
NOTE TO USERS 

Page(s) not included in the original manuscript are 
unavailable from the author or university. The 

manuscript was microfilmed as received. 

5", 7, *Z,Z&. V*, 7X 

This reproduction is the best copy available. 

® 

UMI 





Red blood cell derived vasodilators: determination and modulation 

Juliana Garcia 

A Thesis 

in 

The Department 

of 

Chemistry and Biochemistry 

Presented in Partial Fulfillment of the Requierements 

for the Degree of Master of Science (Chemistry) at 

Concordia University 

Montreal, Quebec, Canada 

March 2009 

©Juliana Garcia, 2009 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
OttawaONK1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-63311-3 
Our We Notre reference 
ISBN: 978-0-494-63311-3 

NOTICE: AVIS: 

The author has granted a non
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, prefer, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1+1 

Canada 



Abstract 

Red blood cell derived vasodilators: determination and modulation 

Juliana Garcia 

A luciferin-luciferase chemiluminescence method was used to quantify extracellular 

adenosine triphosphate (ATP) released by red blood cells (RBCs) after stimulation with 

nitroglycerin, a potent vasodilatory drug. Attenuation in the amount of ATP released from 

RBCs was observed after treatment with increasing concentrations of nitroglycerin or nitrite. 

However, RBCs exposed to nitroglycerin or nitrite for < 5 min released increased amounts of 

ATP. A mechanism of blood flow regulation through an ATP-NO/NO2" pathway is proposed. 

Nitroglycerin-derived N02" is converted within RBCs to NO, which might activate ATP 

release. In vivo, ATP will stimulate endothelial nitric oxide synthase (eNOS), increasing NO 

production and causing vasodilation. NO could diffuse into the blood stream where it is 

converted to NO2" and taken up by downstream RBCs, further increasing their ATP 

production. Thus, the original RBC-derived NO2VNO signal could be amplified both by the 

action of ATP and NO. 

Nitroglycerin was also shown to act as a "suicide substrate" for RBC glyceraldehyde 

3-phosphate dehydrogenase (GAPDH). GAPDH reduced nitroglycerin to glyceryl dinitrates 

and NO2" using its active-site cysteines as electrons donors. This inactivation inhibited the 

bioconversion of nitroglycerin to NO2" and caused an attenuation of the drug's effect. The 

dehydrogenase activity of GAPDH was also suppressed, thereby limiting the production of 

ATP and propagation of the vasodilation signal. 

The extracellular profile of ATP-derived ADP, AMP and adenosine was additionally 

studied by LC-UV. Preliminary ESI mass spectrometric analysis of epoxyeicosatrienoic acids 

and prostacyclin, RBC vasodilators derived from arachidonic acid, was explored. 
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1. General Introduction 

1.1. Red blood cells and vasodilation 

The regulation of vascular tone and blood flow is a complex process driven 

mainly by local regulatory mechanisms at the blood vessel wall. An important regulatory 

system in localized vasodilation is the molecular crosstalk between red blood cells 

(RBCs) and endothelial cells in the microvasculature (1). It is well-established that the 

endothelium produces and releases a number of vasodilatory factors including the 

endothelial-derived relaxing factor (EDRF) that is nitric oxide (NO), adenosine, 

prostaglandins and the endothelium-derived hyperpolarizing factor (EDHF) (2). 

RBCs are responsible for the transport and delivery of oxygen to meet the 

metabolic demands of tissues. O2 gradients act as the main regulator of blood flow in the 

microvasculature (3-6). Recent research has shown that RBCs are also responsible for the 

release of blood flow regulators including adenosine triphosphate (ATP) under 

physiological stress (7-9). Pharmacological agents that treat cardiovascular diseases in 

which vasodilation is compromised, such as myocardial ischemia (angina), modify the 

normal patterns of this local regulation of blood flow. A focus of this thesis is the export 

of ATP and others vasodilators from isolated human RBCs. The results obtained 

contribute to our understanding of the role of RBCs in the localized regulation of blood 

flow in the microvasculature. 



1.1.1. Red blood cell properties 

Mammalian RBCs are small, flexible, biconcave discs consisting of a plasma 

membrane and a few associated proteins (10). RBCs are produced and matured in the 

bone marrow, and are known as reticulocytes prior to being released into the blood 

stream. In humans, RBCs are the smallest cells with an average diameter of 8 u.m and a 

life span of 120 days (1). Mature RBCs lack nuclei, mitochondria, and other specialized 

organelles, so they are unable to synthesize proteins. Hemoglobin (Hb), at an intracellular 

concentration of 5 mM, is the major component of RBCs. Its primary role is the transport 

of O2 from the lungs to the muscles and the transport of CO2 from the muscles to the 

lungs to be exhaled. Historically, RBCs had been characterized as "dead" cells, or mere 

Hb-filled receptacles with the sole function of O2 transport. However, recent research has 

shown that RBCs carry out more than O2 transport; they are actively involved in 

controlling the dilation of blood vessels. Identified mechanisms by which RBCs 

participate in vasodilation require 02-regulated binding and bioactivation of NO by Hb 

and ATP release (10-14). 

1.1.2. Nitric oxide and vasodilation 

In 1998 Furchgott, Ignarro and Murad were awarded the Nobel Prize in Medicine 

"for their discoveries concerning nitric oxide as a signaling molecule in the 

cardiovascular system" (15). They identified NO as the endothelium-derived relaxing 
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factor (EDRF), a potent vasodilator formed on the hydrolysis of Z-arginine to Z-citrulline 

mediated by the enzymatic action of nitric oxide synthase (NOS) in the presence of 

oxygen (2) (Figure 1.1). In the vasculature, endothelial nitric oxide syntahse (eNOS) is 

the isoform responsible for the production of NO that triggers the signaling cascade 

resulting in smooth muscle relaxation (Figure 1.2). 

H,hf ^NH 

,NH 

NH ^NH 
HO 

NOS 
NADPH 

/ \ ' 
0 2 H20 

,NH 

H,N 
OH 

L-arginine 

H,N 

NOS 
NADPH 

0 2 H20 

OH 

H,N^ / O 

,NH 

+ NO 

N-hydroxyl-Z.-arginine 

OH 
H2N 

O 

L-citruline 

Figure 1.1 Enzymatic n i t r ic oxide formation. Oxidation of /.-arginine to L-citrulline with formation o f 

NO by nitric oxide synthase (NOS). Adapted from (16). 

NO has a short half-life (5 s) under physiological conditions (17). Possible 

mechanisms of NO scavenging in blood are its oxidation by O2 to generate nitrite (NO2), 

which is catalyzed by ceruloplasmin (18), and its reactions with Hb (19, 20). These 

mechanisms act to control vascular tone by reducing the smooth muscle exposure to NO, 

as proposed by Stamler and co-workers (21). Currently, some research groups consider 

nitrite to be the major storage pool of NO vasoactivity in blood (13, 22). 



Figure 1.2 Signaling cascade originated by the formation of NO. NO, synthesized from L-arginine in 

the endothelium by eNOS activity, stimulates guanylate cyclase (GC) leading to increased cyclic guanosine 

monophosphate (cGMP) levels. These activate protein kinase A (PK.A), which results in smooth muscle 

relaxation by reducing the intracellular calcium concentration. Adapted from (2). 

1.1.3. Nitrite in vasodilation 

Nitrite salts were used in antiquity by different cultures mainly as a food 

preservative (23). In the early 1800s. industrial exploitation of sodium nitrite focused on 

the manufacture of dyes, pharmaceuticals, anticorrosives and meat preservatives. Its 

physiological and biological relevance became more evident around 1860, when studies 

on the reactivity of nitrite with Hb were described by Hermann (24). 

Diet represents the principal source of nitrite in mammals. In the gastric system, 

nitrite (NO2) is generated by the reduction of nitrate, which is abundant in vegetables and 

drinking water (23). Nitrite is accumulated in saliva and partially reduced to NO and 
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oxygenase-1 (25). Gladwin and coworkers demonstrated that nitrite infusion into the 

human forearm increases blood flow, and they hypothesize that vasodilation is mediated 

through the reduction of nitrite to NO by deoxyHb (13). They also proposed that nitrite is 

the largest storage pool of NO in the blood stream (13). However, no evidence exists that 

nitrite donors activate NO release from RBCs. Moreover, Li and co-workers recently 

showed that NO production from nitrite occurs mainly in tissues and not in blood (26), 

suggesting that a molecular messenger other than NO is responsible for RBC-derived 

vasoactivity. 

1.1.4 Epoxieicosatrienoic acids 

Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of 

arachidonic acid with an important role in the mediation of vasodilation in muscle tissue. 

Four structural isomers are physiologically available, and 11,12-EET and 14,15-EET are 

the most abundant (Figure 1.4). 11,12-EET is suggested to be the endothelial-derived 

hyperpolarization factor (EDHF) (27-29) responsible for modulation of relaxation of 

vascular smooth muscle. EETs are involved in other signaling cascades that control 

inflammation and in regulating cell proliferation and migration processes (30). 

Both RBCs (Figure 1.5) (31) and endothelial cells (32) produce and release EETs. 

These messengers cause vasodilation by activation of calcium-dependent phosphate 

channels, reducing the intracellular calcium concentration in smooth muscle and 

hyperpolarizing the cell (Figure 1.6). 
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Endothelial 
cell 

Smooth 
muscle 

cell 

Figure 1.6 EET-derived vasoactivity. Shear stress and reduced oxygen levels activate membrane G-

proteins which stimulate phospholipase A2 (PLA2), causing the release of arachidonic acid (AA) from 

membrane phospholipids. The epoxigenase action of cytochrome P450 converts AA to EETs, which are 

released from RBCs and endothelial cells and activate calcium channels in the membrane of smooth 

muscle cells, reducing calcium influx and hyperpolarizing the cell. Adapted from (2). 

1.1.5 Prostaglandins 

The endothelium is the major source of prostaglandins in the vasculature (2). 

These are a family of molecules derived from arachidonic acid (AA) via the action of 

cyclooxygenases (COX-1 and COX-2). Prostaglandins are involved mainly in 

inflammatory processes and cardiovascular tone control. Prostaglandin h (PGI2X which is 

also known as prostacyclin (Figure 1.7a), is involved in the regulation of muscle blood 

flow. Prostacyclin causes vasorelaxation predominantly via the adenylyl cyclase/cyclic-

AMP transduction system (34) (Figure 1.7b). 

Shear s t ress \ \ 

-JG protein >. 
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Figure 1.7 (a) Structure of prostacyclin, (b) PGI2-derived vasoactivity. Shear stress and reduced 0 2 

levels activate membrane G-proteins which in turn activate phospholipase A2 (PLA2), resulting in the 

transformation of membrane phospholipids into arachidonic acid (AA). The action of COX on AA 

generates PGI2, which increases the levels of cyclic adenosine monophosphate (cAMP) and decreases 

phospholipase C (PLC) activity. The net result is a reduction in intracellular calcium which leads to 

smooth muscle relaxation. Adapted from (2). 

1.1.6 Adenosine triphosphate 

ATP is one of the most ubiquitous molecules in nature. It participates in many 

neurotransmission metabolic pathways as the energy currency of the cell and acts as the 

chemical energy storage for intracellular processes (35). ATP is also involved in 

signaling by targeting membrane purinergic receptors (36). Structurally, the molecule is 

composed of an adenosine unit, a purine nucleoside formed by adenine and ribose, 

covalently bond to three inorganic phosphate groups (Figure 1.8): 
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Figure 1.8 Structure of adenosine triphosphate (ATP) 

RBCs are known to release ATP at low pH or low oxygen concentration and in 

response to mechanical deformation (8, 9, 37) (Figure 1.9). This release of ATP is 

believed to act as a response to high oxygen demand in the microvasculature and 

provides evidence for RBC control over vascular tone (14, 38). ATP is known to exert a 

very powerful vasodilatory response in skeletal muscle, lung, and brain (39-42), although 

the mechanism of action is a matter of much debate. It has been demonstrated that ATP 

is the RBC link to NO synthesis in rabbit lung (43). 

RBC-derived ATP activates the NO signaling cascade in endothelial cells by 

yielding adenosine and stimulates the membrane heterotrimeric guanine nucleotide-

binding (G) protein, which promotes EET and PGI2 production (Figure 1.9). 
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Endothelial 
cell 

Smooth 
muscle 

cell 

Figure 1.9 RBC-derived ATP increases production of vasodilators in endothelial cells. Shear stress, 

reduced oxygen levels and low pH cause the release of ATP from the RBC. ATP is converted by ecto-5'-

nucleotidase (e5'-n) into adenosine, a potent vasodilator that acts through the NO signaling cascade. Other 

mechanisms are the activation of the PGI2 and EET signaling cascades by activating membrane 

heterotrimeric guanine nucleotide-binding (G) protein, which then activates PLA2 stimulating the 

production of arachidonic acids from membrane phospholipids. Adapted from (2). 

1.1.7 Glyceraldehyde 3-phosphate dehydrogenase 

One of the major metabolic sources of ATP in mammalian cells is glycolysis. The 

glycolytic pathway is central in energy metabolism, providing a significant portion of the 

celFs energy requirements by converting glucose to pyruvate. This is accompanied by the 

generation of two moles of ATP (35), as shown in Reaction 1.1. 
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1.2 Nitroglycerin 

The Heart Disease and Stroke 2008 Update Statistics compiled by the American 

Heart Association lists ischemic heart disease as one of the main causes of death in North 

America (49). Since 1879. the standard treatment for angina, the most common symptom 

of this condition, has been the administration of nitroglycerin (50) (Figure 1.11). Angina 

is the chest pain experienced by patients with ischemic conditions due to the lack of 

oxygen supply to the heart and the inability to increase coronary blood flow. 

Nitroglycerin acts as a potent vasodilator, causing a rapid increase in myocardial oxygen 

supply and relief of pain associated with angina. 

O2N ^ ~ . ^ - ^ NO2 

o ^Y o 

°\ 
N02 

Figure 1.11 Nitroglycerin structure 

1.2.1 Pharmacology and pharmacokinetics 

The metabolism of nitroglycerin leads to the formation of NO (51), which can 

exert an intense vasodilatory response (Section 1.1.2). The mechanism by which 

nitroglycerin yields NO is still not entirely understood (Figure 1.12) but there is strong 

evidence for an enzyme-dependent process. To date many enzyme candidates have been 

proposed (Section 1.2.2). 
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Nitroglycerin can be administered through several routes: sublingual, buccal, oral, 

transdermal, and intravenous. Patches, sprays, and rapidly dissolving tablets are widely 

available comercially. Doses of 0.2-0.8 mg can be administered orally with 5 minute 

intervals between doses until pain disappearance. Patches containing 5.0 mg are designed 

to release small doses over 24 hours. Physiological effects are experienced within 3 to 5 

minutes of nitroglycerin adminstration. 

Nitroglycerin undergoes rapid clearance by the liver, lungs and blood, and most 

denitrated metabolites are excreted via the kidney (50). Metabolic half-lives in whole 

blood of 3-5 minutes, in plasma ~52 minutes and ~3 minutes in RBCs have been 

reported (52). These values suggest that most of the metabolic processing of nitroglycerin 

in whole blood is performed by RBCs. 

0,N 

N02 

1,2 glyceryl dinitrate 
NO 

nitroglycerin 02N 

1,3 glyceryl dinitrate 

Figure 1.12 Nitric oxide derived from nitroglycerin. Activation processes and mediators are still under 

debate. Both the 1.2- and 1,3-glyceryl dinitrate byproducts possess some vasodilatory activity but less than 

nitroglycerin (53). 
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1.2.2 Bioactivation 

The vasodilatory potential of nitroglycerin and related organic nitrates is related 

to their ability to yield NO (50). Few nonenzymatic mechanisms have been reported for 

nitroglycerin bioactvation. Notably, Ignarro and Gruetter proposed -NO2 transfer from 

nitroglycerin to cysteine that yields NO (54). 

cysteine 
1,2-glyceryl dinitrate 

+ 
1,3-glyceryl dinitrate 

S-nitrocysteine 

2H 

2 S-nitrocysteine cystine 

Figure 1.13 Bioactivation of nitroglycerin by cysteine. Nitroglycerin (RON02) reacts with cysteine 

(RSH) to generate 1,2- or 1.3-glyceryl dinitrate and S-nitrocysteine. Two S-nitrocysteine molecules react 

to form cystine and NO. Adapted from (54). 

Enzymatic bioactivation of nitroglycerin by many candidate enzymes has been 

proposed and there is still much debate about their relative efficiencies. These candidates 

are discussed in the following sections. 
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1.2.2.1 Glutathione S-transferases 

Glutathione S-transferases (GSTs) are a family of cytosolic and mitochondrial 

proteins with different isoforms. Detoxification of endogenous compounds is one of their 

many functions and GSTs were among the earliest candidates postulated as nitroglycerin 

bioactivators (55, 56). Bioactivation of nitroglycerin (RNO2) by GST requires 2 

molecules of glutathione (GSH) with the formation of nitrous acid (HNO2) (pKa = 3.4) 

(57) as shown in Reactions 1.2 and 1.3. 

GSH + RONO2 -> [GS-NO2] + ROH (1.2) 

[GS-NO2] + GSH -* GSSG + HN0 2 (1.3) 

2HN02 -» NO + H 2 0 + N0 2 (1.4) 

Disproportionation of nitrous acid in an aqueous environment (Reaction 1.4) (57) 

leads to the formation of NO and NO2, which could induce a vasodilatory response in 

vascular tissue. Research by Kurz and coworkers found a linear correlation between GST 

activity and NO2" production when using nitroglycerin as a substrate for the enzyme (58). 

Reaction 1.2 involves -NO2 transfer to a thiol as in Figure 1.13. However reaction of a 

free thiol and a m'trothiol yields HNO2 as an intermediate (Reaction 1.3) vs the direct NO 

generation proposed in Figure 1.13 for reaction of two nitrothiols. 
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1.2.2.2 Hemoglobin 

Bioconversion of nitroglycerin in the vascular system has been extensively 

discussed since this process has been suggested to be both endothelial-dependent (59) and 

independent (50). At the same time, it has been reported that nitroglycerin is relatively 

stable in plasma and it is poorly metabolized by human serum albumin (60). Importantly, 

in plasma, nitroglycerin has a half-life (~52 min) that surpasses the time frame (3-5 min) 

in which physiological effects are experienced (52). Thus, RBC-associated proteins are 

suitable candidates for nitroglycerin bioactivation in whole blood. 

As mentioned in Section 1.1.1, Hb is the most abundant protein in RBCs. Its main 

function is the transport of O2 and C02 to and from tissues. RBCs are known to 

concentrate nitrite in the vasculature, and the nitrite reductase activity of deoxyHb has 

been proposed to give rise to NO vasoactivity in these cells (20). The conversion of 

deoxyHb to methemoglobin (metHb) via reaction with NO2" suggests the potential role 

of deoxyHb as a nitroglycerin activator. Bennett and coworkers spectrometrically 

followed the interaction of deoxyHb and deoxymyoglobin with nitroglycerin and showed 

that it led to the preferential formation of 1,2-glyceryl dinitrate and nitrite (61). They 

proposed heme-mediated reductive denitrosation with a 2:1 stoichiometry: 

2 Fe"(heme) + RONO2 + H+ -* 2 Fem(heme) + ROH + N02" (1.5) 
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1.2.2.3 Cytochromes P450 

Cytochromes P450 (CYP450) are a superfamily of hemoproteins involved in 

electron transfer, steroid biosynthesis, and xenobiotic metabolism (62). The most 

common reaction catalyzed by this enzyme family is the monooxygenation of organic 

substrates. Most CYP450 are found in hepatic cells, and are considered the front-line 

defense against drugs and toxins artificially introduced to the cell. This is why CYP450s 

were considered as potential nitroglycerin activators. Servant and co-workers found 

evidence for nitroglycerin biotransformation by hepatic CYP450 since they detected the 

nitrosyl-heme CYP450-Fe(II)-NO complex spectroscopically (63). Later, McDonald and 

Bennett showed that CYP450 transforms nitroglycerin to glyceryl dinitrate derivates, 

with a preference for the 1,3- isomer (64). Isoforms of CYP450 in human heart blood 

vessels showed the ability to convert isosorbide dinitrate, an organic nitrate related to 

nitroglycerin, to NO (65). Associated with CYP450, cytocrome P450 reductase (CPR) 

has also been suggested as an important player in the bioactivation mechanisms of 

organic nitrates (66). The CPR-CYP450 nitroglycerin activation complex involves the 

two enzymes in different stages. Initially CPR reduces nitroglycerin (RONO2) to an 

organic nitrite (RONO), following by quick hydrolysis to HNO2 in a thiol-free 

environment. The nitrite reductase activity of CYP450 then catalyzes the conversion of 

HNO2 to NO. If thiol groups are available, either NO or nitrosothiols (R'SNO) can be 

formed (Figure 1.14) (66). 
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CPR 

RONO, + NADPH —> RONO + NADP+ + H,0 

no R'SH With FTSH 

RONO + H,0 —* ROH + HNO, 

CYP450 

HNO, + H+—> NO + H,0 

2RONO + 2R'SH —> 2NO + 2ROH + R'SSR' 

RONO + R'SH —> ROH + R'SNO 

Figure 1.14 Nitroglycerin bioactivation by CPR-CYP450. Nitroglycerin (RON02) is reduced to an 

orgnic nitrite (RONO) that hydrolyzes to nitrous acid. The latter is catalytically converted to NO by 

CYP450. In the presence of thiols, RONO yields either NO or nitrosothiols (R'SNO). Adapted from (66). 

1.2.2.4 Xanthine oxidase 

Xanthine oxidase is a molybdoflavoprotein abundant in certain mammalian cells, 

and it has been implicated in nitrate to nitrite reduction (67, 68). In addition to 

molybdenum and FAD, it contains two iron-sulphur redox centres. It has been reported 

that xanthine oxidase can catalyze the reductive denitrosation of organic nitrates to yield 

N02" under anaerobic conditions (69, 70). A xanthine oxidase-mediated mechanism for 

nitroglycerin and isosorbide dinitrate bioactivation was proposed by Li and coworkers, 

and involves initial oxygen transfer from the substrate (RONO2) to the reduced enzyme 

(Ered). Subsequent reaction of RONO with R'SH gives R'SNO (Reactions 1.6 - 1.7) (71), 

which can donate NO. 
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Ered + RON02 + 2H+ -> R-O-NO + HzO + E„x (1.6) 

R-O-NO + R'SH -> R-OH + R'SNO (1.7) 

1.2.2.5 Mitochondrial aldehyde dehydrogenase (ALDH2) 

ALDH2 is a homotetramer (56.4 kDa per subunit) responsible for the conversion 

of acetaldehyde to acetic acid (72), which is important in alcohol metabolism. There are 

two major aldehyde dehydrogenase isozymes: cytosolic (ALDH1) and mitochondrial 

(ALDH2). In -50% of the Asian population ALDH2 is not present, this being a possible 

cause of high rates of alcohol intoxication and low alcohol dependence present in this 

population (72). In 2002, Chen et al. identified ALDH2 as a major enzyme responsible 

for nitroglycerin bioactivation. They demonstrated both in vitro and in vivo that the 

nitrate reductase activity of ALDH2 specifically catalyzes the formation of 1,2-glyceryl 

dinitrate and nitrite from nitroglycerin, leading to relaxation of vascular smooth muscle 

(73). The overall reaction proposed for nitroglycerin activation by ALDH2 is shown in 

Figure 1.15. 

+ ALDH2red s-

nitroglycerin 1,2-glyceryl dinitrate 

Figure 1.15 Biocativation of nitroglycerin by mitochondrial aldehyde dehydrogenase. Nitroglycerin is 

activated by the reduced form of mitochondrial aldehyde dehydrogenase (ALDH2,ed), causing its oxidation 

(ALDH2„0 and generating 1.2-glyceryl dinitrate and N 0 2 \ Adapted from (59). 
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Human ALDH2 possesses three consecutive cysteine residues in its sequence, 

active-site Cys302 and adjacent Cys301 and Cys303. Two of these cysteines form an 

intramolecular disulfide bond on reductive denitrosation of nitroglycerin with NO2" 

release, as shown in Scheme 1.1. The intramolecular disulfide bond in ALDH2 has been 

characterized by mass spectrometry (74), and causes inactivation of the enzyme by 

oxidazing the active-site Cys302. Inactivation of ALDH2 has been proposed for the 

development of nitrate tolerance in patients under nitroglycerin treatment (59), which will 

be discussed in Section 1.2.3. 

ALDH2 SH + RON02 *~ t A L D H 2 | S-N0> + R 0 H 

SH 

ALDH2 s + N Q 2 

Scheme 1.1 Nitroglycerin bioactivation by ALDH2. The transfer of-N02 from nitroglycerin to one of 

the thiols of ALDH2 produces glyceryl dinitrate (ROH) and a Cys-N02 moiety that reacts with an adjacent 

free thiol. This results in a disulfide bond formation (S-S) and release of NO?". Adapted from (59). 

1.2.2.6 Glyceraldehyde-3-phosphate dehydrogenase 

Structural homology between ALDH2 and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) suggests that the latter could be involved in nitroglycerin 
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bioactivation in the vasculature. In addition to dehydrogenase activity, GAPDH and 

ALDH2 share the possession of multiple free cysteine residues. The GAPDH monomer 

has four cysteines: active-site Cysl49 and neighboring Cysl53, as well as Cys244 and 

Cys281. The architecture of the active site suggests that nitroglycerin could interact with 

GAPDH in a similar manner as it does with ALDH2 (Scheme 1.1). 

As discussed in Section 1.1.6. GAPDH is a key enzyme in the glycolytic pathway. 

It catalyzes the conversion of glyceraldehydes-3-phosphate to D-glycerate-1,3-

bisphosphate, and the latter donates a phosphate group to adenosine diphosphate (ADP) 

yielding ATP in a reaction catalyzed by phosphoglycerate kinase (PGK) (Figure 1.16) 

(35). GAPDH is highly concentrated in RBCs which exhibit high glycolytic metabolism 

(47). Inhibition of GAPDH would result in a substantial decrease in ATP production 

which may affect ATP release from the RBCs. Diminished ATP-mediated stimulation of 

endothelial nitric oxide synthase (eNOS) would in turn suppress relaxation of the smooth 

muscle due to decreased EDRF/NO production (Figure 1.9). Thus, inhibition of GAPDH 

by nitroglycerin could contribute to nitrate tolerance by two mechanisms as discussed 

further in Chapter 4 of this thesis. 

°̂  1 + v o H 
V ° N A O H -O-\0 

p 

glyceraldehyde- inorganic 
3-phosphate phosphate 

GAPDH 

NAD* NADH + H* 

O 

^ 5 j / 0 

0 

1,3-biphosphoglycerate 

PGK 

ADP A T I 

o 

v° 
o ^ \ o 

3-phosphoglycerate 

Figure 1.16 Role of GAPDH in glycolysis and ATP production. (35). 
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Table 1.1 summarizes the published catalytic parameters in enzymatic nitroglycerin 

bioactivation. 

Table 1.1 Catalytic parameters and products reported in enzymatic bioactivation of 
nitroglycerin 

Enzyme 

GST aortic u (pi 8.3) 

GSTfi 

GST I 

deoxyHb 

deoxyMb 

CYP450 

Xanthine oxidase 

ALDH2 

Km 

1.1 mM 

2.5 mM 

0.3 mM 

-

-

-

-

11.98UM 

v m a x 

-

-

-

-

-

-

-

3.03 nmol/min 

permg 

NOx products 

HNO, 

NO, 

NO 

NO," 

N02" 

NO 

RSNO 

NO," 

1,2-/1,3-

glyceryl 

dinitrate 

-

-

-

11:1 

3:1 

1:5 

-

5:1 

Ref. 

(75) 

(75) 

(75) 

(61) 

(61) 

(64) 

(73) 

1.2.3 Nitrate tolerance 

Despite the efficacy of nitroglycerin in the treatment of ischemia, its chronic 

effects are rapidly blunted. This phenomenon is known as nitrate tolerance. Tolerance is 

not related to the pharmacokinetics of the drug, since this remains unaltered during 

chronic nitroglycerin exposure (76). Thus, factors such as reduced absorption, accelerated 

metabolism or excretion of nitrates and related metabolites are unlikely to play a role in 

the development of tolerance. 

23 



Loss of vascular bioactivation of nitroglycerin seems to play an important role in 

the development of nitrate tolerance. The classical mechanism proposed by Needleman 

points to the decreased availability of sulfhydryl groups (77). The Needleman hypothesis 

suggests a "vascular nitrate receptor" that contains -SH groups that interact with organic 

nitrates to release nitrite and induce vasodilation. This hypothesis has evolved to include 

inhibitory mechanisms in which disulfide bonds are formed in the active sites of 

enzymes, such as ALDH2 (Scheme 1.1) and GAPDH. Research aiming to restore the 

vasodilation effects of nitroglycerin by reducing the disulfide bond in ALDH2 has 

strengthened this hypothesis by demonstrating that enzymatic activity is recovered upon 

treatment with different reductants (59). For clinical applications, the use of reducing 

agents such as dithiothreitol (DTT) or TCEP is not viable, therefore regeneration of the 

nitroglycerin-induced vasodilatory effect must await the recovery of the free sulfhydryl 

groups by the reductase activity of thioredoxins (78, 79), glutaredoxins (80) and lipoic 

acid (81), or the synthesis of new enzymes with unaltered -SH functions (82). The latter 

could explain why drug free periods of more than eight hours allow tolerant patients to 

regain nitrite reactivity to a new dose of nitroglycerin (83). 

The presence of oxidative stress in the vasculature has also been suggested as a 

possible cause of nitrate tolerance (84). Exposure to nitroglycerin increases the activity or 

the expression of angiotensin II, a vasoconstrictor oligopeptide, which elevates vascular 

production of the superoxide anion (CV") leading to enhanced degradation of circulating 

nitric oxide to a less potent vasodilator (ONOO) (82). 

Nitrite-induced counter regulation is another phenomenon that has been linked to 

the development of nitreate tolerance, mostly in chronic exposure to nitroglycerin. An 
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example is the case of industrial munitions workers who developed ischemic heart 

conditions after retirement and their symptoms were relieved by treatment with 

nitroglycerin and/or return to industrial exposure (85). Additionally, alterations of 

metabolic or enzymatic activities have been proposed as an alternate explanation for 

nitrate tolerance and cross tolerance (80, 86). Increases in hormonal vasoactive agents 

such as catecholamine and rennin are not consistently reported with the development of 

tolerance. However, changes in the expression of mRNA of several genes present in 

blood vessels upon nitroglycerin infusion have been described in the past (87). 

1.3 Scope and outline of thesis 

The work performed for this thesis focused on the characterization of the effects 

of different vasodilators, both endogenous and exogenous, on RBCs and the possible 

vasodilatory chemical signaling originating from these cells. The results contribute to the 

elucidation of the role of RBCs in the regulation of blood flow at the microvascular level. 

Chapter 2 presents an adaptation of the well documented luciferin-luciferase 

chemiluminescence assay in microplate-reader format for the measurement of ATP 

released from human RBCs. Also, the use of HPLC to survey the ribonucleotide profile 

arising from RBCs was evaluated. 

In Chapter 3, the effects of nitroglycerin and nitrite on ATP release from human 

RBCs are compared. The changes in the ATP levels induced by time of exposure to these 

compounds as well as the effects of varying their concentrations at a fixed time are 

presented. ATP levels were measured by the chemiluminescent method described in 
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Chapter 2. Based on the results obtained, a novel mechanism is proposed to explain the 

role of RBC-derived ATP in the propagation of a vasodilation signal. 

An extended version of this chapter, with additional work performed by the other 

co-authors, was submitted on February 28, 2009 for publication to Nature Medicine as a 

letter under the title "Nitrite and nitroglycerin induce rapid release of the vasodilator 

ATP from erythrocytes: Evidence for a NO2/ATP feedback signaling pathway in blood-

flow regulation", authors: Juliana I. Garcia, Amedea B. Seabra, Renee Kennedy, and Ann 

M. English. 

Chapter 4 describes the effects of nitroglycerin on the glycolytic activity of the 

enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH activity was 

measured spectrophotometrically and the possible relevance of results to reversible 

nitrate tolerance is discussed. 

Chapter 5 presents preliminary results on the development of a method for the 

detection and quantitation in blood plasma of the arachidonic-acid derived vasodilators, 

epoxyeicosatrienoic acids (EETs) and prostacyclin (PGI2). Overall conclusions and 

suggestions for future studies are presented in Chapter 6. 
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2. Measurement of human RBC extracellular ATP 

2.1 Introduction 

The most commonly used methods for ATP determination in blood are 

chromatography and the luciferin-luciferase bioluminescence assay. Chromatographic 

methods are more often used on blood plasma, lysed cells and treated or extracted 

samples, since co-elution and interference from other substances are common in more 

complex systems. The luciferin-luciferase assay is the method used for real time ATP 

estimation, such as the measurement of release rates from cells (88). It is also more 

convenient and commonly used on untreated samples. 

The term "bioluminescence" was defined by Newton Harvey in 1916 to describe 

the naturally occurring phenomenon in which living organisms emit 'cold' light 

(luminescence) (89). Bioluminescence is present in many organisms in nature, and it has 

been extensively studied in bacteria, Crustacea and fireflies (Figure 2.1). In 1885, the 

physiologist Raphael Dubois described the reaction that generated this light emission by 

producing a luminescent solution when dissolving ground up abdomens of the 

Pyrophores beetle in cold water (90). Dubois called luciferin and luciferase the two 

interacting substances responsible for the luminescent effect. Subsequently, Harvey 

demonstrated the occurrence of this same reaction on the tail of fireflies (91). Almost 

thirty years later, McElroy reported the dependency of this reaction on the presence of 

ATP (92) and Mg2+ (93). 
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(OxL) (Reactions 2.1 - 2.3). The luciferin-lucifererase reaction has the highest known 

quantum yield of any bioluminescence reaction, with a quantum yield of ~1 (96), 

indicating that nearly one photon of light is emitted for every luciferin molecule oxidized. 

E + LH2 + ATP + Mg2+ -> E»LH2-AMP + PPi + Mg2+ (2.1) 

E'LH2-AMP + 0 2 -» E'OxL* + AMP + C0 2 (2.2) 

E»OxL* -* E»OxL + hv (2.3) 

HO s s 
D-luciferin 

COOH 

N 

S S 

o-o N-4-4 ' ri 

K co2 

Oxyluciferin C1 
(red light) 

AMP 

OR 

Adenylate 

CO-AMP 

PPi 

o2 

N N~ 

,OH 

-AMP 

O any 
Oxyluciferin C2 

(yellow-gren light) 

OH 

Figure 2.3 Mechanism of bioiuminescent oxidation of firefly luciferin catalyzed by firefly Suciferase. 

Most likely D-luciferin binds as the dianion to luciferase. In the presence of ATP and Mg2+, luciferin is 

converted to an adenylate, yielding pyrophosphate (PPi). Oxygenation of the adenylate in the presence of 

air generates the peroxide intermediate A. This is converted to the dioxietanone intermediate B after 

releasing AMP. The decomposition of intermediate B produces an excited state of oxyluciferin CI 

(monoanion) or dianion C2. To reach the ground state CI emits red light {Xmas 615 nm), and C2 emits 

yellow-green light (Xmax 560 nm). Adapted from (94. 95). 

29 



Firefly luciferase is composed of a single 62 kDa polypeptide of 550 amino acids 

and is active in the monomeric form. The crystalline form of firefly luciferase was 

reported by Green and McElroy in 1956 (97). Later studies on the crystal structure of the 

enzyme led to the characterization of the active site when a highly conserved sequence 

was found near the C-terminal of three families of related enzymes: firefly luciferase, 

acyl-CoA ligases and peptide synthetases (98). 

Firefly luciferin crystallizes as microscopic needles when purified and exhibits 

fluorescence. The enzyme shows maximum absorption at 560 nm in acidic and 615 nm in 

basic solutions (94) (Figure 2.4). A molar extinction coefficient of 18.200 cm^M"' was 

determined at 328 nm (99). 

5 5 0 600 850 700 

Wavefength (nm) 

Figure 2.4 pH-dependent spectrophotometries! changes of firefly luciferin. The common yellow-green 

luminescence of luciferin at pH 7.1 changes to red in acidic media (pH 5.4). Adapted from (100). 

The luciferin-luciferase bioluminescence assay has been widely studied and 

applied (8, 37, 101-103). The goal here was to adapt the method to our experimental 

needs and to bench-mark the parameters of re-suspended RBCs for the experiments 
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presented in this thesis. Linearity of the calibration curve and limit of detection of the 

method were determined. Also, the total extracellular ribonucleotide profile arising from 

RBCs was examined by HPLC. 

2.2 Materials and methods 

2.2.1 Materials 

Blood was collected in standard 4-mL Vacutainer® heparinized tubes (BD, 

Franklin Lakes, NJ). KC1, MgCl2 methanol (HPLC grade) were purchased from Fisher 

Scientific (Pittsburgh, PA). CaCI2 and MgS04 were purchased from ACP Chemicals 

(Montreal, QC). NaCl, tris(hydroxymethyl)aminomethane and dextrose were purchased 

from Bioshop (Burlington, ON). Sucrose was purchased from Anachemia (Lachine, QC). 

Distilled water was purified in a Milli-Q Simplicity 185, Millipore (Billerica, MA), and 

Ultrafree®-0.5 centrifugal filter Units, 10 kDa cut-off ultrafiltration membranes were 

purchased from the same supplier. Bovine serum albumin, ATP, firefly lantern extract, 

HEPES, EGTA, KH2P04, K2HP04-3H20 and NaN02 were purchased from Sigma-

Aldrich (St. Louis, MO). White 96-well plates and UV/Vis transparent lids were 

purchased from Corning (Corning, NY). Nitrogen gas (ultra high purity) was purchased 

from Praxair (Danbury, CT). HPLC analyses were carried out with an 1100 Agilent 

HPLC system using a Hypersil ODS C18RP column (Agilent Technologies. Santa Clara, 

CA). Physiological salt solution (PSS) was prepared using the following materials: in M, 
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0.0047 KC1, 0.0020 CaCl2, 0.0012 MgS04, 0.1405 NaCl, 0.0210 

tris(hydroxymethyl)aminomethane, 0.0111 £>-glucose with 0.5% w/v bovine serum 

albumin, pH adjusted to 7.4. Sucrose buffer was prepared as follows: in M, 0.321 

sucrose, 0.032 HEPES, 0.003 EGTA, 0.006 MgCl2, pH adjusted to 7.4. 

2.2.2 Preparation of red blood cells 

All procedures involving the collection of human blood samples were in 

accordance with the Concordia University Ethics Guidelines. After their informed written 

consent was obtained, blood was collected from healthy female volunteers (aged between 

20-35 years) by venipuncture into the heparinized tubes. Within two hours of collection, 

the blood was centrifuged at 5,000 rpm at 4 °C for 10 min. The plasma was collected by 

aspiration and stored at -80 °C. The buffy coat was also collected by aspiration and 

discarded. Packed RBCs were resuspended and washed three times in PSS. 

2.2.3 Measurement of ATP by chemiSuminescence 

From a stock solution of 2.5 mM ATP in PSS, ATP standards ranging from 10 

nM to 39.1 |aM ATP were prepared in PSS. The luciferin-Iuciferase assay solution used 

to measure ATP by chemiluminescence was prepared by dissolving 13.3 mg of crushed 

firefly extract in 10.0 mL of Milli-Q water. Chemiluminescence proportional to the ATP 
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in the sample was measured using a Wallac Victor 1420 multilabel plate reader 

(PerkinElmer, Waltham MA). Background emission of 100 uL of the luciferin-luciferase 

assay solution in a white 96-well plate was recorded, and immediately following mixing 

with 100 jiL of ATP standard, the emission was measured. Following background 

correction, double-log plots of emission versus [ATP] yielded a linear standard curve 

over 5 nM - 20 \iM. To measure sample ATP levels, 100 uL of RBCs at different Hct 

values were added to 100 uL of the blanked assay solution, the light emission was 

recorded, and ATP concentrations were determined using the ATP standard curve. 

2.2.4 Chromatographic determination of ATP and its metabolites 

ATP and metabolites were identified using an 1100 Agilent HPLC consisting of a 

quaternary gradient pump, a variable wavelength detector and a solvent degasser. 

Separation was achieved with a Hypersil (5-|im particles) ODS C18RP column (100x4.6 

mm). Separation of ATP and its metabolites was performed as described previously by 

Coolen et al. (104). Briefly, a gradient of 50 mM phosphate buffer (pH 6.0) (solvent A) 

and 100% methanol (solvent B) at a flow rate of 0.6 mL/min was used as the mobile 

phase. The analytes were eluted using the following linear gradient: 100% A over 2 min; 

100-87.5 % A over 10 min, 87.5% A for 12 min; 87.5-100% A over 17 min and 100% A 

over 19 min for re-equilibration of the column prior to the next sample injection. RBCs 

were prepared as described in Section 2.2.2, resuspended at 10% Hct in sucrose buffer at 

4 °C for 2 h, centrifuged at 5,000 rpm at 4 °C for 5 min, and 200 (iL of supernatant was 
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loaded into a preconditioned Ultrafree®-0.5 cell with a 10-kDa cut-off ultrafiltration 

membrane (Millipore, Billerica, MA). The sample was centrifuged at 12,000 x g at 4 °C 

for 10 min. The ultrafiltrate (50 p.L) was diluted into 200 |iL of mobile phase A and 25 

|iL of this sample was injected into a sample vial for HPLC analysis. The HPLC 

autosampler temperature was set at 4 °C, and the column was kept at 20 °C. 

2.3 Results and discussion 

2.3.1 Chemiluminescence 

Since the luciferin-luciferase reaction is affected by the presence of oxygen (94), 

chemiluminescence was measured in 96-well plates covered with a UV/Vis transparent 

lid. This also served to avoid biological contamination of the plate reader. Calibration 

curves were generated by plotting the logarithm of the chemiluminescence intensities (1) 

vs the logarithm of the ATP concentration of the standards. All measurements were 

performed using the luciferin-luciferase assay solution (Section 2.2.3). Acceptable 

linearity and reproducibility were obtained for the calibration curve averaged over 15 

independent measurements of ATP standards in the range of 9.54 nM to 39.1 jlM. The 

equation obtained was log I = 0.81 (± 0.06) log[ATP] + 8.6 (± 0.4) with a correlation 

coefficient R2 = 0.9982 (± 0.0047). Deviation from the average is expressed as ± standard 

variation. 
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Figure 2.5 ATP calibration curve. Logarithm of chemiluminescent intensity (I) vs logarithm of ATP 

concentration in the range 9.54 nM - 39.1 uM. Least square analysis reveals linear behavior [log 1 = 0.81 

(± 0.06) log[ATP] + 8.6 (± 0.4)] and a correlation coefficient R2 of 0.9982 (± 0.0047) (± standard 

deviation). The ATP standards (100 u.L) in PSS at the concentrations indicated in the figure were mixed 

with 100 uL of luciferin-luciferase assay solution (Section 2.2.3). Chemiluminescence intensities were 

recorded at 22 °C. Each data point represents the average of 15 independent measurements. 

2.3.1.1 Interferences 

The effect of nitroglycerin on the luciferin-luciferase ATP assay was investigated 

to determine if the drug altered the luminescent signal. ATP standard solutions were 

divided into two aliquots. one was mixed with assay solution and the second with assay 

solution plus 33.3 |iM nitroglycerin. The results shown in Figure 2.6 confirm that the 

ATP standards with or without nitroglycerin fall on the same line. Thus, nitroglycerin 

does not interfere with the assay and the difference in the slopes of the calibration curve 

is within the standard deviation (Figure 2.5). 
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Figure 2.6 ATP calibration curve in the presence and absence of nitroglycerin. Logarithm of 

chemiluminescence intensity (I) vs logarithm of ATP concentration in the range 38.2 nM - 39.1 U.M least 

square analysis reveals linear behavior both in the presence (*: y = 0.7793x + 8.388) and absence (D: y = 

0.7553x + 8.2923) of 3.33 mfvl of nitroglycerin, with corresponding correlation co-efficients R2 of 0.9978 

and 0.9975. See Figure 2.5 for experimental conditions. 

2.3.2 Effect of Hct on chemiluminescence intensity 

To determine a suitable RBC concentration for the extracellular ATP assay, the 

profile of light intensities at different Hct values was tested following mixing with the 

assay solution. Spence et al. used 7% Hct (8, 37, 105) in their flow-through system. For 

our experiments, RBC concentrations varying from 5-24% Hct were mixed with 

luciferin-luciferase assay solution to study the ATP signal. The results shown in Figure 

2.7 indicate no relationship between the measured ATP concentration and Hct, 

suggesting saturation of the signal. The standard curves in Figures 2.5 and 2.6 reveal that 

the light intensity is directly proportional to the ATP concentration up to -40 U.M. The 

extracellular ATP concentrations in Figure 2.7 are outside this range. 
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Figure 2.7 Measured extracellular ATP vs Hct. The ATP concentration was determined from the light 

intensities using the calibration curve in Figure 2.5. RBCs at 5-24% Hct (100 U.L) were mixed with 100 (JJL 

of assay solution. The lack of correlation between ATP concentration and Hct suggests signal saturation. 

Thus, lower Hcts were assessed. The light emitted from solutions varying from 0-

3.5% Hct was measured and the results (Figure 2.8) indicate a linear correlation up to 1% 

Hct. Linearity is lost above 1% Hct. indicating that the signal saturates at relatively low 

ATP concentration using a plate reader. A value of 1% Hct was chosen for all subsequent 

measurements of extracellular ATP. since it yields a high signal response within the 

linear range of the assay. 
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Figure 2.8 Measured extracellular ATP at low Hct. The ATP concentration was determined from the 

light intensities using the calibration curve in Figure 2.5. RBCs at 0-3.5% Hct (100 uL) were mixed with 

100 uL of assay solution. A linear correlation between ATP concentration and Hct is observed between 0 

and l%Hct. 

2.3.3 HPLC determination of extracellular ATP and its metabolites 

Since ATP is readily metabolized to ADP. AMP and other metabolites, the 

presence of extracellular ATP and its metabolites was investigated by HPLC using 

methodology and chromatograms published by Coolen et al. for whole blood (104). A 

HPLC-UV (254 nm) calibration curve for ATP concentrations in the range examined by 

chemiluminescence (9.54 nM - 39.1 U.M), was prepared by plotting the area under the 

ATP peak observed at 4 min. A linear correlation was observed (Figure 2.9) with a 

correlation co-efficient R2 of 0.9944. 
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Figure 2.9 HPLC-UV (254 nm) calibration curve for ATP. Plot of peak area at 254 nm vs ATP 

concentration. Linear correlation with the equation y = 0.977x + 7.388 and correlation coefficient R2 = 

0.994. The y-axis corresponds to the area under the ATP peak at 4 min in the HPLC/UV chromatogram. 

ATP standards (9.54 nM - 39.1 uM) prepared in 50 mM phosphate buffer (pH 6.0) were injected and 

eluted from a 100x4.6mm C,8 column as described in Section 2.2.4. 

Chromatographic analysis of the extracellular medium revealed the ribonucleotide 

profile. The detected levels of adenosine monophosphate (AMP) were ~18-fold higher 

than those of ATP (-0.3 U.M) (Figure 2.10). Coolen et al. reported that the ribonucleotide 

profile depends on the anticoagulant used in the blood-collection tubes. Overall, lower 

levels of ATP are detected when blood is collected in Li-heparin compared with EDTA-

coated tubes. EDTA chelates Ca + which inactivates ATP-degrading enzymes (106). 

Therefore, there is a slower rate of ribonucleotide degradation in EDTA vs Li-heparin-

coated tubes (104, 106). 
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Figure 2.10 HPLC-UV (254 nm) analysis of extracellular RBC-derived ribonacleotides. (A) 

Chromatographic profile of RBC-derived ribonucleotides from blood drawn in heparinized tubes. (B) AMP 

levels (~6 (iM) are ~18-times higher than ATP levels (0.3 uM). RBCs prepared as described in Section 

2.2.2, were resuspended at 10% Hct in sucrose buffer at 4 °C for 2 h, 200 |iL of supernatant was 

concentrated to 50 U.L using a 10-kDa cut-off ultrafiltration membrane and a 1:4 dilution of the ultrafiltrate 

in 50 mM phosphate buffer (pH 6.0) was injected and eluted from a 100*4.6mm C|8 column as described 

in Section 2.2.4. Peaks at 3.5 and 3.7 min in (A) were not identified. 

The ribonucleotide profiles examined here from blood collected in Li-heparin and 

EDTA-coated tubes showed no marked difference in AMP/ATP ratio (Figure 2.11). 
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However, Coolen et al. also reported that ATP is largely converted to AMP in RBCs 

within 30 min of blood collection (104), consistent with the results in Figure 2.11. 
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Figure 2.11 HPLC-UV (254 nm) analysis of extracellular RBC-derived ribonucleotides from blood 

collected in Li-Heparin and EDTA-coated tubes. RBCs were treated as described in the legend of Figure 

2.10. The extracellular medium was examined 2 h after blood collection. This experiment was carried out 

only once. 

ATP is converted to AMP via different mechanisms. Under physiological 

conditions, ATP is directly converted to AMP via ecto-nucleotide pyrophosphatase/ 

phosphodiesterase (E-NPP) and, to a lesser extent, ecto-nucleoside triphosphate 

diphosphohydrolase-1 (E-NTPDase-1) (Figure 2.12). These are ubiquitous enzymes 

found in RBCs (107, 108) and a variety of tissues in mammals, including brain (109), 

glial (110) and hepatic cells (111). Some soluble ecto-nucleotidases can also be found in 

plasma (108). 
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2.4 Conclusions 

A chemiluminescent assay to measure extracellular ATP in RBC suspensions at 

low Hct was developed. Suitable RBC and luciferin-luciferase concentrations were 

established to obtain high instrument response without signal saturation. This method 

could be extended to the analysis of pharmacologically treated RBCs in order to 

determine the effects of drugs on the release of ATP or other chemical signals arising 

from these cells. 

The HPLC-UV method presented revealed that AMP is the major extracellular 

ribonucleotide detected in RBC suspensions. It is hypothesized that the ATP released 

from hypoxic RBCs is rapidly metabolized to AMP by the enzymes shown in Figure 

2.12. Hence the release of AMP from RBCs should also be evaluated. The HPLC 

approach used here for the detection of ribonucleotides could be employed to study the 

role of nucleases in the regulation of ATP levels in blood and plasma. 
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3. Effects of nitroglycerin and nitrite on ATP release from human 

red blood cells 

3.1 Introduction 

Recent research has considerably modified our understanding of the relative 

importance of central versus local regulation of blood flow. There is now compelling 

evidence that the endothelium plays an active role in the regulation of the 

microcirculation (9, 29, 34. 112). Importantly, in endothelial-mediated vasodilation is the 

formation and release of NO, which is also known as EDRF (endothelium-derived 

relaxing factor) (113, 114). Stimulation with adenosine triphosphate (ATP) released from 

red blood cells (RBCs) (115), and other regulators (116) results in increased NO 

production and release from endothelial cells. NO uptake by adjacent smooth muscle 

cells leads to relaxation via the well-documented NO/cGMP pathway (117, 118), and the 

outcome is enhanced blood flow. 

Increased muscle metabolism, as occurs during exercise, triggers "ascending 

vasodilation" to augment blood flow to the active muscles (115). The capillaries, 

arterioles, and venules contribute to the enhanced blood flow in a coordinated manner but 

mechanisms by which the vasodilatory signal is propagated remains to be fully elucidated 

(3, 119). O2 gradients are the principal regulators of blood flow in the microvasculature 

(3-6). Decreases in blood O2 content result in increases in blood flow and vice versa 

(120). Thus, signal transduction pathways that induce vasodilation must exist between 
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tissues and the microvasculature. As stated recently by Singel and Stamler, "...a general 

principle of physiology holds that cells precisely regulate their primary function. For 

RBCs this primary function is the delivery of O2 to tissues" (120). Since O2 delivery is 

determined primarily by blood flow rather than by O2 saturation of hemoglobin (120, 

121), RBCs should be capable of triggering blood vessel dilation to regulate blood flow. 

The current consensus view is that this involves O2" and hemoglobin-linked NO 

production and release from RBCs (21, 122, 123). While mechanisms of NO production 

inside RBCs, such as the nitrite reductase activity of deoxyhemoglobin, have been well 

documented (20, 124, 125), there are conflicting theories as to the mechanism by which 

NO or an NO-derived vasodilator is released into the circulation (11, 123, 126, 127). In 

fact, to the best of our knowledge, the efflux of NO (or any NOx) from RBCs has not 

been demonstrated in vivo or in vitro whereas NO (or EDRF) release from the 

endothelium has been convincingly demonstrated by a number of groups (112, 113, 128-

130). 

In contrast to the lack of evidence for NO release, ATP export from RBCs as a 

response to stimuli including hypoxia, structural deformation, and chemical agonists has 

been widely documented (7, 8). Moreover, the generation of NO in the endothelium is 

stimulated by RBC-derived ATP (9, 43). The vasodilatory power of NO is exploited 

pharmacologically in the treatment of cardiovascular diseases, such as angina pectoris, 

since nitro drugs including nitroglycerin are believed to act via the production of NO in 

vivo (50). The mechanism of nitroglycerin bioactivation has been a matter of much 

debate (54, 58, 61, 63, 70, 73, 131) but the current view is that this anti-anginal and anti-

ischemic prodrug is reduced by thiols to release NO2" (77. 132), which is considered to be 
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an important store of NO vasoactivity in blood and tissues (133) Since nitroglycerin is 

rapidly taken up by RBCs in whole blood (52, 134), we speculated as to its effects on 

ATP release from these cells. In this work, we report our findings following the exposure 

of freshly isolated human RBCs to pharmacological concentrations of nitroglycerin and 

physiological NO2" concentrations. Our results reveal that nitroglycerin-derived NO2" 

promotes ATP release from RBCs thereby contributing to the therapeutic efficacy of the 

drug. Furthermore, since NO is generated by the nitrite reductase activity of 

deoxyhemoglobin (20, 125), 

N02" + 2deoxyHb + 2H+ -> HbFe"NO + metHb + H 2 0 (3.1) 

we propose that enhanced NO production in RBCs leads to changes that stimulates ATP 

export, and that the nucleotide is a mediator of NO vasoactivity. Our findings constitute 

the first report of vasodilator release from RBCs following stimulation by an endogenous 

NO donor (NO2") as well as the seminal observation that nitroglycerin modulates levels 

of an endogenous vasodilator (ATP). The far-reaching implications of ATP involvement 

in the transduction of the NO signal between RBCs and the endothelium are discussed. 
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3.2 Materials and methods 

3.2.1 Materials 

Blood collections were done in 4-mL Vacutainer® heparinized tubes (BD, 

Franklin Lakes, NJ). KC1, MgCb, Fisherbrand 3.0 mL disposable cuvets and ethanol 

were purchased from Fisher Scientific (Pittsburgh, PA). CaCb and MgSC>4 were 

purchased from ACP Chemicals (Montreal, QC). NaCl, 

tris(hydroxymethyl)aminomethane and dextrose were purchased from Bioshop 

(Burlington, ON). Sucrose was purchased from Anachemia (Lachine, QC). Bovine serum 

albumin, ATP, firefly lantern extract, HEPES, EGTA, NaNOj and propylene glycol were 

purchased from Sigma-Aldrich (St. Louis, MO). Distilled water was purified in a Milli-Q 

Simplicity 185, Millipore (Billerica, MA). White 96-well plates were purchased from 

Corning (Corning, NY). Nitrogen gas was purchased from Praxair (Danbury, CT). 

Nitroglycerin as Nitroject® was purchased from Omega Ltd. (Montreal, QC). 

Physiological salt solution (PSS) at pH 7.4 was prepared from (in mM): 4.7 KG, 2 

CaCb, 1.2 MgSO. 140.5 NaCl, 21 tris(hydroxymethyl)aminomethane, 11 dextrose with 

0.5% w/v bovine serum albumin); and sucrose buffer at pH 7.4 from (in mM): 321 

sucrose, 32 HEPES, 3 EGTA, 6 MgCl2). The buffer pHs were adjusted to 7.4 by adding 

aqueous solution of sodium hydroxide (NaOH) or hydrochloric acid (HCI). 
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3.2.2 Preparation of red blood cells 

All procedures involving the collection of human blood samples were in 

accordance with the Concordia University Ethics Guidelines. After their informed written 

consent was obtained, blood was collected from healthy female volunteers (aged between 

20-35 years) by venipuncture into the heparinized tubes. Within 2-4 h of collection, the 

blood was centrifuged at 5000 rpm at 4 °C for 10 min. The plasma was collected by 

aspiration and stored at -80 °C. The buffy coat was also collected by aspiration and 

discarded. Packed RBCs were resuspended and washed three times in PSS. 

3.2.3 Measurement of ATP 

From a stock solution of 2.5 mM ATP in PSS. ATP standards ranging from 10 

nM to 40 |j,M ATP were prepared in PSS. The luciferin-luciferase assay solution used to 

measure ATP by chemiluminescence was prepared by dissolving 13.3 ing of crushed 

firefly extract in 10.0 mL of Milli-Q water. Chemiluminescence proportional to the ATP 

in the sample was measured using a Wallac Victor 1420 multilabel plate reader 

(PerkinElmer, Waltham, MA). Background emission of 100 uL of the luciferin-luciferase 

assay solution in a white 96-welI plate was recorded, and immediately after 100 \iL of 

each ATP standard was added and the chemiluminescence intensity was measured. 

Following background correction, double log plots of intensity I vs [ATP] yielded a 

linear standard curve over 10 nM- 40 \iM. To measure sample ATP levels. 100 uL of 
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RBCs at different Hct values were added to 100 u.L of the blanked luciferin-luciferase 

assay solution, the light intensity was recorded, and ATP concentrations were determined 

using the ATP standard curve. To prepare anoxic RBCs, a 1.5-mL solution of cells at 1% 

Hct was sealed in a 5-mL vial with a crimpable aluminum seal. Nitrogen gas was bubbled 

over the surface of the solution at 5 psi for 15 min, and the ATP concentration of a 100 

u.L aliquot of the hypoxic RBCs was measured as described above. 

3.2.4 Exposure of RBCs to nitroglycerin 

From a commercial stock solution of 5 mg/mL (22 mM) nitroglycerin, 100 |LLL 

dilutions (0.05 - 2.0 mM) were prepared in 5% w/v aqueous dextrose (278 mM D-

glucose). Packed RBCs (20 u\L) were mixed with 20 [J.L of each nitroglycerin dilution 

and 260 flL of sucrose buffer. RBCs at 7% Hct where incubated at 37 °C for 1 h in a 

water bath without shaking, centrifuged at 5000 rpm at room temperature for 45 s, the 

supernatants were removed, RBCs at 1% Hct were suspended in PSS, 100 |iL were 

mixed with 100 |xL of luciferin-luciferase assay solution and concentrations of 

extracellular ATP were measured as described in Section 3.2.3. A control sample 

prepared with 20 [J.L drug vehicle only (30% v/v ethanol, 30% v/v propylene glycol and 

40% v/v water) was treated and analyzed in the same manner. 

To probe the effects of preincubation time on ATP release, packed RBCs were 

diluted to 2% Hct in sucrose buffer containing 10 |iM nitroglycerin at 37 °C. Aliquots of 

1 mL were removed from the mixture over 0-60 min, immediately centrifuged at 5,000 
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rpm at room temperature for 45 s, the supernatants were removed, solutions at 1% Hct 

were prepared in PSS, and concentrations of extracellular ATP were measured as 

described above. 

3.2.5 Exposure of RBCs to nitrite 

NaN02 stock solutions (0.5, 2.5, 5.0, 10.0, 25.0 and 50.0 pJVl) were prepared in 

5% w/v aqueous dextrose (278 raM D-glucose). Packed RBCs (20 uL) were mixed with 

260 (iL of sucrose buffer and with 20 |lL of each stock NaNC>2 solutions, leading to the 

following nitrite concentrations (nM) during the incubation: 33, 167, 333, 667, 1667, 

3333. The samples were treated and analyzed as described in Section 3.2.3. The effects of 

incubation time on extracellular ATP were also examined by incubating 200 jiL of 

packed RBCs with 200 uX of NaN02 (final concentration of 2% Hct and 100 nM 

NaNCh) in 9.6 mL of sucrose buffer at 37 °C. Aliquots of 1 mL were removed over 0-60 

min, centrifuged, and analyzed for ATP release as described in Section 3.2.3. 

3.2.6 Statistical methods 

Statistical significance between experimental runs was determined with Student's 

Mest. P values < 0.05 were considered statistically significant. Results are reported as ± 

SEM. 
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3.3 Results 

3.3.1 Hypoxia-induced release of ATP 

To validate our method, the well-documented increases in ATP release from 

RBCs in response to hypoxia (37, 135) was first examined. Prior exposure of RBCs to N2 

for 15 min increased the extracellular ATP concentration by 1.6-fold compared to RBCs 

maintained in vials exposed to air (Figure 3.1). This increase in ATP under anoxic 

conditions is less than that observed by Faris and coworkers (37), but they measured 

prompt changes in ATP within 15 min of exposure to N2. Figure 3.2A shows the 

variation in ATP release from RBCs from six healthy, age-matched, volunteers. An 

average ATP increase of 13±4 nM was observed, where the error reflects both biological 

and assay variability. Interestingly, volunteers #3-5, whose RBCs released higher 

concentrations of ATP, were also actively involved in exercise training. Measurements 

on the blood from volunteer #1 at 4 h and 26 h after collection revealed that the amount 

of ATP exported decreases as cells age, which may reflect a decrease in total RBC ATP 

with time following blood collection (136). 

The average extracellular ATP reported in the present work (26±4 nM) can be 

compared with the data reported by Meyer et al. (105), who measured extracellular ATP 

from cells at 7% Hct. When normalized to 1% Hct, the equivalent of 37±8 nM 

extracellular ATP was reported (n=7), which is comparable to our average value (n = 6). 

This agreement is noteworthy given that our experimental approaches are different: 
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Meyer et al. (105) used a flow-through set up containing 7% Hct whereas our 

measurements were made following mixing 100 U.L of cells at 1% Hct with 100 pL of 

luciferin-luciferase assay solution in a static plate-reader as outlined in Section 3.2.2. 

Furthermore, the breakdown of released ATP by ATPases renders the assay time 

sensitive (Section 2.4.4). We, like previous workers in the field (37, 103), used heparin-

containing tubes. Although less ATP breakdown should occur in EDTA tubes due to Ca2+ 

chelation, which inactivates ATPases (104), no difference was noted here using the 

experimental procedure outlined in Figure 2.11. 
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Figure 3.1 Hyposia-induced ATP release from fresh human RBCs. Cells from the venous blood of four 

healthy volunteers were treated as described in Section 3.2.2. The extracellular ATP from the RBCs at 1% 

Hct in PSS from cells stored in a vial at 22 °C under air (control, filled bar) and under nitrogen for 15 min 

(N2, open bar). The ATP concentration was determined in triplicate by a luciferin-luciferase 

chemiluminescence assay at 2 h after blood collection. The error bars represent the standard error of the 

mean (±SEM), which reflects the variation in ATP release from the RBCs of the four volunteers as well the 

assay variability. 
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Figure 3.2 Hypoxia-induced increase in extracellular ATP. (A) ATP in PSS containing fresh human 

RBCs from the venous blood of six volunteers was measured as described in the legend of Figure 3.1 at 4 h 

(filled bar) or 26 h (open bar) following blood collection. (B) Comparison of average values for ATP 

release from (A) and those reported from cells in PSS at room temperature by Meyer et al. (105). 

3.3.2 Effects of preincubation with nitroglycerin at various concentrations on 

extracellular ATP 

Fresh RBCs from venous blood were first incubated with varying concentrations 

of nitroglycerin. As Figure 3.3A shows. 60-min preincubation of cells with nitroglycerin 

inhibits ATP release in a dose-dependent manner. The extracellular ATP concentration is 

reduced by 35% and 42% in the presence of 33 M.M and 133 uM nitroglycerin, 

respectively. Since nitroglycerin is metabolized to nitrite, RBCs were exposed to 3.3-133 

uM NaNC»2 but a foul odor was detected and immediate and dramatic darkening of the 

cells was observed. The latter is likely due to extensive formation of methemoglobin, 

which is dark brown in color (137), via two pathways: Reaction 3.1 and the scavenging 

of the NO produced by oxyhemoglobin to generate nitrate (NO3) as well as 

methemoglobin. Clearly, the slow release of NO2" is critical in the therapeutic efficacy of 
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the drug. Considering that physiological NO2" levels are in the nanomolar to low 

micromolar range (138), we next investigated the effects preincubation with of 33-3333 

nM NaNC>2 on ATP release from RBCs. As Figure 3.3B reveals, this lower level of NO2" 

results in extracellular ATP levels similar to those seen at the higher nitroglycerin 

concentrations; for example, 60 min after exposure to 167 nM and 667 nM NO2", the 

extracellular ATP concentration dropped by 18% and 36%, respectively. We attribute the 

comparable efficacy of nanomolar NO2" and micromolar nitroglycerin as inhibitors of 

ATP release to the relatively slow metabolism of the prodrug. Assuming that NO2" (or 

NO derived from NO2) is the effective inhibitor of ATP release, then only -0.5% of 

nitroglycerin is metabolized to NO2" within the RBC over 60 min since a 80-fold lower 

NO2" concentration produces a similar effect as nitroglycerin (e.g., 133 (iM nitroglycerin 

vs. 1667 nM NO2" attenuates ATP levels by -50% whereas 6.7 |lM nitroglycerin vs. 167 

nM NO2" cause -20% attenuation, Figure 3.3). The effects of both nitroglycerin and NO2" 

also appear to be saturateable (Figure 3.3), which combined with their similar attention of 

ATP release, suggest that NO2" (or NO) may actually contribute to "nitrate tolerance" as 

discussed below. Extracellular ATP was measured here immediately following transfer of 

cells from the preincubates with NO2" or nitroglycerin (Sections 3.2.3 and 3.2.4). 

However, ATP is not expected to accumulate with time in the RBC suspension, due to 

the action of RBC ATPases (104, 106). 
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Figure 3.3 Variation in extracellular ATP following 60 min preincubation of intact human RBCs at 

7% Hct with nitroglycerin and N02". Effects of (A) nitroglycerin and (B) N02" concentrations on the 

extracellular ATP levels displayed as normalized averages for cells from five (A) and three (b) volunteers 

where the control values (no stimulant) were normalized to 1.0 for each volunteer. The error bars denote 

the standard error of the mean (± s.e.m.) and represent assay variability. Approximately 2 h after blood 

collection, control, vehicle, and sample cells were diluted to 7% Hct in sucrose buffer only (control), in 

sucrose buffer with 7% v/v drug vehicle (30% v/v ethanol, 30% v/v propylene glycol and 40% v/v water), 

and in sucrose buffer with stimulant, respectively, and preincubated at 37 °C for 60 min. Following RBCs 

resuspension at 1% Hct in PSS, and addition of an equal volume of assay solution, the extracellular ATP 

concentrations were determined by a luciferin-luciferase chemiluminescence assay (see Section 3.2.2). *: P 

values, determined using Student's /-test, are given for P < 0.05 

33.3 Extracellular ATP vs nitroglycerin and nitrite preincubation time 

Since both nitroglycerin (54, 139) and nitrite (122, 134) are known to induce 

vasodilation within minutes, we next examined release at different times after cells were 

preincubated with a pharmacologically relevant concentration of the drug. As Figure 

3.4A shows, a 150% increase in ATP concentration is observed after 30 s preincubation 

with 10 ]\M nitroglycerin. The ATP level stabilized to the control value within 15 min 

preincubation, and remained at 34% of the control value after 30 and 60 min 

55 

A
T

P
 

(0 

lu
 

I 
I 

*J
or

m
a 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

A 

1 
* 

- i l l ' 

-
. -

! \ . 
! i i • 

• i 

! 1 
• i 

i ; 

• ! * * - * 

: : 

i t • 

"i ': h 
: : i 

s; 
; ; | 

! 1 
! 
i 

«SP" ^e. 3.3 6.7 33 67 100 133 

O. 
h-< 

O 

z 

1.2-

1.0-

0.8-

0.6-

0.4-

0.2-

1 

i : ; * 
! i •; 
1 ; 

i 
l 

i 

• 

1 

i • 

[nitroglycerin] (jiM) 

Control 33 167 33-

|N02 



preincubation. On exposure to 100 nM NaNC>2 (Figure 3.4B) an immediate 100% 

increase in extracellular ATP concentration was followed by a profile similar to that 

observed for nitroglycerin (Figure 3.4B). The 30-s or so slower nitroglycerin-induced 

spike in ATP efflux from RBCs is attributed to the time required for bioactivation of the 

prodrug by these cells to yield NO2". Bioactivation is obviously not necessary in the case 

ofNaN02. 

^ 6® 0 0.5 1 2 5 15 30 45 60 Control 0 0.5 1 2 5 15 30 45 60 

^ Preincubation time (min) Preincubation time fmin) 

Figure 3.4 Variation in extracellular ATP following 0-60 min preincubation of intact human RBCs at 

2 % Hct with nitroglycerin and N02". Preincubation at 37 °C in sucrose buffer containing (A) 10 (rM 

nitroglycerin and (B) 100 nM NaN02. Results are displayed as averages (means ± s.e.m.) for cells from 

five volunteers where the control values (no stimulant) were normalized to 1.0 for each volunteer. See 

legend of Figure 3.2 for experimental details. *: P values, determined using Student's /-test, are given for P 

<0.05. 

We also investigated whether a spike in ATP release would be observed each time 

a bolus of nitroglycerin or NaNC>2 was added to the cells. Preincubation a second time 

with 10 u.M nitroglycerin of cell previously preincubated for 60 min with nitroglycerin 

resulted in negligible change in the ATP concentration (data not shown). Likewise, 

preincubation with 100 nM NaNC>2 did not alter the ATP level. The same results were 

observed for the cells in Figure 3.4B. which were first preincubated with 100 nM NaNCb 
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rinsed in PSS and then preincubated with NaNC>2 or nitroglycerin after 60 min. Since the 

extracellular ATP levels did not change, the cells appear to have lost their responsiveness 

to the NO donors, which may contribute to the nitrate tolerance observed in patients on 

nitrates as discussed further below. 

3.4 Discussion 

As transducers of tissue ischemia, RBCs play a pivotal role in triggering increased 

blood flow in the microcirculation (6, 119, 120). In this work, we report that 

preincubation of freshly isolated human RBCs with pharmacological concentrations of 

nitroglycerin results in an initial spike in ATP efflux. Within 15 min of preincubation, the 

amount of extracellular ATP detected from nitroglycerin-exposed cells was the same as 

that from control cells but dropped to 34% below the control after 30 min (Figure 3.4A). 

The effects of physiological concentrations of NO2" mirror those of nitroglycerin but the 

ATP spike was within the mixing time (Figure 3.4B). Since NO2" is a metabolite of 

nitroglycerin (3, 58, 73), the combined results in Figure 3.4 indicate that nitroglycerin-

derived NO2" stimulates ATP release from human RBCs. We propose that this key 

finding is a contributory factor in the therapeutic effects of nitroglycerin. The prodrug is 

metabolized by RBCs to provide a controlled release of NO2" which stimulates ATP 

export. This constitutes the first report of vasodilator release following RBC stimulation 

by an endogenous (NO2) or a pharmacological NO donor (nitroglycerin). Since NO2" is 

reduced to NO in RBCs (Reaction 3.1) (122), we further propose that RBC-derived ATP 

is a regulator of NO-mediated vasoactivity in the circulation. 
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Figure 3.5 Proposed chemical physiology of blood flow regulation by ATP and NO/N02" pathways 

RBC (cell-A) stimulated by nitroglycerin or its vasoactive metabolite, N02", causes a rapid increase in ATP 

efflux. Since N02~ is converted to NO within RBCs, the latter may be the direct effector of enhanced ATP 

release. In an intact blood vessel, ATP will bind to purinergic receptors on the endothelium and stimulate 

endothelial nitric oxide synthase (eNOS) (140) thereby increasing levels of TMO/EDRF that exert relaxation 

of smooth muscle cells, causing vasodilation. NO also diffuses to the vascular lumen where it is converted 

to N02" by the action of ceruloplasmin (18), and taken up by downstream RBCs (cell-B), which further 

increases their ATP production. Thus, the original RBC-derived N027NO signal is amplified both by the 

action of ATP on the endothelium and by the NO/EDRF released into the lumen, which gives rise to a 

positive feedforward mechanism and propagated vasodilation. The signal is shut-off by attenuating ATP 

release from RBCs after a certain period of exposure to elevated N02", suggesting that N027NO can also 

inhibit ATP release. 

Our seminal findings and their implications in vasodilation are summarized in Figure 

3.5. NO/EDRF released from the endothelium not only diffuses to the vascular smooth 

muscle cells, but is also released into the vascular lumen where it is converted to NO2", 

and plasma NO2" levels are considered an index of eNOS activity (141). RBCs take up 

NO2". which may directly, or following its reduction to NO (Reaction 3.1). give rise to a 

NO, 
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spike in ATP release by an as yet unknown signaling pathway that may involve the 

heterotrimeric G protein, Gj (142). Since RBC-derived ATP is an agonist for NO/EDRF 

production by the endothelium (143), RBC NO2" uptake from the lumen and RBC ATP 

release into the lumen will occur in intact blood vessels. Since RBCs are in transit, 

downstream cells (B in Figure 3.5) will also be exposed to higher NO2" levels, which will 

serve to propagate a vasodilatory signal. 

The model in Figure 3.5 is compatible with the chemical stability of the signaling 

molecules involved. ATP and NO2" are relatively stable species that can survive in the 

vascular lumen whereas NO reacts readily with O2 and O2" (144, 145). Thus, while NO 

may endure direct transfer from the endothelium to the adjacent vascular smooth muscle, 

is it less likely to survive export from RBCs and indirect delivery to smooth muscle cells. 

Our model not only would ensure that the unstable NO/EDRF message reaches the 

smooth muscle, it also provides mechanisms for propagated vasodilation: RBC-derived 

ATP amplifies the vasodilatory signal from the endothelium, and reuptake from the 

lumen by downstream RBCs of the NO/EDRF-derived NO2" (Figure 3.5) would result in 

a positive forward mechanism. 

However, despite its efficiency as an anti-anginal, anti-ischemic prodrug, the 

vasodilatory response to nitroglycerin diminishes with continuous use, giving rise to 

nitrate tolerance (146). Many hypotheses have been developed to explain the mechanism 

by which tolerance is developed, including decreased activation of the NO/cGMP 

signaling pathway, reduced bioconversion of nitrates to NO, and enhanced production of 

superoxide anions that destroy NO (50). Here we have shown that there is attenuation in 

the extracellular ATP released from RBCs preincubated with nitroglycerin orN02_ for 30 
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min or less (Figure 3.5). Also the cells do not respond to a second preincubation with the 

NO donor. Both NO-donors activate an initial rapid spike in ATP efflux followed by a 

drop-off (Figure 3.4) and loss of responsiveness. We hypothesize that ATP release is 

attenuated following exposure of RBCs to relatively high levels of nitroglycerin or NO2" 

via a negative feedback mechanism, which would be essential to prevent over dilation of 

blood vessels. This mechanism is also likely to contribute to nitrate tolerance. 

Since NO2" is converted within RBCs to NO via Reaction 3.1. the data in Figure 3.4 

are also consistent with the report that decreased ATP was observed in the medium 20 

min after incubation of RBCs with 0.1 rnM spermine NONOate, which spontaneously 

releases NO (147). ATP levels following shorter exposure times to the NO donor were 

not reported (147), but we speculate that NO may be the causative agent in ATP release 

and that attenuation of ATP efflux may be due to "NO tolerance". Alternatively, NO is 

oxidized to NO2*, and overstimulation with NO2" leads to "NO-tolerance". Regardless of 

the NOx involved, the proposed NOx-induced vasodilation mechanism shown in Figure 

3.5 would eventually lead to hypotension. Thus, it is clearly essential for survival that a 

negative feedback mechanism exist. We suggest that NOx contributes to this negative 

feedback on stimulation with high NOx levels, and that NOx tolerance may be a more 

appropriate description for nitrate tolerance. 
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4o Effects of nitroglycerin on gIyceraldehyde-3-

dehydrogenase activity 

4.1 Introduction 

The role of GAPDH in the bioactivation of nitroglycerin has been introduced 

previously in Section 1.2.2.6. GAPDH is a tetramer of molecular weight 144,000 Da that 

plays a key role in glycolysis by catalyzing the NAD-mediated oxidative phosphorylation 

of glyceraldehydes-3-phsphate to D-l,3-byphosphoglycerate (Figure 4.1) (148). The 

enzyme consists of four identical noncovalently bonded polypeptide chains (36,000 Da) 

each accommodating one molecule of NAD+ as coenzyme (149). The enzyme is used for 

the determination of D-glyceraldehyde-3-phosphate, NAD+, inorganic phosphate (Pi), 

ATP, 1,3-byphosphoglycerate and phosphoglycerate kinase activity (150). 

OH OH 

^ R ^ \ ^ \ ^ — ^ - ^ •»• ^ R ^ ^ ^ ^ - ^ FT 

HO \ ) H NAD+ + Pi NADH + H* HO^ \>H H<J WOH 

glyceraldehyde-3-phosphate 1,3-biphosphoglycerate 

Figure 4.1 GlyceraIdehyde-3-phosphate conversion to 1,3-biphosphoglycerate. GAPDH's catalytic role 

in this reaction is NAD+ dependent. The absorbance change at 340 nm on NAD+ reduction to NADH was 

used in this project for the spectrophotometric determination of GAPDH activity. 

61 



In vitro studies in our lab have shown that nitroglycerin, like glyceraldehyde-3-

phosphate (G3P), acts as a substrate for the GAPDH (M. Antonic et al., unpublished 

results). GAPDH catalyzes the reduction of nitroglycerin to 1.2- and 1,3-glycerol 

dinitrate (GDN) and nitrite (Reaction 4.1). The nitrite produced could be then further 

reduced in RBCs by deoxyHb to NO (Reaction 3.1). This mechanism represents a 

possible pathway for nitroglycerin bioactivation in the blood stream, resulting in the 

desired vasodilatory response induced by nitric oxide. 

GAPDH 
Nitroglycerin • 1,2-GDN + 1,3-GDN + NOz" (4.1) 

Our previous research also demonstrated that nitroglycerin inhibits GAPDH 

glycolytic activity. This inhibition would not only affect the bioconversion of 

nitroglycerin to NO but, since GAPDH plays an important catalytic role in glycolysis, the 

production of ATP in the RBC would be attenuated. The importance of ATP in 

vasodilation was discussed in Chapter 3. 

Preliminary research in our laboratory with rat RBCs and purified GAPDH from 

rabbit muscle (R. Kennedy, unpublished data) set the basic parameters for the assessment 

of GAPDH activity in lysed human RBCs. As shown in Figure 4.2, the glycolytic activity 

of GAPDH from lysed rat RBCs follows a similar profile to purified GAPDH from rabbit 

muscle and can be measured using the same experimental protocol. 
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Figure 4.2 Glycolytic activities of purified GAPDH (from rabbit muscle) and GAPDH from RBC 

lysate. Glycolytic activity of 1 uM GAPDH purified from rabbit muscle and 233 uL of rat RBCs lysate was 

measured. Assay with purified GAPDH was performed in sodium pyrophosphate buffer adjusted to pH 8.5 

at 22 °C. Assay for GAPDH in cell lysate was performed in sucrose buffer adjusted to pH 7.4 at room 

temperature. In both cases 0.4 M potassium arsenate was used as substrate. Reduction of NAD+ to NADH 

was monitored at 340 nm for 4 min using a Beckman DU-650 spectrometer. Absorbance values are 

adjusted so that A0 = 0 at t = 0 s. Adapted from R. Kennedy, unpublished data. 

The concentration-dependent effect of nitroglycerin on GAPDH's glycolytic activity 

was also assessed in previous work. Experimental observations showed that the activity 

of GAPDH from lysed rat RBCs diminished with increasing concentration of 

nitroglycerin (Figure 4.3), indicating inactivation of the enzyme in the lysate. 

63 



240 

— Control 

- - 3.3 uM 

— 6.7 uM 

— 13.3uM 

Figure 4.3 Effect of nitroglycerin on the glycolytic activity of GAPDH from rat RBC lysate. Lysed rat 

RBCs were incubated for 1 h at 37 °C with the nitroglycerin concentrations indicated in the presence of 

0.0) M glyceraldehyde-3-phosphate, 0.01 M NAD+ and 0.4 M potassium arsenate in sucrose buffer at pH 

7.4. Reduction of NAD+ to NADH was monitored at 340 nm for 4 min using a Beckman DU-650 

spectrometer. Absorbance values were adjusted so that A0 = 0 at t = 0 s. Adapted from R. Kennedy, 

unpublished data. 
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Figure 4.4 Bar graph of the effect of nitroglycerin on the glycolytic activity of GAPDH from rat 

RBCs. Lysed rat RBCs were incubated for 1 h at 37 °C with the nitroglycerin concentrations indicated in 

the presence of 0.01 M glyceraldehyde-3-phosphate. 0.01 M NAD+ and 0.4 M potassium arsenate in 

sucrose buffer at pH 7.4. Reduction of NAD+ to NADH was monitored at 340 nm for 4 min using a 

Beckman DU-650 spectrometer. Activities are given relative to the control (no nitroglycerin) at t = 0 s. 

Adapted from R. Kennedy, unpublished data. 
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In this chapter the focus is on describing the effects of nitroglycerin on GAPDH 

glycolytic activity in human RBCs. In order to fulfill these goals, a method based on the 

role of GAPDH in arsenate reduction (151) was adapted to measure GAPDH activity in 

intact and lysed RBCs (Figure 4.5). These spectrophotometric assays may help determine 

the role of erythrocytic GAPDH in nitrate tolerance. 

0 = ! 

As5 

OH 

•— O—P03~2 pj 

glyceryl-3-phosphate 

0 = j — O — A s 0 3 " 2 

-OH 

-O—PO s"2 

1-arseno-3-phosphoglycerate 

O — j — P 0 3 " 2 1,3-byphosphoglycerate 

- O H 

-O—PO s"2 ADP 

ATP 

O : -O" 

-OH 
1 —O—P0 3 "2 

3-phosphoglycerate 

Figure 4.5 Arsenate vs phosphate in the conversion of gIyceryI-3-phosphate by GAPDH. For this work 

potassium arsenate is used instead of inorganic phosphate (Pi) as a GAPDH substrate to inhibit the reverse 

reaction. As5+ has the same oxidation state and shares many chemical properties with inorganic phosphate 

(P- ) and can substitute for Pi in ATP production. When using arsenate as a substrate, GAPDH produces 1-

arseno-3-phosphoglycerate rather than 1,3-bisphosphoglycerate. l-arseno-3-phosphoglycerate hydrolyzes 

spontaneously, so that ATP continues to be produced. Adapted from (152). 
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4.2 Materials and methods 

4.2.1 Materials 

Distilled water purified in a Milli-Q Simplicity 185, Millipore (Billerica, MA) 

was used to prepare all aqueous solutions. D,L-glyceraldehyde-3-phosphate, p-

nicotinamide adenine dinucleotide, sodium pyrophosphate, potassium arsenate, HEPES, 

EGTA and bovine serum albumin were purchased from Sigma-Aldrich (St. Louis, MO). 

CaCl2 and MgS04were purchased from ACP Chemicals (Montreal, QC). MgCl2 and KCl 

were obtained from Fisher Scientific (Pittsburgh, PA). NaCl, 

tris(hydroxyrnethyl)aminomethane and dextrose were purchased from Bioshop 

(Burlington, ON). Sucrose and tris-HCl was purchased from Anachemia (Lachine, QC). 

Nitrogen gas was purchased from Praxair (Danbury, CT). Nitroglycerin as Nitroject® 

was purchased from Omega Ltd. (Montreal, QC) and human blood was collectied in 4-

mL Vacutainer® heparinized tubes (BD, Franklin Lakes, NJ). All spectral measurements 

were carried out using an Agilent 8453 UV-Visible diode-array spectrophotometer 

(Agilent Technologies, Santa Clara, CA). 

4.2.2 RBCs incubation with nitroglycerin 

Packed RBCs were obtained from human blood following the procedure 

described in Section 2.2.2. Next. 20 uL of intact RBCs at 7% Hct were preincubated with 
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an equal volume of nitroglycerin of varying concentration (0 - 6.7 |J.M) in 260 uL of 

sucrose buffer (pH 7.4, prepared as described in Section 2.2.1) at 37 °C in a water bath 

for 1 h. After preincubation, samples were centrifuged at 5,000xg at 4 °C for 45 s, the 

supernatant was removed and discarded, and the packed RBCs were retained for the 

GAPDH activity assay. 

4.2.3 Assay ofRBC GAPDH activity 

The packed RBCs from Section 4.2.2 were resuspended in 33 volumes of ice-cold 

sodium saline, centrifuged, and the supernatant was removed. The cells were osmotically 

lysed at 1% Hct by adding 99 volumes of ice-cold water and sonicating for 5 min. Solids 

that may interfere with spectrophotometric analysis were removed by centrifugation at 

5,000 g at 4 °C for 45 s, the supernatant was conserved and the pellet discarded. In a 1.5-

mL Fisherbrand disposable cuvette, 700 uL of sucrose buffer, 16.7 uL of 0.01 M NAD+, 

16.7 uL of 0.01 M glyceraldehyde-3-phosphate and 16.7 uL of 0.4 M potassium arsenate 

were mixed to give the final concentrations listed in Figure 4.6. This solution was 

incubated at 22 °C for 5 min and then used to blank the spectrophotometer at 340 nm. 

The assay was initiated by adding 233 uL of RBC lysate (control or incubated with 

nitroglycerin) and the absorbance increase due to the reduction of NAD+ to NADH (Ae34o 

= 6,220 IVT'cm"') was recorded every 10 s for 4 min. 
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4.3 Results 

4.3.1 Effect of nitroglycerin on glycolytic activity of GAPDH in human RBC 

Sysates 

GAPDH activity in the Iysed RBC samples was assessed by 

spectrophotometrically monitoring NADH production, which directly relates to the 

activity of the enzyme (Figure 4.1). As seen in Figure 4.1, one mol of NADH is required 

per mol of substrate turned over by GAPDH. 

The inhibitory effect of nitroglycerin on GAPDH from human RBCs was 

demonstrated using cumulative dose-response curves (Figure 4.6). As can be seen from 

Figure 4.6B the initial rates of GAPDH glycolytic activity decreased with increases of 

nitroglycerin concentration. 
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Figure 4.6 Effects of nitroglycerin on glycolytic activity of GAPDH from human RBC lysate. (A) 

Activity of RBC GAPDH over 240 s. (B) Initial rates (0-30 s). Human RBCs at 7% Hct were incubated for . 

1 h at 37 °C with 0.0 (control). 1.7, 3.3 and 6.7 |iM nitroglycerin. RBC lysates were prepared from cells at 

1% Hct in the presence of 0.01 mM gIyceraIdehyde-3-phosphate. 0.01 mM NAD+ and 0.4 mM potassium 

arsenate in sucrose buffer at pH 7.4 at 25 °C. Reduction of NAD+ to NADH was monitored at 340 nm in a 

1-cm cuvette and the initial absorbance (due to the presence of Hb in the lysate) was subtracted from each 

value. 
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Normalization of the control to 100% activity at 240 s revealed GAPDH activity 

decreases of 6.4, 10.0, and 21.1% when a lysate of RBCs at 1% Hct was preincubated 

with 1.7, 3.3, and 6.7 |lM nitroglycerin, respectively (Figure 4.7). These values are 

similar to those found in our lab for rat RBCs lysates (Figure 4.4). 
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Figure 4.7 Bar graph of the nitroglycerin effect on the glycolytic activity of GAPDH from human 

RBCs. Activities are given relative to the control (no nitroglycerin) at t = 0 s. The experimental details are 

given in the legend of Figure 4.6. 

4.4 Discussion 

Activity assays for nitroglycerin-treated human RBC lysates showed that the drug 

exerts a concentration-dependent inhibitory effect on GAPDH. This Confirms the 

previous finding in our group (M. Antonic et ah, unpublished results) that nitroglycerin is 

a "suicide substrate" of GAPDH in vitro. GAPDH acts as a bioactivator of nitroglycerin 

by reducing it to nitrite and glyceryl dinitrites using active-site Cysl49 and Cysl53 as 

electron donors (Section 1.2.2.6). This results in the formation of a disulfide bond 

1.7 3.3 6.7 

[nitroglycerin] (uM) 
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between the two cysteines, inactivating the enzyme. RBC GAPDH inactivation could 

contribute to nitrate tolerance. Chronic exposure to nitroglycerin would decrease the 

amount of active GAPDH in the cells available to activate the drug, thereby blunting the 

effects of the drug. Compounding this effect would be the reduction in RBC ATP 

production and possibly a reduction in extracellular ATP as seen in Figures 3.5 and 3.4. 

Previous research in our lab has demonstrated that the disulfide bond in GAPDH 

can be reconverted to free cysteines by tris(2-carboxyethyl)phosphine (TCEP), a disulfide 

reducing agent (Scheme 4.1), suggesting reversible inactivation of the enzyme in vivo. 

This is also consistent with the evolution of nitrate tolerance. Upon temporary withdrawal 

from nitroglycerin treatment (e.g., 12-hour "drug holiday") the pharmacological effects 

of the drug can be experienced again. Reactivation of GAPDH in vivo would be carried 

out by the action of one or more disulfide reductase systems present in cells. These 

systems would recover the enzymatic activity of GAPDH by reducing the disulfide bond 

formed between the active-site Cysl49 and Cys 153. 
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Scheme 4.1 Proposed mechanism of nitroglycerin bioactivation by GAPDH. GAPDH catalyzes the 

transfer of N02 from nitroglycerin to Cysl49 at its active site. This transfer is accompanied by the 

formation of 1,2- and/or 1,3-glyceryl dinitrates. Neighboring Cysl53 nucleophilically attacks the thionitrate 

group forming an intramolecular disulfide bond and releasing N02". The disulfide bond is reduced to the 

original free thiol functionalities by the reducing agent TCEP (tris(2-carboxyethyl)phosphine) or another 

disulfide-reducing system. This mechanism is based on that proposed for ALDH2 in Scheme 1.1 (59). 
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The study of the vasodilator concentrations in the blood stream could help 

elucidate the localized mechanisms of blood-flow regulation and the synergism between 

these chemical messengers. In this chapter, the development of analytical methodology 

for detection and quantitation of EETs and PGI2 in human plasma is presented. 

Specifically, the stability of EETs as well as the optimization of their analysis by mass 

spectrometry are established and 6KPGF]a was confirmed as a stable biomarker for PGI2. 

5.1.1 Epoxyeicostrienoic acids (EETs) 

EETs are cytochrome P450 metabolites of arachidonic acid that mediate muscle 

vasodilation. The most abundant isoforms are 11,12-EET and 14,15-EET, and they are 

also known to be involved in many metabolic processes including cell proliferation and 

migration (153). Additionally, it has been suggested that 11,12-EET could be the 

endothelial-derived hyperpolarization factor (EDHF) (28). EETs exert strong 

vasodilatory effects in a wide variety of tissues such as brain, intestines (159), kidney 

(160), heart and coronary arteries (154, 161, 162), and blood vessels (155, 156). 

Many methods have been reported for the detection and quantitation of EETs (33, 

163, 164). However, only a few methods have been developed for blood plasma since its 

complexity as a matrix makes the quantitative analysis of EETs challenging. A sequential 

extraction method for vasodilation-related metabolites in interstitial fluid was developed 

in our lab (164). Jiang et al. showed that detection and quantitation of EETs in plasma 
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can be performed by ESI-MS/MS (155) and an adaptation of this method is presented 

here. 

5.1.2 Prostacyclin (PGI2 

PGI2 is a member of the prostaglandin family. Physiologically classified as 

hormones, these fatty acid derivates play important roles in vasodilation, coagulation and 

inflammatory processes (34). Prostaglandins are produced from arachidonic acid by 

cycloxygenase (COX) enzymatic conversion (Figure 5.2). 

Phospholipase A2 

Membrane > 

hosphol ip ids 
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1 Prostaglandin G2 

Figure 5.2 Metabolic pathways of prostaglandins production. Membrane phospholipids are converted 

to arachidonic acid (AA) by phospholipase A2. AA is a substrate of both isoforms COX and it is converted 

to Prostaglandin G :. Dehydroxilation of prostaglandin G : generates prostaglandin H2, the precursor of all 

functional prostaglandins (PG12. PGD:. PGE; and PGF:). Adapted from (165). 
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Numerous methodologies have been proposed for the analysis of these substances 

in complex matrixes. Gelpi et al. highlighted the applications of liquid chromatography 

with radioimmunoassay (HPLC-RIA) for analysis of eicosanoids (166). This 

methodology involves the inoculation of viable vectors with radio labeled antigens, with 

the limitations of animal breeding and handling and the special conditions in which 

radioactive substances have to be manipulated. Daret et al. propose the analysis of 

analyzed monohydroxylated fatty acids and eicosanoids by gas chromatography with a 

mass spectrometry detector (GC-MS). This methodology involves the derivatization of 

the fatty acid-like molecules to volatile methyl esters to be suitable for GC analysis (167). 

Dickinson et al. present a very fast and efficient method for the overall study of many 

arachidonic acid derivates (168). This method was adapted to our research for the 

detection and quantitation of PGI2 which posses a short half-life both in vivo and in vitro, 

ranging from 30 seconds to a few minutes (169). It is stable in basic buffers (pH > 8) but 

is rapidly hydrolyzed through a non-enzymatic mechanism to 6-keto prostaglandin Fia 

(6KPGFia) in neutral or acidic solutions (Figure 5.3). This inactive and stable end 

product can be used as a biomarker of PGI2 (170). 

HO OH 
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6-keto prostaglandin F1a (6KPGF1a) 

Figure 5.3 Hydrolysis of prostaglandin I2 to 6-keto prostaglandin F ) a . Adapted from (169). 
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5.2 Materials and methods 

5.2.1 Materials 

ll,12-epoxy-(5Z,8Z,14Z)-eicosatrienoic acid (11,12-EET), 14(^),15(5)-epoxy-

(5Z,8Z,112)-eicosatrienoic acid (14,15-EET), triphenylphosphine (TPP), magnesium 

chloride and bovine serum albumin (BSA) were purchased from Sigma-Aldrich (St. 

Louis, MO). 6-keto prostaglandin Fia (6KPGF]a) and deuterated 6-keto prostaglandin F] a 

(D4-6KPGFia) were purchased from Cayman Chemical (Ann Arbor, MI). Potassium 

chloride, hydrochloric acid and methanol (HPLC grade) were purchased from Fischer 

Scientific (Pittsburgh, PA). Sodium chloride and D-glucose were obtained from BioShop 

(Burlington, ON), sodium bicarbonate from Anachemia (Lachine, QC), calcium chloride 

dihydrate ACP Chemicals (Montreal, QC), chloroform (HPLC grade) from JT Baker 

(Phillipsburg, NJ). and acetonitrile (HPLC grade) from EMD Chemicals (Gibbstown, 

NJ). Distilled water was purified in a Milli-Q Simplicity 185 and Ultrafree®-0.5 

centrifugal filter Units, 10-kDa cut-off ultrafiltration membranes were purchased from 

Millipore (Billerica, MA). Bondpack C]g, 100 mg C\g cartridges were obtained from 

Agilent Technologies (Santa Clara, CA). Nitrogen gas was purchased from Praxair 

(Danbury, CT). 
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5.2.2 Preparation of EET standards 

Solutions of 0.5 uM EETs were prepared in four different solvents (100% ACN, 

ACN/H20 (1:1), 100% MeOH and 100% H20) under indirect light and with minimum 

exposure to air. These stock solutions were maintained at -20 °C at all times during 

manipulation and stored at -80 °C immediately after use. Transfers were performed in 

glass gas-tight syringes previously cleaned with ACN and HPLC-grade methanol, and air 

dried. Dilutions containing 0.25, 0.12. and 0.06 U.M EET were prepared in each solvent 

and aliquoted into 3 batches. The first batch was analyzed on the day of sample 

preparation. The second and third batches were stored in the dark at -80 °C, and analyzed 

24 h and 6 days later. 

5.2.3 Preparation of plasma simulator 

Tyrode's buffer solution (pH 7.4) was prepared as described in (171). Briefly, an 

aqueous solution containing 0.13 M NaCl, 5.5 mM glucose, 11 mM NaHCOs, 2.6 mM 

KC1, 0.5 mM NaH2P04, 2.2 mM MgCl2, and 1.8 mM CaCl2 -2H20, and the pH was 

adjusted to 7.4 with 1 N HC1. A 12% BSA solution was prepared in this buffer and 

spiked with 0.5 \\M 11,12-EET and 0.5 uM 14,15-EET. Where indicated, tridecanoic 

acid (TA) was added at the same concentration as the internal standard. 
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5.2.4 EET extraction 

EETs were extracted from the plasma simulator as described in (164). Briefly. 

Millipore ultrafiltration tubes with a 10-kDa cutoff membrane were prewashed twice with 

400 \xL of water and centrifuged 12,000 rpm for 10 min to remove traces of nitrate. Then, 

400 |iL of the plasma simulator was loaded into the preconditioned ultrafiltration tube 

and centrifuged at 12,000 rpm for 20 min to remove BSA. The ultrafiltrate was collected 

and loaded into a Bondpack CI8 cartridge preconditioned with 2 mL of methanol 

followed by 4 mL of water. EETs were extracted with 1 mL of CHCI3/CH3OH (2:1) 

containing 0.1 mM TPP to quench any free-radical-induced lipid peroxidation (172). The 

sample was evaporated to dryness under a stream of nitrogen at atmospheric pressure, 

and the EETs were reconstituted in 300 U.L of the solvent of choice. 

5.2.5 ESI-MS/MS analysis of EETs 

EET analysis was carried out using a Micromass Quattro LC triple quadrupole 

mass spectrometer equipped with ESI source run by MassLynx software (Water Corp. 

Milford, MA). ESI-MS was carried out in negative-ion mode by direct infusion at a flow 

rate of 10 u.L/min. A capillary voltage of-3.0 kV, a cone voltage of-40 V, a source block 

temperature of 90 °C, a nebulizer gas flow of 30 L/h and a desolvation gas flow of 220 

L/h were maintained during all analysis. For samples in 100% ELO a desolvation 

temperature of 200 °C was used, and for samples in 100% ACN. 100% MeOH and 
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ACN/H20 (1:1), the desolvation temperature was set at 150 °C. Mass spectra in MS 

mode were scanned over the m/z range of 100-500 at a rate of 2 s/scan. In the MS/MS 

experiments, the deprotonated molecular ions [M-H]" of the EETs (m/z 319) were 

selected and fragmented by C1D using N2 gas and a collision energy range between 30 

and 50%. 

5.2.6 ESI-MS/MS analysis of 6KPGF l tx 

6KPGF]a analysis was carried out as described in (168). Briefly, ES1-MS was 

performed in negative-ion mode by direct infusion at 10 p:L/min into the Quattro LC 

triple quadrupole mass spectrometer. A capillary voltage of-3.0 kV, a cone voltage of -

60 V, a source block temperature of 90 °C, a nebulizer gas flow of 33 L/h, a desolvation 

gas flow of 253 L/h and a desolvation temperature of 150 °C were maintained during all 

analysis. In MS mode, spectra were scanned over the m/z range 50-400 at a rate of 2 

s/scan. In MS/MS mode, the deprotonated molecular ion [M-H]" of 6KPGFia (m/z 369) 

was selected and fragmented by CID using N2 gas with a collision energy range between 

40 and 60%. Samples were prepared in 10 mM triethylamine:methanol (1:1). A 

calibration curve was prepared using 6KPGFia standard solutions ranging from 11 nM to 

475 nM. 
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5.3 Results 

5.3.1 ESI-MS and ESI-MS/MS analysis of EETs 

EETs were studied by ESI-MS in negative-ion mode by direct infusion into the 

mass spectrometer. Both 11,12- and 14,15-EET exhibit the same [M-HT at m/z 319 

(Figure 5.4), but the fragmentation pattern observed by MS/MS was characteristic of each 

species (Figure 5.4, inserts). A set of common peaks were observed for both molecules at 

m/z 301, 275 and 257 corresponding to loss of H2O, CO2 and both H2O and CO2 from the 

[M-H]" ion (Figure 5.4) at the optimum collision energy of 40%. In addition, 11,12-EET 

exhibited fragment ions at m/z 167, 179 and 195. The last two peaks arise from 

fragmentation via opening of the epoxy ring on each side of the oxygen atom. 14,15-EET 

produced fragments at m/z 113, 205 and 219, with only one fragment related to the 

opening of the epoxy ring (m/z 219). In an equimolar mixture, the presence of both 

isomers can be clearly identified by their characteristic fragments (Figure 5.5). 
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Figure 5.4 Negative-ion ESI tandem mass spectra of EETs. (A) 0.25 uM 11,12-EET, (B) 0.25 \iM 

14,15-EET. Direct injection at 10 |iL/min in ACN. Instrument settings: source block temperature, 90 °C; 

capillary voltage, -3.0 kV; cone voltage, -40 V, collision gas, N2, collision energy, 40%. Inserts: 

fragmentation patterns for 11,12-EET and 14,15-EET. 
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Figure 5.5 Negative-ion ESI tandem mass spectrum of an equimolar EET mixture. Direct injection at 

10 uL/min on CAN of a solution of 0.25 |iM 11,12-EET and 0.25 ^M 14,15-EET was performed. [M-H]" 

observed at m/z 319 for both isomers and [M-H :0-H]\ [M-CO:-H]' and [M-H20- CO,-H]" at m/z 301, 275 

and 257, respectively. Peaks labelled O correspond to 14,15-EET fragments, and • correspond to 11,12-

EET fragments. Instrument settings: source block temperature, 90 °C; capillary voltage, -3.0 kV; cone 

voltase. -40 V, collision eas, N ;; collision enerav. 40%. 



5.3.2 Stability of EETs in different solvents 

The effects of solvent and storage on EET stability were assessed. For EET 

standards prepared in 100% ACN and stored overnight at -80 °C (Figure 5.6), a large 

decrease in the intensity of the [M-H]" ion at m/z 319 was observed. New signals not 

evident in the literature reports (155, 156) appeared at m/z 311, 325, 339, and 343. 

Figure 5.6 Negative-ion ESI mass spectra of EETs in 100% ACN after overnight storage at -80 °C. 

(A) 11,12-EET and (B) 14,15-EET standards. Direct injection of 0.25 uM EET at 10 uL/min. Instrument 

settings: source block temperature, 90 °C; capillary voltage, -3.0 kV; cone voltage, -40 V; scan range, 300-

350 m/z. 
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EET standards prepared in ACN:H20 (1:1) and stored overnight at -80 °C 

exhibited a strong [M-H]" peak (Figure 5.7). Weak signals were detected at m/z 311,312, 

316. 320. and 326 with intensities close to the noise. 
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Figure 5.7 Negative-ion ESI mass spectra of EETs in ACN:H20 (1:1) after overnight storage at -80 

°C. (A) 11,12-EET and (B) 14,15-EET standards. Direct injection of 0.25 uM EET at 10 uL/min. 

Instrument settings: source block temperature, 90 °C; capillary voltage, -3.0 kV; cone voltage, -40 V; scan 

range, 300-350 m/z. 

EET standards prepared in 100% H20 and stored overnight at -80 °C (Figure 5.8) 

showed a base peak at m/z 328, with other possible peaks close to the noise level. 
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Figure 5.8 Negative-ion ESI mass spectra of EETs in 100% H20 after overnight storage at -80 °C. 

(A) 11,12-EET and (B) 14,15-EET standards. Direct injection of 0.25 uM EET at 10 uL/min. Instrument 

settings: source block temperature, 90 °C; capillary voltage, -3.0 kV; cone voltage, -40 V; scan range, 300-

350 m/z. 

Freshly prepared EETs in 100% MeOH (Figure 5.9) showed a strong [M-H]" ion 

at m/z 319. The peaks observed in ACN, ACN/H20, and H20 (Figures 5.6, 5.7, and 5.8, 

respectively) with m/z values greater than the [M-H]" ion are not observed in this case. 

Fragment ions corresponding to those seen in ACN:H20 (1:1) (Figure 5.4) are also seen 

in 100% MeOH (Figure 5.10). The best signal-to-noise ratio for the [M-H]" ion m/z 319 

was obtained for EETs freshly prepared in 100% MeOH. 
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Figure 5.9 Negative-ion ESI mass spectra of EETs freshly prepared in 100% MeOH. (A) 11,12-EET 

and (B) 14,15-EET standards. Direct injection of 0.25 \iM EET at 10 uL/min. Instrument settings: source 

block temperature, 90 °C; capillary voltage, -3.0 kV; cone voltage, -40 V Note that the scan range for this 

spectra was m/z 100-320. 

Variation in storage time in the solvent systems studied (ACN, ACN/H2O, H20, 

MeOH) resulted in variation in the intensity of [M-H]\ the signal-to-noise ratio, and the 

fragmentation patterns. The results are summarized in Table 5.1. 
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Table 5.1 Effects of solvents and storage conditions on ions observed in the negative-ion ESI mass 

spectra of EETs 

Storage time 

Solvents 

Parameter 
ACN 

ACN/H2Q 

(1:1) . 
H , 0 MeOH 

0 min 

Signal-to-noise ratio 

Base peak (m/z) 

39.3 

319 

675 

319 

2.5 

327 

725 

319 

Other peaks (m/z) 311.325.339.343 311.343 

24 h 

Signal-to-noise ratio 46.0 574 2.1 

Base peak (m/z) 311 319 327 

Other peaks (m/z) 319.325.339.343 311.325 

6 days 

Signal-to-noise ratio 45.: 482 

Base peak (m/z) 325 319 327 

Other peaks (m/z) 311,319,339,343 311,325 

11,12-EET and 14,15-EET (0.25 uM) were directly injected at 10 pL/min into the ESI source. Instrument 

settings: source block temperature, 90 °C; capillary voltage, -3.0 kV; cone voltage, -40 V; scan range, 300-

350 m/z. Data from Figures 5.6, 5.7, 5.8, and 5.9. 

The observation of peaks at higher m/z values than [M-H]~ or ions that do not 

exhibit the fragmentation patterns reported for EETs in the literature suggests the 

formation of adducts or the evolution of EET degradation products. For identification 

purposes. MS/MS analysis (Figure 5.11) was performed on the common ions at m/z 339, 

325. 311 (Table 5.1). These ions seem to be very stable since they were detected in old 

samples (stored at -80 °C for about a year, data not shown). The m/z 339 and 325 ions 

represent mass increases of 2Q u and 6 u. respectively, over the EET [M-H]" ion at m/z 



319, while m/z 311 ion represents a reduction of 8 u. After fragmentation with collision 

energies of 30 to 50%, all of these signals produced a fragment ion at m/z 183 (Figure 

5.10). 
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Figure 5.10 Negative-ion ESI mass spectra ions at m/z 339,325 and 311. (A) m/z 339 ion, (B) m/z 325 

ion, and (C) m/z 311 ion.. Direct injection of 0.25 (J.M EETs in ACN at 10 uL/min. Instrument settings: 

source block temperature, 90 °C; capillary voltage, -3.0 kV; cone voltage, -40 V, collision gas, N2; scan 

range, 100-350 m/z, collision energy 30-50%. 

The strong ion at m/z 327 observed for samples prepared in 100% H2O (Figure 5.8) 

exhibited a relatively strong peak at m/z 311 on MS/MS analysis (Figure 5.11). 

^ ^ k 4 , ^ f e f ^ * ^ . ^ 

Figure 5.11 Negative-ion ESI tandem mass spectrum of ion at m/z 327. Direct injection of 0.25 (iM 

11,12-EET and 14,15-EET in H20 at 10 pL/min. Instrument settings: source block temperature, 90 °C; 

capillary voltage, -3.0 kV; cone voltage, -40 V, collision gas, N : ; collision energy, 30-50%. 
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5.33 Dynamic range for EET analysis by ESI-MS 

Good linearity was observed for the ESI-MS calibration curves using the intensity 

of the [M-H]~ ion (m/z 319) in equimolar samples of 11,12-EET and 14,15-EET freshly 

prepared in 100% MeOH and immediately analyzed. A calibration curve was constructed 

using tridecanoic acid (TA), which exhibits a [M-HT ion at m/z 213, at a concentration of 

0.16 |lM as an internal standard. TA peaks (Figure 5.12) do not interfere with the 

fragmentation of the analytes, and TA has similar chemical properties to EETs (163). In 

Figure 5.13 a typical calibration curve for a 0 - 0.5 u,M mixture of 11.12-EET and 14,15-

EET is presented. 
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Figure 5.12 Negative-ion ESI mass spectrum of 0.16 u M tridecanoic acid in 100% M e O H . Direct 

injection at 10 uL/min. Instrument settings: source block temperature, 90 °C; capillary voltage. -3.0 kV; 

cone voltage, -40 V. [M-H]" at m/z 213. Insert: TA structure. Note that the scan range used to record this 

spectra was m/z 100-215. 
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Figure 5.13 EET calibration curve. Relative abundance of [M-H]" peak at m/z 319 vs total [EET]. 

Standards containing 0 - 0.5 uM mixtures of 11,12-EET and 14,15-EET with 0.16 uM TA as internal 

standard in 100% MeOH were directly infused into the ESI source. Experimental details are given in the 

legend of Figure 5.12. Equation, y = 1.8 (± 0.2) x + 0.03( ± 0.03) and correlation coefficient R2 is 0.9984 (± 

0.0042), n = 2. 

5.3.4 Recovery of EETs from artificial plasma 

Artificial plasma (Section 5.2.3) was spiked with of 0.5 |iM 11,12-EET and 0.5 

N,M 14,15-EET. After extraction using the procedure described in Section 5.2.4, no EET 

peaks were detected by ESI-MS. Scans performed between m/z 100-500 yielded spectra 

very similar to the spectrum of the solvent, 100% MeOH (data not shown). Thus, EETs 

cannot be recovered from plasma using the solid-phase extraction procedure outlined in 

Section 5.2.4. It is possible that EETs are retained by interaction with plasma proteins, 

such as BSA, present in the artificial plasma (Section 5.2.3). 
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5.3.5 ESI-MS and ESI-MS/MS analysis of 6KPGF,a 

6KPGFia was studied by ESI-MS in negative-ion mode by direct infusion into the 

mass spectrometer. The [M-H]~ ion at m/z 369 (Figure 5.14) was fragmented to give the 

characteristic fragment ions shown in Figure 5.15. 
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Figure 5.14 Negative-ion ESI mass spectrum of 6KPGFia. Direct injection of 475 nM 6KPGF]a at 10 

|iL/min in 10 mM triethylamine:methanol (1:1). Instrument settings: source block temperature. 90 °C; 

capillary voltage. -3.0 kV; cone voltage, -60 V, scan range, 50-400 m/z. [M-H]" at m/z 369. Insert: 

6KPGF|a structure. 
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Figure 5.15 Negative-ion ESI tandem mass spectrum of 475 nM 6KPGF l a . The experimental details 

are given in Figure 5.14 with the addition of collision gas N2 at a collision energy of 50%. 
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A set of weak peaks are observed at m/z 351, 333, 315, and 307 corresponding to 

the loss of H20, 2H20, 3H20 and H2O+CO2, respectively. Fragments at m/z 245 

(C17H25O), 205 (C4H21O), and 187 (C,4Hi9) have also been reported for PGI2, and result 

from the fragmentation of the carbohydrate backbone containing the 5C-ring (168). 

In a first attempt at quantitation, D4-6KPGF)a which contains D atoms at the 3, 

3', 4, and 4' positions, was used as an internal standard. The structure of D4-6KPGF]a as 

well as its ESI-MS spectrum is presented in Figure 5.16. 
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Figure 5.16 Negative-ion ESI mass spectrum of D4-6KPGF,„. Direct injection of 107 nM D4-

6KPGF,aat 10 uL/min in 10 mM triethylamine:methanol (1:1). Instrument settings: source block 

temperature, 90 °C; capillary voltage, -3.0 kV; cone voltage, -60 V, scan range, 50-400 m/z. [M-H]" at m/z 

373. Insert: 6KPGF,„ structure. 

The 6KPGFia calibration curve (Figure 5.17) exhibited good linearity when the 

relative abundance of the [M-H]" ion of 6KPGF,a at m/z 369 was plotted vs [6KPGF,a]. 

The calibration curve was used to confirm the concentration of a D4-6KPGFia sample, 
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which was found to be 106.39 nM, deviating from the theoretical value (106.8 nM) by 

only 0.4% (spectral data not shown). 
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Figure 5.17 6KPGF,a calibration curve of |M-H]~ peak abundance vs |6KPGF)a]. Plot represents a 

typical standard curve from 11 nM to 475 nM 6KPGF,a, with equation y = 3.5572 x + 449186 and 

correlation coefficient R2 = 0.9999. Standards solutions of 6KPGF)a in 10 mM triethylamine:methanol 

(1:1) were directly infused into the ESI source. Experimental details are given in the legend of Figure 5.15. 

5.4 Discussion 

The detection of 11,12-EET and 14,15-EET by ESI-MS is efficient with an LOD 

of 0.05 JIM. Also, these isomers can be easily identified by ES1-MS/MS since 

characteristic peaks for each EET are clearly distinguishable, as well as typical neutral 

losses of H2O and CO2 (Figures 5.4 and 5.5). EETs are extremely labile, easily air-

oxidized and light sensitive. Minimizing light exposure during sample preparation has to 

be assured. Therefore, working in indirect light as well minimum of contact with air by 
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the use of glass gas-tight syringes are necessary. Temperature is also an issue during 

manipulation; the stock solution must be kept below 10 °C at all times and samples are 

stored at -80 °C immediately after use. Time is also a limiting factor with EETs. Stock 

solutions degrade after a couple of days, and depending on the type of solvent, detection 

of the [M-H]" ion diminishes even during the course of a few hours. From the data in 

Table 5.1, the occurrence of degradation with time is evident. 

Detection of the [M-H]" ion decreases with time and the evolution of new peaks at 

higher m/z values was observed. In order to determine whether these peaks were 

generated from EET degradation or adduct formation, MS/MS analyses were performed. 

The MS/MS spectra (Figures 5.9 and 5.10) exhibit only weak signals in comparison with 

the MS/MS spectra obtained for the EET [M-H]" ion at m/z 319 (Figure 5.5). Also, the 

fragment ions formed from the unknown high mass ions are not equivalent to those 

obtained from freshly prepared EETs or to the fragments reported in the literature for 

EETs analyzed in ACN/water/methanoi/acetic acid or ACN/water/methanol/ammonium 

acetate at a ratio of 60:30:10:0.05 (155, 156). 

In an effort to explain the evolution of these new signals, possible mechanisms of 

EET degradation were considered. Hydrolysis of the epoxy ring (yielding 

dihydroxyeicosatrienoic acid, DHET) and/or hydrogenation of double bonds (yielding 

epoxyeicosanoic acid, EEA) represent possibilities (Figure 5.18). 
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Figure 5.18 Degradation products of 11,12-EET. Hydrogenation of double bonds generates 11,12-

epoxyeicosanoic acid (11,12-EEA). Hydrolysis of the epoxy ring generates 11,12-dihydroxyeicosatrienoic 

acid (11,12-DHET) 

EEAs and DHETs have been reported in RBCs (154). Since the experimental 

conditions used here (Sections 5.2.2, 5.2.4 and 4.2.5) are unlikely to convert EETs to 

EEAs or DHETs, these might have been present as an impurity in the commercial 

samples. 

In summary, [M-H]~ ions dominated the mass spectra of freshly prepared EETs in 

100% MeOH. Also, under these conditions, the abundance of the [M-H]" ion at m/z 319 

vs total EET concentration yielded a straight line with a correlation coefficient of 0.9984 

for mixtures of 11,12-EET and 14,15-EET. Unfortunately, EET recovery from the plasma 

simulator was not succesful. Therefore, application of this procedure to biological 

samples was not attempted. 

Detection and quantitation of 6KPGF]a was successful. Due to time constrains, 

application of this method to PGI2 extracted from plasma could not be performed. 

Nonetheless, this work is a starting point for future analytical measurements in biological 

matrices. The use of 6KPGFiaas a biomarker for prostaglandins and its deuterated 

analog D4-6KPGF|a appears to be promising for quantitation of PG1? by ESI-MS. 
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6.0 General conclusions and suggestions for future work 

6.1 Conclusions 

6.1.1 Chapters 2 and 3 

In Chapters 2 and 3, the effects of different stimuli on ATP release from RBCs 

were determined. Using a chemiluminescent detection method optimized for this study, it 

was confirmed that deaeration increases ATP release from RBCs (37, 135). It was also 

demonstrated that the incubation of RBCs with pharmacological concentrations of 

nitroglycerin results in a similar extracellular profile as nitrite. An initial increase in ATP 

release is followed by an attenuation of this effect within minutes. While the effects of 

nitroglycerin are delayed by ~30 s, the effects of nitrite are observed immediately. This 

difference is attributed to time required for nitroglycerin to release NO2" (50, 54). The 

subsequent attenuation of ATP release observed within 15 min in both cases could be 

considered as evidence of a negative feedback mechanism in the amplification of the 

vasodilatory signal. These seminal findings are summarized in Figure 3.5. Our 

observations constitute the first report of vasodilator release (ATP) following RBC 

stimulation by an endogenous NO donor (NO2") as well as by a pharmacological NO 

donor, nitroglycerin, and further suggest that RBC-derived ATP is a regulator of NO-

mediated vasoactivity in the circulation. 
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6.1.2 Chapter 4 

Activity assays on nitroglycerin-treated human RBCs showed that the drug exerts 

an inhibitory effect on the activity of GAPDH that is also concentration dependent. This 

confirms the previous findings in our group (M. Antonic et ai, unpublished results), 

which showed that nitroglycerin is a "suicide substrate" of GAPDH in vitro. GAPDH acts 

as an enzymatic activator of nitroglycerin to generate nitrite, which at the same time 

causes inactivation of the enzyme. This could partially account for the development of 

nitrate tolerance upon chronic exposure to the drug. 

6.1.3 Chapter 5 

Assessment of EET stability in various solvents was performed to establish the 

optimal conditions for LC-MS analysis. Freshly prepared samples in 100% MeOH 

proved to be the most stable. LC-MS/MS methods were optimized for the analysis and 

quantitation of EETs and PGl2-related metabolites with good sensitivity and selectivity. 

The method developed has the potential to be applied in the detection and quantitation of 

these vasodilators in human plasma. 
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6.2 Suggestions for future work 

I. The HPLC/UV methodology presented in Chapter 2 for the detection of 

extracellular ribonucleotides could be used to study the role of nucleases in the 

regulation of amplification of ATP-derived vasodilation signals, as well as for 

analyzing extracellular AMP/ATP and ADP/ATP levels related to stimulation by 

nitroglycerin, NO2", and other vasodilators. Synergistic or antagonistic effects of 

ATP and its related ribonucleoside adenosine, a known endogenous vasodilator, 

could also be assessed using this method. 

II. The development of an online/flow-through chemiluminescent detection system 

(8, 37, 173) to study instantaneous or short-term changes in the RBC ATP-release 

profile would provide more precise time resolution of ATP variation during and 

after stimulation with pharmacological agents or endogenous vasodilators. Such 

information would help to better understand the role of extracellular ATP in the 

propagation of vasodilatation and how this purinergic signaling pathway is 

controlled. 

III. The optimization of LC-UV/MS methodology for the detection and quantitation 

of nitroglycerin, 1,2- and 1,3-glyceryl dinitrates, and glyceryl mononitrate present 

in drug-treated RBCs, plasma, and intact blood vessels would help confirm the 

mechanisms by which the drug is activated in the vascular system. These 
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measurements, accompanied by the monitoring of NO2" levels, would also shed 

light on the mechanisms by which nitroglycerin exerts vasodilation. This still 

remains a mystery after more than 100 years of its use as a pharmacological 

treatment for ischemic diseases. 

IV. Isolation of GAPDH from human RBCs is of interest. The study of RBC GAPDH 

from healthy individuals and patients chronically exposed to nitroglycerin would 

help elucidate the role of this enzyme in the activation of nitroglycerin, and its 

possible involvement in the evolution of nitrate tolerance. 

V. The detection of EETs and PGI2 in plasma by LC-MS/MS should be further 

developed. Sensitive methods like ELISA are already available and these could be 

applied directly to plasma extracts to provide detection limits in the pg/mL range. 
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