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Abstract 

Analysis of Windows Memory for Forensic Investigations 

Seyed Mahmood Hejazi 

Containing most recently accessed data and information about the status of a 

computer system, physical memory is one of the best sources of digital evidence. 

This thesis presents new methods to analyze Windows physical memory of compro­

mised computers for cyber forensics. The thesis includes three distinct contributions 

to cyber forensics investigation. Firstly, by digging into details of Windows memory 

management, forensically important information and data structures are identified. 

Secondly, we proposed different methods to find files and extract them out of mem­

ory in order to rebuild executable and data files. This helps investigators obtain 

valuable information available in executable or data files that have been in use at 

incident time. Thirdly, we presented two methods for extraction of forensically sensi­

tive information such as usernames or passwords from memory. The first method is 

based on fingerprints of applications in memory. In the second method, we have been 

able to locate and extract arguments used in function calls. This method, leads to 

the acquisition of important and forensically sensitive information from the memory 

stack. Finally, to bring these contributions to application level, a framework for cyber 

forensics investigations has been developed that helps finding sensitive information. 
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Chapter 1 

Introduction 

Considering the day by day increase of IT role in our routine life, human society feels 

the need for awareness about increasing number of criminals that use IT and digital 

devices or networks to commit crimes such as frauds, theft, abuse, and even violent 

crimes. 

Being similar to traditional forensic science, digital forensic can be defined as 

forensics for computer crimes where digital media are somehow involved in the case. 

Cyber forensics is a relatively new field that encompasses issues of traditional forensics 

in addition to technical issues of cyber space. In addition to having good knowledge 

of the regulations of the investigated environment, members of the investigation team 

should be equipped with state-of-the art tools and techniques to be able to overcome 

the technological challenges that they are facing. 
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1.1 Motivation 

Due to the growing number of disputes over IT-related issues such as mass marketing 

frauds, identity thefts, and even national security threats, forensic investigation of 

cyber crimes as well as solving the problem of IT disputes is vital. In addition to en­

gineering secure software and systems, hardening networks, and security monitoring, 

investigating cyber incidents is necessary. Physical memory, holding a big amount 

of useful data, is a valuable source of digital evidence while conducting a digital in­

vestigation. Physical memory contains pieces of evidentiary information that might 

not be found in any other computer media, it is harder to tamper with (comparing 

to information available on disks), and it is much more volatile. Thus, special tools 

and techniques are needed for forensic analysis of this potential source of evidence. 

One of the most important activities of a digital investigation is preservation of the 

crime scene that can be any digital device. It is well known that almost all contents 

of physical memory can be lost by rebooting or overridden by altering the status of 

the compromised machine. Thus, one of the most helpful steps of memory contents 

preservation could be dumping the contents of the physical memory for further analy­

sis, as early as possible. Furthermore, physical memory contains pieces of information 

such as names, telephone numbers, usernames, and passwords that can play a vital 

role in an investigation. Extraction of these items as well as knowing the context that 

they belong to (such as certain files), can lead to identification of a criminal. 

On the other hand, due to the increasing volume of the available physical memory 
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and complexity of its analysis, automated and user-friendly tools, decrease depen­

dency of the analysts to thorough knowledge of memory management details. Paying 

attention to the aforementioned motivations, the result of this research is aimed to 

address these special needs. It is important to note that due to large differences be­

tween memory management details in various operating systems, we focus on a single 

operating system family. Sine most of the machines used by computer users are still 

running under Windows, we choose to do our research for Windows operating system. 

It should be noticed that due to the differences between structures of kernel object in 

different versions of Windows, we select Windows XP (SP1 and SP2) for our research. 

The research and the developed toolkit are extensible to other versions of Windows 

by making changes to kernel objects and virtual address translation mechanism. 

1.2 Objectives 

The overall objective of this thesis is to develop new techniques and tools for forensic 

analysis of physical memory. This can add to the value of analysis of compromised 

computers and consequently may decrease analysis time by finding more evidence 

that can also be correlated with other evidence found by other types of analysis. 

Moreover, since tampering memory contents is harder than contents of other media, 

physical memory analysis can yield more reliable evidence for the court of law. 

To provide more details, we select two critical areas in physical memory investi­

gation: 
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1. Extraction, partial or full, of files from memory contents. 

2. Extraction of forensically sensitive information from memory contents, which 

usually gives clues about the incident. 

To meet these objectives, it is necessary to carefully study the memory manage­

ment in the target operating system (Microsoft Windows) combined with forensic 

analysis techniques, state-of-the-art methods, free-ware and commercial tools in ad­

dition to current nation-wide and world-wide standards. Extraction of files as well 

as other memory resident sensitive information (such as usernames, passwords, and 

IP addresses) can complement existing techniques, which mainly focus on processes, 

threads and in some cases rootkit detection. Since none of the previous works is able 

to extract files or pieces of sensitive information, by reaching these goals, we believe 

that the community will benefit from accessing more reliable and detailed evidence. 

1.3 Contributions 

In order to meet our first objective, we have developed two new methods for extrac­

tion of files (executable and data files) from memory contents of a suspect system. 

These methods are implemented as a part of the Memory Plug-in in Forensic Analysis 

Framework, created in Computer Security Laboratory of Concordia University. The 

file extraction methods have been successfully tested and used to extract files asso­

ciated with each process. In many cases we have been able to extract text, HTML, 
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PDF, and many other data file types as well as most (more than 90 percent) of the ex­

ecutable files of the processes. The extracted executable files can be used to reproduce 

the behavior of the program and the data files can be analyzed to find clues. 

To achieve our second objective, sensitive information extraction, we adopted two 

different approaches as follows: 

• The first approach is based on finding protocol or application-specific patterns 

(conventionally called fingerprints) that precede or follow sensitive information 

when they are present in memory. By knowing these fingerprints, the inves­

tigator can search for them in memory contents (or the memory image) and 

locate sensitive information adjacent to them. Not only have we presented 

some of these fingerprints, but we have presented the method of finding these 

fingerprints for different applications. Thus, investigators can follow the same 

method to build their own database of fingerprints. 

• The second approach is based on analyzing stack frames and comparing them to 

functions that deal with sensitive information (such as usernames or passwords) 

in order to locate this information, extract them, and present them to the 

investigator. 

All of the aforementioned contributions have been implemented as a part of the 

memory analysis plug-in, which is capable of performing a thorough analysis of the 

memory images. This analysis includes extraction of Windows kernel objects, pre­

senting forensically important attributes of these objects, file extraction, and stack 



analysis. The functionalities of this plug-in are explained more in Chapter 6. 

1.4 Thesis Structure 

The remainder of this thesis is organized as follows: 

Chapter 2 starts with definitions of digital forensic science and related terms. It 

then describes why physical memory is a good source of digital evidence and sheds 

some light on the way memory is managed and used in Windows operating system. 

Having this knowledge, we move to the next chapter. Chapter 3 introduces the 

related work that has been done on acquisition and analysis of physical memory for the 

purpose of forensic investigations. This chapter summarizes the main contributions 

in this context and enumerates advantages and shortcomings of these works. 

Chapter 4 explains our new methods for extraction of process information and 

then file extraction from physical memory. It demonstrates how extracted executable 

and data files along with process information can be helpful during an investigative 

case. 

Chapter 5 introduces other sensitive information that can be extracted from phys­

ical memory. It explains our new approaches to finding sensitive information such 

as usernames, passwords, visited URLs, and encryption keys. It then describes how 

our methods are different from existing ones and how these methods are able to find 

information that is not accessible by using existing approaches. 

In Chapter 6, we introduce our developed forensic memory analysis plug-in, which 
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is a part of our forensic analysis framework. This toolkit takes advantage of the 

implementation of proposed methods in previous chapters and helps investigators 

perform a thorough analysis of physical memory modules of suspect computers. 

Chapter 7 summarizes our research and emphasizes on the usefulness and origi­

nality of the proposed methods. 
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Chapter 2 

Background 

In this chapter, we will introduce key concepts of digital forensics and especially 

memory analysis in order to ease the understanding of the techniques that will be 

presented throughout the thesis. 

In order to extract data from memory, we should know where they are located 

during their presence in memory and how to access them. Therefore, we should 

leverage our knowledge about physical memory and its allocation. The first step in 

our analysis is to find memory internal structures. Most of these structures maintain 

to other structures, which help us extract information about processes, threads, files, 

etc. Hence, we begin with knowing these structures. In order for these structures to 

point to other structures or memory locations, they use virtual addresses that need 

to be translated to physical addresses. Thus, we should also know the addressing 

modes and the address translation mechanism. 
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Since other contributions of this thesis include extraction of data files and exe­

cutable files as well as arguments of functions on the stack, we should also study how 

files are mapped into the physical memory and how stack allocation is done in the 

target operating system. 

Next sections shed some light on Windows memory management and the sensitive 

information that can be extracted from physical memory. 

2.1 Digital Forensics 

As one of the pioneers in development of digital forensic science, in 2001, the Digital 

Forensic Research Workshop (DFRWS) [1] gathered definitions proposed by several 

groups and proposed the following definition considering multiple perspectives. 

"The use of scientifically derived and proven methods toward the preserva­

tion, collection, validation, identification, analysis, interpretation, docu­

mentation and presentation of digital evidence derived from digital sources 

for the purpose of facilitating or furthering the reconstruction of events 

found to be criminal, or helping to anticipate unauthorized actions shown 

to be disruptive to planned operations." 

In digital forensics science, investigators, while considering the judiciary regula­

tions, try to find, preserve, seize, and analyze digital evidence (defined below) in order 

to make court-admissible conclusions for the purpose of disputes. Investigators search 

for document files, images, videos, or log files inside the digital media. This media 



can be a CD, a USB key, a hard disk drive, a network utility, a physical memory 

module, etc. This way, they can find clues about the incident, its time, and involved 

persons or groups and their intents. 

For a better understanding of the digital forensics and eliminating ambiguities, 

we surveyed definition of some important concepts: 

Incident An incident is a sequence of actions that compromises an information sys­

tem's security, privacy, or functionality. The scale of the information system 

stated above can vary from a single desktop computer to a very large enterprise 

network [2, 3]. 

Investigation An investigation is a series of actions performed in a systematic and 

professional manner in order to gather and assess information to determine if a 

crime has been committed. An investigator is an authorized-by-law individual 

or team who has the permission to do the investigation or a part of it [4]. 

Event As stated in [5], 

"A digital event is an occurrence that changes the state of one or more 

digital objects." 

An example of a digital event could be establishing an FTP connection to a 

server. 

Digital evidence A digital evidence is piece of data, metadata, or information in 

any known digital format that can help to clarify an incident [3] such as a 

10 



document or a single line of a log file. 

Physical evidence A physical evidence is any media that potentially carries digital 

evidences [5] such as a physical memory module or a CD. 

Evidence admissibility Evidence admissibility is the degree to which evidences are 

acceptable by the jury and the court of law. As evidence would eventually be 

used to convict people of crimes, or to make an appeal, there exist certain 

requirements for evidence to make it admissible. In digital forensics, because of 

the volatile and easily tampered nature of digital media and data, this attribute 

of evidences is more considerable. 

As explained above, one of the physical evidence that can be used to find digital 

evidence is the physical memory module of the suspect computer. The rest of this 

chapter explains where and how the digital evidence is stored in physical memory and 

how we can extract and analyze it. 

2.2 Windows Memory Internal Structures 

Windows keeps information about objects available in or accessed through memory, 

in various kernel structures. These structures have some fields inside that are actu­

ally pointers (links) to other structures. There is no thorough documentation about 

Windows memory structures and the uses of their member fields. Thus, in order to 

reach a specific field or piece of information about a particular Windows object, we 

have reverse-engineered these structures and followed the links between them. Tools 
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such as Windows Debugger [6] and utilities from Sysinternals [7] helped us very much 

to do this research. Figure 1 shows a part of the relations between most important 

Windows memory structures. 

Below is a description of some of the structures that we used and their most 

important members: 

• EPROCESS: All running processes in Windows are represented by an EPROCESS 

(Executive Process) block. The EPROCESS structure is an opaque structure that 

serves as the process object for a process [8]. This data structure contains many 

important attributes related to the running process such as: 

- CreateTime: Holds the time of the creation of the process. 

- ExitTime: Holds the time of the exit of the process. 

- ProcessID: Holds the unique ID assigned to this process. 

- ImageFileName: Holds 16 characters of the name of the process image (if 

more, other characters are truncated). 

- SectionBaseAddress: Points to the beginning address of the process im­

age in memory (very helpful for file extraction). 

Beside these attributes, EPROCESS block points to some other structures such 

as PCB (KPROCESS), ObjectTable, SectionObject, PEB (Process Environment 

Block), and many more. 

• Process Environment Block (PEB): Contains some attributes and properties 

about the running process. We can point to ImageBaseAddress, which is the 
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starting address of the executable file loaded into the memory, as one of the 

important attributes of this structure. 

• FILE-OBJECT: Being generated for each file that is created by Windows 

I/O functions, this structure represents a file in the kernel. To be more pre­

cise, a file object presents an open instance of a file, directory, device, or vol­

ume. This structure, includes some important attributes such as FileName, 

Sect ionObjectPointer , and PrivateCacheMap (explained later). 

• ETHREAD: This structure represents a thread object that is created by a 

process. During the course of execution. These threads are represented by an 

ETHREAD structures that are linked together. EPROCESS structure points to the 

head of this list (ThreadListHead) so that it keeps reference to all threads that it 

has created. ETHREAD structure keeps valuable information about each of these 

threads including: 

- Thread Control Block (TCB): A KTHREAD structure (kernel thread, ex­

plained afterwards). 

- Cid: Contains the process ID and thread ID for this thread. 

- ThreadsProcess: Points back to the EPRDCESS structure associated with 

this thread. 

• KTHREAD: The kernel presentation of a thread that is mostly used by the 

kernel for thread scheduling. The KTHREAD structure is extensively used in our 
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stack analysis method. This structures is pointed to by ETHREAD (via TCB field) 

and includes important member fields such as: 

- KernelTime: The amount of time during which the thread was executing. 

- I n i t i a l S t a c k : Contains the base address of the stack. 

- StackLimit: The largest address to which the stack can be extended. 

- KernelStack: The current address of the stack pointer. 

2.3 Virtual Memory and Address Translation 

In Windows and most of other modern operating systems, applications and processes, 

access physical memory through a system of Virtual Addresses. However, only a few 

parts of operating system's kernel can use physical addresses to access Random Access 

Memory (RAM). 

It should be noticed that all of the addresses that we find and use to follow 

links are described in virtual addressing mode. Since physical addresses are finally 

used to read fragments of data from memory image, it is necessary to have a good 

understanding of the virtual memory and the process of translating virtual addresses 

to physical addresses. In Windows (all versions), as in any operating system, a process 

is basically expected to have: 

• A virtual address space. 

• One or more threads of execution [9]. 
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As described by Russinovich and Solomon [10], in order to handle the memory needs of 

a process, 32-bit operating systems that implement virtual memory support, allocate 

a 4 GB Virtual Address Space to each active process. The virtual address space 

of a process can be either less or greater than the volume of the available physical 

memory. The term "Working Set" refers to the portion of the virtual address space 

that is present in the physical memory. The addresses manipulated by programs' 

instructions are virtual addresses, which should be translated to physical addresses. 

Each virtual address is translated by the hardware to a physical address using a 

"virtual to physical address translation mechanism". Depending on the operating 

system mode, the hardware uses 32 bits (normal mode) or 36 bits (PAE mode) for 

addressing the physical memory [11]. On most 32-bit (IA-32) Intel Pentium Pro 

and later platforms, the Physical Address Extension (PAE) supports addressing up to 

64 GB of physical memory for running applications [12]. Page directories and page 

tables are extended to 8-bytes format, which in turn allows extending base addresses 

of page tables and page frames to 24 bits. These extra four bits (base addresses of 

page table and page frames are 20 bits in normal mode) allow the PAE mode to use 

36 bits instead of typical 32 bits. Figure 2 demonstrates how bits of a virtual address 

are used to translate it to a physical address in PAE mode. 

As we have to access the memory image file and read streams of bytes directly 

by specifying the bytes to be read (physical addresses), we have developed a module 

that performs virtual to physical address translation. This module is now limited 

to systems working in the PAE or IA-32e memory model [13]. Therefore, to use our 
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toolkit's address translation module, the operating system should satisfy one of the 

conditions listed below: 

• The /PAE switch is present in the file boot.ini. 

• The DEP (Data Execution Prevention) feature is enabled (/NOEXECUTE switch is 

present). In this case, the PAE mode can be enabled automatically without the 

/PAE switch. 

• The processor supports hardware-enforced DEP. Presence of the /NOEXECUTE 

switch on a system with a processor that supports hardware-enforced DEP im­

plies the presence of /PAE switch [14]. 

Note that the address translation mechanism for non-PAE machines is very similar to 
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(and even less complex than) the translation mechanism used for PAE mode. Hence, 

it is easy to adopt this mechanism and use it for non-PAE machines. The reason 

that the current implementation is based on PAE mode is that most of the machines 

nowadays, have large volumes of physical memory and work in PAE mode. 

2.4 Windows Memory Layout 

Windows operating system uses the virtual memory concept to manage the system 

memory. In this context, the set of all virtual addresses that are available to a pro­

cess is called its virtual address space [15]. The virtual address space is divided into 

two ranges: user space and system space. User space is the range of addresses that 

user-mode processes, process specific data and user-mode DLL files are mapped into. 

This range is from address 0x00000000 to address 0x7FFFFFFF. System space a.k.a. 

kernel space is the range of addresses in which the operating system resides and is 

only accessible to kernel-mode code and through kernel data structures. This restric­

tion provides a security level in which threads cannot read/write the data from/to 

the memory space that does not belong to them. This space ranges from address 

0x80000000 to address OxFFFFFFFF. 

Almost all the implementations of virtual memory divide the virtual address space 

into blocks of adjacent virtual addresses called pages. These pages can be active; 

therefore, they reside in the physical memory. Pages can also be inactive; therefore, 
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they would be stored on the disk. In modern programming, dynamic memory allo­

cation enables programs to allocate and use memory space at runtime [16]. Memory 

pool allocation is a method adopted for dynamic memory allocation. Many operating 

systems as well as Windows, provide pools of paged and non-paged memory that 

can be allocated to processes. Pool memory is a not necessarily contiguous space of 

memory that is available to the processes and threads. 

Another method of allocating dynamic memory is stack allocation in which data 

are added and removed in a Last-In-First-Out and in a faster manner. The ker­

nel stack is a limited source of memory for holding local variables of functions and 

parameters passed to them. 

2.5 Call Stack and Stack Frames 

A call stack, being a part of memory, is a stack (Last In First Out) structure used by 

the operating system to store information about the active subroutines of each pro­

gram. This structure is also known as execution stack, control stack, or simply stack. 

The stack is used to pass arguments from a caller subroutine to a called subroutine, 

store local variables of subroutines, and store the address to which the control of the 

program should be transferred after a subroutine finishes (return address). Stacks 

are usually allocated to each thread of process execution. Thus, each thread has its 

own stack. Below, comes a short description of uses of the stack: 

• Storing the return address: Whenever a function calls another one, before the 
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control reaches the Call instruction, the caller should push the arguments (to 

be passed to the called function) onto the stack as well as the address of the 

instruction that comes immediately after the Call instruction (return address) 

in the caller. When the Call instruction executes, it transfers the control of 

the program to the called function. However, when the called function finishes 

its execution, the program control should return to the caller function right 

after the call instruction. Hence, the return address is popped from the top of 

the stack. Let us consider now the case in which nested functions call each 

other. For example, a function that draws a rectangle - DrawRectQ - calls 

a function that draws a line - DrawLineO. If the DrawLineO in turn calls 

another function, all of these nested functions will stack up their own return 

address and so on. 

• Local variables storage: A function usually needs local variables (variables that 

are known only in the context of the function and do not retain their value 

and usage outside the scope of the function) for the proper functioning. These 

variables can be held on the stack, since each called subroutine has its own stack 

space and the access would be faster than heap allocation. 

• Parameter passing: Most of the time, functions pass parameters to called sub­

routines. When there are few small parameters, caller may use CPU registers 

for this purpose (hence, does not use memory), but when it comes to more and 

bigger sized parameters, stack area can be used to pass parameters. 
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A stack frame is the block of information stored on the call stack as a result of 

a subroutine call. A stack frame, in general, contains all the information required 

to save and restore the state of a procedure. These frames, each associated with 

one procedure call, contain arguments (parameters) passed to the function, local 

variables, and the return address. Physically, a function's stack frame is the fragment 

of memory between the addresses contained in the ESP register (the stack pointer) 

and the EBP register (the frame pointer or base pointer in Intel terminology). The 

most important registers that interfere in call instructions are the following: 

• EIP: Instruction Pointer holds the address of the instruction, which will be 

executed by the CPU. 

• EBP: Base Pointer, also known as frame pointer, is used to allow access to 

function arguments and local variables in the stack frame. 

• ESP: Stack Pointer always points to the top of the stack, which is the last 

element used on the stack. 

2.6 Sensitive Information in Memory and Possible 

Correlation 

Memory is like a game table for all running applications and processes. To be a part 

of the game, data should be brought to this table. These data include, but are not 

limited to executable code of the processes, data files accessed by processes, URLs 
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accessed via web browsers, usernames, and passwords. We have classified the data 

resident in memory into the following categories: 

1. Metadata 

2. Files 

3. Sensitive data 

4. Case irrelevant data 

2.6.1 Metadata 

Metadata is the data that explain or clarify other data. Examples of metadata existing 

in memory are (1) the number and names of running and terminated processes, (2) 

start and end time (if the process has ended) of each process, (3) names of the files 

that have been accessed by each process, and (4) DLL files that have been used by 

processes during the course of their execution. Metadata can be very important from 

the forensics point of view and may yield conclusive evidence. As an example, assume 

that an investigator has been able to find the names (and types) of files accessed by 

a specific process (metadata), but the method in use could not reveal the contents of 

the files. If a file named "John_Doe.jpg" is found among the accessed files, although 

the investigator does not see the picture file, he can assume that a photo that is 

probably related to John Doe has been accessed at the time of incident. Then the 

investigator knows that she/he has to gather information about John Doe. 
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2.6.2 Files 

Files are of great significance when conducting an investigation. Files contain valu­

able information such as images and other sensitive data. For the purpose of forensic 

analysis, we have classified files into two categories; executable files and data files. 

Data files, being in various formats such as PDF, DOC, XLS, TXT, and image files, 

may contain valuable information about the owner of the suspect computer, the pos­

sible unauthorized user, or the persons contacted via the suspect computer. Finding 

pieces of log files or documents can be extremely helpful since they may reveal evi­

dence such as names, addresses, account credentials, and other directing information. 

As an example, note the sample scenario stated in a challenge question of Honeynet 

web site [17]: 

"A suspect has been arrested on charges of selling illegal drugs to high 

school students. The police also seized a single floppy disk, but no com­

puter and/or other media was present in the house..." 

In this scenario, investigators have found names of the schools in which the suspect 

wanted to sell drugs, as well as the nickname of another contact person encoded in 

an image, using Excel application. The captured media in this example is a floppy 

disc, but suppose that the file was never saved on a disk and could be extracted 

from memory contents. Regardless of the media that files can be extracted from, file 

contents can yield valuable information in an investigative case. 
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2.6.3 Sensitive Data 

By sensitive data, we mean pieces of data such as usernames, passwords, encryption 

keys, or URLs that have been used by users as they were interacting with the machine 

under investigation. In many cases, these pieces of information are not parts of 

files and are passed to functions inside processes' code as parameters. Regardless of 

the parameter passing mechanism used in the application, parameters are stored in 

memory locations before being used by the application. In many cases these memory 

locations will not be overwritten after the parameters are used. Finding these kinds 

of data in memory can help the investigator to reach the right person, right time, or 

right physical locations. 

2.6.4 Case Irrelevant Data 

In any investigative case, there are some data that seem to be irrelevant to the case. 

Irrelevant data include pieces of data that do not hold any clues about what an investi­

gator is searching for such as operating system specific data, or data that fall outside 

of times of interest [18, 19]. By vast increases in volume of memory modules and 

complexity of the applications, the volume of irrelevant data also increases. On the 

other hand, sensitivity of investigation time in forensic cases adds to the importance 

of eliminating irrelevant data from analysis. 
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2.6.5 Evidence Correlation 

When investigating and analyzing the memory, finding possible correlation between 

gathered evidence can add to credibility of conclusions or even refuse assumptions. 

Thus, detailed and precise information obtained from memory can be very important 

when analyzing the correlation between evidence. For instance, a deleted record in 

a log file can be acquired from memory as a part of an extracted log file. Likewise, 

metadata acquired from process information can be used to reject a manipulated log 

file. On the other hand, assume that a suspect has entered a username and a password 

in a Secure Socket Layer (SSL) enabled web page. This information can be extracted 

from memory and afterwards be used for analyzing other collected evidence. 
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Chapter 3 

State-Of-The-Art 

In this chapter, we will introduce principle methods and tools available in the field of 

forensics memory analysis. After an introduction on general digital forensics frame­

works, this chapter introduces state of the art techniques and tools in memory analy­

sis and enumerates their advantages and shortcomings. Based on our detailed study, 

memory forensics techniques (and their corresponding tools) fall into two main cat­

egories of "Acquisition Methods" and "Analysis Methods". To be able to correctly 

identify weaknesses and strengths of present techniques, we have used the present 

methods and compared them. Based on this study, the chapter ends with an evalua­

tion and comparison of the previous works. 
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3.1 Digital Forensics Workstations and Platforms 

There are numerous tools available for digital forensic investigation in order to either 

collect or analyze data and provide functionalities for finding data on a computer and 

protecting evidence in a synchronized manner. These tools can be divided into the 

following categories: 

3.1.1 Hardware-Included Platforms 

These tools are based on the interaction between software and hardware components. 

In this category there are some packages that include forensic equipments such as 

workstation, servers, laptops and so on. Examples of these all-inclusive packages are: 

• DIBS Mobile, Advanced, and Aircapture WLAN 14 Workstations [20] are three 

different versions of computer forensic hardware-included forensics tools. They 

are "specifically designed to copy, analyze and present computer data in a foren-

sically sound manner." They can be used on-site, in the laboratory and even 

to capture, store and analyze the contents of airborne communications. This 

portable and dependable system is accepted in court of low throughout the 

world. 

• DRAC Hardware [21] is "a series of forensic computer systems that make the 

investigation and recovery of digital artifacts as fast and straightforward as 

possible". It includes various series each of which has high data recovery capa­

bilities such as high volume hard drives and many expandable slots for different 
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storage media. 

• FRED (Forensic Recovery of Evidence Device) is a family of forensic work­

stations that are "highly integrated, flexible and modular". According to the 

product specifications, "FRED systems are optimized for stationary laboratory 

acquisition and analysis. FRED will acquire data directly from IDE, EIDE, 

ATA, SATA, ATAPI, SCSI-1, SCSI-II, and SCSI-Ill hard drives and storage de­

vices and save forensic images to DVD, CD, or hard drives. FRED systems are 

also able to acquire data from floppies, CD-ROM, DVD-ROM, Compact Flash, 

Micro Drives, Smart Media, Memory Stick, Memory Stick Pro, xD Cards, Se­

cure Digital Media and Multimedia Cards." 

3.1.2 Software-Based Toolkits 

These tools are based on software components only. As of digital forensics software, 

we can mention the following: 

• Sleuth kit and Autopsy Browser [22] are open source digital forensic tools that 

allow analyzing file systems of any operating system (Windows, Unix, etc.). 

They can be used to perform forensics disk analysis of NTFS, FAT, Ext2, Ext3, 

UFS1, and UFS2 file systems. The Sleuth Kit is a collection of command line 

tools while the Autopsy Forensic Browser is an HTML-based graphical interface 

for the command line tools in the Sleuth Kit. 

• The Access Data Forensic Toolkit [23] is one of the most popular commercial 
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tools that performs forensics analysis. This toolkit provides a panoply of tools 

including forensic toolkit, registry viewer and password recovery toolkit, dis­

tributed network attack and other tools in order to investigate and analyze 

digital data. 

• EnCase Enterprise [24] is a popular network-enabled and multi-platform enter­

prise investigation toolkit with an intuitive GUI and powerful scripting engine 

providing an immediate response throughout forensic analysis. Encase Enter­

prise, being comfortable to use, works by combining the following five compo­

nents: 

- The SAFE (Secure authentication for EnCase): A server into which the 

Examiner logs for authentication and authorization. 

- The Enterprise Examiner: A software that sends requests to and analyzes 

volatile data from a target node. 

- Servlet: A nonintrusive, auto-updating passive piece of software installed 

on workstations and servers to analyze suspect computers. Connectivity is 

established between the SAFE, the Servlet, and the Examiner to analyze 

and acquire devices that have the EnCase servlet installed. 

- Enterprise Connection: It is a secure virtual connection established be­

tween the Examiner and target machines. 

- Incident response analysis: Captures volatile data and generates reports. 
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3.1.3 Digital Evidence Presentat ion Systems 

To provide the most effective courtroom presentation, trial team should be supported 

by trial presentation technologies that are able to generate demonstrative evidence 

graphics, create imaging solutions, and providing mobility for the team. 

DOAR [25] is one of the tools aiming to make connections in court room and can 

provide trial graphics and support. This system presents a technological philosophy 

and relies on the integration of video and digital display technologies for combining 

real time reporting, video conferencing, and computer-based evidence system. 

3.2 Memory Forensic Techniques and Tools 

In past, forensics analysis mostly focused on information and data obtained from file 

systems, but in recent years, specially after DFRWS 2005, which introduced forensics 

analysis of physical memory as its challenge, researches have been done on obtaining as 

much information as possible from memory. Since acquisition and analysis of physical 

memory contents need special tools and techniques, there are diverse methods to 

perform these tasks. Research on memory analysis mostly consider the processes that 

were running at the time of data collection and try to provide as precise information 

as possible about the execution history of these processes. Results of these works 

can be divided into two major categories: memory acquisition methods and memory 

analysis methods. 

30 



3.2.1 Memory Acquisition Methods 

Unfortunately, there are only few hardware-based techniques for gathering physical 

memory contents that obey the Locard Exchange Principle [26] and alter memory 

contents as little as possible. Christian G. Sarmoria and Steve J. Chapin [27] pre­

sented a runtime monitor to log read and write operations in memory-mapped files. 

The basic concept of this approach is to insert a page fault monitor in the kernel's 

memory management subsystem. This monitor guarantees the correct ordering of 

the logs related to memory access events when two or more processes operate on a 

file in memory. Apparently, such monitoring technique relies on having access to and 

preparing systems before any incident happens, which is not usually the case for cyber 

forensics. 

Bradley Schatz [28] proposed a method of acquiring the contents of physical mem­

ory from various operating systems. His method provides snapshots of the host op­

erating system memory. This method injects an independent, acquisition operating 

system into the potentially subverted host operating system kernel, snatching full 

control of the host's hardware. As a proof of concept, the author provided a tool 

named BodySnatcher, which acquires volatile memory of i386 machines that employ 

Windows 2000 and above versions as operating systems. 

Brian Carrier and Joe Grand in their research [29] explained a hardware-base 

memory acquisition method that uses a PCI expansion card to dump the exact con­

tents of memory to an external device. This approach does not modify memory 

contents since it does not load any process into the memory. Also, it halts the system 
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in order to prevent it from changing the memory contents while taking the image. 

Therefore, it keeps the consistency of the image being taken. Having a hardware 

proof-of-concept named "Tribble", their approach has limitations such as the need to 

install the card before the incident happens. 

Firewire is a bus technology designed for connections between devices. This tech­

nology was introduced by Apple in 1986 and was standardized according to the IEEE 

1394 specification in 1995. Firewire uses Direct Memory Access (DMA) to improve 

data transfers. This specification allows clients' devices to directly access a host mem­

ory, bypassing the operating system, but it also has its own limitations when it comes 

to its use for forensics investigation and incident response. Limited availability of 

firewire ports on computer systems and alteration of the state of the system can be 

listed as the limitations of firewire. This approach is discussed in a white paper by 

Antonio Martin [30]. 

Recently three new tools have been developed with respect to memory imaging 

methods in Windows platform. The first one is WinEn from Guidance Software 

that ships with EnCase Forensic version 6.11 and above. This tool works for both 

Windows 32bit and 64bit and produces memory images with three different levels 

of compression. Images generated by this tool are not in a raw format and contain 

headers which makes them confusing for free, open-source analysis tools. The other 

downside of using this tool is that it creates a Windows service (and changes registry). 

Consequently, this registry entry remains in the system and if it is run from local 

filesystem, the service starts every time the system restarts. 
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The second tool, ManTechs Memory DD (simply called MDD), released at no 

charge under the GPL license, acquires an image of physical memory and dumps it 

in a raw format file [31]. In order to verify data integrity, the dump file generated by 

MDD is checked by MD5, the common Internet standard used in security applications. 

The binary file can then be analyzed using external tools. Since this tool generates a 

dd-style image file, the result can be used with other tools that recognize this simple 

format. 

The author of Win32dd, another memory acquisition tool released soon after 

ManTech's MDD, claims that his tool is completely open-source [32]. This tool used 

for capturing memory images under Windows 2003 or Vista, is mainly a kernel mode 

application that mainly uses native functions and hence, dumps faster than other 

tools. 

3.2.2 Memory Analysis Methods 

There has been focus on the forensic analysis of physical memory in recent researches. 

These researches mostly consider the processes that were running at the time of data 

collection and try to provide as precise information about those processes as possible. 

One of the pioneers in forensic analysis of memory tools is MemParser [33], a 

program that enables its user to load a physical memory dump of certain Windows 

systems, reconstruct the list of processes, and extract information relating to specific 

processes. This tool lists all the active processes found in the memory dump files, 

gives information about each process, and can dump the memory allocated to a 
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specific process. Although being useful and reliable, this tool does not give detailed 

information about the memory dump file and does not satisfy the extensive need for 

forensic memory analysis. The tool does not have a GUI and runs in command line 

mode, furthermore, it suffers from lack of documentation. 

In 2005, George M. Garner Jr. and Robert-Jan Mora presented a tool called 

KnTList [34] as a solution to the DFRWS 2005 challenge [35]. KnTList is a com­

mercial command line tool that extracts evidence from physical memory dumps and 

maintains an audit log and integrity checks. It reconstructs the virtual address space 

of the system and other processes. After 2005, KnTList was improved to generate 

XML outputs for use by a cross-view detection algorithm and to support systems 

running Windows 2000 SP4, Windows 2000 Server SP4, Windows XP with SP1 or 

SP2, Windows 2003 Gold, and Windows 2003 with SP1 or SP2. KnTList ships in 

a package called KnTTools, that has a dumper (KnTDD) for acquiring the memory 

contents from suspect computer. The downside of this solution is its dependence 

to Windows kernel file (n toskrn l .exe) that was running on the system from which 

the physical memory dump was captured. Also according to DFRWS 2005 challenge 

solution [36], 

"It is necessary to place this kernel file in a folder and create a subdirec­

tory called "drivers", which contains the file "tcpip.sys" from the subject 

system." 

Andreas Schuster in his article entitled "Searching for processes and threads in 

Microsoft Windows memory dumps" [37] presented a work that is more relevant to the 
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topic of our research. He mainly analyzed the structures of the kernel and processes 

inside Windows memory. Instead of following the links provided in these structures, 

he developed search patterns to scan the whole memory dump for traces of said 

objects. As demonstrated by a proof-of-concept implementation, this approach could 

reveal hidden and terminated processes and threads. Under some circumstances, 

hidden and terminated processes and threads can be revealed even when the system 

under examination has been already rebooted. As the author states, this approach will 

encounter serious problems when being used for Windows Vista. DISPATCHER-HEADER 

structure contains some constants, which Schuster uses to identify the objects in 

memory. Because Windows Vista reuses parts of DISPATCHER_HEADER after object 

creation, this reuse shows that it is not possible to rely on structure fields to identify 

objects. Also searching in a memory dump for patterns seems to be time-consuming 

particularly when the RAM volume is relatively large. The tool developed by Andreas 

Schuster, which is called PTFinder, is now able to analyze Windows 2000, Windows 

XP, Windows XP SP1, Windows XP SP2, and Windows Server 2003. According 

to the author, PTFinder is intended to identify EPR0CESS and ETHREAD structures in 

Windows memory dumps, but it does not analyze these structures. Consequently, the 

schema contains only the information needed to locate the structures in a dump file, 

like file offset, Process ID, and Thread ID. This tool does not extract or reconstruct 

files. 
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Jesse Kornblum [38] presented a procedure for extracting executable files corre­

sponding to in-memory processes. He used pointers to recreate modules of executa-

bles. Also as a new contribution, he paid attention to Packed Programs. He clarified 

that due to many factors, such as change of variables at the run time, it is not possible 

to extract files that are exactly similar to their corresponding ones on the disk. 

Brendan Dolan-Gavitt [39] used the Virtual Address Descriptor (VAD) tree to 

locate and parse structures and provide investigators with useful information about 

a memory dump. One of the tools developed by Brendan, called vaddump.py, is able 

to dump pieces of memory image to disk. The tool has been improved a lot after 

being presented and is now a part of Volatility Framework [40]. 

Harlan Carvey and Dave Kleiman developed a tool in perl script that retrieves 

data from the Windows crash dump file, parses structures and handles translations 

between virtual addresses (and pointers) to physical offsets within the dump file itself. 

Some of the information that gets pulled for each process includes the FLINK/BLINK 

values (pointers to previous/next EPROCESS block in the doubly-linked list), creation 

time (exit time, if applicable), whether exit has been called or not, and the location 

of the Process Environment Block. This tool takes a Windows crash dump file as the 

input so it needs the system to generate a dump file of the physical memory, which 

usually happens when the system crashes. It also needs the compromised system to 

be set up in a way that it generates a full crash dump. The tool comes in their book'd 

DVD toolkit [41]. 

Van Baar, Alink, & Van Ballegooij [42] presented three different methods for 
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recovering mapped files. The implementation of these methods is based on PTFinder. 

The first method is based on walking through the VAD tree and locating the shared 

files and then going through the Object Table. The second method is based on carving 

memory for structures that are related to files that have no structures pointing to 

them. In the third method, based on the comparison between hashes of memory pages 

and hashes of file pages on hard disk, they carved for pieces of files in memory. This 

method seems not to be useful since it needs access to the hard disk. In addition, 

when pages of files are mapped into the memory, they are most probably modified. 

Therefore, their hashes would be different from the hashes of their corresponding 

pages on disk. The methods used in their research are different from those used in 

our research and one can use them in parallel to complement results. 

There are some general purpose tools that can be used to perform some basic foren­

sic memory analysis as well. "Strings" by Mark Russinovich [43] is a tool adapted from 

Linux to Windows that searches for predefined string values in a given file. "WinHex" 

[44] also is capable of such a search as well as "Windows Grep" [45], which does a 

better and more powerful search using regular expressions. In order to use them, the 

investigators should know what they are looking for. They also require the investi­

gators to do the analysis in their minds, or use other tools and then just search for 

proofs. 

Finally, in a recent paper, Qian Zhao and Tianjie Cao [46] pointed to the usefulness 

of collecting sensitive information from memory. They explain that they have been 

able to extract some sensitive information such as userlDs or passwords through 
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various means such as using hiberfil.sys (the hibernation file that contains a memory 

dump when the operating system hibernates), Windows crash dump file, pagefile, and 

direct memory access. Although this work proposed to look for interesting patterns 

in the memory that may lead to sensitive information, it did not give valuable hints 

on how to obtain these patterns. This method is covered in Section 5.2.2. One 

important contribution of our thesis is leveraging this work by explaining the process 

of obtaining fingerprints and how it can be automated. 

3.3 Evaluation 

To make readers able to compare the studied tools and techniques and have a de­

tailed understanding of available functionalities, we have prepared some criteria for 

evaluation and compared the significant existing tools and methods based on these 

criteria. It should be noted that since the acquisition of memory images is not in the 

interest of this research, we will only evaluate the analysis tools and techniques. The 

items of our comparison and their brief explanations are as follows: 

• Processes: Does the method find processes that were running at the time of 

imaging? 

• Threads: Does the method find threads of processes that were running at the 

time of imaging? 

• File names: Does the method find files that have been used by the process? 
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• File Extraction: Does the method extract files? 

• Other sensitive information: Does the method extract other sensitive informa­

tion such as usernames and password that are inaccessible through use of other 

methods? 

• Tools: Does the method have a developed tool? 

• GUI: Does the tool (if it exists) have a user-friendly GUI? 

Table 1 summarizes a comparison of these tools and their capabilities. 

Table 1: Comparison Between Current Tools and Their Capabilities 
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2 
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5 
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Van Baar 

et al. 
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/ 

/ 

/ 

/ 
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X 
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/ 
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• 
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X 
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X 

X 
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X 

X 
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/ 
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X 
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GUI 

X 

X 

X 

X 

X 

X 

X 

/ 
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Chapter 4 

Memory Information Extraction 

Physical memory contains lots of pieces of data that are not necessarily relevant to 

the incident. The first step in forensic memory analysis, after preserving the memory 

contents, is to extract forensically relevant data. To be analyzable, these data should 

be in understandable forms such as data structures or files. Only after extraction and 

presentation of memory resident data, the investigator can identify incident-relevant 

information and perform further analysis. In this chapter, we focus on extraction 

of data from memory and its presentation in form of meaningful data structures or 

files. The first section describes our method for extraction of Windows Kernel Objects 

from memory. The extracted structures, contain information about active processes, 

execution threads, loaded DLLs, accessed files, etc. These structures, in addition 

to providing information about execution history of the suspect machine, are used 

as building blocks for file extraction that is one of our main contributions and is 

discussed in next sections of this chapter. 
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4.1 Process Information Extraction 

A program is a set of instructions that when executed sequentially, make an executing 

instance of that program that is called a process. Processes, when being executed, 

load lots of data into the physical memory that enables them to function. Memory 

management module of the operating system also stores some information about each 

process to be able to manage its execution. This information includes process name, 

program location on the secondary memory, external modules used by the process 

(such as DLL files), execution time, and many more. 

As described in Section 2.2, Windows keeps information about memory modules 

in various structures and maintains links between these structures so that it manages 

the memory. Extraction of this information and analyzing it gives the investigator the 

ability to make strong assumptions about the execution history of the compromised 

machine. To achieve this, we have studied and reverse-engineered Windows memory 

structures and used them as building blocks for further analysis and data extraction. 

The result of this study has been integrated into our forensics memory analysis plug-

in *. Recalling from Section 2.2, one of the most important structures maintained by 

Windows operating system is the EPROCESS (stands for Executive Process) block. All 

the processes that execute on a system have their corresponding EPROCESS blocks. 

These blocks point to each other to maintain a (doubly) linked list of processes, 

starting by the block corresponding to the System process. Hence, we choose the 

:This part of the research was done by Alireza Arasteh, another member of our research group, 
and is available in his thesis [47] 
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System EPROCESS block as the starting point for extracting other blocks. EPROCESS 

fields point to other structures that contain important information such as the PCB 

block (keeps kernel-related information) and ObjectTable block (keeps handles to 

objects owned by the process). By extracting each important structure, we have 

been able to present rich information about each process including: 

• Process information: 

— process name 

— create and exit time 

— unique process ID 

— section base address (virtual address of the beginning of the process image) 

— exit status 

• DLL files that has been used by this process 

• Environment variables associated with the process 

• Threads that have been created and executed by the process 

• Objects owned by the process 

Forensics analyst, having this information at hand, can perform a thorough in­

vestigation on processes that have been executing at the time of taking the memory 

image, their relations, and objects that they have accessed. This gives a far better 

understanding of the incident situation, other possible involved computers, and the 

attack (if any) methods. 
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In order to access and extract parts of files, we need to identify those processes 

that were running at the time of imaging and for this we firstly identify the root 

process (usually the system process) then follow the EPROCESS block's doubly-linked 

list. To find the information related to all the active processes that are included in the 

linked list. However, those processes that were hidden using the Direct Kernel Object 

Manipulation (DKOM) method [48] will be missed. Following the DKOM method, 

rootkits can hide a process by manipulating the linked list fields and removing the 

subject process from the list. Hence, changing the method of finding EPROCESS blocks 

(to overcome the problem of DKOM process hiding method) can be a future work. 

Each time we find a new EPROCESS block, we construct a data structure corre­

sponding to the EPROCESS definition and we fill the values of the attributes in the 

EPROCESS data structure by reading the image file from the offset corresponding to 

the beginning of the EPROCESS block. 

While filling the values of each attribute in the EPROCESS data structure, we 

have to fill some other data structures that the EPROCESS block points to, such as 

SECTI0N_0BJECT, HANDLE-TABLE, and other memory structures. We repeat this proce­

dure to generate all the nested present structures and assign values to their attributes. 

4.2 How File Extraction Helps 

Extracting files from one memory image can help investigators to find non-tampered 

information about the execution of an application and the data files that have been 
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accessed such as text documents, HTML files, web browser history files, and many 

more files that can be analyzed and correlated with other sources of digital evidence. 

Extraction of files from memory is important from the forensics point of view 

because of many reasons such as: 

• Possible extraction of deleted files: A file might have been accessed on a machine 

and after that, deleted from disk. This file, being a PDF document or other 

types of data files, may contain important information, and so can lead the 

investigation team to an important decision. Retrieving files that have been 

deleted from disk is not always a successful task and can even be useless in some 

situations. However, assume that we can extract the contents of a file from a 

memory image and we find out that this file does not exist on disk anymore. 

This may give the investigator a clue to search for this file on other storage 

media such as USB keys or optical media. If not found on any other media, 

any memory-extracted piece of a deleted file could possibly contain valuable 

information. 

• Extraction of files that have been accessed from a source other than local hard 

drives: A Malware or a data file such as an image or a video, may be accessed 

from any source, including CDs, USB keys, network, etc. In such a case, at least 

some parts of it may still be present and could be retrieved from physical mem­

ory. Checking the contents of the extracted executable can give the investigator 

an assumption about the type of Malware or its intended functionality. 
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• Extraction of tampered files: In many cases the intruder or in general a suspect, 

after accessing the computer system involved in an incident, tampers those files 

that have been modified during the incident. For example, a log file generated 

by a network application, may record established connections, connection des­

tinations and even the connecting user. Since many of these log files are easily 

accessible to users, the suspect may tamper the file and edit or remove some 

information. In such a case, extraction of the tampered file (even partially) will 

reveal the original contents of the file on disk. Since the edited part of a file in 

more likely present in physical memory than its other parts, in case of partial 

extraction, the investigator still has the chance to access important and relevant 

information. 

4.3 File Extraction 

Among all the information that can be acquired from exploring the physical memory, 

file extraction is helpful since files can contain information relevant to the machine 

owner, machine user, or other machines/individuals involved in the incident. In this 

research, focusing on Windows XP (SP1 and SP2) operating system, we propose 

various methods to find and gain access to memory regions that contain files parts. 

Parts of files, when extracted out of physical memory image, can be subjected to more 

analysis and examination such as comparison with original files on disk to find possible 

tampering, or correlation analysis with other sources of evidence. As stated above, 
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data files such as text documents, images, or browser history files may contain names, 

dates, or other information that help the investigator find clues about suspects. 

In this part of the research, we have divided files into two major categories based 

on the method used to extract them from memory image: 

• Executable files: The executable source of the active processes (in . exe format). 

• Data files: Non-executable files that were accessed and used by active processes. 

4.3.1 Extracting Data Files 

In this section, we present two different approaches to extracting data files. Data 

files can be of various types such as log, text, PDF, image, or even DLL files. While 

analyzing physical memory, we can access different part of data files by following two 

different paths. In some cases, following one path is not possible because of some 

broken links between memory data structures (this situation may arise when the 

memory image is not complete or some memory regions have been overwritten). The 

two approaches presented in this section can be used in parallel to extract as many 

pages of memory resident data files as possible. 

Extracting Memory-Mapped Files 

As discussed before (in Chapter 2), whenever a Windows file object is created, for 

example when a process accesses a file through I/O, a FILEJDBJECT object is created 

and assigned to that file. This way, an active process might have several FILEJDBJECT 
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assigned to it. In Windows, each object represents an entity that is created during 

the operating system operation. 

In Windows, each object represents an entity that is created during the operat­

ing system operation. We store these objects in instances of subclasses of a general 

class (WIN_STRUCTURE) defined in our implementation. This class provides a gen­

eral representation of a Windows object. Also, each Windows object has a header 

of type OBJECT-HEADER. Figure 3 demonstrates a simplified class diagram for the 

classed representing main memory data structures in our developed memory plug-in. 

It shows how classes such as EPROCESS, KTHREAD, or SharedCacheMap inherit from 

Win_STRUCTURE class. 

To sum up, we can say that each EPROCESS block points to a list of WINDOWS-OBJECT 

structures through one of its attributes (ObjectTable), which is of type HANDLE_TABLE. 

Each entry of this table points to a WIN.OBJECT. Thus, by following these links, we can 

find all the Windows Objects that are associated with this process. While filling the 

attribute values for attributes of each WINJDBJECT, we check the name of the object 

type. If it is equal to "File" then it means that we have a FILE-OBJECT. 

Now that we know the relation between EPROCESS and FILE-OBJECT, it is time to 

find pieces of the file represented by this object. 

In the FILE-OBJECT, there is a field named Sect ionObjectPointer , which points 

to the SECTION-OBJECT-POINTERS structure created by Windows for this file. By 

taking a look at the structure of SECTION_OBJECT_POINTERS, we notice three pointer 

fields: 
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1. DataSectionObject 

2. ImageSectionObject 

3. SharedCacheMap 

Both DataSectionObject and ImageSectionObject point to structures of type 

C0NTR0L_AREA. However, there is a difference between their uses: 

DataSectionObject structure is used when the file is accessed as a data file and 

ImageSectionObject is used when the file is accessed as an executable mapped 

to the memory. C0NTR0L_AREA keeps information about the mapping of the file in 

the memory. We follow the pointer named Segment and reach an object of type 

SEGMENT_OBJECT. 

Below is the structure of a SEGMENTJDBJECT: 

The important field of this structure is Subsection, which has information about 

the physical address at which each section of the file is mapped to. The Subsection 

structure has a pointer to the SubsectionBase (the address of the beginning of the 

subsection's data in memory) and also a pointer to the next subsection. 

Now we can extract a file by first finding its subsections and then copying the 

content from the page frames that are described by prototype page table entries that 

are pointed by the subsection. 

Figure 4 shows the path that we followed to grab sections of the file in the memory 

image. 
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Figure 4: From EPRQCESS to Data Files 

Extracting Cached File Views 

Another way to access pieces of data files in memory is through investigation of 

cache manager and SharedCacheMap data structure. The Windows cache manager 

uses section objects to map views of files into system virtual address space. Also, in 

liaison with memory manager, cache manager provides intelligent read-ahead and fast 

I/O operations. Although not all parts of a file are mapped into the cache memory, 

those parts of files that are in the cache, are of significance because if a part (view) 

of a file is found in the cache it means that this view has been in use and accessed by 

a process recently or frequently. 

System cache, which is a part of system's memory, is divided into 256KB views. 
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Information about these views, including their addresses, are kept in internal struc­

tures called Virtual Address Control Blocks (VACB). SharedCacheMap, an internal 

structure that is accessible from Fi leObject (a structure designated to each file 

in the memory), keeps a pointer to the beginning of the VACBs array. This way, 

by finding all the Fi leObjects associated with an EPROCESS block in the same 

way as described earlier in this section and accessing its SharedCacheMap (through 

Sect ionObjectPointers) , we can reach VACBs of the cached regions of the file. Fi­

nally, by translating the BaseAddress value found in VACB structure, to the physical 

address, we can copy the contents of this view of the file. 

It is important to know that if a BaseAddress value is zero, the VACB is actually 

inactive and may not be valid anymore. Pseudo code in Appendix A provides the 

detailed method. 

Figure 5 shows how a PDF file that has been accessed by Adobe Reader application 

is extracted and is viewed by the PDF viewer utility, which is incorporated into our 

plug-in. 

4.3.2 Extract ing Executable Files 

Executable files are very important to the investigation process. An executable file 

will be loaded into the memory when it is running. It contains code, text fragments, 

resources, debug information, and other data. In order to find pieces of an executable 

file that is associated with a specific process, we can follow the same approach as for 

the data files. But when reaching the Sect ionObjec tPoin ters , instead of following 
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Figure 5: Developed Toolkit - An Extracted Data File 

the DataSectionObject, we will follow the IraageSectionObject. Remember that 

the DataSectionObject is used for data files while ImageSectionObject is used for 

executable images. 

There is another approach for extracting executable files out of the physical mem­

ory image that we are going to describe: 

Remembering the EPROCESS structure, we notice a pointer to the Process Environ­

ment Block (PEB) assigned to each EPROCESS. The ImageBaseAddress field of the 

PEB contains the address at which the memory-mapped executable starts. We will 

read a stream of data from this address. So, the extraction of the rest of the file 

begins. 

To be able to understand the procedure of executable extraction, it is important 

at this point to clarify the format and layout of an executable file in Windows. This 

format is called PE (Portable Executable) format. 

P E File Format: 

52 



Portable Executable (PE) file format history goes back to the earlier Common Object 

File Format (COFF) that was used on VAX/VMS. However, this specific format 

has been introduced by Microsoft as a part of the Win32 specifications. The term 

"portable" shows the intent of this format: Being usable on all Windows versions, 

regardless of the CPU architecture. 

A good aspect of the PE format is its layout in memory: Data structures of a PE 

file on disk are almost the same as those mapped into the memory. This helps us be 

sure that what we find in memory is going to be almost identical to what has been 

on the disk. This would turn to a key point: If you know how to find something in 

memory (inside a PE image) you will get the same thing that you expect. PE files 

are not mapped into the memory like other mapped-files, but the operating system 

decides what it wants to bring into the memory. Furthermore, it is guaranteed that 

higher addresses of a PE file will be mapped into higher offsets in the memory. A PE 

file consists of the following main parts: 

• DOS Header (lMAGE_DDS_Header) 

• PE Signature (IMAGE_NT_HEADERS) 

• File Header (IMAGE_FILE_HEADER) 

• Optional File Header (IMAGE_0PTI0NAL_HEADER) 

• Section Table 

• Sections 
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Every PE file begins with a small MS-DOS executable, containing the familiar 

MZ mark that introduces a DOS executable for us. The only important value in DOS 

Header is e_lf anew. It contains the offset of the PE header. The optional header can 

have a variable size and the file header contains the size of the optional header. The 

offset of the file header from the image base is stored in the dos header. Therefore in 

order to find the offset of the section table, we have to read both the dos header and 

the file header. 

Following the IMAGE_NT_HEADERS is the section table. The section table is an 

array of IMAGE_SECTION_HEADERs structures. An IMAGE_SECTION_HEADER provides in­

formation about its associated section, including location, length, and characteristics. 

Finally we will end up with sections. There can be different sections in a PE file, 

with names that usually starts with "." such as .data, .text, or .rsrc. 

PE files contain data or code in different usage modes like: read or write program 

data (such as global variables). Besides this, there are other types of data in sections 

such as API import and export tables, resources, and relocations. When Windows 

loader loads a PE section into the memory, sections always start at the beginning of 

a page. That is, when a PE section is mapped into memory, the first byte of each 

section corresponds to a memory page (on x-86 CUPs a page is 4KB). 

Figure 6 shows different parts of a PE file and the way they are mapped into the 

physical memory. 

Now that we know the PE file format, we can extract and reconstruct executable 
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Figure 6: PE Files Layouts in Disk and Memory 

files in this format by following the links between parts of the PE file in the memory, 

extracting them, and putting them together. In order to achieve this goal, we need 

the first link of the chain that is the ImageBaseAddress field of each process. The 

ImageBaseAddress field contains the starting address of the process image in memory. 

The Process Environment Block (PEB) of a process, which is pointed to from the 

EPROCESS structure, has an attribute named ImageBaseAddress. This attribute con­

tains the starting address of the process image in memory. Now we have the starting 
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address at which the executable file is mapped. According to the PE file format de­

scribed earlier, in order to find the section table, which contains ImageSectionHeaders, 

we need to go through the headers of the PE file. First we will copy the contents 

of the memory from virtual address: ImageBaseAddress and with the size of an 

ImageDosHeader. Inside this structure, the e_lf anew field points to the PE signature 

(imageNTheaders structure). 

Now we have the address of ImageNTheaders and will copy the contents of the 

memory from this address, with the size of an ImageNTHeaders structure. The 

ImageNTHeaders structure is also pointing to structures of type ImageFileHeader 

and ImageOptionalHeader. We resume by copying memory bytes for these two 

structures according to their addresses, found in ImageNTHeaders. The important 

point to be noticed is that the size of ImageOptionalHeader varies from process to 

process. This value can be found as a field named SizeOfOptionalHeader in the 

ImageFileHeader. 

Until now, we have found, copied and written all the headers of the PE file into 

a new file that we will call it extracted file. What we should do in order to get the 

main parts of an executable file, is to find and go trough section headers that contain 

information about different sections of the file. ImageFileHeader has an attribute 

called NumberOfSections. This value shows how many sections are present in this 

executable file. Before starting to write actual sections of the PE file, we should copy 

and write ImageSectionHeaders. This structure has a specific size and we will repeat 

reading and writing according to the number of sections. 
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Inside the ImageSectionHeader structure, there are attributes that help us find 

the following: 

• Name: Name of the section that is intended to show the use of the section, 

for example .rdata stands for read-only data. Although this value is usually by 

convention the same for similar sections in different PE files, some compilers 

such as visual C + + allow programmers to assign customized names to sections 

at compile time of the PE file [49]. 

• VirtualAddress: This is the offset starting point of the section when loaded into 

the memory relative to the starting address of the file. This address is where we 

should start copying memory contents for this section. By adding this virtual 

address to the ImageBaseAddress of the mapped file, we obtain the virtual 

address at which the section is mapped to the memory. 

• SizeOfRawData: This is the size of the section in the PE file on the disk. 

• VirtualSize: This value shows the size of the section when loaded into the 

memory. 

By finding the virtual address of a section and its size, it is possible to read and 

copy the contents of memory starting from virtual address with the length equal to 

the size. It is important to mention that SizeOfRawData could be equal to, less than 

or greater than the Vi r tua lS ize depending on the alignment requirements. However, 

if it is less than the Vi r tua lS ize , the remainder of the section will be filled out with 

zeros and is not of forensic importance. 
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Once a PE file is loaded into the memory, its sections are not mapped continuously. 

This means that each page of the section is mapped to a different virtual address. 

Thus, we have to find the virtual address of each page, translate it to the physical 

address and copy the page contents into the extracted file. The pseudo code of the 

algorithm we used for extraction of executable files is presented in Appendix B. 

Figure 7 presents a screen shot of our toolkit that demonstrate the success of our 

method in finding and extracting an executable file (eclipse.exe). We were also able 

to disassemble this executable (in the "File Contents" panel). The executable file has 

been disassembled using the "disasm" tool [50] and the result code is shown in the 

"File Contents" panel of the GUI. 

Process DLLs Objects Threads Environment Files 

File N a m e f Type 

Show file contents Analyze stack 

;Disassembly of Fi le : Neclipse.exe 
:i 
jT.DateStamp = 444FCE1E: Hed Ape 26 12:46:38 2D06 
'Code Offset = 00001000, Code Size = 0001E000 
JData Offset - 00022000, Data Size - 00003000 

iNuraber of Objects » 0004 (dec), Imagetaase « 00400000h 

! ObjectOl: .text RVA: 00001000 Offset: 00001000 Size: O001E00O Flags: 6O0OO02Q 
1 Object02: .rdata RVA: 0001F000 Offset: 0001F000 Size: 00003000 Flags: 40000040 
I Object03: .data RVA: 00022000 Offset: 00022000 Size: 00003000 Flags: C0000040 
' Object04: .rsrc RVA: 00026000 Offset: OO02SO00 Size: 00007000 Flags: 40000040 

>+++++++++++++++++++ RESOURCE INFORHATION 

There are no Resources in This Application. 

Figure 7: Developed Toolkit - An Extracted Executable File 
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4.4 Conclusion 

In this chapter, we introduced our method for finding and extracting Windows Kernel 

Objects from a physical memory image. Also, we introduced forensically important 

attributes of these objects that are presented to the investigator in our developed 

toolkit. Knowing values of these attributes such as process start and end time, number 

of threads of each process, or loaded DLL files, can shed light on the execution history 

of the suspect machine. 

Furthermore, we presented our method for extraction of executable (EXE) and 

other data file such as PDF, DLL, and TXT files. The extraction of these files can 

help the investigation in many ways such as rerunning the executables of the processes 

that have been active at the time of incident and studying their behavior. Extraction 

of data files, can reveal images or documents that have not been found on other 

storage media or have been tampered during the incident. 

The research threads explained in this chapter, being fruitful by presenting new 

methods for extraction of files as a digital evidence, demonstrate valuable contribu­

tions to the digital forensics community. 
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Chapter 5 

Sensitive Information Investigation 

Most of the research carried out in the digital forensics science focuses on enumerating 

processes and threads by accessing memory resident objects, while ignoring the value 

of pieces of sensitive information that can be collected from inside memory contents. 

Given this, the present chapter summarizes results of our research on extraction of 

forensically important data from physical memory of machines running under Win­

dows XP (SP1, SP2) operating system (the issue of Windows versions is discussed 

in Section 1.1). This chapter demonstrates two main approaches: 1) Analysis of 

fingerprints that applications and protocols leave in memory and 2) Analysis of call 

stacks. 
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5.1 Introduction 

Since physical memory may contain numerous evidence that even might not be found 

in any other source, digital forensics community feels the urge to rapidly develop 

tools and techniques. This way, investigators will be able to capture and analyze 

the memory in order to facilitate the investigation and to come to more reliable 

conclusions. 

This chapter explains the importance of the information that exists in memory 

for forensic investigators and introduces new approaches for the extraction of this 

information. We can describe the new approaches that constitute our contribution 

as: a) Presenting the Stack Function Call Analysis method, b) Systematically finding 

fingerprints of applications and protocols and using them to extract sensitive data, 

and c) Presenting some of the most common patterns for fingerprint analysis. 

This chapter, using the facts about memory layout and management in Windows 

that have been explained in Chapter 2, explains how memory may hold sensitive 

information. In this chapter, we present the categorization of sensitive information 

in memory, its possible correlation, as well as existing and new methods to extract it. 

When performing the investigation and analysis, finding possible correlation be­

tween gathered evidence can add to the credibility of conclusions or even refute an 

assumption. Thus, detailed and precise information obtained from memory can be 

very important when analyzing the correlation between evidence. For instance, a 

deleted record in a log file can be acquired from memory as a part of an extracted 
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log file. Likewise, metadata acquired from process information can be used to reject 

the validity of a manipulated log file. On the other hand, assume that a suspect 

has entered a username and password in a Secure Socket Layer (SSL) enabled web 

page. This information can be extracted from memory and afterwards can be used 

for analysis of other collected evidence. 

To find and extract sensitive information from memory we offer two main ap­

proaches that can be used. Forthcoming sections provide details of these methods. 

5.2 Application/Protocol Fingerprint Analysis 

This section introduces our first approach to extraction of sensitive information: fin­

gerprint analysis. The first subsection explains the old-fashion string search method, 

which became the origin of our first proposed method, described in the second sub­

section. 

5.2.1 Search for Pre-Known Strings 

In many cases, when investigators are looking for data related to a specific subject 

such as a person's name, address, or friends, they know what they are looking for 

in memory. For example finding a specific name of address in memory contents, can 

be accomplished by searching for ASCII or UNICODE strings in the memory dump 

using applications such as WinHex [44] that facilitates string and binary search in a 

binary file. Figure 8 shows how an investigator may end up a Yahoo account username 
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when searching for a pre-known last name. The main advantages of this method are 

easiness and availability of tools and in some cases, accuracy and relativeness of 

results. There are many freeware or commercial string/binary search tools that can 

do the job. Although we have incorporated this method in our developed toolkit, it 

cannot give us the best results. In many cases, there are other names, addresses, user 

IDs, and other strings present in the memory dump that we are not aware of them 

while they are of importance. 
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Figure 8: Sensitive Information Found While Searching for Strings in Memory Con­
tents 

Existence of unknown sensitive data in the memory is one of the limitations of 

this method. 
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5.2.2 Search for Fingerprints 

Applications are compiled from source code written in various programming lan­

guages. Recalling the concept of functions (a.k.a subroutines) in programming, while 

processing sensitive input data, they use constants that at some point of time are 

brought to memory. In this approach, we call those constant variables that precede 

or succeed sensitive information "fingerprint". Fingerprints, being a string constant 

or a series of non-string bytes may have constant distances with the sensitive piece 

of information in memory. In order to shed some light on this concept, consider the 

piece of code below: 

i f ( e n c r y p t e d ) 

{ 

dig . Se tPasswordMode ( t r u e ) ; 

if ( d l g . S h o w M o d a l Q != wxID_OK) 

r e t u r n f a l s e ; 

if (! Send (_T(" password " + 

d i g . Get Value ( ) ) ) ) 

r e t u r n f a l s e ; 

if ( GetReply ( r e p l y ) != s u c c e s s ) 

r e t u r n f a l s e ; 

} 

64 



In line 6 of the code, which is a part of FileZilla [51] project code (can be found in 

optionspage_connection_sftp.cpp, filezilla 3.2.0) , shows that the string "password " 

concatenated with another string value (seems to be a password received from a dialog 

box) is passed to a function as a parameter. When this value is about to be processed, 

we can be sure that it exists somewhere in the memory. Assuming that the user has 

entered the string "my secret" in the dialog box, the string "password my secret" can 

be found in the memory. Now if another user has entered "trickword" in the dialog 

box, we can expect to find the string "password trickword" in the memory. Obviously, 

the string ' 'password " can be considered as a prefix to actual values of passwords 

presented by this piece of code. 

In order to help investigators, we have identified a set of common applications that 

deal with sensitive information and classified them in several categories. By examining 

the source code or the compiled code of the application (in case the application is not 

open source or we do not have access to the source code) we looked for the portions of 

the code that deal with sensitive information. We also used disassembler applications 

such as IDA Pro [52] and PE.Explorer [53] in order to analyze the compiled code 

in case we did not have access to source code. When traced, we examined the code 

for possible existing strings (or sequence of bytes) that precede or succeed sensitive 

information. Since there are a limited number of commonly used applications in these 

categories, we could build a set of these fingerprints. This set contains fingerprints 

used in applications such as FTP clients, SSH/Telnet clients, messengers, and web 

browsers. Table 2 demonstrates some fingerprints present in our set of patterns. 

65 

ftp://ftp.cpp


5.3 Call Stack Analysis 

In this section, we will explain our method for investigating memory stack in order to 

find and extract forensically sensitive information that is present in physical memory. 

By recalling call stack and stack frames from Section 2.5, which are building blocks 

of this work, we present our approach. 

5.3.1 Function Parameter Extraction 

The concept of parameter passing using the call stack is the beginning of our interest in 

stack for forensic analysis of physical memory. When a user interacts with a computer, 

she/he inputs data and gets some output. These inputs can be usernames, passwords, 

web site URLs, inputs to fillable forms and many more. However, what happens when 

the user enters data as inputs? This information will be considered as parameters 

for some functions of the processes running on the machine and will be placed in 

physical memory. Therefore, in the course of execution, a specific process stores 

needed parameters and information in the memory and keeps pointers to memory 

locations. Functions inside a program process its inputs and many times pass variables 

between each other in the form of function arguments. Some of the inputs passed to 

functions in a program are just indexes, or local variables, which are not of forensic 

interest, but others can indicate names, dates, e-mail addresses, web site addresses, 

username or passwords. Knowing that this information exist in memory and can 

be extracted after the incident, makes investigators hopeful. One possible way to 
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extract sensitive information from memory is string search. This method is based 

on searching and extracting UNICODE or ASCII strings from a file (that can be a 

memory image). Recalling from Section 3.2.2, tools such as "String" or "Windows 

Grep" can be used to do this search. The disadvantage of theses approaches is that 

investigators should know what they are looking for and then start to search for it. 

The other downside of this method is that when the investigators find a string, they 

do not have enough information about the program that was using this keyword and 

the way it was used. 

In the following subsections, we propose a technique that uses information present 

on call stack of each process and the executable image of that process to track sensitive 

function calls and find arguments passed to these functions. 

5.3.2 Parameter Extraction: Methodology 

In order to extract functions' parameters, we will analyze the stack of a process 

(or more precisely, a stack of an execution thread) to find out which functions have 

been called. If the function is an interesting one (that is it contains sensitive data as 

inputs), we will try to locate and extract the arguments passed to it. These arguments 

are usually stored in process space and can be accessed using their virtual addresses, 

which are in turn stored on the stack. For this purpose, we have to observe the 

signature of designated functions and based on the number and type of arguments 

they take, look for them (pointers to arguments or the arguments themselves) on the 

stack. 
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Windows is based on a layered architecture that prevents user applications from 

accessing sensitive system components. In this architecture, applications transfer the 

execution to DLL files in order to be able to communicate with executive services in 

kernel mode and finally to hardware. There are numerous programs that deal with 

forensically important and sensitive data such as web browsers, FTP clients, and 

many more. On the other hand, there are a limited number of DLL files that handle 

requests of these programs. Therefore, as Figure 9 explains, it is reasonable that 

instead of digging into all applications, we find those DLL files that handle sensitive 

requests and look for calls to their functions on the stack. 

When an executable or a DLL calls a function in another DLL, a call instruction 

in the program will be executed. Suppose an FTP client application wants to es­

tablish a connection to an FTP server. This program takes the username, password, 

the address of the FTP server, and other sensitive information as inputs. Then, 

it stores this information in different locations in process address space and pass 

them as arguments to functions inside application's code. According to the layered 

architecture of Windows, application's functions at the end, call some functions in 

different DLL files and arguments are passed to these newly called functions as well. 

Therefore, if the function FTPConnect(user, p a s s , u r i ) in the FTP client applica­

tion calls the function connec t (s : TSocket; var name: TSockAddr; namelen: 

In tege r ) in WS0CK32. DLL, then the structure of the stack for that thread of execution 

would look like Figure 10. 

This way, we can use DLL files as bottlenecks and look for important function 
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Table 2: Some Fingerprints and Their Corresponding Applications 

1 

2 

3 

4 

5 

6 

Application 

Yahoo Web Mail 

Yahoo Web Mail 

Horde Web Mail 

Horde Web Mail 

WinSCP 

Yahoo Messenger 

Fingerprint 

passwd 

login 

imapuser= 

pass= 

password 00 00 00 08 * 

buddies=( ** 

* A string followed by hexadecimal values 

** List of friends present in Yahoo messenger 

Mozilla 
Applications 

use | 

ssl3.dll 

WinSCP 

uses '"•-. *•,, 

PUTTY 

uses: 

••A r A--

ws2_32.dll 

r*** 

PSFTP 

.-•''uses 

Figure 9: Many Applications Use Common DLLs 
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Higher Memory Addresses 

Stack Frame for 
wsock32.connect 

Stack Frame for 
FTPConnect 

Old EBP 

Param 1 (pointer So Tsocket) 

Param 2 (pointer to TSockAddr) 

Param 3 (nameien) 

Return Address 

Saved EBP 

Stack 
Expansion 

« EBP 

1 ESP 

Lower Memory Addresses 

Figure 10: Stack Structure During Function Calls 

calls in specific DLLs that can be found on the stack. We can explain this approach 

in several steps as follows: 

1. Locate the stack memory associated with each thread of processes. 

2. Distinguish stack frames for each function call on the stack. 

3. Understand and describe the function that has been called. 

4. Reconstruct the Import Address Table (IAT) of the process image. 
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5. Compare each called function with the list of forensically sensitive functions. 

6. Extract the parameters that exist on the stack, if the function found on the 

stack corresponds to one the interesting functions in our list. 

The rest of this section is dedicated to explaining each of the above steps. 

• Locating the stack for each thread: As described in Section 2.4, Windows uses 

internal data structures in order to manage memory operations and objects 

in the memory. For the purpose of finding stacks of a process, we need to 

get information about each of its threads. In order to reach threads and their 

stacks we start with the important EPROCESS block, which is the starting point 

of our access to process information. The EPROCESS block, contains a KPROCESS 

structure, also known as PCB (Process Control Block), a kernel structure that 

contains information about scheduling of process threads. The KPROCESS block, 

under the name of ThreadListHead maintains the starting address of an array 

(LIST_ENTRY) at the offset of 0x050. Each entry of this array, in turn, keeps 

the starting address of KTHREAD structures, each of which represents a thread 

of execution for the current process. KTHREAD, is the kernel representation of a 

thread that contains information about thread scheduling. What is interesting 

for our method in this structure, is the following information about the thread 

stack: 

— StackLimit at offset 0x0lc, 

— KernelStack at offset 0x028 and 

71 



- StackBase at offset 0x168 

This information provide the maximum size of the stack, current value of the 

stack pointer, and the starting address of the stack expansion. Knowing these 

values and by translating them to physical addresses, we can reach the area in 

the memory image that corresponds to each stack. In this approach, we would 

not limit the area of searching to the space between the StackBase and the Stack 

Pointer, because there might be some inactive stack frames above the address 

that Stack Pointer points to (stack residues). These stack frames, represent 

previous function calls (those functions that have returned). Therefore we will 

do our experiments for the whole memory space between the StackBase and 

the StackLimit. Figure 11 demonstrates stacks of different processes' threads 

inside the process address space. After locating each stack, we start to parse 

its contents. 

• Distinguish the stack frame for each function call: In order to investigate the 

stack frame of each called function, we have to identify the boundaries of each 

stack frame. As stated above in this section, when a function is called, the return 

address for the called function is saved on the stack. This return address is 

actually the address of the instruction that comes right after the call instruction. 

In other words, if the address of the call instruction is n, and the length of the 

call instruction is I, then the return address will be: ret Address = n + l. Based 

on this fact, we will read each 4 bytes on the stack and assume that what is 
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read, is a return address (retAddress). If this assumption is true, then at / bytes 

before this address (inside the code segment) we should find a call instruction, 

where / is the length of a call instruction. Hence, if what we find at address 

retAddress — I is a call instruction, then our first assumption will be true, and 

what we had read from the stack would be a return address. 

Figure 12 demonstrates how stack frames can be associated with function calls 

inside the code and how they can be distinguished. 

Memory Contents 

Process X address space 

« -. 

' Process X's thread stacks 

•— - ' 

Process Y address space 

* Process Y's thread stack 

Process Z address space 

k Process Z's thread stacks 

Figure 11: Finding Stack for Each Execution Thread in Process Address Space 
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17' 
funcMain: [Call funcAj 

mov eax, newmode 
lea eax, [ebp+var_20] 

funcA: push eax 
lea eax, [ebp+var_28] 
mov ecx, commode 
call funcB 

funcB: mov [ebp+var_34], esl 
cmp byte ptr [esl], 22h 
jnz short loc 10125CF 
call funcC 

funcC: mov [ebp], ebx 
lea eax, [ebp+Startuplnfo] 
push eax 
retn 

Memory Contents 

Process X address space 

Process Y address space 

Process Z address space 

•Process X's thread stacks 

Process Y.'s thread stack 

•f — Process Z's thread stacks \ 

Stack Growth 
Direction 

Figure 12: Continuing from Figure 11, Finding Stack Frames 
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• Find out which function is the called function: Since we are trying to find 

forensically important function calls, we will focus on functions imported from 

common Application Programming Interfaces (API) rather than functions that 

are specific to an application. For instance, while analyzing the stack of Internet 

Explorer process, we prefer to look for functions imported and called from 

Secure Socket Layer (SSL)/Transport Layer Security (TLS) APIs instead of 

those functions inside Microsoft Internet Explorer that directly implement SSL 

API. Each imported function (functions that are imported from DLL files and 

can be used by the process) is mapped to a physical address in the memory. 

Recalling from previous step, in order to find return addresses, we reached a call 

instruction in the code of the executable. By looking deeper at a call instruction 

we will see that this instruction is always followed by the address of the called 

module. This address can be in different modes of addressing depending on 

the type of the call instruction. This address can be an immediate value, a 

general-purpose register, or a memory location. Since Near Call instructions 

are calls to procedures within the current code segment, and we are looking for 

calls to imported procedure (that are definitely not in the current segment) we 

will only look for Far Call instructions. By finding the address of the called 

procedure (immediate value or memory location) we will locate the function 

that corresponds to the current stack frame. 

• Reconstruct the Import Address Table (IAT) of the process image On the other 

hand, while processing information about each process, we will make a list of 
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imported functions for each imported DLL file that the process declares. This 

information can be obtained from Import Address Table (IAT) that is simply 

a lookup table used when the application calls a Windows API function. IAT 

stores memory locations of the corresponding library functions [15]. This way, 

by traversing this table, we can find all the Windows API functions that are 

imported by this process and can be possibly used during the course of execution 

of the process. 

Figure 13 shows the name of imported DLL file ADVAPI32.dll and names of 

the functions in this DLL file that are imported by a process (ftp.exe) inside a 

memory image. 

55 Fde Edit Search Position View Tools SpeciaBst Options Window Help 
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apFree e Format 

Imported DLL 
name 

Figure 13: An Imported DLL File and Name of It's Functions in the Memory Image 

Now that we have all this information, we can search in the addresses of im­

ported functions for all the function addresses that we found on the stack and 
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identify which function has been called. 

• Comparison between called and sensitive functions: As explained earlier in this 

section, not all of the called functions carry sensitive information. For exam­

ple, WSACleanup function imported from WS2_32.dll (Windows Socket 2 API) 

terminates use of the WS2_32.dll [54], a functionality that does not provide us 

with direct forensically important information. On the contrary, getaddr inf o 

function, from the same DLL file, provides protocol-independent translation 

from an ANSI host name to an address, which can give us sensitive information 

such as a host name. 

Thus, in order to filter called functions based on their sensitivity, we have to 

prepare a list of API functions that are more important from investigator's 

eyes. To achieve this, we studied common APIs that may process forensically 

sensitive information such as: 

- OpenSLL, SSL/TLS APIs 

- Network Security Services (NSS) [55] 

- Microsoft Networking and Windows Security APIs (including Windows 

socket API) 

- Microsoft CryptoAPI (Cryptography application programming interface) 

Table 3 represents examples of functions that we have been looking for during 

our experiments. We have also traced some functions such as Wri teFi le that 

writes data to the specified file or input/output (I/O) device and is exported 
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from KERNEL32.dll. Although KERNEL32.dll is not a part of security or net­

working APIs and is widely used by different applications, Wri teFi le is used 

to write sensitive information to a socket (a specific type of I/O device). 

• Parameter extraction: Since sensitive information are passed to different func­

tions as parameters, we are interested in extracting those parameters for each 

found sensitive function. Except very small-size parameters, most of the param­

eters (including strings) are passed to functions as pointers to memory locations 

where the actual values of the parameters reside. These pointers to memory 

locations are stored on the stack (as a part of the call stack frame). The order 

of the parameters in the stack frame is the same as the order of the parameters 

passed to the function. Thus, in order to locate a parameter in the memory, we 

have to extract the pointer to that parameter from the stack frame and follow 

that pointer to reach the desired memory location. Now we need to know how 

many bytes to read and how to interpret read bytes. Should we read 4 bytes and 

interpret them as an integer number or should we read 16 bytes and interpret 

them as a 16-character string? In order to solve this issue along with the issue 

of the order of the parameters, we have to know the signature of the function 

that we are investigating: The number, type, and order of the parameters. This 

is what the stack analysis module expects from the user. 
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Table 3: Example Functions from Different APIs that May Carry Forensically Sensi-
tive Information 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Function 

SSL-CIPHER_description 

SSL_CTX_check_private_key 

SSL_check_private_key 

FindFirstUrlCacheEntry 

FtpCommand 

GetAddressByName 

gethostbyaddr 

send 

BluetoothAuthenticateDevice 

API 

SSL/Ciphers 

SSL/Protocols 

SSL/Connections 

WinINet(Windows Internet) 

WinlNetfWindows Internet) 

Windows Sockets 2 
(Winsock) 

Windows Sockets 2 
(Winsock) 

Windows Sockets 2 
(Winsock) 

Wireless Networking/Blue­
tooth 

Function Description 

Returns a textual de­
scription of the cipher 
used into the buffer buf 
of length len provided 

Verifies that the private 
key agrees with the cor­
responding public key in 
the certificate that is as­
sociated with a specific 
context (CTX) structure 

Verifies that the private 
key agrees with the cor­
responding public key in 
the certificate that is as­
sociated with the Se­
cure Sockets Layer (SSL) 
structure 

Begins the enumeration 
of the Internet cache 

Sends commands di­
rectly to an FTP server 

Queries a namespace, or 
a set of default names­
paces, to retrieve net­
work address informa­
tion for a specified net­
work service 

Retrieves the host infor­
mation corresponding to 
a network address 

Sends data on a con­
nected socket 

Sends an authentication 
request to a remote Blue­
tooth device 
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5.3.3 Case Study 

Using the explained method, we have been able to identify and extract sensitive 

information from a memory image that cannot be accessed using the other analysis 

method. As an example, we extracted an FTP account username that was used 

during an FTP session. The FTP client used in this example is Microsoft FTP client, 

available in machines running Windows operating system. The login credentials used 

by this program are not cached or saved. However, they are just sent to the server 

using a connection socket. This is the case where stack analysis method comes to 

help the investigator. To pinpoint the transmitted sensitive information, we: 

1. found process ftp.exe on the list of processes that were running at the time of 

imaging, 

2. enumerated all DLL files imported by this process and all imported functions, 

3. located the stack for thread(s) of execution, 

4. examined addresses on the stack(s) to find return addresses (to locate the stack 

frames), 

5. checked function calls on the stack against imported functions from DLLs (from 

step 2), 

6. found function Wri teFi le imported from KERNEL32.dll (this function writes 

a buffer of characters to a general file, which is a socket in this case [56]), 
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7. located addresses of Wri teFi le parameters (according to its signature) and 

finally, 

8. extracted the u se rname (second parameter to Wri teF i le function). 

Figure 14 displays and summarizes the result of the above steps. 

There are two issues that should be mentioned here: 

1. All the address values pointed to in the screenshots, are presenting virtual 

addresses that during the analysis have been translated to physical addresses 

in order to locate new values in memory image. 

2. Due to the fast changes made to stack frames on a stack (because of numerous 

function calls), we cannot make sure that the stack frame of a certain function 

call can be found on the stack. This is why in the example above, we have been 

able to identify an account username, but not the corresponding password. 

5.3.4 Limitations 

There are some issues that add to the difficulty of this method. In order to explain 

more and help future extensions to this work, we enumerate some of these limitations: 

• Many applications do their internal processing (including encryption password 

processing, etc) inside the application code and do not directly call the available 

API. Thus, in many cases, only those low-level and common functions are called 

from APIs (such as WriteFile function, explained in Section 5.3.2). These calls 
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are repeated many times for various purposes and do not always lead to sensitive 

information. 

• In some applications (such as PuTTY [57]) in order to consider security of the 

users and prevent attacks, sensitive information such as SSH2 client's passwords 

are completely removed from memory contents right after they are used (by 

setting memory bytes used to hold the password to zero) [58]. 

• In cases that we want to analyze closed source applications, to find the flow 

of sensitive data such as inputs, we need to analyze the assembly code of the 

program and sometimes use assembly debuggers such as IDA Pro [52]. Conse­

quently, the process of tracing sensitive information path and finding functions 

that handle these data becomes more cumbersome. 

5.4 Conclusion 

Due to pertinent and accurate information that can be carved from memory contents, 

memory analysis has become an important part of forensic analysis. Since evidence 

found by analyzing physical memory (that in many cases cannot be found in any other 

sources) can respond to key questions about the incident such as who, when, how, 

and where, investigators do not want to lose any evidence that may be obtained by 

memory analysis. In this chapter, we introduced and used new methods for extracting 

forensically sensitive information such as usernames, passwords, visited URLs, and 

encryption keys from physical memory. The first method, which is based on locating 
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fingerprints of applications and/or protocols, uses instances of these fingerprints to 

identify sensitive information that appear before or after them. However, the second 

method, tries to find stack frames corresponding calls to specific functions and locate 

the sensitive parameters passed to these functions. These methods can augment other 

memory forensics techniques such as finding processes [34, 37] and extracting files and 

add to their value by correlating results. 
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Chapter 6 

Memory Analysis Plug-in 

This chapter provides explanation of our developed toolkit and its capabilities. The 

sections of this chapter explain how the functionalities and capabilities of our Forensics 

Investigation Framework and specifically the memory analysis plug-in satisfies the 

growing demand of the digital forensics community. 

6.1 Forensics Investigation Framework 

As a part of the research, our team has developed a Forensics Investigation Frame­

work that encapsulates various forensic analysis methods. The developed toolkit is 

a Java based application that uses JPF (Java Plug-in Framework [59]). It provides 

an extensible framework through plug-ins environment for forensic investigations and 

case management. As a parts of this framework, other team members have devel­

oped Network Analysis, E-Mail Analysis, and Log Analysis plug-ins in addition to the 
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Memory Analysis plug-in. We use Hibernate and Object Persistence [60] in order to 

keep records of what investigators do in addition to information about the case and 

involved evidences. This framework allows investigators to add evidence to a case 

and analyze them. 

6.2 Memory Analysis Plug-in 

As a part of the forensics analysis framework, we have developed a physical memory 

analysis plug-in for Windows XP (SP1 and SP2). Our framework provides various 

capabilities such as listing all the processes found in memory (in both a plain view and 

in a hierarchial view), their properties and attributes, DLL files used by each process, 

environment variables associated to each process and kernel threads. The developed 

plug-in takes a byte-by-byte copy of memory contents (referred to as image) and 

performs file extraction on the image as well. 

Once the memory image has been parsed, the investigator can see a list of processes 

that were running at the time of memory imaging (that can be almost the same as 

memory status at the time of incident if not many changes are made on the system). 

By clicking on each process in this list, different tabs containing various information 

about the process such as DLL files and process properties are shown. In this toolkit, 

we have provided two different views for processes: Plain View and Hierarchial View. 

The plain view gives a plain list of processes while the hierarchial view demonstrates 

a tree of processes that shows the parent process that created the child process (like 
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in Process Explorer [61]). One of the process information tabs is "Files" tab on which 

investigator can see a list of all extracted files related to this specific process. In fact, 

this toolkit generates a folder for each process and names it the same as the process 

itself and uses a combination of methods stated in Chapter 4 in order to extract 

executable and data files from memory image. It then generates files with the same 

name as the file it is extracting from memory and writes what has been extracted to 

these files. The "Files" tab in the memory plug-in, lists all these files. The "DLLs" 

tab lists all the DLL files used by the selected process. The "Threads" tab lists 

all the threads of execution for the selected process and their respective information 

such as start and end times and thread-Id. As the explanation of the memory plug-in 

shows, we have developed a self-contained plug-in that encapsulates almost all what 

an investigator needs to perform analysis on physical memory extracted. 

Figure 15 shows the memory analysis plug-in while the investigator wants to select 

a memory image file for analysis. In the figure you can see that the investigator can 

select a path in order for the plug-in to dump the extracted files. 

6.2.1 Architecture and Technology 

One part of the memory analysis is the examination of extracted files, and this may 

include opening data files or running executables. Since each of these files may con­

tain malicious scripts, this type of analysis can be risky and sometimes harmful to 

the system on which investigator is working. Thus, it is recommended to use an iso­

lated and protected environment for this purpose. Bern and Huebner [62] suggest use 
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of both a conventional analysis environment and a virtual environment concurrently 

and independently. They have also proved the importance and the efficiency of this 

approach in their next research that analyzes a USB flash drive in a virtual environ­

ment [63]. In order to meet this requirement, we have installed and integrated the 

framework into a virtual machine. This reduces the actual risks that may arise from 

memory analysis. 

6.2.2 Capabilities and Features 

Memory Imaging 

Investigation of memory begins with acquisition of the RAM contents. As discussed in 

Chapter 3, there are different methods of imaging RAM but a method that generates 

a simple and raw dump file, without extra metadata, still remains the choice for 

investigators. Since an investigator may find it necessary to analyze the memory 

image with different tools in order to verify the results, it is better to acquire the 

image in a general format. The Forensics Physical Memory Analyzer, comes with a 

built-in RAM dumper that generates a byte-by-byte copy of memory. The user of the 

tool can select a previously taken image of RAM or to start memory imaging of the 

present machine and then start to analyze it. 

Stack Analysis 

In a multitasking operating system, a process initiates one or more execution threads. 

A fragment of memory space is assigned to each of these threads as it's stack. A 
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call stack or simply a stack, is a LIFO structure that stores information about the 

subroutines of the associated thread. Information about each subroutine, is organized 

in Stack Frames. In the most common structure, the stack frame includes local 

variables of the called function, the return address of the caller function, and the 

parameter values passed into the called function. 

Processes need to store their sensitive inputs (such as IP addresses, usernames, 

passwords, etc) somewhere in the memory space allocated to them and pass them as 

parameters to functions. This way, if we know the signature of functions that use 

these sensitive information, we can search the call stack for them and locate their 

parameters. 

Our memory analysis plug-in is capable of locating the stack region corresponding 

to each execution thread and then analyzing the stack contents in search of calls to 

specific sensitive functions. According to the signature of the forensically sensitive 

function, it then locates the parameters passed to that function and lists these in­

formation for investigator's view. Thus, we can provide investigators with significant 

information about the latest function called during the course of execution of a spec­

ified process and more important, the sensitive parameters used by these functions. 

File Extraction 

Data Files: Having different files extracted from one memory image can help inves­

tigators to find non-tampered information about the execution of an application and 

data files that have been accessed such as text documents, HTML files, web browser 
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history files and many more files that can be analyzed and correlated with other 

sources of digital evidence. 

The memory analysis plug-in, is capable of listing and extracting data files accessed 

by active processes. It dumps the extracted files in directories named according the 

processes. The toolkit also provides a set of modules for common data file types 

to help investigators read, view or search within the extracted files. Most common 

modules integrated into our plug-in include: 

Text viewer: Using text viewer, our framework can open the text-based files inside 

the plug-in and view its contents in a text format. Investigators can also benefit 

a text search feature that helps examining the contents of a text file in search 

of a specific keyword. 

P D F viewer: Using Adobe PDF viewer Java plug-in, investigators are now able to 

view PDF files inside our framework. This complete PDF utility is very similar 

to Adobe Reader with most common PDF features, which helps users save time 

while conducting an investigation. Using such viewer utilities, investigator does 

not have to open the file with other external and third party applications. 

This may save their time specially when the framework is used inside a virtual 

machine (that may not have the required applications installed). 

HTML viewer: Our memory framework is able to view extracted files that are in 

HTML format. Investigators are also able to view the HTML file in a text 

format, which means the source code for HTML files. 
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Image viewer: Using our framework, the investigator can view common image files 

such as JPG, GIF and PNG. Supporting more image formats can be a future 

extension to this work. 

Executable Files: Knowing the format of a Portable Executable (PE) file and 

using the methods explained in Chapter 4, the memory analysis plug-in is able to 

extract the process images (executable files) corresponding processes that were exe­

cuting at the time of imaging. Once a PE file is loaded into the memory, its sections 

are not mapped continuously, that is each page of the section is mapped at a different 

virtual address. Thus, we have to find the virtual address of each page, translate it 

to the physical address and copy page content into the extracted file. 

We have provided a number of analysis features for extracted executable files 

including: 

Code Disassembling: Using disasm.exe [50], a popular disassembler tool, memory 

analysis plug-in lets investigator to view the disassembled code of the extracted 

executable that she/he chooses. This feature is available inside the memory 

analysis plug-in and the code can be viewed right inside our framework. 

Assembly Code Investigation: Using IDA-Pro [52] plug-in development features, 

our framework is capable of lunching IDA Pro in order to investigate and ex­

plore the assembly code of the extracted executable file. This feature helps 

investigators to gain more information about the details of the file and perform 

complex analysis on found evidence. Executable analysis include listing the 
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functions of the executable, names and strings, debugging the executable and 

so on. 

Executable Run: We have added a functionality to the plug-in that allows the 

investigator to run an executable that is completely extracted. In many cases, 

we have been able to extract all parts of an executable. Therefore, we have been 

able to run it and see what it is able to perform. It is important to mention 

that running executables or opening and accessing extracted contents from a 

memory image can be insecure and risky. 

File Similarity Check 

Memory extracted files (executables or data files) are digital evidence that can be 

analyzed and serve as a link in the chain of investigation. In order to escalate the 

admissibility of these evidence, we have to be able to prove their validity. On the 

other hand, in most of the cases as a result of process execution and its changes to the 

files, extracted files are not exactly the same as original files on disk. But how similar 

are they? If we can show the similarity of an extracted file with the original file by a 

percentage, this could be helpful in deciding whether to accept it as an evidence or 

not. It is important to mention that when containing important information, pieces 

of extracted file, even being very small portions of the actual file on disk, still can 

be useful and carry forensically important information. In our integrated toolkit, we 

provide investigators with the capability to use fuzzy hashing to compare and evaluate 

the similarity of extracted files with the original files they provide. 
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String Search in Memory Image 

String search in the memory image is a very common need of investigators. Assume 

that an investigator knows a suspicious e-mail address and wants to verify if this e-

mail address was used by any applications at the time of accident. If so, he may want 

to examine the contents of memory image with more details. As another example, 

suppose that the investigator wants to know if a specific file (e.g, contract.doc) was 

accessed by any process or not. In this case, if the file is not among the memory 

extracted files, he may use string search. The toolkit will display a range of bytes 

before and after the searched string (if found) in both binary and ASCII formats and 

highlights the searched string and its offset in the image file. If more than one hits, 

the toolkit will list all of search hits. 

Editing Data Files 

The ultimate goal of extracting files (especially data files) out of memory is to inves­

tigate their contents, either in search of a specific piece of information or in search of 

all important information. By choosing "Files" tab after a process has been selected, 

all the extracted files associated with the selected process, will be displayed and user 

can see their contents. Therefore, it is necessary to assist investigators with string 

search, replace, copy, paste, and other routine editing functionalities when they open 

and examine data files. As a real example, our plug-in is able to find and extract 

history files associated with a web browser. This could be of high value especially if 

the history file has been deleted from disk before investigators reach the compromised 

94 



machine. This history file, having a volume of at least 1 MB, contains information 

about the web sites visited by users. So, being able to search for a web site URL in 

this file using our toolkit and saving time, completely makes sense. 

Virtual Address Translation 

For systems with virtual memory, a Virtual Address (VA) is a memory location that 

the intervening hardware and/or software maps to physical memory. As an appli­

cation runs, the same virtual address may be mapped to many different physical 

addresses as data and programs are paged out and paged in to new memory locations 

[64]. 

Many times, it comes to a situation in which an investigator analyzing physical 

memory contents, needs to find the physical address of a certain virtual address 

linked to a certain process. This can help investigator to find the requested memory 

location and investigate its contents. Our memory analysis plug-in helps investigators 

to translate a virtual address to its corresponding physical address. Since in 32-bit 

versions of Windows, the procedure used to translate virtual addresses depends on 

the mode in which the operating system operates (normal mode or Physical Address 

Extension mode [14, 11]), the Address Translator module allows users to specify the 

mode of address translation. 
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Sensitive Information Extraction 

An image of a physical memory may contain numerous pieces of information ranging 

from MSN network usernames and passwords to "form history" of web browsers 

containing strings that were inserted in forms of web pages. An investigator may 

not be aware of everything that exists in a memory dump, but if we can search for 

common, forensically important information, namely sensitive information, then we 

can provide the investigator with this information, and of course categorize them 

in order to make it easier for the user to find useful data. Thus, we have studied 

commonly used applications under Windows platform to find out their fingerprints in 

memory. Applications that establish network connections such as FTP, SSL, Telnet, 

and SSH connections were among the applications that leave sensitive information in 

memory. After analyzing memory, we categorize information found and show them 

(if any) as: 

• Connection information (FTP and SSH, SLL/TLS): This includes usernames, 

passwords, commands, encryption information and connection destinations. 

• E-mail information: (MS. Outlook Express and Mozilla Thunderbird) 

• Web browser information (Firefox, Netscape, and Internet Explorer) 

Figure 16 illustrates the architecture of the developed framework and its modules. 
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Chapter 7 

Conclusion 

In this thesis, we have focused on acquisition and analysis of physical memory as 

a reliable source of evidence during a digital forensic investigation. After thorough 

study of the state-of-the-art in the field of digital forensics and memory forensics, we 

ascertained that physical memory hosts a great amount of data that cannot be found 

on any other source of evidence. 

Although its size is usually far less and its contents are much more volatile com­

pared to secondary media such as disks, physical memory holds very accurate and 

pertinent information that can turn to reliable evidence for the court of law. Start­

ing by studying previous works and examining existing free and commercial tools, 

we identified important areas of this field and started to build our own tools and 

techniques for the purpose of forensic investigations. In addition to parsing memory 

resident structures and constructing building blocks for more complex analysis, we 

have presented two different methods for analyzing physical memory that constitute 
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our main contributions in this thesis. 

The first contribution is file extraction from memory images. Using this method, 

the investigator can identify, extract, and reconstruct various types of files that are 

present in a memory image and have been accessed by applications and processes. 

The extracted files being in HTML, PDF, DOC, TXT, LOG, and even PE (portable 

executable) format (including EXE and DLL formats), can reveal important informa­

tion about the machine being investigated. These files might have been deleted from 

disks after an attack. Thus, extracting them is a very helpful step in an investigative 

case. Reconstructing an executable file allows the investigator to rerun the file and 

study its behavior and purpose. This can be referred to as event/scene reconstruction, 

which is an important phase of digital investigation. 

The second contribution is extraction of forensically sensitive information from 

memory contents. Knowing that in order to be processed, all the sensitive information 

will appear in physical memory at some point of time, we focused on proposing new 

methods for pinpointing sensitive information available in memory such as usernames, 

passwords, URLs, email addresses, and such items. We achieved this objective by 

using two main approaches: (1) finding application or protocol specific patterns that 

precede or follow sensitive information and (2) analyzing stack frames for each thread 

of execution of processes. In the second approach, locating calls to sensitive functions 

helps the investigator extract sensitive parameters such as passwords. 

We also developed a plug-in based Digital Forensics Framework for which different 

teams developed different forensic analysis plug-ins such as Network Analysis plug-in, 
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Log Analysis plug-in, and Email Analysis plug-in. Our contribution in this framework 

was the development of the Memory Analysis plug-in. The Memory Analysis plug-in is 

capable of acquiring memory images, parsing images for kernel data structures, finding 

processes, threads, DLL files, environment variables, and objects associated with each 

process as well as extracting data/executable file. Moreover, the developed plug-in 

analyzes the stack of execution threads to build a partial execution path (according to 

function calls chain) and to extract forensically sensitive information. The developed 

framework, unlike many other command line analysis tools, is benefiting a rich, user-

friendly GUI in addition to its extensibility through plug-in development. 
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Appendix A 

Pseudo Code of Data Files 

Extraction 

viewSize = 256 * 1024; 

VACBList = emptyListQ ; 

for(all processes in the process list) { 

for(all FileObject structures related to this EProcess) { 

SOPAddress = FileObject.SectionObjectPointersAddress; 

SOP = Read_SectionObjectPointer_From_Address(SOPAddress); 

SCMAddress = SOP.SharedCacheMapAddress; 

SCM = Read_SharedCacheMap_From_Address(SCMAddress); 

numberOfVACB = SCM.FileSize / viewSize; 

for(i = 0; i < numberOfVACB; i ++) { 

VACBStartAddress = SCM.InitialVACBOffset + (4 * i); 
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tempVACB = fillVACB(VACBStartAddress); 

for(j = 0; j < viewSize / pageSize; j ++) { 

dataAddress = tempVACB.BaseAddress + (pageSize * j); 

physicalDataAddress = translateVirtualToPhysicaK 

dataAddress); 

readDataPageByPage(physicalDataAddress); 

writeMemoryContentsToFileO ; 

} 

} 

> 

> 
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Appendix B 

Pseudo Code of Executable Files 

Extraction 

for(all processes in the process list) { 

PEB = EProcess.PEB; 

IraageBaseAddress = PEB.ImageBaseAddress; 

ImageDosHeader = Read_ImageDosHeader_From_Address( 

IraageBaseAddress); 

ImageNTHeadersOffset = ImageDosHeader.e_lfanew; 

ImageNTHeaders = Read_ImageNTHeaders_From_Address( 

IraageBaseAddress + 

ImageNTHeadersOffset); 

ImageFileHeaderAddress = ImageBaseAddress + 
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IraageDosHeader.e_lfanew + 

ImageNTHeaders.fileHeaderOffset; 

ImageFileHeader = Read_ImageFileHeader_From_Address( 

IraageFileHeaderAddress); 

ImageOptionalHeaderAddress = ImageBaseAddress + 

ImageDosHeader.e_lfanew + 

ImageNTHeaders.optionalHeaderOffset; 

ImageOptionalHeader = Read_ImageOptionalHeader_From_Address( 

ImageOptionalHeaderAddress); 

CreateEmptyExecutableFileO; 

WriteToFile(ImageDosHeader); 

WriteToFile(ImageFileHeader); 

WriteToFile(ImageOptionalHeader); 

for(k = 0; k < ImageFileHeader.numberOfSections; k++) { 

ImageSectionHeaderAddress = ImageBaseAddress + 

ImageNTHeadersOffset + 

ImageNTHeaders.optionalHeaderOffset + 

ImageFileHeader.sizeOfOptionalHeader + 
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(k * SizeOfIraageSectionHeader); 

ImageSectionHeader = Read_ImageSectionHeader_From_Address( 

ImageSectionHeaderAddress); 

WriteToFileCImageSectionHeader); 

} 

for(j = 1; j <= ImageFileHeader.numberOfSections; j++) { 

FileSection = Read_Section_From_Address_With_Size( 

ImageBaseAddress + 

ImageSectionHeader[j].VirtualAddress, 

ImageSectionHeader [j].VirtualSize); 

WriteToFilePageByPage(FileSection); 

} 

} 
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