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ABSTRACT 

A UML Framework for OLAP Conceptual Modeling 

Amani Jamal 

Data warehouses are used by organizations around the world to store huge volumes 

of historical data. Ultimately, the purpose of the warehouse is to allow decision makers 

to assess both the history and, more importantly, the future of the organization. In 

practice, the capacity to make meaningful decisions is further supported through 

the use of Online Analytical Processing (OLAP) applications that provide more 

sophisticated representations of the warehouse data. In order to do this, OLAP 

systems rely on a multidimensional conceptual data model that represents the core 

elements of the data warehouse, as well as the relationships between them. Currently, 

there is no definitive conceptual model for this kind of environment. It is therefore 

quite difficult for data warehouse designers to express the kinds of complex analytical 

requirements which arise in real-world situations. In this thesis, we propose a robust 

and flexible conceptual model that can be used to represent multi-dimensional OLAP 

domains. Specifically, we present a profile extension of the Unified Modeling Language 

(UML) that consists of a set of stereotypes, constraints and tagged values that 

elegantly represent multi-dimensional properties at the conceptual level. We also 

make use of the Object Constraint Language (OCL) to ensure the correctness and 

completeness of the specification, thereby avoiding an arbitrary use of the basic 

components. Furthermore, we demonstrate how the new OLAP profile is utilized 

in MagicDraw, one of the leading UML development tools. The end result is an 

OLAP Modeling Environment (OME) that should significantly reduce development 

time, as well as improving the quality of the analytical interface for the end user. 
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Chapter 1 

Introduction 

Data warehouses are an essential component of data-driven decision support systems 

(DSS) [20] and have become the focal point for decision support in organizations 

today [33]. Moreover, empirical evidence suggests that DSS users can demonstrably 

improve the quality of decision making by successfully implementing an enterprize 

data warehouse [4]. In order to gain business insight from the data stored in data 

warehouses, decision makers typically rely upon sophisticated On-line Analytical Pro­

cessing (OLAP) applications that further process or manipulate the underlying data. 

In fact, for OLAP tools alone, Fernandez-Medina and Piattini estimate the worldwide 

market at 6 billion dollars in 2007, compared with just one billion dollars in 1996 [13]. 

In general, OLAP systems are based upon a multidimensional model that provides 

managers with a business-oriented view of data. These multi-dimensional models 

facilitate data navigation, analysis, and ultimately decision making, often through 

the traversal of dimension or attribute hierarchies. In short, attribute hierarchies 

allows users to assess core organizational metrics at varying levels of granularity. 

Physically, of course, the underlying databases may structure data in any way 

they see fit. For example, multi-dimensional OLAP (MOLAP) tools store data in a 
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proprietary multi-dimensional database system. The multi-dimensional component 

of Oracle 9i Release 2 (formerly known as Express and subsequently referred to as 

Oracle MOLAP) and Hyperion Essbase, are representatives of this category. By 

contrast, Relational OLAP (ROLAP) tools simulate a multi-dimensional model with a 

relational database and are usually based on Kimball's Star or Snowflake schemas [21]. 

Nevertheless, in both cases, the end user need only be interested in the conceptual 

representation of the multi-dimensional data. 

A number of approaches have recently been proposed to provide a more intu­

itive design process for data warehousing and OLAP systems [3, 22, 36, 14, 41]. 

Unfortunately, none of them has been accepted as a standard for either data ware­

houses or OLAP attribute hierarchies. Typically, these proposals try to represent 

multi-dimensional properties at the conceptual level by strongly emphasizing the 

multi-dimensional data structures themselves (i.e. business "facts" and dimensions). 

However, from our point of view, none of them truly considers all the properties of 

multi-dimensional and OLAP systems at the conceptual level. Moreover, the existing 

approaches provide their own graphical notations [42, 15], which force designers to 

become skilled at a new modeling language, with its corresponding multi-dimensional 

and OLAP modeling notation. 

We believe that because the conceptual modeling phase is widely recognized as 

an important step in the design of OLAP systems, the sooner we are able to intro­

duce the main multi-dimensional properties into the project design process, the more 

accurately the implemented database will represent the requirements of the end user. 

Therefore, given the need for a systematic (comprehensible, detailed) OLAP meta 

model, this thesis presents a UML-based framework for representing OLAP domains 
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explicitly defined at the conceptual level. To this end, UML is further enriched with 

concepts relevant to multi-dimensional systems. Specifically, implementation issues 

such as primary keys and data types are ignored, while instead we focus on the graph­

ical representation of the hierarchical elements at the heart of the multi-dimensional 

model. 

1.1 A new UML-based model 

Since the Unified Modeling Language (UML) is a general purpose visual modeling 

paradigm that can be used across all major application domains and implementation 

platforms, we propose its use for multi-dimensional modeling (rather than defining a 

new modeling language). The UML specification defines UML as a graphical language 

for visualizing, specifying, constructing and documenting the artifacts of software-

intensive systems [27]. The UML offers a standard way to write a system's blueprints, 

including conceptual elements such as business processes and system functions, as well 

as concrete components like programming language statements, database schemas, 

and reusable software facilities. UML does this by essentially combining elements 

from the three major 0 0 design methods: Booch's 0 0 Analysis and design [34], 

Rumbaugh's OMT modeling [7], and Jacobson's Objectory [19]. 

UML unifies the methods used around the world and adopted by both industry 

and academia as a standard language for describing software systems. This is reflected 

by the fact that it is currently supported by hundreds of model-driven commercial 

tools, which have been productively used in a great number of development projects. 

Nevertheless, the fact that UML is a general purpose notation can limit its suitability 

in specific domains such as data warehousing and OLAP. With UML 2.0, however, 
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Figure 1.1: OMG organization. 

the underlying semantics have been defined more precisely, and the notation includes 

a new set of diagrams and concepts which are more appropriate for modeling the 

structure of OLAP hierarchies. Moreover, UML 2.0 provides extension mechanisms 

to cover as many domains as possible (e.g., stereotypes, tagged definitions and con­

straints). A consistent set of such extensions is called a UML profile. UML profiles 

are used to model those aspects of systems or applications that are not directly de-

scribable by native UML elements. In fact, the UML profiling mechanism allows the 

precise definition of a Meta Object Facility (MOF) based domain-specific language 

that, in turn, allows the semantics of the basic UML elements to be extended and 

refined. Figure 1.1 shows the classical OMG organization of models with MOF on 

top of the hierarchy and UML at level M2. 

In this thesis, we present an extension to the UML by creating a "customized" 

UML profile. We do so by adding a customization layer, which essentially transforms 

stereotypes into a meta class [37] for the coherent modeling of multi-dimensional do­

mains in general, and OLAP aggregation hierarchies (i.e., the granularity of analysis) 

in particular. This profile is defined by a set of stereotypes, constraints and tagged 



values that represent multi-dimensional and OLAP properties at the conceptual level. 

We further extend the model by grouping the core elements into UML packages. In 

short, a package groups classes into higher level units, thereby creating different lev­

els of abstraction and consequently simplifying and improving the coherency of the 

final model. We note that previous approaches do not consider using packages for 

modeling OLAP hierarchies. 

1.1.1 The Object Constraint Language 

As noted, data warehouses, multi-dimensional databases, and OLAP applications are 

powerful tools for discovering crucial business information in strategic decision-making 

processes. Given the importance of precision and clarity in this context, we further 

make use of the Object Constraint Language (OCL) [28] to specify the constraints 

or restrictions attached to the defined stereotypes. Simply put, OCL is a formal 

language used to describe expressions on UML models. These expressions typically 

specify invariant conditions that must hold for the system being modeled or queried. 

Our extensions therefore make use of OCL for stating "well-formedness" rules, thereby 

allowing us to prevent users from specifying arbitrary — and conceptually incorrect 

— combinations of notational elements. We note that various research proposals 

have previously used OCL in some capacity. However, to our knowledge, OCL has 

not been used for the specification of OLAP hierarchies. 

1.2 A Prototype Implementation 

To ensure the correctness of the proposed conceptual model, we have developed a 

relatively complete implementation of our new UML profile using the MagicDraw 
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case tool. We clearly demonstrate how the elements of the conceptual framework 

can be specified within MagicDraw (though our methods should be applicable to 

any standards-compliant case tool). Our profile provides a common language for 

representing OLAP hierarchies in a flexible and intuitive manner. In total, some 24 

UML stereotypes have been defined, including specializations of two Attribute model 

elements, three Class model elements, one Comment model element, four Association 

model elements, two Association Class model elements, and fifteen Package model 

elements. The OLAP hierarchy extensions are based on the most semantically similar 

construct in the UML meta model. In addition to the tags and constraints that have 

been defined for the new environment, we have also included a set of new icons that 

allow the user to intuitively manipulate the hierarchy packages. 

1.2.1 Domain Specific Language extensions 

Since the UML modeling environment is quite complex, applying stereotypes alone 

does not completely hide low-level UML properties and terminology. Because it 

is difficult to fully restrict the usage of standard UML elements to ensure model 

correctness, we use Magic Draw's Domain Specific Language (DSL) engine to create 

an "OLAP modeling" Environment (OME). In short, use of DSL helps to ensure the 

efficient design of an easily maintained OLAP model by allowing the user to (i) define 

the OLAP Hierarchy meta model, (ii) map this meta model to a UML profile, (iii) 

define customizations for stereotypes, (iv) define OCL-based validation rules and (iv) 

create a custom OLAP diagram. We have also defined a specific graphical notation for 

stereotypes, as permitted by the UML specification. This notation makes the multi­

dimensional schema more concise and readable. Ultimately, the DSL tools allow us to 

create custom diagrams, custom specification dialogs, and custom real-time semantic 
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rules that further extend the power of the OME. 

1.3 Thesis Structure 

The remainder of this thesis is organized as follows. Chapter 2 provides an overview 

of Online Analytical Processing, including a review of the fundamental OLAP oper­

ations and server architectures, as well as UML and OCL. The chapter also presents 

a classification of attribute hierarchies in the real-world. The succeeding chapters 

present the core contributions of the thesis. Chapter 3 explains how we build upon 

UML to define a new OLAP meta model and integrate the proposed elements into a 

cohesive UML profile. The prototype implementation of the model is then fully illus­

trated in Chapter 4. Finally, in Chapter 5, we offer conclusions and briefly describe 

possible future work. 
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Chapter 2 

Background Material 

2.1 Introduction 

Data warehousing and On-line Analytical Processing (OLAP) are two of the most 

significant technologies in the business processing arena. Together, they are used in 

a multitude of industries such as retail sales, telecommunications, financial services 

and real estate [9]. Perhaps the simplest measure of the impact of these technologies 

is their growth in market value over the past decade and a half. The OLAP Report, 

an industry publication that tracks issues and trends in the DW/OLAP context, 

publishes a yearly online review that attempts to approximate the sales volume for 

Business Intelligence products [30]. In fact, the report deals exclusively with OLAP 

tools and software and does not even include general-purpose database applications 

that are often used in data warehouse settings. In any case, as Figure 2.1 demon­

strates, the value of the OLAP market has grown from just 500 million dollars in 

1994 to almost 8 billion in 2008, a 16-fold increase. 

Apart from the rise in sales volume, we note that another core theme in this 

context is the increase in the complexity and sophistication of data warehousing in 

general. Over the years, organizations have come to rely upon a broad mix of older 
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Figure 2.1: Worldwide total OLAP market size, in billions of dollars. 

centralized systems and newer distributed computing models. Moreover, various new 

technologies for data management and access are being provided by an even larger 

number of service providers. Faced with such an environment, contemporary IT 

departments have become increasingly reliant upon computing paradigms like OLAP 

that are able to integrate distributed data sources housing vast amounts of raw data. 

These new tools provide streamlined models and interfaces that allow knowledge 

workers to make intuitive but reliable decisions about both the current state and 

future evolution of their organizations. 

This chapter examines the current trends, technologies, and terminologies at the 

heart of data warehousing and OLAP. Section 2.2 provides an introduction to De­

cision Support Systems, including an overview of data warehousing concepts and 

architectures. OLAP is then discussed in Section 2.3, with reference to the core 
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operations typically found in commercial OLAP products. In Section 2.4, we intro­

duce the multi-dimensional data model that is at the heart of all OLAP applications. 

A classification of real-world dimension hierarchies is provided in some detail. An 

overview of some of the key elements of the Unified Modeling Language and the Ob­

ject Constraint Language — at least as they relate to this thesis — is presented in 

Section 2.5. Finally, Section 5 concludes the chapter with a brief summary. 

2.2 Decision Support Systems 

Decision Support Systems (DSS) are a specific class of enterprize software that sup­

ports business and organizational decision-making activities. From the user's per­

spective, they provide a clean, intuitive interface through which to view organiza­

tional data. Underneath the end-user interface, however, we generally find complex 

hardware/software combinations that support decision making by extracting and ma­

nipulating key information from raw data, documents, XML, text, etc. Below, we 

briefly review the three main DSS models, including OLAP which, of course, is the 

focus of this research program. 

• Information Processing. Here, attention is given to fundamental query­

ing and reporting functions. Information processing systems accept queries — 

whether ad-hoc or pre-defined — and processes data so as to provide the nec­

essary information to decision makers. At this stage, only very simple analysis 

is needed, and consists of operations such as extraction, sorting, and basic ag­

gregation. 

• OLAP. Online Analytical Processing extends the basic capabilities of Infor­

mation Processing systems by permitting one to answer analytical queries of 
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a multi-dimensional or multi-attribute nature. OLAP tools allow users to 

drill into the underlying data warehouse and analyze different dimensions (i.e., 

columns of interest) from a variety of perspectives and logical hierarchies. A 

key OLAP concept is the importance of historical or time-based analysis. In 

other words, users are typically interested in trends or analysis that span broad 

time periods. 

• Data Mining. Here, analysis focuses on relationships or patterns that have not 

previously been identified. Data mining tends to be more of a data driven ap­

proach, in contrast to OLAP, where the user generally initiates and directs the 

process. Typical data mining operations are classification (defining the char­

acteristics of a certain group), association (identifying relationships between 

events), and clustering (identifying groups of items sharing particular charac­

teristics) . 

2.2.1 The Data Warehouse 

The three forms of decision support listed above must of course rely on an underly­

ing physical data management platform. Traditional database systems, often called 

Online Transaction Processing (OLTP) applications, support the daily operational 

needs of an organization, but are not well suited to the requirements of data analy­

sis. In general, the main concern of these systems is to ensure fast access to data in 

the presence of multiple users, which necessitates transaction processing, concurrency 

control, and recovery techniques. Typically, operational data bases store very detailed 

data and are usually highly normalized. In addition, they rarely maintain historical 

or archived data. For these reasons, the operational DBMS may perform poorly if a 

11 



large number of detail records need to be retrieved and summarized rapidly. 

Data warehouses were developed to better respond to the growing demands of 

decision makers who wished to analyze the behavior of an organization as a whole. 

In practice, a data warehouse is a physically distinct corporate database management 

system (DBMS) that is designed to facilitate rapid queries, as well as the analysis of 

multidimensional data. The data warehouse is the central data repository for virtually 

all OLAP systems. 

A slightly more formal definition was provided by W. H. Inmon, who described 

it as a "subject-oriented, integrated time-variant, and non-volatile collection of data 

in support of management's decision-making process." [18]. In short, Inmon's criteria 

can be explained as follows: 

• Subject oriented means that data in the database is organized so that all data 

elements related to the same real-world entity or concept are fully integrated. In 

other words, instead of seeing data as a collection of very detailed sales records, 

the data warehouse deals with broader entities such as Customer, Products, 

and Dates. 

• Integrated implies that the data from multiple operational systems is captured, 

cleaned, and combined into a single repository. 

• Time variant indicates that changes in the database are tracked and recorded 

so that reports can be produced showing theses changes over time. 

• Non volatile suggests that data in the database is rarely modified or removed 

by end users. 

12 



2.2.2 Data Warehouse Architecture 

Data warehouses can be seen as a three-tier architecture [9, 16]. The canonical data 

warehouse architecture is shown in Figure 2.2. The possible data sources are shown 

at the bottom of the figure. Information is extracted from various legacy systems 

and operational sources, and is then consolidated, summarized, and loaded into the 

data warehouse using a process commonly known as ETL (Extract, Transform, and 

Load). Strictly speaking, this first step is outside the scope of the warehouse proper 

(i.e., it is not one the three tiers). At the first tier, we find the DW server, along with 

several data maris. Essentially, each data mart is a small warehouse designed for a 

specific department. At this stage, the data warehouse is fully loaded and contains 

the data required for basic "decision support". The second tier houses the OLAP 

server/engine that allows users to access and analyze data in the warehouse, typically 

using more advanced techniques. Finally, the third tier includes the front end tools 

that provide a graphical interface for top managers and decision makers. 

2.2.3 The Star Schema 

The Star Schema, proposed by Kimball [21], is perhaps the simplest and most in­

tuitive logical model for data warehouse design. Because it can be mapped directly 

to tables, it is ideally suited to the relational database management systems that 

support virtually every modern data warehouse. The term "Star Schema" is derived 

from the fact that a graphical depiction of the schema resembles a star. Star Schemas 

consist of two basic table type: dimension tables and fact tables. In short, a dimen­

sion is a DW "subject", such as Customer or Product, while a fact represents a key 

DW process such as Sales. In the schema, logical dimensions and facts are mapped 
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Figure 2.2: The general DW/OLAP environment. 

to tables such that the center of the star consists of a single fact table surrounded by 

multiple dimension tables. 

Figure 2.3 illustrates a simple star schema that includes Customer, Location, and 

Product dimensions. The shaded boxes in Product represent a dimension hierarchy, 

a topic that will discussed in detail shortly. In practice, Fact tables are typically 

massive, holding perhaps billions of records (or facts), while Dimension tables are 

relatively small and contain information about the entries of a particular attribute in 

the fact table. Note that the dimension tables are generally de-normalized, meaning 

that the tables maintain some of the redundancy that a good OLTP system typically 

eliminates. At query time, each dimension table is joined to the fact table as necessary. 

In this setting, de-normalizing the dimension tables significantly decreases the number 

of costly joins that would otherwise be required with a normalized schema. Since the 

dimension tables are comparatively small when compared to the enormous fact tables, 
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Figure 2.3: A small three dimensional Star Schema 

the redundancy produced by the de-normalization is of little interest in most OLAP 

contexts. 

2.3 Online Analytical Processing 

The term OLAP was used first in 1992, when E. F. Codd — who produced the 

relational data model in 1970 — delivered a report entitled "Providing OLAP (on­

line analytical processing) to user-analysts: An IT mandate" [11]. In this paper, 

Codd indicated twelve features that should be present in any OLAP application. The 

following four points, taken from that report, are probably the most significant of the 

12: 

1. Multidimensional conceptual view. In contrast to relational database that 

manipulate individual records or concepts, the focal point in OLAP is the rela­

tionship between multiple dimensions. 
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2. Transparency. The end user should not have to worry about the details of 

data access or conversions. In addition, OLAP systems should be part of open 

systems that support heterogeneous data sources. Ultimately, the system should 

present a single logical schema of the data. 

3. Flexible reporting. Reporting must present data in a fully integrated manner, 

and minimize any restrictions in the way that basic data elements of dimensions 

are combined. 

4. Unlimited dimensional and aggregation levels. A serious tool should 

support more than just a few concurrent dimensions (Codd actually indicated 

that 15-20 would be ideal) 

We note that, despite Codd's influence in the database community, the impact 

of the paper was less dramatic that it might otherwise have been due to Codd's 

direct sponsorship by a commercial OLAP vendor (whose product, not coincidentally, 

supported most of these features). Nevertheless, the four features listed above do serve 

as a general blueprint for the kinds of OLAP applications that we commonly see in 

the market. 

2.3.1 Core OLAP operations 

Although commercial OLAP systems may provide numerous functions for analysis 

and reporting, there is a core set that is central to the OLAP paradigm. More so than 

the formal definitions, such as the one given by Codd, they provide an intuitive sense 

of the motivation behind multi-dimensional analysis. In the following list we briefly 

describe these core functions, with reference to a series of accompanying diagrams. 

Ultimately, each represents a new perspective on the "original" view of the small 
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three dimensional cube illustrated in Figure 2.4(a). In this case, we are modeling 

the relationship between three keys dimensions — Customer, Product, and Location. 

The cells in the cube would in practice hold a measure value, perhaps something like 

"Total Sales". 

• Pivot. The pivot is a simple operation that allows users to reorganize the axes 

of the cube. Pivot deals strictly with presentation. Figure 2.4(b) provides a 

simple example of how the operation works. 

• Slice. The slice operation allows a user to choose a subset of a multidimen­

sional array (or cube) corresponding to a single value along one dimension. 

Figure 2.4(c) demonstrates the process for the "Entertainment" category in the 

Product dimension. 

• Dice. The dice operation allows a user to select a slice on two or more di­

mensions of a data cube (or subcube of the original space). In Figure 2.4(d), a 

subset of values on Product, Location, and Customer have been shown. 

• Roll-up. The roll-up operation allows a user to navigate levels of aggrega­

tion along a dimension hierarchy, ranging from the most detailed to the most 

summarized. Figure 2.4(e) illustrates how the Location dimension, originally 

listed at a more detailed level (City), is aggregated further in order to provide 

provincial totals. 

• Drill down. In contrast, the drill-down operation allows a user to obtain a 

more detailed view of data along a dimension hierarchy. Figure 2.4(f) shows 

how the Product dimension is broken down into specific category listings. 
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Figure 2.4: (a) A simple three dimensional OLAP cube, (b) Pivot, (c) Slice, (d) 
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2.4 The Multidimensional model 

Both data warehouses and OLAP systems are based on a multidimensional (MD) 

model. Specifically, we logically represent data in a d-dimensional space such as the 

one depicted in Figure 2.5. In this context, the MD model can be described as a data 

abstraction allowing one to view aggregated data from a number of perspectives (i.e., 

dimensions). In fact, for a d-dimensional space, there are exactly 2d distinct dimen­

sion combinations that represent the underlying Star Schema, each from a unique 

perspective. In OLAP terminology, we refer to this as the data cube. 

As previously noted, low level information is divided into facts and dimensions. An 

individual fact represents an item or transaction of interest to the user. In the multi­

dimensional data cube model, facts are aggregated into measures that are contained 

within cells of the data cube. In Figure 2.5, one can see the measure values on the 

front face of the cube. Simply put, a given measure represents a series of fact values 

that have been aggregated for a given combination of dimensions. In the figure, for 

example, if we assume that the measure represents Sales, then we can see that total 

sales in December for Product Skl l in Toronto was 20 dollars. 

We note that the MD model is logical in nature. In other words, it makes no 

assumptions about how the data is physically stored. Advanced OLAP servers may 

in fact take the data from the tables of the original Star Schema and further process 

it. The new data may be stored in a series of new tables or even a multi-dimensional 

array that represents a one-to-one mapping between the logicaLdata cube and the 

physical storage. We refer to the first type of system as ROLAP (relational OLAP), 

while the second is known as MOLAP (multi-dimensional OLAP). That being said, 

the physical storage format is distinct from the conceptual design model, which is the 
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Figure 2.5: A basic three dimensional cube. Each cell holds a measure value, 

primary focus of this thesis. 

2.4.1 Hierarchies 

Data granularity is the level of detail at which measures are presented. This is de­

termined by a combination of the granularities of each dimension of the cube. For 

example, in Figure 2.5 the granularity of the Time dimension is Month, while the 

Location is represented as a City. However, the vast majority of common business 

and scientific dimensions actually have a hierarchal structure. For example, one of­

ten thinks of the common Time hierarchy in terms of hours, days, weeks, months, 

quarters, and years. In OLAP environments, the traversal of such "aggregation hier­

archies" is perhaps the most fundamental of all query forms. As it turns out, there 

are in fact many different types of hierarchies in real-world applications. 

Formally, a hierarchy is described as a set of binary relationships between the 

various levels of a dimension. A path defines a unique traversal through a hierarchy 
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from the root level, the coarsest level of the hierarchy, to the leaf level, the finest 

level of aggregation detail. Within a given path, the nodes directly associated on two 

consecutive levels of the hierarchy are defined as the parent and child. The values at 

a given level of the hierarchy are known as members. Finally, we often refer to the 

analysis criterion of the hierarchy. This essentially refers to the conceptual purpose 

or focus of the hierarchy. For example, the hierarchy might represent sub-divisions 

of a dimension based upon geographical regions or organizational structure. Most 

hierarchies have a single analysis criterion but as we shall see, it is possible to have 

more than one. 

In the following sections, the hierarchy forms commonly found in the real world 

are briefly classified. This classification scheme is largely drawn from the framework 

first defined by Malinowski et al. [44, 45]. 

2.4.2 Simple Hierarchies 

A simple hierarchy is one that can be represented as a tree. Recall that a tree is 

a directed, acyclic graph. We call the trees simple because, for a given leaf node, 

hierarchies of this form can have only one "aggregation path" back to the root. In 

other words, each specific level has an unambiguous meaning in terms of the type 

of aggregation performed. All simple hierarchies have a single aggregation criterion. 

Simple hierarchies can in fact be further sub-divided into the following three basic 

categories: 

1. Symmetric hierarchies. 

2. Asymmetric hierarchies. 

3. Generalized hierarchies. 
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Figure 2.6: A four level symmetric hierarchy. 

Symmetric Hierarchies 

Simple, symmetric hierarchies contain levels and branches having a consistent depth. 

Symmetric hierarchies are also known as homogeneous, balanced, or level-based. In 

this kind of hierarchy, any path from the root to a leaf has exactly the same number of 

nodes. All nodes in the hierarchy tree are mandatory. All parent members must have 

at least one child member and a child member cannot belong to more than one parent 

member. Figure 2.6 provides an example of a symmetric geographic hierarchy. On 

the left of the diagram we see the schema that defines the four levels. By convention 

we number the levels from the top downwards, staring from zero. So the coarsest 

aggregations are Level 0 (Country), while the most detailed values are at Level 3 

(Stores). The meaning and depth of each level must be consistently applied because 

each level represents the same type of information. In the current case, the schema 

can be represented as: 

Country =>• Province => City => Store 

On the right of the diagram is the instance of the hierarchy corresponding to the 
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schema. We can clearly see that any path has four steps from root to leaves. Again, 

at any level, all members have the same logical meaning. For example, at Level 3, 

all values refer exclusively to cities. In the diagram, we have shaded four nodes to 

illustrate a simple path form Canada —> Ontario —> Ottawa —> Store3. 

Asymmetric Hierarchies 

A simple, asymmetric hierarchy is one in which lower levels of specific paths are not 

mandatory. However, intermediate levels in the tree are not optional. As with simple 

symmetric hierarchies, every child must still belong to at most one parent member. 

Several terms are used for these hierarchies: heterogeneous, unbalanced, or non-onto. 

Simple, asymmetric hierarchies are quite common in practice as category groupings 

can often be quite irregular within organizations. Figure 2.7 illustrates a hierarchy 

where a bank is composed of a number of branches. Some of these have agencies with 

ATMs, while some only have agencies (without a corresponding ATM). The schema 

in this case provides alternate paths through the hierarchy. They can de defined as: 

Bank => Branch =» Agency => ATM 

Bank =>• Branch => Agency 

We have highlighted the hierarchy instance to illustrate two such pathways. At 

Level 0, we see the partially shaded root node, which is shared by both pathways. 

The lightly shaded path, RBC —> Maisonneuve —> Agency 6 —> ATM 11, represents 

the full 4-node path. Conversely, the darker pathway, RBC —> Guy —> Agency 9, 

indicates a path with an optional ATM. 
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Figure 2.7: A four level asymmetric hierarchy. 

Generalized Hierarchies 

The simple generalized hierarchy is the most complex of the forms in this group be­

cause it can contain multiple exclusive paths that share levels. The term "exclusive" 

implies that, given a specific leaf node, the path back to the root is uniquely defined. 

Note that all paths still represent one hierarchy and thus each level is labeled un­

ambiguously. However, different branches of the hierarchy tree may be interpreted 

differently at the same level. Figure 2.8 shows a generalized hierarchy tree that con­

sists of the following schema: 

Area => Branch =>• Category =$• Type => Customer 

In this case, the lightly shaded path, Canada —> Montreal —> Investor —> Manager 

—> Smith, might refer to customers who are people, while the second path, Canada —> 

Ottawa —> Company —> Concrete —> KLH, might refer to corporate customers. Still, 

it is important to understand that paths from the leaves back to the root are unique 

in terms of the underlying schema. Moreover, we still have a single analysis criterion 
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Figure 2.8: A five level generalized hierarchy. 

as both logical paths refer to a breakdown of the data by customer type (Company 

or Individual). 

There is also a special form of the generalized hierarchy that is often seen in 

practice. Known as the simple ragged or simple non-covering hierarchy, this form 

of generalized hierarchy can contain optional intermediate nodes without including 

additional levels. In this case, the branches have inconsistent depths because at least 

one intermediate member in a branch level is unpopulated. However, the root and 

the leaves are the same for all paths. In effect, the ragged hierarchy is like a cross 

between an asymmetric (unbalanced) hierarchy and the regular generalized hierarchy. 

Figure 2.9 represents a company with stores in different countries, with the hierarchy 

indicating that some provinces have no sub-divisions into counties. Logically, this 

results in two valid paths through the schema: 

Country =>• Province =>• City =» Store 

Country => Province => Store 
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Figure 2.9: A four level ragged hierarchy. 

In this case, the instance diagram presents the following two paths. Canada —> 

Ontario —» Ottawa —> Store 2 represents the fully defined path. In contrast, the 

darker nodes define the shorter path Canada —> Quebec —> Store 6, clearly indicating 

that Store 6 is associated directly with the province, rather than a specific city. 

Strict versus Non-Strict 

A hierarchy is considered "strict" if one-to-many relationships exist between parent 

and child nodes. If at least one many-to-many relationship exists between a parent 

and a child in a hierarchy, then we refer to this type of hierarchy as "non-strict". 

Again, non-strict hierarchies are very common in real life applications where, for 

example, an employee could belong to more than one department. Note that it is 

possible for the simple hierarchies discussed so far to be either strict or non-strict. 

Figure 2.10 shows a non-strict hierarchy (simple, symmetric) with the following four 

levels: 

Area => Division ==> Department => Employee 
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Figure 2.10: A four level non-strict hierarchy. 

Here, the instance diagram indicates that we have many-to-many relationships 

between the Department and Employee levels, but one-to-many relationships for the 

remaining levels. On the right side, USA —> South —> Purchasing —> Sara represents 

the simple pathway we've seen already in the symmetric instance. The lightly shaded 

path, USA —> North —> {Sales, Research, Marketing} —> Smith indicates a many-to-

many relationship. In this C81S6, £1 department like Sales may have multiple children 

(John, Smith), but a child (Smith) may also belong to many departments (Sales, 

Research, Marketing). 

2.4.3 Complex Hierarchies 

Complex hierarchies represent combinations of simple hierarchies on a single dimen­

sion. In practice, there are two similar but distinct forms of complex hierarchies that 

will be discussed in this section. 

1. Multiple hierarchies 

2. Parallel hierarchies 
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Figure 2.11: A four level multiple inclusive hierarchy. 

Multiple Hierarchies 

In a multiple hierarchy, there are several simple hierarchies sharing one or more levels. 

All such hierarchies share the root level, as well as a common analysis criterion. 

However, a given child member within a multiple hierarchy can be associated with 

multiple parent members that each belong to a distinct hierarchy. 

Multiple hierarchies may be further specialized into inclusive or alternative. In a 

multiple inclusive hierarchy, the measure represented by a fact must be distributed 

between several hierarchies. An example will make this more clear. A simple mul­

tiple inclusive hierarchy is shown in Figure 3.18. Here, Sport Clubs are associated 

with Sport Associations and Recreation Programs. The schema would look like the 

following: 

Regional Committee =>• Sport Association =*> Sport Club 

Regional Committee =>• Recreation Program => Sport Club 

The instance diagram indicates how this might work in practice. If we assume 

that the measure is Budget Expenses, then the figure tells us that part of the budget 

for Club 1 comes from the Swimming Association — Committee A —> Swimming —> 
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Figure 2.12: A four level multiple alternative hierarchy. 

Club 1 — and part from the Seniors Program — Committee A —> Seniors —* Club 1. 

The analysis criterion is the same in both cases, however (e.g., activity type). 

In multiple alternative hierarchies the paths are exclusive, which means that it is 

not possible for a leaf node to belong to more than one path at the same time. In 

other words, these two paths effectively represent two different ways to aggregate the 

same data (using the same underlying analysis criterion). In Figure 3.20, we see what 

is perhaps the most common hierarchy in DW/OLAP — the Time dimension. In 

this case, the schema defines a pair of hierarchies corresponding to different calendar 

subdivisions: 

Year => Quarter =>• Month => Day 

Year => Week => Day 

We can see from the instance diagram that one may move from the root to leaf by 

following either of these paths. Day 1 (January 1), for example, is located in 2009 —> 

Quarter 1 —• January —-> Day 1. It is also found in 2009 —> Week 1 —> Day 1. Both 

hierarchies have the same analysis criterion (breakdown by time division), but allow 
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us to rollup or drill down on this data at differing granularities. The measure value 

for Day 1, however, is never shared between the hierarchies, as was the case with the 

inclusive hierarchy. 

Parallel Hierarchies 

A parallel hierarchy is a collection of simple hierarchies defined on the same dimen­

sion but representing different analysis criteria. In practice, Parallel hierarchies can 

be either independent or dependent. Parallel independent hierarchies do not share 

levels. In other words, they represent non-overlapping sets of hierarchies. Figure 3.21 

shows an example of a parallel independent hierarchy that is associated with multiple 

analysis criteria. In the first case, measure values are aggregated into organizational 

structure, while the second hierarchy breaks down data based upon geographical lo­

cation. Note that the common leaf node implies that both hierarchies are using the 

same underlying detail data (i.e., facts). The schema for this parallel hierarchy can 

be described as follows: 

Sales Region =>• Sales District =$• Store 

Country => Province => City => Store 

The instance diagram depicts the two independent analysis criteria. East —> 

District 2 —> Store 19 represents an aggregation by organizational structure, while 

Canada—> BC —> Victoria —> Store 42 would present an analysis simply by geographic 

location. 

A parallel dependent hierarchy is one in which component hierarchies share one or 

more levels, even though distinct analysis criteria are employed. Figure 3.22 provides 

an example. Here, the two analysis criteria are similar to the previous example 
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Figure 2.14: A four level parallel dependent hierarchy. 

(organizational structure and geographical location) but both hierarchies share Level 

1 (Province). This gives rise to the two following schema elements: 

Country => Province => City => Employee 

Region =>• Province => Section => Employee 

Here, the two shaded paths, Canada —» QC —> Gaspe —> John and East —> QC 

—> Section 2 —> Patric, represent distinct aggregation pathways but share the QC 

element. 
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2.5 Unified Modeling Language 

In the following chapter, we will be discussing the application of UML and graphical 

modeling tools to the design of sophisticated conceptual models for OLAP. We will 

therefore use this section to present a very brief overview of UML concepts and related 

technologies. 

The Unified Modeling Language (UML) first appeared in the 1990s as an ef­

fort to combine the best elements from various modeling systems proposed at that 

time. UML was meant to be a unifying language enabling IT professionals to model 

computer applications. The primary authors were Jim Rumbaugh, Ivar Jacobson, 

and Grady Booch, who originally had their own competing methods (OMT, OOSE, 

Booch). One reason UML has become a standard modeling language is because UML 

is programming language independent. Moreover, the UML notation set is itself a 

language and not simply a methodology. This aspect is important because a language, 

as opposed to a methodology, can easily be integrated into any company's business 

systems without necessitating extensive ideological of physical changes. 

UML 2.0 defines thirteen types of diagrams that are partitioned into three broad 

categories: structure diagrams, which include the Class diagram (our prime focus), 

behaviour diagrams and interaction diagrams. In this introduction, we will attempt 

to provide a general understanding of the Class diagram, including various graphical 

elements that are available in MagicDraw, one of the leading UML design tools. 

2.5.1 Class Diagram 

The Class Diagram shows how different entities (e.g., people, things and data) are 

related to one other. In short, it illustrates static structures within the environment, 
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Figure 2.15: A basic UML class diagram 

including classes, their attributes, and the relationships between these classes. A 

small UML class diagram is shown in Figure 2.15. We can see that an individual 

class, such as Shopping Cart, is depicted in the class diagram as a rectangle with 

three horizontal sections. The upper section shows the class's name. The middle 

section contains the class's attributes. Finally, the lower section contains the class's 

operations (or methods). 

Classes can be related to one other in a number of ways. Associated classes are 

those that are directly connected to each other. A dependent class is one which de­

pends on or uses a second class. Specialized classes are those that represent a subtype 

of another class. Note that a class diagram does not state anything explicit about 

the relationships of a given object (i.e., class instantiation), but it does conceptu­

ally explain the possible relationships of one object with other objects. Furthermore, 

the classes themselves can be grouped into packages, which may nested within other 

packages. A package, as an entity, may be associated with all relationships that can 

be drawn from its component classes (including nested packages). 
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Figure 2.16: (a) Package import (b) Element import (c) Package Merge 

The MagicDraw modeling software also includes several mechanism for manipu­

lating packages (something we do extensively in our UML profile). A Package Import, 

whose symbol is depicted in Figure 2.16(a), is defined as a directed relationship that 

identifies a package whose members are to be imported by a name space. An Element 

Import (Figure 2.16(b)) is defined as a directed relationship between an importing 

name space and a package-able element. A package merge (Figure 2.16(c)) is a di­

rected relationship between two packages that indicates that the contents of the two 

packages are to be combined. 

2.5.2 UML Profiling 

A profile in the Unified Modeling Language is a generic extension mechanism for 

customizing a UML model for a particular domain and platform. Profiles are defined 

using stereotypes, tagged values, and constraints that are applied to specific model 

elements, such as Classes, Attributes, Operations, and Activities. A Profile is essen­

tially a set of these extensions that collectively customizes UML for a given problem 

space. 

Ultimately, a UML profile [29] is a specification that does one or more of the 

following: 
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• Identifies a subset of the UML meta model. 

• Specifies "well-formedness rules" beyond those specified by the identified subset 

of the UML meta model. A "well-formedness rule" describes a set of constraints 

written in UML's Object Constraint Language (OCL). 

• Specifies "standard elements" beyond those specified by the identified subset of 

the UML meta model. A "standard element" describes a standard instance of 

a UML stereotype, tagged value, or constraint. 

• Specifies semantics expressed in natural language. 

• Specifies common model elements, expressed in terms of the profile. 

2.5.3 Extensibility mechanisms 

There are three common extensibility mechanisms, allowing one to customize or ex­

tend the UML by adding new building blocks, creating new properties and specifying 

new semantics. We refer to these extensions as stereotypes, tagged values, and con­

straints. 

Stereotypes allow one to extend the vocabulary of the UML to create new model 

elements derived from existing elements, but that have specific properties that are 

suitable for a problem domain. These elements are used for classifying or marking 

the UML building blocks in order to introduce new building blocks that speak the 

language of a domain and that look like primitive or basic model elements. For 

example, when modeling a network, one might need to have symbols for representing 

a hub and a router. Stereotypes also allow introducing new graphical symbols for 

providing visual cues to the models that speak the vocabulary of a specific domain. 
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Graphically, a stereotype is rendered as a name enclosed by guillemots (<S») and 

placed above the name of another element. Alternatively, the stereotyped element 

can be rendered by using a new icon associated with that stereotype. 

Tagged values are properties for specifying keyword value pairs of model elements, 

where the keywords are attributes, allowing one to extend the properties of a UML 

building block to create new information in the specification of that element. Tagged 

values can be defined for existing model elements, or individual stereotypes, so that 

everything with that stereotype has that tagged value. One should note that a tagged 

value is not equal to a class attribute. Instead, a tagged value is regarded as being 

a meta data, since its value applies to the element itself and not to its instances. 

Graphically, a tagged value is rendered as a string enclosed by brackets ( ) placed 

below the name of another model element. The string consists of a name (the tag), 

a separator (the symbol =) , and a value (of the tag). 

Constraints are properties for specifying semantics and/or conditions that must 

be held true at all the times for the elements of a model. They allow one to extend the 

semantics of UML building blocks by adding new rules, or by modifying existing rules. 

For example, when modeling time systems, one may want to add information to the 

model such as time deadlines. By making use of constrains, this timing requirement 

can easily be captured. Graphically, a constraint is rendered as a string enclosed 

by brackets ( ) placed near the associated element, or connected to the element by 

dependency relationships. 

2.5.4 The Object Constraint Language 

With object-oriented modeling, a graphical model — like a class abstraction — is 

not enough for a precise and unambiguous specification. As such, there is a need to 
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describe additional constraints about the objects in the model. While such constraints 

are often described in natural language, experience has shown that this will always 

result in ambiguities. In order to write unambiguous constraints, so called "formal 

languages" have been developed. The disadvantage of traditional formal languages is 

that they are only accessible to people with a fairly serious mathematical background. 

The Object Constraint Language (OCL) has been developed in an attempt to address 

this limitation. 

OCL is a language that enables one to describe expressions and constraints on 

object-oriented models. An expression is an indication or specification of a value and 

can be used for the following purposes: 

• To specify the initial value of an attribute or association end. 

• To specify the derivation rule of an attribute or association end. 

• To specify the body of an operation. 

• To indicate an instance in a dynamic diagram. 

• To indicate a condition in a dynamic diagram. 

• To indicate an actual parameter value in a dynamic diagram. 

• To indicate the type of constraint. 

A constraint, on the other hand, is a restriction on one or more values of an 

object-oriented model or system. In practice, a constraint can take the following 

forms: 
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• An invariant is a constraint that states a condition that must always be met 

by all instances of the class, type, or interface. An invariant is described using 

an expression that evaluates to true if the invariant is met. Invariants must be 

true all the time. 

• A precondition to an operation is a restriction that must be true at the moment 

that the operation is going to be executed. 

• A postcondition to an operation is a restriction that must be true at the moment 

that the operation has just ended its execution. 

• A guard is a constraint that must be true before a state transition fires. 

The context definition of an OCL expression specifies the model entity for which 

the OCL expression is defined. Usually this is a class, interface, data type, or com­

ponent. In terms of the UML standard, this is called a Classifier. The classifier is 

always a specific element of the model and is usually defined in a UML diagram. This 

element is called the "context of the expression". In addition, we must also be aware 

of the contextual type of an expression. The contextual type defines the context, 

or its container. It is important because OCL expressions are evaluated for a single 

object which is always an instance of the contextual type. To distinguish between the 

context and the instance for which the expression is evaluated, the latter is called the 

contextual instance. Sometimes it is necessary to refer explicitly to the contextual 

instance. The keyword self is used for this purpose. 
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2.6 Related work 

Recently, several multi-dimensional data models have been proposed. A detailed 

description of the previous proposals can be found in [2, 6]. In this section, we briefly 

review several of the data models that we believe to be the most relevant to the work 

discussed in this thesis. 

Approaches that directly extend the classical ER model include the Multidimen­

sional ER (M/ER) model by Sapia et al. [35, 35], the starER model by Tryforia et 

al. [41], and the MultiDim model by Malinowski et al. [24]. A number of propos­

als also provide some form of graphical notations. Models of this type include the 

Dimensional-Fact (DF) model by Golfarelli et al. [15, 14], the model proposed by 

Husemann et al. [17], and the Multidimensional Aggregation Cube (MAC) by Tsois 

et al. [42]. We note, however, that their "proprietary" notations and/or non-OOP 

models give them limited applicability in the OLAP context. 

In fact, despite the fact that the dominant trend in data modeling is the 0 0 

paradigm, only a few proposals using 0 0 multi-dimensional modeling exist. Included 

in this group would be the Common Warehouse Metamodel (CWM) by the Object 

Management Group (OMG) [26], the ADAPTed UML model proposed by Priebe 

et al. [32], the Object-Oriented meta cube proposed by Nguyen et al. [5, 4], the 

Yet Another Multidimensional Model (YAM2) by Abello et al. [3], and the Object 

Oriented Multidimensional Model (OOMD) by Trujillo et al. [40]. Some of these use 

UML as a language to express a meta schema [5, 4, 32], while others also extend the 

UML vocabulary [22, 3, 26]. A summary of these approaches is given below. 

The Object Management Group (OMG) [26] propose The Common Warehouse 

Meta model (CWM) that is meant to standardize data warehousing and business 
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intelligence applications based on UML. Their Multidimensional Package serves as 

a meta model for MOLAP tools. (In fact, some MOLAP tool-specific meta models, 

such as Oracle MOLAP, are defined as extensions of this meta model.) In turn, 

the OLAP Package describes the OLAP meta model, independent of any ROLAP or 

MOLAP implementation. The OLAP package includes the concepts of a dimension 

and a hierarchy and it is possible, in theory, to represent several different types of 

hierarchies. Having said this, the CWM is extremely complex and would be difficult 

to employ in its native form. 

Priebe et al. [32] create a UML based notation named ADAPTed UML which 

uses ADAPT symbols as stereotypes [8]. Elements introduced include cube, mea­

sure, dimension level and dimension attribute. To connect cube and measures, UML 

dependencies are drawn as associations with a defined navigability. The dimension 

hierarchies are represented by aggregation elements. However, their approach only 

supports symmetric hierarchies. 

Binh et al. [5, 4] introduces a conceptual multidimensional data model and ap­

plies a number of mathematical principles (e.g., partial order, partially ordered set, 

minimal element) that dictate the form of hierarchical relationships. Data in the mul­

tidimensional model is organized in the form of meta cubes. Their approach supports 

symmetric and multiple hierarchies. 

Abello et al. [3] propose a conceptual multidimensional model called YAM2 that 

extends UML. They make use of the part-whole and specialization-generalization re­

lationships to represent symmetric, multiple alternative and non-strict hierarchies. 

YAM2 does not support asymmetric hierarchies because every object in an aggre­

gation level must have the same structure. In addition, ragged hierarchies are not 
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directly supported in this model, though the authors suggest that they can be repre­

sented in the schema by a part-whole relationship. YAM2 is one of the few approaches 

that provides grouping (i.e., package-based) mechanisms to the model so as to avoid a 

"flat", single layer design. Specifically, they divide the multi-dimensional model into 

three levels: fact and dimensions, classification hierarchies, and the whole model. 

However, they do not employ any packaging mechanism to reduce the complexity of 

the hierarchies themselves. 

TVujillo et al. [40] produce a conceptual model for data warehouse and OLAP 

applications that does in fact utilize an Object-Oriented paradigm to model multi­

dimensional elements like dimension classes and fact classes. In addition, they pro­

pose a cube class as the basic structure so as to allow subsequent analysis of the data 

stored in the system. A UML-based representation of this model is also described in 

[22]. While this work represents, to our knowledge, the most sophisticated and most 

accurate of the existing data warehousing models, it nonetheless treats the crucial 

dimension hierarchies in a very generic way. Specifically, it considers hierarchies as 

instances of directed acyclic graphs and allows designers to model real world hierar­

chies in a very flexible way. That being said, such an abstract representation provides 

relatively little support for the user as the final design is primarily ad hoc. Perhaps 

this is acceptable in the context of that paper as the final target is expected to be 

an SQL database, which does not have the ability to physically represent many of 

the hierarchies discussed in this chapter. In our own research, this is not the case. 

In particular, we expect the models developed with the proposed framework to even­

tually populate the Sidera OLAP DBMS being developed by other members of this 

research group. Sidera does, in fact, support complex hierarchies at a physical level 
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and, consequently, we must have the ability to intuitively identify the structure of 

such aggregation models. 

Still, the work defined in [40, 22] represents an important starting point for our 

modeling research. Table ?? summarizes the stereotype definitions from these earlier 

papers. We note that even when utilizing this small set of core stereotypes, we were 

forced to re-write the associated OCL expressions due to differences in the UML 2.0 

spec and the original 1.5 version. 

2.7 Conclusions 

Over the past couple of decades, data warehousing has emerged as a fundamental 

component of contemporary enterprize-level decision support systems. In the major­

ity of cases, sophisticated OLAP applications are layered on top of the data warehouse 

so as to provide improved access and performance. Central to the OLAP paradigm 

is the notion of the multi-dimensional data model, a logical representation of data 

that highlights the relationships between key organizational subjects. In practice, 

these subjects are subdivided into sometimes complex dimension hierarchies that, in 

turn, allow users to aggregate and analyze detailed corporate data at different levels 

of granularity. 

This chapter presented an overview of the general area of decision support systems 

and its primary components — Information systems, OLAP, and data mining — as 

well as the underlying data warehouse architecture. Fundamental OLAP operations 

were introduced and illustrated, along with explanations as to how these operations 

are performed in order to provide meaningful measures of summarized multidimen­

sional data. The concept of attribute hierarchies was then presented and the various 

42 



Name 

Schema Package 

Fact Package 

Dimension Pack­
age 
Fact 

Dimension 

OID 

Descriptor 

Level Attribute 

Measure 

Rollup 

Degenerate Fact 

Base Class 

Package 

Package 

Package 

Class 

Class 

Attribute 

Attribute 

Attribute 

Attribute 

Association 

Association 
Class 

Description 

Packages of this stereotype represent 
multi-dimensional Star Schemas 
Packages of this stereotype represent 
multi-dimensional facts 
Packages of this stereotype represent 
multi-dimensional dimensions 
Classes of this stereotype represent 
facts in multi-dimensional model 
Classes of this stereotype represent di­
mensions in multi-dimensional model 
Attributes of this stereotype represent 
OID attributes of levels in a multi­
dimensional model 
Attributes of this stereotype repre­
sent attributes of levels in a multi­
dimensional model 
Attributes of this stereotype repre­
sent descriptor attributes of levels in a 
multi-dimensional model 
Attributes of this stereotype repre­
sent attributes of a fact in a multi­
dimensional model 
Associations of this stereotype repre­
sent associations between level 
Association classes of this stereotype 
represent association classes in multi­
dimensional model 

Table 2.1: Summary of standard data warehousing stereotypes 
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forms of hierarchies typically encountered in practical environments were defined. In 

addition, a simple introduction for both UML and OCL has been included. In the 

remainder of this thesis, we will build upon the concepts introduced in this chapter. 
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Chapter 3 

Multi-dimensional Modeling 

3.1 Introduction 

Organizations today are facing complex challenges in terms of management and eco­

nomic planning. As a result, IT departments have become increasingly reliant upon 

software applications and systems that more thoroughly support their decision mak­

ing objectives. DSS systems provide this functionality by collecting and integrating 

vast amounts of distributed data and information and converting it into a form that 

can be easily and intuitively analyzed [12]. 

Starting in the early 1990s, data warehouses began to emerge as the cornerstone 

of DSS environments [25]. Soon after, more advance analytical tools, in the form of 

OLAP servers and applications, were developed in order to allow users to query and 

automatically aggregate data in the data warehouse. In part, OLAP tools provide a 

logical interface to analytical data that is simply not present in the data warehouses 

themselves. One element of this new interface is the support for complex dimension 

hierarchies. That being said, most existing commercial applications only permit the 

definition of simple hierarchies in which relationships between instances can be repre­

sented as a balanced tree. For example, a single Day-Month-Year hierarchy is simple 
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in that every day is related to a month, which in turn is related to a year. However, 

as discussed in the previous chapter, many of the hierarchies found in real-world sit­

uations correspond to unbalanced trees or to more general graphs [24], and simply 

cannot be modeled using the techniques available for balanced trees. 

Given the above considerations, our focus in this thesis is upon expanding the 

capabilities of conceptual design models for OLAP. In general, conceptual model­

ing greatly facilitates communication between users and designers since conceptual 

models do not require detailed knowledge about specific features of the underlying 

implementation platform. Instead, the focus is placed squarely on user requirements. 

Moreover, schemas defined using conceptual models can be mapped to various logical 

models, such as relational, object-relational or object-oriented. 

This chapter presents our conceptual multidimensional model that allows one to 

represent data requirements for data warehousing and OLAP applications. Section 

3.2 discusses the motivation for this work and adds justification for our use of UML 

and OCL. Section 3.3 provides a general definition of the main properties and aspects 

of multi-dimensional and OLAP hierarchy modeling. It describes how to utilize UML 

to represent the major properties of OLAP at the conceptual level and provides 

general design guidelines for designing a DW/OLAP system. In addition, a meta 

model of our work is presented. The specification of a UML "Hierarchy" profile that 

makes use of OCL to improve precision is then discussed in Section 3.4. In addition, 

advanced aspects of modeling such as the use of degenerate dimensions and role-

playing dimensions are presented. Section 3.5 concludes the chapter with a concise 

summary. 
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3.2 Motivation 

Before presenting the details of our new model, we begin with a brief explanation 

of our motivation for this area of research. We also explain why the UML profile 

approach is well suited to this problem domain. In a related vein, we discuss the 

significance of using OCL as a constraint language. 

3.2.1 Why OLAP Conceptual Modeling? 

Organizations across all fields of commerce and industry need to perform sophisti­

cated data analysis in order to support their decision-making processes since these 

decisions ultimately have significant effects on the organization's financially health 

and solvency. Traditional databases are designed to support daily business operations, 

where the focus is on both concurrent access by multiple users, as well as recovery tech­

niques that guarantee data consistency. These highly normalized databases generally 

perform poorly when executing complex queries against massive volumes of detail-

level transactions. Moreover, if an organization needs to be analyzed or assessed "as 

a whole", data from different systems must be properly integrated. This integration 

demands the design and implementation of a coordinated conceptual model. How­

ever, this task is usually difficult to accomplish because of differences in structure, 

definition, and content. In fact, [21] and [39] show that conceptual models designed 

for traditional databases are poorly suited to the data warehouse/OLAP world. 

The absence of a commonly accepted conceptual approach for data warehousing 

and OLAP systems makes the modeling task difficult at present. Even though a 

number of approaches have been proposed, none of them has been accepted as a 

standard for either data warehousing in general or OLAP hierarchies in particular. 
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As a result, the area of conceptual design for OLAP applications is still very much at 

the research stage. From our point of view, previous proposals attempt to represent 

multi-dimensional properties at the conceptual level by directly emphasizing the pri­

mary data structure (fact and dimensions). While this is important, it nevertheless 

discounts the significance that dimension hierarchies play in the real world. In addi­

tion, most of these models introduce non-standard graphical notation that is unlikely 

to be adopted in practice. 

The conceptual modeling phase is widely recognized as a crucial step in the design 

of data warehouse and OLAP applications. Significant attention should be paid at the 

modeling phase to perfectly (or at least effectively) transform the user's requirements 

into error-free, understandable, and easily extendable OLAP schemas. The sooner a 

designer is able to define a precise schema, the more accurately the implemented data 

warehouse/OLAP system will represent the requirements and objectives of the user. 

3.2.2 Why UML? 

There are a number of reasons why we feel that UML is the ideal notational framework 

for this type of research. We briefly summarize its strengths below: 

1. UML is a modeling language that is already well understood by many database 

designers. Therefore, learning a new language can often be avoided. 

2. UML is a standard of the Object Management Group (OMG) and benefits from 

OMG's extensive background in 0 0 (Object Oriented) analysis and design. 

3. The 0 0 paradigm, which UML follows, is semantically richer than other paradigms 

in that 0 0 models tend to be closer to the user's conception of the real world 
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4. UML can be easily extended and tailored to a specific domain. Due to the 

use of the UML profiling mechanism, designers do not need to understand the 

entire UML; instead, they can use the concepts (fact, dimension) with which 

they normally work. 

5. The UML profiling mechanism also restricts the set of UML elements that is 

to be used in a given domain. This "specializes" these elements to capture the 

semantics of data warehousing elements. 

6. UML has been widely accepted by the scientific and industrial communities, 

and there are many Computer Aided Software Engineering (CASE) tools that 

support it. 

7. The use of UML promotes the implementation of a common modeling language, 

so that the vision of integration, reusability and inter-operability within an 

enterprize's system can be achieved. 

3.2.3 Why not ER? 

Entity Relationship (ER) models have traditionally been one of the most widely 

utilized data design models [10]. In fact, there are now many different extensions of 

the traditional ER diagram [38]. Still, they are not appropriate for multi-dimensional 

modeling due largely to their complexity in this setting. Several authors have pointed 

out this problem. For instance, Ralph Kimball states the following [21]: 

Entity Relation data models are a disaster for querying because they can­

not be understood by users and they cannot be navigated usefully by 
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DBMS software. Entity Relation models cannot be used as the basis for 

enterprize data warehouses. 

3.2.4 Why OCL? 

In [43], Warmer declares that "The combination of UML and OCL offers the best of 

both worlds to the software developer". The motivation for this statement is that 

while UML is capable of modeling a variety of distinct systems, it can often be ineffi­

cient in doing so due to its wide-spectrum approach. This suggests a requirement for 

a more cleanly integrated mechanism for specifying system and element constraints. 

The Object Constraint Language (OCL) is suited to this role for the following reasons: 

1. Using OCL with DW/OLAP UML meta models enriches the model with ad­

ditional information that make the model complete, consistent, precise, more 

detailed, and unambiguous. 

2. OCL expressions can be verified by most CASE tools to ensure correctness and 

consistency with other elements of the model. 

3. Code generation becomes much more powerful with OCL. 

4. An essential characteristic is that OCL is a typed language, so its expressions 

can be checked during modeling and before execution [19]. Thus, errors in the 

model can be removed at an early stage. 

5. OCL is a declarative language which ensures that its expressions have no side 

effects. Evaluating an OCL expression does not change the state of the system. 

6. OCL can be used to write constraints and any expressions on elements. 
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3.3 Multi-dimensional modeling concepts 

In this section, we describe how we utilize UML to represent the properties of multi­

dimensional environments. As previously indicated, our approach makes use of the 

UML profile mechanism that, in turn, contains the necessary stereotypes for success­

fully carrying out OLAP hierarchy modeling at the conceptual level. The primary 

features of OLAP hierarchy modeling considered in this thesis are simple and complex 

hierarchies. Recall that simple hierarchies include those that are symmetric, asym­

metric, generalized and ragged, while the complex forms are multiple and parallel. 

In addition, the concepts of strictness and non strictness are considered, as well as 

the general relationships between hierarchy levels. Note that because this research 

addresses multi-dimensional design at a conceptual level, implementation issues such 

as primary/foreign keys and element data types are not a main priority. Instead, the 

objective is the representation of the main structural properties of this environment. 

Our approach makes extensive use of UML stereotypes so the reader should be 

familiar with their graphical depiction. In general, UML allows one to represent a 

stereotype in a number of ways. Figure 3.1 shows six possible representations of a 

Strict Ragged stereotype (one of the stereotypes proposed in this thesis). They can 

briefly be identified as: 

1. Shape Image. The stereotype icon is displayed (Raggedl). 

2. Icon. The stereotype icon is displayed inside the element (Ragged2). 

3. Text. The stereotype name is displayed and appears inside guillemots (Ragged3). 

4. None . The stereotype is not indicated (Ragged4). 
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Figure 3.1: A simple stereotype diagram. 

5. Text and Icon. The stereotype icon is displayed inside the element and the 

stereotype name is displayed and appears inside guillemots (Ragged5). 

6. Shape Image and Text. The stereotype icon is displayed and the stereotype 

name is displayed and appears inside guillemots (Ragged6) 

Finally, we note that throughout this section, various examples are presented 

to illustrate the basic concepts, as well as the applicability of this multidimensional 

approach. Inspiration for these examples come primarily from Malinowski and Zamnyi 

[24], who have written extensively about hierarchical structures in the OLAP world. 

3.3.1 General definitions 

In this section, we define the primary elements of our multidimensional conceptual 

model. In short, it must be possible to represent at the conceptual level all common 

elements found in data warehousing and OLAP applications. 

A Star Schema, which is represented in our approach by a Schema Package 

stereotype, is composed of those elements found in a standard departmental data 

mart. It contains one fact table and a set of dimensions. The Schema Package is a 
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specialization of the UML Package meta class. 

A dimension, which is represented in our approach by a Dimension Package 

stereotype, is an abstract concept that groups data sharing a common semantic mean­

ing. The Dimension Package is also a specialization of the UML Package meta class. 

A dimension is composed of a hierarchy or a set of hierarchies. The name of the 

dimension is represented by a Dimension stereotype, which does not have any prop­

erties. A Dimension is a specialization of the UML Class meta class. The stereotyped 

class Dimension belongs to the stereotyped Dimension Package. 

A hierarchy is composed of a set of levels. A level describes a set of real-world 

concepts that have similar characteristics. Instances of a level are called members. 

A level is divided into three main types — Root, Level, and Leaf — that are spe­

cializations of the UML Class meta class. The relationships between these levels are 

represented by a RollUpTo stereotype, which is a specialization of a UML Asso­

ciation meta class. These associations are used for traversing from one level to the 

next. The stereotyped RollUpTo association is characterized by the two roles c (child) 

and p (parent), as well as cardinalities indicating the maximum and the minimum 

number of members in one level that can be related to a member in another level. 

In addition, a level has a set of properties that describe its characteristics, includ­

ing the OID (Object ID), Descriptor and Level Attribute. These properties are 

specializations of the UML Attribute meta class. 

Finally, a fact is represented by a Fact Package stereotype, and expresses a focus 

of analysis. It is a specialization of the UML Package meta class. A Fact Package 

is composed of one stereotype, Fact, that is a specialization of the UML Class 

meta class. A Fact is connected to a Dimension by a Dimensioning, which is a 
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specialization of a UML Association meta class. A Fact usually contains properties; 

otherwise, it is described as fact-less [21]. These properties are represented by a 

Measure stereotype, which is a specialization of the UML Attribute meta class. 

These Measure attributes are analyzed as per the various perspectives presented by 

the surrounding dimensions. 

3.3.2 Design guidelines 

Our experience has shown us that the design of an OLAP schema is not a haphazard 

process. In general, a successful design is the result of adherence to an informal 

"design algorithm." In the current case, we can describe a bottom-up process that 

consists of nine distinct steps. We note, of course, that before beginning the UML 

design, the designer must already have identified the facts, dimensions, and hierarchies 

relevant to the given domain. Once that is done, the design phase proceeds as follows: 

1. Step 1: Create a Hierarchy package that corresponds to the kind of hierarchy 

that will be created. Possible Hierarchy packages include: 

• Strict Symmetric 

• Non-strict Symmetric 

• Strict Asymmetric 

• Non-strict Asymmetric 

• Strict Generalized 

• Non-strict Generalized 

• Strict Ragged 

• Non-strict Ragged 
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• Multiple Alternative 

• Multiple Inclusive 

• Parallel Dependent 

• Parallel Independent 

2. Design the levels of a hierarchy and the relationships between them. In prac­

tice, we do this by specifying Root, Leaf, and Levels stereotypes and defining 

RollUpTo stereotyped associations between them. 

3. Relate the leaf level to a dimension. We do this with a stereotyped association 

Hierarch that links a stereotyped Leaf class to the stereotyped Dimension class. 

4. Create a Dimension Package to which the Dimension class and the Hierarchy 

package belong. 

5. Create a fact and its associated measure(s) by defining a stereotyped Class Fact 

and stereotyped Attributes Measure . 

6. Relate the fact to the dimensions. This is done with a Dimensioning stereo­

type that defines an aggregation relationship between the stereotyped Fact and 

Dimension classes. 

7. Define a stereotyped Fact package. Then either place the corresponding Fact 

class in this package or relate it to the package with a Dependency relationship. 

8. Create a Schema package that represents the Star Schema of the relevant data 

mart. 

55 



[\ "V" 
SchemaPackagel \ _ __ " ° 

l _ ^ ^ _ _ ^ ^ _ _ _ _ J < < g c h e m a p a c k a g e > > 

SchemaPackagel 
/ \ 

/ \ 

m* * 

tv SchemaPackage2l «SchemaPackage» 
1 SchemaPackage2 

tP 
«FactPackage» «DimensionPackage» 

FactPackage 1 DimensionPackagel 

«FactPackage» n 

FactPackage2 
«DimensionPackage» 4£ 

DimensionPackage2 

Figure 3.2: Different representations 

9. Relate dimensions and facts to the corresponding schema. We do this either by 

linking the Dimension package and the Fact package to the Schema package with 

a stereotyped dependency relationship or by directly including these packages 

in the Schema package. 

We can see two possible "top level" views of the final result in Figure 3.2. On the 

right hand side of the diagram, the "parent" schema package encapsulates both the 

Fact and Dimension packages. Each of the three package folders are displayed with 

the standard UML representation and the corresponding stereotype icon is placed in 

the upper right corner of the package. On the left hand side of Figure 3.2, we see 

an alternate representation of the new Star Schema. Here, the entire package symbol 

has been collapsed into the corresponding stereotype icon and the linkages with the 

Fact and Dimension packages are depicted using dependency relationships. In this 

thesis, the first form of representing the stereotype has been adopted as it tends to 

be more expressive, as well as intuitive for end users. Finally, we note as well that 

the OLAP designer is free to annotate the core diagrams with UML notes in order to 

add more detail, clarify points, describe concepts or characteristics. 
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3.3.3 OLAP hierarchies 

The first two steps of the design algorithm have to be quite precise because the hier­

archy levels of a dimension are ultimately the most important element of the schema 

in terms of data analysis. In a sense, it is this ability to accurately and intuitively 

drill down and roll up through hierarchies that defines the OLAP processing model 

[31]. The primary prerequisite of course is that the sequence of relationships between 

hierarchy levels has to be meaningful. In other words, an aggregation path between 

hierarchy levels must have a valid sequence of roll up and/or drill down operations 

that can be performed by traversing the path. 

We note that in the current model a hierarchy package is used to group related 

model elements of all types, including other packages. This packaging serves two 

purposes. First, the integration of elements into a single package makes the hierarchy 

easier to understand and navigate for end users. Second, packages are easier for the 

user/system to validate separately. Many hierarchy packages, in fact, have a number 

of common restrictions and considerations. 

In turn, all hierarchy packages have a single "owner", which is the associated 

Dimension Package. Therefore, the only relationships between Hierarchy packages 

and Dimension Packages are Package Import and Dependency relationships. In effect, 

a Hierarchy Package is a direct representation of a Dimension. We maintain the notion 

of a distinct Dimension entity, however, since this is a core part of the conceptual 

Star Schema model. In other words, users intuitively view a data mart as a Fact 

table, surround by a series of key Dimensions, not a group of (complex) hierarchies. 

Figure 3.3 illustrates how a dimension package encapsulates a given hierarchy, in this 

case a Strict Generalized Hierarchy (discussed shortly). 
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Figure 3.3: Content of a Dimension package. 

In terms of its actual structure, a Hierarchy is composed of levels. Every hierarchy 

level that has successors and predecessors is specified by a class called Level. Level 

0 of a hierarchy, which is the topmost level, is specified by a distinct class called 

Root, while the leaf level of the hierarchy, which is associated with the most detailed 

data in the dimension, is represented by a class called a Leaf. While it may not be 

immediately obvious, Root and Leaf levels have different properties [17]; hence the 

need to have separate UML representations. Any hierarchy package must have at 

least the two classes Root and Leaf. Note as well the stereotyped classes Root, Level, 

and Leaf are unique to the hierarchy packages. 

A stereotyped association, called RollUpTo, can be defined between hierarchy 

levels and specifies the "aggregation" relationship between these two levels. Again, 

this is the primary traversal action on hierarchy paths (Drill down, of course, is just 

the inverse of Roll up). Roles are used to represent the relationship between two 

levels in terms of how they see each other. In a RollUpTo association, role p (parent) 
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Figure 3.4: Content of a hierarchy package 

represents the direction of the hierarchy roll up, whereas role c (child) represents 

the direction of the hierarchy drill down. In our model it is always possible to drill 

down or roll up in one of the two directions, which means that navigation is always 

supported towards both ends of an association. 

In the example shown in Figure 3.4, a hierarchy is formed by three levels — 

Leaf, Level, and Root. A straight line from one level to another denotes a RollUpTo 

stereotyped association, where a lower level can be rolled up to a higher one. For 

example, a City "Leaf" can roll up to a Province "Level". In concrete terms, this 

might allow the measures values for Montreal and Quebec city to be rolled up or 

aggregated into a provincial total for Quebec. One can also see the roles names, p 

and c, that highlight the meaning of the roll up and drill down association. Finally, 

the notation for the association itself <C RollUpTo (1* —> 1) ^> defines the multiplicity 

of the relationship. In this case, it is used to indicate that many Leaf values (e.g., 

cities) are associated with a single Level value (e.g., province), or that many Level 

values RollUpTo a single Root value (perhaps Province to Country). 

Hierarchy packages are divided into three main package types: simple packages, 
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multiple packages and parallel packages. Separate packages have been defined primar­

ily because it simplifies the meta model and reduces constraint redundancy. Root, 

Level and Leaf classes are the only classes that can be contained in all hierarchy 

packages. A simple package, which is specialized into Strict and Non Strict, can­

not contain any other type of package. A Multiple Hierarchy package is similar to a 

Simple package but has a number of additional properties that are unique to the Mul­

tiple Inclusive and Multiple Alternative hierarchy forms. Parallel Hierarchy packages 

contain multiple simple hierarchies, each with a unique analysis criterion. This also 

implies that a Parallel Hierarchy may have multiple hierarchy packages nested within 

it. 

3.3.4 Analysis criterion 

This thesis represents analysis criteria in the model by attaching a stereotype Crite­

rion comment to the Leaf class, as illustrated in Figure 3.4. Note that while the user 

may visualize data being physically stored at each and every level of the dimension 

hierarchy, this is usually not the case in practice. More likely, the DBMS server stores 

data at leaf-level granularity, then dynamically aggregates data into higher levels at 

query time. As such, it makes sense to associate the Criterion comment with the leaf 

node since hierarchical analysis will be driven from this level. Our choice of using a 

stereotyped UML Comment rather than a UML Note was taken for the following rea­

son. A UML Comment is a meta class of UML, while a UML note is only notational. 

This ultimately allows a UML Comment to serve as a reusable element of a model, 

to be owned by any element, to carry a <C stereotype » , and to appear in the model 

repository [23]. 
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3.3.5 Conformed dimension 

In practice, dimensions are often shared between Star Schemas [21]. In other words, 

an organization might have half a dozen corporate data marts, each representing a 

distinct business process (e.g., sales, inventory). Within these distinct data marts, 

the same dimension could be used repeatedly. Dimensions like Time, Customer, or 

Product would be common examples. While separate dimension hierarchies could 

be defined for each of these schemas, doing so is not only wasteful, but increase the 

likelihood of ambiguity and contradictions. Instead, we introduce the notion of a 

stereotyped Conformed Dimension package. This package allows the user to define a 

"reusable" hierarchy package once, then use the UML import mechanism to include 

this Conformed dimension into any number of distinct schema packages. 

Strictly speaking, a Conformed Package cannot physically belong to any one pack­

age and cannot have a relationship with any package except for the import relation­

ship. This model allows us to significantly reduce the complexity of modeling common 

dimensions as we need not consider dependency relationships between two Schema 

Packages indicate sharing [22]. In particular, we do not have to worry about circular 

dependencies that might occur during the design process, nor the necessity to reduce 

these dependencies by splitting, introducing a third intermediate package, or merging 

packages [24]. In Figure 3.5, we see a simple Conformed Package representing the 

Product dimension. In this case, it is composed of Product, Category and Brand 

levels. 
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Figure 3.5: Content of a Conformed Package 
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Figure 3.6: Time dimension playing distinct roles. 

3.3.6 Role playing dimension 

Sometimes a single dimension can be connected to a fact but play different roles. 

Each role is uniquely represented by a Dimensioning association that is identified by 

the tag Role. For example, Figure 3.6 shows a Time dimension that is associated 

with more than one attribute of the Sales fact table. In particular, it can be used to 

perform analysis by two distinct time values, Order Date and Payment Date. This is 

represented in the figure by two distinct roles for this dimension. 

3.3.7 Degenerate dimension 

Often, attributes are included in a fact table solely to provide a more intuitive interface 

for end users. Unlike normal fact tables attributes, these degenerate attributes do not 

link the fact table with any of the dimensions in the Star Schema. Instead, they are 

included in the fact table since they may be useful for grouping fact table records 
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during the aggregation process [24]. Common examples are attributes like line number 

and order number that are found in the detailed fact record [34, 31]. 

To be able to represent these attributes, our model includes the stereotyped class 

Degenerate Dimension. This class can only have an OID (Object ID) and one De­

scriptor. For example, in Figure3.6, transaction number is housed in the Degenerate 

dimension Transaction, a class having just a single descriptor, Transaction Number. 

3.3.8 Measure values 

In order to represent the various aggregation measures found in the fact table, three 

data types have been defined: Additive, Semi-additive, and Non-additive. Additive 

measure are the most common type of measure and describes the case whereby addi­

tion can be used to aggregate attribute values along/up all hierarchies defined on a 

dimension. The SUM aggregation function is applicable to these measures. Additive 

measures are also called rate or flow measures. In contrast, semi- additive measures 

are additive along some but not all dimensions. They are also called level or stock 

measures. Finally, non-additive measures, as the name would suggest, cannot be 

summarized using addition. They are often referred to as value-per-unit measures. 

By default, measures within the Fact class are considered to be additive. For non 

additive measures, additive rules are defined as OCL constraints near the Fact class 

as a note. Figure3.6 illustrates the use of these measures in the Sales fact, where 

Quantity and Amount are defined as additive and Price as nonadditive. 

Occasionally, we find situations where the knowledge of the existence of a particu­

lar combination of feature attributes is the only thing that is important. We refer to 

this as a fact-less fact table [21]. For example, an analysis of student attendance might 

be associated with the dimensions student, date, course room, and professor. What 
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is the relevant measure? Basically, it is a yes/no value. Our fact table could then 

simply contain records identifying the valid dimension combinations for attendance. 

3.3.9 At t r ibute 

Four stereotyped Attributes are defined within the new model. OID (Object ID) is 

an identifying attribute that is used for aggregation purposes. A Descriptor is simply 

a label that represents the name of a level. Level Attribute provides descriptive 

information about dimension instances. Finally, we also employ the Distribution 

Attribute for defining measure distributions in the Multiple Inclusive package. The 

OID and Descriptor attributes are particularly important for interfacing with OLAP 

tools, since this information typically becomes part of the tool's meta data. 

3.3.10 Time dimension 

In a data warehouse, Time is the most common, and arguably most important, 

dimension. Many forms of analysis involve either historical trends or inter-period 

comparisons. For example, Inmon defines a data warehouse as "a subject-oriented, 

integrated, time-variant, non-volatile collection of data in support of management's 

decision" [18], while Kimball states that "The time dimension is the one dimension 

virtually guaranteed to be present in every data warehouse because virtually ev­

ery data warehouse is a time series" [21]. For this reason, our model pre-defines a 

stereotyped Time hierarchy package composed of Year, Month, Week, Day and Time 

stereotyped classes. Each includes tagged values called Type that define internal, 

time-related representations. For example, the Time class contains the data types 

hour, minute, second, and time. In addition, as per the work of Malinowski [24], we 

also define an Instant, corresponding to a single, precisely defined point in time, and 
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Figure 3.7: Content of the Time package. 

an Interval, which denotes an instant-to-instant time period. 

We note that the Time hierarchy can only belong to a Dimension package or a 

Conformed package. Figure 3.7 illustrates the main elements of the Time package. 

Specifically, one can see how alternate aggregations are defined by the Year —> Quarter 

—> Month —> Day and Year —> Week —> Day paths. This, in fact, is an example of a 

Multiple Alternative hierarchy. 

3.3.11 The global view 

"Zooming out" allows one to see the entire Star Schema by looking at the Schema 

Package and its constituent Dimension and Fact packages. With respect to the di­

mension packages, an indicator signals to the user whether or not the package is 

actually an imported entity from a conformed (i.e., shared) package. In Figure 3.8, a 

typical "zoomed" Star Schema is shown. 
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Figure 3.8: Content of a Schema package. 

3.3.12 A UML perspective 

In Figure 3.9, a portion of the UML meta model is presented to show where the 

stereotypes fit. Ultimately, all the meta classes come from the Core Package, a sub-

package of the UML Foundation Package. In this figure, stereotypes unique to the 

current work are colored in dark grey. Stereotypes identified by previous researchers 

in the area [22] are unshaded. 

3.3.13 Meta model 

In practice, the designer is less concerned with UML packages than they are with 

the conceptual meta model. Figure 3.10 illustrates the "big picture" for our new 

0 0 meta model (the illustration is created as a UML class diagram), tying together 

most of the elements discussed in this section. The model is "driven" by the OLAP 

Hierarchy elements located in the center of the diagram. One can see how hierarchies 

are constructed from Levels and contained within Dimensions. The levels themselves 
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Figure 3.9: Extension of the UML with multi-dimensional stereotypes. 
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are manufactured from Level, Root and Leaves, plus OIDs, Descriptors, and Level 

Attributes. An individual level must have just one Descriptor and one OID, but can 

have more than one Level Attribute. The Leaf can contain one or more Critera. 

Root, Level and Leaf elements can only belong to a Dimension Package (through a 

given hierarchy). A Dimension Package, in turn, can be composed of one or more 

hierarchies. 

In the bottom half of the diagram, we can see how hierarchy packages can be 

defined as either Simple, Multiple or Parallel. Simple hierarchies can be specialized 

into Strict or Non Strict. In turn, Strict hierarchies can be specialized into Strict 

Symmetric, Strict Asymmetric, Strict Generalized, and Strict Ragged. Non-strict 

can of course be specialized into Non-strict Symmetric, Non-strict Asymmetric, Non-

strict Generalized, and Non-strict Ragged. Multiple hierarchies can be specialized 

into Multiple Inclusive and Multiple Alternative. Finally, Parallel hierarchies can 

be specialized into Parallel Independent and Parallel Dependent. Note that each 

OLAP hierarchy package must have RollUpTo associations with varying cardinalities, 

depending on the hierarchy in question. 

3.4 The multi-dimensional profile 

In this section, we bring all of the preceding concepts and elements together in the 

form of a UML profile. While much of the profile represents the new work described 

in the preceding section, we re-iterate that we also utilize a handful of "standard" 

stereotypes defined in the literature, most notably in [22]. We provide a short sum­

mary of these stereotypes in Table 3.1. The remainder of this chapter will deal with 

our own contributions to the new OLAP profile. 
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Name 

Schema Package 

Fact Package 

Dimension Pack­
age 
Fact 

Dimension 

OID 

Descriptor 

Level Attribute 

Measure 

Rollup 

Degenerate Fact 

Base Class 

Package 

Package 

Package 

Class 

Class 

Attribute 

Attribute 

Attribute 

Attribute 

Association 

Association 
Class 

Description 

Packages of this stereotype represent 
multi-dimensional Star Schemas 
Packages of this stereotype represent 
multi-dimensional facts 
Packages of this stereotype represent 
multi-dimensional dimensions 
Classes of this stereotype represent 
facts in multi-dimensional model 
Classes of this stereotype represent di­
mensions in multi-dimensional model 
Attributes of this stereotype represent 
OID attributes of levels in a multi­
dimensional model 
Attributes of this stereotype repre­
sent attributes of levels in a multi­
dimensional model 
Attributes of this stereotype repre­
sent descriptor attributes of levels in a 
multi-dimensional model 
Attributes of this stereotype repre­
sent attributes of a fact in a multi­
dimensional model 
Associations of this stereotype repre­
sent associations between level 
Association classes of this stereotype 
represent association classes in multi­
dimensional model 

Table 3.1: Summary of standard data warehousing stereotypes 
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Figure 3.10: The meta model. 

3.4.1 Simple Stereotypes 

We will now look at how stereotypes are actually implemented in the new environ­

ment. We will begin with the "simple" stereotypes, before moving on to the more 

sophisticated hierarchy stereotypes in the next section. 

Stereotyped Attributes 

Only the Fact, Root, Level, and Leaf classes, as well as Degenerate Dimensions and 

Measure Distributions, can have attributes. The Root, Level and Leaf consist of three 

types of stereotyped attributes: OID, Descriptor and/or Level Attributes. Degener­

ate Dimensions can only have an OID and a Descriptor. A Measure Distribution 

contains only the stereotyped attribute Distribution, which is of type Integer since 

this attribute always represents a distribution percentage. Facts can have just the 

stereotyped attribute Measure. Dimensions have no attribute since they essentially 
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just represent a grouping concept. 

Stereotyped Classes 

The main classes for OLAP hierarchy modeling are Root, Level and Leaf. These 

classes must be owned by a hierarchy package. The Fact class can only be associated 

with a Dimension class. In turn, the Dimension class can be related to a Fact and 

to one Leaf. The class Degenerate Dimension can only be connected to a Dimension 

class. 

Stereotyped Comment 

There is just one stereotyped comment, Criterion, that is connected to the Leaf class. 

There can be just one Criterion in simple hierarchy packages, though multiple criteria 

can be found in complex hierarchy packages. 

Stereotyped Associations 

The relationships between hierarchy levels are defined by the stereotyped association 

RollUpTo, with role p at one end and role c at the other end. Varying multiplicities are 

associated with different hierarchy forms. For constraint purposes, these relationships 

are characterized as RollUpTo(cV -> lp), RollUpTo{cO* - • lp), RollUpTo(cl -» 

lp) , RollUpTo(c0..1 -> lp), RollUpTo(c\* - • 0..1p), RollUpTo{cO* - • 0..1p), 

RollUpTo(cl - • 0..1p), RollUpTo{cO.A -> lp), RollUpTo(cl* - • l*p), RollUpTo(cO* -* 

l*p), RollUpTo(cl —> l*p), and RollUpTo(c0..1 —> l*p). In addition, the stereotyped 

association Dimensioning is used to aggregate facts. A stereotyped dependency is used 

to link dimensions, facts and star schemas. The stereotyped association Hierarch is 

used to associate leaf levels to dimensions. 
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Stereotyped Association Class 

The stereotyped association class Measure Distribution is only used in the stereotyped 

package Multiple Inclusive and, as the name implies, represents the distribution of a 

measure value across the instance of a level. 

3.4.2 Stereotyped Packages 

The hierarchy packages are the core elements of the new design. We present each 

below, along with a number of images that give an intuitive feel for their structure. 

Strict Symmetric Package 

This package, represented by the icon in Figure 3.12(a), represents a simple strict 

symmetric hierarchy in which (i) only one path exists at the schema level, and (ii) 

all levels are mandatory. Strict Symmetric hierarchies (as implied by the relevant 

cardinalities) require that all parent members have at least one child member. A 

child member cannot belong to more than one parent member, meaning that this 

package can only contain the two stereotyped associations RollUpTo(cl—>lp) and 

RollUpTo(cl*—>1) between hierarchy levels. By extension, there is only one Root 

and one Leaf class in this package. In addition, since this package represents a simple 

hierarchy, there is just one criterion for analysis, which means that only one Criterion 

comment can be used. In Figure 3.11, one can see that all levels are mandatory. The 

properties of the the various simple hierarchies, as well as their associated represen­

tation (implementation) in UML and OCL, are summarized in Table 3.2. 
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Figure 3.11: Strict Symmetric package. 

(a) (b) (d) 

Figure 3.12: Hierarchy icons for (a) Strict Symmetric (b) Strict Asymmetric (c) Strict 
Generalized (d) Strict Ragged 
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Figure 3.13: Strict Asymmetric package. 

Strict Asymmetric Package 

This package represents a strict asymmetric hierarchy, and is represented by the icon 

in Figure 3.12(b). This hierarchy form has only one path at the schema level but, 

as implied by the cardinalities, some lower levels of the hierarchy are not manda­

tory. All parent members must have at least one child member. A child member 

cannot belong to more than one parent member, meaning this package can only con­

tain the three stereotyped associations RollUpTo(cl—>lp) , RollUpTo(cl* —>lp) and 

RollUpTo(c0..1—>lp) between hierarchy levels, and RollUpTo(cl—>l*p) can only con­

nect the upper levels of the hierarchy. In addition, since it is "simple" it can have 

just one criterion for analysis (i.e., only one Criterion comment can be used in this 

Package). In Figure 3.13, one sees that the lower level ATM is not mandatory. 
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Properties 

Account for the 
same analysis 
criterion 
Only one path 
All levels are 
mandatory 

Some lower 
levels are not 
mandatory 
All paths repre­
sent one hierar­
chy 
Includes sub­
types 

Can contain 
multiple ex­
clusive paths 
sharing some 
levels 
Can contain 
multiple ex­
clusive paths 
sharing some 
levels 

Root and Leaf 
are the same for 
all paths 
Non-strict hier­
archies 

Stereotype 

Criterion comment 

Root and Leaf classes 
RollUpTo{cl -* lp) , 
RollUpTo(cl* —» lp) asso­
ciations 
RollUpTo{cO* -» lp) ,and 
RollUpTo(c0..1 —> lp) asso­
ciations 
Root and Leaf classes 

Generalization 

XOR constraint 

RollUpTo(cV -» lp), 
RollUpTo(cO* -> lp), 
RollUpTo(cl -> lp) , 
RollUpTo{c0..1 - • lp), 
RollUpTo{cV -> 0..1p), 
RollUpTo(cO* - • 0..1p), 

•RollUpTo(cl - • 0..1p), and 
RollUPTo{c0..1 -* lp), 
Root and Leaf classes 

RollUpTo{cl* -+ l*p), 
RollUpTo{cO* - • \*p), 
RollUpTo{cl -> l*p), and 
RollUpTo{c0..1 - • l*p) 

OCL 

Just one criterion 

Just one Root and one Leaf 
Only these associations are 
allowed 

Only these associations are 
allowed 

Just one Root and one Leaf 

Generalization can be used 
in Categorization package 
with RollUpTo associations 
At least two XOR con­
straints in Generalized 
package 

Only these associations are 
allowed 

Just one Root and one Leaf 

Only these associations are 
allowed 

Table 3.2: UML/OCL properties for Simple hierarchies 
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Figure 3.14: Strict Generalized package. 

Strict Generalized Package 

This package contains a strict generalized hierarchy, and is represented by the icon in 

Figure 3.12(c). This hierarchy can contain multiple exclusive paths sharing various 

levels. Recall that the term exclusive implies that, given a Leaf level, the path back 

to the Root level is uniquely defined. The {xor} annotation in UML is proposed here 

to indicate that, for all members, the paths are exclusive. This package can only 

contain the eight stereotyped associations RollUpTo(cl*—>lp), RollUpTo(cO*—>lp), 

RollUpTo(cl-^lp) , RollUpTo(c0..1-»lp), RollUpTo(cl*-»0..1p), RollUpTo(cO*->0..1p) 

RollUpTo(cl—>0..1p), and RollUpTo(c0..1-->lp). In Figure 3.14 we can see where both 

the common and unique levels are represented. The {xor} constraint is between the 

sector/category and company/person levels. In addition, since this package represents 

a simple hierarchy, there is just one criterion for analysis. 
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Figure 3.15: Strict Ragged package. 

Strict Ragged Package 

This package represents a strict ragged hierarchy, and is represented by the icon 

in Figure 3.12(d). Recall that a ragged hierarchy is a special case of a generalized 

hierarchy with a restriction that there is just one Root and one Leaf in this package. 

As is the case with all simple hierarchies, there is only one criterion for analysis and 

thus just one Criterion comment in the Package. Figure 3.15 illustrates the structure 

of a ragged hierarchy. 

Non-strict Packages 

As previously discussed, the various simple hierarchies can also have many-to-many 

relationship between levels, thus making them non-strict. These variations on the sim­

ple hierarchies — Non-strict Asymmetric, Non-strict Asymmetric , Non-strict Gener­

alized and Non-strict Ragged — are symbolized by the icons in Figure 3.16. For the 

most part, they have the same features and restrictions as the "strict" versions, with 

the addition of the non-strict level constraints. For example, Figure 3.17 illustrates a 

simple Non-strict Symmetric Hierarchy package in which the Employee/Department 

0..' 

Office «RollUpTo(0*->1)» 
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(a) (b) (c) (d) 

Figure 3.16: Hierarchy icons for (a) Non-strict Symmetric (b) Non-strict Asymmetric 
(c) Non-strict Generalized (d) Non-strict Ragged 
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Figure 3.17: A non-strict version of a Simple Symmetric hierarchy. 

aggregation relationship is defined as RollUpTo(cl* —> 1 * p). We will not list each 

of the other Non-strict variations as their structure is quite similar. 

Multiple Inclusive Package 

This package defines the multiple inclusive hierarchy, and is represented by the icon 

in Figure 3.19(a). Again, in a multiple inclusive hierarchy, several non-exclusive 

simple hierarchies share levels. Just one Criterion can be used in this package since 

these simple hierarchies account for the same analysis criterion. The stereotyped 

association class Measure Distribution is proposed to represent the requirement to 

define a distribution of the measure across the shared level(s). As seen in Figure 3.18 

79 



«Multiplelnclusive» 
Comitee Hierarchy 

-P XZL 
«RollUpTo(1*->1)» 1 

1.. 

^lWMi#I 

Sport Club| 

Recreation Program 

t «MeasureDistribution»h- — -

MM. 
1.. 

«RollUpTo(1*->1)>^P 

Sport Association 

«RollUpTo(1*->1)» 1 

Regional Commitee 
1 l " p 

<RollUpTcl(1'-> '•>!)» 
«MeasureDistribution» 

«Dislribution»-Sport Association = 45 
«Distrlbution»-Recreation Program = 5| 

Figure 3.18: Multiple Inclusive package. 

cS 
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Figure 3.19: Hierarchy icons for (a) Multiple Inclusive (b) Multiple Alternate (c) 
Parallel Independent (d) Parallel Dependent 

Measure Distribution is used between Sport Association and Recreation Program. 

Table 3.3 summarizes the unique properties of complex hierarchies (Multiple and 

Parallel) and how OCL and UML can be used to represent these properties. 

Multiple Alternative Package 

This package represents a multiple alternative hierarchy, and is represented by the 

icon in Figure 3.19(b). Again, just one Criterion can be used in this package since 

all included simple hierarchies account for the same analysis criterion. An example is 

given in Figure 3.20, where two alternate Time hierarchies are illustrated. Unlike the 
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Properties 

Account for the same 
analysis criteria 
Represent the require­
ment of measure dis­
tribution 
Represent different 
analysis criteria 
A collection of simple 
Hierarchies 

Stereotype 

Criterion comment 

Measure Distribution 
association class 

Criterion comment 

Strict Symmetric, 
Strict Asymmetric, 
Strict Generalized, 
Strict Ragged, Non-
strict Symmetric, 
Non-strict Asym­
metric, Non-strict 
Generalized, and 
Non-strict Ragged 

OCL 

Just one criterion 

A package must have at 
least one Measure Distribu­
tion 
More than one criterion 

These packages allowed 

Table 3.3: UML/OCL properties for Complex hierarchies 

Multiple Inclusive version discussed above, there are no shared levels in this case. 

Parallel Independent Package 

This package is used to represent a parallel independent hierarchy, and is symbolized 

by the icon in Figure 3.19(c). The Parallel Independent hierarchy has no shared levels 

between the different hierarchies, which implies that there are no associations between 

hierarchies in this package. Moreover, in contrast to the Multiple hierarchies, there are 

distinct aggregation criteria for each of the separate simple hierarchies. In Figure 3.21, 

we can see these distinct criteria — Organization Structure and Geographic Location 

— on the two independent pathways. 
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Calendar 

«Rol lUpTo(r ->1)» 

Figure 3.20: Multiple Alternative package. 

T\ 
«Cr i te r ion» < 

Org.Structure 
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<,<RollUpTo(1*->1): 
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I «RoiiupTo(r->i)» KlSSSifciii~ 

_l Level 
«RollUpTo(1*->1)» 

«Cr i te r ion» r 
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fe.':.:...-y.< 
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Figure 3.21: Parallel Independent package. 
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Figure 3.22: Parallel dependent package. 

Parallel Dependent Package 

This package is used to represent a Parallel Independent hierarchy, and is symbolized 

by the icon in Figure 3.19(d). In this case, the simple hierarchies share one or more 

levels. Some sort of association — such as import, merge or dependency — can 

be used to connect these levels. An example is given in Figure 3.22. Here, we see 

two different simple hierarchies, symmetric and ragged, combined into one parallel 

hierarchy, where the State level is common to both. Again, separate Analysis Criteria 

are used. 

3.5 Conclusion 

Data Warehouses are defined using a multi-dimensional view of data which, in turn, 

is based on the concept of facts, measures, dimensions, and hierarchies. These core 

structures allow OLAP users to query warehouse data using operations such as roll-

up, drill-down, pivot, etc. Ultimately, it is the structure of the dimensional hierarchies 
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that drives such analysis, as the particular definition permits analysis on the basis 

of criteria such as company organization, geographic location, product category or 

time. Despite their significance, however, current OLAP systems can support only a 

limited number of the hierarchy forms commonly found in real-world applications. 

In complex design environments such as this, graphical representations greatly fa­

cilitate the understanding of application requirements. This chapter has presented a 

conceptual multidimensional model based on a profile extension of the standard UML 

notation. The proposal has built upon the hierarchies defined in [44, 45], taking into 

account their differences at the schema level. The new profile essentially consists of 

a series of new stereotypes that specialize packages, classes, and associations for the 

OLAP domain. Where necessary, logical constraints are placed upon the elements 

through the use of the OCL formal language. Both simple and complex hierarchies 

have been considered. In the former case, simple hierarchies — including symmetric, 

asymmetric, generalized, and ragged — allow the designer to model standard tree-

based hierarchies. Options for both strict and non-strict variations are provided. In 

the latter case, complex hierarchies are specialized into multiple and parallel varia­

tions, and allow the designer to incorporate multiple simple hierarchies into the same 

conceptual structure. 

As we will see in the next chapter, the new profile is integrated into the MagicDraw 

development environment, one of the leading UML design tools. The addition of 

new images and icons ultimately allows the designer to construct new models in an 

intuitive, drag-and-drop manner. 
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Chapter 4 

OLAP Modeling Environment 

4.1 Introduction 

In the previous chapter we described how we utilize UML to represent the properties 

of multidimensional environments by mean of a UML profile that holds a collection 

of defined stereotypes. A set of UML extension mechanisms (stereotypes, tagged 

values and constraints) has been used for specializing UML elements to represent 

various OLAP concepts. In the current chapter we will show how the profile defined 

in Chapter 3 is used to create a more robust "OLAP Modeling Environment" (OME). 

In other words, our objective is to incorporate the modeling theory into a development 

environment that can be intuitively exploited by designers with a solid understanding 

of OLAP fundamentals, but perhaps limited exposure to the nuances of UML. 

This chapter is organized as follows. Section 4.2 provides a general overview of 

the key features of the MagicDraw UML tool, including the use of domain specific 

extensions. Section 4.3 discusses the implementation of the "OLAP modeling Envi­

ronment" , followed in Section 4.4 by a small case study that shows how our design 

guidelines are applied. Conclusions are then provided in Section 5. 

85 



4.2 MagicDraw UML Tool 

While the material presented in Chapter 3 allows for a complete representation of vir­

tually every kind of OLAP hierarchy found in real world environments, we-reiterate 

that our ultimate objective is to provide "end-to-end" facilities within the OLAP 

domain. In other words, we would like to integrate the core UML profile into an 

interface that (i) exposes just the right level of detail and (ii) encourages the appro­

priate use of the model. In practice, this implies that the profile should be accessible 

within some form of CASE tool application. 

Rather than creating our own CASE tool, we prefer to extend a well known 

CASE tool already available in the market. In this way, we can guarantee that our 

contribution can be easily used by a great number of users. Magic Draw [3] is one 

of the most well known visual UML modeling systems. It is also one of the most 

accessible. In this section, we give a brief explanation of the MagicDraw tool, at least 

in terms of those features that we directly build upon. 

4.2.1 MagicDraw Custom Diagram Wizard 

The latest version of MagicDraw offers a new engine for adapting domain-specific pro­

files into the interface. In short, with a relatively modest effort, we were able to build 

an OLAP-specific modeling environment while essentially hiding the UML under­

neath. The customization engine utilizes a MagicDraw component called a Custom 

Diagram Wizard that, in turn, allows us to create the following OME elements: 

• Customized OLAP diagrams based on our profile. As seen in Figure 4.1, 

we can create a new "OLAP Diagram" by extending the UML Class Diagram, 

and associate with it a new Icon. Further, in Figure 4.2, we see that our 
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K" Customize Diagram Wizard 

6 1. Specify diagram type and icon 

':• 2. Specify modules 

3. Specify toofcars 

4. Specify toolbar buttons 

5. Specify symbols properties 

6. Specify smart manipulatore 

Enter the type name of the custom diagram, 
select base diagram type, and choose the 
desired icon for the new diagram type. 

Type; 

Base Diagram Type 

Abbreviation: 

Category: 

Icon-

Browser 

^P 

1 Remove 1 

OLAP Diagram 

: Class Diagram 

OLAP 

: 

Toolbar SVG 

| ... J | ... j 
1 Remove Remove 

"Browser" icon is for 8rowser and Menu (16 x 16) 
"Toolbar" icon is for Toolbars buttons (16x16). 
"SVG" is for drawing. 

Figure 4.1: Specifying the diagram type and icon 

"Hierarchy" profile (and all its constituent elements) is identified as supporting 

the new OLAP diagram (along with the UML Standard Profile). This Hierarchy 

profile is loaded every time an OLAP Diagram is created. 

• Custom OLAP toolbars. In order to provide the designer with a clean, in­

tuitive interface, we have defined a series of new toolbars. The main box in 

Figure 4.3 shows toolbars corresponding to many of the elements defined in the 

previous chapter: Strict Symmetric Hierarchy, Non-Strict Symmetric Hierar­

chy, Strict Asymmetric Hierarchy, Non-Strict Asymmetric Hierarchy, Multiple 

Inclusive Hierarchy, Multiple Alternative Hierarchy, Parallel Independent Hier­

archy, and Parallel Dependent Hierarchy, as well as the Time Hierarchy toolbar 

for designing time dimensions, and the DW toolbar for specifying the entire 
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§•" Customize Diagram Wizard 

( j 1. Specify diagram type and icon 

o 2. Specify modules 

Q 3. Specify toolbars 

4. Specify toolbar buttons 

5. Spedfy symbols properties 

6. Specify smart manipulators 

Manage modules you want to use in the new 
diagram type. 

Modules that will be used in new diagram type: 

EgUML Standard ProFile.xml 

Add Remove Diagram Stereotype 

< Back Next > Finish Cancel Help 

Figure 4.2: Specifying the module 



I f Customize Diagram Wizard 

• - I . Specify d iagram type and icon JTooibsr Open:L A d d T o c i b a r ' CS New Toolbar 

j"*".. Common (from Any Diagram) 

Pi- Profiling Mechanism (from Clai5 Diagram) 
I R^"0** JJJ C | a j ! D i a g r a m / f r o m artj,. Diagram) 

*o Uje Case Diagram (from Static Diagram) 

*% Implementation Diagram (from Static Diagram) 

L Down gfe compos i te Structure Diagram ( f rom Static Diagram) 

' l r In fo rmat ion Flows ( f rom Static Diagram) 

' < Back ; [ Next > "j \ Finish I i" Cancel j ! Help ] 

Figure 4.3: Specifying the associated toolbars 

DW schema. 

• Custom OLAP toolbar buttons for stereotyped element creation. Each 

toolbar has its own buttons that are stereotyped based on the UML "Hierarchy" 

profile. The Strict Asymmetric Hierarchy toolbar, for example, is shown in 

Figure 4.4. Here, we see only buttons/icons relevant to that particular type 

of hierarchy: Root, Level, Leaf, Criterion and several RollUpTo entries, each 

corresponding to a distinct cardinality. Figure 4.5 illustrates the dialogue that 

allows us to further customize each button. 

• Custom smart manipulators. Smart manipulators are special symbols that 

appear in a popup window when a stereotype is selected in the diagram. For 

example, as illustrated in Figure 4.6, when selecting the stereotyped class Di­

mension, the suggested relationship will be a Dimensioning association or a 

Hierarch association. We see how to define the popups in Figure 4.7, where the 

suggested relationships are Dimensioning and Association, and the suggested 

•',. • 2 . Specify modules 

•.©• 3 . Specify toolbars 

4. Specify toofoar buttons 

'>, Spec i fy sn-KH-S s'ii~:tr> £!«*.;!?'>?,* 

Choose diagram toolbars. 

t? „ _ 
- DW 

j tt Strict Symmetric Hierarchy 
\ H Won Strict Symmetric Hierarchy 
| }"• Strict Asymmetric Hierarchy 
A Non Strict Asymmetric Hierarchy 
A Strict GeneraBzed Hierarchy 
'f. Nan Strict Generalized Hierarchy 

i i ; Multiple Inclusive Hierarchy 
•£; Multiple Alternative Hierarchy 
V ParaHel Independent Hierarchy 
V Parallel Dependent Hierarchy 
•!• Time Dimension 
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f " Customize Diagram Wizard jjMSHHffl 

'". 1. Specify diagram type and icon 

"• 2. Specify modules 

•; 3. Specify toolbars 

••©"• 4. Specify toolbar buttons 
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Figure 4.4: Specifying the associated toolbar buttons 
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R.e>nov» ; 
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•" ! List as element 

OK Cancel 

Figure 4.5: Editing buttons 
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«Dimension» = 

«Diffiension» «Dimensioning» 
••'- • • " C » 

«Fact» m 

Figure 4.6: Smart manipulators 

targets are Leaf and Fact. 

4.2.2 Creating domain-specific meta models 

In this research, we have proposed the use of UML to create an object-oriented 

conceptual model for data warehousing and OLAP systems. Even though UML is a 

general modeling language, it can, as we've seen, be customized to a specific problem 

domain via the use of stereotypes, tagged values and constraints. However, because 

UML is a general purpose notation, this same generic quality may limit its suitability 

for OLAP modeling in that our new stereotypes only extend an existing element of 

the UML language. Ultimately, the semantics and appearance of the element remains 

the same. For example, if we apply a stereotype to a package, the stereotyped element 

is still just a basic UML package that just has the additional properties defined by 

the applied stereotype. In other words, applying stereotypes to an element does not 

hide the various UML properties, such as those defined in Figure 4.8. 
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O 4. Specify toolbar buttons 
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diagram. 
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Figure 4.7: Specifying smart manipulators 

For this reason, a "direct" implementation of the UML profile is likely to be 

distracting and confusing for users since the profile will include properties of both 

the OLAP domain and the standard UML vocabulary. In fact, it would be much 

better if we could hide UML notation and terminology and expose just the OLAP 

concepts instead. To accomplish this objective, we build upon a mechanism proposed 

in [23] which converts stereotypes to meta model elements (i.e., stereotyped elements 

are treated as instances of new meta classes in the modeling environment). This 

mechanism is implemented in the Magic Draw UML tool. In fact, use of this approach 

gives rise to what we call the "OLAP Modeling Environment". 

In short, the idea is to build a "customized UML profile" by adding a customiza­

tion package to a profile that, in turn, contains customization classes. These classes 

customize stereotypes by virtually transforming them into new meta model elements. 

In addition, customization classes restrict the UML meta model by hiding needless 
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Figure 4.8: UML properties 
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restricts 

V 

UMLMetamodel UML Profile Customization 

Transforms into metamodel 

Figure 4.9: The customization layer 

Tag name 

customizationTarget 

representationText 

usedUMLProperties 

suggestedOwnedDiagrams 
suggestedOwnedTypes 
possibleOwners 

Description 

The stereotype for which the cus­
tomization applies 
Alternative name to be used in the 
modeling environment 
Standard properties of the UML ele­
ment to be used by the customized el­
ement 
Diagrams that should be suggested 
Elements that should be suggested 
Possible owners of the customized ele­
ment 

Table 4.1: Customization stereotype tags 

parts and enabling certain rules that improve the usability of the interface (as previ­

ously noted, hierarchy constraints are specified with OCL). Figure 4.9 illustrates how 

the customization layer relates to the UML profile and UML meta model. 

The customization layer itself is constructed primarily upon the <cCustomization3> 

and <CvalidationRule;s> stereotypes. Briefly, a ^Cus tomiza t ion^ stereotype is used 

for customizing the appearance of the stereotyped element. Table 4.2 includes the 

properties (tags) of the -^Customization^ stereotype that have been used in our re­

search. A <CvalidationRule» stereotype, on the other hand, represents a constraint 

for validating the correctness and completeness of the user model. Table 4.2 summa­

rizes the various properties (tags) of the <^validationRule3> stereotype. 
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Tag name 

Severity 
Error message 

Abbreviation 

Description 

Importance of validation error 
An explanation of error if a model element 
does not conform to the constraint specifica­
tions 
A short reference name for identifying vali­
dation error type 

Table 4.2: Validation rule stereotype tags 

4.2.3 Validation in MagicDraw 

Some of the multi-dimensional properties that are mapped to stereotypes, tagged 

values, or customization classes are quite complex. As noted, we use OCL for this 

purpose. To this end, several "validation suites" have been created to verify the 

model (i) in its entirety, (ii) on a part-by-part basis (e.g., a specific hierarchy), or (iii) 

in real time as models are being composed (using what are called "active validation" 

suites). 

To run a validation process, a group of rules (or a validation suite) must be selected 

and a specific part of the model must be identified. In Figure 4.10, we see that the 

"Data warehouse" validation suite has been selected (i.e., validate everything). 

4.3 Creating the OLAP Modeling Environment 

In this section, we describe the process or methodology by which the OLAP model­

ing Environment (OME) was constructed. Again, this is based upon the techniques 

proposed by Silingas [23] that make use of the MagicDraw customization engine. In 

short, the six core steps that have been utilized include: creating the meta model, 

mapping the meta model to a UML profile, specifying validation rules, defining stereo­

type customizations, and creating a custom diagram. A work flow diagram describing 
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W Validation 
1%, 

Validation j 

Validation Suite: Q Validation DataWarehouse [DW] • 

Validate For: Validation Selection •»••> E Z l 

Minimal Severity: ' CJ) >=debug • ; 

Validation Options 

validw Cancel Help 

Figure 4.10: Validation 

the OME construction process is illustrated in Figure 4.11. 

4.3.1 Task One: Identify OLAP concepts and relationships 

In the first stage, we identify the core multi-dimensional concepts, properties, and 

relationships. For this purpose, we use a UML class diagram. The end result is 

the OLAP Hierarchy meta model illustrated in Figure 4.12 (this is a copy of the 

diagram from Chapter 3). The supplemental diagram, shown in Figure 4.13, defines 

the possible associations between arbitrary levels in the various hierarchies. 

4.3.2 Task Two: Prepare UML OLAP hierarchy profile 

Building the profile-based OME first requires mapping the meta model to standard 

UML meta classes. Most of the underlying concepts are mapped to Package, Class 

and Association meta classes, with tags defining additional properties that are missing 

in the default UML meta model. At this stage, stereotypes are added to create a 

domain-specific profile. In Figure 4.14, we see the more or less direct mapping of 
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Tasks Artifacts 

1 
1.Identify OLAP Concepts and Relations OLAP Hierarchies Metamodel 

JL 
2. Prepare UML Hierarchy Profile - > UML Hierarchy Profile 

... 

JL 
3. Specify Validation Rules 

JL 
4. Specify Stereotype Customization - > Customization Module for OH 

±. 
5. Define OLAP Custom Diagram 

• > 
Configuration of OME 

3E 
6. Model Sample for Testing OME - > OH Sample Model 

Figure 4.11: A work flow for creating DSML using customized UML profile 
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Figure 4.12: The basic hierarchy meta model 
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Figure 4.14: An illustration of the Hierarchy Profile 

the OLAP meta model to the stereotyped Hierarchy Profile. Table 4.3 lists some of 

the important OLAP concepts that have been defined, as well as their names in the 

Hierarchy Profile, and their meta class bases. 

4.3.3 Task Three: Define Validation Rules 

Every stereotype has several OCL-based validation rules. Figure 4.15 shows the OCL 

constraints for the stereotyped package Multiple Inclusive. In addition, some custom 

properties in the <CvalidationRule^> stereotypes are used, including severity, error 

message, and abbreviation. For example, the meta model rule that a Strict Symmetric 

hierarchy can have at most one Root class can be expressed in OCL as: 

context StrictSymmetric inv singleRoot 

self.ownedElement —> select( me — me.oclIsTypeOf(Root)) —> size() < 1 

In Figure 4.16, we present a screen shot from the OME indicating the existence 
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OLAP Concepts 

Strict Symmet­
ric 
Strict Asymmet­
ric Hierarchy 
Parallel In­
dependent 
Hierarchy 
Conformed 
Dimension 
Time Dimension 
Roll up relation­
ship 
Dimension Level 
Degenerate Di­
mension 
Analysis Crite­
rion 

Hierarchy Pro­
file 

Hierarchy 

Strict Asymmetric 

Parallellndepende 

ConformedPackag 

TimePackage 
RollUpTo 

Level 
DegenerateDimen 

Criterion 

UML metaclass 

StrictSymmetric Package 

Package 

nPackage 

e Package 

Package 
association 

Class 
3i6fe,ss 

Comment 

Table 4.3: UML profile for defining OLAP hierarchy structure 
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Figure 4.15: Multiple inclusive hierarchy constraints. 
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Figure 4.16: Validation error for a double Root in a Strict Symmetric hierarchy. 

of a model not conforming to the above validation rule. 

In total, around eighty validation rules have been denned to cover the most impor­

tant aspects of OLAP Hierarchy modeling. Because of the large number, we divided 

them into several validation suites by applying the <tCvalidationSuite3> stereotype. 

In general, this simplifies the interface and gives the user greater flexibility during 

the validation process. As seen in Figure 4.17, several validation suites have been 

created. 

4.3.4 Task Four: Define a Customization Layer 

In the fourth stage, we add a customization layer for visualization purposes. We have 

defined customization classes for almost every stereotype and then grouped these 

classes into a Customization package within the Hierarchy profile. In Figure 4.18 we 
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Figure 4.17: Validation suites. 
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Figure 4.18: A customization of the Dimension Package 

see the customization classes for the stereotyped class Level, as well as the stereo­

typed Multiple and Parallel packages. In Figure 4.19 a customization dialog for the 

stereotyped class Level, along with its stereotyped attributes, is illustrated. 

4.3.5 Task Five: Define the OLAP Diagram 

At this point we are able to define the OLAP diagram and assign icons by using the 

MagicDraw Customized Diagram Wizard, as discussed previously. Together with the 

various stereotype specifications, the new OLAP diagram provides the basis for simple 

and intuitive OLAP design. From the user's perspective, much of the complexity of 

the underlying UML vocabulary has been hidden. In its place is a "simple" design 

environment, with the various components of the OLAP domain neatly organized 

into a series of toolbars. In turn, each of these toolbars exposes a subset of OLAP 

concepts that are constrained so as to limit the relationships that can be formed 

between them. A sample screen shot of the resulting OME design environment is 

«Customization» 
CustomMultiplePackages 

«Cu3tomlzation» 
customizationTarget = 

i; Multiplelnclusive 
• i ; MultipleAlternative 

hideMetatype = true 
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hideMetatype = true 
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representationText = "Parallel Hierarchy" 
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Figure 4.19: A customization dialog for the Level class 

presented in Figure 4.20. 

4.4 Case Study 

In this section, we use a modeling example from [34] to illustrate how the OME might 

be used in practice. This simplified example models some of the activities of a typical 

university. In short, this system is to be used by administrators to analyze their 

position with respect to research and funding. 

4.4.1 Requirement Specification 

Requirement specification is generally the first step in the design process. It deter­

mines what data should be available, how it should be organized, and the queries 

that should be possible. At the simplest level, it would consist of the following: 
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Figure 4.20: A screen shot for OME diagram 

1. Identify users: Here, we identify the key decision makers in the university 

setting. For example, who are the people responsible for research activities, 

promotion, evaluation, and strategic analysis? 

2. Determine analytical requirements: In the current case, the general goal 

is to understand the effect of participation by the university's faculty in inter­

national forums such as projects and conferences. 

4.4.2 Conceptual Design 

Analysis of the user's requirements leads directly to the development of a multi­

dimensional schema. For our example, the schema has several dimensions: Calendar-

Time, Diffusion and Affiliation. The Affiliation dimension is included to represent 

the fact that researchers may be associated with several departments. The Diffusion 
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Figure 4.21: Content of the Calendar Time hierarchy 

dimension effectively indicates whether a conference was national or international. 

As per the user requirements, the CalendarTime dimension is represented as a 

Multiple Alternative hierarchy. The stereotyped package MultipleAlternative is cre­

ated. The Root level is Year, the Leaf level is Time, and the intermediate Levels are 

Quarter, Week and Month. In Figure 4.21 the relationships between these levels are 

specified with the appropriate RollUpTo associations. A similar process is followed 

for each of the two remaining dimensions. The Affiliation dimension is created as 

a Non-strict Asymmetric hierarchy (Figure 4.22), while the Diffusion dimension is 

denned as a Strict Symmetric hierarchy (Figure 4.23). 

Along with the three dimensions, we must of course define the primary Fact class. 

In our case, the fact is Conference Participation and is associated with four measures 

as indicated in Figure 4.24, including Registration cost, Traveling cost, Lodging cost. 

Dimensions are then linked to the corresponding fact measure with Dimensioning as­

sociation. The full model is represented by the Conference Schema package illustrated 
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Figure 4.24: Fact and dimension relationships 

in Figure 4.25. (Note that it includes an additional University Structure package) 

Finally, given the new model, we note that end users should now be able to resolve 

queries such as: 

• The cost related to participation of researchers in international conferences. 

• The cost of participation during various periods of time, including calendar and 

academic years. 

• The number of projects in each department or research centre. 

• The salary earned by researchers participating in a given project. 

• The numbers of projects and researchers available during various time periods. 
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4.5 Conclusions 

The conceptual framework presented in Chapter 3 represents a comprehensive and 

flexible mechanism for modeling the sometimes complex elements of real world OLAP 

environments. That being said, the sophistication of the system brings with it new 

challenges. Specifically, the level of detail may be counter-productive for users or 

designer who are not intimately familiar with UML. In this chapter we discussed the 

integration of our UML profile into the MagicDraw UML modeling tool. We explained 

how the interface itself can be extended to incorporate domain specific features while, 

at the same time hiding much of the unnecessary detail of the UML language. This 

integration produced what we call the the OLAP Modeling Environment (OME). 

To illustrate how the OME can be utilized in practice, we provided a simple OLAP 

modeling example from the university setting. Though the example is small, it should 

serve to demonstrate the clean separation of logical components, the clarity of the 

user interface, and the simplicity of model validation. 
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Chapter 5 

Conclusion and Future work 

5.1 Summary 

Data warehouse and Online Analytical Processing (OLAP) applications are used by 

countless organizations to assist in the decision making process. Reliable decisions 

cannot be made, however, if data is not accessible in an intuitive format that en­

courages meaningful analysis. Ultimately, success depends — at least in part — on 

a conceptual representation that accurately represents the relationships between core 

organization elements and processes. In the world of data warehouses and Online An­

alytical processing, we refer to this representation as a multidimensional (MD) model. 

Recently, a significant amount of research has been undertaken in the OLAP area in 

general, and in multidimensional modeling in particular. However, to date there is 

no commonly agreed upon conceptual model for representing multidimensional data. 

Perhaps more importantly, in spite of the wide acceptance of the Object-Oriented 

paradigm, very few researchers have considered 0 0 mechanisms in this context. Even 

fewer have addressed the structure of OLAP hierarchies, the driving element behind 

a great deal of OLAP processing. 

In this thesis, we have proposed a conceptual multidimensional model that is able 
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to express data requirements for data warehouse and OLAP systems. Using our 

model, designers can better represent the analytical requirements of decision mak­

ers than would otherwise be possible with conventional Unified Modeling Language 

(UML) facilities. Our model has been defined as a profile extension of classical UML. 

Considerable effort has been made to ensure that the profile maps intuitively to real 

world OLAP domains. In other words, our goal is to maintain semantic equivalency. 

As such, the profile contains the stereotypes, tagged values, and constraints that 

expose the unique properties of OLAP environments. Furthermore, the Object Con­

straint Language (OCL) has been used to define restrictions and limitations that help 

to prevent arbitrary and inappropriate uses of the core elements. 

Given the relatively large number of hierarchies, some of which are quite involved, 

the "learning curve" for this environment can still be quite high. Consequently, we 

have integrated the profile into MagicDraw, one of the most commonly used UML 

design tools. By extending the native interface and including various customization 

classes, we have produced an intuitive development UI we call the OLAP Model­

ing Environment (OME). Ultimately, the OME provides a clean interface for OLAP 

design, one that encourages users — through exposed toolbars and icons — to use 

the underlying elements in a logically and semantically correct fashion. Should the 

designer still go astray, a number of validation suites have been incorporated into the 

OME in order to validate the logical correctness of the design. 

We concluded the discussion of the research with a case study that utilized the 

OME (and the OLAP profile) to design the conceptual model for a small university 

system. While limited in scope, the example should give the reader some sense of 

how analytical requirements can be mapped into a clear, intuitive model by using the 
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framework we have provided. 

5.2 Future Work 

The work presented in this thesis essentially represents the first stage of a larger 

project. We briefly highlight two future projects that are expected to extend this 

work. 

5.2.1 XSLT conversion 

As previously noted, this work is associated with the Sidera Server, a "shared noth­

ing" parallel OLAP server that provides high performance analytics for enterprize-

level data warehouses. Unlike conventional warehouses and OLAP servers that often 

utilize relational storage, Sidera is built upon an OLAP-specific storage engine. In 

other words, it natively supports not only OLAP hierarchies, but the processing 

logic needed to traverse them efficiently. The physical representation of the data, of 

course, is defined with a database schema. Currently, the XML-based language for 

this schema is being developed by additional graduate students in the Sidera lab. As 

one would expect, its structure corresponds more or less directly to the conceptual 

model described in this thesis. Unfortunately, creating the schema for such a database 

is non-trivial. Doing so manually would be both very time consuming and very error 

prone. 

For this reason, we would prefer to create a round-trip development model that 

allows the conceptual model to be exported in a format that is natively understood 

by the Sidera server. In principle, this is quite possible, as evidenced by the fact that 

many current modeling tools allow database models to be exported as SQL, the native 
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language of relational database systems. While there is no native export facilities for 

Sidera's custom schema, it is possible to export UML models into XML Metadata 

Interchange (XMI). The objective at that point would be to convert the raw, and 

very verbose, XMI into a new XML format, namely our own database schema. To 

accomplish this we expect to utilize Extensible Style Sheet Language Transformations 

(XSLT) as a mechanism for converting from one XML format to another. Specifically, 

we would create a (very large) XSL Style Sheet that the XSLT processor would use 

as a guide. The end result would be a true "round trip" design process. 

5.2.2 Profile portability 

Though we have utilized MagicDraw in this thesis, it is but one of a number of popular 

design tools (e.g., the Rational applications). Ideally, we would like to allow designers 

to use the tool of their choice. The XSLT transformations described above are part 

of this process, in that any standards compliant UML tool can produce XMI. Given 

a common modeling profile, the output of any tool should be exportable to Sidera. 

In terms of the profile itself, we note that major UML tools also have the ability 

to import UML models as well. Of course, any UI extensibility mechanism will be 

unique to each software application (e.g., toolbars). Nevertheless, we expect that 

with a modest effort, we should be able to port our model to several of the leading 

design tools. 

5.3 Conclusions 

Though the work initially being performed in parallel as part of the Sidera project 

had progressed nicely, it had become apparent that the complexity of the conceptual 
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model would make manual schema design quite difficult. What was needed was 

an intuitive, but accurate, conceptual model that could serve as the starting point 

for OLAP system. In searching through the literature, it was also clear however 

that no such standard model existed. For this reason, we began work on a formal 

model that could support development of not only general purpose data warehouses, 

but hierarchy-driven OLAP applications as well. In this thesis, we have explored 

both the form and rational of a robust conceptual model for contemporary OLAP 

environments. We have also shown how the theoretical elements can be integrated 

into design tools that dramatically streamline the process. To our knowledge, this 

is the most comprehensive attempt to provide round-trip schema engineering in the 

OLAP domain. 
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