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ABSTRACT 

Cooperative Control of a Network of Multi-Vehicle Unmanned Systems 

Elham Semsar-Kazerooni, Ph.D. 

Concordia Unviersity, 2009 

Development of unmanned systems network is currently among one of the 

most important areas of activity and research with implications in variety of 

disciplines, such as communications, controls, and multi-vehicle systems. The 

main motivation for this interest can be traced back to practical applications 

wherein direct human involvement may not be possible due to environmental 

hazards or the extraordinary complexity of the tasks. This thesis seeks to 

develop, design, and analyze techniques and solutions that would ensure and 

guarantee the fundamental stringent requirements that are envisaged for these 

dynamical networks. 

In this thesis, the problem of team cooperation is solved by using synthesis-

based approaches. The consensus problem is defined and solved for a team 

of agents having a general linear dynamical model. Stability of the team is 

guaranteed by using modified consensus algorithms that are achieved by mini

mizing a set of individual cost functions. An alternative approach for obtaining 

an optimal consensus algorithm is obtained by invoking a state decomposition 

methodology and by transforming the consensus seeking problem into a stabi

lization problem. 

In another methodology, the game theory approach is used to formulate 

the consensus seeking problem in a "more" cooperative framework. For this 

purpose, a team cost function is defined and a min-max problem is solved to 

obtain a cooperative optimal solution. It is shown that the results obtained 
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yield lower cost values when compared to those obtained by using the optimal 

control technique. In game theory and optimal control approaches that are 

developed based on state decomposition, linear matrix inequalities are used to 

impose simultaneously the decentralized nature of the problem as well as the 

consensus constraints on the designed controllers. Moreover, performance and 

stability properties of the designed cooperative team is analyzed in presence of 

actuator anomalies corresponding to three types of faults. Steady state behav

ior of the team members are analyzed under faulty scenarios. Adaptability of 

the team members to the above unanticipated circumstances is demonstrated 

and verified. Finally, the assumption of having a fixed and undirected network 

topology is relaxed to address and solve a more realistic and practical situation. 

It is shown that the stability and consensus achievement of the network with 

a switching structure and leader assignment can still be achieved. Moreover, 

by introducing additional criteria, the desirable performance specifications of 

the team can still be ensured and guaranteed. 
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Chapter 1 

Introduction 

1.1 Motivation 

Recently, there has been a growing interest towards development of Sensor 

Networks (SN), and in general a network of unmanned autonomous systems 

that can operate without an extensive involvement of humans. Consideration 

of problems in these networks is currently one of the strategic areas of re

search. The motivations for this focus may be traced to applications where 

direct human intervention is not possible due to either environmental hazards, 

extraordinary complexity of the tasks, or other restrictions. On the other hand, 

observations made based on natural behavior of animals operating as a team 

have inspired scientists in different disciplines to investigate the possibilities 

of networking a group of systems to accomplish a given set of tasks without 

requiring an explicit supervisor. Some examples of such natural behaviors can 

be found in the migration of birds, motion of fish searching for food, and team 

work of other animals which have a group living style, see Figures 1.1-1.2. In 

all these examples, the animals work together in a team with an intergroup co

operation and with no supervision from outside the team in order to perform 
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complex tasks. Furthermore, advances in wireless communication networks 

have made it feasible to connect a number of systems distributed over a large 

geographic area. 

(a) (b) 

Figure 1.1: Flocks of birds (figures borrowed from Google images). 

t^mmwM 
:^:,. 

(a) (b) 

Figure 1.2: Swarms of fish (figures borrowed from Google images). 

These advances and observations have led the scientists to the area of 

designing Unmanned Systems Networks (UMSN). The advantages of UMSN 

are enormous and applications in various fields of research are being devel

oped. Some of the advantages for deploying autonomous network of unmanned 

systems are enhanced group robustness to individual faults, increased and im

proved instrument sensing and resolution, reduced cost of operation, and adap

tive reconfigurability capabilities which have been discussed in [4]. A team of 



agents can cooperate to accomplish a complicated task which is impossible to 

be done by a single unit. 

These networks may be potentially made up of a large number of dynam

ical systems (agents), such as Unmanned Aerial Vehicles (UAVs), Unmanned 

Ground Vehicles (UGVs), or Unmanned Underwater Vehicles (UUVs). Some 

examples are networks of satellites, submarines, or mobile robots. Any of these 

systems usually has a number of sensors, actuators and decision makers and 

so the network of all these systems is a network of thousands of sensors and 

actuators or as is known in the literature, a sensor network. 

Based on the above discussion and due to the multi-disciplinary nature 

of the problem, design of a network of sensors, actuators, and decision mak

ers is currently one of the important trends of research in various disciplines, 

such as communications, control theory and mechanics. In order to fully take 

advantage of these large-scale networks, several prerequisites have to be satis

fied. Some of these prerequisites are development of reliable communication, 

optimal power consumption management, security, optimal cooperation, and 

team collaboration that are discussed in [5]. Team cooperation and coordina

tion for accomplishing predefined goals and requirements are one of the main 

prerequisites for these networked agents that are intended to be deployed in 

challenging missions. Although, a large body of work has been devoted to 

design requirements for UMSN, unsolved problems still exist. Some of these 

challenges are: (a) lack of complete information for all the agents in the net

work, (b) cohesion requirement and connectivity of the team in presence of 

uncertainties and partial information, (c) tackling inaccurate information due 

to the scale of the network, (d) presence of adversarial and environmental un

certainties, (e) robustness issues, and (f) fault diagnosis and recovery, to name 

a few. Other issues are to address dynamic nature of the team, and to use more 
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complicated agents dynamical models rather than point-mass models. Hence, 

it is imperative that one designs reliable and high performance networks that 

can ensure and accommodate these requirements. 

1.2 Applications 

Wireless UMSN provide significant capabilities, and hence has received exten

sive attention in the past several years and numerous applications in various 

fields of research are being considered and developed. Some applications that 

necessitate development of these systems are in space explorations; satellite 

deployment for distributed deep space observations; automated factories; ma

neuvers of a group of UAVs; utilization of network of UGVs, e.g. mobile 

robotics, and UUVs for search and rescue; and teams of robots deployed in a 

hazardous environment where human involvement is dangerous. In [5], more 

applications are mentioned such as home and building automation, intelligent 

transportation systems, health monitoring and assisting, and commercial ap

plications. There are also military applications in Intelligence, Surveillance, 

and Reconnaissance (ISR) missions in the presence of environmental distur

bances, vehicle failures, and in battlefields subject to unanticipated uncertain

ties and adversarial actions [6], see Figures 1.3-1.5. 

1.3 Literature review 

Cooperation in a network of unmanned systems, known as formation, network 

agreement, collective behavior, nocking, consensus, or swarming in different 

contexts, has received extensive attention in the past several years. Several 

approaches to this problem have been investigated within different frameworks 

and by considering different architectures [7-17]. Moreover, the problem of 
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Figure 1.3: A network of unmanned vehicles (figure borrowed from [1]) 

Figure 1.4: A network of unmanned vehicles (figure borrowed from Google 
images archive) 
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(a) 

(b) 

Figure 1.5: a) A team of mobile robots and b) a team of UGVs and UAVs 
(figures borrowed from DI Lab Robots archive and [2]) 
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cooperation in a network has been considered at different levels. At the high-

level, one can refer to task assignment, timing and scheduling, navigation and 

path planning, reconnaissance and map building [18-20] to name a few (see 

Figure 1.6 at the end of this chapter). In the mid-level, cooperative rendezvous, 

formation keeping, application of consensus algorithms, collective motion, and 

formal methods based on flocking/swarming ideas can be mentioned [4,12,13, 

17,21,22]. 

Since the present research is aimed at cooperation in the mid-level, most 

of the literature reviewed in this section are on the low-level cooperation, 

i.e. formation keeping, application of consensus algorithms, and formal meth

ods based on flocking/swarming ideas. The formation control problems can 

be distinguished from the consensus seeking and flocking/swarming-based ap

proaches based on the degree of autonomy as well as the degree of distribution 

of the proposed algorithm. Generally, these two problems are characterized as 

follows: 

• Formation control: Based on the definition presented in the survey 

paper done by Scharf, et al, [23], a formation control law couples the 

dynamics of each member of a group of vehicles through a common con

trol law. Basically, the formation control should have two properties: 1) 

at least one member of the group must track a predefined state relative 

to another member and 2) the corresponding control law should be de

pendant on the state of this member [23]. Some of the characteristics of 

this type of problem are as follows: 

1. The formation control is usually solved based on a centralized ap

proach to the problem [24], although in some cases decentralized so

lutions are suggested, e.g. [25]. However, the assumption of modular 

architecture is common in formation problem [4,26,27]. 



2. The number of vehicles is limited (5-6 vehicles) [28]. 

3. Usually conventional control methods are used, e.g. adaptive and 

nonlinear control [24]. 

4. Information structure is not highlighted and not embedded in the 

design. 

5. Autonomy is up to the level where a tracking path is given, a leader 

guides the group, or a coordination vector is provided [24]. 

6. For different structures, e.g. virtual structure [24], and Multi input-

Multi output [29] the problem of formation has been addressed for com

plicated dynamics such as aircraft, UAVs, and spacecraft. 

7. Various work has covered different aspects of control in this area such 

as formation keeping, tracking, formation stability (e.g. input-output 

stability), and fuel optimality [4,30], as well as high-level tasks, e.g. 

initialization and reconfiguration [31,32]. 

8. The present challenges are on experimental and practical issues such 

as design of high-resolution space instruments, fuel optimality and de

crease of computational time. Also, the estimation problem in formation 

keeping [33-35] and design of decentralized and distributed algorithms 

are some current trends of research. 

• Flocking/consensus/agreement: The problem is to have network 

agreement on a scalar state or a vector of states or on a function of 

states, while other behaviors (e.g. formation) are guaranteed. Some of 

the characteristics of these types of problems are as follows: 

1. They are based on a distributed approach and a large number of 

agents can be addressed [36]. 
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2. Information is considered as one part of modelling where there are in

fluences of communication topology on the stability and other dynamical 

properties [37]. 

3. The mathematical tool for problem formulation is graph theory for a 

majority of the work except for few references, e.g. [9,38-43]. 

4. Very simple agents' dynamical model (first or second order integrator 

models) is assumed except in few works, e.g. [37,38,40,41,44]. 

5. Usually there is an analysis of the response and not a synthesis, except 

in few work, e.g. [38-41]. 

6. There are not much experimental considerations in the literature. 

7. Different aspects of the problem that have already been considered 

are as follows: 

—Basic properties such as convergence [10], finding equilibrium state 

[45], and in [46] controllability definition are provided. 

—Behaviors such as formation keeping, collision avoidance, obstacle 

avoidance, as well as generating feasible planar trajectories to get the 

maximum coverage of the region, and finding minimal information struc

ture needed for stability of a swarm are addressed in [10,42,47,48]. 

—In [49] the main purpose is to find the consensus algorithm weighting 

such that the fastest convergence speed is achieved. 

8. The present challenges and open problems are: 

—To define the basic properties, e.g. group stability, controllability, 

and observability conditions. 

—To extend the existing methods to the conditions where more com

plicated agents' dynamical models are considered. 
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—To add conditions such as uncertainty in the mission plan (leader 

command) for the followers, model uncertainties, disturbances, commu

nication/sensor noise, appearance of fault in the leader and the followers. 

—To put constraints on the input signal or other practical constraints. 

—To assume the time-varying neighboring set, switching structure, and 

dynamic network topology. 

—To formulate the estimation problem in the network framework. 

—To assume stochastic frameworks with probabilistic information links. 

—To consider delayed information exchange between the leader and the 

followers or among the followers. 

In the following subsections, I will present a detailed literature review on 

different issues that arise in the cooperative control. However, since the topic 

of this research is specifically on consensus seeking algorithms, the majority of 

the reviewed and referred works are related to this issue. 

1.3.1 Formation control 

Based on its definition, in formation control the main focus is that the team 

achieves a predefined and given geometry and shape. This shape (formation) 

should be preserved during the mission and so the team of agents should act 

as a rigid body. Based on this property, a predefined trajectory is usually 

provided for the team motion e.g. a leader command, or a trajectory for the 

virtual structure mass center. The team should track this trajectory while its 

members keep their relative positions and preserve the required shape, i.e. the 

stability of the formation should be maintained. Other requirements can be 

added to these objectives, as well. A main prerequisite to keep formation is 
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guidance and control of vehicles, while they perform tasks such as initialization, 

contraction, and expansion. 

As discussed in [23] different architectures can be considered for the 

formation of a team of agents, namely: i) considering the formation as a 

single'Multi-Input Multi-Output (MIMO) system [29], ii) leader-follower [50], 

iii) virtual structure [4] (or virtual leader [51]), in which the entire formation 

is considered as a virtual structure, iv) cyclic with non-hierarchical control 

architecture [52], and v) behavioral [53]. 

In the MIMO architecture, the entire dynamics of the system is consid

ered as one MIMO model. Hence, in this architecture any of the conventional 

control strategies, e.g. optimal, nonlinear, or robust control strategies can be 

applied to the system. 

The leader-follower architecture has been used very often in the litera

ture [6,45,50,54-57]. In this approach a hierarchical control architecture is 

considered with one or more of the agents as the leader (s), and other agents 

as the followers. The followers should track the position and orientation of 

the leader(s). This structure can also be constructed in a tree form, in which 

an agent is the leader of some other agents who are the leaders of some other 

ones and so on. The advantages of this approach are that it has an easy and 

understandable behavior, the formation is preserved even if the leader is per

turbed, and that group behavior can be inspected by defining the behavior of 

the leader. However, lack of the explicit feedback to the formation, from the 

followers to the leader, is a disadvantage of this structure. Also, the failure of 

the leader implies the failure of the formation as mentioned in [4,7]. 

In the virtual structure approach, the entire formation is treated as a 

unit. In this approach, three steps are considered for control design: i) to 

define the desired dynamics of the virtual structure, ii) to transform the states 
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of the virtual structure into the states of individual agents, and iii) to design 

control laws for each agent, correspondingly. In [4,7], the advantages of this 

method are considered as its simplicity in defining the coordinated behavior 

of the group, keeping the formation during different maneuvers, and existence 

of feedback from the agents to the virtual structure. The weakness of this 

structure is in its limitation in applications to time-varying or frequently re-

configurable formations. In [4,7,27] the idea of adding a feedback from the 

vehicles to the coordination unit is presented. Authors in [7] proposed virtual 

structure as a solution to the problem of multiple-spacecraft formation. In 

their approach, a feedback from a vehicle to the virtual structure is considered 

for keeping the vehicles in formation and improve the robustness of formation 

in case of disturbances or when the virtual structure moves very fast and some 

of the slow members may lose the group. 

In the cyclic architecture, the agents are connected to each other in a 

cyclic form rather than a hierarchical architecture [52]. The disadvantage of 

this method is that the stability analysis of the proposed controller is not 

straight forward due to the dependency of individual controller on others' in 

a cyclic form. 

In the behavioral approach several commands are combined to reach 

different and probably competing goals or several behaviors, e.g. collision 

avoidance, obstacle avoidance, and formation keeping for agents. The con

trol law for each agent is a weighted average of the control for each behavior. 

Since competing behaviors are averaged, occasionally strange and unpredicted 

behaviors may occur. Despite the advantages of simple derivation of control 

strategies, explicit feedback to the formation in this approach, and capabil

ity of decentralized implementation, there are some weaknesses as well. For 

some examples, group behavior cannot be explicitly defined and mathematical 
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analysis, e.g. stability, is difficult to be accomplished as is mentioned in [4]. 

Although the above structures were originally introduced for formation 

keeping, some of them can be used for flocking and consensus-based algorithms 

as well. Due to the supervised nature of structures such as leader-follower 

and virtual structure, they are not commonly used for flocking and consensus 

seeking, which are autonomous in their very nature (there is no predefined 

path, trajectory for the leader or virtual coordinate to be tracked). However, 

these structures can also be redefined for utilization in flocking/swarming or 

consensus seeking problems, see e.g. [45,55]. 

One of the main challenges that arises in the development of a forma

tion keeping strategy in a team of unmanned systems is the lack of complete 

information and the presence of uncertainties, faults and unpredictable events 

in the team. This necessitates the design and application of adaptive methods 

for formation control in some applications [6,16,24,50,58]. In [6], leader com

mands are unknown for the follower vehicle in a leader-follower architecture 

and so an adaptive controller is used for formation keeping. Missing leader 

commands may occur during a mission when the leader spots an approaching 

threat, and quickly reacts to avoid it. In this case there is no adequate time 

for the leader to send its new commands to the follower vehicles and hence the 

leader commands need to be assumed to be unknown in the control design. 

Also, in [50] the authors considered uncertainties in the vehicle dynamics, in 

which vortex forces are considered as unknown functions. In a formation mode, 

each vehicle experiences an upwash field generated by the other vehicles and 

so the aircraft motion is affected by the vortex of the adjacent vehicles. These 

effects are usually unknown and depend on the area, gross mass, span and 

dynamic pressure as well as velocity and position of the vehicle. 

The ideas in [6] and [50] are integrated in [16] by using the framework that 
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is introduced in [6] for design of an adaptive controller in order to compensate 

for time-varying unknown leader commands and vortex forces. The idea in 

[6] was extended to the case where the vortex forces are presented in the 

dynamical model of the system and both the vortex forces of the follower 

and leader commands are treated as time-varying unknown parameters. The 

control objective is to design the follower control input such that the relative 

distances between the followers and the leader are maintained close to their 

desired values in the presence of these uncertainties. For the case that vortex 

forces are considered in the velocity dynamics, adaptive updating laws are 

introduced for two cases of time-varying and constant forces. In this case the 

stability and tracking of relative distances are guaranteed. If in addition, the 

forces are applied in the heading angle dynamics, stability and tracking of 

relative distances is guaranteed for the case of constant vortex forces. The 

proposed algorithm is applied to formation control of UAVs. 

Some of the work performed in coordination in a group of vehicles as

sume graph theory as the mathematical framework for modelling a distributed 

network of agents [8,37,47,59]. In some approaches the analysis is also done 

in this framework, using the graph properties. The main difference between 

the previously reviewed work on formation and the above references is that in 

the latter, the final goal is to achieve a stabilized formation in an autonomous 

manner. No path or trajectory is provided for the group motion and the for

mation is stabilized based on the inter-group exchange of information and the 

desired shape provided a priori. In some other work, the graph theory tool is 

used only for modelling and other tools are used for mathematical analysis. 

In [47], a local distributed bounded control input is designed for for

mation stabilization in a group of multiple autonomous vehicles. Point-mass 

dynamical models are assumed for agents and the information flow graph can 
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be either directed or undirected. The concept is to use some potential func

tions which are constructed using desired properties, such as collision-free and 

stable formation. Similarly, results for a global stabilization and tracking are 

presented in [8] for a group of agents with linear dynamics. The problem is first 

solved for two agents and then extended to the general case using "dynamic 

node augmentation". The collision avoidance is also guaranteed and shown. 

In this approach the problems of stabilization and tracking are decoupled into 

three sub-problems, namely control of shape dynamics, rotational dynamics, 

and translational dynamics. In [59], the same problem is considered where 

different maneuvers such as split, rejoin and reconfiguration are assumed for 

the group. In [37], graph theory is used to model the communication net

work and to find the relation between the topology and the stability of the 

formation. Based on the graph Laplacian matrix properties, a Nyquist crite

rion is obtained to show the formation stabilization for groups of agents with 

linear dynamics. The formation stability is divided into two parts: stabiliza

tion of the information flow and stabilization of the individual vehicles. The 

leader-follower architecture can be addressed in this framework. 

In [9], the formation and alignment goals are translated into an error 

framework. A decentralized robust controller is then designed for the error 

dynamics based on an overlapping design methodology. The assumed structure 

is leader-follower and a constant velocity command and formation structure 

is provided for the entire team. As for the formation of satellites, in [24] an 

adaptive approach is proposed to achieve formation of three satellites which 

in turn are used as a free-flying interferometer. The goal is that the formation 

follows a desired attitude trajectory. In [60], formation flight control of UAVs 

is addressed. 

There are other important issues that are discussed in the formation of 
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multi-agent systems. In the work of Smith, et. al [33], a parallel estimation 

structure based on the error covariance is suggested for control of a formation, 

however the solution is not necessarily an optimal one. In their approach, each 

vehicle with a linear dynamical model estimates the state vector of the entire 

group based on the noisy output it receives. Then in design of a controller, 

each vehicle uses its own estimation. The same authors have investigated 

results on adding communication in order to remove disagreement dynamics 

in [34,61]. For this purpose, they have assumed that some of the nodes (at 

least N — 1 receivers) send their estimation result to the rest of the group. In 

[35,62], a similar idea is used for applications in spacecraft formation. In [63], 

convex optimization is used to develop a framework for distributed estimation 

or equivalently for data fusion. For solving the corresponding optimization 

problem, sub-gradient method and dual decomposition are utilized. 

1.3.2 Flocking/swarming-based approaches 

As presented in [64], the definition of flocking in a group of agents is: 

"A group of mobile agents is said to (asymptotically) flock, when all 

agents attain the same velocity vectors and furthermore distances between the 

agents are asymptotically stabilized to constant values." 

In [10], a dynamic graph theoretic framework is presented for formalizing 

the problem of flocking in the presence of some obstacles which are assumed to 

be in convex and compact sets and their boundaries are closed differentiable 

Jordan curves. An energy function is constructed for the team of agents in 

which different tasks of flocking are considered. Dissipation of this energy 

function through the protocols that are inspired by the Reynolds rules [65], 

namely I) alignment, II) flock centering, and III) collision avoidance, results in 

achieving all the predefined goals of the network. The main contribution of [10] 
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is to derive and analyze an advanced form of Reynolds rules, specifically the 

last two rules. The authors have considered the point-mass dynamics for the 

agents and a flocking protocol is defined for the interactions among the agents 

which results in reduction of the constructed potential function. This protocol 

results in alignment, i.e. convergence of each agent to the weighted average 

position of its neighbors, and obstacle avoidance in the network of agents. Two 

tasks of split/rejoin and squeezing were presented in the provided simulation 

results. Similarly, in [36], a particle-based approach to flocking is considered 

for two scenarios, i.e. in the presence of multiple obstacles and in a free space. 

The suggested algorithms address the three rules of Reynolds as mentioned 

above. 

In [22, 66,67] a stable flocking motion law is introduced for a group of 

mobile agents with a connected graph. This law guarantees a collision free and 

cohesive motion and an alignment in the headings of the agents. The authors 

assumed a 2-component control law in which the first part is produced by using 

a potential function that regulates the relative distances among the agents as 

well as avoiding the collision and the second part that regulates the velocities. 

The potential function can define the final shape of the formation. In the 

case of a switching topology [22,67], control laws may be switching and so 

Fillippov and non-smooth system frameworks are used for stability analysis. 

In this case, neighboring is based on the distance between the agents and so 

it is dynamic. In [68,69], the flocking problem is solved by decomposing the 

entire team dynamics into the dynamics of the group formation and dynamics 

of the motion of center-of-mass. Each of these dynamics are analyzed and 

stabilized separately such that both formation keeping and velocity regulation 

to a constant value are guaranteed. 
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1.3.3 Consensus algorithms 

Investigation of effects of information structure on a control decision was initi

ated by the early work on the theory of teams and was first introduced in [70] 

and later followed by [71-75]. These works can be considered as the first 

results in which the control in a team is discussed where only part of the in

formation is available to the team members. However, since these early work 

were performed and specially in recent years, a large body of research has been 

conducted in which the effects of information on the control design problems 

are discussed, see for example [10,11,13,15,37,45,76-78]. In most of these 

works, each team member has access to limited information from other agents, 

or to information of its neighbors. The final state of the team is decided by 

the team members. 

Consensus algorithms are one of the tools that are used for analysis of 

distributed systems where the network information structure has a vital effect 

on the control design but only part of the information is available to each 

member. As mentioned in [13], consensus problems deal with the agreement 

of a group of agents upon specific "quantities of interest". In this configuration 

the agents try to decide and agree among themselves upon what the final state 

should be. The state where all the "quantities of interest" are the same is called 

the consensus state. In the present research, we are specifically interested 

in problems in which the "quantities of interest" are related to the motion 

of the agents, e.g. their velocities or positions. However, as indicated in 

[79], several applications for consensus algorithms exist such as applications 

in decentralized computation, clock synchronization, sensor networks, and in 

coordinated control of multi-agent networks. 

In [13], linear and nonlinear consensus protocols are applied to directed 

and undirected networks with fixed and switching topologies. A disagreement 
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function was introduced as a Lyapunov function to provide a tool for conver

gence analysis of an agreement protocol in a switching network topology. The 

authors have shown that the maximum time-delay that can be tolerated by a 

network of integrators applying a linear consensus protocol is inversely propor

tional to the largest eigenvalue of the Laplacian of the information flow graph 

or the maximum degree of the nodes of the network. Similar results are ob

tained in [11] where convergence analysis are developed by using Nyquist plots 

for linear protocols. For nonlinear protocols, the notion of action graphs and 

disagreement cost are introduced and the problem was solved in a distributed 

manner. 

In [45], the coordination problem is discussed for a team of agents using 

"nearest neighbor rule" for both leaderless and leader-follower configurations. 

The main focus of this work is on heading angle alignment in undirected graphs 

where the agents have simple integrator dynamics and the agents have the same 

speed but have different headings. In the leader-follower case, the leader can 

affect the followers whenever it is in their neighboring set. However, there is 

no feedback from the followers to the leader. It is shown that the connectivity 

of the graph on average (connection of union of graphs) is sufficient for conver

gence of the heading angles of the agents. The neighboring set assignment is 

switching and so the team structure is dynamic. In [80], asynchronous proto

cols for consensus seeking are introduced. Some updating rules for the control 

input of agents with discrete-time dynamical equations are suggested so that 

the consensus state would take a desirable predefined value. 

In [38], passivity is used as a tool to achieve network agreement (or con

sensus) for a class of agents with dynamics which can satisfy the passivity 

conditions. The group main goal is to reach at a predefined common velocity 

(or any other interpretation of the derivative of a state), while the relative 
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positions (the difference between a common state in the group) converge to a 

desired compact set. Based on this method a Lyapunov function can be con

structed for stability analysis in a distributed communication network with 

bidirectional links. The designed controller is a filter which has a nonlinear 

function of the relative states as its input and is designed based on passivity 

properties. The relation between the topology and the stability of the forma

tion is provided. In [81], a wider class of systems, i.e. nonlinear dissipative 

systems are considered and synchronization in a strongly connected network 

of agents with this dynamical property is discussed. 

In [46,82,83], an interpretation of controllability is defined and proved 

for a first order integrator model. The main purpose in these work is to find 

the effects of external decisions on the agreement dynamics, in particular the 

conditions where some of the nodes do not follow the agreement protocols 

(decisions). In other words, there are some nodes that follow the agreement 

protocol while others have external inputs. The authors try to answer the 

question whether these "anchored" nodes are able to guide the rest of the 

group to the desired point. Similar to the ideas presented in [46] for a fixed 

network topology, the controllability conditions for a network with fixed and 

switching topologies are discussed in [84]. The authors have considered a 

leader-follower structure with one-way links from the leader to the followers. 

They have shown that controllability of the team is highly dependant on how 

the followers are connected to the leader. 

The goal in [42] is to find the minimum communication that is required 

for guaranteeing the stability of a swarm of vehicles. The approach is to first 

define a centralized cost function for the group and then divide it into some 

individual costs. A vector of parameters is introduced for quantization of the 

information which should be exchanged among the agents in order to achieve 
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a stable formation and the optimization is accomplished with respect to these 

parameters. Similar approach is pursued more recently in [43]. 

In [49], a fixed and a given network structure is assumed and the ques

tion addressed is how to find the weights of the interconnection links such that 

the convergence to consensus value is achieved at the fastest rate. To solve 

the problem a set of criteria is introduced to be minimized. The resulting op

timization problem is non-convex which is then converted into a convex one. 

In [85], an estimate of the convergence rate of consensus seeking is obtained. 

The communication links are assumed to be time-varying. In [86], a lower 

bound on convergence rate of some of the consensus algorithms is provided. 

Towards this end, two approaches based on the properties of stochastic ma

trices and the concept of random walks are used. In [87], it is shown that 

connectivity of a network with a fixed number of links can be significantly 

increased by selecting the inter-agent information flow links properly. This 

in turn can result in a an ultra fast consensus seeking procedure. The idea is 

best applicable to small-world networks where any two nodes can be connected 

using a few links though the total size of the network can be large. 

In some references, the communication delay is considered in modelling 

of a network of agents with point-mass model. For an example, one can refer 

to [13] in which directed and undirected networks with fixed and switching 

topologies are considered. It is assumed that the delayed information from 

other agents is compared with the delayed value of the agent's own dynam

ics at each time step. On the other hand in [88] the delayed information of 

the neighbors are compared with the current value of the agents' state. In 

this work, uniformly delayed communication links are analyzed for consensus 

algorithms. In [89], the agreement protocol is analyzed when there are non

uniform time delays in the links amongst the agents. Linear protocols are used 
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for fixed networks with and without communication time-delays and commu

nication channels that have filtering effects. Similarly, nonlinear protocols are 

applied to dynamic networks to achieve consensus. In all these cases, the effects 

of time delay are analyzed for the agreement protocol only and the analysis 

is performed in the frequency domain. In [90], the authors have considered 

time-varying time delays in communication links and presented conditions for 

consensus achievement in a network of nonlinear, locally passive systems. Con

sidering time delays in other coordination problems such as formation control 

and target tracking is still an open area of research. 

The problem of team cooperation, and specifically consensus seeking 

with switching topology, has received a wide attention in recent years and has 

been discussed in the literature from different perspectives [91]- [101]. The 

work performed in [91] can be considered as one of the pioneer work in which 

algorithms for distributed computation in a network with a time-varying net

work structure are analyzed. Specifically, in [92] for a discrete-time model of 

processors and a given number of tasks, convergence of a consensus algorithm 

in a time-varying structure is discussed given that some restrictions are im

posed on the frequency of availability of the inter-agent communication links. 

One of the underlying assumptions in many of the related work on switch

ing networks is that the graph describing the information exchange structure 

is a balanced graph. The authors in [101] considered balanced information 

graphs and shown the stability under switching time-delayed communication 

links. The analysis is performed by introducing a Lyapunov functional and 

then showing the feasibility of a set of linear matrix inequalities. In [15,95], 

switching control laws are designed for a network of agents with undirected and 

connected underlying graphs whereas in [99], consensus in a directed, jointly 

connected and balanced network is discussed. The necessary conditions for 
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achieving consensus in a network are discussed in [97]. The concept of "pre-

leader-follower" is introduced as a new approach to achieve consensus in a 

network of discrete-time systems. The basic properties of stochastic matri

ces are used to guarantee consensus achievement in a network with switching 

topology and time-delayed communication links. 

In [94], higher order consensus algorithms are discussed. The author's 

approach to handle the switching network structure with a spanning tree is 

to find an appropriate dwell time with their own provided definition. It is 

shown that the final consensus value depends on the information exchange 

structure as well as the controller weights. In [102] analysis is performed for 

a time-varying network of agents with discrete-time models. In this work, 

milder assumptions on connectivity of the agents over time are imposed when 

compared to [45] and necessary and sufficient results for consensus achieving 

are presented. The work in [22,66,67] are extensions of the approach in [45] 

for second order dynamics for fixed and dynamic topologies in undirected and 

connected graphs. In [96], the authors used a similar approach to the one 

used in [22,66,67] to analyze consensus achievement in a team with fixed and 

switching topologies. They divided the control law into several parts and used 

non-smooth analysis framework to address the problem. In [13], consensus 

achievement for a connected graph subject to certain switching in the network 

structure is addressed. The underlying assumption there is that the graph 

under consideration is a balanced graph. 

In [77,99], consensus in directed, jointly connected and balanced network 

is discussed. The authors in [77] have considered information consensus in 

multi-agent networks with dynamically changing interaction topologies in the 

presence of limited information. They have shown that consensus can be 

achieved asymptotically under these conditions if the union of the directed 
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interaction graphs have a spanning tree frequently enough for agents with 

discrete and continuous time dynamics. This condition is weaker than the 

assumption of connectedness that is made in [13] and [45], and implies that 

one half of the information exchange links that are required in [45] can be 

removed without affecting the convergence result. However, the final achieved 

equilibrium points will depend on the property of the directed graph, e.g. its 

connectedness. This work is an extension of [45] to digraphs case with more 

flexible weight selections in information update schemes. Some simulation 

examples of this work are presented in [103]. 

One of the recent research topics in consensus seeking is analysis of be

havior of the consensus algorithms in presence of measurement noise or even 

design of consensus algorithms which can compensate for the lack of mea

surements or inaccuracy of them. In [104], the performance of first and sec

ond order consensus algorithms is discussed in the presence of measurement 

noise. A relation between the measurement error and the consensus error is 

derived. In [105], the measurement noise is considered for a leader-follower 

structure. Having used the stochastic analysis and by assuming time-varying 

weights the authors could guarantee a mean square consensus achievement in 

the presence of measurement noise. Similar idea of using time-varying weights 

is used in [106] to guarantee consensus on a Gaussian random variable. The 

authors in [107], have linked the consensus problem into a multi-inventory sys

tem control problem, where bounded disturbances affect the first order agents' 

dynamics. 

One of the approaches to solve the consensus problem persuaded in the 

present research is based on the decentralized optimal control theory. There

fore, at this point I provide a brief literature review on the optimal approaches 

to consensus seeking problem. Among the first work where optimal control was 
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discussed in a team of agents I can refer to [71]. There, the Linear Quadratic 

Regulator (LQR) problem was solved by "using" a team of decision makers 

and not "in" a team of decision makers. In other words, each decision maker 

is responsible for design of an optimal control at one (or some) time instant 

where the other decision makers should decide what the best (optimal) actions 

for the next time instants are to minimize a common cost function. Therefore, 

although the problem is dynamic in the sense that at the outset an optimal 

controller is designed to minimize a cost function with a given dynamical con

straint, none of the decision makers has an individual dynamics. This implies 

that each decision maker can be interpreted as the state of a discrete-time 

system at one time only and not as an independent dynamical system. 

In contrary, in optimal approach to the consensus problem which is in

troduced in this thesis, each decision maker has its own continuous-time dy

namics, and its own cost function which is coupled to the state and control 

(action) of the other members. Therefore, each decision maker should decide 

for a set of actions and not only for a single one-time action. In other words, 

in the present work the purpose is that N decision makers design N control 

actions for all the time period whereas in [71], N decision makers design one 

control action each for only one time instant. Moreover, decentralization in 

the context of [71] implies that a single control action (decision) should be 

designed by the involvement of several decision makers, whereas in the frame

work presented in this thesis the decentralization refers to design of several 

controllers where the goal of controllers are coupled to each other. 

In more recent literature, an optimal approach to team cooperation 

problem is considered in [29,40,41,108,109] for formation keeping and in 

[39,98,110,111] for consensus seeking. The approach in [41] is based on indi

vidual agent cost optimization for achieving team goals under the assumption 
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that the states of the other team members are constant. The concepts of Nash 

equilibrium, penalty function as well as Pareto optimality are used for design 

of optimal controllers. In [109], for a formation keeping problem the effect 

of the amount of information on the value of the cost is investigated. The 

authors have shown that the centralized architecture will result in the lowest 

cost value whereas the decentralized solution will increase the cost value. In 

order to solve an optimal consensus problem, the authors in [98] have assumed 

an individual agent cost for each team member. In evaluating the minimum 

value of each individual cost, the states of the other agents are assumed to 

be constant. For a switching network structure the dwell time that provides 

stability of the network subject to the switching structure is found. In [110], 

an H2 optimal semistable methodology for stabilization of linear discrete-time 

systems is proposed. The authors then proposed a consensus algorithm and 

have shown that this protocol is a semistable controller which can solve the 

consensus seeking problem. The authors in [111] have shown that a specific 

type of graphs, i.e. de Bruijn's graph, is optimal for consensus seeking problem 

and with respect to a given cost function. 

In all the above referenced work the optimal control problem is based 

on the individual cost definition for team members. However, to the best of 

my knowledge, a single team cost function formulation has been proposed in 

only a few work [40, 108]. In [108], optimal control strategy is applied for 

formation keeping and a single team cost function is utilized. The authors 

in [40] assumed a distributed optimization technique for formation control 

in a leader-follower structure. The design is based on dual decomposition 

of local and global constraints. However, in this approach, the velocity and 

position commands are assumed to be available to the entire team. In [39], the 

dynamics of the entire network are decomposed into two components, namely 
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one in the consensus space and the other in its orthogonal subspace. A set 

of Linear Matrix Inequalities (LMIs) are then used to guarantee the stability 

and consensus achievement using an Hi design strategy. 

1.4 General problem statement and research 

objectives 

In [112], coordination in a network of unmanned vehicles is concerned with 

either a cooperative motion such as formation control problem, network agree

ment, consensus, flocking or swarming behavior, or other high-level cooperative 

control problems such as task assignment, timing, search, and path-planning. 

Moreover, the reader is referred to [113] for more information on different 

direction of research in coordination in networked control systems. For im

plementing any of the above problems several levels of abstraction should be 

considered, namely: high-level, mid-level, and low-level (agent level). For a 

complete description of these three levels and different tasks which can be 

defined, refer to the block diagrams in Figures 1.6 and 1.7 at the end of this 

chapter. The "big picture" problem can be reformulated as four main sub-

problems: 

1. Control design: stabilization, controllability, observability, robustness; 

2. Network structure design: minimization of communication required to 

achieve a predefined goal by finding some conditions on the structure or 

on different strategies for information exchange; 

3. Decentralized/distributed estimation: stability and convergence analy

sis; and 
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4. Low-level communication problems: congestion, routing, resource allo

cation. 

The main challenges in solving these problems are: 

• Real-time sensor processing and decision making: real-time implemen

tation; 

• Communication constraints: delayed and missed information due to 

bandwidth limitations, time-varying communication structures; 

• Computational constraints; 

• Design of a distributed collaborative team consisting of agents with more 

complex dynamics than point-mass models, and incomplete access to the 

information of the entire group; 

• Distributed estimation in a network; and 

• Analysis of team cooperative behavior in the presence of faults and anom

alies in the team members. 

Though a large body of work has been produced to accomplish the re

quirements of coordination in the UMSN and to address the above problems, 

there are still unsolved problems in this area. Some of these problems are 

listed below: 

1. Complete information is not provided for all the agents. In a leader-

follower structure and in some circumstances, leader command is not known 

to the followers. Moreover, in any structure it may happen that an agent is 

just aware of its neighbors' states. The team goals should be accomplished 

even if the full information of the team is not available to the entire group, 

28 



e.g. cohesion and connectivity of the group should be satisfied in the presence 

of uncertainties and partial information. 

2. Most of the results appeared in the literature are for point-mass model 

of agents, see [8,45,47,59]. How to extend these results to more complicated 

agents' dynamics? 

3. Robustness issues and considerations for different network structures 

should be investigated. What happens if the leader fails in a leader-follower 

structure? How can it be recovered? How about fault diagnosis and recovery 

in the formation keeping or consensus seeking problems? 

4. Dynamic network topologies with time-varying structures and chang

ing number of the nodes present in the network should be considered. 

5. The behavior of the team in the presence of agents' faults and mal

functions should be predicted and analyzed. 

The main goal in this research is to design a team of multi-agents so that 

it can accomplish several goals and missions. This team can perform different 

maneuvers within several scenarios that are required in different applications. 

The main focus is on design of a protocol for a distributed network of agents so 

that they can work cooperatively, e.g. to achieve a cohesive motion. There are 

some constraints on the availability of the information as well as the available 

communication links during the mission. Therefore, the network topology 

may be time-varying. To make the problem more practical it is assumed that 

for specific reasons an anomaly may happen in team members which may 

deteriorate the performance of the team. 

In this research I use a new formulation for the problem to address these 

important issues. The problem of design of cooperating members with distrib

uted information network, called team collaboration in control engineering and 

economics, is of considerable importance and plays a key role in understanding 
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these complex systems. Hence, the main focus of this work is to introduce a 

unified approach for solving the problem of team cooperation in a framework 

which is broad enough to be able to address the problem subject to partial 

team information for a team of agents with more flexible dynamical character

istics and network topology. In my work the agents are mainly mobile robots 

which have to work together to keep their team cohesion. The main challenge 

of the present problem is that the autonomy of the team should be satisfied 

while there is no supervisor or command manager, and moreover even the in

formation of the team may not be available to the entire group. However, the 

given relative specifications (e.g. regulation of relative distance or velocity) 

imposed on the vehicles, introduce challenging problems for research. Hence, 

the nature of the problem is such that the decision makers should be designed 

based on a (semi)decentralized manner, while on the other hand due to the 

autonomy and cooperative nature, some of them may not have access to the 

exact set-point or tracking path for their team decision. The proposed team 

cooperative strategy will accomplish agreement or command tracking goals us

ing optimal control, game-theory, and LMIs by introducing interaction terms 

as a means to overcome relative specifications and dependencies of individual 

goals on other agents' outputs or states. 

1.5 Main challenges and thesis contribution 

The main challenges of this research are listed below: 

1. Synthesis of the controller in a systematic way (and not just analysis) 

in order to optimize some performance index or achieve some goals. In 

most of the existing literature on coordination problems a controller is 

suggested and then the closed-loop system is analyzed to determine what 

30 



properties are satisfied by the corresponding controller. However, very 

few work has appeared in the literature in which at the outset the design 

of a control satisfying a set of predefined specifications and requirements 

is addressed. In fact, many of the earlier work in the literature have 

focused on analysis only, e.g. [11,13,22,36,45,77]. 

2. Tackling the coupling due to the relative dependence of the agents' 

goals on others' specifications. Even when the commands are available 

for the entire team both the relative performance as well as the in

dividual behavior are important. This dependency and relative perfor

mance requirement results in a highly coupled (centralized) solution. 

The techniques such as introducing coordinating vector in virtual struc

ture or leader in leader-follower structure, dual decomposition, and error 

dynamic framework are used to decompose this relative dependency and 

provide a reference point. 

3. Accommodating the non-availability of the command or required 

information for the entire team which requires a decentralized solution 

for the proposed problem. The challenge is how to formulate the distrib

uted nature of the problem in the classical frameworks such as optimal 

control, model predictive control, or game theory. 

4. Extending the existing results for a point-mass model to general linear 

dynamical model of agents. The results obtained in most of the exist

ing literature on cooperative motion are for point-mass dynamical model 

of agents, whereas in practice dynamics of agents may be governed by 

more complicated linear models or even nonlinear models. 

In order to overcome the existing challenges, this research has made the 

following contributions to the literature. The corresponding full explanations 
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of each contribution are provided in the following chapters. 

• To provide a synthesis-based methodology for consensus seeking that 

satisfy the predefined objectives and constraints for coordination in a net

work of agents in an aggregated and systematic way rather than analysis 

of a proposed algorithm. The approaches pursued in this thesis are based 

on the utilization of formal control design techniques like game theory 

and optimal control theory. Hence, controllers are formally designed to 

address the output consensus over a common value for a team of agents. 

• To derive a stable average consensus algorithm or a modified ver

sion of it formally as the solution to the optimization problem, i.e. a per

formance index is introduced that is minimized by the consensus protocol 

through the proposed methodology. 

• To compensate for the existing coupling among the team members due to 

the relative dependency by introduction and incorporation of the notion 

of interaction terms while respecting partial information availability. 

This novel modelling approach provides a framework in which local and 

global control requirements may be partially decoupled and the inter

connections among agents can be described. This is an advantage of the 

proposed methodology when compared to the synthesis methods such as 

the ones introduced in [9,38,39]. 

• To utilize a modified structure with corrective feedback which accom

modates partial availability of commands. Due to the special charac

teristics of the Modified Leader-Follower (MLF) architecture employed 

here, where the leader control input may also be affected by the followers 

through a corrective feedback from followers to the leader, this structure 

provides an embedded robustness capability for the team subject to the 
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agents' faults as well as adaptability of the leader and followers to the 

uncertainties and unanticipated situations. 

• To generalize the proposed concepts and methodologies for solving the 

consensus problem to agents with a general linear dynamical model 

properties rather than a point-mass model. 

• To emphasize on the information structure and using its properties. 

• To use proper indices to measure the performance of the team 

in achieving the predefined goals and to compare the performance of 

different methods. 

• To design a semi-decentralized optimal algorithm (controller) for 

solving the consensus problem using two methods: 

— Finding a solution to Hamilton-Jacobi-Bellman (HJB) equations, 

using properties of the network underlying graph, and incorporating 

the notion of interaction terms; and 

— Finding a solution by decomposing the state vector into two compo

nents in consensus subspace and its orthogonal subspace and using 

the LMI formulation. 

• To utilize cooperative game theory technique to formulate the con

sensus problem and design the consensus algorithm in a formal way to 

address the output consensus over a common value in a cooperative man

ner 

— To find a unique Pareto-efficient solution while distributed nature 

of the problem is respected by using the LMI formulation and Nash-

bargaining concept. 
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• To analyze and predict the performance of the previously designed con

sensus algorithms as well as team behavior in the presence of leader and 

followers actuator anomalies and faults 

— Stability analysis of the steady state error in the case of fault oc

currence for three types of actuator faults, i.e. float fault, Loss of 

Effectiveness (LOE), and Lock-In-Place (LIP); 

— Evaluation of the final value to which each agent converges subject 

to actuator faults; and 

— Adaptability analysis of team members to the changes that occur 

as a result of fault happening. 

• To guarantee team stability and design a switching control strategy 

for a team with a switching topology and time-varying leader assign

ment for directed, and unbalanced graphs. Introducing a criterion, i.e. 

performance-control effort tradeoff to guarantee optimal performance of 

consensus algorithms. 

The outline of the remaining parts of this thesis is as follows: in Chapter 

2, the required background for the following chapters is provided. Chapter 3 

is devoted to the semi-decentralized optimal control design based on the solu

tion of HJB equations. In Chapter 4, two practical and crucial scenarios are 

discussed for the strategy that is proposed in Chapter 3. In the first scenario, 

failure analysis is performed when some of the agents in the team are subject to 

an actuator fault. The second scenario discusses the switching control design 

and stability analysis for a dynamic network of agents where both the network 

structure and the leader assignment are switching. In Chapter 5, consensus 

seeking problem is solved by using a game-theoretic framework and an opti

mal control approach by utilizing an LMI formulation. In the optimal control 
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solution the ideas of state decomposition technique and LMI formulation are 

used. Finally, the thesis is concluded in Chapter 6 and some directions for 

future work are provided. 
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Chapter 2 

Background 

2.1 Multi-agent teams 

In general, an agent refers to a dynamical system. However, in the context of 

this thesis the term "agent" is interchangeable with "vehicle", where a vehicle 

may be a mobile robot or any other ground vehicle. 

Assume a set of agents Q = {i = 1 , . . . , TV}, where N is the number of 

agents. Each member of the team which is denoted by i is placed at a vertex 

of the network information graph. In general the dynamical representation of 

each agent is governed by 

X1 = AiXi + BV, Yi = JX\ i = l,...,N (2.1) 

where X1 E R9, ul E Rm and Yl E Rn are the state, input, and output vectors 

of agent i. The corresponding vectors of the entire team are designated by 

X, U, and Y, respectively, which are the concatenation of all the state, input, 
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and output vectors of the agents and are given by: 

XNqXl = [(Xy ... (XN)Tf, UNm*i = [ ( ^ ) T • • • (uN)T}T, 
(2.2) 

YNnxl = [(Yl)T . . . (YN)T]T. 

2.2 Information structure and neighboring sets 

In order to ensure cooperation and coordination among the members of a 

team, each member has to be aware of the status of other members (i.e. the 

output or the state vector), and therefore the members have to communicate 

with each other. For a given agent i in a network with an undirected graph, 

the set of agents from which it can receive information is called a neighboring 

set Nl, that is 

Vi = l, . . . ,JV, Ni = {j = l,...,N\(i,j)eE} (2.3) 

where E is the edge set that corresponds to the underlying graph of the net

work. In other words, i and j have either a communication link to transfer their 

status (output vector) to each other or any other way to obtain information 

such as measurements of other agents states. Furthermore, all the members 

have two-way links with the agents that are connected to them. Based on this 

formulation the number of neighbors of the agent i is |iVl| (the cardinality of 

the set iV*). 

Leaderless (LL) structure: Assume an information exchange structure as shown 

in Figure 2.1(a). In the LL configuration no desired command is specified and 

a consensus state is decided and agreed upon by all agents. In other words, in 

this structure no external command is provided to the members of the team, 

and the goal is to make the agents' output, e.g. velocity, converge to a common 
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value which is decided upon by the team members, i.e. Vi,j Yl —> Yj. This 

state is referred to as the consensus state. 

Modified Leader-Follower (MLF) structure: Coordination problems may be 

treated in a different architecture in which the desired value to which agents 

should converge is provided for the team via a commander which can be either 

a leader as in the leader-follower structure [50,56,57] or a coordination vector 

as in the virtual structure configuration [7]. In the standard leader-follower 

configuration, the leader can affect the followers whenever it is in their neigh

boring set but there is no feedback from the followers to the leader. In [4,7,27] 

the idea of adding a feedback from the virtual structures to the coordination 

unit is introduced. Other than leader-follower and virtual structure there can 

be an alternative architecture in which the command information is available 

to part of the team, e.g. to the leader, and the rest of the team should receive 

this information via links that exist among the neighbors. The work in [45] 

can be considered as an example of this structure for a team of agents with 

single integrator dynamical model where the leader can affect the followers 

but there is no feedback from the followers to the leader. Using the nearest 

neighbor rule, "each agent's heading is updated using the average of its own 

heading plus the headings of its neighbors" [45]. 

In this thesis an MLF structure is introduced and utilized. The differ

ence between the MLF architecture that is introduced here and the above 

mentioned architectures is that here only the leader is aware of the command, 

and the rest of the team is connected to each other or to the leader through 

a predefined topology. The command can be a set point reference or a time-

varying signal specified for the output or a trajectory to be followed by the 

agents. Here, the leader control input can also be affected by the followers 

through a corrective feedback from the followers. To be more specific, assume 
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(a) (b) 

Figure 2.1: Information structure in a) an LL structure and b) an MLF struc
ture. 

an information exchange structure as shown in Figure 2.1(b). An external 

command is provided to one of the members designated as the leader, and 

the goal is to make the agents' output, e.g. velocity, converge to the external 

command, i.e. Vi, Yl —> Yd. Other agents should follow the leader by commu

nicating through their links with each other or with the leader. Furthermore, 

the leader has two-way links with the followers that are connected to it, i.e. it 

receives feedback from some of the followers. This implies that although the 

leader may follow a given trajectory without any feedback from the followers, 

it receives the status of the followers, which may contribute to improving the 

robustness of the team cohesion, as shown formally in Chapter 4. 

Ring Topology: In this topology as can be seen in Figure 2.2, each agent is 

connected to its two adjacent neighbors, i.e. 

Vi = 2 , . . . , i V - l , Ni = {i-l,i + l}, NN = {N-l,l}, NX = {2,N} 

(2.4) 
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Figure 2.2: Information structure in a ring topology. 

and the corresponding Laplacian matrix, as will be defined in Section 2.5, is 

given as 

2 - 1 0 . . . 0 - 1 

- 1 2 - 1 0 . . . 0 
L = 

- 1 0 0 - 1 2 

(2.5) 

2.3 Model of interaction among the team mem

bers 

In decentralized control, the multi-level control concept is used as a means to 

compensate for the coupling dynamics in an interconnection of several subsys

tems. In the simplest case, the control ul is partitioned into two parts, namely 

local and global components, i.e. ul = ul
g + u\. The approach pursued here 

is clearly different from what is used in standard decentralized control, even 

though the general idea seems to be similar. Specifically, first an intercon

nection (interaction) term is introduced in the agent's dynamics in order to 

represent the connectivity of the members as required by the team goal. The 

interaction terms play the role of a global controller in the decentralized ap

proach, so that they can eliminate the effects of relative dependency in design 
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of individual controllers. 

To formalize this idea, assume that the dynamical model of each agent 

is given by (2.1). This model defines the dynamics of an isolated agent of the 

team, however team agents do indeed have certain interactions among neigh

boring agents through existing information flows. This interaction may be 

considered for each agent through its input channel and available information 

from outputs of other agents in its neighboring set. These concepts may be 

represented by the following dynamical model 

X{ = AiXi + B^^X1) + B\(Yj), Yi = ciXi (2.6) 

In other words, the actual control input u%(Xl,Yi),i — 1,... ,N is de

composed into two components, 

ui(Xi,Yi) = ui(Xi)+v?g(YJ), jeN* 

in which ul
g(Y

j) defines the dependence of the control input of agent i on its 

neighbors' information explicitly and u]{Xl) defines the dependence of the con

trol input of agent i on its local information. The controllers u\ have the same 

role as local controllers in the decentralized approach. For simplicity, I assume 

that ul(Yj) = YLjeN* ^Yi, i = 1> • • • 5 N, where T1* is the interaction ma

trix to ensure compatibility of agent's input and output channels dimensions. 

The above formulation illustrates why the method that will be proposed in 

the following chapters will be called semi-decentralized. Whereas, u\ is only a 

function of X1, ul
g incorporates the effects of neighbors' information (output) 

into the control law so that the control input is not fully decentralized in the 

conventional sense. 
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By incorporating the interaction terms in the agents dynamics, the dy

namical representation of the entire network can be written as follows: 

X = AX + BU, Y = CX (2.7) 

in which X and Y are the entire team state and output vectors defined previ

ously. Vector U is defined as in (2.2) by replacing ul with u\ for all i. Matrices 

A, B and C are defined as follows: 

A = 

A1, 0 , . . . , B 1 ^ V , . . . , 0 

, B = Diag{B\ . . . , BN}, 
(2.8) 

0,...,BNJrN^c>,...,0,AN 

C = Diag{c\...)C
N} 

The terms B%Jr%^0 represent the interactions that exist among the agents. 

Remark 2.1. The phrase "interaction terms" is used in decentralized control 

of large scale systems quite often and refers to part of the dynamics which 

describes the existing coupling terms among the subsystems. However, the 

"interaction terms" in the context of this thesis refers to the externally added 

couplings that are added in the input channels and as part of the control law. 

The proposed interactions guarantee that the team goals and specifications 

are satisfied as opposed to compensating for the dynamical couplings among 

the agents. 

2.4 Dynamical model of an agent 

In this section I will discuss and introduce two linear dynamical representations 

for the agents. These models will be used in the future discussions. It is worth 

noting that many of the mobile vehicles have nonlinear dynamical equations 

44 



due to their existing non-holonomic constraints [114,115]. However, it will be 

shown in the following sections that a common nonlinear model of a mobile 

robot can be transformed into a linear one by using a nonlinear feedback of 

the states. Therefore, the assumption of linear dynamical model for mobile 

robots is reasonable even if the vehicles have non-holonomic constraints. 

2.4.1 Mobile robot dynamical model: double integrator 

dynamical model 

In the present work, the agents are mainly assumed to be mobile robots. 

There are different models for mobile robots in the literature. In [114], a 

7th order model is considered for a mobile robot with non-slipping and pure-

rolling motion. The robots are considered to have 2 steering wheels and a free 

one with non-holonomic constraints. Based on some simplifications that are 

discussed in [114] and due to planar motion these equations can be simplified 

into the following 5th order model: 

xl 

f 

< 0* 

V\ 

^ 

= TA 

= vi 

= 4 
= a\ 

= 4 

sinfl* 

COS0' 

M ' 1 

in which xl and yl are the position components, r\\ and rf2 are the linear and 

the angular velocities, 0% is the heading angle, a\ and a2 are the linear and 

angular accelerations, ¥l and rl are the force and torque inputs, and Ml and 

J* are the mass and moment of inertia of each robot, respectively. 

The above model is in general a nonlinear model, however as the focus 
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of this work is on linear models, in the following I will show how to linearize 

this model. For some definitions of output this model can be transformed into 

a linear model. Three cases are assumed for linearizing the model based on 

different output definitions: 

Case I: Output of each agent is one of the three last states or a com

bination of them. For example assume that Y% = [9l rj\]T. Based on this 

definition of output vector, the first two equations may be eliminated as they 

do not have any effect on the input-output channel. Hence, a reduced order 

model may be considered which is given by: 

&i = vi 
< ^ = a i ^ P (2.10) 

k r/2
i = 4 = jiTi 

The new state vector may now be considered as X1 = [9\ r)\, rjl
2]

T. 

Case II.a: Output of each agent consists of at least one of the first two 

states, e.g.: 

Y* = [x* yT (2.11) 

In this case the first two equations cannot be separated anymore. Hence, one 

has to go through feedback linearization procedure. Based on the definition 

of the relative degree presented in [116], the relative degree of the system in 

(2.9) with respect to the output in (2.11) is {2,2}. However, the system is not 

feedback linearizable. Hence, we need to modify the input-output definition. 

One common solution is to consider a dynamic input definition. Towards this 

end, define z% = [a\ G^F a s the n e w input vector. Hence, equation (2.9) can 

be written as: 
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X1 

yi 

0* 

Vi 

a\ 

= V\ 

= vl 

= vi 

= a*i 

= z\ 

sin#l 

cos#l 

(2.12) 

1 o-i ^ m = *2 = j i T 

This system is feedback-linearizable with relative degree {3,3}. By uti

lizing state transformation 

x" 

yl 

rj[ sin 9l 

rj\ cos 9l 

•q\q\ cos 9l + a\ sin 0% 

—rj[rf2 sin 9l + a\ cos 9l 

X = (2.13) 

the system will be transformed into the linear model (2.1) with the following 

parameters: 

A* = 

and 

02x2 -̂ 2x2 02x2 

02x2 02x2 ^2x2 

02x2 02x2 02x2 

,B> = 

02x2 

02x2 

hx2 

,C 

U = 
sin 9l r\\ cos 9l 

cos9l —r]lsm9l 
Z +V2 

hx2 02x2 02x2 

2a\ cos 9l — r\\r\\ sin 9l 

—2a\ sin 9l — r\\r\\ cos 9l 

(2.14) 

(2.15) 
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The coefficient matrix of z% is nonsingular for vj[ ^ 0 and so the control 

law for ul can be transformed to a value for zl and then to the vl (defined 

below). The model presented in (2.1) with parameters as in (2.14) is a chain 

of integrators. It is simple to verify that whereas the first two states in the 

new coordinate are the position states, the third and fourth states are linear 

velocity components and the last two states are acceleration components. If 

we denote the position, the velocity and the acceleration vectors of each agent 

by r\vl and a1 respectively, it can be seen that: 

r( = v 

< v% = a1 

a1 — u% 

(2.16) 

Case II .b: The definition of the output is similar to the previous case, 

but here the first four states are assumed as the state vector and the input 

vector is zl = [a\ rf2]
T. This can be done as the dynamics of r\\ does not have 

any effect on the input-output channel. In this case the relative degree of the 

system is {2,2}. By introducing the following state transformation: 

X 

x 

yl 

r)\ sin 9l 

r]\ cos 9l 

(2.17) 

the system will be transformed into the linear model (2.1) with the following 

parameters: 

A1 02x2 -̂ 2x2 

02x2 02x2 

,B* = 
02x2 

hx2 
,C = hx2 02x2 (2.18) 
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and ul = 
sin 9l rj\ cos 9l 

cos 6% —rj\ sin 6l 
z\ The coefficient matrix of z1 is nonsingular 

for r)\ ^ 0 and so the control law for ul can be transformed to a value for zl and 

then a\ and rf2 can be found. The model presented in (2.1) with parameters 

as in (2.18) is again a chain of integrators. It is simple to verify that while the 

first two states in the new coordinate are the position states, the last two states 

are velocity components. If one denotes the position and the linear velocity of 

each agent by rl and vl respectively, then: 

vi = u\ i = 1 , . . . , N 
(2.19) 

To summarize the above discussion, I assume that the vehicles are mobile 

robots that are represented by double integrator dynamical models as in (2.19), 

and that Y% = v\ i — 1 , . . . , N. Using the formulation proposed in Section 2.3, 

the dynamical model of each agent with interaction terms is as follows 

Yi = vi,i = l,...,N 

(2.20) 

2.4.2 Linear dynamical model 

As discussed in previous subsection, in general the dynamical equation of 

most ground vehicles can be transformed into a generalized form of a set of 

integrators (canonical form) and due to the focus of this work on applications 

of teams of ground vehicles, assuming this kind of dynamical equation for the 

agents is an admissible assumption. In this work I assume that the vehicles' 

dynamics consist of position and velocity, i.e. X1 = [X{ Xl^\T — [(rl)T (vl)TY• 
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Therefore, in the presence of interaction terms the following agents' dynamical 

equations is considered 

v* = AW + B^uj + u% v}g = £jeNi J*W, (2-21) 

Yi = vi eRn, i = l,...,N 

where Bl is a non-singular matrix, A1 and A1 are n x n matrices, and rl, vl 

denote the ith agent position and velocity vectors, respectively. 

Remark 2.2. Dynamical model of each agent consists of position and velocity 

states. However, since the main objective in this thesis is to have a common 

output, namely velocity, for analysis I will only consider the velocity dynamics 

to describe the dynamical behavior of the agents. It should be noted that for 

the purpose of simulations naturally the position dynamics is also included. 

2.5 Terminologies and definitions 

• Laplacian matrix [37]: This matrix is used to describe the graph 

G associated with information exchanges in a network of agents and is 

defined as L = [UJ\NXN, where 

Hj — \ 

d{i) i=j 

- 1 (i,j)EE and i^j (2.22) 

0 otherwise 

where E is the edge set of the graph Q, d(i) is equal to the cardinality 

of the set Nl [117], |iVl|, and is called the degree of vertex i. For an 

undirected graph, the degree of a vertex is the number of edges incident 

to that vertex (total number of links connected to that vertex). For 
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directed graphs, instead of the degree either the in-degree or the out-

degree might be used (the total number of the links entering or leaving 

a node). 

Normalized Laplacian matrix: The normalized Laplacian matrix L 

is defined similar to the Laplacian matrix of a graph, where L = [IIJ]NXN 

and 

/ 

Hj — \ 

1 i = j 

-l/d{i) (i,j) e E and i^j (2.23) 

0 otherwise 

Adjacency matrix [118]: The adjacency matrix of a graph, denoted 

by A is a square matrix of size N, defined by A(i,j) = 1 if (i,j) G E 

and i 7^ j , and is zero otherwise. 

Normalized adjacency matrix: The normalized adjacency matrix of 

a graph, denoted by A is a square matrix of size N, defined by A(i, j) = 

•4w if (i,j) G E and i j^ j , and is zero otherwise. 

Connected graph [64]: An undirected graph consisting of a vertex 

set, V, and an edge set, E, is connected if there is a path between any 

two vertices and the path lies in the edge set. 

Balanced graph: If the Laplacian matrix of a graph, L, has the prop

erty that 1TL = 0, then the graph is called a balanced graph. For bal

anced connected graphs one has the property that L + LT can be consid

ered as the Laplacian matrix of an undirected and connected graph [13]. 

Tree [118]: A connected graph with no cycles (acyclic) is called a tree. 
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• Spanning Tree [118]: A spanning tree of a connected undirected graph 

is a connected subgraph of the original graph with the same vertex set 

as the original graph and no cycles. 

• Forest [118]: A forest is a disjoint union of trees. 

• Path [119]: In a tree, every two vertices are connected by a unique 

path. The length of this path is the distance between the two vertices. 

The followings are some other useful definitions from the linear algebra 

literature: 

• Spectrum of a matrix [120]: The set of eigenvalues of a matrix is 

called its spectrum. 

• Inertia of a Hermitian matrix [120]: is the number of positive, 

negative, and zero eigenvalues of a matrix. 

• Spectral Radius [120]: The spectral radius of a matrix A, i.e. p(A), 

is the largest of the absolute value of the eigenvalues (or magnitude of 

complex eigenvalues) of that matrix, that is 

p(A) = max\Xi\ (2.24) 
i 

where A; is an eigenvalue of matrix A. 

Definition 2.1. Schur complement [121]: Assume that matrix M is given 

(A B\ 
by M = , where D is invertible. Then the Schur complement of the 

\C D) 
block D of matrix M is A — BD 1C. This conversion can be used to transform 
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bilinear (nonlinear) matrix inequalities into LMIs, i.e. 

A B , 
> 0, D>0&A- BD^BT > 0 (2.25) 

,BT D' 

The following is the well-known Perron-Frobenius theorem for nonnega-

tive matrices. This theorem will be used in Chapter 4. 

Theorem 2.1. Perron-Frobenius Theorem [120] 

Let M G Mn and suppose that M is irreducible and nonnegative. Then 

1) p(M) > 0 

2) p(M) is an eigenvalue of M 

3) There is a positive vector x such that Mx — p(M)x 

4) p(M) is an algebraically simple eigenvalue of M, 

where Mn is the set of matrices of order n and p(M) is the spectral radius 

of matrix M [120]. 

Definition 2.2. In a network consisting of nodes denoted by i and with a 

group system dynamic as x = f(x), x = [xf,... ,xf,... ,x]^]T, a proto

col asymptotically solves the x-consensus problem if and only if there ex

ists an asymptotically stable equilibrium x* satisfying x* = x(x(ty) f° r a ^ 

nodes i [13], where x(0) is the initial value of the state vector x. If x(x) = 

Ave(x) = jf ^2i=1 x% the protocol is called average-consensus. Similarly, other 

X-consensus protocols such as max-consensus and min-consensus can be de

fined. 

2.6 Actuator fault types 

In [122], the following three types of actuator faults that are of interest in this 

thesis are introduced, namely 
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i) Lock-In-Place (LIP): "In this case the actuator "freezes" at a cer

tain value and does not respond to subsequent commands." 

ii) Float: "The float fault occurs when the actuator output "floats" with 

zero value and does not contribute to the control authority." 

iii) Loss of Effectiveness (LOE): "The loss of effectiveness (LOE) 

fault is characterized by lowering the actuator gain with respect to its nominal 

value." 

These faults may be formally represented as follows 

/ 

uf = < 

ou* a = 1, W > 0 No Failure 

aul 0 < e < a < 1, Vt>tf Loss of Effectiveness (LOE) 

0 a=l, Vt>tf Float 

u^tf) a = 1, Vt>tf Lock-In-Place (LIP) 

(2.26) 

where ulf corresponds to the actual input that is produced by the actuator, u% 

is the input commanded by the controller, tf denotes the time when a fault is 

injected, and a represents the effectiveness coefficient of the actuator and is 

defined to be a € [e, 1], e > 0. 

2.7 Hamilton-Jacobi-Bellman (HJB) equations 

Minimization of a general nonlinear cost function, either unconstrained or 

subject to certain constraints, may be solved by using the HJB equations. 

In this thesis the unconstrained minimization problem is considered. The 

HJB equations in the general form for a finite horizon scenario are described 

below [123,124]. Assume that the model of a dynamical system is given by 

Xi = fi(t,Xi,ui) (2.27) 

54 



and the cost function to be minimized is given as 

f= f g'faX'^dt + tiiX^T)) (2.28) 
Jo 

The solution to the following optimization problem 

min J* = [ gifaX^u^dt + tiiXHT)) 

s.t. Xi = fi(t,Xi,ui) 

is obtained if the following HJB equations have a solution: 

- ^ ( « , A - i ) = m i n . A i ( t , X i
> « * ) > at u»ew 

A% X\ «') = g% X\ «') + %-(t, X^fit, X\ «'), (2-29) 

?/*(*, JT) = arg min{A i(t,X i,M i)}, ^ (T .X*) = h^X^T)) 
uieui 

where V1 is a value function to be chosen such that the above Partial Differ

ential Equation (PDE) is satisfied and U% is the set of all strategies for player 

i. It is an indicator of the minimum value of the cost function (2.28) at any 

time t, i.e.: 

V\t)= I gi{t,X\ui)dt^hi{Xi{T)) 

The term hl(Xl{T)) is known as the "cost to go" and is the final value 

of the V\ i.e. Vl(T). An important issue to consider is the existence of a 

solution corresponding to the above equations and how the value function V% 

is to be selected to satisfy the PDE given in (2.29). 
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2.8 LMI formulation of Linear Quadratic Reg

ulator (LQR) problem 

Consider the following cost function 

d = f™{XTQX + UTRU}dt (2.30) 

where Q is a Positive Semi-Definite (PSD) matrix, R is a Positive Definite (PD) 

matrix, and the corresponding linear dynamical system is as follows 

X = AX + BU (2.31) 

The problem of minimizing the cost function (2.30) subject to the dynam

ical constraint (2.31) is an LQR problem. The solution to this minimization 

problem can be found if the following Algebraic Riccati Equation (ARE) has 

a solution for P 

PA + ATP - PBR~1BTP + Q = 0 (2.32) 

where U = -R~1BTPX. 

In [121]- [126] it is shown that the LQR problem can be formulated as a 

minimization or a maximization problem that is constrained to a set of matrix 

inequalities. In other words, instead of solving the ARE (2.32), a set of matrix 

inequalities can be solved. Using this formulation, the controller U = KX 

that minimizes the cost function (2.30) subject to (2.31) is achieved by solving 
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for and determining the appropriate matrix P: 

mmX(0)TPX(0) s.t. 

PA + ATP-PBR~1BTP + Q<0, (2.33) 

P>0 

where X(0) is the initial value of the state vector. Equivalently the following 

formulation in terms of P and K can be written as: 

minX(0)TPX(0) s.t. 

P{A + BK) + (A + BK)TP + Q + KTRK < 0, (2.34) 

P > 0 

where K = —R~1BTP yields the optimal solution. In [127] it is shown that if 

instead of the cost function (2.30) its expected value is considered and certain 

assumptions on the initial conditions of the system are imposed, the above 

minimization problem reduces to: 

min trace(P) s.t. 

P{A + BK) + {A + BK)TP + Q + KTRK < 0, (2.35) 

P > 0 

which can be transformed into an LMI optimization problem by introducing 

new variables X = P~\ and Y = KP~l [127]. 

The following is another formulation that can be used for this purpose 
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using a semi-definite programming framework [126], namely 

max trace(P) s.t. 

PA + ATP-PBR-1BTP + Q>0, (2.36) 

P>0 

where the optimal control law is then selected as U = —R~1BTPX. By using 

the Schur complement decomposition and given that R > 0, this formulation 

can be translated into an LMI maximization problem. 

2.9 Cooperative game theory 

In this section, I will provide a general description of the "cooperative game 

theory" and in Chapter 5, I will modify the formulation introduced here to 

make it compatible with my specific problem, i.e. consensus seeking problem. 

Assume a team of N players with the following dynamical model 

N 

x = Ax + Y^ Biui (2.37) 

where x is the state vector of the entire team, ul is the individual control input, 

and the matrix A has an arbitrary structure. Each player wants to optimize 

its own cost 

J*= f {xTQix + {ui)TRiui)dt (2.38) 

Jo 

in which Ql and Rl are symmetric matrices and Rl is a PD matrix. 

If the players decide to minimize their cost in a non-cooperative manner, 

a strategy (control input ul) chosen by the ith. player can increase the cost of 

other players through dynamics of the system that couples the different players 

together. However, if the players decide to cooperate, the individual costs may 
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be minimized. In other words, if each agent is aware of the others' decisions the 

agents can reduce their team cost by selecting a suitable cooperative strategy. 

Hence, in a cooperative strategy depending on which agent requires more 

resource the resulting minima can be different. The cooperation ensures that 

the total cost of the team is less than any other non-cooperative optimal 

solution obtained. 

In a cooperative approach it is intuitively assumed that if a set of strate

gies for the team results in a lower cost for all the members, all the players will 

switch to that set. Hence, by excluding this situation the set of desired solu

tions consists of those strategies that if the team strategy changes to another 

one at least one of the players ends up with a higher cost. In other words, there 

is no alternative strategy that improves all the members' cost simultaneously. 

This property can be formally defined by the set of Pareto-efficient solutions 

as follows. 

Pareto efficient strategies [124]: A set of strategies U* = [u1*,..., uN*] is Pareto-

efficient if the set of inequalities 

J\U) ^ J\U*), i = l,...,N 

with at least one strict inequality does not have a solution for U. The point 

J* = [J1 ( [ /*) , . . . , JN(U*)] is called a Pareto solution. This solution is never 

fully dominated by any other solution. 

Now consider the following optimization problem and assume that Qz > 

0, specifically 

min f= f (xTQix + {ui)TRiui)dt 
uiew J0 

N 

s.t. x = Ax + ^2 Biui 

i=l 
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where Ul is the set of all strategies for player i. The above is a convex opti

mization problem. It can be shown that the following set of strategies results 

in a set of Pareto efficient solutions for this problem. In other words, the 

solution to the following minimization problem cannot be dominated by any 

other solution 

N 

U*(a) = avgmmJ2aiJi(U) (2.39) 

where a G A, A = {a = (a1,... ,aN)\al > 0 and Yli=i a% = 1}> an<^ ^ 

is the set of all strategies for all players. The cost values correspond to the 

optimal strategies U* will be J 1 ( [ /*(a)) , . . . , JN(U*(a)). It is worth noting 

that although this minimization is over the set of strategies U, the controller 

parameters (matrices) are in fact being optimized. In other words, the control 

strategies U are assumed to be in the form of state feedback and the coefficient 

matrices are obtained through the above optimization problem. 

The strategies obtained from the above minimization as well as the op

timal cost values, here referred to as the "solutions", are functions of the 

parameter a. Therefore, the Pareto-efficient solution is in general not unique 

and the set of these solutions, i.e. Pareto frontier, is denoted by V which is an 

edge in the space of possible solutions (cost values), i.e. H. It can be shown 

that in both infinite horizon and finite horizon cases, the Pareto frontier will 

be a smooth function of a [124]. Due to the non-uniqueness of Pareto solutions 

the next step is to decide how to choose one solution among the set of Pareto 

solutions (or to choose an a from the set of ct's). This solution should be 

selected according to a certain criterion as the final strategy for the team co

operation problem. For this purpose, we need to solve the bargaining problem 

as defined below. 
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Bargaining problem [124]: In this problem two or more players have to agree 

on the choice of some strategies from a set of solutions while they may have 

conflicting interests over this set. However, the players understand that bet

ter outcomes may be achieved through cooperation when compared to the 

non-cooperative outcome (called threat-point). Some of the well-known ax

iomatic approaches to this problem are Nash bargaining, Kalai-Smorodinsky, 

and Egalitarian. 

Applying any of the above mentioned methods to the Pareto efficient 

solutions will yield a unique cooperative solution. Due to the interesting prop

erties of the Nash Bargaining Solution (NBS) such as symmetry and Pareto 

optimality [124], I invoke this method for obtaining a unique solution among 

the set of Pareto-efficient solutions obtained above. 

Nash Bargaining Solution (NBS) [124]: In this method a point in H, denoted 

by EN, is selected such that the product of the individual costs from d is 

maximal (d = [dl]T is the threat-point or the non-cooperative outcome of 

agents), namely 

N 

EN{E,d) = argmax J J (<f -J*), J= [ff G E with J^d (2.40) 

in which <f's (the threat point) are the cost values calculated by using the 

non-cooperative solution that is obtained by minimizing the cost in (2.38) 

individually and constrained to (2.37). It can be shown that the NBS is on 

the Pareto frontier and therefore the above maximization problem is equivalent 

to the following problem 

N 

aN = argmaxTT (d* - J*(a, U*)), J E V with J<d (2.41) 
i= l 

in which J = [Ji}T, and where J*'s are calculated by using the set of strategies 
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given in (2.39). By solving the maximization problem (2.41), a unique value 

for the coefficient a can be found. 

Remark 2.3. Theorem 6.10 in [124] can be used to determine the relationship 

that exists between the coefficients a\ i = 1,..., N and the achievable im

provements in the individual costs due to cooperation in the team. According 

to this theorem the following relationship holds between the value of the cost 

functions at the NBS, (Ju{a*, 17*),..., JN*(a*, U*)), the threat-point d, and 

the optimal weight a* = (a1*, . . . , aN*), that is 

a1*^1 - Ju(a*, U*)) = ... = aN*{dN - JN*(a*, U*)) or 

^ = IW*--/"("', f)) <2-42) 

The expression in (2.42) describes the kind of cooperation that exists 

among the players. It shows that if during the team cooperation, i.e. mini

mization of the team cost, a player has improved its cost more, it will receive 

a lower weight in the minimization scheme (Pareto solution) whereas the one 

who has not gained a great improvement as a result of participation in the 

team cooperation receives a greater weight. Therefore, all the players benefit 

from the cooperation in almost a similar manner, and hence have the incentive 

to participate in the team cooperation. 

Remark 2.4. Selection of the NBS is motivated by the fact that this solution 

enjoys several appealing properties (axioms). As pointed out in [124], in this 

method each agent does not need to have information about the utility value or 

the threat point of other agents. In other words, no "interpersonal comparison" 

of utility functions is required. Moreover, this solution satisfies four axioms 

namely, Pareto optimality, symmetry, independence of irrelevant alternatives, 

and affine transformation invariance, which are all defined in [124]. 
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2.10 Problem statement: consensus in a team 

of multi-agents 

The main goal here is to make the agents' output, or state vector, converge to 

a common value, which is either determined by the team members or enforced 

from outside through a supervisor. The output can be velocity, position, or 

any other state on which the team should have a consensus. This means that 

Vi, j X1 —> XK In other words, we desire that the team reaches to a consensus 

in the subspace spanned by the vector 1, that is: 

x„ = [(xlz ... (x"£]T = [ii ...if ®* = i®* 

where £ is the final state vector to which the states of all the agents converge 

and Xss stands for the steady state vector of the entire team. 

Figures 2.3 and 2.4 show two examples of a consensus on velocity in a 

team of aerial vehicles. 

Definition 2.3. (consensus to S) [39]: Let 5 be an orthonormal matrix in 

ftNnxm r p ^ S y S t e m (2.21) or in (2.20) achieves consensus to the subspace 

S = span{S} if S is a minimal set such that for any initial condition, the 

state X{t) converges to a point in S. 

In this thesis it is assumed that the desired consensus subspace S is 

spanned by the unity vector, i.e. 5 = 1. 
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^^^z^^i^Sffll^ 

Figure 2.3: Consensus in a team of aerial vehicles (figure borrowed from [2]). 

\>™^i'"*Sf*f"*-

Figure 2.4: Consensus in a team of aircraft (figure borrowed from [3]). 

64 



Chapter 3 

Semi-decentralized optimal 

control for team cooperation 

seeking 

The objectives of this thesis are the development and design of controllers for 

a team of agents that accomplish consensus for agents' output in both LL and 

MLF architectures. The main goal of the team is to make the agents' out

put converge over time to a common value, which is either determined by the 

team members or enforced through a supervisor. Towards this end, the main 

feature of this research is to introduce synthesis-based protocols that have the 

advantage of simultaneously addressing several specifications and constraints 

while guaranteeing optimality of the solution for a team of agents with general 

linear dynamical models. Modelling of the agents' relative specifications as 

interaction terms provides a deeper insight into design of "local" and "global" 

controllers that will address the corresponding "local" and "global" specifi

cations. Therefore, interactions among agents due to information flows are 

represented through the control channels in characterization of the dynamical 
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model of each agent as discussed in Chapter 2. 

Towards this end, in this chapter a semi-decentralized optimal control 

strategy is designed based on minimization of individual cost functions defined 

for the team members using local information. Furthermore, it is shown that 

for a general linear dynamical model of agents by appropriate selection of 

the cost functions gains through a set of LMIs, the team is guaranteed to 

remain stable and the controller yields results that satisfy the predefined team 

goal, i.e. cohesive motion of the team. It is shown that minimization of 

the proposed individual cost function in the infinite horizon case, results in 

a control law which is the well-known "average consensus protocol" [13] or 

its modified version for both the LL and the MLF structures. This implies 

that by using the present framework and methodology the average consensus 

protocol is derived in a formal way. In other words, we have introduced a 

performance index that is minimized by the consensus protocol through the 

proposed methodology. 

Remark 3.1. In the context of the present work, the terms centralized and 

decentralized can be a source of confusion. Here, a decentralized strategy refers 

to the case in which the neighbors' information is available for each agent in 

that set and no exchange of information exists with the agents which are 

outside the neighboring set. The centralized strategy refers to the availability 

of the entire team information for each agent. 

A summary of the following materials is published in [128]- [132]. 
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3.1 Semi-decentralized optimal control design 

3.1.1 Definition of cost functions 

To achieve output consensus, the difference among the output of the agents in 

the team should converge to zero. Towards this end, and due to the connec

tivity assumption, it suffices to have consensus for the agents in a neighboring 

set. Hence, the difference between the output of each agent and its neighbors 

is used as a performance index for each agent. For the LL structure and the 

agents dynamical equation as given in (2.1) the cost functions for all the agents 

are defined as shown below 

di = f { V [(Y* - Y'^QViY* - Yj)} + (uYtfu^dt 

+ Y^TfE^iT) + (FYY^T) + Gi (3.1) 

If the MLF structure is considered, superscript 1 is used to denote the leader, 

while superscripts i — 2 , . . . , N are used to correspond to the variables of the 

followers. The leader's cost is selected according to 

d1 = I {[(Yl - yd)Tr(y1 - Yd)\ + ̂  [(Y1 - Y^)TQ1J{Y1 - Yj)\ 
Jo jewi (3.2) 

+ {ul)TRlul}dt + Y\T)TElY\T) + (F1)^1^) + G1 

The cost functions for the followers are defined as in (3.1). In the above 

definitions, Qlj,T,El and R% are symmetric and PD matrices, Fl is a vector 

with a proper dimension, and Gl is a scalar. The variables Y\ ul are defined in 

(2.1), T denotes the time horizon over which the cost optimization is performed 

and Yd is the desired output. The term Y^TfE^iT) + F^Y^T) + Gi is the 

"cost to go". This final value can be either zero or non-zero and its structure 
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is similar to that of the value function. For example, if there is no linear term 

in the value function, the corresponding linear term in the final value should 

also be zero. It should be noted that the first term in (3.2) is used to ensure 

that the leader follows its own command, i.e. (Y1 —> Yd). The second term 

incorporates the effects of the difference between the output of the leader and 

the output of its neighbors. 

If certain necessary conditions are satisfied, minimization of the above 

cost functions is guaranteed. This is further discussed in Subsections 3.1.2 

and 3.2.1. If these cost functions are minimized then the consensus will be 

achieved, i.e. all agents in a neighboring set will reach to the same output 

vector in steady state. Due to the connectivity of the information graph, 

any neighboring set has at least one common member with one of the other 

neighboring sets. Now assume that the member i has a final output vector 

Yl*. Any other member k is either inside or outside its neighboring set. In the 

former case, Yk* —» Y1*, in which Yk* is the final output of the fcth member. 

In the latter case, due to the connectivity of the information graph, there is 

a path between these two members. Hence, the final output of member i is 

passed on to one of its neighbors which in turn passes it to another member in 

its own neighboring set until it reaches member k. Therefore, the two members 

will have the same final output. Hence, for the case of the LL structure all 

the members decide on a consensus value Yc, namely: Vz, j , Yl* —> Y-7* —> Yc. 

The same discussion applies to the MLF structure. 

Remark 3.2. The cost functions introduced in (3.1) and (3.2) are quadratic 

functions, however as we will see later due to the dependency of each individual 

cost function on the outputs of other agents, and due to partial availability 

of information for individual agents, this quadratic optimal control problem 

cannot be solved by using conventional LQR methods. Specifically, application 
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of these methods to the current problem requires full access to information of 

the team for each agent which is not available in the present case. Therefore, 

in order to find the minimum value of the above cost function we have to use 

the general approach, i.e. to solve the HJB equations [123,124]. 

To this end, let us formulate the consensus problem and determine what 

problems may arise in obtaining the solution to the HJB equations subject to 

the availability of partial information. This will provide a clear motivation for 

utilizing the previously introduced interaction terms that will overcome these 

difficulties. We can choose any of the two previously defined structures, i.e. 

LL or MLF. I select LL structure for this purpose and later on the consensus 

problem is solved for both the LL and MLF structures as shown in Subsections 

3.2.1 and 3.2.2. 

3.1.2 The HJB equations for the consensus problem 

Assume a team with an LL structure where the agent's dynamical equations 

are governed by (2.1) and the agent's cost function is as in (3.1). Based on 

the discussion in Chapter 2, the HJB equations corresponding to our specific 

problem will be as follows [123] 

-?£-(t,Xi) = mmA%Xi
1u

i), 

A* = (Xi)TQiXi + k\(t, XJ
i)X

i + (uYWu1 + k\{t, X{) 
n • ( 3 ' 3 ) 

dVl dVl 

V\T) = X^TfETX^T) + {Pyx^T) + Gi 

in which Qi = ( c ' f E ^ Q ' V , & = ( c ' ^ E V , F* = (c i)TF i , k[{t,X{) = 

-2£^(c^(i))TQlv, kfaxj) = E^^iW^rQ'^^it), x{ 
denotes the set of state vectors of all agents j G N\ and V1 is a value function 
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to be chosen such that the PDE (3.3) is satisfied. 

Remark 3.3. Note that equation (3.3) is a function of not only X1 but also 

Xi, j e N\ Hence, normally the dynamics of the jth agent should also be 

considered as a constraint in the HJB equations. However, in that case the 

solution would be centralized in which the control input of each agent depends 

on the output of all the other agents and not necessarily the ones which are in 

its neighboring set. That is the reason for using only the dynamic constraint 

of each individual agent in its HJB equation and the other agents' states are 

assumed as time-varying functions. 

In view of the above discussion the minimization of d% is performed with 

respect to only ul(t, X1) and therefore ul*(t, X1) = arg{mhveWi A%(t, X\ u1)}, 

i = 1 , . . . , N. In this case optimality refers to finding the minimum value of 

the cost function (3.1) with the dynamical constraint given by (2.1) while the 

other agents' control (or states) are treated as being frozen. Therefore, in 

the context of this chapter optimality refers to an agent-by-agent optimality 

rather than the global optimality. Moreover, optimality refers to the optimal 

performance that is achievable within the specific semi-decentralized structure 

that is introduced in this work. In other words, the objective is not to show 

that the semi-decentralized approach is optimal as compared to the centralized 

case, which indeed it is not. The goal is to obtain an optimal solution for the 

semi-decentralized approach and this is shown to be achieved if a solution to 

the proposed optimization problem is obtained. 

Discussion on the existence of a solution: In the above minimization problem, 

a choice for V1 may be specified as 

\T = hxYK'W + {gi(t))TXi + Y (3.4) 
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in which Kz,gl and 7*, i = 1 , . . . , N are time-varying parameters to be se

lected. The reason for this selection of V1 is that the optimal control law is of 

tracking type and moreover the terms correspond to V l(T) given in (3.3) have 

similar structure as V1 defined in (3.13). Then, the HJB equations in (3.3) 

can be solved if K% and the vector 7* can be calculated through the following 

differential equations 

-K* = 2Ql - \KiBi(B^)-1(Bi)TKi + KiAi + (Ai)TKi, K\T) = 2Ei 

-gi = -\Ki{t)Bi{Ri)-l{Bi)Tgi + (Ai)Tgi + ki(t,X3
i)

T, g*(T) = F* 

The main issue here is the existence of a solution for these equations. 

The first equation is a Differential Riccati Equation (DRE) and can be solved 

if certain conditions are provided by matrices Al,B\cl. Unfortunately, the 

term k\(t,X?)T in the second equation is a function of the output of other 

agents. Although, this term is available for agent i at any time instant due 

to being in the neighboring set of agent i, the agent i cannot have its value 

in advance which is needed due to the nature of the equations (a two-point 

boundary value problem), and hence the second equation does not have a 

solution since Y^j E Nl are not known for the entire interval [0, T]. Hence, 

in this form there is no solution for gl. In order to remedy the presence of 

this unwanted term, the idea of incorporating interaction terms introduced in 

Chapter 2 is used. These interaction terms compensate the effects of Yj in the 

cost function of the ith agent. Moreover, this adopted concept allows one to 

design a semi-decentralized controller based on the available information for 

each agent. This idea is applied in the following. 

Solution of the HJB equations in consensus problem: The HJB equations given 

in (3.3) have to be modified to properly address the case when the interaction 
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terms are included in the model as given in (2.6). Moreover, the cost functions 

(3.1) and (3.2) are modified by replacing ul, u1 with u\, uj, respectively to have 

<f = / {^2 [(X* - Yj)TQij(Yi - Yj)} + (u\)Tffu\}dt 

+ Y^TfE^iT) + (FfY^T) + Gl (3.5) 

d1 = f {[(Y1 - y d ) T r (y 1 - Yd)\ + J^ i(Yl - YJ)TQIJ{Y1 - Y*)] 
Jo jem (3.6) 

+ {u])TRlu}}dt + r1(T)r£;1y1(r) + {F1)TY\T) + G1 

Then, the resulting HJB equations will modify to 

A* = (xYQ'x' + k\(t, x{)x* + v2(t, xf) + (rifRiv^ 
(3.7) % 

+ | £ ( « , X^X* + B'uHX') + BVg(Y*)) = ~ 

The solution to the HJB equation in (3.7) yields the following differential 

equations 

-AT* = 2Qi - \KiBi{B>)-\Bi)TKi + K{Al + (A)TK\ K{{T) = 2El 

-gi = [(A'f - ±Ki(t)Bi{Ri)-1(Bi)T]gi + k[(t,Xf)T + K^B^Y'), 

g\T) = F 

(3.8) 

The "undesirable" terms, k\{t,X{) and K^^B^Y^), in the second 

equation in (3.8) may be cancelled out by a suitable selection and design of 

the interaction terms. Specifically, one solution to consider is to assume that 

k[{t,Xi
i)

T + Ki(t)Biug(y>) = 0 =» 

(3 9) 
- 2 ^2 (cfQ^'^'W + K\t)Bi Y^ PjYj = 0 

jeN* jeN' 
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This is reduced to the following equation if Kl(t)Bl is a non-singular 

matrix, 

Pj =2(Ki{t)Bi)-1(ci)TQij (3.10) 

Consequently, one can guarantee that the differential equations in (3.8) 

have a solution, and therefore a control law may be found to minimize the 

cost function (3.5). Moreover, using the properties of Riccati equations and 

assuming that the pair (Al,Bl) is reachable and (Al,Ql) is observable, where 

QlJ = (0*)rfi l, by putting & — 0 in (3.8), we conclude that there exists a 

PD solution Kl for the Riccati equation, i.e. the first equation in (3.8) [133]. 

Therefore, a square and non-singular Bl suffices for the existence of a solution 

to the second differential equation. In applications that are related to the 

ground vehicles, such as in mobile robots, this assumption is reasonable. 

3.2 Agents with double integrator dynamical 

model 

3.2.1 Consensus problem in a Leaderless (LL) multi-

vehicle team 

Consider a team of agents with a structure similar to Figure 2.1(a), the agents 

dynamics as given by (2.20), and the cost function as specified in (3.5) by re

placing Y% with vl. Matrix Qli should be selected such that the pair (0, \/Qi:>) 

would be observable. The corresponding HJB equation is then similar to (3.3) 

by assuming that X1 = [rl vl]T and A1 is denned as follows 

A% X\ ul) = 5 ^ ( 1 / - tPfQ^iy - vj) + {u\)TIVu} 
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in which V1 at any time t has the following value: 

V\t) = min / [ ] £ [(«* - xPfQ^^ - ^ ) ] + {ui)T tfufidt 
"< 7 t ^ (3.12) 

+ </(T) T £V (T) + (F*) V ( T ) + G* 

and a choice of V1 may be specified as 

Vi = hvi)TKi(t)vi+Y(t) (3.13) 

in which if 1 ,7 ' i = 1 , . . . , N are time-varying parameters to be defined. 

Existence of a solution: To guarantee existence of a solution to the above min

imization problem, controllability of the open-loop system should be veri

fied [133], i.e. the pair (Al,Bl) in (2.6) should be controllable. Based on 

the representation of the system given in (2.20), the required matrices in this 

case are A1 = \_Q^2 02x2] an<^ ^l = [/j*^]- However, since only the dynamics 

of vl appear in the cost function (3.5) and the dynamics of rl do not have any 

effect on the v% dynamics, to verify the controllability condition we need to 

only consider the dynamics of v%. That is, we have 

Al = 02x2, Bl = hx2, i = l,...,N (3.14) 

This pair is controllable and so guarantees the existence of a solution 

to the corresponding HJB equations. Furthermore, based on the definition of 

optimality provided previously, the presence of the term ^ , e A f i . ^ V in (2.20) 

does not have any effect on the matrices that are involved in the controllability 

condition. The above reasoning applies to both the LL and the MLF structures 
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with integrator dynamics of agents. 

In order to have a solution to the PDEs in (3.11), it can be shown that 

Kl and the interaction terms should be computed according to the following 

lemma. 

Lemma 3.1. Assume that an LL team of mobile robots whose dynamics are 

governed by the double integrator equations operate subject to interactions 

among vehicles based on the neighboring sets as given by (2.20) for an undi

rected and connected network structure. The interaction coefficient terms 

and the control law proposed below will minimize the cost function (3.5) and 

also guarantee alignment of the team of vehicles (consensus over the velocity), 

where 

ui* = ^ piyi, pi = 2Ki(t)~1Qii, Vi,j = l,...,N (3.15) 

< = —{RT'K'ity, i = l,...tN (3.16) 

ul*u\* stand for the optimal values of ul
g,u], respectively and Kl satisfies the 

DRE 

-Ki = 2\Nl\Qij - ]-IC{R)-xK\ K\T) = 2E, i = l,...,N (3.17) 

Proof: The details are given in Appendix A. 

Remark 3.4. It can be seen from (3.16) that the control law u\* depends 

only on the state of agent i, and the term ul* ensures that the effects of 

neighboring agents on the dynamics of agent i are present. This provides a 

semi-decentralized control protocol according to information exchanges that 

are within the neighboring sets. 

The next theorem provides important properties of the proposed control 

strategy. 
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Theorem 3.1. a) Consensus Protocol: For the team of vehicles described 

in Lemma 3.1 under the condition of infinite horizon scenario (i.e., T —> 

oo) and for an undirected and connected network structure, the combined 

control law reduces to the following well-known average consensus (agreement) 

protocol, i.e. 

tx'Vy) = ujV) + *4V) = rV - ^ fp )> 

Yi = -\{Ri)-lK\ i = l,...,N (3.18) 

b) Stability: The above protocol furthermore guarantees consensus on 

a constant common value, vc, in a globally asymptotic manner, i.e. 

vi^vj^vc^ ast^oo, Wi,j = l,...,N (3.19) 

c) Consensus Value: The consensus value achieved by the team will 

be the following 

vc = (ioiiwf + w2wl)Avg(v(0)) (3.20) 

in which W\ and u;2 are the eigenvectors of the matrix T\ vc is the consensus 

vector and v(0) is the concatenation vector of the initial velocities of agents, 

i.e. v(0) = [(v1(0))T . . . (vN(0))T}T. 

Proof: The details are given in Appendix A. 

Remark 3.5. It follows readily from Theorem 3.1 that in the infinite hori

zon case the control law obtained by the proposed method is the well-known 

"average consensus protocol" that is proposed in [13]. 
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3.2.2 Consensus problem in a Modified Leader-Follower 

(MLF) multi-vehicle team 

Now consider a team of agents with an MLF structure as described in Figure 

2.1(b), dynamics of the agents as given in (2.20), and the cost functions for 

the leader and followers as specified according to (3.6) and (3.5), respectively 

by replacing Yl with v\ The HJB equations are reduced to the following 

—-(t,Xl)=mmA\t,X\ul), (3.21) 
Ot u&A 

k\t,X\ul) = Y^ (v1 - vi)TQlj{vl - vj) + {v1 - v^Tiv1 - vd) 

+ (u]fRWl+^(uj+J2^vn, 

A^X'.u*) = ^ (v* - v^Q^iv' - vj) + (uifFCul 

(3.22) 

d\r_ 8Vi (3.23) 

jeN' 

and a choice of V1 and V1 is specified as 

Vi = ±(vi)TKi(t)vi + yi(t), i = 2,...,N 
(3.24) 

in which Kl and Y, i — 1 , . . . , N, and g1 are time-varying parameters to be 

chosen. 

In order to find a solution to the PDEs in (3.21)-(3.23), ul and the 

interaction terms Tli should be selected according to the following lemma. 

Lemma 3.2, Assume a team of mobile robots whose dynamics are governed 

by the double integrator equations as given in (2.20) having an MLF structure. 
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The interaction terms and the control laws proposed below will provide a 

solution to the HJB equations in (3.21)-(3.23) and simultaneously minimize 

the cost functions (3.5) and (3.6) to guarantee the alignment of the vehicles, 

where 

< = E ^ V = E WrlQiJv\ Vi (3.25) 

< = -\{^YxKi{t)v\ i = 2,...,N (3.26) 

ur = -\(R1)-1(K\t)v1+gl(t)) (3.27) 

and where the leader's parameter g1 and the DREs for determining Kl satisfy 

-Ki = 2\Ni\Qii-^Ki(IV)-lKi, K\T) = 2E\ % = 2 , . . . , JV(3.28) 

-K1 = 2(|AT1|Qlj' + T) - \K\R1)-1K\ K\T) = 2El (3.29) 

gi = 2Tvd(t) + l-K\RlY'g\ g\T) = F1 (3.30) 

Proof: The details are provided in Appendix A. 

The discussions on the existence of a solution are similar to those pre

sented in Subsection 3.2.1. The next theorem provides important properties 

of the proposed control strategy. 

Theorem 3.2. a) Modified Consensus Protocol: For the team of vehi

cles described in Lemma 3.2 and associated with the infinite horizon scenario 

(i.e., T —• oo), the combined control law reduces to the modified agreement 

protocol for the MLF structure. The protocol for a follower is given by 

</>>') = «!*(«*) + uJV) = r V - ^ n S ^ ) (3.3i) 
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and for the leader is described by 

ui*(v\vi) = T\vi-^p^)+p\v1-vd) (3.32) 

Ti = -2{Ki)-1\Ni\Qij,i = l,...,N, p1 = -2(K1y1T (3.33) 

b) Stability: The above protocol is stabilizing, i.e. the error dynamics 

of the entire team is asymptotically stable, implying that 

e'(t) = v^t) - vd - • 0 as t -»• oo, i = l,...,N (3.34) 

Proof: The details are provided in Appendix A. 

It is seen that the second term of the leader's control input in (3.32) 

guarantees command tracking even if the first term is not included. However, 

in Chapter 4 it will be shown that the first part keeps and maintains the team 

cohesion and guarantees that none of the followers are "lost" without affecting 

the others' and specifically the leader's behavior. 

3.3 Agents with linear dynamical model 

3.3.1 Consensus problem in an MLF multi-vehicle team 

Assume that the agents are ground vehicles governed by linear dynamics as 

given in (2.21). Now consider an MLF structure as shown in Figure 2.1(b) 

and the cost functions for the followers and the leader as specified according 

to (3.5) and (3.6) by replacing Yl with v%, respectively. The HJB equations 

will consequently reduce to the following 

f)Vi 

\ty) = mmk\t,v\ul) (3.35) dt ui&A 
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A\ty,v}) = ^ (vl - vj)TQlj{vl - vj) + (v1 - vYTiv1 - vd) 

V\T,v1) = v1(T)TE1v1(T) + (F1)Tv1{T)+G1{T) 

K'ityy) =Y^y- vj)TQijy - vj) + (u))TIVu\ 

+ ^(ty)(A^ + Biyg + ̂ )), (3-37) 

V*(T, i/) = ? / ( r ) r £ V ( T ) + (i?*)V(T) + G^T), z = 2 , . . . , JV 

Consequently, a choice of V™ for the followers and the leader may be 

specified according to 

V* = ^(vYK'ity + y ( t ) , t = 2 , . . . , JV (3.38) 

V1 = ±y)TK\ty + tfMfv1 W(t) (3.39) 

where K\Y, and g1 are the time-varying parameters to be specified. 

Existence of a solution: To guarantee existence of a solution to the above min

imization problem the notion of reachability should be verified for the open-

loop system [133]. Based on the representation of system (2.21), and given that 

only the dynamics of vl appears in the cost function (3.5), to verify the reach

ability condition we need to only consider the dynamics of vl. Furthermore, 

based on the definition of optimality given previously, where the other agents 

dynamics are considered as time-varying functions only, the presence of the 

term Bl ^jeiv* JP-? YJ in (2.21) does not have any effect on the matrices that 

are involved in the reachability condition. Therefore, due to non-singularity 

of the matrix B\ the pair (Al,Bl) is always reachable, and so existence of a 

solution is always guaranteed. 

Solution of the corresponding HJB equations is now provided in the 
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following lemma. 

Lemma 3.3. Assume a team of agents whose dynamics are governed by equa

tion (2.21) with the pair (A1, fll) being observable, where Q u = (Ql)Tfll, for an 

MLF structure. The leader is aware of the desired command specifications and 

requirements while the followers operate subject to interactions among agents 

based on the neighboring sets. The interaction terms and the control law pro

posed below will provide a solution to the HJB equations in (3.36) and (3.37) 

and simultaneously minimize the cost function (3.5) for the followers and the 

cost function (3.6) for the leader and guarantee a consensus achievement with 

the consensus state of v% — vd, Vi, where 

u** = ]T Fjvj = J2 2(KiBi)-1Qijvj, i = l,...,N (3.40) 

vlC = -\{R)-\Bi)TK\t)v\ z = 2,...,JV (3.41) 

W = -\{Rl)-\BlnK\tW+g\t)) (3.42) 

and the leader's parameter g1 and the Riccati equations for determining Kl 

satisfy: 

-Ki = 2\N{\Qij - itf ifl i(i2 i)-1(B i)T tf i + {Ai)TKi + KlA\ 
2 (3.43) 

Ki{T) = 2E\ i = 2,...,N 

-Kl = 2{\N1\Qlj + T) + (Al)TKl + KlAl - \K1 B\R1)~l{Bl)TK\ 

K\T) = 2E1 

(3.44) 

? = 2Tvd(t) + ( i ^ 1 B 1 ( i ? 1 ) - 1 ( B 1 ) r - (Al)T)g\ g\T) = Fl (3.45) 
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Proof: The details are provided in Appendix A. 

The next theorem provides the stability property of the closed-loop team 

of agents as well as the behavior of the team in achieving consensus. 

Theorem 3.3. a) Modified Consensus Protocol: For the team of agents 

described in Lemma 3.3 and associated with the infinite horizon scenario (i.e., 

when T —> oo), the combined control law reduces to a modified average 

consensus protocol (agreement protocol) for the MLF structure. The protocol 

for the followers and the leader are given by 

ui*{vi,vi) = u j V ) + ul*(vJ) = r V - iA„\ ) + Piyi> { = 2> • • •' N 

(3.46) 

1* 1*/ 1\ , 1*/ i\ -nl/ 1 /—ijtN1 \ 1 / 1 d\ 

\N\ (3.47) 

+ P1v1-(K1B1)-1(A1)Tg1 

in which a1 = -2( iT 1B 1 ) - 1 r , P = -2(K*B^lN^Qv, and for Vi, fi = 

- (KiBi)~1(KiAi + (A^K*). 

b) Stability: The above protocol is stabilizing, i.e. the error dynamics 

of the entire team is asymptotically stable, implying that 

e* = v* - vd -* 0 ast^oo, i = l,...,N (3.48) 

if parameters T, and R} in cost function (3.6) and matrix K1 in (3.44) are 

determined appropriately and such that the following set of LMIs in terms of 
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T, K\Zl (R1 = -KBYK^Z1)-^^1) are satisfied 

T + T r > 0 , T = 2L®Qii+ATK + 2G 

(Al)TKl + KlAl + Z1 + 2G7V1 \QV + T) = 0 
< ' ^ (3.49) 

Z1 = -±Ar 1 B 1 ( f l 1 )~ 1 (£ 1 ) r # 1 

r > o, K1 > o, z1 < o 
V 

where K" = Diag{K\i = 1,... ,N}, A = Diag{A\i = 1,. . . , iV}, and G = 

Diag{r,0,...,0}. 

Proof: The details are provided in Appendix A. 

Remark 3.6. It follows readily from Theorem 3.3 that in the infinite horizon 

case the control law obtained by the proposed methodology is a modified 

version of the well-known "average consensus protocol" [13]. 

3.3.2 Consensus problem in an LL multi-vehicle team 

In this case the agents dynamics are governed by (2.21) and the cost function 

for all the agents is given by (3.5) in a LL structure similar to Figure 2.1(a). 

The HJB equations defined previously will reduce to (3.35) and (3.37). Similar 

to the previous discussions and in order to have a decentralized solution, the 

minimization is performed with respect to vl only, and a choice for V1 may be 

specified as in (3.38). The existence of a solution to this problem follows along 

the similar lines as those invoked for the MLF structure. As a matter of fact, 

these attributes are invariant under topological changes, that is they are valid 

for both the leaderless or the leader-follower architectures. 

Based on the choice of V1 as in (3.38) and in order to have a solution to 

the PDEs in (3.35) and (3.37), it can be shown that Kl and the interaction 

terms should be computed according to the following lemma. 
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Lemma 3.4. Assume a team of agents whose dynamics are governed by equa

tion (2.21) for an LL structure. The team operates subject to interactions 

among vehicles based on the neighboring sets. The interaction terms and 

the control law proposed below will provide a solution to the HJB equations 

in (3.35) and (3.37) and simultaneously minimize the cost function (3.5) and 

guarantee consensus achievement with the consensus state of Yl = vl — vc, \/i, 

with 

ui* = Y^ JPV = J2 2(/f iB i)-1QV, i = l,...,N (3.50) 
jeNi jeN1 

< = -\{R)-\BL)TKi{t)v\ i = 1 , . . . , N (3.51) 

-Ki = 2\Nl\Qij - -KiBi{FV)-l{Bi)TKi + (AYlC + KlA\ K\T) = 2Ei 

(3.52) 

Proof: Follows along the similar lines as in the proof of Lemma 3.3, and 

is therefore omitted. 

The next theorem provides the features of the proposed control strategy 

in terms of the already well-known behavior of cooperative teams as well as 

the requirement of guaranteeing team stability. 

Theorem 3.4. a) Consensus Protocol: For the team of agents described 

in Lemma 3.4 and associated with the infinite horizon scenario (i.e., T—• oo), 

the combined control law reduces to the modified average consensus protocol 

(agreement protocol) for the LL structure. The protocol for the agents is given 

by 

u*(v\ v>') = < K ) + < V ) = T V - % ^ ) + /?V (3.53) 

where P = - 2 ( i r i 5 i ) - 1 | ^ i | g ^ ' , and fi = -(KiBi)-1(KiAi + (A^K*), i = 

l , . . . , iV. 
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b) Stability: The above protocol furthermore guarantees consensus on 

a constant common value, vc, in a globally asymptotic manner, i.e. 

v* _> yj _, v^ as t -> oo, Vi,j = l,...,N (3.54) 

if A* satisfies the condition (A^K1 + KiAi > 0 with A* having at least one 

zero eigenvalue. 

c) Consensus Value: The consensus value achieved by the team, i.e. 

vc, is in the null space of (Al)TKl. 

Proof: The details are provided in Appendix A. 

3.4 Simulation results 

3.4.1 Double integrator dynamical model 

In this subsection, simulation results are presented for both finite and infinite 

horizon scenarios for the LL and the MLF structures. To obtain numerical 

solutions of the DRE in the finite horizon case, the Backward Differentiation 

Formula (BDF) that is described in [134] is used. The simulations are con

ducted for a team of four mobile robots with dynamical equations given in 

(2.20). Without loss of generality, the topology is assumed to be a ring topol

ogy. The objective for the team is to ensure that all agents have the same 

velocity in the steady state. Results shown below are conducted to capture 

the average behavior of the proposed control strategies through Monte Carlo 

simulations. The average team response due to 30 different randomly selected 

initial conditions are presented. 

In Figures 3.1(a), 3.1(b) the x and y components of v\ i.e. v%
x, vl

y are 

shown for the LL structure in the infinite horizon case. Figure 3.1(c) illustrates 
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the actual average path trajectories generated by the vehicles in the x—y plane. 

It may be observed that the vehicles are aligned and move together after the 

transients have died out. Figures 3.2(a), 3.2(b), and 3.2(c) depict the same 

trajectories but now for the finite horizon scenario. 

For the MLF structure, simulations are now conducted for the same con

figuration as above, however the objective is to ensure that the team members 

have the same velocity as the desired value specified by the leader, that is 

vd. In Figures 3.3(a), 3.3(b) the x and y components of v\ i.e. vl
x, vl

y are 

shown for the finite horizon scenario. The presence of transients in the final 

state of the variables is due to the finite horizon formulation of the optimal 

control problem (a two-point boundary value problem). The desired velocity 

(leader command) is chosen as vd = [3 4]T(m/s). Figure 3.3(c) shows the 

actual path trajectories generated by the vehicles in the x — y plane. Fig

ures 3.4(a), 3.4(b), and 3.4(c) depict the same trajectories but now for the 

infinite horizon scenario. In all the simulations the parameters selected are 

Q» = [ J § ] , i ? = 12x2,1^1 = 2, & = 0.5I2x2, T = [ t f ^ ] , and the ran

dom initial conditions, i.e. XQ = [(rl(0))T (vl(0))T]T, Vi, for the Monte Carlo 

simulations are considered as 

Xl
o = [r(0,l) r(0, l) r ( -5 ,0) r ( - 6 , - l ) ] T , 

X$ = [r(l,2) r( l ,2) r(0,5) r ( - 5 , 5 ) ] r , 

X0
3 = [r(2,3) r(2,3) r(5,10) r ( l , l l ) ] r , 

X0
4 = [r(3,4) r(3,4) r ( - 1 0 , - 5 ) r ( -6 ,4) ] T , 

for the LL structure and 

X* = [r(0,15) r(0,25) r ( -5 ,0) r ( - 6 , -1 ) ] T , 

Xl = [r(15,30) r(25,50) r(0,5) r ( -5 ,5) ] T , 

X3 = [r(30,45) r(50,75) r(5,10) r ( l , l l ) ] T , 

X^ = [r(45,60) r(75,100) r ( - 1 0 , - 5 ) r ( -6 ,4) ] T , 
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for the MLF structure, where r(x,y) stands for a random variable in the 

interval [x,y\. Also, for the LL structure the time horizon is selected as T = 6 

and for the MLF structure T = 15. 

In order to provide a better insight into the controller performance for 

different cases considered above, the average cost values obtained by running 

the Monte Carlo simulations corresponding to each team structure and design 

assumptions are provided in Table 3.1. We can conclude that the finite horizon 

design scenario results in a higher average cost as compared to the infinite 

horizon design scenario. Note that the average velocities corresponding to 

the LL structure are [—1.46 0.108]r for the infinite horizon scenario (and are 

[—1.35 0.422]T for the results corresponding to the finite horizon scenario). 

3.4.2 Linear dynamical model 

In this subsection, simulation results are presented for an infinite horizon sce

nario for the LL and the MLF structures associated with a linear model of 

agents (as given in (2.21)). The simulations are conducted for a team of four 

vehicles where the objective for the team is to ensure that all agents have the 

same velocity in steady state. Without loss of any generality, and for sake of 

Table 3.1: The mean performance index corresponding to different team struc
tures and control design assumptions (FH and IH stand for the finite and 
infinite horizon scenarios, respectively). 

Team structure 
LL (FH) 
LL (IH) 
MLF (FH) 
MLF (IH) 

Average performance index for 
the Monte Carlo simulations 

Agent 1 
2488.2 
1963.7 
231990 
222820 

Agent 2 
2163.2 
1716.1 
16964 
15899 

Agent 3 
4008.5 
3794.3 
20096 
17264 

Agent 4 
4510.7 
4198.4 
19287 
16822 
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only simulations the topology is assumed to be a ring. For the MLF structure, 

the objective is to ensure that the team members have the same velocity as the 

desired value specified by the leader, that is vd(t). In Figures 3.5(a) and 3.5(b), 

the x and y components of vl are shown for i — 1 , . . . , 4. Figure 3.5(c) depicts 

the actual path trajectories generated by the vehicles in the x — y plane. It 

may be concluded that vehicles are aligned and move together with the same 

desired velocity as the command provided by the leader. For simulations, the 

command is assumed to be a pulse-like signal with a duration of 0.4 sec and its 

value switches between vd = [3 4]T and vd = [5 — 1]T. The initial state of the 

vehicles, i.e. Xl
0 = [(r*(0))T (z/(0))T]T, Vi, are selected at X* = [0.6 1 5 3]T, 

Xl = [2 1 - 5 - 4 ] T , Xl = [0.4 3 - 1 - 2 ] T , X0
4 = [ 2 0 3 4]T, and the other 

simulation parameters are chosen as Qli = 100/2x2) \NZ\ = 2, and for i = 2, 3,4, 

Rl = 0.01/2x2- The parameters corresponding to the agents models are cho

sen as A* = (1%),A* = ( 'o1"). a n d Bi = {hi)- T h e matrices R\K\T 

are found by solving the set of LMIs in (3.49) as: R1 = 10-5(_3
0
2
0
8
27 ~5.fl7), 

TSl — ( 2.013 -0 .39 \ p _ i n 4 / 1 1 8 7 9 0 ^ 
"- — V-0 .39 0.323 )> L ~ l v \ 0 1.1987 J 1 

For the LL structure, simulations are conducted for the same configura

tion as above, however the objective is to ensure that the team members have 

the same velocity which is not predefined, but should be in the null space of 

the matrix (Al)TK\ In Figures 3.6(a) and 3.6(b), the x and y components of 

vl are shown for i = 1 , . . . , 4. Figure 3.6(c) depicts the actual path trajectories 

generated by the vehicles in the x — y plane. The initial state of the vehicles 

and the other simulation parameters are all the same as in the MLF case. Also, 

the parameters corresponding to the model are chosen the same as in MLF 

structure except for the A1 matrix which is selected as (12)- The controller 

gain Kl = (^0
4y9 ~o°59

9) ^s obtained from solving the Riccati equation for the 

above configuration. From the simulation results, it may be clearly concluded 
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that the vehicles are aligned and move together with the same desired velocity 

u c = [ - 0 . 5 - 4 . 3 ] T e Null((i4i)T-K'i)-

3.5 Conclusions 

The problem of cooperation in a team of unmanned systems with the goal of 

consensus seeking was considered for both LL and MLF structures. A semi-

decentralized optimal control strategy was designed for a team of agents using 

minimization of agents' individual performance cost functions subject to par

tial availability of local information. An unexpected and interesting outcome 

of the proposed theoretical work is that in an infinite horizon scenario it is 

shown formally that the control law results in either the well-known "average 

consensus protocol" strategy or a modified version of it [13] for both the LL 

and MLF structures. In other words, a performance index is introduced that is 

minimized by the consensus protocol through the proposed methodology. Cor

responding to the MLF structure it was assumed that only the leader is aware 

of the desired command requirements and specifications and that there is a 

corrective feedback from the followers to the leader when agents are connected 

through a prespecified topology. 

One of the contributions of the present work compared to the synthesis 

methods introduced in [9,39,135] is in introduction of interaction terms in dy

namical model of agents to describe and characterize the interconnections and 

information exchanges among agents. This novel modelling approach provides 

a framework in which local and global control requirements may be partially 

decoupled. Another advantage of the proposed methodology is robustness of 

the team to uncertainties and faults in the leader or followers and adaptabil

ity of team members to these unanticipated situations as will be discussed in 
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Chapter 4. Moreover, while optimality of the solution is guaranteed, given 

that the optimal control is a multi-objective framework, the proposed method 

has the added potential advantage of being capable of accommodating other 

additional specifications, e.g. new timing constraints or limited control input 

availability. 

90 



— • — V x l 
— - - V x 2 

. 

/ 

(a) 

6 

4 

I 2 

- 2 

i 

1 

i 
i 

\ 
\ 

Vy2 
Vy3 

-

-

(b) 

• Vehicle 1 
- ^ — Vehicle 2 
. — ^ N . • Vehicle 3 
>•«••• Vehicle 4 

-14 -12 -10 -B 

(c) 

Figure 3.1: (a) The x-component of the average velocity profile, (b) the y-
component of the average velocity profile, and (c) the x — y path trajectories 
of an LL team of four agents (Monte Carlo simulation runs) resulting from the 
optimal control strategy in the infinite horizon scenario. 
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Figure 3.2: (a) The ^-component of the average velocity profile, (b) the y-
component of the average velocity profile, and (c) the x — y path trajectories 
of an LL team of four agents (Monte Carlo simulation runs) resulting from the 
optimal control strategy in the finite horizon scenario. 
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Figure 3.3: (a) The cc-component of the average velocity profile, (b) the y-
component of the average velocity profile, and (c) the x — y path trajectories 
of an MLF team of four agents (Monte Carlo simulation runs) resulting from 
the optimal control strategy in the finite horizon scenario. 
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component of the average velocity profile, and (c) the x — y path trajectories 
of an MLF team of four agents (Monte Carlo simulation runs) resulting from 
the optimal control strategy in the infinite horizon scenario. 
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Figure 3.5: (a) The ^-component of the velocity profile, (b) the y-componerit 
of the velocity profile, and (c) The x - y path trajectories of an MLF team 
of four agents with linear dynamical model resulting from the optimal control 
strategy in the infinite horizon scenario. 
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Figure 3.6: (a) The z-component of the velocity profile, (b) the y-component 
of the velocity profile, and (c) the x — y path trajectories of an LL team of 
four agents with linear dynamical model resulting from the optimal control 
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Chapter 4 

Non-ideal considerations for 

semi-decentralized optimal team 

cooperation 

In this chapter two non-ideal considerations are discussed for team cooperation 

problem. In other words, I will generalize the results obtained in the previous 

chapter for cases when more challenging environments are involved. I have 

considered two scenarios. First, the performance of the previously designed 

team in the presence of actuator faults is investigated. In the second part of 

this chapter, the control design is modified to address stability and consensus 

seeking in a switching network topology. 

4.1 Team behavior in the presence of actuator 

faults 

In practice, it is quite possible that some agents in a team may become unable 

to follow the team command due to anomalies and faults. Some sources of 
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this problem can be due to actuator faults or saturation, faults in measure

ment of neighbors states, or communication links faults. As a result of these 

malfunctions, the faulty agent cannot follow the command provided by the 

team to achieve the predefined goal. This may result in permanent separation 

of that agent from the team which correspondingly may affect the cohesion of 

the team. In this section, I provide results on performance analysis of a team 

of agents subject to actuator faults. The team goal is to accomplish a cohe

sive motion using the semi-decentralized optimal control that was proposed in 

Chapter 3. In the following I will investigate the performance of a team with 

an MLF team structure subject to three types of faults introduced in Chapter 

2. Any fault occurring in the LL structure is similar to leader failure case in 

an MLF structure. 

A summary of the materials presented below is published in [130,136, 

137]. 

4.1.1 Team behavior subject to a Loss of Effectiveness 

(LOE) fault in an agent's actuator 

For the team of agents that is described in Chapter 2 and for dynamical 

equation (2.20) in an MLF structure, assume that some of the agents, either 

some followers or the leader, fail to produce the team control command as 

described in Theorem 3.2. Specifically, due to an actuator LOE fault we now 

instead have u^ = au\ 0 < a < 1, where u\ denotes the actual control 

effort that is applied by the actuator with u% representing the designed control 

input. Denote the set of failed agents by Af = {i = N — q + 1 , . . . , JV}, 

and without loss of generality assume that these are the last q agents of the 

team. If this is not the case, the agents' labels can be easily changed for this 

purpose. The concatenated velocity vector of failed agents can be defined as 
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Vf = [(vN~q+1)T, . . . , (t;Ar) : r]r. Using the notion of velocity error as introduced 

in Theorem 3.2, let us define the total error vector corresponding to the healthy 

agents as ew and the one corresponding to the faulty agents as ej. 

Now, assume that the closed-loop dynamics of the entire team is de

scribed by e = Lde, where e = [{e1)T ... (eN)T]T = [e^ eJ]T and 

Lci — 

r' + p1 ^ r 1 

hi r 2 

T i 

|Af l | J 

r2 

|JV*| 

JmrJV 

\Ni\ r 

llN p l 

hN_y2 

'JV(N-l)riiV pJV 

(4.1) 

where /^ is an element of the Laplacian matrix L, and Tl and /31 are defined 

in (3.33). Partition Lc\ in order to separate the dynamics of the faulty and the 

healthy agents as follows 

La = 

{Lll)m(N-q)xm(N-q) '• {L\2)m{N-q) x mq 

{L21 )mqxm(N-q) '• \L22)mqxmq 

where m is the dimension of vl (assumed here to be 2). Due to the presence 

of faults, the closed-loop error dynamics will now be changed into 

e = 

Lu L 12 

CKLOI : OLL 22 

ef 
= Lte (4.2) 

The following lemma shows that the error dynamics will remain stable 
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despite the presence of agents' faults. Moreover, the consensus achieving goal 

can still be guaranteed and maintained. 

Lemma 4.1. a) Stability Analysis: For the team of agents that is described 

in Theorem 3.2, if some agents fail to comply with the designed team control 

command and instead implement u^ = aul corresponding to an LOE fault, 

the closed-loop error dynamics still remains stable. 

b) Consensus Achievement: Moreover, the velocity error, i.e. el = 

vl — vd, V? will asymptotically approach to zero, and consequently the consen

sus will still be achieved. 

Proof: The details are provided in Appendix B. 

It is worth noting that although this fault does not deteriorate the sta

bility property of the closed-loop dynamics, it affects the transient behavior 

of the agents. Specifically, the transient convergence rate becomes dependent 

on the parameter a. 

4.1.2 Team behavior subject to an actuator float fault 

in an agent 

Fault occurrence in the followers 

For the team of agents with a double integrator dynamical equation that is 

described in Theorem 3.2, assume that a number of follower agents fail to 

produce the team control command as described in (3.31) and one now instead 

has ul = 0. The concatenated velocity vector of failed agents, Vf, is a constant 

vector (due to ul being zero). 

Now, assume that the closed-loop dynamics of the entire team is de

scribed by e = Lcie, where e = [e^ eT]T and Lci are defined as in previous 

cases and e/ will be a constant vector if vd is time-invariant. Partition Lci 
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so as to separate the dynamics of the faulty and the healthy agents. Due to 

presence of faults, this dynamics is now governed by 

e = 

Ln '12 

Vmqxm(N-q) • 'Jmqxrnq 

ef 

(4.3) 

The following lemma demonstrates that the error dynamics will remain stable 

despite the presence of followers faults. 

Lemma 4.2. a) Stability Analysis: For the team of agents that is described 

in Theorem 3.2, if a number of follower agents fail to comply with the team 

control command as described in (3.31) and instead implement ul — 0 (a float 

fault), then the closed-loop error dynamics still remains stable and the velocity 

error, i.e. el = vl — vd, \/i will remain bounded. 

b) Steady State Error: Moreover, the steady state of the velocity 

error ess is governed by 

XZ, * C o o XJJO L> * \J^J • C/oc 

-LT}L 11 ^ 1 2 

lmqxmq 

e^, e = 
ef (4.4) 

ef = vf-([l . . . l}Jxq®vd) 

where e^, v* are the error and velocity vectors of the failed agents at the point 

when their state is frozen. 

Proof: The details are provided in Appendix B. 
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Fault occurrence in the leader 

Similar to the discussion in the previous part, if the leader has a fault, e.g. its 

velocity is frozen at a constant value, namely Vf, we can still achieve stability 

of the team error dynamics. The closed-loop system matrix can be partitioned 

as before. In the presence of the leader fault the closed-loop error dynamics is 

changed to 

e = 

Ujnxm : Um x(JV— l)r 

^21 ^22 

ef 
(4.5) 

The following lemma shows that the error dynamics still remains stable 

even if a fault has occurred in the leader. 

Lemma 4.3. a) Stability Analysis: For the team of agents described in 

Theorem 3.2, if the leader fails to comply with the team control command as 

described in (3.32) and instead a zero control is implemented (a float fault), 

i.e. u1 = 0, then the error dynamics still remains stable and the tracking error, 

i.e. el = v% — vd, \/i remains bounded. 

b) Steady State Error: Moreover, the final value of the tracking error 

vector ess is governed by 

ess, as t —• oo, ess = 1 ® e*, e* = v* — v (4.6) 

where e^, v? are the error and velocity vectors of the leader at which its state 

is frozen and 1 is the vector of ones. 

Proof: The details are provided in Appendix B. 

Up to this point it is shown that the team will remain stable in presence of 

faults. In the conventional leader-follower structure, if a follower fails to follow 
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the leader's command, it would be separated from the team and could be lost 

from the team forever. However, in the MLF structure considered here, due 

to existence of a feedback from followers to the leader as well as connections 

among the followers, if one of the followers cannot follow the command, all 

other followers and the leader will adapt themselves to this change until this 

agent is recovered. In this manner the cohesion of the team will be preserved 

and no member will be lost without affecting the others. In the following, I 

will show that the healthy agents will adapt themselves to the state of the 

faulty agent. 

Leader and followers adaptability to fault occurrence 

In order to show the adaptability property we need the following theorem from 

the graph theory literature [119]. The theorem provides a relationship for the 

second order minors of the Laplacian matrix of a tree-like graph. 

Theorem 4.1 . [119] Assume that L is the Laplacian matrix of an undirected 

graph. Denote the minors of the matrix L that is obtained by eliminating m 

rows and columns by L(W\U), where W and U are the sets of eliminated rows 

and columns, respectively. Consider a tree T with N vertices and denote the 

path [119] between two nodes u and v by P(u,v). Then, for 1 < i < j < N 

and 1 < k < I < N one has 

(-l)i+j+k+ldet{L(i,j\k,l)) = ±length{P(vi,vj)r)P{vk,vl)) (4.7) 

Note that the sign of the determinant depends on the relative orientation 

of P(vi,Vj) and P(vk, v{) with respect to one another in the following sense. If 

we orient P(vi,Vj) from V{ towards Vj, and P(vk,vi) from Vk towards vi, they 

both induce an orientation on their intersection. If these orientations agree, 
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the sign is +1; otherwise, it is -1. 

Proof: The details are provided in [119]. • 

At this point and for only proof of the next theorem I assume that the 

information structure is described by a tree-like graph. 

Theorem 4.2. Leader and Followers Adaptability: For the team of 

agents that is described in Theorem 3.2, if a follower fails to produce the 

team control command as specified in (3.31) due to a float fault, i.e. ul = 0, 

then all the agents will adapt themselves to this agent's change, i.e. the direc

tion of change in the state of the faulty follower will be the same as the change 

in the rest of the team. This implies that the steady state error of the faulty 

follower and the healthy members will have the same sign, that is 

ek • ef > 0, ef = vf - vd, ek = vk - vd, k = l,...,N-l (4.8) 

in which v* is the velocity at which the faulty agent's velocity is frozen and 

e^ is the corresponding error, ek is the velocity error of the agent k, "•" is 

the Hadamard product [120], and "> 0" refers to positiveness of the vector's 

elements. 

Proof: The proof is provided in Appendix B. 

4.1.3 Team behavior subject to a Lock-In-Place (LIP) 

fault in an agent 

For the team of agents that is described in Theorem 3.2, assume that one of 

the followers fails to produce the team control command due to an LIP fault 

and the applied control input is now frozen at a constant value, that is u^ = uc, 

where uc is a constant value. In this situation, and similar to the discussion 
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in the previous subsection, the closed-loop error dynamics can be represented 

by the following expression 

e = 
ef 

(Ln)m(N-l)xm{N-l) '• (-^12)m(AT-l)x? 

o, 'rnxm(N-l) • U m X 7 

e + 
Ur 

(4.9) 

From the above equation it can be concluded that 6f can grow without 

a bound, and therefore the error dynamics (4.9) is not stable. In other words, 

in this situation and since the open-loop matrix is not asymptotically stable, 

i.e. A1 — 0, we cannot guarantee stability. However, if at least the open-loop 

matrix of the faulty agent is stable, there might be a possibility to guarantee 

stability of the error dynamics. Hence, in this subsection I first determine the 

agents trajectories that are described by the dynamics (2.20). Next, I will 

analyze the team behavior assuming that the agents have a stable open-loop 

system matrix. Therefore, here I will discuss both types of agents' dynamical 

representation given in Chapter 2, i.e. linear and double integrator models. I 

will show that when the open-loop system matrix is asymptotically stable, the 

stability of the error dynamics is guaranteed but as in the float type of fault 

consensus can no longer be achieved. The following two lemmas summarize 

our results and an ultimate value of the velocity error vector ess is obtained. 

Lemma 4.4. For the team of agents that is described in Theorem 3.2, as

sume that a follower agent fails to comply with the team control command as 

specified in (3.31) and instead implements ul
f = uc (LIP fault), where uc is a 

constant vector. The ultimate time-varying value of the velocity error vector 
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ess can be specified according to 

C * *^SS ^*"^ " CXJ« &SS — 

—Lu [Ll2uct - L12uctf + Li2e
f + Ln L12uc] 

uct — uctf + e* 

(4.10) 

where tf denotes the time of fault injection and e^ is the faulty agent velocity 

error vector at tf. 

Proof: The proof is provided in Appendix B. 

Based on the definition of the float fault, this fault may be considered as 

an LIP fault when uc = 0. Clearly, the steady state error provided in (4.10) is 

the same as the one given in (4.4) if uc is replaced by zero. 

For the rest of our discussion, let us consider a team of agents with the 

governing linear dynamics (2.21) and assume that the faulty agent's open-loop 

matrix A* is asymptotically stable. The error dynamics for the entire team 

can be written as e = Lde + f(vd,gl), where Ld is defined as 

Lcl = -K-\2L <g> Qij + ATK + 2G) = - K _ 1 T (4.11) 

and K, A, G, T are defined in Theorem 3.3. f{vd,gl) is defined as follows 
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where it is decomposed corresponding to the healthy and faulty agents dy

namics as 

f«91) = 

/ iK,*?1) 

ftWg1) 

-(K2)-l(A2)TK2vd 

(4.12) 

-{Kl)-\Af)TK*vd 

where superscript / stands for the quantities that correspond to the faulty 

agent. The rest of parameters are defined as in Chapter 3. When an LIP fault 

occurs in a follower, the closed-loop dynamics is then governed by 

e = 
ef 

(Lu)m(N-l)xm(N-l) '• (•^12)m(AT-l)xr 

Umxm(N-1) Af 

e + 
hiv^g1) 

Afvd + Bfuc 

(4.13) 

where L^ denotes the corresponding partitioning of the matrix —K~1(2L <g> 

QIJ _)_ ATK + 2G). In the following lemma, we will see the results on stability 

and consensus seeking for the above selection of agents' dynamics. 

Lemma 4.5. a) Stability Analysis: Consider a team of agents with the 

governing dynamics (2.21) and the control laws for the followers and the leader 

given by (3.46) and (3.47), respectively. When a follower fails to comply with 

the designed team control command and instead implements ul
f = uc, where 

uc is a constant value, the closed-loop error dynamics still remains stable if 

the corresponding open-loop matrix of the faulty agent, i.e. A*, is Hurwitz. 
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b) Steady State Error: Moreover, the ultimate value of the velocity 

error vector ess is governed by 

£j y &SS * * " ^ 0 \ J j *-*SS 

-{Af)-lBfuc-v
d 

(4.14) 

where fi(v ,g ) is defined as 

fi(vd,g1) = 

-{K1)-\Al)T{gl+Klvd) 

-{K2)-\A2)TK2vd 

- 1 / Ai\T isi„,d -{Kl)-\Al)TKlV 

(4.15) 

and the superscript / stands for the quantities that correspond to the faulty 

agent. 

Proof: The proof is provided in Appendix B. 

4.1.4 Leaderless structure 

The results corresponding to the situation in which one of the members of a 

leaderless team fails is quite similar to the leader failure in the MLF archi

tecture as discussed in the previous subsections, and therefore the associated 

results are not included. 
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4.2 Switching network structure 

In many situations two agents in a team may not be able to obtain the state 

of each other, either through communication links or by means of on board 

sensor measurements. This may arise due to either restrictions on their com

munications, e.g. due to large distances or appearance of obstacles among the 

team members, or it can be because of the changes that are preplanned in 

the mission of the team. Consequently, due to a specific mission defined for a 

team the communication network structure among the team members may no 

longer be fixed and therefore corresponds to a switching network architecture. 

In this situation team members have to find new neighbors in order to main

tain the connectivity of the team information graph. This implies that the 

neighboring sets should be defined as time-varying sets, namely Nl(t). These 

neighboring sets will result in a set of information graphs with time-varying 

Laplacian matrices, for which the only assumed condition is their connectivity. 

In addition to the changes that may occur in the communication struc

ture of a network, in some circumstances in the leader-follower structure, the 

assignment of the leader may also change during the mission. This can be 

either as a result of the fact that some agents are more accessible in certain 

stages of the mission or for safety issues some agents are more reliable or safer 

to be assigned as the leader during some parts of the mission. In these condi

tions the leader assignment can be time-varying as well. Therefore, the team 

structure will no longer remain fixed and consequently we have to analyze the 

team behavior subject to a switching topology. 

The main contribution of the present work is to introduce a "design-

based" strategy which can guarantee consensus achievement for a team of 

agents with a general underlying network graph subject to network topology 

as well as the leader assignment changes. In contrast to earlier work in the 
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literature that have focused on analysis of the consensus algorithm subject to 

a time-varying structure, the approach pursued in the present work is mainly 

based on utilization of control techniques to design a switching strategy. The 

proposed framework can handle strongly connected, directed, and unbalanced 

graphs under a switching network configuration. By assigning the eigenvec

tors of the closed-loop matrix which corresponds to the error dynamics of the 

team to a desirable vector, the existence of a common Lyapunov function, and 

consequently the stability and consensus achievement are guaranteed. 

The design strategy for the original fixed team structure is based on 

the semi-decentralized optimal control approach defined in Chapter 3. How

ever, with the modification done in the present section one requires that the 

control gain matrices that are defined in the cost functions take on specific 

values. Subsequently, this results in a constraint on the optimal control law 

which is designed initially for the fixed network topology. It is shown that by 

introducing additional criteria the desirable performance specifications of the 

team can still be ensured and guaranteed. As a demonstration and represen

tation of such a criterion, a performance-control effort tradeoff is considered 

and analyzed in details. 

A summary of the materials presented in the following sections are pub

lished in [138]. 

4.2.1 Switching control input and stability analysis 

In this part, I only discuss the MLF team structure. The LL structure can be 

treated similarly. Now, assume that the agents' dynamical model is given as 

in (2.20) and define the error for each agent as el = vl — vd, where the desired 

leader command vd is time-invariant. The error dynamics for the entire team 

can be obtained as e = Lcie, where Lci is defined in (4.1). This matrix can be 

110 



further simplified as follows 

Ld = -2K-\L®Q + 

r o ... o 

0 . . . 0 0 

0 . . . 0 0 

) = -2K~\L®Q + G) (4.16) 

where K = Diag{K\i = 1 , . . . , N} and G = Diag{T, 0 , . . . , 0}. The above 

expression of Lc/ will be used in the following discussion on stability analysis 

of switching topologies. 

Now, assume that there is a team of agents that is characterized by a 

switching topology due to the time-varying neighboring sets Nl(t) or time-

varying leader assignment. Associated with this scenario a switching signal 

denoted by a(t) : E + —> N is denned which is a train of rectangular pulsed 

signals that has a constant integer value over each time interval r as shown 

in Figure 4.1. The communication links among the agents are assumed to be 

directional with a Laplacian matrix denoted by L. For the case of switching 

networks, this matrix is a function of the switching signal a(t) and can be 

written as La^, where 

La E {L\L describes the Laplacian of a strongly connected digraph} (4.17) 

Hence, during each time interval the Laplacian matrix describing the un

derlying team architecture graph belongs to the family of Laplacian matrices 

defined in (4.17). 

Assumption 4.1. The Laplacian matrix La(t) is provided to all the agents of 

the network. 

This assumption will be further used to evaluate the switching control 
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Figure 4.1: Switching signal a(t) 

signal. It is worth noting that providing this information to the individual 

agents does not impose an extra restriction on the semi-decentralized structure 

of the proposed control strategy. In fact regardless of this issue, to ensure and 

verify the connectedness requirement of the information exchange graph, each 

agent should already switch its communication links so that the entire network 

remains connected. Therefore, each agent should be aware of both local as well 

as global connections. In other words, the requirement that each agent is aware 

of the Laplacian of the team is not an impediment for or an extra restriction 

on our proposed semi-decentralized control strategy. 

To emphasize that the leader assignment is time-varying, i.e. agent 1 

is not necessarily the leader, we may assume that the matrix G in (4.16) is 

a function of the switching signal a(t) as well, i.e. Ga. Depending on the 

agent assigned as the leader, the corresponding row in the matrix G will be 

non-zero. Subsequently, I denote the parameters associated with a switching 

by the subscript <y(t), i.e. (.)a. Therefore, the closed-loop matrix defined in 

(4.16) is rewritten as 

Ldi0 = -2K;1(L0®Q + G<T) 
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where LdtCr, Ka, La,Ga are the matrices Ld, K, L, G corresponding to the switch

ing structure, respectively. Obviously, the controller coefficient matrix K de

pends on the switching state since K is a function of the neighboring sets 

Nl{t). If Lci>a were describing the Laplacian of a balanced graph, then it were 

straight forward to find a common Lyapunov function for the entire switching 

network and correspondingly to prove the stability. However, in the present 

case this matrix does not have the above mentioned property. In the following 

I try to design a switching controller such that the network stability can be 

guaranteed. 

Towards this end, let us partition the matrix Ld(T into two parts, namely 

Lc = K~l{La <S> Q) and K~lGa. The first part, La is itself the Laplacian of 

a directed weighted graph which is not necessarily balanced. However, if we 

could transform La into the Laplacian of a balanced graph, then it is easy 

to show that a common Lyapunov function for the corresponding switching 

system exists. One solution to achieve the above goal is to design a switching 

control such that La becomes the Laplacian of a balanced graph for any 

switching network. This implies that we need to modify the design of matrix 

Ka, as given in Lemma 3.2 and Theorem 3.2, such that La satisfies the required 

property. One way to design Ka to compensate for the switching structure is 

by selecting different Ql^s for different nodes in each switching structure (in 

contrast to the assumption in Theorem 3.2). If such a control design goal can 

be accomplished, not only undirected graphs but also directed and unbalanced 

graphs can be analyzed under the switching network topology assumption. 

Towards this end, let us assume that Q y is no longer equal to Q and has 

different values that are denoted by Ql
a(t) for each agent i and each switching 

state a(t) so that La can be written as follows 
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La = {KlYlQ2M {KlYlQ2M 

. {Kl)-'QlhN 

where Uj is the ijtYi entry of the matrix Lc which is time dependent (due to 

assumption of switching topology) and Ka is matrix K% corresponds to the 

switching network structure. In order to have La as a balanced matrix, we 

should have 

( l r ® / „ ) £ , = 0 - (K)^Qlln (Kj)-*Qll22 . . . {K?)-*Q»lNN x 

1 lu/hi 

/„) = £(La ® 7n) = 0 

(4.18) 

where n is the dimension of the agents' output, La is the normalized Laplacian 

matrix of the graph, and fxa is defined as follows 

Ha (Kr'Qlhi {K)-'Qlh2 {K»)-lQNJNN 
(4.19) 

To ensure that expression (4.18) is satisfied, Qtj ((%)> Rl (Rc), and Y {Ta) 

should be selected such that fj,a in (4.19) will be in the left null-space of 

La ® In. Assume that ua is a normalized vector in the left null-space of 

La (the eigenvector of La corresponds to the zero eigenvalue), then we should 

have 

fi„ = KUJC <g> In (4.20) 

where K is a scaling factor that should be selected by using a specific criterion, 

e.g. along the lines that are provided in the next subsection. Therefore, (4.20) 
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is the main requirement that should be satisfied by proper selection of Q^, R^, 

and Ta. Now, I state the following lemma which is used in the subsequent 

discussions. 

Lemma 4.6. The Laplacian matrix of any strongly connected directed graph 

has a left eigenvector which corresponds to the zero eigenvalue and whose 

entries have the same sign, i.e. they are either all positive or all negative. 

Proof: The details are provided in Appendix B. 

We are now in a position to summarize the previous discussions into the 

following theorem. 

Theorem 4.3. Stability Analysis Under Switching Structure: For the 

team of vehicles described in Lemma 3.2, and under the assumptions of switch

ing network and switching leader, the control laws ul
a,i = 1,... ,N selected 

according to 

< ( ^ ' ) = r ^ - ^ ^ ) , i = 2,...,N (4.21) 

ul(v\vn = rl(vi-^L^)+PW-vd) (4.22) 

ra = -2«pi,ff/„, i = 1 , . . . , N, ft = -7(«Pi,ffr
1 + ^( /spi^r1)2 + 7 r 1 ) / n 

(4.23) 

will guarantee that the cost functions in (3.5), (3.6) are minimized if parameter 

Qy' in these cost functions is selected as Q u = qlI, Vi. ql is obtained from the 

following equations 

l A ^ V ) 2 - (4K2pla \N l \r l)q l - 4 ( K P 1 I ( T ) V = 0, 

4(KP- ) V (4-24) 

, _ *KKPx,a) r • _ 2 N 
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where pitCX is the ith element of the vector u>a, i.e. an eigenvector of the nor

malized Laplacian matrix of the graph La, corresponding to its zero eigen

value. Matrices Rl and T used in cost functions (3.5), (3.6) are chosen as 

R% = rlI, T = 7 / , where r l , 7 are two positive constants and K is a design 

parameter. This in turn guarantees that for the family of the closed-loop error 

dynamics 

e = Lcl,ae, Ld,a = -2K~l {QaLa <g> In + Ga) (4.25) 

a common Lyapunov function exists. This function ensures that the closed-

loop dynamics is asymptotically stable, where e = [(e1)7" . . . (eN)T]T, el = vl — 

vd, and Qa = diaglQ^,... ,Q^}- Therefore, the team consensus is achieved 

for a switching network topology, i.e. vl —> vd, Wi. 

Proof: See Appendix B for the details. 

Remark 4.1. It is worth mentioning that in the above theorem theoretically 

there are no constraints on the switching signal as it can be selected arbi

trary and with any desired frequency characteristics. However, from practical 

considerations viewpoint the switching frequency should be selected based on 

the dynamic range of the actuators that are employed for implementing the 

corresponding switching control law. In other words, the physical constraints 

imposed by the practical specifications of the actuators should be considered 

in the selection of the switching signal. 

Given that the performance of the optimal controller is now limited due 

to the additional constraints that are imposed on the cost function gains 

Qli{Ql
a) as in (4.24), one may compensate the performance degradation by 

introducing a new criterion for selecting the design parameter K. This para

meter can be considered as a scaling factor which can play the role of defining 
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weights given to different design specifications. Various criteria can be consid

ered in order to guarantee a specific closed-loop behavior. One such criterion 

deals with a tradeoff between the control performance and the control effort, 

i.e. the relationship between the matrices Ql^{Ql
a) and Rl as discussed in the 

following subsection. 

4.2.2 Selection criterion for K: performance-control ef

fort tradeoff 

An issue that we now need to consider deals with defining the criterion for 

selecting the scaling factor K. One such criterion may be specified by making 

a tradeoff between the control performance and the control effort. According 

to the definitions of the cost functions given in (3.5) and (3.6), Qli defines 

the weight that is assigned to the performance, whereas Rl is the weight that 

is assigned to the control effort. Therefore, depending on the specifics of an 

application the selected weights can change. For example, we may require a 

predefined ratio between the matrices Qlj and Rl, i.e. we may require that 

™ (&) > rn^ where rrii is the desirable value describing the tradeoff be

tween the performance and control effort gain matrices. The following lemma 

provides sufficient conditions for guaranteeing this requirement. 

Lemma 4.7. In a switching network topology as described in Theorem 4.3, 

to achieve a tradeoff between the performance-control effort in cost function 

(3.5) as manifested by ™ ?RJ > mi, i = 1,... ,N the design parameter K 

defined in Theorem 4.3 should be selected as 

. ^ I m a x l ^ ^ ^ ^ ^ f ; ^ (4.26) 

where m, is the desirable value describing the tradeoff between the performance 
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and control effort gain matrices. 

Proof: See Appendix B for the details. 

4.3 Simulation results 

4.3.1 Effects of actuator faults on team performance 

In this part, simulation results are presented for LOE, LIP and float faults 

that occur in one of the vehicles in a team of four mobile robots. Without loss 

of generality the ring topology is considered for the MLF team. 

LOE fault 

Simulations are performed for the agents' dynamics as given in (2.20). The 

leader command is assumed to be a pulse-like signal with a duration of 50 sec 

and its value switches between vd = [3 4]T and vd = [5 — 1]T. The state 

vector of each agent X1 is composed of position and velocity vectors, i.e. X1 = 

[(rl)T, (vl)T]T and position and velocity vectors are two-dimensional, i.e. 

r* = [rx> ry]T» yl = [vxi vy\T- The mitial state of the vehicles are selected as 

X* = [ 6 1 5 3]T, X2
0 = [ 2 4 - 5 - 4 ] T , X0

3 = [4 3 - 1 - 2 ] T , X0
4 = [ 2 0 3 4]T 

and the other parameters are selected to be Qli = [03], Rl = hx2, |AT*| = 2, 

and T = [o°4o]- Figures 4.2(a) and 4.2(b) show the x and y components of 

the velocity profile of the agents when the fourth agent is injected with an 

LOE fault during the period 115 <t< 135. In this period, the fourth agent's 

actuator is set to ui = 0.5u4. It can be seen that the occurrence of the fault 

affects the team performance in a short time period and soon after the team 

recovers its cohesion and achieves consensus. Figure 4.2(c) shows the actual 

path trajectories generated by the vehicles in the x — y plane. The above 
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verifies the stability and consensus results of the team subject to actuator 

LOE fault as obtained in Section 4.1.1. 

Float fault 

Results shown in this part are conducted to capture the average behavior of 

our proposed control strategies through Monte Carlo simulations. The average 

team response due to 30 different randomly selected initial conditions are pre

sented for the agents' dynamics as given in (2.20). Figures 4.3(a) and 4.3(b) 

show the x and y components of the average velocity of agents when a float 

fault happens for the third agent during the period 20 < t < 30. In this period, 

the third agent cannot follow the team command (vd = [3 4]T) and its velocity 

is frozen at v3 = [6 1]T. It can be seen that the other members modify their 

speed to keep the team cohesion. Figure 4.3(c) shows the x — y path that is 

generated in this case. The value to which the team vehicles' average velocity 

error converges is ess = [1.3 - 1.29 2.14 - 2.15 2.14 - 2.15 3 - 3] r , 

which is compatible with the result given in (4.4). 

The simulation parameters selected are Q%i = [J §], Rl = hx2, \Nl\ = 2, 

El = 0.572x2) r = [ V 4 ] ' a n d the random initial conditions for the Monte 

Carlo simulations are considered as 

X* = [r{0,15) r(0,25) r ( -5 ,0) r ( - 6 , - l ) ] r , 

XI = [r(15,30) r(25,50) r(0,5) r ( - 5 , 5 ) ] r , 

XI = [r(30,45) r(50,75) r(5,10) r ( l , l l ) ] T , 

X* = [r(45,60) r(75,100) r ( -10 , -5 ) r ( -6 ,4 ) ] T , 

where r(x, y) stands for a random variable in the interval [x, y]. Figures 4.4(a) 

and 4.4(b) depict the average vl
x, v

l
y trajectories when the velocity of the third 

agent is kept at v3 = [0 3]T (the agent does not move in the x direction). 

Figure 4.4(c) shows the x — y path that is generated in this case. 
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LIP fault 

In this part, simulations are performed for the agents' dynamics as given in 

(2.20) and (2.21). For the former case, all the settings are the same as the ones 

used in the case of LOE fault except the command pulse duration which is 

selected as 20 sec. Figures 4.5(a) and 4.5(b) show the x and y components of 

the velocity profile of the agents when the third agent is injected with an LIP 

fault during the period 20.5 < t < 25. During this period, the third agent's 

actuator is set to u3* = u3(t = 20.5). It can be seen that after the occurrence of 

the fault the agents' velocity diverge to different values as predicted in Lemma 

4.4. Figure 4.5(c) shows the actual path trajectories generated by the vehicles 

in the x — y plane. 

For the linear dynamical model (2.21), the command and the initial state 

of the vehicles are similar to the previous case. Other parameters are selected 

to be Q%i = 100/2x2) and Rl = 0.01/2x2 for £ = 2 , . . . , JV. The parameters cor-

1 0 
responding to the model are chosen as A1 = 

2 6 
,A» -72x2, and B% = 

1 1 

2 6 
The matrices R1, K1, F are found by solving the set of LMIs in 

(3.49) as: R1 = 105 0.10 0.17 

0.17 1.27 
,Kl = 104 8.35 -1.22 

-1.22 7.09 
, and T = 

10 
2.35 0 

Figure 4.6(a) shows the actual path trajectories that are 
0 1.27 

generated by the vehicles in the x — y plane. Figures 4.6(b) and 4.6(c) show the 

x and y components of the velocity profile of the agents when the third agent 

is injected with an LIP fault during the period 20.5 < t < 25. During this 

period, the third agent's actuator is set to u3 = u3(t — 20.5). It can be seen 

that after the occurrence of the fault the agents' velocity converge to values 
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that are different from the set-point but are finite. This verifies the stability 

and boundedness results of the agents' velocity subject to actuator LIP fault 

as obtained in Lemma 4.5. 

4.3.2 Team performance in a switching network topol

ogy 

Simulation results presented in this part are for a team of four agents. The 

team structure switches between 3 structures based on a specific switching 

signal pattern that is shown in Figure 4.1. It follows from this figure that 

the switching signal can take 3 different values at different time intervals, 

namely 1, 2, and 3. In other words, there are three different states for the 

team structure and the leader assignment during the mission. The leader 

assignment is changing at each switching instant and is defined to be according 

to agents 1, 4, and 2 corresponding to a(t) = 1,2,3, respectively. Moreover, 

the leader command is a pulse-like signal which has the same duration as the 

switching signal time interval, r. The leader command values for a(t) = 1, 2, 3 

is vd = [15 14]r, [7 20]T, [20 6]T, respectively. The graphs describing the 

network structure are directional and the Laplacian matrices corresponding to 
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the three switching states are as follows 
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The structure dynamic transition of the team can be seen in Figure 4.7. 

The simulation results are obtained by applying the switching control 

laws given in Theorem 4.3 to the agents with the dynamics governed by (2.20). 

In Figure 4.8(a), the £—component and in Figure 4.8(b), the y—component of 

the velocity profiles of the four-agent team are shown for the above configura

tions. Figure 4.8(c) shows the paths that are generated by the agents during 

the mission where the team members are switching to different structures and 

operating under different commands and leaders. It can be seen that the team 

goal, i.e. consensus achievement, is guaranteed in the presence of the switching 

topology and switching leader. 

4.4 Conclusions 

In this chapter two non-ideal considerations are analyzed for team cooperation 

problem, i.e. actuator faults and switching network topology. 

First, I provided a formal analysis and an insight into the effects of 

various actuator faults on the performance of a team of agents. It was shown 
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that appearance of an LOE fault in one of the agents does not deteriorate the 

stability or the consensus seeking goal of the team. This fault will only result 

in a different transient behavior, e.g. a change in the agent's convergence rate, 

without a change in the consensus value. On the other hand, if the fault in one 

or more of the agents is of the float type, either in the leader or the followers, 

the team does not maintain its consensus any longer, however the stability of 

the team can still be guaranteed. Moreover, the leader and healthy followers 

adapt themselves to the changes when a float fault occurs in one of the agents. 

In this manner cohesion and cooperation of the team is maintained and the 

team remains together until the fault is recovered. Finally, the behavior of 

the team in the presence of an LIP fault was also investigated. It was shown 

that stability of the team can be guaranteed if the open-loop system matrix is 

stable but the consensus cannot be achieved anymore. Under the scenario of 

an LIP or a float fault the steady state error is analytically obtained. 

In the second part of this chapter, a semi-decentralized optimal control 

design strategy for consensus seeking in a team of agents with both switching 

structure and leader changes was presented. In contrast to the common as

sumptions in the literature where graphs are assumed to be balanced, here it 

was assumed that the graph describing the communication topology is not nec

essarily a balanced graph. A criterion for selecting the controller parameters 

was proposed to guarantee a specific performance requirement. 
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Figure 4.2: (a) The x and (b) the y components of the velocity profile and (c) 
the x — y path trajectories of an MLF team of four agents in presence of an 
LOE fault in the fourth vehicle for 115 < t < 135, where uj = 0.5u4. 
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Figure 4.3: (a) The x-component, (b) the y-component, and (c) the x — y 
path trajectories of an MLF team of four agents (Monte Carlo simulation 
runs) in the presence of a float fault in the third vehicle (velocity is frozen at 
v
3 = [6 l ] r ) . The jump in the velocity of agent 3 at t = 30 sec is due to the 

initiation of a recovery procedure in the actuator of agent 3 (following a fault 
injected at t = 20 sec) to the healthy and normal velocity after t > 30 sec. 
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Figure 4.4: (a) The x-component of the average velocity profile, (b) the y-
component of the average velocity profile, and (c) the x — y path trajectories of 
an MLF team of four agents (Monte Carlo simulation runs) in the presence of a 
float fault in the third vehicle (velocity is frozen at v3 = [0 3]T for 20 < t < 30). 
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Figure 4.5: (a) The x component of the velocity profile, (b) the y component of 
the velocity profile, and (c) the x — y path trajectories for a Modified Leader-
Follower (MLF) team of four agents in presence of a Lock-In-Place (LIP) fault 
in the third vehicle for 20.5 < t < 25 where u) = u3(t = 20.5). 
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Figure 4.6: (a) The x — y path trajectories, (b) the x component of the velocity 
profile, and (b) the y component of the velocity profile of an MLF team of four 
agents with a linear model in presence of an LIP fault in the third vehicle for 
20.5 < t < 25 where u) = u3(t = 20.5). 
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Figure 4.7: The structure dynamic transition of the team between three dif
ferent switching topology and leader assignment 
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Figure 4.8: a) The x-component and b) the y-component of the velocity profile 
and c) the x — y path trajectories of an MLF team of four agents with switching 
structure and switching leader that are obtained by the application of the 
proposed switching control strategy. 
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Chapter 5 

Linear matrix inequalities in 

optimal control and game 

theory formulation of team 

cooperation problem 

In this chapter, I will utilize the LMI formulation to solve the consensus seek

ing problem in two frameworks, i.e. game theory and optimal control. In both 

of these approaches I take the advantage of LMIs to formulate the existing con

straints on the consensus seeking problem. In other words, some constraints 

are added to the original problem in order to provide a decentralized solution 

which guarantees consensus achievement. The first part of this chapter is ded

icated to the game-theoretic based approach and the second part discusses the 

optimal approach based on the state decomposition idea as will be discussed 

later. 
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5.1 A cooperative game theory approach to 

consensus seeking 

In this section, the methodology to solve the consensus seeking problem is 

based on cooperative game theory. However, in order to clarify the cooperative 

nature of the method and for comparison purposes, first the semi-decentralized 

optimal control strategy based on minimization of individual costs that is 

introduced in Chapter 3 is utilized. Cooperative game theory is then used to 

ensure team cooperation by considering a linear combination of the individual 

cost as a team cost function. The cooperative game theory framework has the 

advantage of being a multi-objective design tool which is well suited for the 

problem under consideration in this thesis. Moreover, this approach guarantees 

a "cooperative" solution when compared to other multi-objective design tools. 

Minimization of the team cost function results in a set of Pareto-efficient 

solutions. The choice of the NBS among the set of Pareto-efficient solutions 

guarantees the minimum individual cost. The Nash Bargaining Solution (NBS) 

is obtained by maximizing the product of the difference between the costs 

achieved through the semi-decentralized optimal control strategy and the one 

obtained through the Pareto-efficient solution. The latter solution results in 

a lower cost for each agent at the expense of requiring full information set. 

To avoid this drawback some constraints are added to the structure of the 

controller that is suggested for the entire team using the LMI formulation of the 

minimization problem. Furthermore, the consensus achievement condition is 

added as a constraint to the set of LMIs. Consequently, although the controller 

is designed to minimize a unique team cost function, it only uses the available 

information set for each agent. A comparison between the average cost that 

is obtained by using the above two methods is conducted. 
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5.1.1 Problem Formulation 

According to the discussions in Chapter 2, cooperation in a team of N players 

(agents), e.g. consensus seeking, can be solved in the framework of cooper

ative games. The goal in this part is to develop a cooperative solution that 

utilizes decentralized cost functions and combines them in a team cost func

tion. This will ensure improvements in minimizing individual costs by utilizing 

the game-theoretic method. Towards this end, I try to find a set of Pareto 

optimal solutions for minimization of the team cost function through solving 

the minimization problem in (2.39). An NBS solution can be selected among 

this set of Pareto-efficient solutions by solving the maximization problem in 

(2.41) (or (2.40)). 

Assume a leaderless team of agents where the dynamical model of each 

agent and the related cost functions are described in (2.6) and (3.5), respec

tively. The first step is to combine the individual cost functions in (3.5) into 

a team cost function J c according to the following 

j c = r a 7 ( [ / ) = / [YTQY + UTRU\dt = / [XTQX + UTRU]dt 
i=1 Jo Jo 

(5.1) 

in which a = ( a 1 , . . . , aN) (E A as defined in Chapter 2, Jl{U) is the cost func

tion for the iih agent (player) that is defined in (3.5) and U(a) = [(ul)T ... 

(u^ ) T ] r is the vector of all the agents' local input vectors. X, Y are the vectors 

of entire team state and output as defined in Chapter 2 and other parameters 

133 



are defined as follows 

R = Diag{alR\ .. .,aNRN}, Q = [5hk]NxN, Q = CTQC, 

v ^ • -fc u ^ uu \ -othQhk ~ akQkh for k E Nh 

shh = J2 a3QJ + « E Q ' 6>* = { 
jeMh k&Nh \ 0 otherwise 

(5.2) 

where Nh is the neighboring set of agent h and Mh denotes the set of indices 

of the neighboring sets to which agent h belongs and C is defined in (2.8). 

Each agent belongs to only those clusters in which one of the agent's neighbors 

exists. Therefore, the total number of these clusters is the same as the number 

of neighbors of that agent, i.e. J\fh = Nh. 

The associated dynamical model constraint of the team is given by (2.7) 

and (2.8). The Pareto efficient solution for minimizing the team cost function 

(5.1) is achieved by invoking the following strategy 

N 

U*(a) = argmin V a V V t / ) - argmin Jc(a) (5.3) 

in which U*(a) is the optimal value of U(a). 

The set of solutions to the minimization problem (5.3) is a function of the 

parameter a which provides a set of Pareto-efficient solutions. Among these 

solutions, a unique solution can be obtained by using one of the methods that 

was mentioned in Chapter 2, e.g., the NBS. Using this method the unique 

solution to the problem (a unique a) is given by (2.41) in which J1 's are 

defined in (3.5) and are calculated by applying the solution of the minimization 

problem (5.3) to the system that is given in (2.7), and hence are functions of the 

parameter a. The terms dl,s are the values of the cost defined in (3.5) which is 

obtained by applying a non-cooperative approach (e.g. a decentralized optimal 
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controller) to the individual subsystems in (2.6). 

By solving the maximization problem (2.41) the parameter a can be 

found and substituted in the set of control strategies that are obtained in 

(5.3). This solution guarantees that the product of the distances between 

dl,s (non-cooperative solution) and J l ' s (cooperative solution) is maximized, 

implying that the individual costs in the latter case are minimized as much as 

possible. 

Let us first solve the minimization problem (5.3) and then apply a mod

ified version of the algorithm given in [124] to solve the maximization problem 

(2.41). 

A summary of the following materials is published in [139,140]. 

5.1.2 Solution of the minimization problem: an LMI 

formulation 

In order to solve the minimization problem (5.3), the cost function (5.1) should 

be minimized subject to the dynamical constraint (2.7). This is a standard 

LQR problem and its solution for an infinite horizon case (i.e. T —> oo) will 

result in the following control law 

U*(a,X) = -R'1BTPX, Q-PBR-1BTP + PA + ATP = 0 (5-4) 

The control U* can be constructed if the above algebraic Riccati equation 

(ARE) has a solution for P. However, some issues arise when the above 

control law is applied to the dynamical system (2.7). In fact, given that the 

matrix P is not guaranteed to be block-diagonal, the control signal U* yields 

a centralized strategy in the sense that its components, i.e. u?, are dependent 

on the information from the entire team. Moreover, the solution suggested 
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by (5.4) does not necessarily guarantee that a non-zero consensus is achieved 

for an arbitrary parameter selection. In other words, zero consensus is also a 

possible solution of (5.4). 

Hence, to ensure that a desirable consensus solution is obtained that also 

satisfies the constraints on the availability of information, one needs to impose 

additional constraints on the original minimization problem. However, by 

adding additional constraints to the cost function (5.1), e.g. by considering a 

barrier function, the problem will no longer be a convex optimization problem 

and may not necessarily have a unique solution. To remedy this problem, the 

original cost function is kept unchanged, however the optimization problem is 

now formulated as an LMI problem so that the constraints due to the consensus 

and the controller structure are incorporated as convex constraints. 

As was pointed out in Chapter 2, the LQR problem can be formulated 

as a maximization or a minimization problem subject to a set of matrix in

equalities. In other words, instead of solving the ARE (5.4), as an example 

the following maximization problem can be solved 

max trace(P) s.t. 
(5.5) 

PA + ATP - PBR~1BTP + Q > 0, P > 0 

this is the formulation provided in (2.36). This formulation can be translated 

into an LMI maximization problem which can be stated as the following prob

lem. 

Problem A 

The above problem can be formulated as a maximization problem subject 
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to a set of LMIs, namely 

max trace(P) s.t. 
PA + ATP + Q PB 

BTP R 
> 0, P > 0 (5.6) 

It can be shown that the above maximization problem has a solution if and 

only if the following ARE has a solution 

Q-PBR~1BTPT + PA + ATP = 0 (5.7) 

Moreover, if R > 0 and Q > 0, the unique optimal solution to the 

maximization Problem A is the maximal solution to the ARE in (5.7) [126]. 

In the above discussions I showed how to formulate the optimization 

problem as a set of LMIs. Solutions to this set of LMIs which also minimizes 

the cost function (5.1) guarantees the consensus seeking, i.e. X —> £1. How

ever, among these solutions a possible solution is when £ = 0, that is when the 

closed-loop system is asymptotically stable and converges to the origin. This 

solution is not desirable since it is a trivial solution of the consensus seeking 

problem and should be avoided. For this purpose, we may add the consensus 

seeking condition to Problem A, i.e. (A — BR~1BTP)S = 0 will be incorpo

rated into Problem A. Here, S is the unity vector, i.e. S = 1. This constraint 

will guarantee that the closed-loop matrix has a zero eigenvalue and is not 

Hurwitz. Therefore, if the rest of eigenvalues of this matrix are negative, i.e. 

it is stable, then the system trajectory will move toward a constant nonzero 

state which is in the consensus space S. On the other hand, by adding other 

constraints to the LMI problem as will be discussed later on in this section, 

stability of the closed-loop matrix would be guaranteed as well. We now have 

a new formulation to our problem as stated next. 

137 



Problem B 

The LQR minimization problem for consensus seeking can be formulated 

as a maximization problem subject to a set of LMIs, namely 

max trace(P) s.t. 

PA + ATP + Q PB 

[ BTP R 

2. (A-BR-1BTP)S = 0 

where the optimal control law is selected as U* = —R~lBTPX and P is 

obtained by solving the above set of LMIs. 

Consensus seeking subject to a predefined information structure 

As discussed previously, the solution to the above problem as well as the one 

given in (5.4) requires full network information for each agent. However, each 

agent has only access to its neighboring set information. Therefore, one needs 

to impose a constraint on the controller structure in order to satisfy the cor

responding availability of information. For the sake of notational simplicity 

assume that each agent has a one-dimensional state-space representation, i.e. 

A1 in (2.6) is a scalar. The case of a non-scalar system matrix can be treated 

similarly. The controller coefficient, i.e. R~lBTP in Problem B should have 

the same structure as the Laplacian matrix so that the neighboring set con

straint holds. However, due to their definitions both R and B are block di

agonal. Therefore, it suffices to restrict P to have the same structure as the 

Laplacian matrix, i.e. P(i,j) = 0 if L(i,j) = 0, where L(i,j) designates the 

ijth entry of the Laplacian matrix L. We may now solve the following prob

lem to minimize the cost function (5.1) while simultaneously satisfying all the 

problem constraints, namely we now have: 
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Problem C 

maxtrace(P) s.t. 

> 0, P > 0 
(5.9) 

2. (A-BR-1BTP)S = 0 

3.P(i,j) = 0iiL(i,j) = 0,Vi,j = l,...,N 

This problem is an LMI maximization problem in terms of P. 

Up to now, we have formulated the minimization problem (5.3) as a set 

of LMIs. Now, let us try to solve the maximization problem that is given 

by (2.41) (or (2.40)). For this purpose, we need to calculate the individual 

selfish agent costs J1 by utilizing a given method. For this purpose, the semi-

decentralized optimal control strategy developed previously in Chapter 3 is 

used. These values are considered as the "non-cooperative" outcome of the 

team, referred to as cf's in (2.41) (or (2.40)). We use the proposed optimal 

control strategy that results from the "individual" minimization of the agent 

cost functions (3.5) as provided in Lemma 3.1 (or Lemma 3.4). 

Remark 5.1. It is worth noting that any algorithm which guarantees con

sensus seeking can be considered as a cooperative algorithm. However, in 

the context of the formulation based on game theory, the approach based on 

the semi-decentralized optimal control is classified as non-cooperative. The 

reason for such designation follows from the previous discussions and defin

itions where the game theoretic framework yields more characteristics of a 

cooperative solution when compared to the solution that is obtained by the 

optimal control strategy. Consequently, the cost values that are obtained 

using the semi-decentralized optimal control strategy are referred to as the 
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"non-cooperative" outcomes (or threat points). 

We are now in a position to develop an algorithm for determining an 

NBS to the cooperative game theory problem. 

5.1.3 An algorithm for finding a Nash Bargaining Solution 

(NBS) 

Up to this point, I have shown that for any given a > 0 the maximization 

Problem C should first be solved. We now need an algorithm for solving the 

maximization problem (2.41) (or (2.40)) over different values of a so that a 

suitable and unique a can be found. In [124], two numerical algorithms for 

solving this maximization problem are given. With minor modifications made 

to one of these algorithms, the following algorithm will be used for the numer

ical simulation purposes. Namely, we have 

Algorithm I 

• Step 1 Start with an initial selection for a0 G A (e.g. a0 = [l/N,..., l/N] 

is a good choice). 

• Step 2 Compute U*(a0) = a.vgmmUeuYli=iaoJ1(U) by solving the 

maximization Problemc C. 

• Step 3 Verify if Jl(U*) < d\ i = 1 , . . . , JV, where dl is the optimal value 

of (3.5) when the control laws (3.15)-(3.17) (or controls (3.50)-(3.52)) 

are applied to the dynamical subsystems (2.6). If this condition is not 

satisfied, then there is at least one i0 for which Jl°(U*) > dz°. In that 

case, update off = a^0 + 0.01, al
Q = al

0 — ^ y , for i ^ i0 and return to 

Step 2 (similarly extend the update rule for more than one iQ). 
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• Step 4 Calculate 

a J = —77—— , 7 = l , . . . , i V 

• Step 5 Apply the update rule aj, = 0.9a& + 0.1a*. If Id* - al
0| < 0.01 for 

i = 1 , . . . , N, then terminate the algorithm and set a = at, else return to 

Step 2. 

The above discussions are now summarized in the following theorem. 

Theorem 5.1. Consider a team of agents with individual dynamical represen

tation (2.6) or the team dynamics (2.7), the individual cost function (3.5), and 

the team cost function (5.1) with the corresponding parameters (5.2). Further

more, assume that the desirable value of the parameter a is found by using 

Algorithm I. Moreover, the control law U* is designed as U* = —R~XBTPX, 

and P is the solution to the following optimization problem 

max trace(P) s.t. 

> 0 , P > 0 
(5.10) 

2. AC=(A- BR-1BTP), ACS = 0 

^ 3. P(i,j) = 0 if L(i,j) = 0, Vi,j = l , . . . , iV 

where 5 = 1. It then follows that 

(a) In the infinite horizon scenario, i.e. T —> 00, the above controller 

PA + ATP + Q PB 

BTP R 
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solves the following min-max problem 

N 

U* = a r g m i n ^ a i J i ( l 7 ) , a <G A, 

N 

A={a = (a1,...,aN)\ai > 0 and ] T V = 1}, 

N 

a* = argmax]T(cP - J*(a,[/*)), J^.d 
i=\ 

The solution to this min-max problem guarantees consensus achieving 

for the proposed team of agents, i.e. in steady state X —> £1, where £ is a 

constant coefficient of the consensus value. 

(b) In addition, the suggested control law guarantees a "stable" con

sensus of agents output to a common value subject to the dynamical and 

information structure constraints of the team in a cooperative manner, if for 

at least one connected subgraph of the original graph, we have 

Ac(i,j) ^ 0 if Lsub(i,j) ^ 0, Vi, j = 1 , . . . , N (5.11) 

where Lsub denotes the Laplacian matrix of any such arbitrary connected sub

graph. 

(c) Moreover, the optimal value of the cost function (5.1) has a finite 

infimum of XT(0)PX(0) - £2 £ \ £ \ P(i,j), where P is obtained from (5.10). 

X(0) is the initial value of the entire team state vector. 

Proof: The proof is provided in Appendix C. • 

We can now conclude that by using the above results, the team consensus 

goal can be achieved in a decentralized cooperative manner while simultane

ously satisfying all the given information constraints of the team. 
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5.2 An LMI approach to optimal consensus 

seeking 

In this section, an optimal consensus protocol is "designed" using optimal con

trol and LMI design tools. For this purpose, the idea of decomposing the state 

vector into two components as introduced in [39] is adopted for solving the 

optimal consensus problem. As opposed to [39], where H2 design methodol

ogy is used for design of a robust consensus seeking algorithm, here I start 

with a Hamilton-Jacobi-Bellman equation. Then, I will show the difficulties 

that arise if this formulation is utilized. Therefore, I propose the LMI for

mulation of the LQR problem. After decomposing the state vector, a global 

cost function is suggested for the entire network to achieve a stable consensus. 

Minimization of this global cost function guarantees a stable consensus with 

an optimal control effort. The global cost function formulation provides more 

insight into the optimal performance of the entire network and would result 

in a global optimal (or suboptimal) solution. 

In what follows, I first decompose the state vector of the entire team 

into components in consensus subspace and its orthogonal subspace. This 

decomposition helps to reduce the consensus seeking problem into a stabiliza

tion problem. Then, this stabilization problem is formulated and solved using 

optimal control technique and LMIs. 

Remark 5.2. In this section only, A* stands for the complex conjugate trans

pose of A, whereas in the rest of this thesis, A* describes the optimal value of 

quantity A. 

A summary of the materials presented below is published in [141]. 
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5.2.1 State decomposition 

Using the consensus definition given in Definition 2.3, the orthonormal basis 

for the subspace S is denoted by SVnxi = 1- The orthonormal complement of 

this matrix is denoted by §Nnx(Nn-i), which is a basis for the corresponding 

subspace orthonormal to <S. The following relationships are satisfied by these 

matrices: 

S*S = 0, S*S = I, S*S = 1, SS* + SS* = J (5.12) 

Now, the state vector X can be decomposed into two orthogonal com

ponents in the above mentioned subspaces and can be written as [39]: 

X = [S S] 
Xs 

X„ 
(5.13) 

Assuming that the control input has a state feedback structure, i.e. 

U = KX, then the dynamical equation of the system given in (2.7) will be 

transformed into: 

Xs 

x„ 
s* 
s* 

(A + BK)[S S\ 
X, 

X, 
(5.14) 

This follows from the fact that [S S}'1 = 

Since the goal is to ensure consensus in subspace S for the closed-loop 

system, the following equilibrium condition is imposed on the above dynamical 

equation: 

{A + BK)S = 0 (5.15) 

In other words the equilibria should lie in the consensus subspace. This 
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condition should be incorporated in the design procedure. Then, we will have: 

Xs 

X, 

s* 
s* 

(A + BK)SX-S = 
S*(A + BK)S 0 

S*(A + BK)S 0 

Xs 

X, 
(5.16) 

In order to achieve consensus the final state of the system should be a 

vector in subspace S. Therefore, the component Xg should converge to zero 

in steady state. This implies that this part of the system dynamics should be 

asymptotically stable. Moreover, the dynamics corresponding to Xs is only 

dependent on Xs, and therefore we are only concerned with the dynamics 

corresponding to Xs as governed by: 

Xs = S*(A + BK)SX-S = S*ASX-S + S*BKSX-S = AXS + BKX-S = AX-S + BU 

(5.17) 

where 

A = S*AS, B = S*B, K = KS, U = KX-S (5.18) 

If this part of the dynamics is stabilized asymptotically to zero, Xs will go 

to zero and hence Xs will approach to a constant value. On the other hand, 

if condition (5.15) is imposed, this constant value will be in the consensus 

subspace. Therefore, the consensus will be achieved. 

Now we may design a state feedback control strategy to guarantee the 

consensus achievement by the closed-loop system. Towards this end, optimal 

control techniques will be used below to design the controller to guarantee a 

stable consensus in an optimal manner. As mentioned in the above discussion 

the purpose of the control design is to stabilize that part of the system dy

namics which corresponds to the subspace 5 = span{S}. Therefore, the goal 

is to design the corresponding control gain, i.e. K. Based on this value of K 
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the corresponding value of K for the original system can be obtained. In the 

following this controller is designed using optimal control techniques. 

5.2.2 Optimal control design 

Optimality here refers to the situation when the dynamics of Xs is stabilized in 

an optimal manner. For characterizing optimality we need to define a formal 

performance index. We can define either individual performance indices or 

a single index (cost function) for the entire team. In Chapter 3, I proposed 

individual cost functions and suggested a semi-decentralized control strategy 

for minimizing these cost functions. Although the individual cost functions do 

better fit within a decentralized control structure, they cannot be utilized as 

an index of the team performance. In contrast, the team cost function which 

is used here is a good index of the team performance and its minimization can 

result in a globally optimal (or suboptimal) solution. However, the solution 

will be centralized. Fortunately, by using the LMI formulation, it will be 

shown that this centralized solution can be avoided by adding a constraint on 

the structure of the controller gain matrix. 

In order to stabilize the dynamics given in (5.17), let us define the team 

cost function that is to be minimized as follows: 

d = f™{XjQXs + UTRU}dt, X = [S S\ 

where Q has a predefined structure as Q = S*QS > 0 and Q and R are PD 

matrices (HQNUXNU is selected to be a PD matrix, since rank(S(Nn)x{Nn-i)) = 

Nn - 1, then Q will also be a PD matrix [142]). 

In the following, I will show that in general the minimization of this cost 

function using the Riccati equation does not result in a consensus for a network 
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of agents with general dynamical representation. Therefore, in the following 

subsections an LMI formulation is utilized for the optimization problem which 

can incorporate the requirements of consensus achievement and results in an 

optimal consensus algorithm. 

Discussion on the solution of the Riccati equation 

The problem of minimizing cost function (5.19) subject to dynamical con

straint (5.17) is a standard LQR problem. The solution to this LQR problem 

can be achieved by solving the corresponding Riccati equation as follows: 

U = ~R~1B*PXs (5-20) 

where P satisfies the following Riccati equation 

PA + A*P - PBR~1B*P + Q == 0 (5.21) 

Therefore, K — KS = — R~1B*P and from the properties of matrix S 

one can find K as K = —R~1B*PS*. Hence, the control input to the original 

system is given by: 

U = -R~lB*PS*X (5.22) 

By applying this input to system (2.7), the closed-loop dynamics can be 

written as: 

X = (A- BR~1B*PS*)X (5.23) 

In order to achieve consensus for the closed-loop system, the matrix S 

should be in the null-space of the closed-loop matrix, i.e. [A—BR~1B*PS*]S = 
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0. However, the second part of this expression is zero due to the properties of 

S as stated in (5.12), i.e. 

-BR~1B*PS*S = 0 (5.24) 

In other words, we should have AS = 0 to guarantee a stable consensus. 

The above discussion is formally summarized in the following lemma. 

Lemma 5.1. Consider a team of agents with the team entire dynamics given 

in (2.7), where interaction terms are incorporated in the agents' dynamics. 

Assume that a state decomposition procedure is performed and the consensus 

seeking problem is reduced to stabilization of the dynamical equation (5.17). 

Then, the solution of the corresponding Riccati equation given in (5.21) which 

minimizes the cost function (5.19) subject to the dynamical constraint (5.17) 

may not result in a stable consensus algorithm unless the consensus subspace 

is in the null space of the open-loop matrix A, i.e. 

AS = 0 (5.25) 

In other words, this solution may not provide a stable equilibria in the 

consensus subspace. 

Proof: Follows from the previous constructive results. • 

In general, the condition AS = 0 may not be satisfied by the subsys

tems in the network. Therefore, for a system with arbitrary matrix A, the 

optimal solution obtained by solving the Riccati equation does not guarantee 

consensus achievement. To simply explain this observation one may note that 

according to the definition of the control input U given in (5.22), this control 

only provides a component in S. Hence, the term BU does not contribute to 

the S component of X. Therefore, to have a stable solution where X = 0, 
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the term AX should enjoy the same property, i.e. the component of AX in S 

subspace should be zero: 

AS = 0 (5.26) 

Since this condition is not generally satisfied by an arbitrary system 

matrix A, the consensus condition (5.15) in general should be imposed onto 

the optimal solution that is achieved through the solution of the proposed 

minimization problem as an extra constraint. Hence, instead of obtaining an 

optimal solution through the solution of the Riccati equation, in the following 

I try to find an optimal solution for the above minimization problem subject 

to the consensus constraint through solution of a set of LMIs. 

LMI formulation of the optimal consensus seeking 

As in the previous part, the problem of minimizing the cost function (5.19) 

subject to the dynamical constraint (5.17) cannot be solved as a standard LQR 

problem if consensus seeking is to be added as a constraint. Instead, we may 

use one of the LMI formulations for solving the optimal problem which was 

introduced in Chapter 2. In other words, instead of solving the ARE (5.21), 

the controller U — KXS that minimizes the cost function (5.19) subject to 

(5.17) is achieved by solving for and determining the appropriate matrix P: 

min trace(P) s.t. 
(5.27) 

P(A + BK) + (A + BK)*P + Q + K*RK < 0, P > 0 
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where K = —R 1B*P yields the optimal solution. For the dynamical system 

(5.17) the inequality constraint (5.27) can be written as: 

P(S*AS + S*BKS) + {S*AS + S*BKS)*P + S*QS + S*K*RKS < 0 

(5.28) 

By multiplying both sides of this inequality by P~l we get: 

S*{A + BK)SP-1 + P^S^A* + K*B*)S 

+ P-1S*QSP~1 + P-1S*K*RKSP~1 < 0 
(5.29) 

Now define a new variable Z = Z* > 0 that satisfies the following equa

tion [39]: 

Z - SS*ZSS* + SS*ZSS* (5.30) 

an example of which can be in the following form [39]: 

Z = [S S] 
P'1 0 

0 M 

S* 

s* 
(5.31) 

where M = S*ZS and P 1 = S*ZS are PD matrices and P can be the same 

matrix as the one used in (5.29). Corresponding to this definition of Z we will 

have ZS-= SP'1. Substitute ZS = SP'1 into (5.29) to get: 

S*(AZ + BKZ + ZA* + ZK*B* + ZQZ + ZK*RKZ)S < 0 (5.32) 

Introduce a new variable W = KZ, so that we have: 

S*(AZ + BW + ZA* + W*B* + ZQZ + W*RW)S < 0 (5.33) 

150 



This can be written as an LMI condition using Schur complement and 

noting that R > 0 and Q > 0, namely 

T S*ZQ1/2 S*W*B}/2 

QV2ZS -I 0 < 0 , 

Rl'2WS 0 - / 

T = S*{AZ + BW + ZA* + W*B*)S 

(5.34) 

where Z, W are LMI parameters. Therefore, we have shown that the mini

mization problem in (5.27) can be written as follows: 

min trace(P) s.t. 

T S*ZQll2 S*W*R1/2 

Ql'2ZS -I 0 < 0 , 

RX'2WS 0 - / 
(5.35) 

T = S*(AZ + BW + ZA* + W*B*)S, 

z = ss*zss* + ss*zss*, zs = sp-1 

where K = WZ. In the following, I will discuss the conditions for existence 

of a solution to the above minimization problem and then present the main 

results of this section as a theorem. 

Discussion on the existence of solutions 

It is well-known that detectability and stabilizability conditions are sufficient 

for existence of a unique stabilizing solution to a linear quadratic optimal con

trol problem. The following lemma illustrate and formulate these conditions 

for our specific problem. 
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Lemma 5.2. The minimization problem (5.27), or equivalently (5.35), sub

ject to the dynamical constraint (5.17) has an optimal stabilizing solution if 

matrices A,B,Q are given such that the following inequalities have a solution 

for P2: 

1. StabilizabiUty condition: S*(AP2 + P2A* - BB*)S < 0, (5.36) 

2. Detectability condition: S*(P2A + A*P2 - Q)S < 0, (5.37) 

where P2 > 0 satisfies P2 = SS*P2SS* + SS*P2SS*. 

Proof: The details are provided in Appendix C. 

Remark 5.3. For the current problem the system matrix A given in (2.8) is 

a function of the interaction coefficients, T%i, and therefore can be viewed as 

a design parameter. In case that matrices B, Q, and the matrix A with no 

interaction terms, i.e. T%i = 0, Vi,j, satisfy the conditions (5.36) and (5.37), 

the existence of a solution is guaranteed. However, if these conditions are not 

guaranteed then we may select the coefficients Tli so that they are satisfied. 

A simple approach is to take P2 as an identity matrix and then select A such 

that both inequalities are satisfied. However, it should be noted that in some 

special conditions, and due to the special structure of matrix A, it might not 

be possible to find a solution for the inequalities in (5.36), (5.37) using this 

method. An example of this situation is when A1 = 0, Vi, and Q has the same 

structure as the Laplacian matrix. In this case A + A* — Q will have a positive 

eigenvalue regardless of the selection of the parameters of matrix A. In this 

situation one possible solution is to add an internal loop for each individual 

controller so that the required conditions in (5.36) and (5.37) are satisfied (by 

adding diagonal elements to the matrix A). 
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The main result of this section and the conclusion from the above dis

cussions are summarized in the following theorem. 

Theorem 5.2. a. Consider a team of agents with the dynamical equation 

as in (2.7). Assume that the state vector is decomposed into components 

in consensus subspace and its orthogonal subspace. Therefore, the dynamics 

corresponding to this decomposition is given by (5.17) with the cost function 

in (5.19) to be minimized for stabilization of this dynamics. Also, assume that 

the matrices A,B,Q satisfy the conditions of Lemma 5.2. Moreover, assume 

that the control input U is selected as U = KX, where K = WZ~X and the 

LMI variables T, W and Z are obtained through the minimization problem 

below: 

>0 , 

minirace(r) s.t. 

r / 
/ s*zs 
T S*ZQ1/2 S*W*R1'2 

QV*ZS -I 0 < 0 , (5-38) 

Rl'2WS 0 - / 

T - S*{AZ + BW + ZA* + W*B*)S, 

3. (AZ + BW)S = 0, 

4. Z = SS*ZSS* + SS*ZSS*, Z>0 

Then, the cost function (5.19) is minimized and the system (5.17) is asymp

totically stabilized. This in turn makes the system in (2.7) reach a stable 

consensus in an optimal manner. 

b . Furthermore, if the following constraints are added to the above min

imization problem the controller will be semi-decentralized. In other words, 

only partial information available through the predefined neighboring sets is 
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used by individual controllers, provided that: 

1. Z is diagonal, i.e. Z — 

Zx 

V 
2. W(i,j) = 0 if L(i,j) = 0 

z N 

, and 
(5.39) 

where L is the Laplacian matrix of the graph describing the network. 

Proof: The details are given in Appendix C. 

5.2.3 Discussion on graph connectivity 

In contrast to most of the consensus seeking approaches, in the proposed ap

proach in this section, there has been no explicit restriction on the connectivity 

of the network underlying graph. In the following, I will show that the graph 

connectivity is a requirement to guarantee consensus achievement. First, I 

prove the following lemma which is required for the remainder of the discus

sion in this subsection. 

Lemma 5.3. The closed-loop matrix of the entire network, i.e. A + BK 

represents the Laplacian matrix of a weighted graph. The corresponding graph 

is a subgraph of the original network graph but with different weights assigned 

to its edges. 

Proof: The details are given in Appendix C. 

Remark 5.4. From the above lemma, it follows that even if the original 

graph is connected, we may not conclude that the matrix A + BK represents a 

connected graph. However, in the following it is shown that for guaranteeing 

the existence of a solution to the consensus seeking problem, not only the 
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original graph should be connected but also A + BK should represent the 

Laplacian of a connected graph. 

Theorem 5.3. a) If the graph corresponding to the entire network is not 

connected, the existence of a solution to the consensus problem cannot be 

guaranteed. 

b) Moreover, if consensus seeking is guaranteed, matrix A + BK will 

describe the Laplacian of a connected subgraph of the original graph. 

Proof: The details are given in Appendix C. 

5.3 Simulation results 

5.3.1 Game theory approach 

The simulation results that are presented in this section correspond to a team 

of four agents that are being controlled by using two control strategies, namely 

the semi-decentralized optimal control law that is given by Lemma 3.1 (or 

Lemma 3.4) and the cooperative game theoretic-based control law that is given 

by Theorem 5.1. The first set of numerical simulations corresponds to the ap

plication of the control laws (3.15)-(3.17) (or (3.50)-(3.52)) to the individual 

agent model (2.6). In the second set, the numerical simulation results are ob

tained by applying the control law U = KX with K = —R~1BTP to the team 

dynamics that is described by (2.7). It is assumed that the state vector X% of 

each agent is the velocity vector of that agent, i.e. X% — vl and that velocity 

vector has two components, i.e. vl = [vl
x, vz

y]
T. The matrix K is obtained by 

solving the Problem C and by utilizing the maximization Algorithm I. Results 

shown below are conducted through Monte Carlo simulation runs to capture 

the average behavior of the proposed control strategies. The average team 

responses are due to 15 different randomly selected initial conditions. 
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The simulation parameters for both control approaches are selected as 

follows: A1 = 02x2, Rl = 72x2, Cl = 72x2, Bz = \ , and Q" = 
V-2 3y/ 

/ lO 3 \ 
I J. The random initial conditions of the velocity vector, i.e. vl

0, for 

the Monte Carlo simulations are considered as v\ = [r(6,8) r( l ,3)]T , v% = 

[r(5,7) r(3,5)]T, 0̂
3 = [r(2,4) r( l ,3)]T , and 0̂

4 = [ r ( -5 , -3 ) r ( - 4 , - 2 ) ] r , 

where r(x, j/) represents a random variable in the interval [x, y]. 

In the cooperative game theory strategy the initial value for the para

meter a is selected as a 0 = [1/4, • • •, 1/4] and its optimal average value is 

obtained by using the procedure that is outlined in Algorithm I for 15 Monte 

Carlo simulation runs as a = [0.2276 0.2005 0.2486 0.3232]. The interaction 

gains are selected as Tli = 1.6/2x2. 

Table 5.1 compares the average values of the cost function in (3.5) that 

are obtained by running the Monte Carlo simulations for the four agents under 

the two proposed control approaches for a period of 2 sec. As expected the 

average costs for the cooperative game theory approach are less than those 

that are obtained from the optimal control approach. However, it should be 

noted that this achievement is at the expense of an increased computational 

complexity. In fact, in the former method two optimization problems, namely a 

maximization and a minimization problem should be solved as compared to the 

semi-decentralized approach where only a single minimization problem needs 

to be solved. Therefore, there is a tradeoff between the control computational 

complexity and the achievable control performance. A quantitative evaluation 

criteria of the tradeoffs to a large extent will depend on the specific application 

under investigation and the practical constraints of the system. 

In Figures 5.1(a) and 5.2(a) the x—components and in Figure 5.1(b) and 

5.2(b), the y—components of the average velocity profiles of the four-agent 
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team are shown for the semi-decentralized optimal strategy and the game 

theoretic-based strategy, respectively. Similarly, in Figures 5.3(a) and 5.3(b), 

the x—component of the average control input efforts of the four-agent team 

are shown for the semi-decentralized optimal and the game theoretic-based 

controllers, respectively. 

Remark 5.5. It should be noted that the final values that are obtained for 

the semi-decentralized optimal control strategy are the average of the states 

initial values. In fact the control law provided in Theorem 3.1 is a weighted 

average consensus protocol which results in consensus on the average value of 

the initial state vector. However, the cooperative game theory protocol that 

is obtained by solving the set of LMIs given in (5.10) is not necessarily an 

average consensus protocol. Therefore, in this case the consensus value can be 

any arbitrary number. 

5.3.2 LMI-based optimal control approach 

Remark 5.6. It is worth noting that in the LMI-based optimal control ap

proach, there is more flexibility in design of both the local controllers and the 

interaction terms. In other words, u\ in (2.6) can be a function of both the 

Table 5.1: A comparative evaluation of the average value of the performance 
index corresponding to the two control design strategies for the cost functions 
defined in (3.5) for T = 2 sec. 

Control Scheme 
Semi-decentralized optimal control 

Cooperative game theory 

Average Performance Index 
Agent 1 
14,648 
8,545 

Agent 2 
14,781 
7,730 

Agent 3 
11,629 
6,138 

Agent 4 
12,519 
8,370 
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local information X1 as well as the global information X7, j e N\ Conse

quently, the interaction term T^ can be selected as zero even though the agent 

j is in the neighboring set of agent i. 

In this part two examples of team configuration are presented and sim

ulated as follows. 

Example 1: Simulation results presented in this example are for a team of 

four agents with the team dynamical equation as in (2.7)-(2.8). The simula

tions presented here are done for two cases. In the first case the requirement 

given in Lemma 5.1 is not satisfied by the system matrix A, i.e. AS ^ 0. The 

Laplacian matrix corresponding to the connected graph describing the network 

/ 2 - 1 0 - 1 ^ 

structure is L Other simulation parameters are A1 = 
- 1 2 - 1 0 

0 - 1 2 - 1 

y - 1 0 - 1 2 j 

i A 
, Bl = 2/2 x 2 , d = I2x2, QlJ = 6/2x2, Rl = 2/2x2. The initial condi-

^0.5 1/ 

tion of the state vector is selected as X(0) = (6 1 5 3 2 1 —5 —4J • 

The state vector X is composed of state vectors of all agents in the team 

and the state vector X% of each agent is the velocity vector of that agent, i.e. 

X% = vl which has two components, i.e. vl = [vl
x,

 vy]T• The interaction 

coefficients Tl\ Vi,j are assumed to be zero. 

It can be verified that the above parameters satisfy the conditions pro

vided in Lemma 5.2 and the corresponding matrix P2 can be selected as the 

identity matrix. The simulation results are obtained by applying the control 

law U = KX to the system (2.7). Matrix K is first evaluated through the 

set of LMIs given in Theorem 5.2. In Figure 5.4(a), the x—component and in 

Figure 5.4(b), the y—component of the velocity profiles of the four-agent team 
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are shown for the above configuration. In Figures 5.5(a) and 5.5(b) I have ap

plied the control strategy that is obtained through the solution of the Riccati 

equation and given by (5.22) to the system (2.7) with the above configuration. 

It can be seen that as predicted in Lemma 5.1 the closed-loop system is unsta

ble. This is due to the fact that the open-loop matrix A does not satisfy the 

property AS = 0. Therefore, the closed-loop dynamics cannot provide a stable 

consensus by using the matrix K that is obtained from standard LQR-based 

design methodology using Riccati equation. 

In the second part of the simulations, I have selected a matrix A such 

that AS = 0. The corresponding results are presented in Figures 5.6-5.7. To 

guarantee the condition AS = 0, the interaction coefficients are selected as 

fV = —0.25 I , Vi, j € N% for this case. Other simulation parameters 
V0.5 l) 

are the same as in the previous case. The simulation results are obtained by 

applying the controllers that are designed based on the Riccati equation solu

tions and the solutions to the set of LMIs in (5.38). Figures 5.6(a) and 5.6(b) 

correspond to the latter approach, whereas Figures 5.7(a) and 5.7(b) corre

spond to the former approach. For comparison between these two approaches 

I have calculated a performance index for both methods. Since one does not 

have direct access to X§, instead of the performance index (5.19) I used the 

following cost function for comparison purposes: 

PI = £{XTQX + UTRU}dt (5.40) 

where T is selected to be 10s. The values obtained for the above performance 

index are 865.5 and 883.2 corresponding to the Riccati equation and the LMIs 

approaches, respectively. Also, the controller provided by the solution of the 

Riccati equation reaches consensus faster when compared to the controller 
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corresponding to the LMIs solution (1.8s vs. 2.6s). 

Example 2: Simulation results conducted in this example are presented for a 

team of six vehicles. The simulations are performed for the two case scenarios 

as in Example 1. The graph describing the network structure is shown in Fig

ure 5.8. The numerical parameters selected for this network of multi-agents are 

'o 3 

2 - 1 \ 6 0 \ 
, and A6 = . B\ c\ R1, Qli are selected as in the pre-

-1 l ) V° v 
vious example. The initial conditions of the velocity vectors are selected as 

X\0) = [6 1]T, X2(0) = [8 3] r , X3(0) = [2 7]T, X4(0) = [-5 - 4 ] T , X5(0) = 

[12 — 6] r , and X6(0) — [—1 — 2]T. The simulations are obtained by applying 

the controllers that are designed based on the Riccati equation solutions and 

the solutions to a set of LMIs. In Figure 5.9(a), the a;—component and in Fig

ure 5.9(b), the y—component of the velocity profiles of the six-agent team are 

shown for the above settings in the latter approach. For sake of comparison 

in Figures 5.10(a) and 5.10(b) the former strategy is used under the above 

configuration. It can be seen that the closed-loop system is unstable since the 

open-loop system matrix A does not satisfy the property ^45 = 0. 

In the second case scenario I have selected a matrix A such that AS = 0. 

The corresponding results are presented in Figures 5.11-5.12. To guarantee the 

condition AS = 0, the interaction coefficients T^ are selected to be zero and 

the system matrices of all the agents are selected to be the same and given 

as A1 = I i Vi. The other simulation parameters are selected to 
V-5 5 ) 

be the same as in the previous scenario. The simulation results are obtained 

by applying the controllers that are designed based on the Riccati equation 

solutions and the solutions to a set of LMIs. Figure 5.11 corresponds to the 
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latter approach and Figure 5.12 corresponds to the former approach. 

As can be seen from Figures 5.11 and 5.12 both control methodologies 

in this case (AS = 0) yield an asymptotically stable closed-loop system. For 

comparison between the two control approaches I have calculated a perfor

mance index corresponding to each method. The numerical values that are 

obtained for the performance index (5.40) are given in Table 5.2. It can be 

seen that the cost expensed for the LMI approach is indeed higher than the 

one used by the Riccati equation-based approach when AS = 0. Obviously, for 

the scenario when AS ^ 0, the LMI approach results in a lower cost given that 

the Riccati equation-based approach yields an unstable system. On the other 

hand, the controller provided by the LMI approach indeed reaches consensus 

faster when compared to the controller corresponding to the Riccati equation 

solution (0.6s vs. 1.06s in case of AS = 0). The associated numerical results 

are shown in Table 5.3. 

5.4 Conclusions 

In this chapter the LMI formulation is utilized to solve the consensus seeking 

problem in two frameworks, i.e. game theory and optimal control frameworks. 

First, a novel design-based approach is proposed in order to address the 

consensus control problem using a single team cost function within a game 

Table 5.2: A comparative evaluation of the performance index corresponding 
to the two control design strategies for the cost function (5.40) for T = 2 sec 
in Example 2. 

Control Scheme 
Riccati equation-based 
LMI-based 

Performance Index (5.40) 
AS = 0 
1079.5 
2098.5 

AS ^ 0 

1.0407e+007 
2012.1 
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theoretic framework. The advantage of minimizing a cost function that de

scribes the total performance of the team is that it can provide a better insight 

into performance of the entire team when compared to the individual agent 

performance indices. However, the potential main disadvantage of this for

mulation is clearly the requirement of availability of full information set for 

control design purpose. In the present work this problem is alleviated and 

the imposed information structure of the team is taken into account by using 

an LMI formulation. It is shown that if a cost function describing the total 

performance is minimized, a lower team cost as well as lower individual costs 

may be achieved. A comparative study is performed between the coopera

tive game theory strategy and the semi-decentralized optimal control strategy 

introduced in Chapter 3. This comparison reveals that the former approach 

results in lower individual as well as team cost values as predicted. Moreover, 

the cooperative game theory approach results in a global optimal solution that 

is subject to the imposed communications constraints. 

In the second part, an optimal control design strategy based on state 

decomposition is introduced to guarantee consensus achievement in a network 

of multi-agents. It is shown that the LMI optimization provides more flexibil

ity when compared to the method based on solution of the Riccati equation. 

In other words, the approach based on the solution of the Riccati equation in 

general fails to provide a solution for a stable consensus protocol. Therefore, 

Table 5.3: A comparative study of the consensus reaching time corresponding 
to the two control design strategies in Example 2. 

Control Scheme 
Riccati equation-based 

LMI-based 

Consensus Time 
AS = 0 

1.06s 
0.6s 

AS^O 

0.8s 
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the LMI formulation is used to solve the corresponding optimization problem 

and simultaneously to address the consensus achievement constraint. More

over, using the LMI formulation a controller specific structure based on the 

neighboring sets can be imposed as an additional LMI constraint. Therefore, 

in the individual control design the only required information will be what has 

been received from the corresponding neighbors in the controller's neighboring 

set. 

The solutions obtained in this chapter incorporate all the imposed con

straints and suggest a global optimal (suboptimal) solution. Also, the pro

posed formulations provide a single index for describing and analyzing the 

total performance of the team. These frameworks have sufficient flexibility 

to accommodate additional constraints and design criteria in the proposed 

methodologies and solutions. Moreover, since both game theory and optimal 

control are multi-objective frameworks and with the help of the LMI formula

tion, the proposed methods have the advantage of being capable of addressing 

additional specifications, e.g. limited control input availability, specific control 

structure, and consensus achievement constraint. 
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Monte—Carlo simulation for x—component of vehicles velocity: Leaderless 

(a) 

Monte-Car lo simulation for y -oomponen t of vehicles velocity: Leaderless 
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Figure 5.1: (a) The x-component and (b) the y-component of the average 
velocity profiles that are obtained by applying the semi-decentralized optimal 
control strategy to a team of four agents. 
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Monte-Carlo simulation for x-component of vehicles velocity: Leaderless 
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Figure 5.2: (a) The x-component and (b) the y-component of the average 
velocity profiles that are obtained by applying the cooperative game theory 
strategy to a team of four agents. 
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Figure 5.3: The x-component of the average control efforts that are obtained 
by applying (a) the semi-decentralized optimal control strategy and (b) the 
cooperative game theory approach to a team of four agents. 
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Figure 5.4: a) The ^-component and b) the y-component of the velocity profile; 
optimal design based on the solution of the LMIs when AS ^ 0 in Example 1. 
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Figure 5.5: a) The ^-component and b) the y-component of the velocity profile; 
optimal design based on the solution of the Riccati equation when AS ^ 0 in 
Example 1. 
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Figure 5.6: a) The z-component and b) the ^-component of the velocity profile; 
optimal design based on the solution of the LMIs when AS — 0 in Example 1. 
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Figure 5.7: a) The x-component and b) the ^/-component of the velocity profile; 
optimal design based on the solution of the Riccati equation when AS = 0 in 
Example 1. 
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Figure 5.8: Graph describing the topology of a network of multi-agents 
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Figure 5.9: a) The ^-component and b) the y-component of the velocity profiles 
corresponding to an optimal control design based on the solution of the LMIs 
when AS ^ 0 in Example 2. 
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Figure 5.10: a) The x-component and b) the ^/-component of the velocity 
profiles corresponding to an optimal control design based on the solution of 
the Riccati equation when AS ^ 0 in Example 2. 
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Figure 5.11: a) The x-component and b) the y-component of the velocity 
profiles corresponding to an optimal control design based on the solution of 
the LMIs when AS = 0 in Example 2. 
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Figure 5.12: a) The x-component and b) the y-component of the velocity 
profiles corresponding to an optimal control design based on the solution of 
the Riccati equation when AS = 0 in Example 2. 
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Chapter 6 

Conclusions and future work 

6.1 Conclusions 

The main concentration of this research has been on the coordination and col

laboration in a network of multi-agents. The main focus was on how to design 

a control law to satisfy several goals in a team of agents such as stability of 

the consensus with partial team information and presence of faults or topol

ogy changes. The problem of team collaboration, which was of considerable 

importance, played the key role in the proposed methodologies. The goals in 

this research were to develop innovative and novel concepts, techniques, and 

solutions to meet the stringent requirements that are envisaged for the network 

of unmanned vehicles to be employed in different applications. 

First, I have solved the problem of team cooperation for the LL and the 

MLF structures by using optimal control theory technique based on the solu

tion of HJB equations. The consensus problem is solved for a team of agents 

having a general linear dynamical model characteristics or a point-mass model. 

I have also introduced interaction terms in the dynamical representation of the 
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agents. Stability of the team was guaranteed using modified consensus algo

rithms achieved by minimizing a set of individual cost functions. In another 

approach to find an optimal consensus algorithm, the idea of state decompo

sition was used to reduce the consensus seeking problem into a stabilization 

problem. In another methodology, the game theory was used to formulate 

the consensus seeking problem in a "more" cooperative framework. For this 

purpose a team cost function was denned and a min-max problem was solved 

to obtain a cooperative optimal solution for the consensus seeking problem. It 

was shown that the result obtained by this approach results in a lower cost val

ues when compared to the values obtained by the optimal control technique. In 

this approach and the optimal control approach based on state decomposition, 

linear matrix inequalities were used to impose both the decentralized nature 

of the problem and the consensus constraint on the designed controllers. 

Moreover, I have analyzed the performance of the previously designed 

cooperative team in presence of actuator anomalies for three types of faults. 

It was shown that depending on the fault type, the steady state error of the 

members output may be zero, bounded or time-varying. The steady state 

behavior of the team members was discussed and the final value to which each 

agent converges was predicted for all three types of faults. Also, adaptability 

of team members to these unanticipated situations and circumstances was 

discussed and verified. Later, the assumption of having a fixed and undirected 

network topology was relaxed to reflect a more realistic problem. Therefore, 

I have considered the switching topology for the team and assumed that the 

links among the agents can be bidirectional and weighted as well as time-

varying. Even the leader assignment was assumed to be flexible and time-

varying. It was shown that if the team system matrix corresponding to the 

error dynamics of the team is designed appropriately, a common Lyapunov 
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function can be found for the team. Therefore, the stability and consensus 

achievement of the network with a switching structure and switching leader 

assignment can be guaranteed. For this purpose, some constraints should 

be imposed on the optimal controller coefficients designed initially for the 

fixed network topology. It was shown that by introducing additional criteria, 

the desirable performance specifications of the team can still be ensured and 

guaranteed. As a demonstration of such a criterion, performance-control effort 

tradeoff was considered and analyzed in details. 

As a conclusion, in this research the team cooperation problem was for

mulated in a framework which is broad and flexible enough to address a wide 

range of problems that arise in cooperative control with restricted information 

exchange structures and agents' dynamics while considering all the given lim

iting constraints. This work has provided novel advances and improvements in 

the existing literature on cooperative control toward addressing more realistic 

and challenging problems. 

6.2 Future work 

Some of the future extensions of the present research are as follows: 

• Generalization of the proposed methodologies to heterogenous types of 

agents and investigation of the consensus protocols for the agents with 

nonlinear dynamics. 

• Design of compensating controllers (recovery strategies) that can avoid 

deterioration of the team performance in presence of members' faults. 

• Incorporation of stochastic actuator faults into the proposed framework, 

i.e. fault happening is stochastic in terms of the variation of a. 
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• Introduction of a quantified index to measure the effects of decentraliza

tion of information on the increase of the proposed team cost. In other 

words, to quantify the effects of the connectedness of the information 

graph on the performance of the team. This quantization criterion may 

provide an insight into the tradeoffs that exist between the availability of 

information and the team cost for the proposed methods in this research. 

• Obtaining a solution that ensures the required stability for a general 

switching network structure while the restrictions that are imposed on 

the optimal performance of the controller are minimized. 

• Considering the evolving (dynamic) networks where agents are added or 

removed from the team. 

• Combination of parallel estimation techniques with the common con

sensus protocols. In many applications the agents need to estimate the 

required information due to incomplete measurement, and missed or par

tial information. Hence, either an output of the entire group is available 

and the state vector of the group should be estimated or part of neigh

bors' state is available and the rest should be estimated. Based on this, 

an estimation of the state of the entire group (or some of the agents) 

should be found. An important issue is to find the minimum informa

tion which should be available for each member to be able to estimate 

the required information and remove the disagreement dynamics (ob

servability definition). 

• Considering the effect of noisy communication channels on the proposed 

methodologies. 

• Considering interaction of several teams while some of them act as an 

adversary in an environment with dynamic obstacles and popup threats. 
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Any of the above mentioned directions can be investigated in detail as a chal

lenging research topic which can significantly improve the current results on 

team cooperation and specifically on the consensus seeking problem. 
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Appendix A 

Proofs of the lemmas and 

theorems of Chapter 3 

Proof of Lemma 3.1 

First note that by assuming V1 = \(yl)TKl(t)vl + 71, A* in (3.11) can be 

simplified as: 

A*(t, X\ u1*) =J2(vi~ v'YQ^W ~ vj) + (u{*)ri?uj* 
J€Ni (A 1) 
dVi v-^ •• • dVi K ' 

+ ̂ w + £ ^ ) = -̂ -e>*-) 

Now by replacing V1,^ and u\* according to (3.13), (3.15), and (3.16), 

respectively, we obtain 

- {v'f—v{ - f = Y^ K - vifQ^iv* - vj) 
2 . jeNi (A.2) 

- {vY^-iRT'K'v* + {v'fK1 J ] 2{Ki)'1Qijvj 

j€N* 

By equating the corresponding terms in (vl)Tv\ and v\ the Riccati equa

tion in (3.17) may be obtained. This implies that the HJB equation (3.11) 
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has a solution which satisfies the boundary conditions and so using the results 

presented in [123], it provides the optimal strategy (see [123], page 222). More

over, the resulting Riccati equation in (3.17) has a solution since it describes 

the equation corresponding to the LQR problem in a linear system with the 

pair (A1, Bl) described in (3.14). Due to controllability of this pair the solution 

exists. This completes the proof. • 

Proof of Theorem 3.1 

a) Consensus protocol: Note that in the infinite horizon case, Kl — 

0 and so the differential Riccati equation (3.17) will reduce to an algebraic 

equation given by 

2|WW - IK^R^K1 = 0 =• 2\Ni\{Ki)~1Qij = hlV)-1!? (A.3) 

and consequently for i = 1 , . . . , N, we obtain 

u*(vV) = v? + < = -I(#)-i/rv - ^ * p ) = r v - ^ f fp ) 

(A.4) 

b) and c) By applying the control law (3.18) to the dynamical equations of 

each agent in (2.20), the closed-loop velocity dynamics of the entire team will 

be found as v = L^v, in which 
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Lci — 

r1 

hi r 2 

ki p i 

m1 

INI rN 

hi p i 

r2 

Hj p i 

IN(N-I) 
\NN\ 

pTV 

' IN p i 

hN p2 

pAT 

f = [(v 1 ) T . . . (uJV)T] r, and iy is the ijih element of the Laplacian matrix L. 

For sake of simplicity and without loss of generality, assume that \Nl\ = N,\/i, 

and Rl = R, Qli — Q Mi,j are diagonal PD matrices. Hence, K% = Kj ,\/i,j 

and soLci = ~L®r, where F = P , \/i. It is known from the graph theory that 

matrix L is always PSD and for undirected connected graphs it has a single 

zero eigenvalue associated with a unit eigenvector [11 . . . 1]T. Also, using 

the properties of Riccati equations and given the fact that the pair (Al,Bl) 

defined in (3.14) is reachable and (A\Q,1) is observable, where Q%:> = (£P)Tf2\ 

by putting K* = 0 in (3.17), we conclude that the solution Kl is PD [133]. 

This implies that T is diagonal and Negative Definite (ND). Hence, all 

the eigenvalues of L (g> T are negative except for two (or the size of T) zero 

eigenvalues associated with eigenvectors: w(L <g> T) = 77= [1 1 • • • 1]T <8> w(T), 

i.e. 71 and 72. Here w(T) denotes any eigenvector of matrix T, i.e. w\,W2. 

Therefore due to the symmetry of L <S> T it is Negative Semi-Definite (NSD) 

with distinct eigenvectors [143]. 

Now assume that the matrix A is the similarity transformation matrix 

consisting of all eigenvectors of matrix Lci and define the new state vector to 

be v = A~1v(t). The transformed closed-loop system will be v = Jv, in which 

J is the Jordan form of Lci which is fully diagonal with the first two (or size 
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of T) diagonal elements being zero and the rest being negative. Therefore, 

the final state of the closed-loop system in the Jordan canonical form will be 

u(oo) = ['Oi(O) v2(0) 0 . . . 0]T, and consequently in the original coordinates 

the steady state value of the vector v will be a linear combination of the first 

two eigenvectors of Ld corresponding to the zero eigenvalues, i.e. ti(oo) = 

7i^i(0) +72^2(0). Also, since v(0) — A_1w(0), we will have t>i(0) = j[v(0) 

and 1*2(0) = 7^ (0 ) . Hence 

w(oo) = 7i«i(0) + 72w2(0) = (717^ + 727DU(0) 

AT 

1 1 

1 1 

<g> (wiwf + W2W^))v(Q) 

= [11 . . . 1]T ® (wiw[ + w2wJ)Avg(v(0)) 

In other words, the final state will be a constant vector of the form 

„c\T in which vc is given by (3.20), and this will lead to the con

sensus achievement. Moreover, if the matrix F has the same diagonal entries, 

W\wJ + W2W2 is identity and so the consensus value is Avg(v(0)), i.e. an av

erage consensus is achieved. • 

Proof of Lemma 3.2 

I only prove the leader case and the followers case is similar. Note that 

A1 in (3.22) can be simplified by replacing V1, ul
g* and u}* according to (3.24), 
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(3.25), and (3.27), respectively: 

A1 = ^ (o1 - vifQ^iv1 - v>) + (v1 - v'fTiv1 - vd) - (vY^-iR^K'v1 

jew1 

= - ( « 1 ) T ^ 1 - ( y 1 ) V - 7 1 

by equating the corresponding terms in (w1)3V, and v1, the equations in (3.29) 

and (3.30) can be obtained. • 

Proof of Theorem 3.2 

a) Modified Consensus Protocol. The proof is similar to the proof 

of part a) of Theorem 3.1 and therefore is omitted. 

b) Stability Analysis: To prove this part of the theorem let us first 

illustrate the following fact: 

Fact A . l . For any PD matrix B and matrix A satisfying AT+A < 0 (AT+A ^ 

0), the product C = BA is Hurwitz. 

Proof: We have to show that C satisfies the Lyapunov equation for some 

PD matrices P and Q, i.e. CTP + PC = -Q. Let's take P = B _ 1 . Since B 

is symmetric, we will have CTP + PC = ATBTB~l + B~lBA = A + AT < 0. 

This clearly shows that matrix C is Hurwitz. • 

Let us now assume that the desired leader command vd is time-invariant 

and define the tracking error for each agent as el = vl — vd. The error dynamics 

for the entire team can be found by using the agents' dynamical equations and 

the input commands for the leader and followers as given by (2.20), (3.32), 
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and (3.31), respectively, to obtain e = L^e with 

->cl 

Tl + 31 ii2_ri 

* r > 

I JV 2 ! 1 

\NN\l |JV"| L L 

(A.5) 

where e = [(e1)7" . . . (e^)7]7 , and the rest of parameters are defined as before. 

For sake of simplicity, let us assume that Rl = R, Q%i = Q\fi,j. Hence 

Lcl = -2K~\L ®Q + G) = -2K~\L ®Q + 

0 

Then, L®Q is where K = Diag{K\i = 1 , . . . , TV} and G = 

0 i 0 

PSD with two (or the size of Q) zero eigenvalues associated with the eigenvec

tors: w(L<S)Q) = [11 • • • l]rCg>u>(Q), in which w(Q) denotes any eigenvector of 

the matrix Q. On the other hand, G is PSD because F is PD. Hence, L®Q+G 

is PSD. However, it can be verified that the null-spaces of L <g> Q and G do 

not have an intersection, i.e. {w\w = [w(Q)T w(Q)T ... w(Q)T]T} D {w\w = 

[0 w]T} = {0}, and so L (g> Q + G is PD. Also, based on the discussions in the 

proof of Theorem 3.1, the solution of Riccati equations obtained by setting 

K{ = 0 in (3.28) and K1 = 0 in (3.29) are PD and symmetric, and hence K is 

PD and symmetric. Finally, using Fact A.l, Ld is Hurwitz, and consequently 

the error dynamics is asymptotically stable. • 
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Proof of Lemma 3.3 

For the leader case, A1 in (3.36) can be simplified by replacing V1 ,v}* 

and u\* according to (3.39), (3.40), and (3.42), respectively. By equating the 

corresponding terms in (vl)Tvl, (v1)Tvj, and i;1, equations (3.44) and (3.45) 

may be derived. The follower case is shown along the similar lines. In other 

words, the HJB equations in (3.35)-(3.37) have a solution that satisfies the 

boundary conditions so that by using the results developed in [123], an opti

mal strategy is achieved (see [123], page 222). Moreover, the Riccati equation 

in (3.43) (or (3.44)) has a solution since it describes the equation corresponding 

to an LQR problem for a linear system with a reachable pair (A1, Bl). There

fore, the solution to equation (3.43) (or (3.44)) is guaranteed. This therefore 

completes the proof of this lemma. • 

Proof of Theorem 3.3 

a) Let us first start with the followers case. The leader case may be 

proved in a similar manner. Note that in the infinite horizon case solutions are 

achieved by equating K* = 0, K1 — 0 and g1 = 0 in equations (3.43), (3.44), 

and (3.45), respectively. Consequently, the differential Riccati equation (3.43) 

reduces to the following algebraic equation 

2\Nl\Qij - -KiB^R'y^BYlC + {Ai)TKi + KiAi = 0 => 

-(tfy^BYK* = 2|iV i|(lTJB
i)"1Q i j + (^ J B i ) - 1 ( (A i ) r X i + ICA) 

which after some algebraic manipulations yields 

uim = -2|^V i|(A' iB i)-1Q iJ '(v i - j ' ^ 1 ^) - (K'B^iiA'fK1 + ICA'W 
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b) Let us assume that the desired leader command vd is time-invariant and 

the tracking error for each agent is given by el = vl — vd. Given the definition 

of e, the error dynamics is now derived by using agents dynamical equations, 

the input command for the leader, and the input command for the followers 

as given in (2.21), (3.47), and, (3.46), respectively, according to 

e' = BT^e* Z^v'eAri e -
) - (Kl)-\AlY K\el + vd), i = 2,...,N 

? 1 T ^ 1 / ^ 1 £". e1 = BlT\el - ^ ) + Blalel - (K1)-1 (A1)7'{g1 + K'e1 + K'v*) 

(A.6) 

Hence, the error dynamics for the entire team can be written as e = 

Lde + f(vd, g1), where e = [(el)T ... (eN)T}T, Lcl is given by 

Ld = -K~1{2L ® Qij + ATK + 2G) 

and matrices K, A, G are defined in the statement of Theorem 3.3. f(vd, g1) is 

the part of error dynamics in (A.6) that is a function of vd and g1 which does 

not affect the stability analysis and is given by 

f(v*,g1) = 

-(K1)-1(A1)T{91 + K1vd) 

-{K^-^A^K^' 

-{KN)-\AN)TKNvd 

(A.7) 

Stability of this matrix can be guaranteed only if matrices Qlj,Rl, and 

r are selected properly such that the matrix Lci is Hurwitz. Intuitively, to 

achieve a good tracking of the desired output by the followers, Q^ and T 
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should be selected sufficiently large when compared to Rl. However, in order 

to obtain a formal solution, one method for finding suitable values for Q%:>, Rl, 

and T is to use the LMI technique to ensure stability of the closed-loop system. 

Here, I assume that Qli, Vi,j and R\ i — 2 , . . . , N are predefined and so one 

tries to find R1 and T such that Lct is Hurwitz. For this purpose, let the 

following LMI in variables Y,Kl be satisfied 

T + T T > 0 , T = -KLd = 2L®Qij+ATK + 2G 

As it was discussed previously the pair (A\Bl) used in (2.21) is reach

able, and Q%:> = (fi l) rfi l > 0 may always be selected so that the matrix Ql 

is full rank, and hence the pair (A1,^) will be observable. Therefore, the 

solution of Riccati equations obtained by setting K% — 0 in (3.43) and K1 = 0 

in (3.44), will be PD, leading to K to be also PD. Now by invoking Fact 

A.l, we may conclude that Ld — —K~lrT is Hurwitz. On the other hand, K1 

has to satisfy the Riccati equation (3.44) and therefore this equation should 

be added as a constraint. Hence, the following set of LMIs may be consid

ered in which the unknowns to be determined are the elements Y,Kl, and 

Z1 = -\KlB1{Rl)-1{Bl)TKl, governed by expressions 

f 

T + T r > 0, T = 2L <g> Qtf + ATK + 2G 

< {Al)TKl +K1A1 + Z1+ 2(| JV1 \Qlj + T) = 0, 

T > 0, K1 > 0, Z1 < 0 

and from which r , K \ and Z\ and hence R1 = -i(JB
1) rK1(Z1)-1

JftT1B1 may 

be calculated. 

Note that the matrix Q1-7 is assumed to be predefined and is set equal 

to Qij ,i = 2 , . . . , N. However, Ql:> can also be selected and designed formally 
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by adding it to the set of LMI parameters. • 

Proof of Theorem 3.4 

a) The proof for this part is similar to the proof of part a) of Theorem 

3.3. 

b) , c) We first note that for consensus achievement, one should determine the 

closed-loop dynamics corresponding to the team velocity. Using the results of 

part a) and the combined control law given in (3.53), the dynamics of each 

agent's velocity will be governed by 

= -2(/<: i)-1 |^ i |Qy(v< - je"{v) - (K'y'iAYKV 

Consequently, the closed-loop system team matrix will become 

Lcl = -K-1 (2L <g> Qij + ATK) 

where v = Ldv, v = [(v1)7, (v2)T . . . {vN)T]T, K = Diag{K\ i = l,...,N}, 

and A = Diag{Al, i = 1 , . . . , N}. Now in order to have consensus, Lct should 

be stable and moreover we should have 

Ldw = 0, w = {(vc)T (vcf ... (vc)T}T (A.8) 

which implies that 2L <g> Qljw + ATKw = 0. The first term is always zero 

due to the properties of the Laplacian matrix, i.e. 2L <g) Q^w = 0, and so we 

should have 

ATKw = 0^ (Ai)TKivc = 0 (A.9) 
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Due to the non-singularity of K\ the above expression implies that the 

matrix A1 should be rank deficient, i.e. |(v4*)T| = 0 and vc should be the 

eigenvector of (Al)TKl corresponding to the zero eigenvalue. This means that 

vc should be in the null space of (Al)TKl. 

Moreover, in order to have a stable consensus, Lci = —K~l{2L <g> Qli + 

ATK) should be stable, i.e. all its eigenvalues should be negative except the 

zeros corresponding to the eigenvector w. For this to hold and since K~l is 

PD it suffices to have (2L ® Q« + ATK) + (2L <g> Q« + ATK)T > 0 (see Fact 

A.l). Equivalents, we should have 2L <g> Qij + (2L ® Qij)T + ATK + KA > 0. 

However, 2L^Qlj + (2L<S>Qlj)T > 0 holds by the definition of Laplacian matrix 

and connectivity of the graph. Therefore, it is enough to have ATK + KA > 0 

or (AtfK* + KM j > 0. • 
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Appendix B 

Proofs of the lemmas and 

theorems of Chapter 4 

Proof of Lemma 4.1 

a, b) Here, I only discuss the followers failure. It should be noted that 

with a minor modification the proof presented here can accommodate LOE 

faults in the leader as well. 

Based on the discussions given in the proof of Theorem 3.2, the error 

dynamics closed-loop matrix Lci can be written as 

Ld = -2K-\L ®Q + G) = -2K-\L ®Q + 

0 

) (B.l) 

When an LOE fault is injected in some followers the closed-loop dynamics 
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of the system is governed by (4.2), with the closed-loop matrix given as 

Lf = 

Ln J\2 

-2If 

aL2\ : aL22 

— i \ (Kn1) 

= IfLd = -2IfK-\L ® Q + G) = 

: 0„ m(N—q)xm(N-q) • yjm{N—q)xmq 

"mqxm(N-q) • 1-^22 Jmqxrnq 

( L n + G n ) i (I12 + G12) 

x (B.2) 

(L21 + G21) : (L22 + G22) 

where K^,Lij,Gij denote the partitions of matrices K~l, L <g> Q, and G, 

respectively which correspond to the faulty and healthy agents dynamics. If 

is defined as 

Ir = 

lm(N-q)xm(N-q) • 0. m(N—q)xmq 

0 mqxm(N—q) '• Ol-lmqx mqxmq 

(B.3) 

This matrix is PD and diagonal for 0 < a < 1, and therefore IfK~x is 

also PD. In addition, L<g>Q + G can be shown to be a PD matrix. Hence, by 

invoking Fact A.l, it can be seen that L/ is asymptotically stable, and con

sequently the error asymptotically approaches to zero. This implies that the 

consensus achievement is guaranteed and all the agents' output will converge 

to the command provided by the leader. • 

211 



Proof of Lemma 4.2 

a) As discussed previously, the error dynamics closed-loop matrix Lci 

can be written as 

Ld = -2K-l(L®Q + G) 

In case of faults in some followers the closed-loop dynamics will be governed 

by (4.3), where the closed-loop matrix can be written as 

Lt = 

Ln L 12 

= IfLcl = -2IfK~\L ®Q + G) = 

- 2 1 f 

^mqxm(N—q) • "mqxmq 

V*M1 )m(N—q)xm(N-q) '• ^m(N-q)xmq 

Vmqxm(N-q) • I-"-22 Jmqxmq 

( l a i + G i i ) : (-I12 + G12) 

(Z/21 + G21) : (L22 + G22) 

\Lll)m{N-q)xm{N-q) '• \Li2)m(N-q)xmq 

Vmqxm(N-q) '• U m q X mqxmq 

(B.4) 

where A^-1, Ly, Gy- denote the corresponding partitions of matrices K J, L <g> 

Q, and G, respectively, which correspond to the faulty and healthy agents 
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dynamics. / / is defined as follows 

I m(N-q)xm(N-q) : 0 m(N—q)xmq 

Vmqxm(N-q) • ^mqxmq 

(B.5) 

This matrix is PSD and so IfK'1 is PSD. Also, L <g> Q + G is shown to 

be a PD matrix. Hence, by invoking Fact A.l, it can be seen that Lf will be 

stable and so the error remains bounded. 

b) It can be readily verified that the eigenvalues of Lf, consist of eigen

values of matrix Ln and mq zeros. Using (B.4), Ln can be written as 

I/ii = —2K^{Li\-\-G\i) and due to the positive definiteness of L®Q + G and 

K'1, Ln + Gn and K^1 are both PD, and therefore Ln is Hurwitz (see Fact 

A.l). Hence, its eigenvalues are all negative and therefore the only zero eigen

values of Lf are due to the zero rows of matrix Lf. Moreover, the eigenvectors 

of Lf correspond to zero eigenvalues, i.e. w(Lf) are as follows 

w(Lf) E {w\w e iVitZZ{[Ln : L12]}} (B.6) 

which provides mq distinct eigenvectors corresponding to zero eigenvalues. 

This is due to the fact that the rows of matrix [Ln I Li2] are linearly indepen

dent (Lci is full rank) and so the rank of Null{[Ln : Li2]} is mq, which can 

provide mq independent eigenvectors for Lf corresponding to zero eigenvalues. 

This results in diagonal Jordan blocks corresponding to zero eigenvalues, and 

hence the final value of the error vector will be a linear combination of these 
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eigenvectors and therefore is in the Null{[Ln : Z/12]}, i-e. 

ess G {w\w = [w[ wl\T e Null{[Ln : L12}}} => 

[Lu : Li2]ess = Luewss + L^fss = 0 => e^ss = —Ln L^e-fss = — ^ n L\2e 

= ^ ^ss — 

- ^ 12 

' mq X mq 

(B.7) 

Proof of Lemma 4.3 

a, b) In case of leader fault, the closed-loop dynamics will be governed 

by (4.5) and the closed-loop matrix can be written as: 

Lt = 

"rnxm '• ^mx(N—l)rl 

Z/01 : L 21 • -^22 

= IjLd = -2IfK~l(L <g> Q + G) = 

1 
2K-\{InL)®Q) = —{IffL)®r 

'• Om x(AT-l)r 

(B.8) 

mxm (L22) (N-l)mx(N-l)r, 

where P is defined as in (3.33), and If and Iff are defined as follows: 

h = 

0 mxm(JV-l) 

Om(iV-l)xm : Im(N-l)xm(N-l) 

> ' / / = 

: Oi x (Ar- l ) 

0(JV-l)xl : I(N-l)x(N-l) 

(B.9) 
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It can be shown that multiplying the Laplacian matrix by any matrix of 

kind / / / will not change the spectrum of the Laplacian matrix [120]. Namely, it 

will have the same number of zero eigenvalues (the same inertia). Moreover, it 

is known from graph theory that L is always PSD and for undirected connected 

graphs it has a single zero eigenvalue associated with a unit eigenvector, i.e.: 

[11 . . . 1}T. This implies that IfjL has one zero eigenvalue and N — 1 positive 

eigenvalues. Also, without loss of generality assume that both Q%i and Rl are 

diagonal. On the other hand, using properties of Riccati equations and due 

to the observability and reachability conditions, the solution of the Riccati 

equation, K\ obtained by putting K* = 0 in (3.28) will be diagonal and PD 

(see [133]). This implies that Tl is diagonal and negative definite. 

Using properties of Kronecker product, all the eigenvalues of (IffL) ® Tl 

are negative except for two (or the size of Tl) zero eigenvalues associated with 

distinct eigenvectors: -T*[1 1 • •. 1]T <8> w(Tl). Here w(Tl) denotes any eigen

vector of matrix T\ Hence, (IffL)®ri is stable. Now, using similar discussion 

as in the proof of Lemma 4.2, ess will be in the Null{[Li2\ '• £22]} which has 

rank m (here 2). It can be seen that any element in this space is of the form 

{(ef)T (eff . . . (ef)Tf, i.e. ess = [(e ' ) r (e ' )T • • • (e ' )T]T • 

Proof of Theorem 4.2 

Leader Adaptability: Without loss of generality, assume that m = 

1 or e/ (e^) is a scalar and q = 1, i.e. single input-single output sub

systems. In order to show that e1 • e^ > 0, it is sufficient to show that 

[ef 0 . . . 0]ix(jv-i)ewss > 0, where ewss is the steady state value of vector ew. 

In the following we try to simplify this condition as much as possible to finally 
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verify its correctness. Using (4.4) this condition reduces to 

[ef 0 ... 0}lx(N_1)ewss > 0 <- - (e / ) 2 [ l 0 . . . OjL^L^ > 0 
(B.10) 

<-• [1 0 . . . Q]L^L12 < 0 

Also, based on the definition of Ld given in (4.1), / / given in (B.5) and 

Lf given in (B.4), we have 

Lf[l 1 ... 1}JXN = IfLd[l 1 ... 1}JXN = [/310 ... 0}JxN ~ 

M H - l ] ^ ^ + L12 = [P1 0 . . . O f f ^ D ~ 

L12 = - L n [ l l . . . l f + f/^O . . . 0]T 

By replacing this value for L12 in (B.10) and given that (31 < 0, we get 

[ 1 0 . . . 0]Lri%2 = [ 1 0 . . . OjL^iP1 0 . . . Of - 1 < 0 <-> £,^(1,1) > - 1 

(B.ll) 

where L^(i,j) is the y t h element of the matrix L^1. Now, in order to show 

that (B.ll) is satisfied we can use the properties of inverse of a matrix to 

describe this element as 

L r / ( i , i ) = C l 1 C l 

det{Ln) L u ( l , l )Cu + ... + Ln(l,N- l)Ci(JV-i) 

C11 C11 
(r1 + /?i)Cn + . . . + L n ( l , iV - l)C1(Ar-i) /?iCn + det(-2K^Ln) 

where Ln(i,j) is the ijth element of the matrix Ln and Cy stands for the 

ijth cofactor of Ln. K^1,!,^ denote the corresponding partitions of matri

ces K~x, L ® Q, respectively, which correspond to the faulty and healthy 

agents dynamics. T1,/?1 are defined in (4.1). Without loss of any generality, 
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assume that N, i.e. the total number of agents, is an odd number. Simi

lar reasoning may be used for an even N. Since Ln is (N — 1) x (N — 1), 

iV — 1 is even, and both K^ and Ln + G\\ are PD matrices and N — 1 

is even, then the determinant of the matrix L\\ = — 2K^(Ln + Gii) is 

a positive number. Hence, (3lCu + det(—2A'f1
1L11) is positive. Similarly, 

det(—2K^1
1Ln) is also positive, since both K^1 and Lu are PD matrices. 

Therefore, (3lCn + det(-2K^Ln) > pCn and so 01Cll+^K-iLll) < 1 or 

equivalently t tr-W^L ^ > F"' ^ ^ e c o r r e c ' t n e s s °f this inequality guar

antees that the initial inequality, i.e. e1 • ef > 0, is true. This completes the 

proof of this part. 

Followers Adaptability: In order to show that ek • e* > 0, k = 

2 , . . . , AT it is sufficient to show that [0 . . . (ef)k •... 0}ew > 0. Using (4.4) 

this condition reduces to 

- ( e ' ) 2 [0 . . . (l)fc . . . 0]L^L12 > 0 - [0 . . . (l)fc . . . 0]Lr1
1L12<0 

(B.12) 

Similar to the leader's case we have 

L12 = -Lu[ll . . . lf + iP'O . . . 0 ] r 

By replacing the above value for L12 in (B.12) and given that (51 < 0, 

we obtain 

[0 . . . (l)fc . . . 0]L^L12 = [0 . . . (l)fc . . . Q]L^ x [/51 0 . . . 0]T - l < 0 
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By using the properties of an inverse of a matrix we have 

L'Uk 1) = °lk = — • 
11 v ' ; det(Ln) L 1 1 ( l , l )C 1 1 +L 1 1 ( l ,2)C 1 2 + . . .+L 1 1 ( l , iV- l )C 1 ( A r _ 1 ) 

(r1 + /?i)Cn + ... + Ln(l,N- l)Ci(JV-D PCXI + det(-2K^Lu) P1 

(B.13) 

where Cy, K{^, Ln, T1, (31 are denned as before. As was discussed in the 

first part of the proof both ftlC\\ + det{—2K^Lii) and det(—2K^Ln) are 

positive. On the other hand, p1Cn is a function of T and can take on arbi

trary large values regardless of the magnitude of det(—2K^Lu). Therefore, 

in order to maintain the two conditions det(—2K^Ln) > 0 and PxCu + 

det(—2K^L\i) > 0, the term fixC\\ has to be positive, and therefore C\\ 

should be negative. 

Now, in order to prove that (B.13) holds and given that /51 < 0, we 

should show the following inequality 

(3lClk < (3lCn + det{-2K^Ln) 

For this to hold it suffices to have P1C\k < (3lCn. Since, Cn < 0, if we can 

show that |Cifc| < |Cn|, then (B.13) will be guaranteed. In the following we 

show this property. 

First, note that for any k > 1, we have the following property 

Clk(Ln) = Clk(-2K^(Ln + Gn)) = Clk(-2K^Ln) (B.14) 

The last equality holds as a result of the definition of matrix Gn. Also, 

Clk(-2K^Ln) = (-l)1+kMlk(-2K^Ln). However, Mlk{~2K^Ln) is 
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equal to the 2 x 2 minor of matrix L = —2K~l(L ® Q), resulting from the 

deletion of rows 1, N and columns k, N. Similarly M\\{—2K^Ln) is the 2 x 2 

minor resulting from the deletion of rows and columns 1,N oi matrix L. In 

other words, 

Mlk(-2K^Ln) = det(L(l, N\k, TV)) and Mn{-2K^Ln) = det(L(l,N\l, N)). 

Also, — L can be considered as the Laplacian matrix of a weighted graph. 

Therefore, based on the assumption that the information structure is described 

by a tree-like graph, the result of Theorem 4.1 may be used. For the general 

proof when the graph consists of some cycles, the general form of the matrix 

tree theorem presented in [144] should be used. Using Theorem 4.1, we may 

describe \det(L(l,N\l,N))\ and \det(L(l,N\k,N))\ as follows 

\det(L{l,N\l,N))\ = length(P(vuvN) n P(v!,vN)) = length(P(vi,vN)), 

\det(L(l,N\k,N))\ = length(P(v!,vN) n P(vk,vN)) 

(B.15) 

The second path is the intersection of two paths P(VI,VN) and P(vk,VN) 

which is obviously a subset of P(VI,VN) and so its length is smaller. Hence, 

\det(L(l,N\k,N))\ is smaller than \det(L(l,N\l,N))\. This in turn means 

that |Cifc| < |Cn|. • 

Proof of Lemma 4.4 

When an LIP fault occurs, the dynamics of the faulty and healthy agents 

in the team are governed by the following equations 

et = uc =$• et = uct — uctf + e* 
' ; } (B.16) 

ew = Lnew + Li2ef = Lnew + Li2{uct - uctf + ef) 
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Therefore, ew can be obtained as 

ew{t) = eLl1 (*"*/)ew(tf) + / eL^-T)
 L12{UCT - uctf + ef)dr 

J*f 

= e^^e^tf) - [e^'-^LrfLuiucT - uctf + e') + e ^ ^ ^ ^ L ^ L ^ ^ ] ! 

= e^-^le^tf) + L^L12e
f - L^L12uc] - [L^L12e

f + L^L12ue] 

- L\x L12uct + L^L12uctf 

(B.17) 

Similar to the discussion that is presented in the proof of Lemma 4.2, it 

can be shown that L\\ is Hurwitz. Therefore, in steady state the effects of the 

first term in the above expression vanishes asymptotically, since eLll^~*^^ —> 0 

as t —• oo. Therefore, the dominant solution of ew(t) as t —> oo is governed 

by 

ew(t) -> -[L^L12e
f + L^Ll2uc\ - L^Ll2uct + L^L12uctf (B.18) 

and therefore ess converges to the value that is given in (4.10). Obviously, the 

error dynamics is not stable in this case. • 

Proof of Lemma 4.5 

According to the discussion given in Subsection 4.1.3, the error dynamics 

for the entire team can be written as e = Lde + f(vd, g1), where Lci is defined 

as 

Ld = -K~1(2L O Q« + ATK + 2G) = -K^T (B.19) 

and K, A, G, T, f(vd,gl) are defined as before. When an LIP fault occurs 
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in a follower, the closed-loop dynamics is then governed by 

e = 
ef 

(Ln)m{N-l)xm(,N-l) '• (£l2)m(JV-l)xr 

0, 'mxm(JV-l) A* 

e + 
Afvd + Bfuc 

(B.20) 

The above dynamical system is stable if both matrices Lu and A? are stable. 

The latter is true by assumption and the former can be shown as follows. 

Towards this end, we should note that Lu can be written as follows 

Lu — —Kn T n (B.21) 

where i f ^ Y y denote the corresponding partitions of matrices K~l, Y, re

spectively, which correspond to the faulty and healthy agents dynamics. Now, 

from Theorem 3.3 we know that Y + YT > 0, and therefore its partition T n 

enjoys the same property, i.e. T n + Tn > 0. This is due to the fact that 

Yn + T ^ is a principal minor of T + T T and since T + T r is PD, any of its 

principal minors is also PD. Moreover, K^ is PD for similar reason. Now, 

invoking Fact A.l, we can conclude that Lu is stable. Hence, the entire error 

dynamics is stable. Given that As is Hurwitz, (A*)~l is defined and hence in 

the steady state we have 

e, = Af(ef + vd) + B*uc = 0 => (ef)ss = -(A^B^Uc - vd 

ew = Lnew + L12ef + f\{vd,gl) =• 

(ew)ss = L^[Ll2({Af)-^B!uc + vd) - h{vd,g1)} 

(B.22) 

This completes the proof of this lemma. 
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Proof of Lemma 4.6 

Since the normalized adjacency matrix, A, is nonnegative by its defini

tion, it will satisfy all the properties that are stated in the Perron-Frobenius 

Theorem for nonnegative matrices. In other words, it has an algebraically 

simple eigenvalue which is equal to the spectral radius p(A) and the corre

sponding eigenvector is a positive vector. Also, from graph theory and using 

Perron-Frobenius Theorem, we know that p( A) = 1 for a normalized adjacency 

matrix. Hence, 1 is an eigenvalue of A and the corresponding eigenvector will 

have positive entries. This applies to both the right and the left eigenvectors of 

A. Using the relationship between the normalized Laplacian matrix L and the 

normalized adjacency matrix A [118], that is L = I — A, the zero eigenvalue of 

L corresponds to the 1 eigenvalue of A, and the corresponding left and right 

eigenvectors of L are the same as those of A. The right eigenvector is 1 but 

the left eigenvector is not 1 for directed graphs in general, unless they are 

balanced. However, this vector has entries with the same sign. This completes 

the proof. • 

Proof of Theorem 4.3 

First, we should show that if the control laws defined in (3.31)-(3.33) 

are modified according to the switching control laws given in (4.21)-(4.23), 

the matrix Za can be transformed into a balanced matrix. Then, we will use 

this property to find a common Lyapunov function for the overall switching 

system. Using the results that are obtained in Lemma 3.2, we know that 

the following relationships hold between Kl {Kl
c) and Q^ (Ql

a) for an infinite 
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horizon problem 

2\N{\Qij - ^K'ilV)-1!? = 0, i = 2,...,N, 
2 (B.23) 

2{\N1\Qlj + T)--K1{R1)-1K1=0 

For sake of notational simplicity let us assume that all the design para

meter matrices are diagonal as follows 

Qij = jl, # = rlI, T = 7 / (B.24) 

where q\rl, and 7 are positive scalars. Then the solutions to (B.23) are given 

by 

IC = 2^/\N^q1?I, i = 2,...,N, 
(B.25) 

K1 = 2 x / ( | i V 1 k 1 + 7 ) ^ 

We have seen in Section 4.2.1 that in order to make the matrix La bal

anced, equation (4.20) should be satisfied. This implies that the optimal de

sign parameters Qt:>(Ql
a), R

l(Rl
C7), and T(TC) should be selected appropriately 

so that (4.20) is guaranteed. 

Let us denote the ith element of the vector u>a as pj)(T. Using the definition 

of \ia given in (4.19), we should have 

\2%/(|N1 |g1+7)ri 2v/|iV2|92r2 • • • 2y/\NN\qNr" J " V " ' 

= K P\,a P2,a • • • PN,a ® J « 
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Therefore, the following relationships should be satisfied 

«p1)ff = ' ' ; = = , «pii<r = ' * , ,, z = 2 , . . . , JV B.27 

In the first equation of (B.27), p1](r and |JV11 are given and K, q1, r 1 , 7 are 

parameters to be selected. Similarly, in the second equation of (B.27), K,,ql,rl 

are to be selected. It is assumed that rl and 7 are set to fixed values and one 

then tries to find q% that satisfies the above equations. Design of K is discussed 

in Subsection 4.2.2. Therefore, the following equations in terms of ql should 

be satisfied 

L/VM 

It is not difficult to show that the first equation in (B.28) always has 

a positive solution q1 = ?£\f (/tpi^r1 + ^/(Kpi^r1)2 + qr1). Also, from the 

second equation of (B.28), it is obvious that ql, i = 2 , . . . , N is always positive. 

It should be noted that for the above results to hold one should ensure a 

property in the left null space of LCT. Namely, due to the positive definiteness of 

(Kp^Qpla, all the elements of the vector iia are of the same sign, i.e. positive, 

which implies that the null space of La should also enjoy this property. This 

can be shown by using the results that are provided in Lemma 4.6. 

We are now in a position to use the above relationships to determine the 

switching control law. From Lemma 3.2, the control inputs can be calculated 

by using (3.31)-(3.33). By replacing qi from (B.28), and Kl from (B.25) we 
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obtain 

r = —2 , In = — 2KOI aIn, 

•2y/(\W\qi+iy ^ 

r*= îjwm1'-=~2K"i-1- '=2--'N <B'29> 

where pj;(r is found from the Laplacian matrix of the network at each switching 

stage. The control laws provided in (4.21)-(4.23) with parameters as in (B.29), 

guarantee that 1T <g> /„ is in the left null space of Lc and therefore La is the 

Laplacian of a balanced graph. 

Now, to show the stability of the closed-loop switching system we should 

select a common Lyapunov function candidate which is valid for all the switch

ing states. Let us select the Lyapunov function candidate as V = | e T e . Its 

time derivative along the trajectories of (4.25) is given by V = \eT(Lcit(J + 

L%l(r)e = —eT(L(7 + LT
a + K~lGc + GT

0K~x)e. Based on the previous discus

sions La = K^QfjLv (g) In can be considered as the Laplacian matrix of a 

weighted balanced graph, and by using the results provided in [13], La + L% is 

also a valid Laplacian matrix representing an undirected (due to its symmetry) 

and connected graph. Hence, it is a PSD matrix. Moreover, the second term, 

i.e. K~lGa is a diagonal matrix with one non-zero element and so is PSD. 

Hence, La^ + L^ a is at least NSD. Also, similar to the discussion given in the 

proof of Theorem 3.2, the null spaces of the two matrices La + LT
a and K~lGa 

do not have any common intersection, and hence their summation is a PD 

matrix and so V < 0. Consequently, we can guarantee consensus achievement 

and therefore the proof is complete. • 

225 



Remark B. l . For evaluating the control laws (4.21) and (4.22) at each switch

ing interval, each agent is required to compute an eigenvector of the network 

Laplacian matrix. In other words, the Laplacian matrix should be known to 

all the agents, which is guaranteed by Assumption 4.1. 

Proof of Lemma 4.7 

Similar to the proof of Theorem 4.3, and without loss of generality, as

sume that all the matrices involved are diagonal matrices. For the followers' 

case, we will then have ^ f f / =$ = 4 ( ^i [ ) 2 > m, i = 2,...,N, and given 

that Vi, Pi a + 0 (Lemma 4.6), we have K2 > ^ - v - ^ l f l ) . On the other 

hand for the leader agent, we have the following relationship 

to satisfy the condition ^ > mi, it is sufficient to select K so that K2 > m^ \ 

Consequently, K should satisfy the following inequality, namely 

^ > i m a x { ! ^ , m ^ = v ^ ( 7 f ; i ) } (B.3i) 
4 p\a mmi=2_N (pla) 
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Appendix C 

Proofs of the lemmas and 

theorems of Chapter 5 

Proof of Theorem 5.1: 

(a) Follows from the constructive results that are derived in Subsections 

5.1.2 and 5.1.3. 

(b) For stability analysis of the closed-loop system we should note that 

Condition 3 in (5.10) guarantees that matrix P has at least the same zeros 

as the Laplacian matrix of the information graph, L(i.e. it may have more 

zeros, too). Also, since both B and R are block diagonal matrices, the term 

BR~1BTP has at least the same zero elements as L. Also, based on its def

inition as given in (2.8), matrix A has this property, as well. Therefore, the 

closed-loop matrix Ac has a structure similar to Laplacian of a subgraph of the 

original graph but this subgraph may not be in general a connected one (due 

to the extra zero entries that may appear in Ac). However, condition given in 

(5.11) guarantees that Ac does not have any other zero besides the ones that 

exist in the Laplacian matrix of one of the connected subgraphs of the original 

graph. Therefore, Ac has the minimum required non-zero elements to describe 
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the Laplacian matrix of a "strongly connected" graph. Moreover, since Ac has 

the "structure" of a Laplacian matrix and it also satisfies condition 2 in (5.10), 

it is in fact the Laplacian matrix of a weighted and strongly connected graph. 

Prom the graph theory, and in particular as shown in [13], it is known that 

the Laplacian matrix of any strongly connected graph has one and only one 

zero eigenvalue and N — 1 negative eigenvalues [118]. Therefore, it is a stable 

matrix with one zero eigenvalue. 

(c) Assume that P is obtained from the optimization problem (5.10). 

Then we have, 

fT d fT 

/ — (XTPX)dt= / [(AX + BU)TPX + XTP(AX + BU)]dt 
Jo dt Jo (C.l) 

= XT(T)PX(T) - XT(0)PX(0) 

so that we have 

/ [(AX+BU)TPX+XTP(AX+BU)}dt+XT(0)PX(0)-XT{T)PX(T) = 0 
Jo 

(C.2) 

By adding the above expression to the cost function (5.1) we get 

Jc= f [XTQX + UTRU + (AX + BU)TPX + XTP(AX + BU)}dt 
Jo 

+ XT(0)PX(0) - XT(T)PX(T) 
T (C3) 

= / [XT{Q + ATP + PA)X + UTRU + UTBTPX + XTPBU]dt 
Jo 

+ XT (0) PX (0) - XT (T) PX (T) 

Since P is a solution to (5.10), it satisfies (5.5) as well and therefore one 

gets 

PA + ATP-PBR-1BTP + Q>0 (C.4) 
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Hence, 

Jc> ( [XT(PBR'1BTP)X + UTRU + UTBTPX + XTPBU}dt 
Jo 

+ XT(0)PX (0) - XT(T)PX(T) 
(C.5) 

[(U + R~1BTPX)TR(U + R-1BTPX)]dt 

+ XT{0)PX(0) - XT(T)PX(T) 

In order to minimize the integral part of the above cost function one may select 

the control input as U* — —R~1BTPX, which is already satisfied due to the 

definition of the control law. 

Moreover, since P is obtained through the optimization problem (5.10), 

then it is guaranteed that in steady state, consensus will be achieved. In other 

words, if we assume that T is large enough (or T —> oo) to let the system 

obtain a steady state, then X(T) = £[11 . . . 1]T. Correspondingly, it can 

be shown that XT(T)PX(T) = £2 £ \ J2j P{iJ), w here P(i,j) represents the 

ijth entry of the matrix P. Therefore, when T —• oo the optimal cost has a 

lower bound that is given by 

r* > XT(O)PX(O) - e £ £ p(i, j) (c.6) 

Therefore, XT{0)PX(0) - £2 Yli E j p(^ J) i s t h e finite infimum of Jc. • 

Proof of Lemma 5.2 

An optimal stabilizing solution for the minimization problem (5.27), 

or (5.35), exists if the pair (A, B) is stabilizable and the pair (A,Q) (or 

(A, Q), Q — Q,n*) is detectable [145]. Each of these conditions can be checked 

through an LMI [121]: 
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1. (A, B) stabilizable <̂> APX + PXA* < BB* has a PD solution for Px. 

2. (A,Q) detectable o A*PX + PXA < Q has a PD solution for Px. 

Let us define a new variable P2 > 0 such that: 

P2 = SS*P2SS* + SS*P2SS* (C.7) 

An example of such a matrix can be in the following form: 

P2 = [S S] 
Pi 0 

0 Mi 

s* 
s* 

, Mi > 0 (C.8) 

Now we have P2S = SPi. Using the definition of matrices A, B, the fol

lowing conditions should be satisfied to verify stabilizability and detectability 

conditions: 

(C.9) 

1. APX + PiA* < BB* «• S*ASPi + PiS*A*S < S*BB*S «• 

S*(AP2 + P2A*)S < S*BB*S & S*(AP2 + P2A* - BB*)S < 0 

2. PXA + A*Pi < Q «• P^AS + S*A*SP1 < S*QS <* 

S*(P2A + A*P2)S < S*QS & S*(P2A + A*P2 - Q)S < 0 

which are the same conditions as the ones given in (5.36) and (5.37). • 

Proof of Theorem 5.2 

a. First, note that from the previous discussions we have P _ 1 = S*ZS. 

Since rank(S) = Nn — 1 and Z > 0 we have S*ZS > 0, and hence P = 

(S*ZS)~\ Therefore: 

min trace(P) = min trace((S* ZS) ) (CIO) 
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This in turn can be written equivalently by introducing an auxiliary 

variable V such that [127]: 

mintrace(r) s.t. 
r i 
i s*zs 

> 0 (C.ll) 

which is the first condition to be considered. Moreover, by twice applying 

the Schur complement to (5.33) the second inequality follows. Furthermore, 

by using the definition of matrix Z [39], it can be shown that Condition 3 

is equivalent to the consensus constraint given in (5.15). Finally, the last 

condition is an assumption on the structure of the new variable Z which has 

already been discussed. 

In summary, the minimization formulation, together with the first two 

inequalities in (5.38) and Condition 4 are used to design an optimal stabilizing 

controller for system (5.17) as was discussed previously. The third equality is 

used to guarantee that consensus is achieved. 

b . The matrix K = WZ'1 will have the same structure as W if Z is 

selected to be diagonal [39]. Therefore, we may transform any required con

straint on the control gain matrix to that of the matrix W by considering Z to 

be diagonal. Therefore, if the individual controllers are to be designed based 

on information received from the neighbors of each agent, the structure for 

W may be chosen as the Laplacian matrix, so that the members information 

in the neighboring sets are sufficient for design of each agent's control signal. • 

Proof of Lemma 5.3 

Based on the definition of matrices A, B given in (2.8) and the restriction 

on the structure of K as provided in Theorem 5.2, the matrix A + BK has a 

structure similar to that of the Laplacian matrix of the entire network, with the 
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possibility of some additional zero elements. This matrix should also satisfy 

the condition in (5.15) and so it can be considered as a Laplacian matrix [118]. 

Moreover, the graph corresponding to this matrix has at most the same edges 

as the graph of the entire network. Therefore, it represents a subgraph of the 

network graph with different edges' weights. • 

Proof of Theorem 5.3 

a) As was discussed in Subsection 5.2.1, two conditions should be sat

isfied to guarantee consensus achievement. One of these conditions is (5.15) 

and the other one is the design of matrix K to assure that the system in (5.17) 

is asymptotically stable. In the following, we show that connectedness of the 

network underlying graph is necessary for satisfying the latter condition. 

To satisfy the asymptotic stability condition, the matrix S* (A + BK)S in 

(5.17) should be Hurwitz. In other words, it should have no zero eigenvalue. 

Now, we show that this is violated if the network graph is not connected. 

Based on its definition, matrix S;vnx(JVn-i) consists of Nn — 1 independent 

column vectors. Denote these vectors by Si,..., 5jvn-i, i-e. 

S = [Si, S2, . . . , SjVn-i] (C.12) 

Then, we will have 

S*{A + BK)S=[Si, S2, ...,SNn„i}*(A + BK)[Si, S2, ...,SNn-i} = 

S*i(A + BK)Si ... Sl(A + BK)SNn-i 

(A + BK)Si ... ^ ^ ( A + M ) ^ - ! 

(C.13) 
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Now, we assume that the network underlying graph is not connected. 

Then, the Laplacian matrix of the graph, L may have more than one zero 

eigenvalue. Correspondingly, A + BK represents a disconnected graph and 

therefore has more than one zero eigenvalue. Hence, A+BK has an eigenvector 

corresponding to one of its zero eigenvalues which is not necessarily in the S 

subspace. Let us denote this eigenvector by w, i.e. (A + BK)w = 0. This 

vector in general may have components in both subspaces S and S, i.e. 

w = aiSi + a2S2 + ... + cnNn-i)SNn-i +lS (C14) 

with at least one nonzero Qj. NOW, assume that a i is nonzero and since 

(A + BK)S = 0 and (A + BK)w = 0we will have 

{A + BK)(anSi + a2S2 + ...+ aNn-iSNn-i + 7 S) = 0 => 

(A + BK)(a1S1+a2S2 + ...+ 

(A + BK)Sl = —(-a2(A + BK)S2 - . . . - aNn.Y{A + BK)SNn^) => 
Oil 

' S\{A + BK)SX = ±(-a2St(A + BK)S2 - . . . - aNn^S{{A + BK)SNn-i) 

S*2{A + BK)SX = ±{-a2S*2{A + BK)S2 - . . . - aNn^S*2{A + BK)SNn^) 

S^M + B^S^ 

k £ ( - a 2 S £ n - i ( 4 + BK)S2 - . . . - aNn-iSlf^A + BK)SNn-!) 

(C.15) 

If at least one of ttj's besides a,\ is nonzero then from the above equations 

we can conclude that at least one column of matrix S*(A + BK)S can be 

written as a linear combination of other columns, i.e. S* (A + BK)S is rank 

deficient and so has a zero eigenvalue. This is contradictory with asymptotic 

stability condition of system (5.17). On the other hand, if all a^'s are zero 
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except ai then w = aiS\ + 7S. 

Therefore, (A + BK)^^ + jS) = 0 and so (A + BK)SX = 0. This 

means that the first column of matrix S* (A + BK)S is zero which results in 

singularity of this matrix. Therefore, we may conclude that if the underlying 

graph is not connected, the asymptotic stability of system (5.17) cannot be 

guaranteed. This implies that consensus achievement cannot be guaranteed. 

In other words connectivity of the underlying network graph is a necessary 

condition for consensus achievement. 

b) We have previously shown that A + BK should have the same struc

ture as the L matrix with some possible additional zero elements. Therefore, 

it describes a subgraph of the original graph. On the other hand, based on 

the discussions in the previous part in order to guarantee consensus, A + BK 

should describe the Laplacian of a connected graph. This means that if a ma

trix K satisfies the LMI conditions provided in (5.38), then the additional zero 

elements are such that A + BK represents a connected network. Therefore, 

A+BK describes the Laplacian matrix of a connected subgraph of the original 

connected network underlying graph. • 
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