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ABSTRACT 
Probabilistic Modeling of Wavelet Coefficients for Processing of 

Image and Video Signals 

S. M. Mahbubur Rahman, Ph.D. 

Concordia University, 2009 

Statistical estimation and detection techniques are widely used in signal processing 

including wavelet-based image and video processing. The probability density func­

tion (PDF) of the wavelet coefficients of image and video signals plays a key role in 

the development of techniques for such a processing. Due to the fixed number of 

parameters, the conventional PDFs for the estimators and detectors usually ignore 

higher-order moments. Consequently, estimators and detectors designed using such 

PDFs do not provide a satisfactory performance. 

This thesis is concerned with first developing a probabilistic model that is capable 

of incorporating an appropriate number of parameters that depend on higher-order 

moments of the wavelet coefficients. This model is then used as the prior to propose 

certain estimation and detection techniques for denoising and watermarking of image 

and video signals. 

Towards developing the probabilistic model, the Gauss-Hermite series expansion is 

chosen, since the wavelet coefficients have non-compact support and their empirical 

density function shows a resemblance to the standard Gaussian function. A modi­

fication is introduced in the series expansion so that only a finite number of terms 

can be used for modeling the wavelet coefficients with rendering the resulting PDF to 

become negative. The parameters of the resulting PDF, called the modified Gauss-

Hermite (MGH) PDF, are evaluated in terms of the higher-order sample-moments. 

It is shown that the MGH PDF fits the empirical density function better than the 
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existing PDFs that use a limited number of parameters do. 

The proposed MGH PDF is used as the prior of image and video signals in de­

signing maximum a posteriori and minimum mean squared error-based estimators 

for denoising of image and video signals and log-likelihood ratio-based detector for 

watermarking of image signals. The performance of the estimation and detection 

techniques are then evaluated in terms of the commonly used metrics. It is shown 

through extensive experimentations that the estimation and detection techniques de­

veloped utilizing the proposed MGH PDF perform substantially better than those 

that utilize the conventional PDFs. These results confirm that the superior fit of 

the MGH PDF to the empirical density function resulting from the flexibility of the 

MGH PDF in choosing the number of parameters, which are functions of higher-order 

moments of data, leads to the better performance. Thus, the proposed MGH PDF 

should play a significant role in wavelet-based image and video signal processing. 
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Chapter 1 

Introduction 

1.1 Introduction 

In the era of multimedia technology, digital image and video signals have become 

important sources of visual information. Development of novel algorithms for various 

applications of these signals covers a wide area of research effort in the signal pro­

cessing community. Such algorithms include those for classification, texture analysis, 

denoising, compression, restoration, watermarking, and target recognition. Denoising 

is essential for signals such as ultrasound, X-ray, magnetic resonance imagery, mam­

mography, computer tomography, and digital radiology, which are used for medical 

diagnosis. Denoising is also essential for signals such as the synthetic aperture radar 

(SAR) images that are used for remote sensing of earth and planetary resources. 

Compression of visual signals is indispensable for transmission and storage, since the 

size of the of such signals is usually large. Watermarking is becoming an increasing 

necessity for copyright protection of digital data. 

A number of transforms such as the discrete Fourier transform (DFT), discrete cosine 

transform (DCT), and discrete wavelet transform (DWT) are used for processing of 

image and video signals depending on the requirements of the applications. Some 

of the notable features due to which the DWT has enjoyed significant success in the 

development of several efficient algorithms, such as those for denoising, restoration, 

1 
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compression, watermarking, and target recognition, are: 

• high energy compaction efficiency with an acceptable computational complexity, 

• flexibility in choosing a basis function, 

• excellent time-frequency/space-frequency characteristics of the transformed co­

efficients, 

• efficient modeling of the human visual system (HVS) using the subband decom­

positions that are very similar to the response of the neurons of the HVS. 

In fact, the upcoming image coding standard JPEG 20001 [1] uses the DWT as the 

quality of an image produced by the wavelet transform is better than that produced 

by the other transforms for a given bitrate. The video coding standard H.264/MPEG-

4 AVC2 [2] uses the Hadainard transform and adopts a scalable feature like the DWT. 

It has been shown in [3]-[5] that the rate-distortion performance.of this codec may 

be improved by using wavelets in the transform coding. In addition, several new 

wavelet-based video codecs such as Dirac [6], [7], motion-lower tree wavelet [8], and 

motion-compensated temporal filtering and motion vector coding [9] have shown to 

perform better than H.264/MPEG-4 AVC. 

Statistical methods have emerged as significant tools in the development of algorithms 

for interpreting and processing of signals. Such algorithms require probability models 

for the signals. The requirements of a desirable probability model are: 

• The model should capture the essential variability of the signal. 

• The model should show a good statistical match with the empirical model. 

• The model should be mathematically tractable and computationally efficient. 

' J P E G stands for Joint Photographic Experts Group. 
2MPEG stands for Moving Picture Experts Group and AVC stands for Advanced Video Coding 
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It may be mentioned that in the case of a video, the correlation between two neigh­

boring frames provides a measure of motion that exists between these frames. Hence, 

incorporation of this correlation is essential in the development of any probability 

model of a video. 

1.2 Motivation 

Signal-estimation and signal-detection are the two major components of statistical 

signal processing. The performance of any wavelet-based estimation or detection 

technique for an image or video signal is highly dependent on the probability density 

function (PDF) of the wavelet coefficients of the signal. The PDF of the wavelet 

coefficients may be estimated using any of the three traditional techniques, namely, 

non-parametric, parametric, and semi-parametric. Non-parametric density estima­

tion techniques such as reproducing kernel-based density estimation in the weighted 

Folk space [10] and smoothing splines [11], are not suitable for incorporating any a 

priori knowledge. For example, non-parametric techniques mathematically become 

very complex in the case of estimation of a PDF from noisy data by incorporating 

the known noise characteristics. In addition, these estimation techniques may be 

expensive in terms of memory and computation. Hence, a non-parametric density 

estimation technique is not a good choice, when the PDF has a known shape. Since 

the PDFs of the wavelet coefficients of image/video are known to have sharp peaks 

and long tails, the non-parametric density estimation techniques are not used for this 

purpose. In general, the parametric density estimation techniques provide acceptable 

results when the shape of the PDF is known, and hence, several attempts have been 

made to estimate the PDFs of the wavelet coefficients of an image/video using such 

a technique. Examples of such PDFs are the generalized Gaussian (GG) [12]-[20], 

symmetric alpha-stable (SaS) [21], Bessel K-form (BK) [22], and symmetric normal 
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inverse Gaussian (SNIG) [23]. It is to be noted that the parametric PDFs usually have 

a small number of parameters, leading to relatively simple and straight forward esti­

mation techniques. Two advantages of the parametric density estimation techniques 

are the tractable incorporation of the a priori knowledge and a lower computational 

complexity. However, in view of the fact that the number of parameters are fixed and 

cannot be changed, the parametric PDFs often cannot provide a satisfactory fit with 

the empirical density function of the signal. In such a case, a semi-parametric density 

estimation technique may be used [24]. Semi-parametric PDFs are also referred to as 

the scale mixtures of parametric density functions: some examples of such PDFs are 

the scale mixtures of Gaussians (SMG) [25], [26] and scale mixtures of Laplacians [27]. 

Two major concerns of the semi-parametric PDFs are in the selection of the number 

of parameters, particularly the scale parameters, and the estimation of the param­

eters. It is to be pointed out that the computational complexity of any statistical 

signal processing technique depends on the number of parameters of the PDF, as well 

as the computational load of their estimation. In a parametric density estimation 

technique, the parameters of a PDF may be estimated using several strategies such 

as the method of moments (MoM) [28], maximum likelihood (ML) method [29], [30], 

and entropy-matching method [31]. Since in most cases the DWT coefficients of an 

image or video can be treated as a data set having a large sample size, the moment-

based parameter estimation provides a consistent result [32]. In addition, the method 

of moments is convenient for estimating the parameters from a noisy data. In a semi-

parametric density estimation technique, however, the information obtained from the 

higher-order moments of the data samples cannot be used for estimating the param­

eters of the PDF. Instead, the parameters are usually estimated by using an iterative 

algorithm such as the expectation maximization (EM), the computational complexity 

of which is very high, exponentially increasing with the number of scale parameters. 
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At present, most of the wavelet-based image and video processing algorithms exploit 

the parametric PDFs to capture the variability of the true signal coefficient. Com­

putationally expensive semi-parametric PDFs have also been used, but these PDFs 

fail to incorporate the information obtained from the higher-order moments, which 

are necessary for obtaining better probability models. Since the existing statistical 

estimation and detection techniques are developed based on such PDFs, their perfor­

mance is naturally affected by the mismatch between these PDFs and the empirical 

PDFs. 

1.3 Scope of the Thesis 

The objective of the work is to develop a new PDF for the wavelet coefficients of 

image and video signals using a non-traditional density estimation technique, such as 

employing a suitable orthogonal series expansion, so that the PDF is able to incorpo­

rate an appropriate number of parameters that are functions of higher-order moments 

of the data to improve the closeness of fit of the PDF to the empirical density function 

with an appreciable accuracy. In order to investigate the effectiveness of using the 

new probabilistic model in the statistical estimation and detection techniques, studies 

for denoising of image and video signals, as well as for watermarking of images are 

undertaken. 

In the proposed density estimation technique, the PDF is expressed as a series ex­

pansion of orthogonal polynomials. In practice, the weight function of such a series 

expansion is represented in terms of a standard PDF. Table 1.1 lists a few orthogonal 

polynomials along with their corresponding weight functions and regions of support. 

Among the various possible series expansions, we choose the one that uses the Hermite 

polynomials for the following two major reasons: 

® These polynomials are orthogonal with respect to the Gaussian weight function. 



6 

Table 1.1: Weight functions and regions of support for the series expansions of some 
orthogonal polynomials. 

Polynomial 

Chebyshev 
Bernstein 
Laguerre 
Hermite 
Legendre 

Weight function 

Arcsin PDF* 
Empirical PDF 
Gamma PDF 

Gaussian PDF 
Uniform PDF 

Support 

( -a , a) 

(0,1) 
(0,oo) 

(-oo. oc) 

(-1,1) 

'The compact support of the arcsin PDF is ( — a. a). 

which resembles the empirical PDF; hence, it is more likely that the expanded 

PDF would match the empirical one in a better manner. 

• The Gauss-Hermite (GH) expansion being valid in (—oo, oo) is more appropriate 

for wavelet coefficients that do not have a finite region of support. 

In addition, there are certain other advantages in using the GH expansion in the 

proposed density estimation technique: 

o The series has a uniform mean square convergence [33]. 

© The parameters can be expressed in terms of higher-order moments in closed-

form. 

® The polynomials can be determined in a recursive manner. 

A modification of the GH expansion is proposed wherein an appropriate number of 

terms can be used so that the resulting PDF matches well with the empirical PDF of 

the wavelet coefficients of an image/video signal, while ensuring at the same time the 

resulting PDF to be non-negative. The proposed PDF will be referred to as the mod­

ified GH (MGH) PDF. It is shown through experimentations that the MGH PDF 

fits the empirical density function of the wavelet coefficients better than the other 

commonly used PDFs do. 
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A number of statistical estimation and detection techniques, which include the maxi­

mum a posteriori (MAP) and minimum mean squared error (MMSE)-based denoising 

algorithms for images and video as well as log-likelihood ratio-based watermark de­

tection algorithm for an image signal, are developed using the proposed MGH PDF 

as the prior of the wavelet coefficients. Extensive experimentations are carried out 

on frequently used test images and video sequences to show the effectiveness of these 

algorithms, that use the proposed PDF as prior. 

1.4 Organization of the Thesis 

The thesis is organized as follows. 

In Chapter 2, a brief review of the classical DWT, stationary wavelet transform 

(SWT), and dual tree complex wavelet transform (DT-CWT) is presented. This re­

view is intended to facilitate the understanding of the development of the algorithms 

presented in the thesis. This chapter also includes some preliminaries on the com­

monly used PDFs of the wavelet coefficients of images and video. 

In Chapter 3, the development of the new PDF, the univariate MGH PDF, for the 

subband and local neighboring wavelet coefficients of the image signal, is presented. 

Experimental results are provided showing that the MGH PDF fits the empirical den­

sity function better than the conventional PDFs do. 

Statistical modeling of a Gaussian signal in the DT-CWT domain, in both the Carte­

sian and polar representations, is presented in Chapter 4. The models proposed in 

this chapter are used in the denoising algorithms developed in the subsequent chap­

ters. 

In Chapter 5, wavelet-based subband- and locally-adaptive image denoising algo­

rithms are developed using the proposed univariate MGH PDF. Performance of the 

denoising algorithms are studied using various indices such as the peak signal-to-noise 
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ratio (PSNR), structural similarity (SSIM), and visual quality. 

In Chapter 6, another application of the proposed univariate MGH PDF is presented 

by developing a detector for the wavelet-based image watermarking scheme. Perfor­

mance of this watermark detector is studied using the receiver operating characteris­

tics (ROC), efficacy, and robustness. 

The bivariate MGH PDF for modeling the subband wavelet coefficients of two neigh­

boring frames of a video is developed in Chapter 7. Experimental results on test video 

sequences are provided to show that the proposed PDF matches the empirical PDF 

very well. 

In Chapter 8, computationally efficient wavelet-based locally-adaptive video denois-

ing algorithms are developed using a simpler form of the bivariate MGH PDF. 

Finally, some concluding remarks highlighting the contributions of the thesis and 

scope of further research are provided in Chapter 9. 



Chapter 2 

Wavelet Coefficients and Their 
Traditional PDFs 

2.1 Introduction 

In visual signal processing, the purpose of a transformation is to be able to use some 

of the important properties of the signal in the transformed domain that are not avail­

able to be used in the pixel-domain. The transform should decorrelate the spatially 

distributed energy to a fewer number of data samples such that no information is 

lost. The importance of the wavelet transform in the area of image and video signal 

processing has been discussed in Chapter 1. Fig. 2.1 shows simple block diagrams 

of transform-based statistical estimation and detection techniques for an image or 

video signal. It may be seen from this figure that the first step of such a technique is 

the transformation of spatial or spatio-temporal information into the coefficient do­

main. The second step is to process the transformed coefficients. For an estimation 

technique the inverse transformation is necessary, whereas for a detection technique 

the inverse transformation is not required. Statistical estimation as well as detection 

techniques employ the PDF of the wavelet coefficients as the prior of an image or 

video signal. The wavelet transform lias several variants, each suitable for specific 

applications. For example, the classical DWT, which is also known as the decimated 

DWT. is suitable for compression and the SWT or simply the shift-invariant form 

9 
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Figure 2.1: Block diagrams of transform-based statistical estimation and detection 
techniques for an image or video signal. 

of the DWT is suitable for denoising and restoration [34]. The decimated DWT is 

shift-variant as well as it has poor directional selectivity. The SWT is shift-invariant 

at a cost of huge computational complexity and its directional selectivity is same as 

that of the decimated DWT. Improved directional selectivity can be obtained using a 

special type of wavelet transform such as the complex wavelet transform (CWT) [35]-

[38], ridgelet [39], curvelet [40], contourlet [41], and steerable pyramid [42], [43]. In 

general, the probabilistic model that performs well in the classical DWT also provides 

a similar performance in other variants of the wavelet transform. In this thesis, we 

concentrate on probabilistic modeling of the coefficients of the classical DWT and 

the CWT. There are some notable key features of the CWT such as having a near 

shift-invariance property, an improved directional selectivity, and a low computational 

complexity. 

In this chapter, first a summary of the wavelet theory [44]-[48] is presented. The 

way of obtaining the one dimensional (ID) wavelet coefficients from a ID signal us­

ing the concept of multiresolution analysis is given. Another way of estimation of 

the wavelet coefficients using the concept of filter-bank [44]. [45], [48] is considered 

later. An implementation of the 2D DWT is presented followed by which that of the 
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2D SWT and CWT as well as 3D DWT are discussed. Finally, some preliminaries 

on the commonly used PDFs along with their moment-based parameter estimation 

techniques for modeling the wavelet coefficients of the image and video signals are 

given. 

2.2' Prel iminaries on D W T 

2.2.1 ID DWT 

Let I(x), x = 1,2, - • • ,N\ represent a ID signal of size iVi x 1, where x is the ID 

index. The DWT of the signal is given by [49] 

/(x) = 1 

iVi t = l £=1 j = ] 

(2.1) 

where ff denotes the approximate coefficients in the largest level J, }f denotes the 

detail coefficients in the decomposition level £ (I = 1, 2, • • • , J ) , ©j(x, i) = 2J/2(p(2Jx— 

i), ipf(x.i) = 2e/2ip(2ex — i), and 4> and tfj, respectively, are the scaling and wavelet 

functions. The approximate and detail coefficients can be obtained as 

1 Nl 

tf(0 = - T J T E ' W J O M ) (2-2) 
x=\ 

and 

1 Nl 

/f(0 = - 7 =^/ ( . r )^ ( : , V 0 (2.3) 
x=l 

The functions <fi and i> are chosen in such a way that the signal can be reconstructed 

from the DWT coefficients without any error. Since the DWT may be considered as a 

multiresolution decomposition, the nesting property requires that the scaling function 

6 and wavelet function -0 satisfy the two-scale dilation equations 

CO 

o{x) = v7^ J ] M»)<?(2x - u) (2.4) 
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and 

oo 

if,(x) = V2 E hi,(u)<t>(2x - u) (2.5) 
1L= — OG 

where h^u) and ^(u), respectively, are called the scaling and wavelet vectors for the 

forward DWT. Using the above relations. Mallat [45] has shown that the ID DWT 

coefficients of adjacent decomposition levels can be estimated very efficiently by using 

the following equations [45]: 

/i+i(0 = E M« - 2i)tf(u) = M-«) * //(«) (2-6) 
u=2i.i>0 

oo 

f?+iV) = E M« - 2i)tf (") = M"«) * //(«) (2-7) 
— u=2?.i>0 

u= —oo 

where * is a convolution operator. The above equations imply that the approximate 

and detail coefficients at decomposition level (I + 1) can be obtained from filtering 

the approximate coefficients at decomposition level £ by h^ and h^. respectively, and 

down-sampling by 2. The inverse transform of the ID DWT coefficients of adjacent 

decomposition levels can be estimated very efficiently by using [45] 

f(\i) = h(u)*f?+1tu) ; +M"W£i(") ,- (2-8) 
u=7j,i>0 u=^,i>0 

where h^u) and h^(u), respectively, are called the scaling and wavelet vectors for 

the inverse DWT. The above equation implies that the approximate coefficients at 

decomposition level i can be obtained by filtering the up-sampled (up-sampling by 

2) approximate and detail coefficients at decomposition level (£ + 1) by h<$, and h^., 

respectively, and adding the results. Using the concept of perfect reconstruction (PR) 

in filter-bank theory1. h^,(u) and h^(u) are often referred to as the dual analysis filters, 

whereas h^,(u) and /i^.(it) as dual synthesis filters [48]. A simple block diagram of the 

ID forward DWT using the analysis filters and the inverse DWT using the synthesis 

]Iri filter-bank theory, the PR means that the output, of the filter-bank is identical to the input 
except, for a possible delay and overall scaling factor. 
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Figure 2.2: Block diagram of the ID DWT using the analysis and synthesis filters, 
(a) Forward transform for obtaining the (£ + l)-th level detail coefficients, (b) Inverse 
transform for obtaining the £-th level approximate coefficients. 

filters for adjacent decomposition levels is shown in Fig. 2.2. It is to be noted that 

there is no data redundancy in the DWT coefficients due to the down-sampling of 

the filtered coefficients after each level decomposition. In literature, this wavelet 

transform is referred to as the decimated ID DWT. 

2.2.2 2D DWT 

Let ](x, y). x = 1. 2, • • - , iVi, y = 1, 2, • • • . JV2 represent pixels of a 2D signal such as 

an image or a video frame of size Ni x 7V2, where (x.y) is the 2D index. The DWT 

of this signal is given by [49] 

1 
i{*,y) 

y/N^N~2 

A'i A'2 

7 = 1 j = l 

J A'i A'2 

f = l 06HXD ! = 1 j = l 

(2.9) 

where f° (0 G H. V. D) denotes the detail coefficients in the decomposition level I 

{£ = 1. 2. - • • , J) of orientation 0, and <J> and ^ , respectively, arc the 2D scaling and 

wavelet functions. Separable scaling and wavelet functions are common for extending 

the ID DWT to the multidimensional DWT. Hence, the 2D scaling and wavelet 
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Figure 2.3: Subband representations of a 3-level 2D DWT. 

functions can be represented in terms of ID scaling and wavelet functions as 

$j(x, y, i, j) = 2J/2<p(2Jx - i)<P(2Jy - j) *»(x, y, i, j) = 2"fy(2<x - i)4>(2<y - j) 

*?(x, y, t, j) = 2(/2^{2ex - i)rf:{2?y - j) ^D
e{x: y, i, j) = 2V2t/>(2?x - i)4>{2ey - j) 

The approximate and detail coefficients of the 2D DWT can be obtained as 

ft(iJ) = VWN~2< 
I(x,y)$j(x,y,i,j) (2.10) 

X-l J / = l 

and 

I?(iJ) 
1 

Vivwvj 
YJYll(x:y)^(x:y,^j) (2.11) 

These coefficients are clustered into groups or subbands of different levels and orien­

tations. The subbands HLe, LHe, arid HHe (£ = 1, 2, • • • , J) contain the detail coeffi­

cients of the horizontal (0°), vertical (90°). and diagonal (±45°) orientations, viz.. / " . 

fj. and ff, respectively. The subband LLj is the lowest resolution residual that con­

tains ff. The subband representation of atypical 3-level 2D DWT is shown in Fig. 2.3. 

Due to the separability of the scaling and wavelet functions, the 2D DWT may be 



15 

implemented using two separate ID DWTs. Similar to the ID DWT, fast and effi­

cient implementations of the forward and inverse 2D DWTs are obtained by using the 

analysis and synthesis filters, respectively. Figs. 2.4 and 2.5 show the simple block 

diagrams of the forward and inverse 2D DWTs, respectively. It may be seen from 

these figures that both the forward and inverse transforms use a two-stage filtering 

operation, one through the columns (i.e., .x-axis) and another through the rows (i.e., 

y-axis). 

Orthogonality, symmetry, and length of the analysis and synthesis filters are some of 

the important characteristics of the 2D DWT. Orthogonality decorrelates the trans­

formed coefficients, and thus minimizes the redundancy. Symmetry provides linear 

phase and permits a symmetric boundary extension technique that minimizes border 

artifacts. A short length filter is valuable for reducing truncation artifacts in the 

reconstructed signal [50]. Since a finite impulse response filter with a length greater 

than two cannot have both the orthogonal and symmetry- properties, the analysis or 

synthesis filters of the DWT usually do not possess these properties simultaneously2. 

In the DWT having an orthogonal filter-bank, h^ is the time reversal of h^, h^ and hv 

being themselves time reversals of h^ and h^,, respectively. A biorthogonal or spline 

filter of length greater than two can be made symmetric. In such a filter, it is not 

necessary for h^ and h^ to be time reversals of each other. However, to maintain the 

requirement of PR, h^ and h^ must be time reversals of h^ and h^,, respectively. The 

choice of the analysis and synthesis filters, whether they be orthogonal, biorthogonal 

or spline, depends on the application. For example, biorthogonal or spline filters are 

preferable for image compression, since a symmetric boundary extension or low trun­

cation error of the transformed coefficients improves the compression performance. 

On the other hand, denoising requires a higher decorrelation efficiency and, therefore. 

orthogonal filters are preferred for this purpose. 

2The only exception is the Haar wavelet with a. filter of length two. 
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2D S W T 

Although down-sampling in the forward DWT allows a PR of the 2D signal [45], 

some of the possible shifts are neglected [51]. In such a case, a small shift in the input 

signal may cause significant variations in the distribution of the energy among the 

decimated 2D DWT coefficients at different decomposition levels. Hence, processing 

of the decimated 2D DWT coefficients may not provide the desired performance in 

many applications including signal denoising and restoration. To overcome such a 

problem, the SWT coefficients are calculated by following a procedure similar to 

that of the DWT except that the down-sampling is avoided to account for all the 

possible shifts. Such a transform is also called the overcomplete representation or 

shift-invariant form or non-decimated form of the DWT. The data redundancy in the 

SWT is 2M for a d dimensional signal [12], [51]. 

2D C W T 

The decimated 2D DWT-based signal processing have two major drawbacks, namely, 

lack of shift-invariance and poor directional selectivity. The SWT overcomes only the 

first problem, but at the expense of a huge computational load. The second problem 

is inherent in the SWT, since it uses the 2D scaling and wavelet functions that are 

real and separable. In other words, both the decimated DWT and SWT coefficients 

capture the features of a 2D signal only in the directions of 0°, 90°, and ±45°. In 

order to improve the directional selectivity, the CWT that has complex valued scaling 

and wavelet functions, <I>i + i<&2 and \I/i + 1^2, such that $1 and $2 as well as \l/i 

and \I>2 form Hilbert pairs, has been introduced. Such a choice of scaling and wavelet 

functions provides the CWT to have six directional features, namely, —15°, —45°, 

— 75°, 15°, 45°, and 75°. Therefore, the CWT has improved directional property 

compared to both the decimated DWT and the SWT. Various methods have been 
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proposed for obtaining the CWT coefficients [35]-[38], [52]-[57]. However, due to the 

simplicity of implementation and a sufficiently low redundancy, the dual-tree CWT 

(DT-CWT) proposed by Kingsbury [52] and later generalized by Selesnick [54], is 

becoming popular [35], [36]. The DT-CWT consists of two trees of DWT in parallel 

and provides four pairs of subbands, namely, {LLlt, LL2£), (LHl(, LH2e), (HL1{, 

HL2(), and (HHle, HH2t), where 1 and 2 refer to the two trees. The implementation 

of the DT-CWT requires that the first level decomposition, i.e., £ = 1, uses the dual 

analysis filters h^o and h^o and the higher-level decompositions, i.e., £ > 1, the first 

tree uses h^ and h^\ and the second uses h^ and h^. The filters h^ and h^i operate 

on the odd numbered data samples, while h^ and hna on the even numbered data 

samples. Having a delay of one-half of a sample between these operations ensures 

that the dual filters of the two trees, namely, tree 1 and tree 2, form a Hilbert 

pair [35], [54], [55], [58]-[61]. In order to improve the shift-invariance property, the DT-

CWT avoids the down-sampling operation in the first level decomposition, whereas 

the higher-level decompositions use this operation similar to that in the case of the 

decimated DWT. Thus, the DT-CWT improves the shift-invariance property, but 

with a reduced redundancy of 2'1, which is less than that of the SWT by a factor 

2l. Finally, an additional building block, hereafter referred to as the quadrature to 

complex (Q2C) block, is added at the end of each subband for estimating the complex 

coefficients from the real quadrature-filtered coefficients. Simple block diagrams of 

the forward transform of the 2D DT-CWT including the Q2C block for the first-

level and £-th (£ > 1) level decompositions, respectively, are shown in Figs. 2.6 and 

2.7. Detailed analysis of estimating the 2D DT-CWT coefficients has been provided 

in [35], [52]-[55], [58]-[60]. 
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Figure 2.6: Block diagram of the 2D forward DT-CWT for the first level decomposi­
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2.2.3 3D DWT 

Let I(x, y,z), x = 1, 2, • • • , JVi, y — 1, 2, • • • . 7V2, z = 1, 2, • • • , 7V3 represent pixels of 

a 3D signal such as a video otsize N\ x Af2 x 7V3, where (x, y, z) is the 3D index. The 

D W T of this signal is given by 

I{x,y,z) vWjTvyVs 

Ni N2 N3 

£^Y,fj(i>J,k)*j(x,y,*,hJ,k) 
i=i j=i j=i 

J Ni No N3 

e=i e t=i j=i fc=i 
(2.12) 

where ff (A £ LLL) denotes the approximate coefficients in the largest level J . J® 

(0 G {L77L, LL77: L7777, 77LL, 7777L; 777,77, 777777}) denotes the detail coefficients 

in the decomposition level i [i — 1.2. •••• , J) in the direction 0 , and <l and ^ are 

the 3D scaling and wavelet functions, respectively. Separable scaling and wavelet 

functions of the 3D DWT are given by 

$L,LL{x: y, z. i,j, k) = 2J'2d>{2Jx - i)<p(2Jy - j )o (2 J z - k) 

^L{x, y, z, i, j . k) = 2fl2<j){2lx - i)u:(2(y - j)<f>{2ez - k) 

^H{x, y, z, i,j, k) = 2e/2d>{2fx - i)4>{2(y - j)xl>(2?z - k) 

¥;""{x, y, z, i,j, k) = 2i:'24>{2fx - i)ii2(y - j)rl>{2<z - k) 

V,,LL(x, y, z, i. J. k) = 2"2^x - z)9(2
ey - j)<j>{?z - k) 

Vt'
m'(x, V,z,i, J> k) = 2 ^ ( 2 * * - iUi2fy - j)<p(2fz - k) 

¥e'
L"{x, y, z, ij, k) = 2f/2il,{2fx - i)<b{2*y - j)v(2ez - k) 

* f »»(x, y. z. i,j, k) = V^i^x - i)H2ey - j)t'{2''z - k) 

The approximate and detail coefficients of the 3D DWT can be obtained as 
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and 

f?(i,j,k) 
1 

VNiN2N, 

Ni N2 N-s 

x=l y=l 2 — 1 

The eight subbands of the 3D DWT are LLL£, LHL(, LLHt, LHHC. HLLC. HHLe, 

HLHf, and 11IIIIt (J. = 1, 2.. - • • , J ) . A block diagram of the forward transform of 

the 3D DWT for the l-th level decomposition is shown in Fig. 2.8. 
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2.3 Existing PDFs 

This section presents an introduction to the commonly used PDFs for modeling the 

DWT coefficients of an image or a video signal. Without loss of generality, let / 

represent the vector containing all the coefficients of a subband, wherein each coeffi­

cient fij or fijk is a sample of the subband of the 2D DWT at index (i,j) or that of 

the 3D DWT at index (i. j , k). Let pf(f) represent the PDF of the random variable 

/ . A common assumption for modeling the DWT coefficients is that the underlying 

random process is stationary, i.e., the PDFs.of the DWT coefficients are invariant to 

translation in the coefficient plane. In other words, the DWT coefficients are assumed 

to be independent and identically distributed (i.i.d.). By observing the nature of the 

histogram, the following two important properties of the DWT coefficients of image 

and video signals are revealed: 

9 The PDFs of the DWT coefficients are invariant with respect to scaling [62]. 

• The PDFs of the DWT coefficients have a zero mean and are heavy-tailed [63]. 

Hence, a heavy-tailed PDF is usually chosen to model the subband coefficients of 

the DWT of an image or a video signal. An important fact is that unlike other 

transforms, the coefficients of the DWT show a considerable statistical dependency 

within a subband, and a very weak dependency across subbands [64]. Therefore, in 

order to account for the intra-subband dependency, the PDFs are refined with respect 

to the local neighborhood for some applications such as denoising and restoration. 

A few of the PDFs have been extended to the bivariate [65]-[68] and multivariate 

forms [69], [70] or used in the hidden Markov tree (HMT) framework [71], [72] to take 

into consideration the inter-subband dependency. A brief summary of some of the 

traditional PDFs of the DWT coefficients of image and video signals are given below. 
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2.3.1 GG P D F 

Since the work of Mallat [47], the zero-mean GG PDF3 with a shape parameter s 

(1 < s < 2) has been most commonly used to model the DWT coefficients of images 

and video. The GG PDF is defined as 

Pf(f) = 
1 -I/AI5 

(2.15) 
2fr(i) 

where c (c > 0) is the width parameter and T(t) — J0°° e'uut~1du is the Gamma, 

function. Let Mnf be the n-th order moment of the data samples of / . The values 

of s and c are computed numerically using the second- and fourth-order moments of 

the data samples as 

M4f _ r(i)r(f) c2r(^) 
* = " » = ! $ • 

and Kf = 
Mtf r2(?) 

(2.16) 

where <7y- is the variance and Kf is the kurtosis. It is to be noted that the GG PDF 

becomes a Gaussian PDF when s = 2 and a Laplacian PDF when s = 1. 

2.3.2 SMG PDF 

In the SMG PDF, the random variable / is assumed to be a product of a Gaussian 

random vector F and an independent hidden random positive scalar-multiplier yfi. 

In [25], [26], [42], [73], the SMG PDF of the DWT coefficients is evaluated as 

Pf(f) = 
1 I exp 

/""(tsp)-1 / -
Pt{t)dt (2.17) 

V(27r)" | tEP | 

where N is the number of data samples of a subband and E F = E / is the covariance 

matrix, assuming that the mean of t is unity. The most critical part in evaluating 

the SMG PDF is the estimation of the density function for t, i.e., pt{t). In [42], pt{t) 

is approximated by a log-normal PDF given by 

Pt(t) 
t\/2* ?exp 

a 

(logt-jU-L) 
(2.18) 

3In literature, the GG PDF is also referred to as the geDeralized Laplacian PDF 
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where the parameters fii and CTL are calculated in terms of the second- and fourth-

order moments of the data samples as 

»L = -l°g{al + 1) and al = log(at
2 + 1 ) (2.19) 

where 

3a2 < = ^Y ~ 1 (2-20) 
7f 

In [25], the pt{t) is approximated by the Jeffrey's prior denned by pt{t) oc | . Since it 

is an improper PDF, a valid region (0, tmin) is required to define for this PDF. 

2.3.3 BK P D F 

The BK PDF has been used for modeling the DWT coefficients in [74]. Similar to 

the GG PDF, it has only two parameters, viz., the shape parameter ,s (s > 0), and 

the width parameter c (c > 0). The BK PDF is defined by 

^=^i)(5)" M i ir 4 «. -»(yi i") (22i) 

where nr is the modified Bessel function of the third kind and of order r, defined 

by [75] 

Krjzf) ^ + m y f~ COS(^d. 

( / t e { r } > - - , z > 0 , | a r g / | < | ) 

The values of the parameters s and c are computed from the variance and kurtosis of 

the data samples as 

3 
a) = sc and Kf = - + 3 (2.23) 

The BK PDF reduces to a double exponential PDF for .5 = 1. If .5 » 1, the density 

function gets closer to a Gaussian PDF [74]. 
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It may be noted that p/(f) can be defined by the so called normal variance-mean 

mixture PDF. In such a case, the conditional density function Pf\z{f\Z) is a Gaussian 

PDF with mean pf + Zpz and variance ZV, where Z is the mixing variable. If 

fif = Pz ~ 0 and V = 1, the conditional PDF results the SMG PDF, whereas if Z is 

a scaled Gamma PDF, then it approaches to BK PDF. 

2.3.4 SNIG PDF 

The SNIG PDF has been used for modeling the DWT coefficients of log-transformed 

images that are common in SAR or medical applications [23], [76]. This PDF is a 

mixture of the inverse Gaussian and standard Gaussian PDFs, and is expressed as 

pfL(h) = J ^ m sJ? + fl e* (2.24) 
TTVC +fi V / 

where //, denotes the DWT coefficients of a log-transformed image, s (s > 0) is the 

shape parameter, and c (c > 0) is the width parameter. The parameters of this PDF 

are estimated from the variance and kurtosis of the data samples as 
2 c , T, 3(1 + sc) . . 

< 4 = | and KfL = ~2 (2-25) 

The SNIG PDF results in a Gaussian PDF of variance 5, when c —> oo and ,s —> oo 
s • 

such that | is finite, and in a Cauchy PDF when s = 0. 

2.4 Conclusion 

In this chapter, a short introduction to the ID DWT has been presented along with its 

2D and 3D extensions. The implementation issues of the DWT have been discussed 

using the concept of filter-bank. The procedure of obtaining the SWT and DT-CWT 

using the classical DWT have also been presented in this chapter. Finally, some of 

the standard PDFs such as the GG, SMG, BK, and SNIG, for modeling the wavelet 

coefficients have been briefly discussed. The moment-based parameter estimation 

techniques of these PDFs have also been given. 



Chapter 3 

Proposed P D F of Wavelet 
Coefficients for Images 

3.1 Introduction 

The importance of a suitable PDF of the DWT coefficients in the development of 

statistical estimation and detection techniques for processing the image signals has 

been explained in Chapter 1. In this chapter, a new PDF for the DWT coefficients 

of an image signal is developed using the GH expansion. It is shown that by using 

the proposed PDF, an appropriate number of parameters that are dependent on 

higher-order moments, can be chosen for the subband coefficients [77], [78] as well 

as the local neighboring coefficients [34], [79]. A suitable modification of the GH 

expansion has been introduced so that the resulting PDF of the subband coefficients 

is always non-negative. The parameters of the proposed PDF are expressed in a 

closed-form expression in terms of the higher-order sample-moments of the data. 

Using extensive simulations, it is shown that the proposed PDF matches the empirical 

density function better than the standard ones do, both for the subband and local 

neighboring coefficients. 

26 
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3.2 P D F of Subband Coefficients 

The PDF of the random variable of subband coefficients / may be expressed in terms 

of the Hermite polynomials, which are orthogonal with respect to a Gaussian weight 

function, in the form [80] 

1 
pf{f) = ̂ j=e *f (3-1) 

where 07 is the standard deviation of / and Hr(f) is the Hermite polynomial of order 

r that satisfies the recurrance relation [75] 

Ho(f) = 1 

Hi(f) = f 

Hr+i(f) = fHr{f)-rHr-i(f\ T>1 (3.2) 

The resulting PDF will be called as the GH PDF. A closed-form expression of the 

scries coefficients flr can be obtained in terms of the n-th order moment Mnf as (see 

Appendix A-l) 

3 - V (-1)" M(r~2u)f , , 
Pr-2-,2"(r-2u)\u\ aL-2u [ j 

u=0 ' J 

where [u\ denotes the largest integer contained in u. The series coefficients (3r are 

determined only by the even-order moments for even ?-, and the odd-order moments for 

odd ?-. Hence, the parameter estimation of the GH PDF becomes relatively simple 

and straight forward. Although the PDF of the subband coefficients described in 

(3.1) is an infinite series expression, in practice, only the first few terms are used 

for a reasonably good approximation. For example, if the highest value of order r 

in (3.1) is chosen as 4, the resulting density function reduces to the Gram-Charlier 

(GC) PDF [79], [81], [82] 
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Table 3.1: Average values of the magnitude of the skewness (|S/|) and the kurtosis 
(Kf) of the subband DWT coefficients for some test images. 

Test image 

Lena 
Barbara 

Boat 
Man 

Baboon 
Grass 

Bridge 

\sf\ 
1 = 1 
0.09 
0.01 
0.12 
0.09 
0.09 
0.02 
0.01 

i = 2 
0.17 
0.16 
0.14 
0.16 
0.05 
0.03 
0.07 

t=3 
0.26 
0.17 
0.12 
0.15 
0.14 
0.05 
0.08 

K, 
1 = 1 
12.81 
18.05 
10.84 
16.49 
7.77 
4.27 
7.28 

1 = 2 
20.40 
14.31 
12.29 
10.03 
7.02 
4.12 
5.82 

1 = 3 
14.70 
18.67 
10.75 
7.97 
7.04 
3.72 
6.04 

where, Sf = Nhf/Of and Kf = AUf/o-f, respectively, are the skewness and kurtosis 

of / . However, the approximation of the right side of (3.1) by only three terms 

may introduce some errors in Pf(f). and the error can be reduced by including more 

number of terms in the series. In order to include a larger number of terms in the 

series, higher-order moments are necessary for estimating the series coefficients 6r. 

But, the deviations between the estimated sample-moments and the true-moments are 

not insignificant when the order becomes high [81]. Therefore, the error introduced 

by the estimation of j3r is not negligible when a large number of terms of the series 

is included. In addition, the decay rate of the density function pf(f) is proportional 

to Hr(f/af)e-f2/2a2f or simply ( / /cr /)
re" / 2 / 2 ' 7 / for sufficiently large / . The larger 

the order r, the slower the decay of p / ( / ) . thus making it a challenge to fit the tail 

part of Pf(f) with that of the empirical PDF of the image coefficients. Assuming 

the largest value of ?• in (3.1) to be (, the right side of (3.1) may introduce real zeros 

in the expansion of pf(f), the maximum number of such zeros being (. In essence, 

the PDF defined by the truncated GH series may not be always non-negative. For 

example, the symmetric (i.e., the skewness is zero) GC PDF is non-negative only 

if 3 < Kf < 7 [83]. Table 3.1 shows the average values of the magnitude of the 

skewness and the kurtosis of the subband coefficients in the first three levels for some 
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test images. It can be observed that the skewness of the subband coefficients of image 

is insignificant. It has also been observed that other odd-order moments of interest are 

also insignificant. Hence, the PDF of the subband coefficients of image can be treated 

as symmetric. As a result, all flr in the infinite series of (3.1) for odd r disappear and 

the truncated GH PDF for the image wavelet coefficients can be written as 

1 
PCf(f) = 7^=e 

2°f 

c/2 / f \ i + ]T/?2r//2r[^-J (3.5) 
r=2 

The kurtosis of the subband wavelet coefficients of images is usually more than 7 

(see Table 3.1); therefore, Pif{f) cannot model these coefficients sufficiently well. In 

addition, each subband of the image wavelet coefficients usually has a sufficiently large 

number of data samples, and hence, the higher-order moments would be useful for 

modeling. Recall that the truncated GH PDF with a sufficiently large value of (" is not 

ensured to be non-negative. However, the model of the subband coefficients defined 

by the truncated GH PDF in (3.5) is an even function, and therefore, the real zeros are 

symmetrically situated around the mode. Fig. 3.1 shows the probabilistic modeling of 

the HL-i band DWT coefficients by the empirical PDF and by the truncated GH PDF 

with ( varying from 4 to 14 for the images Lena, Barbara, Boat, Bridge, Baboon, and 

Aerial. The empirical PDF is obtained from the histogram-based density estimation 

technique [84], wherein the bin width of the histogram plays a significant role. If the 

bin width is too small, then the estimated PDF suffers from undersmoothing, i.e., 

the density function has a small bias but a large variability. On the other hand, if 

it is too large, then the estimated PDF suffers from oversmoothing, i.e., the density 

function has a small variability but a large bias. In order to obtain a tradeoff between 

the bias and variance, an appropriate choice of the bin width is necessary. The bin 

width can be fixed or variable in size. Variable width may be better, when the density 

function is asymmetric and multimodal in nature. Since the PDF of the image wavelet 

coefficients is unimodal and symmetric in nature, a fixed bin width is chosen for the 
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histogram. The value of this bin width is chosen to be 2(IQR)(NieN2£)~^, IQR being 

the interquartile range1 and N\e x N21 the size of the subband, since such a choice 

asymptotically minimizes the mean integrated squared error of the empirical PDF 

that is non-Gaussian. It can be observed from Fig. 3.1 that, as (, increases, the 

kurtotic behavior of the truncated GH PDF approaches that of the empirical one, 

even though it results in zeros in the tail part of the PDF. Let ±/o be the two zeros 

closest to the mode for a particular value of (. The value of /o may be found by using 

any root finding routine, but we calculate it as 

/o = arg min ^ ( P C / + I P C / | ) W ( / ) = = 0 (3.6) 

\ where U(f) is a unit step function and ' = = ' is logical 'equal' operation. It is evident 

from Fig. 3.1 that when the coefficients lie in the interval (—fo-.fo), then these 

coefficients can be modelled well by the proposed GH PDF with an appropriate choice 

of (". Outside this range, i.e., in the tail part, such a truncated GH PDF introduces 

negative probability, which is not possible. Hence, in the tail part of the truncated 

GH PDF, a modification is necessary so that the probability becomes non-negative 

and at the same time the modified GH PDF fits well with the empirical PDF. For 

such a modification, the use of a GH PDF is preferred to that of using a different 

PDF, since the estimated parameters and Hermite polynomials can also be used for 

the tail part of the PDF. Examples of GH PDFs with non-negative probability are 

the Gaussian PDF and the symmetric GC PDF having 3 < Kf < 7. Since the latter 

has a longer tail than the former and the PDFs of the image wavelet coefficients 

are known to have long-tails, we choose the GC PDF as the modified tail. In order 

to ensure that the total area under the curve of the modified GH PDF is unity, we 

multiply the GC PDF by a weight parameter 7. In this thesis, the density function 

'The IQR is the difference between the third and first quartiles of the data. 
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is referred to as the MGH PDF. It can be mathematically formulated as [77] 

Pfif) = < 
(J/v27T 

2„j, 

e * 

C/2 

1 + y j02rH2r 
r=2 

'Y 

af\/2w 
la % 

e f 

f_ 

f 1 + ̂ X 
4! V 07 

if l/l < /o 

if l/l > /o 

(3.7) 

where 0 < 7 < 1 is the weight parameter, and Km = max.(mm(Kf, 7), 3). Since the 

total area under the MGH PDF is unity, the parameter 7 satisfies 

Ofy/2n 

h 
e f 

C/2 I+X>M£) 
r=2 

e 2°f 

d/ + 

4! \af 
d/ - 1 (3i 

07 V27T 7/0 

After some manipulations, the value of 7 can be obtained as (see Appendix A-2) 

1 - 2 lo(^)+ElL\P2rhr( 

1 - 2 7„ ^ /o ^ _i_ A"m-3 r ( fo_ 
(3.9) 

where 

/ • 2r 

A 1 J /o - e r f — = — 
2 V V^a/ 

H2T-I [— e / 
2TT W/ 

it > 2 (3.10) 

and erf(-) represents the error function. In summary, the MGH PDF for a particular 

subband is estimated using the following steps: 

1. Select £ as the highest-order even moment. Estimate the moments M2r (r = 

2. Estimate the series parameters for (?' = 1: 2, • • • , C/2) by using (3.3). 

3. Select the bin width Sf = 2(IQR)(A^Ar2£)~5- Set the discrete points fd = 

[/min : Sf : /max]- where /m i n and /m a x . respectively, are the minimum arid 

maximum values of / . 
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4. Estimate the Hermite polynomials H2r(-) (r = 1, 2, • • • , (/2) by using (3.2) for 

each fd. 

5. Estimate /o using (3.5) and (3.6). 

6. Estimate 7 using (3.9) and (3.10). 

7. Obtain the MGH PDF by (3.7). 

The proposed MGH PDF requires the estimation of 32r, H2T aiid 7, and the compu­

tational complexities of these are 0((NiN2/2), 0(Nb) and 0(Nb + (/2), respectively, 

where Nb is total number of discrete points resulting from the selected bin. Since 

Nb <C N±N2 and ( <C Nb, the computational complexity of the proposed MGH PDF 

is 0{(NlN2/2). Fig. 3.2 shows the modeling of the HL^ band DWT coefficients by 

the MGH PDF in the linear-scale using different values of £ for the images Lena, 

Barbara, Boat, Bridge, Baboon, and Aerial. It can be observed from this figure that 

the MGH PDF is ensured to be non-negative and for a sufficiently large value of (, 

the tail part of the MGH PDF matches very well with that of the empirical PDF. 

Therefore, in the proposed MGH PDF the choice of ( is of importance, since it deter­

mines the highest-order of the Hermite polynomials and of the moments used in the 

parameter estimation. In order to make a good choice of (", the mean squared error 

(MSE) between the empirical and proposed MGH PDFs is plotted as a function of the 

highest-order moments used in (3.7) for the HL\, HL2, HL3, and HL4 band DWT 

coefficients for some test images, and shown in Fig. 3.3. It can be observed from this 

figure that in general the inclusion of an increased number of the higher-order mo­

ments in the parameter estimation of the proposed MGH PDF lowers the MSE. Due 

to the fact that the magnitudes of the wavelet coefficients increases significantly with 

the level of decomposition and so the spread of the empirical PDF, a lower MSE is 

obtained at a higher decomposition level. It is seen from Fig. 3.3 that a larger value 
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of £ may not always provide a lower MSE due to the significant change in /o of 

the proposed MGH PDF, however, a value of 12, 14 or 16 is a good choice for ( at 

any decomposition level. Fig. 3.4 shows, in the log-scale, the modeling performance 

of three PDFs, namely, the GG, BK, SNIG, and MGH that uses £ = 14 for the 

HL\ band DWT coefficients of the images Lena, Barbara, Boat, Bridge, Baboon, 

and Aerial. The closeness of the fit of the proposed PDF with the empirical one, 

both in its peak and tail parts, is obvious as compared to the others. Moreover, to 

quantify the performance of the PDFs, we use, the Kolmogorov-Smirnov distance 

(KSD), m a X / | J[p}m p(/) - p / ( / ) ] d / | , and the Kullback-Leibler divergence (KLD), 

/ p / ( / ) I n ?iMi>|Ld/, as the two metrics, where p^m p(/) denotes the empirical PDF. 

Table 3.2 shows the results concerning the metrics KSD and KLD for the GG, BK, 

SNIG, and MGH PDFs of the first and second level image DWT coefficients. The 

metrics are calculated by averaging the results obtained using 96 images, each of size 

512 x 512, from the database given in [85]. Standard deviations of the KLD metric 

are also included in the table. For the results shown here, the MGH PDF uses the 

even-order moments from 2 up to 14, whereas the GG, BK, and SNIG PDFs use only 

the second and fourth order moments in view of their limited number of parameters. 

From the table, it is evident that in most of the cases the MGH PDF, compared 

to the GG, BK, and SNIG PDFs, has the lowest distance and divergence from the 

empirical one. This high degree of matching between the empirical and MGH PDFs 

is mainly due to the fact that the proposed PDF can incorporate more number of 

higher-order moments in its parameter estimation process as compared to the others. 

This feature, along with the modification proposed through the introduction of the 

parameter 7, results in the proposed MGH PDF to match the empirical PDF very 

well both in the peak and tail segments. In order to demonstrate the effectiveness of 

the proposed PDF, a subband-adaptive denoising algorithm is developed in Chapter 5 
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Table 3.2: Values of the metrics KSD and KLD for the prior function modeling of the 
subband DWT coefficients of images. The average values of KLD (standard deviations 
in parentheses) and KSD are obtained from a 96 image database. 

Prior model 

GG PDF 
BK PDF 

SNIG PDF 
MGH PDF 

GGPDF 
BKPDF 

SNIG PDF 
MGH PDF 

GGPDF 
BK PDF 

SNIG PDF 
MGH PDF 

KSD 
1= 1 £ = 2 

KLD 
1= 1 1 = 2 
HH 

0.149 
0.108 
0.086 
0.087 

0.194 
0.133 
0.068 
0.067 

0.331 (0.238) 
0.302 (1.932) 
0.082 (0.153) 
0.082 (0.045) 

0.420 (0.327) 
0.255 (0.994) 
0.092 (0.159) 

0.064 (0.044) 
LH 

0.146 
0.088 
0.073 
0.069 

0.185 
0.081 
0.110 
0.075 

0.309 (0.214) 
0.122 (0.455) 
0.144 (0.373) 

0.061 (0.038) 

0.326 (0.235) 
0.070 (0.091) 
0.208 (0.560) 
0.076 (0.058) 

HL 
0.161 
0.083 
0.078 
0.070 

0.201 
0.084 
0.084 
0.073 

0.352 (0.252) 
0.108 (0.228) 
0.165 (0.645) 

0.064 (0.042) 

0.417 (0.454) 
0.069 (0.099) 
0.153 (0.333) 

0.069 (0.054) 

and a watermark detection algorithm in Chapter 6, wherein the MGH PDF is used 

as the prior function of DWT coefficients of images. 

3.3 P D F of Local Neighboring Coefficients 

In some statistical estimation techniques, such as denoising and restoration of im­

ages, the dependency of the local neighboring DWT coefficients may be considered 

for achieving an improved performance. However, the computational complexity of 

the locally-adaptive techniques increases significantly as compared to that of the corre­

sponding subband-adaptive ones. Very often, the local neighboring DWT coefficients 

are modelled using the standard Gaussian PDF, since in such a case closed-form ex­

pressions can be obtained for many techniques. Thus, the computational complexity 

of the locally-adaptive techniques using Gaussian PDF becomes relatively lower than 
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that of using a complex PDF. Since the Gaussian PDF is a specific case of the GG, 

SaS, and SNIG PDFs, in some locally-adaptive techniques the parameters of these 

PDFs are refined with respect to the local spatial contexts. Note that the Gaus­

sian PDF is also a specific case of the MGH PDF, when /?r(r>3) = 0. By including an 

appropriate number of parameters in the GH expansion, a PDF better than the Gaus­

sian and other PDFs may be obtained for the local neighboring coefficients similar 

to a PDF for the subband coefficients. In the case of modeling the local neighbor­

ing coefficients, however, the parameters that are estimated from the higher-order 

moments will not be so effective as that in the case of subband coefficients, since 

the error introduced by the estimated higher-order sample-moments in the former is 

not insignificant as in the latter. This is due to the fact that the number of data 

samples of the local neighboring coefficients is much less than that of the subband 

coefficients. It is found that the GC PDF, the parameters of which are estimated 

considering up to the fourth order moment is sufficient for probabilistic modeling of 

the local neighboring DWT coefficients of images. Similar to the subband coefficients. 

the skewness of the local neighboring image wavelet coefficients are very small, i.e., 

Sf -C 1. Hence, the PDF of the local neighboring coefficients can be treated as sym­

metric by considering Sf to be zero. Without loss of generality, we represent / as the 

vector containing all the local neighboring coefficients at the spatial location (i,j). 

Hence, the PDF of the local neighboring image wavelet coefficients may be expressed 

in terms of the symmetric GC PDF in the form [81] 

Pf(f) = 7=e / 1 + ,, lh — 
OfVZn L 4 ! W / 

Table 3.3 shows the average values of Kf for the local neighboring DWT coefficients 

of the first and second level decompositions of a few test images using the window 

sizes of 5 x 5 and 11 x 11. Note that similar results have been obtained for Kf using 

other test images given in the database [85]. It can be observed from Table 3.3 that 

(3.11) 
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Table 3.3: The average values of kurtosis for the test images obtained from the local 
neighboring DWT coefficients. 

Test image 

Lena 
Barbara 

Boat 
Man 

Baboon 
Grass 
Bridge 

Kurtosis, Kf 
Local (5 x 5) 

£= 1 
3.51 
3.41 
3.57 
4.47 
3.29 
3.47 
4.08 

e = 2 
4.51 
4.60 
4.80 
4.93 
3.54 
3.48 
4.10 

e = 3 
4.79 
4.72 
4.92 
4.93 
3.52 
3.24 
3.96 

Local (11 x 11) 
£= 1 
4.25 
4.53 
4.41 
5.57 
3.76 
3.64 
4.71 

1 = 1 
6.19 
6.36 
6.30 
5.56 
4.17 
5.56 
4.44 

£ = 3 
6.91 
6.25 
6.89 
5.36 
4.21 
5.36 
4.71 

the kurtosis of the local neighboring coefficients is usually greater than 3 and increases 

with the increasing window size. These results show that the Gaussian distribution 

is not a very good probabilistic model for the local neighboring coefficients, specially 

when the window size is relatively large. It may be mentioned that the consideration 

of dependency of the local neighboring coefficients is useful, when the window size 

is 5 x 5, 7 x 7, or 9 x 9 and a further increase in the window size generally does 

not yield any appreciable improvement in the performance of estimators such as 

for denoising and restoration. Recall that the symmetric GC PDF is ensured to 

be positive, if 3 < Kf < 7 [83]. Extensive simulations reveal that the kurtosis of 

the local neighboring coefficients for the window size of interest lies in this range. 

Hence, the symmetric GC PDF is ensured to be non-negative while modeling the 

local neighboring coefficients. Fig. 3.5 shows the empirical, Gaussian, and GC PDFs 

to model the local neighboring coefficients of the HL\ subband for the test images 

Lena, Barbara, Boat, Bridge, Baboon, and Aerial using a window size of 9 x 9. Since 

the images are of size 512 x 512 and the HL] subband is of size 256 x 256, each of the 

PDFs is obtained by averaging the 256 x 256 = 65536 PDFs corresponding to each 

of the coefficients in the HL\ subband. It is evident from Fig. 3.5 that the proposed 

PDF matches the empirical one better than the Gaussian PDF does. It is to be noted 
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that similar results are observed for other window sizes using various sub-bands of 

different test images. Table 3.4 shows the modeling performance of the Gaussian, 

GG, SNIG, and GC PDFs in terms of the metrics KSD and KLD of a number of test 

images. It is seen from Table 3.4 that both the KSD and KLD of the GC PDF are 

lower than that of the Gaussian, GG and SNIG PDFs, showing that the proposed 

PDF is a better probability model than the others for the local neighboring DWT 

coefficients. Similar results have been obtained for the other test images given in 

the database [85]. The effectiveness of the proposed PDF is shown in Chapter 5, by 

developing Bayesian denoising algorithms using this PDF as prior. 

3.4 Conclusion 

Traditional PDFs of the subband DWT coefficients of images have a limited number 

of parameters that are calculated from the first few moments. As a result, these 

PDFs cannot provide a sufficiently good statistical match for the empirical PDF of 

the subband DWT coefficients of an image. In this chapter, a new PDF, wherein a 

more appropriate number of parameters that are functions of higher-order moments 

can be incorporated, has been developed in order to overcome this shortfall. This 

PDF uses a series expansion in terms of the Hermite polynomials that are orthogonal 

with respect to the Gaussian weight function. Such an orthogonal series expansion 

has been utilized, since the expansion is valid for the non-compact support of the 

DWT coefficients and the Gaussian weight function of this expansion bears a resem­

blance with the empirical PDF. A closed-form expression for the parameters of the 

PDF. which has been referred to as the GH PDF, has been derived in terms of the 

higher-order sample-moments. A modification has been proposed in the GH PDF so 

that an appropriate number of parameters can be used to model the DWT coeffi­

cients of an image, while keeping the resulting PDF to be non-negative. It has been 
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Table 3.4: Results concerning the metrics KSD and KLD (standard deviations in 
parentheses) for prior function modeling of the local neighboring DWT coefficients 
using a 9 x 9 window. 

Prior model 

Gaussian PDF 
GG PDF 

SNIG PDF 
GC PDF 

Gaussian PDF 
GG PDF 

SNIG PDF 
GCPDF 

Gaussian PDF 
GG PDF 

SNIG PDF 
G C P D F 

Gaussian PDF 
GG PDF 

SNIG PDF 
G C P D F 

Gaussian PDF 
GG PDF 

SNIG PDF 
GCPDF 

Gaussian PDF 
GG PDF 

SNIG PDF 
GC PDF 

KSD 
{= 1 £=•2 

KLD 

e = i 1 = 2 
Lena 

0.085 
0.165 
0.082 
0.079 

0.089 
0.159 
0.080 
0.073 

0.221 (1.136) 
0.305 (0.744) 
0.184 (0.917) 

0.166 (0.698) 

0.322 (1.358) 
0.348 (0.846) 
0.247 (1.034) 

0.231 (0.761) 
Barbara 

0.080 
0.153 
0.076 
0.075 

0.100 
0.155 
0.087 
0.080 

0.214 (1.186) 
0.304 (0.858) 
0.174 (0.961) 

0.170 (0.791) 

0.425 (1.770) 
0.408 (1.295) 
0.325 (1.401) 

0.314 (1.247) 
Boat 

0.090 
0.167 
0.085 
0.083 

0.096 
0.156 
0.084 
0.075 

0.247 (1.161) 
0.317 (0.716) 
0.204 (0.932) 

0.182 (0.705) 

0.401 (1.526) 
0.385 (1.018) 
0.305 (1.162) 

0.283 (0.901) 
Bridge 

0.085 
0.159 
0.078 
0.071 

0.087 
0.160 
0.080 
0.074 

0.288 (1.262) 
0.329 (0.772) 
0.231 (0.996) 

0.206 (0.756) 

0.282 (1.225) 
0.328 (0.758) 
0.229 (0.989) 

0.203 (0.755) 
Baboon 

0.077 
0.161 
0.075 
0.074 

0.081 
0.162 
0.078 
0.074 

0.204 (1.388) 
0.308 (1.048) 
0.181 (1.290) 

0.166 (1.003) 

0.230 (1.150) 
0.311 (0.762) 
0.199 (1.021) 

0.174 (0.759) 
Aerial 

0.097 
0.146 
0.077 
0.066 

0.093 
0.151 
0.077 
0.067 

0.445 (1.607) 
0.390 (1.010) 
0.314 (1.118) 

0.312 (0.942) 

0.377 (1.359) 
0.361 (0.810) 
0.279 (1.008) 

0.259 (0.804) 
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shown that this modified GH (MGH) PDF matches the empirical ones of the test 

images used, more closely than the commonly used PDFs such as the GG, BK, and 

SNIG. The proposed PDF has been adapted to model the local neighboring DWT 

coefficients. It has been shown that this PDF also performs better than the standard 

PDFs used for local neighboring coefficients. The MGH PDF will be employed as a 

prior in developing denoising algorithms and a watermark detector for image signals 

in Chapters 5 and 6, respectively. 



Chapter 4 

Statistics of 2D DT-CWT 
Coefficients of a Gaussian Signal 

4.1 Introduction 

This chapter deals with the statistical properties of the 2D DT-CWT coefficients of 

a Gaussian distributed signal both in the Cartesian and polar forms. The first level 

of decomposition of the DT-CWT uses wavelet filters that form a Hilbert-pair only 

approximately, while those at the higher levels form a Hilbert-pair that is almost ex­

act. Hence, a significant correlation exists between the quadrature-filtered coefficients 

of the two trees in the first level of decomposition as compared to the other levels. 

As a consequence, in the Cartesian representation, the real and imaginary compo­

nents of the complex coefficients are modelled as independent zero-mean Gaussian 

having unequal variances for the first level of decomposition and equal variances for 

the higher levels [86]. In the polar representation, the magnitude components are 

modelled by a generalized Gamma (GF) PDF for the first-level decomposition and a 

Rayleigh PDF for the higher levels [86], [87]. The corresponding phase components 

are modelled by an analytic PDF. The proposed PDFs of the transformed coefficients 

match very well with the empirical ones, as evidenced by Monte-Carlo simulations. 

It is also shown that the moments of the corresponding PDFs closely approximate 

the estimated sample-moments. Two techniques, namely. MAP-based estimation and 

45 
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phase-based ridge detection are developed using the proposed PDFs. Simulation stud­

ies are carried out showing that the use of the proposed techniques provides improved 

estimation and detection performance of images in a noisy environment. 

4.2 Gaussian Signal and 2D BT-CWT 

In many applications of communication and signal processing, 2D signals are statis­

tically modelled using the Gaussian distribution. One of the major reasons for this 

is that, in most cases, the statistical processors become mathematically tractable, 

if signals are modelled using the Gaussian distribution. Examples of such Gaussian 

statistical processors (GSPs) include the Wiener filter for the estimation technique 

and the Matched filter for the detection technique [88]. According to the central limit 

theorem, the statistics of a signal can be approximated well by this distribution, if the 

size of the data samples is large [89]. The Gaussian distribution plays a significant 

role even when the signal statistics is non-Gaussian. For example, a wide class of el-

liptically symmetric non-Gaussian distributions including the symmetrized Gamma, 

5 Q 5 , Student-t. and GG distributions can be expressed in terms of a SMG distribu­

tions [25], [90]-[92]. If the signal is statistically modelled by an SMG distribution, the 

corresponding statistical processor can be expressed in terms of the scale components 

and the GSPs. In many applications, the signal is corrupted by noise, for which a 

commonly employed statistical model is the Gaussian distribution. 

In recent years, the DT-CWT is being increasingly used in different applications of 

2D signals, reasons for such are explained in Chapter 2. For statistical modeling of 

the 2D DT-CWT coefficients, a common assumption is that the wavelet filters form 

a Hilbert-pair [35], [54], [55], [58]-[60], [93]. In such a case, if a Gaussian distributed 

signal is decomposed by the 2D DT-CWT, the real and imaginary components of the 

various complex coefficients can be modelled as two independent zero-mean Gaussian 
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distributions having the same variance. As a consequence of this statistical model, 

the magnitude components of the various complex coefficients can be modelled by a 

Rayleigh distribution [94]. Similar to the distribution of the DWT coefficients, the 

distribution of the 2D DT-CWT coefficients of an image signal shows several char­

acteristics of non-Gaussian behavior, such as high kurtosis and heavy tail. Choi et 

al. [95], Shaffrey et al. [96], and Ferrari and Winsor [97] have shown that the real 

and imaginary components of the 2D DT-CWT coefficients of such image signals 

can be modelled by two independent SMG distributions, assuming that the wavelet 

filters of the 2D DT-CWT form a perfect Hilbert-pair. Further, they have shown 

that the magnitude components of the 2D DT-CWT coefficients can be modelled by 

a scaled mixture of Rayleigh distributions. But the implementation of the 2D DT-

CWT requires that the pair of wavelet filters in the first level of decomposition is 

different from that of the succeeding levels of decomposition and that the complex 

coefficients in the first one are approximately analytic [35], [86]. Therefore, a signif­

icant amount of correlation exists between the quadrature-filtered coefficients of the 

two trees of the DT-CWT in the first level of decomposition. Due to this correla­

tion, when a Gaussian distributed signal is decomposed by a 2D DT-CWT, the real 

and imaginary components of the complex coefficients in the first level of decompo­

sition become independent zero-mean Gaussian distributions with unequal variances. 

Hence, the magnitude components of such complex coefficients cannot be modelled 

by a Rayleigh distribution. In addition, in many applications a knowledge of the 

statistical properties of the corresponding phase components is required, such as edge 

detection [98], denoising [99], and texture identification [56]. To the best of the our 

knowledge, in the polar representation of the 2D DT-CWT, no systematic approach 

exists to statistically model the complex coefficients obtained from decomposing a 

Gaussian distributed signal. This chapter investigates the statistical properties of the 
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2D DT-CWT coefficients of a Gaussian distributed signal using the various operations 

associated with the transform. Since each of the two trees of the 2D DT-CWT uses 

the DWT, we start with the statistical properties of the 2D DWT coefficients of a 

Gaussian distributed signal. The statistics of the complex wavelet coefficients are an­

alyzed both in the Cartesian (real and imaginary components) and polar (magnitude 

and phase components) representations. The corresponding PDFs of the coefficients 

and their moments are derived. The performance of the proposed PDFs are tested 

using the Monte-Carlo simulations and the estimation of the sample-moments. It is 

shown that the proposed density functions match with the empirical ones and the 

corresponding moments approximate the sample-moments very well. Further, MAP 

estimation techniques and a phase-based ridge detection technique are developed for 

a noisy image in order to show the effectiveness of the proposed models. 

4.3 Statistics of Gaussian Signal in 2D DT-CWT 

Let N(ne,o1) represent an i.i.d. Gaussian signal, where / j e and o\, respectively, are 

the mean and variance. If the signal is transformed using a linear transformation 

matrix W, then the transformed coefficient is also i.i.d. Gaussian having a variance 

a2 = ti{WrW}a2
e (4.1) 

where tr{-} represents the trace of a matrix. The 2D DWT uses two linear transfor­

mation matrices that are circulant in nature, wherein one of the matrices is obtained 

from the low-pass filter coefficients and the other from the high-pass filter coefficients. 

Let WL and WH denote, respectively, the low- and high-pass transformation matrices 

of a given decomposition level L If the transformation matrices are orthogonal, i.e., 

the condition tr{ W ^ W ^ } = tr{ WfiWH} = 1 is maintained, then the signal variance 

has no scaling in any of the four subbands. namely. LLf. LHt, HLf, and HHf> in the 

DWT domain. In such a case, the distribution function in the 2D DWT domain is 
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JV(0, al) [45]. On the other hand, if the transformation matrices are biorthogonal, i.e., 

t r {W[W L ] ^ tr{W'^WH} ^ 1, then the distribution function of the transformed 

coefficients is .A/̂ O, a2), where the variance can be shown to be 

( [tr{W[WL}]2*al for LLe 

MWlW^-^tviW^WH}]^ for LHt,HLc (4.2) a 2 = < 

{ [tr{WlWL}]2e-2[tr{W^WH}}2al for HHt 

The 2D DT-CWT uses either biorthogonal or orthogonal filter coefficients in its four 

pairs of subbands, namely, {LLlt, LL2e), {LHle, LH2e), {HLlt, HL2t), and (HHlt, 

HH2(). Except for the first-level decomposition of the transform, the wavelet filters 

form almost a Hilbert-pair [35], [54], [55], [60]. Let (WL ,W / y) denote the pair of 

transformation matrices in the first level and {WL,Wff) the pair transformation 

matrices in a level £(£ > 1) through which the wavelet filters of the two trees form 

a Hilbert pair. The procedure of estimation of the 2D DT-CWT coefficients of a 

given signal using the wavelet filters has been given in Section 2.2.2. It may be found 

that the estimated signal variance in each subband is not only dependent on the 

transformation matrices, but also on the operation of Q2C. To calculate the complex 

coefficients of the 2D signal from the quadrature values, the filtered coefficients are 

partitioned into four sub-2D coefficients, termed as qm(m = 1,2,3,4). corresponding 

to odd-odd. odd-even, even-odd and even-even indices, respectively. The coefficients 

in qm are obtained from a 2D DWT-type linear transformation. Therefore, each of the 

sub-2D coefficients of the Gaussian random variables denoted as qm{m = 1.2,3,4) 

are Af(0, a2
q), and it can be easily shown that the variances of the coefficients after 
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the 2D signal passes through £-stage filtering are 

' [ti-{WlWL}}2{ti{WlWL}}2e-2al for LLf{e>0) 

[tr{W[WL}]2[tr{W'lWL}]2i-3[tr{WTWH}]al for LHt{t>1), HLt(e>1) 

a ; = < MWlWL}}2MWlWL}}2C-4[tv{W7
HWH}}2al for HHt{t>1) (4.3) 

[tr{ W'[WL }] [tr{W£W„ }}a2
e for LH,, HL, 

k [tr{WT
HWH}]2a2

e for HH^ 

4.3.1 Cartesian Form of 2D DT-CWT Coefficients 

The complex coefficients of any pair of subbands of the 2D DT-CWT in the Cartesian 

form, namely, eul + -IEVI and EU2 + ?cv2, are calculated in terms of certain algebraic 

operations of qm(m = 1, 2, 3, 4). According to the filtering and partitioning processes, 

the real and imaginary components of the complex coefficients can be expressed as [35] 

f u i = - / = ( ? ! - <?4) 
1 

£ v i (<72 + 93) 

1 
£u2 (ft + <?4; ^v2 = - = ( < ? 2 - 93) 

(4.4) 

(4.5) 

Let the components fm and £-vn. n = 1, 2, represent the samples of random variables £u 

and £v, respectively. The filtered coefficients of the 2D DT-CWT are designed in such 

a way that the random variables eu and ev that are obtained from the random variables 

Qmi'm- = 1,2,3,4,) are uncorrelated [95], [100]. In addition, each of the qm(m = 

1.2.3,4) is zero-mean Gaussian: therefore, the PDFs of eu and ev are independent 

zero-mean Gaussian. Thus, the joint PDF of eu and ev can be written as 

7 W v ( £ u : £v) = Pe»{£ii)Pe,{£v (4.6) 
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where o\ and <j\ are, respectively, the variances of the real and imaginary components 

of the complex coefficients. The shape of any PDF is characterized by parameters, 

such as the skewness and kurtosis, defined by its moments [89]. All the odd-order 

moments of a zero-mean Gaussian signal are zero and the even-order moments can 

be expressed in terms of the standard deviation. In general, the n-th order moments 

are calculated from the expected values of the real and imaginary components that 

are [89] 
0 for n odd 

£ { < } = { * (4.9) 
a" I I (2m - 1) for n even 

m = l 

and 
0 for n odd 

£ K } = { % (4.10) 
a" I I (2m — 1) for n even 

where E{} is the mathematical expectation. In each subband, the variances of 

the real and imaginary components are dependent on the equal-valued variances of 

9m("'l = 1- 2. 3, 4). and equal-valued covariances between the two pairs of the random 

variables, (QI, qj) and (92- 93)- It can be shown that the variances of the real and 

imaginary components are 

*», = <& = (1 " * K C4J1) 

a2
vl=al2=(l + p()a

2
q (4.12) 

where pe ( — 1 < p( < 1) is the correlation coefficient between either gi and q4, or q-i 

and 93. The value of pc is a constant that depends on the set of filter coefficients. 

In the first level of decomposition, the 2D DT-CWT uses the wavelet filters that 

approximately form a. Hilbert-pair [35]. Hence, for the first-level decomposition the 

value of pi is non-zero. Fig. 4.1 shows, in the first level of decomposition, the 

estimated values of the covariance between q^ arid q^ as a function of the variance 
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Figure 4.1: Estimation of pf using the variance of q\ and the eovariance between q\ 
and q± in the first-level decomposition of the 2D DT-CWT, wherein the filters form 
an approximate Hilbert-pair. 

of gL for the two sets of biorthogonal filters considered in [53]. It can be seen that 

p(, the ratio of the eovariance and the variance, is constant for a particular pair 

of filters and increases with the length of the filter. It is to be noted that, under 

such a condition, when the wavelet filters approximately form a Hilbert-pair, the 

value of pf_ depends mainly on two factors, namely, the parameters of the wavelet 

filters (e.g., filter length; vanishing moments, etc.) and the eovariance among the 

neighboring coefficients that occurs in all redundant representations [101]-[103]. What 

is important here is that the value of pt is non-zero, and hence, the original Gaussian 

distributed signal is transformed to two independent zero-mean Gaussian distributed 

components with, unequal variances in the first level of decomposition. The second-

arid higher-level decompositions of the DT-CWT use wavelet filters that almost form 

a Hilbert-pair [35], |36|. j54j, [55], [60 j , and hence, the corresponding value of pt is close 

to zero. Assuming this pf. to be zero in (4.11) and (4.12), we see that the variances 

of the real and imaginary components of the complex coefficients for the second- and 
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higher-level decompositions are 

~2 Jl _ Jl 
°ul = <?vl - ° u 2 a: v2 e> i (4.13) 

Thus, in the Cartesian form of the 2D DT-CWT, a Gaussian distributed signal is 

transformed to two independent zero-mean Gaussian distributed components with 

equal variances in the second- and higher-level decompositions, and with unequal 

variances in the first-level decomposition. 

4.3.2 Polar Form of 2D D T - C W T Coefficients 

The complex coefficients of any pair of subbands of the 2D DT-CWT in the polar 

form, namely, e r l Ze e i and Er2^6>2: are calculated in terms of the real and imaginary 

components of the corresponding coefficients. The magnitude and phase components 

of the complex coefficients are 

£rl — V£ll + £vl eg] = arctan 
£V1 

£T2 — V £U2 + ev2 £02 = arctan | — 
. £ H 2 

(4.14) 

(4.15) 

Let the components ;rn and £en, n = 1.2. represent the samples of the random vari­

ables er and e#, respectively. Since the real and imaginary components of the complex 

coefficients in the first level of decomposition are independent zero-mean Gaussian 

having unequal variances, say CT^ and al (CTU ^ <rv), the magnitude components of the 

coefficients have no closed-form PDF. An approximation of such a PDF is the GT in 

the form [104] 

2aaela-1 

PeA^r) T{a)b2" exp £T > 0, a > 0. b > 0 (4.16) 

where 

b= v ^ F + ^ a = (4.1' 
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and the n-th order expected value of the density function is [105] 

The density function of the phase components also does not have a closed-from ex­

pression. A pseudo-analytical form of the PDF of the phase components in such a 

situation can be obtained from the results in [104] as 

Ve9{
£e) = 0 , 2 • 2 " / 2 2—^ -n <ee<ir (4.19) 

2K(OI smz s9 + o* cos2 ee) 

Assuming that the values of a\ and a^ are close to each other, it can be shown that 

the n-th order expected value of this PDF is 

{ 0 for n odd 

2auav TT" f (4.20) 
-5 r lor n even 
a^ + a^n + 1 

The real and imaginary components of the complex coefficients of the second- and 

higher-level decompositions are modelled as independent zero-mean Gaussian having 

equal variances, i.e., a\ = a^ = a\ (say). Hence, the magnitude components of such 

coefficients can be statistically modelled by the Rayleigh PDF in the form [89] 
.2 -| 

£r > 0 (4.21) 

where the n-th order expected value of this density function is given by [94] 

£ K } = (2a c
2 ) i r ( l + ^ ) (4.22) 

and the phase components are modelled by the uniform PDF in the form [89] 

Pes{e6) = — - 7T <£e<TT (4.23) 

where the n-th order expected value of this density function is given by 
0 for n odd 

E{en„}={ *" f U-24) 
lor n even 

/? + 1 

i \ £ r 

PeA£r) = ^ e x p 
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It can be observed that the expressions for the PDFs and moments for the second-

and higher-level decompositions given by (4.21), (4.22), (4.23), and (4.24) can also be 

obtained from the corresponding expressions for the first-level decomposition given 

by (4.16), (4.18), (4.19), and (4.20), respectively, by considering <ru = av = ac. 

4.4 Estimation and Detection 

In this section, an estimation technique and a detection technique are developed 

for image signal processing using the statistical models that have been proposed in 

the previous section for the Cartesian and polar representations of the 2D DT-CWT 

coefficients. In both the cases, the image is assumed to be corrupted by additive white 

Gaussian noise (AWGN). Since the DT-CWT is a linear transform, in each subband 

the complex wavelet coefficient of the noisy image at the spatial location (i,j) can be 

written as 

9%3 = fij + £ij (4-25) 

where /,-.,• and e^ are, respectively, the wavelet coefficients of the true image and 

noise. Let each of the wavelet coefficients g^, f^, and e,j represent the samples of the 

random variables gd, fd, and ed (d G u, v, r, 9), respectively. Here the suffixes u, v. r . 

and 0, respectively, denote the real, imaginary, magnitude, and phase components of 

the complex coefficients. The random variable ed (d G u, v, r, 9) can be statistically 

modelled as described in Section 4.3. Next, using the statistics of ed (d G u, v, r ) 

and the MAP criterion, we formulate the estimators for /,7. Also, using the statistics 

of £e, a ridge detection technique is proposed. For notational simplicity, fzj in the 

Cartesian form is denoted as fu+ijv and in the polar form as J'r^fo- Similar notations 

are used for gtj and cy-. 
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4.4.1 MAP Estimation 

The MAP estimators for /d (d G u, v, r) can be written as (see Section 5.3.2) 

/d(ffd) = argmaxp / d |g d(/d |gd) 

= argmax [p£d(gd - fd) • pfd{fd)} 
Jd 

= argmax[lnp£d(gd - fd) + lnp / d( /d)] (4.26) 

where p£i(-) and Pfd(-) (d £ u, v, r ) are the corresponding PDFs for the noise and 

true image, respectively. In this case, p/d(-) (d 6 u, v) are defined as locally i.i.d. 

zero-mean Gaussian with conditional variance J\f(0, o2fA) [106]-[109]. Since / r is a 

non-negative random variable, PfT(-) is defined as locally i.i.d. Gaussian distribution 

with a conditional non-negative mean and variance A/"(/i/r, a\) (nfT > 0). 

In the Cartesian representation, p£d(-) (d € u, v) are zero-mean Gaussian PDFs with 

subband-adaptive variances. Therefore, the estimated real and imaginary components 

of the image coefficients are 

2 2 

/» = 2 ," 2 " 9u /v = 2 , T 2 ' 9* 4 - 2 7 ) 

where a\ and a\v are obtained using (4.11)-(4.13). The variances, a2^ and o~jv, of the 

true image components are estimated locally from the noisy observation using a ML 

method as [106] 

where <S!; is a square-shaped local neighborhood region centered at gX] and H is the 

total number of data samples in this region. The estimated image is obtained from 

the inverse transformation of /u + ?./„. In the polar representation, the GT PDF with 
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subband-adaptive parameters is sufficient to define p£r(-)- I n such a case, to maximize 

(4.26), we need to solve the equation 

^-TJr
 + p^r-fr)-^- = 0 (4.30) 

Thus, a closed-form expression for the MAP estimator of fT can be obtained as 

fT = max 

^ ( 9 l - / i / r )
2 - 4 6 2 4 ( 1 - 2 a ) ( 2 a 4 + 62)), 0 j (4.31) 

It can be shown that the parameter a lies between \ and 1. Therefore, the value of fT 

given in (4.31) is real and non-negative. The MAP estimator considering that p£r(-) 

as a Rayleigh PDF is obtained as a specific case of (4.31), when a = 1 and b = \f2ac. 

Thus, the MAP estimator for the second- or higher-level decomposition is given by 

A = maX f 2{a2 \ ^ ((24 + °l)9* + ViA-

yj°i(9r - f ' f l ) 2 + 4 4 a c
2 + Ao%oi), 0 j (4.32) 

Note that an estimator similar to (4.32), which has been given in [110], can be obtained 

by letting ;u/r = 0. The mean yû r and variance 4 or" the magnitude components of 

the true image wavelet coefficients arc estimated locally from the noisy observation 

using a ML method as 

(4.33) 

°i = m a x \»> A9*- /%) ~ < > 0 (4-34) 

where /<9r is the mean of noisy samples, 

6 ' r ( 0 + i > l fc„-i 
_ j Va\ T(a) 

ac for £ > 1 
7 

(4.35) 
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and 

\ a V r (« ) / ; (4.36) ol_ = < 
4 *-ol ioxl>>\ 

2 

§endur and Selesnick [66], and Achim and Kuruoglu [67] have shown that the esti­

mated magnitude components of the DT-CWT, along with the noisy phase compo­

nents, are sufficient for a good noise reduction performance. The estimated image is, 

therefore, obtained from the inverse transformation of fT^-()e-

4.4.2 Ridge Detection 

The phase of the 2D DT-CWT carries significant information near the image discon­

tinuities, such as ridges and edges. Thus, the phase statistics of the complex wavelet 

coefficients can be used to detect a ridge in an image. In particular, we are interested 

in detecting the ridge of an image corrupted by a random Gaussian signal. In such 

a case, we need to distinguish the phase components of the ridges from that of the 

smooth areas. In the smooth areas, the phase characteristics are totally random due 

to the Gaussian noise. Therefore, the sample-variance [111] of the phase components 

in this region is equal to or greater than the phase variance of the noise. On the other 

hand, in a region where a ridge exists, the phase components from the true signal are 

much stronger than that of the noise. Hence, in such a region, the sample-variance 

of the phase components is smaller than that of the noise. Taking into account the 

inter-scale phase consistency [99], we use the phase components of the parent sub-

band to improve the detection. Finally, the phase of a ridge in a subband of the £-th 

decomposition can be detected as 

z / e f = ^9et • leW2
ge < al9) - 2Zgec_1 • li-i{o2

ge < a2J (4.37) 

where !/{•} is an indicator function that takes a value of 1 or 0 depending on whether 

its logical value is true or false, a* is the sample-variance of the noisy phase compo-
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nents in the local neighborhood Stj, and a\ is the phase variance of the noise that 

can be calculated as 

•?r2 2cr£ucr£v for I = 1 

for I > 1 

< = { 2
 £u £v (4-38) 

y 

4.5 Experimental Results 

To test the performance of the proposed statistical models, two sets of experiments 

are conducted. In the first set of experiments, Monte-Carlo simulations are carried 

out to test how well the proposed PDFs match the empirical ones. The closeness of fit 

of the sample-moments and proposed theoretical moments are also examined through 

these experiments. In the second set of experiments, we evaluate the performance of 

the estimators and detector developed in Section 4.4 as applications of the proposed 

PDFs. The complex coefficients in all these experiments are obtained by employing 

a 3-lovel 2D DT-CWT, wherein an (ll,17)-tap biorthogonal filter in the first level 

of decomposition and 6-tap Q-shift orthogonal filters in the second- and higher-level 

decompositions [53] are used. 

4.5.1 Experiments on Monte-Carlo Simulations 

In these experiments, each of the Monte-Carlo simulations uses one thousand runs. 

In each of the runs, a Gaussian distributed signal Af(lO, 100) of size 512 x 512 is 

generated. Fig. 4.2 shows the contour plots of the joint PDFs of the real and imagi­

nary components of the coefficients of the HL subbands of the first- and second-level 

decompositions, namely, / / L I ] , HL21, HLI2, and HL22. It can be seen from this 

figure that the real and imaginary components of the complex coefficients for each 

subband are independent zero-mean Gaussian having unequal variances for the first 

level of decomposition, and have equal variances for the second-level decomposition. 
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It may be pointed out that the variances of the real and imaginary components are 

not equal in the other subbands of the first level of decomposition. Except in the 

first-level decomposition, the real and imaginary components in all the subbands at 

levels 2 and 3 show equal variances. From Fig. 4.2, it is also seen that the variances 

of the real and imaginary components of any subband are dependent on o2
q and pc, 

which themselves are dependent on the filter coefficients, as described in Section 4.3. 

Further, it is observed that the contours of the proposed joint PDFs very closely 

match those of the empirical ones. 

Fig. 4.3 shows the PDFs of the magnitude components of the complex coefficients 

for the above mentioned subbands. In the case of the subbands of the first-level 

decomposition, the magnitude components of the coefficients are modelled using the 

Gr PDF, whereas that of the second-level by using the Rayleigh PDF. It is observed 

form Figs. 4.3(c) and 4.3(d) that the Rayleigh PDF matches with the corresponding 

empirical PDF very well both in the peak and tail regions. This is consistent with 

the fact that the Rayleigh PDF, an exact density function, has been used in modeling 

the magnitude components of the coefficients in the second level of decomposition. 

Similar result holds for the other subbands of the second level of decomposition as 

well as for all the subbands of the third level of decomposition. On the other hand, 

the Gr PDF, which is an approximate density function that has been used in the 

first-level decomposition, matches very well in the tail part of the empirical one, 

but has a slight mismatch in the peak region. It is to be pointed out that similar 

result holds for the other subbands in the first level of decomposition. In many 

applications of signal processing, the tail part is more important than the peak part 

of the empirical PDF [67]. Moreover, the GF PDF is mathematically tractable. 

Hence, the GT is an appropriate PDF for modeling the magnitude components of the 

2D DT-CWT coefficients in the first-level decomposition, provided the signal being 
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decomposed follows the Gaussian distribution. Fig. 4.4 shows the corresponding 

PDFs of the phase components of the coefficients in polar coordinates. It is observed 

that the pseudo-analytic PDF given by (4.19) very closely approximates the distri­

bution of the phase components of the 2D DT-CWT coefficients of the subbands 

under consideration in the first-level decomposition. It may be mentioned that sim­

ilar performance has been observed for this PDF to model the phase components of 

the complex coefficients of the other subbands in the first-level decomposition. It 

is seen from Figs. 4.4(c) and 4.4(d) that the uniform PDF used in the second-level 

decomposition matches very well with the empirical ones for the coefficients of the 

subbands HLI2 and HUli- Similar results hold for the other subbands in level 2 

and all the subbands in level 3. Fig. 4.5 shows the non-zero sample-moments [89] 

as well as that of the proposed theoretical moments up to the fourth order for the 

different subbands, where we have used a Gaussian distributed signal having a mean 

of 0.1 and a variance of unity. Such a choice of the variance renders the values of 

all the higher-order moments of the real, imaginary, and magnitude components to 

be less than unity, and thus, a single plot may be used to compare all the higher-

order moments of a particular component. In Fig. 4.5, subbands 1 to 6 are obtained 

from the first-level decomposition, 7 to 12 from the second-level decomposition, and 

the rest from the third-level decomposition. It is observed from this figure that for 

the different subbands, the proposed theoretical moments approximate the sample-

moments very well for both the Cartesian and polar representations of the DT-CWT 

coefficients. As the level of the decomposition increases, the number of data sam­

ples decreases. As a consequence, the deviation between the sample and proposed 

moments increases. In addition, this deviation also increases with the order of the mo­

ments. These two observations resulting from our experiments are consistent with the 

fact that the deviation between the sample and theoretical moments increases with 
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decreasing number of data samples as well as with increasing order of moments [111]. 

In our experimental study, however, it has been observed that for the moments con­

sidered, the average deviation is less than 5% for any of the decomposition levels. If 

we consider all the subbands of the 3-level DT-CWT, then the average deviation is 

even less than 0.2%. Thus, the results of Fig. 4.5 concerning the moments show that 

the proposed PDFs can model different components of the DT-CWT coefficients of 

the Gaussian distributed signal very well. 

4.5.2 Experiments on Estimation and Detection 

In these experiments, we use several grayscale test images of size 512 x 512, such as 

Lena, Boat, Barbara, and Bridge. The images are corrupted by additive Gaussian 

noise sequences with standard deviations of 10, 15, 20, 25, 30, and 50. The window-

sizes used for calculating the local statistics of the components of the complex co­

efficients are 3 x 3, 5 x 5, 7 x 7, and 9 x 9 . Here, we present the MAP estimation 

results only for the image Lena with a noise standard deviation of 20 using a 7 x 7 

window and the phase-based ridge detection results only for the image Boat with a 

noise standard deviation of 10 using the same window size. In the former case, we 

have chosen the image Lena, as it is one of the most widely used test images that 

possesses a good mixture of edges (horizontal, vertical, diagonal, curve, etc.) and 

textures, whereas for latter case, we have chosen the image Boat as it possesses ridges 

with various orientations. 

Fig. 4.6 shows a cropped section of the original image Lena, its noisy version, and the 

output images of the MAP estimators both in the Cartesian and polar forms. Fig. 

4.6(c) shows the output image from the estimator in the Cartesian form considering 

the variances of the real and imaginary components to be all equal in each level, while 

Fig. 4.6(d) shows the corresponding image for the case where they are unequal in the 

first level and equal in the succeeding two higher levels. The PSNR is 30.71 dB in the 
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former case and 31.74 dB in the latter case. The corresponding output images from 

the estimators in the polar form are shown in Figs. 4.6(e) and 4.6(f), respectively. 

It is found that the estimator using the Rayleigh PDF as the noise model in the 

first level provides an overall PSNR of 31.40 dB, whereas that using the GT PDF 

provides a PSNR of 31.95 dB. The improvement of the estimation performance, such 

as the proposed estimator using the polar form preserving the edges on the hat and 

eye-lid of Lena more significantly than the estimator using the Rayleigh PDF as the 

noise model in the first level, can also be observed from the output images (see Figs. 

4.6(e) and 4.6(f)). These results show that significant improvements in the estima­

tion performance can be obtained using the proposed statistical models both in the 

Cartesian form and in the polar form. In the polar form, however, the estimator 

provides PSNR values that are higher than that in the Cartesian form, since the 

magnitude components are more shift-invariant than the individual real and imag­

inary components [66], [67]. Hence, an estimator using the magnitude components 

usually provides a better estimate of a noisy image with less amount of Gibb's artifact 

as compared to the one using the individual real and imaginary components. The 

reduced amount of artifacts in the output obtained in the polar form as compared to 

that in the Cartesian form is evident, when we compare the images in Figs. 4.6(e) 

and 4.6(f) with that in Figs. 4.6(c) and 4.6(d). The improvement in the performance 

of the estimation of the wavelet coefficients, whether in Cartesian form or in polar 

form, is mainly due to the fact that the content of the clean signal increases as the 

scale increases [45], [107]. Therefore, a significant improvement of the estimation per­

formance can be achieved at a lower level of decomposition than that at higher ones. 

In other words, the statistical model in the first level of decomposition is more crucial 

for any estimation technique. 

Fig. 4.7(a) shows a cropped section of the original image Boat. The noise-free phase 
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Figure 4.7: Ridge detection by phase for the cropped image Boat, wherein the noise 
standard deviation is 10. (a) Original image, (b) Phase of the zoomed-in section 
of (a), (c) Phase of the corresponding zoomed-in section of the noisy image, (d) 
Detected phase from (c) rising uniform PDF in (: — 1 (MSB—41.49 dB). (e) Detected 
phase from (c) using the proposed PDF in ( = 1 (MSE=4L21 dB). 
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vectors of the ridges inside the rectangle of the original image are shown in Fig. 4.7(b) 

and the corresponding noisy ones in Fig. 4.7(c). In order to detect the phase com­

ponents, we use the complex coefficients of the HL\\ and HLI2 subbands of the 2D 

DT-CWT. Fig. 4.7(d) shows the detected phase vectors assuming a uniform PDF 

for the phase components in the first two levels, while Fig. 4.7(e) shows the corre­

sponding detected vectors by considering the proposed analytic PDF in the first level 

and uniform PDF in the second level. The MSE between the original and estimated 

phase components is 41.49 dB in the former case, and 41.21 dB in the latter case. 

Thus, in terms of the MSE, an improved detection performance is achieved using 

the proposed PDF instead of using the uniform PDF. The phase components of the 

complex wavelet coefficients, specially those in the lower level of decompositions, are 

sensitive to noise [112], [113]. This is due to the fact that the phase components are 

more shift-variant than the magnitude components and the lower level of decomposi­

tions are contaminated by noise more significantly than the higher level ones. Hence, 

a more accurate statistical model of the phase components for the first-level decom­

position can produce a better quality ridge detection. The improved ridge detection 

performance can be observed from Figs. 4.7(d) and 4.7(e), in which the random phase 

vectors appearing in the noisy image outside the ridges are removed significantly by 

the proposed detector as compared to that using the uniform PDF. 

4.6 Conclusion 

In this chapter, probabilistic models of a Gaussian distributed signal have been in­

vestigated in the 2D DT-CWT domain. It has been shown that in the Cartesian 

form, the real and imaginary components of the complex coefficients are independent 

zero-mean Gaussian having unequal variances in the first level of decomposition and 

equal variances in the second- and higher-level decompositions. The variances of the 
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transformed signals are scaled by a factor that depends on the transformation matri­

ces and the correlation between the quadrature-filtered coefficients of the two trees. 

Since the first-level decomposition of the 2D DT-CWT uses wavelet filters that form 

an approximate Hilbert-pair, the correlation between the quadrature-filtered coeffi­

cients of the two trees cannot be ignored in this level. Consequently, the variances 

of the real and imaginary components of the complex coefficients in the first level of 

decomposition are not the same. In the polar form, the magnitude components of 

the complex coefficients have been modelled by a Gr distribution for the first-level 

decomposition and by a Rayleigh distribution for the second- and higher-level decom­

positions. The corresponding phase components have been modelled by an analytic 

PDF. Monte-Carlo simulations have shown that the proposed statistical models very 

closely match the empirical models. The estimates of the moments and their close 

proximity to the sample-moments further reinforce the accuracy of the proposed sta­

tistical models. In addition, the proposed statistical models are used to obtain MAP 

estimators and a phase-based ridge detector for noisy images. Experimental results 

have shown that the proposed statistical models play a significant role in these appli­

cations, particularly when the input signal is characterized by a Gaussian distribution. 

It is to be pointed out that the statistical models of Cartesian and polar representa­

tions are further used for reducing AWGN of images and video in Chapters 5 and 8, 

respectively. 



Chapter 5 

Wavelet-Based Image Denoising 
Using Proposed M G H P D F 

5.1 Introduction 

In this chapter, it is shown that wavelet-based image denoising problem can be well 

addressed by the MGH PDF developed in Chapter 3. First, we provide a brief in­

troduction to show that various image degradation models can be represented by an 

AWGN model. The role of DWT in reducing AWGN from a corrupted image is also 

discussed. Next, statistical estimation techniques for the noisy wavelet coefficients 

are developed using two standard criteria, viz., MMSE [77], [78] and MAP [34], [79]. 

Both the subband- and locally-adaptive image denoising methods that use the MGH 

PDF are considered. Experiments are carried out using the decimated DWT and DT-

CWT coefficients of an image to evaluate the performance of the denoising methods 

developed. It is shown that the proposed MGH PDF allows us to set an appropriate 

amount of shrinkage of the noisy wavelet coefficients to obtain an output image that 

meets the requirement of a desired level of PSNR, SSIM or visual quality. It is also 

shown that introduction of the proposed PDF in the wavelet-based image denoising 

methods improves the estimation performance as compared to the existing denoising 

methods. 

72 
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5.2 Image Denoising and D W T 

The distortion of images by noise is common during its acquisition, processing, com­

pression, storage, transmission, and reproduction. The aim of denoising is to remove 

the noise while keeping the signal features as much as possible. Traditional algo­

rithms perform image denoising in the pixel-domain. However, the application of the 

DWT in image denoising, compression, etc. has shown remarkable success over the 

last decade. The noise that corrupts the signal may be signal dependent or signal 

independent [114]. If the noise is independent of the signal, the DWT coefficient of 

the noisy image at the spatial location (i,j) of a subband is given by 

gij = fij + £ij (5-1) 

where e^ is the DWT coefficient of the additive noise at the reference location. In 

most of the cases, the noise is assumed to be zero-mean white Gaussian (e.g., thermal 

noise), with a variance o\. In the literature, this type of degradation model is very 

often referred to as the AWGN model. For signal dependent noise, such as the photon 

noise, film-grain noise, and speckle noise, the DWT coefficients of the noisy image 

can also be represented as AWGN model, but with some modifications. For example, 

in a low light imaging system the photon noise can be assumed as a Poisson process. 

In such a case, the degradation model can be treated as AWGN [115] by considering 

9ij = 9ijlQ a n d the noise variance to be index dependent, o2... = E{(jij/g2}, where g^ 

is the wavelet coefficient of the observed image and g is a constant of proportionality. 

When images recorded on a photographic film are digitized, a noise called the film-

grain noise corrupts the image. Froehlich et al. [116] have shown that the corruption 

by film-grain noise can be modelled as 

9u = fa + Hfjxgiv + <72,,. (5.2) 
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where gitj and g ^ axe, respectively, the samples from two zero-mean i.i.d. Gaussian 

random processes with variances a2
gx and a2 , k is a proportionality factor, and \ is 

an exponent usually having a value of 0.5. It has been shown that the degradation 

by film-grain noise can be modelled as AWGN by considering the index dependent 

noise variance a2
Ei. = ^2E{gij}a2

t + a2
2 [115]. Another type of noise encountered in a 

practical imaging system is the speckle noise, which is generated when the system uses 

coherent radiation pattern. Examples of such noise can be found in the ultrasound, 

SAR, laser, and sonar images. The most widely used model for speckle noise is the 

multiplicative model, which is given by [115], [117] 

9ij = Jijvij (°-3) 

where v\j is a stationary noise uncorrected with the image having mean /z„ and 

variance a2. Depending on the application, distribution of this noise can be assumed 

to be Gaussian as in SAR images, Rayleigh as in ultrasound images, etc. Such 

a multiplicative degradation model can also be converted to the AWGN model by 

considering the index dependent noise variance to be [115] 

where fi.gij and a2... respectively, are the mean and variance of the degraded DWT 

coefficients at each index (i,j). Homomorphic approach [78] is another way of con­

verting the multiplicative degradation model to the additive one, wherein the log-

transformation is used in (5.3). Since most of the practical noise encountered can be 

either modelled or remodelled as additive Gaussian noise, denoising of images cor­

rupted by AWGN stands as a classical problem in signal-processing. 

The DWT-based signal denoising techniques for AWGN can be found in [12]-[15], 

[21], [22], [25], [26], [42]. [51], [65], [72], [73], [95], [106]-[108], [118]-[124], where the 

wavelet shrinkage method proposed by Donoho [119], [120] is the pioneering work. The 
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method described in [120] provides a mini-max optimal solution. Another criterion 

commonly used is the MSE, even though it does not match well with the charac­

teristics of the HVS [125]. However, since it is a measure of the noise power [114], 

and is mathematically convenient in the context of optimization, it is employed as a 

denoising criterion in many image denoising applications. The DWT used in image de-

noising can be of many types, such as orthogonal/biorthogonal, real/complex-valued, 

separable/non-separable, or decimated/non-decimated. Due to the shift-invariance 

property, the non-decimated separable DWT [45] improves the image denoising per­

formance in MSE approximately by 1 dB as compared to that of the decimated 

representation [12], [71], [126], [127]. To reduce the computational load of the non-

decimated wavelet transform as well as the Gibbs artifacts, cycle-spinning has been 

proposed [51]. Image denoising by using transforms with improved directional se­

lectivity, such as the DT-CWT [52], ridgelet [39], curvelet [40], contourlet [41], and 

steerable pyramid [42], [43] have also been introduced. 

There are two major approaches for statistical wavelet-based denoising [128], [129]. 

The first approach is to design a statistically optimal threshold parameter for some 

nonlinear thresholding or shrinkage functions. Image denoising methods using such an 

approach include the VisuShrink [119], SureShrink [120], BayesShrink [13], amplitude-

scale-invariant Bayes estimator [130], NeighShrink [131], Spatial-correlation thresh­

olding [132], and empirical Bayes thresholding (EBayesThresh) [133]. Standard choices 

for nonlinear thresholding or shrinkage functions are soft- and hard-thresholding [134], 

firm-shrinkage [135], and non-negative garrote shrinkage [136]. Methods using such 

shrinkage functions are computationally simple, but have certain drawbacks in view 

of the fact that the functions representing the nonlinearity are arbitrarily chosen. For 

example, the soft-thresholding technique yields a biased estimate with a moderate 

variance, whereas the hard-thresholding technique yields a less biased estimate but 
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with a higher variance [136]. In the second approach, instead of using an arbitrary-

function to represent the nonlinearity, the shrinkage function is designed by mini­

mizing a Bayesian risk, typically under the MMSE criterion [15], minimum mean 

absolute error criterion [137] or MAP criterion [65], [138]. The development of an 

optimal threshold or shrinkage function is usually based on the PDF or simply the 

prior function of the image wavelet coefficients. The marginal PDF of a true image 

and its self-similar subband wavelet coefficients are unimodal and sharply-peaked in 

nature [74]. [139]. Therefore, higher-order statistics are necessary to describe the 

sharp central cusp of the density function of the image coefficients. The parameters 

of a PDF and their estimation play a significant role in the Bayesian denoising tech­

nique, since the computational complexity of a subband-adaptive Bayesian denoising 

is 0(r}NiN2), V being the number of parameters of the PDF and N\ x A^ the size of the 

image. Subsequent to the work of Mallat [47], the GG PDF with the shape parameter 

s (1 < s < 2) has been commonly used to model the image wavelet coefficients [12]-

[15], [69], [126], [127], [140]. For example, the threshold factor in the BayesShrink 

method [13] and the parameter 'signal of interest' in the ProbShrink method [127] as­

sume that the DWT coefficients in each subband arc i.i.d. random variables having a 

GG distribution. Under the simplest prior GG with s = 2, and the i.i.d. assumption, 

both the MMSE and MAP estimators provide the same closed-form solution, the well 

known Wiener filter. For the purpose of denoising, the SMG prior function is used 

in [24], [25], [42], [70]-[72], [141], [142], wherein the parameters are estimated using 

the EM algorithm. In [92], it has been shown that four to eight state variables of the 

SMG PDF are sufficient for a good approximation of the prior function of the subband 

wavelet coefficients of images. In order to obtain a Bayes estimator for image denois­

ing, Figueiredo and Nowak [130] have used Jeffreys' prior as a statistical model for 

the wavelet coefficients, since this prior is free of any parameter. In [21] and [143]. the 
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SaS PDF with characteristic exponent a (1 < a < 2) has been proposed as a prior 

of the image coefficients. This PDF has no closed-form expression even though its 

characteristic function has one, and its parameter estimation is poor, specially in the 

presence of noise [92]. The BK PDF has been applied in the wavelet-domain MMSE 

estimator by Fadili and Boubchir [22]. The SNIG PDF for reducing the multiplicative 

noise of a log-transformed image (e.g., SAR and medical ultrasound images) has been 

used in a DWT-based MAP estimator in [23], [76]. At present, most of the PDFs used 

for modeling the image wavelet coefficients use a fixed number of parameters that are 

usually derived from the second and fourth order moments of the image coefficients. 

As a result, in most of the cases these PDFs become much more leptokurtic than the 

empirical one (see Chapter 3). Since the DWT coefficients are locally stationary [64], 

the parameters of some of the PDFs are refined with respect to the local spatial con­

text within a subband [12], [13], [25], [42], [79], [106], [107], [118], [131]. In such a 

case, when the denoising technique is locally-adaptive within a subband, the compu­

tational complexity increases to 0(rjw2NiN2), w x w being the size of a squared-shape 

local window. To take into consideration the inter-subband dependency, in some cases 

PDFs have been extended to the bivariate [65]-[68] and multivariate forms [69], [70] 

or used in the HMT framework [71], [72]. In such a case, the computational load of 

a denoising technique increases exponentially with the number of subbands, and this 

is substantially higher than the corresponding locally-adaptive method. 

In this chapter, novel DWT-based denoising methods are developed using the univari­

ate MGH PDF that has been proposed for the DWT coefficients of images. This PDF 

is used in view of the fact that it matches the empirical density function of the wavelet 

coefficients very well, which would have an effect on the denoising performance. The 

proposed PDF is first applied as a prior function in the subband- and locally-adaptive 

Bayesian MMSE-based noise reduction methods. Next, a locally-adaptive Bayesian 
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MAP-based noise reduction method is developed. The subband- and locally-adaptive 

methods are considered for denoising, in view of the fact that they offer lower com­

putational burden as compared to the method using inter-subband dependency. It 

is shown that the introduction of the more accurate prior in the proposed noise re­

duction techniques results in a performance better than that of the subband- and 

locally-adaptive wavelet-based image denoising methods that use conventional PDFs, 

in terms of the standard indices of noise reduction. 

5.3 Denoising Algorithms 

In this section, we assume that the image pixels are corrupted by AWGN with a 

known variance a2.. If a\ is unknown, it may be estimated by applying the median-

absolute-deviation method [120] in the highest frequency subband of the noisy wavelet 

coefficients. We propose both MMSE- and MAP-based denoising, wherein the Bayes-

risk estimator uses the proposed MGH PDF. In a Bayesian framework, g^, ftj, and ctJ 

in (5.1) are considered as samples of the independent random variables g, f. and e, 

respectively. The signal component / is modelled as the i.i.d. MGH random variable. 

The random variable of the noise component e is modelled as a zero-mean Gaussian 

random variable with a subband-adaptive variance o2
e, which depends on o\, W, and 

the arithmetic operations of the corresponding wavelet-domain (see Chapter 4). 

5.3.1 MMSE Estimator 

The Bayes-risk estimator for the denoised wavelet coefficient J)j using the MMSE 

criterion1 is the conditional mean and is given by 

f(g) = J Pf\g{f\g)fdf (5.5) 

-'MMSE criterion minimizes the MSE cost function 
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where Pf\g{f\g) is the posterior density function conditioned on the wavelet coeffi­

cients under consideration. According to the Bayes' rule, the prior function Pf(f) of 

the image wavelet coefficients can be used to compute the posterior density function 

as 

Pg\f(9\f)Pf(f) 
Pf\g(f\9) = 

Pg(9) 

Pg\f(9\f)Pf{f) 

JPg\f(9\f)Pf(fW 

Pe(g - f)Pf(f) (5.6) 
JpB(9-f)PfWf 

where pe(-) is the density function of the wavelet coefficients corresponding to the 

noise component. It can be seen from (5.5) and (5.6) that the MMSE-based shrinkage 

function f(g) is independent of the weight parameter 7 of the MGH PDF that has 

been estimated in Chapter 3. An analytical expression of the proposed MMSE-based 

shrinkage function can be obtained as (see Appendix B) 

fig) = ^ (5-7) 

where 

C/2 

A n u m = J2 for X > r " 2 ^ + % ( r > u)(\*e)2r~2U+2 

r=0 u=0 

D-(2r-2u+2) [ ~—g 1 — £L(2r-2u+2) I ~ < 7 
(Tr 

(5.8) 

C/2 

Aden = £ > - • E <P(V, U)(\a£)
2r-2U+' 

r=0 u=0 

D-(2r-2u+\) I -—9 I + D-(2T-2u + \) ~g 

1 

(5.9) 

ip{r,u) = , {r-iu : A = (a'i 1^2) , and Dr(-) is the parabolic cylinder function [144]. 

It is to be noted that for the subband-adaptive MMSE estimator when \g\ > f0, <," = 4 

and [J4 = K™i]~
3- The shrinkage function given by (5.7) may be directly used for esti­

mating each of the noisy wavelet coefficients. The computational complexity of this 
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function is O (iCDN1N2Er=o ( r+1)
2

(r+2)) = 0(CD (C + 2)(C + 4)(C + 6)N1N2/12), 

whei-e Op is the computational complexity of Dr(-). Since the computational load 

increases exponentially with £, an implementation of such a function may not be 

practical in view of the excessive computational effort involved. Hence, we represent 

the shrinkage function in terms of a linear convolution as 

hg) = *.(»). to/to)) (5.10) 
Ve{g) * Pf{9) 

Taking the computational advantage of the DFT, the shrinkage function can be ex­

pressed as 

m ~ r-in.{g)]-r\p,(g)}] ( 5 - n ) 

where T is the forward DFT and J7'1 is the inverse DFT. Using a fast implementation 

of the DFT, the complexity of computing the shrinkage function can be reduced to 

0(5Nb log vVf,). The function given in (5.11) provides the estimates of the noisy wavelet 

coefficients at the discrete points f,i, where the probabilities of the MGH PDF are 

estimated. Therefore, an interpolation function is required to estimate each of the 

noisy wavelet coefficients. In our case, we choose the cubic Hermite spline [145] as 

an interpolation function so that the estimated Hermite polynomials for the MGH 

PDF can also be used for interpolation. This spline function requires the estimation 

of four parameters and has a computational complexity of 0(4(Nb — l)7Vi A^)- Since 

Nb <§C N1N2 and ( Ĉ 7V6, the computational complexity of the shrinkage function 

given "by (5.11) for subband-adaptive denoising is C(47V"()7V1A 2̂)- From simulation 

results, we have observed that the denoising performances using the two shrinkage 

functions, given by (5.7) and (5.11). are essentially the same. Hence, we prefer to 

use (5.11) for the proposed Bayesian denoising in view of its lower computational 

complexity. 

The proposed MMSE estimation requires that the parameters of the proposed prior 
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function be estimated as accurately as possible from the noisy observations. Since the 

parameters of the MGH prior function are expressed in terms of Mnf, the estimation 

of the n-th order moment of the signal coefficients from the noisy observations is 

sufficient for such a parameter estimation. The noise is independent of the signal and 

additive in nature, since it is AWGN. Therefore, the n-th order moment of the signal 

coefficients is estimated as Mnf by utilizing, Mng and Mn£, which are, respectively, 

the n-th order moments of the noisy signal and noise coefficients. Since the noise is 

zero-mean Gaussian distributed, the odd-order moments of the noise coefficients are 

zero and the even-order moments can be expressed in terms of the noise standard 

deviation a£. In general, the n-th order moment of the noise coefficients is [89] 

{ 0 for n odd 

X (5-12) 
^ l l ^ - 1 ) for n even 

Therefore, the n-th order moment of the signal coefficients is evaluated as 

( Mng for n odd 

/ ^ / n \ . \ (5.13) 
max Mng - 2_, ( 2 J M(n-2„)/M(2tI)e ~ M^ ° f o r n e v e n 

The parameter estimation of the MGH prior function is relatively simple, since these 

Mnf can be substituted in (3.3) to obtain far- On the other hand, the parameter 

estimation of traditional prior functions that have fewer number of parameters are 

often not so simple. For example, the shape and width parameters of the GG prior 

function are estimated numerically that involves iteration. In practice, the conver­

gence of the iterative procedure depends on the initial choice of the parameter. Fig. 

5.1 shows an example of the non-linear shrinkage function f(g) obtained from the 

proposed denoising technique that uses three different values of £ in the MGH prior 

function. It can be observed from this figure that the amount of shrinkage can be 

controlled by changing (. This feature of being able to vary the amount of shrinkage 
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Figure 5.1: Shrinkage function obtained from the modified Gauss-Hermite probability 
density function for the LH2 subband DWT coefficients as a function of £ with a£ ~ 
10. The test images are (a) Lena, (b) Barbara, (c) Boat, and (d) Bridge. 
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may be useful, in particular, in producing an output image that meets the requirement 

of a desired level of denoising performance from the user's perspective. Since the 

wavelet coefficients of images are locally stationary, an improved performance of the 

Bayesian denoising method can be obtained by considering the proposed prior function 

to be locally-adaptive during the MMSE estimation. As explained in Chapter 3, the 

higher-order moments of data samples are not so effective for modeling the local 

neighboring coefficients as compared to that for the subband coefficients. It has been 

shown that the symmetric GC PDF performs better than the Gaussian, GG, and 

SNIG PDFs for modeling the local neighboring wavelet coefficients of images. A better 

quality MMSE estimator for image denoising can, therefore, be obtained by using the 

symmetric GC PDF as the prior function in the proposed MMSE-based shrinkage 

function. Extensive simulations reveal that the difference in denoising performance 

in terms of the MSEs of the MMSE estimators designed using the MGH PDF with 

C = 6 and £ = 4 is no more than 0.25%. Hence, in order to save the computational 

effort, MGH PDF with ( = 4, i.e., the GC PDF, is chosen as the prior function for 

the case of locally-adaptive denoising. In such a case, the number of parameters of 

the MGH prior function is the same as that of the conventional prior functions, such 

as the GG, BK, and SNIG. The computational complexity of the locally-adaptive 

version of the proposed MMSE-based denoising method is 0(4w2Ar„A/iA?2), where Nv 

is the average number of discrete points in a window obtained from the selected bin. 

5.3.2 M A P Estimator 

The Bayes-risk estimator for the denoised wavelet coefficient / y using the MAP cri­

terion2 is the conditional mode of the posterior density function and is given by [66] 

}{g) = argmaxp / |<7(/|g) (5.14) 

2MAP criterion minimizes the delta cost, function 
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Using the definition of the posterior density function given in (5.6), the denoised 

wavelet coefficient using the MAP criterion can be written as 

fig) = argmax [p£{g - f) • pf(f)] 

= argmax [lnpe(g - / ) + lnp / ( / ) ] (5.15) 

Except for a few number of prior functions, e.g., Gaussian and Laplacian, the MAP 

estimation rarely provides closed-form solutions for a relatively complex prior. In 

MAP estimation, it is desirable that the prior function be continuously differentiable, 

since the exact estimation of /,.,• at the non-differentiable points of Pf{f) is not pos­

sible. In this section, we develop the MAP-based Bayesian denoising method that is 

locally-adaptive because of the«following two major reasons: 

• The prior function p / ( / ) in the locally-adaptive case, defined by the symmetric 

GC PDF, is continuously differentiable. 

© The locally-adaptive estimators provide a better denoising performance as com­

pared to the subband-adaptive ones, even though the computational load of the 

former is much higher than that of the latter. 

Similar to most of the other prior functions, it is not possible to obtain an exact 

closed-form expression for the MAP estimator using the proposed GC prior. Hence, 

we have used the approach proposed by Hyvarinen [146] to obtain an approximate 

solution of (5.15), which can be found as 

fij{9) = s ign(^) • max (\gij\ - a2
e\n{g)\,o) (5.16) 

where fl{f) = — ^ [ l np / ( / ) ] is called the score function of / . Using the identity 

jf [Hr(f)] = rHr--i(f). the score function of the symmetric GC PDF can be obtained 

as 

/ ¥ " 3 (5) i n m = J V — . . 3 v fv- (5-i7) 
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The evaluation oifl(f) requires that the variance and kurtosis of the noise-free wavelet 

coefficients be calculated from the noisy condition. In other words, it is necessary to 

estimate the second and fourth order moments of the noise-free image coefficients 

from the noisy coefficients. Since the image is corrupted by AWGN, the second and 

fourth order moments can be estimated from (5.13) as 

M2f = rnax(jf/2g - a\, 0) 

][J4f = ma.x(i\74g - 6M2fcrl - 3a*, 0) (5.18) 

It is to be noted that the computational complexities of estimation of Mnf and Hr 

for the proposed estimator are 0{w2N\N2) and 0(N1N2): respectively. Since w2 > 1, 

the computational complexity of the proposed MAP estimator is 0(2w2A^iA^)-

5.4 Experimental Results 

Extensive experimentations have been carried out in order to compare the perfor­

mance of the proposed denoising methods with that of the other methods. We give 

in this section results concerning five 512 x 512 grayscale images, namely, Lena, Bar­

bara, Boat, Bridge, and Baboon and two types of wavelet representations, namely, 

the decimated DWT and redundant DT-CWT. The first three test images are ob­

tained from the same sources as mentioned in [42] and the last two from [85]. The 

DWT-based experiments use the orthogonal wavelet filter Symmlet-8 (S-8), whereas 

the DT-CWT-based ones use the (11,17)-tap biorthogonal filters at level £ = 1, and 

6-tap Q-shift orthogonal filters at £ > 2, as have been proposed in [53]. The proposed 

algorithms are applied to the 4-level decomposition of the DWT and the 3-level de­

composition of the DT-CWT, since any further decomposition beyond these levels 

does not produce a significant increase in the denoising performance. The perfor­

mance of the Bayesian denoising method is tested using two sets of experiments. In 

the first set of experiments, the MGH prior function is used for the subband-adaptive 
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denoising. In the second set of experiments, the symmetric GC prior function, i.e., 

MGH prior function with ( = 4, is used for locally-adaptive denoising. 

5.4,1 Subband-Adaptive Bayesian Denoising 

Seven different DWT-based Bayesian denoising methods, which are subband-adaptive 

in nature, have been considered in this set of experiments. These are the clas­

sical Wiener filter, SureShrink [120], BayesShrink [13], EBayesThresh [133], Prob-

Shrink [127], BKShrink [22] and proposed method. As pointed out in Section 5.2, 

these methods enjoy a computational complexity that is lower than that of the cor­

responding locally-adaptive one by a factor of w2: and that the computational com­

plexity of those methods that employ inter-subband dependency is even higher than 

those of the corresponding locally-adaptive ones. To the best of our knowledge the 

BKShrink and ProbShrink methods provide the best results amongst the subband-

adaptive denoising methods. The denoising performance of the various methods are 

evaluated using two indices, namely, the PSNR and SSIM [125]. In this context, it is 

to be noted that the authors in [125] have claimed that SSIM can assess the similarity 

between the original and processed images better than the PSNR. Denoising perfor­

mance of the proposed method is tested by using the two shrinkage functions, given 

by (5.7) and (5.11) in Section 5.3. The evaluation of the parabolic cylinder function 

for the analytic expression in (5.7) is performed by the same source code as mentioned 

in [22]. It is to be noted that the processing time of (5.11) is very fast as compared to 

that of (5.7). For example, in a 3 GHz and 512 MB machine, the processing time of 

(5.11) using the MATLAB code is only 6.6 seconds for £ = 14 and the time is virtually 

the same for values of (. On the other hand, the processing time of (5.7) is 1 hour and 

24 minutes for ( = 4 and the time increases exponentially with (,. It is also observed 

that for a given value of C\ the denoising performances of both (5.7) and (5.11) are 

essentially the same. Hence, we provide the results of the proposed method that uses 
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the shrinkage function given by (5.11). From our experiments, we have observed that 

( = 14 provides the best performance in terms of the PSNR, whereas ( = 16 provides 

the best performance in terms of the SSIM, for the proposed method. These values 

of (" are consistent with the values of C mentioned in Chapter 3 as providing the best 

statistical modeling of the image wavelet coefficients by the MGH PDF. The output 

PSNR as a function of the input PSNR obtained from various DWT-based denoising 

methods are shown in Figs. 5.2, 5.3, 5.4, 5.5, and 5.6, respectively, for the test images 

Lena, Barbara, Boat Bridge, and Baboon. From these figures, it can be observed 

that the proposed denoising method with £ = 14 provides the highest output PSNR 

consistently as compared to the other methods. According to the output PSNR val­

ues, the improvement of the denoising performance provided by the proposed method 

is substantial, when the input PSNR is low, i.e., the noise strength is significant. 

Fig. 5.7 shows a comparison between the output PSNR values obtained from the 

SureShrink [120], BayesShrink [13], EBayesThresh [133], ProbShrink [127] methods 

employing the SWT and proposed methods using the Cartesian representation of the 

DT-CWT, when the images are corrupted with ae = 20. From this figure, it can 

also be seen that the output PSNR values of the proposed method are consistently 

higher than that of the other methods while redundant wavelet transforms are used. 

Table 5.1 shows the SSIM values obtained from the various DWT-based denoising 

methods for three different noise standard deviations. It can be observed from the 

table that, except for two values of o~e in the case of the Barbara image, the proposed 

method with £ = 16 provides the best SSIM compared to that provided by the other 

denoising methods. It should be noted that the PSNR values for ( = 16 are about the 

same as those for £ = 14, the difference being not more than 0.1 dB. and that these 

values are at least as good as those provided by the other methods. Fig. 5.8 shows 

the original cropped image Lena, its noisy version with ae — 25, and the DWT-based 
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Figure 5.2: Output PSNR as a function of the input PSNR. for different subband-
adaptive DWT-based Bayesian denoising algorithms using the test image Lena (( = 
14 for the proposed method). 
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Figure 5.3: Output PSNR as a function of the input PSNR for different subband-
adaptive DWT-based Bayesian denoising algorithms using the test image Barbara 
(C = 14 for the proposed method). 
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Figure 5.4: Output PSNR as a function of the input PSNR for different subband-
adaptive DWT-based Bayesian denoising algorithms using the test image Boat (C = 
14 for the proposed method). 
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Figure 5.5: Output PSNR as a function of the input PSNR for different subband-
adaptive DWT-based Bayesian denoising algorithms using the test image Bridge (C = 
14 for the proposed method). 
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Figure 5.6: Output PSNR as a function of the input PSNR for different sub band-
adaptive DWT-based Bayesian denoising algorithms using the test, image Baboon 
(C — 14 for the proposed method). 
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Figure 5.7:. Output PSNR of subband-adaptive Bayesian denoising algorithms using 
redundant. DWT, wherein test images are corrupted with a£ = 20 (£ — 14 for the 
proposed .method). 
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Table 5.1: Values of the index SSIM for various subband-adaptive Bayesian denoising 
methods using the DWT. 

Lena 
aE = lO 
ae = 20 
ae = 30 

Barbara 
CTe = 1 0 

ae = 20 
ae = 30 

Boat 
C7e = 1 0 

aE = 20 
ae = S0 

Bridge 
ae = 10 
cre = 20 
cre = 30 

Baboon 
aE = W 
a£ = 20 
<r£ = 30 

Noisy 
Sure 

Shrink 
in [120] 

Bayes 
Shrink 
in [13] 

EBayes 
Thresh 
in [133] 

Prob 
Shrink 
in [127] 

BK 
Shrink 
in [22] 

Proposed 

0.8733 
0.6788 
0.5326 

0.9442 
0.8836 
0.8306 

0.9379 
0.8786 
0.8318 

0.9310 
0.8861 
0.8440 

0.9505 
0.8992 
0.8530 

0.9523 
0.9015 
0.8586 

0.9528 
0.9039 
0.8617 

0.9122 
0.7645 
0.6303 

0.9501 
0.8804 
0.8134 

0.9437 
0.8726 
0.8119 

0.9320 
0.8716 
0.8122 

0.9550 
0.8916 
0.8242 

0.9562 
0.8943 
0.8311 

0.9565 
0.8915 
0.8245 

0.9002 
0.7325 
0.5917 

0.9420 
0.8665 
0.8034 

0.9394 
0.8650 
0.8029 

0.9309 
0.8673 
0.8099 

0.9465 
0.8793 
0.8192 

0.9478 
0.8805 
0.8226 

0.9486 
0.8833 
0.8242 

0.9544 
0.8501 
0.7355 

0.9622 
0.8933 
0.8228 

0.9625 
0.8953 
0.8275 

0.9490 
0.8708 
0.7988 

0.9593 
0.8896 
0.8193 

0.9611 
0.8894 
0.8166 

0.9637 
0.8996 
0.8369 

0.9450 
0.8301 
0.7121 

0.9546 
0.8753 
0.7966 

0.9544 
0.8763 
0.7990 

0.9342 
0.8493 
0.7613 

0.9527 
0.8757 
0.7978 

0.9555 
0.8765 
0.7954 

0.9566 
0.8817 
0.8060 

denoised versions provided by the BayesShrink method [13], ProbShrink method [127], 

BKShrink method [22], and proposed method with ( = 16. From this figure, it can be 

observed that the proposed method can reduce the noise significantly with the least 

amount of artifacts (e.g., in the eye and the edge of the hat) as compared to the other 

competing methods. 

5.4.2 Locally-Adaptive Bayesian Denoising 

Seven different DWT-based locally-adaptive denoising methods have been consid­

ered in this set of experiments. These are the BivariateShrink [66], locally-adaptive 
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Figure 5.8: Comparison of the denoised images obtained from the different subband-
adaptive Bayesian DWT-based denoising algorithms on Lena with a£ = 25: (a) 
original image, (b) noisy image (PSNR=20.18 dB, SSIM=0.6053), and denoised im­
ages using (c) BayesShrink method (PSNR=29.27 dB. SSIM=0.8552). (d) ProbShrink 
method (PSNR=29.52 dB, SSIM=0.8771). (e) BKShrink method (PSNR=29.50 dB. 
SSIM=0.8801): and (f) proposed method with ( = 16 (PSNR=29.58 dB. 
SSIM=0.8823). 
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Figure 5.9: The IPSNR. values in dB as a function of the window size relative to the 
IPSNR values corresponding to a 3 x 3 window. 

window-based MAP (LAWMAP) [106], NeighShrink [131], ProbShrink [127], SMG 

method [42] and proposed MMSE- and MAP-based methods. In the first method, 

both the inter- and intra-subband dependencies are considered. The second, third, 

and fourth methods inherently use only the intra-subband dependency. In the case 

of the fifth, we provide the results obtained from the intra-subband dependency only 

in order to make a fair comparison with the proposed methods. The parameters of 

the symmetric GC prior function for the proposed denoising methods are refined lo­

cally using different sizes of square-shaped neighborhood regions. Fig. 5.9 shows the 

improvement in the PSNR (IPSNR) values3 as a function of the window size with a 

reference of 3 x 3 window, i.e., IPSNRWXW - IPSNR3x3 as a function of wxw. for the 

MMSE-based denoising of different test images being corrupted with a noise having 

<j£ — 20. From this figure, it can be observed that as the window size is increased, 

from 3 x 3, the IPSNR value increases first and then drops slightly when the window 

exceeds a certain size. This is due to the fact that a sufficient number of samples are 

required for improved parameter estimation of the prior function, but, if the neighbor-

3IPSNR is the difference between output PSNR and input PSNR. 

Lena 
Barbara 
Boat 
Bridge 
Baboon 
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hood region becomes relatively large, the estimation process loses its local contextual 

information. Similar results are Qbtained for other noise standard deviations as well 

as for the MAP-based denoising. The experiments reveal that a 9 x 9 window provides 

the highest IPSNR values in most cases. Considering this fact, we report the results 

provided by our proposed denoising methods using a 9 x 9 window. 

Table 5.2 shows the output PSNR values obtained from the various locally-adaptive 

denoising methods for the test images considered here. From the tabular results, it 

can be observed that among all the DWT-based denoising methods, the proposed 

methods provide the highest output PSNR values as compared to the other methods. 

Between the two proposed denoising methods, viz., MAP-based and MMSE-based, 

the output PSNR values of the latter are higher than that of the former, the difference 

being not more than 0.15 dB. It is to be noted that the proposed MAP-based denois­

ing method is computationally very fast because of its simple thresholding function. 

For example, in a 3 GHz and 512 MB machine, the processing time of this method is 

only 1.6 seconds, while that of the SMG method [25] and ProbShrink method [127] are 

12.7 and 14.2 seconds, respectively. On the other hand, the proposed locally-adaptive 

MMSE-based method is relatively expensive in terms of computation, since it requires 

a processing time of 15.12 minutes for the above mentioned example. However, this 

computational cost is acceptable, since the MMSE-based method consistently pro­

vides the highest output PSNR. Fig. 5.10 shows the original cropped image Barbara, 

its noisy version with aE = 20, and the DWT-based denoised versions provided by four 

different denoising methods, namely, the ProbShrink method [127], SMG method [42], 

and proposed MAP- and MMSE-based methods. This figure also reveals that the pro­

posed methods can reduce noise significantly with the least amount of artifacts (e.g., 

in the eyes and scarf of Barbara) as compared to the others. 
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Table 5.2: Output PSNR, 201og10(255/ae) in dB, where ae is the error standard 
deviation, for different DWT-based locally-adaptive denoising methods. 

Denoising algorithms 

BivariateShrink [66] 
LAWMAP [106] 

NeighShrink [131] 
ProbShrink [127] 

SMG [42] 
Proposed method (MAP) 

Proposed method (MMSE) 

BivariateShrink [66] 
LAWMAP [106] 

NeighShrink [131] 
ProbShrink [127] 

SMG [42] 
Proposed method (MAP) 

Proposed method (MMSE) 

BivariateShrink [66] 
LAWMAP [106] 

NeighShrink [131] 
ProbShrink [127] 

SMG [42] 
Proposed method (MAP) 

Proposed method (MMSE) 

BivariateShrink [66] 
LAWMAP [106] 

NeighShrink [131] 
ProbShrink [127] 

SMG [42] 
Proposed method (MAP) 

Proposed method (MMSE) 

BivariateShrink [66] 
LAWMAP [106] 

NeighShrink [131] 
ProbShrink [127] 

SMG [42] 
Proposed method (MAP) 

Proposed method (MMSE) 

Noise standard deviation ae 

10 15 20 25 30 

Lena 
34.47 
34.35 
34.46 
34.30 
34.57 
34.67 
34.81 

32.63 
32.40 
32.52 
32.41 
32.72 
32.84 
32.95 

31.30 
31.06 
31.04 
31.05 
•31.41 
31.55 
31.63 

30.30 
30.02 
29.88 
30.02 
30.36 
30.52 
30.61 

29.49 
29.22 
28.88 
29.25 
29.57 
29.75 
29.78 

Barbara 
32.69 
32.58 
32.86 
32.51 
32.84 
33.00 
33.04 

30.35 
30.27 
30.44 
30.10 
30.44 
30.62 
30.69 

28.75 
28.73 
28.78 
28.50 
28.81 
29.02 
29.09 

27.58 
27.60 
27.53 
27.31 
27.68 
27.90 
27.90 

26.63 
26.72 
26.54 
26.38 
26.72 
26.96 
26.97 

Boat 
32.48 
32.36 
32.72 
32.53 
32.78 
32.78 
32.91 

30.61 
30.48 
30.64 
30.57 
30.82 
30.83 
30.90 

29.28 
29.09 
29.15 
29.17 
29.44 
29.44 
29.51 

28.24 
28.07 
28.05 
28.10 
28.38 
28.40 
28.44 

27.40 
27.16 
27.08 
27.27 
27.52 
27.56 
27.59 

Bridge 
30.41 
30.42 
30.35 
30.14 
30.31 
30.47 
30.59 

27.93 
28.06 
27.91 
27.75 
27.83 
28.01 
28.15 

26.40 
26.58 
26.36 
26.27 
26.37 
26.57 
26.63 

25.33 
25.55 
25.31 
25.25 
25.34 
25.55 
25.58 

24.58 
24.77 
24.50 
24.50 
24.58 
24.81 
24.81 

Baboon 
30.03 
30.06 
29.97 
29.78 
29.92 
30.10 
30.22 

27.48 
27.53 
27.44 
27.27 
27.38 
27.61 
27.71 

25.84 
25.93 
25.79 
25.65 
25.76 
26.01 
26.09 

24.65 
24.78 
24.61 
24.48 
24.60 
24.85 
24.93 

23.77 
23.94 
23.68 
23.61 
23.68 
24.04 
24.05 
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Figure 5.10: Comparison of the denoised images obtained from the different locally-
adaptive DWT-based denoising algorithms on Barbara with ae = 20: (a) original 
image, (b) noisy image (PSNR—22.11 dB). and denoised images using the (e) Prob-
Shrink method (PSNR=28.50 dB). (d) SMG method (PSNR=28.81 dB). (e) proposed 
MAP method (PSNR=29.02 dB) and (f) proposed MMSE method (PSNR=29.09 dB). 
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In order to overcome the shortcomings of the traditional PDFs of the wavelet coeffi­

cients of images, the MGH PDF was proposed in Chapter 3. In this chapter, in order 

to demonstrate the efficacy of the proposed MGH PDF in an estimation technique, 

we have designed and tested the MMSE- and MAP-based shrinkage functions for its 

use in an image noise reduction technique as a prior function. Both the subband-

and locally-adaptive wavelet-based denoising techniques have been developed. The 

parameters required for the prior function have been estimated from the noisy ob­

servations. Extensive simulations have been carried out using a number of standard 

test images and the simulation results have shown that the performance of the pro­

posed denoising methods, both in the subband- and locally-adaptive conditions, is 

better than that of the existing methods that use conventional PDFs for probabilistic 

modeling of the wavelet coefficients. 



Chapter 6 

Wavelet-Based Image Watermark 
Detection Using Proposed MGH 
PDF 

6.1 Introduction 

In this chapter, it is shown that the incorporation of the univariate MGH PDF, 

proposed in Chapter 3, in the development of a detector for a DWT-based image 

watermarking provides an improved detection performance [147], [148]. First, a brief 

introduction to image watermarking is given. Next, we consider an embedding tech­

nique for the proposed DWT-based additive image watermarking scheme. A detector 

is developed for the DWT-based watermarking using the MGH PDF as the prior, and 

its decision threshold and ROC derived. Experiments are carried out on a number 

of test images, and the results show that the proposed watermark detector performs 

better than the other standard detectors such as the Gaussian and GG do. in terms 

of the probabilities of detection and false alarm as well as the efficacy. It is also 

shown that detection performance of the proposed detector is more robust than the 

competitive GG detector in the case of compression, AWGX, filtering, or geometric 

attack. 

98 
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6.2 Image Watermarking and DWT 

A digital watermark is a distinguishing piece of information that is embedded into 

the data with the intention of protecting the intellectual property rights, verifying 

the authenticity of the data, annotating the data, etc. [149]-[153]. Very often, a wa­

termarking scheme is seen as a secured communication task consisting of two steps, 

watermark embedding and watermark retrieval. In watermark embedding, the sig­

nal, i.e., the watermark, is transmitted through the host data that acts as a channel, 

whereas in watermark retrieval, the signal is received and extracted from the marked 

data [152]. The security of the watermarking is maintained in the same way as in 

cryptography by using a secret key. In contrast to encrypted data, a watermarked 

data can still be used with the embedded watermark. The legal owner knows the 

exact embedding process, which is based on a secret key, and, hence, can extract 

the watermark, while it is not possible do so for an unauthorized party. Thus, wa­

termarking does not necessarily prevent the copying of the marked data; rather, the 

scheme identifies the original data source and its intended legitimate destination, so 

that copyright violations can at least be detected. 

Digital image watermarking can be of two types: imperceptible and perceptible. Very 

often, the imperceptible watermarking is preferred to the perceptible one, since the 

distortion of the original image is minimum in the former than that in the latter, even 

in the case of embedding multiple watermarks. The imperceptibility constraint in the 

image watermarking is achieved by taking into account the properties of the HVS dur­

ing the embedding process [90], [154]-[157]. There are several methods of watermark 

embedding, such as additive [19], [158]-[160], multiplicative [20], [90], [161], [162]. and 

through quantization [163]-[165]. Whatever be the embedding process, the watermark 

travels with the marked image and therefore, remains protected until it is removed. 

In order to resolve the rightful ownership of an image, detection of the watermark is 
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sufficient assuming that the owner of the marked image possesses the exact secret key 

and has the knowledge of the embedding process [166]. If a marked image has a single 

watermark, the detection of the watermark becomes simple provided the original host 

image is available to the watermark detector. But, for a marked image having mul­

tiple watermarks there is ambiguity in resolving the rightful ownership, even when 

original host image is available to the watermark detector [167]. In addition to this 

fact, in many applications such as data monitoring and tracking on the Internet, the 

original host data is not always available and in many multimedia settings such as 

video watermarking, the use of unmarked host data is not practical due to its huge 

volume. As a result, it is necessary to design a blind watermark detector that does 

not require the original host data in the detection process [168]. 

One of the essential requirements of watermarking is its robustness [17], [18], [155], 

[169], [170], which means that the watermark can be detected reliably when the 

marked data goes through any intentional or unintentional standard manipulations 

such as filtering and geometric attacks. Robustness of a watermarking scheme can 

be improved during the embedding process as well as during the detection process. 

The simplest way to improve the robustness during embedding is to increase the 

amount of embedded information, referred to as the payload, in the host data. In 

image watermarking, maximum possible payload can be embedded along with the 

imperceptibility constraint by taking into account the properties of the HVS. Theo­

retical studies on information embedding suggest that the payload may be increased, 

if the host data is treated as a side information in the embedder [20]. Neverthe­

less, the spread spectrum' watermarking scheme is the most popular one, since it 

possesses a very high level of security and robustness [19], [149], [150], [162], [171]-

[174]. In such a scheme, the watermark is embedded in a transformed domain and 

various transforms have been employed for this purpose. Some of these are the 
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DFT [149], [150], [153], [175], the DCT [19], [20], [152]-[154], [166], [169], and the 

DWT [17], [18], [90], [132], [148], [150], [155]-[157], [161], [164], [176]. Dual transformed 

domains have also been used for embedding the watermark, using the DWT-DFT [177] 

and DCT-DWT [178]. It is well known [157], [158] that the recent image coding stan­

dard, JPEG 2000 [1], strongly relies on the DWT for obtaining a good quality image 

having a low bit rate. Moreover, different subbands of the DWT facilitate the embed­

ding of the watermark by exploiting the HVS more efficiently than the DCT or DFT 

coefficients do. In such a case, the DWT-based algorithm can embed the watermark 

with a higher strength, yet maintaining the imperceptibility requirement [179]-[181]. 

The embedded payload of a DWT-based watermarking system may be increased by 

using balanced multiwavelets [182]-[184]. Thus, in general, the DWT-based water­

mark techniques are more robust against any attack [156], [176], [185], [186]. 

Over the last decade, an appreciable number of watermarking schemes have been de­

veloped, wherein the watermark is embedded into the DWT coefficients of the image. 

The most commonly used detector for these watermarking schemes is the correlation 

detector [90], [150], [153]-[157], [161], [164], [166], [169], [176], [187], which is optimal 

only if the data samples follow the Gaussian distribution function [188]. Since the 

DWT coefficients of an image are non-Gaussian, such a Gaussian detector is neither 

optimal nor robust. In order to obtain an optimal detector that is also robust, an 

appropriate approach is to treat the watermark detection as a statistical detection 

problem, wherein a binary hypothesis test is formulated using a more accurate PDF 

of the DWT coefficients of the image. Various types of binary hypothesis testings 

have been used for image watermark detection, and some of these are the Bayesian 

log-likelihood ratio test [19], [152], [160], [168], [171], [189]-[192], locally most powerful 

test [159], [160], [174], [193], [194] and Rao test [160], [180], [192], [195]. The choice of 

the test depends on various factors, such as the number of data samples, availability 
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and mathematical treatability of the prior function, and strength of the watermark 

signal. The Bayesian log-likelihood ratio test shows an asymptotically optimal per­

formance that is equivalent to that of the Rao test, when the number of data samples 

are large, the prior probability distribution function of the signal is known, and the 

signal to be detected is weak [88], [180]. Since the subbands of the DWT of an image 

have a sufficiently large number of data samples, the prior of the watermark signal is 

very often known, and the strength of watermark is weaker than that of the image 

signal, the Bayesian log-likelihood ratio test is a good choice as a binary hypothesis 

test for the detection of a DWT-based watermarking scheme. The performance of the 

statistical detector can be analyzed theoretically by relating the probability of detec­

tion and the probability of false alarm, and measuring them through experiments. It 

is essential to keep the probability of detection at a high level for a given rate of false 

alarm to increase the reliability of detection. Statistical detectors for watermarking 

have been developed using various PDFs, such as the Laplacian [191], Student-t [192], 

and GG [18], [159], [160], [180], [194] for the prior of the DWT coefficients of a given 

image. Thus, statistical detectors employed for DWT-based image watermarking in­

corporate a PDF having a fixed number of parameters that depend on the first few 

moments of the image coefficients. In fact, each subband of the DWT of an image 

has a sufficiently large number of data samples, and higher-order moments are useful 

for statistical detection. 

In this chapter, a novel DWT-based watermark detector is developed using the pro­

posed univariate MGH PDF due to the fact that this PDF provides an excellent 

performance in matching the empirical PDF of image coefficients. This is mainly due 

to the fact that the MGH PDF allows the incorporation of an appropriate number 

of parameters that depend on the higher-order moments for the probabilistic model­

ing of the DWT coefficients of an image. Since a more accurate PDF of the image 
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coefficients would improve the watermark detection performance in terms of the prob­

abilities of detection and false alarm, a statistical detector based on the MGH PDF 

is developed. The performance of the proposed MGH detector is analyzed using the 

ROC and efficacy of detector (ED). Extensive experimentations for a wide range of 

watermark strength are carried out to show the effectiveness of the proposed MGH 

detector in terms of the probabilities of detection and false alarm as well as to study its 

robustness, when the marked images are attacked by compression, AWGN, filtering, 

or geometric distortion. 

6.3 Watermark Embedding 

In the embedding process of a DWT-based additive spread spectrum watermarking 

scheme, the watermark signal is added to the DWT coefficients of an image that is 

to be marked. The watermark is generated using a pseudorandom sequence (PRS) 

generator, which is initialized with a seed that depends on a secret key. This PRS 

spreads the spectrum of the original watermark signal over many coefficients making 

it difficult to be detected. In order to maximize the security and robustness of the 

watermarking scheme, the PRS needs to have white-noise like properties [171], [196]. 

Let such a two dimensional PRS. for a given subband, be denoted i/tj, where it takes 

the values +1 or —1 with equal probability: thus, the mean is zero and the auto­

correlation is a Kronecker delta function. In order to obtain a robust watermarking 

system, the watermark signal should have maximum strength but should not affect 

the perceptual quality of the image: for this purpose, v^j's are usually multiplied by 

a visual mask that takes into consideration the HVS [90], [156], [157], [173]. Here, we 

use a subband dependent parameter £ as the visual mask [173] to obtain the water­

mark signal as w^ — £^?J. Then, the DWT coefficient of the watermarked image at 

the spatial location (i.j) of a subband, under the assumption that the image and the 
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watermark are independent of each other, is given by 

9ij = fij + Wij (6-1) 

The parameter £ is selected in such a way that each of the subbands has the same 

level of watermark-to-document ratio (WDR) defined as [160], [171], [193] 

WDR = 10 log f ^ f ] = 10 log ( % ) (6-2) 

where a2
w is the variance of the embedded watermark. The watermarked DWT co­

efficients are then inverse transformed to get the marked image. A block diagram of 

the watermark embedding process is shown in Fig. 6.1. 

6.4 Watermark Detection 

In general, a watermarking scheme for copyright protection has a known watermark; 

hence, the verification of its existence, i.e., the detection of the watermark, is suffi­

cient for checking the violation of a copyright. The DWT-based watermark detection 

process that is being proposed considers the watermark w^ as the desired signal, and 

the subband image coefficient f,j as the unknown additive noise. The verification 

of the existence of Wij in the subband coefficients of an image can be formulated 

as a binary hypothesis test given by 

TiO : <],, = ffj (6.3a) 

HI : g10 = fl3 + ivrj (6.3b) 

where 7^0 and TL\. respectively, are the null and alternative hypotheses. In a Bayesian 

framework. ry?J, ftJ, and iv13 in (6.3) are considered as samples of the independent 

random variables g. f. and w. respectively. Let pg{g) and pw(w). respectively, be 

the PDFs of the random variables g and w. Then, the Bayesian log-likehliood ratio. 



105 

In A (—oo < In A < oo), for TV (N = A^A^f) number of samples in asubband is given 

by [188] 

where Cfa is the cost of false alarm (i.e., watermark being detected although not em­

bedded), Cm is the cost of miss-detection (i.e.. watermark being not detected although 

present). Pr(HO) is the probability of null hypothesis. Pr(TYl) is the probability of 

alternative hypothesis, and r is the decision threshold. The threshold T is obtained by-

using the Neyman-Pearson criterion that minimizes the probability of miss-detection 

for a bounded false alarm probability [188]. It is to be noted that the threshold r , 

which is sufficient to detect the watermark, is totally defined by the associated costs 

and probabilities of the two hypotheses. The decision about the existence of the 

watermark is, therefore, made blindly, i.e., without the use of the unmarked image 

coefficients. A block diagram of the watermark detection process is shown in Fig. 6.2. 

6.4.1 Proposed Watermark Detector 

In order to obtain an optimal detector using (6.4). an accurate statistical model of the 

random variable / is crucial, since the PDF of the random variable w is often known. 

Thus, greater the accuracy of the PDF of the imago coefficients incorporated in the 

detector, the higher the reliability of detection of the watermark at a predefined false 

alarm' rate. In Chapter 3, it has been shown that the MGH PDF provides a match 

with the empirical PDFs of the image coefficients that is better than that provided 

by the other standard ones, such as the GG, BK. and SNIG. It has also been shown 

in Chapter 5 that the MGH prior function results in an improved performance for the 

DWT-based Bayesian denoising. Motivated by these results, a statistical detector is 

developed for the DWT-based image watermarking using the MGH PDF as the prior 

function Pf{f), and hereafter the detector is referred to as the MGH detector. For 



106 

Secret 
Vg = { - ! ,+ ! } 

Image 
DWT U HVS 

analysis 

—*C-

w 
u 

Watfir-

' 
IDWT 

marke 

image 

Figure 6.1: Block diagram of the embedding process for the DWT-based additive 
watermarking. 

Secret 
key PRS 

generator 
Vn 

Image 

,+1 

Log- likelihood 
function 

1 %\ 

k 

HVS 
analysis 

—> 

Output 
decision 

A A 

Threshold 

Figure 6.2: Block diagram of the detection process for the DWT-based additive wa­
termarking. 



107 

the MGH detector, the log-likelihood ratio given in (6.4) can be written as [147] 
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where N' and TV" (N = N' + N" = NuN2t): respectively, are the number of subband 

coefficients that satisfy | / | < /o and | / | > /o- It can be seen from (6.5) that the log-

likelihood ratio is independent of the weight parameter 7 of the MGH PDF mentioned 

in Section 3.2. The proposed MGH detector requires the estimation of j52r and H2r. 

and the computational complexities of these are 0((N/2) and G(N), respectively. 

Thus, the computational complexity of the proposed MGH detector is O ((4+<;/2)7V J. 

It may be mentioned that assuming the subband DWT coefficients of an image follow 

the GG PDF, the log-likelihood ratio of the GG detector is given by [19], [152], [159], 

[160], [168], [180] 

lnA(g) = -
N N 

Y2\9u\s -J2^9u w„ 
11=1 11=] 

(6.6) 

The computational complexity of estimating the parameters of GG PDF (i.e.. 5 and 

c) is 0(2 j.N). where j is the number of iterations for the maximum likelihood-based 
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parameter estimation [30] or that of the entries in a lookup table for the MoM or 

entropy matching-based parameter estimation [31]. Thus, the computational com­

plexity of the GG detector is Of 2(j + 1)AM. The log-likelihood ratio given in (6.6) 

reduces to that of the Gaussian detector when s = 2 and c = 07 \ /2, and that of the 

Laplacian detector when s = 1 and c = <7//\/2. Thus, the computational complexity 

of both of these detectors is 0(3N). 

6.4.2 Performance Analysis of MGH Detector 

The analytical expression of In A given in (6.5) allows the theoretical measurement 

and experimental verification of the performance of the proposed MGH detector, 

since the ROC can be derived from this expression. From (6.5), it is seen that for a 

particular subband, In A is a sum of statistically independent random variables that 

have a sufficiently large number of data samples. In such a case, according to the 

central limit theorem [89], the distribution of In A can be approximated by a Gaussian 

distribution. In order to derive an expression for the ROC, it is required to estimate 

the mean and the variance of In A conditioned on the two hypotheses, viz., Ti.0 and 

7Y1. As explained in Section 6.4, during the embedding process, the watermark that 

is added to the image coefficient at a given index of a subband is equal to either +£ 

or —£, each having a probability of 1/2. We now define two functions 

Mfud) = Lr V7TT- (6-7) 
l + Et22P2rH2r(^) 

2o\ y(fu,o = Ju r2 (6.? 
' / 
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Then, the mean of the log-likelihood function conditioned on HO can be obtained as 

l/u|</o 
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where ^ [ - j is the expectation operator on to and X$m = Xi\04=p4m. The variance of 

the log-likelihood function conditioned on HO can be obtained as 
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Similarly, the mean of the log-likelihood function conditioned onWl can be obtained 

as 

TV£2 1 
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It can be seen from (6.9)-(6.15) that 

• MAI = ~MAO ^AI = CTAO (6-16) 

For the GG detector, the mean and variance of the conditional log-likelihood function 

can be obtained as [19], [152], [159], [160], [168], [180] 

MAO = -/IAI = ~s E l/«lS - TS D l / « + Z\s + l/« - Cls) (6-17) 

1 

i /= i 

A'" 
u = l 

<7\n = 0\ '.\0 ~ "Al ~ l c 2 4 i/, + cr-iA-ei ^ 2 (6.18) 
» = ] 
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and for the Gaussian detector, they can be obtained as 

/'•AO = - / ' A l = - j ^ r CTA0 = CTA1 = -^T ( 6 - 1 9 ) 

In a blind watermark detection technique, it is reasonable to assume that the prob­

abilities of occurrences of the two hypotheses to be equal, i.e., Pr(KO) = Pr(Hl) . In 

such a case, the probability of false alarm and that of detection, for a particular value 

of T, can be calculated from the estimated values of the mean and variance of the 

conditional log-likelihood function as [188] 

Pfa = Q(T-^-) Pdei = Q(T-^A (6.20) 

where Q{v) = \erk{u/V2) and erfc(-) = 1 — erf(-) is the complementary error fu 

tion. For a predetermined Pja. the decision threshold r can be expressed 

nc-

as 

T = /-iA0 + oA0Q-1(Pfa) (6.21) 

and Pdet as 

r*i=QW-1(Ff*)-2j^J (6-22) 

By defining the signal-to-noise-ratio, SNR = /'Ai/aAi ^ m [19]; [168], [171], [188], we 

obtain the relation between the Pfa and P^ei as 

Pdet = Q (Q-1 (Pfa) ~ 2%/SNR.) (6.23) 

which is known as the ROC of the detector. It can be seen from (6.23) that the 

ROC of a detector depends only, on the SNR for a fixed value of Pja. Hence, the 

ROC of different detectors can be compared by calculating the corresponding SNR of 

the detectors. It is to be noted that in ROC, a larger value of SNR implies a better 

detection performance, as this will lead to a higher probability of detection for a given 

Pfn. This fact can be further explained by using the conditional PDFs of In A for the 
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Figure 6.3: Effect of conditional mean and variance of log-likelihood ratio on the 
performance of a detector. 

two hypotheses, viz.. HO and HI as shown in Fig. 6.3. From this figure, it is seen 

t h a t the higher the value of the ratio between JX\^ and. CTA1, i.e.. the SNR, the lower 

the probability of erroneous detection, which is shown as the union of the areas under 

the two conditional PDFs . Another measure of performance often used in stat ist ical 

detection problems, where conditional In A is considered to be normally dis t r ibuted, 

is the ED defined by [197] 

ED = MAI ~"_Af AO 

^AO 
(6.24) 

Thus, in addition to the ROC, the detectors can be compared using the ED values, 

where a higher value of efficacy corresponds to a better detector. 

Since the proposed watermark detection is a blind one, it is required that the mean 

and the variance of the conditional in A that depend on the parameters of the MGH 

PDF, namely. Of and £52r (r — 2, 3, • • •• , ( /2) , be estimated from the received image, 

which may or may not contain a. watermark. However, this is not a serious issue, a,s 

the watermark embedding does not change these parameters significantly in view of 
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Table 6.1: Parameters of the MGH PDF estimated from the DWT-coefficients of the 
marked and unmarked images. 

Marked 
Unmarked 

Marked 
Unmarked 

Marked 
Unmarked 

Marked 
Unmarked 

Marked 
Unmarked 

Marked 
Unmarked 

7 Of 04 06 08 0W 0X1 014 
Lena 

0.3514 
0.3507 

41.8020 
41.8356 

0.9581 
0.9562 

-0.5380 
-0.5328 

2.5035 
2.4721 

-0.7852 
-0.7687 

4.1475 
4.0459 

-1.0161 
-0.9838 

Barbara 
0.6140 
0.6146 

46.5555 
46.5914 

0.8329 
0.8314 

-0.3431 
-0.3392 

1.3054 
1.2950 

-0.3259 
-0.3235 

1.0700 
1.0565 

-0.4546 
-0.4526 

Boat 
0.6375 
0.6357 

47.5901 
47.6403 

0.6882 
0.6872 

-0.1238 
-0.1228 

0.6232 
0.6199 

-0.1334 
-0.1332 

0.5045 
0.5009 

-0.3670 
-0.3691 

Bridge 
0.6873 
0.6896 

54.60.63 
54.6304 

0.4767 
0.4772 

-0.0775 
-0.0781 

0.3016 
0.3025 

-0.2162 
-0.2156 

0.3357 
0.3361 

-0.4173 
-0.4171 

Baboon 
0.6892 
0.6921 

59.0495 
59.1677 

0.4597 
0.4594 

-0.1033 
-0.1035 

0.3018 
0.3019 

-0.2163 
-0.2162 

0.3270 
0.3269 

-0.4182 
-0.4181 

Aerial 
0.8073 
0.8046 

70.5873 
70.6509 

0.5736 
0.5729 

-0.2847 
-0.2831 

1.8360 
1.8158 

-1.2243 
-1.2056 

9.1274 
8.9319 

-3.9755 
-3.8815 

the fact that the signal of the watermark has a much lower energy compared to that 

of the original image. That this is indeed so is verified by estimating the parameters 

of MGH PDF both from the marked and unmarked images. Table 6.1 shows the 

average values of 7, af, and 02r (r = 2, 3, 4, 5, 6, 7) obtained from the subbands of a 

4-level orthogonal DWT using six 512 x 512 grayscale images, viz., Lena, Barbara. 

Boat, Bridge, Baboon, and Aerial, wherein for watermarking we use WDR = —30 dB. 

It is seen from this table that the deviations between the parameters of the MGH 

PDF for the marked and unmarked images are negligible. Hence, for estimating ^i.\0, 

/Mi; °AO>
 a n d ^AI of the detector that uses the MGH PDF, one can use the received 

image without any consideration as to whether it is marked or unmarked. 
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6.5 Experimental Results 

Extensive simulations are carried out on a large number of images in order to compare 

the performance of the proposed MGH detector with that of the others, namely, the 

Gaussian [90], [150], [153]-[157], [161], [164], [166], [169], [176] and GG [19], [152], [159], 

[160], [168], [180] detectors in terms of the ROC and the corresponding ED values. 

Here, we give results concerning only six 512 x 512 grayscale images, namely, Lena, 

Barbara, Boat, Bridge, Baboon, and Aerial. The orthogonal wavelet filter Daubechies-

8 (D-8) and biorthogonal spline wavelet filter Cohen-Daubechies-Feauveau-9/7 (CDF-

9/7) with 4-level decompositions are used. Monte-Carlo tests are performed to ex­

perimentally validate the estimated ROC and ED values using 1000 runs. Each of 

the 1000 runs starts with a unique key to randomly generate the bipolar watermark 

signals. For a particular run, the same key is used to generate the bipolar water­

mark signals that are added to all the detail subbands, namely, HL(, LH(, and HHe 

(£ = 1,2,3,4). No watermark is added to the approximate subband LL4. The wa­

termarks are embedded in each of the test images for various values of WDR. For a 

particular WDR, we obtain 3 x 4 x 1000 = 12000 values of P^et for a given Pfa in view 

of the fact that the experimentation uses 1000 runs and a 4-level DWT. The ROC 

of a statistical detector for a test .image is calculated by averaging these P^t's f° r a 

given Pja and repeating this procedure for various values of Pfa ranging from 10~4 

to 1. Similarly, the ED is calculated by averaging its 12000 estimated values. The 

value of £ for calculating the log-likelihood ratio of the proposed MGH detector is 

chosen to be 14 for the DWT using filter D-8, since such a value is a good choice for 

modeling the prior function of the image DWT coefficients using an orthogonal filter 

(see Chapter 3). In our experiments, it is found that the MGH PDF with £ = 18 

provides an appreciable modeling performance while the filter CDF-9/7 is used in the 

DWT. and hence, in such a case the value of £ for the proposed MGH detector is 
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(c) 

Figure 6.4: Watermark embedding on Lena with a WDR of = —45 dB. (a) Cropped 
section of the Lena image, (b) Watermark in HL3 band, (c) Watermarked version of 
(a). 

chosen to be 18. The parameters of the GG PDF are estimated using the MoM, since 

each of the subbands has a sufficiently large number of data samples and in such a 

situation, MoM provides consistent parameter estimation [32]. The performance of 

the proposed statistical detector is tested using two sets of experiments. In the first 

set of experiments, watermarked images have been considered without any kind of 

attack. In the second set of experiments, the marked images are considered to have 

been attacked by compression, AWGN, filtering, or geometric distortion. 

6.5.1 Detection Performance Without Attack 

In this set of experiments, the test images are considered to be modified only by the 

additive bipolar watermarks in the DWT-domain. The Lena image is considered as 

an example and Fig. 6.4 shows a cropped section of this image, a typical bipolar 

watermark signal, and the watermarked version of the cropped Lena image, when 

WDR = —45 dB. From this figure, it can be observed that there is no noticeable 

difference between the original and watermarked images, and hence, the impercepti-

bility requirement is fulfilled during the embedding process. For a given watermark 

strength, the performance of the proposed MGH detector is compared with that of 



116 

the Gaussian and GG detectors in terms of the ROC and ED. Figs. 6.5(a)-6.5(f) 

show the ROC of the three detectors for the six test images for 10~4 < Pja < 1 and 

WDR = -40 dB, while the niters used in the DWT are D-8 and CDF-9/7. It is to be 

pointed out that the ROC of the Gaussian detector is independent of the test image 

as well as the wavelet filter, in view of the fact that for this detector P^et is calculated 

using SNR = 0.25A/'(10)WDR/10, which depends only on the size of the subband and 

WDR. It is seen from Fig. 6.5 that for all the test images, the proposed MGH de­

tector has the highest probability of detection for any given value of false alarm. In 

order to compare the performance of the detectors for varying watermark strengths, 

we consider the values of WDR in the range —45 dB to —35 dB. For each of the test 

images, the P^t's of the three detectors are obtained as the average of the detection 

probabilities calculated from all the twelve subbands for the entire range by fixing 

the Pfa value at 10~2. Figs. 6.6(a)-6.6(f) show these average values obtained from 

1000 runs for the six test images, while the filters D-8 and CDF-9/7 are used in the 

DWT. From these figures, it can be observed that P,ici increases with the strength of 

the watermark for all the detectors. In addition, except in the case of the Boat image 

with a value of WDR greater than —37 dB when the wavelet filter D-8 is used, the 

detection probabilities of the proposed MGH detector are higher than or at least equal 

to that of the GG and Gaussian detectors at any level of the watermark strength; 

even in the case of the Boat image, the detection probability of the GG detector is 

not significantly higher than that of the proposed one. It may be found from the 

estimated Pdet's of the MGH detector, shown in Figs. 6.5 and 6.6, that the wavelet 

filter D-8 provides a better detection performance for the images having minute de­

tails (Baboon and Aerial), whereas for other test images the use of CDF-9/7 results 

in a better performance. 
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Figure 6.6: Effect on Pdet of the three statistical detectors for varying strength of 
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Table 6.2: Comparisons between the target and actual probabilities of false alarm as 
well as the empirical and actual probabilities of detection of the MGH detector using 
the subband HL2 of image Lena that is marked with a WDR of — 40 dB. 

Total Marks 

100 
1000 
10000 

100000 

Target Pfa 

10-1 

10~2 

10"3 

10~4 

Test Setting Number 1 
False 

Alarms 
15 
18 
22 
28 

Actual 

Pfa 
1.5 x 10"J 

1.8 x 10-* 
2.2 x 10"a 

2.8 x 10~4 

Test Setting Number 2 
Empirical 

Pdet 
0.91 
0.79 
0.74 
0.68 

Detected 
Marks 

89 
763 

6891 
63427 

Actual 
Pdet 
0.89 
0.76 
0.69 
0.63 

To make comparisons between the theoretical and experimental P/„'s and P,/Ct's of the 

proposed MGH detector, two test settings are considered for a target Pja and a given 

set of watermarks embedded in a subband. In the first setting, the number of false 

alarm is estimated by looking for a randomly chosen watermark in the set of subbands 

of the marked images by comparing the estimated log-likelihood ratio given in (6.5) 

with the detector thresholds at the target Pfa. In the second setting, the detection 

probability is estimated in a similar way by comparing the log-likelihood ratio of each 

of the watermarks with the corresponding detector threshold at the target Pja. Table 

6.2 shows the results obtained for these two test settings using the subband HL2 of 

the image Lena. From this table it is evident that the analytical Pfa's and Pdet s of 

the MGH detector approximate very closely the actual ones. 

Tables 6.3 and 6.4 show the ED values of the three detectors obtained from the six 

test images, wherein the DWT employs D-8 and CDF-9/7, respectively, and WDR 

varies from —40 dB to —35 dB. It is to be pointed out that the ED values of the 

Gaussian detector are independent of the test image and the wavelet filter employed, 

in view of the fact that for this detector ED = \//V(10)WDR/20, which depends only 

on the size of the subband and WDR. It is seen from Tables 6.3 and 6.4 that for 

all the images, the ED increases with the strength of the watermark and further, the 

MGH detector provides the highest efficacy at any value of WDR.. It is to be noted 
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Table 6.3: ED values of the statistical detectors using the wavelet filter D-8 for various 
values of WDR. 

WDR in dB 

Gaussian 

GG 
MGH 

GG 
MGH 

GG 
MGH 

GG 
MGH 

GG 
MGH 

GG 
MGH 

-40 -39 -38 -37 -36 -35 

Any Test Image 
1.20 1.35 1.51 1.70 1.90 2.13 

Lena 
2.11 
7.72 

2.34 
9.61 

2.63 
12.43 

2.97 
15.74 

3.30 
20.01 

3.70 
24.96 

Barbara 
3.01 
6.57 

3.45 
7.45 

4.01 
8.76 

4.52 
10.07 

5.16 
12.07 

5.96 
14.98 

Boat 
3.25 
4.97 

3.74 
5.77 

4.28 
6.77 

4.93 
8.07 

5.63 
9.28 

6.49 
11.12 

Bridge 
1.67 
4.32 

1.82 
4.96 

2.11 
5.65 

2.41 
6.39 

2.59 
7.44 

2.92 
8.89 

Baboon 
1.33 
8.42 

1.49 
9.72 

1.57 
11.59 

1.64 
13.30 

1.77 
15.12 

1.95 
17.42 

Aerial 
2.32 
2.80 

2.85 
3.17 

3.36 
3.61 

3.83 
4.07 

4.27 
4.68 

4.87 
5.34 

that even in the case of the Boat image, the MGH detector performs better than the 

GG detector in terms of the ED for all values of WDR. Thus, taking into account 

both the performance measures, namely, Prfet and ED, the proposed MGH detector is 

superior to the Gaussian and GG detectors. 

6.5.2 Detection Performance With Attacks 

As seen from Figs. 6.5 and 6.6 as well as from Tables 6.3 and 6.4. the performance of 

the Gaussian detector is very much inferior to that of the GG or the proposed one, 

whether it be in terms of ROC or ED. Hence, we will study the robustness of only the 

GG and proposed detectors, when the marked images are modified by four standard 
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Table 6.4: ED values of the statistical detectors using the wavelet filter CDF-9/7 for 
various values of WDR. 

WDR in dB 

Gaussian 

GG 
MGH 

GG 
MGH 

GG 
MGH 

GG 
MGH 

GG 
MGH 

GG 
MGH 

-40 -39 -38 -37 -36 -35 

Any Test Image 
1.20 1.35 1.51 1.70 1.90 n 2.13 

Lena 
4.63 

20.21 
4.97 

23.73 
5.42 

27.24 
5.86 

32.05 
6.41 

38.66 
7.00 

45.88 

Barbara 
3.34 
5.02 

3.77 
5.97 

4.39 
7.08 

4.95 
8.50 

5.62 
10.84 

6.59 
14.16 

Boat 
4.71 
8.04 

5.23 
9.40 

5.89 
10.67 

6.51 
12.52 

7.35 . 
14.23 

8.35 
16.26 

Bridge 
2.33 
8.75 

2.60 
11.29 

2.86 
14.89 

2.99 
18.29 

3.29 
21.11 

3.66 
25.46 

Baboon 
1.00 

17.75 
1.19 

21.61 
1.46 

24.31 
1.76 

27.58 
2.09 

31.93 
2.59 

35.37 

Aerial 
3.27 
4.88 

3.75 
5.16 

4.27 
5.48 

4.89 
5.86 

5.78 
6.27 

6.65 
6.78 

attacks, viz., compression, AWGN, nonlinear filtering (e.g., median filtering), and 

geometric distortion (e.g., rotation) [170], [198]. The results are presented only for 

the wavelet filter D-8; very similar results have been obtained when CDF-9/7 is used. 

Since the proposed detector deals with the DWT-based watermarking, for compression 

attack we use a popular DWT-based lossy compression algorithm, namely, the set 

partitioning in hierarchical trees (SPIHT) algorithm [199], [200]. The marked images 

are compressed at two different rates, 0.7 bpp and 0.4 bpp, the latter rate indicating a 

strength of compression attack that is higher than the former. Figs. 6.7(a)-6.7(f) show 

the deviations of the ROC of the GG and MGH detectors when the images, marked 

with a WDR of -40 dB. are compressed at these two rates from their uncompressed 
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versions. It is seen from these figures that the deviations of the ROC of the MGH 

detector are much less than that of the GG detector for all the test images. The 

smaller deviations of the ROC reveal that the MGH detector is more robust than 

the GG detector in case of a compression attack. An interesting observation that 

can be made from Fig. 6.7 is that, with an increasing compression attack, the detec­

tion probability of the MGH detector increases for the images having sharp details 

(Lena and Barbara) and decreases for the images having minute details (Baboon and 

Aerial). This may be due to the fact that, for sharp images, the image details are 

removed significantly than that of the embedded watermark as the strength of the 

compression attack is increased. In such a case, the effective WDR increases, and 

hence, the detection probability of the estimated ROC. On the other hand, for the 

images having minute details, the signals correspond to the embedded watermark 

are removed significantly than that of the image details. Hence, the effective WDR. 

decreases and consequently, the detection probability of the estimated ROC. How­

ever, no such conclusion can be drawn for images having a mix of both sharp and 

minute details (Boat and Bridge). To study the robustness of the two detectors when 

a marked image is attacked by an AWGN, the marked images are corrupted with two 

noise standard deviations, viz., ae = 10 and 20, the latter parameter indicating a 

higher strength of the AWGN attack. Figs. 6.8(a)-6.8(f) show the deviations of the 

ROC of the GG and MGH detectors when the images, marked with a WDR of —40 

dB, are corrupted by these two noise strengths from their uncorrupted versions. It is 

seen from Fig. 6.8 that the deviations of the ROC of the proposed MGH'detector are 

significantly less than that of the GG detector for all the test images, and hence, the 

former is more robust than the latter in case of an AWGN attack. The robustness 

of the two detectors in the case of nonlinear filtering attack is studied by median 

filtering the marked images using two squared-shape windows of size 3 x 3 and 5 x 5 . 
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the latter size indicating a higher strength of the filtering attack. Figs. 6.9(a)-6.9(f) 

show the deviations of the ROC of the GG and MGH detectors when the marked 

images are subjected to these attacks. It is seen from Fig. 6.9 that in most of the 

cases the deviations of ROC of the MGH detector is the lowest. Thus, in general, the 

proposed MGH detector is more robust than the GG detector for a median filtering 

attack. The robustness of these detectors is further studied in the case of a geometric 

attack by rotating the marked images counter clockwise by two angles, viz., 9 = 0.25° 

and 9 = 1.00°, the latter angle indicating a higher strength of this geometric attack. 

Fig. 6.10 shows the deviations of the ROC of these detectors when the marked 

images are rotated. It is seen from this figure that the deviations of the ROC of the 

MGH detector is always lower than that of the GG detector. Hence, the proposed 

MGH detector is more robust than the GG detector for such a geometric distortion 

attack. The percentage changes in the ED values of the GG and MGH detectors 

for the compression, AWGN, median filtering, and rotation attacks considered in 

the experiments are shown in Table 6.5. From this table it is seen that for all the 

test images, the change in the ED values of the MGH detector due to these attacks 

is significantly less than that of the GG detector, showing that the former is more 

robust than the latter for the compression, AWGN, filtering, and geometric attacks. 

6.6 Conclusion 

Conventional PDFs of the DWT coefficients of images used in statistical detectors of 

watermarking schemes have a fixed number of parameters that are estimated from 

the first few moments. Since these PDFs do not provide a sufficiently good statistical 

match to the empirical PDF of the image coefficients, the statistical detectors that are 

designed using such PDFs show inadequate detection performance. In this chapter, a 

new statistical detector for the DWT-based additive watermarking scheme lias been 
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Table 6.5: Percentage change in the ED values of the GG and MGH detectors under 
the compression, AWGN, median filtering, or rotation attack when the images are 
marked with a WDR of - 4 0 dB. 

Attack 

GG 

MGH 

GG 

MGH 

GG 
MGH 

GG 
MGH 

GG 

MGH 

GG 
MGH 

Compression 

0.7 bpp 0.4 bpp 

AWGN 

a£ = 10 a£ = 20 

Median Filtering 

3 x 3 5 x 5 

Rotation 

0 = 0.25u e = i.oo° 
Lena 

517.0 

11.4 
802.7 

13.6 
65.1 

21.6 

72.1 

19.2 
34.3 

30.1 
83.9 

2.7 

54.2 

46.8 

701.1 
23.6 

Barbara 

653.7 

14.9 
829.8 

64.5 
74.5 

2.2 
81.8 

3.0 
27.0 

9.0 

40.9 

23.1 

25.0 

16.6 

580.6 

14.3 

Boat 

749.7 

8.5 
790.5 

57.2 
73.7 

28.3 
82.7 

39.7 

46.0 

34.5 

112.6 

107.0 
53.9 

31.9 

422.1 

12.3 

Bridge 

178.7 

27.6 
206.4 

29.5 
63.5 

16.5 
73.7 

28.0 
4.3 

14.0 

20.6 

26.2 

209.2 

59.8 

1497.4 

16.4 

Baboon 

793.9 
39.4 

1160.7 

31.1 
49.7 

28.4 
60.0 
27.1 

27.8 

21.1 

74.3 
69.6 

17.6 

16.6 

1021.5 

14.8 

Aerial 

269.4 

61.7 
295.6 

68.3 

70.5 

42.0 

78.9 

52.9 

25.6 

19.7 

82.2 
12.4 

64.6 

60.2 

794.1 
121.4 

developed using the proposed MGH PDF, in view of the fact that this PDF provides 

a better statistical match to the empirical PDF by utilizing an appropriate number 

of parameters estimated from higher-order moments of the image coefficients. The 

decision threshold and the ROC of the statistical watermark detector have been de­

rived using the MGH PDF. The experimental results on test images have shown that 

the detection performance of the proposed MGH detector is superior to that of the 

Gaussian or GG detector, in terms of the probabilities of detection and false alarm 

as well as the efficacy. The proposed detector has been shown to be more robust 

than the GG detector under the attacks of compression, AWGN. filtering, and geo­

metric distortion. 



Chapter 7 

Proposed P D F of Wavelet 
Coefficients for Video 

7.1 Introduction 

An appropriate PDF for the DWT coefficients of a video signal, just as in the case 

of an image signal, is essential for almost all statistical video processing algorithms. 

The DWT of a video signal may be represented by one of the following two ways: 

« A group of frames decomposed by 3D DWT. 

© Individual frames decomposed by 2D DWT. 

Video processing based on the 3D DWT avoids the procedure of motion estimation 

or detection. However, the main drawbacks of the 3D DWT are its inability to make 

use of the asymmetry of the space and time resolutions that exist in a video, and its 

long-time latency in view of the memory requirement being constrained by the length 

of the wavelet filter coefficients [201]. Hence, we would like to use the 2D DWT 

for video signal processing, wherein the estimation of the motion between frames 

plays a significant role. The estimation of the motion vector in the data domain 

is an ill-posed problem [202] that gets worse in the DWT domain due to the shift-

arid rotation-variance properties of the' transform [203]. Hence, an indirect motion 

estimation during a DWT-based statistical processing of a video signal is preferable. 
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In other words, capturing the motion information through an appropriate PDF of 

the DWT coefficients of the video is essential. In this chapter, the bivariate Gaussian 

PDF is first proposed as a joint PDF of the DWT coefficients of two neighboring 

frames of a video signal, wherein the correlation parameter of the Gaussian PDF is 

used as an index of motion between two neighboring frames [87], [138]. Motivated 

from the excellent probabilistic modeling performance of the univariate MGH PDF, 

developed in Chapter 3, for the DWT coefficients of an image signal, the bivariate 

MGH PDF is also developed as a more appropriate joint PDF of the DWT coefficients 

of two neighboring frames. Similar to the univariate MGH PDF, bivariate MGH PDF 

allows the incorporation of an appropriate number of parameters using the higher-

order moments of the DWT coefficients of the video signal. Experiments are carried 

out on a number of test video sequences using the proposed bivariate PDFs to show 

the effectiveness of the PDFs in probabilistic modeling of the DWT coefficients. 

7.2 Joint PDF of Inter-Frame DWT Coefficients 

Let fk(ij) represent the DWT coefficients for a given subband of the /c-th frame at 

a spatial index (i, j). The wavelet coefficients of the previous neighboring frames 

are denoted as /((,j), / = k — 1, k — 2. • • • , fc — £, C being the total number of the 

neighboring frames under consideration. Hereafter, the fc-th frame is referred to as 

the current frame and the l-th frame as a previous frame. Let fk(ij) and fi(ij) be 

the samples of two identical and zero-mean random processes fc and fp, respectively. 

The correlation coefficient p ( — 1 < p < 1) between the two random processes 

is defined by 

E{fJP}-E{fc}E{fp} 

y/[E{f?}-E{fc}*][E{f*}-E{fpy] 

The value of p represents the linear relationship between the two random processes. 

Therefore, for a given DWT coefficient of a video, the amount of motion that exists 
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between any two frames can be indirectly measured by p. Since the estimation of the 

motion trajectory of any DWT coefficient is not robust [203], it is preferable to use 

the parameter p as an index of the motion of a coefficient. The higher the value of 

p, the lower the amount of motion between the coefficients of the two neighboring 

frames, and vice versa. Fig. 7.1 shows the values of the correlation coefficients of a 

given decomposition level between the current frame and any one of the three previous 

frames for the first 50 frames of the typical video sequence, Tennis. From this figure, 

it can be observed that in the first 25 frames there is very little motion, whereas for 

the rest of the frames, there is considerable motion between the neighboring frames. It 

can also be noticed that the average value of the proposed motion index pavg decreases 

gradually when the relative motions between the current frame k and the previous 

frames, namely, k — 1. k — 2, and k — 3, are considered. The effect of motion on the 

empirical joint PDF. denoted as p'T* (fc, fp), for the HL\ band DWT coefficients is 

shown in Fig. 7.2. It can be seen that when the motion between the current-frame 

and previous-frame is low, the contour of the joint PDF is nearly elliptic, whereas the 

contour is nearly circular when the motion is relatively high. The bivariate Gaussian 

PDF is elliptic or circular in nature provided the dependency between two random 

processes is strong or weak [204]. Therefore, the joint PDF of the wavelet coefficients 

for the current frame and any of the previous fram.es may be expressed as the bivariate 

Gaussian (BVG) PDF given by 

Pfcfpifr, fi>) = 7f=f exP 
2lT(7c(7ps/l - pZ 

i ( f2 r f f 
2(1-P2) lo"? °l Vc^p 

1 <p< 1 

(7.2) 

where ac and ap are the standard deviations of the wavelet coefficients of the cur­

rent frame and the corresponding previous frame, respectively. Fig. 7.3 shows the 

BVG PDFs to model the empirical PDFs that are shown in Fig. 7.2. It may be 

seen from this figure that the BVG PDFs can provide a satisfactory approximation 

http://fram.es
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coefficients of the video sequence Tennis, (a) Bivariate Gaussian PDF obtained from 
frames 1 to 25. (b) Bivariate Gaussian PDF obtained from frames 26 to 50. (c) 
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of the empirical PDFs that are shown in Fig. 7.2. In view of the mathematical 

tractability of the BVG prior in MAP estimation techniques, two locally-adaptive 

A/IAP-based video denoising algorithms are developed in Chapter 8 using the BVG 

PDF. 

In Chapter 3, the univariate MGH PDF that provides a superior performance in mod­

eling the wavelet coefficients of an image signal was developed. A question naturally 

arises as to whether one could develop a corresponding bivariate form of the MGH 

PDF for modeling the wavelet coefficients of two neighboring frames of a video. In 

order to investigate this query, the bivariate form of the GH PDF is developed and 

this PDF is expressed as (see Appendix C) 

1 Ufc^fp\ 
Pfcfrifc, fp) = ~ e "<•- p 

2TT(Jcap 
1+I{«(D+V,(i) 

SO) +^«, 7.3) 

where {j3rc. Prp} are the series parameters and {<r(
2. ap} are the variances of the current 

and previous frames. The joint PDF given in (7.3) is an infinite series expansion, 

however, only the first few terms may be used for a reasonably good approximation. 

Let the maximum value of the order r in the truncated series be £. Fig. 7.4 shows the 

expanded bivariate PDFs obtained by using £ = 12 to model the empirical PDFs that 

are shown in Fig. 7.2. It may be seen from this figure that the bivariate GH PDF 

with a sufficiently large number of series terms approximates well the peak region of 

the joint PDF. On the other hand, similar to the univariate GH PDF, the tail region 

of the expanded bivariate PDF is not ensured to be non-negative. Let V(fr, fp) 

represent the set of coefficients of the bivariate GH PDF which are bounded by the 

zeros closest to the central mode. A modification is necessary for the bivariate GH 

PDF to model those coefficients that are in the complementary set of V(fc, fp). i.e., 

W c ; fp)- Let the coefficients of V{fc, fp) be modelled by the BVG PDF. which is 
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ensured to be non-negative, multiplied by the weight parameter 7 (0 < 7 < 1) to 

ensure that the total volume under the surface of the bivariate modified GH PDF is 

unity. Finally, the bivariate MGH (BVMGH) PDF can be obtained as 

1liOcOv 

(. "c "p 

PfcfP(fc,fp)= { +
 P-,Hr 

1 + 

fr. 

X-)3rrHr(k)+RHjfr 
r=\ 

a* 
u 

oc) \a. 

\ 2nacop\/l - p2 

( 2 9 

I ) fc _i_'P o„fc fp 

if (fcJP)eV(fc,fp) 

if (fc,fp)tnfc,fP) 

(7.4) 

The value of the parameter 7 can be numerically calculated from the following con­

straint 

C 

2na, 7ccrp J Jv 

Hr ^ d/,..d/„ + 

1 + E { / W £ ) + ^ M £ ) + SM£) 
7-—] ^ i 

L _e W^)\7?^p
 p — / d / c d / p = 1(7.5) 

2nacap y/1 — p1 .) Jv 

Fig. 7.5 shows the proposed BVMGH PDFs to model empirical PDFs shown in Fig. 

7.2. It can be seen from this figure that the proposed joint PDF is non-negative, 

matches very well the empirical PDF, and captures the multi-modal nature of the 

empirical PDF. In order to quantify the performance of the closeness of fit of the 

proposed bivariate PDF with the empirical one, we use KSD and KLD as the metrics, 

where they are defined by 

and 

KSD = max 
Jr. Jp 

KLD 

KIM: fp) - PfcfAfr, f„)Wrdfp 

*fMfc:fp)toP!£{
({

e'f?\<lfcdfp einp t r r 
Pfrfp\Jc: Jp 

7.6) 

(7.7) 

Table 7.1 shows the results concerning the metrics KSD and KLD for the BVG 

and BVMGH PDFs of the first level DYYT coefficients of six video sequences, namely. 
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Table 7.1: Values of the metrics KSD and KLD for the prior function modeling of the 
DWT coefficients of video sequences. The average values of KLD (standard deviations 
in parentheses) and KSD are obtained from a first 100 frames of a sequence. 

Prior Model 

BVG PDF 
BVMGH PDF 

BVG PDF 
BVMGH PDF 

BVG PDF 
BVMGH PDF 

BVG PDF 
BVMGH PDF 

BVG PDF 
BVMGH PDF 

BVG PDF 
BVMGH PDF 

KSD (xlO-3) 
HU LHi HHi 

KLD 
HLt LHX HHi 

Tennis 
11.2 
10.3 

17.7 
14.3 

22.8 
13.1 

6.74 (3.01) 
5.48 (2.53) 

3.34 (1.02) 
2.24 (1.01) 

2.75 (1.24) 
1.54 (1.03) 

Salesman 
15.3 
11.1 

30.4 
27.4 

57.0 
63.9 

2.27 (0.17) 
1.38 (0.06) 

2.52 (0.44) 
2.07 (0.20) 

7.34 (0.45) 
7.43 (0.48) 

Coastguard 
23.2 
20.3 

13.4 
7.2 

99.1 
85.7 

3.70 (1.31) 
1.88 (0.50) 

5.26 (0.92) 
1.33 (0.22) 

4.25 (1.09) 
4.22 (1.23) 

Football 
6.9 
5.0 

8.9 
6.3 

19.5 
8.1 

4.66 (0.99) 
3.06 (0.62) 

5.17 (1.09) 
3.39 (0.87) 

2.87 (0.77) 
0.90 (0.20) 

Foreman 
36.9 
33.2 

67.1 
51.6 

113.0 
67.7 

3.81 (1.00) 
2.39 (0.51) 

1.99 (0.62) 
0.79 (0.20) 

4.36 (0.75) 
2.43 (0.66) 

Garden 
11.9 
11.6 

28.9 
27.5 

38.7 
36.0 

6.53 (0.37) 
5.66 (0.28) 

4.74 (0.37) 
3.29 (0.17) 

4.68 (0.60) 
2.43 (0.14) 

Tennis. Salesman, Coastguard, Football. Foreman, and Garden. The metrics are cal­

culated by averaging the results obtained using the first 100 frames of each sequence. 

Standard deviations of the KLD metric are also included in the table. For the results 

shown here, the BVMGH PDF uses the moments from 2 up to 12. whereas the BVG 

PDF can use only the second order moments. From the table, it is evident that in 

most of the cases, the BVMGH PDF has the lowest distance and divergence from 

the empirical one, compared to that of the BVG PDF. The closeness of fit between 

the empirical and BVMGH PDFs is mainly due to the fact that the proposed PDF 

can incorporate a larger number of higher-order moments in its parameter estimation 

process. This feature, along with the modification proposed through the introduction 

of the parameter 7, results in the proposed BVMGH PDF to match the empirical 
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PDF very well both in the peak and tail segments. Thus, the BVMGH prior function 

would be very effective for DWT-based video signal processing. 

7.3 Conclusion 

In this chapter, the correlation between the DWT coefficients of any two neighboring 

frames of a video has been proposed to be an indirect measure of the motion that 

exists between these frames. First, the BVG PDF has been considered to be a joint 

PDF of the inter-frame DWT coefficients of a video signal. Due to the mathematical 

tractability of the BVG PDF, locally-adaptive MAP-based denoising algorithms are 

developed using this PDF as prior in Chapter 8. In view of the fact that the incor­

poration of the higher-order moments of data samples in the parameter estimation 

provides a better probabilistic model, as seen in the development of the univariate 

MGH PDF, the BVMGH PDF has been developed as a joint PDF of the inter-frame 

DWT coefficients of a video signal. The modeling performance of both the proposed 

joint PDFs, namely, the BVG and BVMGH, are tested on a number of test video 

sequences. Simulation results show that these PDFs can provide an approximation 

of the empirical PDF, however, the closeness of fit of the latter is better than that of 

the former. 



Chapter 8 

Wavelet-Based Video Denoising 
Using a Joint P D F 

8.1 Introduction 

In this chapter, two wavelet-based video denoising techniques are developed by using 

a joint PDF of the wavelet coefficients of two neighboring frames. The denoising tech­

niques use the correlation parameter of the joint PDF as an index of motion. Due to 

mathematical tractability, the BVG PDF proposed in Chapter 7 is employed as the 

joint PDF in the development of bivariate MAP estimators that are used for spatial 

filtering of the noisy decimated DWT coefficients [138], as well as that of the noisy 

magnitude components of the DT-CWT coefficients [87]. A recursive time averaging 

of the spatially filtered coefficients and components is adopted for further noise re­

duction. Experiments are carried out on a number of test video sequences and the 

results show that the proposed denoising algorithms provide improved performance 

both in terms of the PSNR and the perceptual quality as compared to that provided 

by the other denoising algorithms. 

8.2 Video Denoising and DWT 

Video processing is becoming increasingly important with the rapid growth of multi­

media technology. Among the various video processing tasks, the reduction of noise 
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is an important one, since distortion of a video is inevitable during its acquisition, 

processing, storage, transmission, and reproduction [205]. A noisy video has not only 

an unpleasant visual effect, but it also restricts the user to extract the true content. 

The aim of video denoising is to improve the perceptual quality by removing the noise, 

while preserving the signal features as much as possible. The reduction of noise in 

a video is also a pre-processing step for various applications such as compression, 

enhancement, and target recognition. Thus, the development of an advanced video 

denoising scheme is essential. 

There exists a high correlation among the neighboring frames of a video, since the 

motions among such frames are small. Hence, video denoising techniques can be 

considered as extensions of image denoising techniques, by providing temporal fil­

tering taking into account the correlation between the neighboring frames. In order 

to reduce the computational effort, most of the video noise reduction techniques 

use the spatio-temporal filters in the pixel-domain rather than in the transform-

domain [202], [203], [206]-[213]. A 3D window along the estimated motion trajectory 

is generally used for the processing of a pixel value, since one can assume the station-

arity of the pixel values along that trajectory. Some examples include the adaptive 

weighted averaging filter [206], the adaptive recursive least square filter [207], and 

the motion compensated Kalman filter [208]. However, the estimation of the motion 

trajectory in the data domain is an ill-posed problem that gets aggravated further in 

the presence of noise [202], and hence, an indirect motion estimation is preferable. For 

example, the 3D rational filter proposed in [209], indirectly incorporates the motion 

information of a video in some threshold parameters, the values of which are chosen 

in an ad hoc manner. Spatio-temporal filter based on the order-statistics [214] is an­

other approach for denoising. One such filter is the K-nearest neighbor (KNN) filter 

proposed in [210]. The filter orders the pixel values of a 3D local neighborhood and 
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averages the clustered ones. Although the pixel-domain spatio-temporal filters pro­

vide a slight increase in the computational speed compared to the transform-domain 

ones, the}' usually cannot suppress the noise sufficiently without the edges of the video 

signal being smeared. 

In signal denoising, the DWT has shown considerable success over the last decade. 

There are two broad approaches for the DWT-based spatio-temporal filtering for video 

denoising. First approach is the thresholding of the coefficients of the 3D DWT of 

a noisy video [215]-[217]. The second and more appropriate approach is to represent 

each frame by the 2D DWT and perform spatial filtering [12], [65], [72], [106], [119], 

[126], [218]: this is followed by temporal filtering by taking into account the strong 

temporal correlation that exists in a video. Due to the shift-in variance property, the 

non-decimated DWT [45] improves the video denoising performance approximately 

by ldB as compared to that of the decimated representation [201], [219], [220]. In 

order that the video denoising algorithms have a reduced computational load as well 

as denoised frames have a better directional features, the DT-CWT may be used 

instead of the non-decimated DWT. Nevertheless, the decimated DWT-based algo­

rithms show the least computational load, an important issue for video processing. 

In this chapter, we consider both the decimated DWT and DT-CWT for video de­

noising. 

In the 2D DWT-based or DT-CWT-based video denoising algorithms, spatial and 

temporal filtering are carried out separately [16], [140], [201], [219]-[223]. Pizurica et 

al. [220], [221], have used DWrT-based image denoising methods for spatial filtering of 

individual frames and then applied a recursive temporal filtering in the pixel-domain. 

The same authors have developed in [223] another denoising algorithm, where a DWT-

domain temporal noise reduction is performed followed by a spatial averaging filter 

for further noise reduction. These DWT-based algorithms outperform the traditional 
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pixel-domain spatio-temporal denoising techniques, such as the ones proposed in [209] 

and [210]. However, the advantages of the DWT are not fully exploited in the denois­

ing methods of [220], [221] and [223], since the wavelets are used either in the spatial 

domain or in the temporal domain. Balster et al. [219] have used a DWT-based image 

denoising technique developed in [224] for spatial filtering of a noisy frame. The tem­

poral noise reduction is performed by using compactly-supported Haar wavelet-based 

thresholding on the spatially-denoised frames. In [201], a recursive temporal filtering 

is performed on the spatially filtered [106] significant coefficients along the estimated 

motion trajectory. 

In recent years, the statistical approach has emerged as a new tool for DWT-based 

spatio-temporal filtering. The basic idea is to model the DWT coefficients of a video 

with a pre-specified PDF, and consider the video denoising problem as the estimation 

of the noise-free coefficients using a statistical estimation technique. Some of the com­

monly used PDFs for the subband coefficients of the DWT of images are the GG [47], 

BK [74], and SNIG [23]. A reasonable assumption in the use of any of these PDFs is 

the i.i.d. nature of the subband coefficients of the DWT. But, it is known that the 

DWT coefficients of images have a considerable intra-subband statistical dependency 

and a weak inter-subband dependency [64]. In order to tackle the intra-subband de­

pendency, the parameters of the PDFs of the DWT coefficients are estimated locally. 

The Gaussian PDF having locally-adaptive parameters is a popular choice for mod­

eling the local neighboring coefficients, since this PDF is mathematically convenient 

for developing an estimation technique [106], [118], [122]. Improved image denoising 

performance is achieved in several algorithms using such a PDF and by exploiting a 

better estimate of the local parameters [107]. [225]. The inter-subband dependency is 

considered in various ways, which include the selective thresholding [122], the use of 

spherically invariant bivariate PDF in the MAP estimation technique [65], [66]. and 
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modeling the DWT coefficients by the HMT model [72]. It is obvious that the way 

in which the statistical dependency in the spatial filtering of the DWT coefficients 

of video frames is incorporated, plays a significant role in the denoising performance. 

Therefore, a spatial filtering that considers the statistical dependency of the inter-

frame DWT coefficients of a video should improve the denoising performance further. 

Such an effort can be found in [16], wherein Gupta et al. model the DWT coeffi­

cients of a current frame and its difference from the previous frame as i.i.d. GG for 

an MMSE-based denoising algorithm. The algorithm ignores the dependency of the 

neighboring frames except for the previous one. and there is no closed-form expression 

for the ultimate MMSE-based estimator. 

In this chapter, video denoising algorithms are developed by using a joint probabilis­

tic model that takes into account the statistical dependency of the decimated DWT 

or DT-CWT coefficients of any two neighboring frames of a video. The joint PDF is 

chosen as the BVG, since the correlation parameter of this PDF may be used as a mea­

sure of motion between the wavelet coefficients of the two neighboring frames and the 

development of estimation techniques using such PDF is mathematically tractable. 

The intra-subband dependencies are taken into account by considering that the pa­

rameters of the BVG PDF vary locally. The proposed PDF is utilized to develop 

bivariate MAP estimators for spatial filtering of a noisy video. It is shown that the 

introduction of the proposed probabilistic model for the video wavelet coefficients re­

sults in a performance better than that provided by other denoising algorithms, both 

in terms of the visual quality and PSNR. 

8.3 Denoising Algorithms 

In this section, we assume that pixels of the video frames are corrupted by AWGN with 

a known variance a\. If the variance is unknown, it may be estimated by applying 
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the median absolute deviation method [120] in the highest frequency subband of 

the noisy wavelet coefficients. Since the noise is uncorrelated with the true signal, 

the corresponding noisy wavelet coefficient of a frame (say, k-ih frame) at a spatial 

location (i,j) of a subband is given by 

9k(ij) — fk(ij) + £k(ij) k = 1, 2, • • • , A3 (8.1) 

where, fk(ij) and £k(ij), respectively, are the wavelet coefficients of the original frame 

and additive noise at that reference location and A'~3 is the total number of frames 

in the video sequence. For notational simplicity, fk(ij) in the decimated DWT is 

denoted as fk and in the polar form of the DT-CWT as fTk^f$k- Similar notations 

are used for gk{ij) and £k(ij) • The proposed wavelet-based noise reduction algorithms 

operate in two steps. First, a bivariate MAP estimator estimates the decimated DWT 

coefficients, denoted as fk, or the magnitude components of DT-CWT coefficients, 

denoted as fTk, of the current fram,e taking the correlation information of the l-th 

previous fram.e into account. The mean, variances, and covariances of the joint prior 

function are estimated from the bivariate ML estimator. In the second step, the 

estimated coefficients fk or components /rfc are passed through a recursive temporal 

averaging filter for additional noise reduction to obtain the final estimate fk or fxk-

Since the estimated magnitude components along with the noisy phase components 

are sufficient for a good noise reduction performance [66], [67], the denoised DT-

CWT coefficients are obtained as fTk^9ek- Finally, the denoised wavelet coefficients 

are inverse transformed to obtain the denoised video frame. The block diagram of 

the proposed DWT-based noise reduction scheme is shown in Fig. 8.1. 

8.3.1 Spatial Filtering 

In this section, bivariate MAP estimators are developed to spatially filter the deci­

mated DWT coefficients or the magnitude components of the DT-CW;T coefficients 
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Figure 8.1: Block diagram of the proposed DWT-based denoising scheme. 

of a noisy current frame using the coefficients or components of a previous frame. 

These estimators consider appropriate noise statistics and the proposed joint prior 

function for the noise-free coefficients or components. 

Bivariate MAP Estimator in Decimated D W T Domain 

In the decimated DWT domain, the AWGN is modelled as a zero-mean Gaussian 

random variable with a subband-adaptive variance d\ (see Chapter 5). The bivariate 

MAP estimator for estimating the wavelet coefficients of the current frame from the 

noisy versions of the current frame and the /-th previous frame can be written as 

(9 k 
fk{9k,9i) = argmax 

Jk-fl 

fkf (9i-fi)2 

2d2
s lb* 

+ toPfkfl(fk,fi. 2) 

where Pfkft(fk, ft) is the joint prior function of fk and / j . In the case of decimated 

DWT, the joint prior function of the local neighboring coefficients. Pfkft{fk, fi)i is 

chosen as 

Pfk,fi(fk,fl] 
1 

2Trakai^/l - p' 
: exp 

1 

2(1 -P2) I o\ 
n, n 

+ -2p 
'i 

fk fl 
1 < p< 1 

(8.3) 

where ak {ok > 0) and o\ (o\ > 0) are the standard deviations of the signal coeffi­

cients of the /c-th and /-th frames, respectively, and p is the correlation between these 
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coefficients. In order to maximize (8.2), we need to solve the equations 

9k- fk 1 f fk pfi 

°e 1-P2\ak akal 

9i~ fi 1 f fi Pfk 

= 0 (8.4) 

ul 1 - P I erf Ok<J\ 

Finally, from (8.4) and (8.5), the estimated wavelet coefficients of the current fram,e 

fk, based on the Z-th previous frame are [138] 

2 - 2 

£ i °ka 

fk\9l= ' *l&2 + %Wf + *?] 
(j l a 

9k + p—^9i (8.6) 

where, a2 = [l — p2]af+a2, for I = k — l,k — 2, • • • , k — C. The closed-form expressions 

obtained in (8.6) offer an easy implementation of the spatial filtering scheme. Fig. 8.2 

shows the shrinkage functions obtained from the proposed bivariate MAP estimator at 

different values of the correlation coefficient. It may be seen from this figure that if p 

is non-zero, then the noisy wavelet coefficients of the previous frame have a significant 

contribution for estimating the denoised coefficients of the current frame. Thus, p 

serves as a measure of the motion between two coefficients at a particular spatial 

location of subbands of two neighboring frames of a video. 

The variance and correlation of the decimated DWT coefficients of the current and 

previous frames are estimated from the noisy observation using the ML method as 

[138] 

(8.7) 

(8.8) 

^ m a x ^ m m ^ J - ^ E ^ ) ) - - 1 ) ^ 

where S is a square-shaped local neighborhood region centered at gk or g: and H is 

the total number of data samples in this region. 



149 

JSI 

ml 
Noisy coefficients 
of previous frame 

-«t 

(a) 

Noisy coefficients 
of current frame 

60 > 

40 J 

Noisy coefficients _2C 

of previous frame 

m*m 
Noisy 
of curt 

loefficients 
rent frame 

(b) 

Noisy GoeHi 
of previous 

;ienis 
'rame 

cj 

-20 Noisy coefficients 
of currant frame 

^ » 
Nosiy coefficients 
of previous-frame 

o 
Noisy 
of cijr. 

coefficients 
'eni-frame 

fcl) 

Figure 8.2: Shrinkage functions of the decimated DWT coefficients using the bivariate 
MAP estimator at different values of the correlation coefficient p: (a) p = 0, (b) 
/> = 1.00, (c) p = -0 .25 , and (d) /> = 0.50. 



150 

Bivariate M A P Est imator in D T - C W T Domain 

In the DT-CWT domain, the magnitude components of the Gaussian noise in the first-

level decomposition can be modelled very well by the G r distribution (see Chapter 

4). It is also shown in Chapter 4 that in the second and higher level decompositions, 

these components follow the Rayleigh distribution, which is a particular case of the 

GT distribution. Hence, the bivariate estimator for the magnitude components of the 

DT-CWT coefficients considers that the magnitude components of the noise follow 

the Gr distribution. The bivariate MAP estimator for estimating the magnitude 

components of the DT-CWT coefficients of the current frame from the noisy versions 

of the current frame and the Z-th previous frame can be written as 

frkigrk-.gri) = arg max 
frk, frl 

(2a - 1) (HgTk - frk) + ln(<7r, - / r i ) ) 

- ^ {{9rk ~ frkf + (9rl - frlf) + ^ PfTkfr,(frk; frl) 

(8.10) 

where PfTkfT,(fTk, fii) is the joint prior function of fTk and frl. In the case of 

DT-CWT, the joint prior function of the local neighboring magnitude components, 

PfrkfAfrkifn), is chosen as . 

/ f f \ l I" 1 f(/rfc ~ Prkf 
P frk frl (/rJfc: frl) = ~ r- g e X P 

27TCrrfcar;^/l - p j 

. (fzl ~ A M ) 2
 0 (frk - P-rk)(frl ~ Mr/ 

2(1 -PI)K »rk 

~ 1 < Pr < 1 

(8.11) 

where {nTk,^rk} (/-'rk > 0,aTk > 0..) and {/xr/,CTr/} (fri > 0,aTl > 0), respectively, 

are the parameters, mean and standard deviation, of the magnitude components of 

the DT-CW7T coefficients of the A>th and l-th frames, respectively, and pT is the 

correlation between these components. Thus, to maximize (8.10) we need to solve 
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the following equations 

l - 2 a 2a /rfc - Mrfc , pAfn - Pvi) n ,„ 19^ 
9rk ~ frk b2 r a2

k{l - pi) aTkori(l - p2
r) 

1 - 2 a 2a fri-Hn , fhifrk - l^k) n , S 1 ^ 
+ T7v9w - Jw; 571 2\ "̂  n 5T = U [0.16) 9n - fri b2 r a2

t{l - p2) arlalk(l - p2) 

Finally, from (8.12) and (8.13), the magnitude components of the DT-CWT coeffi­

cients of the current frame frk, based on the l-ih previous frame, are estimated in 

the form of a quadratic solution given by [87] 

flk\grl = max (±- f-Bk - yj&k - \AkCk\ . o) (8.14) 

where 

A^2{a^ + W^pJ)) (8-15) 

Bk = grk (2aa2
k - 2 ( 1 ^ 2 ) ) + T ( ^ ) (8.16) 

Ck = (i _ 2 o ) ^ + ag2
ke

2
rk + grkT(frl) (8.17) 

T(fTl) = (&** (ftl - pTl) + plk) / (8.18) 
V o-w J 2(1 - pi) 

The mean, variance, and correlation of the magnitude components of the DT-CWT 

coefficients of the current and previous frames are estimated from the noisy observa­

tion using the ML method as [87] 

/.irk = max 

m a x U E ^ - ^ 

//.r, = max ^ y > r ; - / / e r , 0 (8.20) 

a2
k = max - V (<7rfc - ^ ) 2 " o\, 0 (8.21) 

ar
2, = max ( i £ (<?r, - g r,)

2 - ^ , 0 j (8.22) 
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I min ( 1, ( - V g r t g r , - //rfc;ur/ 

\ V Crlkarl\H^ 

- MrJfc/i£r - Mr(Mer ~ l4r) J > ~ * ) ( 8 ' 2 3 ) 

where 5 is a square-shaped local neighborhood region centered at gTk or grh H is the 

total number of data samples in this region, and {grk;9xi\ are the mean parameters 

of the noisy samples {gTk, 9ri}- The mean and variance of the magnitude components 

of the DT-CWT coefficients of the noise are obtained from the formulas given in 

Chapter 4. An initial estimate of fT[ is required to calculate T(fTi). In our case, we 

obtain this estimate as 

fn = max (J=- (-8, - y/B? - AAfi^j , o) (8.24) 

where A\ = Ak\k=i.Pr=o- &i = Bk\k=u=k.pr=Oi a n d Q = Ck\k=u=k,Pl=o-

8 . 3 . 2 T e m p o r a l F i l t e r i n g 

The estimated decimated DWT coefficients using (8.6) or the magnitude components 

of the DT-CWT coefficients using (8.14) considers the current frame and any one 

of the neighboring previous frames. In order to account for contributions from the 

several neighboring previous frames, a temporal filtering is essential. For the temporal 

processing, a relatively large value of C (£ > 1) is preferable. However, as the time 

difference between the fc-th and Z-th frames increases, the expected value of p decreases 

(see Fig. 7.1). Hence, with the increase of £, the value of g\ or grl appears to have 

very little effect in the estimation of fk or flk. A recursive weighted averaging of the 

estimated coefficients fk\gi is. therefore, proposed for the final estimation as 

fk I 9, = "fk I 9i + (1 " uj)fk | gi.i (8.25) 

where, fk | gk-c — fk I 9k-c-. and UJ (0 < JJ < 1) is the weight parameter. A similar 

recursive temporal filter can be used for the final estimation of fTk | 9ri Intuitively, 
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one can say that the recursive filter should accumulate and average the estimated fk 

or /rfc from all the previous C-frames with the highest weight assigned to the nearest 

frame and the lowest to the farthest one. where the weight value is determined by u. 

If the motion between the neighboring frames is very high, the error between fk \ §) 

and fk | <7;_i or flk \ gTl and fxk | <7r(/_a) will be large, and u could be set to a value 

close to unity. On the other hand, for a very small motion among the neighboring 

frames, UJ could be set close to zero. Here, we have chosen the value of u> to be 0.5, 

taking into account the fact that a video can have frames with both high and low 

motion contents. 

Note that in the proposed noise reduction schemes, the variance or the mean and 

variance for each of the coefficients or components for all the frames are calculated 

only once. For processing the coefficients or components of the current frame, it is 

necessary to calculate the correlation parameter for each of the coefficients or com­

ponents of the previous C-frames. Therefore, for a video of size N\ x N2 x N3, 

the computational complexity of the decimated DWT-based denoising algorithm is 

O (w2(l + C)N1N2N3) and that of the DT-CWT based algorithm is O (4w2(2 + C)NiN2N3), 

where w x w is the size of a squared-shape local window. 

8o4 Experimental Results 

In order to compare the performance of the proposed denoising methods with that 

of the other methods, we give in this section results concerning experimental stud­

ies that have been conducted using the six grayscale video sequences, viz., Tennis, 

Salesman, Coastguard, Football, Foreman, and Garden. The orthogonal wavelets S-8 

with a 4-level decomposition are used for the decimated DWT, whereas (11,17)-tap 

biorthogonal filters at level t = 1, and 6-tap Q-shift orthogonal filters at C = 2, 3, 

and 4 are used for the DT-CWT. The number of previous-frames. C. depends on the 
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overall motion content of the video sequence. In our experimental study, however, we 

have found that C = 3 is sufficient for an appreciable denoising performance. 

Eight different denoising methods have been considered in our experimentations, 

where two of them work in the pixel-domain and the rest in the wavelet-domain. 

The pixel-domain denoising methods use the 3D KNN filter [210] and the 3D ra­

tional filter [209]. Wavelet-based denoising methods are the adaptive Bayes-Shrink 

method of the 3D wavelet coefficients [217], the combined wavelet-domain and tem­

poral denoising method of Pizurica et al. [220], the BivariateShrink method [66], the 

locally-adaptive window-based ML (LAWML) method [106], and the proposed inter-

frame MAP (IFMAP) methods. The proposed IFMAP methods have been tested 

using several square-shaped local neighborhoods for estimating the local parameters 

(e.g., mean, variance, and correlation). It is found that the 5 x 5 or 7 x 7 window 

size provides a satisfactory denoising performance. All the results for the proposed 

IFMAP methods given in this section are obtained using a 5 x 5 window unless oth­

erwise mentioned and for other methods we use the default settings. Table 8.1 shows 

the average PSNR values obtained from the various pixel-based and the wavelet-based 

denoising techniques for the first 120 frames of the test video sequences, wherein we 

have used oE = 10, 20, and 40. In this table, for the combined wavelet-domain and 

temporal filter of [220], we have used the temporal threshold parameter to be 23 

and the weight factor 0.6. since these parameters yield the maximum PSNR gain, 

as mentioned in [220]. According to the PSNR. results, the performance of the deci­

mated DWT-based video denoising methods are always superior to that of the simple 

pixel-domain spatio-temporal filter, and the DT-CWT based methods are superior to 

the corresponding decimated DWT-based methods. It can be observed from Table 

8.1 that, except in one instance, i.e.. Foreman sequence denoised by the Bayes-Shrink 

method of the 3D DWT [217]. the proposed decimated DWT-based algorithm provides 
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Table 8.1: Output average PSNR, 201og10(255/<7e) in dB, where ae is the error stan­
dard deviation, for various denoising methods using frames 1-120 of the test video 
sequences. 

Video sequences 
Noise level 

3D Rational [209] 
3D KNN [210] 

Bayes-3D [217] 
Pizurica [220] 
Bi-Shrink [66] 
LAWML [106] 

Proposed IFMAP 

Bi-Shrink [66] 
Proposed IFMAP 

Tennis 
a£ = 10 

Salesman 
a£ = 10 

Coastguard 
a£ = 20 

Football 
ae = 20 

Foreman 
a£ = 40 

Garden 
a£ = 40 

Pixel-based Methods 
29.86 
29.14 

31.65 
32.13 

27.23 
26.62 

26.24 
24.95 

24.74 
25.70 

18.73 
18.12 

Decimated DWT-based Methods 
30.89 
30.76 
31.05 
31.40 
32.05 

34.18 
34.11 
32.77 
32.77 
34.28 

27.84 
27.42 
27.82 
28.06 
28.40 

26.28 
26.62 
26.61 
26.77 
27.06 

27.35 
26.75 
26.40 
26.50 
27.16 

20.13 
20.00 
20.35 
20.72 
20.92 

DT-CWT-based Methods 
31.23 
32.07 

33.14 
34.38 

27.93 
28.67 

26.88 
27.40 

27.56 
27.59 

20.39 
21.20 

average PSNR values, which are higher than that provided by the other decimated 

DWT-based methods. It may be noted that even in the case of Foreman sequence 

the difference between the PSNRs of the proposed and Bayes-Shrink methods is not 

more 0.20 dB. As can be seen from Table 8.1 that the proposed decimated DWT-

based method which considers the inter-frame dependency shows approximately 0.9 

dB improvement in the average PSNR value as compared to that provided by the 

BivariateShrink method of [66], which considers the inter-subband dependency when 

applied to the individual frames of the video. In addition, the proposed DWT-based 

method shows approximately 0.7 dB improvement in the average PSNR value as 

compared to that provided by the LAWML method [106], which considers only the 

intra-subband dependency. Clearly, the parameter p has a significant effect on the 

denoising performance in terms of the average PSNR values. Table 8.1 also shows 

the average PSNR. values obtained from the two DT-CWT-based methods, namely, 

the BivariateShrink [66] and proposed IFMAP. According to these PSNR values the 
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proposed IFMAP performs better than the BivariateShrink method. 

Fig. 8.3 shows the frame-by-frame performance of the various decimated DWT-based 

methods in terms of the output PSNR values. From this figure, it can be seen that the 

proposed denoising method provides the highest PSNR value in most cases. Moreover, 

the variation of the output PSNR over all the 120 frames is the least in the proposed 

method compared to the other denoising methods. This implies that the proposed de-

noising method has a better capability to adapt in accordance with the motion within 

the video without affecting the denoising performance significantly as compared to 

the other methods. It is also seen from Fig. 8.3 that the proposed method provides 

better PSNR values for all the frames of a given video sequence as compared to that 

provided by the BivariateShrink method [66], indicating that in video denoising, it is 

more important to consider inter-frame dependency than inter-subband dependency, 

even when the motion is strong. Figs. 8.4(a) and 8.4(b) show the original 60-th frame 

and its corrupted version with ae = 10 for the sequence Salesman. Figs. 8.4(c) and 

8.4(d) show the denoised versions using the combined wavelet-domain and temporal 

filter of [220] and the proposed decimated DWT-based IFMAP filter, respectively; the 

absolute value of the errors occurring in these two denoising algorithms are shown 

in Figs. 8.4(e) and 8.4(f), respectively. Although the denoised frames from the two 

algorithms appear to be the same, the error images clearly show the difference be­

tween the two schemes. Specifically, the error of the denoised frame obtained from the 

combined wavelet-domain and temporal denoising of [220] is significant as compared 

to the proposed method in those spatial locations where motion exists, revealing that 

the proposed method adapts better with motion of a video. Corresponding results 

for the sequence Football are given in Fig. 8.5, where ae = 20 has been used and 

the proposed decimated DWT-based IFMAP method is compared with the adaptive 

Bayes-Shrink method of the 3D DWT coefficients [217], It can be observed that the 



157 

\; 

—— Bayes-Shrink 3D 
—*— Pizurica 

• Bivariate-Shrink (5X5) 
— . — LAWML (5X5) 
—•— Proposed-OWT (5X5) 

40 60 
Frame number 

10 

36 

35.5 

35 

Z 54 

33.5 

33' 

32.5 

32 

- Bayes-Shrink 30 
- Pizurica 
- Bivariate-Shrink (7X7) 
- LAWML (7X7) 
- Prcposed-DWT (7X7) 

20 40 60 SO 
Frame number 

Frame number 
60 SO 

Frame number 

(c) (d) 

1 27 

• Bayes-Shrink 3D 
- Pizurica 
- Bivariate-Shrink (7x?i 
- LAWML (7X7! 
- Proposed-OWT (7x7) 

21.4 

21.2 

21 

20 8 

| 20.6 

H 20.4 

g 20.2 

20 

: : i 

<A <\\, M ^ V , i, „ 

—>— Bayes-Shrink 3D 
—~— Pizurica 

• —*~- Bivariate-Shrink (5x5) 
—— LAWML (5X5) 

' •—•— Praposed-aVT (5x5) 

HM&QiCwOq 
VM i 

i 
40 60 80 

Frame number 
40 60 SO 

Frame number 

(e) (f) 

Figure 8.3: Output PSNR values for the different decimated DWT-based denoising 
schemes for the frames 1-120 of the video sequences, (a) Tennis with aB ~ 10. (b) 
Salesman with a£ = 10. (c) Coastguard with a£ = 20. (d) Football with ov = 20. (e) 
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Figure 8.4: Filtered output of the 60-th frame of Salesman with a£ = 10: (a) original 
frame, (b) noisy frame, and denoised frames using (c) the combined wavelet-domain 
and temporal filter and (d) the proposed decimated DWT-based IFMAP method, (e) 
Absolute error of (a) and (c). (f) Absolute error of (a) and (d). 
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Figure 8.5: Filtered output of the 60-th frame of Football with a£ = 20: (a) original 
frame, (b) noisy frame, and denoised frames using (c) the adaptive Bayes-Shrink of the 
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proposed filter outperforms the 3D DWT-based Bayes-Shrink method, especially in 

the area of the frame where motion occurs. Another set of results for the sequence 

Garden are given in Fig. 8.6, where a£ = 40 has been used and the proposed DT-

CWT-based IFMAP method is compared with the DT-CWT-based BivariateShrink 

method [66]. It can also be observed that the proposed filter outperforms the Bivari­

ateShrink method, especially in the edge of the objects where motion occurs. From 

all these figures, it appears that the proposed IFMAP methods result in a perceptual 

quality that is better than that provided by the other methods. It may be mentioned 

that this perceptual quality including the ability to reduce the amount of nicker pro­

vided by the proposed methods, appears to be even better than that provided by the 

other methods, when the entire 120 frames of the sequences are viewed rather than 

just one frame. 

8.5 Conclusion 

In this chapter, we have used the BVG PDF for the decimated DWT coefficients or 

the magnitude components of the DT-CWT coefficients of any two neighboring frames 

for reducing the AWGN in a video. It has been shown that the correlation coefficient 

of the PDF can be very effectively used as a measure of the motion between any two 

frames for denoising. Specifically, the BVG PDF is employed for spatial filtering of the 

noisy decimated DWT coefficients or magnitude components of DT-CWT coefficients 

of a video. For this purpose, we have developed closed-form bivariate MAP estimators. 

The spatially filtered coefficients or components are then passed through a recursive 

time averaging filter for additional noise reduction. The simulation results using 

six test video sequences have shown superior denoising performance of the proposed 

inter-frame MAP (IFMAP) denoising methods both in terms of the PSNR and the 
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Figure 8.6: Filtered output of the 60-th frame of Garden with a£ = 40: (a) origi­
nal frame, (b) noisy frame, and denoised frames using (c) the DT-CWT-based Bi-
variateShrink method and (d) the proposed DT-CWT-based IFMAP method, (e) 
Absolute error of (a) and (c). (f) Absolute error of (a) and (d). 



162 

perceptual quality compared to that provided by other denoising methods. Finally, 

it is worth mentioning that a significant feature of the proposed IFMAP-based video 

denosing methods is in their simplicity of implementation. 



Chapter 9 

Conclusion 

9.1 Concluding Remarks 

Probability density functions play a significant role in the development of statisti­

cal estimation and detection techniques for processing of signals. In general, a PDF 

should capture the essential variability of the signal such as the motion in a video, pos­

sess a good statistical match to the empirical PDF, and be mathematically tractable 

and computationally efficient. Studies have shown that the PDFs of the subband co­

efficients of the DWT of an image or video have sharp peaks and long tails. Since the 

shape of such PDFs is known, the parametric or semi-parametric techniques are used 

for the density estimation. An important advantage of the parametric density esti­

mation techniques is that the PDF can effectively use a priori knowledge. Common 

parametric PDFs that are used for the subband coefficients of the DWT of an image or 

video signal include the GG, BK, SNIG, and SaS. In some applications, such as noise 

reduction, an improved performance in estimation may be obtained by statistically 

modeling the local neighboring coefficients. An effective way to tackle such a scenario 

is to estimate the parameters of the PDFs using the local neighboring coefficients. 

It may be noted that the parametric PDFs possess a fixed number of parameters. 

The number of parameters of a semi-parametric PDF is not restricted. However, the 

estimation of parameters of such a PDF cannot make use of the information obtained 

163 
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from the higher-order moments of the data samples; instead, this estimation adopts 

a computationally expensive iterative algorithm. An important outcome of not us­

ing an appropriate number of parameters estimated from the higher-order moments 

of the data samples, is that the conventional PDFs show an inadequate statistical 

match with the empirical PDFs. As a consequence, the existing statistical estimators 

and detectors that use any of such PDFs very often provide estimation and detection 

performance that are not satisfactory. 

In order to overcome the shortfalls of the traditional wavelet-based statistical estima­

tion and detection techniques for an image or video, this study has introduced a new-

PDF for the wavelet coefficients of such a signal. The new PDF has been developed 

using the Gauss-Hermite (GH) series expansion, since such an expansion allows the 

estimated PDF to have an appropriate number of parameters that can be expressed 

in terms of higher-order moments of the data samples. Estimation of such a PDF, 

however, requires a truncation of the GH series function and the calculation of the 

error prone higher-order sample-moments. Due to these reasons, the expanded PDF 

is not ensured to be non-negative. In order to maintain the non-negativity constraint 

of a PDF, a modification in the scries has been proposed. Closed-form expressions of 

the parameters of the resulting PDF, termed as the modified Gauss-Hermite (MGH) 

PDF, for the wavelet coefficients have been derived in terms of higher-order moments 

of the data samples. Depending on the application scenario, the MGH PDF is capa­

ble of using a suitable number of parameters. For example, the PDF of the subband 

coefficients may use the parameters obtained from a relatively large number of higher-

order moments, since in such a case the number of data samples is considerably large. 

On the other hand, the PDF of the local neighboring coefficients may use the param­

eters obtained from a smaller number of higher-order moments, as is the case when 

the number of data samples is small. It has been shown that univariate MGH PDFs 
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match very well the empirical PDFs of the subband coefficients as well as the local 

neighboring coefficients of the test images as compared to the commonly used PDFs 

such as the GG, BK, and SNIG do. In the process of developing a probabilistic model 

for the wavelet coefficients of a video, it has been shown that the correlation parame­

ter of a joint PDF may be used as a measure of the motion between two neighboring 

frames. Bivariate Gaussian PDF is a simple choice for modeling the wavelet coeffi­

cients of such neighboring frames. In order to obtain a better probabilistic model, 

the bivariate MGH PDF has also been developed as an inter-frame joint PDF of the 

wavelet coefficients of a video. By using a number of test video sequences, it has been 

shown that the bivariate MGH PDFs match the empirical joint PDFs very well. 

The proposed MGH PDF is used as the prior of the wavelet coefficients of images 

and video to develop the MAP and MMSE-based estimators for denoising of image 

and video signals and log-likelihood ratio-based detector for watermarking of image 

signals. Both the subband- and locally-adaptive denoising algorithms have been con­

sidered for images, whereas for video we consider the latter, since the latter provides 

a better denoising performance than the former. To obtain computationally efficient 

denoising algorithms for video, the bivariate Gaussian PDF has been used as a joint 

prior function for the local neighboring wavelet coefficients. In order to study the de­

noising performance, the proposed algorithms have been compared with the existing 

algorithms in terms of various indices such as the PSNR, SSIM, and visual quality. 

It has been shown that the proposed denoising algorithms provide a performance su­

perior to that of the others. The proposed watermark detector is compared with the 

conventional detectors in terms of the probabilities of detection, probabilities of false 

alarm, and efficacy, as well as in terms of robustness. It has been shown that the 

proposed MGH detector provides credible watermark detection which is better than 

that provided by the existing detectors. 
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9,2 Scope for Further Work 

The univariate and bivariate MGH PDFs developed in this thesis may be extended 

to the multivariate MGH PDF for processing the wavelet coefficients of a group of 

neighboring frames of a video. The proposed MGH PDF may be used in a variety of 

signal processing applications such as compression, pattern recognition, registration, 

stabilization, and segmentation, in addition to denoising and watermarking that have 

been considered in this thesis. Some of the possible avenues of research using this 

MGH PDF are as follows: 

9 A video denoising scheme may be developed by using a bivariate MGH PDF 

that considers higher-order moments in its parameter estimation. 

• A video watermarking scheme for the H.264/MPEG-4 AVC standard may be 

developed using the MGH PDF. In this scheme, the motion compensated mul­

tiple frames may be modelled by the multivariate MGH PDF for embedding 

and detecting a watermark. 

© An efficient compression scheme may be developed by estimating the quantiza­

tion steps of the 2D DWT coefficients of images and 3D DWT coefficients of 

video by using the MGH PDF. 

» An efficient registration scheme of medical images can be developed by using the 

bivariate MGH PDF. In this scheme, the cross-entropy of two images may be 

measured using the bivariate PDF, which is capable of capturing the multimodal 

nature of the empirical PDF. 

© A registration scheme to overlay certain groups of frames of video taken from 

several sensors may be developed using the multivariate MGH PDF. 
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• A pattern recognition scheme may be developed by using the MGH PDF in a 

multi-hypotheses Bayesian classification method. 

• A scheme may be developed for segmentation of image features by using MGH 

PDF to obtain an appropriate Bayesian threshold for the 2D DWT coefficients. 
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Appendix A 

PDF of DWT Coefficients of Images Using Gauss-
Hermite Expansion 

A-l Series Parameters in GH Expansion 

Let / be the normalized version of / with the relation / = f/af and its PDF is 

Pf{f)- Since the Hermite polynomials are orthogonal with respect to the zero-mean 

unit variance Gaussian weight function, Pf(f) can be written as [81] 

1 
Pf(f) =e-^J]/3A(/) (A-l-1) 

where j3r are the series coefficients. Multiplying both sides of (A-l-1) by Hr(f) and 

integrating from —oo to oo. /?r can be evaluated as 

& = Ty l°° Pf(f)Hr(f)df 
' • J—x 

(A-l-2) 

Using the fact that / has a zero mean and unit variance, one can obtain /?0 = 1 and 

Pi = ,82 = 0. Finally, changing the variable of / to / in (A-l-1) yields [80] 

Pf(f) 
1 2ai i + ^r,0rHr 

r=3 af\/2n 

The Hermite polynomials Hr(f) can be expressed as 

L5J ' iyv! 

f_ (A-l-3) 

w-ZtjF^w/ r — 2u A-1-4) 
•»=o 
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Using the identity Pf{f)df = p / ( / ) d / and the expression of Hr(f), the series coef­

ficients Pr in (A-l-2) can be obtained in a generalized form 

Pr = -} r P/(/)#r( —W 
r]-J-oo W y 

l-l 

LiJ 
= > p ( - 1 ) " M ( r-2u)/ 

^ 2"(r - 2u)!u! a ^ 2 " 

where Mnf is the n-th order moment of / . 

(A-l-5) 

A-2 Pa rame te r 7 for M G H P D F 

Using the normalized variable / , we can solve (3.8) as 7 = (1 — 2 T i ) / ( l — 2X2), where 

T, 
1 ffo _£. 

e 2 

/ 
Jo 

T; 1 r° _/ 
= —= / e ^ 

V 27T Jo 

/o f-2 
T 

C/2 

l + ^ / 3 2 r / / 2 r ( / ) 
r=2 

1 + * ^ H < ( / ) 

d / (A-2-1) 

(A-2-2) 

d / 
Using the identity ~ Hr+\{f) = (r + l)Hr(f) and the recurrance relation in (3.2), 

we obtain 

/ ' " < * H2r{f)df = - e ~ Hir-^f) (A-2-3) 

Hence, for r > 2 

1 /,^0 /2 - - 1 
e ~ / / 2 r ( / ) d / = -

'27T 2^ 

1 

/o 

e - ^ Z / a ^ ^ / o J - Z / a r - i C O ) 

2"* TT I J° 
e f H2r-i 

since #27—1(0) = 0 

/2r ( — ) , (Say; (A-2-4) 

Also. 
<2K 

h 
e 2 d / = -erf ' 

2 V v ^ i£T/ aS 
(Say; (A-2-5) 
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Using the above, Ti and T2, and hence, the parameter 7 can be expressed as 

7 

1 - 2 [/o (*) + £<£ 

i -2[ /o(^) + ̂ r 

& • ' * ( * ) ' 

"^(5)1 
(A-2-6) 



MMSE Shrinkage Function for Image DWT Coeffi­
cients Using Gauss-Hermite Expansion 

Using (5.5) and (5.6), the shrinkage function can be written as 

J { 9 ) fPe(9-f)Pf(fW Z'Llihrlor 

where the integrals Inr and ldr are given by 

(B-l-1) 

X — 

7" 
-Lrfr 

l 
2-K0fOe 

1 

e -"! 
at 2Si 2a ''H2r [ •?-) fdf 

_ _ g ±<se 
ii 2ai 2a I) ? / /2 r [ — ) d / 

(B-l-2) 

(B-l-3) 
2iT(jfde 

Let us define A = ( azl-2) , $ = - p>, and w = 2^2 • Using the expression of 

H2r{f), the integral Inr can be rewritten as 

(-l)»(2r)! 1 
X = 

1 ]5g 

-e 2 
2-KOfa£ 

y > (- l )"(2r)! 1 _ /" ^ - ^ 2 2 r_2u+1 

Since Reivo) > 0 and Ite(2r - 2ii + 2) > 0 Vr, using the integral formula given in [144] 

(p. 382), Znr in (B-l-4) can be evaluated as 

T„ 
2TXO JO, 

1 % ^ ( - l ) " ( 2 r ) ! ( 2 r - 2 u + l ) 
Z ^ 9r+l„l / T

2 '— 2" r 
u=0 J 

D_ (2r-2u+2) 

r—u+1 

1? I L ( 2 T - 2 U + 2 ) (B-l-5) 
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where DT{-) is the parabolic cylinder function. Similarly we can obtain 

X dr lirafcr£ 

-e 2 E ( - l ) u (2r ) ! 

D-(2r-2u + l) 
d 

+ D_ (2 r -2u+ l ) 
•d 

(B-l-6) 
'2w J \ v 2ro, 

Substituting the values of i) and w in (B-l-5) and (B-l-6), and then using (B-l-1), 

the final expression for the shrinkage function can be obtained as 

/(<?) = 
*den 

(B-l-7) 

hen wnere 

C/2 

Anum = ] T ihr J^(2r ~ 2u + % ( r . «)(Aae) 
2r -2u+2 

r=0 u=0 

C/2 

. A \ / A 
£>-(2r -2u+2) ( ~ ~ < 7 I - L>-(2r-2™+2) I ~ < 7 

Aden = ^2 P2r X ! ̂ r ' U K ^ 
v2r-2u+l 

,=0 u=0 

where •sir. it) = ,2\r %,' 

^- (2 r—2u + l) I — —£7 I + i ) - ( 2 r - 2 t i + l) — < 

(B-l-8) 

(B-l-9) 



Appendix C 

Joint P D F of Inter-Frame DWT Coefficients of Video 
Using Bivariate Gauss-Hermite Expansion 

Let the random variables fc and fp be the normalized versions of fc and fp with 

the relation fc = fc/ac and fp = fp/crp, where ac and ap are the standard deviations 

of the data samples of the current frame and the previous frame, respectively. The 

marginal PDFs of these normalized random variables, viz.. pfr(fc) and pj (fp), may 

be expressed in terms of univariate form of the Gauss-Hermite expansion as 

1 /? 
Pfr(fc) = Gc{fc)Y\&rcHrc{fc Gcifc) 

PfP(fp) = Gp(fp) Y, 0rrHrp(fp) Gp(fP) 
r=0 

where ;3rt: and fjrp are the scries coefficients given by 

7 = 0 /2n 

1 Jl 
-e 2 

'2lT 

(C-l-1) 

(C-l-2) 

L?J 

&c Z . 2-(r 
M (r — 2u)c 

2u)\u\ o' 
-2u Qrn 

LiJ 
(-1)" M(r-2u)p 

- 2 T J 
(C-l-3) 

u = 0 - v , " ^ 2 « ( r - 2 „ ) ! M ! a -

Mnc and Mnp being the n-th order moments of the data samples of the current frame 

and the previous frame, respectively. Let the bivariate Gaussian PDF with unit 

variances and having a correlation coefficient p be 

GnXfnfv 
1 

2 ^ 1 - / r 
: exp 

1 

2(1 -P2 fl +P- 2pfJp (C-l-4) 

We now show that the joint PDF the random variables fc and fp. denoted as 
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Pfcfpifc, /P)J c a n be expressed as 

CSC' 

Gcpifc fp) + Gc(fc)Gp(fp) Y ] | / ? r c # r c ( / c ) + PrpHrp(fp) 

r = l 

(C-l-5) 

Using the fact that each of the two marginal PDFs, viz.. pfc{fc) and pfc(fc), can be 

obtained by integrating the joint PDF with an appropriate random variable, we have 

Pfcfp(fc,fpWP = Pfc(fc) (C-l-6) 

Pfrfp(fcJr)dfc = Pfp{fP) (C-l-7) 

Now integrating (C-l-5) with respect to the variable fp, we get 

Gcpifc, fp) + Gc{fc)Gp{fp) / 2 PrcHrcifc) + (3rpHrp(fp) 

oc 

dfP 

Gcpifc, fpWp + Gc(fc) Yl PrcHrc(fc) / Gp(fp)dfp 

/

oo °° 

•OC 1 

= Gc(fc) / GP(fP) 1 ~r J Prp-Hrp\Tp) dfp + Gc(fc)J2PrcH;c(fc) 

r = l 

= Gc(fc Hrc'^rcKJc 

r=\ 

Pfdfc (C-l-

In a similar way, integrating (C-l-5) with respect to the variable fc, we get 

OO -i 

Gcpifc fp) + Gc(fc)Gp(fp) J2 \prcHMc) + ;3rpHrp(fp)] d/ c = Pfp(fp) 

(C-l-9) 

From (C-l-6) to (C-l-9), we have the result that the joint PDF can be written as 

CO 

PfMfc fP) = Gcp(fc, fp) + Gc(fc)Gp(fp) J2 [PrcHMc) + 0rpHrp(fp)] ( C - l - 1 0 ) 
r=\ 

Now, the bivariate Gaussian PDF with unit variances and having a correlation coef­

ficient p can be expressed in terms of the orthogonal Hennite polynomials as [80] 

Gcv{fc- fp) = Gc{fc)Gp{f p\JpJ l+y'^Hre(fc)Hrp(fp) 

r = ] 

(C-l-11) 

file:///prcHMc
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Hence, the joint PDF of the normalized random variables given in (C-l-10) may be 

written as 

PfcfP(fc,fP) = Gc(fc)GP(fp) *• ' / J I Prp*lrp\Jp) ~r yrp**rp\Jp) 

' I '^rc\Tc)^'Tp\Jp) 
r\ 

(C-l-12) 

The joint PDF of the random variables /,. and fp can be expressed in terms of pfrf 

as 

/ - fc - f 
Pfcfpifr: fp) = PfjAfr = ~^; fp = ~f J(fcfp) (C-l-13) 

w here J{fc, fp) = ̂ - is the Jacobian of {fc, f p } . 

Finally, from (C-l-12) and (C-l-13). the joint PDF of the random variables fc and 

fp can be written in the form 

Pfcfpifc, fp 
v Of cr.n / 

2nacap 

1 + t{^M7)+!%'"'(^) 
r—1 v F 

+ £Hr(±)Hr(!z 
ac / \o-

(C-l-14) 


