
A VISUAL MODELING TOOL FOR THE

DEVELOPMENT OF TRUSTWORTHY

COMPONENT-BASED SYSTEMS

YUN ZHOU

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF COMPUTER SCIENCE

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

APRIL 2009

© YUN ZHOU, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63312-0
Our file Notre reference
ISBN: 978-0-494-63312-0

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Yun Zhou

Entitled: A Visual Modeling Tool for the Development

of Trustworthy Component-based Systems
and submitted in partial fulfillment of the requirements for the degree of

Computer Science

complies with the regulations of this University and meets the accepted standards with re­

spect to originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Examiner

Supervisor

Approved
Chair of Department or Graduate Program Director

20

Dr. Nabil Esmail, Dean

Faculty of Engineering and Computer Science

Abstract

A Visual Modeling Tool for the Development of
Trustworthy Component-based Systems

Yun Zhou

A rigorous development of Trustworthy Computing System (TCS) is an active research

area in TROMLAB research group since TCS concept was initiated in 2002 by Microsoft

Corporation. In TROMLAB research group a component-based development of TCS was

initiated in 2005. Several tracks of research activities, including formal specification of

components and component-based systems, formal assessment of trustworthiness prop­

erties, and a framework construction for developing trustworthy systems are in different

stages of development, and completion. It is in this context this thesis has evolved. It

contributes a Visual Modeling Tool (VMT), the front-end to the development framework,

in which the developer can construct visual models of system components without being

burdened by complex formalisms. The thesis identifies the functional and performance

requirements of the VMT tool from the goal of TCS research in TROMLAB, provides

a detailed design which itself is based on component technology, and illustrates with two

case studies, CoCoME and Mine Drainage, the modeling steps and its user-centric features.

in

Acknowledgments

I would like to express my sincere thanks to all those who supported and encouraged me

during my studies and during the critical stages of complete this thesis. It would not have

been possible for me to be here without their help.

First of all, I am deeply indebted to my supervisor, Dr. Vangalur Alagar, for getting me

into TROMLAB to commence this thesis. His stimulating ideas and suggestions, as well

as his constant support, patience and encouragement helped me in all the time of doing

research and writing this thesis.

I owe my sincere gratitude to my colleagues in TROMLAB. Especially I want to thank

Mubarak Mohammad, who offered valuable suggestions for improvement of the Visual

Modeling Tool and also gave me helpful tutorials to guide me into TROMLAB. I also want

to thank Naseem Ibrahim for all his assistance on testing the VMT and helping me with the

case studies.

I am also grateful to my best friend Ying Fang. Her support and encouragement was

of great help in my difficult times. Finally, I would like to give my special thanks to my

parents and my fiance Yifan Sun for their support of my decision to study in Canada to

commence this thesis, and their persistent love enabled me to complete this thesis.

iv

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Trustworthy Computing Systems Development 3

1.1.1 Real-Time Reactive System(RTRS) 3

1.1.2 Trustworthiness Credentials 5

1.1.3 Component Based Development (CBD) 6

1.1.4 Scope of the Thesis 7

2 Basic Concepts-TADL 12

2.1 Introduction to Meta-architecture and TADL 12

2.2 Component Definition 15

2.3 Safety Contract 16

2.4 Component Architecture 20

2.5 Security mechanism 24

2.6 System Definition 28

3 Basic Concepts-XML Schema 29

3.1 Introduction 29

3.2 InterfaceType Schema 30

3.3 ComponentType Schema 34

3.4 ConnectorType Schema 39

3.5 ContractType Schema 42

3.6 PackageType Schema 48

v

3.7 RBAC Schema 50

3.8 System Schema 57

4 VMT Architecture: System Requirements 62

4.1 Introduction 62

4.2 Motivation 62

4.3 Purpose and Context 63

4.3.1 Design Stage 65

4.3.2 Implementation Stage 68

4.3.3 Run-time Stage 69

4.4 System Requirements of VMT 69

4.4.1 Navigator Interface: 71

4.4.2 Palette Interface: 71

4.4.3 System Editor Interface: 72

4.4.4 Properties Editor Interface: 74

4.4.5 Error Message Interface: 74

4.4.6 Menu Bar: 76

4.4.7 Toolbar: 79

4.5 Non-Functional Requirements of VMT 79

5 VMT Architecture: Design 81

5.1 Architectural Overview 81

5.1.1 Swing's MVC Architecture 82

5.1.2 Rationale behind selection 84

5.1.3 Architecture Diagram 84

5.2 Components 90

5.2.1 Navigator Component 92

5.2.2 Palette Component 93

5.2.3 System Editor Component 96

5.2.4 Properties Component I l l

5.2.5 ErrorMessagePanel 117

5.2.6 MainMenuBar 117

5.2.7 MainToolBar 119

5.3 Development Platform 119

VI

6 Modeling a Trustworthy System using VMT 121

6.1 GUI Overview 121

6.2 Navigator - refer to Section 4.4.1 121

6.3 Palette - refer to Section 4.4.2 126

6.4 System Editor - refer to Section 4.4.3 126

6.4.1 System Canvas 127

6.4.2 Realtime View 130

6.4.3 Trustworthy View: 130

6.4.4 Configuration View: 141

6.4.5 TADL Source View: 144

6.5 Properties Editor View - refer to Section 4.4.4 144

6.5.1 Component Properties Editor: 144

6.5.2 Interface Attributes Editor: 149

6.5.3 Connector/Connector Role Attributes Editor: 151

6.6 Error Message View: 151

6.7 Toolbar: 152

6.8 Menubar: 152

7 Conclusion and Future Work 153

7.0.1 Future Implementation Work 155

Bibliography 156

vn

List of Figures

1 Component Template 9

2 The building blocks of the meta-architecture 13

3 The component definition and specification 15

4 Safety Contract 16

5 Component Architecture 20

6 How two components are connected 22

7 Security Mechanism 25

8 System Definition 28

9 Framework for Developing TRTS - Context Diagram 64

10 Usecase Diagram of VMT 70

11 Model-View-Controller Architecture 83

12 Swing Architecture 83

13 The high-level Architecture Diagram 85

14 GUI System Package Diagram 86

15 GUI High-level Class Diagram 87

16 The First Level System Object Structure 89

17 The Second Level System Object Structure 90

18 The class diagram of Navigator component 91

19 The class diagram of Palette component 94

20 The class diagram of System Editor component 97

21 The class diagram of Real Time Panel component 102

22 The class diagram of Data Constraint Panel component 104

23 The class diagram of Service Panel component 105

24 The class diagram of Safety Property component 106

25 The class diagram of Contract Component 106

26 The class diagram of RBAC Component 107

via

27 The class diagram of Configuration Component 108

28 The class diagram of Source Editor component 109

29 The class diagram of properties component I l l

30 The class diagram of component properties 113

31 The class diagram of component contract properties 114

32 The class diagram of interface properties 115

33 The class diagram of event properties 116

34 The class diagram of connector/connector role properties 117

35 The class diagram of ErrorMessagePanel component 118

36 The class diagram of MainMenuBar component 118

37 The class diagram of MainToolBar component 119

38 VMT Overview 122

39 Snapshot of Navigator Panel 123

40 Snapshot to create a new project/system 124

41 Snapshot of creating project/system errors 124

42 Snapshot of Palette 126

43 Snapshot of System Canvas 127

44 Snapshot to create a new element 128

45 Snapshot for a connector error 128

46 Snapshot for an interface error 129

47 Snapshot for a role error 129

48 Snapshot of Real-Time Panel 130

49 Snapshot of Data Constraint Panel 131

50 Snapshot of Service Panel 132

51 Snapshot of Safety Property Panel 132

52 Snapshot of Contract Panel 133

53 Snapshot for RBAC definition 133

54 Snapshot of managing RBAC - user definition 134

55 Snapshot of managing RBAC - group definition 134

56 Snapshot of managing RBAC - role definition 135

57 Snapshot of managing RBAC - privilege definition 135

58 Snapshot for assigning a user to a group 137

59 Snapshot for assigning a user to a role 138

IX

60 Snapshot for assigning a group to a role 139

61 Snapshot for assigning privilege of events to a role 140

62 Snapshot for assigning privilege of data parameters to a role 141

63 Snapshot for System Hardware Component definition 142

64 Snapshot for System Configuration definition 143

65 Snapshot for TADL Source Panel 145

66 Snapshot for managing the properties of a component - contract definition . 145

67 Snapshot for managing the properties of a component - architecture definition 146

68 Snapshot for contract definition - service definition 147

69 Snapshot for contract definition - safety property definition 147

70 Snapshot for safety property definition 148

71 Snapshot for service definition 148

72 Snapshot for real-time definition 149

73 Snapshot for data constraint definition 150

74 Snapshot for managing the properties of an interface - event definition . . .150

75 Snapshot for managing the properties of a connector/connector role - name

definition 151

76 Snapshot for Error Message Interface 152

77 Snapshot for Toolbar 152

78 Snapshot for Menubar 152

x

List of Tables

1 Services provided by Navigator Interface 72

2 Services provided by System Canvas Interface 73

3 Services provided by Real-time Interface 73

4 Services provided by Trustworthy Interface 75

5 Services provided by System Configuration Interface 76

6 Services provided by TADL Source Interface 76

7 Services provided by Component Properties Editor Interface 77

8 Services provided by Interface/Connector/Connector Role Properties Edi­

tor Interface 78

9 Services provided by Error Message Interface 78

XI

Chapter 1

Introduction

Research in the development of Trustworthy Computing Systems(TCS) is relatively new.

In January 2002 Microsoft published a paper [Gat02a] on Trustworthy Computing. In Oc­

tober 2002 a revised version of this paper was made available on the web [Gat02b]. This

white paper brought out the challenges in building a TCS which in turn created immense

interest in the research community. In early 2005 a research team under the supervision

of Dr. Alagar started investigating rigorous approaches to modeling and development of

TCS. The goal is to build an environment in which trustworthy systems can be formally

defined, designed, implemented, and certified. My thesis builds a visual front-end to that

environment.

It is human nature to trust a technology when it becomes so dependable that its internal

technical details become totally irrelevant when it comes to their daily use in life. Automo­

bile, electricity, and telephones are some classic examples of broadly trusted technologies

in our everyday life, because they work as advertised and they are almost there without fail

when we need them. In comparison to this situation, although computers and its services

1

have intruded into our daily lives, we are not yet in a position to trust them as we trust the

technologies born out of 19th century inventions.

Computing paradigm, in spite of its pervasive nature, has not changed in the last 30 or

40 years. There is a great expectation that the TCS initiative will change the computing

paradigm through a combination of engineering principles, business practices, and regula­

tory service provision. Abstracted, these are the principles governing safety, reliability, and

business integrity. The challenge is to ensure that these qualities are inherent in the artifacts

produced throughout the different stages of the software development process, and proce­

dures followed during deployment of the system, and the management of the operational

system.

The TCS research group working under the supervision of Dr. Alagar is undertaking

research in the component-based development of TCS, which involve the following topics:

1. rigorous process model, formal architecture and its description

2. formal definition of trustworthiness properties

3. formal definition of trustworthy components, and composition of components

4. languages and methods for specification and design,

5. formal techniques for design-time validation and verification

6. rigorous methods for implementation, reuse, and deployment

7. a framework for developing TCS based on the above techniques

2

The contribution of this thesis is the design and implementation of a Visual Modeling

Tool(VMT), which provides precise interaction points for the user-centric tasks at the de­

sign, implementation, and run-time environment phases of the development framework.

1.1 Trustworthy Computing Systems Development

Alagar and Mubarak [MA08] have proposed a component-based development approach for

TCS that is also real-time reactive systems (RTRS). An un-timed TCS is a special case of

trustworthy RTRS. The VMT is tailored to the development of trustworthy RTRS. So, in

this section we give a quick summary of RTRS, TCS definition, component models, and

the development approach proposed in [MA08].

1.1.1 Real-Time Reactive System(RTRS)

Reactive systems maintain a continuous ongoing interaction with their environment. Such

systems are event-driven, interact intensively with the environment through stimulus re­

sponse behavior, and are regulated by strict timing constraints. Further, these systems might

also consist of both physical components and software components controlling the phys­

ical devices in a continuous manner. Although reactive systems are interactive systems,

there is a fundamental difference between these two systems. Whereas both environment

and processes have synchronization abilities in interactive systems, a process in a reactive

system is solely responsible for the synchronization of its environment. That is, a process

in a reactive system is fast enough to react to stimulus from the environment, and the time

3

between stimulus and response is acceptable enough for the dynamics of the environment

to be receptive to the response. For example, a human computer interface is an interactive

system, whereas a controller that regulates the amount of steam escaping from a boiler is

clearly reactive. In the case of real-time reactive systems, stimulus-response behavior is

also regulated by timing constraints and the major design issue is one of performance. Ex­

amples of RTRS include telephony, air traffic control, nuclear power reactors, and avionics.

The major factors that contribute to the complexity of RTRS are the following:

• size: telephony and air traffic control systems are made up of a large number of

hardware and software components;

• time constraints: telephony imposes only soft time constraints, a violation of which

may not cause a catastrophe but may reduce the amount of user trust; however, avion­

ics and nuclear power control systems impose hard (strict) time constraints, which if

violated will cause damage and injury to human safety, and perhaps shatter entirely

the user trust in them;

• criticality: nuclear power reactor is a safety-critical systems, in the sense that its

failure is unacceptable;

• heterogeneity: sensors, actuators, and system processes have different levels of func­

tional and time sensitive synchronization requirements.

It is evident from the above discussion that RTRS must be trustworthy, and the essential

features of RTRS that determine its trustworthiness are safety and reliability.

4

1.1.2 Trustworthiness Credentials

In general, trust is a social concept that is hard to define formally. However, in software

industry [AB01, FA99], there is a consensus on the definition of trust. In software devel­

opment community, the terms trustworthiness and dependability are used interchangeably.

Trustworthiness is the system property that denotes the degree of user confidence that the

system will behave as expected [FA99, IM02]. Dependability is defined as the ability to

deliver trusted services [AB01], A comparison between the two terms presented in [AB01]

has concluded that the two terms are equivalent in their goals and address similar con­

cerns. The goals of dependability are (1) providing justifiably trusted services, and (2)

avoiding outage of service that is unacceptable to the consumer. Thus, dependability and

trustworthiness involve achieving availability, reliability, safety, security, and survivabil­

ity. Safety and security are non-functional requirements which can be formally specified

as system properties at design time. The classical notion of reliability comes from statis­

tics, generally interpreted as "mean time to failure". Software, considered as a product,

can be subjected to this reliability model. This implies that reliability is measured on im­

plemented code. Recently, reliability has been formally defined on design and is further

related to the run-time measurable quantity. System availability and survivability are to be

assessed in an operational environment under different load factor assumptions, and pat­

terns of attacks on security of the system. If safety and security are ensured, they will

eventually assure a higher rate of system availability and reliability. Therefore, Alagar and

Mubarak [AM07b] have considered safety and security as the essential credentials of trust­

worthiness that should be specified during design stage and reliability and survivability as

5

properties to be assessed after implementing the system. Towards the later, the framework

provides a comprehensive set of tools in the implementation and run time environment of

the system. The VMT, being the front-end for all stages of system development, interaction

points for such investigation and analysis are provided in the VMT.

1.1.3 Component Based Development (CBD)

CBD is the type of software engineering development in which systems are built by con­

structing units, called components, that perform simple tasks, and assembling them to cre­

ate composite components that perform complex tasks. Some potential benefits of applying

CBD for building TCS include complexity reduction, time and cost savings, predictable be­

havior, and productivity increase [IM02]. The discussion in [Moh09] brings out several

inconsistencies in existing component definitions and the necessity to define components on

a more formal footing. They have proposed a component model that collectively addresses

the requirements of real-time reactive systems (RTRS) and credentials of trustworthiness.

The rationale is that a RTRS must be trustworthy, and conversely trustworthiness invariably

includes safety, an important requirement of RTRS.

A central challenge in building trustworthy systems using CBD method is composing

trustworthy components so that the composed component is trustworthy . Their main con­

tributions in [Moh09] are (1) a definition of the requirements of a component model for

developing trustworthy RTRS, (2) a formal definition for trustworthy hierarchical RTRS

components, and (3) a compositional theory for composing components so that safety and

security are preserved in the composition. Because the component definition is richer and

6

more involved than existing component definitions, it is not possible to adapt the existing

tools [MTOO] in an implementation of new trustworthy component models. This sets the

stage for discussing the scope and contribution of this thesis.

1.1.4 Scope of the Thesis

The primary goal of the development framework is to provide a framework for a rigorous

development, analysis, and deployment of TCS. The application developer, who is nor­

mally an expert in the application domain, should be facilitated to focus on modeling and

analysis aspects without being burdened by the formalism. The formalism should be work­

ing in the background, regulating that nothing improper is done in the construction of the

system. Another goal is to reduce the complexity of understanding the results and behav­

ior of the system through the introduction of easy to use and easy to learn task-oriented

descriptions in the development framework. These are the strong motivations behind the

development of VMT.

A question may be raised as to why a new tool is necessary, why not reuse an exist­

ing tool to create components? The answer is in the pudding: UML and tools based on

it are suited only for object-oriented system development. Components are richer than

objects. In particular, trustworthy components are very rich, as explained below. The com­

ponent definitions[Moh09] are new, and the only existing tool ACMEStudio[GS06] is not

sufficiently robust for our purpose. Acme is a second generation architectural descrip­

tion language. It provides support for specifying the canonical set of structural elements

of an architectural design. It includes definitions of component, port (runtime interface),

7

connector, connector role, system, property (attribute), constraint, and representation (sub­

structure of a component or a connector). Acme is not suitable for our purpose because of

the following reasons [Moh09]:

• The rational behind Acme is to provide support for the essential structural elements

of architecture designs so that it can serve as a base for interchanging architectural

designs. Since, most of ADLs lack support for non-functional requirements in their

structural definition, Acme supports only structural constraints related to the architec­

tural style of systems. It has no support for non-functional requirements at structural

level.

• In order to define trustworthiness for a component, there is a need to specify the

services provided and required at the interfaces of a component. This is essential be­

cause the requirements of trustworthiness are related to the services of a component.

However, Acme does not include service definition.

• Acme defines only a structural composition of components using connectors. On the

other hand, our component model defines a composition for both the structural and

trustworthiness properties.

• A component in our model has a contract. All trustworthiness properties are de­

fined at this contract. This enables managing the non-functional requirements in a

central definition. Also, it enhances the reuse of component definition for different

deployments. There is no concept of contract in Acme.

Figure 1 shows the component template proposed by Alagar and Mohammad [AM07a]. It

8

Composite Component Template

r

V

Component Template

Structure Contract

Data Parameters

Services

Interface Types

Frame

Architecture Types

Connector Types

^
^ F 1 * 8 * " * , . .

J

Data Constraints

Data Security

Service Security

User Identity

Reactivity

Time Constraints

I
Structural Composition _ . ^ - — - *

— - - ^ ^ " Composition

\

> !

Contract Composition

Figure 1: Component Template

9

is composed of a structure part and a contract part. The structure of a template is an abstract

external black-box view, called frame, and its internal hierarchical structure, called archi­

tecture. The frame consists of the interface types, where each interface type is associated

with a set of services. A service may be parameterized with data types. An architecture

is a collection of connector types, an abstract view of the tie-ins between interface types.

The contract part of the template states the properties required of the system for which the

structure is a blue print. A component is an instance of a component template. Every com­

ponent instantiated from a template has one instance of the structure part defined for the

template. The frame of the component is a set of interfaces, where each interface belongs to

exactly one interface type in the template frame. An architecture instance corresponding to

a component frame is an instance of the architecture corresponding to the frame in the tem­

plate, having as many instances of connector types as are required for linking the interfaces

in the component. A component's contract constrains the communication pattern at its in­

terfaces and is faithful to the contract part in its template. The VMT enables the creation of

components adhering to the above description. Component templates, interface types, con­

nector types, and their instances can be constructed using the VMT. For composing large

system configurations, the VMT is most helpful in breaking the complexity barrier. Con­

crete graphical representations offer traceability between structural and behavioral units of

the system under design.

The VMT has been conceived and designed to provide interaction points to design,

implement, and deploy a TCS. It is sufficient for a developer to know these interaction

points. It is not necessary to know the underlying formalism. The basis for creating the

10

models in VMT is a meta-architecture, which is discussed in Chapter 2. The TADL format

will look similar to ACME language description; yet there are many syntactic and semantic

differences. This is also presented in Chapter 2. From the visual model, the tool generates

automatically the architecture descriptions in XML and TADL, an architecture description

language developed by Mohammad and Alagar [Moh09], The XML description is for

"internal consumption", such as static analysis. These are presented in Chapter 3. The

requirements and a formal design of VMT are discussed in Chapter 4 and Chapter 5. In

Chapter 6 we discuss the VMT features, and provide screen shots while discussing how to

use the VMT. Chapter 7 concludes the the thesis with a summary of the contributions and

a list of future enhancements.

11

Chapter 2

Basic Concepts-TADL

In this chapter we review the component meta-model, the architectural elements, and TADL

(an architectural description language to specify trustworthy component-based systems),

the architectural description language from Alagar and Mohammad [Moh09]. The VMT is

designed to construct components and build systems that are consistent with the definitions

given in this chapter.

2.1 Introduction to Meta-architecture and TADL

A meta-architecture is used to specify a specific architecture. It serves as an architecture

type for creating different component-based system models in VMT. Figure 2 presents

the meta-architecture defined by Mohammad [Moh09]. The high level view of the meta-

architecture is composed of Component definition, Component structure definition, Safety

contract, Security mechanism, and System definition. TADL is a new architecture descrip­

tion language to specify trustworthy component-based systems. The meta-architecture and

TADL serve the following purposes.

12

Hardware
Component Configuration

Package

Software Elements

±z
System
Element

System Definition
0:n,

name Clas

Constraint Attribute

- ^ Aggregation
—• Association

—P> Inheritance

I Logical Grouping

:n Cardinality

Figure 2: The building blocks of the meta-architecture

13

• They specify a unified component model that embodies the features of CBD, real­

time systems, and trustworthiness.

• A unified method to define and analyze trustworthiness properties at the architectural

level is given by them.

• They specify a component model that is able to translate descriptions of system from

other component models to the meta-architecture.

• The TADL uses simple representations to describe architectural elements. Therefore,

the developers are able to understand the system definitions without knowing formal

methods.

For the convenience of reuse and reconfiguration of different system specifications, TADL

defines each of the meta-architecture elements individually. The specification of the ele­

ment is composed of three parts, namely: element type, element name, and specification of

the contents of the element.

ElementType <name>{

(Attribute <name>)*;

}

In the following sections, we give a detailed description of the meta-architecture elements,

along with the TADL syntax of these elements.

14

Event Type -On

-M

-1:n

~e£Z
---/l

Component Type

Data Parameter

Interface Type

Component Definition

ParameterType < name > {
< DataType >< name >;
Default < value >;

1

Event Type <name > {
(Attribute < name >)*;
(Constraint < FOPL >)*;
(ParameterType < name >}

}
Attribute < name > {

< DataType >< name >;
Default < value >;}

Figure 3: The component definition and specification

2.2 Component Definition

Figure 3 describes the elements contained in component definition, and the the TADL de­

scription of parameter type, and event type.

• Components offer/request events through interfaces. The syntax of interface type and

component type will be described in Section 2.4.

• Events represent the capabilities offered by a component, or the functionalities re­

quired by a component. The events are provided at interfaces. The TADL specifica­

tion of events may include attributes, constraints, and parameter types. Constraints

describe the restrictions of an architectural design. The statements in the constraints

should be maintained to be true. In TADL, a first-order predicated logic (FOPL) is

used to define constraints.

• A data parameter is a variable that is transmitted between components, when these

15

components request events from or provide events to each other. The TADL specifi­

cation of a data parameter includes name, data type, and default value.

The TADL specification of an attribute includes name, data type and default value.

The difference between an attribute and a data parameter is that data parameters

are only related to events, while attributes can be included in any meta-architecture

element.

2.3 Safety Contract

T i r i '
Contract Type _ _ _ _ i a

\ y i : n

Saf0ty Property

Time Constraint ^

Hr
-0:n

Reactivity

^L
~3JTf

Data Constraint

Safety Contract

Figure 4: Safety Contract

Safety contract defines a set of properties that describe the correct and safe interac­

tions between components. Figure 24 describes the elements of safety contract. These are

contract type, safety property, service, and time constraint, and data constraint.

• Time constraint: A time constraint regulates the responses of a component. Time

16

constraints define the maximum response time of a component. The following is the

TADL specification of the time constraint.

TimeConstraint <name> {

(Attribute <name>)*;

(Constraint <FOPL>)*;

EventType <request-name>;

RequestEvent

(<request-name>);

EventType <response-narae>;

ResponseEvent

(<response-name>);

float MaxSafeTime;

}

The definition includes attributes, constraints, the type and name of the event that

makes the request, the type and name of the event that responses, and the maximum

safe time of response.

• Data constraint: Data security requirements are formalized as data constraints. A

data constraint will restrict the responses of a component. It determines whether or

not a component should send a response when other component requests events from

it. The TADL syntax for data constraint specification is given below.

D a t a C o n s t r a i n t <name> {

17

(Attribute <name>)*;

EventType <request-name>;

RequestEvent

(<request-name>);

EventType <response-name>;

ResponseEvent

(<response-name>);

Constraint <FOPL>;

}

When the constraint is assessed to true, the response will include the requested infor­

mation , otherwise the response will not include the expected information.

• Service: The relationships between requests for events and their responses are called

Service constraints. Time constraint can be added to a service to set the maximum

safe time of a stimulus-response relation. Service specification can also include a data

constraint to ensure that only one response is selected from among several possible

responses, when a stimulus is triggered. The TADL service specification is given as

follows.

Service <name> {

EventType <request-name>;

RequestEvent

(<request-name>);

18

EventType <response-name>;

ResponseEvent

(<response-name>);

(DataConstraint <name>)*;

(TimeConstraint <name>)*;

(Update statements)*;

}

• Safety Property: Informally, safety means that "nothing bad happens". It is a partic­

ular kind of constraint that is defined at the interfaces of a component. A component

behavior should always respect the safety property. The TADL syntax for specifying

safety property is given below.

SafetyProperty <name> {

(EventType <name>)*;

Constraint <FOPL>;

}

• Contract type: A contract is a package that includes services and safety properties.

The TADL syntax for a contract type is given below.

ContractType <name> {

(Service <name>+;

(SafetyProperty <name>)*;

}

19

2.4 Component Architecture

As illustrated in Figure 5, the structural specification of a component is composed of inter­

face type, connector role type, connector type, architecture type and component type.

Component Definition

Figure 5: Component Architecture

Architecture Definition

• Interface type: An interface type is an abstraction that models the access point to

the events provided/requested by components [Moh09]. The TADL definition of

interface type contains an arbitrary number of event types and attributes. In addition,

interface type specification can also have a protocol specification that is stored in an

external file.

InterfaceType <name>

String Protocol;

(Attribute <name>)*;

[EventType <name>)*;

20

• Connector type: Communication mechanism between two interacting components

is modeled by a connector. Components that are not connected to each other by

connectors can not interact directly. The definition of connector type includes one or

more connector role types, defined next.

ConnectorType <name> {

(ConnectorRoleType <name>)+;

(Attribute <name>)*;

(Constraint <FOPL>)*;

}

• Connector role type: Each connector type is specified by a role. The connector type

role is "an interface" of that connector type. It is linked with an interface type of a

component. The TADL definition of connector role type is described as follows:

ConnectorRoleType <name> {

(Attribute <name>)*;

(Constraint <FOPL>)*;

InterfaceType <name>;

}

Figure 6 [Moh09] presents how to link two components together, with interfaces,

connectors and connector roles. A connector defines the connectivity between two

or more components. A connector type definition includes a non-empty finite set of

21

connector role types in addition to attributes and constraints. A connector role type

serves as an interface to a connector. It links a connector to a component interface.

An attachment specification defines how two components can be attached together

using a connector, two interfaces, and two connector role types. More precisely,

it defines which connector role of a connector is connected to which interface of a

component. Abstracting the connector role from the connector specification enables

abstracting the communication method used in the connector from its access points.

Therefore, it is possible to define different communication methods such as RPC,

HTTP, and SOAP using the same access points (connector roles). Also, introducing

connection points at the ends of a connector can help to reason about the integrity

of the communication method by comparing representations of the data before and

after the communication.

Connector role Attachement specification
/

\

\
\

Interface Connector

Figure 6: How two components are connected

Component type: There are two types of components, called primitive component

22

type and composite component type. An architecture type, defined within a compo­

nent type, distinguishes the two concepts. The structure of a composite component

is defined by specifying one or more architectures. On the other hand, if there is no

architecture in the specification, then the component is considered to be primitive.

Below is the TADL specification of a component type.

ComponentType <name> {

(Attribute <name>)*;

(Constraint <FOPL>)*;

User u;

(InterfaceType <name>)+;

(ArchitectureType <name>)*;

ContractType <name>;

}

The "User" section in the definition above will be described in Section 2.5.

• Architecture type: As described before, an architecture type specifies the internal ar­

chitecture of a component. The TADL definition of an architecture type is illustrated

as follows:

ArchitectureType <name> {

(ComponentType <name>)+;

(ConnectorType <name>)+;

23

(Attribute <name>)*;

(Constraint <FOPL>)*;

(Attachment

(ConnectorType.RoleType.InterfaceType,

ComponentType.InterfaceType)) * ;

In the "Attachment" section of the above definition a formal description of linking

two components is given. Two components are linked together by attaching the in­

terface type of a connector role type to the interface type of a component type. The

attachment specification should cover every connecting point of an interface type and

a connector role type.

2.5 Security mechanism

Figure 7 presents the elements in the specification of the security mechanism. The TCS

model uses role-based security access control (RBAC) to enforce security at component

interfaces. The mechanism ensures that the access to component events are regulated and

data parameters are safe-guarded at interfaces. RBAC includes the following four concepts.

User: It is an attribute defined in a component type. The value of the user is assigned when

a component is instantiated. The value represents that the component is executing on

behalf of the 'user'. The formal TADL description of User section is given below.

24

User

W

Group

Rote

I
Privilege

Security Mechanism

Figure 7: Security Mechanism

User <name> {

(Attribute <name>)*;

(Constraint <FOPL>)*;}

Group: A role may be played by several users. So, a group defines the domain of users.

A user can be assigned to an arbitrary number of groups using the function 'User

- Groups - Assignment' defined in the TADL specification of RBAC. The TADL

description for Group is given below.

Group <name> {

(Attribute <name>)*;

(Constraint <FOPL>)*;

Role: A role is an association between a user and a set of actions that the user is permitted

25

to do in the system. As long as a user or a group is assigned to a specific role using

the functions "User - Roles - Assignment(User,Role)" and "Group - Roles - Assign-

ment(Group,Role)", the user and the group should take the security responsibilities

of the role. The TADL description of Role is given below.

Role <name>{

(Attribute <name>)*;

(C o n s t r a i n t <FOPL>)*;

}

Privilege: A privilege is a right that determines whether or not a user can access a specific

event or a data parameter. Privileges are assigned to roles. One role can have many

privileges. One privilege can be assigned to many roles. There are two kinds of

privileges.

a) Event Privilege: This defines the right to access a event, using the function

'Privileges - for - events'. Only a role who has a privilege of the event can

request the event at the interfaces of a component and receive the responses.

b) Data Parameter Privilege: It defines the right to access a data parameter, us­

ing the function 'Privileges - for - data - parameters'. Only a role who has a

privilege of the data parameter can request the data parameter and receive the

responses.

The following illustrates the TADL syntax of a privilege:

26

Privilege <name> {

(Attribute <name>)*;

(Constraint <FOPL>)*;

}

The TADL descriptions given above are "plugged-in" the following TADL format, which

fully describes the security mechanism.

RBAC <name> {

(User <name>)*;

(Group <name>)*;

(Role <name>)*;

(Privilege <name>)*;

(User - Groups - Assignment (User,Group))*;

(User - Roles - Assignment(User,Role))*;

(Group - Roles - Assignment(Group,Role))*;

(EventType <name>)*;

(ParameterType <name>)*;

(Privileges - for - events

(Event, Privilege, Role))*:

(Privileges - for - data - parameters

(DataParamater, Privilege, Role))*;

}

27

2.6 System Definition

Component Type

Hardware Component

K
-1:n

Configuration -0 Package

hPf
System Element

Figure 8: System Definition

A system is composed from software and hardware components. Figure 8 shows the ele­

ments of system definition. It includes hardware components, and software configurations.

Hardware component is a particular type of component. The TADL specification of sys­

tem configuration includes the instances of the defined software and hardware component

types, along with a deployment plan. The deployment specification uses the function "De­

ploy (HardwareComponentType, ComponentType)" to configure the software components

on the hardware components.

Configuration <name>{

(SystemElement <name>)+;

(Deploy(HardwareComponentType, ComponentType))+;

}

The package, in the diagram, stores a number of the related architectural elements to

simplify future reuse of these elements.

28

Chapter 3

Basic Concepts-XML Schema

3.1 Introduction

The description of the visual models in TADL is formal, and is used for presentation to

the users of the system. We generate the textual description of the visual model as XML

Schemas, which are used for internal processing of the system development. The TADL

description and XML description are equivalent.

The advantage of having XML Schema for the visual model is that it can be exported and if

necessary converted to other presentation format. Based upon the XML Schemas, Ibrahim

[Ibr08], has implemented a translator that produces the UPPALL extended state machines,

a behavior model of the visual models, and verify the trustworthy properties of the modeled

system. The compiler in VMT produces the XML and TADL descriptions for further use.

In this section, we explain the XML Schemas.

An XML Schema is an XML schema language, recommended by W3C(World Wide Web

Consortium) [Rec05], which defines a number of constraints to restrict the structure of an

29

XML document. In the following sections, we will review the pre-defined XML Schemas.

There are in total seven schemas to define the TADL. These are explained next.

3.2 Interfaceiype Schema

The interface type schema includes an ordered sequence of the following sub-elements:

• name: It is a simple element to specify the name of the interface.

• protocol: It is a simple element to specify the protocol of an interface.

• Attribute: It is a complex element to specify the attributes of an interface. It is

an ordered sequence of four simple elements, namely name, datatype, value and

description.

• EventType: It is a complex element which includes an ordered sequence of the

following sub elements:

- name: It is a simple element to specify the name of the event.

- id: It is a simple element to specify a unique id for the event. For the same

event, its id number should be the same.

- type: It is a simple element to specify the event type.

- Attribute: It is a complex element to specify the attributes of a event. The

schema of an Attribute has been discussed above.

- constraint: It is a simple element to specify the constraints in a event.

30

- ParameterType: It is a complex element to specify the parameters in a event. It

is an ordered sequence of four simple elements, namely name, datatype, value,

and description.

- Property: It is a complex element to specify the properties of an interface. It

is composed of an ordered sequence of two simple elements, namely name and

value.

- description: It is a simple element to store the notes by users.

• description: It is a simple element to store the notes written by user for a specific

element.

The minOccurs and maxOccurs in the XML Schema respectively specify the minimum

and maximum occurrences of an element. The schema is shown below.

<?xml version="l.0" encoding="UTF-8"?>

< ! — edited with XMLSpy v2005 rel. 3 U (http://www.altova.com)

by bg (bg) -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:complexType name="Property">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="value" type="xs:string"/>

</xs:sequence>

31

http://www.altova.com
http://www.w3.org/2001/XMLSchema

</xs:complexType>

<xs:complexType name="EventType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="id" type="xs:string"/>

<xs:element name="type" type="xs:string"

minOccurs="0"/>

<xs:element name="attribute" type="Attribute"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="parameterType" type="ParameterType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="property" type="Property"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ParameterType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

32

<xs:element name="datatype" type="xs:string"/>

<xs:element name="value" minOccurs="0"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Attribute">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="datatype" type="xs:string"/>

<xs:element name="value" type="xs:string"

minOccurs="0"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="InterfaceType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="protocol" type="xs:string"

minOccurs="0"/>

<xs:element name="attribute" type="Attribute"

33

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="eventType" type="EventType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

3.3 ComponentType Schema

The component type schema includes an ordered sequence of the following sub elements:

• name: It is a simple element to specify the name of a component.

• Property: It is a complex element to specify the properties of a component. The

schema of the property has been discussed in 3.2.

• Attribute: It is a complex element to specify the attributes of a component. The

schema of the attribute has been discussed in 3.2.

• constraint: It is a simple element to specify the constraints of a component.

• user: It is a complex element to define the users of a component. The schema of the

user will be discussed in section 3.7.

34

• InterfaceType: It is a complex element to specify the interfaces of a component.

The schema of the interface type has been discussed in section 3.2.

• ArchitectureType: It is a complex element to specify the architectural structure of

the component. It is composed of an ordered sequence of the following elements:

- name: It is a simple element to specify the name of an architecture.

- ComponentType: It is a complex element to specify the components in an

architecture. The schema of the component type is discussed in section 3.3.

- ConnectorType: It is a complex element to specify the connectors in an archi­

tecture. The schema of the connector type is discussed in section 3.4.

- Attribute: It is a complex element to specify the attributes of an architecture.

The schema of the attribute type is discussed in section 3.2.

- constraint: It is a simple element to specify the constraints in an architecture.

- Attachment: It is a complex element to define the connection of a connector

role and the interface of a component. It is composed of an ordered sequence

of the following elements:

* name: It is a simple element to specify the name of an attachment.

* ConnectorType: It is a complex element to specify the connector in an

attachment. The schema of the connector type is discussed in section 3.4.

* ConnectorRoleType: It is a complex element to specify the connector role

in an attachment. The schema of the connector role type is discussed in

section 3.4.

35

* InterfaceType: It is a complex element to specify the interface in an at­

tachment. The schema of the interface type is discussed in section 3.2.

* ComponentType: It is a complex element to specify the component in an

attachment. The schema of the component type is discussed in section 3.3.

* description: It is a simple element to store the notes by users.

• ContractType: It is a complex element to specify the safety contract of a component.

The schema of the contract type is discussed in section 3.5.

• description: It is a simple element to store the notes by users.

The XML schema conforming to the above specification is shown below.

<?xml v e r s i o n = " l . 0 " encoding="UTF-8"?>

< ! — edited with XMLSpy v2005 rel. 3 U (http://www.altova.com)

by bg (bg) -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefauIt="unqualified">

<xs:include schemaLocation=".\interfaceType.xsd"/>

<xs:include schemaLocation=".\connectorType.xsd"/>

<xs:include schemaLocation=".\contractType.xsd"/>

<xs:include schemaLocation="RBAC.xsd"/>

<xs:complexType name="ComponentType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

36

http://www.altova.com
http://www.w3.org/2001/XMLSchema
file:///interf

<xs:element name="property" type="Property"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="attribute" type="Attribute"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="user" type="User" minOccurs="0"/>

<xs:element name="interfaceTypes" type="InterfaceType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="architectureType"

type="ArchitectureType" minOccurs="0"/>

<xs:element name="contract" type="ContractType"

minOccurs="0"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ArchitectureType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="componentType" type="ComponentType"

minOccurs="0" maxOccurs="unbounded"/>

37

<xs:element name="connectorType" type="ConnectorType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="attribute" type="Attribute"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="attachments" type="Attachment"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Attachment">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="connectorType-from"

type="ConnectorType"/>

<xs:element name="roleType-from"

type="ConnectorRoleType"/>

<xs:element name="interfaceType-from"

type="InterfaceType"/>

<xs:element name="componentType-to"

38

type="ComponentType"/>

<xs:element name="interfaceType-to"

type="InterfaceType"/>

<xs:element name="description"

type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

3.4 ConnectorType Schema

The connector type schema includes an ordered sequence of the following sub elements:

• name: It is a simple element to specify the name of a connector.

• ConnectorRoleType: It is a complex element to specify the roles of a connector. It

is composed of an ordered sequence of the following elements:

- name: It is a simple element to specify the name of the connector role.

- Attribute: It is a complex element to specify the attributes of a connector role.

The schema of the attribute has been discussed in 3.2.

- constraint: It is a simple element to specify the constraints of a connector role.

39

- InterfaceType: It is a complex element to specify the interface attached to the

connector role. The schema of the interface type has been discussed in 3.2.

- description: It is a simple element to store the notes from users.

• Attribute: It is a complex element to specify the attributes of a connector. The

schema of the attribute has been discussed in 3.2.

• constraint: It is a simple element to specify the constraints of a connector.

• description: It is a simple element to store informal notes by users.

The XML schema conforming to the above specification follows.

<?xml version="l.0" encoding="UTF-8"?>

< ! — edited with XMLSpy v2005 rel. 3 U (http://www.altova.com)

by bg (bg) -->

<xs:schema xmlns:xs = "http://www.w3.org/2 001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:include schemaLocation=".\interfaceType.xsd"/>

<xs:complexType name="ConnectorRoleType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="attribute" type="Attribute"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"

40

http://www.altova.com
http://www.w3.org/2

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="interfaceType" type="InterfaceType"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ConnectorType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="connectorRoleType"

type="ConnectorRoleType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="attribute" type="Attribute"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

41

3.5 Contractiype Schema

Contract is a new element type in the component modeling. A contract is a specification

that can be associated to one or more components. The contract type schema includes an

ordered sequence of the following sub elements:

• name: It is a simple element to specify the name of a contract.

• DataConstraint: It is a complex element to specify the data constraints in a service.

It is composed of an ordered sequence of the following elements:

- name: It is a simple element to specify the name of the data constraint.

- Request EventType: It is a complex element to specify the stimulus event of a

data constraint. The schema of the event type has been discussed in 3.2.

- Response EventType: It is a complex element to specify the response event of

a data constraint. The schema of the event type has been discussed in 3.2.

- constraint: It is a simple element to specify the constraints in a data constraint.

- description: It is a simple element to store the notes from users.

• TimeConstraint: It is a complex element to specify the time constraints in a service.

It is composed of an ordered sequence of the following elements:

- name: It is a simple element to specify the name of the time constraint.

- Attribute: It is a complex element to specify the attributes of a time constraint.

The schema of the attribute is discussed in 3.2.

42

- constraint: It is a simple element to specify the constraints in a time constraint.

- Request EventType: It is a complex element to specify the stimulus event of a

data constraint. The schema of the event type has been discussed in 3.2.

- Response EventType: It is a complex element to specify the response event of

a data constraint. The schema of the event type has been discussed in 3.2.

- maxSafeTime: It is a simple element to specify the maximum safe time of a

time constraint.

- description: It is a simple element to store the notes from users.

• Service: It is a complex element to specify the safe reactivities in a contract.

- name: It is a simple element to specify the name of a service.

- id: It is a simple element to identify a unique id for each service.

- Request EventType: It is a complex element to specify the stimulus event of a

data constraint. The schema of the event type has been discussed in 3.2.

- Response EventType: It is a complex element to specify the response event of

a data constraint. The schema of the event type has been discussed in 3.2.

- DataConstraint: It is a complex element to include data constraints in a ser­

vice. The schema of the data constraint has been discussed above.

- TimeConstraint: It is a complex element to include time constraints in a ser­

vice. The schema of the time constraint has been discussed above.

43

- Update: It is a complex element to describe the updates of the design. It is

composed of an ordered sequence of two simple elements, namely toBeUpdated

and value.

- description: It is a simple element to store the notes from users.

• Safety Property: It is a complex time to specify the safety property in a contract. It

is composed of an ordered sequence of the following elements:

- name: It is a simple element to specify the name of a safety property.

- EventType: It is a complex element to specify the events that is restricted by

the safety property. The schema of the event type is discussed in 3.2.

- constraint: It is a simple element to specify the constraints in a safety property.

- description: It is a simple element to store the notes from users.

• description: It is a simple element to store the notes by users.

The XML Contract Type schema conforming to the above specification is given below.

<?xml v e r s i o n = " l . 0 " e n c o d i n g = " U T F - 8 " ? >

< ! — edited with XMLSpy v2005 rel. 3 U (http://www.altova.com)

by bg (bg) -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:include schemaLocation=".\interfaceType.xsd"/>

<xs:complexType name="SafetyProperty">

44

http://www.altova.com
http://www.w3.org/2001/XMLSchema

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="eventType" type="EventType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ContractType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="dataConstraint" type="DataConstrain"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="timeConstraint" type="TimeConstrain"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="service" type="Service"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="safetyProperty" type="SafetyProperty"

minOccurs="0" maxOccurs = "unbounded"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

45

</xs:sequence>

</xs:complexType>

<xs:complexType name="Service">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="id" type="xs:string"/>

<xs:element name="event-request" type="EventType"/>

<xs:element name="event-response" type="EventType"/>

<xs:element name="dataConstraint" type="DataConstraint"

minOccurs="0"/>

<xs:element name="timeConstraint" type="TimeConstraint"

minOccurs="0"/>

<xs:element name="update" type="Update"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="TimeConstraint">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="attribute" type="Attribute"

46

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="event-request" type="EventType"

minOccurs="0"/>

<xs:element name="event-resonse" type="EventType"

minOccurs="0"/>

<xs:element name="maxSafeTime" type="xs:int"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="DataConstraint">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="event-request" type="EventType"/>

<xs:element name="event-response" type="EventType"/>

<xs:element name="constraint" type="xs:string"/>

<xs:element name="description" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Update">

47

<xs:sequence>

<xs:element name="toBeUpdated" type="xs:string"/>

<xs:element name="value" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

3.6 PackageType Schema

Package is a model element. The package type schema includes an ordered sequence of the

following sub elements:

• name: It is a simple element to specify the name of a package.

• Version: It is a simple element to specify the version of a package.

• InterfaceType: It is a complex element to specify the interfaces in a package. The

schema of the interface type has been discussed in 3.2.

• ContractType: It is a complex element to specify the contracts in a package. The

schema of the contract type has been discussed in 3.5.

• ConnectorType: It is a complex element to specify the connectors in a package. The

schema of the connector type has been discussed in 3.4.

48

• ComponentType: It is a complex element to specify the components in a package.

The schema of the component type has been discussed in 3.3.

• description: It is a simple element to store the notes by users.

• PackageType: It is a complex element to specify the sub packages in a package.

Below we give the package type XML schema conforming to the above specification.

<?xml version="l.0" encoding="UTF-8"?>

< ! — edited with XMLSpy v2008 spl (http://www.altova.com)

by N alani (western) -->

<xs :schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:include schemaLocation="componentType.xsd"/>

<xs:include schemaLocation="interfaceType.xsd"/>

<xs:include schemaLocation="connectorType.xsd"/>

<xs:complexType name="PackageType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="Version"/>

<xs:element name="interfaceTypes" type="InterfaceType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="contractTypes" type="ContractType"

minOccurs="0" maxOccurs="unbounded"/>

49

http://www.altova.com
http://www.w3.org/2001/XMLSchema

<xs:element name="connectorTypes" type="ConnectorType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="componentTypes" type="ComponentType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="descreption" type="xs:string"

minOccurs="0"/>

<xs:element name="packages" type="PackageType"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

3.7 RBAC Schema

Role-based access control (RBAC) is the security model imposed in trustworthy component

modeling. RBAC schema includes the information necessary to enforce RBAC methods.

RBAC schema is an ordered sequence of the following elements:

• name: It is a simple element to specify the name of a RBAC.

• User/Group/Role/Privilege: It is a complex element to specify the users/groups/roles/privileges

in a RBAC. The schema of User/Group/Role/Privilege is composed of an ordered se­

quence of the following:

50

- name: It is a simple element to specify the name of the users/groups/roles/privileges.

- Attribute: It is a complex element to specify the attributes of a users/groups/roles/privileges.

The schema of the attribute has been discussed in 3.2.

- constraint: It is a simple element to specify the constraints of a users/groups/roles/privileges.

- description: It is a simple element to store the notes from users.

• UserGroupAssignments: It is a complex element to specify the user-group assign­

ments. It is composed of an ordered sequence of two complex elements, namely user

and group.

• UserRoleAssignments: It is a complex element to specify the user-role assignments.

It is composed of an ordered sequence of two complex elements, namely user and

role.

• GroupRoleAssignments: It is a complex element to specify the group-role assign­

ments. It is composed of an ordered sequence of two complex elements, namely

group and role.

• EventType: It is a complex element to include the events that is restricted by the

RBAC. The schema of the event type has been discussed in section 3.2.

• ParameterType: It is a complex element to include the parameters that is restricted

by the RBAC. The schema of the parameter type has been discussed in section 3.2.

• PrivilegesForEvents: It is a complex element to assign privileges of events to spe­

cific roles. It is composed of an ordered sequence of three composite elements,

51

namely EventType, Privilege, and Role.

• PrivilegesForDataParameters: It is a complex element to assign privileges of data

parameters to roles. It is composed of an ordered sequence of three composite ele­

ments, namely ParameterType, Privilege, and Role.

• description: It is a simple element to store the notes by users.

The XML schema for the above RBAC specification is given below.

<?xml version="l.0" encoding="UTF-8"?>

< ! — edited with XMLSpy v2005 rel. 3 U (http://www.altova.com)

by bg (bg) -->

<xs:schema xmlns:xs="http://www.w3.org/2 001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:include schemaLocation=".\interfaceType.xsd"/>

<xs:complexType name="RBAC">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="users" type="User" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="groups" type="Group" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="roles" type="Role" minOccurs="0"

maxOccurs="unbounded"/>

52

http://www.altova.com
http://www.w3.org/2

<xs:element name="privileges" type="Privilege"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="userGroupsAssignments"

type="UserGroupAssignments"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="userRolesAssignments"

type="UserRolesAssignments"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="groupRolesAssignments"

type="GroupRolesAssignments"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="eventType" type="EventType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="parameterType" type="ParameterType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="privilegesForEvent"

type="PrivilegesForEvents"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="privilegesForDataParameters"

type="PrivilegesForDataParameters" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="description" type="xs:string"

53

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="User">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="attribute" type="Attribute"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Group">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="attribute" type="Attribute"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="description" type="xs:string"

54

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Role">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="attribute" type="Attribute"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Privilege">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="attribute" type="Attribute"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"

minOccurs = "0" maxOccurs = "unbounded" />

<xs:element name="description" type="xs:string"

55

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="UserGroupAssignments">

<xs:sequence>

<xs:element name="user" type="User"/>

<xs:element name="group" type="Group"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="UserRolesAssignments">

<xs:sequence>

<xs:element name="user" type="User"/>

<xs:element name="role" type="Role"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="GroupRolesAssignments">

<xs:sequence>

<xs:element name="group" type="Group"/>

<xs:element name="role" type="Role"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PrivilegesForEvents">

56

<xs:sequence>

<xs:element name="event" type="EventType"/>

<xs:element name="privilege" type="Privilege"/>

<xs:element name="role" type="Role"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PrivilegesForDataParameters">

<xs:sequence>

<xs:element name="dataParameter"

type="ParameterType"/>

<xs:element name="privilege" type="Privilege"/>

<xs:element name="role" type="Role"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

3.8 System Schema

A system configuration includes hardware and software components. The System Config­

uration schema includes an ordered sequence of the following sub elements:

• name: It is a simple element to specify the name of a system.

57

• Attribute: It is a complex element to specify the attributes of a system. The schema

of the Attribute has been discussed in section 3.2.

• ComponentType: It is a complex element to specify the components in a system.

The schema of the component type has been discussed in section 3.3.

• Deploy: It is a complex element to deploy software components to hardware com­

ponents in a system. It is composed of an ordered sequence of two complex elements,

namely HardwareComponentType and ComponentType. The schema of Component-

Type has been discussed in section 3.3, and the the schema of a hardware component

type is composed of a sequence of the following:

- name: It is a simple element to specify the name of the hardware component.

- Attributes: It is a complex element to specify the attributes of a hardware

component. The schema of Attribute has been discussed in section 3.2.

- constraints: It is a simple element to specify the constraints of a hardware

component.

- InterfaceType: It is a complex element to specify the interfaces of a hardware

component. The schema of an interface type has been discussed in section 3.2.

- description: It is a simple element to store the notes from users.

• description: It is a simple element to store the notes from users.

• RBAC: a complex element to include a security mechanism for a system. The schema

of the RBAC has been discussed in section 3.7.

58

<?xml version="l.0" encoding="UTF-8"?>

<!-- edited with XMLSpy v2008 rel. 2 sp2 (http://www.altova.com)

by Moe Mawlana (Concordia.) -->

<xs:schema xmlns:xs="http://www.w3.org/2 001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:include schemaLocation=".\componentType.xsd"/>

<xs:include schemaLocation=".\RBAC.xsd"/>

<xs:complexType name="SystemElement">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs ."element name="description" type="xs : string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Deploy">

<xs:sequence>

<xs:element name="hardwareComponenetType"

type="HardwareComponentType"/>

<xs:element name="componentType" type="ComponentType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="HardwareComponentType">

59

http://www.altova.com
http://www.w3.org/2
file:///componentType
file:///RBAC

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="attributes" type="Attribute"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"

minOccurs="0"/>

<xs:element name="interface" type="InterfaceType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:element name="Configuration">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="attributes" type="Attribute"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="components" type="ComponentType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="deploy" type="Deploy"

minOccurs="0" maxOccurs="unbounded"/>

60

<xs:element name="description" type="xs:string"

minOccurs="0"/>

<xs:element name="rbac" type="RBAC" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

61

Chapter 4

VMT Architecture: System

Requirements

4.1 Introduction

Chapter 4 and Chapter 5 describe the architecture of the VMT. We follow the template [MOB00]

for documenting the VMT architecture. This chapter introduces the context in which the

tool is to be used, and the functional and non-functional requirements of the VMT. Chap­

ter 5 will present the design of the tool.

4.2 Motivation

By looking through the recently adopted proposal for the revised version of UML [OMG06],

called UML 2.0, it seems that it can be claimed to be a component modeling language. A

critical review of UML 2.0 [JO06] states that while the added features of UML 2.0 lends

support to the expressive power at the architecture level, due to the lack of tool support it is

impossible to evaluate such a claim. The new constructs introduced in UML 2.0 are Part,

62

Connectors, and Ports. BasicComponents and PackagingComponents are new names

to indicate the capabilities of components modeled in separate packages, primarily to help

different implementations. They do not have any precise semantics. The introduction of

StructuredClass as a first class element and the distinction between required interface

and provided interface are not fully supported by precise semantics. To a port an interface

can be attached only if the protocol state machine of the port and the protocol state ma­

chine of the interface are compatible. There is no tool in UML 2.0 to prove compatibility

between state machines.

The distinguishing feature of our research group is on a formal development of trust­

worthy systems. Component definitions are to be formal, composition rules are formal,

verification of trustworthy properties are to be formally done, and the code development

with run time analysis are to be conducted within our formal framework. As such UML

2.0, which is still in an infant stage, cannot be used for our project. This necessitated the

development of a tool that will create the visual models of components, classes, and be-

haviors,for which formal definitions exist. The tool will hide the formalism, yet provide

assistance for the correct models to be created.

4.3 Purpose and Context

Figure 9 [MA08] is the context diagram of the VMT. It describes the full development

framework of TCBS. It shows the tools that our group members are designing to support

63

the formal development of TCBS. The visual modeling tool is the fundamental tool that de­

velopers will use at different stages of system development, in particular during the design

stage of TCBS.

Figure 9: Framework for Developing TRTS - Context Diagram

The context diagram shows that there are three important stages in the development

of TCBS. The VMT is to support the activities during Design, Implementation, and De­

ployment (Run-time). By analyzing the functionalities of the tools in Figure 9 we identify

the requirements of the VMT. A process model and a rationale for conceiving the current

64

development framework consistent with the process model are discussed in [MA08].

4.3.1 Design Stage

In the design stage a developer uses the VMT to create, edit, and compile visual models

of the elements of TCBS and systems composed with the elements. The tool provides the

facility to access a repository of design artifacts which can be reused by the developer. The

VMT enables a model to be compiled and checked for syntactic correctness before gener­

ating a textual description of the model in TADL, the trustworthy architectural description

language [Moh09].

Visual modeling tool (VMT) VMT provides a friendly graphical user interface for de­

velopers to construct TCBS. The goal of VMT is to ease the complexity inherent in system

developer's work. Instead of being directly exposed to the formal notation, system develop­

ers can model the elements of trustworthy component models using a high-level graphical

notation. Both functional and non-functional properties can be specified succinctly in the

visual models. The tool serves the following three purposes.

• it acts as an interface to design components, connectors, and system configurations

along with their attributes and properties;

• it enables to view the textual and visual representations of the design; and

• it provides different views of the system design for different users. We identify at

least three views.

65

Component Based Development (CBD) view This view is a projection of the model

on the architecture, characteristics of components, connectors, system configu­

rations, and global architectural constraints.

Real-time view This view shows the real-time features of the design, projecting the

time constraints on services.

Trustworthiness view This view highlights the safety, liveness and security proper­

ties imposed on a component.

The VMT provides the access points to the rest of the tools.

Compiler tool (CT) The compiler checks the validity of the model, and supports differ­

ent types of output by transforming the design according to formally defined transformation

rules. The following three types of output are generated by the current version of compiler.

• performs lexical and syntactic analysis of the visual models with respect to its ab­

stract definition, and generates a formal textual description in an architectural de­

scription language (TADL),

• checks the real-time and trustworthiness elements of the model by comparing the

corresponding views defined in the visual modeling tool, and generates:

- a behavioral model descriptions in different formal notations, and

- a description of real-time models.

66

Transformation analysis tool (TAT) This tool will be used to inspect the correctness,

completeness and compatibility of the transformation process.

• Completeness: A view is complete with respect to the visual model if every feature

in the view corresponds to a feature in the visual model.

• Correctness: A view is correct with respect to the visual model if the view is complete

and every feature in the visual model has a corresponding feature in the view.

• Compatibility: Two views are compatible if and only if both views are correct with

respect to the visual model.

We emphasize that the translation need not be one-to-one. However, it is expected that the

tool will not miss out on any feature in the visual model, and ensure that there is no 'junk'

in the output.

Real-time analysis tool (RAT) This tool conducts a real-time scheduling analysis from

the description of real-time models that are generated by compiler. The purpose is to check

whether or not the verified model can meet the hardware performance constraints.

Model checking tool (MT) This is an important tool at the design stage. It translates the

behavioral model descriptions that are generated by Compiler into UPPAAL descriptions

and verify the correctness of trustworthy view of system design in the visual modeling

tool. The rationale to have this tool in the design stage is to allow developers conduct early

verification of their models. The tool, in conjunction with the compiler and transformation

analysis tool, makes the formal verification transparent to the developer.

67

Architectural analysis tool (AAT) This tool will analyze the textual description in

TADL that is generated by Compiler and verify the correctness of CBD view of system

design in the visual modeling tool.

4.3.2 Implementation Stage

The tools to be used during the implementation stage are discussed below.

Component repository The repository is the storage place for the development source

code of a system and a project. It also stores each defined system element specification

in a separate file, so that the developers can retrieve and reuse the developed trustworthy

components from the repository.

Code generation tool (CGT) This tool analyzes the system design specifications, and

produces source code. For every component or connector, if the source code already exists

in the repository, the tool will reuse the code, otherwise it will generate the source code.

The tool supports different programming languages.

Traceability and certification tool (TCT) This tool scrutinizes the newly generated

components code, and verifies that the code conforms with CBD, real-time, and trustwor­

thiness specifications. A detailed introduction of the techniques to do the verification is

described in [MA08]. After traceability analysis, the tool obtains a certificate from a cer­

tification authority. The certificate indicates the trustworthiness of the component and the

level of development conformity to design and quality attributes stated in its specifications.

68

A detailed introduction of how the certificate is issued is described in [MA08].

4.3.3 Run-time Stage

Two tools have been planned for this stage. These are as follows:

Run-time environment In order to support running systems and dynamically recon­

figuring executions, this tool is introduced to perform as an intermediary between the lan­

guage of the run-time environment that communicates with the operating system and the

language for running component assemblies. It loads component assemblies from the com­

ponent repository.

Run-time analysis/visualization This tool supports run-time analysis during system

execution. It guarantees that the system behavior is in conformance with the defined func­

tional and nonfunctional properties.

4.4 System Requirements of VMT

From the discussion in previous sections, we can see that VMT serves as the basis for

using the other tools in the development framework. A good VMT is expected to enhance

the usability of the entire system. In the following sections, we divide the interface of

VMT into seven essential parts and describe the functional requirements of each of these

interfaces. We explain the functionalities through use cases. A more detailed description

of the use cases and their screen shots are given in Chapter 6.

69

Workspace

Figure 10: Usecase Diagram of VMT

70

Figure 10 shows the general use case diagram for VMT. The use case diagram con­

tains two actors (Developer and Workspace), and seventeen major use cases (View Error

Messages, Manage project, Manage system, Manage TADL source, Manage system el­

ement, Manage Component Properties, Manage Interface Properties, Manage Connector

Properties, Manage Connector Role Properties, Manage hardware component, Manage de­

ployment, Manage RBAC, Manage data constraints, Manage real-time properties, Manage

service, Manage safety property, and Manage contract). Workspace is the directory where

the project stores.

4.4.1 Navigator Interface:

This interface allows developers to manage the TADL projects and TADL systems. Each

project is represented as a directory, with the tree node to represent a TADL system in

this project. This interface is updated dynamically whenever a system/project is added or

deleted. The detailed services provided by Navigator Interface are described in Table 1.

4.4.2 Palette Interface:

This interface provides visuals for initial system element. The Palette items are composed

of multiple visuals of initial system elements, which are classified into two groups: (1) Sim­

ple palette items, including component type, interface type, connector type, and connector

role type. (2) Composite palette items: packages. The VMT should enable a developer to

select a palette item and draw the figure of selected palette item in system editor.

71

Interface Navigator Interface

This service allows the developers of a TCBS to create a new project,
open an existing project, and save a project. When a project is cre­
ated/opened, a project tree will be generated to allow the developers
to view the hierarchy of projects and systems in the current work space.
The root of the tree is the project name, with each tree node representing
a system in the current project.
This service allows the developers to create a new system in a specific
project, open/delete/save a system. When a system is created, a tree
node will be added to the corresponding project tree. When a system
is deleted from a specific project, the tree node to represent the system
will be deleted correspondingly from the project tree. When a system is
saved, an external XML file of the system will be saved in the project
directory. The XML file is generated automatically using the prede­
fined XML schema in Chapter 3. And this XML file will be updated
dynamically if a developer saves changes in the system.

Table 1: Services provided by Navigator Interface

4.4.3 System Editor Interface:

This facility allows developers to visually construct a system. Every system has multiple

views, and hence the editor will have multiple sub-interfaces, as discussed below.

• System Canvas Interface: This interface allows the elements from the Palette to be

used to visually construct a system. The detailed services provided by System Canvas

Interface are described in Table 2.

• Real-time Interface: Real-time interface collects every real-time feature defined in

different components to allow developers to have a general look of all the real-time

features of the design. The detailed services provided by Real-time Interface are

described in Table 3.

• Trustworthy Interface: This interface allows a developer to have a general view of

72

Usecase:
Manage
Project

Usecase:
Manage
System

Interface System Canvas Interface
Usecase: This service allow the developers to visually create a new system ele-
Manage Sys- ment (component/connector/interface/connector role), to be able to se-
tem Element lect a specific system element, to move the selected system element

within system canvas, save a system element in the system, and to delete
the selected system element from the system. In addition, this interface
also provides services to attach/remove an interface to a specified com­
ponent, to attach/remove a connector role to a specific connector, to
attach/remove a connector role to a specific interface of a component,
and to save the changes.

Table 2: Services provided by System Canvas Interface

Interface Real-time Interface

Usecase: As discussed in Chapter 2, a time constraint regulates the responses of
Manage a component. Therefore, real time properties of a system is defined
real-time inside a component. A developer can create/modify/delete a real-time
properties feature in the corresponding component properties definition interface.

We will discuss it in the later section of this chapter. In this interface,
the developers can view the pre-defined real-time features as well as
modify a the properties of a pre-defined real-time.

Table 3: Services provided by Real-time Interface

73

trustworthy properties of a design. The detailed services provided by Trustworthy

Interface are described in Table 4.

• System Configuration Interface: This interface shows the features related to system

configuration, and deployment. The detailed services provided by TADL Interface

are described in Table 5.

• TADL Source Interface: This interface shows the textual description of model in

TADL. The detailed services provided by TADL Interface are described in Table 6.

4.4.4 Properties Editor Interface:

This interface allows a user to edit the attributes and properties of system elements. The de­

tailed services provided by Properties Editor Interface are described in Table 7, and Table 8.

4.4.5 Error Message Interface:

This view is used to display the problems, or errors of a design. The detailed services

provided by Error Message Interface are described in Table 9. There are various constraints

while a developer is making a design using the VMT. The constraints are described as

follows:

• Every interface element in System Canvas must be attached to a component element.

• Every connector role element in System Canvas must be attached to a connector

element.

74

Interface Trustworthy Interface

This service allows a developer to view all the data constraints defined
in a design. As discussed in Chapter 2, a data constraint restricts the
responses of a component. Therefore, data time properties of a system
is defined inside a component. A developer can create/modify/delete
a data constraint in the corresponding component properties definition
interface. This interface provides services to view and modify the pre­
defined data constraint features.
This service allows a developer to view all the services in a design.
As discussed in Chapter 2, a service is included in the definition of a
contract, and a contract is included in the definition of a component.
Therefore, service properties are defined inside a component. A devel­
oper can create/modify/delete a service in the corresponding component
properties definition interface. This interface provides services to view
and manage the pre-defined service features.

This service allows a developer to view all the safety properties defined
in a design. As discussed in Chapter 2, a safety property is included in
the definition of a contract, and a contract is included in the definition
of a component. Therefore, safety properties are defined inside a com­
ponent. A developer can create/modify/delete a safety property in the
corresponding component properties definition interface. This interface
provides services to view and manage the pre-defined safety property
features.

This service allows a developer to view all the contracts defined in a
design. As discussed in Chapter 2, a contract is included in the defi­
nition of a component. Therefore, safety properties are defined inside
a component. A developer can create/modify/delete a contract in the
corresponding component properties definition interface. This interface
provides services to view and manage the pre-defined contract features.

Usecase: This service allows a developer to create/save/view a
Manage User/Group/Role/Privilege in RBAC, to delete an existing
RBAC User/Group/Role/Privilege from RBAC, to add/edit/delete/save/view

the properties of a User/Group/Role/Privilege. The properties of a
User/Group/Role/Privilege include the name, attribute and constraint.
In addition, VMT should also provide services to assign a user to a
specific group and remove a user from a group, to assign a user to a
specified role and dismiss a user from a role, to assign a group to a
specific role and dismiss a group from a role, to assign privileges of
events to a role and cancel the privileges of events of a role, and to
assign privileges of data parameter to a role and cancel the privileges
of data parameters of a role.

Table 4: Services provided by Trustworthy Interface

75

Usecase:
Manage Data
Constraint

Usecase:
Manage
Service

Usecase:
Manage
Safety Prop­
erty

Usecase:
Manage
Contract

Interface System Configuration Interface

Usecase: This service allows a developer to create/save/view a hardware corn-
Manage ponent in a design, to delete an existing hardware component from a
Hardware design, and to add/edit/delete/save/view the properties of a hardware
Component component. The properties of a hardware component include: the name,

attribute, constraint, and interface.
Usecase: This service allow a developer to add/edit/delete/save/view the mapping
Manage of a software component to a hardware component.
Deployment

Table 5: Services provided by System Configuration Interface

Interface TADL Source Interface

Usecase: This service allows a developer to view textual description of the a
Manage design in TADL. The TADL text is automatically translated from the
TADL Source model, and it can not be edited manually. They will be updated dynam­

ically whenever a developer saves a change in a design.

Table 6: Services provided by TADL Source Interface

• Every connector role should be attached to an interface element.

• The name of the system should begin with lower-case or upper-case letters(a-z).

• The developer must select a directory from the navigator interface to create a project

or a system.

• The two interface types which are used to connect two components must be com­

patible [MA08]. That is, if two interfaces are connected by a connector, the two

interfaces should contain the same events - one is input event, and the other is output.

4.4.6 Menu Bar:

Menu bar is required to be displayed as a horizontal row on top of the GUI. It provides its

services from a series of selectable pull-down menu items. The services include create a

76

Interface Properties Editor Interface
Usecase: This service allows a developer to add/edit/delete/save/view the proper-
Manage ties of a selected component in System Canvas Interface. The properties
Component of a component include: the name, type name, attribute, constraint, user,
Properties architecture, and contract.

Usecase:
Manage
Component
Properties

Manage
Contract

Contract is defined as a component property. This service allows a de­
veloper to add/edit/delete/save/view the properties of a contract in a
component. The properties of a contract include: the name, service,
and safety property. When a contract is modified in a component, the
trustworthy contract view should be updated automatically to show the
changes.

Usecase:
Manage Con­
tract - Manage
Safety Prop­
erty

Usecase:
Manage Con­
tract - Manage
Service

Usecase:
Manage Ser­
vice - Manage
Real-time
Properties

Usecase:
Manage
Service
Manage Data
Constraints

Safety Property is defined as a contract property. This service allows
a developer to add/edit/delete/save/view the properties of a safety prop­
erty in a contract. The properties of a safety property include: the name,
attribute, event type, and constraint. When a safety property is modified
in a contract, the trustworthy safety property view should be updated
automatically to show the changes.
Service is defined as a contract property. This service allows a developer
to add/edit/delete/save/view the properties of a service in a contract.
The properties of a reactivity include: the name, attribute, request event,
response event, data constraint, time constraint, and update statements.
When a service is modified in a contract, the trustworthy service view
should be updated automatically to show the changes.

Real-time properties is defined as a service property. This service al­
lows a developer to add/edit/delete/save/view the properties of a real­
time property in a service. The properties of a time constraint in­
clude: the name, attributes, constraint, request event, response event,
and MaxSafeTime. When a real-time property is modified in a service,
the Real-time interface should be updated automatically to show the
changes.

Data constraint is defined as a service property. This service allows a
developer to add/edit/delete/save/view the properties of a data constraint
in a service. The properties of a time constraint include the name, at­
tributes, constraint, request event, response event, and MaxSafeTime.
The properties of a data constraint include the name, attributes, request
event, response event, and constraint. When a data constraint is mod­
ified in a service, the trustworthy data constraint interface should be
updated automatically to show the changes.

Table 7: Services provided by Component Properties Editor Interface

77

Usecase:
Manage Inter­
face Properties

Usecase:
Manage
Connector
Properties

This service allows a developer to add/edit/delete/save/view the proper­
ties of a selected interface in System Canvas Interface. The properties
of an interface include: the name, interface type name, attribute, event,
and protocol. Events are defined at interfaces, and therefore, developers
should also be allowed to add/save/view an event in a specific interface,
and to add/edit/delete/save/view the properties of an event. The proper­
ties of an event include: the name, Type of event, attribute, parameter,
and constraint.
This service allows a developer to add/edit/delete/save/view the proper­
ties of a selected connector in System Canvas Interface. The properties
of a connector include: the name, type name, attribute and constraint.

Usecase:
Manage Con­
nector Role
Properties

This service allows a developer to add/edit/delete/save/view the prop­
erties of a selected connector role in System Canvas Interface. The
properties of a connector role include: the name, type name, attribute
and constraint.

Table 8: Services provided by Interface/Connector/Connector Role Properties Editor Inter­
face

Interface Error Message Interface

Usecase:
View Error
Messages

This service allows a developer to view the warnings and errors of the
current design. The messages are generated automatically when a de­
veloper made an operation which contradicts the above mentioned rules,
and can not be edited manually. If there is no error or warning, this in­
terface will stay blank.

Table 9: Services provided by Error Message Interface

78

new project, create a new system, open an existing project, open an existing system, save

changes in the VMT and delete.

4.4.7 Tool bar:

Tool bar contains a number of icons to provide developers a fast way to access the most

frequently used functions of the VMT. It is usually displayed as a horizontal row on top

of the GUI directly beneath the Menu bar. The items in the toolbar might be enabled or

disabled depending on the status of the System Editor.

4.5 Non-Functional Requirements of VMT

The basic requirement for the design of a visual model tool is to satisfy the needs of the

users of the TADL systems. In addition to this list of functionalities, we add the following

non-functional aspects.

• Usability: The interfaces of the tool should be user-friendly, in the sense a user

would need little or no training to use the tool. The visuals for the component, the

connector, the interface and packages should be easy to recognize.

• Reactivity: The tool should respond in a timely manner for every stimulus from the

user.

• Portability: The interface should work under different operating systems.

79

• Extensibility: The design would allow developers to easily add new functionalities

and components to the tool.

80

Chapter 5

VMT Architecture: Design

In this chapter we describe the design of the VMT. First, the rationale behind the selected

architectural style for the VMT will be detailed. Second, the architecture diagram of the

system will be given. Third, in the components section we use class diagrams to describe

the detailed design of each component. Fourth and last we discuss the development envi­

ronment of the tool.

5.1 Architectural Overview

This section demonstrates the Logical View of the VMT. Software architecture is itself

based on components, and the design describes the classes that make up a component's in­

ternal details. In essence, VMT architecture is a collection of interrelated software compo­

nents, and the externally visible properties of these components together with a description

of the interactions between these components (called connector). There are a number of

distinct architectural styles to choose from. By architectural style we mean a set of design

rules that identify the kinds of components and connectors that may be used, along with

81

constraints for combining them. In this thesis, we choose the Swing's MVC Architecture -

a modified MVC (model-view-controller) style - for the VMT.

5.1.1 Swing's MVC Architecture

The MVC [KP88] is a well-known architecture for graphical user interface (GUI) designs

to separate the presentation of data from applications that manage the data. As shown in

Figure 11, it breaks each component of a system into the following three parts:

• Model (Processing): It manages the behavior and data of a component, provides

information to the View when the View requests for a data, and updates the data

when it receives a notification from the Controller.

• View (Output): It manages the visual representation of a component.

• Controller (Input): It decides how components interact with events. It interprets the

mouse and keyboard events from the user, and notifies the model and/or the view to

update accordingly.

Swing's MVC Architecture is basically a modified version of the MVC design pattern. It

combines the View and Controller into a single user interface (UI) object, as shown in

Figure 12 [Fow99]. The Model remains as a separate object in Swing's Architecture, the

same as the traditional MVC architecture.

82

Sure I f̂>

View Controller

tpdaio

Model

Vlimipulalt*

/

System

Figure 11: Model-View-Controller Architecture

Cojrngonent

Figure 12: Swing Architecture

83

5.1.2 Rationale behind selection

A traditional MVC architecture does not suit well in our application for the following rea­

son: In real GUI programming, the view and the controller are always closely related. It

is very difficult to write a generic Controller that does not know the specifics about the

View [Fow99].

The advantages of Swing's MVC Architecture are described as follows [Fow99] [KP88]:

• It facilitates model-driven programming by treating the model definition as a separate

element.

• It facilitates the dynamic changing of the interfaces by using a separate UI object to

represent a component's view/controller responsibilities.

5.1.3 Architecture Diagram

Figure 13 shows the structure of the VMT. There are two packages in the diagram, namely

GUI and SystemObject. GUI is the UI-Delegate of the system, and it takes care of the

outlook as well as the event handling of a system model; System Object represents the

model of the system, and it stores and operates the data. A user uses GUI to modify the

SystemObjects. GUI shows the visual representations of SystemObjects. There are two

external system outputs: 'systemobject.system', and 'system.xml'.

1. Systemobject.system: It is an automatically generated XML file by GUI to keep the

drawing information of the system. The GUI can also import an XML file, and draw

corresponding pictures.

84

X
M GUI ^*J

show 'modify

I *

SystemObject ^**

I f \
read write

i I ^
systemobject systern^ml

^ . . y s t e n , ' ^

\ write

Figure 13: The high-level Architecture Diagram

2. System.xml: It is another automatically generated XML file, according to the pre­

defined XML Schema. It is used for TADL syntax verification by other tools.

Figure 14 shows the package diagram of GUI and SystemObject. We can see that GUI

contains eleven components, according to the requirements described in Section 4.4. Each

UI Delegate component in GUI package is connected to its model in SystemObject pack­

age, using a dashed line. Error Message UI-D, ToolBar UI-D and MenuBar UI-D represent

the error message panel, tool bar and the menu bar of the system, and they do not have

corresponding models.

• The structure of GUI: Figure 15 shows the high-level class diagram of the GUI.

The MainFrame is the window of the VMT It is composed of the following six main

panels:

85

GUI

System Editor f •—C

J Trustworthy
View

l Ui-D

Real-time
Ui-D

System
Canvas

UI-D

Configuration
UI-D

TADL
Source

UI-D

Error
Message

Ul-D

Palette
Ul-D

Navigator
Ul-D

ToofBar
Ul-D

Menu-bar
Ul-D

Properties
Ul-D

>

I I
i = i _E

t—|—I Real-Time
I—'—i Mode!

"C

t — f ~ ^ Trustworthy
| View

[~~\ Model

Configuration
Model

TADL Source
Model

Navigator
Model

Palette
Model

SystemObject

System
Canvas
Model

Properties
Model

Figure 14: GUI System Package Diagram

86

Properties Pant! MainMenuBar

CoMwclttrProfXTlicsPuncI

C'oraponcntPrnpcrticii Panel

ErrurMeatagePand

SourceEditPane

CorrftguroPanel

SyfctemCanvasPanef

n
PaleltcPaad

TrustworthyPanel

DsituCwWraiili Tubk

ServUx Tabic

SafryPrnpert) Table

Contract Tabic

RBACTabk-

<

i

I

1

I

I

I

Figure 15: GUI High-level Class Diagram

87

- Navigator panel: It manages the functionalities provided by Navigator inter­

face.

- Palette panel: It manages the functionalities provided by Palette interface.

Palette is closed related with System Canvas. Therefore, we include the Palette

inside a System Canvas in the System Editor panel.

- System Editor panel: It is the container to hold different views of a system. It

is composed of a real time panel to view real time properties, a source edit pane

to show the TADL representation of the system model, a configuration panel

to manage the system configuration properties, a system canvas panel-which

includes a palette panel-to visually construct a system model, and a trustworthy

panel to view and manage the trustworthy properties of a system.

- Properties panel: It is the interface to operate the properties of the selected

system element. It is composed of connector properties panel, component prop­

erties panel, interface properties panel, and connector role properties panel.

- Error message panel: It shows the error of the current design.

- Main menu bar: It is the interface of the system's menu bar.

- Main tool bar: It is the interface of the system's tool bar.

• The first level structure of the VMT model: Figure 16 shows that a SystemObject is

composed of one to many system items, trustworthy objects, and deployment objects.

• The second level structure of the VMT model: As shown in Figure 17, a trustworthy

object is composed of one to many RBAC objects, and contract objects. A contract

88

ilOTTI I j SyswmOtojwi

jComivctorlitni

J
"•I t

/
/

/
Rolefiviii

Figure 16: The First Level System Object Structure

89

PrlvilegcsForDataParamfWr

Privikgi'shorServkc

GrnttpRote

Role

Pri\ ilt'gt'

Figure 17: The Second Level System Object Structure

object is composed of one to many safety property objects and service objects. Data

constraint objects and real time objects are included in service objects.

5.2 Components

This section describes a detailed description of each component in Figure 14. We use class

diagrams to describe the internal structure for each component. In the following sections,

we will combine the class diagrams of the UI-Delegate and the Model of a same component

together.

90

MalnFrame

1

Navigator
UI-D

TrvcCdlKftMiddrcr

^gctfr a<"d IRcwJererf.'omptmentl): (."omponcni

NaviyatorPanel

navigator!" re« JTre«

•getTreeO ' Navigator! ree I I

NavlgatorTm*

HnifTrt-rt) DeliUiUVIuiiiWi'TrrcVufc

-titrlObiectl)
•Re:Sd«ftniObjccK): Object

i-iwlSel<vtwlNotkO: DcfciuliMniablcTireNixle

Navigator
Model

TrwMottwUsrener

i clickNodd)
•*-miHlwCin;kraJ()

Interfiles: VTMTrwNodK

2L ^
SvMcmNodf

•getHIcO
-pel I DO
getC*j(>
>iive()

-setObj< i

Project Node

-gctPathl)

DnliiManstEfr

inkdniitKit
-gt?tC«ml<)
• ginlmermii f-'rama i
-isHxkK'tii)
•remove))

SvsteroEcMtorPaiwI

Figure 18: The class diagram of Navigator component

91

5.2.1 Navigator Component

Figure 39 illustrates the class diagram for the Navigator Component. As we can see from

the architecture diagram that the component has been divided into two parts, namely:

• Navigator UI-Delegate: This component is responsible for managing the outlook

and the events of Navigator component.

- Navigator Panel: It is the container of Navigator tree. It manages the outlook

of the Navigator panel, and gets the Navigator Tree using getTree() method.

- Navigator Tree: This class manages the outlook of the Navigator tree. It up­

dates the tree when a project or a system is added or deleted. It also contains

methods to get the current selected tree node and to get the selected object (sys­

tem or project) at the current node.

- TreeCellRender: It customizes the display of the navigator tree node, such as

customizing the display icons for a system node and a project node.

- TreeMouseListener: This class defines the behavior of the Navigator when a

mouse event is captured. When a developer clicks on a node, the mouseClicked()

function will capture the current selected object. clickNode() method specifies

that when the developer double clicks the tree node:

* if the system node has already been defined before, then this system will

be open in the System Editor Panel.

* if the system node is a new system, then this method will create a new

frame for the system in the System Editor Panel.

92

• Navigator Model: It is responsible for managing the data of Navigator component.

- VTMTreeNode: It is an interface which defines the common methods that

every VMT tree node must have. getIcon() is to get the display icon for the tree

node, and toStringO is to get the name of the tree node.

- SystemNode: It is an instance of class VTMTreeNode. It manages the display

picture, and the data of a system. It contains saveQ method to output an XML

file which keeps the drawing information of the system. Here we used an online

open source 'Xstreaml.3' [Xst08] to serialize objects to XML and transform

them back again [Xst08].

- ProjectNode: It is an instance of class VTMTreeNode. It manages the display

picture, and the data of a project node.

- DataManager: It provides functions to open a selected system node in the

SystemEditorPanel. SystemEditorPanel determines whether the XML of the

system already exists or not. If it exists, then read the XML to re-draw the

system; if not, then create a new XML file to keep the drawing information of

the system.

5.2.2 Palette Component

Figure 42 represents the class diagram for the Palette component.

• Palette UI-Delegate: It is responsible for managing the outlook and the events of

Palette component.

93

Sy»temE«lit0rf»ane(

PuletteLavmrt

•••layiHirt'ontai licit)
imimn»umLuynutiii7c(i
i piv I cmsJLd j i.HiiSi«(!

Palette Panel

pttSinip i'> k •k--i;< it i o
r>it<'. r-ipiis "L-' emeriti r U111
'iivltlt 'u-t 'ei Niiner! I
•» i1 ! U lki:i-.wl :Veiwn)
K- ' lovfl 11,111„,*l v ' i f in i !

Palette
UI-D

SL
Interface: P»t«tui.istcn*r

•sclertChsinKCfK I

Selttctitlenicnt Listener

+Kkctt£3einentLi.\teTieTi)
i ileuiSuueClianyedl)

PalefieEvvnt

Element

• uct I \ pel i
'uii'Hulloni I
tKiUlhlOllI I

•yerC i|i w»ii I
-. rc.*UK ihruii\('HI >nr(>

S

Palette
Model

.SclcrtE-lemeni i ComponenrEtenwitr ICoiii imorEtemefit InterfiiceEl.F.MFVT RolrEte-ment

Figure 19: The class diagram of Palette component

94

- PalettePanel: It is the container of palette items. Palette can not be separated

from system canvas, therefore, it should be part of it. Palette panel is parti­

tioned into three parts: select, simple elements, and composite elements. This

class initializes the look of the three parts. It also contains addChangeListener()

method to add listeners to the palette items, notifyChangeListeners() method to

notify changes to all the listeners, and removeChangeListener() method to re­

move a listener of palette items.

- PaletteLayout: It is a class to set the lay out for Palette panel. That is, to set

the positions of every palette items.

- Interface PaletteListener: This interface manages the listeners of palette item

event. It defines that every palette event listener should have a selectChanged()

method to receive the currently selected palette element type.

- PaletteEvent: Whenever a palette item is selected, it will trigger out a palette

event.

- SelectElementListener: This class manages the events when a palette item is

selected or deselected by a user.

• Palette Model: It is responsible for managing the data of Palette component.

- Element: It is an abstract class to define the general methods of palette items,

such as getType() method to get the type of the selected element, initButton()

method to initialize the position of palette items, getButton() method to get

the current selected palette items, getCursor() method to get the current look

95

of cursor, and createCustomCursor() method to customize the look of cursors

when different palette items are selected.

- ComponentElements: This class extends Element class. It customizes the look

of component palette item, and the look of cursor when a component item is

selected.

- InterfaceElements: This class extends Element class. It customizes the look of

interface palette item, and the look of cursor when an interface item is selected.

- ConnectorElements: This class extends Element class. It customizes the look

of connector palette item, and the look of cursor when a connector item is se­

lected.

- ConnectorRoleElements: This class extends Element class. It customizes the

look of role palette item, and the look of cursor when a role item is selected.

- SelectElement: This class extends Element class. It customizes the look of

select palette item, and sets the look of the cursor to system default look when

a user presses Select button.

5.2.3 System Editor Component

• System Canvas: Figure 20 represents the class diagram for System Editor Compo­

nent.

- System Canvas UI-Delegate: It is responsible for managing the outlook and the

events of system canvas component.

96

Can vas

pa ml) >
-pBiinUatkyruuntIO
*p;litltCoillpt>nenii i
-psimSvsTcmOhjCLTSl I: Dimension
-acaieC ompunu'mi i
-crcaleC'onnecUiri)
-I'it'iife'liiieifiK't'd
-iTeitrc Rcto s
+mouse DtviLSjttsJI>
•mouse bntercdi I
i mouse lixilcdi)
i mouseVUivedr t
+Hnni!»cPrvss«i|)

nouseKetascd?)

System Canvas
UI-D \A

I .SyuimCam »<Pimt>l

•\k-l^'I«lf<Jt!flHi>

iRtfrfacthviii

M'tPosiiiurK I

- break Attuchi)

'j!ftl*arrntl 1: C'cxmpoucntltem
(Kl..\mu;lwdfU>leO : [itileltein

-drawl')

I .'wnpuni'iitltcrn

siUiliiierfitvltcnil)
•t^eChildrenO
i dnsw()
+si?tPu!>ili<.'n>l)

SystemEditofPanef

M
tntefTaer. Palette-listener

+K-U\-!(lKmLifil(I

Palr t t t fanel

System Canvas
Abstract Clan: Item

-qcti'bsidrenfl
• jjclNameO : Suing
--.riNauiel) ' Siring
-slrawi)

• -prK'PnmK (: Pfiint
dniw&electedReirH)
drawAlUichedRcctO

-a<nraini I . Boolean
-setScleetcdl)
-stnft>sttinn< I
\sel Altai-bedl)
-JIIT.K'hO
-hivakArriwhO

Model

lt«lcltem

-fgctPaienti I
•(.•elAttaehed I uteri nee I teiiK >
•• mtachi 1
i brcrfkA«i«:l»l)
nlfiiwO

Coniwtroritem

+;«JdRvM \ RukHem
+gerChi!dn?nfi
+tsValidaict'|
>dnnvij

S>st«-mOto)<>Ct

Figure 20: The class diagram of System Editor component

97

* SystemCanvasPanel: It is the container of system Canvas. It is a listener

of palette component. When a palette item is selected, system canvas will

receive a notification from palette component about which palette item is

selected. It also contains a delSelectedItem() method to allow developers

to delete a selected item from the system canvas.

* Canvas: It provides a canvas where developers can visually create system

components. It contains the following methods: (i) init() to initiate the

look of canvas; (ii) paint(), paintBackGround() and paintComponent() are

intended to draw the canvas component; paintSystemObjects() to return the

dynamic dimension of canvas.

The drawing canvas will be automatically expanded with many functional­

ities to show the whole system model: (i) mouseEntered() - to set the look

of the cursor when the mouse enters system canvas; (ii) mouseExited()- to

set the look of the cursor to default system mouse look when the mouse

exits system canvas; mousePressed() to compare the mouse position with

the dimension of system elements, if mouse position is included in one of

the already defined system elements, then highlight the element, and up­

date the properties view to show the properties of the currently selected

element; (iii) mouseReleased() - to specify that if a developer selects an

item from the palette and releases mouse in system canvas, the graph of

the corresponding system element will be drawn in system canvas. This

method also determines whether two elements are attached by checking

98

whether the center point of one element is included in the dimension of

another element; (iv) - createRole() to determine whether the position of

the role, which is being created, is inside one of the defined connectors. If

yes, add the role to the connector; createComponent() to add a component

to the system model; (v)createlnterface() - to determine whether the posi­

tion of the interface, which is being created, is inside one of the defined

components. If yes, add the interface to the component; (vi) createCon-

nector() - to add a connector with its default two roles to the system model;

(vii) mouseDragged() - to specify that when a developer drags a system

element, the element graph will move with the mouse. If a developer drags

a role and drops it within an interface, then this role and interface are set

to be attached; (viii) mouseMoved() to specify that if an interface palette

element is currently selected, and when a developer moves the mouse over

an already defined component, then this interface is attached to the compo­

nent.

- System Canvas Model: It is responsible for managing the data of System Edi­

tor component.

* Item: It is an abstract class to define the general methods of system el­

ements. It contains the following methods: (i) getChildren() - to return

the lists of children of an item; (ii) getName() - to return the name of an

item; (iii) setName() - to set the name for an item; (iv) draw()- to draw

the graph of an item; (v) getCPoint() - to get the center point of an item;

99

(vi) drawSelectedRect() - to draw a highlight rectangle outside an item,

when it is being selected; (vii) drawAttachedRect() - to draw a highlight

rectangle when an interface item is within the area of a component, or a

role item is within the area of an interface; (viii) attach() - to attach two

items; (ix) constrain() - to determine whether an element is located inside

another element; (x) setSelected() - to set an item to the selected status; (xi)

setPosition() - to return the new position for an item; (xii) setAttached() -

to set the relationship of two items to be attached; (xiii) - breakAttach() to

unattach two attached items.

* Componentltems: It is an instance of Item. It contains the following meth­

ods: (i) addlnterfaceltemO - to add an Interface into a Component; (ii)

draw() - to define the way of drawing a component graph; (iii) setPosition()

- to return the current position for the component, and its related interfaces;

(iv) getChildrenO - to return the lists of interfaces that are contained in this

component.

* Interfaceltems: It is an instance of Item. It contains the following meth­

ods: (i) setPositionO - to return the current position for the interface and

its attached connector; (ii) getParent() - to return the name of the compo­

nent that the interface is contained in; (iii) draw() - to define the way of

drawing an interface graph; (iv) getAttachedRole() - to return the name of

the role that the interface is attached to; (v) attach() - to set the attachment

between an interface item and a role item; (vi) breakAttach() - to break the

100

attachment between an interface item and a role item.

* Connectorlterns: It is an instance of Item. It contains the following meth­

ods: (i) addRole() - to add a role to a connector; (ii) getChildren() - to

return the list of roles of a connector; (iii) isValidate() - to check if all the

connector roles are attached to an interface; (iv) draw() - to define the way

of drawing a connector graph.

* Roleltems: It is an instance of Item. It contains the following methods: (i)

getParentO - to return the name of the connector that the role is connected

to; (ii) getAttachedInterfaceItem() - to return the name of the interface that

the role is attached to; (iii) attach() - to attach an interface item to a connec­

tor role item; (iv) breakAttach() - to break the attachment between a role

and an interface; (v) draw() - to define the way of drawing a role graph.

• Realtime Component: Figure 21 illustrates the class diagram for the Realtime Panel

Component. As we can see from the diagram the component has been divided into

two part, whose descriptions are given below.

- Real-time UI-Delegate: It is responsible for managing the outlook and the

events of real time panel component.

* RealTimeTable: It manages the outlook, and the behavior of the real time

interface. It is implemented as the listener of trustworthy object, which

means if a change has been detected in trustworthy object the real time

panel will receive a notification. The getModel() method in this class is

101

INwnePanci

AMribuivTabk-l

Real-time UI-D

RealTink* Fable

*-i?ctMiiJel(I

' fxipl, IpR^iiiTinwV*: ilui'e")W'.ndu'>vn

ma \SafcF imePa ticl
rrsponwr.ventPamH

Real-time
Model

RealTlmeObjcef

1 gefR«fi|WsrE verm; t
+5"erM.ix5;ireTitn*0
+ger RcqucstK vcntTvpc< >
+aftRcsp«vnsc,hventl)
i gelR«porisel;v™i 1 ypd)
-I'giffTi mtC'uriMiiji i itType(,1

-_

(n*

SysternEdrtorPan&l

Trutt Worth) ObjcflUsJniT

Trust W rotbyObJecl

•-petSeTViccfi
W7

SenfwOhjpct 0 .•
I

H
Cmitr&ctOhJret

Figure 21: The class diagram of Real Time Panel component

102

file:///SafcF

used to get the model of real time table, which is the RealTimeObject.

The update() method is used to update the RealTimeTable automatically

whenever a notification is received from TrustWorthyObject.

* RealTimeAttributesManager: It defines a pop-up dialog to manage the

properties of a RealTimeObject. As is shown in the diagram, AddReal-

TimeDialog is composed of five sub-interfaces to manage the five kinds of

attributes in a RealTimeObject.

- Real-time Model: The only class contained in Real-time Model is RealTimeOb­

ject.

• Trustworthy Panel Component: Figure 22, Figure 23, Figure 24, Figure 25, and

Figure 26 respectively illustrate the class diagrams for the Data Constraint, Service,

Safety Property, Contract, and RBAC Panel Component. As we can see from the

diagram that every component has been divided into two parts.

- UI-Delegate: It is responsible for managing the outlook and the events of data

constraint component.

* Table: It manages the outlook, and the behavior of the Data Constraint/Service/Safety

Property/Contract/RBAC panel. Data Constraint/Service/Safety Property/Contract

table is implemented as the listener of trustworthy object, and will update

automatically whenever it receives change notifications from Trustworthy-

Object. RBAC table provides an interface to manage a RBAC Object.

* AttributesManager: It defines a pop-up dialog to view and manage the

103

properties for a Data Constraint/Service/Safety Property/Contract/RBAC

Object.

- Model: There is only one class in the model.

TrusiworthyPane)

IVtrnWort h> 'Object Ltstner

l)ata("otistramt Table

w

-HipdstR-o

f
l

N sjHU'Pi'me) Data Constraint
! , UI-D

DataCon«rr«li)tAiTrltMi!i!AMiinagrr

TrustWrirthyObject

< si^Ser1, i«t>i 1

I

Attritnitel'abfe
5

CoiisfrafmTabl*

\
KespoBsttvent I able KetiuestEvcnt Tabic 1

I

< (mtractOhjfct Seniii'(JbjcM.i

'....*

DitaCoiutraiRtObject

-*• tsetR ftjiics I •vcnn; |

* L'ctRciiuesthvcnr! ypcl i

+yrtUr!.piinrfKvvmTvpe< }

DataConstraint
Model

Figure 22: The class diagram of Data Constraint Panel component

Configuration Panel Component: Figure 27 illustrates the class diagram for the

Configuration Component. As we can see from the diagram that the component has

been divided into two parts.

- Configuration UI-Delegate: It is responsible for managing the outlook and the

events of configuration panel component.

104

TrustworthyPanei

I Trust\\ orthyObjeclLfclncr

KH-

ScrviccDatal »ns»raintTable

SwvkwTabl*

-popOiatoitf)

X

Service Ul-D
Serviced mcCoiMtralnrTabk;

S«rviceA<iribnici Manager

I

J>2
Request E vent Panel

AtlributcTnbtc NunwPstntl CofstraialTiiblc R««po nsc FCwnlP* ml

Tni*tV\trolh)(»lij««

pecSm i«s(i

11.. 1

f.ontractOhjvct

, „ ,

Serv iceObjvct

'^W'Scnn.tfVi"iC(>
*J:V"D,U.I(. vnis" I I - IH)

tyv'Rc' lM^I u-ti;i 1
t ivRc. l ik -oHemJsfv i I
• ne'Rcsfxmtt'tventl >
t gf Response!.* eirt F \p« >
tyv'rimetAiMs.1 iimtl)
t sjysl pcLltl-SUItfllimi^)

Service Model

Figure 23: The class diagram of Service Panel component

105

TrustworttiyPartel 11

Trust WouhyObjvfi List ntr

w
Trust WrothyObjcct

TpgtRca-vTiviticsU

n.,

Safety PropertyTable
Safety Property UI-D

-llpll lift I
-popDialoci I

I

ContrartObject

Safety AtirlbtwsVUnnger

/T

Even! 1 ultk

Attribute 1 able NamePand C ofi»trsiint I abli'

_L
SafetyPropetyUhject

-gdfcVtfttM)
-jscf Narncf I

gifiAiiitbui«(t

Safety Property
Model

Figure 24: The class diagram of Safety Property component

Contract UI-D

TrustWrothyObJeet

sg tCiwslroirlsl) 1 « • •
I

1
CuntnHtOtojwi

+!WtSa H\ Property! 1
iiielSeivicel)

1 .

Contract
Model

0..

f "mtiptiiMstttl rem

+t*t l . CHItliMsl i

+actC'otrtract|)

Figure 25: The class diagram of Contract Component

106

T r u s t w o r t h y P a n e l

D O A f ITI-fl
ML m. J L ^ JL Ik ^-rf- ^rf' M> M*r

Trust WroihyObjixi

isetRL*.\Co ! .) . "

Privik'j{cF(irfe,vt,iill*ai«;l

UserOrosipPsMicl LserRnkPaiwl

RfUCTabk

PrfvitegeFftrDalaPanel

+ P « M (H I C I ()

pupDJulusst)
" 7 W

\

RBACAttrfiMiieMMiagtr

I M T P M I C I

z
CJr«w»RoleP«t»l

Group i'miti-l Ruk'Panrl Prb 'itcScPaun.'!

X
RBACOtyiKt

i ucli) sen "I
Hi-tUw'Jl)
-i-pCtf illMipf j
+sert.ionp! >
+)jetRcjle()

+k;t-lWvik-jK-0
+sctPrivilcitcO
i-selt is«T('rtUipl!
+|wt< Jsert'iroujiC!
iseilixrjRtikO
+gftl!>eiRi.»k'i)
+set(.rrmipRolc()
+HeK.'rnHjpRol<M>
isellVil-Vntvnxll)
> uelSWoiilv-MUt)

+RctPriK<«rDHt!)()

RBAC
Model

Figure 26: The class diagram of RBAC Component

107

SvMemE<li(ur 1

Configuration UI-D
t onfijti r*Titbit

-.BClMlXldO

1
i
I
I
i
1

CoDngurcAtlribulv.Mnnagtr

/ "
HartfwareTabl?

-ut-lMcKfelO
-popDialojjO
— , — _ i _ v _ j

, ,

r _ _ _ i _ x _ _ _ _ _ _
DeploymentTabic

-updateO

SjweroObject

±
C'OJtfigurstlioiiObjttt

> j W ' l l . l t d w j I t ' V I

< sc'Sl riK.iif.11
'ys"Dr|i!ii\"H- n)

Configuration
i Model

Hanlmtrt 'Objw.l

cell KirJw.iTf .\:',ribn;ew I

Figure 27: The class diagram of Configuration Component

* ConfigureTable: It provides interfaces to add and delete a ConfigurationOb-

ject.

* ConfigureAttributesManager: It defines a pop-up dialog to manage the

properties of a ConfigurationObject. As is shown in the diagram, it is com­

posed of two sub-interfaces.

- Configuration Model: It manages the data in Configuration interface.

* Configuration Model: It is the model for ConfigureTable. It includes one

to many hardware components.

* HardwareModel: It is the model for HardwareTable.

TADLSourceEditorPanel: Figure 28 represents the class diagram for the Source

108

Source Editor
UI-D SourceEditPane

•tgetViewO
+se(Sys1em()

Source
Editor
Model

R
1 xstream

11

+

ty'sremOhftct

-i.s!m'i«lkl;it*0
-RCtSv">n.*mh k*nstitt\{ ,i
-addSj-stcralilcmcnts I'n I'ADLSouri'd)

ItemWrrttr

+gctSysicmKicmmti)
+u<Jd%*temblaneni I'o XM1-0
1 save!)

SystemEditorPanet

Figure 28: The class diagram of Source Editor component

109

Editor Panel.

- Source Editor UI-Delegate: It is responsible for managing the outlook and the

events of source editor component. It displays the generated TADL of system

model, and also generates an external XML file which is conform with the pre­

defined XML Schema.

* SourceEditPane: This class contains the following methods: (i) getView()

- to return the source view to system editor; (ii) setSystem() - to show the

translated TADL in source editor panel.

- Source Editor Model: It is responsible for managing the data of Source Editor

component.

* SystemObject: The structure of System Object has been mentioned earlier

in this chapter. It contains the following methods: (i) islnvalidate() - to

check the whether system satisfies with the validation rules, if not, error

messages will show in the Error Message Panel; (ii) getSystemElements()

- to return every system element in the system; (iii) addSystemElementsTo-

TADLSource() - to add every system element to TADL file.

* Item Writer: The methods are: (i) getSystemElement() - to return every sys­

tem element in the system; (ii) addSystemElementToXML() - to translate

every system element to XML element, which is conform with the prede­

fined XML Schema, (iii) save() to output the XML file. Here we used

an online open source 'dom4j-1.6.1'is reused [Sou08] to create an XML

110

document.

5.2.4 Properties Component

t-uKRolel'iripcniesi i

••sctRiilePrmpertiesi

+-petC(>mptHiirnlProptrtics()
••sctt'trnipaiKntPnopeiticsO

Conn««Nirl(fm

1.1 t i MM <C\V f ! n | 1H.I U"M I

•.Crf l l l l ' l . ' ' II P lup tT CM I

•u

xzs
Hcin

Kh-
Imtrfoceltem

-et'ttriwrfiu'vPfufwrti^sfi
-M; I I inert nee Properties! I

SyMcmObjcct

Figure 29: The class diagram of properties component

Figure 29 represents the high level class diagram for the properties view.

Component Properties Panel Component: Figure 30 represents the class diagram

111

for the component properties panel. It is composed of the several sub panels to man­

age the properties of a component item. The model of Component Properties Panel is

Componentltem. A Componentltem includes multiple ContractObjects. ContractO-

bject is a shared data between Trustworthy Contract interface and component prop­

erties interface, but only the Componentltem has setContractObject() method, which

means that the contract can only be modified in the component properties panel.

• Component Contract Panel Component: Figure 31 represents the class diagram for

the component contract properties. The UI-D contains ContractTable to manage the

look and events of contract panel. Whenever there is a change in the ContractObject,

ContractTable will send a notification to every TrustWorthyObject listener.

- ContractTable contains a ContractServiceTable/ContractSafetyTable to manage

the look and events of service/safety property panel in a contract. The cor­

responding model of ContractServiceTable/ContractSafetyTable is ServiceOb-

ject/SafetyObject. ServiceObject/SafetyObject is a shared data between Trust­

worthy Service/Safety interface and component contract properties interface,

but only the Component Contract has setServices()/setSafeties() method, which

means that the services/safeties can only be modified in component contract

properties panel. The same for DataConstraintObject and RealTimeObject.

• Interface Properties Panel: Figure 32 represents the class diagram for the interface

properties panel. It is composed of the several sub panels to manage the properties

of an interface item. The model of Interface Properties Panel is Interfaceltem. An

112

Component Property UI-D
I PrufHTtkiPanc 11

1

I 'wrTftWt I ICiNnpuMnlPropertirtPiincl

Namtl'ani' i

lCl}ll^r3K•t^atlk,

I

T ^ ~
4—-X-

' I

4.'

AltribuK'Tabk'

I ICanstrslntTsM?
i

Arrhitceturir'TaWi?

i
CvniractObJvet

Ifwi

1
i
I
t
I
i
l

1 11.

d

i
t IJIIUMHKCHilinl

»ijcrt.sCT<)h}cctO

+scrC 'rmtraeK Itojfclf)
+gcrt'.'iinsrraintsO
+setC.'m»itramis(i

+setNatiw< >
+^c;AttribiitcA()
+selAllTibuteM)
* setAirlntcturts i
i jjet ArvUilecluresH)

IT
0

i

1
ArirhhvtiurrOtojctf
I

Component
Property
Model

Figure 30: The class diagram of component properties

113

jC'ompiHH'ni Proper* tatPnnvl

Trim Wort hyOt»j«i l..l« ner

C imtrnil Table

•HvkK mi'rjca I
<de:Co»lT.uH)
'pupDi.ik'Ll i
•njvlatAl

Component Contract UI-D
CaRmKt Attribute Manager

•inliJS-it'mt)
-A-ISiifcrvi)
piipDiitloa i
sptfaid)

- :idk.1Sei * k?t i
~vW Services)
-pnpLhaUigl)
upd-iiM)

~7¥T

Sfcn if f DataC onsTnbl e

FnistWrtrtlij Object

-trctt •|iniTUi:ts(I

(omjinnenttteni

-sciC 'iMrtractsi)

gc'CoiimicM)

C ONE rs*tObj«r

I v> "Net >. k 11 I

TM"S!ini i s i

Component
, Contract;

— — — — > - * — — • » i Safety-Object

-NftV^'t . 'PfnlV tlvNl

Model

OalaC onstraiRtObjcc*

I
!l..«

V»n icvObjrct

I- l l'lS,ltl."IC'»l>1M|\'ltl.'M) -in ^

iMlTiracObjii'l

Figure 31: The class diagram of component contract properties

114

Interfaceltem includes multiple EventObjects. Figure 33 represents the class diagram

for the event properties panel.

Item

Kr-

NaniePaiwI Interface
Property
UI-D

InterfaeePraptTtit'sPand

i
i
i
i
i
i

AltributeTstWt'

"T fT

ProtOcotPaavi

Interfaceltem

•lijrtNainrt 1

•s*>(1iHtNlx-<r Typei)
+ject Artrihiitesi)
+-scsAttributes|)
i gdServieei< }
+gnnPri.'iox;ol(I
+sctPn«ocnl()

ScrvicsOhject

Interface
Property
Model

Figure 32: The class diagram of interface properties

Connector/Connector Role Properties Panel: Figure 34 represents the class diagram

for the connector/connector role properties panel. It is composed of the several sub

panels to manage the properties of a connector/connector role item. The model of

Connector/Connector Role Panel is Connectorltem/Roleltem.

115

II nWrfaee Table

Event
Property
UI-D '

ParameterTafrk' 1 1 1

r* 1

TypeT«We

_ ^ * 1] _
F-ventTah|c

/ * \ S[\ •"

1

NamvPanet

A I
V '

1

i | - ^

i i
I 1

I tmstrainlTable I

\ftrit>HH-l'ahlc

f

P a n u n c t e r O b j c c l

+gi-TDsit;iTvpt'(i - Stnnjt

•^KetPuramenrrNnrndi: Strini?

i jjc!Pardirw(erTyjw< t ' Sir ing

• t -gf iValurt) Su ing

+sctDa!aTypcO

+sctF!iramctCT.\amrt i

+s«i ,a™meter ' l 'ypc()

(sttV'a.lue<)

fi..» i

I

EvenfObjee i

cclS.i::wt I Vnn; . ;

t;t-Tp* 1 . i i iKts-i i S' nig

•jM.'tT\pct 1 STil'V.

-tv't\'.«llll.-l)

- •»:-. 1 ^ pc\ I

uclC.in.Mr.tmSil

-•xft tdt iMt. ini ls l I

-•vil \:»nhuiesi i

Event
Property
Model

!l * 1

__________^

InliTfaccltem

Figure 33: The class diagram of event properties

116

Propcrlk'sPanct

-0T*-

-4- I
CanncCtor/KiJkPrupertit'Spailrf

NaniePand Connector/Role
Property ui-D

^
i onstralwt fable

AtlribuieTabk

= = = ± = =
Cow nrctorv'Rofe ftv-m

111 S.i IVI i
—»' \amci i

ct\ I \ r v '

vf' *r ihll't'M I
- ictt iWNr'Hinn i

<•!(.msl-JI.UI I

Item

Connector/Role
Property
Model

Figure 34: The class diagram of connector/connector role properties

5.2.5 ErrorMessagePanel

Figure 35 represents the class diagram for the ErrorMessagePanel. It detects every oper­

ation in the MainFrame of the VMT. If any operation violates the rules, an error message

will show in this Panel.

5.2.6 MainMenuBar

Figure 78 represents the class diagram for the Menubar.

• MainMenuBar: is responsible for building the Menubar for the GUI window. It

contains at least three menu items: DelButton to delete system elements from system

canvas; SaveButton to save a system to an external XML file; NewButton to create a

117

MafnFranie

I
ErrurMmilgef'SBt'

Figure 35: The class diagram of ErrorMessagePanel component

<

1

1

•

Mainframe

MninMcn u Bur

wurveManaaer

i itiHMemU (

IMBut iun

+ddObjecM "i

S t i f f mCaovite

MenuBar

SavcBttdon

* saw! H X M U i

__.L

I

!

W
1 1

!

N i « Button

-+• ncvtf< HbijccEt 1

S>acmEdirorl*aiiicl

Figure 36: The class diagram of MainMenuBar component

118

new project or a new system.

5.2.7 MainToolBar

*

I

1

*
MaiiiFram*

A

Main T«ol Bar

-rm : ResmnveM^naucr

' htilMenuO

IMUiiHnn

+tfe!t')bicct| t

J
j

$)stemCanviis

l oo IBar

Snvi'fhitton 1

+-savcinXMl.l 1 1

Nt'wBuiion

+ncwt')bi&,'tf 1

1

1

I

W
J 1

i
Sysl^mEdiftirPand

Figure 37: The class diagram of MainToolBar component

Figure 77 represents the class diagram for the Toolbar.

• MainToolBar: is responsible for building the Toolbar for the GUI window. ToolBar

just provides a shortcut icon for the most frequently used methods in the MenuBar.

So the class diagrams of ToolBar and MenuBar are very similar.

5.3 Development Platform

The VMT is implemented using Java Swing Component. The development environment

used to develop the VMT is Eclipse3.3(JDK 1.5).

119

Swing is a very sophisticated component-based framework to develop rich graphical user

interfaces (GUIs) in Java applications. Swing Library has a separately downloadable ver­

sion for JDK 1.1, and it is included as part of Java2(JDK1.2 and up).

The advantages of Java Swing that motivates the selection of it are [Fow99]:

1. Pluggable look and feel. The interface can have a cross-platform Java Look and Feel

so the program looks consistent on all platforms (For example, Windows, Unix, and

etc). The interface can also change dynamically on different platforms. We choose

the later to implement the VMT. This makes the most sense, because VMT will look

like the other programs in the system.

2. Separate model and view architecture. We mentioned the advantages of this archi­

tecture in Section 5.1.1

We reused the following online open sources while implementing the VMT. These open

sources helped to save a lot of developing time.

1. XStreaml .3 [Xst08]: As mentioned earlier, XStream is referenced to serialize objects

to XML and transform them back again.

2. dom4j-1.6.1 [Sou08]: As mentioned earlier, dom4j is used to create an XML file

from scratch.

3. JTableView [Sou07] by SOURCEFORGE.NET: to manage the table views in the

VMT.

120

http://SOURCEFORGE.NET

Chapter 6

Modeling a Trustworthy System using

VMT

This chapter provides the snapshots of the VMT GUI, followed by an explanation according

to how to use the tool. The order of the screenshots follows the sequence of functional

requirements mentioned in Section 4.4.

6.1 GUI Overview

Figure 38 illustrates the organization of the VMT user interface. The framework is com­

posed of seven major interfaces as illustrated in Chapter 4.

6.2 Navigator - refer to Section 4.4.1

Figure 39 is the Navigator Panel on the top left corner of the VMT window. It displays a

directory tree of the file where the VMT is installed. The directory tree can be folded by

pressing the button on the top of the Navigator Panel.

121

File Edit: 'MenuBar
Toolbar

VE: \p ronrammina \v tm2008 -10 -Z8 \ . \ l : e •HPiSI!

E •.\programmtng\vtm; ®

test
v:

**' 11. system ft

%
•*• system2.syst§§

1 Navigator 1

Properties

r ropertiesj
iew

System Editor

.Sensor.

tsr - e a - • •

CnnSensor
CnnOperation

g cdatrcflfar "- 3

Real-time j TADl 5ource Visual View j Trustworthy! Configurationj

Message

Error Message View

^lElJZl

JBIM.

j . ; Select

Simple £

i H Component

Connector

B | Interface

Rote

Composite ft

ffi Package 1

{ { } Pactoge2

Palette

^r1!

Figure 38: VMT Overview

122

file://�./programmtng/vtm

E: \programrning\vtm200811
src

+) trustworthy
+ systerneditor
,+ support
,+ sbrunner
•+ • realtime
i+ properties
+ palette
+ navigator

>+" gui

>+> configure

V l system 1, system
* ! system2.system

Figure 39: Snapshot of Navigator Panel

123

file:///programrning/vtm2008

• Use Case: Manage Project

1. To create a new TADL project: Select a directory in the Navigator panel, and

then press the New button from the Toolbar or select 'File-New' from the

Menubar. From the pop up window, choose 'Project' and input the new project's

name to create a new TADL project, as illustrated in Figure 40. After a project

is created, a file node with the project name will be added to the Navigator

panel. An external file with the project name as its file name, will be created

in the selected directory. If no directory is selected for the project, an error

message will show in the Error Message Interface, as in Figure 41

EK^HHHHi-- .xj

Parent |F!\programming\vtmll-17

Object project

N a m e [s y s t e m ^ ^ ^ ^ ^ ^ ^

OK

Y 1

Cancel

Figure 40: Snapshot to create a new project/system

Message - • -

11/18/2008 19;23;22 Information; Please select a node in Navigator tree first!
11/18/2008 19:19:26 Information! Please select a node in Navigator tree first!

Figure 41: Snapshot of creating project/system errors

2. To open an existing TADL project: Double click the project name in the Navi­

gator Panel. The project tree will be expanded, with the tree nodes to represent

124

the system in the current project.

3. To save a project, simply press the Save button from the Toolbar.

• Use Case: Manage System

1. To create a TADL system: Select a project node in the tree, and press the New

button from the Toolbar or select 'File-New' from the Menubar. From the

pop up window as illustrated in Figure 40, choose 'System' and input the new

system's name to create a new TADL system. After a system is created, a

system node will be added to the corresponding project tree. If no project is

selected to create a system, an error message will show in the Error Message

Interface, as illustrated in Figure 41

2. To open an existing TADL system: Double click the system node in the Navi­

gator tree, and the five views of the system (real-time view, TADL source View,

visual view, trustworthy view and Configuration View) will be open simultane­

ously in System Editor.

3. To delete an existing TADL system: Select a system node in the tree, and press

the Delete button from the Toolbar. After a system is deleted, the system node

to represent this system will be deleted from the project tree, along with the

XML document.

4. To save a system: Simply press the Save button from the Toolbar. An external

XML file of the system is generated using the predefined XML schema which

has been discussed in Chapter 3.

125

6.3 Palette - refer to Section 4.4.2

Figure 42 is the Palette on the top right corner of the VMT window. It is composed of three

parts: (1) Select item: This allows a developer to select an element in the system canvas.

(2) Simple Palette items: This provides a developer the visuals to create simple system

element. (3) Composite Palette items: This provides a developer the visuals to create a

composite system element. We will discuss how to use the Palette later in Section 6.4.1.

==Palette==

»•-• -*
.- Select [

Simple H I

• • Component

Connector

• Interface

Role

Composite A

•($•[• Package 1

•fjj Package2

Figure 42: Snapshot of Palette

6.4 System Editor - refer to Section 4.4.3

System Editor lies in the center of the VMT window. It is composed of five views of

a system. When a user opens a TADL system from the navigator view, the five views of

System Editor will be open simultaneously; and when a user closes a system, the five views

of System Editor will be closed simultaneously:

126

6.4.1 System Canvas

The left part of Figure 43 is the System canvas, and the right part is Palette. System canvas

and Palette are closely related. The diagram in System canvas is constructed by selecting

and displaying the elements from Palette.

V E:\programming\vtm2O08i I03\ . \ testProjert h^i ,.

Connector 1 Connector2

Component? CoinponontO'. |L-"Confoonenti:

==Palette—=

:: Select

Simple a

H Component

Connector

• Interface

Role

Composite %

r£t Package 1

{£$ Package2

Real-time | TADL Source i Vjsual View jj.Jfu^WQ||^[^J..fiig!J^|^^Jgj!|.j

Figure 43: Snapshot of System Canvas

Use Case: Manage System Element

1. To create a component/interface/connector/connector role: Select the corre­

sponding item in Palette, and drop the mouse in System Canvas. A pop-up

window in Figure 44 will show. Fill in the name attribute for the element, and

press OK button to finish creating an element.

127

file://E:/programming/vtm2O08i

• x J !

f Please set the name attribute!

~^f 1

OK | Cancel

Figure 44: Snapshot to create a new element

2. To save a component/interface/connector/connector role: Press the 'save' but­

ton from Toolbar, or select 'File-Save' from Menubar. If a connector role is not

connected to any interfaces, an error massage should report at this time, as in

Figure 45.

Message

\ \ J l Connector(Connector2) error, no interface attached with role(Connector2Role3)!

| OK I

Figure 45: Snapshot for a connector error

3. To delete a component/interface/connector/connector role: Select the element

to delete in System Canvas, and press the Delete button from Toolbar. The

diagram of the deleted element will be removed from system canvas.

4. To select an element in system canvas: Press Select button in Palette, then a

developer will be able to select any element in the system canvas.

5. To move a selected element within system canvas: Hold left mouse button, drag

the mouse, and release the mouse at the target position.

128

6. To attach an interface to a specified component": Select the interface, and re­

lease the mouse over an existing component in system canvas. An interface

must be attached to an existing component. Otherwise, a warning window will

show as illustrated in Figure 46.

Message

1 J Please select a component to create interface

OK

Figure 46: Snapshot for an interface error

7. To attach a connector role to a connector: Each connector contains two roles

in default. To attach more roles to a connector, select the role item from Palette,

and release the mouse over an existing connector diagram in system canvas. A

role must be attached to an existing connector. Otherwise, a warning window

will show as illustrated in Figure 47.

Message

J . J Please select a connector to create role

OK

Figure 47: Snapshot for a role error

8. To attach a connector role to an interface of a component: Select the connec­

tor role, hold left mouse button, drag the mouse, and release the mouse over the

129

destination interface.

6.4.2 Realtime View

• Usecase: Manage real-time properties Figure 48 shows the real-time interface.

Double click the selected real-time name, a pop-up window will show to allow de­

velopers to view and manage the properties of real-time properties.

1 ^ C:\Documents and SettingsWun Zhou\workspace\myvmt\.\testttest.system

ServiceName

TirneConsl

1
1 Realtime

.-.:..,:-„,;,-BesBonse Event
!' Name \\ Attribute

TimeConstraintType

Max Safe Time
Request Event

TimeConstraintType jTimeConsl

OK Cancel

Real-time i TADL Source Visual View, Trustworthy j Configuration:

Figure 48: Snapshot of Real-Time Panel

6.4.3 Trustworthy View:

This sections covers the five use cases discussed in Section 4.4.3 Table 4.

• Usecase: Manage Data Constraint/Service/Safety Property/Contract Figure 49,

130

file://C:/Documents

Figure 50, Figure 51, and Figure 52 respectively illustrate the window of managing

the properties of data constraint, service, safety property and contract. Double click

on the selected row, and a pop-up window will show to allow users to view and man­

age the properties of a data constraint/service/safety property/trustworthy contract.

1# C:\Documerrts and SettingsWun Zhou\workspace\myvmt\.\test\test.system

DataConstraints Service SaftyProperty Contract: RBAC

ServiceName

Reayest Event , Response Event Constraint
Name Attribute

Data Constraint Type DataConsl

OK Cancel

Real-time TADL Source ; Visual View Trustworthy Configuration j

Figure 49: Snapshot of Data Constraint Panel

• Usecase: Manage RBAC Figure 53 illustrates the interface to manage the security

mechanisms of a design.

1. To manage the properties of RBAC: Figure 54, Figure 55, Figure 56, and

Figure 57 respectively illustrate the window of managing user, group, role and

privilege of a design.

- To create a User/Group/Role/Privilege in RBAC: Press the 'Add' button

on the bottom right corner of RBAC window. A pop up window will show

131

file://C:/Documerrts

H C:\Documents and SettingsWun Zhou\workspace\vmt3\.\test\system2.sys... (LT](6JI

DataConstraints Service 5aftyProperty Contract RBAC

ContractName 1 Service

Contract!

•0 J C l V l L f i

Update Statement

.Data Constraint

Action

Time Constraint
Name Attribute Request Event Response Event

Service Type

OK Cancel

Real-time TADL Source ',', Visual View ; Trustworthy ; Configuration

Figure 50: Snapshot of Service Panel

1# C:\Documents and SettingsWun Zhou\workspace\vmt3V\test\system2.sys... i f H J
DataConstraints Service, SaftyProperty Contract RBAC

ContractName

'Contract t

SaftyProperty

SaretyPropertyl

% SaftyProperty [

Name Attribute Event Constraint

Safty Property Type •

OK

R)

Cancel

Real-time '• TADL Source Visual View ; Trustworthy • Configuration i

Figure 51: Snapshot of Safety Property Panel

132

file://C:/Documents
file://C:/Documents

V C:\Documents and SettingsVYun Zhou\workspace\vmt_latest\ . \ test\system.. . pJT"]fB]

DataConstraints '. Service . SaftyProperty Contract RBAC!

ComponentlName I

ComponentO
Contract

contract!

8 „ Contract

1 Name j Service :-:- SaftyProperty'.

Contract ;

1 OK | Cancel 1

Real-time | TADL Source Visual View ; Trustworthy ', Configuration

Figure 52: Snapshot of Contract Panel

1§* C: \Documents and Se t t i ngsWun Zhau \w0rkspace \vmt2 \A tes t \ tes t . sys tem K.w

DataConstraints Service SaftyProperty Contract | RBAC !

User

Group

Role

Privilege

User-group

User-role

Group-role

Privileges for event

Privileges for data parameter :

User

Add Del

Real-time TADL Source Visual View il Trustworthy i 1 Configuration

Figure 53: Snapshot for RBAC definition

133

file://C:/Documents
file://C:/Documents

1 * C:\Documents and SettingsWun Zhou\workspace\vmt2\.\test\test.system 1 ;

DataConstraints Service SaftyProperty Contract RBAC •

User

Group

Role

Privilege

User-group

User-role

Group-role

Privileges for event

Privileges for data parameter

User

Real-time TADL Source : Visual View ; Trustworthy Configuration

•* User J

! Name |' Attribute Constraint

User juserl
\

OK

Wj

Cancel

Add Del

Figure 54: Snapshot of managing RBAC - user definition

*|# C:\Documents and SettingsWun Z ho u\workspace\vmt2\.\test\test. system E,

». Group

DataConstraints g Service jj SaftyProperty ij Contract j RBAC j

^ User

Group

Role

Privilege

User-group

User-role

Group-role

Privileges for event

Privileges for data parameter

Name Attribute Constraint

Group Type : group 1

Real-time : TADL Source '! Visual View l Trustworthy] Configuration i

OK Cancel

Add Del

Figure 55: Snapshot of managing RBAC - group definition

134

file://C:/Documents
file://C:/Documents

1# C:\Documents and SettingsWun Zhou\work5pace\¥mt2\.\test\test,system I T i f

DataConstraints :; Service j SaftyProperty ; Contract j RBAC

User

Group

Role

Privilege

User-group

User-role

Group-role

Privileges for event

Privileges for data parameter

* „ Role [

iNamei Attribute Constraint

RoleType irolel

OK Cancel

Add

i

i
i

] Del

Real-time:! TADL Source Visual View j Trustworthy ! Configuration

Figure 56: Snapshot of managing RBAC - role definition

*fy C:Documents and SettingsWun ZhoulworkspaceWmt21.\test\test.system

DataConstraints i: Service SaftyProperty ': Contract; RBAC \

User PrivilegeType

Group

Role

Privilege

User-group

User-role

Group-role

Privileges for event

Privileges for data parameter

Add Del

i l l

% Privilege fX]

iNamei Attribute Constraint

PrivilegeType privil

OK Cancel

Real-time TADL Source Visual View ' Trustworthy • Configuration

Figure 57: Snapshot of managing RBAC - privilege definition

135

file://C:/Documents
file:///test/test

to allow developers to fill in the properties. After a User/Group/Role/Privilege

is created, its name will appear in the corresponding window.

- To modify a User/Group/Role/Privilege in RBAC: Double click on the

name. A pop up window will show to allow developers to change the

properties of a User/Group/Role/Privilege.

- To save a User/Group/Role/Privilege and its properties: Click 'OK' but­

ton in the pop-up window to save changes, and 'Cancel' button to undo

changes.

- To delete a User/Group/Role/Privilege from RBAC: Select the name of

User/Group/Role/Privilege, and press 'Del' button on the bottom right cor­

ner of the RBAC window. The name of the User/Group/Role/Privilege will

be removed from the corresponding window.

- Figure 58 illustrates the interface to manage the relationship between a user

and a group.

- Figure 59 illustrates the interface to manage the relationship between a user

and a role.

- Figure 60 illustrates the interface to manage the relationship between a

group and a role.

- Figure 61 illustrates the interface to manage the relationship between a

privilege of service and a role.

- Figure 62 illustrates the interface to manage the relationship between a

136

V C:\Documents and Setting^Wun I ho irtworkspace\vmt2i\test\test. system „ i

DataConstraints; Service SaftyProperty Contract j RBAC

User User

Group

Role

Privilege

User-group

User-role

Group-role

Privileges for event

Privileges for data parameter

Group

I Add Del

Real-time ', TADL Source Visual View! Trustworthy \ Configuration i

Figure 58: Snapshot for assigning a user to a group

137

file://C:/Documents

C:Documents and Setting^Wun Zhou\workspace\¥mt2t\test\test.system t ~ f w %

DataConstraints Service SaftyProperty \ Contract \ RBAC ;

User

Group

Role

Privilege

User-group

User-role

Group-role

Privileges for event

Privileges for data parameter

User | RoleType
\

i

Role

Add Del

Real-time TADL Source Visual View Trustworthy Configuration j

Figure 59: Snapshot for assigning a user to a role

138

*# C:\Documents and SettingsWun Zhou\workspace\vmt2i\test\test.system «, Q X

DataConstraints , Service SaftyProperty Contract RBAC >

User

Group

Role

Privilege

User-group

User-role

Group-role

Privileges for event

Privileges for data parameter

Group

—

RoleType

-

Role

Real-time TADL Source Visual View] Trustworthy] Configuration;

| Add 1 [De l

Figure 60: Snapshot for assigning a group to a role

139

file://C:/Documents

W Cdocuments and SettingsWun Zhou\workspace\vmt2\.\test\test.system ^ T

DataConstraints Service j; SaftyProperty Contract \ RBAC ;

Previ... ! Privil... I Role.. User

Group

Role

Privilege

User-group

User-role

Group-role

Privileges for event

Privileges for data parameter

Role Even., Event

Add Del

Real-time TADL Source: Visual View Trustworthy Configuration •

Figure 61: Snapshot for assigning privilege of events to a role

140

privilege of data parameter and a role.

C:M)ocuments and SettingsWun Zhou\workspace\vmt2\.\test\test.system . | II
DataConstraints Service SaFtyProperty Contract RBAC;

User

Group

Role

Privilege

User-group

User-role

Group-role

Privileges for event

Privileges for data parameter

Previ... Privil... ! Role... Role Data- Data... I

i
i

Add Del

Real-time TADL Source Visual View Trustworthy Configuration

Figure 62: Snapshot for assigning privilege of data parameters to a role

6.4.4 Configuration View:

• Use Case: Manage Hardware Component Figure 63 shows the window to manage

hardware component.

1. To add a hardware component of a system: Press the 'Add' button on the bot­

tom right corner of hardware component tab. A pop up window will show to

allow developers to fill in the properties of a hardware component.

2. To modify a hardware component: Double click on the name of the hardware

141

%* E:\programming\vtm11 -17\.\test\try.system

Hardware Component ; Deployment

% Hardware

Name

Name Attribute • Constraint ^Interface;

Hardware Component Type

SHI i

OK Cancel

Real-time TADL. Source Visual View | Trustworthy j Configuration

BB3

Add Del

Figure 63: Snapshot for System Hardware Component definition

142

file://E:/programming/vtm1

component. A pop up window will show to allow developers to change the

properties.

3. To save a hardware component and its properties: Click 'OK' button in the

pop-up window to save changes, and 'Cancel' button to undo changes. Af­

ter the changes are saved, the name of the hardware component will appear in

the hardware window.

4. To delete a hardware component: Select the name of the hardware component,

and press 'Del' button on the bottom right corner of the hardware component.

• Use Case: Manage Deployment Figure 64 shows the window to manage the de­

ployment of a design.

*W E:\programming\vtm11 -17\.\test\try. system BiSE
Hardware Component Deployment

ComponentType j Component I HardwareCompon...] HardwareCompon...

Add Del

Real-time TADL Source " Visual View Trustworthy j Configuration '

Figure 64: Snapshot for System Configuration definition

1. To add a deployment to a system: Press the 'Add' button on the bottom right

corner of deployment tab. Fill in the properties in the new table.

143

file://E:/programming/vtm1

2. To modify a deployment of a system: Double click the table cell to modify it.

3. To save a deployment: Press the Save button from Toolbar or select 'File-

Save' from the Menubar.

4. To delete a deployment from a system: Select the row that is to be deleted, and

then press 'Del' button on the bottom right corner of the deployment tab. The

name of the deleted deployment will be removed from the deployment window

6.4.5 TADL Source View:

Figure 65 is the window to show the translated TADL Source of a design. It is updated

dynamically when there is a change in the VMT Whenever a save button is pressed, the

external XML file is changed accordingly, and the TADL source interface is updated.

6.5 Properties Editor View - refer to Section 4.4.4

This section covers the usecases which are discussed in Section 4.4.4.

6.5.1 Component Properties Editor:

If a developer select a component in System Canvas, the Properties Editor window will be

updated automatically to show the properties of the selected component.

• Usecase: Manage Component Properties. Figure 66, and Figure 67 respectively

shows the window of managing the contract, and architecture properties of a compo­

nent.

144

V F:\programni ing\vlm2008-11 - 10VA1 •' y * ' «•»>

Source

InterFaceType {
}
ConnectorRoleType {

InterFace5;
}
ConnectorRoleType {

Interf ace6;
}
ConnectorType {

Connector2Role3;
Connector 2Role4;

}
Component Type {

Interface5;
}
ComponentType {

Interface6;
>
ComponentType 5ystem{

Architecture architecture;
}
ArchitectureType Architecture-!

Component";
Component 1;
Connector2;
Attachment(.Connector 2Role3. Interf ace5,. Interfaces);
Attachment .Connector 2Role4. Interf ace6,. Interf ace6);

}

HI

d:
Real-time TADL Source j Visual View [Trustworthy j Configuration]

Figure 65: Snapshot for TADL Source Panel

Properties

Name

User

• „ Contract

Attribute

Architecture

Contract

Constraint.,
Contract

licontractl

Add

Save

Del
• -

Name Service j: SaftyProperty;

Contract

OK Cancel

Figure 66: Snapshot for managing the properties of a component - contract definition

145

file://F:/programniing/vlm2008-

Name
User

Attribute ...
Architecture

Constraint
Contract

Architecture!... Architecture

Al 3l

Add Del Open

Update

Architecture a1 aa
-==Palette=

• Select

CumponeS
simple

Component

Connector

Interface

vCompotientl
i ~- j

Role

Composite

•Ej} Package 1

{ j } Package2

Figure 67: Snapshot for managing the properties of a component - architecture definition

• Usecase: Manage Component Properties - Manage Contract Figure 66, Figure 68,

Figure 69 respectively shows the window to edit the name, service and safety prop­

erty of a contract.

• Usecase: Manage Contract - Manage Safety Property Figure 70 shows the window

to edit the name, attribute, event and constrains of a safety property.

• Usecase: Manage Contract - Manage Service Figure 71 shows the window to edit

the name, attribute, request event, response event, data constraint, time constraint and

update statements of a service.

• Usecase: Manage Service - Manage Real-time Properties Figure 72 shows the

window to edit the properties of a time constraint, including the name, attribute,

request event, response event and maximum safe time.

146

* # Contract

Name; Service ! SaftyProperty;

Service

Service i
5ervice2

._
Add

OK

Del

Cancel

Figure 68: Snapshot for contract definition - service definition

* , Contract [

Name Service i SaftyProperty ;

SaftyProperty

Saf ety Property 1

i

Add

— — • — —
OK

,

1

Del

Cancel

Figure 69: Snapshot for contract definition - safety property definition

147

Safty Property

Name|i Attribute Event Constraint

Safty Property Type ;Safety Property 1

OK Cancel

Figure 70: Snapshot for safety property definition

Service

Update Statement Action
Data Constraint Time Constraint

Name ; Attribute Request Event Response Event

Service Type Service 1

OK Cancel

Figure 71: Snapshot for service definition

148

' „ Realtime

Response Event
Name Attribute

Max Safe Time
Request Event

Time Constraint Type

OK Cancel

Figure 72: Snapshot for real-time definition

• Usecase: Manage Service - Manage Data Constraints Figure 73 shows the window

to edit the data constraint properties, including the name, attribute, request event,

response event and constraint properties.

6.5.2 Interface Attributes Editor:

If a developer selects an interface in System Canvas, the Attributes Editor window will

update to show the properties of the selected interface.

• Usecase: Manage Interface Properties Figure 74 shows the window of managing

the event attribute of an interface.

149

* * DataConstraint !k)
: Reauest Event Response Event Constraint

Name Attribute

Data Constraint Type :D1 [|

0 K Cancel

Figure 73: Snapshot for data constraint definition

Ptuperties

Name j Attribute J Protocol Event

.<-*»•-• • v-* I

Type Name

Add Del

Update

:-A-
«null 111 |

Name J Type | Attribute | Parameter | Constraint j

| Event Type

Evert Name

,'>-,< v ' f ~ ? V * '•.. ». " .:"-, • ^ t V u n 1 ,'-,
OK Cancel

Figure 74: Snapshot for managing the properties of an interface - event definition

150

6.5.3 Connector/Connector Role Attributes Editor:

If a developer select a connector/connector role in System Canvas, the Attributes Editor

window will update to show the properties of the selected connector/connector role.

• Usecase: Manage Connector/Connector Role Properties Figure 75 shows the win­

dow of managing the properties of a connector/connector role.

: Name Attribute Constraint

Name | >

I '••

i Type , : 1

| Update I

Figure 75: Snapshot for managing the properties of a connector/connector role - name
definition

6.6 Error Message View:

Figure 76 lies in the right bottom of the VMT window to show errors of the current design.

151

Message

; 11/20/2008 22:35:30 Information: Please select a project node to create new node!
"•• 11/20/2008 22:35:30 Information: Please select a project node to create new node!

11/20/2008 22:35:21 Information: Please select a node in Navigator tree first!
11/20/2008 22:35; 17 Information: Please select a node in Navigator tree first!

Figure 76: Snapshot for Error Message Interface

6.7 Toolbar:

Figure 77 is the window of toolbar. From left to right, the icons are: add, open, save, copy,

paste, and delete.

Figure 77: Snapshot for Toolbar

6.8 Menubar:

Figure 78 is the window of menubar.

File Edit

Figure 78: Snapshot for Menubar

152

Chapter 7

Conclusion and Future Work

The contribution of this thesis is the Visual Modeling Tool (VMT), the front-end for devel­

opers of trustworthy systems using the framework [put here reference to the paper]. The

formalism of the component model is hidden behind the user-friendly interfaces offered

by the VMT. The tool can be used for the entire life-cycle of the development including

design, implementation, and deployment stages.

The tool provides seven essential interfaces.

• Navigator interface Using this interface a developer manages system evolution.

New system or project can be added or existing project can be deleted.

• Palette interface This interface provides visuals for system elements.

• System Editor interface The editor provides the place and editing facilities where

developers can visually construct a system. It is composed of five sub-interfaces,

each projects one system view. These interfaces respectively are System Canvas,

Real-time View, Trustworthy View, System Configuration View, and TADL view.

153

• Properties Editor interface Through this interface the attributes of a system element

are managed.

• Error Message interface This message outputs the errors in the current design.

• MenuBar This is a general GUI component to provide services from drop-down

menus.

• ToolBar This is another general GUI component to provide shortcuts of the fre­

quently used methods in MenuBar.

The tool automatically translates the visual models in System Editor interface to TADL [Moh09],

an architecture description language for trustworthy systems, and to an XML description.

The TADL and XML descriptions are equivalent, because the XML schema is derived

from TADL schema. XML schemas are developed by Ibrahim [Ibr08], and the compiler in

VMT translates the visual models to the XML file. The translator will produce the XML

file only if the visual model is syntactically and semantically correct with respect to their

formal definitions. The XML file is used for formally analyzing the visual models. This is

achieved by generating UPPAAL behavioral models, which are state machine descriptions,

from XML description, and model checking them in UPPAAL [NI081. Another purpose of

translating the visual model to XML is that the translated XML can be exported to other

platforms for verification.

The tool has been tested with two case studies, CoCoME and Mine drainage, discussed in

[NI08]. For these case studies, the XML and TADL files produced by VMT are identical.

A detailed description of the two case studies is not presented here, mainly because it is

154

purely an experimental work done following the step by step explanation given in Chapter

6.

7.0.1 Future Implementation Work

The design of VMT allows easy extensions to the tool. The two interesting extensions are

(1) constructing a package system element, and (2) building a data warehouse for reusable

artifacts. A package stores a number of related architectural elements. The package system

element, when added, will help to identify related items in the architecture and help reuse.

Each defined system element specification can be stored in a separate file in the repository,

so that the developers can retrieve and reuse the defined trustworthy components from the

repository. Adding the data warehouse with package system element will enhance the reuse

at all stages of system development.

155

Bibliography

[AB01] J.Laprie A.Avizienis and B.Randell. Fundamental concepts of dependabil­

ity. Technical report, University of California, Los Angeles, LAAS-CNRS

Toulouse, France, University of Newcastle upon Tyne, U.K., April 2001.

[AM07a] Vasu Alagar and Mubarak Mohammad. A component model for trustworth real­

time reactive systems development. Theoretical Computer Science, 2007. This

paper is electronically published in Electronic Notes in Theoretical Computer

Science. URL: www.elsevier.nl/locate/entcs.

[AM07b] Vasu Alagar and Mubarak Mohammad. Specification and verification of trust­

worthy component-based real-time reactive systems. Cavtat near Dubrovnik,

Croatia, September 3-4 2007. Six International Workshop on Specification and

Verification of Component-Based Systems (SAVCBS 2007).

[FA99] S.M.Bellovin F.B.Scheneider and A.S.Inouye. Building trustworthy systems:

Lessons from the ptn and internet. IEEE Internet Computing, November-

December 1999.

[Fow99] A. Fowler. A swing architecture overview: The inside story on jfc component

design. URL: http://java.sun.com/products/jfc/tsc/articles/architecture/, 1999.

[Gat02a] Bill Gates. Trustworthy Computing. Microsoft Corporation. URL:

www.microsoft.com, January. 15 2002.

[Gat02b] Bill Gates. Trustworthy Computing. Microsoft Corporation. URL:

www.microsoft.com, Oct. 2002.

[GS061 D. Garlan and B. Schmerl. Architecture-driven modelling and analysis. In Tony

Cant, editor, Conferences in Resarch and Practice in Information Technology,

156

http://www.elsevier.nl/locate/entcs
http://java.sun.com/products/jfc/tsc/articles/architecture/
http://www.microsoft.com
http://www.microsoft.com

volume 69. 11th Australian Workshop on Safety Related Programmable Sys­

tems (SCS'06), Melbourne, 2006.

[Ibr08] Naseem Ibrahim. Transforming architectural descriptions of component-based

systems for formal analysis, master thesis. Technical report, Concordia Univer­

sity, 2008.

[IM02] I.Crnkovic and M.Larsson. Building Reliable Component-Based Software Sys­

tems. Artech House publisher, 2002.

[JO06] J.M.Bruel and I. Ober. Components modeling in uml 2. Studia Univ. Babes-

Bolyai, Informatica, LI(l):79-90, 2006.

[KP88] G. Krasner and S. Pope. A cookbook for using the model-view-controller user

interface paradigm ini smalltalk-80. Journal of Object Oriented Programming,

1:26-49, August/September 1988.

[MA08] Mubarak Mohammad and Vasu Alagar. A framework for the component-based

development of trustwrothy systems. 2008.

[MOB00] D. Coleman M. Ogush and D. Beringer. A template for documenting software

and firmware architectures. Hewlett Packard, 1.3 edition, March 2000.

[Moh09] Mubarak Sami Mohammad. A Formal Component-Based Software Engineering

Approach for Developing Trustworthy Systems. Phd thesis, Concordia Univer-

stiy, Montreal, Canada, 2009.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and comparison

framework for software architecture description languages. IEEE Transactions

on Software Engineering, 26(1), Jan. 2000.

[NI08] V.S. Alagar N. Ibrahim, M. Mohammad, Tadl case studies. Technical Report

ACT-Trust-08-04, Concordia University, November 2008.

[OMG06] OMG. Unified modeling language: Infrastructure and superstructure, version

2.0. Technical Report OMG document formal/05-07-05 and formal/05-07-04,

Object Management Group, March 2006.

157

[Rec05] W3C Recommendation. Xml schema. http://www.w3.org/2001/XMLSchema,

September 2005.

[Sou07] SourceForge.net. tableview. URL: http://sourceforge.net/projects/tableview/,

June 2007.

[Sou08] SourceForge.net. dom4j. URL: http://www.dom4j.org/, October 2008.

[Xst08] Xstream. Xstream. URL: http://xstream.codehaus.org/index.html, Febrary

2008.

158

http://www.w3.org/2001/XMLSchema
http://SourceForge.net
http://sourceforge.net/projects/tableview/
http://SourceForge.net
http://www.dom4j.org/
http://xstream.codehaus.org/index.html

