
NOTE TO USERS

This reproduction is the best copy available.

UMf

DISTRIBUTED AUTHORIZATION IN LOOSELY

COUPLED DATA FEDERATION

W E I LI

A THESIS

IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

FEBRUARY 2009

© W E I LI , 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63200-0
Our file Notre reference
ISBN: 978-0-494-63200-0

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

ABSTRACT

Distributed Authorization in Loosely Coupled Data Federation

Wei Li

The underlying data model of many integrated information systems is a collection of inter

operable and autonomous database systems, namely, a loosely coupled data federation. A

challenging security issue in designing such a data federation is to ensure the integrity and

confidentiality of data stored in remote databases through distributed authorization of users.

Existing solutions in centralized databases are not directly applicable here due to the lack of

a centralized authority, and most solutions designed for outsourced databases cannot easily

support frequent updates essential to a data federation. In this thesis, we provide a solution

in three steps. First, we devise an architecture to support fully distributed, fine-grained,

and data-dependent authorization in loosely coupled data federations. For this purpose,

we adapt the integrity-lock architecture originally designed for multilevel secure databases

to data federations. Second, we propose an integrity mechanism to detect, localize, and

verify updates of data stored in remote databases while reducing communication overhead

and limiting the impact of unauthorized updates. We realize the mechanism as a three-

stage procedure based on a grid of Merkle Hash Trees built on relational tables. Third,

we present a confidentiality mechanism to control remote users' accesses to sensitive data

iii

while allowing authorization policies to be frequently updated. We achieve this objective

through a new over-encryption scheme based on secret sharing. Finally, we evaluate the

proposed architecture and mechanisms through experiments.

IV

Acknowledgments

I would like to express my gratitude to all those who gave me the possibility to complete

this thesis.

First of all, I would like to express my sincerely thanks to my supervisor, Dr. Lingyu

Wang, on whose constant encouragement guidance and advices I have relied throughout

my entitle research at Concordia University, especially to the published papers, journal and

this manuscript.

Especially, I would like to give my special thanks to my wife, Yiyi Wang, whose patient

love enabled me to complete this work.

v

Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Related Work 4

2.1 Database Federation 4

2.2 Merkle Hash Tree (MHT) 6

2.3 Metadirectories and Virtual Directories 6

2.4 Over-Encryption and Secret Sharing 7

3 Integrity Lock Architecture for Database Federation 9

3.1 Motivating Example . . . 9

3.2 Integrity Lock Architecture 13

4 Ensuring Data Integrity while Supporting Frequent Updates 18

4.1 Overview 18

vi

4.2 Detecting and Localizing Modifications 20

4.3 Verifying the Legitimacy of Updates 23

"4.4 Accommodating Legitimate Updates 26

4.5 Security Analysis 31

5 Ensuring Data Confidentiality Through Over-Encryption 34

5.1 Overview 34

5.2 Secret Sharing-Based Over-Encryption 36

5.3 Query over Encrypted Database 40

5.4 A Case Study 41

6 Implementation and Experiments 45

6.1 Static and Dynamic Caching 45

6.2 Table Partitioning 50

6.3 Over Encryption with Caching . 51

6.4 A Demo System 52

7 Conclusion 59

Bibliography 61

vu

List of Figures

1 An Example of Interaction Between Federation Members 10

2 The Integrity Lock Architecture 13

3 A Grid of Merkel Hash Trees on Tables 20

4 Localizing Updates With MHT Grid 22

5 The Protocol for the Verification of Updates 23

6 Partition Table into Sub-tables 27

7 Update the Root of a MHT 30

8 Static Cache and Dynamic Cache 31

9 An Example Function of the Second Scheme 38

10 An Example Key Derivation Tree of the Second Scheme 38

11 Initial Key Derivation on the BEL Layer 42

12 Initial Key Derivation on the SEL Layer 42

13 Key Derivation On BEL for Granting User Carl the Access to s4 44

14 Key Derivation On SEL for Granting User Carl the Access to s4 44

15 The Performance of Static Cache Scheme 46

16 The Static Cahce Scheme Performance with Different Cache Size 46

viii

17 The Performance of LFU Dynamic Cache Schemes 47

18 The Performance of LRU Dynamic Cache Schemes 48

19 The Communication Cost under Different Sizes of Subtables 49

20 The Computational Cost of Partitioning 50

21 The Computational Cost of Search on Encrypted Database 51

22 The Computational Cost of Over-Encryption with Dynamic Cache Scheme 52

23 The Computational Cost of Over-Encryption with Different Algorithms . . 53

24 User Interface on the University Side 54

25 User Interface on the Hospital Side 54

26 User Interface on the Hospital Side with Mismatched Stamps 55

27 The Query Verification Process 56

28 The Result of Policy Checking Passes 57

29 The Result of Policy Checking Fails 57

30 Stamp Verification 58

31 Stamp Verification Failed 58

IX

List of Tables

1 Comparison Between the Two Schemes 39

2 An Access Control Matrix 41

x

Chapter 1

Introduction

Data integration and information sharing have attracted significant interests lately. Al

though web services play a key role in data integration as the interface between autonomous

systems, the underlying data model of the integrated system can usually be regarded as a

collection of inter-operable and autonomous database systems, namely, a loosely coupled

database federation [32]. Among various issues in designing such a database federation,

the authorization of users requesting for data located in remote databases remains to be a

challenging issue in spite of existing efforts.

The autonomous nature of a loosely coupled federation makes it difficult to directly

apply most centralized authorization models. The subject and object in an access request

may belong to different members of a federation that are unaware of each other's user ac

counts, roles, or authorization policies. Simply duplicating such information across the

members is generally not a feasible solution due to the confidential nature of such infor

mation. In addition, the members of a database federation usually lack full trust in each

other, especially in terms of confidentiality and integrity of sensitive data. On the other

hand, although there are similarities between a loosely coupled database and outsourced

databases, a fundamental difference is that data in a federation of operational databases is

subject to constant updates. This difference prevents direct application of most existing

1

security solutions in outsourced databases to a database federation.

In this thesis, we propose a solution for distributed authorization in loosely coupled

database federations. We describe the solution in three steps. First, we devise an architec

ture to support fully distributed, fine-grained, and data-dependent authorization in loosely

coupled database federations. For this purpose, we adapt the integrity-lock architecture

originally designed for multilevel secure databases to database federations. Although in

tended for a different purpose, the integrity lock architecture has properties diat are partic

ularly suitable for a loosely coupled database federation. The architecture does not require

the remote database to be fully trusted but instead supports end-to-end security between

the creation of a tuple to the inquiry of that tuple. This capability is essential to a database

federation where members do not fully trust each other for authorization. The architecture

binds authorization polices to the data itself, which can avoid duplicating data or autho

rization policies across the federation and also allows for attribute-level authorizations and

authorizations that depend on data content.

Second, we propose an integrity mechanism to detect, localize, and verify updates of

data stored in remote databases while reducing communication overhead and limiting the

impact of unauthorized updates. We realize the mechanism as a three-stage procedure. In

the first stage, a database detects modifications of remote data when such data are involved

in a query. Detected modifications are localized using a two-dimensional grid of Merkel

Hash Trees (MHTs). In the second stage, the two involved databases follow a common pro

tocol to verify the legitimacy of detected modifications. The modified data are accepted as

the result of legitimate updates only if the remote database can provide sufficient evidence.

Finally, the local database updates the MHTs on the legitimate portion of remote data by

excluding any unauthorized modifications. To reduce performance overhead in recomput

ing MHTs, we propose two caching schemes that are suitable for different types of queries.

We evaluate the performance of those schemes through experiments.

2

Third, we present a confidentiality mechanism to control remote users' accesses to sen

sitive data while allowing authorization policies to be frequently updated. We achieve this

objective through a new secret sharing-based over-encryption scheme. The over-encryption

scheme doubly encrypts sensitive data at both the local database and remote database. Ac

cess control policies are enforced through publishing tokens that enable users to derive the

encryption keys to which they are authorized. The two independent layers of encryption

allows a remote database to be only partially trusted, and it also enables efficient updates

of access control policies, which is particularly important for database federations. Our

secret sharing-based scheme improves the performance of over-encryption by reducing the

number of public tokens. We evaluate different implementations of the proposed scheme

through experiments.

The main contribution of the thesis is two fold. First, with the proposed architecture and

mechanisms, we provide a practical security solution to many data integration applications

as long as their data model can be abstracted as a loosely coupled database federation. Sec

ond, by adapting existing architecture and methods in multilevel and outsourced databases

to a database federation, we establish interesting connections between those distinct areas

of research. The rest of the thesis is organized as follows. Chapter 2 reviews previous work.

Chapter 3 illustrates security issues addressed in this thesis through a motivating example

and describes the adapted integrity lock architecture in database federation. Chapter 4 pro

poses a three-stage procedure for supporting legitimate updates of remote data while en

suring their integrity. Chapter 5 devises a secret sharing-based over encryption scheme for

supporting access control on remote data and efficient policy updates. Chapter 6 presents

experimental results on the performance of the proposed solution. Chapter 7 concludes the

thesis.

3

Chapter 2

Related Work

2.1 Database Federation

A Federated Database System (FDBS) is a collection of cooperating yet autonomous mem

ber database systems [32]. Member databases are usually heterogeneous in many aspects

such as data models, query languages, authorization policies, and semantics (which refers

to the fact that the same or similar data items may have different meanings or distinct in

tended usages among member databases). According to the degree of integration, FDBSs

are mainly classified as loosely coupled FDBS and tightly coupled FDBS. A loosely cou

pled FDBS is rather like a collection of inter-operable database systems. Most research

efforts have focused on a tightly coupled FDBS, where the federation, as an indepen

dent component, is created at design time and actively controls all accesses to member

databases [5,6,12,19, 38]. Although designing a tightly coupled FDBS from scratches

has obvious advantages, in many cases it may not be feasible due to the implied costs. Our

study assumes the loosely coupled FDBS model, and we do not require major modifications

to existing DBMSs. This makes our approach more attractive to today's data integration

applications.

Security issues such as access control are more challenging in a loosely coupled FDBS

4

than in a centralized database or a tightly coupled database federation due to the lack of

a central authority and the autonomy in authorization that allows member databases to

have partial control over shared data. Depending on the degree of such autonomy, the ac

cess control models can be divided into three classes [5]. With/w// authorization autonomy,

member databases authenticate and authorize federation users as if they are accessing mem

ber databases directly. To the other extreme, low authorization autonomy fully trusts and

relies on the central federation component to authenticate and authorize federation users.

Our work considers the compromise between the two, namely medium authorization au

tonomy, where member databases have partial control on shared resources. Most existing

efforts on medium authorization autonomy in FDBSs, such as subject switching [38], re

quire members to agree on a loose mapping between user accounts and privileges across

different databases.

By excluding corrupted data from query results, our approach allows the database fed

eration to continue normal operation in the presence of unauthorized modifications. This

is similar to database recovery mechanisms, such as those based on trusted repair algo

rithms using read-from dependency information [1] and the extended model based on state

transition graphs [36]. However, our focus is not on the isolation and recovery from in

trusions, but rather on the interaction between local and remote databases in a database

federation. Multilevel databases have received enormous interests in the past, as surveyed

in [15,16,28]. Various architectures have been proposed for building multilevel databases

from un-trusted database components [28]. Those work mainly focus on the prevention of

information flow between different security level while supporting cover stories that are es

sential to military applications [15,16]. We adapt the integrity lock architecture originally

proposed for multilevel databases [28] to database federations.

In a database federation, the sharing of data between databases bears a similarity to data

publication in outsourced databases. The security of outsourced databases has attracted

5

significant interests [10, 22,25,26, 29]. One of the major issues in outsourced databases

is to allow clients to verify the integrity of query results, because the database service

provider in this model is usually not fully trusted [26]. Various techniques based on cryp

tographic signature and Merkel Hash Tree (MHT) [24] have been proposed to address the

integrity, completeness, freshness, and other desired properties of query results. The key

challenge in applying those techniques in outsourced databases to the federation of oper

ational databases is that data are relatively static in the former while they are constantly

being updated in the latter. To allow legitimate updates of data without having to ship them

back to the owner (local database), we propose a protocol for the automatic detection and

verification of updates on remote data.

2.2 Merkle Hash Tree (MHT)

Our discussions on incrementally updating MHTs is related to algorithms for reducing

the time or space cost of MHT traversal [17]. Those algorithms aim to achieve tradeoffs

between storage and computational efficiency in sequential traversals of a MHT. The al

gorithm in [17] uses subtrees for traversal of a MHT and discard intermediate nodes of

a subtree when they are found in existing subtrees. The algorithm in [35] improves the

classic MHT traversal algorithm in terms of less space requirement. A hybrid of those ap

proaches is introduced in [20]. However, those algorithms focus on visiting every node in

a MHT structure, which is slightly different from the incremental updates of MHT used in

the verification of data updates.

2.3 Metadirectories and Virtual Directories

Metadirectories and virtual directories technology are related to our work. They both al

low users to access data from different repositories by using directory mechanisms such

6

as Lightweight Directory Access Protocol (LDAP). Metadirectories needs to create a new

repository to synchronize data from multiple source directories storing the data. When

data in source directories changes frequently, it would be expensive to keep data updated

due to excessive storage and computation overhead. Instead of maintaining a separate in

formation repository, virtual directories create a virtualization layer to access information

indirectly. The virtual directories based on a directory protocol, such as LDAP, works well

under a hierarchical structure. LDAP, which is optimized for read but not for write, is

mainly designed for data sharing. For security, LDAP certificates the identities through

authentication methods. However, our approach is based on a different assumption that the

remote database is not fully trusted by the local database so authentication between the two

databases cannot be relied on.

2.4 Over-Encryption and Secret Sharing

Over-encryption is a novel technique introduced for enforcing access control and the ef

ficient management of policy updates in outsourced databases [7]. In over-encryption,

resources are doubly encrypted at the base encryption layer (BEL) and the surface encryp

tion layer (SEL). The BEL layer encryption is imposed by the owner for providing initial

protection; the SEL layer encryption is imposed by the outsourced server to reflect policy

modifications. One potential limitation of the over-encryption scheme is that it may re

quire to publish too many tokens when the number of users is large. Instead of relying on

key derivation function, we base our over-encryption scheme upon secret-sharing to reduce

the number of public tokens [33]. A number of different proposals exist on secret sharing

schemes [3,4,27,31] among which we apply Shamir's scheme [31]. Another related area

of research is the group key management [21,37] and hierarchical key assignment [18,30].

Those schemes classify data into different levels and generate a key for each level, with

lower level keys dependent on higher level keys. However, those schemes are generally

7

based on tree architectures and are not suitable for over-encryption.

8

Chapter 3

Integrity Lock Architecture for

Database Federation

Section 3.1 first illustrates security issues in a loosely coupled database federation. Sec

tion 3.2 then gives a high-level overview of our solution by adapting the integrity lock

architecture to database federations.

3.1 Motivating Example

Unlike a tightly coupled database federation, a loosely coupled database federation has

no centralized federation component created at design time to actively control accesses to

each member of the federation. Instead, the two databases are autonomous members of the

federation that directly interact with each other. To illustrate security issues that may arise

due to such interaction between federation members, we consider a concrete case in the

following.

Figure 1 depicts a simplified scenario of the interaction between two databases in a

loosely coupled database federation. In this example, we assume a fictitious university

and its designated hospital are aiming to establish an integrated application to provide the

9

Bob Eve PERSONNEL

Local

Database

University

Hospital

!P_
l

2

3

4

5

NAME

ALICE

BOB

CARL

DAVID

ELAINE

.. . GENDER

FEMALE

MALE

MALE

MALE

FEMALE

INCOME

29,000

18,000

24,000

20,000

22,000

DIAGNOSIS

ID
1

2

3

4

5

NAME

ALICE

BOB

CARL

DAVID

ELAINE

... CONDITION

AIDS

COLD

COLD

AIDS

COLD

POLICY

Pi

P.

Pi

P2

P3

Figure 1: An Example of Interaction Between Federation Members

university's employees (as depicted in the PERSONNEL table) direct accesses to their

medical records hosted at the hospital (the DIAGNOSIS table). Bob and Eve are two

users of the university, and Alice belongs to the hospital. The two tables both contain facts

about employees of the university and they have two common attributes ID and NAME.

As a normal employee of the university, Bob should not have free accesses to other em

ployees' CONDITION attribute values hosted at the hospital. On the other hand, another

user at the university side, Eve, may be authorized to access records of a selected group of

employees due to her special job function (for example, as a staff working at the university

clinic or as a secretary in a department). At the hospital side, Alice is prohibited from

accessing the INCOME attribute of any university employee. However, as a doctor des

ignated by the university, Alice is authorized to access and modify the CONDITION

attribute.

To realize the above scenario, a loosely coupled database federation has advantages over

10

centralized approaches. First, we can store the CONDITION attribute in the university-

side database and thus completely eliminate the hospital-side table. However, the attribute

CONDITION and other related medical data will most likely be frequently accessed

and updated at the hospital side. Storing those attributes at the hospital is thus a more

natural choice. Second, the university would certainly be reluctant to move or duplicate the

table PERSONNEL to the hospital side due to its sensitive nature. The above scenario

is also different from the case of two separate organizations. In this case, the university

is responsible for its employees' medical records even though the records are stored in

the hospital. From this point of view, we can regard the local database at the university

as outsourcing its data to the remote database at the hospital. However, different from

a outsourced database which is relatively static, here the data are constantly subject to

updates.

The above scenario shows the need for distributed authorization. The local database

at the university apparently needs to verify the legitimacy of accesses and updates to data

stored in the remote database at the hospital. Such verification is needed to ensure all

updates to be in accordance with policies or contractual conditions that may have been

agreed upon during the formation of the database federation. For example, only a doctor

designated by the university is allowed to access and modify the CONDITION attribute.

We consider following possible approaches to such an authorization.

• We could choose to let the university trust the hospital in enforcing such a policy.

However, this implies trust in not only the hospital as an organization, but also any

user who gains accesses to the hospital-side data. The autonomous nature of a loosely

coupled federation most likely will render such amount of trust unacceptable to the

university. Another difficulty is that the university may have to export its employees'

account information (for example, Eve is a secretary of a certain department) to the

hospital so the latter can enforce access control based on such information. Again,

11

this fact is inconvenient since such account information usually includes sensitive

data about the university's employees.

• Another possible approach is to enforce access control policies completely at the

university side, with no trust in the hospital. This solution works fine for users at

the university under policies that are either data-independent (for example, no user

should ever access the POLICY attribute) or only dependent on attributes in the

university's table (for example, Bob should only access his own record). However,

the solution cannot easily handle a policy that depends on attributes in the hospital's

database, such as CONDITION ^ AIDS. If Bob has many records with different

CONDITION values, all with different policies, then even storing such policies in

the university's database will be difficult. Also, for users at the hospital, this solution

would require constant communication between the two databases.

• In this thesis, we adopt a distributed authorization approach that is based on the trust

but verify principle. In this particular example, the university will trust the hospital

in enforcing data dependent policies. However, whenever remote data are sent from

the hospital to the university as query results, the university will attempt to verify

the integrity of such data. The hospital must provide evidence to prove any detected

modification to be the result of legitimate updates from authorized users. Such an

approach allows the hospital to ensure the integrity of remote data without having to

authorize every update. With the assumption that the hospital as an organization is

trustworthy but all of its users are not, such a distributed authorization approach has

advantages in terms of both security and performance.

12

Low User High User

1 L
Trusted Front End

Update Select Query

Append Stamp

i ' "

i i

Query Result

Check Stamp / Filter Result
i i

Untrusted DBMS

Data

Tuple Security Level Stamp

Stamp

Figure 2: The Integrity Lock Architecture

3.2 Integrity Lock Architecture

At the architecture level, we need to decide where and when to enforce security policies.

We borrow the integrity lock architecture, which is originally proposed for multi-level

databases [28], to support distributed authorization in loosely coupled database federa

tions. Unlike databases in commercial worlds, in multilevel databases, both users and data

are classified with different security levels, such as top secret, secret, confidential, or un

classified. The primary concern is to prevent information from flowing downwards across

the security levels. The main objective of the integrity lock architecture is to reduce costs

by building secure multilevel databases from un-trusted off-the-shelf DBMS components.

Figure 2 illustrates a simplified integrity lock architecture where two security levels,

high and low, are considered. The integrity lock architecture depends on a trusted front end

(also called a filter) to mediate accesses between users and the un-trusted DBMS (the origi

nal model also has an un-trusted front end, which is omitted here for simplicity) [8,9,11,23].

Each tuple has two additional attributes, namely, a security level and a cryptographic stamp.

The stamp is basically a message authentication code (MAC) computed over the whole tu

ple excluding the stamp using a cryptographic key known to the trusted front end.

13

When a tuple is to be inserted or updated by a legitimate user, the trusted front end will

determine the security level of the new tuple, and it will compute the stamp and append

it to the query. The trusted front end determines the security level of the new tuple and

computes the stamp to append it to the query when a tuple is to be inserted or updated.

The query is then forwarded to the DBMS for execution. When users submit a legitimate

selection query, the trusted front end will simply forward the query to the DBMS. Upon

receiving the query result from the latter, the trusted front end will verify all tuples in the

result and their security levels by recomputing and matching the cryptographic stamps. If

all the data check out, the trusted front end will then filter out prohibited tuples based on

their security levels, the user's security level, and the security policy. For example, low

users are not allowed to retrieve high tuples. The remaining tuples are then returned to the

user as the query result.

Instead of relying on a secure DBMS, which incurs higher cost to build, the integrity

lock architecture provides end-to-end security from the time a tuple is created (or modified)

to the time it is returned in a query result. The un-trusted DBMS cannot alter any tuple or

its associated security level without being detected. Such a capability naturally fits in the

requirements of a database federation. More specifically, in Figure 1, we can regard the

university-side database as the trusted front end, and the hospital-side database as an un-

trusted DBMS in the integrity lock architecture. The security levels of users and tuples

in the integrity lock architecture can be interpreted as users' credentials (for example, user

IDs, groups, or roles) and the security policies associated with tuples, respectively. Suppose

a user Eve of the university-side database wants to insert or update some records in the table

stored at the hospital (for example, to create or update an account for an employee). The

university-side database will compute and append a cryptographic stamp to the tuple to be

inserted or updated.

14

As in the original integrity lock architecture, the cryptographic stamp is a MAC com

puted over all attributes of the tuple, including the access control policies associated with

that tuple (which is provided by Eve). When a user of the university-side database wants to

select tuples in the hospital-side database, the university database will enforce any policy

that is locally stored through either rejecting or modifying the original query posed by the

user. For example, if Bob is only allowed to ask about his own records, then his query will

be modified by appending a WHERE clause NAME=' Bob ' . The university database then

forwards the modified query to the hospital database for processing. Upon receiving query

results from the latter, the university database will then verify the integrity of each returned

tuple in the results through the cryptographic stamp in the tuple. It then filters out any tuple

that Bob is not allowed to access according to the access control policy associated with that

tuple.

In the context of multilevel databases, a known complication of the integrity lock ar

chitecture is its vulnerability to two kinds of inference attacks [9]. In particular, Trojan

horse leakage refers to the covert channel that an un-trusted DBMS can signal a 0 or 1 bit

by returning different tuples as the result of the same query. Such a threat is more of a

concern to multilevel systems used by military or governmental organizations and we shall

not consider it further. On the other hand, user inference allows a user to infer prohib

ited data from the result of legitimate queries. For example, in Figure 1 if Bob asks the

following query: SELECT ID , NAME FROM DIAGNOSIS WHERE NAME='ALICE

and C0NDITI0N=' AIDS' . The query will be allowed because the result returned by

the hospital-side database, (1, Alice), only includes data that Bob is allowed to access.

However, Bob can then infer that Alice has AIDS. Denning gives a solution to such infer

ence problem, namely, the commutative filter [9]. A commutative filter answers a query

only if its result is the same as if it had been computed on a database with all prohibited

data removed. In the rest of this thesis, we shall assume such solutions are in place.

15

The security of any architecture critically depends on its proper implementations. The

adapted integrity lock architecture faces following implementation issues. First, the orig

inal architecture requires a whole tuple to be returned by the un-trusted DBMS, even if

the query only asks for one or two attributes [8,11], because the cryptographic stamp is

computed over the whole tuple (excluding the stamp itself). This limitation may cause un

necessary communication overhead between databases in a federation, if queries involve

projections. Second, the integrity lock architecture can only detect modified tuples but can

not detect the omission of tuples in a query result. That is, the completeness of query results

is not guaranteed. Similar issues have recently been addressed in the context of outsourced

databases (ODB) [10,22,29]. The solution typically involves implementing cryptographic

stamps as the signature of root of a MHT on each tuple, with all attribute values being the

leaves. Since the root of a MHT can be computed from any subset of the leaves plus a

small number of sibling nodes, communication cost is reduced. Moreover, omitting tuples

from query results will be detected when comparing a recomputed signature of the root to

the stamp.

However, simply applying the aforementioned solutions in ODB to the integrity lock

architecture in database federations is not practical. A fundamental difference between

ODB and database federations is that the former usually assumes a relatively static database

with no or infrequent updates. In the ODB model, the database service provider is generally

not supposed to modify the outsourced data. Existing techniques in ODB thus mainly

focus on the detection of modifications with pre-computed signatures given to users. Data

updates usually imply significant computational and communication costs. In the case of

MHT-based solutions, the signature of the root must be updated immediately after every

update, because no future query can be verified before this update (the verification of all

queries depends on the same signature). Such an overhead is not acceptable to database

federations, because the members of such a federation are typically operational databases

16

where data are constantly being updated. We shall address such issues in next section.

17

Chapter 4

Ensuring Data Integrity while

Supporting Frequent Updates

In this section, we present mechanisms for ensuring the integrity of data while allowing

legitimate updates under the integrity lock architecture. First, Section 4.1 provides an

overview of our approach. Section 4.2 then shows how to detect and localize modifica

tions using a grid of MHTs. Section 4.3 presents a procedure for verifying modifications.

Section 4.4 provides a solution to incrementally update the grid of MHTs upon legitimate

updates of data. Finally, Section 4.5 evaluates the security of our approach.

4.1 Overview

First of all, we describe what we mean by authorized users. As mentioned earlier, we shall

refer to the database hosting shared data as remote database and the other database local

database. In forming the federation, each member database should be given the capability

of authenticating users of a remote database, without the help of that remote database. Our

solution will not depend on specific ways of implementing such authentication, although

we shall consider a concrete case where a remote user possesses a public/private key pair,

18

so the user's query can be authenticated through digital signatures created using the private

key.

To ensure the integrity of data stored in a remote database, two seemingly viable ap

proaches are either to verify the update queries, or to verify the state of remote data imme

diately after each update. For example, in Figure 1, whenever Alice attempts to update a

record, the hospital-side database can send the query and the records to be updated, which

are both digitally signed by Alice, to the university-side database for verification. The lat

ter will verify the legitimacy of the update by comparing Alice's credential to the access

control policies stored in the records. However, this approach is not effective because the

hospital-side database must be trusted in forwarding all update queries for verification and

in incorporating all and only those legitimate updates after they are verified. As an example

of the second approach, the university-side database can choose to verify the state of remote

data after each update is made to the data. However, this approach faces two difficulties.

First of all, it is difficult to know about every update if the remote database is not trusted

since it may delay or omit reporting an update. Moreover, the approach may incur unnec

essary performance overhead. For example, a doctor may need to make several temporary

updates to a'diagnosis record before a final conclusion can be drawn. The university-side

database does not need to verify all those temporary updates.

We take a three-stage approach, as outlined below and elaborated in following sections.

First, referring to the example in Figure 1, the university-side database will detect modifi

cations in a lazy manner. More precisely, when Bob or Eve issues a selection query and the

result is returned by the hospital-side database, the university-side database will attempt

to detect and localize modifications in the tuples involved in the query result using a two-

dimensional grid of MHTs. Second, if a modification is detected and localized, then the

local database will request the remote database to provide proofs for the legitimacy of such

updates. The remote database then submits necessary log entries containing digitally signed

19

Ai

v l , l

V2,l

V m , l

Xl

A2

Vl,2

V2.2

Vm ,2

X2

A3

X3

A4

x4

A5

xs

An

v 1 , n

V2,n

Vm ,n

X n

An+1-

yi

y2

ym

W l

/
MvijUvn)
/ \

Vl. l Vi > 2

yi=sig(wi) Ul

Vl,n

/
h(Vi,i||V2,l)

/ \
V l l V 2 , l

xi=sig(ui)

V m l

Figure 3: A Grid of Merkel Hash Trees on Tables

update queries corresponding to those updates. The local database will check whether the

queries are made by those users who are authorized for such updates, and whether those

queries indeed correspond to the modified data. Third, the local database will then disre

gard any tuples in the query result for which no valid proof can be provided by the remote

database. To accommodate legitimate updates, the local database will incrementally com

pute new signatures and send them back to the remote database who will incorporate those

new signatures into the tuples.

4.2 Detecting and Localizing Modifications

We compute a two-dimensional grid of MHTs on a table to detect and localize any mod

ification to tuple or attribute level (a similar idea was applied to watermarks in [13]). In

Figure 3, the attributes are denoted as Ai(l < i < n + 1), among which we assume Ax is

the primary key and An the access control policy for each tuple. The MHT is built with a

20

collision-free hash function h() and a public key signature algorithm sig(). Each yi(l <

i < m) is the signature of the root w{ of a MHT built on the tuple (viti, v^,..., v^n). Simi

larly, each Xj is a signature of the root Ui of the MHT built on the column (vi:i, v2ti,..., t> m,i).

For example, in Figure 1, for the hospital-side table, the signatures will be created by the

university-side (local) database using its private key. If a table includes tuples jointly owned

by multiple local databases, then multiple signatures can be created and then aggregated

(for example, using the Condensed RSA scheme [26]) as one attribute value, so any in

volved database can verify the signature.

When a user at the local database poses a selection-projection query whose result in

cludes a set of values V C {vij | 1 < i < m, 1 < j < n — 1}, the remote database needs

to return the set V, the policy vitn and the signatures X{ and yj for each Vij e V. Moreover,

the siblings needed for computing the root of the MHTs from which the signatures have

been computed should also be returned. Upon receiving the query result, the local database

will verify the signatures and values in V by re-computing roots of corresponding MHTs.

If all signatures are valid, then the local database is assured about the integrity of data. It

will then examine the access control policies and filter out those tuples not allowed to be

accessed by the user, and check the completeness of the query result based on the MHTs.

If everything checks out, the query will be answered.

If some signatures do not match those included in query result, then modified data must

first be localized based on following observations. If a value vitj is updated, then signatures

yi and Xj will both mismatch. The insertion of a new tuple (t^i, t>;,2, • • •, vi>n) will cause

signatures xi,X2,--.,xn and yi to mismatch, while all the yj(j ^ i) will still match. The

deletion of a tuple (t^i, v^, • • •, v^n) will cause signatures xi, X2, • •., xn to mismatch,

while all the yj(l < i < n — 1) will still match. The first three pictures in Figure 4 depict

these cases.

The localization of modifications helps to reduce the amount of proofs that need to be

21

:
V2.3 '

X3 Xl

:

a

;

X2

•

:
;

X3

:

:
•

X4 x5

'•

I

•

•

Xn

Xl X2 X 3 X 4 X5 Xn

Vl.l

:
!

Xl

•

p

V2.2 •

X2 X3 X4 x5 Xn

yi

.y2

ym

Figure 4: Localizing Updates With MHT Grid

provided (and thus the communication and computational cost) in the verification phase.

However, this mechanism does not guarantee the precise identification of every update

made to the data. For example, in the lower-left chart in Figure 4, we cannot tell how many

(or which) tuples have been deleted from the mismatched signatures. Also, in the lower-

right chart, we cannot tell whether two, three, or four values have been modified from the

four mismatched signatures. Fortunately, as we shall show, the verification phase does not

rely on this localization mechanism.

We notice that a query usually involves only a subset of tuples or attributes. An update

of data thus may not be reflected in the result of every query. For example, in the lower-right

chart in Figure 4, the query result will only include four signatures, so updates of any value

not covered by the four dot lines will not be detected. This observation indicates another

aspect of the lazy approach in detecting modifications (the first aspect is that we only detect

modifications at query time). That is, an update may not affect the verification process of

subsequent queries that do not involve the updated value. If we were not to compute a

MHT on each column but instead build a single MHT over all the signatures j/j's, then any

update will always cause the verification of all subsequent queries to fail until the update

has been either rejected or accepted in later phases, which implies unnecessary performance

overhead.

22

1. Detect and
localize updates.

5. Verify the
updates by
reconstructing
MHTs from the
received proofs.

Local
Database

6. Update
signatures based
on reconstructed
MHTs.

2. Local database sends to remote database:
• The original selection query.
• A set of values that have potentially been modified.
• A request for proofs of the legitimacy of the updates.

4. Remote database sends to local database:
• The digitally signed queries corresponding to the updates.
• Hash values necessary for re-constructing MHTs before updates.

7. Local database sends to remote database:
• (For updates without valid proofs) The updated signatures with the

updated values excluded from the table.
• (For updates with valid proofs) The updated signatures with the

updated values including in the table.

3. Collect proofs
from log files.

Remote
Database

8. Update
signatures.

Figure 5: The Protocol for the Verification of Updates

4.3 Verifying the Legitimacy of Updates

As part of the protocol for verifying updates, we describe how a remote database handles

updates. A remote database will need to record all the following into a log file: The update

query, the signature of the query created with the user's private key, the current time, the

current value before the update for deletion, and the current signatures involved by the

update. Such information in the log file will allow the remote database to be rolled back

to the last valid state without any update in effect [14]. The information will thus act as

proofs for the legitimacy of updates. When updates are detected and localized, the local

and remote databases will both follow the protocol shown in Figure 5 to automatically

verify the legitimacy of those updates and to accommodate legitimate updates by updating

signatures stored in the table.

In step 1, the local database detects mismatches in signatures and localizes the updates

to a set of values that may have been updated (recall that the localization does not guarantee

the precise set of modified values). The local database will then send to the remote database

the potentially updated values and related information, such as the original selection query,

23

in step 2. In step 3, the remote database examines its log files to find each update query

that involves the received values. For each such query, the remote database will attempt

to reconstruct the mismatched signatures using values and signatures found in the log file,

which are supposed to be in effect before the update. If a state is found in which all the

mismatched signatures match again, then the involved queries will be collected as proofs

and sent to the local database in step 4. Otherwise, the remote database will send to the

local database a response indicating no proof for the updates is found.

In step 5, the local database will verify the signatures of the received update queries

and ensure those queries are made by users who are authorized for such updates. The local

database then attempts to reconstruct from the received queries a previous valid state in

which all mismatched signatures match again. If such a state is found and all the update

queries until that state are made by authorized users, then the detected updates are legiti

mate so the local database will recompute signatures by including the updated values (the

details will be given in the next section) in step 6. Otherwise, the updates are unauthorized,

so signatures are created by excluding the updated values in step 6. Upon receiving the

updated signatures in step 7, the remote database will then update the received signatures

in the table in step 8. The local database will only answer the original selection query if all

the involved values are successfully verified.

A few subtleties of the protocol are as follows.

• It may seem to be a viable choice for the local database to stop after verifying that

all the received update queries are made by authorized users, without having to go

through again the reconstruction of a previous valid state. However, in this case,

the remote database may actually make unauthorized modifications without being

detected. Referring to the lower-right chart in Figure 4, suppose v\y\ and v2}2 are up

dated by authorized users. The remote database can freely modify vXi2, v2:i and then

send in the update queries corresponding to only vitl and v2,2- The local database will

24

not be able to detect the omitted updates from the mismatched signatures X\,x2, y\

and y2. However, since we let the local database to reconstruct each previous state

from the received queries, it will detect the claimed updates to be unauthorized and

then refuse to answer any selection query involving those four values.

• The protocol requires two rounds of communications between the two databases in

addition to sending query result, that is, to request for proofs of legitimate updates

and to update stamps. This protocol can certainly be optimized as follows. Instead

of waiting for the local database to request for proofs about updates, the remote

database can proactively detect updates by itself, identify proofs for the updates,

then piggyback the query result and the proofs.

• We do not consider potential denial of service attacks. Such an attack is clearly pos

sible since any unauthorized modification may cause queries to be denied. However,

we regard answering queries with modified values to be a greater threat than denying

the queries since the former may lead to misleading results. Moreover, consider

ing the collaborative nature of a database federation, the local database may request

the remote database to initiate an investigation after a certain number of queries are

denied due to unauthorized updates.

• We choose not to lock a modified value after it is detected and before it is either

verified or known to be the result of an unauthorized update, which may seem to be

a viable approach. The reason is that the remote database is fully trusted, so whether

it locks a modified value cannot be counted on.

• We do not treat the access control policy attribute in a special way since some users

of a remote database may be authorized to update such policies. If this is not the

case, the local database can simply regard any update to xn (the signature computed

on the access control policy attribute) as unauthorized.

25

• The proofs may include not only the updated values but also other values indirectly

involved in the updates. It is the remote database's responsibility to provide sufficient

proofs so that the local database can roll back the current database state as reflected

in the query result to a previous valid state using the update queries (the roll back of

database states is well studied in transaction processing and is out of the scope of this

thesis).

4.4 Accommodating Legitimate Updates

To accommodate updates that are successfully verified to be made by authorized users, the

local database needs to compute new signatures by including the updated values so the

remote database can update the signatures in the table. Similarly, updates of signatures

are also required for newly inserted tuples. Recomputing signatures for each tuple does

not incur a significant performance overhead because the number of attributes in a table

is limited. However, the signature of a column may be computed over a large number of

tuples, and its computation is thus costly. Moreover, any insertion or update of a tuple will

cause at least one of the signatures of columns to be updated.

To reduce the computational cost of updates, an obvious solution is to divide the table

into smaller subtables with fewer tuples and then apply the aforementioned grid of MHTs to

each subtable independently, or equivalently, to simply change the way the grid of MHTs is

computed. At first glance, having near-square subtables may seem to be the optimal choice.

Moreover, we can compute one additional stamp over all the values in each subtable. As

showed in figure 6, a g-column and p-row table (p is much bigger than q, since in the

database system the number of the attributes of the table is much smaller than the number

of the records), and each sub-table has its signatures. In the verification phase, only the

stamp of sub-table needs to be sent over if the remote database finds no value is updated

inside this particular subtable. However, in reality the optimal choice of subtable sizes is a

26

f

)
\

\

c

q

\̂

^

r q
ID
1
2
3

q

x,

• • >

x2

• >> ...

xq

POLICY

P|
P2

P3

P,
Xq+l

Signature

Y,
Y2

Y3

Yq

r q

Figure 6: Partition Table into Sub-tables

little more complicated. As the size of subtable decreases, less computation is needed for

recomputing the stamp over each column of the subtable, but a typical selection query may

actually involve more subtables.

Definition 1 The involved sub-tables are all the sub-table which contains the return records.

Definition 2 The stamp Z of a sub-table is a hash value that built based on all stamps on

each column and each row of such table.

When the user on remote database executes an update query, remote database will gen

erate the hash of this query as the head, and send it to tell local database that there is an

update on remote database. If the user has more than one update queries, then remote

database will create a hash chain based on such set of queries and send the final hash result

to local database. Hash chain bring a quick solution to check the remote database's in

tegrity after a set of update. With the hash chain, any modification of the set of the queries

will be detected at local database side. The hash chain will change when a malicious user

adds a query to the set, deletes query from the set or reorders the set. Next time when user

27

send a new update query, the new header of the hash chain will be calculated and sent to

local database. Local database can ensure freshness of the update that remote database user

made. For example, if user Alice has N update queries on one record, remote database

will record all of these queries and compute the hash chain. Suppose these queries are M1;

M2,... Mn, the head of hash chain will be h{Mx) © h2(M2) © h3(M3)... © hn{Mn). This

head will signatured by Alice and send it to local database together with return result.

In verification, we just check the integrity of the involved sub-tables. When local send

a SELECT query, remote database first check the whether these return records modified,

if not, just send the siblings and stamp Z of involved sub-tables. Otherwise send each row

and each column's stamps of involved tables. If table is small enough, stamps numbers will

reduced. However, the involved table's number maybe grow. So we adopt some experiment

to get the suitable size of sub-table. We partition the database table into several small sub-

tables, for each sub-table we use grid based stamps, and moreover we add one stamp Z for

each sub-table as mentioned in definition 2. According to the algorithm 1, when executing

a select query, remote database can check the stamp of each involved sub-table to see if

there are modified records are involved in the result. If no then send the stamp Z and the

siblings of such sub-table to local database, otherwise remote database should not only

send Z and sibling but the stamps of modified tuples as well. We shall study this tradeoff

through experiments in Chapter 6.

Another possible solution is to incrementally update the MHTs. As illustrated in Fig

ure 7, to update the hash value 3, the local database only needs the hash values 1, 2 in the

MHT of each column, instead of all the leaves. To balance the MHT over time, for insertion

of new tuples, we should choose to insert each value at an existing hash value that has the

shortest path to the root (this may not be feasible for ordered attributes where the order of

MHT leaves is used for ensuring the completeness of query results). The next question,

however, is where to obtain the required hash values 1 and 2, given that recomputing them

28

Algorithm 1 Communication Algorithm for Sub-table

previousid <= 0 {the sub-table id for previous record}
updated <= 0 {the number of sub-table with updated record}
noupdated <̂= 0 {the number of sub-table without updated record}
while is select query result do

id <= subtable id
if tmpid = id then

break
else

tmpid <= id
ischange <= false
for all tuples in sub-table do

if tuple is updated then
ischange «= true
break

end if
end for
if ischange is true then

updated -<= updated+1
else

noupdated <= noupdated+1
end if

end if
end while
Communication Cost ^= updated* (sibling+1+updated records) + noup-
dated*(sibling+l)

29

CJ) New value

Figure 7: Update the Root of a MHT

from the leaves is not an option. One possibility is to keep a cache of all or part of the

non-leaf hash values in the MHT. If we keep all the non-leaf values in a cache, then a di

rect lookup in the cache will be sufficient for computing the root, which has a logarithm

complexity in the cardinality of the table (or subtable).

Considering the fact that the number of all non-leaf values is comparable to the number

of leaves, the storage overhead is prohibitive. Instead, we can choose to cache only part

of the MHT based on available storage. Two approaches are possible. First, we can use a

static cache for a fixed portion of the MHT. If we assume a query will uniformly select any

tuple, then clearly the higher a hash value is in the MHT, the more chance it will be useful

in recomputing the new root of the MHT. For example, in Figure 7, value 1 will be needed

in the update of twice as many values as value 2 will. Given a limited storage, we thus fill

the cache in a top-down manner (excluding the root).

The assumption that queries uniformly select tuples may not hold in many cases. In

stead, subsequent queries may actually select adjacent tuples in the table. In this case, it

will lead to better performance to let the queries to drive the caching of hash values. We

consider the following dynamic caching scheme. We start with the cache of a top portion

of the MHT. Each time we update one tuple, we recompute the new root with the updated

value by using as many values as possible from the cache. However, for each non-leaf

value we need to recompute due to its absence in the cache, we insert this value into the

30

Static Cache

2 3 4 5 6 7 8 12 13

Dynamic Cache

2 9 3 4 10 11 5

Figure 8: Static Cache and Dynamic Cache

cache by replacing a value that is least recently used (other standard caching schemes can

certainly be used). Among those that have the same time stamp for last use, we replace

the value that has the longest path from the root. Figure 8 illustrates the use of both static

cache (that holds all non-leaf hashes) and dynamic cache where most queries involve only

the leftmost leaves.

4.5 Security Analysis

In the following, we briefly discuss how the proposed scheme prevents various attacks.

• Suppose a malicious user of a remote database inserts, deletes, or modify tuples

or attributes. Such modifications will cause mismatches between the recomputed

31

signature of MHT roots and the signatures stored in the table, by which the local

database will detect modifications.

• The malicious user may attempt to modify the log entries to hide his activities by

masquerading as users authorized for the updates. However, the local database can

authenticate remote users' queries through their signatures and such signatures can

not be created by the malicious user without the private key of an authorized user.

• The malicious user can prevent the remote database from sending proofs or reporting

the absence of proofs, but this does not help him/her to avoid detection (a timeout

scheme can be used for the case of not receiving proofs in a timely fashion).

• The malicious user can also reorder or mix updates made by authorized users with

his/her unauthorized updates. However, this will also be detected when the local

database attempts to rebuild a previous valid state of data but fails.

• The only damage that can be realistically caused by malicious users is a denial of

service when too many tuples are excluded due to unauthorized modifications. How

ever, as mentioned before, a database member may request the remote database to

initiate an investigation when the number of such tuples exceeds a threshold.

One security issue not addressed by the proposed scheme is the freshness of query

results. That is, a remote database controlled by malicious users may never execute the

last legitimate update query, which will not be detected since the database state is old, but

valid. To ensure freshness of query result, it is essential for the user-side application that

updates data at the remote database to communicate with the local database. A simple

approach is for each user-side application to send the head of a hash chain formed by the

hash values of update queries issued by that user. Holding the head of the hash chain, the

local database can easily detect any omission of update queries in the proofs sent by the

remote database. Another potential issue is the use of random functions in an update query.

32

The above verification technique will not work properly in this case because a different

result may be yielded by each execution of the same query. A solution is for the user-side

application to sign the query after the random function has already been executed at the

remote database. Notice that although the remote database may potentially lie to the user

about the result of that random function, this misbehavior will later be detected by the local

database since the proof is based on the update query signed by the user.

33

Chapter 5

Ensuring Data Confidentiality Through

Over-Encryption

In this section, we present mechanisms for achieving the confidentiality of remote data.

Section 5.1 firsts provides an overview of over-encryption. Section 5.2 details our new

secret sharing-based over-encryption scheme. Section 5.3 provides the way to query on

the encrypted database. Section 5.4 presents a case study to further illustrate how the

mechanisms works.

5.1 Overview

We have so far assumed that data are stored in clear text in a remote database. The remote

database thus must be trusted in correctly enforcing access control policies so only autho

rized users of the remote database have accesses to sensitive data. Such amount of trust

may not be feasible in practice due to the autonomy of a database federation. To address

this issue, we apply the over-encryption model [7] to our application by proposing a new

key derivation scheme based on secret sharing.

In over-encryption, resources such as tuples are divided into different sets based on

34

access control lists. All the resources in each set are encrypted individually with the same

encryption key. To give a user access to a resource, a token is published for allowing the

user to derive the resource's encryption key from the user's own key. For example, the

token t = ke@ h{ku) will allow a user knowing ku to derive the encryption key ke [2]

(other users knowing ke cannot derive ku due to the hash function h()). For example, in

Figure 1, the hospital-side user Alice is given a secret key by the university-side database.

By publishing a token that enables Alice to derive encryption keys, Alice can be given

accesses to selected tuples in the hospital-side database.

However, an apparent limitation of the above simple approach is that tuples must be

shipped back to the local database for re-encryption in order to grant or revoke users from

accessing tuples, which incurs significant communication overhead. The over-encryption

approach removes this limitation through a second layer of encryption at the remote database.

More precisely, resources are doubly encrypted at the base encryption layer (BEL) and

the surface encryption layer (SEL). Initially, both layers enforce the same access control

policies. Upon an update to the policies, such as a grant or revoke, resources will be re-

encrypted at the SEL layer by excluding revoked users, and new tokens will be published

at the BEL layer for granted users. In any case, no resource needs to be sent back to the

BEL layer for re-encryption.

In our application of database federations, the BEL layer encryption is imposed by the

local database, and the SEL layer encryption by the remote database. When a user at the

local database inserts a tuple, the tuple will be encrypted by the local database first and

then sent to the remote database for a second encryption (notice that an integrity stamp will

also be appended based on previous discussions). The remote database does not have the

BEL encryption keys, so malicious users cannot access the data even if they are in control

of the remote database. Only those remote database users who are authorized by the local

database can have accesses to the original data. Those authorized users can derive the

35

encryption key at both layers by using his own secret key with the public tokens provided

by the local database.

5.2 Secret Sharing-Based Over-Encryption

To introduce our new over-encryption scheme, we first start from a straightforward scheme

and point out its limitations; we then extend this simple scheme to two variations, which are

to be applied to the BEL and SEL layer, respectively. Each user of the remote database is

assigned a key pair K: (X, Y) where X—K and Y=h(K) (h() is a hash function). A token

T is public information which enables the user to derive an encryption key from his/her key

pair K.

Suppose we have the resource R, such as a tuple or an attribute value, encrypted by

the key Kab, and according to the access matrix list, user A and B can access resource R.

Assume user A has the key pair Ka: (Xa, Ya) and user B has Kb: (Xb, Yb). They can derive

the encryption key Kab by using the secret sharing function f(x) = ax + Kab. That is,

Ya=aXa+Kab and Yb=aXb+Kab. We can pick any (Xpab, Ypab) such that Ypab=aXpab+Kab,

and publish the pair (Xpab, Ypab) as the token for user A and B so each of them can derive

the encryption key Kab using his/her own key pair. We can see that user A and B's key pair

and the public token are on (the line corresponding to) the same linear function. Each user

can thus use his/her key pair together with the public token to generate this function and

the encryption key Kab and then access the resource.

This simple scheme has limitations when one resource is shared by more than two users.

To derive a key shared by n users, we should use a (n — 1)-degree function. However, each

single user will need at least n — 1 public tokens, which is against the very motivation of

reducing the number of public tokens. However, a linear function itself is not sufficient,

either. For example, suppose user A, B, C can access resource R, and each user has a pair

of key K, which may not be on the same linear function. Even though we can somehow

36

find a function to satisfy more than two users, consider two sets {A, B, C} and {B, C, D}.

From {A, B, C}, we have fabc(x) = aabcx + Kabc. Now, if we want to share the resource

for {B, C, D}, we need another function food- However, we already have (Xb, Yb) and (Xc,

Yc) fixed, so (Xd, Yd) is not necessarily on the same function and user B, C and D may not

be able to access the same resource.

To remove the limitation, we extend the above scheme in two ways. First, suppose we

want to grant the access to resource R to user A, B and C. We randomly choose two pairs of

keys (Xa, Ya) and (Xb, Yb) as the master keys, and assign them to users A and B. Next, we

generate the derivation function based on these two pairs as f(x) =aabx+Kab. We now can

randomly choose (Xc, Yc) on this function and assign it as a key pair to user C. For other

users who need to share the resource R, we simply repeat this procedure and choose more

points. Second, we randomly pick two users, say A and B, to establish a linear function

f(x) = ax+Kab as usual. We call the pairs (h(Kab), h2(Kab)) the transfer key. For another

user C sharing the same resource, we use the transfer key together with user C's key pair

KC: (Xc, Yc) to establish another function g{x) = (3x + Kabc as usual. We can then pick any

token (Xpabc, Ypabc) satisfying that Ypabc=(3Xpabc+Kabc and use Kabc as the encryption key

of the resource. User A, B and C all can access that resource by deriving the encryption

key through the public token (Xpabc, Ypabc) together with their own key pairs. Figure 9 and

figure 10 illustrate this second scheme.

Among the above two extended schemes, the first is more effective in reducing the num

ber of tokens at initialization time, which makes it a better choice at the BEL layer because

the initial encryption is handled by local databases. More specifically, at initialization time,

we just need one function and one public token for each subset of users sharing the same

resources, which does not depend on how many users are in the set. On the other hand,

the second scheme is more effective for policy updates (that is, granting or revoking users),

which makes it a better choice at the SEL layer where policy update is the main concern.

37

Y
i

Yh=h(Kh)
Yb

Yc

Ya

Kab

Kabc

i

/%** Y a) /

f(x)=ax+Kab

(Xpab.YpabjV'^ 9(X)=(3X

yS (Apabc, ' pabc) - /^

1xb.Yb) / ^

(Xc.Yc)

(Kh, Yh)

=(3X+Kabc

Xb Xc Kh-h(Kab)
X

Figure 9: An Example Function of the Second Scheme

Public Information
(Xpabi Ypab)

Public Information
(Apabci 'pabc)

Figure 10: An Example Key Derivation Tree of the Second Scheme

38

The Number of Tokens
Original Method Our Method

Initialization
BEL Grant

Revoke
Initialization

SEL Grant
Revoke

n
n+1

-

n
n + 2

2n-l

1
2
-

n-1
n

3 n 2 - 3 n - 2
2n.

Table 1: Comparison Between the Two Schemes

For instance, suppose users A, B, C, and D share the same resource, and we would like

to revoke user C's access. With the second scheme, we can use A and B's transfer key

together with D's key to establish a new function and generate a new encryption key. In

this operation, just one token is to be published.

To integrate over-encryption into a database federation, we regard tuples or attribute

values as resources, which depends on the desired granularity of access control. Each user

of remote databases is assigned secret key pairs as credentials for authorization. Upon

inserting or updating data stored in a remote database, the local database will generate

encryption keys according to the above scheme for BEL-layer encryption of the data. The

local database will also create MHT-based stamps for integrity as aforementioned. The

encrypted data are then sent to the remote database, which will doubly encrypt the data

at the SEL layer. Public tokens are provided to authorized users to enable them deriving

corresponding encryption keys for accessing resources.

Table 1 compares our over-encryption scheme with the original method [7] in both BEL

and SEL layers. We consider the number of tokens required in three situation: initialization,

granting, and revoking with n users.

39

5.3 Query over Encrypted Database

The use of encryption enables distributed authorization but it may complicate query pro

cessing when selection conditions involve encrypted data. Queries over encrypted data can

be supported through existing techniques [34]. Alternatively, the local database (or user-

side application for users at the remote database) may first encrypt attribute values involved

in a query at the BEL layer before sending the query to the remote database. When remote

database receives the query, it first decrypts the doubly encrypted data using the SEL layer

encryption keys and then sends the result to the local database. The local database can

then obtain the original data using the BEL layer encryption key. One complication is that

resources accessible to a user may be encrypted with different keys and the local database

does not know which of the keys corresponds to the particular resource being requested.

In such a case, the local database must create multiple versions of the same query us

ing different encryption keys. For example, on university side, suppose user Bob poses a

selection-projection query for the disease attribute that store on the remote database, let's

say SELECT d i s e a s e FROM t a b l e 2 WHERE name=' Bob ' , according to our ap

proach, university-side database will send the query to remote database. However, because

of the new feature of our model, university-side database should encrypt the value that ap

pears in the user's query by the BEL encryption keys, and execute the query by using this

encrypted value instead of the original one [34]. Since university-side database does not

know which resources will be the results, it can not determine which encryption key should

be used. University-side database will find all the derived keys for user Bob according to

access control matrix table 2. we can know that user Bob can access the resources s i , s2,

s3, s4, s5, s8 and s9, which means he has three keys at BEL layer, his own private key with

BEL encryption keys KB1 and KB3- Now there will be three encrypted valued, they are

ei=EKb{'Bob'), e2=EKm('Bob') and e3=EKB3('Bob'), where E() is an encryption func

tion. University-side database will replace the value 'Bob' in the query by these encrypted

40

Alice
Bob
Carl

David
Elaine

si
0
1
0
0
0

s2
1
1
0
1
0

s3
1
1
0
1
0

s4
1
1
0
1
0

s5
0
1
0
0
0

s6
0
0
1
1
0

s7
0
0
1
1
0

s8
1
1
0
1
1

s9
1
1
0
1
1

slO
0
0
1
1
0

Table 2: An Access Control Matrix

values and modify the query to three queries:

SELECT d i s e a s e FROM t a b l e 2 WHERE name= ' e 1 ' ,

SELECT d i s e a s e FROM t a b l e 2 WHERE name= ' e 2 ' ,

SELECT d i s e a s e FROM t a b l e 2 WHERE name= ' e 3 ' .

Remote database will answer these queries and send the relevant results back to university.

After decrypting with the corresponding BEL encryption keys and filtering the result ac

cording to the policy of user Bob, university-side database outputs the query result to Bob.

Since the result should only be encrypted by one of three keys, only one query will get

the result. To simplify the query request on university sides, we consider that all data are

updated, and no mismatch stamps occurs in this process.

5.4 A Case Study

Following the example in Figure 1, Table 2 shows an access control matrix of five users

and ten resources in the hospital-side database. The confidentiality requirement is modeled

in the access control matrix with each 1-entry representing a positive authorization and

each 0-entry a prohibition of accesses. Each column of the table thus shows the status of

a resource accessible to users. In our example, we assume the attribute CONDITION is

the sensitive resource and should only be accessible to authorized users.

According to the above access control matrix, Figure 11 and 12 depict the initial key

derivation structure at the BEL and SEL layers. For example, an CONDITION attribute

41

Alice Bob

(Kea) (Ksb)

David Elaine user

Alice
Bob
Carl

David
Elaine

key

K B 3

Kflb

KBC

KBd

Kfle

resources

s2, s3, s4
si, s5

s6, s7, slO
s8, s9

key

KBI

Ksb

K B 2

K-B3

BEL

Figure 11: Initial Key Derivation on the BEL Layer

Alice Bob Carl David Elaine user

Alice
Bob
Carl

David
Elaine

key

Ksa
Ksb
Ksc
Ksd
Kse

resources

s2, s3, s4
si, s5

s6, s7, slO
s8, s9

key

Ksi

Ksb

Ks2

Ks3

SEL

Figure 12: Initial Key Derivation on the SEL Layer

42

sA is first encrypted using the BEL-layer encryption key KBi, which is derived by the local

database from the key pairs of users Alice, Bob and David. The encrypted resource is

sent to the remote database. The remote database again encrypts the resource using the

SEL layer encryption key Ks\- Now the resource has been encrypted using two different

keys Km and Ks\- Since user Alice is authorized to access the resource sA, her user-side

application can derive both encryption keys using her own key pair and the public tokens,

and then decrypt data to obtain the original results.

Suppose Alice is also authorized to update the resource sA. Alice's user-side application

will first encrypt the new value using the BEL layer encryption key KB\ and then send the

result to the remote database. The remote database will over-encrypt the received value by

using the SEL encryption key Ksi • Since the received value is already encrypted using the

BEL layer encryption key, malicious users in control of the remote database cannot access

the updated value. Neither can those users skip or alter the update because our integrity

mechanisms, as described in previous sections, will detect such misbehaviors.

While a data update requires re-encryption, an update of access control policies, such

as a grant or revoke, can be efficiently processed through over-encryption. For example,

if local database wants to assign resource sA to user Carl, it should link s4's encryption

key KBI to user Carl's secret key by publishing a new token at the BEL layer; the re

mote database will derive a new encryption key to re-encrypt the resource (which is still

encrypted by the same BEL key Km). Therefore, user Carl can now access the resource

sA, but not s2 or s3. Figure 13 and 14 show the key derivation structure for the BEL and

SEL layers. For a revoke, the local database will not do anything but the remote database

re-encrypts resources using new encryption keys.

43

David Elaine user
Alice

Bob
Carl

David
Elaine

key
Ksa
Ksb
KBC

Ked
Kee

resources

s2, s3, s4
si , s5

s6,s7,slO
s8, s9

key

KBI

Ksb

K B 2

K B 3

BEL

Figure 13: Key Derivation On BEL for Granting User Carl the Access to sA

Alice Bob Carl David Elaine user
Alice

Bob
Carl

David
Elaine

key
Ksa
Ksb
Ksc
Ksd
Kse

resources
s2, s3

s4
si, s5

s6, s7, slO
s8, s9

key

Ksi

Ks4
Ksb
Ks2

Ks3

SEL

Figure 14: Key Derivation On SEL for Granting User Carl the Access to s4

44

Chapter 6

Implementation and Experiments

We tested the performance of our proposed techniques on machines equipped with Intel

Pentium M 1.80GHz processor, 1024MB RAM, Windows XP operating system, and Ora

cle lOg DBMS. The main objective of the experiments is to compare the performance of

different caching schemes, to find the optimal subtable size, and to study the performance

overhead of over-encryption. As a proof of concept, we have also implemented a demo

system as a fictitious web application that integrates a university's web portal with a hospi

tal's database. The web application is written in PHP version 5.2.5 and runs on the Apache

2.0 web server and Mysql 5.0 database system.

6.1 Static and Dynamic Caching

Figure 15 shows the computational cost of updating a tuple in databases of different sizes,

when all non-leaf values are cached. We can see that at the cost of extra storage, only a

small performance overhead is incurred in updating tuples by recomputing cryptographic

stamps under the static cache scheme, in contrast to updating tuples without recomputing

any stamps (that is, ignoring the security requirement). On the other hand, recomputing the

stamps from scratch is proved to be costly. In all cases, the performance overhead increases

45

mnnnn

10000

E. 1000 -
4-1
1/1
O

m
p

u
ta

tio
n

 C

8

S
10 -

1

1 3 - - -

15000

- -»> - Use Stamp and no Cache

- - E 4 - Without Stamp

—-& - Using Stamp with Static Cache

• - - El -G Ei -13 El

20000 25000 30000 35000 40000

Size of the Table

Figure 15: The Performance of Static Cache Scheme

9

8

7

s 6

C
o

m
p

u
ta

tio
n

 C
o.

M

to

*»

Ln

1

0

• Database Size =15,000 /

\ /
» ,
i - «$ - - - Computation Cost ™Q— Cache Size /

• \ /

\ /
\

- 16

14

12 -5T
ai

T3

o

C
ac

he
 S

iz
e

(K
 n

o

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12

The Height of Hash Tree Stored in Cache

ure 16: The Static Cahce Scheme Performance with Different Cache Size

46

190

170

- . 150

o
u c
o + J

is
n
F
o u

no

110

90

70

50

-«•--

._

A

---©•-

- Static Cache

-n=100

-n=500

-n=1000

n>^
- — * ^ - « t - - - +—+—•-—•—-•«—•

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
m/n

Figure 17: The Performance of LFU Dynamic Cache Schemes

as the table size increases because a larger table means the stamps will be computed over

larger MHTs.

Figure 16 shows both the storage requirement and the performance of static caches of

different sizes, which all hold a top portion of the MHT. We update one tuple in a database

with 15,000 tuples with the height of MHT being 12. We reduce the size of caches by

removing each level of the MHT in a bottom-up fashion, as reflected by different heights

on the x-axis. The curve with square dots shows the number of values in the cache, that is,

the storage requirement for caching. The other curve shows the computational cost. We can

see the overall performance is optimal when the height of MHTs in the cache is between 3

and 9 where both the storage requirement and the computational cost are relatively low.

Figure 17 and 18 compare the computational cost of different dynamic cache schemes

with that of the static cache scheme under the same storage limitation. The database size is

15,000 tuples, and the cache is limited to store only 500 MHT nodes. To simulate queries

47

190

170

- , 150

E,

S 130
c
o

I 90

70

50

—•--

—Ar-

---©--

-Static Cache

-n=100

-n=500

-n=1000

~" N & " " - * — " • • — • • " " "

3*

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
m/n

Figure 18: The Performance of LRU Dynamic Cache Schemes

that select adjacent tuples, we randomly pick tuples inside a window and repeat the ex

periment over different sizes of the window. In Figure 17 and 18, n is the size of this

window, and m the number of tuples involved in a query, the x-axis is the percentage of

to-be-updated values inside the window. There is only a negligible difference between dif

ferent cache schemes. Figure 17 shows the LFU (Least Frequently Used) cache scheme and

Figure 18 shows the LRU (Least Recently Used) scheme. We can see that as more values

are updated, the performance of dynamic caching will improve as the cache hit rate will

increase. There is only a negligible difference between the two different cache schemes.

The size of the window only has a small effect on this result, indicating that the dynamic

cache is generally helpful as long as subsequent queries focus on adjacent tuples.

48

20000

18000

16000

g 14000
U
§ 12000

.3 loooo

Range Query (involving 1000 records)

—#—10 updated records

—*—100 updated records

—#—1000 updated records

—©— 5000 updated records

- 10000 updated records

» * o o i n o < r v o o i n c r > o o i n * - i c n i n * H m i o c n r ^ *-i oj «* o oo

Sub-table Size

in o r- in m r~.

O o o
in

n o <J> oo in
H ro in TH m

T - l CM

Sub-table Size

0 1
10

«*
00
PO
<7>

in
i^
no
^

o
LTI
r-»
no

o
o in
r̂

o
o
o m
<H

Figure 19: The Communication Cost under Different Sizes of Subtables

49

60000

50000

U '

£ 30000
o.
E
o
U 20000

10000
/

J./

(Each query involves 1000 tuples)

r Range Query

-Point Query

\

X

~ - (N ^T 00 ON 00 »0
V> *—< CI

Subtable Size

ON OO «n O O O
ô en t̂ - »n o o

• ^ J - ON OO t~- i n O
— C*"l (- • */"J

Figure 20: The Computational Cost of Partitioning

6.2 Table Partitioning

To study the communication and computational cost under different sizes of subtables, we

execute selection queries each of which involves a random set of 1000 tuples in a database

with totally 15000 tuples while we randomly update tuples. In Figure 19, the y-axis in

dicates the number of stamps that need to be sent to the local database as proofs, which

comprise the major factor of the communication cost. Different lines correspond to dif

ferent number of updated tuples. The x-axis reflects different sizes of subtables, which

increases in the power of two. We consider two types of selection queries. First, range

queries involves continuous tuples with respect to the partitioning process used to obtain

subtables. Second, point queries involve random tuples chosen uniformly from the whole

table regardless of the partitioning process.

The upper side chart in Figure 19 shows that for range queries, there exists an optimal

subtable size with the lowest communication cost around the middle of the x-axis. On

the other hand, the following chart shows that for point queries, the communication cost

50

os
l

u

na
l

o
•3
3

£
O

u

en
£
c
•a

co
r

rr
e

(p
e

0.14

0.12

0.10

0.08

0.06

0.04

0.02
0.00

IlKK)
JUOO

' M l I JI ^
C4

M
5000

"nj6, er °^,
7000

*°«fe
m yolv.

9°00 w/oE„c%p t t

ed m Qu, ery

c*vv

•fctf ̂

Figure 21: The Computational Cost of Search on Encrypted Database

is the lowest when each tuple itself is a subtable, or when the table is not partitioned.

However, considering the fact that smaller subtables imply extra storage cost for stamps

over columns, partitioning turns out to be an effective solution for range queries but not for

point queries.

Figure 20 shows the computational cost for both range queries and point queries in

different sizes of subtables. We can see the trend is similar to that of the communication

cost. The reason is that with smaller subtables, although the computational cost of each

subtable is lower, a greater number of subtables will be involved in a query.

6.3 Over Encryption with Caching

We study the performance overhead of over-encryption under different popular encryption

algorithms, including AES, Blowfish, DES, DESede, RC2, and RC4. Figure 21 shows

the computational cost per tuple for selection queries involving different number of tu

ples. The result shows that in order to provide confidentiality, the proposed over-encryption

mechanism only incurs a small performance overhead. We also evaluate the computational

51

170

150

£130

o
O
15110
c

I 90
E
o
U

70

50

Ac

& ,

- - • • • -

- - -;:> -

---£--

- - -x- -
• • - X -

• Static Cache

- LFU without Encryption

• LFU with Encryption

- LRU without Encryption

- LRU with Encryption

-•:&.
. . - • - . .

J ; - ^ ; - -

• ^ ^ t

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
m/n

(m=the number of records involved by a query, n=the size of window)

Figure 22: The Computational Cost of Over-Encryption with Dynamic Cache Scheme

cost of updates under different caching schemes with or without over-encryption in place.

Figure 22 compares the computational cost of updates in encrypted and non-encrypted

databases under the LFU and LRU-based dynamic caching schemes. Figure 23 compares

the overall computational cost of updating different number of tuples under different en

cryption algorithms. Theses charts both show that the cost of over-encryption is acceptable

and the per-tuple cost will decrease when more tuples are involved in a query.

6.4 A Demo System

We implemented a web application that provides a fictitious university's users with direct

accesses to their medical records hosted in a hospital database. The web application imple

ments the aforementioned security mechanisms. For simplicity, we assume two levels of

users' privileges are enforced in the system, and each user can access records according to

52

Figure 23: The Computational Cost of Over-Encryption with Different Algorithms

specific policies.

Figure 24 shows the web interface when a user check his status on the university side.

The user with low privilege can only query the database according to the policy and the

high user has the ability to modify the users' records. Figure 25 and Figure 26 are the web

interfaces on the hospital side. Figure 25 displays all records in the hospital database, and

in figure 26 there is one modified value with mismatched stamps which are marked in red

color.

When a user on the university site sends a query, our web system demonstrates the

verification process in Figure 27 step by step. After the university database receives results

from the hospital, it will check the policy to determine whether the user has the privilege

to read this result. If yes, the web system will show the page in Figure 28 and then to

recompute and verify the stamps of the returned result. Otherwise a warning page will be

presented in Figure 29.

The process of rebuilding and verifying stamps will be started if the user has privilege

to access the results according to the policy. Figure 30 and Figure 31 show two situations

53

£ » Eite v,esv HI

ft - e :

Vc-ut ifi^arrs-^isjojt

/ Mr username , age disease

Figure 24: User Interface on the University Side

\ •>•. H v . v f . ^ ^ \

zl - ^ H :w.

Lsememe age disease cnecK policv

Figure 25: User Interface on the Hospital Side

54

AS ifiJormairs*!

i username

' 1

, r.

—,

L_..JB.e_.J

vf*^*

disease

- -

-

check

\

—
> —

»

oolicv
r

c

• • • - - • " -

1

)

Figure 26: User Interface on the Hospital Side with Mismatched Stamps

where the returned results are involved in the databases shown in Figure 25 and Figure 26,

respectively.

55

A
, ~ ?*.

: x:
ROM a*Sfs-J<i VVHEftS r-;

»™ Age 3 »i

Figure 27: The Query Verification Process

56

\ /

cy, you hay* me pnvssege !o rea^ 5;

' , * . '.

Fieietmprscess

Figure 28: The Result of Policy Checking Passes

tl ec J> a >

•S'.r

* > ! t

Rss»tm* precast

Figure 29: The Result of Policy Checking Fails

57

^

roe tdfci.vw*s rssiisK f r '

username
t-f&

age | disease check

™ = „,1 «....,.-..

R££e$liiepfoes<;s

Figure 30: Stamp Verification

T H

'•>j c

| age | disease ^ , c ^ c ^

c _ " i_ i_ _~ _ .

Figure 31: Stamp Verification Failed

58

Chapter 7

Conclusion

We have addressed the integrity and confidentiality issues in the context of a loosely cou

pled database federation. Unlike centralized databases or tightly coupled database feder

ations, a loosely coupled database federation lacks the central authority required by tradi

tional authorization models. How to protect the integrity and confidentiality of data stored

in remote databases thus becomes a challenging issue. We provided a solution that is com

posed of an architecture and both integrity and confidentiality mechanisms.

First, we revisited the integrity lock architecture originally proposed for multilevel

databases. We showed that the architecture provides a natural solution to the distributed

authorization in loosely coupled database federations. The architecture not only allowed a

local database to take full control of authorization decisions but also enabled fine-grained

and data dependent authorizations.

Second, we proposed a three-stage procedure as the integrity mechanism of the integrity

lock architecture. The procedure extended techniques in outsourced databases to remove

their limitations in dealing with frequent updates. As a result, modifications of data could

be detected and localized when they are involved in queries. The remote database would

then provide log entries as proofs of the legitimacy of such modifications. As a result,

legitimate updates were accommodated while unauthorized modifications were excluded

59

from query results.

Third, we proposed a new over-encryption scheme as the confidentiality mechanism.

We replaced the key derivation function with our new scheme based on secret sharing to

reduce the number of required public tokens. The over-encryption scheme could allow

updates of access control policies without shipping data back to the local database for re-

encryption. We illustrated the proposed scheme through a case study.

Finally, we evaluated several aspects of the proposed solution through implementation

and experiments. We compared the performance of different caching schemes, which leads

to the conclusion that ensuring data integrity using the proposed mechanisms incurs an ac

ceptable performance overhead if appropriate caching schemes are used; different caching

schemes are suitable for different types of queries. We studied the effect of partitioning

tables into subtables of different sizes. The conclusion is that partitioning tables helps the

most with respect to range queries while it is not as effective for point queries. Finally,

we studied the performance overhead of over-encryption in terms of both selection queries

and updates. The conclusion is that such overhead is reasonably low regardless of the

encryption algorithms being used.

In the broad context of loosely coupled database federations, different security issues

may arise when the local and remote databases interact in different ways, or when the

trust placed upon remote databases is of a different degree or nature. Our future work will

continue to explore security issues in such situations. Other future directions include the

optimization of security mechanisms in the presence of concurrent accesses and the issue

of query processing in the presence of encryption techniques.

60

Bibliography

[1] Paul Ammann, Sushil Jajodia, and Peng Liu. Recovery from malicious transactions.

IEEE Transactions on Knowledge and Data Engineering, 14(5):1167-1185, 2002.

[2] Mikhail J. Atallah, Keith B. Frikken, and Marina Blanton. Dynamic and efficient

key management for access hierarchies. In CCS '05: Proceedings of the 12th ACM

conference on Computer and communications security, pages 190-202, New York,

NY, USA, 2005. ACM.

[3] Philippe Beguin and Antonella Cresti. General short computational secret sharing

schemes. In Advances in Cryptology-EUROCRYPT'95, pages 194-208. Springer

Berlin and Heidelberg, 1995.

[4] Amos Beimel and Benny Chor. Secret sharing with public reconstruction. In IEEE,

pages 1887-1896. IEEE, 1998.

[5] Jonscher D. and K.R. Dittrich. Argos - a configurable access control system for in

teroperable environments. In IFIP Workshop on Database Security, pages 43-60,

1995.

[6] S. Dawson, P. Samarati, S. De Capitani di Vimercati, P. Lincoln, G. Wiederhold,

M. Bilello, J. Akella, and Y. Tan. Secure access wrapper: Mediating security be

tween heterogeneous databases. In DARPA Information Survivability Conference and

Exposition (DISCEX), 2000.

61

[7] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.

Over-encryption: Management of access control evolution on outsourced data. In

VLDB, 2007.

[8] D.E. Denning. Cryptographic checksums for multilevel database security. In Proc. of

the 1984 IEEE Symposium on Security and Privacy, pages 52-61, 1984.

[9] D.E. Denning. Commutative filters for reducing inference threats in multilevel

database systems. In Proc. of the 1985 IEEE Symposium on Security and Privacy,

pages 134-146, 1985.

[10] Premkumar T. Devanbu, Michael Gertz, Chip Martel, and Stuart G. Stubblebine. Au

thentic third-party data publication. In IFIP 11.3 Working Conference on Database

Security, pages 101-112, 2000.

[11] R. Graubart. The integrity-lock approach to secure database management. In Proc. of

the 1984 IEEE Symposium on Security and Privacy, page 62, 1984.

[12] E. Gudes and M.S. Olivier. Security policies in replicated and autonomous databases.

In Proc. of the IFIP TC11 WG 11.3 Twelfth International Conference on Database

Security, pages 93-107, 1998.

[13] H. Guo, Y. Li, A. Liu, and S. Jajodia. A fragile watermarking scheme for detecting

malicious modifications of database relations. Information Sciences, 176(10): 1350-

1378,2006.

[14] Xiangji Huang, Qingsong Yao, and Aijun An. Applying language modeling to session

identification from database trace logs. Knowl. Inf. Syst., 10(4):473-504, 2006.

[15] S. Jajodia and R.S. Sandhu. Toward a multilevel secure relational data model. In

M.D. Abrams, S. Jajodia, and H.J. Podell, editors, Information Security An Integrated

Collection of Essays, pages 460-492. IEEE Computer Society Press, 1995.

62

[16] S. Jajodia, R.S. Sandhu, and B.T. Blaustein. Solutions to the polyinstantiation prob

lem. In M.D. Abrams, S. Jajodia, and H.J. Podell, editors, Information Security An

Integrated Collection of Essays, pages 493-530. IEEE Computer Society Press, 1995.

[17] Markus Jakobsson, Tom Leighton, Silvio Micali, and Michael Szydlo. Fractal merkle

tree representation and traversal. In In Proc. ofRSA Cryptographersqf Track, pages

314-326. Springer, 2003.

[18] J.Crampton, K.Martin, and P.Samarati. On key assignment for hierarchical access

control. In 19th IEEE CSFW'06, 2006.

[19] D. Jonscher and K.R. Dittrich. An approach for building secure database federations.

In Proc. of the 20th VLDB Very Large Data Base Conference, pages 24-35, 1994.

[20] Marek Karpinski and Yakov Nekrich. Optimal trade-off for merkle tree traversal. In

ICETE, pages 275-282, 2005.

[21] Yongdae Kim, Adrian Perrig, and Gene Tsudik. Tree-based group key agreement.

Technical Report 2002/009, 2002.

[22] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Dynamic

authenticated index structures for outsourced databases. In Proceedings of the 2006

ACM SIGMOD international conference on Management of data, pages 121-132,

New York, NY, USA, 2006. ACM Press.

[23] C. Meadows. The integrity lock architecture and its application to message systems:

Reducing covert channels. In Proc. of the 1987 IEEE Symposium on Security and

Privacy, page 212, 1987.

[24] R.C. Merkle. A certified digital signature. In Proc. of the Advances in Cryptology

(CRYPTO'89), pages 218-238, 1989.

63

[25] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model.

In Proc. of the 2006IFIP 11.3 Working Conference on Database Security, 2006.

[26] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and integrity

in outsourced databases. ACM Transactions on Storage (TOS), 2(2): 107-138, 2006.

[27] N.Alon, Z.Galil, and M.Yung. Efficient dynamic-resharing "verifiable secret sharing"

against mobile adversary. In Algorithms-ESA'95, pages 523-537. Springer Berlin and

Heidelberg, 1995.

[28] L. Notargiacomo. Architectures for mis database management systems. In M.D.

Abrams, S. Jajodia, and H.J. Podell, editors, Information Security An Integrated Col

lection of Essays, pages 439-459. IEEE Computer Society Press, 1995.

[29] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. Verifying com

pleteness of relational query results in data publishing. In Proceedings of the 2005

ACM SIGMOD international conference on Management of data, pages 407^118,

New York, NY, USA, 2005. ACM Press.

[30] S.Akl and P.Taylor. Cryptographic solution to a problem of access control in a hier

archy. In ACM TOCS, pages l(3):239-248, 1983.

[31] Adi Shamir. How to share a secret. In Communications of the ACM, pages 612-613,

New York, NY, USA, 1979. ACM.

[32] A.P. Sheth and J.A. Larson. Federated database system for managing distributed,

hetergeneous, and autonomous databases. ACM Computing Surveys, 22(3): 183-236,

1990.

[33] Lingyu Wang Shuai Liu, Wei Li. Towards efficient over-encryption in outsourced

databases using secret sharing. In Proc. The 2nd IFIP International Conference on

New Technologies, Mobility and Security (NTMS 2008), pages 1-5, 2008.

64

[34] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for

searches on encrypted data. In IEEE Symposium on Security and Privacy, pages 44-

55, 2000.

[35] Michael Szydlo. Merkle tree traversal in log space and time. In In Eurocrypt 2004,

LNCS, pages 541-554. Springer-Verlag, 2004.

[36] Hai Wang and Peng Liu. Modeling and evaluating the survivability of an intrusion

tolerant database system. In ESORICS, 2006.

[37] Xuxin Xu, Lingyu Wang, Amr M. Youssef, and Bo Zhu. Preventing collusion attacks

on the one-way function tree (oft) scheme. In ACNS, pages 177-193, 2007.

[38] J. Yang, D. Wijesekera, and S. Jajodia. Subject switching algorithms for access con

trol in federated databases. In Proc. of 15th IF1P WG11.3 Working Conference on

Database and Application Security, pages 199-204, 2001.

65

