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ABSTRACT 

Investigating the Ionization State and Structure / Function Relationship of Ionizable 

Residues in E. coli Chorismate Mutase - Prephenate Dehydrogenase 

and the Catalytic Trimer of Aspartate Transcarbamylase 

John Manioudakis, Ph. D. 

Modern mass spectrometry has gained tremendous attention in the field of 

enzymology, in particular as a tool for dissecting enzyme mechanism. In this thesis we 

use mass spectrometry in combination with chemical modification to help define the roles 

and ionization states of active site residues that are important for enzyme activity. 

Enzymes of particular interest are chorismate mutase-prephenate dehydrogenase (CM-

PD), a Afunctional enzyme from Escherichia coli that catalyzes two consecutive steps in 

tyrosine biosynthesis, and the catalytic trimer of E. coli aspartate transcarbamylase 

(ATCase), which catalyzes the first committed step in the biosynthesis of pyrimidines. 

All three enzymes are of industrial or medical value as targets for the design of inhibitors 

that can act as either anti-neoplastic agents, antimicrobial agents or herbicides. 

Three cysteine residues are found within each monomer of the dimeric CM-PD. 

Site-directed mutagenesis and kinetic analysis of variants of Cys95, Cysl69 and Cys215 

indicated that only Cys215 is important for both CM and PD activities. Chemical 

modification with cysteine-specific reagents, iodoacetamide and Ellman's Reagent, 

resulted in the loss of both activities but only Cys215 is protected against alkylation by 

ligands of the reaction and therefore near or in the active site. Time-dependent chemical 
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modification followed by peptide mapping indicated that Cys95 is the most reactive 

and/or accessible cysteine followed by Cys215 and Cysl69. The results are discussed in 

terms of a structural model of the E. coli PD domain; Cys215 is near His245, which 

appears to help orient the catalytic base of the dehydrogenase reaction, His 197. 

In E. coli, mutase activity is associated with the N-terminal domain of CM-PD. 

pH rate profiles of the mutase reaction show that there are two residues whose ionization 

states are important for catalysis and/or substrate binding. Studies examining the rates of 

chemical modification of the enzyme with a lysine-specific reagent and the stoichiometry 

of modification indicate that only one lysine residue per monomer, Lys37, is particularly 

reactive. Peptide mapping was used to determine the pKa of the s-amino group of Lys37 

to be 7.5. Chemical modifications, kinetic and binding studies on Lys37Gln, an inactive 

variant, show that Lys37 is critical for CM activity. We propose that Lys37 participates in 

catalysis by protonating the ether oxygen of chorismate in the reaction's transition state. 

ATCase is composed of 3 regulatory dimers and 2 catalytic trimers. Treatment 

with mercurial reagents dissociates the regulatory subunits (RSU) from the catalytic 

subunits (CSU) without compromising their functions. An improved purification scheme 

is outlined for the different subunits. Biophysical studies on an inactive CSU variant, 

Ser52Cys, indicated that the substitution resulted in a more thermally stable enzyme. 

Chemical modification by cysteine-specific reagents and mass spectrometric analysis 

indicated that Cys52 is very reactive/accessible and possesses a pKa of-5.6. The unusual 

characteristics of the Ser52Cys variant are attributed to the markedly depressed pKa of 

Cys52. The biophysical reasons for the ionization state of Cys52 are discussed in terms 

of the crystal structure of the unliganded E. coli CSU. 
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CHAPTER 1 

General Introduction 
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Amino acids possess a pivotal role in the biochemistry of living organisms, both 

as building blocks of proteins as well as intermediates in metabolism (/). 

Proteins accomplish multiple tasks such as catalysis of all (or most) reactions in 

living cells as well as control of virtually all cellular processes. Protein amino acid 

sequences are dictated by the sequence of deoxyribonucleotide bases in the genes that 

encode them. This predetermined sequence of 20 amino acids conveys a vast array of 

physico-chemical properties to proteins, which defines their three dimensional structure, 

their structural stability as well as their biological activity (2). 

Humans do not possess the enzymes necessary for the biosynthesis of all amino 

acids. Only 10 of the 20 amino acids can be synthesized in the human body and are hence 

termed non-essential. The remaining 10 amino acids must be obtained via the dietary 

regime and are thus designated as being essential. Tyrosine, which is one of the three 

aromatic amino acids, is produced via the hydroxylation of phenylalanine, an essential 

amino acid (3). 

In contrast, bacteria, plants and microorganisms are able to biosynthesize all the 

amino acids. 
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1.1 BIFUNCTIONAL CHORISMATE MUTASE-PREPHENATE 

DEHYDROGENASE (CM-PD) in E. coli 

1.1.1 Biosynthesis of Aromatic Amino Acids 

The biosynthesis of the aromatic amino acids phenylalanine, tyrosine and 

tryptophan in plants, E. coli and other microorganisms is funneled through the shikimate 

pathway (Figure 1.1) (4-6), which links the metabolism of carbohydrates to the 

biosynthesis of aromatic amino acids. A series of seven metabolic steps, starting from the 

condensation of phosphoenolpyruvate and erythrose 4-phosphate, yields chorismate, 

which is located at a key branch point in this pathway. Chorismate then serves as a 

precursor for the biosynthesis of phenylalanine, tyrosine and tryptophan via the "common 

pathway", as well as a number of aromatic compounds such as vitamin K, ubiquinone, 

folate and enterobactin (6-8). These aromatic amino acids may then be used as building 

blocks for protein synthesis or as substrates for enzymes in downstream pathways. 

In microorganisms, the shikimate pathway is regulated by both feedback 

inhibition and repression of the first enzyme. Among the enzymes responsible for the 

biosynthesis of aromatic amino acids, several are present as isozymes, multifunctional 

proteins or multienzyme complexes. This diversity allows for regulation at both the gene 

and protein level. In higher plants, no physiological feedback inhibitor has been 

identified, which suggests that the regulation of this pathway may be exclusively at the 

genetic level (6). 
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Figure 1.1: The shikimate pathway 

The shikimate pathway consists of seven enzyme-catalyzed steps. Metabolite symbols: 

DHAP, 3-deoxy-D-arabino-heptulosonate 7-phosphate; DHQ, 3-dehydroquinate; SH, 

shikimate; EPSP, 5-enolpyruvateshikimate 3-phosphate and CHO, chorismate. 
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Many of the genes responsible for the biosynthesis of aromatic amino acids are 

organized in operons, which are controlled by regulatory proteins encoded by the tyrR, 

trpR and pheR genes (9, 10). The proteins resulting from these genes associate with the 

appropriate amino acid co-repressor, which results in the formation of complexes that 

bind at the operator loci. Additional regulation is achieved through attenuation at the 

level of charged tRNA(s) (77). The main form of regulation however is accomplished 

through feedback inhibition of the enzymes present at the beginning of the branch point 

in the shikimate pathway by the end products phenylalanine, tyrosine and tryptophan. 

1.1.2 The Pathway to Tyrosine and Phenylalanine Biosynthesis in E. coli 

The end of the pathway for the biosynthesis of tyrosine in E. coli involves two 

sequential reactions catalyzed by the enzyme chorismate mutase-prephenate 

dehydrogenase (CM-PD) (12, 13). CM (EC 5.4.99.5) catalyzes the Claisen rearrangement 

of chorismate to prephenate, while PD (EC 1.3.1.12) oxidatively decarboxylates 

prephenate to (4-hydroxyphenyl)pyruvate (HPP) and CO2 in the presence of NAD+ 

(Figure 1.2). An aromatic aminotransferase subsequently converts HPP to L-tyrosine 

(73). CM-PD activity is regulated by the end-product of its pathway, L-tyrosine (13). 

However, prephenate dehydrogenase activity is reported to be inhibited to a greater 

extent than the mutase reaction (14). Moreover, NAD+ enhances tyrosine inhibition of 

both mutase and dehydrogenase activities by increasing the enzyme's affinity for the 

modulator (75, 16). 
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Figure 1.2: Aromatic amino acid biosynthesis in E. coli via the "common pathway' 

Figure adapted from D. Christendat (77). 
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The biosynthesis of phenylalanine from chorismate in E. coli also involves a 

bifunctional enzyme, namely chorismate mutase-prephenate dehydratase (CM-PDT). CM 

converts chorismate to prephenate, while PDT catalyzes the dehydration and 

decarboxylation of prephenate to yield phenylpyruvate. Phenylpyruvate undergoes 

transamination to form phenylalanine (Figure 1.2). The end-product phenylalanine 

inhibits both mutase and dehydratase activities (18), with the dehydratase activity being 

affected significantly more than the mutase {19). 

The biosynthesis of tryptophan also stems from chorismate but requires six extra 

steps from a separate pathway illustrated in Figure 1.3. The first two and last two 

reactions are catalyzed by enzyme complexes, namely the anthranilate synthase-

phosphoribosyl transferase complex and the tryptophan synthase complex, respectively. 

Interestingly, both the shikimate and the "common" pathways are not present in 

mammals, which makes the enzymes associated with these pathways attractive targets for 

the design of inhibitors which may serve as herbicides, fungicides and antimicrobial 

agents (20, 21). Glyphosate, the active ingredient in Roundup®, is the best known 

herbicide stemming from this pathway, and functions as an inhibitor of 5-ewo/pyruvyl 

shikimate 3-phosphate synthase (22). Additionally, these enzymes are well recognized in 

bioengineering as targets for aromatic amino acid and secondary metabolite production 

(23). The use of metabolic engineering to produce aromatic amino acids (and their 

synthetic intermediates) has gained considerable attention due to their commercial value 

in the food, pharmaceutical and agricultural industries. For example, phenylalanine is 

used for the production of the low-calorie sweetener aspartame, marketed as 

NutraSweet® (24). Additionally, the Trp biosynthetic pathway has been exploited in 
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E. coli for the production of aromatic compounds such as bio-indigo (25, 26) and 

shikimic acid (27) as well as animal feed. Tyrosine has historically been supplied by 

chemical synthesis and protein hydrolysis since only small volume applications were 

required. The recognition of the importance of tyrosine as a precursor in the synthesis of 

melanin (28), anti-Parkinson's drugs such as L-dopa (29, 30) and 3,4-dihydrohyphenyl-

L-alanine (27) and biodegradable polymers (57) has engaged scientists to explore 

strategies for the manipulation of its biosynthetic route (32, 33), rendering its production 

more environmentally-friendly. The need for these aromatic compounds as well as the 

associated financial implications emphasize the importance of understanding the catalytic 

mechanism and modes of regulation of aromatic amino acid producing enzymes in a 

number of organisms. 
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Figure 1.3: Tryptophan biosynthesis 

The pathway consists of six enzyme-catalyzed steps. 1, anthranilate synthase, 2, 

anthranilate phosphoribosyltransferase, 3, phosphoribosylanthranilate isomerase, 4, 

indole-3-glycerol-phosphate synthase, 5-6, tryptophan synthase enzyme complex. PRPP: 

5-phosphoribosyl-a-pyrophosphate 
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1.1.3 The Bifunctional E. coli Enzyme, CM-PD: The Structural Relationship 

Between the Two Activities 

E. coli CM-PD is a bifunctional homodimeric enzyme with a molecular weight of 

42 kDa per monomer (14, 34). The structural organization of the active sites, in which 

both reactions are catalyzed however, has not been firmly established since no crystal 

structure is available for this bifunctional enzyme. Amino acid sequence alignments of 

the primary sequence of E. coli CM-PD with that of E. coli CM-PDT suggest that the first 

100 amino acid residues of the polypeptide chain of the former are responsible for the 

mutase activity, while the remaining 273 residues constitute the dehydrogenase domain 

(35). Since the product of the first reaction, prephenate, is a substrate for the second 

reaction, there has been much interest concerning the spatial geometry of the active 

site(s) in which the two reactions occur. 

Evidence suggesting two distinct active sites or of specific residues involved in 

catalyzing each of the two reactions stems from observations that the two activities 

exhibit strikingly different pH rate profiles (14, 16, 36) and are inhibited to different 

degrees by both L-tyrosine (14, 16) and a family of dicarboxylic acid-containing 

compounds (malonic acid derivatives) (14). The most compelling evidence however, 

comes from the synthesis and characterization of endo-oxab\cychc diacid, a putative 

transition state analogue of the mutase reaction, which exhibited selective inhibition of 

the mutase reaction without affecting dehydrogenase activity (14). Additionally trans-

2,3-pleiadanedicarboxylic acid has been recently synthesized, which specifically inhibits 

PD without affecting mutase activity (37). The idea of distinct active sites has been 

supported through recent site-directed mutagenesis studies reported by Tumbull et al. 
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(38, 39), where a Hisl97Gln substitution eliminated dehydrogenase activity (39) while 

Arg294Gln affected prephenate binding (38). Both substitutions did not affect the mutase 

reaction. Similarly a substitution in the mutase portion (Lys37Gln) has no effect on 

dehydrogenase activity (38). 

Computer simulation studies in conjunction with channeling experiments using 

radiolabeled substrate demonstrated that some of the prephenate formed from chorismate 

is converted directly to HPP (40), thus providing evidence suggesting that if there are two 

active sites, they are in very close proximity to each other and are structurally 

interrelated. Inhibition studies employing malonic acids were reported by Christopherson 

(41), which provided additional kinetic evidence that the two sites overlap. Lastly, 

protein variants produced by site-directed mutagenesis of residues in the dehydrogenase 

domain (Hisl89Asn, Lysl78Arg, and Arg286Ala) have been characterized which clearly 

affect both CM and PD activities (38, 39). Ganem and coworkers (42) have also reported 

that the CM-PD domains are structurally dependent on each other; expressing each 

domain separately destabilizes the enzymes. 

1.1.4 Chorismate Mutase 

Chorismate mutase catalyzes the only pericyclic Claisen rearrangement reaction 

reported in nature (43). The rearrangement of chorismate to prephenate is possible in the 

absence of enzyme, however the rate of the reaction is accelerated by over a million-fold 

when catalyzed by chorismate mutase (44, 45). Proton NMR studies have indicated that 

10 to 20% of chorismate, with its hydroxyl and enolpyruvyl group in the diaxial 

conformer, exists in equilibrium with the more stable diequatorial form (46). Both the 
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catalyzed and uncatalyzed rearrangement of chorismate occurs by an intramolecular 

mechanism, which is believed to proceed via a transition state following the selection of 

chorismate's less stable diaxial form (45-49) (Figure 1.4). 

The non-enzymatic reaction occurs via the diaxial conformer of chorismate. In 

aqueous solution, the enolpyruvyl group of the diaxial conformer of chorismate is 

stabilized by hydrogen bonding to water molecules thus facilitating bond breakage 

between C5 and the oxygen of chorismate. Similar to the uncatalyzed rearrangement, 

chorismate mutase also selectively discriminates against the diequatorial conformer of 

chorismate {46). The structural features required for catalysis have been determined by 

the synthesis and characterization of numerous chorismate analogues (50, 51). Neither 

the 5,6-olefinic nor the 4-hydroxyl are necessary, but CM requires the allyl vinyl ether 

and the two carboxylate groups for binding chorismate to the active site (52). Kinetic 

studies suggest that the mutase reaction catalyzed by bifunctional CM-PD of E. coli is 

mediated by enzymic acids and bases (36, 38), which have been proposed to either 

protonate the ether oxygen (O7) or heterolytically cleave the ether bond. It has been 

proposed that the rearrangement is facilitated by the protonation of the ether oxygen (O7) 

by an enzymic acid, in conjunction with the attack on the Ci by an electron pair on the 

methylene group of the enol pyruvyl side chain (14). In contrast, the monofunctional 

mutase from B. subtilis specifically binds the diaxial conformer of chorismate, which 

then spontaneously undergoes Claisen rearrangement to prephenate (53, 54). 
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Several chorismate analogues have been synthesized to delineate the structural 

features required for catalysis (50). An ewdo-oxabicyclic diacid inhibitor (57), with its 

bridged ether oxygen and endo conformation of the bridged carboxylate, appears to 

mimic the bicyclic structure of the transition state most effectively; the analogue binds 

about 300 times more tightly to the E. coli enzyme than chorismate (14) and has been 

shown to selectively inhibit mutase activity without affecting dehydrogenase activity 

(36). 

Several natural monofunctional CMs have been crystallized such as those of 

Bacillus subtilis (46), Saccharomyces cerevisiae (55), Thermus thermophilus (56), 

Clostridium thermocellum (57), Mycobacterium tuberculosis (58), as well as the 

engineered mutase domain of the bifunctional E. coli CM-PDT (59), "mini-mutase", 

many of which are complexed with the mutase transition-state analogue. CMs generally 

belong to one of two structurally distinct classes denoted AroH and AroQ (Figure 1.5). 

The less abundant AroH class comprises mainly trimeric a/p proteins with shared active 

sites at the subunit interfaces. In contrast, the protein scaffold of the more abundant AroQ 

class, (which is adopted by the E. coli "mini-mutase" (59), is mainly a-helical and 

dimeric. The dimeric yeast CM is larger and more elaborate than E. coli CM, and 

contains a regulatory domain where allosteric effectors can bind (55). Finally, M. 

tuberculosis CM is part of the AroQ protein family but exhibits a novel fold topology 

(58) and has only one active site entirely contained within each polypeptide (58). 

Interestingly, alignment of the primary sequences of all five mutases shows little 

similarity and their crystal structures reveal that they adopt unique folds, however, the 

electronic environment and the geometry of the active site appears well conserved 
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Figure 1.5: Ribbon diagram representations of the AroQ and AroH folds 

The AroH class is organized as a trimeric a/p-barrel fold; B. subtilis and C. thennocelh 

CMs are representative of this class. The AroQ class is completely helical and includes 

CMs from E. coli and S. cerevisiae 
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The mutase domains of CM-PD and CM-PDT are homologous; hence the 

structure of the CM portion of CM-PDT has provided valuable insights as to the residues 

that may participate in the mutase reaction catalyzed by CM-PD. In Figure 1.6, Lys39 of 

the "mini-mutase" forms an electrostatic bond with the Cn carboxylate group and a 

hydrogen bond with O7. By homology, this suggests that Lys37 of CM-PD is important in 

stabilizing the intermediates in the mutase reaction. Specifically, either it may lock the 

chorismate into the diaxial conformation, facilitating the formation of the transition state, 

in which the bridge atoms are in the chair-like conformation or protonate the ether 

oxygen of chorismate in the TS to promote the rearrangement {14). Site-directed 

mutagenesis performed on CM-PD and the mini-mutase (39, 60, 61) has shown that the 

cationic residue Lys37 (Lys39 in the mini-mutase) is indeed crucial for CM activity. 

Substitution of this Lys residue by Ala or Gin completely abolishes mutase activity 

without causing a significant effect on dehydrogenase activity in CM-PD (38). The 

structures of CM complexed with ewc/o-oxabicyclic acid for the B. subtilis (62), S. 

cerevisiae (43) and the E. coli "mini-mutase" enzyme have provided the template for the 

design of extensive mutagenesis experiments, through site-directed approaches (60, 61) 

and directed evolution (63). These results, in combination with structural data, bring to 

light the importance of the active site groups Lys37 and Gln88 in the stabilization of the 

ether oxygen and of Lys39 and Argi l ' in positioning the Cn carboxylate group in the 

highly charged region of the active site (Figure 1.6). 

16 



Arg16 
Arg9 

i l l* J \ Arg43 
HN Ar§51 

Asp4B 
Gium 

Asn 194 *•* 

'G!u52 
GluSO 
GluiSB 

Arg2S 

H /Arg28 
Arq157 

Figure 1.6: Schematic diagram of the crystal structure of the active site of yeast 

chorismate mutase and E. coli "mini-mutase" complexed with endo-

oxabicyclic diacid 
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Additional evidence suggesting that a cationic residue, possibly Lys37, is 

involved in chorismate binding arises from the pH dependence of (V/K)ChOTismate. Residues 

titrating in this pH profile are associated with the free enzyme and/or substrate and are 

hence essential for substrate binding and/or catalysis. Early work by Turnbull et al. (36) 

showed that the pH dependence of (V/K)cu0Tlsmale is a bell-shaped curve and indicated the 

involvement of three ionizable groups (Figure 1.7). The slope of the acid and alkaline 

limbs of +1 and -2 , respectively suggest that two groups had to be protonated and one 

deprotonated for activity. One of these protonated residues may be Lys37. Additional 

pH-dependent activity profiles described for a variant of the mini-mutase (Gln88Glu) 

and for wild-type CM from yeast (contains Glu at position 246) indicated the importance 

of a protonated side chain at this position. 

There have been a number of mechanisms proposed for the CM reactions that 

have been derived from experimental and/or computational chemistry studies (64), such 

as acid/base catalysis, nucleophile-assisted dissociative (48) and transition state 

stabilization (or conformational trapping); the catalytic mechanism of the CM-catalyzed 

reaction continues to be under intense study. 
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Figure 1.7: pH profile of V and P7̂ T for the reaction catalyzed by E. coli CM 

This figure was adapted from Turnbull et al. (36). 

1.1.5 Prephenate Dehydrogenase 

Prephenate dehydrogenase catalyzes the oxidative decarboxylation of prephenate 

in the presence of the cofactor NAD+ to yield HPP and CO2. This reaction is essentially 

irreversible, driven by the aromaticity of HPP. The non-enzymatic reaction has not been 

observed, however, under acidic condition, prephenate can rapidly undergo 

decarboxylation to give phenylpyruvate. The acid-assisted decarboxylation occurs via a 

stepwise mechanism, where protonation of the hydroxyl group of the prephenate leads to 

the formation of a resonance stabilized carbonium ion with subsequent decarboxylation. 
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On the contrary, in the enzyme-catalyzed reaction, decarboxylation and hydride transfer 

are concomitant (65). This mechanism was suggested by isotope effect studies performed 

by Hermes et al. (65) in the presence of prephenate and prephenate analogues. Using the 

substrate analogue deoxoprephenate, deuterated at C4, they observed an isotope effect for 

the hydride transfer to NAD+ (65). Furthermore, using the natural abundance of 13C in the 

substrate, they observed a carbon isotope effect for the cleavage of the C-C bond between 

the cyclohexadiene ring and the ring carboxylate. Interestingly, the carbon isotope effect 

obtained with the deuterium versus the hydrogen at position C4 was smaller than with the 

natural C indicating that both the deuterium and the C isotope effects are in the same 

transition state; that is, deuterium has made the !3C-sensitive step more rate-limiting by 

slowing it down (65). 

Initial velocity, product and dead-end inhibition studies have established that the 

kinetic mechanism of the E. coli PD reaction follows a sequential mechanism (34). 

Furthermore, product and dead-end inhibition studies have established that PD conforms 

to a rapid-equilibrium, random kinetic mechanism with two dead end complexes, 

enzyme-NADH-prephenate and enzyme-NAD+-hydroxyphenylpyruvate (66). Isotope 

trapping with the enzyme-NAD+ complex suggested that catalysis is the rate-limiting step 

since only a small proportion of the enzyme was trapped as [' C]NADH (66). A similar 

reaction mechanism has been reported for CM-PD from A aerogenes (15). 

The pH dependence of the log V of the PD-catalyzed reaction showed that a single 

ionizing group was titrating (pK3 6.5) thus suggesting that this group had to be 

deprotonated for maximum activity (36). In contrast, the log( F//Qprephenate pH profile 

displayed, in addition to the deprotonated group, a second ionizing group with a pK3 
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value of about 8.4 which must be protonated for the reaction to occur. This group was not 

observed in the V profile and since prephenate does not possess a group titrating in this 

region, they proposed that this enzyme residue was involved in prephenate binding (36). 

Similar results for the (K/Ar)prephenate profile were obtained by Hermes et al. (65). 

Moreover, their results from temperature and solvent perturbation studies (65) suggest 

that the catalytic group is likely a histidine. 

Based on the results of pH profiles (36, 65), isotope effects (48, 67), chemical 

modification of the enzyme with diethylpyrocarbonate (DEPC) (38), peptide mapping 

(38), and site-directed mutagenesis (39, 68), a model for the catalytic mechanism has 

been put forward (Figure 1.8). It has been proposed that prephenate and NAD+ bind to 

distinct subsites in the PD domain. An enzymic hydrogen bond acceptor (Hisl97, pKa 

6.7) is believed to polarize the 4-hydroxyl group of prephenate, lowering the activation 

barrier to facilitate decarboxylation and hydride transfer of prephenate to NAD+ (68). 

Replacement of the histidine by an asparagine reduced the dehydrogenase activity by five 

orders of magnitude (39). The two chemical steps occur simultaneously, driven by the 

aromaticity of the product and also possibly because the ring carboxylate is near and/or in 

a hydrophobic pocket promoting decarboxylation (39). Unfortunately, attempts to 

identify the group titrating in the pH-rate profile with a pK3 value of about 8.4 involved in 

the binding of prephenate have failed. 

Furthermore, Arg294 was identified to be critical for the binding of prephenate as 

suggested by the 120-fold increase in Km for prephenate observed when Arg294 was 

substituted by a glutamine (68). These inhibition studies led to the proposal that Arg294 

interacts electrostatically with the ring carboxylate of prephenate (Figure 1.8). Several 
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substrate analogues, all lacking the ring carboxylate group at Ci relative to prephenate, 

exhibited similar dissociation constants with the Arg294Gln variant with wild-type 

enzyme. Multiple sequence alignments of prephenate dehydrogenases from a number of 

organisms shows these residues are conserved. 

Figure 1.8: A possible mechanism of the PB reaction involving ionizable amino acid 

residues at the active site 

Unknown group (?) interacts with side chain carboxylate. Adapted from Christendat and 

Turnbull (68). 
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The recently solved three-dimensional crystal structure for the monofunctional 

prephenate dehydrogenase from the hyperthermophile Aquifex aeolicus clearly shows 

that the residues corresponding to Hisl97 and Arg294 in E. coli (Hisl47 and Arg250, 

respectively) play a role in catalysis and/or substrate binding (69). The imidazole ring of 

His 147 (equivalent to His 197 in E. coli) is within hydrogen bonding distance of the 

hydroxyl group of prephenate. Interestingly, in the enzyme-NAD+ crystal structure, the 

electron density map around Arg250 was poorly ordered indicating considerable side 

chain flexibility (69) but in the presence of the product HPP (which does not possess the 

ring carboxylate), Arg250 was shown to interact with the side chain carboxylate of the 

product (submitted JBC). 

1.1.6 Allosteric Regulation 

Allosteric enzymes are widely distributed in living organisms and their 

interactions are important in many biological processes. Allosteric regulation is thought 

to directly control protein function via conformational changes to a given protein 

structure, induced by the binding of an effector at a site other than the orthosteric site. 

The changes are transmitted through the bulk of the protein to the catalytic site and hence 

modulate the rate of the reaction with the substrate. Consequently, the rate vs. substrate 

concentration plot displays a sigmoidal rather than hyperbolic dependence. 

Most allosteric enzymes are oligomeric and are often found at key branch points 

in metabolic pathways. Two notable models have been proposed, notably the Monod, 

Wyman and Changeux concerted model (70) (MWC model) and the Koshland, Nemethy 

and Filmer (77) (KNF model) sequential model. In the MWC model, allosteric control in 
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proteins displays cooperative functional behavior along with feedback inhibition (70). An 

equilibrium exists whereby all of the protein subunits exist in low activity or high activity 

states and the relative amounts of the protein in its different forms depend on the degree 

of saturation with the substrate. This facilitated the understanding of kinetic results 

obtained with hemoglobin, aspartate transcarbamylase (ATCase), threonine deaminase 

and many other well known enzymes. In contrast, the KNF model for cooperative 

behavior, proposes that a conformational change in one subunit does not necessarily 

induce a change in other subunits. Each subunit is allowed to change its tertiary structure 

on substrate binding permitting alteration of the chemical activities of its nearest 

neighbors. In both theories, the enzyme subunits exist in a tense (less active) or relaxed 

conformation (more active). 

Tyrosine, the end product of the pathway, inhibits both dehydrogenase and 

mutase activities (72) and recent crystallographic studies on PDs from H. influenzae 

(unpublished) and A. aeolicus (JBC submitted) suggest that it does so by binding to the 

same active site to which prephenate binds. However, the mechanism of the inhibition is 

still under debate. To explain the sigmoidal kinetics produced in the presence of L-Tyr 

and prephenate, several mechanisms have been proposed. Analytical ultracentrifugation 

experiments provided evidence that tyrosine inhibits enzyme activity by promoting the 

formation of an inactive tetramer from the active dimer (16). In contrast, sucrose density 

experiments showed no evidence for a quaternary structural change upon inhibition (72, 

73). Furthermore, it has been suggested through analysis of kinetic models that there are 

tertiary structural changes in the enzyme propagated through the subunits that promote 

the formation of the inactive conformation of CM-PD (74). Work by Liitke-Eversloh and 
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Stephanopoulos (75) has identified residues at the C-terminus of the enzyme that are 

distant from the proposed active site, that are important for L-Tyr inhibition. In contrast, 

the Turnbull lab has identified active site residues that play a role in L-Tyr binding 

(unpublished). 

1.1.7 Role of Cysteines in CM-PDT and CM-PD ofE. coli 

Sulfhydryl groups of cysteine residues of peptides and proteins are generally the 

most reactive of all amino acid side-chain moieties under normal physiological 

conditions. They may be readily alkylated, acylated, arylated, and oxidized, and will form 

complexes with many heavy-metal ions (76). Sulfhydryl groups are important to both the 

structure and function of many proteins. In the protonated form they are capable of 

providing weak hydrogen-bonding in relatively water-free environments, such as those 

which occur within the protein or at the active sites. But it is their ability to dissociate to 

the strongly nucleophilic anion at moderately alkaline pH that renders these groups very 

reactive towards a variety of reagents (76, 77). 

E. coli CM-PD is composed of 373 amino acids, three of which are cysteines at 

positions 95, 169 and 215. Cys95 is found in the mutase portion of the enzyme whereas 

Cysl69 and Cys215 are located in the dehydrogenase domain. Previous studies using a 

combination of chemical modification, peptide mapping and kinetic analysis have 

indicated that Cys215 is important for maintaining the structural integrity of both the 

dehydrogenase and mutase active sites (14, 35). In contrast, studies using similar 

techniques revealed that the homologous residue in CM-PDT (Cys216) is critical for 

prephenate binding but plays no role in the mutase reaction (35, 78, 79). Site-directed 
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mutagenesis has also pinpointed Cys374 as an important residue in the binding of 

phenylalanine to PDT (80). Furthermore, the monofunctional chorismate mutase from 

B. subtilis contains a Cys residue (Cys75) at the active site, which has been shown by X-

ray diffraction studies to interact with the TS analog {81). 

26 



1.2 ASPARTATE TRANSCARBAMYLASE (ATCase) IN E. coli 

Aspartate transcarbamylase (ATCase) (EC 2.1.3.2) catalyzes the first committed 

step in pyrimidine biosynthesis, namely the carbamylation of L-aspartate from carbamyl 

phosphate to yield carbamyl aspartate with the concomitant release of inorganic 

phosphate (Figure 1.9). The ATCase mechanism implicates a precatalytic conformational 

change of the enzyme-carbamyl phosphate-L-Asp ternary complex to its activated form, 

which facilitates the deprotonation of the a-amino group of L-Asp by an active site base. 

The carbonyl carbon of carbamyl phosphate then undergoes nucleophilic attack by the 

a-amino group of L-Asp, resulting in the formation of a tetrahedral intermediate. A 

subsequent intramolecular proton transfer between the positively charged amino group of 

L-Asp and one of the negatively charged phosphate oxygens leads to the collapse of the 

tetrahedral intermediate to form carbamylaspartate and inorganic phosphate (82, 83). 

Carbamylaspartate is then funneled down the pyrimidine biosynthetic pathway for the 

synthesis of CTP and dCTP (Figure 1.10). These nucleotides are subsequently used for 

the biosynthesis of RNA and DNA, respectively. 
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Figure 1.9: Carbamylation reaction catalyzed by ATCase 

ATCase in bacteria is present as a monofunctional enzyme, whereas in higher 

organisms it is present within a multifunctional enzyme consisting of carbamyl-phosphate 

synthetase 2, aspartate transcarbamylase and dihydroorotase. ATCase from E. coli is the 

most extensively studied allosterically regulated enzyme. In addition to catalyzing an 

enzymatic reaction in the organism, it is also present at the beginning of a key metabolic 

pathway, which also confers additional regulatory responsibilities (82) (Figure 1.10). 

Enzymes of such importance are generally fairly large and contain multiple 

subunits (82). The subunit structure of ATCase was elucidated in two separate 

crystallographic investigations by Weber (84) and Lipscomb (85). The holoenzyme is a 

heterododecamer with a molecular weight of approximately 300 kDa. It consists of six 

copies of each of two distinct polypeptides, which are classified as regulatory (R) and 

catalytic (C), stemming from the nature of their function. Within the CeR.6 complex, the 

catalytic chains are arranged as two catalytic trimers, denoted CSU, whereas the 

regulatory chains are arranged as three regulatory dimers, denoted RSU. The 17 kDa 

H , N — C — O — P — O 

Carbamoyl Phosphate Aspartate 
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regulatory polypeptide is composed of 158 amino acids, while the 33 kDa catalytic 

polypeptide is composed of 310 amino acids. The overall tertiary structure of the 

holoenzyme is arranged in such a way as to possess D3 symmetry, that is, it has a 3-fold 

rotational axis, which is perpendicular to three equivalent 2-fold rotational axes that are 

60 degrees apart (86) (Figure 1.11). 
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Figure 1.10: The de novo pathway for biosynthesis of pyrimidine nucleotides 

The enzymes are: 1, carbamyl phosphate synthetase (CPSase); 2, aspartate 

transcarbamylase (ATCase); 3, dihydroorotase (DHOase); 4, dihydroorotate 

dehydrogenase (DHODHase); 5, orotate phosphoribosyltransferase (OPRTase); 6, OMP 

decarboxylase (ODCase); 7, UMP kinase; 8, nucleoside diphosphokinase; 9, CTP 

synthase (CTPSase). 
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Figure 1.11: Subunit arrangement in ATCase holoenzyme 

The RSUs are shown in pink (r) and the CSUs are shown in blue (c). A) View down the 

three-fold symmetry axis. (B) Perpendicular view. Picture adapted from Krause et al. 

(87). 
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Each type of subunit is composed of two separate domains (Figure 1.12); the 

catalytic chain consists of an aspartate and a carbamyl phosphate binding domain, 

whereas the regulatory chain consists of an allosteric effector and a Zn+ binding domain 

(88). The holoenzyme can be separated into its regulatory and catalytic components upon 

treatment with neohydrin (a mercurial agent) with negligible effects on the intrinsic 

properties of the isolated subunits; the RSU can still bind the allosteric regulators but 

possesses no catalytic activity, whereas the CSU is catalytically more active but cannot 

be allosterically regulated as in the holoenzyme (89, 90). 

ATCase possesses an extremely complex kinetic behavior exhibiting positive 

cooperativity (homotropic effect) for either of the substrates (91, 92). Furthermore, 

kinetic studies have been performed in order to determine the heterotropic effects of 

nucleotides on the activity of ATCase (91); CTP, the end product of the reaction, 

functioning as an allosteric inhibitor whereas ATP is an allosteric activator. Moreover, 

UTP alone does not appear to affect ATCase activity except in the presence of CTP, in 

which case, enzyme inhibition is increased (93). 

Allosteric interactions are known to be crucial in the regulation of enzyme activity 

(70). Kinetic studies using a engineered holoenzyme composed of a 70-amino acid zinc-

binding polypeptide from the regulatory chain with intact WT and variant CSUs have 

shown that the homotropic properties of this enzyme are dependent on the presence of 

both polypeptides within the quaternary structure of the enzyme (94). 

A C-terminal zinc domain on the regulatory polypeptide contains a structural Zn+ 

ion coordinated by four cysteines 109, 114, 138 and 141 which also mediate R-C 

interactions. This ion is required for structured assembly but does not participate in 
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. The Zn domain hence possesses a pivotal role in the association of the 

RSU to the CSU and treatment with neohydrin causes the holoenzyme to dissociate into 

its catalytic and regulatory subunits (95). Moreover, treatment of the holoenzyme with 

mercurial reagents also results in altered allosteric properties for ATCase; its activity is 

significantly increased but CTP's inhibitory capabilities are abolished; these results 

clearly suggest distinct sites of binding for the allosteric regulators and the substrates 

(96). 

Much effort has been devoted towards understanding the nature of the tertiary and 

quaternary structural changes upon binding of substrates and allosteric effectors. 

According to the Monod Wyman Changeux model, ATCase has two conformational 

states: a more active R state and a less active T state. The substrates, as well as the 

bisubstrate analogue B-(Phosphonacetyl)-L-aspartate (PALA), cause complex changes in 

its quaternary structure resulting in an increase in its hydrodynamic volume, which favors 

the R state of the holoenzyme (97). Newell et al. (98) established by equilibrium dialysis 

experiments using H-labeled PALA, that the dissociation constant of PALA is 110 nM 

for the ATCase holoenzyme and 95 nM for isolated catalytic subunits. At low 

concentrations, PALA binding promotes a closure of the hinge between the C chain 

domains by 8°, while the region between the allosteric and Zn domains expands. On the 

quaternary structural level, the holoenzyme undergoes a shift of 11 A along and a rotation 

of 7° about the threefold axis and a 15° rotation of the regulatory chains about the three 

twofold axes. Binding of ATP and CTP, cause only minor changes in the quaternary 

structure (99). The unliganded structure as well as that bound with CTP is termed the T 
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state. ATP or CTP binding to the regulatory subunits of ATCase induce global 

conformational changes, hence promoting the T—>R transition {100, 101). 

Aspartate domain 

Allosteric domain Carbamyl phosphate domain 

Figure 1.12: Domain structures of the catalytic and regulatory chains 

The catalytic chains have two ligand-binding domains, the N-terminal 

carbamylphosphate domain and the C-terminal aspartate domain. The regulatory chains 

are also composed of two domains, namely the allosteric domain, which binds the 

effectors, and the zinc domain, which contains a structural zinc atom. Picture adapted 

from Roche, O. and Field, M.J. (102). 
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Key amino acid side chains are usually involved in the binding of substrates 

within enzyme active sites. The identity and role of these residues has been probed using 

x-ray crystallography for the visualization of the crystal forms of ATCase bound to either 

its substrates, carbamyl phosphate and/or substrate analogues. Most recently, lower 

resolution NMR structures have now been determined for the holoenzyme in the presence 

and absence of ligands (Lipscomb, W.N., unpublished). Site-directed mutagenesis and 

hybrid subunit exchange experiments have demonstrated that the catalytic active sites are 

shared at the interfaces between adjacent catalytic chains (103). Several residues have 

been identified as crucial for catalysis: Ser52, Thr53, Arg54, Thr55, Argl05, Hisl34, 

Glnl37, Argl67, Arg229, Glu231, and Ser80' and Lys84' from an adjacent catalytic 

chain {104) (Figure 4.5). Thus, the active site is a highly positively charged pocket. 

Chemical modification experiments using 5,5'-dithiobis(2-nitrobenzoate) (DTNB), a 

cysteine-specific chemical modifying reagent, show that Cys47, the sole cysteine residue 

in the catalytic polypeptide, is too far from the active site to directly interact with the 

substrates/PALA(/05) (Figure 1.13). 

Random mutagenesis experiments combined with genetic complementation were 

conducted by Jenness and Schachman (106). Their experiments yielded a mutant 

holoenzyme where Ser52 from the catalytic subunit was replaced with a phenylalanine 

residue (Ser52Phe). While the overall structural properties did not appear altered as a 

result of the substitution (extinction coefficient at 280 nm, sedimentation coefficient, 

electrophoretic mobilities of the chains), the variant was catalytically inactive and was 

unable to undergo the T^>R transition upon binding of PALA (87, 107). 
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In order to better understand the structural importance of the substitution at 

position 52 in the holoenzyme, Xu and Kantrowitz constructed the Ser52Ala variant 

holoenzyme by site directed mutagenesis (J 08). The variant holoenzyme had markedly 

altered kinetic parameters; kcat was decreased 670-fold, the Km for aspartate and carbamyl 

phosphate increased 5.6-fold and 23-fold, respectively, with a loss of cooperativity in the 

binding of either substrate. The kinetic parameters of the isolated catalytic subunit were 

also affected but not to the same extent as in the holoenzyme; kcaX showed an 89-fold 

decrease, while the A'm for aspartate and carbamyl phosphate increased 6-fold and 53-

fold, respectively. The K& for carbamyl phosphate increased 75-fold and K\ for PALA 

increased 5.8-fold relative to the WT CSU. The conclusions drawn from these studies 

have shown that the Ser52 hydroxyl moiety is involved in the binding of carbamyl 

phosphate as well as influencing the T—>R transition of the holoenzyme, possibly by 

stabilizing the enzyme-carbamyl phosphate complex {108). 

Markby et dl. coupled full length catalytic trimers to a 70-amino acid zinc-

containing peptide originating from the RSU in order to simplify the ATCase 

holoenzyme model (89). This engineered holoenzyme exhibited markedly different 

kinetic properties compared to the WT holoenzyme, and surprisingly also corrected the 

catalytic differences of the Lysl64Glu variant. Amino acid substitutions at position 52 

were further investigated in a follow-up study by Peterson et al. (J09). They showed by 

differential scanning calorimetry that the Tm of Ser52Ala CSU increased by 10.2°C 

relative to the WT CSU. Surprisingly, the Ser52Cys variant further increased the change 

in Tm to 13.3°C. The same degree of thermal stability was also observed for an 

engineered holoenzyme consisting of mutant CSU complexed with an isolated 70-amino 
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acid zinc-binding peptide originating from the RSU. Although these results were striking, 

Peterson's main focus was to determine the effects of the single point mutations on the 

thermal stabilities, notably the Tm, of the isolated single point variant CSUs compared to 

their respective holoenzymes, not the underlying biophysical reasons for the thermal 

stability. 

Thr5 

Hisi: 

;167 

*Zfr^PALA 

Gln231 

• Lys24' 

Figure 1.13: Schematic representation of WT ATCase CSU active site residues 

interacting with PALA 
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Basic amino acids are colored in red, polar uncharged residues in blue, Ser (Cys) 52 in 

green, Cys47 in black, residues from an adjacent monomer are in light grey and the 

bisubstrate analogue, PALA, in teal. The figure was generated using the PyMol software. 

(PDBID: W09(110)) 

1.2.1 Chemical Modification of Cysteine and Lysine Residues of Proteins 

Chemical modification of proteins serves as a useful tool in biochemistry. Its 

applications allow for, but are not limited to, the determination of side chain reactivities, 

the quantitation of individual amino acids, development of cross-linking reagents, 

blocking reagents for peptide synthesis as well as reagents for specific cleavages of 

peptide bonds {111). Chemical modification can generate information that is 

complementary to that provided by site-directed mutagenesis, and has been instrumental 

in the identification of enzymic groups important for the biological function of enzymes 

and proteins (112-115). 

Despite the informative nature of this technique, interpretation of chemical 

modification must be performed cautiously since several factors regulate the reactivity of 

amino acids. First and foremost, reactivity is highly dependent on the surface exposure of 

the amino acid side-chain as well as its pKa, both of which are a function of the three-

dimensional structure and the spatial arrangement of amino acids within the protein. 

Cysteine reactivity is also governed by the reactivity of the thiol-reactive reagent, the 

charge compatibility of the reagent, the environment of the cysteine, the stability of the 

bonds formed, and lastly, the nature of the leaving group of the sulfhydryl reagent. 

Hence, prominent reactivity of a given group does not automatically implicate this amino 

acid as being important in protein function. Loss of a given catalytic activity upon 
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reaction of a particular reactive amino acid may simply be due to steric hindrance caused 

by the chemical adduct, therefore placing its side chain in proximity of a catalytically 

important residue. Additional requirements for the definite assignment of importance for 

a specific residue include: (1) the correlation of loss of catalytic activity with the 

stoichiometric incorporation of a reagent into this group; (2) inhibition of inactivation in 

the presence of substrate or product of the reaction; (3) the observation that inhibition is 

invariant with the type of modifying reagent used, therefore requiring the use of a variety 

of reagents with different characteristics. As a consequence of the above mentioned 

requirements for the firm establishment of the importance of an amino acid, chemical 

modification should be used in combination with site-directed mutagenesis. Moreover 

this traditional approach of residue identification using site-specific reagents has been 

revitalized by recent advances in protein mass spectrometry, which allow a clearer 

understanding of the results of modification {116-118). 

In this thesis, the role and reactivity of cysteine and lysine residues in E. coli CM-

PD as well as cysteine residues in E. coli ATCase, are under investigation. Hence, the 

following sections provide a brief description of the chemistry of the reagents used to 

modify these amino acids, which is necessary for the understanding of the present work. 
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1.2.2 Enzyme Reaction with DTNB (Ellman's reagent) 

Ellman's reagent, also known as DTNB (5,5'-dithio-bis(2-nitrobenzoic acid)), has 

long been used as a reagent in sulfhydryl group determination {119). It is an aromatic 

disulfide which specifically reacts with aliphatic thiol groups (Figure 1.14) to form a 

mixed disulfide of the protein with concomitant release of 2-nitro-5-thiobenzoate in 1:1 

stoichiometry. 

The advantage of using DTNB is the ability to monitor the reaction by UV 

spectrophotometry since its absorbance is negligible in the native form but intense yellow 

at 412 nm when it reacts with thiolate groups on proteins under mild alkaline conditions 

(pH 7-8) upon release of the 2-nitro-5-thiobenzoate anion (TNB2") (Figure 1.14). Its 

disadvantages stem from the instability of the TNB adduct at both low and high pH hence 

eliminating its candidacy for use in mass spectrometry {120). 

-o2c, 

+H,N CH—C O-
I 

o = c 
f \—S—S-^^—H02 * \mi ^ CH-C-S—S-Hx J—No, 

I" ™3* 
Ellman's reagent Cysteine thiolate Cys-TNB adduct 

Figure 1.14: Reaction of cysteine thiol with DTNB (Ellman's reagent) 
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1.2.3 Enzyme Reaction with Iodoacetamide 

Iodoacetamide (IAM) has long been used as a cysteine residue alkylating agent to 

eliminate cystine formation within proteins and hence facilitate protein digestion and 

analysis {121). 

IAM is an alkyl thiol and is small in size relative to DTNB, which is an aromatic 

disulfide. Its physico-chemical properties render it less reactive than DTNB; it mainly 

reacts with cysteine residues but has also been reported to modify histidine and 

methionine residues but to a lesser extent, yielding the corresponding carboxamidomethyl 

derivative (77, 122). The IAM-mediated alkylation reaction involves the nucleophilic 

attack of the cysteine thiolate on the iodine group of the reagent, which acts as a leaving 

group (Figure 1.15). The alkylation of cysteine residues is irreversible and the adduct 

formed is stable under acidic conditions suitable for mass spectrometric analysis, 

exhibiting a spectral shift of+57 amu. 
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Iodoacetamide adduct (+57) 

Figure 1.15: Reaction of cysteine thiol with iodoacetamide 
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1.2.4 Enzyme Reaction with Trinitrobenzene Sulfonic Acid (TNBS) 

The reaction of 2,4,6-trinitrobenzenesulfonic acid (TNBS) with amino groups has 

been invaluable in studying the reactivity and function of the £-amino groups of lysyl 

residues in proteins {123, 124). The reaction of TNBS with the primary amino groups in 

proteins is shown in Figure 1.16. The trinitrophenylated adduct has an extinction 

coefficient at 345 nm (£345) of 14500 M"1 cm"1 making its formation easy to monitor by 

UV spectrophotometry. The rate of modification is a sensitive indication of the amino 

group's basicity, as an amino acid must be in the deprotonated state in order to react with 

TNBS (77). An important reason for selecting this reagent is that the chemical 

modification is irreversible, allowing for the ESI-MS detection of the adduct shifted by 

+211 amu; the TNB-adduct may not be seen by MALDI because it absorbs strongly at 

the emission wavelength of the powerful laser source and is hence photodegraded (38). 

R—NH2 + 

HO,S 

0?N 

R — H N 

0,N 

H2S03 

Primary Amine 2.4.6-Trinitrobenzene Sulfonic Acid 
(TNBS) 

Trinitrophenylated Adduct 

(+211 amu) 

Figure 1.16: Reaction of lysine £-amino with TNBS 
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1.3 SCOPE AND ORGANIZATION OF THIS THESIS 

In chapter two, the importance of three Cys residues in the activity of CM-PD are 

assessed by site-directed mutagenesis and chemically modifying WT and variant forms of 

the enzyme. Furthermore, this chapter shows the utility of mass spectrometry in verifying 

the amino acid substitutions and in assessing the reactivity and accessibility of the Cys 

residues in the native protein. 

In chapter three, we examine the reactivity and ionization state of Lys37 in WT 

CM-PD using TNBS for chemical modification. A Lys37Gln variant was generated by 

site-directed mutagenesis and was purified to homogeneity. Activity and binding studies 

by differential fluorescence spectroscopy using endo, the transition state analogue, were 

performed on both WT and Lys37Gln CM-PD. Ultimately, the pKa of the Lys37 residue 

in WT CM-PD was determined using chemical modification by TNBS in combination 

with mass spectrometric peptide mapping. The biophysical reasons for the altered pKa of 

Lys37 are rationalized based upon a model that was generated using the crystal structure 

from the E. coli "mini-mutase". 

In chapter 4, an improved and more efficient nickel affinity purification scheme 

for His-tagged ATCase holoenzyme and its separation into its constituent subunits is 

examined. The biophysical properties of the resulting purified CSUs were assessed using 

far-UV CD, fluorescence spectroscopy and mass spectrometry. The thermal stabilities of 

the WT and Ser52Cys CSUs were also reexamined using far-UV CD. Assessment of 

surface accessibility and reactivity of Cys47 in the WT CSU and both Cys47 and Cys52 

in the Ser52Cys variant CSU was achieved using chemical modification by DTNB and 

monitored by UV spectroscopy. Ultimately, the pA"a and hence the ionization state of 
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Cys52 in the Ser52Cys ATCase CSU variant was examined using chemical modification 

by IAM and GAM in conjunction with mass spectrometry. On the basis of the generated 

results and available crystal structures, we attempt to provide a rationale for the variant's 

altered biophysical and kinetic properties. 
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CHAPTER 2 

Determination of the Structure/Function Relationship of Cysteine Residues in 

E. coli Chorismate Mutase - Prephenate Dehydrogenase 
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2.1 INTRODUCTION 

CM-PD of E. coli contains 373 amino acids, three of which are cysteine residues 

at positions 95, 169 and 215. Two of these cysteine residues, Cysl69 and Cys215, are 

located in the dehydrogenase domain whereas Cys95 is found in the mutase encoding 

region of the enzyme. Previous chemical modification studies of CM-PD with DTNB and 

iodoacetamide have shown that one sulfhydryl per subunit (Cys215) was particularly 

reactive and the integrity of this group was essential for both enzyme activities (14, 35). 

In contrast, alkylation of a homologous residue in CM-PDT (Cys216) resulted in the loss 

of dehydratase activity with only a 5% decrease in mutase activity. More recently, site-

directed mutagenesis of CM-PDT has established that substitutions at Cys216 

significantly diminished prephenate binding with little or no loss of mutase activity, 

suggesting that this residue interacted with prephenate. Other cysteine residues have been 

postulated to play important roles. Cys374 was identified as a residue important in the 

binding of phenylalanine to the CM-PDT (80). In addition, the monofunctional CM from 

Bacillus subtilis contains an active site cysteine residue (Cys75) which has been shown 

by X-ray diffraction studies to interact with the ring hydroxyl group of the transition state 

analog (81). Moreover, it has also been postulated for CM of E. coli CM-PD that an 

active site nucleophile might assist in the rearrangement through acid/base catalysis (48). 

There have been no published site-directed mutagenesis studies examining the 

importance of any cysteine residues in E. coli CM-PD. Our aims in this study were to 

conduct structural investigations of CM-PD, in particular to examine the reactivity of the 

sulfhydryl groups and to assess their importance for enzyme activity. This has been 
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accomplished through kinetic characterization of site-directed variants of the enzyme and 

by extending the chemical modification studies to those of the variant forms of the 

proteins performed in the presence or absence of substrates and substrate analogs. 

Furthermore, a 3D structural model for the PD portion of E. coli CM-PD has been 

generated using an internet based comparative modeling software package using the 

unpublished crystal structure of the PD portion of CM-PD from H. influenzae. From our 

studies we propose a role for Cys215 in E. coli CM-PD as a template. 
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2.2 MATERIALS AND METHODS 

2.2.1 Chemicals 

Chorismate was isolated from Klebsiella pneumonia 62-1 as described by Rieger 

and Turnbull {125) and prephenate was prepared as described by Dudzinski and Morrison 

(126). NAD+ (grade I) was purchased from Boehringer-Mannheim. Stock solutions of 

these substrates were prepared in MilliQ water or in an appropriate buffer and the pH 

adjusted to 7.5 prior to storage at -20°C. Their exact concentrations were determined 

spectrophotometrically using published extinction coefficients (127) as well as enzyme 

mediated end point analyses (128). Endo-oxabicychc diacid (129) was a generous gift 

from Dr. Paul Bartlett of the University of California, Berkeley and was stored at -86°C 

as a 2 mM stock in distilled water. (HPP) 4-hydroxylphenylpyruvate, phenylpyruvate 

(PP, sodium salt) and 3-(4-Hydroxyphenyl)propionic acid (HPPionate) were obtained 

from Sigma-Aldrich. The keto form of HPP was prepared as described by Lindblad et al. 

(130). L-tyrosine and L-phenylalanine were purchased from ICN Biochemicals Inc. 

Potassium cyanide, iodoacetamide, 5,5'-dithio-£>zs-(2-nitrobenzoic acid) (DTNB or 

Ellman's reagent) were purchased from Sigma-Aldrich. Trypsin (modified bovine; 

sequencing grade) was purchased from Roche Applied Science. Dithiothreitol (DTT) was 

obtained from Bioshop. Methanol, chloroform, acetonitrile and trifluoroacetic acid (TFA) 

(HPLC grade) were purchased from Fisher. Oligonucleotides were of HPLC purity and 

were obtained from Integrated DNA Technologies Inc. The QuickChange XL™ site-

directed mutagenesis kit was purchased from Stratagene and restriction enzymes were 

from MBI Fermentas. Q-Sepharose Fast Flow anion exchange resin, activated Sepharose 
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4B and NAP-5 pre-packed Sephadex G-25 size exclusion buffer exchange columns were 

purchased from Amersham Biosciences. Sepharose-AMP was synthesized in our lab; 

N6-(6-Aminohexyl)-5'-AMP was synthesized by D. Christendat as reported by Craven et 

al. {131) and was coupled to CNBr-activated Sepharose-4B as per GE Healthcare 

Instructions 71-7086 AE. All other chemical reagents were obtained commercially and 

were of the highest quality available. 

2.2.2 Source of Recombinant WT and Variant CM-PD of E. coli 

Recombinant wild-type (WT) CM-PD was expressed in E. coli and purified as 

described by Christendat (39) by subcloning tyrA (the gene encoding CM-PD) from 

plasmid pKB45 (132) into an inducible expression vector pSE380 (Novagen) to yield 

pVIVl (39). Christendat and Mekhssian constructed Cys215Ala, Cys215Ser, and 

Cys95Ala variants as described previously by Christendat et al (39) while Cysl69Ala 

was generated with the QuikChange XL site-directed mutagenesis kit (Stratagene) 

following the manufacturer's instructions. The mutants were initially screened for the 

addition of a unique restriction site, Sail. All mutations were verified by sequencing (Bio 

S & T, Montreal, or Centre for Structural and Functional Genomics, Concordia 

University. DNA was prepared for sequencing using a Promega Wizard plasmid 

preparation kit. 
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2.2.3 Expression and Purification of WT and Variant Forms of E. coli CM-PD 

CM-PD was purified by the method of Christendat et al. (39) with slight 

modifications. WT and variant CM-PD were expressed in E. coli following 

transformation into KJB357. The resulting strain was grown at 37°C in LB medium 

containing 100 pg/mL ampicillin to an ODeoonm of 0.6 - 0.8 before overnight induction at 

18°C with 0.4 mM 1PTG. The cells were then harvested by centrifugation at 10000 rpm 

for 45 minutes at 4°C and were stored at -20°C until further use. The cell pellet was 

resuspended with stirring for 15 minutes on ice in buffer B (0.1 M NEM, pH 7.4, 1 mM 

EDTA, 1 mM DTT, 10% glycerol (v/v)). The suspension was homogenized using a 

Dounce homogenizer. The suspended cells were then lysed using a French pressure cell 

using a setting of 900 psi. The lysate was supplemented with 1 mM PMSF and was 

centrifuged using a Beckman centrifuge for 30 minutes at 4°C at 10000 rpm. The 

previously reported ammonium sulfate fractionation step was omitted. The dialyzed 

protein was applied to Q-Sepharose Fast Flow resin (100 mL bed volume) (2.6 x 30 cm 

glass column) previously conditioned with buffer B. After washing the column with 400 

mL of buffer B, CM-PD was eluted with an 800 mL linear gradient of 0 - 0.4 M KC1 in 

the same buffer. Enzymatically active fractions were pooled, dialyzed and 

chromatographed on Sepharose-AMP resin by the method of Turnbull et al. (14). The pH 

of the dialysate was adjusted to 6.0 using 5 M Acetic Acid (pH 4.0) and dialyzed 

overnight at 4°C in 4 L of buffer C (0.1 M NEM, 46 mM MES, 21 mM sodium citrate, 1 

mM EDTA, 1 mM DTT, 10% glycerol (v/v) pH 6.O.). The dialyzed protein was applied 

to Sepharose-AMP (50 mL bed volume, 2.6 x 30 cm glass column) previously 

conditioned with buffer C. After washing the resin with 400 mL of buffer C, CM-PD was 
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eluted with an 800 mL linear gradient of 0 - 1.5 M KCI in the same buffer. 

Enzymatically active fractions were pooled and dialyzed overnight at 4°C in buffer D 

(0.1 M NEM, 21 mM sodium citrate, 1 mM EDTA, 1 mM DTT, 10% glycerol (v/v) pH 

7.0). The enzyme was concentrated using Millipore 15 mL centrifugal concentrators 

(MWCO 30 kDa) to a concentration above 2 mg/mL in buffer D containing a final 

concentration of 25% glycerol and 20 mM DTT (storage buffer). Enzyme solution was 

stored in 100 (iL flash-frozen aliquots at -86°C until ready for further use. 

2.2.4 Sample Preparation of CM-PD 

Frozen CM-PD protein samples were quickly thawed and then immediately 

placed on ice. To the samples was added DTT at a final concentration of 20 mM with 

subsequent incubation on ice for 30 minutes in order to reduce cysteine residues. 

Following DTT treatment, samples were buffer-exchanged into their intended buffer. 

Buffer exchange was performed using either a NAP-5 size exclusion column or a 

BIOMAX centrifugal concentrator (MWCO 30 kDa). 

For exchange via a NAP-5 column, 10 mL of the intended buffer is used to 

equilibrate the column. A 500 uL aliquot of the sample is passed through the column. 

Once the 500 uL sample had eluted, 1 mL of buffer is applied into the column and the 

eluate is collected into a 1.5 mL Eppendorf tube. 

For buffer exchange/concentration using a BIOMAX centrifugal concentrator, the 

sample is placed in the concentrator tube which had previously been conditioned with the 

appropriate buffer. It is then centrifuged at 12000 rpm using a benchtop centrifuge at 4°C 
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until the sample reaches an approximate volume of 100 uL. Additional buffer is added to 

the sample up to a final volume of approximately 500 uL. The sample is then centrifuged 

once again as described previously. This step is repeated two more times in order to 

exchange the solvent completely into the intended buffer as well as to concentrate the 

protein. 

2.2.5 SDS—Polyacrylamide Gel Electrophoresis 

Denaturing SDS-PAGE was performed using a 10% polyacrylamide gel as per the 

method reported by Laemmli (J33). Protein samples were diluted 1:1 (v/v) with 2 x SDS 

sample loading buffer (1.5 M Tris-HCl, 4% SDS, 20% glycerol, 0.002% Bromophenol 

blue, 200 mM DTT) and were incubated in a boiling water bath for 5 minutes in order to 

fully denature the protein sample. The sample was then placed on ice for 5 minutes prior 

to loading on the polyacrylamide gel. The gel was electrophoresed at 80 V in order for 

the samples to migrate through the stacking gel and the voltage was then increased to 180 

V as the samples entered the resolving gel. Electrophoresis was continued until the 

bromopehnol blue tracking dye migrated of the resolving gel. Bio-Rad broad range 

molecular weight protein standards were used to estimate the molecular weight of 

proteins in the sample. Protein was then visualized by staining the gels with Coomassie 

Brilliant Blue R-250. Excess dye was removed using detaining solution which consists of 

10: 9: 1 methanol: distilled water: glacial acetic acid (v/v/v). 
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2.2.6 Protein Concentration Determination 

Protein concentration was estimated using the Bio-Rad Protein Assay Kit (Bio-

Rad Laboratories) with bovine serum albumin (Sigma) as a standard {134) and by 

recording the absorbance at 280 nm using E°1% = 0.818 as reported for WT enzyme (34). 

2.2.7 Determination of Enzyme Activity 

Mutase and dehydrogenase activity assays were conducted at various stages of the 

purification procedure by adding 950 fiL CM or PD mix, respectively, to a 1 cm 

pathlength quartz cuvette. The assay mixtures were equilibrated for 1 minute at 30°C 

prior to initiation of either reaction by addition of enzyme. Assays were conducted at 

30°C using a Varian Cary 50 Dual Beam Spectrophotometer equipped with a water-

jacketed cell holder and thermostatted using a water circulating pump with 

heating/cooling capabilities. CM mix consisted of 100 mM Tris-HCl pH 7.5, 1 mM 

EDTA, 1 mM DTT and 500 u.M chorismate and PD mix consisted of 100 mM Tris-HCl 

pH 7.5, 1 mM EDTA, 1 mM DTT, 2 mM NAD and 500 uM prephenate. The conversion 

of chorismate to prephenate was monitored at 273 nm while the oxidative 

decarboxylation of prephenate in the presence of NAD+ was followed at 340 nm as 

reported by Heyde and Morrison (15). Reaction rates were calculated from the linear 

portion of progress curves using the Cary WinUV kinetics application supplied with the 

spectrophotometer. 
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2.2.8 Kinetic Parameter Determination 

Mutase and dehydrogenase kinetic parameters were determined at 30°C in 1 mL 

total volume, in the presence of a three-component buffer system (3CB) consisting of 

0.1 M MES, 51 mM N-ethylmorpholine, 51 mM diethanolamine, 1 mM EDTA and 1 

mM DTT at pH 7.2 (735). Enzyme was diluted into a three-component buffer system 

(buffer K) consisting of 0.1 M N-ethylmorpholine, 1 mM EDTA, 20% glycerol pH 7.5 

prior to assaying. The conversion of chorismate to prephenate was monitored at 273 nm 

while oxidative decarboxylation of prephenate in the presence of NAD+ was followed at 

340 nm (75). Both reactions were monitored using a Varian Cary 50 Dual Beam 

Spectrophotometer equipped with a water-jacketed cell holder and thermostatted using a 

water circulating pump with heating/cooling capabilities. Reaction rates were calculated 

from the linear portions of progress curves using the Cary WinUV kinetics application 

supplied with the spectrophotometer. Kinetic data were fitted to the Michaelis-Menten 

equation (equation 2.1) using GraFit v 5.0.1 from Erithacus Software in order to 

determine the variant kinetic parameters. Rate constants were calculated using a subunit 

molecular weight of 42,000. Maximum velocity (V/E,) is expressed in units of s"1 and the 

apparent second-order rate constant (V/KE,) in units of M"V. A unit of enzyme is 

defined as the amount of enzyme required to produce 1 fjmol of product per minute at 

30°C. 

* m a i l J J 

Km + p j (Equation 2.1) 
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Residual mutase and dehydrogenase enzyme activities were determined in 3CB (pH 7.2) 

in reaction mixtures containing 500 uM chorismate or 500 uM prephenate and an NAD 

concentration equivalent to 14 times the Km for NAD+ for the variant under investigation. 

DTT was omitted from the DTNB reaction mixtures to avoid reducing DTNB. 

2.2.9 ESI-MS of Native and Variant CM-PD 

CM-PD protein sample preparation for ESI-MS was as reported by Weinglass et 

al. (136) and was as follows: 100 uL aqueous sample (1 mg/mL) was diluted with 3 

volumes of methanol with brief vortexing. To the mixture was added 1 volume of 

chloroform and was vortexed briefly. The sample was then precipitated with 2 volumes 

of MilliQ water and was vortexed briefly. The sample was then centrifuged at high speed 

for 2 minutes. Our protein was present as a precipitate at the interface of the two phases. 

Both phases were carefully removed without disturbing the precipitate. The precipitate 

was washed with 300 uL methanol and vortexed briefly. The sample was then 

centrifuged at high speed for 2 minutes in order to recover the precipitate. Methanol was 

removed and the pellet was allowed to air-dry at room temperature protected from light. 

It is noteworthy that the smallest amount of protein that was successfully precipitated was 

50 ug, with a decrease in the reported volumes proportional to the decrease in the amount 

of protein precipitated. For ESI-MS analysis, the precipitated sample was reconstituted in 

40: 60: 0.1 ACN: MilliQ water: TFA (v/v/v) to a final concentration not exceeding 5 uM 

monomer. The sample was applied to a Micromass Q-ToF 2 triple-quadrupole mass 

spectrometer by direct infusion at a flow rate of 1.0 uL/minute. Samples were analyzed in 

positive ion mode using Micromass MassLynx v 4.0 software. The instrument was 
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calibrated with [Glu]-fibrinopeptide B in the same solvent system as that used for 

analysis of CM-PD. 

2.2.10 Chemical Modification of Native Enzymes 

For DTNB experiments, 5 u.M enzyme monomer was incubated with a 2-fold 

molar excess of DTNB with respect to the total concentration of cysteine residues, in 50 

mM NEM, 50 mM MES, 1 mM EDTA, 25% glycerol (pH 7.7), at 25°C protected from 

light. Upon addition of DTNB, the absorbance increase at 412 nm 

(8412 = 14150 Ivr'.cm"1) was monitored for release of 3-carboxylate 4-nitrophenolate 

(137). The recorded absorbance was corrected for the contributions from buffer and 

DTNB. At specified time intervals after addition of DTNB, a sample aliquot was 

removed, diluted in buffer K without DTT and assayed for mutase and dehydrogenase 

activities. Control samples were incubated under the same conditions except that DTNB 

was omitted. For iodoacetamide, 5 uJVl enzyme monomer was incubated with 10 mM 

IAM under the same conditions as above. At specified time intervals after addition of 

1AM, a sample aliquot was removed, diluted into buffer K + 10 mM DTT and assayed for 

CM and PD activities. 

NOTE: Two UV-spectrophotometers were used in order to record both the change in 

absorbance at 412 nm and enzyme activities. 
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2.2.11 Probing Cysteine Accessibility/Reactivity by Modification with IAM and 

C1AM Monitored by MALDI-ToF Mass Spectrometry 

WT CM-PD (5 pJVl monomer) was pre-treated as per section 2.2.4 and was then 

incubated in 50 mM NEM, 50 mM MES, 1 mM EDTA, 25% glycerol (pH 7.7) at room 

temperature protected from light. The modification reaction was initiated upon addition 

of IAM to a final concentration of 10 mM. At specified time intervals (0, 3, 10, 30 

minutes and overnight). A sample aliquot was removed from the reaction in progress and 

immediately diluted into 10 mM ammonium bicarbonate containing 10 mM DTT. 

Samples were buffer exchanged into 10 mM ammonium bicarbonate using NAP-5 

columns and were then lyophilized to dryness, overnight at room temperature. 

Lyophilized samples were then reconstituted in 50 mM ammonium bicarbonate (pH 8.0) 

and digested with sequencing grade trypsin (1:10 trypsin:CM-PD w/w), overnight at 

37°C. Digested samples were concentrated and desalted using Millipore C4 ZipTips. 

Peptides were eluted using 1.5 uL of 40: 60: 0.1 ACN: MilliQ water: TFA (v/v/v) and 

mixed with 1.5 uL of 10 mg/mL a-cyano-hydroxycinnamic acid. One uL of sample was 

spotted onto a MALDI plate. Samples were analyzed using Micromass M@LDI MALDI-

ToF in positive ion mode using Micromass MassLynx v 4.0 software. The Mass Lynx 

MALDI-ToF was calibrated in positive ion mode using Bradykinin (1060.2 amu), 

Angiotensin (1296.5 amu), Glu-Fibrinopeptide (1570.6 amu), Renin (1759.0 amu), and 

ACTH (18-39 clip) (2465.7 amu) as peptide standards. 

Modification by C1AM was conducted under identical conditions as those 

reported for modification by 1AM except that only a single incubation was performed for 

2 hours. 
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2.2.12 Ligand Protection Experiments 

For all CM-PD variants, 5 u.M monomer was reacted with a 2-fold molar excess 

of DTNB with respect to cysteine concentration in solution, in the absence and presence 

of substrates. Substrates used for protection were 1 mM L-Tyr, 1 mM prephenate, 1 mM 

NAD+, 1 mM L-Tyr + 2 mM NAD+, and 25 uM of mutase transition state analogue endo-

oxabicyclic diacid {endo). Sixty minutes after addition of DTNB, a sample aliquot was 

removed, diluted into buffer K without DTT, and was assayed for mutase and 

dehydrogenase activities. The same experiments were performed using 10 mM 

iodoacetamide as the chemical modifying agent and the ligands used for protection were 

1 mM L-Tyr, 1 mM L-Tyr + 2 mM NAD+, 1 mM HPP, 1 mM HPP + 2 mM NAD+. The 

extent of protection for both mutase and dehydrogenase activities was reported as % 

activity remaining with respect to unreacted enzyme. 

2.2.13 DTNB Inactivation and Reactivation by Cyanolysis 

For all CM-PD variants, 5 u.M monomer was reacted with DTNB in 50 mM 

NEM, 50 mM MES, 1 mM EDTA, 25% glycerol (pH 7.7) as previously mentioned. At 

specified time intervals, aliquots were removed and diluted into Buffer K (no DTT) and 

were immediately assayed for mutase and dehydrogenase activities. When % residual 

activities remained at constant levels, the CM-PD sample was buffer exchanged and 

concentrated into fresh buffer using Millipore Biomax centrifugal filters (MWCO 30 

kDa) in order to remove any excess DTNB. Protein concentration was determined using 

the Biorad kit; mutase and dehydrogenase activities were reassessed in order to ensure 

that the buffer exchange and concentration process did not alter the DTNB-modified 
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sample. To this sample was added KCN to a final concentration of 10 raM. At specified 

time intervals, aliquots were removed and diluted into Buffer K (no DTT) and were 

immediately assayed for mutase and dehydrogenase activities. The percentage of mutase 

and dehydrogenase activities recovered was reported with respect to the control reaction 

without DTNB. The absorbance at 412 nm was recorded upon reaching constant % 

mutase and dehydrogenase activities recovered, in order to determine the concentration of 

TNB released by cyanolysis, which is equivalent to the concentration of modified CM-

PD cysteine residues. After cyanolysis was complete, the sample was buffer exchanged 

and concentrated once again into fresh buffer in order to remove any excess TNB and 

KCN. Protein concentration was determined once again using the Biorad kit and the % 

mutase and dehydrogenase activities of the cyanolysis samples were assessed as 

previously mentioned. Controls for the experiment were assessed in the beginning of the 

experiment without DTNB, at the end of the experiment without DTNB as well as at the 

end of the experiment with 10 mM KCN in order to ensure that the KCN did not affect 

the enzymatic activity. 

2.2.14 Determination of Cysteine pKa Values in Native WT, Cya95Ala and 

Cys215Ala CM-PD Variants by ES1-MS 

CM-PD variants (23 uM monomer) (50 ug total) were incubated in 3CB adjusted 

to pH values ranging from 5.77 to 9.50. The chemical modification of sulfhydryl groups 

was initiated upon addition of IAM, present at the same pH as the reaction mixture, to a 

final concentration of 500 uM. The reaction was allowed to proceed for 30 minutes at 

room temperature protected from light. After 30 minutes, the reaction was quenched with 
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20 mM DTT and immediately precipitated and analyzed by ESI-MS as mentioned in 

section 2.2.8. The pKa values were determined by plotting peak intensity ratios (adduct / 

(adduct + native)) vs. pH, using GraFit v 5.0.1 from Erithacus Software. Please note that 

the term "native" signifies non-modified enzyme. 

2.2.15 Modeling of the PD Domain ofE. coli CM-PD 

Modeller 9v3 was used to model the dehydrogenase portion of the E.coli CM-PD 

monomer against the known structure of H. influenzae CM-PD (PDB access code 2pv7). 

A structure-based alignment of E. coli CM-PD with the H. influenzae protein was 

obtained using the FFAS03 server (http://ffas.licrf.edu/ffas-cgi-cgi/ffas.pl). The FFAS03-

generated alignment was used as input for Modeller 9v3, which generated a 3 D model of 

the dehydrogenase portion of E. coli CM-PD on this input. 
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2.3 RESULTS 

2.3.1 Purification and Determination of Kinetic Parameters of WT and Variant 

Forms ofE. coli CM-PD 

All the CM-PD variants expressed well and yielded active enzyme in quantities 

between 15 and 30 mg of CM-PD per liter of bacterial culture, comparable to those 

reported for WT. Purification by ion-exchange and affinity chromatography yielded 

homogeneous enzyme as illustrated in the SDS-PAGE analysis on Figure 2.1. The ESI-

MS spectrum of WT CM-PD illustrated in Figure 2.2, exhibits 2 peaks at [M+H+] of 

41913 and 42043 amu, with an m/z difference of 130 amu. The peak at [M+H+] of 42043 

amu corresponds to the native full-length WT CM-PD, which is in agreement (<0.01% 

experimental error) with the expected molecular weight of 42042 Da for the amino acid 

sequence reported by Wanner et al. (138) for the bifunctional E. coli CM-PD. The peak at 

[M+H+] of 41913 amu corresponds to WT CM-PD where the N-terminal methionine has 

been post-translationally cleaved (J39). 

Table 2.1, summarizes the kinetic parameters for all variant CM-PDs examined in 

this chapter, where Cys was replaced by Ala or Ser in order to determine the effect of 

hydrogen bonding capabilities of the resulting side chain. This table indicates that 

Cys95Ala and Cysl69Ala variants exhibited kinetic parameters that were comparable to 

those obtained for the WT enzyme, for all substrate. The kcJKm for the mutase reaction 

decreased only by a factor of approximately 3. In the dehydrogenase reaction, the Km and 

&cat for both prephenate and NAD+ showed less than a 2-fold difference relative to WT 

enzyme, with the kcal/Km remaining practically unchanged. 
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MW A B C D 

Figure 2.1: SDS-PAGE analysis of native E. coli CM-PD variants 

Pooled protein samples after AMP-affinity chromatography from the purification of CM-

PD variants as analyzed by 10% SDS-PAGE. (A) Cys95Ala, (B) Cysl69Ala; (C) 

Cys215Ala and (D) Cys215Ser. 
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WT CM-PD without N-terminal methionine 

Native WT CM-PD 

Figure 2.2: ES1-MS spectrum of native E. coli WT CM-PD 

WT CM-PD was processed and analyzed by ESI-MS as reported in section 2.2.9. The peak at 

[M+H+] at 42043 amu corresponds to native full-length WT CM-PD. The peak at [M+H+] at 

41913 amu corresponds to WT CM-PD with the N-terminal methionine removed. 
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The Cys215Ala variant, however possessed significantly altered kinetic 

parameters relative to the WT enzyme. Mutase activity was most affected, showing a 14-

fold increase in Km for chorismate and 5-fold decrease in kcat; the overall kcat/Km was 

reduced by approximately 100-fold relative to WT enzyme. PD activity was not altered to 

the same extent; the variant exhibited an 8-fold increase in Km for prephenate and a 2-fold 

increase in Km for NAD+, with only a small in dehydrogenase activity. 

Cys at position 215 was also substituted for a serine yielding a side chain which is 

smaller and more electronegative than Cys. Unlike Cys and Ala, Ser possesses strong 

hydrogen-bonding capabilities. Surprisingly, the Cys215Ser substitution did not fully 

restore the kinetic parameters to those of the WT enzyme; the kcat was reduced by only 

1.6-fold (a 3-fold improvement in the kca, value compared to Cys215Ala), but the Km for 

chorismate was increased 18-fold, yielding a reduction in kcJKm of 35-fold. The Km value 

for prephenate was 3-fold higher for WT enzyme but a 2-fold improvement compared to 

the Ala variant. The Km for NAD+ was increased by a factor of 2. As with the Ala 

substitution, the Ser substitution did not markedly affect the kcal of the dehydrogenase 

reaction. 
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2.3.2 Chemical Modification of Native Enzymes 

CM-PD variants were subjected to chemical modification by cysteine-specific 

reagents in order to determine their effect on mutase and dehydrogenase activities. Figure 

2.3 (panels A and B) illustrates the time-dependent chemical modification of CM-PD 

variants with 10 mM iodoacetamide. The results clearly indicate that all variants exhibit a 

loss of mutase and dehydrogenase activities with time. Inactivation by IAM of 

Cys215Ala and Cys215Ser resulted in a maximum loss of only 20% of both mutase and 

dehydrogenase activities. In contrast, reaction with the Cys95Ala variant was the most 

rapid where almost all of the mutase and dehydrogenase activities were lost after 60 

minutes. The results for Cysl69Ala are similar to those for Cys95Ala except that it 

retained 30% more dehydrogenase activity. 

Figure 2.4 illustrates the results of chemical modification of CM-PD variants with 

DTNB. These results suggest that a maximum of 2 cysteine residues are accessible per 

WT CM-PD monomer. For the Cys95Ala and Cys215Ala/Ser variants, a single cysteine 

residue is being modified indicating that the cysteine residues that are titrating are 

Cys215 and Cys95, respectively, for each of the variants. For WT and Cysl69Ala variant 

CM-PD, the loss of approximately 80% of both mutase and dehydrogenase activities 

correlates with the modification of a single cysteine residue within 10 minutes. 

The protective effects of ligands on the extent of inactivation by DTNB of CM-

PD activities were investigated. In the absence of substrates, WT, Cys95Ala and 

Cysl69Ala variants show almost complete loss of both activities after 1 hour of 

incubation with DTNB. Furthermore, all of the ligands protected very well providing the 

enzymes with more than 80% residual mutase and dehydrogenase activities. Of particular 
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note, L-Tyr did not afford protection unless NAD was present. In the absence of ligands, 

the Cys215Ala/Ser variants lost only 20% of activity and ligands were unable to confer 

any further protection from inactivation. Inactivation and protection experiments using 

IAM as the chemical modifying agent, yielded similar results (results not shown). 
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Figure 2.3: Chemical modification of WT CM-PD and variants with 10 mM IAM 

CM-PD variants (5 p.M monomer) were incubated with 10 mM IAM at ambient 

temperature and protected from light. Experiments were performed in 50 mM NEM, 50 

mM MES, 1 mM EDTA, 25% glycerol (pH 7.7). Chemical modification was initiated 

upon addition of IAM and enzyme was assayed for both mutase (A) and dehydrogenase 

(B) activities at different time points as described in section 2.2.7. 
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Figure 2.4: Chemical modification and ligand protection of WT CM-PD and 

variants using Ellman's reagent 

(A) CM-PD variants (5 u.M monomer) were incubated with a 2-fold molar excess of 

DTNB with respect to the total concentration of cysteine residues, in 50 mM NEM, 50 

mM MES, 1 mM EDTA, 25% glycerol pH 7.7, at 25°C protected from light. The 

chemical modification reaction was initiated upon addition of DTNB and the absorbance 

changes were monitored at 412 nm in order to determine the stoichiometry of 

modification of cysteine residues (o). The recorded absorbance was corrected for the 

contributions from buffer and DTNB. At specified time intervals after addition of DTNB, 

a sample aliquot was removed, diluted in buffer K without DTT and assayed for mutase 

(A) and dehydrogenase (a) activities. Control samples were incubated under the same 

conditions except that DTNB was omitted. 

(B) For the ligand protection experiments, the experimental conditions were identical to 

those reported above except substrates were added. Substrates used for protection were 1 

mM L-Tyr, 1 mM prephenate, 1 mM NAD+, 1 mM L-Tyr + 2 mM NAD+, and 25 uM 

OTfifo-oxabicyclic diacid. Sixty minutes after initiation of the DTNB modification 

reaction, a sample aliquot was removed, diluted into buffer K, without DTT, and was 

assayed for mutase and dehydrogenase activities. The extent of protection for both 

/ mutase and dehydrogenase activities was reported in terms of % activity remaining with 

respect to unreacted enzyme. Results obtained for both the dehydrogenase and mutase 

were very similar, hence, only the effects on mutase activity are shown. 
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2.3.3 Inactivation of CM-PD Activities by DTNB and Reactivation by Cyanolysis 

This experiment was to determine if loss of mutase and dehydrogenase activities 

upon chemical modification with DTNB was possibly due to steric hindrance due to the 

modification of the cysteine residues. Reaction of WT and Cys95Ala with DTNB 

resulted in complete inactivation of both mutase and dehydrogenase activities after 90 

minutes; inactivation of Cys215Ala resulted in only 20% loss of both CM and PD 

activities. Next, the large Cys-S-TNB moiety was replaced by the smaller Cys-S-C=N 

group by reaction with KCN, termed cyanolysis (140). The results of these experiments 

are depicted in Figure 2.5 and indicate that cyanolysis of WT lead to the partial recovery 

of approximately 10% of both mutase and dehydrogenase activities upon reduction of 2 

cysteine residues; cyanolysis of Cys95Ala leads to the partial recovery of approximately 

25% of both mutase and dehydrogenase activities upon reduction of a single cysteine 

residue; while cyanolysis of Cys215Ala lead to no recovery of either activity upon 

reduction of a single cysteine residue. 
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Figure 2.5: Inactivation of CM-PD variants by DTNB and Reactivation by 

Cyanolysis 

For all CM-PD variants, 5 uM monomer was reacted with 2-fold excess DTNB with 

respect to the concentration of cysteine residues, in 50 mM NEM, 50 mM MES, 1 mM 

EDTA, 25% glycerol pH 7.7. At specified time intervals, aliquots were removed and 

diluted into Buffer K (no DTT) and were immediately assayed for mutase and 

dehydrogenase activities. When values for percent residual activities remained at constant 

levels, the CM-PD sample was buffer exchanged and concentrated into fresh buffer. To 

this sample was added KCN to a final concentration of 10 mM. At specified time 

intervals, aliquots were removed and were immediately assayed for mutase and 

dehydrogenase activities. The percentage of mutase and dehydrogenase activities 

recovered was reported with respect to the control reaction without DTNB. The 

absorbance at 412 ran was recorded upon reaching a constant percentage of mutase and 

dehydrogenase activities recovered in order to determine the concentration of TNB 

groups released by cyanolysis. Controls for the experiment were determined at the 

beginning of the experiment without DTNB, at the end of the experiment without DTNB 

as well at the end of the experiment with 10 mM KCN present in order to ensure that 

KCN did not affect the enzymatic activity. 
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2.3.4 Probing Cysteine Accessibility/Reactivity by Modification with IAM and 

Detection by MALDI 

Analysis of WT CM-PD tryptic peptides by MALDI-ToF yielded coverage of 

more than 80% of the WT CM-PD amino acid sequence (data not shown) predicted by 

the web-based software PeptideMass from www.expasy.org. Although not quantitative, 

this method is very sensitive and generated intense and well-resolved peptide peaks for 

both the native peptide peaks as well as the alkylated peptides shifted by + 57 amu. The 

unmodified peptides containing Cys95 (T^LCPSLRPVVIVGGGGQMGRm), CySWfc-

(D,68C1LVDLASVK,78) and Cys215 (Q2,oVVVWCDGR2]8) were accurately detected at 

approximately [M+H+] of 1996.8, 1175.3 and 1061.3 amu, respectively, in both the 

control and LAM-modified samples. In the control sample (in the absence of 1AM), no 

peaks were seen at the m/z values where alkylated peptide would be expected to appear. 

The results of the time-dependent modification of native WT CM-PD with 10 mM IAM 

at pH 7.7 indicate that the alkylated peptides containing Cys95 and Cys215 are observed 

by 3 minutes of the modification reaction, the earliest time point that was recorded. This 

is verified by the appearance of a peak at [M+H+] of 2053.8 amu corresponding to the 

IAM adduct of the peptide containing Cys95, and [M+H4] of 1118.30 amu for the peptide 

containing Cys215. This suggests that the Cys95 and Cys215 are equally accessible or 

reactive. The appearance of a peak at 1232.4 amu corresponding to the alkylated peptide 

containing Cysl69 suggests that this residue is either buried within the native enzyme or 

is not reactive. 

In order to resolve the order of alkylation of Cys95 and Cys215, we performed the 

alkylation reaction with C1AM instead of using IAM, we used C1AM; C1AM has been 
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reported to alkylate at a rate up to 300-fold slower than IAM {141). The results of this 

chemical modification are depicted in Figure 2.6 panels D and E, for the peptides 

containing Cys95 and Cys215, respectively. The results indicate in panel D that after 2 

hours of reaction with ClAM, the native peptide peak containing Cys95 at [M+H+] of 

1997.02 amu is essentially depleted and most of it has been modified to its alkylated 

form, which is the intense peak observed at [M+H+] of 2054.14 amu. In contrast, panel E 

suggests that after 2 hours of reaction with ClAM, the native peptide peak containing 

Cys215 at [M+H+] of 1061.49 amu has not been alkylated to completion, as both the 

native peak and the alkylated peptide peak at [M+H+] of 1118.52 amu, at equal intensity 

are observed. These results suggest that Cys95 reacts prior to Cys215 and may suggest 

that the former may possess a lower pKa. 

It is noteworthy to mention that no adducts were alkylated adducts were detected 

for the peptides containing Lys37 (L27ELVAEVGEVK37), Hisl31 (l^LEQHDWDRns) 

and His 197 (N179GPLQAMLVAHDGPVLGLHPMFGPDSGSLAK209), which have been 

reported to be essential for mutase and PD activities and may hence be ruled out as the 

cause for loss of mutase and dehydrogenase activities upon chemical modification by 

IAM and ClAM.. 
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Figure 2.6: Time dependent chemical modification of WT CM-PD with 10 mM IAM 

and 10 mM CIAM 

WT CM-PD (5 uM monomer) was incubated in 50 mM NEM, 50 mM MES, 1 mM 

EDTA, 25% glycerol (pH 7.7) at room temperature protected from light. The 

modification reaction was initiated upon addition of IAM to a final concentration of 10 

mM. At specified time intervals, a sample aliquot was removed and immediately diluted 

into 10 mM ammonium bicarbonate containing 10 mM DTT. Samples were buffer 

exchanged into 10 mM ammonium bicarbonate and were then lyophilized to dryness. 

Samples were reconstituted in 50 mM ammonium bicarbonate (pH 8.0) and digested with 

sequencing grade trypsin. Digested samples were desalted using C4 ZipTips. Peptides 

were mixed using a-cyano-hydroxycinnamic acid as the matrix. 1 uL of sample was 

spotted onto a MALDI plate. Samples were analyzed using Micromass M@LDI MALDI-

ToF in positive ion mode using Micromass MassLynx v 4.0 software. 

Peptide alkylated by IAM containing (A) Cys95, (B) Cysl69 and (C) Cys215, 

respectively, were resolved by MALDI ToF. Time-points include 0, 3, 10, 30 minutes 

and overnight from top to bottom. Asterisks (*) indicate peaks of interest. IAM adducts 

correspond to a shift of native peptide peaks by +57 amu. 

Peptide alkylated by CIAM containing (D) Cys95 and (E) Cys215, respectively, were 

resolved by MALDI ToF. The chemical modification was performed exactly as described 

for IAM, except that a single incubation for 2 hours was performed. 

Asterisks (*) indicate peaks of interest. IAM and CIAM adducts correspond to a shift of 

native peptide peaks by +57 amu. 
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2.3.5 Determination of Cysteine pKa Values in Native WT, Cys95Ala and 

Cys215Ala CM-PD Variants by ESI-MS 

CM-PD proteins were reacted with 0.5 mM IAM at various pH values ranging 

from 5.77 to 9.50 in order to determine the pH-dependent reactivity of the cysteine 

residues. ESI-MS analysis of unmodified CM-PD variants yielded well-resolved peaks 

corresponding to the full-length CM-PD as well as full-length enzyme with single and 

multiple IAM adducts (+ (n x 57 amu)) (representative data for WT enzyme are shown in 

Figure 2.7). For both Cys95Ala and Cys215Ala (data not shown), a peak at [M+H+] of 

41880 amu was observed corresponding to the unmodified enzyme; upon modification 

with IAM, a single peak at [M+H+] of 41937 amu appeared corresponding to the 

alkylated enzyme with a single IAM adduct, with a concomitant decrease in the intensity 

of the unmodified enzyme. For Cys95Ala, the alkylated enzyme exhibits a peak at 

[M+H+] of 41937 amu, which appears at higher pH values, whereas it appears at lower 

pH values for the Cys215Ala variant, suggesting that the pKa for Cys215 is higher than 

thatofCys95. 

The ESI-MS data taken together with the results from MALDI-ToF indicate the 

reactivity of the different cysteine groups, as shown in Figure 2.7. The appearance of a 

single peak at lower pH values was observed, corresponding to the modification of 

Cys95. A second adduct also appeared with increasing pH, corresponding to the 

modification of Cys215. 
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Figure 2.7: Representative ESI-MS spectra of the pH-dependent alkylation of WT 

CM-PD with IAM 

CM-PD variants of 23 u.M monomer (50 ug total) were incubated in 3CB buffer adjusted 

to pH values ranging from 5.77 to 9.50. The chemical modification of sulfhydryl moieties 

was initiated upon addition of IAM, present at the same pH as the reaction mixture, to a 

final concentration of 500 pJvl. The reaction was allowed to proceed for 30 minutes at 

room temperature protected from light. After 30 minutes, the reaction was quenched with 

20 mM DTT and immediately precipitated and analyzed by ESI-MS as described 

previously. The pKa values were determined by plotting the ratios of peak intensity 

(adduct / (adduct + native)) vs. pH, using GraFit v 5.0.1. 

* denotes unmodified WT CM-PD 

** denotes WT CM-PD with a single 1AM adduct 

*** denotes WT CM-PD with two IAM adducts 
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2.4 DISCUSSION 

In the present investigation, we have studied the role of the cysteine residues in 

the function and structure of the E. coli bifunctional CM-PD. Toward this goal, site-

directed mutants were characterized to more precisely define the role of the three cysteine 

residues (Cys95, Cysl69 and Cys215) in substrate binding and catalysis. Cys to Ala 

substitutions were introduced at all three positions in order to eliminate H-bonding 

capabilities at that position. In addition, a Cys215 to Ser change was made. Although Cys 

and Ser are relatively isosteric, the polar hydroxyl group of Ser is capable of forming 

stronger H-bonds compared to the sulfhydryl group of Cys. 

The kinetic parameters obtained for the mutase and dehydrogenase reactions 

catalyzed by Cys95Ala and Cysl69Ala variant proteins were similar to those obtained for 

WT enzyme. Hence, it appears that Cys95 in the mutase portion of CM-PD does not 

contribute to the binding energy of the diaxial form of chorismate and of the transition 

state of the mutase reaction as proposed for Cys75 in the monofunctional CM from B. 

subtilis {142). Kinetic analysis of the Cys75Ala variant of the monofunctional CM from 

B. subtilis has shown that the binding of both chorismate and the mutase TS analog are 

reduced by over 10-fold. 

Replacing the sulfhydryl group of Cys215 with a methyl (Cys215Ala) resulted in 

a significant decrease in the efficiency constant for the mutase reaction of kca,IKm of 

1.9 x 104 M'.s"1 and only a moderate decrease for the dehydrogenase reaction of kcJKm 

of 1.3 x 105 M'.s"1 compared to the WT kcJKm of 1.4 x 106 M"'.s"' for CM activity and 

1.1 x 106 M"\s~' for PD activity. Moreover, replacing Ala with Ser restored, only 

partially, the enzyme's affinity for prephenate to values comparable to the WT protein. 
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Taken together, the data suggest that the Cys215 thiol moiety plays only a modest role in 

the proper binding of prephenate. These results partially support the findings of Zhang et 

al. (79) who showed that the Cys216Ala variant in the related bifunctional enzyme CM-

PDT possessed a 10-fold higher Km for prephenate, which was restored with the Ser 

substitution. 

In contrast to the dehydrogenase reaction, replacing Ala with Ser further reduced 

the binding of chorismate at the mutase site suggesting that the presence of a smaller, 

more polar group than cysteine perturbed the proper binding of chorismate. In contrast, 

Zhang et al. (79) reported that the mutase activity and the Km for chorismate were not 

altered by the Cys216 to Ala substitution, supporting the idea that the reactions catalyzed 

by CM and PDT occur at distinct non-interacting sites. In summary, our observations 

suggest that Cys215 is the only cysteine residue whose substitution affects both the 

mutase and dehydrogenase activities of CM-PD and hence highlight the interdependence 

of the sites at which the two reactions occur. 

The pH dependence of the kinetic parameters V and (V/K)pTt,phenale for the WT 

dehydrogenase reaction as performed by Mekhssian (143) and others (36) indicated that a 

protonated group with a pKa value of about 8.4 was essential for the binding of 

prephenate to the enzyme-NAD+ complex. This value is close to that expected for a free 

cysteine residue at neutral pH (2). However this titrating residue was not Cys215 as the 

(V/K) prephenate pH profiles for Cys215Ser and WT enzyme were essentially identical. 

Hence, the residue titrating with a pKa of ~ 8.4 is still present when this cysteine is 

missing (143), suggesting that the ionization state of Cys215 was not essential for 

substrate binding. 
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Reaction of CM-PD variants with the cysteine modifying reagents DTNB and 

iodoacetamide support the conclusion drawn from site-directed mutagenesis that Cys at 

position 215 may be important for both mutase and dehydrogenase activity. Modification 

of WT CM-PD with these reagents resulted in the time-dependent loss of both mutase 

and dehydrogenase activities (Figures 2.3 and 2.4). This agreed with previous reports by 

Hudson et al. (16) using the aforementioned reagents and by Turnbull et al. (14) who 

monitored alkylation by the active site directed reagent, iodoacetic acid. However, this 

was in contrast to the results obtained by Zhang et al. (79) and Gething et al. (78) in 

which modification of CM-PDT with DTNB and N-ethylmaleimide (NEM) resulted in 

the inactivation of only the dehydratase. 

Extending these studies to the inactivation of variant forms of CM-PD by DTNB 

and iodoacetamide (Figures 2.3 and 2.4), showed conclusively that it was Cys215, 

presumably at or near the active site(s), which upon chemical modification rendered the 

enzyme inactive. The fact that Cys215Ala/Ser proteins retained approximately 80% 

residual mutase and dehydrogenase activities upon modification with cysteine specific 

reagents support the idea that the loss of both activities in the WT enzyme was due to the 

chemical modification of the same group (Cys215). In the case of modification by 

DTNB, steric effects associated with the formation of the bulky Cys-TNB moiety is, in 

part responsible for the inactivation of the enzyme as cyanolysis of the adduct results in 

the smaller C=N moiety, allowing for up to 25% recovery of both of the enzyme's 

activities. 

In order to determine the reactivity/accessibility of the 3 cysteine residues in WT 

CM-PD, a time-dependent chemical modification was conducted at pH 7.7, using the 
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cysteine-specific reagent iodoacetamide. The results of this modification in tandem with 

peptide mapping using MALDI-ToF mass spectrometry first confirmed that Cysl69 is 

not readily accessible and/or relatively reactive to iodoacetamide under the experimental 

condition that were used since an adduct of the peptide containing this residue only 

appeared after 30 minutes into the reaction (Figure 2.6 panel B). Unfortunately, under 

these experimental conditions, both Cys95 and Cys215 reacted to appreciable degrees 

within 3 minutes (Figure 2.6, panels A and C, respectively). Only with the use of C1AM, 

which reacts by the same mechanism as IAM but 300 times slower (141), could it be 

shown that Cys95 is slightly more sensitive to alkylation than to Cys215. Figure 2.9, 

illustrates a space filling model of E. coli CM-PD. 

The chemical modification experiments in tandem with mass spectrometry were 

extended to determine of the ionization state of the cysteine residues in the WT and 

Cys95Ala and Cys215Ala variant CM-PDs. Iodoacetamide, which reacts with a thiolate, 

forms a stable adduct that is readily detectable by ESI-MS as a shift of+57 amu. Thus, 

performing the alkylation reaction at various experimental pHs will result in the 

sulfhydryl alkylation, that is dependent on the pKa of the cysteine residue under 

investigation. The ESI-MS spectra of the WT CM-PD (Figure 2.7) clearly show an 

increase in the amount of alkylated enzyme relative to the unmodified enzyme, with 

increasing pH. Since we know the order of modification to be Cys95>Cys215, we were 

able to determine that, in WT CM-PD, the pKa of Cys95 is 6.70 ±0.10 and that of 

Cys215 is 8.15 ± 0.03. Experiments conducted on the variant CM-PDs, verified our 

assignments for the WT CM-PD; in the Cys215Ala enzyme, the pKa of Cys95 was 
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determined to be 6.73 ±0.07 while in the Cys95Ala variant, the pKa of Cys215 was 

calculated to be 8.28 ± 0.04 (Table 2.3). 

Further complementary chemical modification studies consisted of chemically 

modifying WT, Cys95Ala and Cys215Ala CM-PD variants with DTNB, which leads to 

the formation of the bulky Cys-S-TNB moiety, whose steric properties may be the cause 

of the loss of both mutase and dehydrogenase activities. In order to assess the 

contribution to steric hindrance of the TNB moiety with inactivation, the DTNB-modified 

enzyme was treated with KCN, which results in the cleavage of Cys-S-TNB and leads to 

the formation of Cys-S-C=N, which is much smaller; recovery of activity upon 

cyanolysis would be an indication that loss of activity is due to steric hindrance of the 

TNB adduct. Figure 2.5 and Table 2.2 illustrate the results of the cyanolysis experiments 

and indicate that upon modification of a single residue in the Cys215Ala variant (Cys95), 

20% of mutase and dehydrogenase activities are lost, which are not recoverable upon 

cyanolysis of Cys95-TNB. In contrast, when Cys215 is chemically modified by DTNB in 

the Cys95Ala variant, both activities are completely lost, highlighting the importance of 

this residue. Upon cyanolysis, approximately 25% of both activities are recovered in this 

variant. In keeping with the results of the modification of the individual cysteine residues 

in the CM-PD variants, WT CM-PD recovered approximately 7-10% of both activities, 

which is consistent with the recovery of 25% of both activities upon cyanolysis of 

Cys215-TNB excluding the 20% of both activities that is not recoverable upon cyanolysis 

of Cys95-TNB in the Cys215Ala variant CM-PD. These results suggest that inactivation 

of both activities in CM-PD must be due to a conformational change in the enzyme upon 

chemical modification for Cys95. On the other hand, the cyanolysis results for the 
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Cys215-TNB in the Cys95Ala variant indicate that loss of both activities is due to steric 

hindrance of the adduct, which may interfere with a residue that is important for activity 

or important for the orientation of an important residue within the active site. These 

results are in keeping with the inactivation studies by chemical modification with 

iodoacetamide, which forms a larger adduct than the Cys-S-C=N, hence leading to 

mutase and dehydrogenase inactivation. 

Although the Ala substitution at positions 95 and 169 did not affect the kinetic 

parameters of the enzyme catalyzed reaction, they did appear to affect their reactivity 

with the cysteine modifying reagents. Inactivation of Cysl69Ala dehydrogenase activity 

by DTNB was faster and more complete compared to WT enzyme. Clearly the Cys to Ala 

substitution resulted in changes that rendered the reactive group(s) more prone to 

modification by the different reagents. This result clearly demonstrates the necessity of 

combining site-directed mutagenesis with protein modification to better understand the 

function of the different residues under investigation. 

In agreement with studies by Hudson et al. (35), incubation of WT CM-PD with 

DTNB resulted in the modification of 2 cysteine residues per monomer (Figure 2.4), 

indicating that one cysteine was inaccessible or not reactive to DTNB. In the present 

study, identical studies with the cysteine variants identified this sulfhydryl group as 

Cysl69. Furthermore, alkylation of the enzyme with iodoacetamide followed by peptide 

mapping using mass spectrometry clearly identified Cys95 and Cys215 as more reactive 

and surface accessible than Cys 169. These findings are in agreement with peptide 

mapping experiments of Hudson et al. using radiolabeled iodoacetamide (35). 
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Comparison of the chemical modification of WT and variant forms of CM-PD in 

the absence and presence of substrates and substrate analogs have affirmed that only 

Cys215 is at or near the active site(s) of CM-PD. Incubation of the enzyme with 

prephenate, NAD+ + tyrosine and mutase TS analog prior to inactivation with DTNB or 

iodoacetamide, led to the protection of both mutase and dehydrogenase activities. This 

was expected as prephenate is a product inhibitor of the mutase reaction as well as a 

substrate in the dehydrogenase reaction. NAD+ plus L-Tyr also afforded protection. 

NAD+ structurally affects the CM domain as its presence activates mutase activity. As 

expected the protective effect of NAD+ was enhanced in the presence of tyrosine 

presumably by increasing the enzyme's affinity for this cofactor (75, 35). Cysl69Ala and 

Cys95Ala variant proteins, which possess a cysteine residue at position 215, could be 

protected against inactivation by these ligands whereas Cys215Ala and Cys215Ser were 

not. 

Similarly, preincubation of the enzyme with prephenate, NAD+ plus L-Tyr, and 

mutase TS analog, prevented one cysteine residue from being modified by DTNB. These 

results clearly indicated the presence of a reactive thiol group near or at the binding site 

of these ligands. Similar studies with the Cys variants clearly identified this reactive 

sulfhydryl as Cys215. However, from the conclusion that Cysl69 was buried and that 

Cys215 could be protected against alkylation by any one of the ligands, modification of 

Cys95Ala in the presence of ligands did not result in an absence of cysteine modification 

as predicted (J43). This might arise if the substitution at position 95, caused a 

conformational change in the structure of this variant. In summary, these results suggest 

that the substrates may interact with or be in the same vicinity with the Cys215 residue in 
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the active site, since its presence seems to both allow inactivation of mutase and 

dehydrogenase activities in the absence of substrates as well as protection from 

inactivation in the presence of substrates. 

Surprisingly, the mutase transition state analogue protected PD from inactivation 

by the cysteine specific reagents. Moreover our kinetic studies indicated that this 

protection was afforded through binding to the mutase site and not the dehydrogenase 

site. In support of this idea was the finding that the dehydrogenase activity of Lys37Gln 

(a CM-PD variant unable to bind the mutase TS analog; discussed in Chapter 3) was 

inactivated by iodoacetamide in the presence of the analog (143). 

The present study reports the first reproducible ESI-MS analysis of intact E. coli 

CM-PD. The difficulty in analyzing CM-PD by ESI mass spectrometry is presumably 

due to the protein's surface hydrophobicity. Marked hydrophobicity can reduce the 

ability of a protein's residues to ionize, a feature which is essential for ESI-MS. Sixty 

percent of the CM-PD's 373 amino acid residues are large (L, I, V, M, F, Y, W) and 

small (A, G) non-polar groups; L, I, V alone constitute 26% of the total residues. Recent 

results from ANS coupled fluorescence experiments (69) and the observation that CM-

PD binds very tightly to phenyl sepharose and to Cis reverse phase columns highlight the 

fact that the protein's surface is highly hydrophobic. 

Mass spectrometry has yielded an accurate determination of the molecular weight 

of the CM-PD subunit (42042 Da). Furthermore, mass spectrometric analysis of native 

and tryptic digests of the protein has been used in this study to verify the presence and 

identity of the site-directed variants (143). 
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Mass spectrometric analysis of CM-PD has also identified a post-translational 

modification common to many proteins. Deconvolution of the mass spectra of WT and 

variant enzyme yielded two peaks with a difference in mass of 130 amu. These two peaks 

corresponded to the enzyme with or without the N-terminal methionine. More than 60% 

of all proteins lose their N-terminal methionine {144), a feature, which governs, in part, 

the half-life of proteins (145). The extent of N-terminal methionine excision from E. coli 

proteins is inversely proportional to the side-chain length of the penultimate amino acid 

(144). In E. coli CM-PD, the amino acid at position 2 is a valine. Studies by Meinnel et 

al. (146) have shown that when valine is the amino acid at position 2 in a series of 

different proteins, the extent of methionine cleavage was around 80%. This ratio was not 

observed in our studies, where the two peaks in the deconvoluted spectra of WT and Cys 

variants were of unequal intensity, with the non-cleaved enzyme intensity predominated. 

This could be explained if the over expression of CM-PD in E. coli cells, leads to a high 

ratio of the bifunctional enzyme versus the enzyme responsible of cleaving the N-

terminal residue, thus decreasing the extent of methionine cleavage. 

In the absence of a crystal structure for the bifunctional E. coli CM-PD, we 

resorted to comparative modeling of the dehydrogenase using the PD domain of the 

bifunctional CM-PD from H. influenzae as a template, which possesses 57.6% sequence 

identity. Based on all the results obtained in the studies by site-directed mutagenesis, 

comparative modeling and chemical modification, we propose a model where Cys215 is 

at the interface of both active sites. This would be consistent with the decrease in the 

enzyme's affinity for both chorismate and prephenate as observed by site-directed 
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mutagenesis. The inactivation of both activities by alkylation with cysteine specific 

reagents, notably iodoacetamide that is smaller than DTNB, also supports our hypothesis. 

The fact that both Km of prephenate and the turnover number are affected by the 

Cys215Ala mutation suggests that Cys215 may play an indirect role in correctly orienting 

the catalytic residue, His 197. Interestingly, in our PD model, Cys215 is located near 

residues, which have been determined in the Turnbull lab to play a key role in catalysis 

(Hisl97) and tyrosine binding (His245) (Figure 2.10) {39, 68) T. Lee, unpublished). 

Figure 2.10 illustrates a close-up of the dehydrogenase active site bound with L-tyrosine. 

It is clear that Cys215 is very near His245, approximately 4.77 A away, which seems to 

coordinate the catalytic base His 197. Substitution of His245 with a glutamine in our lab, 

lead to insoluble protein suggesting that it may have an important role in PD activity (T. 

Lee, unpublished). The proximity of Cys215 to His245 explains the loss of 

dehydrogenase activity upon chemical modification since adduct formation at position 

215, whether small like - O N or big as -TNB, must perturb His245 out of position, which 

in turn cannot effectively coordinate His 197 to its intended position for dehydrogenase 

activity. 

Moreover, Figure 2.10 illustrates a complex network of hydrogen bonding in 

helix 240-269, in which His245 is suitably positioned for the proper coordination of 

His!97; Cys215 can be seen interacting with the backbone carbonyl group of Ile240. 

Substitution of Cys215 for an alanine residue, which has no hydrogen bonding 

capabilities, seems to be sufficient to destabilize the position of the helix and hence 

His245, leading to inactivation of PD. 
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In addition, the model is in keeping with the protective effect of e«Jo-oxabicyclic 

diacid against inactivation of PD, assuming that the binding of the mutase TS analog to 

the CM site blocks the interaction of the modifying reagents with Cys215. Alternatively, 

the interaction of the e«Jo-oxabicyclic diacid at the mutase site could promote a 

conformational change in the enzyme propagated to the dehydrogenase site. 

Unfortunately, the mutase domain could not be modeled together with PD since 

there is no crystal structure of the bifunctional enzyme. This capability would have 

helped us pinpoint the location of both active sites relative to each other and understand 

the role of Cys215 in the mutase reaction. 
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Figure 2.10: Modeled PD active site ofE. coli CM-PD 

The PD domain of E. coli CM-PD was modeled using the crystal structure of the PD 

domain of//, influenzae (PDB ID: 2PV7) as described in section 2.2.15. The multitude of 

hydrogen-bonding interactions between the residues (colored by element: yellow = 

carbon, blue = nitrogen, red = oxygen, green = sulfur) at the N-terminus of helix 240-261 

can be seen. The sulfhydryl moiety of Cys215 can be seen hydrogen-bonding with 

residues at the N-terminus of helix 240-261 effectively orienting the helix in the correct 

position in order for His245 to coordinate the catalytic base, Hisl97. This image was 

created using PyMol software. 
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CHAPTER 3 

Determination of the pK3 of Lys37 in 

E. coli Chorismate Mutase - Prephenate Dehydrogenase 
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3.1 INTRODUCTION 

Lys37 possesses a pivotal role in the mutase domain of the bifunctional E. coli 

chorismate mutase - prephenate dehydrogenase. Sequence alignments with the mutase 

portions of E. coli CM-PD and CM-PDT reveal a conserved lysine residue at positions 37 

and 39, respectively (16, 35). Despite the low sequence identity that is exhibited between 

chorismate mutases from different organisms, the overall electrostatic environment of the 

mutase active site is conserved (59, 147). Careful investigation of the crystal structures of 

the mini-mutase, which is the engineered monofunctional mutase from CM-PDT, as well 

as native monofunctional mutases from B. subtilis and S. cerevisiae have identified a 

cationic residue homologous to Lys37, whose presence is essential for the stabilization of 

the transition state of the mutase reaction. Furthermore, the substitution of Lys37 in the 

bifunctional E. coli CM-PD with glutamine results in a complete loss of mutase activity 

(39). Similarly, site-directed mutagenesis of homologous residues of mutases in other 

organisms result in variants with low or no activity. 

Earlier studies performed by Turnbull et al. (36) and more recently by K. Bull 

(unpublished), which examined the pH dependence of /̂KChorismate in the mutase reaction 

of the bifunctional E. coli CM-PD, established that an unidentified group with a pKa of 

approximately 7.5 had to be protonated in order to assist in the binding of chorismate and 

the transition state analog to the mutase active site. Furthermore, chemical modification 

experiments by Christendat and Turnbull determined that Lys37 was particularly reactive 

with the histidine-specific reagent diethylpyrocarbonate, implying that the pKa of this 

residue is depressed. 
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The purpose of this chapter is to establish the pKa of Lys37 in the bifunctional 

E. coli CM-PD as a goal towards identifying the catalytically important group whose 

ionization is observed in the K/Kchorismate pH rate profile. This is achieved by monitoring 

the pH-dependence of the reactivity and inactivation by the lysine-specific chemical 

modifying reagent TNBS. 
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3.2 EXPERIMENTAL PROCEDURES 

3.2.1 Materials 

Chorismate, prephenate and NAD+ (grade I) were prepared as described in section 

2.2.1. isWo-oxabicyclic diacid (endo) {129) was a generous gift from Dr. Paul Bartlett of 

the University of California, Berkeley and was stored at -86°C as a stock of 2 mM in 

distilled water. 2,4,6-trinitrobenzenesulfonic acid (TNBS) and BSA were purchased from 

Sigma-Aldrich. GluC endopeptidase from Staphylococcus aureus strain V8 was 

purchased from Roche Applied Science. All other chemical reagents and resins were 

obtained as described in section 2.2.1. 

3.2.2 Source of Recombinant WT and Variant CM-PD of E. coli 

Recombinant WT CM-PD and Lys37Gln were constructed in E. coli by 

Christendat et a I. (39). 

3.2.3 Expression and Purification of WT and Variant Forms of E. coli CM-PD 

CM-PD was expressed as described in section 2.2.3. It should be noted however 

that ammonium sulfate precipitation was included in the procedure here as described in 

the method of Christendat et al. (39) but was later omitted. 
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3.2.4 Sample Preparation of CM-PD 

Frozen CM-PD protein samples were quickly thawed and then immediately 

placed on ice. To the samples was added DTT at a final concentration of 20 raM with 

subsequent incubation on ice for 30 minutes in order to reduce cysteine residues. 

Following DTT treatment, samples were buffer-exchanged into their intended buffer. 

Buffer exchange was performed using either a NAP-5 size exclusion column or a 

BIOMAX centrifugal concentrator (MWCO 30 kDa). 

For exchange via a NAP-5 column, 10 mL of the intended buffer is used to 

equilibrate the column. A 500 uL aliquot of the sample is passed through the column. 

Once the 500 uL sample had eluted, 1 mL of buffer is applied into the column and the 

eluate is collected into a 1.5 mL Eppendorf tube. 

For buffer exchange/concentration using a BIOMAX centrifugal concentrator, the 

sample is placed in the concentrator tube which had previously been conditioned with the 

appropriate buffer. It is then centrifuged at 12000 rpm using a benchtop centrifuge at 4°C 

until the sample reaches an approximate volume of 100 \ih. Additional buffer is added to 

the sample up to a final volume of approximately 500 uL. The sample is then centrifuged 

once again as described previously. This step is repeated two more times in order to 

exchange the solvent completely into the intended buffer as well as to concentrate the 

protein. 

3.2.5 SDS—Polyacrylamide Gel Electrophoresis 

Denaturing SDS-PAGE was performed as described in section 2.2.5. 
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3.2.6 Protein Concentration Determination 

Protein concentrations were estimated as described in section 2.2.6. 

3.2.7 Determination of Enzyme Activity 

Mutase and dehydrogenase activities were determined as described in section 

2.2.7. 

3.2.8 Determination of Kinetic Parameters 

Mutase and dehydrogenase kinetic parameters were determined as described in 

section 2.2.8. 

3.2.9 ESI-MS of Native WT and Variant CM-PD 

CM-PD protein samples for ESI-MS were prepared using the protocol described 

in section 2.2.9. 

105 



3.2.10 Time-Dependent Chemical modification of WT CM-PD with TNBS at 

Neutral pH 

3.2.10.1 Inactivation of Mutase by TNBS 

WT CM-PD (5 pM monomer) was incubated with a 3-fold molar excess of TNBS 

with respect to the total concentration of monomer, at ambient temperature and protected 

from light. Experiments were performed in 50 mM N-ethylmorpholine, 50 mM 

2-morpholinoethanesulfonic acid, 1 mM EDTA, 25% glycerol at neutral pH. Mutase 

activity of the unmodified WT CM-PD (t0) was assessed at pH 7.2 as outlined in section 

3.2.8 using 500 uM chorismate. Chemical modification was initiated upon addition of 

TNBS and mutase activity was assayed at different time points as described above. 

Changes in mutase activity were reported as percent mutase activity remaining relative to 

activity at to. 

The Lys37Gln variant was chemically modified with TNBS under the 

experimental conditions described above for WT CM-PD. Dehydrogenase activity was 

monitored as described in section 3.2.8, using 500 uM prephenate and 1.6 mM NAD . 

The data were collected using a Varian Cary 50 Dual Beam Spectrophotometer and the 

absorbances were corrected for the contributions from buffer and TNBS. 

3.2.10.2 Quantitation of Stoichiometry of Trinitrophenylation 

WT CM-PD (5 uM monomer) was incubated with TNBS under identical 

conditions as in the previous section. Upon addition of TNBS, the absorbance increase at 
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345 nm (S345nm = 1-45 X 104 M"'.Cm"]) was monitored for the formation of the 

trinitrophenylated adduct {148). The data were collected using a Varian Cary 50 Dual 

Beam Spectrophotometer and the absorbances were corrected for the contributions from 

buffer and TNBS. 

3.2.11 pH-Dependent Inactivation of WT CM-PD by Chemical modification Using 

TNBS 

WT CM-PD (5 uM monomer) was incubated with a 3-fold molar excess of TNBS 

with respect to the total concentration of monomer, at ambient temperature and protected 

from light. Experiments were performed in 3-component buffer denoted 3CB (0.05M 

2-morpholinoethanesulfonic acid (MES), 0.05M N-ethylmorpholine, 0.1M 

diethanolamine) at various pH values ranging from 6.0 to 8.7. Mutase activity of the 

unmodified WT CM-PD, denoted as the to time point, was assessed at pH 7.2 in 3CB 

using 500 uM chorismate. Chemical modification was initiated upon addition of TNBS 

and mutase activity was assayed at different time points as described above. Changes in 

mutase activity were reported as percent mutase activity remaining relative to the mutase 

activity at to-

3.2.12 pH-Dependency of WT CM-PD Mutase Activity 

The pH dependency of the mutase reaction was determined in a 3-component 

buffer (0.05 M 2-morpholinoethanesulfonic acid (MES), 0.05M N-ethylmorpholine, 

0.1M diethanolamine) at 30°C from pH 5.23 to 8.33. The values of V and (V/K)chonsmate 
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were determined by performing activity assays, where the initial velocities were 

measured, while varying the concentration of chorismate, as outlined in section 3.2.8. In 

these assays, the ionic strength of this reaction buffer remains essentially constant (J35). 

The final pH was determined on assay mixtures pooled after the reaction and equilibrated 

at 30°C in a water bath. 

The variation of the values for V/K as a function of pH was fitted to the log form 

of Equation 3.1 (below) using Erithacus Software GraFit 5.0: 

y = ( ( Limit * 10 pH" pKa]) / ( 10 <2*PH"P*al -P*a2> + ( 10 pH-p*al + 1 ) ) (Equation 3.1) 

where y represents the value of V/K at a particular pH value, Limit represents the pH-

independent value of the parameters, K\ and Kj are dissociation constants for ionizable 

groups on the enzyme and/or substrate. 
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3.2.13 In-silico Digestion of WT CM-PD with Endopeptidase GluC 

In-silico digestion was performed on the amino acid sequence of WT CM-PD 

(Table 3.3) using the PeptideCutter software {149) at www.expasy.org. Endopeptidase 

GluC from Staphylococcus aureus V8 was used for the in-silico digestion. 

3.2.14 In-vitro Digestion of WT CM-PD with Endopeptidase GluC 

Both native and trinitrophenylated samples of WT CM-PD (from section 3.2.10) 

were buffer exchanged into MilliQ water using NAP-5 size exclusion columns. The 

samples were lyophilized overnight at room temperature using a Speedvac and were then 

dissolved in 30 uL of 50 mM ammonium bicarbonate (pH 7.8). The samples were then 

digested using endopeptidase GluC at a ratio of 20:1 CM-PD:GluC (w/w) overnight at 

room temperature protected from light. The GluC-digested CM-PD samples were 

analyzed by LC-MS using a 45 minute linear acetonitrile gradient from 5 - 95 % 

containing 0.1% TFA. Peptide peaks were detected in positive mode from 200 - 3000 

amu using the same instrument and parameters as described in section 3.2.9. 
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3.2.15 Peptide Sequencing by ESI-MS/MS 

A sample of GluC-digested WT CM-PD peptides was subjected to LC-MS 

analysis as per section 3.2.14. The peptide at [M+H2+] of 858.4 amu corresponding to the 

trinitrophenylated P(36-48) was selected at the first quadrupole, fragmented at the second 

quadrupole, and the resulting amino acid peaks were detected from 100 - 1400 amu in 

positive mode at the third quadrupole. Parameters used were: Cone voltage: 35 V, 

Collision Cell voltage: 35 V, Argon gas used for fragmentation and the resolution was 

approximately 0.5 Da. 

3.2.16 Determination of Dissociation Constants for the Transition State Analogue 

by Fluorescence Emission 

Values for the dissociation constant of endo from the complex with WT CM-PD 

or Lys37Gln variant were determined at 25°C by monitoring the changes in protein 

intrinsic fluorescence using a Shimadzu fluorimeter. The excitation wavelength was set at 

280 nm and emission was monitored from 300 - 400 nm. Instrument parameters were set 

at 845 V for the lamp voltage, 2 nm/minute for the scan speed and 4 nm for the 

bandwidth; the fluorescence emission of each sample was recorded twice. Protein 

samples (0.24 \JLM CM-PD monomer) were prepared in a 1-cm quartz cuvette (total 

volume 3 mL) in 50 mM N-ethylmorpholine, 50 mM 2-morpholinoethanesulfonic acid, 1 

mM EDTA and 25% glycerol pH 7.7. Endo oxabicyclic diacid was available as a 2 mM 

stock in water and subsequent dilutions were prepared in the same buffer as for the 
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enzymes. Titrations were performed by the progressive addition of endo to a final 

concentration of 7 uM for WT and 10 uM for Lys37Gln CM-PD but not exceeding 3% of 

the total sample volume. Samples were mixed by gentle pipetting and binding was 

allowed to proceed for 2 minutes prior to recording measurements. The areas under the 

fluorescence signal from 325 - 360 nm were determined using the software that was 

included with the spectrophotometer. The fluorescence data were corrected for dilution 

and background fluorescence; no inner filter effect was observed. 

A dissociation constant was determined by fitting the data to the Michaelis-

Menten equation or the quadratic equation {150) (Equation 3.2) using Erithacus Software 

Grafit 5.0: 

AF= AFm(([Z.l]+[£t]+/rd)-(([JL]t+[£1]+^d)
2-4[I,][£,])05)/(2[ft]) (Equation 3.2) 

AF is the difference in fluorescence intensities in the presence and absence of the titrant, 

AFm is the maximum change in fluorescence intensity, [Lx] is the total concentration of 

titrant, [E{] is the total enzyme concentration and K$ is the dissociation constant. 

3.2.17 Substrate Protection from Chemical Modification 

In order to determine whether the mutase transition state analogue afforded 

protection from chemical modification of the cysteine residues in CM-PD by 

iodoacetamide, WT and Lys37Gln variants (5 uM monomer) were incubated for 5 

minutes with endo at concentrations of 20 and 200 uM in 3CB at pH 7.2. After 5 

minutes, IAM was added to the each enzyme sample to a final concentration of 10 mM 

and was allowed to react for 60 minutes. Upon completion of the reaction, samples were 
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immediately quenched with DTT at a final concentration of 20 mM and were kept on ice. 

Samples were then processed for ESI-MS analysis as described in section 3.2.9. A 

negative control was prepared for each sample, where neither IAM nor endo was added 

to the enzyme sample. A positive control was prepared by adding enzyme and IAM to a 

final concentration of 10 mM and was allowed to react for 60 minutes under identical 

conditions as reported above and then quenched with DTT. Controls were prepared for 

ESI-MS analysis as reported in section 3.2.17. 

3.2.18 Determination of Lys37 pKa by Titration With TNBS 

The ionization state and surface accessibility of Lys37 in WT CM-PD was 

determined by reaction with TNBS for 10 minutes at several pH values, ranging from 

5.94 to 9.26. WT CM-PD was treated as reported in section 3.2.4 prior to chemical 

modification. The sample was then buffer exchanged using a BIOMAX centrifugation 

filter (MWCO 30 kDa) into 1 x 3-component buffer (pH 7.0). WT CM-PD (5 uM 

monomer) prepared above, was incubated for 10 minutes at ambient temperature in 2 x 3-

component buffer at each pH value. A 178 uM substock of TNBS was prepared in MilliQ 

water by performing a 1/1000 dilution of the stock TNBS solution (0.18 M). The 

trinitrophenylation reaction was initiated upon addition of 8.4 u.L of 178 u.M TNBS; the 

mixture was gently vortexed for 5 seconds and the reaction was then allowed to proceed 

for 10 minutes. The reaction was then quenched with the addition of 2 M ammonium 

bicarbonate, to a final reaction mixture volume of 500 uL and the samples were kept on 

ice. Samples were buffer-exchanged into MilliQ water using individual NAP-5 size 

exclusion columns in order to avoid cross-contamination, and were then lyophilized 
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overnight using a SpeedVac at room temperature and protected from light. Samples were 

then dissolved in 30 uL of 50 mM ammonium bicarbonate (pH 7.8) and were digested 

using endopeptidase GluC at a ratio of 20:1 CM-PD:GluC (w/w) overnight at room 

temperature protected from light. The GluC-digested WT CM-PD samples were analyzed 

by LC-MS using a 45 minute linear acetonitrile gradient from 5 - 9 5 % containing 0.1% 

TFA. Peptide peaks were detected in positive mode from 200 - 3000 amu using the same 

instrument and parameters as described in section 3.2.9. 

For the analysis of the ESI-MS data, the ratio of peak intensity of 

trinitrophenylated P(36-48) / (peak intensity of native P(36-48) + peak intensity of 

trinitrophenylated P(36-48)) was calculated in order to determine the ratio of 

trinitrophenylated P(36-48) at different pHs relative to native P(36-48). The pKa of the 

trinitrophenylated lysine residue was determined using Erithacus Software Grafit 5.0 

software by plotting the above mentioned ratios versus pH values and using the equation 

for a single pA'a which is included in the software: 

_ Limit,+Limit2.10ip"-pK") 

y~ IO<P"->*.> + 1 (Equat,on 3.3) 
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3.2.18 Modeling of CM Domain ofE. coli CM-PD 

Modeller 9v3 was used to model the mutase portion of the E. coli CM-PD 

monomer against the known structure of E. coli CM-PDT (PDB access code lecm). A 

structure-based alignment of E. coli CM-PD with the E. coli CM-PDT protein was 

obtained using the FFAS03 server (http://ffas.licrf.edu/ffas-cgi-cgi/ffas.pl). The FFAS03-

generated alignment was used as input for Modeller 9v3, which generated a 3 D model of 

the mutase portion of E. coli CM-PD on this input. 
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3.3 RESULTS 

3.3.1 Purification and Purity Assessment of WT and Lys37Gln Variant CM-PD 

Both WT and Lys37Gln CM-PD were purified using a combination of ion-

exchange and sepharose-AMP affinity chromatography as previously reported (39). As 

noted in Table 3.1, the purification of the variant led to a recovery of 9.3% or 82 mg of 

the proteins present in the cell-free extract. We were unable to calculate a purification 

factor for Lys37Gln since it did not possess any detectable mutase activity and fractions 

prior to Q-Sepharose were contaminated with other enzymes, which are NAD+-

dependent. Figure 3.1 shows the SDS-PAGE analysis of purified E. coli Lys37Gln CM-

PD indicating the purity of CM-PD after purification by AMP-affinity chromatography, 

suggesting that there is a homogeneous preparation of CM-PD. 

ESI-MS was used in order to confirm the exact molecular weight of the purified 

CM-PD proteins. The deconvoluted mass spectrum of native WT CM-PD (Figure 3.3 

panel A) clearly shows two major peaks at [M+H+] of 41913 and 42043 amu. The protein 

peaks display a difference of 130 amu. The peak at [M+H+] of 42043 amu corresponds to 

the full-length WT CM-PD and is exactly as expected from the literature molecular 

weight. Similar results were seen for the Lys37Gln variant CM-PD, since the substitution 

of lysine for glutamine does not yield a significant change in the molecular weight 

relative to the WT. 

Table 3.2 shows a summary of the kinetic parameters that were determined for 

both the WT and Lys37Gln CM-PDs. The data clearly indicate that mutase activity is 
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abolished, while the kinetic parameters for the dehydrogenase reaction remain essentially 

identical to those of WT CM-PD. These results confirm the importance of Lys37 in the 

mutase activity of CM-PD. It is worth noting that the kcat values of the purified enzymes 

in this report are approximately 20% higher than those previously reported by Christendat 

et ah (39). 
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B 

Figure 3.1: SDS-PAGE Analysis of ion-exchange and AMP-affinity purification of 

Lys37GIn CM-PD 

Selected samples from the purification steps of variant CM-PD as analyzed by 10% SDS-

PAGE. (A) Pooled protein after ion-exchange chromatography and (B) pooled protein 

after AMP-affinity chromatography. 
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3.3.2 In-silico Digestion of WT CM-PD With Endopeptidase GluC 

In-silico digestion was performed on the amino acid sequence of WT CM-

PD (Table 3.3) with GluC using PeptideCutter, an internet-based prediction software 

(http://ca.expasy.org/tools/peptidecutter/). WT CM-PD possesses fifteen lysine residues, 

five in the mutase domain and ten in the dehydrogenase domain. In-silico digestion of 

this protein with GluC yields 21 peptides of widely varying sizes from 572.2198 to 

6850.6434 Da. Interestingly, Lys37 is associated with a single peptide free from other 

lysine groups. P(36-48) consists of residues 3 6 - 4 8 (VtfSRFGLPIYVPE) with a mass of 

1504.8522 Da. 
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Pepthh MJSS 

(1)0 

448.535 

1173.288 

1595.946 

430.502 

303.315 

1504.792 

303318 

1091.251 

218.21 

1023.194 

1173.399 

571.541 

3076.625 

1650.997 

2945.3 

6854.123 

956.065 

1863.153 

2902.282 

147.131 

601.657 

1502.774 

2568.986 

1927.283 

331369 

373.450 

1767.959 

1670.761 

1569.744 

INisitinn 

1 - 4 

5 - 1 4 

1 5 - 2 8 

2 9 - 3 2 

3 3 - 3 5 

3 6 - 4 8 

4 9 - 5 0 

51 - 6 0 

61 -62 

6 3 - 7 2 

7 3 - 8 1 

8 2 - 8 6 

8 7 - 1 1 5 

116-129 

130-156 

157-221 

222 - 228 

229 - 244 

245 - 269 

270 

271 - 275 

276 - 288 

289-311 

312 -326 

3 2 7 - 3 2 9 

330 - 332 

333 - 347 

348 -360 

361 -373 

Pi'phik Su|litm.v 

MVAE 

LTALRDQ1DE 

VDKALLNLLAKRLE 

LVAE 

VGE 

VKSRFGLPIYVPE 

RE 

ASMLASRRAE 

AE 

ALGVPPDLIE 

DVLRRVMRE 

SYSSE 

NDKGFKTLCPSLRPW1VGGGGQMGRLFE 

KMLTLSGYQVR1LE 

QHDWDRAADIVADAGMVIVSVP1HVTE 

QV1GKLPPLPKDC1LVDLAS\T<NCPLQAMLVAHDGPVLGLHPMFGPDSGSLAKQVVVWCDCRKPE 

AYQWFLE 

QIQVWGARLHR1SAVE 

HDQNMAF1QALRHFATFAYGLHLAE 

E 

NVQLE 

QLLALSSP1YRLE 

LAMVGRLFAQDPQLYAD11MSSE 

RNLAL1KRYYKRFGE 

A1E 

LLE 

QGDKQAFIDSFRKVE 

HWFGDYAQRFQSE 

SRVLLRQANDNRQ 

Table 3.3: In-silico digest of WT CM-PD with endopeptidase GIuC in 
bicarbonate buffer 
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3.3.3 Time-Dependent Chemical modification of WT CM-PD with TNBS at 

Neutral pH 

In order to determine the reactivity and surface accessibility of the lysine residues 

in WT CM-PD, a time-dependent modification of the enzyme was performed at neutral 

pH with an equimolar concentration of TNBS relative to CM-PD monomer. Figure 3.2 

illustrates that there is a time-dependent loss of mutase activity, which reaches 80% of 

activity lost within 45 minutes of chemical modification. The formation of 

trinitrophenylated-adduct was monitored by UV spectrophotometry at 345 nm. Figure 3.2 

clearly indicates that under the experimental conditions that were used, 0.8 lysine 

residues are modified within 45 minutes. More importantly, time-dependent modification 

directly coincides with the loss of mutase activity. Chemical modification was performed 

for Lys37Gln under identical experimental conditions as for the WT enzyme. Figure 3.2 

clearly indicates that there is no loss in dehydrogenase activity upon the incubation of the 

variant enzyme with TNBS. 

These samples were also subjected to mass spectrometric analysis in order to 

confirm the results. Figure 3.3 illustrates the ESI-MS spectra of native and 

trinitrophenylated WT CM-PD from section 3.2.10. In Panel A, the deconvoluted 

spectrum of native WT CM-PD shows two major peaks with a difference of 130 amu; at 

[M+H+] of 41913 amu is the WT CM-PD with its N-terminal methionine removed and at 

[M+H+] of 42043 amu is the full-length WT CM-PD. Panel B illustrates the ESI-MS 

spectrum of trinitrophenylated WT CM-PD. In this spectrum, we see 4 major peaks; two 

of these are the same as those mentioned for native WT CM-PD and the other two are 
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shifted by +211 amu relative to the native protein, at [M+H+] of 42123 and 42254 amu. 

These correspond to the singly trinitrophenylated WT CM-PD polypeptide peaks. 

123 



Figure 3.2: Correlation of TNBS adduct formation with mutase inactivation at 

neutral pH 

WT CM-PD (5 uM monomer) was incubated with a 3-fold molar excess of TNBS with 

respect to the total concentration of monomer at pH 7.0, at ambient temperature and 

protected from light. Chemical modification was initiated upon addition of TNBS and 

mutase activity was assayed at different time points as described in section 3.2.10. 

Changes in mutase activity were reported as percent activity remaining relative to 

activity at to. TNBS adduct formation was monitored at 345 nm and calculated using 

S345nm = 1-45 x 104 M'Vcm"1. Identical experimental conditions were used for 

trinitrophenylation of the Lys37Gln variant. Changes in dehydrogenase activity were 

monitored as mentioned in section 3.2.7, using 500 uM prephenate and 1.6 mM NAD+. 

The absorbances were corrected for the contributions from buffer, enzyme and TNBS. 
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Figure 3.3: Deconvoluted ESI-MS spectra following the time-dependent 

modification of WT CM-PD with TNBS 

WT CM-PD (5 uM monomer) was reacted with 15 uM TNBS for 15 minutes at pH 7.0 in 

2 x 3-component buffer at room temperature and protected from light. After 15 minutes, 

the modification reaction was quenched using 2 M ammonium bicarbonate and the 

samples were kept on ice. Protein samples (2-5 uM monomer) were prepared as 

described in section 3.2.9 immediately prior to direct injection. (A) WT CM-PD; 

unmodified polypeptide peaks observed at [M+H+] of 41913 and 42043 amu. (B) 

Trinitrophenylated WT CM-PD unmodified polypeptide peaks observed at [M+H+] of 

41912 and 42043 amu; modified polypeptide peaks observed at [M+H+] of 42123 and 

42254 amu. 
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3.3.4 In-vitro Digestion of WT CM-PD With Endopeptidase GluC 

In-vitro digestion was performed on native WT CM-PD using endopeptidase 

GluC, in order to determine the extent of detection of the expected peptides generated by 

the in-silico digestion show in Table 3.3. The data in Table 3.4 was generated from 

Figure 3.4 and indicates that for WT CM-PD, 251 of 373 amino acids were accounted 

for, yielding a sequence coverage of 67.3%. The peptides were detected as singly and 

doubly charged peaks. The peptide of interest containing Lys37, denoted P(36-48), was 

detected as a doubly charged peak at [M+2H+] of 752.90 amu (Figure 3.5). 

In order to confirm that trinitrophenylation occurred on Lys37 of P(36-48), the 

trinitrophenylated form of WT CM-PD, generated as described in section 3.2.10, was also 

digested with GluC and analyzed as for the unmodified form of the enzyme. Since P(36-

48) was identified as a doubly charged peak [M+2H+] at 752.90 amu, the 

trinitrophenylated form of P(36-48) would be expected at [M+2H+] of 858.37 amu. 

Figure 3.5 (Panel A) corresponding to unmodified WT CM-PD polypeptide, clearly show 

that there is no interfering peak at 858.37 amu. Panel B corresponding to the variant 

polypeptide, clearly illustrates the appearance of a intense doubly charged peptide peak at 

[M+2H+] of 858.37 amu as well as a concomitant decrease in the intensity of the 

unmodified P(36-48) peptide peak at 752.90 amu. The results of these digestions confirm 

that trinitrophenylation of Lys37 occurs on P(36-48). ESI-MS/MS peptide sequencing 

performed as described in section 3.2.15 identified the amino acid sequence of P(36-48) 

as VK(T/V5,)SRF"GLPLYVPE but most importantly confirmed that the site of 

trinitrophenylation was on the lysine at position 37 (Figure 3.6 ). 
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Peptide Mass 

(Da).' 
448.5350 
587.3261 
1173.6110 
798.4921 
1004.6082 
716.3825 
1101.6084 
752.9261 
1376.7063 
1091.5626 
788.8930 
1148.5983 
612.3259 
1023.5720 
1089.6032 
587.3055 
1173.6521 
572.2198 
825.9624 
956.4512 
478.7256 
932.0174 
1515.7340 
1043.5771 
602.3144 
751.9289 
1284.2836 
1120.6331 
835.8673 
785.4284 

Charge 

"+1 
+2 
+1 
+2 
+2 
+1 
+2 
+2 
+1 
+1 
+2 
+2 
+2 
+1 
+2 
+2 
+ 1 
+ 1 
+2 
+1 
+2 
+2 
+2 
+2 
+1 
+2 
+2 
+2 
+2 
+2 

Position 

1-4 
5-14 
5-14 
15-28 
15-32 
29-35 
29-48 
36-48 
49-60 
51-60 
49-62 
51-72 
61-72 
63-72 
63-81 
73-81 
73-81 
82-86 

116-129 
222-228 
222-228 
229-244 
245-270 
271-288 
271-275 
276-288 
289-311 
312-329 
348-360 
361-373 

Peptide Sequence 

MVAE 
LTALRDQIDE 
LTALRDQIDE 
VDKALLNLLAKRLE 
VDKALLNLLAKRLELVAE 
LVAEVGE 
LVAEVGEVKSRFGLPIYVPE 
VKSRFGLPIYVPE 
REASMLASRRAE 
ASMLASRPAE 
REASMLASRRAEAE 
ASMLASRRAEAEALGVPPDL IE 
AEALGVPPDLIE 
ALGVPPDLIE 
ALGVPPDLIEDVLRRVMRE 
DVLRRVMRE 
DVLRRVMRE 
SYSSE 
KMLTLSGYQVRILE 
AYQWFLE 
AYQWFLE 
QIQVWGARLHR1SAVE 
HDQNMAFIQALRHFATFAYGLHLAEE 
NVQLEQLLALSSPIYRLE 
NVQLE 
QLLALSSPIYRLE 
LAMVGRLFAQDPQLYADIIM SSE 
RNLALIKRYYKRFGEAIE 
HWFGDYAQRFQSE 
SRVLLRQANDNRQ 

Table 3.4: In-vitro digest of WT CM-PD with endopeptidase GluC in 
bicarbonate buffer 

The table indicates the peptides that were detected upon GluC digestion of WT CM-PD 

shown in Figure 3.4. The ionization state of the peaks that were detected by LC-MS is 

indicated in the Charge column. 

130 



Figure 3.5: In-vitro digest of WT CM-PD with endopeptidase GluC in 

bicarbonate buffer 

Unmodified and trinitrophenylated WT CM-PD from section 3.2.10 were digested 

using endopeptidase GluC in 30 p.L of 50 mM ammonium bicarbonate (pH 7.8), at a ratio 

of 20:1 CM-PD:GluC (w/w), overnight at room temperature protected from light. The 

GluC-digested samples were analyzed by LC-MS, using a linear 40 minute acetonitrile 

gradient form 5 - 95 % containing 0.1% TFA. Peptides were detected in positive mode 

from 200 - 3000 amu using the same instrument and parameters as described in section 

3.2.9. Panel A illustrates the GluC digest spectrum of unmodified WT CM-PD: in the left 

pane, the unmodified P(36-48) peptide is observed as a doubly charged peak at [M+2H+] 

of 752.9 amu; in the right pane, no interfering peak is seen at 858.4 amu, where the 

trinitrophenylated form of P(36-48) is expected (spectrum enlarged to baseline). Panel B 

illustrates the GluC digest spectrum of trinitrophenylated WT CM-PD: in the left pane, 

the unmodified P(36-48) peptide is observed as a doubly charged peak at [M+2H+] of 

752.9 amu; in the right pane, the trinitrophenylated appears as an intense doubly charged 

peak at [M+2H4] of 858.4 amu. 
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3.3.5 pH-Dependent In activation of WT CM-PD by Chemical Modification Using 

TNBS 

Inactivation of mutase activity by TNBS was monitored as a function of pH in 

order to determine the pKa of the ionizable residue being chemically modified. Loss of 

mutase activity due to trinitrophenylation was time-dependent and pH-dependent over the 

experimental pH range of 6.00 to 8.70 (Figure 3.7). When reaction rates were plotted as a 

function of time, apparent second-order rate constants could be calculated at each pH 

value by fitting the data to Equation 3.4 (757) (data not shown). The rates of inactivation 

were slow at lower pH values (pH 6.00 - 6.73) but increased rapidly at higher pH values 

from 6.99 to 8.70. The apparent pKa of the reacting group was estimated by following the 

pH dependence of the rate constants for TNBS inactivation of the mutase. Over the pH 

range of 6.00 - 8.70, the ionization of a single group was observed (Figure 3.8) with a pKa 

value of 7.69 ± 0.08. 

CCM-PDTNB 
h — 
"app 

' • C C M - P D O (CcM-PDO - CCM-PDTTSB) ^ ^ 3"4> 

,where the concentrations of trinitrophenylated CM-PD (CCM-PDTNB) were derived from 

CM activity at time zero (CCM-PDO) and the activity at a given time point. 
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Figure 3.7: Stoichiometric chemical modification of WT CM-PD with TNBS at 

various pH values 

WT CM-PD (5 pM monomer) was incubated with a 3-fold molar excess of TNBS with 

respect to the total concentration of monomer, at ambient temperature and protected from 

light. Experiments were performed in 3-component buffer at various pH values. 

Chemical modification was initiated upon addition of TNBS and mutase activity was 

assayed at different time points as noted in section 3.2.7. Changes in mutase activity were 

reported as percent activity remaining relative to activity at to for each pH value. 
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Time (min.) 

— O — pH6.00 — A — pH7.25 
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— 3 — pH6.73 — X — pH8.37 
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6.0 6.5 7.0 7.5 8.0 8.5 9.0 

PH 

Figure 3.8: Titration of frinitrophenylated residue by reaction of WT CM-PD 

with TNBS for 40 minutes at different pH values 

Graph illustrating the second-order rate constants, kapp_ plotted versus the different 

experimental pH values into the Erithacus Grafit 5.0 software by using the equation for a 

single pKa (Equation 3.3). 
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3.3.6 pH-Dependence of the Mutase Reaction 

In order to assess the pH dependence of the mutase reaction, a pH rate profile was 

constructed for WT CM-PD from pH 5.23 to 8.33, by varying the concentration of 

chorismate. The K/Kchorisrnate profile for WT CM-PD is bell-shaped with slopes of+ 1 and 

-1 and illustrates the decrease in the rate of reaction of chorismate at both high and low 

pH values (Figure 3.9). The variation of log V with pH indicates that there are no 

ionizable residues that participate in catalysis and/or product release, that titrate within 

our experimental range. Fit of the data to the Equation 3.1 indicate in the K/ATcborismate 

profile, that a residue with a pK3 of about 6.3 must be deprotonated and another with a 

pA"a of about 7.5 must be protonated for maximal activity. The log V and V/KCh0Itema\e 

imply that these 2 residues associated with the free enzyme and/or free substrate are 

involved in chorismate binding and/or catalysis. 

Unfortunately, since the Lys37Gln CM-PD variant lacks mutase activity, 

construction of a pH rate profile for the mutase reaction was not possible. 
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3.3.7 Determination of Dissociation Constant of Mutase Transition State Analogue 

WT and Lys37Gln CM-PD by Fluorescence Spectroscopy 

Fluorescence spectroscopy was used in order to determine the binding affinity of 

the mutase transition state analogue endo for both WT CM-PD and Lys37Gln. This 

experiment should address the question if the variant is inactive because it cannot bring 

about the conversion of substrate to product or because it cannot bind chorismate. Figure 

3.10 displays the overlays of the fluorescence emission spectra following excitation at 

280 nm, in the absence and in the presence of increasing concentrations of endo, for WT 

and Lys37Gln CM-PD. For both enzymes, the fluorescence signal decreases with 

increasing concentrations of endo. WT CM-PD exhibits a slight shift in Xmax of emission, 

at higher endo concentrations, from 333 to approximately 336 nm; no such shift is 

observed for the variant, which may be an indication of its change in affinity of binding 

for the transition state analogue. 

The area under the fluorescence emission band was determined from 325 - 360 

nm at increasing concentrations of endo. The differences in the areas relative to that of 

the enzyme in the absence of endo were plotted as a function of inhibitor concentration, 

and values for K<j were determined using Equation 3.2 (Figure 3.11). The data indicates 

that WT CM-PD binds the transition state analogue 10-fold more tightly than does 

Lys37Gln (compare Kd value of 0.05 ± 0.01 uM and 0.51 ± 0.04 uM, respectively). 
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3.3.8 Substrate Protection from Chemical Modification 

The cysteine residues of WT and Lys37Gln CM-PD variants were chemically 

modified with 10 mM IAM for 60 minutes at pH 7.2 in the absence and presence of both 

20 and 200 uM endo, respectively. 

Figure 3.12 panel (Al), show the negative control for WT CM-PD, where no IAM 

and no endo has been added. This spectrum illustrates the 2 peaks expected for WT CM-

PD, notably at [M+H+] of 41911 and 42042 amu. For simplicity, we will be observing 

modifications noted on the peak at [M+H+] of 41911 amu. Panel (A2) represents the 

spectrum of the positive alkylation control, where IAM is added and the reaction allowed 

to proceed for 60 minutes. The major peak at [M+H4] of 42025 amu represents WT CM-

PD without the N-terminal methionine that has been alkylated at 2 sites, notably [M+H+] 

of 41911 amu + (2 x 57 amu). Panels (A3) and (A4) represent the spectra of the 

alkylation experiment in the presence of 20 and 200 uM endo, respectively. In the 

presence of 20 uM endo, the spectrum is essentially identical to that of panel (A2), where 

the major peak at [M+H+] of 42025 amu is that of a doubly-alkylated WT CM-PD. In 

Panel (A4) however, two major peaks are observed at [M+H*] of 41968 and 42025 amu. 

The latter peak corresponds once again to the doubly-alkylated WT CM-PD, whereas the 

presence of 200 p.M endo seems to have protected against the partial modification of a 

single cysteine residue, which is suggested by the appearance of a novel peak at [M+H"] 

of 41968 amu corresponding to native WT CM-PD with a single alkylation site, shifted 

by -57 amu. 

Panel (Bl) illustrates the negative control for the Lys37Gln variant CM-PD, 

where incubations are performed in the absence of 1AM and endo. This spectrum 
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illustrates the 2 peaks expected for the variant, notably at [M+H ] of 41908 and 42039 

amu. Panel (B2) represents the spectrum of the positive alkylation control, where IAM is 

added and the reaction allowed to proceed for 60 minutes. The peaks of interest at 

[M+H+] of 41965 and 42022 amu represent the native variant CM-PD without the N-

terminal methionine that has been partially alkylated at 1 site and fully alkylated at 2 

sites, respectively, at a peak height ratio of approximately 1.65: 5 (1 site: 2 site 

alkylation). Panels (B3) and (B4) represent the spectra of the alkylation experiment in the 

presence of 20 and 200 pM endo, respectively. For both 20 and 200 pJVl endo, the spectra 

are essentially identical to that of panel (B2), where the peak height ratio of the singly 

alkylated polypeptide at [M+H+] of 41965 amu is still 1.65: 5 with respect to the doubly 

charged polypeptide peak at [M+H+] of 42022 amu. 
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Figure 3.12: Mass spectrometric analysis of ligand protection experiments for WT 

and Lys37Gln CM-PD 

WT and Lys37Gln variant CM-PD were reacted with 10 mM IAM for 60 minutes at pH 

7.2 in order to determine whether the mutase transition state analogue afforded protection 

from chemical modification by IAM, WT and Lys37Gln variant CM-PD (5 u.M 

monomer) were incubated for 5 minutes with endo at concentrations of 20 and 200 \iM in 

3CB at pH 7.2 at room temperature. After 5 minutes, IAM was added to the each enzyme 

sample to a final concentration of 10 mM and was allowed to react for 60 minutes. Upon 

completion of the reaction, samples were immediately quenched with DTT at a final 

concentration of 20 mM. Samples were then processed for ESI-MS analysis as described 

in section 3.2.9. A negative control was prepared for each sample, where neither IAM nor 

endo was added to the enzyme sample. A positive control was prepared by adding 

enzyme and IAM to a final concentration of 10 mM and was allowed to react for 60 

minutes under identical conditions as reported above and the reaction was quenched with 

20 mM DTT. Controls were prepared for ESI-MS analysis as reported in section 3.2.9. 

The pane] annotations in this figure correspond to (A) WT, (B) Lys37Gln, (]) positive 

control, (2) negative control, (3) alkylation in the presence of 20 uM endo and (4) 

alkylation in the presence of 200 uM endo. Peaks of interest are marked as: (°) for native 

enzyme, (*) for singly alkylated enzyme and (**) for doubly alkylated enzyme. 
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3.3.9 Determination of Lys37 pKa by Titration with TNBS 

ESI-MS was used to monitor the trinitrophenylation of Lys37 in WT CM-PD 

(5 uM monomer) by reaction with 15 uM TNBS for 10 minutes at various pH values, 

ranging from 5.94 to 9.26. The parameters of the chemical modification in this 

experiment allowed us to probe the ionization state and surface accessibility of Lys37 in 

WT CM-PD. The pH-dependent trinitrophenylation reaction was carried out in a 2 x 3-

component buffer (0.1 M 2-morpholinoethanesulfonic acid (MES), 0.1 M N-

ethylmorpholine, 0.2 M diethanolamine) at room temperature. 

Panels A - H of Figure 3.13 represent the ESI-MS spectra of the GluC-digested 

WT CM-PD polypeptide after the 10 minute reaction with 15 uM TNBS at pH values of 

5.94, 6.86, 7.10, 7.87, 8.37, 8.76, 9.01 and 9.26, respectively. For all samples, the left 

panel examines the unmodified P(36-48) peptide, which is observed as a doubly charged 

peak at [M+2FT] of 752.9 amu; the right panel examines the trinitrophenylated peptide, 

which appears as an intense doubly charged peak at [M+2H+] of 858.4 amu. The intensity 

of the unmodified P(36-48) decreases and the intensity of trinitrophenylated P(36-48) 

increases with increasing pH, respectively. 
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Figure 3.13: ESI-MS Spectra of the GluC-digested WT CM-PD after pH-

dependent modification with TNBS 

WT CM-PD (5 pM monomer) was reacted with 15 u.M TNBS for 10 minutes in 

2 x 3-component buffer at several pH values ranging from 5.94 to 9.26 at room 

temperature and protected from light. After 10 minutes, the modification reaction was 

quenched using 2 M ammonium bicarbonate and samples were then buffer-exchanged 

into MilliQ water and lyophilized overnight at room temperature. Samples were 

reconstituted into 30 pL of 50 mM ammonium bicarbonate (pH 7.8) and were digested 

using endopeptidase GluC at a ratio of 20:1 WT CM-PD:GluC w/w, overnight at room 

temperature protected from light. The GluC-digested samples were analyzed by LC-MS, 

using a linear 40 minute acetonitrile gradient form 5 - 95 % containing 0.1% TFA. 

Peptides were detected in positive mode from 200 - 3000 amu using the same instrument 

and parameters as described in section 3.2.9. Figure 3.13 illustrates the ESTMS spectra 

of the GluC-digested WT CM-PD, which was trinitrophenylated at pH values of 5.94, 

6.86, 7.10, 7.87, 8.37, 8.76, 9.01 and 9.26, respectively. In the left panels, the unmodified 

P(36-48) peptide is observed as a doubly charged peak at [M+2H+] of 752.9 amu; in the 

right panels, the trinitrophenylated peptide appears as an intense doubly charged peak at 

[M+2H+] of 858.4 amu. 
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33.10 Determination of Lys37 pKa in WT CM-PD by Titration with TNBS 

The results depicted in the spectra of Figure 3.13 clearly indicate that the extent of 

trinitrophenylation of Lys37 is pH-dependent. As pH is increased, the ratio of 

trinitrophenylated to unmodified P(36-48) increases proportionately to pH. The extent of 

trinitrophenylation was quantified by using the relationship: 

Intensity of trinitrophenylated P(36-48) 

intensity (native + trinitrophenylated) P(36-48) 

When plotted as a function of the experimental pH values, the data fit well to a 

single titrating group with a pK3 of 7.68 ±0.13 (Equation 3.3). 
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Figure 3.-14: Titration of Lys37 in P(36-48) of WT CM-PD by reaction with TiNBS 

for 10 minutes at different pH values 

The ratios of (trinitrophenylated P(36-48) / (unmodified P(36-48) + trinitrophenylated 

P(36-48))) were plotted as a function of experimental pH values. The curve represents the 

fit of the data to Equation 3.3 using Erithacus Grafit 5.0 software. 
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3.4 DISCUSSION 

The focus of this chapter was to determine the pK3 of a catalytically important 

residue, Lys37, in the mutase reaction of E. coli CM-PD and to further probe the role that 

it plays in the Claisen rearrangement of chorismate to prephenate. Our goal was 

accomplished by a combination of chemical modification using the lysine-specific 

reagent TNBS in tandem with mass spectrometry, kinetic and binding studies on both the 

WT enzyme and Lys37Gln CM-PD. The work presented in this chapter provides one of 

the few detailed examples reporting the titration of active site residues using chemical 

modification in conjunction with peptide mass mapping, and hence outlines the utility of 

this approach. Krekel et al. (J5J) demonstrated by MS analysis that Cysll5 of 

Enterobacter cloacae MurA was only alkylated by IAM at pHs > 7. Measurement of the 

enzymatic inhibition by 1AM as a function of pH revealed a pKa ~ 8.3. 

Christendat and Turnbull (38) previously reported that Lys37 in WT CM-PD is 

very reactive based on the results of chemical modification experiments with 

diethylpyrocarbonate (DEPC); DEPC is a histidine-specific modifier and does not usually 

react with lysine residues unless they are partially or fully deprotonated. 

In agreement with the histidine results of Christendat et al. (39), we show that the 

Lys37Gln mutation abolishes mutase activity while not affecting dehydrogenase activity 

(Table 3.2) and hence is in accord with the crystal structure of the homologous "mini-

mutase" from CM-PDTase, which clearly shows that this lysine residue can stabilize the 

ether oxygen in the transition state of the reaction (Figure 1.6). 
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Similarly, site-directed mutagenesis of homologous residues of CM in other 

organisms results in enzymes that are inactive or show low activity. These results confirm 

the importance of Lys37 in the mutase activity of CM-PD (39). The possibility arises that 

a substitution of Lys37 (or an analogous residue) affects binding of chorismate, or 

catalysis, or both. 

Since Lys37Gln possesses no mutase activity kinetic studies cannot be used to 

establish its role. Binding studies were performed by fluorescence spectroscopy in order 

to determine the dissociation constants (KJ) of the transition state analogue for both the 

WT and Lys37Gln variants. CM-PD possesses 5 tryptophan and 10 tyrosine residues per 

monomer; only 2 tyrosine residues are located in the mutase domain at positions 45 and 

83 and they are within 4.5 A of the binding site of the transition state analogue as 

deduced by a model of the mutase domain from CM-PD generated using the structure of 

the "mini-mutase" as the template. Decreases in fluorescence intensity of emission (A.ex 

280 ran) in the presence of increasing concentrations of endo were observed for both WT 

and Lys37Gln CM-PD from which the dissociation constants for the interaction of the 

enzyme with endo could be calculated. WT CM-PD binds the transition state very tightly 

with a dissociation constant of 0.05 ± 0.01 uM, whereas the endo K& for the Lys37Gln 

variant is 0.51 ± 0.04 uJVl. Our experimentally determined dissociation constant for endo 

for the WT CM-PD is similar to the K, of 0.062 uM reported in Chapter 2 and in the same 

range with the K, of 0.11 uM previously reported by Turnbull et al. {14). These results 

indicate that although the variant is devoid of all mutase activity, it surprisingly appears 

to be able to bind the transition state analogue, albeit 10-fold less tightly than the WT. 
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The ability of the Lys37Gln variant to bond endo was further tested by examining 

the ability of the transition state analogue to protect against the alkylation of cysteine 

residues. Mekhssian (J43) had previously shown that incubation of the Lys37Gln variant 

with 25 and 200 u.M endo did not prevent the loss of dehydrogenase activity from 

alkylation with IAM (presumably because the mutant could not bind endo), whereas both 

concentrations of endo afforded full protection of the mutase activity in WT enzyme. 

Furthermore, we demonstrated in Chapter 2 that loss of activity was due to the chemical 

modification of Cys215, which might place the cysteine near the mutase active site where 

the transition state analogue binds. The results of mass spectrometric ligand protection 

studies (Figure 3.12) revealed that 200 uM endo partially protected a single cysteine 

residue in WT CM-PD from alkylation (likely Cys215) judging by the appearance of a 

singly alkylated polypeptide peak at [M+H+] of 41968 amu in addition to the doubly 

alkylated polypeptide at [M+H+] of 42025 amu. In contrast, in absence of ligand, the 

Lys37Gln variant was alkylated at two sites (Cys95 and Cys215) and the addition of 200 

uM endo did not prevent alkylation. Taken all together, the results of ligand protection 

experiments by kinetic and mass spectrometric studies, in parallel with the dissociation 

constants for endo determined by fluorescence spectroscopy, confirm that binding of 

endo to Lys37GIn is decreased/abolished relative to WT CM-PD. However, the 10-fold 

decrease in the Kd of endo binding in the Lys37Gln variant may simply be the result of 

binding at a site other than the mutase active site or perhaps binding to an alternative 

conformation of the enzyme under these experimental conditions. 

The pH dependence of the V/Kc)wrismale for the mutase reaction is bell-shaped and 

reveals that a group with a pK0 - 7.5 must be protonated for binding of chorismate to the 
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free enzyme. This agrees with the studies of Tumbull (72) who showed that a group with 

a pKa ~ 7.5 must be protonated to assist in the binding of chorismate or the transition 

state analogue. Furthermore, it is possible that the group is also important for catalysis 

but does not titrate in the V profile if only the protonated form of the residue can bind the 

substrate. If this residue is Lys37, then it has a markedly depressed pKa and would be 

very reactive at neutral pH. 

Previous studies performed by Mekhssian (143) on the modification of CM-PD 

by the lysine-specific reagent TNBS showed that under pseudo-first order conditions of 

reagent to enzyme (30-75 fold excess reagent to enzyme monomer concentration), 

complete inactivation of mutase activity was too rapid to be monitored accurately. In 

addition, the biphasic time-dependent mutase inactivation profile suggested that more 

than one reactive group was being trinitrophenylated. Lower concentrations of TNBS 

were thus used for all studies involving mutase inactivation (3-fold excess of reagent to 

monomer). Similarly, 25% glycerol was used to increase the reaction solution density and 

hence slow down the rate of inactivation of the enzyme. 

Hence, in the present study, the reactivity of Lys37 was investigated with TNBS 

under near-stoichiometric conditions at neutral pH (section 3.2.10) and in the presence of 

25% glycerol. Since the pKa of lysine in solution is above 10 and trinitrophenylation 

occurs on deprotonated 8-amino groups, only very reactive lysine residues should react at 

this pH. Figure 3.7 illustrates the results of this chemical modification and indicates that 

there is a time-dependent loss of 80% of mutase activity after 45 minutes. Further 

investigation revealed that under identical conditions, a single lysine residue out of 15 

total lysine residues per monomer is trinitrophenylated in the time frame of the 
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experiment. These results imply that loss of mutase activity correlates with the 

trinitrophenylation of a single lysine residue. This suggests that this lysine residue is 

either critical in the mutase reaction or may be spatially near to a residue that is critical. 

Additional protection experiments reported previously by Mekhssian {143) indicated that 

incubation of WT CM-PD with stoichiometric amounts of e??cfo-oxabicyclic diacid 

inhibited the time-dependent inactivation by TNBS and hence prevented the 

trinitrophenylation of a residue that is important for the catalytic mechanism of the 

mutase reaction. This result is not surprising since endo mimics the proposed transition 

state for the chorismate mutase reaction (59) and binds tightly with a K\ of 0.062 \xM. 

Similarly, preincubation of the enzyme with the product of the mutase rearrangement 

(prephenate) protected from inactivation of mutase activity. 

A similar chemical modification experiment performed with the Lys37Gln variant 

enzyme did not exhibit any loss in dehydrogenase activity, suggesting that no lysine 

residues are involved in the dehydrogenase reaction or none were reactive/accessible 

under our experimental conditions (Figure 3.2). In contrast, Tumbull et al noted a loss of 

dehydrogenase activity of approximately 40% for the WT CM-PD. However, this may be 

a consequence of the longer exposure to 20-fold molar excess of reagent to monomer 

CM-PD that was used compared to 45 min incubation with 3-fold excess used in the 

present study. It is worth noting that TNBS can react slowly with cysteine residues (148, 

151), although this seems unlikely in the present studies since modification of cysteine 
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|ure 3.15: Schematic representation of the mutase active site in the E. coli CM-

Close-up of the E. coli model CM active site. Tyrosine residues are in orange and the 

transition state analogue (endo) is in blue. The model of the mutase portion of E. coli 

CM-PD was generated as described in section 3.2.18; the image was created using the 

PyMol software. 
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residues by sulfhydryl-specific reagents is expected to inactivate both mutase and 

dehydrogenase activities. 

ESI-MS was used to verify the stoichiometry of trinitrophenylation. Figure 3.3 

illustrates the deconvoluted mass spectra of the trinitrophenylated sample after 15 

minutes and exhibits two sets of peaks; the first set corresponding to the 2 forms of the 

native enzyme at [M+H+] of 41913 and 42043 amu and the second set, shifted by +211 

amu, at [M+H+] of 42123 and 42254 amu, corresponding to the native enzyme with a 

single TNBS adduct, hence confirming the results reported above. 

Digestion was performed on the trinitrophenylated enzyme using endopeptidase 

GluC, in order to pinpoint the site of trinitrophenylation upon chemical modification. The 

peptide containing Lys37, P(36-48), was identified as a doubly charged peak [M+2FT] at 

752.90 amu and the trinitrophenylated form of P(36-48), which was expected at [M+2H+] 

of 858.37 amu was only detected for the chemically modified enzyme. Further ESI-

MS/MS peptide sequencing of this peptide P(36-48) confirmed the expected amino acid 

sequence as being VK(T/V5)SRFGLPLYVPE, with the trinitrophenylation occurring on 

the Lys37 residue (Figure 3.6). It is worthy mentioning that in the sequence determined 

by MS/MS, the residue reported at position 44 is a leucine, whereas the known amino 

acid at that position from the amino acid sequence of CM-PD is an isoleucine. This is due 

to the fact that there is no change in molecular weight for the respective residues and 

should have no impact on the identification of the peptide and site of trinitrophenylation. 

The above-mentioned data allowed for the identification of a single lysine residue 

whose trinitrophenylation abolishes mutase activity at neutral pH. The reactivity and 

hence the changes in the rate of inactivation with pH would shed light on the ionization 
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state and hence allow for the determination of the pK3 of Lys37. Figure 3.7 illustrates the 

pH-dependent inactivation of mutase activity upon chemical modification by TNBS, 

which has been reported to be stable under alkaline conditions {123). These results 

clearly indicate that the rate of inactivation increases with increasing pH and thus 

correlates with the deprotonation of the e-amino group of Lys37. By fitting the 

experimentally determined apparent rates of inactivation (kapp) with pH, to Equation 3.3 

for a single titrating residue, we were able to determine that the pK3 of Lys37 is 7.69 ± 

0.08. This result suggests within reasonable error, that Lys37 is the residue identified in 

the mutase pH-rate profile that must be protonated for mutase activity (Figure 3.9). 

ESI-MS was used to monitor the trinitrophenylation of Lys37 in WT CM-PD 

(5 u.M monomer) by reaction with 15 uM TNBS for 10 minutes at various pH values, 

ranging from 5.94 to 9.26. Figure 3.13 represents the ESI-MS spectra of the GluC-

digested WT CM-PD polypeptide after the 10 minute reaction with 15 fiM TNBS at pHs 

5.94, 6.86, 7.10, 7.87, 8.37, 8.76, 9.01 and 9.26, respectively. A trend is clearly visible in 

the spectra, wherein the intensity of the unmodified P(36-48) at [M+2FT] of 752.90 amu 

decreases and the intensity of trinitrophenylated P(36-48) at 858.37 amu increases with 

increasing pH. The results depicted in Figure 3.13 clearly indicate that the extent of 

trinitrophenylation of Lys37 is pH-dependent; as pH is increased, the ratio of 

trinitrophenylated to unmodified P(36-48) increases proportionately to pH. The pH-

dependent trinitrophenylation was quantified using Equation 3.3 for the titration of a 

single residue which yielded a pKJor Lys37 in the WT CM-PD of 7.68 ±0.13. 

The results of the studies reported in this chapter have provided evidence that 

Lys37 is likely the residue that titrates at pH 7.5 in the K/7vch0mmaie profile. At 
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physiological pH, this residue is protonated but readily capable of donating a proton. The 

biophysical reasons for the major shift of the pK3 of Lys37 to 7.5 from 10 in solution are 

unclear and must hence be inspected. Careful examination of a model of the mutase 

domain of the Afunctional CM-PD of E. coli complexed with endo, using the CM 

domain of E. coli CM-PDT as a structure template reveals several charged amino acid 

residues in proximity to Lys37, which may affect its ionization state. As shown in Figure 

3.17, the net negatively charged residue Glu50 is at 7.65 A. Interestingly, the side chain 

of Glu86 (4.76 A) has been proposed to be protonated in order to interact with the ether 

oxygen of the transition state analogue. The positively charged residues in the vicinity of 

Lys37 are Arg26 (10.69 A), Arg49 (7.24 A), Arg57 (15.97 A) and Lys89 (8.20 A). 

Argl F , which has also been implicated in the binding of the carboxylate moiety of endo 

at Cj], originates for the second monomer of the mutase dimer in E. coli CM-PDT and is 

4.48 A from the c-amino group of Lys37. Honig and Nicholls (J52) have reported that 

electrostatic interactions operate over long ranges; they suggest that a single charged 

amino acid 10 - 20 A away can have a net effect on the pK3 of a titratable group. Hence, 

the combined effect of multiple charged residues could conceivably induce a much larger 

perturbation in pK3. It is noteworthy to mention that Lys37 is present near the C-terminus 

of a long helix (4 - 40) and a protonated form may stabilize the 5" charge at that site. 

A possible role for Lys37 in the mechanism of the mutase reaction is shown in 

Figure 3.16. In this mechanism, groups involved in binding may also participate in 

catalysis. The c-amino group of Lys37 may form a hydrogen bond with the ether oxygen 

of endo; the participation of Lys37 in catalysis would involve the protonation of the ether 

oxygen, which would facilitate the cleavage of the C5-O bond and subsequently, the 
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nucleophilic attack on C] by the electron pair of the endolpyruvyl side chain of 

chorismate (36). Thus, a reduced pKa would facilitate Lys37's function as a hydrogen 

bond donor. 
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Chapter 4 

Investigating the Ionization State of Active Site Cysteine Residues 

in the Catalytic Trimer of E. coli Aspartate Transcarbamylase 
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4.1 INTRODUCTION 

The catalytic subunit of aspartate transcarbamylase in E. coli is composed of three 

identical polypeptide chains, each possessing a single cysteine residue at position 47. 

Sequence alignments reported in this chapter indicate that this residue is not conserved, 

since it is frequently replaced by methionine as well as other non-polar amino acids. 

Earlier studies on the WT CSU performed by Vanaman and Stark (105) indicated 

that Cys47 is not reactive towards small, cysteine-specific alkylating agents, but was 

somewhat reactive toward the bulkier reagents DTNB and p-hydroxymercuribenzoate. 

Chemical modification of the WT CSU by DTNB resulted in a time-dependent loss of 

activity. Moreover, inorganic phosphate and succinate, competitive inhibitors of the 

ATCase reaction, afforded protection against inactivation by chemical modification, 

exhibiting K, values of 1.5 and 37 mM, respectively, which were in agreement with 

previously reported results {153, 154). Derivatization of the DTNB-modified CSU using 

nucleophiles, restored activity for the most part, suggesting that the Cys47 residue is in or 

very near the active site. Subsequent experiments which followed the pH-dependence of 

DTNB modification determined the apparent pA"a of Cys47 to be ~1.9. This depressed 

pKa led to the hypothesis that the Cys47 thiol group must be near a cluster of cations. 

Previous studies have indicated that Ser52 is critical for binding of carbamyl 

phosphate, in agreement with the crystal structure of the enzyme bound with PALA 

(Figure 1.13) As expected, an Ala substitution at position 52 caused a decrease in 

activity, decrease in ability to bind PALA and carbamyl phosphate, but also, surprisingly, 

an increase in thermal stability (108, 109). Interestingly, the decrease in catalytic and 
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binding efficiency as well as increase in thermal stability were further magnified with the 

substitution with a cysteine at position 52 {109, Turnbull unpublished). These results 

allowed for speculation that this group is present in the active site and that the unusual 

properties caused by the Ser to Cys substitution are a consequence of a negative charge 

on the Cys52 sulfhydryl group. 

The aforementioned results lay the groundwork for the present chapter. Here, we 

describe an improved method for the isolation of CSU from His-tagged ATCase 

holoenzyme, consisting of a one step Nickel affinity chromatography in conjunction with 

the treatment of column-bound holoenzyme with the mercurial reagent neohydrin. The 

purified CSU was assayed for residual mercury by mass spectrometry. We also 

determined the ionization state of Cys52, since the presence of the thiolate anion at 

position 52 may be the underlying cause of the observed kinetic and biophysical 

characteristics of the variant CSU. Chemical modification and mass spectrometric studies 

were performed on WT and Cys52 CSUs to determine the reactivity of both cysteine 

residues and to determine the pKa of Cys52's sulfhydryl group. Using the structural 

information available for the catalytic trimer of ATCase, we propose why the pA^ of 

Cys52 is unusually low. 
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4.2 EXPERIMENTAL PROCEDURES 

4.2.1 Materials 

Both WT and Ser52Cys ATCase holoenzymes were expressed as recombinant 

proteins with an engineered hexa-histidine tag on the N-terminus of their respective 

regulatory chains. His-tagged WT ATCase holoenzyme, a gift from Dr. H.K. Schachman, 

was obtained from E. coli HS1061 containing plasmid pax4 which encompasses XhepyrB 

and pyrl genes, and which encode the c and r chains of ATCase, respectively. His-tagged 

Ser52Cys ATCase holoenzyme was obtained from HS533 E. coli strain HS533, which 

was constructed by Dr. J. Tumbull while on sabbatical in the lab of Dr. H.K. Schachman 

at the University of California, Berkeley. In this latter strain, endogenous ATCase and 

ornithine transcarbamylase have been inactivated. DTNB (5-5'-dithiobis(2-

nitrobenzoate)), iodoacetamide (IAM), chloroacetamide (GAM) and imidazole were 

purchased from Sigma. Dialysis membranes (10 kDa MWCO) were purchased from 

Fisher Scientific. Biomax centrifugal concentrators (10 kDa MWCO) were purchased 

from Millipore, while size-exclusion NAP-5 columns were purchased from Amersham 

Pharmacia Biotech. Ni-NTA Superflow resin was purchased from Qiagen. Bradford dye 

reagent was purchased from Biorad. Protein molecular ladder used for SDS-PAGE was 

obtained from Fermentas Life Sciences. Neohydrin was synthesized as reported by 

Rowland et ai(155) and was stored in 50 mg aliquots until use. All other chemicals were 

purchased at the highest quality commercially available. 
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4.2.2 Expression and Purification of WT ATCase CSU 

An agar stab of the permanent bacterial stock of the recombinant strain HS1061 

of E. coli was inoculated into 50 mL LB medium supplemented with 100 ug/mL 

ampicillin in a rotating incubator shaker (225 rpm) at 37°C for 12 - 16 hours. The 

inoculated HS1061 culture was then streaked onto an LB/agar plate supplemented with 

100 ug/mL ampicillin. The streaked plate was incubated overnight at 37°C. A single 

colony was then selected and inoculated overnight in 50 mL LB medium supplemented 

with 100 ug/mL ampicillin in a rotating incubator shaker (225 rpm) at 37°C. Ten mL of 

this culture were then inoculated overnight into each of two Fernbach flasks each 

containing 1.5 L of LB medium supplemented with 100 ug/mL ampicillin and the 

cultures were additionally incubated with shaking (225 rpm) at 37°C. Cells were then 

harvested by centrifugation at 10000 rpm for 30 minutes at 4°C. The bacterial pellet was 

kept at -20°C until ready for further processing. The cells were later resuspended in about 

90-100 mL of sterile and chilled phosphate buffer (50 mM NaH2P04, 0.3 M NaCI, 20 

mJv] imidazole pH 8.0). The cells were lysed by sonication using a Branson/VWR 

sonicator on setting 3. Samples were subjected to six bursts of 15 seconds each with one 

minute on ice between bursts. The lysate was subsequently clarified by centrifugation at 

90 OOOg for at least 30 minutes at 4°C using a Beckman ultracentrifuge. 

The purification of CSU was performed as described by Yang et al. {156) with 

specific modifications, which included the elimination of an ion-exchange 

chromatography step and the inclusion of neohydrin treatment Nickel affinity resin-

bound holoenzyme. Briefly, the cleared lysate was applied to a glass column containing 

25 mL of Qiagen Ni-NTA Superflow resin previously washed and equilibrated with the 
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phosphate buffer mentioned above in order to bind the His-tagged holoenzyme. Protein 

was allowed to bind to the affinity resin by recirculating the supernatant through the 

column using a peristaltic pump for 1.5 hours at 4°C. The resin was then washed with 

about 150 mL of phosphate buffer and the flow-through was collected in 10 ml aliquots. 

The presence of protein was verified by monitoring the increase in absorbance at 280 nm 

and the protein was quantified by the Bradford assay. The amount of His-tagged 

holoenzyme bound to the resin was then determined by subtracting the amount of protein 

in the wash from the total protein initially found in the supernatant. In order to separate 

the holoenzyme subunits, neohydrin dissolved in phosphate buffer mentioned above, was 

added to the column dropwise with gentle swirling; 30 mg neohydrin was used for each 

100 mg of holoenzyme (double the amount suggested by Yang et al. (J56)). Neohydrin 

was allowed to react for 45-60 minutes while slowly rotating the column at 4°C. After the 

reaction, the resin was allowed to settle by gravity and 4 mL aliquots of eluate were 

collected. DTT was added to each aliquot to a final concentration of 10 mM. The resin 

was then washed with 60 mL of 10 mM Tris, 0.1 M KC1 buffer (pH 8.7) and subsequent 

4 mL fractions were collected. These fractions were examined for the presence of CSU 

by monitoring the absorbance at 280 nm. The samples containing CSU were pooled and 

dialyzed overnight at 4°C in 2 L 10 mM Tris (pH 8.7) with 1 mM DTT, in order to 

remove imidazole. The dialyzed sample was dialyzed once again overnight in 4 L of 3.6 

M ammonium sulphate (pH 7.0) with 10 mM P-mercaptoethanol at 4°C. The protein was 

stored as an ammonium sulphate precipitate at 4°C until further. 

Elution of the bound RSU and remaining holoenzyme was performed using 

imidazole at a concentration of 250 mM. Imidazole was subsequently dialyzed away in 
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4 L of 10 mM Tris (pH 8.7) with 1 mM DTT. Subsequently, 5 mM zinc acetate was 

added in order to refold RSU to its native conformation and avoid precipitation. The 

dialyzed sample was dialyzed once again overnight in 4 L of 3.6 M ammonium sulphate 

(pH 7.0) with 10 mM P-mercaptoethanol at 4°C. The protein was stored as an ammonium 

sulphate precipitate at 4°C until ready for use. 

4.2.3 Expression and Purification of Ser52Cys ATCase CSU 

Expression and purification of Ser52Cys ATCase holoenzyme was performed 

using the recombinant strain HS533 of E. coli. The procedures for expression and 

purification were exactly as those reported for WT ATCase holoenzyme in section 4.2.2. 

4.2.4 Determination of Protein Concentration 

Protein concentrations were estimated using the Bio-Rad Protein Assay Kit (Bio-

Rad Laboratories) {134) and bovine serum albumin (BSA) (Sigma) as the standard 

protein. BSA was dissolved in 10 mM Tris-HCl (pH 7.4), filtered using a 0.2 pm 

syringe-driven filter to remove any particulates and its concentration was determined 

spectrophotometrically at 280 nm using 8280nm 0.667 mg/mL (757). 

4.2.5 Polyacrylamide Gel Electrophoresis of Proteins 

Denaturing SDS-PAGE was performed using 10% polyacrylamide gels as 

described in section 2.2.4 for CM-PD. 
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4.2.6 Electrospray Ionization Mass Spectrometry (ESI-MS) 

Both WT and Ser52Cys CSU protein samples were prepared for ESI-MS analysis 

by adapting the procedure reported by Weinglass et al. (J36) and as reported for CM-PD 

in section 2.2.8. The sample was applied to a Micromass Q-ToF 2 triple-quadrupole mass 

spectrometer by direct infusion at a flow rate of 1.0 pL/min. Samples were analyzed in 

positive ion mode scanning over a m/z range of 500 - 2500. A spray voltage of 3.5 kV 

and a cone voltage of 35 V were used. No auxiliary gas was used. The data were 

generated and analyzed using Micromass MassLynx v 4.0 software. The instrument was 

calibrated with [Glu]-fibrinopeptide B in the same solvent system as that used for 

analysis of ATCase CSU. In all mass spectra, the x-axis represents mass (amu) and the y-

axis % relative intensity to most intense peak in spectrum. 

4.2.7 ICP-MS for Detection of Mercury in CSU Sample 

All materials used for the handling and preparation of ICP-MS samples were 

made of polypropylene; these materials were soaked overnight in trace metal free 7% 

HNO3, rinsed with MilliQ water and dried in an incubator at 37°C before use. Metal-free 

100 mM Tris buffer (pH 8.7) was prepared by chelation of metal ions using Chelex®100 

resin. CSU was diluted into 100 mM Tris buffer (pH 8.7) and was then buffer exchanged 

using a NAP-5 size exclusion column to a final concentration of about 1 mg/ml. A 500 

uL aliquot of the sample was mixed with 143.7 uL of 10% HNO3 and 356.3 uL of MilliQ 

water and the sample was then allowed to digest overnight at 60°C. The sample was then 

diluted 10-fold in MilliQ water to a final volume of 3.5 mL for sample reading. The 

bound metals were evaluated using the helium mode reaction cell (in order to decrease 
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non-specific signal by decomposing molecules into its basic elements). External 

calibration was used in a range of 1 ppb to 1 ppm with the 202 amu mercury isotope in 

metal-free 1% HNO3. The amount of mercury bound to the enzyme was back-calculated 

from the linear regression generated from the standard solution calibration curve. 

Sampling rate was 300 uL/minute using a peristaltic pump. 

4.2.8 Sample Preparation of Ammonium Sulfate Precipitated ATCase CSUs 

An aliquot of ammonium sulfate precipitated ATCase CSU from section 4.2.2 

was placed in a 1.5 mL Eppendorf tube. The precipitate was centrifuged at 14000 rpm at 

4°C for 5 minutes. The supernatant was removed and 400 uL of appropriate buffer was 

added. The precipitated sample was dissolved in the buffer by repeated gentle aspiration 

and release using a micropipettor. The sample was then centrifuged at 14000 rpm at 4°C 

for 5 minutes in order to clarify the solution from particulate matter. In order to remove 

any traces of mercury potentially bound to the catalytic chains, samples were treated with 

10 mM EDTA and 20 mM DTT for 30 minutes on ice prior to buffer exchange or 

concentration. 

Buffer exchange was performed using either a NAP-5 size exclusion column or a 

BJOMAX centrifugal concentrator (10 kDa MWCO). 

For exchange via a NAP-5 column, 10 mL of the intended buffer is used to 

equilibrate the column. A 500 uL aliquot of the sample is passed through the column. 

Once the 500 uL sample had eluted, 1 mL of buffer is applied into the column and the 

eluate is collected into a 1.5 mL Eppendorf tube. 
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For buffer exchange/concentration using a BIOMAX centrifugal concentrator, the 

dissolved sample is placed in the concentrator tube which had previously been 

conditioned with the appropriate buffer. It is then centrifuged at 12000 rpm using a 

benchtop centrifuge at 4°C until the sample reached an approximate volume of 100 uL. 

Additional buffer is added to the sample up to a final volume of approximately 500 uL. 

The sample is then centrifuged once again as mentioned earlier. This step is repeated two 

more times in order to exchange the solvent completely into the intended buffer as well 

as to concentrate the protein. 

4.2.9 WT ATCase CSU Multiple Sequence Alignments 

Multiple sequence alignments were performed on the amino acid sequence of the 

WT ATCase CSU from E. coli using the web-based software ClustalW 

(www.ebi.ac.uk/clustalw/) (J58, J59). The amino acid sequences of 13 diverse species 

were used for these alignments and consisted of the sequences of Escherichia coli, 

Campylobacter jejuni RM1221, Photobacterium profundum SS9, Yersinia pestis C092. 

Methanocaldococcus jannaschii, Bacillus subtilis, Pyrococcus abyssi, Arabidopsis 

thaliana, Saccharomyces cerevisiae, Candida albicans SC5314, Homo sapiens, Mus 

musculus (house mouse) and Danio rerio (zebrafish). 
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4.2.10 Far-UV Circular Dichroism Spectroscopy for Assessment of Secondary 

Structure 

Far-UV circular dichroism (far-UV CD) studies were performed to assess global 

secondary structure using a JASCO J-815 Spectropolarimeter which was connected to a 

Pelletier heating/cooling system. WT and Ser52Cys ATCase CSU samples were prepared 

in 100 mM Tris-HCl (pH 7.0) at a concentration of 0.20 mg/mL (5 pM monomer) and 

scans were performed from 200 - 260 nm at 25°C in a 2 mm pathlength quartz cuvette. 

The resulting spectra were obtained by averaging 5 scans, at a bandwidth of 1 nm, a 

wavelength scanning rate of 50 nm/minute and 0.25 second response. The data were 

corrected for the contribution of the solvent and cuvette system using software included 

in the Jasco J-815 spectropolarimeter. 

4.2.11 Fluorescence Spectroscopy for Assessment of Tertiary Structure 

The tertiary structures of WT and Ser52Cys CSU were probed by monitoring 

fluorescence emission using Shimadzu fluorimeter. WT and Ser52Cys ATCase CSU 

were prepared at approximately 0.06 mg/mL (1.5 uM monomer) in JO mM HEPES (pH 

7.5) with 1 mM DTT. The samples were placed in a 3-mL quartz fluorescence cuvette. 

The fluorescence spectra were recorded at excitation wavelengths of 280 and 295 nm, 

while emission was recorded from 300-400 nm. Buffer signal was subtracted from 

fluorescence scans. The settings used were slow scan speed, 4 nm bandwidth and the 

instrument was set on high sensitivity. 
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4.2.12 Thermal Denaturation of WT and Ser52Cys CSU Secondary Structure 

Monitored by Circular Dichroism 

In order to determine the thermal stability of the secondary structure of both WT 

and Ser52Cys ATCase CSUs, the enzymes were subjected to thermal denaturation from 

30 to 95°C at a rate of 30°C/hour. Identical experimental conditions were used as in 

section 4.2.10 except that samples were prepared in 10 mM HEPES (pH 7.5). Loss of a-

helical structure was monitored at 222 nm. The first order derivative of the change in CD 

signal with temperature was determined using analysis software included in the Jasco J-

815 spectropolarimeter in order to determine the actual melting temperatures of the 

CSUs. 

4.2.13 Chemical Modification of WT and Ser52Cys CSU by Cysteine-Specific 

Modifying Reagents 

4.2.13.1 Sample Preparation Prior to Chemical Modification 

A final protocol developed for all subsequent analyses of the CSU is described 

below. An aliquot of either WT or Ser52Cys ammonium sulfate precipitated ATCase 

CSU was centrifuged for 5 minutes at 14000 rpm using a benchtop microcentrifuge at 

4°C. The supernatant was removed using a micropipettor and the pellet was resuspended 

in 0.5 mL of the appropriate buffer containing 10 mM EDTA and 20 mM DTT. The 

sample was then allowed to incubate for 30 minutes on ice to ensure the reduction of the 

cysteine residues as well for the chelation of any mercury that might be present from the 

purification process. EDTA and DTT were then removed by buffer exchange into the 
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intended buffer without EDTA and DTT, using NAP-5 columns. Protein concentration 

was then determined using the BioRad assay kit. 

4.2.13.2 Chemical Modification Using Ellman's reagent (DTNB) 

The concentration/accessibility of the CSU cysteine residues was determined for 

both the WT and Ser52Cys CSUs by assaying with DTNB. The assays were performed 

under both native and denaturing conditions. Native conditions were maintained by using 

a buffer of 200 mM Tris-HCl, 20 mM EDTA (pH 8.5) buffer while denaturing conditions 

using the same buffer but with 6 M GuHCl present. CSU monomer (40 pM for WT/ 20 

pM for Ser52Cys) was incubated with a 2-fold molar excess of DTNB with respect to the 

total concentration of cysteines at 30°C protected from light. Upon addition of DTNB, an 

absorbance increase was monitored for release of 3-carboxylate 4-nitrophenolate at 412 

nm for both the native and denaturing conditions but using slightly different extinction 

coefficients for the calculation of the cysteine residue concentrations, notably 8412 = 

14150 M" .cm"' for native conditions and e4]2 = 13700 M'.cm"1 for denaturing conditions 

(737). The recorded absorbance was corrected for the contributions from buffer and 

DTNB. 

Briefly, for performing the DTNB assay under native conditions, the CSU was 

incubated in buffer in a 1.0 mL cuvette for 10 minutes at 30°C in the spectrophotometer 

interfaced to a circulating thermostatted water bath. Under denaturing conditions, the 

CSU was incubated for 60 minutes at room temperature in 6 M GuHCl prior to assaying 

in order to ensure complete protein denaturation. The absorbance of the enzyme solution 
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at 412 nm was zeroed and the reaction was initiated with the addition of DTNB; 

measurements were recorded at 0, 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50 and 60 minutes, 

with gentle mixing using a pipette prior to every reading. A DTNB control was prepared 

as for the above samples (but without protein) and its absorbance at 412 nm was 

monitored at the same time points. The absorbance values for the DTNB control were 

subtracted from the sample absorbances in order to correct for auto-hydrolysis as well as 

baseline drift. 

4.2.13.3 Time-Dependent Chemical Modification Using Iodoacetamide (IAM) and 

Chloroacetamide (C1AM) 

ESI-MS was used to monitor the alkylation of cysteine residues in WT and 

Ser52Cys ATCase CSV by reaction with either 1AM or C1AM. Alkylation involved 

reaction of 10 uM CSU monomer with 10 mM 1AM in a total volume of 50 uL of 100 

mM Tris-HCl (pH 7.0) at room temperature and protected from light. Time-dependent 

modification using either 1AM or C1AM was followed at t = 0, 5, 10, 20, 30 minutes. 

Samples were allowed to equilibrate at room temperature for 10 minutes prior to 

initiation of the alkylation reaction. The modification reaction was initiated upon addition 

of either IAM or C1AM. At the end of each time point, the modification reaction was 

stopped using DTT at a final concentration of 20 mM. Samples were kept on ice and 

were then processed and analyzed by ESI-MS as reported in section 4.2.6. 
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4.2.14 In-silico Digestion of WT and Ser52Cys ATCase CSU With Endopeptidase 

GIuC 

In-silico digestions were performed on the amino acid sequences of both WT and 

Ser52Cys CSUs (Tables 4.1 and 4.2) using the PeptideCutter software (J49) found at 

www.expasy.org. Endopeptidase GluC from Staphylococcus aureus V8 was used for the 

in-silico digestion. 

4.2.15 Digestion of WT and Ser52Cys ATCase CSU With Endopeptidase GluC 

Both native and alkylated WT and Ser52Cys CSU samples (from section 4.2.13.3) 

were lyophilized overnight at room temperature using a Speedvac and then dissolved in 

30 uL of 50 mM ammonium bicarbonate (pH 7.8). Next, the samples were digested using 

endopeptidase GluC at a ratio of 100:1 CSU:GluC (w/w) overnight at room temperature 

protected from light. 

The GluC-digested CSU samples were analyzed by LC-MS using a 45 minute 

linear acetonitrile gradient from 5 - 95 % containing 0.1% TFA. Peptide peaks were 

detected in positive mode from 200 - 3000 amu using the same instrument and 

parameters as described in section 4.2.6. 
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4.2.16 Peptide Sequencing by ESI-MS/MS 

A sample of GluC-digested Ser52Cys ATCase CSU peptides was subjected to 

LC-MS analysis as per section 4.2.17. The peptide at [M+H2+] of 620.787 amu 

corresponding to the alkylated P(51-60) was selected at the first quadrupole, fragmented 

at the second quadrupole, and the resulting amino acid peaks were detected from 100 -

1400 amu in positive mode at the third quadrupole. Parameters used were as follows: 

Cone voltage: 35 V; Collision Cell voltage: 35 V; Argon gas used for fragmentation and 

the resolution was approximately 0.5 Da. 

4.2.17 Determination of Cys52 pKa by Titration With Chloroacetamide 

The ionization state and surface accessibility of Cys52 of the variant CSU was 

determined by reaction with C1AM for 40 minutes at several pH values, ranging from 

3.93 to 9.01. The pH-dependent alkylation reaction was carried out in a 2 x 3-component 

buffer (0.1 M 2-morpholinoethanesulfonic acid (MES), 0.1 M N-ethylmorpholine, 0.2 M 

diethanolamine). Ser52Cys CSU was prepared as reported in section 4.2.8 prior to 

chemical modification with GAM. The protein was then buffer exchanged by NAP-5 

into 3-component buffer (pH 7.01). CSU monomer (10 uM), was incubated for 10 

minutes at ambient temperature in 2 x 3 component buffer at several pH values ranging 

from 3.93 to 9.01. The alkylation reaction was initiated upon addition of 0.5 uL of a 

stock solution of 1 M C1AM in MilliQ water to a final reaction volume of 50 uL. The 

reaction mixture was gently vortexed for 5 seconds and the reaction was then allowed to 
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proceed for 40 minutes as described in section 4.2.13.3. Samples were then prepared for 

ESI-MS analysis as reported in section 4.2.6. 

For the analysis of the ESI-MS data, the ratio of peak intensity of adduct / (peak 

intensity of native CSU + peak intensity of adduct) was calculated in order to determine 

the ratio of alkylated CSU at different pHs relative to unmodified CSU. The pKa of the 

alkylated cysteine residue was determined by plotting peak intensity ratios versus pH 

values and fitting the data to the equation for a single p/Qusing Erithacus Software Grafit 5.0 

software: 

Limit.+Limit2A0{p"-pK") ,r . 
y = !—, „ „\ (Equation 4.1) 

1 0 + 1 
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4.3 RESULTS 

4.3.1 Purification and Purity Assessment of WT and Ser52Cys CSU 

Both WT and Ser52Cys ATCase holoenzymes were engineered with a hexa-

histidine tag at the N-terminus of the RSU to facilitate purification of the holoenzyme by 

Ni-NTA affinity chromatography. The location of this tag did not interfere with the non-

covalent association of the catalytic chain with the regulatory chain in the holoenzyme. In 

order to minimize non-specific binding of proteins lacking a His-tag, the resin was 

washed with a phosphate buffer containing a low concentration of imidazole (20 mM) 

after applying the cell-free extract to the column. The results in Figure 4.1 (lanes B-E) 

indicate that a significant amount of unbound protein as well as a small amount of 

holoenzyme eluted upon washing with this low imidazole-containing wash buffer. 

Holoenzyme may have eluted at 20 mM imidazole if the binding capacity of the Ni-NTA 

resin was exceeded. 

In order to separate the catalytic subunit from the regulatory subunit, holoenzyme 

was reacted with neohydrin as reported in section 4.2.2. The bound His-tagged 

holoenzyme was treated with neohydrin while still bound to the nickel resin, using a ratio 

of neohydrin:holoenzyme 3:10 (w/w), which is approximately 3-fold higher than 

previously reported by Yang et al. (J56). SDS-PAGE analysis shown in Figure 4.1 (lanes 

F and G) indicates that the reaction of the holoenzyme with neohydrin yields a protein 

resolved as a single band which migrated with an approximate molecular weight of 35 

kDa suggesting that the preparation of CSU was homogeneous. 
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In order to elute the bound RSUs and any intact holoenzyme, the resin was 

subsequently washed with a Tris buffer containing 250 mM imidazole. Denaturing PAGE 

analysis of fractions 4 and 7 (Figure 4.1 (lanes I-J)) of the wash performed at a high 

imidazole concentration yielded a protein which migrated at an approximate molecular 

weight of 18 kDa, corresponding to the molecular weight of RSU. Also resolved were a 

few faint bands corresponding to possible unidentified proteins. No bands corresponding 

to the CSU were seen in lanes I and J which indicates that neohydrin-mediated reaction 

of the holoenzyme likely lead, to the complete dissociation of the holoenzyme into its 

subunits. Identical results were obtained during the purification of WT ATCase CSU 

(results not shown). Hence, purification of His-tagged ATCase holoenzyme by Ni-NTA 

affinity chromatography followed by subsequent treatment with neohydrin leads to a 

yield of approximately 35 mg of CSU and 50 mg RSU per liter of culture, although the 

CSU is homogeneous. 
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Figure 4.1: SDS-PAGE analysis of the nickel affinity purification of Ser52Cys CSU 

Selected samples from the purification scheme as analyzed by 10% SDS-PAGE. 

They include: (A) broad range molecular weight ladder, (B) crude extract, (C) flow-

through from nickel column; (D-E) wash fractions 1 and 12 collected prior to treatment 

with neohydrin, (F-H) fractions 2, 9, and 12 in the wash after treatment of holoenzyme 

with neohydrin, (I-J) fractions 4 and 7 from the 250 mM imidazole wash. 
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ESI-MS was used to confirm the exact molecular weight of the proteins that had 

been purified by Ni-NTA affinity chromatography. The literature molecular weight value 

from the updated amino acid sequence of pyrB from E. coli K12 (accession number: 

P0A786) is 34427 Da. The mass spectrum of native WT CSU (Figure 4.2, panel A) 

clearly shows a single peak at [M+H+] of 34294 amu. The value obtained by mass 

spectrometry has a discrepancy of-130 amu with the literature value. This discrepancy 

corresponds to the removal of the N-terminal methionine in the catalytically active 

polypeptide {139). The results indicate that the WT CSU indeed undergoes post-

translational modification and also confirms that the molecular weight of the purified 

fully folded WT ATCase CSU is in excellent agreement with the expected value reported 

in the literature with an experimental error less than ± 0.01%. 

The mass spectrum of Ser52Cys CSU clearly indicates the presence of two major 

peaks at [M+H+] of 34312 amu and 34511 amu (Figure 4.2 panel B). The peak identified 

at [M+H+] of 34312 amu once again illustrates a discrepancy of-131 amu with respect to 

the molecular weight of the full length polypeptide (34443 Da). The Ser52Cys CSU 

variant also undergoes cleavage of the N-terminal methionine as reported for the WT 

CSU. The second peak identified at 34511 amu (an adduct of+199 amu) corresponds to a 

bound Hg+2 originating from the neohydrin treatment for the dissociation of the 

holoenzyme into its constituent subunits. It is not uncommon to detect mercury adducts 

by ESI-MS on polypeptides containing cysteine residues (160). 

The ESI-MS spectrum (Figure 4.2, panel B) shows only the formation of a single 

+199 amu adduct, suggesting that not more than one Hg+" binds per catalytic chain. 

Hence, conditions must be determined to ensure that the metal is removed before any 
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further experiments may be conducted. It is also noteworthy that the +199 amu adduct 

was not seen for the WT CSU. 

ICP-MS was used in order to determine the presence or absence of metal, and to 

determine the nature of the metal. The results of Ser52Cys CSU analysis by ICP-MS 

indicate that the metal bound was mercury and that there were 1.7 mercury bound per 

variant CSU trimer. 
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Figure 4.2: Deconvoluted electrospray ionization mass spectra of untreated CSU 

(A) Untreated WT CSU, observed [M+H+] of 34294 amu. (B) Untreated Ser52Cys CSU; 

minor species corresponding to Ser52Cys CSU observed at [M+H+] 34312 amu and 

major species corresponding to Ser52Cys CSU bound with a mercury adduct at [M+H+] 

of 34511 amu. The enzymes (2-5 uM monomer) were prepared as described in section 

4.2.8 immediately prior to direct injection. 
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4.3.2 Sample Preparation of Ammonium Sulfate Precipitated ATCase CSUs 

Ammonium sulfate precipitated samples of Ser52Cys CSU were subjected to 

various treatments in order to determine experimental conditions under which a metal-

free polypeptide may be obtained for use in further experiments. In the untreated sample 

(Figure 4.3, panel A), two major species are observed: the unmodified variant 

polypeptide at [M+H+] of 34312 amu and the protein with the mercury adduct at [M+H+] 

of 34511 amu. From their relative intensities, a ratio of native protein: mercury-adduct of 

4:7 was determined. 

EDTA, a divalent metal chelator, was not present during the Ni-NTA purification 

step (given that it will bind the resin-bound nickel and prevent binding of the hexa-

histidine tag). Hence, an initial treatment was performed by incubating the variant CSU 

with 10 mM EDTA on ice for 30 minutes in an attempt to bind the contaminating 

mercury. The ESI-MS spectrum of the sample treated with 10 mM EDTA (Figure 4.3, 

panel B), indicates that two major species are still present: the variant protein peak 

observed at [M+H+] of 34311 amu, and the protein bound with mercury at [M+H+] of 

34510 amu. Their relative peak intensities do however, indicate a slight improvement of 

the ratios of uncomplexed mercury-adduct protein from 4:7 to 4.5:6, thus suggesting that 

increasing the concentration of EDTA may aid in the chelation of mercury from the 

variant protein. 

Surprisingly, further treatment with a higher EDTA concentration of 100 mM 

indicates no noticeable improvement in mercury chelation as suggested by the two major 

species seen in (Figure 4.3, panel C). In contrast, the data indicate a decrease in the ratio 

of uncomplexed:mercury-adduct protein to its original untreated value of 4:7. Hence, 
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increasing the concentration of EDTA appeared to confer an undesirable effect on the 

removal of mercury from the metal-bound polypeptide. 

The use of thiol-reducing agent DTT as a chelator of heavy metals for 

toxicological studies has frequently been reported {161). Thus, DTT was utilized at a 

concentration of 20 mM in conjunction with 10 mM EDTA in order to remove the 

contaminating mercury from the neohydrin-treated variant polypeptide. Incubations 

conditions with DTT and EDTA were identical to those reported for EDTA alone. As 

predicted from the literature, the ESI-MS results of this treatment (depicted in Figure 4.3, 

panel D), reveals that the only species is observed at [M+H+] of 34312 amu 

corresponding to the unmodified variant polypeptide; the peak corresponding to the 

protein complexed with mercury has disappeared, as indicated by the arrow. Several 

sample preparations with 10 mM EDTA and 20 mM DTT confirm that this protocol is 

effective at removing the mercury bound to the Ser52Cys CSU. 

WT CSU was subjected to the same protocol in order to ensure that treatment 

with 10 mM EDTA and 20 mM DTT did not result in any protein modification. The ESI-

MS spectrum of treated WT CSU seen in Figure 4.3, panel E indicates that a single major 

peak is observed at [M+H+] of 34374 amu corresponding to the unmodified WT CSU. 

The ESI-MS spectra of several subsequently treated WT CSU samples confirmed that no 

adverse effects are caused during this sample treatment (data not shown). 

In light of the previous results, all subsequent sample preparations for WT and 

variant proteins, included 10 mM EDTA and 20 mM DTT, in order to minimize 

variations between protein sample preparations. 
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Figure 4.3: Deconvoluted electrospray ionization mass spectra of treated CSU 

(A) Untreated Ser52Cys CSU; unmodified polypeptide peak observed at [M+H+] of 

34312 amu and protein with a mercury adduct observed at [M+H+] of 34511 amu. (B) 

Unmodified Ser52Cys CSU treated with 10 mM EDTA; native polypeptide peak 

observed at [M+W] of 34311 amu and protein with a mercury adduct observed at 

[M+H+] of 34510 amu. (C) Unmodified Ser52Cys CSU treated with 100 mM EDTA; 

unmodified polypeptide peak observed at [M+H+] of 34312 amu and protein with a 

mercury adduct observed at [M+H+] of 34510 amu. (D) Unmodified Ser52Cys CSU 

treated with 10 mM EDTA and 20 mM DTT; single major peak observed at [M+H+] of 

34312 amu corresponding to variant polypeptide without mercury bound. The enzymes 

were treated with EDTA and DTT as mentioned in section 4.2.8 for 30 minutes on ice. 

Protein samples (2-5 uM monomer) were prepared as described in section 4.2.6 

immediately prior to direct injection. The term "native" denotes the protein that is 

unmodified and not complexed with mercury. 
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4.3.3 WT CSU Multiple Sequence Alignments 

In order to determine the importance of the Ser52 residue which is substituted for 

a cysteine residue in the Ser52Cys CSU variant protein, the amino acid sequence of WT 

CSU was aligned with those of 12 diverse species from different kingdoms using the 

internet-based software ClustalW (www.ebi.ac.uk/clustalw/). The results of the sequence 

alignments seen in Figure 4.4 are striking; Ser52 in WT CSU from E. coli is conserved in 

all species surveyed despite the difference in the organization of ATCase within 

multifunctional proteins as well as in the length of ATCase's primary sequence. By 

contrast, the cysteine at position 47 is not conserved; it is frequently replaced by 

methionine or non-polar amino acids. It is of interest to note that in the bacteria 

represented in the sequence alignments, ATCase is present as a monofunctional enzyme, 

as opposed to the eukaryotic organisms, where it is a component within a multifunctional 

enzyme, notably, Carbamyl-phosphate synthetase 2, aspartate transcarbamylase and 

dihydroorotase. 
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4.3.4 Secondary and Tertiary Structure Assessment of WT and Ser52Cys CSU 

Circular dichroism (CD) spectroscopy is an important and sensitive biochemical 

tool for the characterization of proteins. In the far UV, CD is invaluable as a solution 

technique for the determination of protein secondary structures such as a-helices and p~ 

sheets. Depending on the type of secondary structure, protein peptide bonds exhibit 

differential absorbance of right versus left-circularly polarized light {162). 

CD spectra for WT and Ser52Cys ATCase CSU were recorded in the far UV 

(200 - 260 nm). Figure 4.5 clearly illustrates that both spectra are dominated by a double 

minimum at 207 and 222 nm, which is characteristic of predominantly a-helical proteins. 

Moreover, the CD signals of both enzymes almost completely overlap, suggesting that 

their global secondary structures remain essentially unchanged despite the substitution of 

Ser52 for a cysteine residue. These results are in agreement with crystal structures of the 

isolated CSU, which illustrate ~ 52% helical content (J63, 164). 

The tertiary structures of both WT and Ser52Cys CSU were probed using 

fluorescence spectroscopy. This technique consists of exciting the enzyme's fluorophores 

(2 Trp and & Tyr/monomer) and measuring the emission intensity from 300 - 400 nm. 

Excitations at 280 nm preferentially targets Trp and Tyr residues, while excitation at 295 

nm targets Trp preferentially. An overlay of the spectra of both proteins at each 

respective excitation wavelength indicates that the Ser to Cys substitution at position 52 

does not cause any significant changes in the environment surrounding Trp and Tyr 

residues within the variant CSU. The Xmax of emission for both proteins is at 335 nm 

regardless of ^e* and with comparable intensities (Figure 4.6). 
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Figure 4.5: Far-UV CD spectra analysis of WT and Ser52Cys CSU 

Protein samples of WT CSU (—) and Ser52Cys CSU (—) were prepared at a 

concentration of 0.2 mg/raL in 100 mM Tris-HCl (pH 7.0). Spectra were recorded at 

25°C using a Jasco J-815 spectropolarimeter interfaced with a Pelletier temperature 

controller unit. Measurements were performed in a 2 mm pathlength quartz cuvette, 

averaging 5 wavelength scans from 260 to 200 nm (1 nm bandwidth) in 0.2 nm steps at a 

rate of 50 nm/minute, and 0.25 second response. Data were corrected for the signal 

contribution of the buffer and cuvette using software supplied by Jasco. 
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4.3.5 Thermal Stability of WT and Ser52Cys CSU Secondary Structure Monitored 

by Circular Dichroism 

In order to determine the thermal stability of the secondary structures of both WT 

and Ser52Cys CSUs, both enzymes were subjected to thermal denaturation from 30 to 

95°C at a rate of 30°C/hour. Loss of a-helical structure was monitored at 222 nm. 

Identical experimental conditions were used as in section 4.2.10. The data (Figure 4.7) 

show sigmoidal shaped curves indicating a highly-cooperative two-state unfolding 

process for the variant protein and possibly an intermediate species in the less 

cooperative unfolding of WT CSU. The results yield melting temperatures of 62.4°C for 

WT and 73.9°C for Ser52Cys CSU, indicating that the variant CSU is 11.5°C thermally 

more stable than the WT CSU . 
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Figure 4.7: Thermal denaturation curves for WT and Ser52Cys CSUs monitored 

by circular dichroism 

Thermal denaturation of WT (—) and Ser52Cys (—) CSU were monitored by circular 

dichroism at a wavelength of 222 nm. Samples were prepared at a concentration of about 

0.2 mg/mL in 10 mM HEPES (pH 7.5). Denaturation was performed from 30° to 95°C, at 

a ramp speed of 30°C/hour, 1 nm bandwidth and a 0.25 second response. Tm values were 

determined as described in section 4.2.12. 
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4.3.6 Chemical Modification of WT and Ser52Cys CSU by Cysteine-Specific 

Modifying Reagents 

4.3.6.1 Chemical Modification Using Ellman's Reagent (DTNB) 

The concentration/accessibility of the CSU cysteine residues was determined 

spectrophotometrically for both the WT and Ser52Cys CSUs by assaying with DTNB. 

The assays were performed under both native and denaturing conditions. The rate of this 

reaction is dependent on the pH of the solution, the pKa of the target cysteine residue and 

the residue's surface accessibility. 

The results of the chemical modification for the WT CSU in the presence of 6M 

GuHCl, illustrate in Figure 4.8, that the equivalent of a single cysteine residue per 

catalytic chain has reacted within a minute and no additional adducts are formed even by 

60 minutes. This result is not surprising since only a single cysteine residue, Cys47, is 

present in the amino acid sequence of the WT CSU. 

The results of the chemical modification under non-denaturing conditions exhibit 

that the reaction follows second order kinetics with a second order rate constant of 

1.9 M'.s"1 for the rapid phase between 0 and 5 minutes, and 0.13 MT'.s"1 for the slower 

phase between 5 and 60 minutes. The formation of trinitrophenylated is slow and steadily 

increases over 60 minutes to yield approximately 0.55 cysteine residues per monomer. 

This result contrasts that reported by Vanaman and Stark (105), where Cys47 reacted at a 

slower rate but to the same extent as those we are reporting. This may be due to the fact 

that the two experiments were conducted under different experimental conditions; 

experiments conducted by Stark were under conditions where pseudo first-order kinetics 

are taking place. 
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Results for the DTNB reaction with Ser52Cys CSU revealed that under 

denaturing conditions, the equivalent of a two cysteine residues have reacted within a 

minute and once again, the signal remains at a plateau until the end of the experiment at 

60 minutes. This result confirms that only two cysteine residues are present in the amino 

acid sequence of the Ser52Cys CSU, notably Cys47 and Cys52. 

Under non-denaturing conditions, Figure 4.8, panel B illustrates that a single 

cysteine residue reacts rapidly within 1 minute, and a second cysteine residue appears to 

react slowly until a further 0.25 more cysteine residues per monomer have been modified 

by 60 minutes. 
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Figure 4.8: Chemical Modification of WT (A) and Ser52Cys (B) CSU With 

EHman's Reagent 

CSU (40 uM monomer for WT and 20 uM monomer for Ser52Cys) was incubated with a 

2-fold molar excess of DTNB with respect to the total concentration of cysteines at 30°C, 

protected from light. Experiments under native conditions, denoted by ( • ), were 

performed in 200 mM Tris-HCl, 20 mM EDTA (pH 8.2), while those under denaturing 

conditions, denoted by ( o ) were performed in 6M GuHCl in the same buffer. Upon the 

addition of DTNB, absorbance increases were monitored at 412 nm for the release of 

3-carboxylate-4-nitrophenolate. Extinction coefficients used were 8412 = 14150 M"'.cm"' 

and £412 = 13700 M''.cm'' for reactions conducted under native and denaturing 

conditions, respectively. The data were recorded on a Varian Cary 50 Dual Beam 

Spectrophotometer and the absorbances were corrected for the contributions from buffer 

and DTNB. 
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4.3.6.2 Time-Dependent Chemical Modification Using Iodoacetamide (IAM) and 

Chloroacetamide (C1AM) 

DTNB is very unstable under acidic conditions thus eliminating its use in mass 

spectrometry. In contrast, the small cysteine-specific alkylating agents IAM and C1AM, 

which form stable adducts over a large pH range are ideally suited for applications in 

mass spectrometry. Thus, ESI-MS was used to monitor the alkylation of cysteine residues 

by reaction with either IAM or C1AM. Since Cys47 in the WT CSU has been reported by 

Vanaman and Stark to be unreactive with IAM {105), we followed the IAM-mediated 

alkylation reaction using the Ser52Cys CSU instead. The reaction was followed at neutral 

pH since the variant was very reactive with DTNB at pH ~8 (section 4.2.13). 

Figure 4.9, panels A-E show the time course of the reaction of Ser52Cys CSU 

with 10 mM IAM at pH 7.0. Panel A represents the reaction at t = 0 minutes, where the 

enzyme is incubated in the absence of IAM, while panels B-E represent the incubations 

of the enzyme with 10 mM IAM at 5, 10, 20 and 30 minutes, respectively. Panel A shows 

a single peak at [M+H+] of 34313 amu, which corresponds to the unmodified enzyme. 

Panels B-E clearly exhibit a single peak at [M+H+] of 34370 amu, corresponding to the 

alkylated enzyme, which is shifted by +57 amu upon reaction with IAM. These findings 

suggest that the alkylation reaction is extremely rapid since the results of the modification 

after 5 minutes or 30 minutes are identical. Additionally, the results also indicate that the 

reactivity of the variant CSU with IAM is limited to a single cysteine residue, presumably 

Cys52, since there are no other observable peaks other than that at [M+H+] of 34370 

amu. This reaction of enzyme with 1AM is too rapid even at neutral pH and is not 
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convenient for the determination of the extent of alkylation of the Cys52 in the Ser52Cys 

CSU. 



Figure 4.9: Deconvoluted electrospray ionization mass spectra displaying time-

course modification of Ser52Cys CSU with 10 mM IAM 

CSU (10 uM monomer) was reacted with 10 mM IAM in 100 mM Tris-HCl (pH 7.0) at 

room temperature and protected from light. The alkylation reaction, initiated upon 

addition of IAM, was monitored for 5, 10, 20 and 30 minutes. At the end of each time 

point, the modification reaction was quenched using DTT at a final concentration of 20 

mM and samples were kept on ice. Protein samples (2-5 uM monomer) were prepared as 

described in section 4.2.6 immediately prior to direct injection. (A) Ser52Cys CSU's 

unmodified (native) polypeptide is observed at [M+H+] of 34313 amu (t = 0 minutes). 

Ser52Cys CSU after incubation with 10 mM IAM for 5 minutes (B), 10 minutes (C), 20 

minutes (D) and 30 minutes (E). The alkylated polypeptide was observed at [M+H+] of 

34368 amu, 34370 amu, 34370 amu and 34369 amu, respectively, for each of the time 

points. 
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Since the alkylation reactions were too rapid when performed using IAM, the 

former reagent was replaced with QAM, which is known to alkylate by the same 

mechanism but which proceeds at a much slower rate, and hence is more convenient for 

the purpose of this study {141). 

Figure 4.10 shows the ESI-MS spectra produced by reaction of Ser52Cys CSU 

with C1AM for 0, 10, 20, 30 and 40 minutes, respectively. At t=0 minutes, Panel A 

exhibits a single peak at [M+H+] of 34313 amu, corresponding to the unmodified 

Ser52Cys CSU. In panel B, two peaks are present at [M+H+] of 34312 and 34372 amu. 

The spectrum shows the presence of unmodified variant at [M+H ] of 34312 amu and the 

appearance of a peak at [M+H+] of 34372 amu, shifted by +60 amu, which corresponds to 

the alkylated form of the Ser52Cys CSU. By increasing the incubation time with C1AM 

to 20, 30 and 40 minutes, panels C, D and E, respectively, we observe a time-dependent 

decrease in the proportion of unmodified variant polypeptide at [M+H+] of 34312 amu, 

34312 amu and 34311 amu, respectively, concomitant with an increase in the alkylated 

variant polypeptide at [M+H+] of 34370 amu, 34370 amu, and 34368 amu, respectively. 

These results show that the reaction of Ser52Cys CSU with GAM occurs over a much 

more reasonable time-frame, which will allow for a more accurate assessment of the pH-

dependent alkylation of the Cys52 residue, the ultimate goal of our study. 

212 



Figure 4.10: Deconvoluted electrospray ionization mass spectra following the time-

dependent modification of Ser52Cys CSU with C1AM 

CSU (10 pM monomer) was reacted with 10 mM C1AM in 100 mM Tris-HCl (pH 7.0) at 

room temperature and protected from light. The alkylation reaction was initiated upon 

addition of C1AM was monitored for 0, 10, 20, 30 and 40 minutes. At the end of each 

time point, the modification reaction was quenched using DTT at a final concentration of 

20 mM and samples were kept on ice. Protein samples (2-5 uM monomer) were prepared 

as described in section 4.2.6 immediately prior to direct injection.(A) Ser52Cys CSU's 

unmodified polypeptide peak observed at [M+H+] of 34313 amu. Ser52Cys CSU after 

incubation with 10 mM C1AM for 10 minutes (B), 20 minutes (C), 30 minutes (D) and 40 

minutes (E). Unmodified polypeptide was observed at [M+H ] of 34312 amu, 34312 

amu, 34312 amu and 34311 amu, respectively, while alkylated polypeptide was observed 

at [M+H+] of 34372 amu, 34370 amu, 34370 amu and 34368 amu, respectively, for each 

of the time points. 
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The same experiment was performed using the WT CSU in order to determine the 

reactivity of Cys47 with C1AM. These results are depicted in Figure 4.11 Panel A 

illustrates a single peak at [M+H+] of 34374 amu corresponding to the unmodified WT 

polypeptide. Further reaction of the WT CSU with C1AM for 5 and 30 minutes (panels B 

and C, respectively) continued to show only a single peak at [M+H+] of 34375 and 34374 

amu, respectively. The results indicated that over the time course of this study, Cys47 

was not alkylated and suggested that this residue was either inaccessible or unreactive to 

C1AM. 
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Figure 4.11: Deconvoluted electrospray ionization mass spectra displaying time-

course modification of WT CSU with 10 mM C1AM 

CSU (10 uM monomer) was reacted with 10 mM C1AM in 100 mM Tris-HCl (pH 7.0) at 

room temperature and protected from light. The alkylation reaction was initiated upon 

addition of C1AM was monitored for 0, 5, and 30 minutes. At the end of each time point, 

the modification reaction was quenched using DTT at a final concentration of 20 mM and 

samples were kept on ice. Protein samples (2-5 pM monomer) were prepared as 

described in section 4.2.6 immediately prior to direct injection. (A) WT CSU's 

unmodified polypeptide. WT CSU after incubation with 10 mM C1AM for 5 minutes (B) 

and 30 minutes (C). Unmodified polypeptide was observed at [M+H+] of 34374 amu and 

34375 amu, respectively, while alkylated polypeptide was not observed. 
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4.3.7 In-silico Digestion of WT and Ser52Cys CSU With Endopeptidase GluC 

In-silico digestion consists of a software-based prediction of the digestion profile 

of a known polypeptide amino acid sequence based on the known properties of the 

endopeptidase selected. In-silico digestion was performed on the amino acid sequences of 

WT and Ser52Cys CSUs of ATCase (Table 4.1) with GluC using PeptideCutter 

(http://ca.expasy.org/tools/peptidecutter/). GluC from Staphylococcus aureus V8 is a 

serine protease which cleaves peptide bonds at the C-terminus of glutamatic acid; it also 

cleaves at aspartic acid residues but with a 3000-fold lower efficiency (165). Moreover, 

the specificity for glutamate is higher relative to aspartate when the protein is digested in 

ammonium bicarbonate (pH 7.8) and ammonium acetate (pH 4.0) (166, 167). 

In-silico digestion of the WT CSU with endopeptidase GluC yields 15 peptides 

ranging from 147.13 to 6442.39 Da. As shown in Table 4.1, Cys47, common to WT and 

variant, is present on a peptide consisting of residues 38 - 50 (LLKHKVIASCFFE) with 

a mass of 1534.88 Da (denoted P38-50). 

Ser52Cys CSU possesses an additional Cys group, Cys52. Interestingly, upon in-

silico digestion, the two cysteine residues, although in close proximity in the primary 

sequence, are segregated into two different peptides: P(38-50) housing Cys47 is 

mentioned above, whereas Cys52, is associated with residues 5 1 - 6 0 (ACTRTRJLSFE) 

with a mass of 1183.35 amu, denoted P(51-60). The amino acid composition of P(38-50) 

and P(51-60) suggest that these peptides should be easily protonated for ESI-MS 

analysis. Thus, the in-silico results show that GluC digestion of CSU could be used to 

unambiguously identify the adducts on each of the cysteine residues by chemical 

modification studies and ESI-MS analysis. 
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MJSS (Da) Position Peptide Scqucncr 

4085.67 

1534.88 

1167.29, 

2636.92 

2559.92 

787.87 

3213.51 

6442.39 

1327.50 

147.13 

448.54 

1494.77 

715.76 

3746.35 

4239.89 

1-37 

38-50 

51 - 61) 

61-86 

87-109 

110-117 

118-147 

148-204 

205-216 

217 

218-221 

222-233 

234 - 239 

240 -272 

273-310 

ANPLYQKHIISINDLSRDDLNLVLATAAKLKANPQPE 

LLKHKVIASCFFE 

\ S I K 1 K I M T 

TSMHRLGASWGFSDSANTSLGKKGE 

TLADTISVISTYVDAIVMRHPQE 

GAARLATE 

FSGNVPVLNAGDGSNQHPTQTLLDLFTIQE 

TQGRLDNLHVAMVGDLKYGRTVHSLTQALAKFDGNRFYFIAPDALAMPQYILDMLDE 

KGIAWSLHSSIE 

E 

VMAE 

VDILYMTRVQKE 

RLDPSE 

YANVKAQFVLRASDLHNAKANMKVLHPLPRVDE 

IATDVDKTPHAWYFQQAGNGIFARQALLALVLNRDLVL 

Table 4.1: Jn-silico digest of WT CSU with endopeptidase GluC in bicarbonate 
buffer 
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Mass (amu) 

4085.67 

1534.88 

118335 

2636.92 

2559.92 

787.87 

3213.51 

6442.39 

1327.50 

147.13 

448.54 

1494.77 

715.76 

3746.35 

4239.89 

Position - . - , - ' ' ' ^ . ' . Peptide Siqiir nee 

1-37 

38-50 

SI-'- 60 

61 -86 

87-109 

110-117 

118-147 

148-204 

205-216 

217 

218-221 

222 - 233 

234 - 239 

240 -272 

273-310 

ANPLYQKHIISINDLSRDDLNLVLATAAKLKANPQPE 

LLKHKVIASCFFE 

ACTRTRL-I 1 

TSMHRLGASVVGFSDSANTSLGKKGE 

TLADTISVISTYVDA1VMRHPQE 

GAARLATE 

FSGN VPVLNA GDG SN QH PTQTLLDLFT) QE 

TQGRLDNLHVAMVGDLKYGRTVHSLTQALAKFDGNRFYFIAPDALAMPQV1LDMLDE 

KGIAWSLHSS1E 

E 

VMAE 

VDILYMTRVQKE 

RLDPSE 

YANVKAQFVLRASDLHNAKANMKVLHPLPRVDE 

IATDVDKTPHAYVYFQQAGNGIFARQA1XALVLNRDLVL 

Table 4.2: In-silico digest of Ser52Cys CSU with endopeptidase GIuC in 
bicarbonate buffer 
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4.3.8 In-vitro Digestion of WT and Ser52Cys CSU With Endopeptidase GIuC 

In-vitro digestion was performed on native WT and variant CSU using 

endopeptidase GluC, in order to determine the extent of detection of the expected 

peptides generated by the in-silico digestion. The data depicted in Figures 4.12, 4.13 and 

4.14 as well as Table 4.3, indicate that for both the WT and variant CSU, 11 of the 15 

peptides were detected, yielding 65.3% sequence coverage. The peptides for both forms 

of the enzyme were detected in different ionization states ranging from [M+H+] to 

[M+3H+]. The peptide of interest containing Cys52, henceforth denoted P(51-60), was 

detected as a doubly charged peak at [M+2H+] of 592.281 amu (Figure 4.14, Panel A). 

The peptide containing Cys47 was not detected under the same conditions. 

In order to confirm that alkylation was performed on P(51-60) containing Cys52, 

the alkylated form of Ser52Cys CSU, was also digested with GluC and analyzed as for 

the unmodified forms of the CSU. Since P(51-60) was identified as a doubly charged 

peak [M+2H+] at 592.281 amu, the alkylated form of P(51-60) would be expected at 

[M+2FT] of 620.781 amu. Panel A, corresponding to the unmodified variant polypeptide, 

clearly shows that there is no interfering peak at 620.781 amu. Panel B corresponding to 

the alkylated variant polypeptide, clearly illustrates the appearance of a intense doubly 

charged peptide peak at [M+2H+] of 620.781 amu as well as a concomitant decrease in 

the intensity of the unmodified P(51-60) peptide peak at 592.281 amu. The results of 

these digestions confirm that alkylation of Ser52Cys CSU occurs on P(51-60). 
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WT ATC Clue AprU18_2008 289 (16.301) 

100 

TOF MS E S * 
1.26e4 

700 800 000 1100 1200 1300 1400 1500 1600 

Figure 4.12: ES1-MS spectrum of WT CSU digestion profile with endopeptidase 

GluC in bicarbonate buffer 

WT CSU was digested using endopeptidase GluC in 30 uL of 50 mM ammonium 

bicarbonate (pH 7.8), at a ratio of 100:1 CSU:GluC (w/w), overnight at room temperature 

protected from light. The GluC-digested CSU samples were analyzed by LC-MS, using a 

linear 45 minute acetonitrile gradient form 5 - 9 5 % containing 0.1% TFA. Peptides were 

detected in positive mode from 200 - 3000 amu using the same instrument and 

parameters as described in section 4.2.6. 
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Figure 4.13: ESI-MS spectrum of Ser52Cys CSU digestion profile with 

endopeptidase GluC in bicarbonate buffer 

Ser52Cys CSU was digested using endopeptidase GluC in 30 uL of 50 mM ammonium 

bicarbonate (pH 7.8), at a ratio of 100:1 CSU:GluC (w/w), overnight at room temperature 

protected from light. The GluC-digested CSU samples were analyzed by LC-MS, using a 

linear 45 minute acetonitrile gradient form 5 - 9 5 % containing 0.1% TFA. Peptides were 

detected in positive mode from 200 - 3000 amu using the same instrument and 

parameters as described in section 4.2.6. 
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M.K.N ( 111)11 

4085.67 

1534.88 

1167.29 

118335 

2636.92 

2559.92 

787.87 

3213.51 

6442.39 

1327.50 

147.13 

448.54 

1494.77 

715.76 

3746.35 

4239.89 

PoMtllMI 

1 - 3 7 

3 8 - 5 0 

5 1 - 6 0 

5 1 - 6 0 

6 1 - 8 6 

87 - 109 

1 1 0 - 1 1 7 

118-147 

148 -204 

2 0 5 - 2 1 6 

217 

218 -221 

222 - 233 

234 - 239 

240-272 

2 7 3 - 3 1 0 

P< ptide St t|u< nLC 

ANPLYQKHHSINDLSRDDLNLVLATAAKLKANPQPE 

LLKHKVLASCFFE 

ASTRTRLSFE 

ACTK1 Ml SI f 

TSMHRLCASVVGFSDSANTSLGKKGE 

TLADT1SV1STYVDA1VMRHPQE 

GAARLATE 

FSGNVPVLNAGDGSNQHPTQTLLDLFT1QE 

TQCRLDNUWAMVCDLKYCRTVHSLTQALAKFDCNRFYF1APDALAMPQY1LDMLDE 

KC1AWSLHSSIE 

E 

VMAE 

VDILYMTRVQKE 

RLDPSE 

YANVKAQFVLRASDLHNAKANMKVLHPLPRVDE 

1ATDVDKTPHAWYFQQAGNG1FARQALLALVLNRDLVL 

lfini/if ion S o u 

+3 

ND 

+1 

+3 

+3 

+1 

+2 

ND 

+2 

ND 

ND 

+2 

+1 

ND 

+3 

Table 4.3: In-vitro digest of WT and Ser52Cys CSU with endopeptidase GIuC in 
bicarbonate buffer 

Table indicating the expected peptides for both WT and Ser52Cys CSU. Two P(51-60) 

peptides are indicated; the shaded line corresponds to Ser52Cys CSU and the other to WT 

CSU. The ionization state of the peaks that were detected by LC-MS is indicated in the 

Ionization State column. Peptides that were not detected are marked as ND (not 

detected). 
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Figure 4.14: In-vitro digest of WT and Ser52Cys CSU with endopeptidase GluC in 

bicarbonate buffer 

Unmodified and alkylated Ser52Cys CSU were digested using endopeptidase GluC in 

30 uL of 50 mM ammonium bicarbonate (pH 7.8), at a ratio of 100:1 CSU:GluC (w/w), 

overnight at room temperature protected from light. The GluC-digested CSU samples 

were analyzed by LC-MS, using a linear 45 minute acetonitrile gradient form 5 - 95 % 

containing 0.1% TFA. Peptides were detected in positive mode from 200 - 3000 amu 

using the same instrument and parameters as described in section 4.2.6. Panel A 

corresponds to the unmodified GluC digest of the variant CSU; the unmodified P(51-60) 

peptide is observed as an intense peak at [M+2H+] of 592.281 amu. No interfering peak is 

seen at 620.781 amu, where the alkylated form of P(51-60) is expected. Panel B 

corresponds to the alkylated GluC digest of the variant CSU; unmodified P(51-60) 

peptide is seen as a small peak at [M+2H+] of 592.281 amu and the alkylated P(51-60) 

peptide is seen as an intense peak at [M+2HT] of 620.787 amu. 
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4.3.9 Determination of Cys52 pKa by Titration with Chloroacetamide 

ESI-MS was used to monitor the alkylation of Cys52 in Ser52Cys CSU by 

reaction with 10 mM C1AM for 40 minutes at various pH values, ranging from 3.93 to 

9.01. The parameters of the chemical modification in this experiment allowed us to probe 

the ionization state and surface accessibility of Cys52 in the variant CSU. 

The pH-dependent alkylation reaction was carried out in a 2 x 3-component buffer 

(0.1 M 2-morpholinoethanesulfonic acid (MES), 0.1 M N-ethylmorpholine, 0.2 M 

diethanolamine), which ensured an appropriate buffering capacity within the 

experimental pH range being studied. 

Figure 4.16, panels A and B represent the deconvoluted ESI-MS spectra of the 

Ser52Cys CSU polypeptide after the 40 minute reaction with 10 mM C1AM at pHs 3.93 

and 4.47, respectively. The spectra both exhibit a single major peak at [M+H+] of 34310 

amu corresponding to the unmodified Ser52Cys CSU; a second minor peak can be seen at 

[M+H+] of 34367 amu when zoomed to baseline, corresponding to the alkylated 

Ser52Cys CSU. 

Panel C represents the deconvoluted ESI-MS spectrum of the Ser52Cys CSU 

polypeptide after the 40 minute reaction with 10 mM C1AM at pH 4.97. The spectrum 

exhibits two major peaks; the first at [M+H+] of 34311 amu corresponding to the 

unmodified Ser52Cys CSU and the second at [M+H+] of 34368 amu corresponding to the 

alkylated Ser52Cys CSU. Panels D-N illustrate the deconvoluted ESI-MS spectra of the 

Ser52Cys CSU polypeptide after the 40 minute reaction with 10 mM C1AM at increasing 

pH values. All spectra display two major peaks at [M+H+] of 34311 amu and [M+ET] of 

34368 amu, corresponding to the unmodified Ser52Cys CSU and the alkylated Ser52Cys 
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CSU, respectively. A trend is clearly visible in the spectra, wherein the ratio of alkylated 

CSU: unmodified CSU increases with increasing pH. However, the above mentioned 

ratios seem to reach a plateau at pH values higher than 7.01. This observation suggests 

that the pKa of Cys52 is less than 7.01 and beyond that pH; the ionization state of the 

thiol of Cys52 is completely in its anionic form and is fully deprotonated. 

230 



Figure 4.16: Deconvoluted electrospray ionization mass spectra of the pH-

dependent modification of Ser52Cys CSU with 10 mM C1AM 

Variant CSU (10 uM monomer) was reacted with 10 mM C1AM for 40 minutes in 

2 x 3-component buffer (0.1 M 2-morpholinoethanesulfonic acid (MES), 0.1 M 

N-ethylmorpholine, 0.2 M diethanolamine) at room temperature and protected from light 

at several pH values ranging from 3.93 to 9.01. After 40 minutes, the modification 

reaction was quenched using DTT at a final concentration of 20 mM and the samples 

were kept on ice. Protein samples (2-5 uM monomer) were prepared as described in 

section 4.2.6 immediately prior to direct injection. Panels A-N illustrate the results of the 

alkylation reaction of Ser52Cys CSU with C1AM at pH values of 3.93 (A), 4.47 (B), 4.97 

(C), 5.40 (D), 5.79 (E), 6.19 (F), 6.60 (G), 7.01 (H), 7.41 (I), 7.80 (J), 7.99 (K), 8.19 (L), 

8.53 (M), 9.01 (N), respectively. Native Ser52Cys CSU polypeptide is observed at 

[M+H+] of 34311 amu and alkylated Ser52Cys CSU polypeptide is observed at [M+H+] 

of 34368 amu. 
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4.3.10 Determination of Cys52 pKa in Ser52Cys CSU by Titration With C1AM 

The results depicted in Figure 4.16 clearly indicate that the extent of alkylation of 

Ser52Cys, and hence that of Cys52, is pH-dependent. As pH is increased, the ratio of 

alkylated to unmodified CSU increases proportionately to pH; the extent of modification 

then remains constant from pH 7.01 to 9.01. The extent of alkylation was quantified by 

using the relationship: 

Intensity of alkylated Ser52Cys CSU 

Intensity of (unmodified + alkylated) Ser52Cys CSU 

When plotted as a function of the experimental pH values, the data fit well to the 

Equation 4.1 describing the ionization of a single residue (Figure 4.17). A pKa of 5.63 ± 

0.05 was determined for Cys52. 
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Figure 4.17: Titration of Cys52 residue by reaction of Ser52Cys catalytic trimer 

with CIAM for 40 minutes at different pH values 

Graph illustrating the ratios of (alkylated Ser52Cys CSU / (unmodified Ser52Cys CSU + 

alkylated Ser52Cys CSU)) plotted versus the different experimental pH values into the 

Erithacus Grafit 5.0 software by using the equation for a single pKa. 
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4.4 DISCUSSION 

The focus of this chapter was to develop a simple purification scheme for His-

tagged holoenzyme, to separate CSU from His-tagged RSU, to determine the biophysical 

characteristics of WT and Ser52Cys CSU, and to determine the reactivity, accessibility 

and stoichiometry of the cysteine residues in both variants, as well as to determine the 

pKa of the Cys52 residue in Ser52Cys CSU. 

An initial protocol for the purification of CSU of ATCase involved purification of 

the holoenzyme first with ion-exchange followed by size exclusion chromatography 

(168). CSU and RSU were then dissociated by treatment of the purified holoenzyme with 

neohydrin, followed by separation of the CSUs by ion exchange chromatography (156). 

Hence, upon separation of the CSUs from the RSUs, the additional purification step 

using ion-exchange chromatography renders the procedure time-consuming. In this 

report, we have further simplified the purification strategy by performing the on-column 

reaction of neohydrin with the holoenzyme and also eliminated the need of susbsequent 

ion-exchange purification for the isolation of the CSU from the RSU. 

The results from SDS-PAGE and ESI-MS analyses clearly indicate that the CSU, 

which eluted from the Ni-NTA affinity resin upon reaction with neohydrin, was 

homogeneous and devoid of any protein impurities. It is noteworthy that upon elution of 

CSU, the His-tagged RSU was still bound to the nickel resin and was succesfully eluted 

with buffer containing 250 mM imidazole, as per the Qiagen Handbook. The initial RSU 

fractions were, however, contaminated with protein which may very well include 

unreacted holoenzyme. These results suggest that a second round of neohydrin reaction 
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may be necessary to ensure that no unreacted holoenzyme remains bound to the resin. 

The results of this quick purification scheme highlight the efficiency of this procedure 

yielding high amounts of pure CSU and RSU, notably 35 mg CSU and 50 mg RSU per 

liter of culture, which is approximately double the amount previously reported by Graf 

and Schachman (169). 

ESI-MS analysis of both WT and variant CSUs showed a discrepancy of 

approximately -130 amu, relative to the molecular weight calculated from their respective 

amino acid sequences. The molecular weights obtained by ESI-MS (Figure 4.2 panels A 

and B) do however agree with reports by Hoover et al. (139) that the CSU undergoes 

post-translational modification, notably cleavage of the N-terminal methionine in the 

catalytically active polypeptide. Cleavage of N-terminal methionine residues has been 

reported for many enzymes, including CM-PD in E. coli, discussed in Chapter 2 of this 

thesis. N-terminal methionine cleavage is dictated mainly by the nature of the second 

amino acid and is catalyzed by methionyl-aminopeptidase (170). 

The mercury-containing reagent, neohydrin, is essential for the isolation of the 

CSU from the holoenzyme by chelating the 4 cysteine residues in the RSU within the 

zinc binidng domain (Figure 1.12). WT and Ser52Cys CSUs possess a cysteine residue at 

position 47 and the latter, a second engineered cysteine residue at position 52. Cysteine is 

known to bind mercury with reported Kd values ranging from 0.17 - 3.70 uM (171, 172). 

Hence, it was important to ensure that no mercury remained bound to the CSUs prior to 

experimental use. Both the WT and variant CSU were subjected to mass spectrometric 

analysis, in order to assess the presence or absence of mercury, which is possible by ESI-

MS as reported by Cohen et al. (160). The ESI-MS spectrum of WT CSU (Figure 4.2, 
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panel A) illustrates a single peak at [M+H+] of 34294 amu, which is in excellent 

agreement with the expected value discussed previously. The ESI-MS spectrum of 

Ser52Cys CSU exhibits two peaks at [M+H+] of 34312 amu and 34511 amu, the former 

being in excellent agreement with the expected molecular weight of Ser52Cys CSU and 

the latter peak corresponding to the variant CSU with a single mercury adduct, exhibiting 

a shift of+ 199 amu. The intensity ratio of mercury-adduct: native Ser52Cys polypeptide 

in Figure 4.2 panel B was determined to be 5:3, suggesting that approximately 60% of 

each monomer is bound with a mercury ion. Furthermore, ICP-MS confirmed the nature 

of the metal ion bound as mercury, and also confirmed the stoichiometery determined by 

ESI-MS; 1.7 uM of mercury is bound per (iM of CSU, which corresponds to 0.57 

mercury ions for each monomer of the CSU. Assuming that the WT and variant CSU 

were purified under identical conditions, the absence of mercury in the WT CSU suggests 

that in contrast to the engineered cysteine at position 52, Cys47 was either inaccessible or 

unreactive toward mercury. In any event, our studies suggest that treatment of the CSU 

with 10 mM EDTA and 20 mM DTT for 30 minutes on ice prior to experimental use is 

an effective method to remove and residual mercury which may be bound to the CSU 

(Figure 4.3). 

The reactivity of cysteine residues toward cysteine-specific reagents is dependent 

on several factors. These factors include solvent accessibility, pKa, reactivity of the 

reagent, compatibility of the reagent with the cysteine environment, the stability of the 

bonds formed between cysteine and the reagent, and finally, the nature of the leaving 

group of the sulfhydryl reagent (141). As expected, titration with DTNB of both 

denatured WT and variant CSU indicated that a single cysteine residue (Cys47) was 
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modified in the WT enzyme and two cysteines (Cys47 and Cys52) were modified in the 

variant. For the variant under non-denaturing conditions, a single cysteine residue reacted 

within 1 minute, and a second cysteine residue appears to react slowly until a further 0.25 

more cysteine residues per monomer have been modified by 60 minutes. Together, the 

results of the DTNB modification of both WT and Ser52Cys CSUs suggest that Cys52 is 

considerably more reactive than Cys47 at pH 8.2. The increased reactivity of this residue 

may be due to the fact that it is solvent exposed making it readily accessible for DTNB 

modification or may be negatively charged at the experimental pH of 8.2, which would 

agree with our hypothesis that the Cys52 sulfhydryl group may have an unusually low 

pKz (< 6.0). 

pH-dependent alkylation of the variant CSU was performed using the slower 

reacting reagent C1AM, from pH 3.93 to 9.01 in order to determine the pKa of Cys52. The 

results in Figure 4.16 indicate that alkylation of the native variant CSU occurs more 

extensively with increasing pH, as seen by the decrease in unmodified polypeptide peak 

and concomitant increase of the alkylated polypeptide peak which is shifted by +57 amu. 

Digestion of the unmodified and alkylated polypeptide using endopeptidase GluC (Figure 

4.14) clearly indicates that the alkylation occurs on the peptide containing the Cys52 

residue. Further ESI-MS/MS peptide sequencing of this peptide P(51-60) confirmed the 

expected amino acid sequence as being AC(X4A/)TRTRLSFE, with the alkylation 

occurring on the Cys52 residue (Figure 4.15). A plot of the intensity ratios of (alkylated 

polypeptide)/((unmodified polypeptide)+(alkylated polypeptide)) versus experimental 

pHs yields the curve seen in Figure 4.17. By fitting the data to the equation for a single 

pKa we determined that the pKa of Cys52 in the variant CSU is 5.6 ±0 .1 , which confirms 
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our hypothesis that Cys52 is present in the active site with a depressed pKa. Other 

enzymes have also been reported to possess cysteine groups with unusually low pKa 

values. Among these is Cysl06 in human DJ-1 which was determined to have a pKa of 

5.4 (173) and Cys283 in the active site of human muscle creatine kinase with a pKa of 5.6 

(174). 
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Figure 4.18: Schematic representation of the surface accessibility of Cys47 and 

Ser(Cys)S2 in WT CSU 

Each monomer of the CSU is colored in a different shade of gray. Yellow residues 

represent the side chain Cys47 while red residues represent Ser52. This image illustrates 

the surface accessibility of the residues at positions 47 and 52, with 52 being more 

accessible than the buried Cys47. The picture was drawn using PyMol and the 

coordinates of the crystal structure of the isolated CSU reported by Beernink et al. (163) 

(PDB ID: 3CSU). 
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The negative charge on the Cys52 thiolate side chain at physiological pH may 

explain the significantly altered kinetic parameters reported by Turnbull (unpublished). 

Furthermore, electrostatic repulsion between the thiolate anion and the carbamyl 

phosphate as well as PALA, which are also negatively charged, as such would alter 

substrate/PALA binding and catalysis. Moreover, the negative charge of the thiolate 

might also account for its 11.5°C increase in thermal stability of the Ser52Cys variant 

relative to the WT trimer. 

Since no crystal structure is available for the Ser52Cys variant CSU, the 

biophysical reasons for the significantly depressed pKa of the Cys52 residue were 

rationalized using the crystal structure of the unbound WT CSU (PDB ID: 3CSU) (763). 

Several factors, including accessibility, long range electrostatics as well as side-

chain entropy, must be taken into consideration when attempting to understand the 

perturbation of the pKa of the side chain of an ionizable amino acid residue. Figure 4.18 

illustrates the surface of the WT CSU, where Ser(Cys)52 is depicted in red and Cys47 in 

yellow. The image clearly indicates that Cys47 is buried within the CSU while 

Ser(Cys)52 is more surface exposed, making this residue accessible to solvent as well as 

chemical modifying agents, such as DTNB, IAM and C1AM. 

Honig and Nicholls (J52) have reported that electrostatic interactions operate over 

long ranges; they suggest that a single charged amino acid 10 - 20 A away can have a 

slight effect on the pKa of a titratable group. Hence, the combined effect of multiple 

charged residues could conceivably induce a much larger pKa perturbation. Figure 4.19 

illustrates a close-up of the vicinity of Ser(Cys)52 in the active site. This image depicts a 

single acidic amino acid, Glu50, at a distance of approximately 6 A from the side chain of 

245 



Ser52, whereas five positively charged amino acids are within 3.4 - 8.1 A; these include 

Arg54 (7.9 A), Arg56 (8.1 A), Hisl34 (5.8 A), Argl05 (3.4 A) and Arg296 (7.6 A). The 

abundance of basic amino acids in proximity of Ser(Cys)52 may contribute to an overall 

net positive charge in the vicinity of this residue, hence perturbing the pK3 of Cys52. 

Another interesting observation is that Ser(Cys)52 is located at the Neap position 

of helix 52-66, an environment which could help promote the deprotonation of a 

sulfhydryl group and contribute to structural stabilization. Each peptide bond of the 

peptide backbone contains a dipole moment. Alignment of several dipole moments, such 

as those found in a helix, produce an electrostatic potential at the C and N termini in the 

helix; thus the C-terminus possess a partial negative charge, whereas those at the N-

terminus possess a partial positive charge. As a result, oppositely charged residues are 

present at each of the termini in order to neutralize the partial charges originating from 

the helix dipole {175-179). A cysteine residue positioned at the Neap of a helix may 

adopt rotational conformations that place the cysteine thiolate close to the axis of the 

helix. The residue at the Neap of a helix is not restricted by the same peptide backbone 

dihedral angles as for the residues at positions Nl and N2. Two phenomena can occur at 

the Neap position giving rise to significantly larger interaction energies; these include 

both a charge-dipole and hydrogen-bond interaction, where hydrogen bond formation is 

possible. The hydroxyl moiety of Thr55 located at 3.4A from Ser52 in the WT CSU, may 

also form a hydrogen bond with the thiolate of Cys52 in the variant, allowing for 

increased stabilization. Additionally, the side chain of Cys52 may adopt a conformation 

which position the thiolate sulphur near the a-helical axis, enabling it to hydrogen bond 

with the amide nitrogen atoms of both N2 (Arg54) and N3 (Thr55). Hence, maximization 
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of electrostatic interactions between thiolate and peptide bond dipoles may occur upon 

placement of the thiolate sulphur atom in center of the helix cylinder, perhaps due to 

improved geometry (152). 
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Figure 4.19: Schematic representation of the location of Ser(Cys)52 on helix 52-66 

Within WT CSU 

The green residue represents Ser(Cys)52 at the N-terminus of the yellow helix consisting 

of residues 52-66. Basic residues are colored in red and the acidic Glu50 is colored in 

blue. Thr55 is colored in teal and the helix peptide backbone amide groups are colored in 

blue. This figure was generated using PyMol from the coordinates reported by Beernink 

etal. (763) (PDB ID: 3CSU). 
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