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ABSTRACT 

Distributed Authorization in Loosely Coupled Data Federation 

Wei Li 

The underlying data model of many integrated information systems is a collection of inter

operable and autonomous database systems, namely, a loosely coupled data federation. A 

challenging security issue in designing such a data federation is to ensure the integrity and 

confidentiality of data stored in remote databases through distributed authorization of users. 

Existing solutions in centralized databases are not directly applicable here due to the lack of 

a centralized authority, and most solutions designed for outsourced databases cannot easily 

support frequent updates essential to a data federation. In this thesis, we provide a solution 

in three steps. First, we devise an architecture to support fully distributed, fine-grained, 

and data-dependent authorization in loosely coupled data federations. For this purpose, 

we adapt the integrity-lock architecture originally designed for multilevel secure databases 

to data federations. Second, we propose an integrity mechanism to detect, localize, and 

verify updates of data stored in remote databases while reducing communication overhead 

and limiting the impact of unauthorized updates. We realize the mechanism as a three-

stage procedure based on a grid of Merkle Hash Trees built on relational tables. Third, 

we present a confidentiality mechanism to control remote users' accesses to sensitive data 
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while allowing authorization policies to be frequently updated. We achieve this objective 

through a new over-encryption scheme based on secret sharing. Finally, we evaluate the 

proposed architecture and mechanisms through experiments. 

IV 



Acknowledgments 

I would like to express my gratitude to all those who gave me the possibility to complete 

this thesis. 

First of all, I would like to express my sincerely thanks to my supervisor, Dr. Lingyu 

Wang, on whose constant encouragement guidance and advices I have relied throughout 

my entitle research at Concordia University, especially to the published papers, journal and 

this manuscript. 

Especially, I would like to give my special thanks to my wife, Yiyi Wang, whose patient 

love enabled me to complete this work. 

v 



Contents 

List of Figures viii 

List of Tables x 

1 Introduction 1 

2 Related Work 4 

2.1 Database Federation 4 

2.2 Merkle Hash Tree (MHT) 6 

2.3 Metadirectories and Virtual Directories 6 

2.4 Over-Encryption and Secret Sharing 7 

3 Integrity Lock Architecture for Database Federation 9 

3.1 Motivating Example . . . 9 

3.2 Integrity Lock Architecture 13 

4 Ensuring Data Integrity while Supporting Frequent Updates 18 

4.1 Overview 18 

vi 



4.2 Detecting and Localizing Modifications 20 

4.3 Verifying the Legitimacy of Updates 23 

"4.4 Accommodating Legitimate Updates 26 

4.5 Security Analysis 31 

5 Ensuring Data Confidentiality Through Over-Encryption 34 

5.1 Overview 34 

5.2 Secret Sharing-Based Over-Encryption 36 

5.3 Query over Encrypted Database 40 

5.4 A Case Study 41 

6 Implementation and Experiments 45 

6.1 Static and Dynamic Caching 45 

6.2 Table Partitioning 50 

6.3 Over Encryption with Caching . 51 

6.4 A Demo System 52 

7 Conclusion 59 

Bibliography 61 

vu 



List of Figures 

1 An Example of Interaction Between Federation Members 10 

2 The Integrity Lock Architecture 13 

3 A Grid of Merkel Hash Trees on Tables 20 

4 Localizing Updates With MHT Grid 22 

5 The Protocol for the Verification of Updates 23 

6 Partition Table into Sub-tables 27 

7 Update the Root of a MHT 30 

8 Static Cache and Dynamic Cache 31 

9 An Example Function of the Second Scheme 38 

10 An Example Key Derivation Tree of the Second Scheme 38 

11 Initial Key Derivation on the BEL Layer 42 

12 Initial Key Derivation on the SEL Layer 42 

13 Key Derivation On BEL for Granting User Carl the Access to s4 . . . . . . 44 

14 Key Derivation On SEL for Granting User Carl the Access to s4 44 

15 The Performance of Static Cache Scheme 46 

16 The Static Cahce Scheme Performance with Different Cache Size 46 

viii 



17 The Performance of LFU Dynamic Cache Schemes 47 

18 The Performance of LRU Dynamic Cache Schemes 48 

19 The Communication Cost under Different Sizes of Subtables 49 

20 The Computational Cost of Partitioning 50 

21 The Computational Cost of Search on Encrypted Database 51 

22 The Computational Cost of Over-Encryption with Dynamic Cache Scheme 52 

23 The Computational Cost of Over-Encryption with Different Algorithms . . 53 

24 User Interface on the University Side 54 

25 User Interface on the Hospital Side 54 

26 User Interface on the Hospital Side with Mismatched Stamps 55 

27 The Query Verification Process 56 

28 The Result of Policy Checking Passes 57 

29 The Result of Policy Checking Fails 57 

30 Stamp Verification 58 

31 Stamp Verification Failed 58 

IX 



List of Tables 

1 Comparison Between the Two Schemes 39 

2 An Access Control Matrix 41 

x 



Chapter 1 

Introduction 

Data integration and information sharing have attracted significant interests lately. Al

though web services play a key role in data integration as the interface between autonomous 

systems, the underlying data model of the integrated system can usually be regarded as a 

collection of inter-operable and autonomous database systems, namely, a loosely coupled 

database federation [32]. Among various issues in designing such a database federation, 

the authorization of users requesting for data located in remote databases remains to be a 

challenging issue in spite of existing efforts. 

The autonomous nature of a loosely coupled federation makes it difficult to directly 

apply most centralized authorization models. The subject and object in an access request 

may belong to different members of a federation that are unaware of each other's user ac

counts, roles, or authorization policies. Simply duplicating such information across the 

members is generally not a feasible solution due to the confidential nature of such infor

mation. In addition, the members of a database federation usually lack full trust in each 

other, especially in terms of confidentiality and integrity of sensitive data. On the other 

hand, although there are similarities between a loosely coupled database and outsourced 

databases, a fundamental difference is that data in a federation of operational databases is 

subject to constant updates. This difference prevents direct application of most existing 
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security solutions in outsourced databases to a database federation. 

In this thesis, we propose a solution for distributed authorization in loosely coupled 

database federations. We describe the solution in three steps. First, we devise an architec

ture to support fully distributed, fine-grained, and data-dependent authorization in loosely 

coupled database federations. For this purpose, we adapt the integrity-lock architecture 

originally designed for multilevel secure databases to database federations. Although in

tended for a different purpose, the integrity lock architecture has properties diat are partic

ularly suitable for a loosely coupled database federation. The architecture does not require 

the remote database to be fully trusted but instead supports end-to-end security between 

the creation of a tuple to the inquiry of that tuple. This capability is essential to a database 

federation where members do not fully trust each other for authorization. The architecture 

binds authorization polices to the data itself, which can avoid duplicating data or autho

rization policies across the federation and also allows for attribute-level authorizations and 

authorizations that depend on data content. 

Second, we propose an integrity mechanism to detect, localize, and verify updates of 

data stored in remote databases while reducing communication overhead and limiting the 

impact of unauthorized updates. We realize the mechanism as a three-stage procedure. In 

the first stage, a database detects modifications of remote data when such data are involved 

in a query. Detected modifications are localized using a two-dimensional grid of Merkel 

Hash Trees (MHTs). In the second stage, the two involved databases follow a common pro

tocol to verify the legitimacy of detected modifications. The modified data are accepted as 

the result of legitimate updates only if the remote database can provide sufficient evidence. 

Finally, the local database updates the MHTs on the legitimate portion of remote data by 

excluding any unauthorized modifications. To reduce performance overhead in recomput

ing MHTs, we propose two caching schemes that are suitable for different types of queries. 

We evaluate the performance of those schemes through experiments. 
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Third, we present a confidentiality mechanism to control remote users' accesses to sen

sitive data while allowing authorization policies to be frequently updated. We achieve this 

objective through a new secret sharing-based over-encryption scheme. The over-encryption 

scheme doubly encrypts sensitive data at both the local database and remote database. Ac

cess control policies are enforced through publishing tokens that enable users to derive the 

encryption keys to which they are authorized. The two independent layers of encryption 

allows a remote database to be only partially trusted, and it also enables efficient updates 

of access control policies, which is particularly important for database federations. Our 

secret sharing-based scheme improves the performance of over-encryption by reducing the 

number of public tokens. We evaluate different implementations of the proposed scheme 

through experiments. 

The main contribution of the thesis is two fold. First, with the proposed architecture and 

mechanisms, we provide a practical security solution to many data integration applications 

as long as their data model can be abstracted as a loosely coupled database federation. Sec

ond, by adapting existing architecture and methods in multilevel and outsourced databases 

to a database federation, we establish interesting connections between those distinct areas 

of research. The rest of the thesis is organized as follows. Chapter 2 reviews previous work. 

Chapter 3 illustrates security issues addressed in this thesis through a motivating example 

and describes the adapted integrity lock architecture in database federation. Chapter 4 pro

poses a three-stage procedure for supporting legitimate updates of remote data while en

suring their integrity. Chapter 5 devises a secret sharing-based over encryption scheme for 

supporting access control on remote data and efficient policy updates. Chapter 6 presents 

experimental results on the performance of the proposed solution. Chapter 7 concludes the 

thesis. 
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Chapter 2 

Related Work 

2.1 Database Federation 

A Federated Database System (FDBS) is a collection of cooperating yet autonomous mem

ber database systems [32]. Member databases are usually heterogeneous in many aspects 

such as data models, query languages, authorization policies, and semantics (which refers 

to the fact that the same or similar data items may have different meanings or distinct in

tended usages among member databases). According to the degree of integration, FDBSs 

are mainly classified as loosely coupled FDBS and tightly coupled FDBS. A loosely cou

pled FDBS is rather like a collection of inter-operable database systems. Most research 

efforts have focused on a tightly coupled FDBS, where the federation, as an indepen

dent component, is created at design time and actively controls all accesses to member 

databases [5,6,12,19, 38]. Although designing a tightly coupled FDBS from scratches 

has obvious advantages, in many cases it may not be feasible due to the implied costs. Our 

study assumes the loosely coupled FDBS model, and we do not require major modifications 

to existing DBMSs. This makes our approach more attractive to today's data integration 

applications. 

Security issues such as access control are more challenging in a loosely coupled FDBS 
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than in a centralized database or a tightly coupled database federation due to the lack of 

a central authority and the autonomy in authorization that allows member databases to 

have partial control over shared data. Depending on the degree of such autonomy, the ac

cess control models can be divided into three classes [5]. With/w// authorization autonomy, 

member databases authenticate and authorize federation users as if they are accessing mem

ber databases directly. To the other extreme, low authorization autonomy fully trusts and 

relies on the central federation component to authenticate and authorize federation users. 

Our work considers the compromise between the two, namely medium authorization au

tonomy, where member databases have partial control on shared resources. Most existing 

efforts on medium authorization autonomy in FDBSs, such as subject switching [38], re

quire members to agree on a loose mapping between user accounts and privileges across 

different databases. 

By excluding corrupted data from query results, our approach allows the database fed

eration to continue normal operation in the presence of unauthorized modifications. This 

is similar to database recovery mechanisms, such as those based on trusted repair algo

rithms using read-from dependency information [1] and the extended model based on state 

transition graphs [36]. However, our focus is not on the isolation and recovery from in

trusions, but rather on the interaction between local and remote databases in a database 

federation. Multilevel databases have received enormous interests in the past, as surveyed 

in [15,16,28]. Various architectures have been proposed for building multilevel databases 

from un-trusted database components [28]. Those work mainly focus on the prevention of 

information flow between different security level while supporting cover stories that are es

sential to military applications [15,16]. We adapt the integrity lock architecture originally 

proposed for multilevel databases [28] to database federations. 

In a database federation, the sharing of data between databases bears a similarity to data 

publication in outsourced databases. The security of outsourced databases has attracted 
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significant interests [10, 22,25,26, 29]. One of the major issues in outsourced databases 

is to allow clients to verify the integrity of query results, because the database service 

provider in this model is usually not fully trusted [26]. Various techniques based on cryp

tographic signature and Merkel Hash Tree (MHT) [24] have been proposed to address the 

integrity, completeness, freshness, and other desired properties of query results. The key 

challenge in applying those techniques in outsourced databases to the federation of oper

ational databases is that data are relatively static in the former while they are constantly 

being updated in the latter. To allow legitimate updates of data without having to ship them 

back to the owner (local database), we propose a protocol for the automatic detection and 

verification of updates on remote data. 

2.2 Merkle Hash Tree (MHT) 

Our discussions on incrementally updating MHTs is related to algorithms for reducing 

the time or space cost of MHT traversal [17]. Those algorithms aim to achieve tradeoffs 

between storage and computational efficiency in sequential traversals of a MHT. The al

gorithm in [17] uses subtrees for traversal of a MHT and discard intermediate nodes of 

a subtree when they are found in existing subtrees. The algorithm in [35] improves the 

classic MHT traversal algorithm in terms of less space requirement. A hybrid of those ap

proaches is introduced in [20]. However, those algorithms focus on visiting every node in 

a MHT structure, which is slightly different from the incremental updates of MHT used in 

the verification of data updates. 

2.3 Metadirectories and Virtual Directories 

Metadirectories and virtual directories technology are related to our work. They both al

low users to access data from different repositories by using directory mechanisms such 
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as Lightweight Directory Access Protocol (LDAP). Metadirectories needs to create a new 

repository to synchronize data from multiple source directories storing the data. When 

data in source directories changes frequently, it would be expensive to keep data updated 

due to excessive storage and computation overhead. Instead of maintaining a separate in

formation repository, virtual directories create a virtualization layer to access information 

indirectly. The virtual directories based on a directory protocol, such as LDAP, works well 

under a hierarchical structure. LDAP, which is optimized for read but not for write, is 

mainly designed for data sharing. For security, LDAP certificates the identities through 

authentication methods. However, our approach is based on a different assumption that the 

remote database is not fully trusted by the local database so authentication between the two 

databases cannot be relied on. 

2.4 Over-Encryption and Secret Sharing 

Over-encryption is a novel technique introduced for enforcing access control and the ef

ficient management of policy updates in outsourced databases [7]. In over-encryption, 

resources are doubly encrypted at the base encryption layer (BEL) and the surface encryp

tion layer (SEL). The BEL layer encryption is imposed by the owner for providing initial 

protection; the SEL layer encryption is imposed by the outsourced server to reflect policy 

modifications. One potential limitation of the over-encryption scheme is that it may re

quire to publish too many tokens when the number of users is large. Instead of relying on 

key derivation function, we base our over-encryption scheme upon secret-sharing to reduce 

the number of public tokens [33]. A number of different proposals exist on secret sharing 

schemes [3,4,27,31] among which we apply Shamir's scheme [31]. Another related area 

of research is the group key management [21,37] and hierarchical key assignment [18,30]. 

Those schemes classify data into different levels and generate a key for each level, with 

lower level keys dependent on higher level keys. However, those schemes are generally 
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based on tree architectures and are not suitable for over-encryption. 
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Chapter 3 

Integrity Lock Architecture for 

Database Federation 

Section 3.1 first illustrates security issues in a loosely coupled database federation. Sec

tion 3.2 then gives a high-level overview of our solution by adapting the integrity lock 

architecture to database federations. 

3.1 Motivating Example 

Unlike a tightly coupled database federation, a loosely coupled database federation has 

no centralized federation component created at design time to actively control accesses to 

each member of the federation. Instead, the two databases are autonomous members of the 

federation that directly interact with each other. To illustrate security issues that may arise 

due to such interaction between federation members, we consider a concrete case in the 

following. 

Figure 1 depicts a simplified scenario of the interaction between two databases in a 

loosely coupled database federation. In this example, we assume a fictitious university 

and its designated hospital are aiming to establish an integrated application to provide the 
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Figure 1: An Example of Interaction Between Federation Members 

university's employees (as depicted in the PERSONNEL table) direct accesses to their 

medical records hosted at the hospital (the DIAGNOSIS table). Bob and Eve are two 

users of the university, and Alice belongs to the hospital. The two tables both contain facts 

about employees of the university and they have two common attributes ID and NAME. 

As a normal employee of the university, Bob should not have free accesses to other em

ployees' CONDITION attribute values hosted at the hospital. On the other hand, another 

user at the university side, Eve, may be authorized to access records of a selected group of 

employees due to her special job function (for example, as a staff working at the university 

clinic or as a secretary in a department). At the hospital side, Alice is prohibited from 

accessing the INCOME attribute of any university employee. However, as a doctor des

ignated by the university, Alice is authorized to access and modify the CONDITION 

attribute. 

To realize the above scenario, a loosely coupled database federation has advantages over 
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centralized approaches. First, we can store the CONDITION attribute in the university-

side database and thus completely eliminate the hospital-side table. However, the attribute 

CONDITION and other related medical data will most likely be frequently accessed 

and updated at the hospital side. Storing those attributes at the hospital is thus a more 

natural choice. Second, the university would certainly be reluctant to move or duplicate the 

table PERSONNEL to the hospital side due to its sensitive nature. The above scenario 

is also different from the case of two separate organizations. In this case, the university 

is responsible for its employees' medical records even though the records are stored in 

the hospital. From this point of view, we can regard the local database at the university 

as outsourcing its data to the remote database at the hospital. However, different from 

a outsourced database which is relatively static, here the data are constantly subject to 

updates. 

The above scenario shows the need for distributed authorization. The local database 

at the university apparently needs to verify the legitimacy of accesses and updates to data 

stored in the remote database at the hospital. Such verification is needed to ensure all 

updates to be in accordance with policies or contractual conditions that may have been 

agreed upon during the formation of the database federation. For example, only a doctor 

designated by the university is allowed to access and modify the CONDITION attribute. 

We consider following possible approaches to such an authorization. 

• We could choose to let the university trust the hospital in enforcing such a policy. 

However, this implies trust in not only the hospital as an organization, but also any 

user who gains accesses to the hospital-side data. The autonomous nature of a loosely 

coupled federation most likely will render such amount of trust unacceptable to the 

university. Another difficulty is that the university may have to export its employees' 

account information (for example, Eve is a secretary of a certain department) to the 

hospital so the latter can enforce access control based on such information. Again, 
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this fact is inconvenient since such account information usually includes sensitive 

data about the university's employees. 

• Another possible approach is to enforce access control policies completely at the 

university side, with no trust in the hospital. This solution works fine for users at 

the university under policies that are either data-independent (for example, no user 

should ever access the POLICY attribute) or only dependent on attributes in the 

university's table (for example, Bob should only access his own record). However, 

the solution cannot easily handle a policy that depends on attributes in the hospital's 

database, such as CONDITION ^ AIDS. If Bob has many records with different 

CONDITION values, all with different policies, then even storing such policies in 

the university's database will be difficult. Also, for users at the hospital, this solution 

would require constant communication between the two databases. 

• In this thesis, we adopt a distributed authorization approach that is based on the trust 

but verify principle. In this particular example, the university will trust the hospital 

in enforcing data dependent policies. However, whenever remote data are sent from 

the hospital to the university as query results, the university will attempt to verify 

the integrity of such data. The hospital must provide evidence to prove any detected 

modification to be the result of legitimate updates from authorized users. Such an 

approach allows the hospital to ensure the integrity of remote data without having to 

authorize every update. With the assumption that the hospital as an organization is 

trustworthy but all of its users are not, such a distributed authorization approach has 

advantages in terms of both security and performance. 
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Figure 2: The Integrity Lock Architecture 

3.2 Integrity Lock Architecture 

At the architecture level, we need to decide where and when to enforce security policies. 

We borrow the integrity lock architecture, which is originally proposed for multi-level 

databases [28], to support distributed authorization in loosely coupled database federa

tions. Unlike databases in commercial worlds, in multilevel databases, both users and data 

are classified with different security levels, such as top secret, secret, confidential, or un

classified. The primary concern is to prevent information from flowing downwards across 

the security levels. The main objective of the integrity lock architecture is to reduce costs 

by building secure multilevel databases from un-trusted off-the-shelf DBMS components. 

Figure 2 illustrates a simplified integrity lock architecture where two security levels, 

high and low, are considered. The integrity lock architecture depends on a trusted front end 

(also called a filter) to mediate accesses between users and the un-trusted DBMS (the origi

nal model also has an un-trusted front end, which is omitted here for simplicity) [8,9,11,23]. 

Each tuple has two additional attributes, namely, a security level and a cryptographic stamp. 

The stamp is basically a message authentication code (MAC) computed over the whole tu

ple excluding the stamp using a cryptographic key known to the trusted front end. 
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When a tuple is to be inserted or updated by a legitimate user, the trusted front end will 

determine the security level of the new tuple, and it will compute the stamp and append 

it to the query. The trusted front end determines the security level of the new tuple and 

computes the stamp to append it to the query when a tuple is to be inserted or updated. 

The query is then forwarded to the DBMS for execution. When users submit a legitimate 

selection query, the trusted front end will simply forward the query to the DBMS. Upon 

receiving the query result from the latter, the trusted front end will verify all tuples in the 

result and their security levels by recomputing and matching the cryptographic stamps. If 

all the data check out, the trusted front end will then filter out prohibited tuples based on 

their security levels, the user's security level, and the security policy. For example, low 

users are not allowed to retrieve high tuples. The remaining tuples are then returned to the 

user as the query result. 

Instead of relying on a secure DBMS, which incurs higher cost to build, the integrity 

lock architecture provides end-to-end security from the time a tuple is created (or modified) 

to the time it is returned in a query result. The un-trusted DBMS cannot alter any tuple or 

its associated security level without being detected. Such a capability naturally fits in the 

requirements of a database federation. More specifically, in Figure 1, we can regard the 

university-side database as the trusted front end, and the hospital-side database as an un-

trusted DBMS in the integrity lock architecture. The security levels of users and tuples 

in the integrity lock architecture can be interpreted as users' credentials (for example, user 

IDs, groups, or roles) and the security policies associated with tuples, respectively. Suppose 

a user Eve of the university-side database wants to insert or update some records in the table 

stored at the hospital (for example, to create or update an account for an employee). The 

university-side database will compute and append a cryptographic stamp to the tuple to be 

inserted or updated. 
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As in the original integrity lock architecture, the cryptographic stamp is a MAC com

puted over all attributes of the tuple, including the access control policies associated with 

that tuple (which is provided by Eve). When a user of the university-side database wants to 

select tuples in the hospital-side database, the university database will enforce any policy 

that is locally stored through either rejecting or modifying the original query posed by the 

user. For example, if Bob is only allowed to ask about his own records, then his query will 

be modified by appending a WHERE clause NAME=' Bob ' . The university database then 

forwards the modified query to the hospital database for processing. Upon receiving query 

results from the latter, the university database will then verify the integrity of each returned 

tuple in the results through the cryptographic stamp in the tuple. It then filters out any tuple 

that Bob is not allowed to access according to the access control policy associated with that 

tuple. 

In the context of multilevel databases, a known complication of the integrity lock ar

chitecture is its vulnerability to two kinds of inference attacks [9]. In particular, Trojan 

horse leakage refers to the covert channel that an un-trusted DBMS can signal a 0 or 1 bit 

by returning different tuples as the result of the same query. Such a threat is more of a 

concern to multilevel systems used by military or governmental organizations and we shall 

not consider it further. On the other hand, user inference allows a user to infer prohib

ited data from the result of legitimate queries. For example, in Figure 1 if Bob asks the 

following query: SELECT ID , NAME FROM DIAGNOSIS WHERE NAME='ALICE 

and C0NDITI0N=' AIDS' . The query will be allowed because the result returned by 

the hospital-side database, (1, Alice), only includes data that Bob is allowed to access. 

However, Bob can then infer that Alice has AIDS. Denning gives a solution to such infer

ence problem, namely, the commutative filter [9]. A commutative filter answers a query 

only if its result is the same as if it had been computed on a database with all prohibited 

data removed. In the rest of this thesis, we shall assume such solutions are in place. 
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The security of any architecture critically depends on its proper implementations. The 

adapted integrity lock architecture faces following implementation issues. First, the orig

inal architecture requires a whole tuple to be returned by the un-trusted DBMS, even if 

the query only asks for one or two attributes [8,11], because the cryptographic stamp is 

computed over the whole tuple (excluding the stamp itself). This limitation may cause un

necessary communication overhead between databases in a federation, if queries involve 

projections. Second, the integrity lock architecture can only detect modified tuples but can

not detect the omission of tuples in a query result. That is, the completeness of query results 

is not guaranteed. Similar issues have recently been addressed in the context of outsourced 

databases (ODB) [10,22,29]. The solution typically involves implementing cryptographic 

stamps as the signature of root of a MHT on each tuple, with all attribute values being the 

leaves. Since the root of a MHT can be computed from any subset of the leaves plus a 

small number of sibling nodes, communication cost is reduced. Moreover, omitting tuples 

from query results will be detected when comparing a recomputed signature of the root to 

the stamp. 

However, simply applying the aforementioned solutions in ODB to the integrity lock 

architecture in database federations is not practical. A fundamental difference between 

ODB and database federations is that the former usually assumes a relatively static database 

with no or infrequent updates. In the ODB model, the database service provider is generally 

not supposed to modify the outsourced data. Existing techniques in ODB thus mainly 

focus on the detection of modifications with pre-computed signatures given to users. Data 

updates usually imply significant computational and communication costs. In the case of 

MHT-based solutions, the signature of the root must be updated immediately after every 

update, because no future query can be verified before this update (the verification of all 

queries depends on the same signature). Such an overhead is not acceptable to database 

federations, because the members of such a federation are typically operational databases 
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where data are constantly being updated. We shall address such issues in next section. 
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Chapter 4 

Ensuring Data Integrity while 

Supporting Frequent Updates 

In this section, we present mechanisms for ensuring the integrity of data while allowing 

legitimate updates under the integrity lock architecture. First, Section 4.1 provides an 

overview of our approach. Section 4.2 then shows how to detect and localize modifica

tions using a grid of MHTs. Section 4.3 presents a procedure for verifying modifications. 

Section 4.4 provides a solution to incrementally update the grid of MHTs upon legitimate 

updates of data. Finally, Section 4.5 evaluates the security of our approach. 

4.1 Overview 

First of all, we describe what we mean by authorized users. As mentioned earlier, we shall 

refer to the database hosting shared data as remote database and the other database local 

database. In forming the federation, each member database should be given the capability 

of authenticating users of a remote database, without the help of that remote database. Our 

solution will not depend on specific ways of implementing such authentication, although 

we shall consider a concrete case where a remote user possesses a public/private key pair, 

18 



so the user's query can be authenticated through digital signatures created using the private 

key. 

To ensure the integrity of data stored in a remote database, two seemingly viable ap

proaches are either to verify the update queries, or to verify the state of remote data imme

diately after each update. For example, in Figure 1, whenever Alice attempts to update a 

record, the hospital-side database can send the query and the records to be updated, which 

are both digitally signed by Alice, to the university-side database for verification. The lat

ter will verify the legitimacy of the update by comparing Alice's credential to the access 

control policies stored in the records. However, this approach is not effective because the 

hospital-side database must be trusted in forwarding all update queries for verification and 

in incorporating all and only those legitimate updates after they are verified. As an example 

of the second approach, the university-side database can choose to verify the state of remote 

data after each update is made to the data. However, this approach faces two difficulties. 

First of all, it is difficult to know about every update if the remote database is not trusted 

since it may delay or omit reporting an update. Moreover, the approach may incur unnec

essary performance overhead. For example, a doctor may need to make several temporary 

updates to a'diagnosis record before a final conclusion can be drawn. The university-side 

database does not need to verify all those temporary updates. 

We take a three-stage approach, as outlined below and elaborated in following sections. 

First, referring to the example in Figure 1, the university-side database will detect modifi

cations in a lazy manner. More precisely, when Bob or Eve issues a selection query and the 

result is returned by the hospital-side database, the university-side database will attempt 

to detect and localize modifications in the tuples involved in the query result using a two-

dimensional grid of MHTs. Second, if a modification is detected and localized, then the 

local database will request the remote database to provide proofs for the legitimacy of such 

updates. The remote database then submits necessary log entries containing digitally signed 
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Figure 3: A Grid of Merkel Hash Trees on Tables 

update queries corresponding to those updates. The local database will check whether the 

queries are made by those users who are authorized for such updates, and whether those 

queries indeed correspond to the modified data. Third, the local database will then disre

gard any tuples in the query result for which no valid proof can be provided by the remote 

database. To accommodate legitimate updates, the local database will incrementally com

pute new signatures and send them back to the remote database who will incorporate those 

new signatures into the tuples. 

4.2 Detecting and Localizing Modifications 

We compute a two-dimensional grid of MHTs on a table to detect and localize any mod

ification to tuple or attribute level (a similar idea was applied to watermarks in [13]). In 

Figure 3, the attributes are denoted as Ai(l < i < n + 1), among which we assume Ax is 

the primary key and An the access control policy for each tuple. The MHT is built with a 
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collision-free hash function h() and a public key signature algorithm sig(). Each yi(l < 

i < m) is the signature of the root w{ of a MHT built on the tuple (viti, v^,..., v^n). Simi

larly, each Xj is a signature of the root Ui of the MHT built on the column (vi:i, v2ti,..., t> m,i). 

For example, in Figure 1, for the hospital-side table, the signatures will be created by the 

university-side (local) database using its private key. If a table includes tuples jointly owned 

by multiple local databases, then multiple signatures can be created and then aggregated 

(for example, using the Condensed RSA scheme [26]) as one attribute value, so any in

volved database can verify the signature. 

When a user at the local database poses a selection-projection query whose result in

cludes a set of values V C {vij | 1 < i < m, 1 < j < n — 1}, the remote database needs 

to return the set V, the policy vitn and the signatures X{ and yj for each Vij e V. Moreover, 

the siblings needed for computing the root of the MHTs from which the signatures have 

been computed should also be returned. Upon receiving the query result, the local database 

will verify the signatures and values in V by re-computing roots of corresponding MHTs. 

If all signatures are valid, then the local database is assured about the integrity of data. It 

will then examine the access control policies and filter out those tuples not allowed to be 

accessed by the user, and check the completeness of the query result based on the MHTs. 

If everything checks out, the query will be answered. 

If some signatures do not match those included in query result, then modified data must 

first be localized based on following observations. If a value vitj is updated, then signatures 

yi and Xj will both mismatch. The insertion of a new tuple (t^i, t>;,2, • • •, vi>n) will cause 

signatures xi,X2,--.,xn and yi to mismatch, while all the yj(j ^ i) will still match. The 

deletion of a tuple (t^i, v^, • • •, v^n) will cause signatures xi, X2, • •., xn to mismatch, 

while all the yj(l < i < n — 1) will still match. The first three pictures in Figure 4 depict 

these cases. 

The localization of modifications helps to reduce the amount of proofs that need to be 

21 



: 
V2.3 ' 

X3 Xl 

: 

a 

; 

X2 

• 

: 
; 

X3 

: 

: 
• 

X4 x5 

'• 

I 

• 

• 

Xn 

Xl X2 X 3 X 4 X5 Xn 

Vl.l 

: 
! 

Xl 

• 

p 

V2.2 • 

X2 X3 X4 x5 Xn 

yi 

.y2 

ym 

Figure 4: Localizing Updates With MHT Grid 

provided (and thus the communication and computational cost) in the verification phase. 

However, this mechanism does not guarantee the precise identification of every update 

made to the data. For example, in the lower-left chart in Figure 4, we cannot tell how many 

(or which) tuples have been deleted from the mismatched signatures. Also, in the lower-

right chart, we cannot tell whether two, three, or four values have been modified from the 

four mismatched signatures. Fortunately, as we shall show, the verification phase does not 

rely on this localization mechanism. 

We notice that a query usually involves only a subset of tuples or attributes. An update 

of data thus may not be reflected in the result of every query. For example, in the lower-right 

chart in Figure 4, the query result will only include four signatures, so updates of any value 

not covered by the four dot lines will not be detected. This observation indicates another 

aspect of the lazy approach in detecting modifications (the first aspect is that we only detect 

modifications at query time). That is, an update may not affect the verification process of 

subsequent queries that do not involve the updated value. If we were not to compute a 

MHT on each column but instead build a single MHT over all the signatures j/j's, then any 

update will always cause the verification of all subsequent queries to fail until the update 

has been either rejected or accepted in later phases, which implies unnecessary performance 

overhead. 

22 



1. Detect and 
localize updates. 
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2. Local database sends to remote database: 
• The original selection query. 
• A set of values that have potentially been modified. 
• A request for proofs of the legitimacy of the updates. 

4. Remote database sends to local database: 
• The digitally signed queries corresponding to the updates. 
• Hash values necessary for re-constructing MHTs before updates. 

7. Local database sends to remote database: 
• (For updates without valid proofs) The updated signatures with the 

updated values excluded from the table. 
• (For updates with valid proofs) The updated signatures with the 

updated values including in the table. 

3. Collect proofs 
from log files. 

Remote 
Database 

8. Update 
signatures. 

Figure 5: The Protocol for the Verification of Updates 

4.3 Verifying the Legitimacy of Updates 

As part of the protocol for verifying updates, we describe how a remote database handles 

updates. A remote database will need to record all the following into a log file: The update 

query, the signature of the query created with the user's private key, the current time, the 

current value before the update for deletion, and the current signatures involved by the 

update. Such information in the log file will allow the remote database to be rolled back 

to the last valid state without any update in effect [14]. The information will thus act as 

proofs for the legitimacy of updates. When updates are detected and localized, the local 

and remote databases will both follow the protocol shown in Figure 5 to automatically 

verify the legitimacy of those updates and to accommodate legitimate updates by updating 

signatures stored in the table. 

In step 1, the local database detects mismatches in signatures and localizes the updates 

to a set of values that may have been updated (recall that the localization does not guarantee 

the precise set of modified values). The local database will then send to the remote database 

the potentially updated values and related information, such as the original selection query, 
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in step 2. In step 3, the remote database examines its log files to find each update query 

that involves the received values. For each such query, the remote database will attempt 

to reconstruct the mismatched signatures using values and signatures found in the log file, 

which are supposed to be in effect before the update. If a state is found in which all the 

mismatched signatures match again, then the involved queries will be collected as proofs 

and sent to the local database in step 4. Otherwise, the remote database will send to the 

local database a response indicating no proof for the updates is found. 

In step 5, the local database will verify the signatures of the received update queries 

and ensure those queries are made by users who are authorized for such updates. The local 

database then attempts to reconstruct from the received queries a previous valid state in 

which all mismatched signatures match again. If such a state is found and all the update 

queries until that state are made by authorized users, then the detected updates are legiti

mate so the local database will recompute signatures by including the updated values (the 

details will be given in the next section) in step 6. Otherwise, the updates are unauthorized, 

so signatures are created by excluding the updated values in step 6. Upon receiving the 

updated signatures in step 7, the remote database will then update the received signatures 

in the table in step 8. The local database will only answer the original selection query if all 

the involved values are successfully verified. 

A few subtleties of the protocol are as follows. 

• It may seem to be a viable choice for the local database to stop after verifying that 

all the received update queries are made by authorized users, without having to go 

through again the reconstruction of a previous valid state. However, in this case, 

the remote database may actually make unauthorized modifications without being 

detected. Referring to the lower-right chart in Figure 4, suppose v\y\ and v2}2 are up

dated by authorized users. The remote database can freely modify vXi2, v2:i and then 

send in the update queries corresponding to only vitl and v2,2- The local database will 

24 



not be able to detect the omitted updates from the mismatched signatures X\,x2, y\ 

and y2. However, since we let the local database to reconstruct each previous state 

from the received queries, it will detect the claimed updates to be unauthorized and 

then refuse to answer any selection query involving those four values. 

• The protocol requires two rounds of communications between the two databases in 

addition to sending query result, that is, to request for proofs of legitimate updates 

and to update stamps. This protocol can certainly be optimized as follows. Instead 

of waiting for the local database to request for proofs about updates, the remote 

database can proactively detect updates by itself, identify proofs for the updates, 

then piggyback the query result and the proofs. 

• We do not consider potential denial of service attacks. Such an attack is clearly pos

sible since any unauthorized modification may cause queries to be denied. However, 

we regard answering queries with modified values to be a greater threat than denying 

the queries since the former may lead to misleading results. Moreover, consider

ing the collaborative nature of a database federation, the local database may request 

the remote database to initiate an investigation after a certain number of queries are 

denied due to unauthorized updates. 

• We choose not to lock a modified value after it is detected and before it is either 

verified or known to be the result of an unauthorized update, which may seem to be 

a viable approach. The reason is that the remote database is fully trusted, so whether 

it locks a modified value cannot be counted on. 

• We do not treat the access control policy attribute in a special way since some users 

of a remote database may be authorized to update such policies. If this is not the 

case, the local database can simply regard any update to xn (the signature computed 

on the access control policy attribute) as unauthorized. 
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• The proofs may include not only the updated values but also other values indirectly 

involved in the updates. It is the remote database's responsibility to provide sufficient 

proofs so that the local database can roll back the current database state as reflected 

in the query result to a previous valid state using the update queries (the roll back of 

database states is well studied in transaction processing and is out of the scope of this 

thesis). 

4.4 Accommodating Legitimate Updates 

To accommodate updates that are successfully verified to be made by authorized users, the 

local database needs to compute new signatures by including the updated values so the 

remote database can update the signatures in the table. Similarly, updates of signatures 

are also required for newly inserted tuples. Recomputing signatures for each tuple does 

not incur a significant performance overhead because the number of attributes in a table 

is limited. However, the signature of a column may be computed over a large number of 

tuples, and its computation is thus costly. Moreover, any insertion or update of a tuple will 

cause at least one of the signatures of columns to be updated. 

To reduce the computational cost of updates, an obvious solution is to divide the table 

into smaller subtables with fewer tuples and then apply the aforementioned grid of MHTs to 

each subtable independently, or equivalently, to simply change the way the grid of MHTs is 

computed. At first glance, having near-square subtables may seem to be the optimal choice. 

Moreover, we can compute one additional stamp over all the values in each subtable. As 

showed in figure 6, a g-column and p-row table (p is much bigger than q, since in the 

database system the number of the attributes of the table is much smaller than the number 

of the records), and each sub-table has its signatures. In the verification phase, only the 

stamp of sub-table needs to be sent over if the remote database finds no value is updated 

inside this particular subtable. However, in reality the optimal choice of subtable sizes is a 
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Figure 6: Partition Table into Sub-tables 

little more complicated. As the size of subtable decreases, less computation is needed for 

recomputing the stamp over each column of the subtable, but a typical selection query may 

actually involve more subtables. 

Definition 1 The involved sub-tables are all the sub-table which contains the return records. 

Definition 2 The stamp Z of a sub-table is a hash value that built based on all stamps on 

each column and each row of such table. 

When the user on remote database executes an update query, remote database will gen

erate the hash of this query as the head, and send it to tell local database that there is an 

update on remote database. If the user has more than one update queries, then remote 

database will create a hash chain based on such set of queries and send the final hash result 

to local database. Hash chain bring a quick solution to check the remote database's in

tegrity after a set of update. With the hash chain, any modification of the set of the queries 

will be detected at local database side. The hash chain will change when a malicious user 

adds a query to the set, deletes query from the set or reorders the set. Next time when user 
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send a new update query, the new header of the hash chain will be calculated and sent to 

local database. Local database can ensure freshness of the update that remote database user 

made. For example, if user Alice has N update queries on one record, remote database 

will record all of these queries and compute the hash chain. Suppose these queries are M1; 

M2,... Mn, the head of hash chain will be h{Mx) © h2(M2) © h3(M3)... © hn{Mn). This 

head will signatured by Alice and send it to local database together with return result. 

In verification, we just check the integrity of the involved sub-tables. When local send 

a SELECT query, remote database first check the whether these return records modified, 

if not, just send the siblings and stamp Z of involved sub-tables. Otherwise send each row 

and each column's stamps of involved tables. If table is small enough, stamps numbers will 

reduced. However, the involved table's number maybe grow. So we adopt some experiment 

to get the suitable size of sub-table. We partition the database table into several small sub-

tables, for each sub-table we use grid based stamps, and moreover we add one stamp Z for 

each sub-table as mentioned in definition 2. According to the algorithm 1, when executing 

a select query, remote database can check the stamp of each involved sub-table to see if 

there are modified records are involved in the result. If no then send the stamp Z and the 

siblings of such sub-table to local database, otherwise remote database should not only 

send Z and sibling but the stamps of modified tuples as well. We shall study this tradeoff 

through experiments in Chapter 6. 

Another possible solution is to incrementally update the MHTs. As illustrated in Fig

ure 7, to update the hash value 3, the local database only needs the hash values 1, 2 in the 

MHT of each column, instead of all the leaves. To balance the MHT over time, for insertion 

of new tuples, we should choose to insert each value at an existing hash value that has the 

shortest path to the root (this may not be feasible for ordered attributes where the order of 

MHT leaves is used for ensuring the completeness of query results). The next question, 

however, is where to obtain the required hash values 1 and 2, given that recomputing them 
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Algorithm 1 Communication Algorithm for Sub-table 

previousid <= 0 {the sub-table id for previous record} 
updated <= 0 {the number of sub-table with updated record} 
noupdated <̂= 0 {the number of sub-table without updated record} 
while is select query result do 

id <= subtable id 
if tmpid = id then 

break 
else 

tmpid <= id 
ischange <= false 
for all tuples in sub-table do 

if tuple is updated then 
ischange «= true 
break 

end if 
end for 
if ischange is true then 

updated -<= updated+1 
else 

noupdated <= noupdated+1 
end if 

end if 
end while 
Communication Cost ^= updated* (sibling+1+updated records) + noup-
dated*(sibling+l) 
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Figure 7: Update the Root of a MHT 

from the leaves is not an option. One possibility is to keep a cache of all or part of the 

non-leaf hash values in the MHT. If we keep all the non-leaf values in a cache, then a di

rect lookup in the cache will be sufficient for computing the root, which has a logarithm 

complexity in the cardinality of the table (or subtable). 

Considering the fact that the number of all non-leaf values is comparable to the number 

of leaves, the storage overhead is prohibitive. Instead, we can choose to cache only part 

of the MHT based on available storage. Two approaches are possible. First, we can use a 

static cache for a fixed portion of the MHT. If we assume a query will uniformly select any 

tuple, then clearly the higher a hash value is in the MHT, the more chance it will be useful 

in recomputing the new root of the MHT. For example, in Figure 7, value 1 will be needed 

in the update of twice as many values as value 2 will. Given a limited storage, we thus fill 

the cache in a top-down manner (excluding the root). 

The assumption that queries uniformly select tuples may not hold in many cases. In

stead, subsequent queries may actually select adjacent tuples in the table. In this case, it 

will lead to better performance to let the queries to drive the caching of hash values. We 

consider the following dynamic caching scheme. We start with the cache of a top portion 

of the MHT. Each time we update one tuple, we recompute the new root with the updated 

value by using as many values as possible from the cache. However, for each non-leaf 

value we need to recompute due to its absence in the cache, we insert this value into the 
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Figure 8: Static Cache and Dynamic Cache 

cache by replacing a value that is least recently used (other standard caching schemes can 

certainly be used). Among those that have the same time stamp for last use, we replace 

the value that has the longest path from the root. Figure 8 illustrates the use of both static 

cache (that holds all non-leaf hashes) and dynamic cache where most queries involve only 

the leftmost leaves. 

4.5 Security Analysis 

In the following, we briefly discuss how the proposed scheme prevents various attacks. 

• Suppose a malicious user of a remote database inserts, deletes, or modify tuples 

or attributes. Such modifications will cause mismatches between the recomputed 
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signature of MHT roots and the signatures stored in the table, by which the local 

database will detect modifications. 

• The malicious user may attempt to modify the log entries to hide his activities by 

masquerading as users authorized for the updates. However, the local database can 

authenticate remote users' queries through their signatures and such signatures can

not be created by the malicious user without the private key of an authorized user. 

• The malicious user can prevent the remote database from sending proofs or reporting 

the absence of proofs, but this does not help him/her to avoid detection (a timeout 

scheme can be used for the case of not receiving proofs in a timely fashion). 

• The malicious user can also reorder or mix updates made by authorized users with 

his/her unauthorized updates. However, this will also be detected when the local 

database attempts to rebuild a previous valid state of data but fails. 

• The only damage that can be realistically caused by malicious users is a denial of 

service when too many tuples are excluded due to unauthorized modifications. How

ever, as mentioned before, a database member may request the remote database to 

initiate an investigation when the number of such tuples exceeds a threshold. 

One security issue not addressed by the proposed scheme is the freshness of query 

results. That is, a remote database controlled by malicious users may never execute the 

last legitimate update query, which will not be detected since the database state is old, but 

valid. To ensure freshness of query result, it is essential for the user-side application that 

updates data at the remote database to communicate with the local database. A simple 

approach is for each user-side application to send the head of a hash chain formed by the 

hash values of update queries issued by that user. Holding the head of the hash chain, the 

local database can easily detect any omission of update queries in the proofs sent by the 

remote database. Another potential issue is the use of random functions in an update query. 
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The above verification technique will not work properly in this case because a different 

result may be yielded by each execution of the same query. A solution is for the user-side 

application to sign the query after the random function has already been executed at the 

remote database. Notice that although the remote database may potentially lie to the user 

about the result of that random function, this misbehavior will later be detected by the local 

database since the proof is based on the update query signed by the user. 
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Chapter 5 

Ensuring Data Confidentiality Through 

Over-Encryption 

In this section, we present mechanisms for achieving the confidentiality of remote data. 

Section 5.1 firsts provides an overview of over-encryption. Section 5.2 details our new 

secret sharing-based over-encryption scheme. Section 5.3 provides the way to query on 

the encrypted database. Section 5.4 presents a case study to further illustrate how the 

mechanisms works. 

5.1 Overview 

We have so far assumed that data are stored in clear text in a remote database. The remote 

database thus must be trusted in correctly enforcing access control policies so only autho

rized users of the remote database have accesses to sensitive data. Such amount of trust 

may not be feasible in practice due to the autonomy of a database federation. To address 

this issue, we apply the over-encryption model [7] to our application by proposing a new 

key derivation scheme based on secret sharing. 

In over-encryption, resources such as tuples are divided into different sets based on 
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access control lists. All the resources in each set are encrypted individually with the same 

encryption key. To give a user access to a resource, a token is published for allowing the 

user to derive the resource's encryption key from the user's own key. For example, the 

token t = ke@ h{ku) will allow a user knowing ku to derive the encryption key ke [2] 

(other users knowing ke cannot derive ku due to the hash function h()). For example, in 

Figure 1, the hospital-side user Alice is given a secret key by the university-side database. 

By publishing a token that enables Alice to derive encryption keys, Alice can be given 

accesses to selected tuples in the hospital-side database. 

However, an apparent limitation of the above simple approach is that tuples must be 

shipped back to the local database for re-encryption in order to grant or revoke users from 

accessing tuples, which incurs significant communication overhead. The over-encryption 

approach removes this limitation through a second layer of encryption at the remote database. 

More precisely, resources are doubly encrypted at the base encryption layer (BEL) and 

the surface encryption layer (SEL). Initially, both layers enforce the same access control 

policies. Upon an update to the policies, such as a grant or revoke, resources will be re-

encrypted at the SEL layer by excluding revoked users, and new tokens will be published 

at the BEL layer for granted users. In any case, no resource needs to be sent back to the 

BEL layer for re-encryption. 

In our application of database federations, the BEL layer encryption is imposed by the 

local database, and the SEL layer encryption by the remote database. When a user at the 

local database inserts a tuple, the tuple will be encrypted by the local database first and 

then sent to the remote database for a second encryption (notice that an integrity stamp will 

also be appended based on previous discussions). The remote database does not have the 

BEL encryption keys, so malicious users cannot access the data even if they are in control 

of the remote database. Only those remote database users who are authorized by the local 

database can have accesses to the original data. Those authorized users can derive the 

35 



encryption key at both layers by using his own secret key with the public tokens provided 

by the local database. 

5.2 Secret Sharing-Based Over-Encryption 

To introduce our new over-encryption scheme, we first start from a straightforward scheme 

and point out its limitations; we then extend this simple scheme to two variations, which are 

to be applied to the BEL and SEL layer, respectively. Each user of the remote database is 

assigned a key pair K: (X, Y) where X—K and Y=h(K) (h() is a hash function). A token 

T is public information which enables the user to derive an encryption key from his/her key 

pair K. 

Suppose we have the resource R, such as a tuple or an attribute value, encrypted by 

the key Kab, and according to the access matrix list, user A and B can access resource R. 

Assume user A has the key pair Ka: (Xa, Ya) and user B has Kb: (Xb, Yb). They can derive 

the encryption key Kab by using the secret sharing function f(x) = ax + Kab. That is, 

Ya=aXa+Kab and Yb=aXb+Kab. We can pick any (Xpab, Ypab) such that Ypab=aXpab+Kab, 

and publish the pair (Xpab, Ypab) as the token for user A and B so each of them can derive 

the encryption key Kab using his/her own key pair. We can see that user A and B's key pair 

and the public token are on (the line corresponding to) the same linear function. Each user 

can thus use his/her key pair together with the public token to generate this function and 

the encryption key Kab and then access the resource. 

This simple scheme has limitations when one resource is shared by more than two users. 

To derive a key shared by n users, we should use a (n — 1)-degree function. However, each 

single user will need at least n — 1 public tokens, which is against the very motivation of 

reducing the number of public tokens. However, a linear function itself is not sufficient, 

either. For example, suppose user A, B, C can access resource R, and each user has a pair 

of key K, which may not be on the same linear function. Even though we can somehow 
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find a function to satisfy more than two users, consider two sets {A, B, C} and {B, C, D}. 

From {A, B, C}, we have fabc(x) = aabcx + Kabc. Now, if we want to share the resource 

for {B, C, D}, we need another function food- However, we already have (Xb, Yb) and (Xc, 

Yc) fixed, so (Xd, Yd) is not necessarily on the same function and user B, C and D may not 

be able to access the same resource. 

To remove the limitation, we extend the above scheme in two ways. First, suppose we 

want to grant the access to resource R to user A, B and C. We randomly choose two pairs of 

keys (Xa, Ya) and (Xb, Yb) as the master keys, and assign them to users A and B. Next, we 

generate the derivation function based on these two pairs as f(x) =aabx+Kab. We now can 

randomly choose (Xc, Yc) on this function and assign it as a key pair to user C. For other 

users who need to share the resource R, we simply repeat this procedure and choose more 

points. Second, we randomly pick two users, say A and B, to establish a linear function 

f(x) = ax+Kab as usual. We call the pairs (h(Kab), h2(Kab)) the transfer key. For another 

user C sharing the same resource, we use the transfer key together with user C's key pair 

KC: (Xc, Yc) to establish another function g{x) = (3x + Kabc as usual. We can then pick any 

token (Xpabc, Ypabc) satisfying that Ypabc=(3Xpabc+Kabc and use Kabc as the encryption key 

of the resource. User A, B and C all can access that resource by deriving the encryption 

key through the public token (Xpabc, Ypabc) together with their own key pairs. Figure 9 and 

figure 10 illustrate this second scheme. 

Among the above two extended schemes, the first is more effective in reducing the num

ber of tokens at initialization time, which makes it a better choice at the BEL layer because 

the initial encryption is handled by local databases. More specifically, at initialization time, 

we just need one function and one public token for each subset of users sharing the same 

resources, which does not depend on how many users are in the set. On the other hand, 

the second scheme is more effective for policy updates (that is, granting or revoking users), 

which makes it a better choice at the SEL layer where policy update is the main concern. 
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The Number of Tokens 
Original Method Our Method 

Initialization 
BEL Grant 

Revoke 
Initialization 

SEL Grant 
Revoke 

n 
n+1 

-

n 
n + 2 

2n-l 

1 
2 
-

n-1 
n 

3 n 2 - 3 n - 2 
2n. 

Table 1: Comparison Between the Two Schemes 

For instance, suppose users A, B, C, and D share the same resource, and we would like 

to revoke user C's access. With the second scheme, we can use A and B's transfer key 

together with D's key to establish a new function and generate a new encryption key. In 

this operation, just one token is to be published. 

To integrate over-encryption into a database federation, we regard tuples or attribute 

values as resources, which depends on the desired granularity of access control. Each user 

of remote databases is assigned secret key pairs as credentials for authorization. Upon 

inserting or updating data stored in a remote database, the local database will generate 

encryption keys according to the above scheme for BEL-layer encryption of the data. The 

local database will also create MHT-based stamps for integrity as aforementioned. The 

encrypted data are then sent to the remote database, which will doubly encrypt the data 

at the SEL layer. Public tokens are provided to authorized users to enable them deriving 

corresponding encryption keys for accessing resources. 

Table 1 compares our over-encryption scheme with the original method [7] in both BEL 

and SEL layers. We consider the number of tokens required in three situation: initialization, 

granting, and revoking with n users. 
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5.3 Query over Encrypted Database 

The use of encryption enables distributed authorization but it may complicate query pro

cessing when selection conditions involve encrypted data. Queries over encrypted data can 

be supported through existing techniques [34]. Alternatively, the local database (or user-

side application for users at the remote database) may first encrypt attribute values involved 

in a query at the BEL layer before sending the query to the remote database. When remote 

database receives the query, it first decrypts the doubly encrypted data using the SEL layer 

encryption keys and then sends the result to the local database. The local database can 

then obtain the original data using the BEL layer encryption key. One complication is that 

resources accessible to a user may be encrypted with different keys and the local database 

does not know which of the keys corresponds to the particular resource being requested. 

In such a case, the local database must create multiple versions of the same query us

ing different encryption keys. For example, on university side, suppose user Bob poses a 

selection-projection query for the disease attribute that store on the remote database, let's 

say SELECT d i s e a s e FROM t a b l e 2 WHERE name=' Bob ' , according to our ap

proach, university-side database will send the query to remote database. However, because 

of the new feature of our model, university-side database should encrypt the value that ap

pears in the user's query by the BEL encryption keys, and execute the query by using this 

encrypted value instead of the original one [34]. Since university-side database does not 

know which resources will be the results, it can not determine which encryption key should 

be used. University-side database will find all the derived keys for user Bob according to 

access control matrix table 2. we can know that user Bob can access the resources s i , s2, 

s3, s4, s5, s8 and s9, which means he has three keys at BEL layer, his own private key with 

BEL encryption keys KB1 and KB3- Now there will be three encrypted valued, they are 

ei=EKb{'Bob'), e2=EKm('Bob') and e3=EKB3('Bob'), where E() is an encryption func

tion. University-side database will replace the value 'Bob' in the query by these encrypted 
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Alice 
Bob 
Carl 

David 
Elaine 

si 
0 
1 
0 
0 
0 

s2 
1 
1 
0 
1 
0 

s3 
1 
1 
0 
1 
0 

s4 
1 
1 
0 
1 
0 

s5 
0 
1 
0 
0 
0 

s6 
0 
0 
1 
1 
0 

s7 
0 
0 
1 
1 
0 

s8 
1 
1 
0 
1 
1 

s9 
1 
1 
0 
1 
1 

slO 
0 
0 
1 
1 
0 

Table 2: An Access Control Matrix 

values and modify the query to three queries: 

SELECT d i s e a s e FROM t a b l e 2 WHERE name= ' e 1 ' , 

SELECT d i s e a s e FROM t a b l e 2 WHERE name= ' e 2 ' , 

SELECT d i s e a s e FROM t a b l e 2 WHERE name= ' e 3 ' . 

Remote database will answer these queries and send the relevant results back to university. 

After decrypting with the corresponding BEL encryption keys and filtering the result ac

cording to the policy of user Bob, university-side database outputs the query result to Bob. 

Since the result should only be encrypted by one of three keys, only one query will get 

the result. To simplify the query request on university sides, we consider that all data are 

updated, and no mismatch stamps occurs in this process. 

5.4 A Case Study 

Following the example in Figure 1, Table 2 shows an access control matrix of five users 

and ten resources in the hospital-side database. The confidentiality requirement is modeled 

in the access control matrix with each 1-entry representing a positive authorization and 

each 0-entry a prohibition of accesses. Each column of the table thus shows the status of 

a resource accessible to users. In our example, we assume the attribute CONDITION is 

the sensitive resource and should only be accessible to authorized users. 

According to the above access control matrix, Figure 11 and 12 depict the initial key 

derivation structure at the BEL and SEL layers. For example, an CONDITION attribute 
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s2, s3, s4 
si, s5 

s6, s7, slO 
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KBI 

Ksb 

K B 2 
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BEL 

Figure 11: Initial Key Derivation on the BEL Layer 
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Figure 12: Initial Key Derivation on the SEL Layer 
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sA is first encrypted using the BEL-layer encryption key KBi, which is derived by the local 

database from the key pairs of users Alice, Bob and David. The encrypted resource is 

sent to the remote database. The remote database again encrypts the resource using the 

SEL layer encryption key Ks\- Now the resource has been encrypted using two different 

keys Km and Ks\- Since user Alice is authorized to access the resource sA, her user-side 

application can derive both encryption keys using her own key pair and the public tokens, 

and then decrypt data to obtain the original results. 

Suppose Alice is also authorized to update the resource sA. Alice's user-side application 

will first encrypt the new value using the BEL layer encryption key KB\ and then send the 

result to the remote database. The remote database will over-encrypt the received value by 

using the SEL encryption key Ksi • Since the received value is already encrypted using the 

BEL layer encryption key, malicious users in control of the remote database cannot access 

the updated value. Neither can those users skip or alter the update because our integrity 

mechanisms, as described in previous sections, will detect such misbehaviors. 

While a data update requires re-encryption, an update of access control policies, such 

as a grant or revoke, can be efficiently processed through over-encryption. For example, 

if local database wants to assign resource sA to user Carl, it should link s4's encryption 

key KBI to user Carl's secret key by publishing a new token at the BEL layer; the re

mote database will derive a new encryption key to re-encrypt the resource (which is still 

encrypted by the same BEL key Km). Therefore, user Carl can now access the resource 

sA, but not s2 or s3. Figure 13 and 14 show the key derivation structure for the BEL and 

SEL layers. For a revoke, the local database will not do anything but the remote database 

re-encrypts resources using new encryption keys. 
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Figure 13: Key Derivation On BEL for Granting User Carl the Access to sA 
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Figure 14: Key Derivation On SEL for Granting User Carl the Access to s4 
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Chapter 6 

Implementation and Experiments 

We tested the performance of our proposed techniques on machines equipped with Intel 

Pentium M 1.80GHz processor, 1024MB RAM, Windows XP operating system, and Ora

cle lOg DBMS. The main objective of the experiments is to compare the performance of 

different caching schemes, to find the optimal subtable size, and to study the performance 

overhead of over-encryption. As a proof of concept, we have also implemented a demo 

system as a fictitious web application that integrates a university's web portal with a hospi

tal's database. The web application is written in PHP version 5.2.5 and runs on the Apache 

2.0 web server and Mysql 5.0 database system. 

6.1 Static and Dynamic Caching 

Figure 15 shows the computational cost of updating a tuple in databases of different sizes, 

when all non-leaf values are cached. We can see that at the cost of extra storage, only a 

small performance overhead is incurred in updating tuples by recomputing cryptographic 

stamps under the static cache scheme, in contrast to updating tuples without recomputing 

any stamps (that is, ignoring the security requirement). On the other hand, recomputing the 

stamps from scratch is proved to be costly. In all cases, the performance overhead increases 
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Figure 17: The Performance of LFU Dynamic Cache Schemes 

as the table size increases because a larger table means the stamps will be computed over 

larger MHTs. 

Figure 16 shows both the storage requirement and the performance of static caches of 

different sizes, which all hold a top portion of the MHT. We update one tuple in a database 

with 15,000 tuples with the height of MHT being 12. We reduce the size of caches by 

removing each level of the MHT in a bottom-up fashion, as reflected by different heights 

on the x-axis. The curve with square dots shows the number of values in the cache, that is, 

the storage requirement for caching. The other curve shows the computational cost. We can 

see the overall performance is optimal when the height of MHTs in the cache is between 3 

and 9 where both the storage requirement and the computational cost are relatively low. 

Figure 17 and 18 compare the computational cost of different dynamic cache schemes 

with that of the static cache scheme under the same storage limitation. The database size is 

15,000 tuples, and the cache is limited to store only 500 MHT nodes. To simulate queries 
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Figure 18: The Performance of LRU Dynamic Cache Schemes 

that select adjacent tuples, we randomly pick tuples inside a window and repeat the ex

periment over different sizes of the window. In Figure 17 and 18, n is the size of this 

window, and m the number of tuples involved in a query, the x-axis is the percentage of 

to-be-updated values inside the window. There is only a negligible difference between dif

ferent cache schemes. Figure 17 shows the LFU (Least Frequently Used) cache scheme and 

Figure 18 shows the LRU (Least Recently Used) scheme. We can see that as more values 

are updated, the performance of dynamic caching will improve as the cache hit rate will 

increase. There is only a negligible difference between the two different cache schemes. 

The size of the window only has a small effect on this result, indicating that the dynamic 

cache is generally helpful as long as subsequent queries focus on adjacent tuples. 
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6.2 Table Partitioning 

To study the communication and computational cost under different sizes of subtables, we 

execute selection queries each of which involves a random set of 1000 tuples in a database 

with totally 15000 tuples while we randomly update tuples. In Figure 19, the y-axis in

dicates the number of stamps that need to be sent to the local database as proofs, which 

comprise the major factor of the communication cost. Different lines correspond to dif

ferent number of updated tuples. The x-axis reflects different sizes of subtables, which 

increases in the power of two. We consider two types of selection queries. First, range 

queries involves continuous tuples with respect to the partitioning process used to obtain 

subtables. Second, point queries involve random tuples chosen uniformly from the whole 

table regardless of the partitioning process. 

The upper side chart in Figure 19 shows that for range queries, there exists an optimal 

subtable size with the lowest communication cost around the middle of the x-axis. On 

the other hand, the following chart shows that for point queries, the communication cost 
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Figure 21: The Computational Cost of Search on Encrypted Database 

is the lowest when each tuple itself is a subtable, or when the table is not partitioned. 

However, considering the fact that smaller subtables imply extra storage cost for stamps 

over columns, partitioning turns out to be an effective solution for range queries but not for 

point queries. 

Figure 20 shows the computational cost for both range queries and point queries in 

different sizes of subtables. We can see the trend is similar to that of the communication 

cost. The reason is that with smaller subtables, although the computational cost of each 

subtable is lower, a greater number of subtables will be involved in a query. 

6.3 Over Encryption with Caching 

We study the performance overhead of over-encryption under different popular encryption 

algorithms, including AES, Blowfish, DES, DESede, RC2, and RC4. Figure 21 shows 

the computational cost per tuple for selection queries involving different number of tu

ples. The result shows that in order to provide confidentiality, the proposed over-encryption 

mechanism only incurs a small performance overhead. We also evaluate the computational 
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Figure 22: The Computational Cost of Over-Encryption with Dynamic Cache Scheme 

cost of updates under different caching schemes with or without over-encryption in place. 

Figure 22 compares the computational cost of updates in encrypted and non-encrypted 

databases under the LFU and LRU-based dynamic caching schemes. Figure 23 compares 

the overall computational cost of updating different number of tuples under different en

cryption algorithms. Theses charts both show that the cost of over-encryption is acceptable 

and the per-tuple cost will decrease when more tuples are involved in a query. 

6.4 A Demo System 

We implemented a web application that provides a fictitious university's users with direct 

accesses to their medical records hosted in a hospital database. The web application imple

ments the aforementioned security mechanisms. For simplicity, we assume two levels of 

users' privileges are enforced in the system, and each user can access records according to 
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Figure 23: The Computational Cost of Over-Encryption with Different Algorithms 

specific policies. 

Figure 24 shows the web interface when a user check his status on the university side. 

The user with low privilege can only query the database according to the policy and the 

high user has the ability to modify the users' records. Figure 25 and Figure 26 are the web 

interfaces on the hospital side. Figure 25 displays all records in the hospital database, and 

in figure 26 there is one modified value with mismatched stamps which are marked in red 

color. 

When a user on the university site sends a query, our web system demonstrates the 

verification process in Figure 27 step by step. After the university database receives results 

from the hospital, it will check the policy to determine whether the user has the privilege 

to read this result. If yes, the web system will show the page in Figure 28 and then to 

recompute and verify the stamps of the returned result. Otherwise a warning page will be 

presented in Figure 29. 

The process of rebuilding and verifying stamps will be started if the user has privilege 

to access the results according to the policy. Figure 30 and Figure 31 show two situations 
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where the returned results are involved in the databases shown in Figure 25 and Figure 26, 

respectively. 
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Chapter 7 

Conclusion 

We have addressed the integrity and confidentiality issues in the context of a loosely cou

pled database federation. Unlike centralized databases or tightly coupled database feder

ations, a loosely coupled database federation lacks the central authority required by tradi

tional authorization models. How to protect the integrity and confidentiality of data stored 

in remote databases thus becomes a challenging issue. We provided a solution that is com

posed of an architecture and both integrity and confidentiality mechanisms. 

First, we revisited the integrity lock architecture originally proposed for multilevel 

databases. We showed that the architecture provides a natural solution to the distributed 

authorization in loosely coupled database federations. The architecture not only allowed a 

local database to take full control of authorization decisions but also enabled fine-grained 

and data dependent authorizations. 

Second, we proposed a three-stage procedure as the integrity mechanism of the integrity 

lock architecture. The procedure extended techniques in outsourced databases to remove 

their limitations in dealing with frequent updates. As a result, modifications of data could 

be detected and localized when they are involved in queries. The remote database would 

then provide log entries as proofs of the legitimacy of such modifications. As a result, 

legitimate updates were accommodated while unauthorized modifications were excluded 

59 



from query results. 

Third, we proposed a new over-encryption scheme as the confidentiality mechanism. 

We replaced the key derivation function with our new scheme based on secret sharing to 

reduce the number of required public tokens. The over-encryption scheme could allow 

updates of access control policies without shipping data back to the local database for re-

encryption. We illustrated the proposed scheme through a case study. 

Finally, we evaluated several aspects of the proposed solution through implementation 

and experiments. We compared the performance of different caching schemes, which leads 

to the conclusion that ensuring data integrity using the proposed mechanisms incurs an ac

ceptable performance overhead if appropriate caching schemes are used; different caching 

schemes are suitable for different types of queries. We studied the effect of partitioning 

tables into subtables of different sizes. The conclusion is that partitioning tables helps the 

most with respect to range queries while it is not as effective for point queries. Finally, 

we studied the performance overhead of over-encryption in terms of both selection queries 

and updates. The conclusion is that such overhead is reasonably low regardless of the 

encryption algorithms being used. 

In the broad context of loosely coupled database federations, different security issues 

may arise when the local and remote databases interact in different ways, or when the 

trust placed upon remote databases is of a different degree or nature. Our future work will 

continue to explore security issues in such situations. Other future directions include the 

optimization of security mechanisms in the presence of concurrent accesses and the issue 

of query processing in the presence of encryption techniques. 
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