
A UML Framework for OLAP Conceptual Modeling

Amani Jamal

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fullfilment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

March, 2009

© Amani Jamal, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63177-5
Our file Notre reference
ISBN: 978-0-494-63177-5

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'Internet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondares ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• • I

Canada

ABSTRACT

A UML Framework for OLAP Conceptual Modeling

Amani Jamal

Data warehouses are used by organizations around the world to store huge volumes

of historical data. Ultimately, the purpose of the warehouse is to allow decision makers

to assess both the history and, more importantly, the future of the organization. In

practice, the capacity to make meaningful decisions is further supported through

the use of Online Analytical Processing (OLAP) applications that provide more

sophisticated representations of the warehouse data. In order to do this, OLAP

systems rely on a multidimensional conceptual data model that represents the core

elements of the data warehouse, as well as the relationships between them. Currently,

there is no definitive conceptual model for this kind of environment. It is therefore

quite difficult for data warehouse designers to express the kinds of complex analytical

requirements which arise in real-world situations. In this thesis, we propose a robust

and flexible conceptual model that can be used to represent multi-dimensional OLAP

domains. Specifically, we present a profile extension of the Unified Modeling Language

(UML) that consists of a set of stereotypes, constraints and tagged values that

elegantly represent multi-dimensional properties at the conceptual level. We also

make use of the Object Constraint Language (OCL) to ensure the correctness and

completeness of the specification, thereby avoiding an arbitrary use of the basic

components. Furthermore, we demonstrate how the new OLAP profile is utilized

in MagicDraw, one of the leading UML development tools. The end result is an

OLAP Modeling Environment (OME) that should significantly reduce development

time, as well as improving the quality of the analytical interface for the end user.

iii

ACKNOWLEDGEMENTS

It is really an honour and a privilege to express my gratitude and indebtedness to

my supervisor, Todd Eavis for his priceless support, encouragement and inspiration.

His rich experience, wealth of knowledge, and critical and creative thinking has given

me direction and insight in pursuing this research. I treasure the invaluable support

and encouragement of my dear parents. I owe my loving thanks to my husband

Talal Basha and my sons Mohammed and Adnan. They have endured a lot from my

research without their kindness, support, understanding and encouragement it would

not be possible to complete this research. Also, I would like to take this opportunity

to personally thank all of my colleagues and friends who have been so supportive and

giving of their time, especially Ohoud Alshaibi and Reem Alnanih.

IV

Table of Contents

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 A new UML-based model 3

1.1.1 The Object Constraint Language 5

1.2 A Prototype Implementation 5

1.2.1 Domain Specific Language extensions 6

1.3 Thesis Structure 7

2 Background Material 8

2.1 Introduction 8

2.2 Decision Support Systems 10

2.2.1 The Data Warehouse 11

2.2.2 Data Warehouse Architecture 13

2.2.3 The Star Schema 13

2.3 Online Analytical Processing 15

2.3.1 Core OLAP operations 16

2.4 The Multidimensional model 19

2.4.1 Hierarchies 20

v

2.4.2 Simple Hierarchies 21

Symmetric Hierarchies 22

Asymmetric Hierarchies 23

Generalized Hierarchies 24

Strict versus Non-Strict 26

2.4.3 Complex Hierarchies 27

Multiple Hierarchies 28

Parallel Hierarchies 30

2.5 Unified Modeling Language 32

2.5.1 Class Diagram 32

2.5.2 UML Profiling 34

2.5.3 Extensibility mechanisms 35

2.5.4 The Object Constraint Language 36

2.6 Related work 39

2.7 Conclusions 42

3 Multi-dimensional Modeling 45

3.1 Introduction 45

3.2 Motivation 47

3.2.1 Why OLAP Conceptual Modeling? 47

3.2.2 Why UML? 48

3.2.3 Why not ER? 49

3.2.4 WhyOCL? 50

3.3 Multi-dimensional modeling concepts 51

3.3.1 General definitions 52

3.3.2 Design guidelines 54

3.3.3 OLAP hierarchies 57

vi

3.3.4 Analysis criterion 60

3.3.5 Conformed dimension 61

3.3.6 Role playing dimension 63

3.3.7 Degenerate dimension 63

3.3.8 Measure values 64

3.3.9 Attribute 65

3.3.10 Time dimension 65

3.3.11 The global view 66

3.3.12 A UML perspective 67

3.3.13 Meta model 67

3.4 The multi-dimensional profile 69

3.4.1 Simple Stereotypes 71

3.4.2 Stereotyped Packages 73

3.5 Conclusion 83

4 OLAP Modeling Environment 85

4.1 Introduction 85

4.2 MagicDraw UML Tool 86

4.2.1 MagicDraw Custom Diagram Wizard 86

4.2.2 Creating domain-specific meta models 91

4.2.3 Validation in MagicDraw 95

4.3 Creating the OLAP Modeling Environment 95

4.3.1 Task One: Identify OLAP concepts and relationships 96

4.3.2 Task Two: Prepare UML OLAP hierarchy profile 96

4.3.3 Task Three: Define Validation Rules 99

4.3.4 Task Four: Define a Customization Layer 102

4.3.5 Task Five: Define the OLAP Diagram 104

vii

4.4 Case Study 105

4.4.1 Requirement Specification 105

4.4.2 Conceptual Design 106

4.5 Conclusions I l l

5 Conclusion and Future work 112

5.1 Summary 112

5.2 Future Work 114

5.2.1 XSLT conversion 114

5.2.2 Profile portability 115

5.3 Conclusions 115

Bibliography 117

vm

List of Figures

1.1 OMG organization 4

2.1 Worldwide total OLAP market size, in billions of dollars 9

2.2 The general DW/OLAP environment 14

2.3 A small three dimensional Star Schema 15

2.4 (a) A simple three dimensional OLAP cube, (b) Pivot, (c) Slice, (d)

Dice (e) Roll up (f) Drill down 18

2.5 A basic three dimensional cube. Each cell holds a measure value. . . 20

2.6 A four level symmetric hierarchy 22

2.7 A four level asymmetric hierarchy 24

2.8 A five level generalized hierarchy 25

2.9 A four level ragged hierarchy 26

2.10 A four level non-strict hierarchy 27

2.11 A four level multiple inclusive hierarchy 28

2.12 A four level multiple alternative hierarchy 29

2.13 A four level parallel independent hierarchy 31

2.14 A four level parallel dependent hierarchy 31

2.15 A basic UML class diagram 33

2.16 (a) Package import (b) Element import (c) Package Merge 34

3.1 A simple stereotype diagram 52

ix

3.2 Different representations 56

3.3 Content of a Dimension package 58

3.4 Content of a hierarchy package 59

3.5 Content of a Conformed Package 62

3.6 Time dimension playing distinct roles 63

3.7 Content of the Time package 66

3.8 Content of a Schema package 67

3.9 Extension of the UML with multi-dimensional stereotypes 68

3.10 The meta model 71

3.11 Strict Symmetric package 74

3.12 Hierarchy icons for (a) Strict Symmetric (b) Strict Asymmetric (c)

Strict Generalized (d) Strict Ragged 74

3.13 Strict Asymmetric package 75

3.14 Strict Generalized package 77

3.15 Strict Ragged package 78

3.16 Hierarchy icons for (a) Non-strict Symmetric (b) Non-strict Asymmetric

(c) Non-strict Generalized (d) Non-strict Ragged 79

3.17 A non-strict version of a Simple Symmetric hierarchy 79

3.18 Multiple Inclusive package 80

3.19 Hierarchy icons for (a) Multiple Inclusive (b) Multiple Alternate (c)

Parallel Independent (d) Parallel Dependent 80

3.20 Multiple Alternative package 82

3.21 Parallel Independent package 82

3.22 Parallel dependent package 83

4.1 Specifying the diagram type and icon 87

4.2 Specifying the module 88

x

4.3 Specifying the associated toolbars 89

4.4 Specifying the associated toolbar buttons 90

4.5 Editing buttons 90

4.6 Smart manipulators 91

4.7 Specifying smart manipulators 92

4.8 UML properties 93

4.9 The customization layer 94

4.10 Validation 96

4.11 A work flow for creating DSML using customized UML profile 97

4.12 The basic hierarchy meta model 98

4.13 A detailed look at the "association" model 98

4.14 An illustration of the Hierarchy Profile 99

4.15 Multiple inclusive hierarchy constraints 101

4.16 Validation error for a double Root in a Strict Symmetric hierarchy. . 102

4.17 Validation suites 103

4.18 A customization of the Dimension Package 104

4.19 A customization dialog for the Level class 105

4.20 A screen shot for OME diagram 106

4.21 Content of the Calendar Time hierarchy 107

4.22 The Affiliation dimension 108

4.23 The Diffusion dimension 108

4.24 Fact and dimension relationships 109

4.25 Project schema 110

XI

List of Tables

2.1 Summary of standard data warehousing stereotypes 43

3.1 Summary of standard data warehousing stereotypes 70

3.2 UML/OCL properties for Simple hierarchies 76

3.3 UML/OCL properties for Complex hierarchies 81

4.1 Customization stereotype tags 94

4.2 Validation rule stereotype tags 95

4.3 UML profile for defining OLAP hierarchy structure 100

xn

Chapter 1

Introduction

Data warehouses are an essential component of data-driven decision support systems

(DSS) [20] and have become the focal point for decision support in organizations

today [33]. Moreover, empirical evidence suggests that DSS users can demonstrably

improve the quality of decision making by successfully implementing an enterprize

data warehouse [4]. In order to gain business insight from the data stored in data

warehouses, decision makers typically rely upon sophisticated On-line Analytical Pro­

cessing (OLAP) applications that further process or manipulate the underlying data.

In fact, for OLAP tools alone, Fernandez-Medina and Piattini estimate the worldwide

market at 6 billion dollars in 2007, compared with just one billion dollars in 1996 [13].

In general, OLAP systems are based upon a multidimensional model that provides

managers with a business-oriented view of data. These multi-dimensional models

facilitate data navigation, analysis, and ultimately decision making, often through

the traversal of dimension or attribute hierarchies. In short, attribute hierarchies

allows users to assess core organizational metrics at varying levels of granularity.

Physically, of course, the underlying databases may structure data in any way

they see fit. For example, multi-dimensional OLAP (MOLAP) tools store data in a

1

proprietary multi-dimensional database system. The multi-dimensional component

of Oracle 9i Release 2 (formerly known as Express and subsequently referred to as

Oracle MOLAP) and Hyperion Essbase, are representatives of this category. By

contrast, Relational OLAP (ROLAP) tools simulate a multi-dimensional model with a

relational database and are usually based on Kimball's Star or Snowflake schemas [21].

Nevertheless, in both cases, the end user need only be interested in the conceptual

representation of the multi-dimensional data.

A number of approaches have recently been proposed to provide a more intu­

itive design process for data warehousing and OLAP systems [3, 22, 36, 14, 41].

Unfortunately, none of them has been accepted as a standard for either data ware­

houses or OLAP attribute hierarchies. Typically, these proposals try to represent

multi-dimensional properties at the conceptual level by strongly emphasizing the

multi-dimensional data structures themselves (i.e. business "facts" and dimensions).

However, from our point of view, none of them truly considers all the properties of

multi-dimensional and OLAP systems at the conceptual level. Moreover, the existing

approaches provide their own graphical notations [42, 15], which force designers to

become skilled at a new modeling language, with its corresponding multi-dimensional

and OLAP modeling notation.

We believe that because the conceptual modeling phase is widely recognized as

an important step in the design of OLAP systems, the sooner we are able to intro­

duce the main multi-dimensional properties into the project design process, the more

accurately the implemented database will represent the requirements of the end user.

Therefore, given the need for a systematic (comprehensible, detailed) OLAP meta

model, this thesis presents a UML-based framework for representing OLAP domains

2

explicitly defined at the conceptual level. To this end, UML is further enriched with

concepts relevant to multi-dimensional systems. Specifically, implementation issues

such as primary keys and data types are ignored, while instead we focus on the graph­

ical representation of the hierarchical elements at the heart of the multi-dimensional

model.

1.1 A new UML-based model

Since the Unified Modeling Language (UML) is a general purpose visual modeling

paradigm that can be used across all major application domains and implementation

platforms, we propose its use for multi-dimensional modeling (rather than defining a

new modeling language). The UML specification defines UML as a graphical language

for visualizing, specifying, constructing and documenting the artifacts of software-

intensive systems [27]. The UML offers a standard way to write a system's blueprints,

including conceptual elements such as business processes and system functions, as well

as concrete components like programming language statements, database schemas,

and reusable software facilities. UML does this by essentially combining elements

from the three major 0 0 design methods: Booch's 0 0 Analysis and design [34],

Rumbaugh's OMT modeling [7], and Jacobson's Objectory [19].

UML unifies the methods used around the world and adopted by both industry

and academia as a standard language for describing software systems. This is reflected

by the fact that it is currently supported by hundreds of model-driven commercial

tools, which have been productively used in a great number of development projects.

Nevertheless, the fact that UML is a general purpose notation can limit its suitability

in specific domains such as data warehousing and OLAP. With UML 2.0, however,

3

corresponds to f

M2 | UML Metamodel j „ b a s e d o n UML Diagrams J

corresponds to |

I is modeled using
User Model (UML)

corresponds to f

MO I Real World J

Figure 1.1: OMG organization.

the underlying semantics have been defined more precisely, and the notation includes

a new set of diagrams and concepts which are more appropriate for modeling the

structure of OLAP hierarchies. Moreover, UML 2.0 provides extension mechanisms

to cover as many domains as possible (e.g., stereotypes, tagged definitions and con­

straints). A consistent set of such extensions is called a UML profile. UML profiles

are used to model those aspects of systems or applications that are not directly de-

scribable by native UML elements. In fact, the UML profiling mechanism allows the

precise definition of a Meta Object Facility (MOF) based domain-specific language

that, in turn, allows the semantics of the basic UML elements to be extended and

refined. Figure 1.1 shows the classical OMG organization of models with MOF on

top of the hierarchy and UML at level M2.

In this thesis, we present an extension to the UML by creating a "customized"

UML profile. We do so by adding a customization layer, which essentially transforms

stereotypes into a meta class [37] for the coherent modeling of multi-dimensional do­

mains in general, and OLAP aggregation hierarchies (i.e., the granularity of analysis)

in particular. This profile is defined by a set of stereotypes, constraints and tagged

values that represent multi-dimensional and OLAP properties at the conceptual level.

We further extend the model by grouping the core elements into UML packages. In

short, a package groups classes into higher level units, thereby creating different lev­

els of abstraction and consequently simplifying and improving the coherency of the

final model. We note that previous approaches do not consider using packages for

modeling OLAP hierarchies.

1.1.1 The Object Constraint Language

As noted, data warehouses, multi-dimensional databases, and OLAP applications are

powerful tools for discovering crucial business information in strategic decision-making

processes. Given the importance of precision and clarity in this context, we further

make use of the Object Constraint Language (OCL) [28] to specify the constraints

or restrictions attached to the defined stereotypes. Simply put, OCL is a formal

language used to describe expressions on UML models. These expressions typically

specify invariant conditions that must hold for the system being modeled or queried.

Our extensions therefore make use of OCL for stating "well-formedness" rules, thereby

allowing us to prevent users from specifying arbitrary — and conceptually incorrect

— combinations of notational elements. We note that various research proposals

have previously used OCL in some capacity. However, to our knowledge, OCL has

not been used for the specification of OLAP hierarchies.

1.2 A Prototype Implementation

To ensure the correctness of the proposed conceptual model, we have developed a

relatively complete implementation of our new UML profile using the MagicDraw

5

case tool. We clearly demonstrate how the elements of the conceptual framework

can be specified within MagicDraw (though our methods should be applicable to

any standards-compliant case tool). Our profile provides a common language for

representing OLAP hierarchies in a flexible and intuitive manner. In total, some 24

UML stereotypes have been defined, including specializations of two Attribute model

elements, three Class model elements, one Comment model element, four Association

model elements, two Association Class model elements, and fifteen Package model

elements. The OLAP hierarchy extensions are based on the most semantically similar

construct in the UML meta model. In addition to the tags and constraints that have

been defined for the new environment, we have also included a set of new icons that

allow the user to intuitively manipulate the hierarchy packages.

1.2.1 Domain Specific Language extensions

Since the UML modeling environment is quite complex, applying stereotypes alone

does not completely hide low-level UML properties and terminology. Because it

is difficult to fully restrict the usage of standard UML elements to ensure model

correctness, we use Magic Draw's Domain Specific Language (DSL) engine to create

an "OLAP modeling" Environment (OME). In short, use of DSL helps to ensure the

efficient design of an easily maintained OLAP model by allowing the user to (i) define

the OLAP Hierarchy meta model, (ii) map this meta model to a UML profile, (iii)

define customizations for stereotypes, (iv) define OCL-based validation rules and (iv)

create a custom OLAP diagram. We have also defined a specific graphical notation for

stereotypes, as permitted by the UML specification. This notation makes the multi­

dimensional schema more concise and readable. Ultimately, the DSL tools allow us to

create custom diagrams, custom specification dialogs, and custom real-time semantic

6

rules that further extend the power of the OME.

1.3 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 provides an overview

of Online Analytical Processing, including a review of the fundamental OLAP oper­

ations and server architectures, as well as UML and OCL. The chapter also presents

a classification of attribute hierarchies in the real-world. The succeeding chapters

present the core contributions of the thesis. Chapter 3 explains how we build upon

UML to define a new OLAP meta model and integrate the proposed elements into a

cohesive UML profile. The prototype implementation of the model is then fully illus­

trated in Chapter 4. Finally, in Chapter 5, we offer conclusions and briefly describe

possible future work.

7

Chapter 2

Background Material

2.1 Introduction

Data warehousing and On-line Analytical Processing (OLAP) are two of the most

significant technologies in the business processing arena. Together, they are used in

a multitude of industries such as retail sales, telecommunications, financial services

and real estate [9]. Perhaps the simplest measure of the impact of these technologies

is their growth in market value over the past decade and a half. The OLAP Report,

an industry publication that tracks issues and trends in the DW/OLAP context,

publishes a yearly online review that attempts to approximate the sales volume for

Business Intelligence products [30]. In fact, the report deals exclusively with OLAP

tools and software and does not even include general-purpose database applications

that are often used in data warehouse settings. In any case, as Figure 2.1 demon­

strates, the value of the OLAP market has grown from just 500 million dollars in

1994 to almost 8 billion in 2008, a 16-fold increase.

Apart from the rise in sales volume, we note that another core theme in this

context is the increase in the complexity and sophistication of data warehousing in

general. Over the years, organizations have come to rely upon a broad mix of older

8

c r i c n c n c r i c r i c r i o o o o o o o o o
c n c n c T i c n c r i c r i o o o o o o o o o
,—I r-1 tH 1—I 1 — I T — I I N r N f N N f M N t N O J r v l

Figure 2.1: Worldwide total OLAP market size, in billions of dollars.

centralized systems and newer distributed computing models. Moreover, various new

technologies for data management and access are being provided by an even larger

number of service providers. Faced with such an environment, contemporary IT

departments have become increasingly reliant upon computing paradigms like OLAP

that are able to integrate distributed data sources housing vast amounts of raw data.

These new tools provide streamlined models and interfaces that allow knowledge

workers to make intuitive but reliable decisions about both the current state and

future evolution of their organizations.

This chapter examines the current trends, technologies, and terminologies at the

heart of data warehousing and OLAP. Section 2.2 provides an introduction to De­

cision Support Systems, including an overview of data warehousing concepts and

architectures. OLAP is then discussed in Section 2.3, with reference to the core

9

operations typically found in commercial OLAP products. In Section 2.4, we intro­

duce the multi-dimensional data model that is at the heart of all OLAP applications.

A classification of real-world dimension hierarchies is provided in some detail. An

overview of some of the key elements of the Unified Modeling Language and the Ob­

ject Constraint Language — at least as they relate to this thesis — is presented in

Section 2.5. Finally, Section 5 concludes the chapter with a brief summary.

2.2 Decision Support Systems

Decision Support Systems (DSS) are a specific class of enterprize software that sup­

ports business and organizational decision-making activities. From the user's per­

spective, they provide a clean, intuitive interface through which to view organiza­

tional data. Underneath the end-user interface, however, we generally find complex

hardware/software combinations that support decision making by extracting and ma­

nipulating key information from raw data, documents, XML, text, etc. Below, we

briefly review the three main DSS models, including OLAP which, of course, is the

focus of this research program.

• Information Processing. Here, attention is given to fundamental query­

ing and reporting functions. Information processing systems accept queries —

whether ad-hoc or pre-defined — and processes data so as to provide the nec­

essary information to decision makers. At this stage, only very simple analysis

is needed, and consists of operations such as extraction, sorting, and basic ag­

gregation.

• OLAP. Online Analytical Processing extends the basic capabilities of Infor­

mation Processing systems by permitting one to answer analytical queries of

10

a multi-dimensional or multi-attribute nature. OLAP tools allow users to

drill into the underlying data warehouse and analyze different dimensions (i.e.,

columns of interest) from a variety of perspectives and logical hierarchies. A

key OLAP concept is the importance of historical or time-based analysis. In

other words, users are typically interested in trends or analysis that span broad

time periods.

• Data Mining. Here, analysis focuses on relationships or patterns that have not

previously been identified. Data mining tends to be more of a data driven ap­

proach, in contrast to OLAP, where the user generally initiates and directs the

process. Typical data mining operations are classification (defining the char­

acteristics of a certain group), association (identifying relationships between

events), and clustering (identifying groups of items sharing particular charac­

teristics) .

2.2.1 The Data Warehouse

The three forms of decision support listed above must of course rely on an underly­

ing physical data management platform. Traditional database systems, often called

Online Transaction Processing (OLTP) applications, support the daily operational

needs of an organization, but are not well suited to the requirements of data analy­

sis. In general, the main concern of these systems is to ensure fast access to data in

the presence of multiple users, which necessitates transaction processing, concurrency

control, and recovery techniques. Typically, operational data bases store very detailed

data and are usually highly normalized. In addition, they rarely maintain historical

or archived data. For these reasons, the operational DBMS may perform poorly if a

11

large number of detail records need to be retrieved and summarized rapidly.

Data warehouses were developed to better respond to the growing demands of

decision makers who wished to analyze the behavior of an organization as a whole.

In practice, a data warehouse is a physically distinct corporate database management

system (DBMS) that is designed to facilitate rapid queries, as well as the analysis of

multidimensional data. The data warehouse is the central data repository for virtually

all OLAP systems.

A slightly more formal definition was provided by W. H. Inmon, who described

it as a "subject-oriented, integrated time-variant, and non-volatile collection of data

in support of management's decision-making process." [18]. In short, Inmon's criteria

can be explained as follows:

• Subject oriented means that data in the database is organized so that all data

elements related to the same real-world entity or concept are fully integrated. In

other words, instead of seeing data as a collection of very detailed sales records,

the data warehouse deals with broader entities such as Customer, Products,

and Dates.

• Integrated implies that the data from multiple operational systems is captured,

cleaned, and combined into a single repository.

• Time variant indicates that changes in the database are tracked and recorded

so that reports can be produced showing theses changes over time.

• Non volatile suggests that data in the database is rarely modified or removed

by end users.

12

2.2.2 Data Warehouse Architecture

Data warehouses can be seen as a three-tier architecture [9, 16]. The canonical data

warehouse architecture is shown in Figure 2.2. The possible data sources are shown

at the bottom of the figure. Information is extracted from various legacy systems

and operational sources, and is then consolidated, summarized, and loaded into the

data warehouse using a process commonly known as ETL (Extract, Transform, and

Load). Strictly speaking, this first step is outside the scope of the warehouse proper

(i.e., it is not one the three tiers). At the first tier, we find the DW server, along with

several data maris. Essentially, each data mart is a small warehouse designed for a

specific department. At this stage, the data warehouse is fully loaded and contains

the data required for basic "decision support". The second tier houses the OLAP

server/engine that allows users to access and analyze data in the warehouse, typically

using more advanced techniques. Finally, the third tier includes the front end tools

that provide a graphical interface for top managers and decision makers.

2.2.3 The Star Schema

The Star Schema, proposed by Kimball [21], is perhaps the simplest and most in­

tuitive logical model for data warehouse design. Because it can be mapped directly

to tables, it is ideally suited to the relational database management systems that

support virtually every modern data warehouse. The term "Star Schema" is derived

from the fact that a graphical depiction of the schema resembles a star. Star Schemas

consist of two basic table type: dimension tables and fact tables. In short, a dimen­

sion is a DW "subject", such as Customer or Product, while a fact represents a key

DW process such as Sales. In the schema, logical dimensions and facts are mapped

13

•'Outputs

OLAP Server ~1 P OLAP Server

/ssss'

•<

s
Monitoring

Administration

CD CD

Meta Data
Repository

Data
Warehouse

^^C s

Operational Databases

Front-end Tools

OLAP Engines

External Sources

Data Storage

Data
Cleaning and

Integration

Figure 2.2: The general DW/OLAP environment.

to tables such that the center of the star consists of a single fact table surrounded by

multiple dimension tables.

Figure 2.3 illustrates a simple star schema that includes Customer, Location, and

Product dimensions. The shaded boxes in Product represent a dimension hierarchy,

a topic that will discussed in detail shortly. In practice, Fact tables are typically

massive, holding perhaps billions of records (or facts), while Dimension tables are

relatively small and contain information about the entries of a particular attribute in

the fact table. Note that the dimension tables are generally de-normalized, meaning

that the tables maintain some of the redundancy that a good OLTP system typically

eliminates. At query time, each dimension table is joined to the fact table as necessary.

In this setting, de-normalizing the dimension tables significantly decreases the number

of costly joins that would otherwise be required with a normalized schema. Since the

dimension tables are comparatively small when compared to the enormous fact tables,

14

Customer

customer_key

name

age

address
...more

Location

locationkey

store

city

state
country
...more

^

Fact Table

location_key

product_key

customer_key

measure value

«"

Product

product_key

product_name

category

category_desc

type

type_desc
...more

Figure 2.3: A small three dimensional Star Schema

the redundancy produced by the de-normalization is of little interest in most OLAP

contexts.

2.3 Online Analytical Processing

The term OLAP was used first in 1992, when E. F. Codd — who produced the

relational data model in 1970 — delivered a report entitled "Providing OLAP (on­

line analytical processing) to user-analysts: An IT mandate" [11]. In this paper,

Codd indicated twelve features that should be present in any OLAP application. The

following four points, taken from that report, are probably the most significant of the

12:

1. Multidimensional conceptual view. In contrast to relational database that

manipulate individual records or concepts, the focal point in OLAP is the rela­

tionship between multiple dimensions.

15

2. Transparency. The end user should not have to worry about the details of

data access or conversions. In addition, OLAP systems should be part of open

systems that support heterogeneous data sources. Ultimately, the system should

present a single logical schema of the data.

3. Flexible reporting. Reporting must present data in a fully integrated manner,

and minimize any restrictions in the way that basic data elements of dimensions

are combined.

4. Unlimited dimensional and aggregation levels. A serious tool should

support more than just a few concurrent dimensions (Codd actually indicated

that 15-20 would be ideal)

We note that, despite Codd's influence in the database community, the impact

of the paper was less dramatic that it might otherwise have been due to Codd's

direct sponsorship by a commercial OLAP vendor (whose product, not coincidentally,

supported most of these features). Nevertheless, the four features listed above do serve

as a general blueprint for the kinds of OLAP applications that we commonly see in

the market.

2.3.1 Core OLAP operations

Although commercial OLAP systems may provide numerous functions for analysis

and reporting, there is a core set that is central to the OLAP paradigm. More so than

the formal definitions, such as the one given by Codd, they provide an intuitive sense

of the motivation behind multi-dimensional analysis. In the following list we briefly

describe these core functions, with reference to a series of accompanying diagrams.

Ultimately, each represents a new perspective on the "original" view of the small

16

three dimensional cube illustrated in Figure 2.4(a). In this case, we are modeling

the relationship between three keys dimensions — Customer, Product, and Location.

The cells in the cube would in practice hold a measure value, perhaps something like

"Total Sales".

• Pivot. The pivot is a simple operation that allows users to reorganize the axes

of the cube. Pivot deals strictly with presentation. Figure 2.4(b) provides a

simple example of how the operation works.

• Slice. The slice operation allows a user to choose a subset of a multidimen­

sional array (or cube) corresponding to a single value along one dimension.

Figure 2.4(c) demonstrates the process for the "Entertainment" category in the

Product dimension.

• Dice. The dice operation allows a user to select a slice on two or more di­

mensions of a data cube (or subcube of the original space). In Figure 2.4(d), a

subset of values on Product, Location, and Customer have been shown.

• Roll-up. The roll-up operation allows a user to navigate levels of aggrega­

tion along a dimension hierarchy, ranging from the most detailed to the most

summarized. Figure 2.4(e) illustrates how the Location dimension, originally

listed at a more detailed level (City), is aggregated further in order to provide

provincial totals.

• Drill down. In contrast, the drill-down operation allows a user to obtain a

more detailed view of data along a dimension hierarchy. Figure 2.4(f) shows

how the Product dimension is broken down into specific category listings.

17

St John

Household

Automotive

Kitchen

Entertainment

Household
Automotive

^ «vw
Original View

(a)

Halifax
Dartmouth

Entertainment

Nova ! ^ ^
New B r u n s w i c k ^ - l ^ l ^ l ^ "

Household

Automotive

Kitchen

Entertainment

Roll Up on Location

(e)

Entertainment

Bob

Pivot View

(b)

Moncton
St John

Automotive

Kitchen

Entertainment

Dice

(d)

Hal
Dartmouth

M o n c t o r i ^ ^ 5 '
St John ^ ^ - ^ *

•$ <9

Drill Down on Product

(0

Figure 2.4: (a) A simple three dimensional OLAP cube, (b) Pivot, (c) Slice, (d)
Dice (e) Roll up (f) Drill down

18

2.4 The Multidimensional model

Both data warehouses and OLAP systems are based on a multidimensional (MD)

model. Specifically, we logically represent data in a d-dimensional space such as the

one depicted in Figure 2.5. In this context, the MD model can be described as a data

abstraction allowing one to view aggregated data from a number of perspectives (i.e.,

dimensions). In fact, for a d-dimensional space, there are exactly 2d distinct dimen­

sion combinations that represent the underlying Star Schema, each from a unique

perspective. In OLAP terminology, we refer to this as the data cube.

As previously noted, low level information is divided into facts and dimensions. An

individual fact represents an item or transaction of interest to the user. In the multi­

dimensional data cube model, facts are aggregated into measures that are contained

within cells of the data cube. In Figure 2.5, one can see the measure values on the

front face of the cube. Simply put, a given measure represents a series of fact values

that have been aggregated for a given combination of dimensions. In the figure, for

example, if we assume that the measure represents Sales, then we can see that total

sales in December for Product Skl l in Toronto was 20 dollars.

We note that the MD model is logical in nature. In other words, it makes no

assumptions about how the data is physically stored. Advanced OLAP servers may

in fact take the data from the tables of the original Star Schema and further process

it. The new data may be stored in a series of new tables or even a multi-dimensional

array that represents a one-to-one mapping between the logicaLdata cube and the

physical storage. We refer to the first type of system as ROLAP (relational OLAP),

while the second is known as MOLAP (multi-dimensional OLAP). That being said,

the physical storage format is distinct from the conceptual design model, which is the

19

Location
(city)

Ottawa

Montreal

Toronto

Dec

Time
(month) Jan

Feb

20

14

21

35

20

40

31

12

24

Sk11 FH12 AM54

Product (number)

Measure
Value

Figure 2.5: A basic three dimensional cube. Each cell holds a measure value,

primary focus of this thesis.

2.4.1 Hierarchies

Data granularity is the level of detail at which measures are presented. This is de­

termined by a combination of the granularities of each dimension of the cube. For

example, in Figure 2.5 the granularity of the Time dimension is Month, while the

Location is represented as a City. However, the vast majority of common business

and scientific dimensions actually have a hierarchal structure. For example, one of­

ten thinks of the common Time hierarchy in terms of hours, days, weeks, months,

quarters, and years. In OLAP environments, the traversal of such "aggregation hier­

archies" is perhaps the most fundamental of all query forms. As it turns out, there

are in fact many different types of hierarchies in real-world applications.

Formally, a hierarchy is described as a set of binary relationships between the

various levels of a dimension. A path defines a unique traversal through a hierarchy

20

from the root level, the coarsest level of the hierarchy, to the leaf level, the finest

level of aggregation detail. Within a given path, the nodes directly associated on two

consecutive levels of the hierarchy are defined as the parent and child. The values at

a given level of the hierarchy are known as members. Finally, we often refer to the

analysis criterion of the hierarchy. This essentially refers to the conceptual purpose

or focus of the hierarchy. For example, the hierarchy might represent sub-divisions

of a dimension based upon geographical regions or organizational structure. Most

hierarchies have a single analysis criterion but as we shall see, it is possible to have

more than one.

In the following sections, the hierarchy forms commonly found in the real world

are briefly classified. This classification scheme is largely drawn from the framework

first defined by Malinowski et al. [44, 45].

2.4.2 Simple Hierarchies

A simple hierarchy is one that can be represented as a tree. Recall that a tree is

a directed, acyclic graph. We call the trees simple because, for a given leaf node,

hierarchies of this form can have only one "aggregation path" back to the root. In

other words, each specific level has an unambiguous meaning in terms of the type

of aggregation performed. All simple hierarchies have a single aggregation criterion.

Simple hierarchies can in fact be further sub-divided into the following three basic

categories:

1. Symmetric hierarchies.

2. Asymmetric hierarchies.

3. Generalized hierarchies.

21

Country Canada

Ontario Quebec

Toronto Ottawa Montreal

Store 1 Store 2

+
Store 3 Store 4

Gaspe

Store 5 Store 6

Figure 2.6: A four level symmetric hierarchy.

Symmetric Hierarchies

Simple, symmetric hierarchies contain levels and branches having a consistent depth.

Symmetric hierarchies are also known as homogeneous, balanced, or level-based. In

this kind of hierarchy, any path from the root to a leaf has exactly the same number of

nodes. All nodes in the hierarchy tree are mandatory. All parent members must have

at least one child member and a child member cannot belong to more than one parent

member. Figure 2.6 provides an example of a symmetric geographic hierarchy. On

the left of the diagram we see the schema that defines the four levels. By convention

we number the levels from the top downwards, staring from zero. So the coarsest

aggregations are Level 0 (Country), while the most detailed values are at Level 3

(Stores). The meaning and depth of each level must be consistently applied because

each level represents the same type of information. In the current case, the schema

can be represented as:

Country =>• Province => City => Store

On the right of the diagram is the instance of the hierarchy corresponding to the

22

schema. We can clearly see that any path has four steps from root to leaves. Again,

at any level, all members have the same logical meaning. For example, at Level 3,

all values refer exclusively to cities. In the diagram, we have shaded four nodes to

illustrate a simple path form Canada —> Ontario —> Ottawa —> Store3.

Asymmetric Hierarchies

A simple, asymmetric hierarchy is one in which lower levels of specific paths are not

mandatory. However, intermediate levels in the tree are not optional. As with simple

symmetric hierarchies, every child must still belong to at most one parent member.

Several terms are used for these hierarchies: heterogeneous, unbalanced, or non-onto.

Simple, asymmetric hierarchies are quite common in practice as category groupings

can often be quite irregular within organizations. Figure 2.7 illustrates a hierarchy

where a bank is composed of a number of branches. Some of these have agencies with

ATMs, while some only have agencies (without a corresponding ATM). The schema

in this case provides alternate paths through the hierarchy. They can de defined as:

Bank => Branch =» Agency => ATM

Bank =>• Branch => Agency

We have highlighted the hierarchy instance to illustrate two such pathways. At

Level 0, we see the partially shaded root node, which is shared by both pathways.

The lightly shaded path, RBC —> Maisonneuve —> Agency 6 —> ATM 11, represents

the full 4-node path. Conversely, the darker pathway, RBC —> Guy —> Agency 9,

indicates a path with an optional ATM.

23

Bank RBC

Branch Maisonneuve Sherbrooke

Agency

JE
Agency 1

1
Agency 6

ATM

Agency 5

ATM 11

Agency 4

<3uy • ; ,

+
Agency 9

1
Agency 2

ATM 33 ATM 55

Figure 2.7: A four level asymmetric hierarchy.

Generalized Hierarchies

The simple generalized hierarchy is the most complex of the forms in this group be­

cause it can contain multiple exclusive paths that share levels. The term "exclusive"

implies that, given a specific leaf node, the path back to the root is uniquely defined.

Note that all paths still represent one hierarchy and thus each level is labeled un­

ambiguously. However, different branches of the hierarchy tree may be interpreted

differently at the same level. Figure 2.8 shows a generalized hierarchy tree that con­

sists of the following schema:

Area => Branch =>• Category =$• Type => Customer

In this case, the lightly shaded path, Canada —> Montreal —> Investor —> Manager

—> Smith, might refer to customers who are people, while the second path, Canada —>

Ottawa —> Company —> Concrete —> KLH, might refer to corporate customers. Still,

it is important to understand that paths from the leaves back to the root are unique

in terms of the underlying schema. Moreover, we still have a single analysis criterion

24

Area

Branch

Category

Type

Customer

T

+
Manager

|
r

Smith

I
Montreal

i '

Investor

1
AN

< '
Doctor

< '
Moh

Canada
1

Ottawa

Engineering Concrete

MBC mm POG

Figure 2.8: A five level generalized hierarchy.

as both logical paths refer to a breakdown of the data by customer type (Company

or Individual).

There is also a special form of the generalized hierarchy that is often seen in

practice. Known as the simple ragged or simple non-covering hierarchy, this form

of generalized hierarchy can contain optional intermediate nodes without including

additional levels. In this case, the branches have inconsistent depths because at least

one intermediate member in a branch level is unpopulated. However, the root and

the leaves are the same for all paths. In effect, the ragged hierarchy is like a cross

between an asymmetric (unbalanced) hierarchy and the regular generalized hierarchy.

Figure 2.9 represents a company with stores in different countries, with the hierarchy

indicating that some provinces have no sub-divisions into counties. Logically, this

results in two valid paths through the schema:

Country =>• Province =>• City =» Store

Country => Province => Store

25

Country

Province

City

Store

T

f
Ontario

Toronto

v

Store 1

Canada

1
Ottawa

i r

Store 2

i r

Store 3

f

i
Quebec

Montreal

1
Store 4

v

Store 5

v

Store 6

Figure 2.9: A four level ragged hierarchy.

In this case, the instance diagram presents the following two paths. Canada —>

Ontario —» Ottawa —> Store 2 represents the fully defined path. In contrast, the

darker nodes define the shorter path Canada —> Quebec —> Store 6, clearly indicating

that Store 6 is associated directly with the province, rather than a specific city.

Strict versus Non-Strict

A hierarchy is considered "strict" if one-to-many relationships exist between parent

and child nodes. If at least one many-to-many relationship exists between a parent

and a child in a hierarchy, then we refer to this type of hierarchy as "non-strict".

Again, non-strict hierarchies are very common in real life applications where, for

example, an employee could belong to more than one department. Note that it is

possible for the simple hierarchies discussed so far to be either strict or non-strict.

Figure 2.10 shows a non-strict hierarchy (simple, symmetric) with the following four

levels:

Area => Division ==> Department => Employee

26

Area USA

Division

Department

Employee

North

Sales r—i

John

Research Marketing

Smith

South

Accounting

Ali Sali

Purchasing

Sara/ Cindy

Figure 2.10: A four level non-strict hierarchy.

Here, the instance diagram indicates that we have many-to-many relationships

between the Department and Employee levels, but one-to-many relationships for the

remaining levels. On the right side, USA —> South —> Purchasing —> Sara represents

the simple pathway we've seen already in the symmetric instance. The lightly shaded

path, USA —> North —> {Sales, Research, Marketing} —> Smith indicates a many-to-

many relationship. In this C81S6, £1 department like Sales may have multiple children

(John, Smith), but a child (Smith) may also belong to many departments (Sales,

Research, Marketing).

2.4.3 Complex Hierarchies

Complex hierarchies represent combinations of simple hierarchies on a single dimen­

sion. In practice, there are two similar but distinct forms of complex hierarchies that

will be discussed in this section.

1. Multiple hierarchies

2. Parallel hierarchies

27

Regional
Commitee

Sport
Association

Recreation
Program

Sport Club

i '

Swimming
i

Tennis

1

Committee

i
Senior

l r\

< '

Children

Figure 2.11: A four level multiple inclusive hierarchy.

Multiple Hierarchies

In a multiple hierarchy, there are several simple hierarchies sharing one or more levels.

All such hierarchies share the root level, as well as a common analysis criterion.

However, a given child member within a multiple hierarchy can be associated with

multiple parent members that each belong to a distinct hierarchy.

Multiple hierarchies may be further specialized into inclusive or alternative. In a

multiple inclusive hierarchy, the measure represented by a fact must be distributed

between several hierarchies. An example will make this more clear. A simple mul­

tiple inclusive hierarchy is shown in Figure 3.18. Here, Sport Clubs are associated

with Sport Associations and Recreation Programs. The schema would look like the

following:

Regional Committee =>• Sport Association =*> Sport Club

Regional Committee =>• Recreation Program => Sport Club

The instance diagram indicates how this might work in practice. If we assume

that the measure is Budget Expenses, then the figure tells us that part of the budget

for Club 1 comes from the Swimming Association — Committee A —> Swimming —>

28

Year] 2009

Quarter I Week I Quarter 1 Quarter 2 Weekl

Month] January

Day

February

Day1

May June

Day 31

Week 19

Day 133 Day 199 Day 254 Day 360

Figure 2.12: A four level multiple alternative hierarchy.

Club 1 — and part from the Seniors Program — Committee A —> Seniors —* Club 1.

The analysis criterion is the same in both cases, however (e.g., activity type).

In multiple alternative hierarchies the paths are exclusive, which means that it is

not possible for a leaf node to belong to more than one path at the same time. In

other words, these two paths effectively represent two different ways to aggregate the

same data (using the same underlying analysis criterion). In Figure 3.20, we see what

is perhaps the most common hierarchy in DW/OLAP — the Time dimension. In

this case, the schema defines a pair of hierarchies corresponding to different calendar

subdivisions:

Year => Quarter =>• Month => Day

Year => Week => Day

We can see from the instance diagram that one may move from the root to leaf by

following either of these paths. Day 1 (January 1), for example, is located in 2009 —>

Quarter 1 —• January —-> Day 1. It is also found in 2009 —> Week 1 —> Day 1. Both

hierarchies have the same analysis criterion (breakdown by time division), but allow

29

us to rollup or drill down on this data at differing granularities. The measure value

for Day 1, however, is never shared between the hierarchies, as was the case with the

inclusive hierarchy.

Parallel Hierarchies

A parallel hierarchy is a collection of simple hierarchies defined on the same dimen­

sion but representing different analysis criteria. In practice, Parallel hierarchies can

be either independent or dependent. Parallel independent hierarchies do not share

levels. In other words, they represent non-overlapping sets of hierarchies. Figure 3.21

shows an example of a parallel independent hierarchy that is associated with multiple

analysis criteria. In the first case, measure values are aggregated into organizational

structure, while the second hierarchy breaks down data based upon geographical lo­

cation. Note that the common leaf node implies that both hierarchies are using the

same underlying detail data (i.e., facts). The schema for this parallel hierarchy can

be described as follows:

Sales Region =>• Sales District =$• Store

Country => Province => City => Store

The instance diagram depicts the two independent analysis criteria. East —>

District 2 —> Store 19 represents an aggregation by organizational structure, while

Canada—> BC —> Victoria —> Store 42 would present an analysis simply by geographic

location.

A parallel dependent hierarchy is one in which component hierarchies share one or

more levels, even though distinct analysis criteria are employed. Figure 3.22 provides

an example. Here, the two analysis criteria are similar to the previous example

30

East Canada

^
District 2

v v

Store 19 Store 11

District 1

Store 21

QC BC

Montreal Victoria Vancouver

Store 23 Store 42 Store 45

Figure 2.13: A four level parallel independent hierarchy.

Country 1

L_
Region

^ " "
i

Province 1

1
City J Section

V

Employee 1

J

1
< '

Gaspe

' '
John

Canada

' '
QC

' '
Montreal

1 '
Smith

,r; East'.'

T

Section 2

' '
Patric

T

Victoria

"
Sali

West

1
BC

i r

Vancouver

i r

Sara

! '
Section 1

' '
Ali

Figure 2.14: A four level parallel dependent hierarchy.

(organizational structure and geographical location) but both hierarchies share Level

1 (Province). This gives rise to the two following schema elements:

Country => Province => City => Employee

Region =>• Province => Section => Employee

Here, the two shaded paths, Canada —» QC —> Gaspe —> John and East —> QC

—> Section 2 —> Patric, represent distinct aggregation pathways but share the QC

element.

31

2.5 Unified Modeling Language

In the following chapter, we will be discussing the application of UML and graphical

modeling tools to the design of sophisticated conceptual models for OLAP. We will

therefore use this section to present a very brief overview of UML concepts and related

technologies.

The Unified Modeling Language (UML) first appeared in the 1990s as an ef­

fort to combine the best elements from various modeling systems proposed at that

time. UML was meant to be a unifying language enabling IT professionals to model

computer applications. The primary authors were Jim Rumbaugh, Ivar Jacobson,

and Grady Booch, who originally had their own competing methods (OMT, OOSE,

Booch). One reason UML has become a standard modeling language is because UML

is programming language independent. Moreover, the UML notation set is itself a

language and not simply a methodology. This aspect is important because a language,

as opposed to a methodology, can easily be integrated into any company's business

systems without necessitating extensive ideological of physical changes.

UML 2.0 defines thirteen types of diagrams that are partitioned into three broad

categories: structure diagrams, which include the Class diagram (our prime focus),

behaviour diagrams and interaction diagrams. In this introduction, we will attempt

to provide a general understanding of the Class diagram, including various graphical

elements that are available in MagicDraw, one of the leading UML design tools.

2.5.1 Class Diagram

The Class Diagram shows how different entities (e.g., people, things and data) are

related to one other. In short, it illustrates static structures within the environment,

32

0..* 1
ShoppingCart

-total
+order() : void
+cancel(): void

1

1 1

1..*

Purchase
-quantity
-price
+add() : void

CreditCard

-issuer
-cardNumber
-expirtDate
+aythorizeCharge() : void

0..* 1 Product

-name
-description

Customer

-name
-address

,

1

Figure 2.15: A basic UML class diagram

including classes, their attributes, and the relationships between these classes. A

small UML class diagram is shown in Figure 2.15. We can see that an individual

class, such as Shopping Cart, is depicted in the class diagram as a rectangle with

three horizontal sections. The upper section shows the class's name. The middle

section contains the class's attributes. Finally, the lower section contains the class's

operations (or methods).

Classes can be related to one other in a number of ways. Associated classes are

those that are directly connected to each other. A dependent class is one which de­

pends on or uses a second class. Specialized classes are those that represent a subtype

of another class. Note that a class diagram does not state anything explicit about

the relationships of a given object (i.e., class instantiation), but it does conceptu­

ally explain the possible relationships of one object with other objects. Furthermore,

the classes themselves can be grouped into packages, which may nested within other

packages. A package, as an entity, may be associated with all relationships that can

be drawn from its component classes (including nested packages).

33

•*" T * C j r Ivl

(a) (b) (c)

Figure 2.16: (a) Package import (b) Element import (c) Package Merge

The MagicDraw modeling software also includes several mechanism for manipu­

lating packages (something we do extensively in our UML profile). A Package Import,

whose symbol is depicted in Figure 2.16(a), is defined as a directed relationship that

identifies a package whose members are to be imported by a name space. An Element

Import (Figure 2.16(b)) is defined as a directed relationship between an importing

name space and a package-able element. A package merge (Figure 2.16(c)) is a di­

rected relationship between two packages that indicates that the contents of the two

packages are to be combined.

2.5.2 UML Profiling

A profile in the Unified Modeling Language is a generic extension mechanism for

customizing a UML model for a particular domain and platform. Profiles are defined

using stereotypes, tagged values, and constraints that are applied to specific model

elements, such as Classes, Attributes, Operations, and Activities. A Profile is essen­

tially a set of these extensions that collectively customizes UML for a given problem

space.

Ultimately, a UML profile [29] is a specification that does one or more of the

following:

34

• Identifies a subset of the UML meta model.

• Specifies "well-formedness rules" beyond those specified by the identified subset

of the UML meta model. A "well-formedness rule" describes a set of constraints

written in UML's Object Constraint Language (OCL).

• Specifies "standard elements" beyond those specified by the identified subset of

the UML meta model. A "standard element" describes a standard instance of

a UML stereotype, tagged value, or constraint.

• Specifies semantics expressed in natural language.

• Specifies common model elements, expressed in terms of the profile.

2.5.3 Extensibility mechanisms

There are three common extensibility mechanisms, allowing one to customize or ex­

tend the UML by adding new building blocks, creating new properties and specifying

new semantics. We refer to these extensions as stereotypes, tagged values, and con­

straints.

Stereotypes allow one to extend the vocabulary of the UML to create new model

elements derived from existing elements, but that have specific properties that are

suitable for a problem domain. These elements are used for classifying or marking

the UML building blocks in order to introduce new building blocks that speak the

language of a domain and that look like primitive or basic model elements. For

example, when modeling a network, one might need to have symbols for representing

a hub and a router. Stereotypes also allow introducing new graphical symbols for

providing visual cues to the models that speak the vocabulary of a specific domain.

35

Graphically, a stereotype is rendered as a name enclosed by guillemots (<S») and

placed above the name of another element. Alternatively, the stereotyped element

can be rendered by using a new icon associated with that stereotype.

Tagged values are properties for specifying keyword value pairs of model elements,

where the keywords are attributes, allowing one to extend the properties of a UML

building block to create new information in the specification of that element. Tagged

values can be defined for existing model elements, or individual stereotypes, so that

everything with that stereotype has that tagged value. One should note that a tagged

value is not equal to a class attribute. Instead, a tagged value is regarded as being

a meta data, since its value applies to the element itself and not to its instances.

Graphically, a tagged value is rendered as a string enclosed by brackets () placed

below the name of another model element. The string consists of a name (the tag),

a separator (the symbol =) , and a value (of the tag).

Constraints are properties for specifying semantics and/or conditions that must

be held true at all the times for the elements of a model. They allow one to extend the

semantics of UML building blocks by adding new rules, or by modifying existing rules.

For example, when modeling time systems, one may want to add information to the

model such as time deadlines. By making use of constrains, this timing requirement

can easily be captured. Graphically, a constraint is rendered as a string enclosed

by brackets () placed near the associated element, or connected to the element by

dependency relationships.

2.5.4 The Object Constraint Language

With object-oriented modeling, a graphical model — like a class abstraction — is

not enough for a precise and unambiguous specification. As such, there is a need to

36

describe additional constraints about the objects in the model. While such constraints

are often described in natural language, experience has shown that this will always

result in ambiguities. In order to write unambiguous constraints, so called "formal

languages" have been developed. The disadvantage of traditional formal languages is

that they are only accessible to people with a fairly serious mathematical background.

The Object Constraint Language (OCL) has been developed in an attempt to address

this limitation.

OCL is a language that enables one to describe expressions and constraints on

object-oriented models. An expression is an indication or specification of a value and

can be used for the following purposes:

• To specify the initial value of an attribute or association end.

• To specify the derivation rule of an attribute or association end.

• To specify the body of an operation.

• To indicate an instance in a dynamic diagram.

• To indicate a condition in a dynamic diagram.

• To indicate an actual parameter value in a dynamic diagram.

• To indicate the type of constraint.

A constraint, on the other hand, is a restriction on one or more values of an

object-oriented model or system. In practice, a constraint can take the following

forms:

37

• An invariant is a constraint that states a condition that must always be met

by all instances of the class, type, or interface. An invariant is described using

an expression that evaluates to true if the invariant is met. Invariants must be

true all the time.

• A precondition to an operation is a restriction that must be true at the moment

that the operation is going to be executed.

• A postcondition to an operation is a restriction that must be true at the moment

that the operation has just ended its execution.

• A guard is a constraint that must be true before a state transition fires.

The context definition of an OCL expression specifies the model entity for which

the OCL expression is defined. Usually this is a class, interface, data type, or com­

ponent. In terms of the UML standard, this is called a Classifier. The classifier is

always a specific element of the model and is usually defined in a UML diagram. This

element is called the "context of the expression". In addition, we must also be aware

of the contextual type of an expression. The contextual type defines the context,

or its container. It is important because OCL expressions are evaluated for a single

object which is always an instance of the contextual type. To distinguish between the

context and the instance for which the expression is evaluated, the latter is called the

contextual instance. Sometimes it is necessary to refer explicitly to the contextual

instance. The keyword self is used for this purpose.

38

2.6 Related work

Recently, several multi-dimensional data models have been proposed. A detailed

description of the previous proposals can be found in [2, 6]. In this section, we briefly

review several of the data models that we believe to be the most relevant to the work

discussed in this thesis.

Approaches that directly extend the classical ER model include the Multidimen­

sional ER (M/ER) model by Sapia et al. [35, 35], the starER model by Tryforia et

al. [41], and the MultiDim model by Malinowski et al. [24]. A number of propos­

als also provide some form of graphical notations. Models of this type include the

Dimensional-Fact (DF) model by Golfarelli et al. [15, 14], the model proposed by

Husemann et al. [17], and the Multidimensional Aggregation Cube (MAC) by Tsois

et al. [42]. We note, however, that their "proprietary" notations and/or non-OOP

models give them limited applicability in the OLAP context.

In fact, despite the fact that the dominant trend in data modeling is the 0 0

paradigm, only a few proposals using 0 0 multi-dimensional modeling exist. Included

in this group would be the Common Warehouse Metamodel (CWM) by the Object

Management Group (OMG) [26], the ADAPTed UML model proposed by Priebe

et al. [32], the Object-Oriented meta cube proposed by Nguyen et al. [5, 4], the

Yet Another Multidimensional Model (YAM2) by Abello et al. [3], and the Object

Oriented Multidimensional Model (OOMD) by Trujillo et al. [40]. Some of these use

UML as a language to express a meta schema [5, 4, 32], while others also extend the

UML vocabulary [22, 3, 26]. A summary of these approaches is given below.

The Object Management Group (OMG) [26] propose The Common Warehouse

Meta model (CWM) that is meant to standardize data warehousing and business

39

intelligence applications based on UML. Their Multidimensional Package serves as

a meta model for MOLAP tools. (In fact, some MOLAP tool-specific meta models,

such as Oracle MOLAP, are defined as extensions of this meta model.) In turn,

the OLAP Package describes the OLAP meta model, independent of any ROLAP or

MOLAP implementation. The OLAP package includes the concepts of a dimension

and a hierarchy and it is possible, in theory, to represent several different types of

hierarchies. Having said this, the CWM is extremely complex and would be difficult

to employ in its native form.

Priebe et al. [32] create a UML based notation named ADAPTed UML which

uses ADAPT symbols as stereotypes [8]. Elements introduced include cube, mea­

sure, dimension level and dimension attribute. To connect cube and measures, UML

dependencies are drawn as associations with a defined navigability. The dimension

hierarchies are represented by aggregation elements. However, their approach only

supports symmetric hierarchies.

Binh et al. [5, 4] introduces a conceptual multidimensional data model and ap­

plies a number of mathematical principles (e.g., partial order, partially ordered set,

minimal element) that dictate the form of hierarchical relationships. Data in the mul­

tidimensional model is organized in the form of meta cubes. Their approach supports

symmetric and multiple hierarchies.

Abello et al. [3] propose a conceptual multidimensional model called YAM2 that

extends UML. They make use of the part-whole and specialization-generalization re­

lationships to represent symmetric, multiple alternative and non-strict hierarchies.

YAM2 does not support asymmetric hierarchies because every object in an aggre­

gation level must have the same structure. In addition, ragged hierarchies are not

40

directly supported in this model, though the authors suggest that they can be repre­

sented in the schema by a part-whole relationship. YAM2 is one of the few approaches

that provides grouping (i.e., package-based) mechanisms to the model so as to avoid a

"flat", single layer design. Specifically, they divide the multi-dimensional model into

three levels: fact and dimensions, classification hierarchies, and the whole model.

However, they do not employ any packaging mechanism to reduce the complexity of

the hierarchies themselves.

TVujillo et al. [40] produce a conceptual model for data warehouse and OLAP

applications that does in fact utilize an Object-Oriented paradigm to model multi­

dimensional elements like dimension classes and fact classes. In addition, they pro­

pose a cube class as the basic structure so as to allow subsequent analysis of the data

stored in the system. A UML-based representation of this model is also described in

[22]. While this work represents, to our knowledge, the most sophisticated and most

accurate of the existing data warehousing models, it nonetheless treats the crucial

dimension hierarchies in a very generic way. Specifically, it considers hierarchies as

instances of directed acyclic graphs and allows designers to model real world hierar­

chies in a very flexible way. That being said, such an abstract representation provides

relatively little support for the user as the final design is primarily ad hoc. Perhaps

this is acceptable in the context of that paper as the final target is expected to be

an SQL database, which does not have the ability to physically represent many of

the hierarchies discussed in this chapter. In our own research, this is not the case.

In particular, we expect the models developed with the proposed framework to even­

tually populate the Sidera OLAP DBMS being developed by other members of this

research group. Sidera does, in fact, support complex hierarchies at a physical level

41

and, consequently, we must have the ability to intuitively identify the structure of

such aggregation models.

Still, the work defined in [40, 22] represents an important starting point for our

modeling research. Table ?? summarizes the stereotype definitions from these earlier

papers. We note that even when utilizing this small set of core stereotypes, we were

forced to re-write the associated OCL expressions due to differences in the UML 2.0

spec and the original 1.5 version.

2.7 Conclusions

Over the past couple of decades, data warehousing has emerged as a fundamental

component of contemporary enterprize-level decision support systems. In the major­

ity of cases, sophisticated OLAP applications are layered on top of the data warehouse

so as to provide improved access and performance. Central to the OLAP paradigm

is the notion of the multi-dimensional data model, a logical representation of data

that highlights the relationships between key organizational subjects. In practice,

these subjects are subdivided into sometimes complex dimension hierarchies that, in

turn, allow users to aggregate and analyze detailed corporate data at different levels

of granularity.

This chapter presented an overview of the general area of decision support systems

and its primary components — Information systems, OLAP, and data mining — as

well as the underlying data warehouse architecture. Fundamental OLAP operations

were introduced and illustrated, along with explanations as to how these operations

are performed in order to provide meaningful measures of summarized multidimen­

sional data. The concept of attribute hierarchies was then presented and the various

42

Name

Schema Package

Fact Package

Dimension Pack­
age
Fact

Dimension

OID

Descriptor

Level Attribute

Measure

Rollup

Degenerate Fact

Base Class

Package

Package

Package

Class

Class

Attribute

Attribute

Attribute

Attribute

Association

Association
Class

Description

Packages of this stereotype represent
multi-dimensional Star Schemas
Packages of this stereotype represent
multi-dimensional facts
Packages of this stereotype represent
multi-dimensional dimensions
Classes of this stereotype represent
facts in multi-dimensional model
Classes of this stereotype represent di­
mensions in multi-dimensional model
Attributes of this stereotype represent
OID attributes of levels in a multi­
dimensional model
Attributes of this stereotype repre­
sent attributes of levels in a multi­
dimensional model
Attributes of this stereotype repre­
sent descriptor attributes of levels in a
multi-dimensional model
Attributes of this stereotype repre­
sent attributes of a fact in a multi­
dimensional model
Associations of this stereotype repre­
sent associations between level
Association classes of this stereotype
represent association classes in multi­
dimensional model

Table 2.1: Summary of standard data warehousing stereotypes

43

forms of hierarchies typically encountered in practical environments were defined. In

addition, a simple introduction for both UML and OCL has been included. In the

remainder of this thesis, we will build upon the concepts introduced in this chapter.

44

Chapter 3

Multi-dimensional Modeling

3.1 Introduction

Organizations today are facing complex challenges in terms of management and eco­

nomic planning. As a result, IT departments have become increasingly reliant upon

software applications and systems that more thoroughly support their decision mak­

ing objectives. DSS systems provide this functionality by collecting and integrating

vast amounts of distributed data and information and converting it into a form that

can be easily and intuitively analyzed [12].

Starting in the early 1990s, data warehouses began to emerge as the cornerstone

of DSS environments [25]. Soon after, more advance analytical tools, in the form of

OLAP servers and applications, were developed in order to allow users to query and

automatically aggregate data in the data warehouse. In part, OLAP tools provide a

logical interface to analytical data that is simply not present in the data warehouses

themselves. One element of this new interface is the support for complex dimension

hierarchies. That being said, most existing commercial applications only permit the

definition of simple hierarchies in which relationships between instances can be repre­

sented as a balanced tree. For example, a single Day-Month-Year hierarchy is simple

45

in that every day is related to a month, which in turn is related to a year. However,

as discussed in the previous chapter, many of the hierarchies found in real-world sit­

uations correspond to unbalanced trees or to more general graphs [24], and simply

cannot be modeled using the techniques available for balanced trees.

Given the above considerations, our focus in this thesis is upon expanding the

capabilities of conceptual design models for OLAP. In general, conceptual model­

ing greatly facilitates communication between users and designers since conceptual

models do not require detailed knowledge about specific features of the underlying

implementation platform. Instead, the focus is placed squarely on user requirements.

Moreover, schemas defined using conceptual models can be mapped to various logical

models, such as relational, object-relational or object-oriented.

This chapter presents our conceptual multidimensional model that allows one to

represent data requirements for data warehousing and OLAP applications. Section

3.2 discusses the motivation for this work and adds justification for our use of UML

and OCL. Section 3.3 provides a general definition of the main properties and aspects

of multi-dimensional and OLAP hierarchy modeling. It describes how to utilize UML

to represent the major properties of OLAP at the conceptual level and provides

general design guidelines for designing a DW/OLAP system. In addition, a meta

model of our work is presented. The specification of a UML "Hierarchy" profile that

makes use of OCL to improve precision is then discussed in Section 3.4. In addition,

advanced aspects of modeling such as the use of degenerate dimensions and role-

playing dimensions are presented. Section 3.5 concludes the chapter with a concise

summary.

46

3.2 Motivation

Before presenting the details of our new model, we begin with a brief explanation

of our motivation for this area of research. We also explain why the UML profile

approach is well suited to this problem domain. In a related vein, we discuss the

significance of using OCL as a constraint language.

3.2.1 Why OLAP Conceptual Modeling?

Organizations across all fields of commerce and industry need to perform sophisti­

cated data analysis in order to support their decision-making processes since these

decisions ultimately have significant effects on the organization's financially health

and solvency. Traditional databases are designed to support daily business operations,

where the focus is on both concurrent access by multiple users, as well as recovery tech­

niques that guarantee data consistency. These highly normalized databases generally

perform poorly when executing complex queries against massive volumes of detail-

level transactions. Moreover, if an organization needs to be analyzed or assessed "as

a whole", data from different systems must be properly integrated. This integration

demands the design and implementation of a coordinated conceptual model. How­

ever, this task is usually difficult to accomplish because of differences in structure,

definition, and content. In fact, [21] and [39] show that conceptual models designed

for traditional databases are poorly suited to the data warehouse/OLAP world.

The absence of a commonly accepted conceptual approach for data warehousing

and OLAP systems makes the modeling task difficult at present. Even though a

number of approaches have been proposed, none of them has been accepted as a

standard for either data warehousing in general or OLAP hierarchies in particular.

47

As a result, the area of conceptual design for OLAP applications is still very much at

the research stage. From our point of view, previous proposals attempt to represent

multi-dimensional properties at the conceptual level by directly emphasizing the pri­

mary data structure (fact and dimensions). While this is important, it nevertheless

discounts the significance that dimension hierarchies play in the real world. In addi­

tion, most of these models introduce non-standard graphical notation that is unlikely

to be adopted in practice.

The conceptual modeling phase is widely recognized as a crucial step in the design

of data warehouse and OLAP applications. Significant attention should be paid at the

modeling phase to perfectly (or at least effectively) transform the user's requirements

into error-free, understandable, and easily extendable OLAP schemas. The sooner a

designer is able to define a precise schema, the more accurately the implemented data

warehouse/OLAP system will represent the requirements and objectives of the user.

3.2.2 Why UML?

There are a number of reasons why we feel that UML is the ideal notational framework

for this type of research. We briefly summarize its strengths below:

1. UML is a modeling language that is already well understood by many database

designers. Therefore, learning a new language can often be avoided.

2. UML is a standard of the Object Management Group (OMG) and benefits from

OMG's extensive background in 0 0 (Object Oriented) analysis and design.

3. The 0 0 paradigm, which UML follows, is semantically richer than other paradigms

in that 0 0 models tend to be closer to the user's conception of the real world

48

4. UML can be easily extended and tailored to a specific domain. Due to the

use of the UML profiling mechanism, designers do not need to understand the

entire UML; instead, they can use the concepts (fact, dimension) with which

they normally work.

5. The UML profiling mechanism also restricts the set of UML elements that is

to be used in a given domain. This "specializes" these elements to capture the

semantics of data warehousing elements.

6. UML has been widely accepted by the scientific and industrial communities,

and there are many Computer Aided Software Engineering (CASE) tools that

support it.

7. The use of UML promotes the implementation of a common modeling language,

so that the vision of integration, reusability and inter-operability within an

enterprize's system can be achieved.

3.2.3 Why not ER?

Entity Relationship (ER) models have traditionally been one of the most widely

utilized data design models [10]. In fact, there are now many different extensions of

the traditional ER diagram [38]. Still, they are not appropriate for multi-dimensional

modeling due largely to their complexity in this setting. Several authors have pointed

out this problem. For instance, Ralph Kimball states the following [21]:

Entity Relation data models are a disaster for querying because they can­

not be understood by users and they cannot be navigated usefully by

49

DBMS software. Entity Relation models cannot be used as the basis for

enterprize data warehouses.

3.2.4 Why OCL?

In [43], Warmer declares that "The combination of UML and OCL offers the best of

both worlds to the software developer". The motivation for this statement is that

while UML is capable of modeling a variety of distinct systems, it can often be ineffi­

cient in doing so due to its wide-spectrum approach. This suggests a requirement for

a more cleanly integrated mechanism for specifying system and element constraints.

The Object Constraint Language (OCL) is suited to this role for the following reasons:

1. Using OCL with DW/OLAP UML meta models enriches the model with ad­

ditional information that make the model complete, consistent, precise, more

detailed, and unambiguous.

2. OCL expressions can be verified by most CASE tools to ensure correctness and

consistency with other elements of the model.

3. Code generation becomes much more powerful with OCL.

4. An essential characteristic is that OCL is a typed language, so its expressions

can be checked during modeling and before execution [19]. Thus, errors in the

model can be removed at an early stage.

5. OCL is a declarative language which ensures that its expressions have no side

effects. Evaluating an OCL expression does not change the state of the system.

6. OCL can be used to write constraints and any expressions on elements.

50

3.3 Multi-dimensional modeling concepts

In this section, we describe how we utilize UML to represent the properties of multi­

dimensional environments. As previously indicated, our approach makes use of the

UML profile mechanism that, in turn, contains the necessary stereotypes for success­

fully carrying out OLAP hierarchy modeling at the conceptual level. The primary

features of OLAP hierarchy modeling considered in this thesis are simple and complex

hierarchies. Recall that simple hierarchies include those that are symmetric, asym­

metric, generalized and ragged, while the complex forms are multiple and parallel.

In addition, the concepts of strictness and non strictness are considered, as well as

the general relationships between hierarchy levels. Note that because this research

addresses multi-dimensional design at a conceptual level, implementation issues such

as primary/foreign keys and element data types are not a main priority. Instead, the

objective is the representation of the main structural properties of this environment.

Our approach makes extensive use of UML stereotypes so the reader should be

familiar with their graphical depiction. In general, UML allows one to represent a

stereotype in a number of ways. Figure 3.1 shows six possible representations of a

Strict Ragged stereotype (one of the stereotypes proposed in this thesis). They can

briefly be identified as:

1. Shape Image. The stereotype icon is displayed (Raggedl).

2. Icon. The stereotype icon is displayed inside the element (Ragged2).

3. Text. The stereotype name is displayed and appears inside guillemots (Ragged3).

4. None . The stereotype is not indicated (Ragged4).

51

Ragged 1

~l
Ragged 2 &

t
«StrictRagged» ^

Ragged 5

I
«StrictRagged»

Ragged 3

H
Ragged 4

j ^ - i

&J»
«StrictRagged»

Ragged 6

Figure 3.1: A simple stereotype diagram.

5. Text and Icon. The stereotype icon is displayed inside the element and the

stereotype name is displayed and appears inside guillemots (Ragged5).

6. Shape Image and Text. The stereotype icon is displayed and the stereotype

name is displayed and appears inside guillemots (Ragged6)

Finally, we note that throughout this section, various examples are presented

to illustrate the basic concepts, as well as the applicability of this multidimensional

approach. Inspiration for these examples come primarily from Malinowski and Zamnyi

[24], who have written extensively about hierarchical structures in the OLAP world.

3.3.1 General definitions

In this section, we define the primary elements of our multidimensional conceptual

model. In short, it must be possible to represent at the conceptual level all common

elements found in data warehousing and OLAP applications.

A Star Schema, which is represented in our approach by a Schema Package

stereotype, is composed of those elements found in a standard departmental data

mart. It contains one fact table and a set of dimensions. The Schema Package is a

52

specialization of the UML Package meta class.

A dimension, which is represented in our approach by a Dimension Package

stereotype, is an abstract concept that groups data sharing a common semantic mean­

ing. The Dimension Package is also a specialization of the UML Package meta class.

A dimension is composed of a hierarchy or a set of hierarchies. The name of the

dimension is represented by a Dimension stereotype, which does not have any prop­

erties. A Dimension is a specialization of the UML Class meta class. The stereotyped

class Dimension belongs to the stereotyped Dimension Package.

A hierarchy is composed of a set of levels. A level describes a set of real-world

concepts that have similar characteristics. Instances of a level are called members.

A level is divided into three main types — Root, Level, and Leaf — that are spe­

cializations of the UML Class meta class. The relationships between these levels are

represented by a RollUpTo stereotype, which is a specialization of a UML Asso­

ciation meta class. These associations are used for traversing from one level to the

next. The stereotyped RollUpTo association is characterized by the two roles c (child)

and p (parent), as well as cardinalities indicating the maximum and the minimum

number of members in one level that can be related to a member in another level.

In addition, a level has a set of properties that describe its characteristics, includ­

ing the OID (Object ID), Descriptor and Level Attribute. These properties are

specializations of the UML Attribute meta class.

Finally, a fact is represented by a Fact Package stereotype, and expresses a focus

of analysis. It is a specialization of the UML Package meta class. A Fact Package

is composed of one stereotype, Fact, that is a specialization of the UML Class

meta class. A Fact is connected to a Dimension by a Dimensioning, which is a

53

specialization of a UML Association meta class. A Fact usually contains properties;

otherwise, it is described as fact-less [21]. These properties are represented by a

Measure stereotype, which is a specialization of the UML Attribute meta class.

These Measure attributes are analyzed as per the various perspectives presented by

the surrounding dimensions.

3.3.2 Design guidelines

Our experience has shown us that the design of an OLAP schema is not a haphazard

process. In general, a successful design is the result of adherence to an informal

"design algorithm." In the current case, we can describe a bottom-up process that

consists of nine distinct steps. We note, of course, that before beginning the UML

design, the designer must already have identified the facts, dimensions, and hierarchies

relevant to the given domain. Once that is done, the design phase proceeds as follows:

1. Step 1: Create a Hierarchy package that corresponds to the kind of hierarchy

that will be created. Possible Hierarchy packages include:

• Strict Symmetric

• Non-strict Symmetric

• Strict Asymmetric

• Non-strict Asymmetric

• Strict Generalized

• Non-strict Generalized

• Strict Ragged

• Non-strict Ragged

54

• Multiple Alternative

• Multiple Inclusive

• Parallel Dependent

• Parallel Independent

2. Design the levels of a hierarchy and the relationships between them. In prac­

tice, we do this by specifying Root, Leaf, and Levels stereotypes and defining

RollUpTo stereotyped associations between them.

3. Relate the leaf level to a dimension. We do this with a stereotyped association

Hierarch that links a stereotyped Leaf class to the stereotyped Dimension class.

4. Create a Dimension Package to which the Dimension class and the Hierarchy

package belong.

5. Create a fact and its associated measure(s) by defining a stereotyped Class Fact

and stereotyped Attributes Measure .

6. Relate the fact to the dimensions. This is done with a Dimensioning stereo­

type that defines an aggregation relationship between the stereotyped Fact and

Dimension classes.

7. Define a stereotyped Fact package. Then either place the corresponding Fact

class in this package or relate it to the package with a Dependency relationship.

8. Create a Schema package that represents the Star Schema of the relevant data

mart.

55

[\ "V"
SchemaPackagel \ _ __ " °

l _ ^ ^ _ _ ^ ^ _ _ _ _ J < < g c h e m a p a c k a g e > >

SchemaPackagel
/ \

/ \

m* *

tv SchemaPackage2l «SchemaPackage»
1 SchemaPackage2

tP
«FactPackage» «DimensionPackage»

FactPackage 1 DimensionPackagel

«FactPackage» n

FactPackage2
«DimensionPackage» 4£

DimensionPackage2

Figure 3.2: Different representations

9. Relate dimensions and facts to the corresponding schema. We do this either by

linking the Dimension package and the Fact package to the Schema package with

a stereotyped dependency relationship or by directly including these packages

in the Schema package.

We can see two possible "top level" views of the final result in Figure 3.2. On the

right hand side of the diagram, the "parent" schema package encapsulates both the

Fact and Dimension packages. Each of the three package folders are displayed with

the standard UML representation and the corresponding stereotype icon is placed in

the upper right corner of the package. On the left hand side of Figure 3.2, we see

an alternate representation of the new Star Schema. Here, the entire package symbol

has been collapsed into the corresponding stereotype icon and the linkages with the

Fact and Dimension packages are depicted using dependency relationships. In this

thesis, the first form of representing the stereotype has been adopted as it tends to

be more expressive, as well as intuitive for end users. Finally, we note as well that

the OLAP designer is free to annotate the core diagrams with UML notes in order to

add more detail, clarify points, describe concepts or characteristics.

56

3.3.3 OLAP hierarchies

The first two steps of the design algorithm have to be quite precise because the hier­

archy levels of a dimension are ultimately the most important element of the schema

in terms of data analysis. In a sense, it is this ability to accurately and intuitively

drill down and roll up through hierarchies that defines the OLAP processing model

[31]. The primary prerequisite of course is that the sequence of relationships between

hierarchy levels has to be meaningful. In other words, an aggregation path between

hierarchy levels must have a valid sequence of roll up and/or drill down operations

that can be performed by traversing the path.

We note that in the current model a hierarchy package is used to group related

model elements of all types, including other packages. This packaging serves two

purposes. First, the integration of elements into a single package makes the hierarchy

easier to understand and navigate for end users. Second, packages are easier for the

user/system to validate separately. Many hierarchy packages, in fact, have a number

of common restrictions and considerations.

In turn, all hierarchy packages have a single "owner", which is the associated

Dimension Package. Therefore, the only relationships between Hierarchy packages

and Dimension Packages are Package Import and Dependency relationships. In effect,

a Hierarchy Package is a direct representation of a Dimension. We maintain the notion

of a distinct Dimension entity, however, since this is a core part of the conceptual

Star Schema model. In other words, users intuitively view a data mart as a Fact

table, surround by a series of key Dimensions, not a group of (complex) hierarchies.

Figure 3.3 illustrates how a dimension package encapsulates a given hierarchy, in this

case a Strict Generalized Hierarchy (discussed shortly).

57

«Dimension>; \ ^
Dimensionl

1
«DimensionPackage»

DimensionPackagel

«Hierarch»

ifc

f
«StrictGeneralized» ^ ;

StrictGeneralizedl

« L e a f » i « ,
Leafl

«RollUpTo»

<<Root>>£L
Rootl

Figure 3.3: Content of a Dimension package.

In terms of its actual structure, a Hierarchy is composed of levels. Every hierarchy

level that has successors and predecessors is specified by a class called Level. Level

0 of a hierarchy, which is the topmost level, is specified by a distinct class called

Root, while the leaf level of the hierarchy, which is associated with the most detailed

data in the dimension, is represented by a class called a Leaf. While it may not be

immediately obvious, Root and Leaf levels have different properties [17]; hence the

need to have separate UML representations. Any hierarchy package must have at

least the two classes Root and Leaf. Note as well the stereotyped classes Root, Level,

and Leaf are unique to the hierarchy packages.

A stereotyped association, called RollUpTo, can be defined between hierarchy

levels and specifies the "aggregation" relationship between these two levels. Again,

this is the primary traversal action on hierarchy paths (Drill down, of course, is just

the inverse of Roll up). Roles are used to represent the relationship between two

levels in terms of how they see each other. In a RollUpTo association, role p (parent)

58

wm
1 -p _ L * 1 -p

« L e a f » «RollUpTo(1*->1)» «Leve l» «RollUpTo(1*->1)» « R o o t »
Leafl Level! R o o t 1

I

\ ^
«Crilerion»

Analysis Creiterion

Figure 3.4: Content of a hierarchy package

represents the direction of the hierarchy roll up, whereas role c (child) represents

the direction of the hierarchy drill down. In our model it is always possible to drill

down or roll up in one of the two directions, which means that navigation is always

supported towards both ends of an association.

In the example shown in Figure 3.4, a hierarchy is formed by three levels —

Leaf, Level, and Root. A straight line from one level to another denotes a RollUpTo

stereotyped association, where a lower level can be rolled up to a higher one. For

example, a City "Leaf" can roll up to a Province "Level". In concrete terms, this

might allow the measures values for Montreal and Quebec city to be rolled up or

aggregated into a provincial total for Quebec. One can also see the roles names, p

and c, that highlight the meaning of the roll up and drill down association. Finally,

the notation for the association itself <C RollUpTo (1* —> 1) ^> defines the multiplicity

of the relationship. In this case, it is used to indicate that many Leaf values (e.g.,

cities) are associated with a single Level value (e.g., province), or that many Level

values RollUpTo a single Root value (perhaps Province to Country).

Hierarchy packages are divided into three main package types: simple packages,

59

multiple packages and parallel packages. Separate packages have been defined primar­

ily because it simplifies the meta model and reduces constraint redundancy. Root,

Level and Leaf classes are the only classes that can be contained in all hierarchy

packages. A simple package, which is specialized into Strict and Non Strict, can­

not contain any other type of package. A Multiple Hierarchy package is similar to a

Simple package but has a number of additional properties that are unique to the Mul­

tiple Inclusive and Multiple Alternative hierarchy forms. Parallel Hierarchy packages

contain multiple simple hierarchies, each with a unique analysis criterion. This also

implies that a Parallel Hierarchy may have multiple hierarchy packages nested within

it.

3.3.4 Analysis criterion

This thesis represents analysis criteria in the model by attaching a stereotype Crite­

rion comment to the Leaf class, as illustrated in Figure 3.4. Note that while the user

may visualize data being physically stored at each and every level of the dimension

hierarchy, this is usually not the case in practice. More likely, the DBMS server stores

data at leaf-level granularity, then dynamically aggregates data into higher levels at

query time. As such, it makes sense to associate the Criterion comment with the leaf

node since hierarchical analysis will be driven from this level. Our choice of using a

stereotyped UML Comment rather than a UML Note was taken for the following rea­

son. A UML Comment is a meta class of UML, while a UML note is only notational.

This ultimately allows a UML Comment to serve as a reusable element of a model,

to be owned by any element, to carry a <C stereotype » , and to appear in the model

repository [23].

60

3.3.5 Conformed dimension

In practice, dimensions are often shared between Star Schemas [21]. In other words,

an organization might have half a dozen corporate data marts, each representing a

distinct business process (e.g., sales, inventory). Within these distinct data marts,

the same dimension could be used repeatedly. Dimensions like Time, Customer, or

Product would be common examples. While separate dimension hierarchies could

be defined for each of these schemas, doing so is not only wasteful, but increase the

likelihood of ambiguity and contradictions. Instead, we introduce the notion of a

stereotyped Conformed Dimension package. This package allows the user to define a

"reusable" hierarchy package once, then use the UML import mechanism to include

this Conformed dimension into any number of distinct schema packages.

Strictly speaking, a Conformed Package cannot physically belong to any one pack­

age and cannot have a relationship with any package except for the import relation­

ship. This model allows us to significantly reduce the complexity of modeling common

dimensions as we need not consider dependency relationships between two Schema

Packages indicate sharing [22]. In particular, we do not have to worry about circular

dependencies that might occur during the design process, nor the necessity to reduce

these dependencies by splitting, introducing a third intermediate package, or merging

packages [24]. In Figure 3.5, we see a simple Conformed Package representing the

Product dimension. In this case, it is composed of Product, Category and Brand

levels.

61

«ConformedPackage»
•.«

« L e a f » j
Product

-c
1..*

«StrictSymmetric»
Product Hierarchy

-p

1

«RollUpTo(c1*->1p)>£

«Leve l» j2 i
Category

-c

1..*
«R0Ot» j

Brand
«RollUpTo(c1*->1p)>i

«TimePackage»
Calendar Hierarchy «StrictGeneralized»

Customer Hierarchy

Figure 3.5: Content of a Conformed Package

62

«Dimension>;^ .•_!
Store

i

i

«Dimensioning>

c<Oimensioning»

{not-aggregated}

«Dimension>; •_.,•,
Customer

j «Dimension>:•• ^ 1
s Product i

>

)
isionmg»

« F a c t » m
Sales

«Measure»-Quantity : Additive
«Measure»-Amount: Additive
«Measure»-Price: Nonadditive

(Role - "Order Date"}

«Dimensioning»

{Role = "Payment Date"}

«Dimensioning»

«Dimer sioning»
«DegenerateDimension» m

Transaction

«Descriptor»-Transaction Numbet

«Oimension>;' .•
Time

Figure 3.6: Time dimension playing distinct roles.

3.3.6 Role playing dimension

Sometimes a single dimension can be connected to a fact but play different roles.

Each role is uniquely represented by a Dimensioning association that is identified by

the tag Role. For example, Figure 3.6 shows a Time dimension that is associated

with more than one attribute of the Sales fact table. In particular, it can be used to

perform analysis by two distinct time values, Order Date and Payment Date. This is

represented in the figure by two distinct roles for this dimension.

3.3.7 Degenerate dimension

Often, attributes are included in a fact table solely to provide a more intuitive interface

for end users. Unlike normal fact tables attributes, these degenerate attributes do not

link the fact table with any of the dimensions in the Star Schema. Instead, they are

included in the fact table since they may be useful for grouping fact table records

63

during the aggregation process [24]. Common examples are attributes like line number

and order number that are found in the detailed fact record [34, 31].

To be able to represent these attributes, our model includes the stereotyped class

Degenerate Dimension. This class can only have an OID (Object ID) and one De­

scriptor. For example, in Figure3.6, transaction number is housed in the Degenerate

dimension Transaction, a class having just a single descriptor, Transaction Number.

3.3.8 Measure values

In order to represent the various aggregation measures found in the fact table, three

data types have been defined: Additive, Semi-additive, and Non-additive. Additive

measure are the most common type of measure and describes the case whereby addi­

tion can be used to aggregate attribute values along/up all hierarchies defined on a

dimension. The SUM aggregation function is applicable to these measures. Additive

measures are also called rate or flow measures. In contrast, semi- additive measures

are additive along some but not all dimensions. They are also called level or stock

measures. Finally, non-additive measures, as the name would suggest, cannot be

summarized using addition. They are often referred to as value-per-unit measures.

By default, measures within the Fact class are considered to be additive. For non

additive measures, additive rules are defined as OCL constraints near the Fact class

as a note. Figure3.6 illustrates the use of these measures in the Sales fact, where

Quantity and Amount are defined as additive and Price as nonadditive.

Occasionally, we find situations where the knowledge of the existence of a particu­

lar combination of feature attributes is the only thing that is important. We refer to

this as a fact-less fact table [21]. For example, an analysis of student attendance might

be associated with the dimensions student, date, course room, and professor. What

64

is the relevant measure? Basically, it is a yes/no value. Our fact table could then

simply contain records identifying the valid dimension combinations for attendance.

3.3.9 At t r ibute

Four stereotyped Attributes are defined within the new model. OID (Object ID) is

an identifying attribute that is used for aggregation purposes. A Descriptor is simply

a label that represents the name of a level. Level Attribute provides descriptive

information about dimension instances. Finally, we also employ the Distribution

Attribute for defining measure distributions in the Multiple Inclusive package. The

OID and Descriptor attributes are particularly important for interfacing with OLAP

tools, since this information typically becomes part of the tool's meta data.

3.3.10 Time dimension

In a data warehouse, Time is the most common, and arguably most important,

dimension. Many forms of analysis involve either historical trends or inter-period

comparisons. For example, Inmon defines a data warehouse as "a subject-oriented,

integrated, time-variant, non-volatile collection of data in support of management's

decision" [18], while Kimball states that "The time dimension is the one dimension

virtually guaranteed to be present in every data warehouse because virtually ev­

ery data warehouse is a time series" [21]. For this reason, our model pre-defines a

stereotyped Time hierarchy package composed of Year, Month, Week, Day and Time

stereotyped classes. Each includes tagged values called Type that define internal,

time-related representations. For example, the Time class contains the data types

hour, minute, second, and time. In addition, as per the work of Malinowski [24], we

also define an Instant, corresponding to a single, precisely defined point in time, and

65

«TimePackage»

Calendar
{Temporal Type = Interval}

j P M °
«Rol lUpTo(cr->1p)» «Ro l lUpTo(c r ->1p)»„

J Month Q u a r t e r

Day"
«RollUpTO(d *->1 p) » w

Week

«RollUpTo

-P
1..*

'c1"->1p)»

«Rol lUpTo(cr->1p)» -p
Year

Figure 3.7: Content of the Time package.

an Interval, which denotes an instant-to-instant time period.

We note that the Time hierarchy can only belong to a Dimension package or a

Conformed package. Figure 3.7 illustrates the main elements of the Time package.

Specifically, one can see how alternate aggregations are defined by the Year —> Quarter

—> Month —> Day and Year —> Week —> Day paths. This, in fact, is an example of a

Multiple Alternative hierarchy.

3.3.11 The global view

"Zooming out" allows one to see the entire Star Schema by looking at the Schema

Package and its constituent Dimension and Fact packages. With respect to the di­

mension packages, an indicator signals to the user whether or not the package is

actually an imported entity from a conformed (i.e., shared) package. In Figure 3.8, a

typical "zoomed" Star Schema is shown.

66

A

DimensionPackagel

«SchemaPackage»
SchemaPackagel

Qi
FactPackagel

1

DimensionPackage2

X

DimensionPackage3

Figure 3.8: Content of a Schema package.

3.3.12 A UML perspective

In Figure 3.9, a portion of the UML meta model is presented to show where the

stereotypes fit. Ultimately, all the meta classes come from the Core Package, a sub-

package of the UML Foundation Package. In this figure, stereotypes unique to the

current work are colored in dark grey. Stereotypes identified by previous researchers

in the area [22] are unshaded.

3.3.13 Meta model

In practice, the designer is less concerned with UML packages than they are with

the conceptual meta model. Figure 3.10 illustrates the "big picture" for our new

0 0 meta model (the illustration is created as a UML class diagram), tying together

most of the elements discussed in this section. The model is "driven" by the OLAP

Hierarchy elements located in the center of the diagram. One can see how hierarchies

are constructed from Levels and contained within Dimensions. The levels themselves

67

Figure 3.9: Extension of the UML with multi-dimensional stereotypes.

68

are manufactured from Level, Root and Leaves, plus OIDs, Descriptors, and Level

Attributes. An individual level must have just one Descriptor and one OID, but can

have more than one Level Attribute. The Leaf can contain one or more Critera.

Root, Level and Leaf elements can only belong to a Dimension Package (through a

given hierarchy). A Dimension Package, in turn, can be composed of one or more

hierarchies.

In the bottom half of the diagram, we can see how hierarchy packages can be

defined as either Simple, Multiple or Parallel. Simple hierarchies can be specialized

into Strict or Non Strict. In turn, Strict hierarchies can be specialized into Strict

Symmetric, Strict Asymmetric, Strict Generalized, and Strict Ragged. Non-strict

can of course be specialized into Non-strict Symmetric, Non-strict Asymmetric, Non-

strict Generalized, and Non-strict Ragged. Multiple hierarchies can be specialized

into Multiple Inclusive and Multiple Alternative. Finally, Parallel hierarchies can

be specialized into Parallel Independent and Parallel Dependent. Note that each

OLAP hierarchy package must have RollUpTo associations with varying cardinalities,

depending on the hierarchy in question.

3.4 The multi-dimensional profile

In this section, we bring all of the preceding concepts and elements together in the

form of a UML profile. While much of the profile represents the new work described

in the preceding section, we re-iterate that we also utilize a handful of "standard"

stereotypes defined in the literature, most notably in [22]. We provide a short sum­

mary of these stereotypes in Table 3.1. The remainder of this chapter will deal with

our own contributions to the new OLAP profile.

69

Name

Schema Package

Fact Package

Dimension Pack­
age
Fact

Dimension

OID

Descriptor

Level Attribute

Measure

Rollup

Degenerate Fact

Base Class

Package

Package

Package

Class

Class

Attribute

Attribute

Attribute

Attribute

Association

Association
Class

Description

Packages of this stereotype represent
multi-dimensional Star Schemas
Packages of this stereotype represent
multi-dimensional facts
Packages of this stereotype represent
multi-dimensional dimensions
Classes of this stereotype represent
facts in multi-dimensional model
Classes of this stereotype represent di­
mensions in multi-dimensional model
Attributes of this stereotype represent
OID attributes of levels in a multi­
dimensional model
Attributes of this stereotype repre­
sent attributes of levels in a multi­
dimensional model
Attributes of this stereotype repre­
sent descriptor attributes of levels in a
multi-dimensional model
Attributes of this stereotype repre­
sent attributes of a fact in a multi­
dimensional model
Associations of this stereotype repre­
sent associations between level
Association classes of this stereotype
represent association classes in multi­
dimensional model

Table 3.1: Summary of standard data warehousing stereotypes

70

«siereoiype»
Descriptor
(Properly]

«Blereolype» •
LevelAttrlbute •

[Properly]

1 «6lere01ype»; ; «8tere0lypB»
Criterion ' : HollsUpTo ,
[Commentl 1 ' [Association]

«stefeotype>
Root

[Class]

"Stereotype >

[Classl

<Estersotype>
Leal

(Classl

y

O

: «stereotype» ; : «s1ereotype» ,
; MultlplelnclusJve • j Multiple Alternative j

iPackage| \ \ [Package] !

:ateieoiype»;

« stereotype »
Dimension

pass]

«stereoiype»
" Dimension Package *

[Package]

: «stereoiype»
| StrlctSymmetrtc
i [Package)

T. :«stereotype»|
; Distribution [

[Property]

j«atereotype»i
, SlrnpleStrict {

[Package] (i [Package]

«Btereoiype»
„. Degenerate Dimension -

(Classl

lAdcmtve
Samiaddltive
NonAddiltve

"ZTZZ
| «stereotype>s
j StrlctRagged

(Package]

«stereotype»
j Parallel Dependent ;

(Package) ;

<<stereotype>?
j HonSlrictOeneralized
! (Package]

«stereotype» |
NonStrlclRagged |

[Package] |

i «8lereotype» |
j Parallel Independent i

[Package] i

Figure 3.10: The meta model.

3.4.1 Simple Stereotypes

We will now look at how stereotypes are actually implemented in the new environ­

ment. We will begin with the "simple" stereotypes, before moving on to the more

sophisticated hierarchy stereotypes in the next section.

Stereotyped Attributes

Only the Fact, Root, Level, and Leaf classes, as well as Degenerate Dimensions and

Measure Distributions, can have attributes. The Root, Level and Leaf consist of three

types of stereotyped attributes: OID, Descriptor and/or Level Attributes. Degener­

ate Dimensions can only have an OID and a Descriptor. A Measure Distribution

contains only the stereotyped attribute Distribution, which is of type Integer since

this attribute always represents a distribution percentage. Facts can have just the

stereotyped attribute Measure. Dimensions have no attribute since they essentially

71

just represent a grouping concept.

Stereotyped Classes

The main classes for OLAP hierarchy modeling are Root, Level and Leaf. These

classes must be owned by a hierarchy package. The Fact class can only be associated

with a Dimension class. In turn, the Dimension class can be related to a Fact and

to one Leaf. The class Degenerate Dimension can only be connected to a Dimension

class.

Stereotyped Comment

There is just one stereotyped comment, Criterion, that is connected to the Leaf class.

There can be just one Criterion in simple hierarchy packages, though multiple criteria

can be found in complex hierarchy packages.

Stereotyped Associations

The relationships between hierarchy levels are defined by the stereotyped association

RollUpTo, with role p at one end and role c at the other end. Varying multiplicities are

associated with different hierarchy forms. For constraint purposes, these relationships

are characterized as RollUpTo(cV -> lp), RollUpTo{cO* - • lp), RollUpTo(cl -»

lp) , RollUpTo(c0..1 -> lp), RollUpTo(c* - • 0..1p), RollUpTo{cO* - • 0..1p),

RollUpTo(cl - • 0..1p), RollUpTo{cO.A -> lp), RollUpTo(cl* - • l*p), RollUpTo(cO* -*

l*p), RollUpTo(cl —> l*p), and RollUpTo(c0..1 —> l*p). In addition, the stereotyped

association Dimensioning is used to aggregate facts. A stereotyped dependency is used

to link dimensions, facts and star schemas. The stereotyped association Hierarch is

used to associate leaf levels to dimensions.

72

Stereotyped Association Class

The stereotyped association class Measure Distribution is only used in the stereotyped

package Multiple Inclusive and, as the name implies, represents the distribution of a

measure value across the instance of a level.

3.4.2 Stereotyped Packages

The hierarchy packages are the core elements of the new design. We present each

below, along with a number of images that give an intuitive feel for their structure.

Strict Symmetric Package

This package, represented by the icon in Figure 3.12(a), represents a simple strict

symmetric hierarchy in which (i) only one path exists at the schema level, and (ii)

all levels are mandatory. Strict Symmetric hierarchies (as implied by the relevant

cardinalities) require that all parent members have at least one child member. A

child member cannot belong to more than one parent member, meaning that this

package can only contain the two stereotyped associations RollUpTo(cl—>lp) and

RollUpTo(cl*—>1) between hierarchy levels. By extension, there is only one Root

and one Leaf class in this package. In addition, since this package represents a simple

hierarchy, there is just one criterion for analysis, which means that only one Criterion

comment can be used. In Figure 3.11, one can see that all levels are mandatory. The

properties of the the various simple hierarchies, as well as their associated represen­

tation (implementation) in UML and OCL, are summarized in Table 3.2.

73

«StrictSymmetric»
Location Hierarchy

JL %/

Store«RollUpTo(1 *->1) « P ^ ^ | R o l l U p T o (1 *->1) > T ~ t e <<RollUpTo(r->1) > S — ~

T\
«Criterion» * ,

Geo Location

Figure 3.11: Strict Symmetric package.

(a) (b) (d)

Figure 3.12: Hierarchy icons for (a) Strict Symmetric (b) Strict Asymmetric (c) Strict
Generalized (d) Strict Ragged

74

«StriotAsymmetrio»

Organization Hierarchy

p i g ;co,.- n
%/

ATM
I
\

cRollUpTo(0*->1 j J S S E E a l] «Ro!IUpTo(1 *->1)>
Agency

EZL
W

B i : < l
Branch

:RollUpTo(1*->1):
Bank

" ^
«Cri ter ion»^, v

Org.Structure

Figure 3.13: Strict Asymmetric package.

Strict Asymmetric Package

This package represents a strict asymmetric hierarchy, and is represented by the icon

in Figure 3.12(b). This hierarchy form has only one path at the schema level but,

as implied by the cardinalities, some lower levels of the hierarchy are not manda­

tory. All parent members must have at least one child member. A child member

cannot belong to more than one parent member, meaning this package can only con­

tain the three stereotyped associations RollUpTo(cl—>lp) , RollUpTo(cl* —>lp) and

RollUpTo(c0..1—>lp) between hierarchy levels, and RollUpTo(cl—>l*p) can only con­

nect the upper levels of the hierarchy. In addition, since it is "simple" it can have

just one criterion for analysis (i.e., only one Criterion comment can be used in this

Package). In Figure 3.13, one sees that the lower level ATM is not mandatory.

75

Properties

Account for the
same analysis
criterion
Only one path
All levels are
mandatory

Some lower
levels are not
mandatory
All paths repre­
sent one hierar­
chy
Includes sub­
types

Can contain
multiple ex­
clusive paths
sharing some
levels
Can contain
multiple ex­
clusive paths
sharing some
levels

Root and Leaf
are the same for
all paths
Non-strict hier­
archies

Stereotype

Criterion comment

Root and Leaf classes
RollUpTo{cl -* lp) ,
RollUpTo(cl* —» lp) asso­
ciations
RollUpTo{cO* -» lp) ,and
RollUpTo(c0..1 —> lp) asso­
ciations
Root and Leaf classes

Generalization

XOR constraint

RollUpTo(cV -» lp),
RollUpTo(cO* -> lp),
RollUpTo(cl -> lp) ,
RollUpTo{c0..1 - • lp),
RollUpTo{cV -> 0..1p),
RollUpTo(cO* - • 0..1p),

•RollUpTo(cl - • 0..1p), and
RollUPTo{c0..1 -* lp),
Root and Leaf classes

RollUpTo{cl* -+ l*p),
RollUpTo{cO* - • *p),
RollUpTo{cl -> l*p), and
RollUpTo{c0..1 - • l*p)

OCL

Just one criterion

Just one Root and one Leaf
Only these associations are
allowed

Only these associations are
allowed

Just one Root and one Leaf

Generalization can be used
in Categorization package
with RollUpTo associations
At least two XOR con­
straints in Generalized
package

Only these associations are
allowed

Just one Root and one Leaf

Only these associations are
allowed

Table 3.2: UML/OCL properties for Simple hierarchies

76

«StrictGeneralized»

Customer Hierarchy

•" /
(xor) l~ l £11 lx(xor)

W
-c «RoiiupTo(oyi)»i L L . f

.mm.
Customer

/

°(1'->1)j>Mnr«RollUpTo(0-->1)J>P1

\

CompaW1 O H U p T o (r"> 1 ,^ctor<<R^Up1ro(0' ->l} i>^ mm
HML
%/

EfTl \ ('-«y -••i'l i..*
Area ,

\ Branch«Rol lUpTo(r->1)»

1 K'.YV&BVI.LL: 1 ^ 1 1 '

\ «RollUpTo(0*->1)» Per»8aR o l l U p T o ' r- !6aWBory «RollUpTo(0'->1)»

T \
«Criterion>

Type

Figure 3.14: Strict Generalized package.

Strict Generalized Package

This package contains a strict generalized hierarchy, and is represented by the icon in

Figure 3.12(c). This hierarchy can contain multiple exclusive paths sharing various

levels. Recall that the term exclusive implies that, given a Leaf level, the path back

to the Root level is uniquely defined. The {xor} annotation in UML is proposed here

to indicate that, for all members, the paths are exclusive. This package can only

contain the eight stereotyped associations RollUpTo(cl*—>lp), RollUpTo(cO*—>lp),

RollUpTo(cl-^lp) , RollUpTo(c0..1-»lp), RollUpTo(cl*-»0..1p), RollUpTo(cO*->0..1p)

RollUpTo(cl—>0..1p), and RollUpTo(c0..1-->lp). In Figure 3.14 we can see where both

the common and unique levels are represented. The {xor} constraint is between the

sector/category and company/person levels. In addition, since this package represents

a simple hierarchy, there is just one criterion for analysis.

77

«StriotRagged»
Place Hierarchy

\

<RollUpTo(1 *->1) = J H B H I
\ State _

/ WW < I Country
i,npn,°-- N I

«RollUpTo(0*->1)» MlBitiii «ROIIUPTO(0*->1)»
County

Figure 3.15: Strict Ragged package.

Strict Ragged Package

This package represents a strict ragged hierarchy, and is represented by the icon

in Figure 3.12(d). Recall that a ragged hierarchy is a special case of a generalized

hierarchy with a restriction that there is just one Root and one Leaf in this package.

As is the case with all simple hierarchies, there is only one criterion for analysis and

thus just one Criterion comment in the Package. Figure 3.15 illustrates the structure

of a ragged hierarchy.

Non-strict Packages

As previously discussed, the various simple hierarchies can also have many-to-many

relationship between levels, thus making them non-strict. These variations on the sim­

ple hierarchies — Non-strict Asymmetric, Non-strict Asymmetric , Non-strict Gener­

alized and Non-strict Ragged — are symbolized by the icons in Figure 3.16. For the

most part, they have the same features and restrictions as the "strict" versions, with

the addition of the non-strict level constraints. For example, Figure 3.17 illustrates a

simple Non-strict Symmetric Hierarchy package in which the Employee/Department

0..'

Office «RollUpTo(0*->1)»

78

(a) (b) (c) (d)

Figure 3.16: Hierarchy icons for (a) Non-strict Symmetric (b) Non-strict Asymmetric
(c) Non-strict Generalized (d) Non-strict Ragged

«NonStrictSymmetric»
Employee Hierarchy

Employee
\

RollUpTo(1*->1'
-^fr%/

1..* 1..*
«RollUpTo(1 *->1)>>»»Bai<Ro|IUpTo(1 '->1)>l

Department Division Area

" ^
«Criterion» j -

Employee

Figure 3.17: A non-strict version of a Simple Symmetric hierarchy.

aggregation relationship is defined as RollUpTo(cl* —> 1 * p). We will not list each

of the other Non-strict variations as their structure is quite similar.

Multiple Inclusive Package

This package defines the multiple inclusive hierarchy, and is represented by the icon

in Figure 3.19(a). Again, in a multiple inclusive hierarchy, several non-exclusive

simple hierarchies share levels. Just one Criterion can be used in this package since

these simple hierarchies account for the same analysis criterion. The stereotyped

association class Measure Distribution is proposed to represent the requirement to

define a distribution of the measure across the shared level(s). As seen in Figure 3.18

79

«Multiplelnclusive»
Comitee Hierarchy

-P XZL
«RollUpTo(1*->1)» 1

1..

^lWMi#I

Sport Club|

Recreation Program

t «MeasureDistribution»h- — -

MM.
1..

«RollUpTo(1*->1)>^P

Sport Association

«RollUpTo(1*->1)» 1

Regional Commitee
1 l " p

<RollUpTcl(1'-> '•>!)»
«MeasureDistribution»

«Dislribution»-Sport Association = 45
«Distrlbution»-Recreation Program = 5|

Figure 3.18: Multiple Inclusive package.

cS
(a) (b) (c) (d)

Figure 3.19: Hierarchy icons for (a) Multiple Inclusive (b) Multiple Alternate (c)
Parallel Independent (d) Parallel Dependent

Measure Distribution is used between Sport Association and Recreation Program.

Table 3.3 summarizes the unique properties of complex hierarchies (Multiple and

Parallel) and how OCL and UML can be used to represent these properties.

Multiple Alternative Package

This package represents a multiple alternative hierarchy, and is represented by the

icon in Figure 3.19(b). Again, just one Criterion can be used in this package since

all included simple hierarchies account for the same analysis criterion. An example is

given in Figure 3.20, where two alternate Time hierarchies are illustrated. Unlike the

80

Properties

Account for the same
analysis criteria
Represent the require­
ment of measure dis­
tribution
Represent different
analysis criteria
A collection of simple
Hierarchies

Stereotype

Criterion comment

Measure Distribution
association class

Criterion comment

Strict Symmetric,
Strict Asymmetric,
Strict Generalized,
Strict Ragged, Non-
strict Symmetric,
Non-strict Asym­
metric, Non-strict
Generalized, and
Non-strict Ragged

OCL

Just one criterion

A package must have at
least one Measure Distribu­
tion
More than one criterion

These packages allowed

Table 3.3: UML/OCL properties for Complex hierarchies

Multiple Inclusive version discussed above, there are no shared levels in this case.

Parallel Independent Package

This package is used to represent a parallel independent hierarchy, and is symbolized

by the icon in Figure 3.19(c). The Parallel Independent hierarchy has no shared levels

between the different hierarchies, which implies that there are no associations between

hierarchies in this package. Moreover, in contrast to the Multiple hierarchies, there are

distinct aggregation criteria for each of the separate simple hierarchies. In Figure 3.21,

we can see these distinct criteria — Organization Structure and Geographic Location

— on the two independent pathways.

81

«MultipleAlternative»

Calendar Hierarchy M

%/
Bri.:. , T ^

^ / « H o i l U p I o (r - > l) » Month

-p I **; v I -c
1 U / 1..-

«RollUpTo(1 ->1)» I. :.-.•;•'•—i K 1 y -p
Quarter

Time -c !

I I "

«RollUpTo(1 -->1)» BwSaSv'rVf
l A Week

-P r>;'y;'g.sa
_1 Year

«Cr i ter ion» t..
Calendar

«Rol lUpTo(r ->1)»

Figure 3.20: Multiple Alternative package.

T\
«Cr i te r ion» <

Org.Structure

«Parallellndependent»

Organization Hirarchy

1..*
<,<RollUpTo(1*->1):
' . C i t y «Ro l lUpTo(r ->1)» s t a t e «RollUpTo(1*->1):

Country

Store 1

_bB I ^
I «RoiiupTo(r->i)» KlSSSifciii~

_l Level
«RollUpTo(1*->1)»

«Cr i te r ion» r
Geo.Location

fe.':.:...-y.<
Sales Group Region

Figure 3.21: Parallel Independent package.

82

T \
«Cr i ter ion»

Org. Structure

f<RollUpTal1'->1)» I y ? I ,

I %}

«ParallelDependent»

_ _Hierarchj{_ _

i h ^ l 1..

Sales Emplyee
I

^ « P T * ' - > © < M W , ' 1

r'"'my

p^o(r -> i)> f 1 « R o l l U p T o (r - > 1) > i 7 ? I

j „ | JJiC—L^

of- '—— i y i o-- ;
County

Region

1 Symmetric |
[Nerarchy__j

I

I

J

«RbllUpTo(1 •->!)>
Ragged \
hierarchy!

«Cr i ter ion» ,<-•,
Geo. Location

^ ^ (x o T) «Rol lUpTo(f->1);>-(-J r) S t t 6<Rol lUpTo(r->1 gauntry (

Figure 3.22: Parallel dependent package.

Parallel Dependent Package

This package is used to represent a Parallel Independent hierarchy, and is symbolized

by the icon in Figure 3.19(d). In this case, the simple hierarchies share one or more

levels. Some sort of association — such as import, merge or dependency — can

be used to connect these levels. An example is given in Figure 3.22. Here, we see

two different simple hierarchies, symmetric and ragged, combined into one parallel

hierarchy, where the State level is common to both. Again, separate Analysis Criteria

are used.

3.5 Conclusion

Data Warehouses are defined using a multi-dimensional view of data which, in turn,

is based on the concept of facts, measures, dimensions, and hierarchies. These core

structures allow OLAP users to query warehouse data using operations such as roll-

up, drill-down, pivot, etc. Ultimately, it is the structure of the dimensional hierarchies

83

that drives such analysis, as the particular definition permits analysis on the basis

of criteria such as company organization, geographic location, product category or

time. Despite their significance, however, current OLAP systems can support only a

limited number of the hierarchy forms commonly found in real-world applications.

In complex design environments such as this, graphical representations greatly fa­

cilitate the understanding of application requirements. This chapter has presented a

conceptual multidimensional model based on a profile extension of the standard UML

notation. The proposal has built upon the hierarchies defined in [44, 45], taking into

account their differences at the schema level. The new profile essentially consists of

a series of new stereotypes that specialize packages, classes, and associations for the

OLAP domain. Where necessary, logical constraints are placed upon the elements

through the use of the OCL formal language. Both simple and complex hierarchies

have been considered. In the former case, simple hierarchies — including symmetric,

asymmetric, generalized, and ragged — allow the designer to model standard tree-

based hierarchies. Options for both strict and non-strict variations are provided. In

the latter case, complex hierarchies are specialized into multiple and parallel varia­

tions, and allow the designer to incorporate multiple simple hierarchies into the same

conceptual structure.

As we will see in the next chapter, the new profile is integrated into the MagicDraw

development environment, one of the leading UML design tools. The addition of

new images and icons ultimately allows the designer to construct new models in an

intuitive, drag-and-drop manner.

84

Chapter 4

OLAP Modeling Environment

4.1 Introduction

In the previous chapter we described how we utilize UML to represent the properties

of multidimensional environments by mean of a UML profile that holds a collection

of defined stereotypes. A set of UML extension mechanisms (stereotypes, tagged

values and constraints) has been used for specializing UML elements to represent

various OLAP concepts. In the current chapter we will show how the profile defined

in Chapter 3 is used to create a more robust "OLAP Modeling Environment" (OME).

In other words, our objective is to incorporate the modeling theory into a development

environment that can be intuitively exploited by designers with a solid understanding

of OLAP fundamentals, but perhaps limited exposure to the nuances of UML.

This chapter is organized as follows. Section 4.2 provides a general overview of

the key features of the MagicDraw UML tool, including the use of domain specific

extensions. Section 4.3 discusses the implementation of the "OLAP modeling Envi­

ronment" , followed in Section 4.4 by a small case study that shows how our design

guidelines are applied. Conclusions are then provided in Section 5.

85

4.2 MagicDraw UML Tool

While the material presented in Chapter 3 allows for a complete representation of vir­

tually every kind of OLAP hierarchy found in real world environments, we-reiterate

that our ultimate objective is to provide "end-to-end" facilities within the OLAP

domain. In other words, we would like to integrate the core UML profile into an

interface that (i) exposes just the right level of detail and (ii) encourages the appro­

priate use of the model. In practice, this implies that the profile should be accessible

within some form of CASE tool application.

Rather than creating our own CASE tool, we prefer to extend a well known

CASE tool already available in the market. In this way, we can guarantee that our

contribution can be easily used by a great number of users. Magic Draw [3] is one

of the most well known visual UML modeling systems. It is also one of the most

accessible. In this section, we give a brief explanation of the MagicDraw tool, at least

in terms of those features that we directly build upon.

4.2.1 MagicDraw Custom Diagram Wizard

The latest version of MagicDraw offers a new engine for adapting domain-specific pro­

files into the interface. In short, with a relatively modest effort, we were able to build

an OLAP-specific modeling environment while essentially hiding the UML under­

neath. The customization engine utilizes a MagicDraw component called a Custom

Diagram Wizard that, in turn, allows us to create the following OME elements:

• Customized OLAP diagrams based on our profile. As seen in Figure 4.1,

we can create a new "OLAP Diagram" by extending the UML Class Diagram,

and associate with it a new Icon. Further, in Figure 4.2, we see that our

86

K" Customize Diagram Wizard

6 1. Specify diagram type and icon

':• 2. Specify modules

3. Specify toofcars

4. Specify toolbar buttons

5. Specify symbols properties

6. Specify smart manipulatore

Enter the type name of the custom diagram,
select base diagram type, and choose the
desired icon for the new diagram type.

Type;

Base Diagram Type

Abbreviation:

Category:

Icon-

Browser

^P

1 Remove 1

OLAP Diagram

: Class Diagram

OLAP

:

Toolbar SVG

| ... J | ... j
1 Remove Remove

"Browser" icon is for 8rowser and Menu (16 x 16)
"Toolbar" icon is for Toolbars buttons (16x16).
"SVG" is for drawing.

Figure 4.1: Specifying the diagram type and icon

"Hierarchy" profile (and all its constituent elements) is identified as supporting

the new OLAP diagram (along with the UML Standard Profile). This Hierarchy

profile is loaded every time an OLAP Diagram is created.

• Custom OLAP toolbars. In order to provide the designer with a clean, in­

tuitive interface, we have defined a series of new toolbars. The main box in

Figure 4.3 shows toolbars corresponding to many of the elements defined in the

previous chapter: Strict Symmetric Hierarchy, Non-Strict Symmetric Hierar­

chy, Strict Asymmetric Hierarchy, Non-Strict Asymmetric Hierarchy, Multiple

Inclusive Hierarchy, Multiple Alternative Hierarchy, Parallel Independent Hier­

archy, and Parallel Dependent Hierarchy, as well as the Time Hierarchy toolbar

for designing time dimensions, and the DW toolbar for specifying the entire

87

§•" Customize Diagram Wizard

(j 1. Specify diagram type and icon

o 2. Specify modules

Q 3. Specify toolbars

4. Specify toolbar buttons

5. Spedfy symbols properties

6. Specify smart manipulators

Manage modules you want to use in the new
diagram type.

Modules that will be used in new diagram type:

EgUML Standard ProFile.xml

Add Remove Diagram Stereotype

< Back Next > Finish Cancel Help

Figure 4.2: Specifying the module

I f Customize Diagram Wizard

• - I . Specify d iagram type and icon JTooibsr Open:L A d d T o c i b a r ' CS New Toolbar

j"*".. Common (from Any Diagram)

Pi- Profiling Mechanism (from Clai5 Diagram)
I R^"0** JJJ C | a j ! D i a g r a m / f r o m artj,. Diagram)

*o Uje Case Diagram (from Static Diagram)

*% Implementation Diagram (from Static Diagram)

L Down gfe compos i te Structure Diagram (f rom Static Diagram)

' l r In fo rmat ion Flows (f rom Static Diagram)

' < Back ; [Next > "j \ Finish I i" Cancel j ! Help]

Figure 4.3: Specifying the associated toolbars

DW schema.

• Custom OLAP toolbar buttons for stereotyped element creation. Each

toolbar has its own buttons that are stereotyped based on the UML "Hierarchy"

profile. The Strict Asymmetric Hierarchy toolbar, for example, is shown in

Figure 4.4. Here, we see only buttons/icons relevant to that particular type

of hierarchy: Root, Level, Leaf, Criterion and several RollUpTo entries, each

corresponding to a distinct cardinality. Figure 4.5 illustrates the dialogue that

allows us to further customize each button.

• Custom smart manipulators. Smart manipulators are special symbols that

appear in a popup window when a stereotype is selected in the diagram. For

example, as illustrated in Figure 4.6, when selecting the stereotyped class Di­

mension, the suggested relationship will be a Dimensioning association or a

Hierarch association. We see how to define the popups in Figure 4.7, where the

suggested relationships are Dimensioning and Association, and the suggested

•',. • 2 . Specify modules

•.©• 3 . Specify toolbars

4. Specify toofoar buttons

'>, Spec i fy sn-KH-S s'ii~:tr> £!«*.;!?'>?,*

Choose diagram toolbars.

t? „ _
- DW

j tt Strict Symmetric Hierarchy
\ H Won Strict Symmetric Hierarchy
| }"• Strict Asymmetric Hierarchy
A Non Strict Asymmetric Hierarchy
A Strict GeneraBzed Hierarchy
'f. Nan Strict Generalized Hierarchy

i i ; Multiple Inclusive Hierarchy
•£; Multiple Alternative Hierarchy
V ParaHel Independent Hierarchy
V Parallel Dependent Hierarchy
•!• Time Dimension

89

f " Customize Diagram Wizard jjMSHHffl

'". 1. Specify diagram type and icon

"• 2. Specify modules

•; 3. Specify toolbars

••©"• 4. Specify toolbar buttons

•['•5. Specify symbols properties

Choose diagram toolbars buttons you want
to use in the diagram.

Toolbar: Strict Asymmetric Hierarchy

•- !*• Strict Asyinmetric
- A Root
- S f - e v e !
™ * leaf

*?. Criterion
$• RoBUpTo(cl->lp)

~-y» RollUpTo(cl*->lp)
--^>RoOUpTo(cO.,l->lp)

< Back] j Next > 1 { Finish] | Cancel] [Help

C$ New Button

"3$ New Group

Cli Common

! !tBj! Cia;; Diagram

!§S ^;e ^ 3 i e Diagram

' $SBj Implementation Diagram

! 1 Composite Structure Diagram

' yH Profiling Mechanism

I ijSj Information Flows

Figure 4.4: Specifying the associated toolbar buttons

I ' Edit Button

i general h Symbol Properties Stereotypes Element Properties j

Model Element Type: Association

Description; JRollUpTo(cl->lp)

Shortcut:

Icon

Toolbar

y "

R.e>nov» ;

It is recommended to use a scalable icons of size (16x16) for'

•" ! List as element

OK Cancel

Figure 4.5: Editing buttons

90

«Dimension» =

«Diffiension» «Dimensioning»
••'- • • " C »

«Fact» m

Figure 4.6: Smart manipulators

targets are Leaf and Fact.

4.2.2 Creating domain-specific meta models

In this research, we have proposed the use of UML to create an object-oriented

conceptual model for data warehousing and OLAP systems. Even though UML is a

general modeling language, it can, as we've seen, be customized to a specific problem

domain via the use of stereotypes, tagged values and constraints. However, because

UML is a general purpose notation, this same generic quality may limit its suitability

for OLAP modeling in that our new stereotypes only extend an existing element of

the UML language. Ultimately, the semantics and appearance of the element remains

the same. For example, if we apply a stereotype to a package, the stereotyped element

is still just a basic UML package that just has the additional properties defined by

the applied stereotype. In other words, applying stereotypes to an element does not

hide the various UML properties, such as those defined in Figure 4.8.

91

S * Customize Diagram Wizard

> I . Specify diagram type and icon

2. Specify modules

O 3- Specify toolbars

O 4. Specify toolbar buttons

O 5. Specify symbols properties

•:e>> 6. Specify smart manipulators

Specify smart manipulators for symbols in
diagram.

1

Configurations Smart Manipulators

; « <<Non5trictSymmetric>> *•

\ f' «NonStrictAsynimetric>>

|FJ3 «DegenerateFact>>

1 f « F a c t Attribute>>

1 £• «St r i c t5vmmet r ic»

-£U « L e v e l > >

I v*" Dimensioning

I X «StarSchema>>

\'<* <<Cri ter ionAttr ibute»

\-\ <<NonStrictGeneralized>>

Target Elements

U Fact

1 i «NonSt r ic tRaaaed» , f £ i £ V , • . * . ,

j « * <<Dimension Attribute>>

! < 1 Err : •

[Add j [Remove j [Edit

j < Back J j Finish j Cancel

W?$&B]

i Add "2

i Remove

I Up ~] •

I Remove J

i * J ,

] Help j :

Figure 4.7: Specifying smart manipulators

For this reason, a "direct" implementation of the UML profile is likely to be

distracting and confusing for users since the profile will include properties of both

the OLAP domain and the standard UML vocabulary. In fact, it would be much

better if we could hide UML notation and terminology and expose just the OLAP

concepts instead. To accomplish this objective, we build upon a mechanism proposed

in [23] which converts stereotypes to meta model elements (i.e., stereotyped elements

are treated as instances of new meta classes in the modeling environment). This

mechanism is implemented in the Magic Draw UML tool. In fact, use of this approach

gives rise to what we call the "OLAP Modeling Environment".

In short, the idea is to build a "customized UML profile" by adding a customiza­

tion package to a profile that, in turn, contains customization classes. These classes

customize stereotypes by virtually transforming them into new meta model elements.

In addition, customization classes restrict the UML meta model by hiding needless

92

i * Items Filter k* •sSs

General

JW

i
'£,

IS

.

-.

B - •• C j Properties •*

" f 1 L j Active Hyperlink , !

"'!..] 0 Applied Stereotype Instance ! ;

•••• [- j Q APPLIED_PROFILES

""!.;..! Q APPLIED_STEREOTYPES

"" [] [j Client Dependency
i
1

••- ! 1 Q Element Import ! " '

"' L J 0 Imported Member

•••• i " ! Q Member i

•••' n D SB
"" [Zl Q Name Expression

j

CD 0 Namespace -'

• [J L J Nested Package

' t 1 Q Nesting Package

• i l l 0 Owned Comment

> | | Q Owned Diagram

• 1 Q Owned Element

> ! j Q Owned Member

• 1 | Q Owned Rule

(press

...

i " I Q Owned Template Signature ~

SHIFT and click to select recursively)

| Select All] [UnselectAI

—
OK j f Cancel] [Help

- J

Figure 4.8: UML properties

93

restricts

V

UMLMetamodel UML Profile Customization

Transforms into metamodel

Figure 4.9: The customization layer

Tag name

customizationTarget

representationText

usedUMLProperties

suggestedOwnedDiagrams
suggestedOwnedTypes
possibleOwners

Description

The stereotype for which the cus­
tomization applies
Alternative name to be used in the
modeling environment
Standard properties of the UML ele­
ment to be used by the customized el­
ement
Diagrams that should be suggested
Elements that should be suggested
Possible owners of the customized ele­
ment

Table 4.1: Customization stereotype tags

parts and enabling certain rules that improve the usability of the interface (as previ­

ously noted, hierarchy constraints are specified with OCL). Figure 4.9 illustrates how

the customization layer relates to the UML profile and UML meta model.

The customization layer itself is constructed primarily upon the <cCustomization3>

and <CvalidationRule;s> stereotypes. Briefly, a ^Cus tomiza t ion^ stereotype is used

for customizing the appearance of the stereotyped element. Table 4.2 includes the

properties (tags) of the -^Customization^ stereotype that have been used in our re­

search. A <CvalidationRule» stereotype, on the other hand, represents a constraint

for validating the correctness and completeness of the user model. Table 4.2 summa­

rizes the various properties (tags) of the <^validationRule3> stereotype.

94

Tag name

Severity
Error message

Abbreviation

Description

Importance of validation error
An explanation of error if a model element
does not conform to the constraint specifica­
tions
A short reference name for identifying vali­
dation error type

Table 4.2: Validation rule stereotype tags

4.2.3 Validation in MagicDraw

Some of the multi-dimensional properties that are mapped to stereotypes, tagged

values, or customization classes are quite complex. As noted, we use OCL for this

purpose. To this end, several "validation suites" have been created to verify the

model (i) in its entirety, (ii) on a part-by-part basis (e.g., a specific hierarchy), or (iii)

in real time as models are being composed (using what are called "active validation"

suites).

To run a validation process, a group of rules (or a validation suite) must be selected

and a specific part of the model must be identified. In Figure 4.10, we see that the

"Data warehouse" validation suite has been selected (i.e., validate everything).

4.3 Creating the OLAP Modeling Environment

In this section, we describe the process or methodology by which the OLAP model­

ing Environment (OME) was constructed. Again, this is based upon the techniques

proposed by Silingas [23] that make use of the MagicDraw customization engine. In

short, the six core steps that have been utilized include: creating the meta model,

mapping the meta model to a UML profile, specifying validation rules, defining stereo­

type customizations, and creating a custom diagram. A work flow diagram describing

95

W Validation
1%,

Validation j

Validation Suite: Q Validation DataWarehouse [DW] •

Validate For: Validation Selection •»••> E Z l

Minimal Severity: ' CJ) >=debug • ;

Validation Options

validw Cancel Help

Figure 4.10: Validation

the OME construction process is illustrated in Figure 4.11.

4.3.1 Task One: Identify OLAP concepts and relationships

In the first stage, we identify the core multi-dimensional concepts, properties, and

relationships. For this purpose, we use a UML class diagram. The end result is

the OLAP Hierarchy meta model illustrated in Figure 4.12 (this is a copy of the

diagram from Chapter 3). The supplemental diagram, shown in Figure 4.13, defines

the possible associations between arbitrary levels in the various hierarchies.

4.3.2 Task Two: Prepare UML OLAP hierarchy profile

Building the profile-based OME first requires mapping the meta model to standard

UML meta classes. Most of the underlying concepts are mapped to Package, Class

and Association meta classes, with tags defining additional properties that are missing

in the default UML meta model. At this stage, stereotypes are added to create a

domain-specific profile. In Figure 4.14, we see the more or less direct mapping of

96

Tasks Artifacts

1
1.Identify OLAP Concepts and Relations OLAP Hierarchies Metamodel

JL
2. Prepare UML Hierarchy Profile - > UML Hierarchy Profile

...

JL
3. Specify Validation Rules

JL
4. Specify Stereotype Customization - > Customization Module for OH

±.
5. Define OLAP Custom Diagram

• >
Configuration of OME

3E
6. Model Sample for Testing OME - > OH Sample Model

Figure 4.11: A work flow for creating DSML using customized UML profile

97

D M * * , I | D > n „ l » « M b « . | | OID ~ | | CrH.rt.n | [R.BUpT. | | D ,m .nslon | |D,,gen<„„edDlm,,n8 lCT

] Mufttple 1

$
1

Multiple Alternative) |Muttlplelnclustvej

i >
| MeasureDlstri button J

<
| Dlatrl

>
Hill on |

MeasureDlstribution StrtctSym metric Strict Asymmetric StrlctGene rail zed NonStrtctSym metric NonStrlct Asymmetric NonSWctGenerallied

jf~ . ~ .
StrtctHagged] | HonSirtct Ragged |

Figure 4.12: The basic hierarchy meta model

StrictSymmetric

IStrlctSymmetrlcM
CO..l->lp

d*->l*p

C0..1->1*p |

|strictAsymmelrlc|d>—L-[ct*->1p"

[NonSirictAaymmBtrte|*,

cl->1p

d'->1p

el->l*p

CV->1*p

c0..1->1'p

SlrictGeneralited;

d-»1p

| c0'->0..1p I

I d->0~1p~|

\ c0..1->0..1p~|

c0..1->1*p

cQ*->1p

o1->1*p

NonStrfctGeneralized M
j - | c0..1->1p~

c0*->0..1p

J C0..1->0..1p |

I c1*->1*p

c0*->1*p

Figure 4.13: A detailed look at the "association" model

98

package DW(jj£ Melamodelij

<stereotype»'

[Class| j

<siereotype»j

<SlBreolyoo»,

[Property] :

d. |
[Prop.

1
,1

C

;«siereotype»:
Criteria n
[Common!)

• Rolls UpTo I
' (Association! j

|«steioolype»>
- Dimension j

(Class) \

< ester eoiype»
. Multlplelncluslve

[Packagel

«stefeotyoe» j
. Multiple Alternative ;

|Package | I

TL.

Additive
Semiadeliiive
Nofi Additive

<esiB'eolype» i
_ Degenerate Dl mention \

[Class) i

«stereolype» \
: Parallel Dependent ,
\ |Package| •

«ste'eotype» '
: Measure Distribution \

[AssoaationClass] j

< «Kereotype» : «siereotype» \ \ <«stereotype» \
| StrlctSy mrnetrlc • j Strict Asymmetric : j StrictGenerallzed \
\ [Package) \ |PacKage] ;) [Package) j

<«siereotype»
' NonStrictSym metric
; [Packagel

«slereolyp9>> ; <<slereolype»
jNonStrlctAsym metric ' I NonStrictGeneralteed i
j | Package] j [Packagel

:«stereotype»;
: Distribution

[Property! \

MStereotypeM j
i StrlctRagged i
] |PackaQe) I

i «stereotype» J
\ NonStrictRagged I
! [Packagel I

«6tereotype» .
Para Hell ndependent ;

| Package]

Figure 4.14: An illustration of the Hierarchy Profile

the OLAP meta model to the stereotyped Hierarchy Profile. Table 4.3 lists some of

the important OLAP concepts that have been defined, as well as their names in the

Hierarchy Profile, and their meta class bases.

4.3.3 Task Three: Define Validation Rules

Every stereotype has several OCL-based validation rules. Figure 4.15 shows the OCL

constraints for the stereotyped package Multiple Inclusive. In addition, some custom

properties in the <CvalidationRule^> stereotypes are used, including severity, error

message, and abbreviation. For example, the meta model rule that a Strict Symmetric

hierarchy can have at most one Root class can be expressed in OCL as:

context StrictSymmetric inv singleRoot

self.ownedElement —> select(me — me.oclIsTypeOf(Root)) —> size() < 1

In Figure 4.16, we present a screen shot from the OME indicating the existence

99

OLAP Concepts

Strict Symmet­
ric
Strict Asymmet­
ric Hierarchy
Parallel In­
dependent
Hierarchy
Conformed
Dimension
Time Dimension
Roll up relation­
ship
Dimension Level
Degenerate Di­
mension
Analysis Crite­
rion

Hierarchy Pro­
file

Hierarchy

Strict Asymmetric

Parallellndepende

ConformedPackag

TimePackage
RollUpTo

Level
DegenerateDimen

Criterion

UML metaclass

StrictSymmetric Package

Package

nPackage

e Package

Package
association

Class
3i6fe,ss

Comment

Table 4.3: UML profile for defining OLAP hierarchy structure

100

9* S tereot .pe f / J t i ^ W r clu^r

v.; Muftlplelnclusive [Package]

I*- X*X Documentation Hyperlinks

Q Usage <n Diagrams

i+r ^ Tag Definitions

13 Signal Receptions

fH- Stereotyped Elements

Q, Relations

Q Tags

5 'SO^

History :: *»*;, Multiplelncbstve f ;

; Constraints

Name Specification

Ct- A Multipielndusive package must have one Root class

CC- A Multiptelnelusrve package must have one Leaf dass

C3- A Mufcpielnclusrve package must have at least 1 association

C4- A Multipielndusive package cannot contain packages

C6- A Muitipielndusive package can only belong to Dimension?ackage

C7- A Mutlplelndusive package can only contain RollUpTo associations

C8- A MuttipSelndusive package can only contain MeasureDtstrfoution associat,

C9- A Muftiplelnclusive paclog* can have only one Criterion

self.ownedBement -> selectj me | me.edIsTypeOf{RootJ) -> sfie() = 1

self .ownedBement •> setect(me | me.oclIsTvpeOfCLeaf J) •> sizeQ ~ 1

self. ownedBement -> sdect(me I

se(f.a*necWembw*>unteriCself,importedHember)->forAlKco| notco.odlsKrtdOf

PseP.QwnecWerober->unlcf l fse!NnwtedMe^
||ML2_Metamodel::C!ass))->forA8(f | f.odlsTvpeOf (Level) or j
i j f .odIsTypeOf(Leaf! or f.oclIsTypeOf(Root)) |

B* Edit Speciftcetia tel&isil

Language;

OCL2.C ,

Body:

. c o n t e x t Huftipielnclusive irrv C5- A Multipielndusive package
can only contain Level, Root and Leaf classes;
!setfownedMember->union(self.in^orteclMember;->select(Co|
;co,odIsKindOfCUMl2J'tetamocl^::Classj}->fc,rAll(f |
i f.odlsTypeOf (Level) o r f .OvlIsTvpeOf(Leaf) o r
!f.ocirsTypeOf(Raot)j|

5£ Check OCL syntax

L 0K 1

m\

seff.owner.odlsTvepeOfCDimensionPackage) (Eg):

self.ownedMember->un!on[setf ,impo(te*1ember)->setect(coico.ocBsi'jndOf(UML2 [f |) .

, s*lf .ownecW9mbefOunion(se[f.impwtedMeii*er>->se[ect(co|co.ocils^indOf(UML2 f|ySj :

self .ownedBement -> selectj me | me. cclIsTypeOf (Criterion)) -> sizeQ = 1 [^ 1 :

Create i i done Apply j) Unapp.lv

Figure 4.15: Multiple inclusive hierarchy constraints.

101

http://Unapp.lv

* • C:iMagrcBrawApplerror.m<tep -r' | ^ ' M ' fe It*"] © ^ I S S tt : IS" '11 ^ S S I S S ' I S

£s Symmetric
Ei m m m ! m m B » C

I,'
65 <rl$» * •'•&• {.' }-. :/t.'.??.'?. &,.:S.<3li-.'^,i; ^.I5.f.

«StrictSymmetric»
Location Hierarchy

[<<:R00t»
I Country

;«Root»
State

; © Validation Results ;

; Validation Results

' W IB © -[K] S #; •& l l j) Filter: ; { J > >=d... -r ! • ;<ALl>

'•' Element 1 Seventy

tteO ia* A T ^ y t i £ ^ ^ : &&KJKS*

Error Message

|i • Common

i; Conformed Dimension

j: Strict Symmetric Hiera...

I t\ Strict Symmetric

| & Root

• Si L?¥ e l

i jgueaf

j; '* • Criterion

|; J * RollUpTo(l-*>l)

f /RoliUpTo(l->lj

li Non Strict Symmetric ...

j: Strict Asymmetric Hier...

|; Non Strict Asymmetric...

:i Generalized Hierarchy

j; Strict Generalized

i: Non Strict Generalized

i; Strict Ragged

j; Non Strict Ragged

j: Multiple Inclusive

ji Multiple Afternative

I; Parallel Independent

j; Parallel Dependent

Figure 4.16: Validation error for a double Root in a Strict Symmetric hierarchy.

of a model not conforming to the above validation rule.

In total, around eighty validation rules have been denned to cover the most impor­

tant aspects of OLAP Hierarchy modeling. Because of the large number, we divided

them into several validation suites by applying the <tCvalidationSuite3> stereotype.

In general, this simplifies the interface and gives the user greater flexibility during

the validation process. As seen in Figure 4.17, several validation suites have been

created.

4.3.4 Task Four: Define a Customization Layer

In the fourth stage, we add a customization layer for visualization purposes. We have

defined customization classes for almost every stereotype and then grouped these

classes into a Customization package within the Hierarchy profile. In Figure 4.18 we

102

£ " Val idat ion Opt ions

D s> A e
Vafidatioo Suftes

U

O

a J

| Q validate DataWarehouse

ir~| validate Strict Symmetric Hierarchy

| Q validate Non-Strict Symmetric Hierarchy \\ :\»:) -

[£ j validate Strict Asymmetric U •->'}

| r~ l validate Won-Strict Asymmetric Hierarchy [UW'j!

JtT?i) validate Strict Generalized Hierarchy [")«¥) i

IC3 validate Non-Strict Generalized Hierarchy f r>v ' j '

J Q validate Strict Ragged Hierarchy [i.:"'~\; ;

\Cl validate Non-Strict Ragged Hierarchy [D ' - !

J O validate Multiple Inclusive Hierarchy !.•>..*• •

IC.1 validate Muftipte Alternative Hierarchy '•'• U'1

JCD validate Parallel Independent Hierarchy (' ••'•••'

C~\ Actrve validation i '"".'•'}

You may change the following Active validation
options: selected validation suSes, NghBghtftg
state, default severity and scope.

n Rules

l> i ; NonStrlctSymmetric

OID

" Parallel

CJ- A ParalleiDependent package must have one Leaf class=self .ownedElement - > select(m..- 'DW .h»--r^f-J^ >'"i:;i!;

, i , C2-A ParalleiDependent package must have at least 1 association=self,owrtedElement -> select(m... [i-'-'.\ ?'!&*& •:?>•••

'] (} O A ParalleiDependent package can only contain StrictSymmetric, StrictAsymmetric, StrictGenerafeed, StrictRagged, F

'i () C4- A ParalleiDependent package can only contain Level, Root and leaf classes^ self.ownedMember->unlon(seIf.., f!.:

'} I} C5-A ParalleiDependent package can only belong to DimenslonPackage=self,owner,ocHsTyepeOf(Dffnens,.. (Sj«v.'H>f«

•j { } C6- A ParalleiDependent package can only contain RollUpTo associations =self .ovmedMember-xaTionCself . 1 , . . [t> , ; : :K*:

'I i') C7- A ParalleiDependent package can have two or more Criterion=self .ownedEtement - > select(m... {V'---': *:":i <»'.<t,- .'•

1 ParalleFIndependent <»

RoUpTo

SchemaPackage [

* Simple ;>•'

» SimpteNonStrlrt

• SimpteStritt)

• StrictAsymmetric

', StrictGeneralized

Active Va&dation Options
The validation suite is a set of validation rules to be applied collectively. Build suites by meSudirtg/exclud&ig Individual rules ushg the checkbox tree.
You can also ffidude one suite into another (suite subseting), Elements ovmed by the sufte are considered to be a part of It and are always included.

f .Close [H*lp

Figure 4.17: Validation suites.

103

«Customization» ^
CustomLevel

«Customization»

customizationTarget =
fiiLevel
*4.eaf
SlRoot

hideMetatype - true
possibleOwners =

i ; MultipleAlternative
•£; Multiplelnclusive
V ParallelDependent
V Parallellndependent
i" StriclAsymmetric
l>. StriclGeneralized
.*„ StriclRagged
^ StrictSymmetric

representationText = "Level"
suggestedOwnedDiagrams = "OLAP Diagram"
suggestedOwnedTypes =

.VT.OID

n Descriptor
«»LevelAttribute

Figure 4.18: A customization of the Dimension Package

see the customization classes for the stereotyped class Level, as well as the stereo­

typed Multiple and Parallel packages. In Figure 4.19 a customization dialog for the

stereotyped class Level, along with its stereotyped attributes, is illustrated.

4.3.5 Task Five: Define the OLAP Diagram

At this point we are able to define the OLAP diagram and assign icons by using the

MagicDraw Customized Diagram Wizard, as discussed previously. Together with the

various stereotype specifications, the new OLAP diagram provides the basis for simple

and intuitive OLAP design. From the user's perspective, much of the complexity of

the underlying UML vocabulary has been hidden. In its place is a "simple" design

environment, with the various components of the OLAP domain neatly organized

into a series of toolbars. In turn, each of these toolbars exposes a subset of OLAP

concepts that are constrained so as to limit the relationships that can be formed

between them. A sample screen shot of the resulting OME design environment is

«Customization»
CustomMultiplePackages

«Cu3tomlzation»
customizationTarget =

i; Multiplelnclusive
• i ; MultipleAlternative

hideMetatype = true
possibleOwners = is DimensionPackage
suggestedOwnedDiagrams = "OLAP Diagram"
suggestedOwnedTypes =

«&Root
4N-eaf
... MeasureDistribution

«Customization»
CustomParallel Packages

«Customization»

customizationTarget =
!.8 ParallelDependent
V Parallellndependent

hideMetatype = true
possibleOwners = vi DimensionPackage
representationText = "Parallel Hierarchy"
suggestedOwnedDiagrams = "OLAP Diagram"
suggestedOwnedTypes =

SLevel
* R o o t
•fiLeal

104

B" Level - Customer "¥5=01

^Q !-;**<! =£> History : ^Si, Customer

ff'i
! '-i

-H
-i
-Ml

Documentation/Hyperlinks

Usage in Diagrams

Attributes

Ports

Operations

Signal Receptions

Behaviors

Template Parameters

Inner Elements

Relations

Tags

Constraints

Language Properties

0
Customer

Lfi'J zi

\B Leva! __

OID

Descriptor

Dimension Attribute

Properties: Standard • TO? Customize

^Customer

C23

Full name

first name

Name
The name of the NamedElement.

Close Forward Help

Figure 4.19: A customization dialog for the Level class

presented in Figure 4.20.

4.4 Case Study

In this section, we use a modeling example from [34] to illustrate how the OME might

be used in practice. This simplified example models some of the activities of a typical

university. In short, this system is to be used by administrators to analyze their

position with respect to research and funding.

4.4.1 Requirement Specification

Requirement specification is generally the first step in the design process. It deter­

mines what data should be available, how it should be organized, and the queries

that should be possible. At the simplest level, it would consist of the following:

105

File Edit Vie* Layout Diagrams Options Tools Analyre T««mworL Window Help

D TS Ul D B> & • <*> * f"" " CVMs.. 4e0f9««|ip*apter 4.™feip - !&'" V ' ^ ; ftij p : f f j ^ 1? j

%. Co.. & Inhe..£« CM.. « H » . . J £s screenshot.

PP^SPas?* . . « . « • *

Si!-
E-ts3 Data
j Ep- « Haachy

i a--? - Rdationj
I ! g - -&Oty
• i ip"J3fc Country
! : fy-Q, County

! itiSs DNtwin
! I 51-A Region
i I £] J £ Sates Emplyee
j i $-£U Section
! j Q~£i State
i i •--•*> Geo.locatl...
t) U.<; Org-Strurt,..
i !J1-Ct»-.:•-!. ;(.•.••..;.-.•:•../.••>

t^> Jaosn 2) Docum.. §3 F»opeit .

Zoom rJ1 n «

A

I :~ n 0 $5 ':< $ © ;# jg ® *$ e & i& S* 'B. & '•

"* * e3 ef & ^ o. loiw. - ^ c e t
O Common

'§?.&'#
Conformed Dimension

Strict Svrrtnietrk Hart..

fr Strict Symmetric

J^Root

filLevd

4 u r f

f- Critarton

& RoajpTo(l-*>l>

/P .o f t *To(l -> i ;

Nen Strict Syrnmetric

Strict Aiymraetrn tto-..

Non Stnct Asvrnmetric..

&ener jfeed Hwrpclw

Strict G*fwrjdli«J

Non Strict Garwrallzed

Strict Raised

ton Strict Ragged

Multiple Inclusive

Multiple Alternative

Parallel IndeiJendent

Parallel Dependent

wParsfieiDepantlerOs
Hierarchy

3:
*<RoftJpToO

tactta****™'-*1****

1
 riWf)„...

I 0 * f 1
j 1 j^^nulfprotO'-.i

I " ^. ' I-.I

<*RQlWpTo(T.»1)»» s^,g#tffttoro(V.*i jCaumry

Figure 4.20: A screen shot for OME diagram

1. Identify users: Here, we identify the key decision makers in the university

setting. For example, who are the people responsible for research activities,

promotion, evaluation, and strategic analysis?

2. Determine analytical requirements: In the current case, the general goal

is to understand the effect of participation by the university's faculty in inter­

national forums such as projects and conferences.

4.4.2 Conceptual Design

Analysis of the user's requirements leads directly to the development of a multi­

dimensional schema. For our example, the schema has several dimensions: Calendar-

Time, Diffusion and Affiliation. The Affiliation dimension is included to represent

the fact that researchers may be associated with several departments. The Diffusion

106

CalendarTime

«DimensionPackage»

CalendarTime Dimension

«MultipleAlternative»

CalendarTime Hierarchy
<?4

>M 1

«l_evel» ,9,11
Month RollUpTo(1*->1)>

«Level» JgL r j
Quarter 1 - * <RollUpTo(r->1)»

:RollUpro(1 •->!):

1..*

-=P-
«RollUpTo<1->1)»£ T

«Level» m*
Week

«Roo t» j
Year

«Cr i ter ion» .»,
Calendar

«RollUpTo(1*->1)»

Figure 4.21: Content of the Calendar Time hierarchy

dimension effectively indicates whether a conference was national or international.

As per the user requirements, the CalendarTime dimension is represented as a

Multiple Alternative hierarchy. The stereotyped package MultipleAlternative is cre­

ated. The Root level is Year, the Leaf level is Time, and the intermediate Levels are

Quarter, Week and Month. In Figure 4.21 the relationships between these levels are

specified with the appropriate RollUpTo associations. A similar process is followed

for each of the two remaining dimensions. The Affiliation dimension is created as

a Non-strict Asymmetric hierarchy (Figure 4.22), while the Diffusion dimension is

denned as a Strict Symmetric hierarchy (Figure 4.23).

Along with the three dimensions, we must of course define the primary Fact class.

In our case, the fact is Conference Participation and is associated with four measures

as indicated in Figure 4.24, including Registration cost, Traveling cost, Lodging cost.

Dimensions are then linked to the corresponding fact measure with Dimensioning as­

sociation. The full model is represented by the Conference Schema package illustrated

107

1

z

"—'"" •**"" «Hierarch

Affiliation

«DimensionPackage»
Affiliation Dimension

i
«NonStrictSymmetric»

Affiliation Hierarchy

«Leaf» j» j «Level» &,
- _ . eft f1„* 1..* _ . J£i

Researcher I Department
1..*

«RollUpTo(c1

«•

1

, ^

ft

«Roo t» CT
Faculty

Figure 4.22: The Affiliation dimension

Diffusion

«DimensionPackage»
Diffusion Dimension

«Hierarcn»

«StrictSymmetric»
Diffusion Hierarchy

«Leaf»
Conference a

+unnamed1() «RollUpTo(1*->1)»

« R o o t »
Type

T\
«Criter ion» £,

Diffusion

it-

Figure 4.23: The Diffusion dimension

108

«Dimension>;-,.•
Diffusion

h
«Dime

1
«FactPackage»

Conference Participation Fact

0..*

nsioning»

« F a c t » ga
Conference Participation

«Measure»-Registration cost
«Measure»-Traveling cost
«Measure»-Lodging cost

" <>::•)

«Dimer sioning»

1
«Dimension» ;.,-

Affiliation

,0." 1

«Dimensoning»

«Dimension» v .
CalendarTime

Figure 4.24: Fact and dimension relationships

in Figure 4.25. (Note that it includes an additional University Structure package)

Finally, given the new model, we note that end users should now be able to resolve

queries such as:

• The cost related to participation of researchers in international conferences.

• The cost of participation during various periods of time, including calendar and

academic years.

• The number of projects in each department or research centre.

• The salary earned by researchers participating in a given project.

• The numbers of projects and researchers available during various time periods.

109

«SchemaPackage»

Project Schema

« T i m ePackag e> >

Calendar Dimension

«Root».
Year J « L e a ! » ,5,

Month L i J

«:<Dimension»
Caledar Time

«DimensionPackage»

Affiliation Dimension

«NonStr ic tSymmetr ic»

J « R o o t » J
| Department

:Rd|IUpTo(c1'->1

« L © a (» j
Researcher L

«Fae tPackage»

Project Fact

« F a c t »
Project Participation

i n i m Q «o i m i . i n n^~ l« f : ec tA t t r i bu te» -Sa la ry : Additive
^Dimensioning** L < F a c tA t l r i bu ie» -No hours : Additi «FactAt t r ibu le»-No hours: Additive!

«Dimension>:
Affi l iation

«Dimens ionPackage»

Diffusion Dimension

IL

«Dimenaion>; •.

Diffusion

< <StrictSy m m et ric >:

« L e a l » g
Projecl ^

:<R6TOpTo(cl

« D i m en sion Packag e*>

Structure Dimension

« D i m e m i o n i n g »

« Dimension*; ^

Structure

«Parailetlndependents;

« C r r t e r i o n » *

[organization

« L e a f » &,
Project ^

« R o o t »

Research Center

« C r i t e r i o n » *•:„
affiliation

Figure 4.25: Project schema

110

4.5 Conclusions

The conceptual framework presented in Chapter 3 represents a comprehensive and

flexible mechanism for modeling the sometimes complex elements of real world OLAP

environments. That being said, the sophistication of the system brings with it new

challenges. Specifically, the level of detail may be counter-productive for users or

designer who are not intimately familiar with UML. In this chapter we discussed the

integration of our UML profile into the MagicDraw UML modeling tool. We explained

how the interface itself can be extended to incorporate domain specific features while,

at the same time hiding much of the unnecessary detail of the UML language. This

integration produced what we call the the OLAP Modeling Environment (OME).

To illustrate how the OME can be utilized in practice, we provided a simple OLAP

modeling example from the university setting. Though the example is small, it should

serve to demonstrate the clean separation of logical components, the clarity of the

user interface, and the simplicity of model validation.

I l l

Chapter 5

Conclusion and Future work

5.1 Summary

Data warehouse and Online Analytical Processing (OLAP) applications are used by

countless organizations to assist in the decision making process. Reliable decisions

cannot be made, however, if data is not accessible in an intuitive format that en­

courages meaningful analysis. Ultimately, success depends — at least in part — on

a conceptual representation that accurately represents the relationships between core

organization elements and processes. In the world of data warehouses and Online An­

alytical processing, we refer to this representation as a multidimensional (MD) model.

Recently, a significant amount of research has been undertaken in the OLAP area in

general, and in multidimensional modeling in particular. However, to date there is

no commonly agreed upon conceptual model for representing multidimensional data.

Perhaps more importantly, in spite of the wide acceptance of the Object-Oriented

paradigm, very few researchers have considered 0 0 mechanisms in this context. Even

fewer have addressed the structure of OLAP hierarchies, the driving element behind

a great deal of OLAP processing.

In this thesis, we have proposed a conceptual multidimensional model that is able

112

to express data requirements for data warehouse and OLAP systems. Using our

model, designers can better represent the analytical requirements of decision mak­

ers than would otherwise be possible with conventional Unified Modeling Language

(UML) facilities. Our model has been defined as a profile extension of classical UML.

Considerable effort has been made to ensure that the profile maps intuitively to real

world OLAP domains. In other words, our goal is to maintain semantic equivalency.

As such, the profile contains the stereotypes, tagged values, and constraints that

expose the unique properties of OLAP environments. Furthermore, the Object Con­

straint Language (OCL) has been used to define restrictions and limitations that help

to prevent arbitrary and inappropriate uses of the core elements.

Given the relatively large number of hierarchies, some of which are quite involved,

the "learning curve" for this environment can still be quite high. Consequently, we

have integrated the profile into MagicDraw, one of the most commonly used UML

design tools. By extending the native interface and including various customization

classes, we have produced an intuitive development UI we call the OLAP Model­

ing Environment (OME). Ultimately, the OME provides a clean interface for OLAP

design, one that encourages users — through exposed toolbars and icons — to use

the underlying elements in a logically and semantically correct fashion. Should the

designer still go astray, a number of validation suites have been incorporated into the

OME in order to validate the logical correctness of the design.

We concluded the discussion of the research with a case study that utilized the

OME (and the OLAP profile) to design the conceptual model for a small university

system. While limited in scope, the example should give the reader some sense of

how analytical requirements can be mapped into a clear, intuitive model by using the

113

framework we have provided.

5.2 Future Work

The work presented in this thesis essentially represents the first stage of a larger

project. We briefly highlight two future projects that are expected to extend this

work.

5.2.1 XSLT conversion

As previously noted, this work is associated with the Sidera Server, a "shared noth­

ing" parallel OLAP server that provides high performance analytics for enterprize-

level data warehouses. Unlike conventional warehouses and OLAP servers that often

utilize relational storage, Sidera is built upon an OLAP-specific storage engine. In

other words, it natively supports not only OLAP hierarchies, but the processing

logic needed to traverse them efficiently. The physical representation of the data, of

course, is defined with a database schema. Currently, the XML-based language for

this schema is being developed by additional graduate students in the Sidera lab. As

one would expect, its structure corresponds more or less directly to the conceptual

model described in this thesis. Unfortunately, creating the schema for such a database

is non-trivial. Doing so manually would be both very time consuming and very error

prone.

For this reason, we would prefer to create a round-trip development model that

allows the conceptual model to be exported in a format that is natively understood

by the Sidera server. In principle, this is quite possible, as evidenced by the fact that

many current modeling tools allow database models to be exported as SQL, the native

114

language of relational database systems. While there is no native export facilities for

Sidera's custom schema, it is possible to export UML models into XML Metadata

Interchange (XMI). The objective at that point would be to convert the raw, and

very verbose, XMI into a new XML format, namely our own database schema. To

accomplish this we expect to utilize Extensible Style Sheet Language Transformations

(XSLT) as a mechanism for converting from one XML format to another. Specifically,

we would create a (very large) XSL Style Sheet that the XSLT processor would use

as a guide. The end result would be a true "round trip" design process.

5.2.2 Profile portability

Though we have utilized MagicDraw in this thesis, it is but one of a number of popular

design tools (e.g., the Rational applications). Ideally, we would like to allow designers

to use the tool of their choice. The XSLT transformations described above are part

of this process, in that any standards compliant UML tool can produce XMI. Given

a common modeling profile, the output of any tool should be exportable to Sidera.

In terms of the profile itself, we note that major UML tools also have the ability

to import UML models as well. Of course, any UI extensibility mechanism will be

unique to each software application (e.g., toolbars). Nevertheless, we expect that

with a modest effort, we should be able to port our model to several of the leading

design tools.

5.3 Conclusions

Though the work initially being performed in parallel as part of the Sidera project

had progressed nicely, it had become apparent that the complexity of the conceptual

115

model would make manual schema design quite difficult. What was needed was

an intuitive, but accurate, conceptual model that could serve as the starting point

for OLAP system. In searching through the literature, it was also clear however

that no such standard model existed. For this reason, we began work on a formal

model that could support development of not only general purpose data warehouses,

but hierarchy-driven OLAP applications as well. In this thesis, we have explored

both the form and rational of a robust conceptual model for contemporary OLAP

environments. We have also shown how the theoretical elements can be integrated

into design tools that dramatically streamline the process. To our knowledge, this

is the most comprehensive attempt to provide round-trip schema engineering in the

OLAP domain.

116

Bibliography

[1] Alberto Abell, Jos Samos, and Flix Saltor. Benefits of an object-oriented mul­

tidimensional data model. In Proceedings of the International Symposium on

Objects and Databases, pages 141-152, 2000.

[2] Alberto Abello, Jose Samos, and Felix Saltor. A framework for the classification

and description of multidimensional data models. In Proceedings of the 12th

International Conference on Database and Expert Systems Applications, pages

668-677, 2001.

[3] Alberto Abello, Jose Samos, and Felix Saltor. YAM2 (Yet Another Multidimen­

sional Model): An Extension of UML. In Proceedings of the 2002 International

Symposium on Database Engineering and Applications, pages 172-181, 2002.

[4] Nguyen Thanh Binh and A. Min Tjoa. Conceptual multidimensional data model

based on object-oriented metacube. In Proceedings of the 2001 ACM symposium

on Applied computing, pages 295-300, 2001.

[5] Nguyen Thanh Binh, A. Min Tjoa, and Roland Wagner. An object oriented

multidimensional data model for OLAP. In Proceedings of the First International

Conference on Web-Age Information Management, pages 69-82, 2000.

[6] Markus Blaschka, Carsten Sapia, Gabriele Hofling, and Barbara Dinter. Finding

your way through multidimensional data models. In Proceedings of the 9th In­

ternational Workshop on Database and Expert Systems Applications, page 198,

117

1998.

[7] Grady Booch. Object-oriented analysis and design with applications. Benjamin-

Cummings Publishing Co., Inc, 1993.

[8] Dan Bulos and Sarah Forsman. Getting started with adapt. Technical report,

Symmetry Corporation; San Rafael, 1998.

[9] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and

OLAP technology. ACM SIGMOD Record, 26:65-74, 1997.

[10] Peter Pin-Shan Chen. The entity-relationship modeltoward a unified view of

data. In ACM Transactions on Database Systems, pages 9-36, 1976.

[11] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (on-line analytical

processing) to user-analysts: An IT mandate. Technical report, E.F. Codd and

Associates, 1992.

[12] C.J. Date. An Introduction to Database Systems. John Wiley and Sons, 2003.

[13] E. Fernndez-Medina and M. Piattini. Designing secure database for OLS. In

Proceedings of Database and Expert Systems Applications: 14th International

Conference, pages 886-895, 2003.

[14] Matteo Golfarelli, Dario Maio, and Stefano Rizzi. The dimensional fact model:

a conceptual model for data warehouses. International Journal of Cooperative

Information Systems, 7:215-247, 1998.

[15] Matteo Golfarelli and Stefano Rizzi. A methodological framework for data ware­

house design. In Proceedings of the 1st ACM international workshop on Data

warehousing and OLAP, pages 3-9, 1998.

[16] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2006.

118

[17] Bodo Husemann, Jens Lechtenbrger, and Gottfried Vossen. Conceptual data

warehouse design. In Proceedings of the 2ed International Workshop on Design

and Management of Data Warehouses, pages 3-9, 2000.

[18] William H. Inmon. Building The Data Warehouse. John Wiley and Sons, 2002.

[19] Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven Ap­

proach. Addison Wesley Longman Publishing, 2004.

[20] Jan Jurjens. UMLsec: Extending UML for secure systems development. In Pro­

ceedings of the 5th International Conference on The Unified Modeling Language,

pages 412-425, 2002.

[21] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit. Addison-Wesley,

2002.

[22] Sergio Lujan-Mora, Juan Trujillo, and Il-Yeol Song. A UML profile for mul­

tidimensional modeling in data warehouses. Data and Knowledge Engineering,

59:725-769, 2006.

[23] No Magic. MagicDraw UML, 2009. http://www.magicdraw.com/.

[24] Elzbieta Malinowski and Esteban Zimnyi. Advanced Data Warehouse Design:

From Conventional to Spatial and Temporal Applications. Springer Publishing,

2008.

[25] Hamid R. Nemati, David M. Steiger, Lakshmi S. Iyer, and Richard T. Herschel.

Knowledge warehouse: An architectural integration of knowledge management,

decision support, artificial intelligence and data warehousing. Decision Support

Systems, 33:143-161, 2002.

[26] Object Management Group (OMG). Common warehouse metamodel (cwm),

2003. http://www.omg.org/spec/CWM/1.1/.

119

http://www.magicdraw.com/
http://www.omg.org/spec/CWM/1.1/

[27] Object Management Group (OMG). Unified modeling language (UML) specifi­

cation 2.0, 2005.

[28] Object Management Group (OMG). Object constraint language (OCL) specifi­

cation 2.0, 2006. http://www.orag.Org/spec/0CL/2.0/.

[29] Object Management Group (OMG). The unified modeling language profile

specifications, 2009. ht tp: / /www.omg.org/ technology/documents/profi le_

catalog.htm.

[30] Nigel Pendse and Carsten Bange. The OLAP report, 2009. http://www.

olaprepor t .com/.

[31] Elaheh Pourabbas and Maurizio Rafanelli. Characterization of hierarchies and

some operations in OLAP environment. In Proceedings of the 2nd ACM Inter­

national Workshop on Data Warehousing and OLAP, pages 54-59, 1999.

[32] Torsten Priebe and Gunther Pernu. Metadaten-gestu tzer data-warehouse

entwurfmit ADAMTed UML. In Proceedings of 5th Internationale Tagung

Wirtschaftsinformatik, page 2001, 2001.

[33] Torsten Priebe and Gunther Pernul. A pragmatic approach to conceptual mod­

eling of OLAP security. In Proceedings of the 20th International Conference on

Conceptual Modeling: Conceptual Modeling, pages 311-324, 2001.

[34] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and

William Lorensen. Object-oriented modeling and design. Prentice-Hall, Inc, 1991.

[35] Carsten Sapia. On modeling and predicting query behaviour in OLAP systems.

In Proceedings of International Workshop on Design and Management of Data

Warehouses, pages 1-10, 1999.

120

http://www.orag.Org/spec/0CL/2.0/
http://www.omg.org/technology/documents/profile_
http://www

[36] Carsten Sapia, Markus Blaschka, Gabriele Hofling, and Barbara Dinter. Ex­

tending the E/R model for the multidimensional paradigm. In Proceedings of

the Workshops on Data Warehousing and Data Mining: Advances in Database

Technologies, pages 105-116, 1998.

[37] Darius Silingas, Ruslanas Vitiutinas, Andrius Armonas, and Lina Nemuraite.

Domain specific modeling environment based on UML profiles. To be published

in Information Technologies, 2009.

[38] Bernhard Thalheim. Entity-relationship Modeling Foundations of Database Tech­

nology. Springer, 2000.

[39] Riccardo Torlone. Conceptual multidimensional models, pages 69-90, 2003.

[40] Juan Trujillo, Manuel Palomar, Jaime Gomez, and 11 Yeol Song. Designing data

warehouses with OO conceptual models. Computer, 34:66-75, 2001.

[41] Nectaria Tryfona, Frank Busborg, Jens G. Borch, and Christiansen. starER: a

conceptual model for data warehouse design. In Proceedings of the 2nd ACM

international workshop on Data warehousing and OLAP, pages 3-8, 1999.

[42] Aris Tsois, Nikos Karayannidis, and Timos K. Sellis. MAC: Conceptual data

modeling for OLAP. In Proceedings of the International Workshop on Design

and Management of Data Warehouses, page 2001, 2001.

[43] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language: Precise

Modeling with UML. Addison-Wesley, 1999.

[44] Esteban Zimnyi and Elzbieta Malinowski. OLAP hierarchies: A conceptual

perspective. In Proceedings of the 16th International Conference on Advanced

Information Systems Engineering, pages 477-491, 2004.

121

[45] Esteban Zimnyi and Elzbieta Malinowski. Hierarchies in a conceptual model:

From conceptual modeling to logical representation. Data KNowledge Engineer­

ing, 59:348-377, 2006.

122

