versus Hartman number for different intensity of the electric 
field directed towards fluid exterior while the magnetic field is normal to the flow 
The continuous line : Korsunsky model, The dots : Present model 
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As shown in the Figure 4-2 and Figure 4-3, the critical Reynolds number 

predicted by Korsunky (1999) is identical to the one predicted by our model. 

The latter result is expected, because the critical Reynolds number involves 

only a term of first order with respect to s , (see eq (26)); at this order, the 

terms in equations (4-24-b and 4-25-b) are identical. This allows us to 

conclude that the corresponding magneto-hydrodynamics terms are indeed 

similar. Figure 4-2 and Figure 4-3 show that relatively weak intensity normal 

magnetic field (Haaround 4.5) can completely stabilize the liquid layer flow. 

The improvement introduced to Korsunsky's model is shown through 

the variation of the cut-off wave-number with the Reynolds number. This 

curve separates the stable region from the unstable. These neutral stability 

curves are shown in Figure 4-4, 4-5 and 4-6. As expected, the Korsunsky's 

model overestimates the cut-off wave numbers and predicts a smaller area 

for stability. 

Moreover, Korsunsky's approach does predict some of the important effects 

of the electrical and magnetic fields on the cut-off wave number. Our model 

predicts an asymptotic limit for the wave number when the Reynolds number 

tends to high values while the model of Korsunky's predicts a quasi linear 

variation with the Reynolds number. Figure 4-4 suggests that in the 

absence of the electrical field the cut-off wave numbers, predicted by the two 

models, coincides a t / / a = 3 . This implies that at higher magnetic field 

intensities, the contribution of the second order terms become smaller. 
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Figure 4-5 shows the destabilizing effect of the electrical field when it is 

oriented toward the fluid interior. For a fixed intensity of the magnetic field, 

Ha =0.5, an increase in the intensity of the electrical field reduces the area of 

the stability region. Figure 4-6 shows the stabilizing effect of the electrical 

field when its direction is reversed. It is worth noticing that Korsunsky's 

model predicts a larger effect of the electrical field on the stable region than 

the present model (see Figure 4-5 and Figure 4-6). 
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600 
Ha = 0 

R 

Figure 4-4 Cut-off wave-number versus Reynolds number in the absence of the electrical 
field. The magnetic field is normal to the direction of the flow. The continuous line : Korsunsky 
model, The dots : Present model 

R 

Figure 4-5 Influence of the intensity of the electrical field on the evolution of the cut-off wave-
number versus Reynolds number. The magnetic field is normal to the direction of the flow, the 
electrical field is directed towards the fluid interior : The continuous line : Korsunsky model, 
The dots : Present model 
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Figure 4-6 Influence of the intensity of the electrical field on the evolution of the cut-off wave-
number versus Reynolds number. The magnetic field is normal to the direction of the flow, the 
electrical field is directed towards the fluid exterior : The continuous line : Korsunsky model, 
The dots : Present model 

e 
Figure 4-7 Effects of normal magnetic fields on the growth rate of the instability for 
vertically falling waves . (No electrical field is applied a = 0) (For mercury at 20°C: 
R=500 y = 0.472 N/m2; p = 13516.2 kg.m"3 v = o.l I 4 7 . l 0 " 6 m 2 . 5 " ' ) The continuous line : 
Korsunsky model, The dots : Present model 
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Figure 4-8 Effects of the electrical field directed towards the interior of the fluid on the grow 
rate of the instability for vertically falling liquid the magnetic field is normal to the 
f l o w / / a = 0 .5 a = l ; a = 2,a = 3 (For mercury at 20°C: R = 500, y = 0.472 N/m2 ) p = 13516.2 kg.m'3 

v = o.H47.io_6m2.j"1) The continuous line : Korsunsky model, The dots : Present model 

Figure 4-9 Effects of the electrical field directed towards the interior of the fluid on 
the growth rate of the instability for vertically falling liquid the magetic field id 
normal to the flow Ha = 0.5 « = - i ;a = -2;« = -3(For mercury at 20°C: 
R=500, / = 0 . 4 7 2 N / m 2 ; p = 13516.2 kg.m"3 v = 0.1147.l0_6m2.^1) The continuous line : 
Korsunsky model, The dots : Present model 
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In Figure 4-7, 4-8 and 4-9 we illustrate the effects of the electrical and 

magnetic fields on the growth rate of the waves at the free surface. Figure. 

4-7 indicates that there is a substantial difference between the growth rates 

predicted by the two hydrodynamics models, equations (4-24-b, and 4-25-b). 

Indeed, the additional terms introduced in our model are almost all due to 

inertia, which tends to destabilize the flow. However, the application of the 

magnetic field reduces the growth rate of the perturbation and also restrains 

the effect of the additional inertia terms. This leads to the parity of the 

perturbation growth rate predicted by our model and that of Korsunsky's. 

The Figure 4-8 and Figure 4-9 show the influence of the electrical field 

on the growth rate of the perturbation at the liquid metal free surface. The 

electrical field enhances the perturbation growth when it is directed toward 

the fluid interior, while reduces it when it is oriented toward the fluid exterior. 

For very high Reynolds numbers, similar qualitative effects are noticed; 

however, the wave-number corresponding to the maximum growth rate shifts 

to smaller numbers while the growth rate of higher waver-number 

perturbations become almost null. 

4 Stability and bifurcation of the stationary solutions 

Particular attention is devoted to the important case of stationary waves 

which are propagating with a constant phase velocity, c. For convenience we 

introduce the phase variable £ = e~\x-ct) to change the stream-wise scale 

factor. Then, from equation (4-24), the local flow rate can be related to the film 
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height by: Q = c(H-l) + l . Substituting this into equation (4-25) gives a single 

evolution equation which governs the film depth evolution form: 

+ D2HU + DXH4 +D0= 0 ( 4 _ 2 8 ) 

This single equation can be written in the form of three order dynamic 

system as follow: 

= F(H) 
(4-29) 

H = (H,H4, Hg) 

F = 2 ^ 1 * 

To verify our calculation, we determine the coefficients of (4-28) when 

Ha ->0 and a-> 0. These coefficients corresponding to pure hydrodynamics 

are given as the following. 

D2 = (--c(c -1) + - ^ i - (c - 1 ) 2 - — C2H)H£ + — ( - - c + — (c -1)) 2 8 3 5 H 20 4 R 4 4 H ' 
27 i 1 t i 9 1 i 

Z), = ( r (c - 1 ) 2 - — c2 )H;2 + T (1 - c)H{ - - c 2 

35H 28 * 2RH 4 5 
6 2_3cotgO 

5H R 

D0 - \ ) ( H 2 +H + l - c ) 
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It is worth noting that magnetic and the electrical fields do not affect the 

form of the linear and nonlinear equations in comparison with those obtained in 

the pure hydrodynamics case. The some of the above coefficients are slightly 

different from those obtained by Lee and Mei in (1996). 

u(x,t) = 
( 3 Q(x,t) 3 e2r(x,t) 

~2H(x,tf 4 H{x,t) 

r 
,z2 + 3 Q(x,t) 1 

H(x,tY 2 
£2V M 

The differences come from the fact that the hydrodynamic velocity 

profile deduced from (4-19) satisfies the boundary condition (eq 2.17 in 

Korsunski (1999)) up to the second order with respect to the shallow 

parameter while the velocity profile used in Korsunski (1999) cancels the shear 

stress, so that the claimed second order accuracy in Lee and Mei in (1996) is 

not satisfied. Equation (4-28) expressed as a dynamic system has two fixed 

points, denoted by Hx and H2 . The first is naturally the basic flow solution 

hx =i while the second one depends on the wave phase celerity, Ha and a . We 

found that as the intensity of the magnetic field increases the range of the 

celerity where the second stationary solutions exist becomes narrower while 

the application of an electrical field enlarges it. 

The stability of the two stationary solutions, //, and H2 , is investigated 

through the eigenvalues of the Jacobian matrix J of the dynamical system (4-

29). 
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J = 

0 1 0 
0 0 1 

-Pi -Pi -P\ 

The/? coefficients are functions of the hydrodynamic and electromagnetic 

parameters. There are two generic bifurcations, occurring when one real 

eigenvalue or two complex conjugate eigenvalues cross the imaginary axis. The 

first one corresponds to transcritical bifurcation and the second one is Hopf 

bifurcation. In the case of the transcritical bifurcation, the two fixed points can 

exchange their stability and be connected by heteroclinic orbits in the phase 

space. The Hopf bifurcation gives rise to periodic motion, which is characterized 

by a periodic trajectory limit cycle in the phase space. 

4.2.1 Transcritical bifurcation 

The effect of the electromagnetic parameters on the conditions of 

existence of heteroclinic orbits is considered next. Heteroclinic orbits exist if 

there are no singular film heights between the two fixed points ( singular 

heights are the solution o f £ ) 3 = 0 ) . The results of the application of the 

magnetic field and the electrical field are show in comparison with the results of 

the purely hydrodynamic case see figure 4-10. 

The regions where heteroclinic transitions exist are the regions indicated 

with a symbol "+". Figure 4-11 shows that the magnetic field shrinks the 

regions where heteroclinic orbits are possible. In other word the magnetic field 
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has a stabilizing effect. However, an increase in the intensity of the electrical 

field enlarges the concerned region, which means that the electrical field 

encourages the trancritical bifurcation, see figure 4-12. It is worth noting that 

the influence of the electrical field is less important than the magnetic field. The 

condition of the exchange of stability is checked. Indeed, below the critical 

wave (where H2=HX) the fixed point HX is stable whereas H2 is unstable and 

while above the critical celerity the stability properties are inverted. 
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We 

Figure 4-10 " + " deigns regions where heteroclinc orbits are possible for 
hydrodynamics case in this region one stationary solution is stable and the other is 
unstable 

We 

Figure 4-11 " + " deigns regions where heteroclinc orbits are possible for MHD case in 
this region one stationary solution is stable and the other is unstable 

Ha=0.5, alpha=0, phi=Pi/2 
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Figure 4-12 " + " deigns regions where heteroclinc orbits are possible for MHD case 
in this region one stationary solution is stable and the other is unstable 

Ha=0.5, alpha=3, phi = Pi/2 

4.2.2 Hopf bifurcation 

The Hopf bifurcation appears when the pair of purely imaginary 

eigenvalues of the Jacobian matrix crosses the imaginary axes. This condition 

corresponds to the following equations: 

PvPi = D\Pl 

A >o 

P2> o 

(4-30) 

(4-31) 

(4-32) 

We Can verify that the inequality (4-31) is contained in (4-32). The 

curves /?2=o circumscribe the region containing the curve of the Hopf 
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bifurcation threshold. The curves /?2=o are shown for the two fixed points on 

figures (4-13, 4-14, and 4-15). Comparing once more the results with and 

without electromagnetic fields, we notice that the magnetic field reduces the 

region where the Hopf bifurcation is possible, while the electrical field extend 

this region. 
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Figure 4-13 " + " deigns Regions where Hopf bifurcation is possible from H2 

deigns Regions where Hopf bifurcation is possible from H], Hydrodynamic case 

12 

1 0 ' 

8 

B 

Figure 4-14 " + " deigns Regions where Hopf bifurcation is possible from H2 " - " deigns 
Regions where Hopf bifurcation is possible from // , 
Magnetohydrodynamics case Ha = 0.5 a-0 
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Figure 4-15 " + " deigns Regions where Hopf bifurcation is possible from H2 

" - " deigns Regions where Hopf bifurcation is possible from //, 
Magnetohydrodynamics case Ha = 0.5 a = 1 
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5. Conclusion 

In this chapter we have incorporated a second order term with respect 

to the long wave parameter in the Korsunsky's model for high Reynolds 

numbers. We have shown that the Korsunsky model predicts a smaller 

stability region than the one predicted by our model. Moreover, it foresees 

larger effects of the electromagnetic field on the stability. We have shown 

that Korsunsky's model is similar to the Shkadov's model in the pure 

hydrodynamics case. Therefore, the Korsunsky's model suffers from similar 

drawbacks as Shkadov's, namely, they do not features Hopf bifurcation which 

leads to periodic waves at the free surface. The paper shows the control 

possibilities on liquid metal flow instabilities via a transverse electrical field. 

The electrical and magnetic fields together can control the free surface 

dynamics at the level where the heat transfer is maximum and the liquid 

layer is kept at a safe protecting thickness. Furthermore, the effect of the 

electromagnetic fields on the Hopf and transcritical bifurcations is depicted. 
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Chapter 5: Introduction 

1 Historical background 

One hundred and fifty years ago, Heimholtz (1858) published his 

celebrated vorticity theorems. This seminal work inspired several prominent 

scientists of the Victorian era to consider eddies as paradigms in explaining 

the atomic structure of matter. The leading archetype involved ensembles of 

ring vortices grown within the illusive frictionless fluid aether. In 1878, Mayer 

performed an experiment with the aim of showing how atoms might be 

organized inside molecules. He placed a number of equally magnetized 

needles on floating corks in water, with their north poles pointing away from 

the free surface. Holding a strong magnet with its south pole above the water 

interface, he noticed that two magnetized needles ordered themselves 

opposite to each other forming a dumbbell-like configuration (analogous to 

the atomic orbital of the p-type). More than two needles organized 

themselves on the vertices of regular polygons; see figure 5-1. 

Figure 5-1: The experiment of Mayer (1878), (the picture is from J.J. Thomson 
(1907)) 
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Kelvin (1867) having previously mentioned that "Helmholtz's vortex 

rings are the only true atoms", considered Mayer's outcome to be in 

accordance with the vortex atom theory. The era that began with Kelvin's 

(1867) "vortex atoms" and ended with Sommerfeld's (1919) "Atombau" 

marks the first out of four periods in the quest for building a vortex atomic 

theory of matter. Einstein's (1905) work on special relativity rendered the 

aether obsolete, which led to the desertion of the idea. The ensued impetus 

on the subject matter however, contributed significantly towards the growth 

of hydrodynamics, and perhaps led J. J. Thomson (1897) to the discovery of 

the electron. Detailed historical accounts can be found in the fine 

contributions of Aref (1983) and Aref et al. (1992). 

2. Polygonal patterns in several fields 

In addition to Alfred Mayer's (1878) magnetic needles experiments, 

where patterns higher than pentagon (N = 5) turned out to be unstable. There 

are other experiments where polygonal patterns were observed. For instance, 

Gregory et al. (1955) revealed the presence of disturbance vortices (N = 6) 

around the main vortex obtained with a rotating disk tests in air as working 

fluid. Yarmchuk et al. (1979) observed regular vortex patterns in rotating 

liquid helium. Although the stability of the regular polygonal patterns was not 

investigated, the authors showed photographs with several N-gon vortex 

patterns, see figure 5-2. 



Figure 5-2 : System of point vortices in liquid helium(Yarmchuk et al.(1979)). 

It has been known for over forty years that in theory the two-

dimensional (2-D) drift-Poisson equations describing a magnetized electron 

column are analogous to those of an Eulerian flow. The last implies that 

plasma diocotron waves must be equivalent to liquid free surface ripples first 

analyzed by Kelvin (1880). This idea remained in hibernation until the 1990s 

where Driscoll and Fine (1990) attempted to demonstrate the equivalency of 

the two phenomena through experiments in electron plasmas using a 

Malmberg-Penning Trap. Afterwards, several papers were reported on the 

similarity, providing also the conditions under which the analogy is realizable; 

see for example Peurrung et al. (1992), Peurrung and Fajans (1992-1993). 

Fine et al. (1995), reported first stable 2-D plasma vortex patterns. 
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Dissipation in this type of high vacuum experimental configuration is 

relatively small thus approaching adequately the inviscid flow assumption. 

Their stability characteristics were thoroughly investigated, in an improved 

apparatus, by Durking and Fajans (2000). In fact the last investigators 

exploiting the analogy between the 2-D drift-Poisson equations of strongly 

magnetized plasmas and those of inviscid flow, confirm indirectly Havelock's 

(1931) main stability characteristics, see figures 5-3 and 5-4. 

Figure 5-3: Schematic of the Malmberg-Penning trap (D. Durkin and J. Fajans 

Polygonal patterns are also observed routinely in nature. Near the polar 

region, the Earth's surface is like a rotating disk while the atmosphere above 

has an "interface". Vettin (1857) employed a rotating dish within a container 

filled with water, having a centrally located cylindrical cup filled with ice to 

simulate the Earth's polar circulation. His sketches show clearly the expected 

polygonal structures. The equilibria are also evident in Mason's (1971) polar 

circulation graphs. Furthermore O'Caroll and Gutro (2002) from the Goddard 

Space Center presented two pictures of Antarctic Polar weather patterns, 

which resemble closely the mixed 2 and 3, and 4 and 5 states. 

B 

(2000)) 
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Figure 5-4: The stable electron columns observed in the Malmberg-Penning Trap 
for N < 7states ( Fig. 4.2, Durkin, D.R. 1998). 

Due to the similarity between the laboratory and polar vortices, 

Williams et. al. (2003) was able to shed light to several fundamental 

phenomena associate with polar circulation by examining it in a scaled down 

experimental prototype. Using a rotating platform he included the Coriolis 

force which did not substantially alter the qualitative fundamental nature of 

the evolved vortex polygons. Modes of N = 2, 3, and mixed states 4 and 5 

were clearly evident in his experiments, while his theoretical developments 

yielded patterns up to N = 5. Upon completion of his investigations he 

remarked that at first a teacup seems hardly the place to perform 

groundbreaking experiments, however Williams (2004) concluded that: " I t 

turns out that there is a very intimate connection between the fluid dynamics 
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of a freshly stirred cup of tea, and those of an atmosphere on a rotating 

planet". 

Saturn's polar images from Voyager spacecraft show a hexagonal cloud 

feature, Godfrey (1988). Rational explanations vis-a-vis its cause included 

magnetic interactions similar to the aurora borealis and fluid instability, 

Allison et al. (1990), see figures 5-5. The recent Cassini's infrared 

spectrometric data revealed that the pattern propagates deep into the 

planet's atmosphere (about 75 kilometers) thus making the latter a more 

reasonable explanation. The convective rolls in the radial-zenith plane that 

produce the longitudinal bands (rings) and are clearly visible in images of this 

and other planets are due to instability (spherical counterpart of Taylor-

Goertler's vortices), Sawatzki-Zierep (1970), figures 5-6. 

Figure 5-5: Left: Saturn's Hexagon [Image credit: NASA/JPL/Space Science 
Institute/University of Arizona]. See also Godfrey, A. D. 1988. Hexagonal feature 
around Saturn's north pole. Icarus , 76 (2) , 335-356. 
Right:typical hexagonal pattern from our experiments [Vatistas G H et al 2008 
Phys. Rev. Lett. 100 (17) 174503]. 
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Figure 5-6: Left: Saturn's rings [Image credit: NASA/J PL/Space Science 

Institute/University of Arizona]. Right: image of the Sawatzki-Zierep (1970) 

laboratory experiments [1970. Acta Mech. 9, 13-35]. 

VENUS 

Figure 5-7 Left: double vortex storm in Venus' North Pole cloud layer [Taylor, F. 

W. 2006. Venus before Venus Express. Planetary and Space Science, 54(13-14), 

1249-1262]. Right: our mixed polygonal shape (unpublished). 
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Near the Pole, Kelvin's patterns could modulate the bands thus 

producing the intriguing hexagonal ribbon, Polvani & Dritschel (1993). The 

strong vortex in Saturn's South Pole (Sanchez-Lavega et al. (2006)), and the 

double vortex storm (/V = 2) in Venus' South Pole Suomi & Limaye (1978) 

and Taylor (2006),( figure 5-7) could also be of the same nature. I t is 

interesting to note that the atmospheres of all the mentioned planets consist 

predominately from low viscosity gasses (Saturn 96.0% H2, Venus 96.5% 

C02, and Earth 78.08% N2). 

Due to the established propensity of vortices to spawn satellite vortices 

these types of whirls should also be present in other high Rossby number 

atmospheric eddies such as hurricanes and tornadoes. Indeed these intense 

vortices are known to possess features such as waves, multiple vortices, and 

spiral bands that occur inside the core, Davies-Jones (1986) and Bluestein & 

Pazmany (2002). In fact these characteristics may even intensify the 

destructive power of these violent swirls, Maxworthy (1972). The work of 

Lewis & Hawkins (1982) has also revealed polygonal formations in the eye 

wall of hurricanes. Satellite images, given in their figures 5-8 (a) and (b) 

providing a top view of Hurricanes "Betsy" and "Anita", unveil hexagonal (A/ = 

6), and rectangular (N = 4), core structures respectively. 
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(a) (b) 

Figure 5-8: Polygonal patterns in the eye wall of hurricanes from 
Lewis and Hawkins (1982) 

Polygonal patterns are also observed in optics; when beams of light 

with curled wave fronts focus strongly on rings, they form toroidal optical 

traps called optical vortices. Periodically modulating an optical vortex's phase 

could generate regular N-polygonal pattern geometries (Curtis and Grier 

(2003a and 2003b)); see Figure. 5-9. 

Many astrophysical problems have been viewed in the past as 

paradigms of fluid motion, see for example Fridman et al. (1985) and Lin & 

Roberts (1981). But, how could insignificant (in the grand scheme of things) 

laboratory experiments like the present (Vatistas (1990a)) reveal important 

characteristics of a grand celestial design? According to Fridman et al. (1985) 

the evolution of instabilities in the gaseous galactic disk, resulting in the 

formation of spiral density waves is essentially controlled by hydrodynamics. 
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(i) <«) (iii) (iv) 

( v ) (v i ) (v i i ) 

Figure 5-9: Polygonal pattern's in optical vortices, (i), Curtis, J. E. and Grier, D. 
G. Structure of Optical Vortices. Phys. Rev. Lett, 90(13), 133901, 4 April (2003), 
(ii) Alonzo, C. A., Rodrigo, P. J. and Glusckstad, J., Optics Express 13(5) 1749 
(March 7, 2005) (iii), (v)-(vi i) , Curtis, J. E. and Grier, D. G. Modulated optical 
vortices. Optics Letters 28, 872-874 (2003), (iv) Soskin, M. S., Gorshkov, N. and 
Vasnetsov, M. V. Topological charge and angular momentum of light beams 
carrying optical vortices. Phys. Rev. A 56(5), 4064 - 4075 (1997). 

Therefore, by analogy the hydraulic simulations can indeed uncover 

some of the most essential characteristics of the grand design. The shallow 

water hydraulics and two-dimensional compressible gas flows are similar, 

Landau & Lifshitz (1987). Surprisingly, some of the dominant qualities of the 

phenomena may yet be common even if the similitude between the two is not 

(in the formal sense) complete. Exploiting the last well-known analogy, 

Fridman et al. (1985) used a stationary dish with a rotating ring/conical cup-

like device to study the role of centrifugal instability in the development of 

the spiral structure of spiral galaxies. In 1993 Lauer et al. (1993) reported 

that Andromeda galaxy (M31) possesses a double nucleus. Lauer and 

colleagues attributed the reason of the manifestation a cataclysmic collision 

of two venerable galaxies. Based on our experience with the hydraulic 
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analogue, vortex instability may also be a reasonable alternative cause for 

this effect. Elmegreen et al. (1991) reported three-arm spirals of 18 galaxies 

where they show clearly the NGC 598 galaxy to have a three-arm spiral; the 

inner core with three dark spots (nuclei) arranged on the tips of an 

equilateral triangle, see figure 5-10. 

3. Analogies and Pattern's stability 

Employed judiciously, classical analogy is a powerful method of 

scientific inquiry that has been used in many physical areas. Although often 

the topology for the similarity may not be strictly complete, some of the most 

rudimentary commonalities between two similar systems are indeed 

preserved. The latter enables us to predict the fundamental behaviour of a 
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phenomenon by studying its duality, encourages cross-fertilization between 

specializations, or even to go beyond the bounds of normal experience. 

Furthermore, because the length and time scales between the two 

phenomena may be different, a simile can be used as a means to magnify or 

shrink the problem, and accelerate or retard the dynamics of an event. The 

theoretical developments vis-a-vis the stability of point vortices arranged in a 

ring has its foundation in the similarity among point vortices and the 

gravitating N-body problem, whereby the vortex strength is replaced by the 

mass. Helmholz (1858) examined the planar motion of two point vortices. 

Kirchhoff (1877) provided the equations for the N-vortex case in Hamiltonian 

form. Grobli (1877), Kelvin (1878), and Poincare (1893) considered the case 

of three vortices. In 1883 J.J. Thomson (1883) dealt with the situation of 

three, four, five, six, and seven vortices. He forecasted instability to occur for 

seven vortices. Havelock (1931) generalized the approach to the INJ-vortex 

problem, showing that with no boundary, the case of seven vortices was 

neutrally stable. The presence of confining outer or inner boundaries could 

destabilize the flow, while a sufficiently strong central vortex could stabilize 

the ring. Dhanak (1992) proved theoretically that vortex systems with small 

but finite cores possess the same stability characteristics with the N = 7 

being unstable to only one normal mode of disturbance. Dritschel (1985) had 

concluded earlier that the N = 7 was unstable to two displacement type of 

modes. All the linear analytical approaches of the past were partial and thus 

dubious for the case of seven point vortices. Recently, based on the nonlinear 

Kirchhoff equation, Kurakin & Yudovich (2002) confirmed that the N < 6 and 
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N > 8 states are stable, and unstable, respectively. Furthermore, they also 

proved the seven-vortex array to be, in theory, stable. 

The stability of the N-gon patterns were investigated by Fine et 

al.(1995), and Durkin and Fajans (2002) in the framework of electron 

columns confined in a Malmberg-Penning trap using static, magnetic and 

electric fields to confine electrons. They found that the life time of N-gons 

with is around one thousand times higher than the time of bulk rotation. 

It become three hundred for N=7 and becomes almost equal when N^ 8. 

4. The fundamental nature of the phenomenon 

The previously mentioned mathematical vortex models and 

experiments are idealizations of the present experiments when the liquid 

height is low. Nevertheless, there are countless examples in physics and 

technology where Utopian approaches yield important deductions. All of the 

previously mentioned theories declared which vortex configurations were 

stable. None of them elaborated on the conditions of how the pattern 

transforms from a specific equilibrium to the next. The past experimental 

studies of Vatistas (1990a), Vatistas et al. (1992-1994) and (2001) 

conducted in a cylindrical tank have shown irrefutably that, under prevailing 

conditions, the free surface of a liquid vortex fosters Kelvin's (1880) standing 

waves. The rotary motion imparted to water by the disk, see figure. 5-11(a), 

generates a centrifugal force field that pushes the liquid towards the wall of 

the container. The receding liquid exposes part of the surface of the disk to 

air, whereby, the line of intersection between the surfaces of the solid disk, 
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liquid, and air outlines the core shape. In order to make the patterns visible, 

the liquid was colored with a blue water-soluble dye. Under shallow water 

conditions and for very low rotational disk speeds it is expected that the 

liquid (water) vortex core remains circular (N = 0). Increasing its rotation, 

the vortex flow will transfer into another state characterized by a precession 

of the circular core (N = 1). A further increase of disk speed (wd) yielded a 

cores with elliptical (N = 2, dumbbell-like configuration), triangular (N = 3), 

square (N = 4), pentagonal (N = 5), and hexagonal (N=6) cross-sections. 

However, no heptagonal shape was able to form. Since the interval of 

endurance of the stationary states decreases with N, if N =7 exists in theory 

it must be critically stable. 

The stability of the pattern N=7 is a special case and was the subject 

of several numerical and experimental studies. For instance, the numerical 

studies of Ganesh & Lee (2002) on strongly ionized plasmas arrived at the 

conclusion that since the turn over time is approximately 180 rotations, N = 

7 is unstable. On the contrary, Durking & Fajans (2000) point out that the N 

= 7 equilibrium is marginally stable (with no boundary), having a lifetime 

equal to 300 rotations. The previous authors are basing their conclusion on 

rather debatable grounds; that this time is sufficient for point vortex 

dynamics to evolve. Like in the previous theoretical studies, the experimental 

designation, whether the N = 7 is stable or not, still remains open. 

Nevertheless, as the disk speed increases well beyond N = 6 a continuous 

amplification of dynamic noise eventually wipes out the sharp spectral peaks. 
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For higher liquid elevations, in addition to the previously described azimuth 

waves, the flow also develops axial waves that propagate up the free surface. 

The equilibrium polygons were found to be exceptionally stable. When 

disturbed by a momentarily applied external disturbance to the flow, the 

patterns remerged after a short period of time in their original form. Both 

quasi-static and sudden increase to the final disk speed produced the same 

equilibrium pattern. The latter indicated that the phenomenon is not 

particularly sensitive to initial conditions. Between neighboring states, mixed-

mode time dependent equilibria were found to exist. For example between 

the N = 3 and N = 4 band the core consists of both waves. Because the two 

have different phase speeds the core appears to be non-stationary. A careful 

study has shown that a very small degree of hysterisis does exist, Vatistas et 

a. (2001). The interval of endurance for both the equilibria and their 

transition increases with the wave number N, see Figures 5-12. 

In previous experiments, visual inspection using a dye revealed that 

the patterns were present even if the core was flooded. Recent higher fidelity 

images shown in Figures 5-13 confirm the old observation. Near the core, a 

"circular" dry spot exists. However the region where the apexes of the 

polygon are located is flooded with water. The light coloring at the polygon 

tips indicates a free surface depression. The latter is due to the local 

centrifugal force generated by the satellite vortices orbiting the central 

vortex. In their experiments with ethylene glycol, Jansson et al. (2006) 

clearly described the presence o f " . . . spiraling vortices on top of the polygon 

structure". 
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N=2 

Figure 5-11. (a) Schematic of the experimental apparatus. The present 
experiments were conducted using tap water in a 284 mm diameter stationary 
cylindrical container with a 252 mm diameter circular disk spinning near the 
bottom. A variable-speed electrical motor drives the disk. The initial water level 
was measured using a ruler attached to the side of the tank. Three different initial 
liquid heights: 20, 25 and 30 mm were used in the present experiments, (b) 
Typical equilibria of N = 2, 3, 4, 5, and 6. [Vatistas G H et al 2008 Phys. Rev. Lett. 
100(17) 174503]. 
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Figure 5-12. a) A typical equilibrium and mixed mode gaps spectrum for ho = 25 
mm. The bandwidth of both the equilibrium and mixed modes become narrower 
with the wave number N. [Vatistas G H et al 2008 Phys. Rev. Lett. 100(17) 
174503]. 
b) Polygonal structure spectra for water. The various shapes shown were obtained 
by either a pure or superimposed harmonic wave equations. 
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a b c 

Figure 5-13 The centrifugal force imparted to the fluid by the disk compels the 
liquid outwards. The retreating liquid exposes the structure of the core. Every 
vortex with an interface develops a free-surface depression near the axis of 
rotation. In the corners of the polygonal core shapes satellite vortices exist. Each 
satellite vortex possesses a dimple. The last is very evident in (a) and (b) where 
the faded color polygon tips indicating a free surface depression due to the 
satellite vortex. Since the parent vortex is stronger, the central portion is dry. 
When the rotation intensifies both parent and satellite vortices become stronger. 
The receding water develops lobes in the place where the secondary vortices 
existed, and thus forms the propeller-like dry pattern shown in (c). A turbulent 
patch similar to Emmons in boundary layers appears in (b). 

The numerical simulations and experiments of Miraghaie et al. (2003) 

for N = 3, in shallow depth, show indisputably the presence of three vortices 

located at the apexes of the regular triangle. When the rotation intensifies 

both parent and satellite vortices become stronger. Furthermore, the 

theoretical developments of Ganesh & Lee (2002), in ionized plasmas, show 

the tips of the polygons to be occupied by vortices/holes (holes are areas on 

no vorticity). The receding water develops lobes in the place where the 

secondary vortices existed, and thus forms the dry polygonal central pattern 

shown in Figure 5-14 (b). Due to the added radial thrust, a free surface 

upwelling near the cylindrical wall, where these vortices are positioned, is 

noticeable. Hence, these vortex core pattern formations can be viewed as a 

result of stationary waves of wave number N traveling around an otherwise 
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circular path, Kelvin (1880), or as an integral number N of satellite vortices, 

gyrating in unison about the parent vortex, J. J. Thomson (1883). In other 

words, it displays a vortex-wave duality. Burbea and Landau (1982) refer to 

the former undulations as Kelvin waves. In plasma, the patterns can be 

regarded as columns of charges (Durking & Fajans (2000)), or diocotron 

waves, Mitchell & Driscoll (1994). 

The phenomenology of vortices developed in higher viscosity liquids 

such as Shell oil 10W is considerably richer than that of water, where a 

vortex core with more than N = 6 could be formed, Figure 5-14. Although 

these bear many similarities to water, their evolution however, exhibits a 

radically different behaviour. In the case of water, the equilibria emerge in 

succession, one after the other, by increasing the disk rotation and are nearly 

the same during ascending and descending sequences. In the case of oil, the 

order of flow patterns during the spin-up and spin-down sequences are 

completely different, see for example Figure 5-15. 

N=8 N= 10 

Figure 5-14: Typical octagonal and decagonal vortex cores using oil [Reference 

Vatistas et al (1994) Experiments in fluids]. 
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Figure 5-15: Spectra of oil core shapes during quasi-static ascending and 

descending sequences. [Reference Vatistas et al (1994) Experiments in fluids]. 

There are no fixed rotational speeds at which transformation from one wave 

pattern into another takes place. Given the initial liquid level, the shape of 

the final pattern depended on the time history of the spin up or spin-down 

process. There were times where, although we started the disk rotation for 

the same amount of oil from rest, different equilibria emerged! 

5.0utline 

Although whirls as paradigms in explaining the atomic make-up of 

matter was eventually abandoned, it nevertheless contributed significantly to 

the growth of hydrodynamics and led J.J. Thomson (1897) to the discovery of 

electrons. The theoretical developments vis-a-vis the stability of point 

vortices arranged in a ring become real for theories of vortices in helium and 

electron columns in plasma physics. The similarity between the polygonal 

patterns studied in the present experiment and those observed in several 

field of physics and in nature, render the present study of capital importance. 
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Furthermore, the outcomes are not restricted to fluid mechanics, but go 

beyond. Recently, the present experiments were used to corroborate the 

core analytical deductions of J.J. Thomson's, in relation to the stability of a 

ring of N-vortices. This is developed in chapter 2, of this part, of the present 

thesis. 

All previously mentioned theoretical and experimental works dealt with 

the stability of the polygonal configurations. However none of them 

elaborated on the conditions in which the equlibria endure, or how different 

stationary configurations evolve from one equilibrium (mode) to the next. In 

Vatistas et al.(2008), we observed that the transition from one equilibrium 

mode to the next occurs through mixed modes and that the bandwidth of the 

transition interval shrinks with the increase in mode number. However, no 

systematic investigation has been conducted. Hence, the underlying physical 

mechanism(s) that leads to the transition from one stable state to the other 

is unknown. To the best of authors' knowledge, this is the first investigation 

of the transition mechanism from one mode to the next. The knowledge of 

the transition mechanism through sequential equilibrium states is vital for the 

overall understanding of the vortex ring dynamics. In addition, due to the 

wide range of applications of this phenomenon, it is expected that the 

present results will have significant implications in fluid dynamics, 

superfluidity and plasma physics. The transition mechanism is tackled in 

chapter three. Conclusions and perspectives of the present study are 

depicted in chapter four. 
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Chapter 6: Confirmation of Kelvin's equilibria 

1. Introduction 

1.1 Outline 

Several swirling flows in nature and technology are modeled as two-

dimensional incompressible and inviscid. Although a satisfactory theory on 

the vortex formation is missing, vortices are present and they influence the 

flow dynamics where they appear. In most studies dealing with vortex flow 

dynamics, strong vortices are inserted in a low diffuse vorticity background. 

When these strong vortices are enough close to each other, they merge, and 

when they are too far apart to merge, they settle in equilibrium patterns 

termed "vortex crystals", see Aref (1983). 

Some swirling flows encountered in nature and technology are 

reproduced, at smaller scales in laboratories, using vertical stationary or 

rotating cylinders driven by the rotation of one or both endwalls. When the 

water height is low and the swirl is imparted to the fluid is high, the vortex-

core becomes hollow and undergoes several instabilities that manifest as 

spectacular polygonal shapes. This phenomenon was reported for the first 

time by Vatistas (1990). He observed the phenomena on the vortex-core of a 

hollow vortex generated with a rotating disc near the bottom of a cylindrical 

container. The observations of Vatistas (1990), and his conjecture on the 

157 



existence of satellite vortices at the apex of the polygonal shape, was 

recently confirmed, see figure 6-1 (Jansson et al (2006)). 

Figure 6 -1 Satellite vortices at the apexes (image from Jansson et al (2006)). 

Similar vortex pattern or vortex equilibrium was observed in swirling 

liquid helium and electrons columns in plasma physics. However, the vortex 

equilibrium observed in the present experiments offer more possibilities to 

gain insights into vortex equilibrium states. Indeed, the present experiment 

is accessible, offers more control possibilities, and the sequences occur in 

relatively long time intervals in comparison with the time duration of the 

experiments realized in plasma columns. The relatively long time duration of 

the phenomenon allows the utilization of flow visualization as a technique for 

an in depth investigation of the stationary states and pattern dynamics 

during transitions between two subsequent equilibria. 

In this chapter the experiment conducted by Vatistas (1990) on the 

symmetry breaking of the hollow-core vortex patterns is revisited using an 
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image-processing technique. As shown below, this experimental method 

allows more possibilities in conducting more detailed investigations on this 

interesting phenomena. Novel results were found. First, it was discovered 

that in shallow water conditions the patterns rotate at constant frequency, 

which is one-third the frequency of the rotating disc. Although a frequency 

locking is suspected by Vatistas (1990) and Jansson et al (2006), it is the 

first time that the frequency locking is confirmed and quantified. Second, it 

was revealed that the apexes of the polygonal shapes hosting the satellite 

vortices are equally distributed on a circular ring, for which the radius is half 

the radius of the circular cylindrical walls that confine the swirling flow. This 

result confirms for the first time the analytical finding of Havelock (1931) on 

the stability condition of a system of point vortices. Third, the flow dynamics 

around the apexes (wave peaks) and the sides (wave troughs) of the 

polygonal shapes were investigated for the first time. An intriguing, robust, 

flow dynamic pattern lock-in, having a frequency of about one-third the 

frequency of the rotating disk, was observed. This particular property, at the 

apexes, gives rise to the query whether the route towards turbulence in 

shallow water swirling flows unfolds through a period tripling cascade. 

1.2 Survey on Swirling Flows 

Swirling flows are subject to several instabilities which they manifest in 

several forms such as traveling waves on the vortex core, secondary vortices 

around the main vortex, and vortex breakdown. These types of instability are 

of primary importance in geophysics flows. Indeed, at the scale of the oceans 
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and atmospheres these waves are known to play a major factor in controlling 

weather systems, Schar & Davies (1990). Such instabilities in the rotation of 

Earth's outer core are suspected to be responsible of the Earth's magnetic 

field Hollerbach (1996). The swirling flow instabilities manage the transfer of 

energy and mass from one scale to another and from one location to another. 

For instance, polar vortex instability leads to the enhancement of mixing 

within the vortex core, which has been found to be crucial to the weakening 

of the ozone layer, (M. Mclntyre (1989). In engineering, the instability of the 

swirling jet exhausted from aircraft turbine engine leads to vortex 

breakdown, thus enhancing the transfer of pollutants to the atmosphere. 

Furthermore, deformations of the vortex-core produce unwanted vibrations 

and noise in the intakes of liquid pumps and draft tubes in water turbines; 

see, Escudier (1987) and Enauss (1987). 

Similar experimental configurations to the present (stationary cylinder 

with a rotating bottom), have been used to shed light into vortex instabilities 

and vortex breakdown. Swirling flow generated in closed or open, stationary, 

cylindrical container by rotating one or both of its endwalls, offer more 

possibilities for the control of the swirl and external turbulence around the 

vortex-core than the ones offered by a vortex tube; see Keller and Escudier 

(1980). Several experimental and numerical studies were also conducted in 

closed containers where one endwall is rotating. These studies show that the 

aspect ratio (ratio of the height of the working fluid to the radii of the 

container) and the Reynolds number are the fundamental parameters that 
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control the vortex instability and breakdown, see Vogel (1968) and Escudier 

(1984), Daube and Sorensen (1989). Similar studies were also performed in 

open cylindrical containers. Spohn and his collaborators (1993) showed that 

a free surface has a determining effect on the conditions and on the form of 

the vortex breakdown. Recently, the problem of swirling flow induced in a 

stationary cylinder by rotating the bottom endwall was studied from the angle 

of symmetry breaking. Hirsa et al (2002) reported that when the ratio of the 

water height to the radius of the cylinder is equal to 2, and the geometrical 

imperfections of the experimental setup are reduced to their minimal, the 

symmetry breaking turns into an azimuthal rotating wave with a wave 

number equal to four. However, when the ratio of the water height to the 

radius of the cylinder is equal to 0.25, Miraghaie et. al (2003) showed that 

the symmetry breaking of the swirling flow with a free surface turns into an 

azimuthal rotating wave with a wave number of three. They found that the 

rotating speed of these waves is 0.62 times the rotating speed of the bottom 

endwall of the cylinder. 

In the above-mentioned two experiments, swirl imparted to the fluid is 

so small that the free surface is considered flat, and accordingly the vortex 

core is flooded. However, when the swirl becomes stronger the pressure 

drops in the central core thus forming a hollow vortex. The hollow core, 

which is circular in the beginning, supports the subsequent polygonal shapes 

until hexagonal is reached at high swirl. The ability to see the polygonal 
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shapes allows the use of visualization and images processing techniques in 

order to identify their dynamic behavior. 

The instability of the hollow-core vortex manifests as a symmetry 

breaking of the cylindrical core into helical traveling waves when the vortex 

core is long. These helical waves were investigated theoretically for the first 

time by Kelvin (1880) and they are well known as Kelvin modes. In shallow 

water conditions and when the vortex-core in flooded the swirling flow 

instabilities manifest as azimuthal rotating waves. Lopez et al (2004) 

investigated numerically and experimentally in a stationary open cylinder 

driven by the constant rotation of the bottom. The waves were found to be 

the result of the instability of the interface between the inner body-rotation 

and the shear layer swirling flow. It was shown that when high swirl is 

imparted to the fluid, the circular shear layer tends to roll up and the vorticity 

further concentrates more and more in the rolled-up region until it ends up in 

concentrated vortices having forms of stable dipoles, tripoles, quadripoles 

and more, see Poncet and Chauve (2007). 

2. Experimental setup and measurement technique 

2.1 Experimental setup 

The present experiments were conducted in a cylindrical Plexiglas 

container. The internal diameter of the cylinder is 284 mm and its height is 

500 mm. The cylinder is attached to a steel table through flanges. A 252, 270 

and 282 mm diameter circular disk is placed 20 mm above the bottom of the 
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cylinder. The disk is connected through a vertical shaft to an electric motor 

(see figure 6-2). A flywheel is connected to the vertical shaft in order to 

increase the constancy of the disk rotation. The disk rotated in the 

counterclockwise direction, and an electronic controller regulates its speed. 

Water was used as the working fluid. The experiments were conducted at 

four different water heights which were 20, 25, and 30 mm of water above 

the rotating disk. For each water depth, the disk speed varied from 1.9 to 

4.28 Hz. 

The rotation of the circular disc at the bottom of the tank introduces 

angular momentum into the liquid. The synergetic action of centrifugal and 

gravitational forces together with buoyancy cause the free surface to acquire 

the shape of an inverted "bell". For high disk speed values the hollow bell-like 

central portion of the vortex touches the surface of the disk forming a dry 

spot. The line intersection between the liquid and the surface of the disk, 

outlines the core shape. By increasing the disk speed different polygonal 

imprints begin to appear. 

A CCD camera (JAI CV-M2) with the resolution of 1600 x 1200 pixels 

was placed above the cylinder to image the hollow-core vortex formed on the 

disk. The camera was connected to a PC equipped with a digital frame 

grabber (DVR express) that acquire 8-bit images at a rate of 30 frames per 

second. To avoid a blurring effect, the shutter speed of the camera was set to 

1/500 sec. At each water height and each disk speed, 5000 images were 

acquired. A circular neon lamp surrounding the cylindrical tank was is used to 
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ensure uniform lighting. In order to increase the visibility of the patterns, 

water soluble blue dye was mixed into the water prior to the experiments. 

2.2 Measurement technique 

A typical image obtained during the experiments is shown in figure 6-

3(a). Due to the dark color of water, the interface between the liquid and 

disk, i.e., the edges of the patterns, are clearly visible. An image processing 

algorithm has been developed in order to accurately detect the edges of the 

patterns. This algorithm has been implemented in a code within the Matlab 

environment. The algorithm allows the automatic processing of the image 

sequences acquired by the CCD camera for each case. The details of the 

algorithm are described below. 

The first step is the image segmentation, that is, the conversion of the 

original 8-bit gray-scale image into a binary image, using a suitable threshold 

to extract the polygonal contours. The setting of a proper threshold is very 

crucial for the image segmentation. If the fluid in the vicinity of the pattern's 

contour has uniform or narrow banded gray-scale values, the selection of the 

proper threshold is straightforward. However, in the present experiments, 

due to difference in the frequency of neon light and the camera frame rate, 

the overall gray-scale values varied from image to image within a given run. 

Therefore, before selecting the proper threshold, the image intensities were 

equalized in each experimental run. For this purpose, the brightest image of 

a given test was selected and the gray-scale histograms of all other images 

were matched with gray-scale histogram of the selected image (Gonzales and 

Wood 2004). 
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Figure 6-2 : Schematic of the experimental apparatus 

(a) Original image (b) Binary image (c) Filtered binary image 

(d) Pattern boundaries (e) verification (f) Pattern superposition 

Figure 6-3: Summary of the image processing technique 
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The quantity of the threshold for image segmentation was selected 

based on the gray-scale value associated with the peak in the histogram of 

the selected image and it was applied to all subsequent images in a given 

run. In the image segmentation process, all the pixels with gray-scale values 

higher than or equal to the threshold were assigned l ' s (i.e. bright portions) 

and the pixels with gray-scale values lower than the threshold (i.e. dark 

portions) were assigned O's. The binary image obtained after applying the 

threshold to image in figure 6-3(a) is shown in figure 6-3(b). To filter the 

noise from the images, a low-pass Gaussian filter was applied next. The 

binary image (figure 6-3(b)) after noise filtering is shown in figure 6-3(c). In 

the next step, the boundaries of the pattern were extracted using the 

standard edge detection procedure. The pattern contours obtained from the 

edge recognition procedure were then filtered using a zero-phase filter to 

ensure that the contours had no phase distortion. The pattern contour that 

corresponds to the binary image in figure 6-3(c) is shown in figure 6-3(d). In 

order to demonstrate the accuracy of the developed algorithm, the detected 

pattern contour superimposed into the original image is shown in figure 6-

3(d). The figure shows that the present scheme correctly detects the 

boundaries of the pattern. The accuracy of the given algorithm was estimated 

by randomly selecting 30 images from each experimental set. In each image, 

the difference between the actual edge and that detected by the algorithm 

was recorded. The results show that the difference between the actual and 

detected boundaries is within 2 pixels, in almost 90% of the pattern 

contours. In the remaining 10% of the regions, the difference between the 
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actual and detected boundaries is on average 6 %, with the maximum 

difference of 8 %. A sample of detected patterns for different cases is shown 

in figure 6-3(f). The rotating speed of the disc was also measured using the 

image processing technique. Prior to the experiments, two small black strips 

were marked on the rotating discs, which are clearly visible in each image 

(see figure 6-3a). These strips were used to measure the disk speed through 

image analysis. For this purpose, another algorithm was developed. A region 

of interest comprised of the middle portion of the disk such that the marks 

remain within the region of interest throughout the disk rotation in the entire 

dataset was selected. The images were segmented using the same threshold 

as described earlier. All segmented images show a black portion at the center 

of the disk and two black strips. A reference image was then chosen and the 

subsequent images were individually superimposed into the reference image, 

until the black strips of the subsequent image coincides with the black strips 

of the reference image. The frame number of this subsequent image, in 

reference to the original, was recorded. Knowing the number of rotations and 

time difference between each image (i.e. 1/30 sec), the speed of the disk 

was determined for each case. 

3. Results and discussion 

The frequency spectra of the patterns for different cases were 

computed from the sequence of the detected patterns. Three consecutively 

sensed patterns are shown in figure 6-3(f) as a sample. To compute the 

frequency spectra, the time series of the radial distance of the pattern edge 
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from the disk center was extracted at each value of 0 (i.e. 0 - 0° to 360°). 

The spectrum was computed for each time series and then averaged. The 

spectra of the patterns for different initial water heights (h0 ) are given in 

figure 6-4 (a-c). The plots show that for a given mode, the most energetic 

f 
peak ( / m ) is related to the frequency of the pattern ( f p ) by fp = where, 

jVis the number of apexes of the given polygon. As expected, fp increases 

with the disk frequency ( f d ) . The spectra, in figure 6-4, normalized by the 

disk speed ( / d ) shows that the spectral peaks for all curves occur at the 

same normalized frequency of 1/3. That is, the frequency of the pattern is 

equal to 1/3 of the disk frequency, irrespective of the mode or water height. 

Marques et al. (2003) numerically investigated the flow in a rotating cylinder 

with the counter-rotating top lid under shallow water conditions. Their results 

show four and five wave number rotating wave with a frequency equal to 1/3 

of the cylinder's speed. Despite the differences in the induction mechanism, 

the result remains the same. This indicates that the 1/3 locking of the 

rotating pattern/mode could be a general inherent feature of shallow, swirling 

water flows. 

Further investigations with different flow generation methods will be 

required in order to confirm the validity of this general conclusion. The 

influence of the initial water height on the frequency of the pattern is 

investigated in figure 6-5. The plot shows that the height influences the 

frequency of the pattern. It has been observed that for a given mode, speed 
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increases with the water height. However, the increased rate in f p decreases 

with an increase in hQ. The results show that changing the given mode h0 

also influences the pattern evolution. When the water layer is shallow, lower 

modes do not occur. Whereas, when the water layer is relatively thick, the 

higher modes do not materialize. For example, at h0 = 20 mm, the mode N = 

2 does not occur. At h0 = 25 mm, mode N= 6 does not occur. But, at h0= 30 

mm, modes N= 5 and 6 do not occur. 
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Figure 6-4: Power spectrums for h0= 20, 25 and 30 mm respectively 
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The results in figure 6-5 point out that after a certain water height, the 

frequency of the pattern remains unchanged by increasing the water height. 

However, with an increase in water height, the occurrence of the modes 

decreases and it is expected that after a certain threshold height, no modes 

will occur. Similarly, if the water layer is too shallow, no modes will occur. 

This means that a given pattern exist only for a certain range of water 

heights. Hence, the disk speed and the initial height of water determines the 

existence of a given pattern, the combined effect of these two parameters 

can be lumped into one dimensionless number, i.e. the Froude number, 

defined as Fr = Rdfd !2n^gh{) , where, fd, Rd and gare the disk frequency, 

disk radius, and gravity, respectively. 

From the sequences of the pattern contours for all modes, the radius 

of the pattern apexes and the base are recorded and then averaged. Here the 

base is defined as the valley between the two apexes. The values of the apex 

radius ( R ^ ) and base radius (i?min) for all cases are shown in Table 6-1. The 

results show that except for the N = 2 (elliptical pattern), the apex radius is 

almost the same for all other modes (N = 3 to 6). However, the base radius 

changed with N. Maximum value occurs for N = 6 decreasing monotonically 

to a minimum value for N = 2. The apex and base radii normalized by the 

tank radius (Rt) are also presented in Table 6-1. 
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Figure 6-5: Influence of water height on the frequency of the pattern 

H = 2 0 D 
max 

D 
max 

R, 

D 
min ^ m i n 

R, 

6 7 1 . 6 0 . 5 0 5 4 . 6 0 . 3 8 

5 7 3 . 3 0 . 5 1 4 5 . 9 0 . 3 2 

4 7 1 . 9 0 . 5 1 3 7 . 1 0 . 2 6 

3 7 0 . 3 0 . 4 9 3 4 . 3 0 . 2 4 

H = 2 5 

5 7 0 . 3 0 . 5 4 6 . 8 0 . 3 3 

4 7 0 . 5 0 . 5 4 2 . 2 0 . 3 

3 7 1 . 8 0 . 5 3 3 . 1 0 . 2 3 

2 5 3 . 1 0 . 3 7 2 7 . 3 0 . 1 9 

H = 3 0 

4 7 1 . 0 . 5 4 1 . 5 6 0 . 3 

3 7 1 . 3 0 . 5 2 6 . 8 0 . 2 

2 5 9 . 3 0 . 4 2 2 3 . 2 5 0 . 1 6 

Table 6-1: Maximum , minimum and ration of these two values to the tank radius 
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The results reveal an interesting feature. The apex radii from mode 3 

through mode 6 are almost equal to half of the tank radius. For a given 

mode, the apexes are equidistantly located. Thus, the angle between the 

apexes decreased from 120° for mode three to 60° for mode six. The present 

results show that irrespective of the number of apexes and their 

corresponding angular difference, all the apexes are locked on the same 

circumference whose radius is about half that of the tank. This indicates that 

whenever a mode is established, the apex location remains constant but the 

base location changes to satisfy the equilibrium condition. Havelock (1931) 

theoretically derived the stability conditions for the system of point vortices 

equally distributed on a circumference. He found that a system with more 

than six point vortices is unstable. He also concluded that in the presence of 

external boundaries and a central vortex, for the system of point vortices to 

be stable, the point vortices must be located on a circumference with the 

radius equal to about half the radius of the boundary. In the flow 

configuration for the present study, a satellite vortex is located at each apex. 

Although the present images do not explicitly show the presence of the 

satellite vortices, inspection during the experimental trials confirmed their 

presence. The images in Jansson et al. (2006) also show the presence of 

satellite vortices at the apexes of the polygonal patterns. Thus, the present 

results, for the first time, confirm Havelock's (1931) stability conditions. By 

analyzing the images of Jansson et al. (2006), who used different tank and 

disk sizes, one finds the apex radius to indeed be about half of the tank 

radius, which further confirms the present findings. 
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Vatistas et al (1994) derived the dispersion relation for the swirling potential 

flow in a confined geometry. Their expression for the theoretical radius of the 

unperturbed core is the root of the following equation, 

r \2 
a 

\ R t J 

2 .Rf.g.h0 + 1 - 2 . I n 
r \ a 

CO 
1 = 0 

V a 

Where, co is the angular velocity of the unperturbed core and a is the 

unperturbed core radius. For the present case, co is equivalent to the disk 

speed, and a is equivalent to the mean radius of the pattern, 

R + R 
(a = max ^ — T h e values of a, estimated from the present experimental 

conditions, are also given in Table 6-2 and are found to be in good 

agreement with the mean radius of the patterns, given in Vatistas et al 

(1994). This conformity is not surprising since in the present experiments, 

water was used as the working fluid and the flow under given conditions can 

be considered weak viscous flow. In our calculations, we assumed co to be 

equal to the angular speed of the disc. This is a fairly good approximation, 

since the ratio between the fluid velocity to rotating speed of the disc, 

measured with a L.D.A technique, approaches l(one) in a similar experiment, 

see Poncet and chauve (2007). The dispersion equation given above is solved 

numerically and the values for the radius of the unperturbed core a are 

calculated and given in the table 6-2. 
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H=20 Mean 
Radius 

a 

R=a/rt H=20 Mean 
Radius 

a 
theory Experimental 

N=3 50.73 0.34 0.35 
N=4 52.74 0.4 0.371 
N=5 57.84 0.49 0.41 
N=6 62.69 0.55 0.44 

H=25 
N=2 38.85 0.20 0.27 
N=3 50.34 0.38 0.35 
N=4 55.12 0.47 0.39 
N=5 58.53 0.53 0.41 

H=30 
N=2 39.47 0.21 0.27 
N=3 45.28 0.36 0.32 
N=4 54.59 0.48 0.38 

Table 6-2: Comparison between the experimental and the theoretical results. 

The observation described above confirms that the calculations 

conducted by Vatistas et. al (1994), based on the potential vortex, are in 

accordance with our observations. I t is worth noticing that the stream lines 

induced by potential vortices equally distributed on a circle form similar 

polygonal shapes observed in these experiments. The geometric analysis of 

the fully established patterns, along with an examination of the spatial power 

spectrum of the polygonal patterns, follows. The patterns in binary images, 

their unwinding contours, and the associated power spectrum are shown in 

figure 6-6. The power spectrum indicates that when the patterns are stable 

and well established there are no other modes than the fundamental with its 

harmonic amplitude modulating the basic wave. As it will be argued below, 

the polygonal character of the vortex core is due to the presence of satellite 

vortices on a circular ring which rotates at constant frequency but lower than 



the frequency of the disc. The presence of these satellite vortices at the 

apexes is clearly shown in figure 6-1, taken from (Jansson et al (2006)). 

Their equidistance on a constant radius explains the regular polygonal 

formations. Indeed, the vortices around the apexes create a depression at 

their center, which repels the free surface and gives to the core a polygonal 

shape. Therefore, the polygonal shapes of the vortex core can be seen as a 

system of rotating arrays of vortices equally distributed on a circle with a 

radius of about half the radius of the tank. 

In what follows, for patterns ranging from triangular to hexagonal, 

attention is focused on the flow dynamics around the apexes and troughs 

using power spectrum analysis. To facilitate the analysis, this phenomenon is 

investigated in a relative frame of reference rotating with the pattern. In 

order to achieve this, we bring back each contour with its respective rotation 

angle and superpose it on the initial pattern, as illustrated in figure 6-7. The 

power spectrums at the apexes and the troughs are, respectively, similar; 

therefore the analysis is performed on the average of the power spectra over 

the apexes and troughs. We start the analysis by inspection of the power 

spectrum where the frequency normalized with the pattern frequency of the 

triangular pattern shown in figure 6-8. 
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(a) (b) (c) 
Figure 6-6: a) binary image of the rotating wave b) Winded up contour of 
the patterns c) Density spectrum giving a wave number 
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Figure 6-7 pattern superpositions 

Figure 6-8: Flow dynamics around the apexes and the trough of the triangular 
pattern 
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Figure 6-8 shows that both troughs and apexes are under almost 

similar dynamic qualities. A close analysis, however, reveals that there are 

two types of processes involved. The first occurs at low frequencies within the 

interval 0.07 to 0.4, while the second happens between 0.4 and 18. The 

power spectra at the apexes and troughs ranging from 0.07 to 0.4 were 

found to be slightly deferent. Although the wave amplitude is relatively small, 

figure 6-8 discloses that at a frequency of 0.3fp (which is sufficiently close to 

one third the rotational speed of the pattern). The apexes are under the 

influence of a different dynamic condition than that occurring at the troughs. 

This particular frequency differentiates the dynamic manifestations that take 

place on the apexes and the troughs, while the other parts of the power 

spectrums are similar. The power spectrum also shows the prevalence 

2 
towards a frequency close to two thirds (—f p ) , and its harmonics followed by 

continuous decrease in power. This decrease is similar to that observed in 

Kolmogorov's spectrum for turbulent flows. Some peaks are more evident at 

the troughs; having the values 3, 4, and 8 Hz respectively. The relative high 

2 
magnitude of power at frequency ( ~ f P ) its harmonics should correspond 

to the small amplitude traveling around the pattern, while the power cascade 

with the distinct peaks should be associated with the complex flow dynamics 

surrounding the triangular pattern. The relevant peaks at the trough might 

explain the sporadic bursting observed during the tests. 

The distinct dynamic behavior at the apexes with a frequency of about 

0,3 times the frequency of the pattern should be related to presence of 



satellite vortices on the apexes. Therefore, the dynamics associated with this 

secondary instability is ultimately characterized by a frequency which is close 

to one third the frequency of the pattern. This is an interesting feature which 

deserves to be reported because it looks like a cascade of period tripling. 

Indeed, the frequency of the pattern (primary instability) induced by the 

rotating disk is approximately one third of the disk (the pattern period is 

three times the period of the disk). Subsequently the secondary instability 

(satellite vortex) around the apex has a period around three times the period 

of the pattern. As it will be confirmed below this tripling cascade seems to be 

robust and exists for all the observed patterns. 

Increasing the speed of the disk, the triangular pattern undergoes a 

bifurcation into a square polygonal pattern. Similarly to the triangular 

pattern, the power spectra, figure 6-9, suggests that there is a wave which 

moves around the apexes of the square polygonal pattern with a frequency of 

one third the frequency of the pattern. Since this frequency does not appear 

in the power spectrum of the troughs it must be a localized phenomenon 

affecting only the apexes. This observation fortifies our conjecture that a 

frequency which is around one third the frequency of the pattern 

characterizes a distinct flow dynamic event at the apexes. 

The power spectrum of the N = 4 pattern is distinguished by 

fundamental frequencies of 0.318fp and 0.5fp at the apexes. The power 

spectrum also shows the attendance of the main frequency / = f p and its 

harmonics at the troughs. Increasing further the speed of the disk, the 
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square polygonal pattern undergoes a bifurcation and becomes a pentagon. 

Similar to the triangular and the square polygonal patterns, the power 

spectrums of the pentagonal pattern, in figure 6-10, also show wave activity 

at about one third the frequency of the pattern. 

The power spectrum at the apexes resembles the one of quasi periodic 

regime, whereas the flow dynamics at the trough looks like the one of 

turbulent flow. Further increasing the speed of the disk causes the 

pentagonal pattern to bifurcate into a hexagonal pattern, which is the last 

observed pattern before the hollow core becomes circular and its diameter 

enlarges with the disk speed, while the flow around it becomes chaotic. Here 

the closeness of the troughs and the apexes make the dynamics at the two 

particular points of the hexagonal pattern alike. Again the flow at both the 

apexes and at the troughs is characterized by the frequency which is one 

third the frequency of the pattern. 
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From the results of the flow dynamics at the troughs and the apexes 

we can infer that the increase in intensity of the secondary flow at the apexes 

enhance the role of nonlinear effects (characterized by the increase in the 

intensity of harmonics) which trigger the destabilization of the pattern. 

In figure 6-11, we show the average power spectrum over 360 point of 

the displacement of the contour with respect to the mean contour. Here, we 

notice that the frequency around one third dominates the power spectrum for 

N=4 to N=6 . This observation arises a fundamental question: whether or not 

the one third cascade is particular for swirling flows. Indeed as pointed out 

above, the frequencies of the patterns are locked at one third the frequencies 

of the rotating disk and now we notice that the secondary flow has a 

frequency close to one third the frequency of the rotating polygonal patterns. 

Then, similarly to the sub-harmonic or the periodic doubling cascade which 

was intriguing at the beginning before it was established as one of the routes 

to chaos or turbulence in fluid mechanics; is one third cascades a route to 

turbulence in swirling flows? The fact that this one third frequency locking in 

swirling flow is reported elsewhere enforces the consistency of the 

hypothesis. Still, the question needs more investigations. 
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Figure 6-12: Flow dynamics around the apexes of observed patterns 
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4. Conclusion. 

The results described in this chapter are novel and fundamental. For 

the first time the stability conditions of Havelock (1931) and J.J Thomson 

(1897) are confirmed. The last author proved that the maximum polygonal 

pattern or the maximum satellite vortices on a circular ring is six. Moreover, 

for the system of satellite vortices surrounded with circular boundaries to be 

stable they should be located on a circular ring of radius equal to half of the 

containing wall. For the first time, the frequency locking between the pattern 

and disk frequencies is determined. In the shallow water condition, this 

frequency locking is around one third (1/3). Furthermore, for the first time 

the flow dynamics around the apexes and troughs are described. The apexes 

host satellite vortices which can be considered as secondary instabilities. This 

secondary flow around the apexes is characterized by a frequency which is 

around one third the pattern's frequencies. This experimental evidence 

provoked the question concerning the one third cascades in swirling flows in 

shallow water conditions. 
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Chapter 7: Transition between Kelvin's equilibria 

1. Introduction 

1.1 Outline 

All the theoretical and experimental work on the polygonal patterns 

dealt with their stability. However none of them elaborated on how different 

stationary configurations evolve from a given equilibrium (mode) to the next 

one. Vatistas (1990) and Vatistas et al (2008), observed that the transition 

from one equilibrium mode to the next occurs through mixed modes, and 

that the bandwidth of the transition interval shrinks with the increase in 

mode number. However, no systematic investigation into the transition was 

reported. Hence, the underlying physical mechanism(s) that leads to the 

transition from one stable state to the subsequent remained unknown. The 

present work is the first in this subject. 

1.2 Bifurcations in swirling flows 

As pointed out in chapter 2, several swirling flows found in nature and 

industry can be reproduced at a laboratory scale in a closed or open 

stationary cylindrical container by rotating one endwall, both of its endwalls 

or the rotating disc. These swirling flows, produced in this simple geometry 

are found to exhibit rich and complex bifurcation scenarios, Hopf, double 

Hopf, Naimark-Sacker and tangent double Hopf bifurcations. For instance, 

Lopez and Marques (2004) numerically analyzed the case where both 

endwalls are co-rotating. The basic state that enjoys the invariance to 
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rotations about the axis and symmetry reflection undergoes a primary 

instability, and induces non-axisymmetric rotating waves that may or may 

not be reflection symmetric. They showed that when the aspect ratio (ratio of 

height of the working fluid to radii of the container) is higher than one the 

primary instability preserves the reflective symmetry. However, when the 

aspect ration is less than one the symmetry reflection breaks down. They 

also showed that when the aspect ratio is almost one, there is mode 

competition between symmetry reflection preserving and symmetry refection 

breaking and the pure rotating wave modes are unstable; the only stable 

mode is the mixed mode. More complex, modes competition between 

rotating waves of azimuthal wave numbers N and N+l are obtained through 

numerical simulation when the aspect ratio is equal to 0.5 and the endwalls 

are counter-rotating, see Marques et al (2003). 

All the works devoted to the instabilities in confined swirling flows 

show that the aspect ratio, Reynolds number and ratio of rotating frequency 

of the endwalls are the fundamental bifurcation parameters that control 

symmetry breakings of the swirling flow. All the studies dealing with 

symmetry breaking in swirling flow considered flooded vortex cores, but none 

of them dealt with hollow vortex cores. Despite the extensive numerical and 

experimental work a convincing explanation of the symmetry breaking and its 

mechanism remains to be found. Moreover, the problem becomes more 

complex when the vertical cylindrical container is open, i.e the free surface is 

presence. In most of the numerical studies on confined swirling flows with 
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free surfaces, this last is considered flat with zero shear stress; see Lopez et 

al (2004). However, the flat free surface hypothesis is found invalid under 

shallow water conditions. All of the studies on the stability of swirling flow 

were restricted to the investigation of the influence of the control parameters 

on the bifurcation scenarios. Hence, bifurcation diagrams were given and the 

location of Hopf, double Hopf, Naimark-Sacker and tangent double Hopf 

bifurcations, in parameter space as well as modes competition, are indicated. 

However, no explanation of the mechanisms leading from a given mode to 

another has been tackled. This can be explained by the fact that all studies 

conducted until today are either numerical or experimental; using the DPIV 

technique which we believe cannot adequately handle this complicated 

problem. However the present experimental set up and visualization 

technique allows the investigation of the transition. Due to the resemblance 

between the present experiments and those conducted in flooded vortex core 

(where the rotating patterns are hidden), the present experiment can be 

used as a paradigm for the investigation of the instabilities in swirling flow. 

2. Experimental setup and measurement technique 

2.1 Experimental setup 

The present experiments were conducted in the apparatus shown 

schematically in Figure 6-2 which consists of a Plexiglass stationary 

cylindrical tank of a 284 mm inner diameter, with a flat disk revolving in the 
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counter-clockwise direction near the tank bottom. The experiments were 

conducted with disks of two different diameters, 252 and 270 mm, and at 

two different initial water heights (h0) of 30 and 40 mm. The disk speed ( / r f ) 

was varied from 1.9 to 4.28 Hz, the corresponding Froude number ranged 

from 3.2 to 4.5. The Froude number is defined as Fr = Rdfd /2/r^jgh0 

where, fd , Rd and g are the disk frequency, disk radius and gravity, 

respectively. 

When the swirl is imparted to a thin liquid layer confined in a stationary 

cylinder, by rotating a disc near the bottom of the cylindrical, the centrifugal 

force due to the rotary motion of the liquid along with the gravity causes the 

free surface to form an inverted bell shape. Its central depression grows 

deeper as the disk speed increases. Eventually, the receding liquid exposes 

part of the disk's central surface to air, whereby, the line of intersection 

between the surfaces of the disk, liquid, and air outlines the core shape. With 

the increase of the disk speed, the circular shape of the core first become 

elliptical and then acquire different polygonal equilibrium patterns the so 

called Kelvin's stationary equilibria. 

2.2 Measurement technique 

In the present experiments, in order to enhance the signature of the 

patterns, blue water-soluble dye was mixed with water prior to 

experimentation. A two megapixel CCD camera (JAI CV-M2) was placed 

above the cylinder to collect images of the core patterns formed on the disk 
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(see Figure 6-2). The camera was connected to a PC equipped with a digital 

frame grabber that acquires 8-bit images at a rate of 30 frames per second. 

A circular neon lamp surrounding the cylindrical tank is used to ensure the 

uniformity of light. 

It was observed that the Froude number range, over which the 

transition occurs from one mode (/V) to the next, and also the mode stability 

range decreases with an increase in N. Thus, for the transition from N = 4 to 

N = 5 and from N = 5 to N =6, the Froude number range was very narrow 

and it was difficult to accurately capture the transitional modes. Therefore, 

the experiments were conduction for the transition from N = 2 through N = 

4. The first set of experiments was conducted with 252 mm diameter disk 

and at the initial water height of 30 mm. In this set of experiments, the 

transition from mode N = 2 to N = 3 was investigated. The second set of 

experiments was conducted with 270 mm diameter disk and at the initial 

water height of 40 mm. In this set of experiments, the transition from mode 

N = 3 to N = 4 was investigated. For each experimental run in a given set of 

experiments, 1000 images were acquired. An image processing algorithm has 

been developed in order to accurately detect the edges of the patterns in 

each image. A sample image at N = 4 state is shown in Figure 7-1. The 

pattern contour, detected through the image processing algorithm, is 

superimposed on the image for comparison. 
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Figure 7-1: Pattern contour 

3. Results and discussion 

3.1 Transition in laboratory frame of reference 

A detailed investigation of the transition process was conducted 

through spectral analysis. The frequency spectra of the patterns for different 

cases were computed from the corresponding sequences of the detected 

contours. To compute the frequency spectrum, time series of the radial 

distance of the pattern edge from the disk center was extracted at each value 

of 0 (i.e. 9 = 0° to 360°). The spectrum was computed for each time series 

and then averaged for each experimental run. During the experiments, more 

transition states were captured from N = 3 to N = 4 compared to that from N 

= 2 to N = 3. Therefore, the detailed description of the transition mechanism 

is presented for the transition from N = 3 to N = 4. Subsequently, it is 

further elaborated for the transition at other modes to establish the 

generality of the transition mechanism. The shapes of the hollow-core 

patterns that evolve during the transition from N = 3 to N = 4 are depicted in 

Figures. 3-2-3-4 (a), 3-5 (a-c) and 3-6-3-7 (a). Figure 7-2(a) shows the 
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image of the pattern at N = 3 equilibrium state, obtained at Fr = 3.37 ( f d 

= 3.20 Hz). At this state, the pattern takes the form of a trefoil. As the Froude 

number is increased, the pattern starts to expand from the troughs, while the 

apexes remain at the same radial distance from the center (see Figures. 7-3a 

and 7-4a). Eventually, the pattern acquires quasi-triangular form. Once the 

critical Froude number is reached, the quasi-triangular pattern transforms 

gradually into a quasi-square form (see Figure 7-5 a-c). It is observed that at 

the critical Froude number, the transition from quasi-triangular to quasi-

square form takes approximately 20 seconds. With a further increase in the 

Froude number, the pattern at the mode N = 4, starts to stabilize and the 

troughs recede. The pattern after reaching the equilibrium state at the mode 

N = 4 is shown in Fig.7-7 (a). It should be noted that the radial distance of 

the apexes from the center remains the same from one equilibrium state 

through transition to the next equilibrium state. The underlying physical 

mechanism for the transition is investigated through spectral analysis and 

discussed below. The frequency spectrum at /V = 3 equilibrium state is shown 

in Figure 7-2 (b). The plot shows several spectral peaks. The most energetic 

peak ( / m ) occurred at a frequency of 3.22 Hz. Three harmonics of fm at 6.44 

Hz, 9.66 Hz and 12.9 Hz are also visible in the spectrum. For a given mode, 

the most energetic peak is related to the frequency of the pattern ( f p ) as, 

f 
fp = where, N is the number of apexes of the given polygonal pattern. At 

the N = 3 mode, / = 1.07 Hz. The plot also shows a less energetic peak at a 

frequency of 4.86 Hz. Hereinafter, this modulation is referred to as growing 



frequency ( / ) as will be shown later, this modulation plays a significant role 

in the transition. Although at the N = 3 equilibrium state, the amplitude of 

this modulation is several orders of magnitude less than fm and its 

harmonics. This modulation interacts with fm and their interaction is evident 

in the spectral peaks at 1.6 Hz and 8.08 Hz, where, 1.6 Hz correspond to 

fg ~~ fm and 8.08 Hz correspond to fg+fm - Hereinafter, these frequencies are 

referred to as fb and /^respect ively. 

As the disk speed is increased, the N = 3 equilibrium state is distorted 

due to the increase in the modulation amplitude associated with f g . This 

behavior is clearly visible in the spectra shown in Figures. 7-3 (b) and 7-4 

(b). The plot in Figure 7-3 (b) shows that as the disk frequency increased 

from 3.2 to 3.33 Hz, the modulation amplitude is increased by almost two 

orders of magnitude and its frequency is shifted to fg = 4.98 Hz. The 

frequencies associated with fm , fb and fs are also shifted. The plot also 

shows that the amplitude at fb and / also increased by more than an order 

of magnitude which is likely due to the increase in the modulation amplitude 

at / . The spectrum in Figure 7-4 (b) also shows similar behavior with a 

further shift in the frequency due to the increase in the disk frequency ( / m = 

3.4 Hz, fg = 5.1 Hz). It should be noted that fm, related to the rotating 

pattern, is slightly lower than the disk frequency, as the corresponding 

images show, the pattern mode is still three. 
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As the disk frequency is further increased, it approaches the critical 

value, the transformation from mode N = 3 to N = 4 occurred. This 

transformation process is depicted in Figures 7-5 (a-c). The corresponding 

frequency spectra are plotted in Figures 7-5(d-f), respectively. The spectrum 

in Figure 7-5 (d) shows the trend similar to that in Figures 7-3 (b) and 7-4 

(b) as the fundamental mode is still three. The spectrum in Figures 7-5 (e) 

corresponds to the situation when the transformation is underway. The 

spectrum shows that the amplitude of fg is increasing while the amplitude of 

fm is decreasing. The spectrum in Figure 7-5 (f) represents the behavior 

after the transformation is completed and it shows that the amplitude of fg 

is further increased and becomes comparable to that of fm before the 

transformation. At this state, the amplitude of fm is reduced by one order of 

magnitude. No frequency shift occurred at the transformation stage. With a 

further increase in the disk frequency, the pattern at N = 4 reached the 

equilibrium state. The spectrum at this state is shown in Figure 7-6-7-7 (b). 

The modulation originating in the mode N = 3 (i.e. f g ) is now the dominant 

frequency at mode N = 4. The higher harmonic corresponding to this 

frequency is also prominent in the spectrum. 
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A careful inspection of the spectra in Figures 7-2-7-6 shows that — is 

fm 

almost 3/2. This frequency locking is very crucial in explaining the transition 

mechanism. Theoretical analysis of dynamic systems has shown that in a 

coupled oscillating systems with distinct frequencies fx and f2 (bi-periodic 

state), if the ratio between the two frequencies become rational, the bi-

periodic state looses its stability and becomes periodic with respect to one 

frequency, while the other frequency disappears (Berger et al. 1984) . Using 

this analogy for the present case, the transition mechanism from mode N to 

N + 1 can be explained as follows. At a given equilibrium state, as the disk 

speed (or the Froude number) increases, a higher frequency modulation ( f g ) 
is induced and is locked with the dominant frequency associated with the 

/ 
equilibrium mode ( / m ) . Initially, the ratio ( — ) is close to rational (Figures. 

fm 

7-2 and 7-3) and then becomes rational (Figure 7-4 and 7-5), while the 

amplitude of the growing mode continues to increase. As the ratio becomes 

rational and the amplitude of the growing mode become comparable to the 

existing equilibrium mode, the transition occurs and the hollow-core vortex 

transforms from triangular to square shaped. At the disk speed where the 

transition occurred, the frequency of the patterns at N = 3 and N = 4 are 

fm = 3.4 Hz and fg = 5.1 Hz. This ratio is 3/2 which correspond to the ratio 

N/(N-1), where N is the mode at the initial equilibrium state (N = 3 for the 

given case). The fact that it change from a triangle to the square, when the 
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ratio — becomes rational, is consistent with the theory on the structural 
f 

J m 

stability of the biperiodic regimes. The theory stipulates that the only way a 

biperiodic regime looses it stability is through synchronization, see Berger et 

al (1984). 

Further increasing the disk frequency, after the transition, causes the 

amplitude at the frequency, corresponding to the previous mode ( f m ), to 
decrease and with a further increase in the disk frequency, the amplitude at 

/ 
fm becomes very small and the ratio — becomes irrational again. After 

fm 

transition, the only dominant mode is the one that corresponds to f g , which 

for the transition to the next mode (N = 5) acts as fm (see Figures 7-6 and 

7-7). The spectra in Figures 7-2-7-6 also shows a low frequency peak which 

is equal to fb= f g - f m . This frequency corresponds to a wave traveling along 

the pattern contour which is caused by the interaction of fm and fg . The 

frequency of this wave is higher than the frequency of the pattern and thus, 

this wave causes the alternative fattening of the apexes (also see images in 

Figures. 7-2-7-6). 
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Previously, we have described the transition process based on the 

experimental results for the transition from the modes N = 3 to N = 4. In the 

following we have demonstrated that the observed process is not specific to 

these modes but it is a general phenomenon also present in the transition at 

other modes. The images and the corresponding spectra at the transition 

phase from N = 2 to N = 3 are shown in Figures. 7-8, 7-9, and 7-10. Figure 

3-9 shows that at the N = 2 equilibrium state, the dominant mode occurred 

at fm = 1.406 Hz. 

The growing modulation that led to the transition to the N = 3 mode is 

/ 
also present at / = 2.871 Hz and — = 2.04 which is still irrational. The 

•fm 

f 
rational value of the ratio — a t which transition should occur is 2/1. During 

fm 

the experiments we were not able to accurately capture the locking mode of 

/ 
the frequencies, i.e. the rational value — = 2, because we passes the critical 

fm 

speed at which the transition occurs, i.e the disk speed at which a 

synchronization between modulating wave ( f g ) and the dominate mode ( / m ) 

/ / occurs. The — has decreased and become irrational ( — = 1.97). Hence, it is 
/ J m J m 

easy to infer that, similar to the transition from A/=3 to N=4, the transition 

/ 
from N= 2 to N=3 occurs when — = 2 / 1 . 

f J m 
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Figure 7-10:a) Image of the pattern b) power spectrum 

The pattern contour and the corresponding frequency spectrum just 

after the transition to N = 3 are presented in Figure 7-10. As expected, the 

amplitude of fm decreased and the amplitude of fg increased. At this state 

/ / the ratio — becomes irrational again ( — = 1.924). The growing mode that 
fm f 

leads to the transition to the N = 4 mode also appeared in the spectrum at a 

frequency of 4.45 Hz. However, the ratio between the two frequencies 

responsible for the transition from N = 3 to N = 4 is still irrational and equal 

to 1.512, close to 3/2 found above. 
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Although the description of the transition mechanism is based on the 

two transitions, i.e. N = 2 to N = 3 and N = 3 to N = 4, the spectra at the 

equilibrium modes N = 5 and N = 6 shown in Figure 7-11 confirmed that the 

transition should follow the same route as the transition at these modes. For 

/ 
the transition from the N =5 equilibrium the transition should occur at, — = 

fm 

f 
5/4 = 1/25. The spectrum in Figure 7 - l l a shows that — = 1.267, which is 

fm 

still irrational as expected and close to the rational value of 1.25. As for the 

/ 
transition from the N = 6 equilibrium state, it should occur when — = 6/5 = 

fm 

f 
1/2. The spectrum in Figure 7 - l l b shows that — = 1.222 which is still 

fm 

irrational as expected and close to the rational value of 1.2. 

Based on the above results the transition mechanism can be described as 

follows. At the equilibrium state of a given pattern, N, the dominant mode is 

characterized by a frequency, fm. A wave modulation is induced in the flow 

at a frequency that corresponds to the mode N+l ( f g ) . As the Froude 

number increases, the amplitude of fg increases. The transition occurs when 

/ / the ratio — = N/(N-1), which is rational. The ratio —remains irrational but 
fm fm 

close to N/(N-1) before and after the transition. Hence, the transition 

between two subsequent patterns occurs in two steps. 
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First, for a given pattern (first oscillators with frequency fm), a growing 

mode (second oscillators with frequency fg) modulating a pattern arises. The 

ratio between the frequencies fgand /m i s an irrational number but close to a 

rational one; therefore the route to the transition is first biperiodic. Indeed, 

the corresponding power spectrums are not dense and they include peaks 

corresponding to fg - f m and fg+fm. As we approach the critical condition 

the amplitude modulating mode increases and its frequency become locked 

to the frequency of the pattern; this synchronization between the dynamics 

of the pattern and the growing mode causes a transformation in the pattern 

from N into N+l. This funding is consistent with a theory which stipulates 

that the synchronization is the only route to produce a topological change in 

a biperiodic regime. According to our findings, the transition from N=2 

through N=6 should follow the devil's staircase scenario where the stairs 

/ 
corresponds to the synchronization at — = N/(N-1). A transition from N= 2 to 

fm 

f f 
N-3 occurs at ^ = 2 , from N= 3 to N=4 at ^-=3/2, from N=4 to N= 5 at 

/ / J m J m 

f f 
4/3, from /V=5 to N=6 at — = 5/4.and from N=6 to /V=infinity occurs 

fm f•» 

at — = 6 / 5 . 
f J m 
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3.2 Transition in frame of reference moving with the patterns. 

In the present subsection we investigate the transition from the 

triangular to the square pattern, discussed above in frame of the reference 

moving with the patterns. Similar to the above, a power spectrum analysis 

was used. The average power time series and the spectrums over 360 points 

on the pattern's contour are shown in figure 7-13-7-16. At the beginning the 

pattern is a trefoil, see Figure 7-3a; and the corresponding time series and 

power spectrum are shown in Figure 7-13. The time series in Figure 7-13a-b 

shows a fast wave train with frequency, f2 =4.4 Hz, embedded within another 

one having a frequency, / , =0.58 Hz. 

Increasing the disk speed to 3.64 Hz, the pattern remains triangular 

but more open and its lobes become fatter successively. The sequential 

fattening is due to a wave interaction between the parent wave (/V=3) and 

the growing mode (/V=4). This interaction takes the form of a beating wave 

rotating around the pattern (with a wave number N+1-N=l and 

frequency fN+] - fN ) behaving like a soliton. The power spectrum displayed 

in figure 7-13 indicate that the amplitude of the growing mode has increased, 

which is in accordance with the observations in the absolute frame of 

reference, see figure 7-5. 

Since the two frequencies / , and f2 are not locked and the amplitude 

of the growing mode had been increased, an observer traveling with the 
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pattern will simultaneously observe a growing mode (/V=4) at frequency 

f2 =4.4Hz and a rotating beating wave at frequency / ,=0 .58 Hz. The effect 

of the growing mode is embedded within a beating wave or rotating soliton-

like crest. Then the phenomenon can be interpreted as a soliton carrying a 

growing mode. Therefore the actual frequency of the growing mode in the 

relative frame of reference is f 3 = f 2 - fx =3.96 Hz which corresponds to the 

frequency of the growing mode in the absolute frame of reference 

(fg=5.1=f3+/p), where fp= ^ =3.4/3=1.13Hz. 

A further increase in disk speed to 3.87 Hz leads to a transition from 

triangular to square. This changeover is displayed in figure 7-14 in term of 

the evolution of the time series and its corresponding power spectrum. The 

time series shows that the amplitude in the relative frame of reference 

becomes smooth at the end of the transition (when the pattern reaches a 

square form). This interesting phenomenon can be interpreted as energy 

release or energy transfer from one mode to another. 

Increasing slightly the disk frequency to 4.17Hz, the pattern completes its 

transition and the sides of the polygon (square) curve in. As shown in the 

figure 7-15b there is no soliton rotating around the square pattern which is 

under equilibrium conditions. 
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3.3 Transition in terms of pattern's area 

The transition can be also depicted as the evolution of the dry area 

inside the vortex core. The unwind pattern contours are shown in figure 7-16. 

The area of the vortex core corresponds to the area underneath the curve; 

which is evaluated numerically. 

Subsequently, we follow the evolution of the vortex core as the 

pattern approaches the next equilibrium. At the beginning, the pattern was a 

trefoil, Figure 7-3a with an average area of 1.2937e+005 (pixels X degrees). 

As the disk speed increases the trefoil pattern opens up and the area of the 

vortex core increases. Indeed, at the disk frequency of fd =3.64 Hz, shown in 

figure 7-4a, the area of the vortex core increases to 1.5797e+005 (pixels X 

degrees). The area continues to grow as a critical speed ( f d = 3.87 Hz) is 

approached whereby the triangular pattern transforms into a square. This 

transformation is illustrated in Figure 7-17, which clearly shows that the 

vortex core area augments, reaching a maximum before it starts to decrease 

to minimal area when the square pattern appears. These features can be 

attributed to the limited energy that can be stored in a ring with three 

satellite vortices. This means that the system will absorb the excess energy 

by reorganizing itself by increasing in "vibration mode" or introducing an 

additional vortex into the ensemble. A further increment in speed will result 

in smaller areas until the transition is completed, whereby, the area reaches 

its minimum value. 
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4. Concluding Remarks 

The present chapter was devoted to the transition from one pattern to 

another. This transition was investigated in two frames of reference. The 

investigations of the transition, in an absolute frame of reference, shows that 

the transition from one pattern to another is, at first, a biperiodic regime 

before it becomes periodic when the two frequencies lock. The transitions 

follow a "devil staircase" route, to which the staircases represent the location 

where the ratio of the two frequencies become rational. The investigation of 

the transition in a relative frame of reference shows that the transition can be 

interpreted also as an energy transfer from one mode to another. The 

changeover mechanism is also depicted as a vortex-core area variation. This 

investigation shows that the wave dynamics of the vortex core should 

reorganize itself to absorb the excess energy fed by the disc. The results of 

the present study are relevant to several fields of physics, plasma, 

superfluidity, and optics. Moreover, the present experiment can be 

considered a paradigm to investigate planetary vortices. 
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General Conclusion 

In this thesis we have tackled, analytically and experimentally, two problems 

that are among the oldest in fluid mechanics. The first deals with a film of 

fluid flowing down an inclined plane, and the second with the equilibrium of a 

system of point vortices arranged symmetrically around a circular ring. The 

first problem dates back to Nusselts (1916) and is still the subject of interest 

of many researchers for its applications and theoretical interests. In the 

present thesis this problem was approached analytically. In part I (chapter 

2), we have proposed four- and three- equation models. In comparison with 

models of the same dimensions found in the literature, these two models 

involve only the flow parameters namely the flow rate, film thickness, shear 

stress and velocity at the free surface (for the four equation-model). The 

linear stability and instability conducted with these two models is accurate in 

comparison with those obtained with other four equation models and with 

more involved numerical work. However, they present a challenging problem 

for the nonlinear stability analysis; this is due to the presence of cross 

derivatives (time and space). In order to get more insight on the film fluid 

dynamics, a lower dimension model is need; hence, a two-equation model is 

proposed. The two-equation model involves only a flow rate and film 

thickness, and is an improvement of an existing model. Indeed, examining an 

existing model (Usha and Uma (2004)), we remarked that one of the 

boundary condition (tangential component of the dynamical condition at the 

free surface) is not satisfied at the claimed second order with respect to the 
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long wave parameter. This flaw comes from their choice of velocity field. 

Hence, a correction is introduced to their velocity profile which consists of the 

inclusion of the shear stress at the free surface in order to ensure the 

consistency of the boundary condition for the desired accuracy. We have 

shown that the correction is relevant because it induces significant 

differences in the occurring condition of the bifurcations scenarios. Moreover, 

we have shown also that the wave profiles issued from the bifurcation are 

different. 

The extensive modeling effort conducted with ordinary fluid is also conducted 

with electrically conducting fluid flowing down an inclined plane under the 

influence of electrical and magnetic fields. Here we have proposed an 

improved model for higher Reynolds number. Indeed, the model proposed for 

this problem by Korsunky (1999) is very similar to the Shkadov (1968) model 

for ordinary fluid. The Korsunsky model does not predict a Hopf bifurcation 

while we have shown that our model predicts this major scenario. 

In the second part of this these we have tackled, experimentally, the 

problem of a system of point vortices equally distributed on circular ring. The 

outcomes of the present research are important. First, we have confirmed for 

the first time the theories, of Kelvin (1867) and Haveloch (1931), on the 

equilibria conditions of a system of point vortices. Moreover, we have also 

investigated for the first time the dynamics of the point vortices system. We 

found that a system of point vortices rotate at one third the frequency of the 

rotating disk which is almost equal to the frequency of the parent vortex. The 
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point vortices, which are located at the apexes of the polygonal pattern, can 

be considered a manifestation of a secondary flow characterized by a 

frequency which is around one third the frequency of the pattern. This mimics 

the question of whether or not a period tripling is a route, leading such 

swirling flow to chaos; all the more reason why Marques et al (2003) have 

shown that a rotating wave following a Hopf bifurcation rotates at one third 

the frequency of the rotating lateral wall, in similar configuration. Another 

fundamental result is the one which deals with the transition from the 

elliptical vortex core form to the heptagonal one. We found that this 

transition follows a "devil staircase" route. The transition between two 

subsequent patterns starts first as a biperiodic regime before the two 

frequencies becomes synchronic. In topological terms, the transition is a 

destruction of torus into a limit cycle when the two frequencies are locked or 

synchronic. We found that the staircases occur when the ratio of the two 

frequencies is rational at N- l /N , where N is the number of the apexes of the 

polygonal pattern. Furthermore, a transition from a mode N = 3 to N=4 is 

investigated in a frame of reference moving with the pattern. This study 

reveals that the transition can be thought of as energy transfer. Indeed, as 

the value of the control parameter is increased energy embedded in the 

beating waves is released at the transition stage. Since the transition from 

one mode to another, investigated in absolute frame of reference, shows that 

it follows a same route and the transition in the frame of reference moving 

with the pattern should also follow the same route. Hence, we can infer that 

as the control parameter is increased it triggers a wave dynamics N + l , which 
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interacts with the parent mode N (vortex-core pattern) to produce a beating 

wave. This beating wave envelopes another growing wave dynamics where 

its energy is transferred to the parent mode to force the parent mode to 

rotate at the same frequency of N+ l . 

As shown through this manuscript our contributions to the modeling of 

the falling film fluid and to the understanding of the polygonal patterns, 

exhibited by a hollow vortex core, are significant. At the same time several 

fundamental questions arise, each of them can constitute a research 

question. In the case of the problem of falling film, improving its modeling 

remains an open question. As shown, the problem involves at least four 

parameters, but most of the studies devoted to dynamics of falling film were 

restricted to the variation of one parameter, keeping the others constant. We 

believe it is time to conduct a deep comparison between all of the existing 

models using a continuation method which allows the variation of more than 

one control parameter and also allows us to investigate the persistence of the 

bifurcation scenarios predicted by the models found in literature. In light of 

this investigation, a new experiment should be conducted to validate or reject 

the conclusion of the investigation with the continuation method. 

Investigation of the problem in a magnetohydrodynamics frame remains an 

interesting open research question for its promising applications in metallurgy 

and nuclear energy. 
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As shown, our contribution to the investigation of the pattern of the 

hollow-core vortex is original and pushes the limits of our knowledge further. 

At the same time several question arise. The first is the investigation of the 

velocity field and its modifications with the variation of the control parameter. 

In this thesis we have investigated the transition of the pattern in one 

direction (the control parameter is increasing), however does the transition 

from higher mode to lower modes follows the "devil staircases" or energy 

transfer? Another question arises, would the observation depicted and the 

conclusions drawn in this thesis hold, if the rotating disk is in clock direction? 

Through this thesis we have used water as a working fluid, however, as 

shown in Vatistas (1990) higher viscosity fluid, such as oil, produce 

interesting behaviors. Hence, revisiting this work using the image processing 

technique, as used in this thesis, will be interesting and prospective work. 
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Appendix A 

501760 IVeRks+[492800We/?2
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Appendix A 
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