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ABSTRACT 

OUT-OF-PLANE FLEXURAL PERFORMANCE OF GFRP-
REINFORCED CONCRETE MASONRY WALLS 

NAVID SASANIAN 

The objective of this thesis is to assess the out-of-plane flexural performance of 

single-wythe concrete masonry walls that are reinforced with Glass Fibre-Reinforced 

Polymers (GFRP) rods, as an alternative for steel rebars. Eight lmx3m full-scale walls 

were constructed using hollow concrete masonry units and tested in four-point bending 

with an effective span of 2.4 m between the supports. The walls were tested when 

subjected to increasing monotonic loads up to failure. The applied loads would represent 

out-of-plane loads arising from wind, soil pressure, or inertia force during earthquakes. 

One wall is unreinforced, another wall is reinforced with customary steel rebars 

and -the other six walls are reinforced with different amounts of GFRP reinforcement. 

Two of the GFRP-reinforced walls were grouted only in the cells where the rods were 

placed in order to investigate the effect of the extent of grouting on the performance of 

the walls. The force-deformation relationship of the walls and the associated strains in the 

reinforcement were monitored throughout the tests. The relative performance of different 

walls is assessed in order to quantify the effect of different design variables. The range of 

GFRP reinforcement ratios covered in the experiments was used to propose a capacity 

diagram for design of FRP-reinforced masonry walls similar to that of reinforced 

concrete elements. 

A comprehensive analytical study on the behaviour of the tested walls 

accompanies the experimental program, so that the outcome of the experiments could be 
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quantified and theoretically predictable. Flexural capacity and out-of-plane lateral 

deflection of the walls are the major aspects that are tried to be evaluated using available 

models and methods of analysis. Furthermore, efforts are made to obtain finer predictions 

closer to results of the tested walls using new methods. Since the analyses carried out in 

this study showed pleasing agreements with the wall tests, a capacity diagram is 

developed based on the analyses and proposed to be used in designing concrete masonry 

walls reinforced with GFRP bars. Lastly, the ductility of the GFRP-reinforced walls has 

been inspected through different methods, the outcomes of which ensure that the GFRP-

reinforced walls have exhibited sufficient deformability prior to failure. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Background and Statement of the Problem 

Unreinforced masonry is known as one of the oldest types of construction 

materials and has been widely used since ancient times, mostly due to its low 

construction and maintenance costs, incomparable thermal and sound insulation, reliable 

fire resistance, and inimitable durability. Ancient masonry structures were built with 

large structural components in size, to satisfy the conservative empirical methods of 

design and simple rules of thumb in construction. This type of structures was not 

excluded from the results of modern engineering in the twentieth century while better 

understanding of mechanical behaviour of masonry led to developing and improving 

technical guidelines for designing masonry structures. However, lack of tensile strength 

has been an obstacle confronting the engineers when it comes to design unreinforced 

masonry structures for lateral loads. Hence, as a characteristic that can be found in most 

of the masonry structures, their lateral resistance depends very much on the largeness and 

own weight of the structural components. Since it is desired to minimize the space 

occupied by the structural elements, unreinforced masonry construction loses its 

effectiveness compared to other types of structures particularly in high seismicity areas. 

Walls amongst all masonry components constitute a great portion of a masonry structure 

as they can be found with massiveness of dimensions and amount of used materials 

frequently in structural systems. Thus, the need for special attention as per their strength 

requirements and structural performance is intensified. 

1 



On the other hand, reinforced masonry walls are considered as one of the most 

common structural masonry elements that are broadly employed to undertake axial and 

lateral loads. Depending on the application and also the orientation of masonry walls, 

these elements can be submitted to out-of-plane bending actions arising from wind, soil 

pressure, or seismic excitations, in which situations, the role of flexural reinforcement is 

critically influential in flexural strength, behaviour, and serviceability of the walls. 

Masonry walls are vulnerable when subjected to considerable amounts of aforementioned 

lateral loads as a consequence of their inadequate ductility and tensile strength. Use of 

steel rebars has been established as the customary method to resolve these deficiencies 

similar to concrete structures. 

Steel-reinforced masonry has been implemented in construction of different types 

of low-rise (up to four-story), mid-rise (five- to eight-story), and high-rise (more than 

eight-story) buildings. One of the most famous reinforced masonry buildings in North 

America is The Crittenden Court completed in 1995 in downtown Cleveland, Ohio (see 

Figure 1.1). The construction of this 17-story apartment building did not exceed 

seventeen weeks. Another example of modern reinforced masonry structures is The 

Renaissance Hotel, Springfield, Illinois (see Figure 1.2). The structure of this 12-story 

hotel comprises seven flours mainly constructed of load-bearing reinforced masonry 

walls, while steel and reinforced concrete are used in the other flours. These two 

examples as well as numerous reinforced masonry structures that are constructed in the 

last few years, demonstrate the popularity of steel-reinforced masonry as a low cost, less 

time consuming, and durable type of construction. However, when dealing with lateral 

loads of larger magnitudes (e.g. in seismic prone areas), steel reinforcement might lose its 
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suitability due to design constraints such as the upper limit of reinforcement defined by 

the balanced reinforcement ratio. This calls for methods of reinforcing the walls that can 

achieve higher flexural capacities while maintaining the dimensions of the walls. 

Fibre-Reinforced Polymer (FRP) composites have been studied and used 

extensively to reinforce concrete structures as a new substitute for steel reinforcement for 

more than a decade. FRP bars have been proven to be an effective means to replace steel 

reinforcement in various concrete structures such as bridge deckings and parking garages. 

In addition to their superior durability, mainly due to outstanding non-corrosive 

characteristics, these composite materials have the benefits of high strength-to-weight 

ratio, considerable fatigue properties^and electromagnetic transparency. Moreover, their 

usage in concrete structures has been codified in the most recent Canadian Highway 

Bridge Design Code (CHBDC) (CSA S6 (2006)). Lower fire resistance and higher costs 

are considered as the disadvantages therein. However, the former is not an issue in the 

case of concrete masonry in that the minimum required cover for FRP-reinforced 

concrete (FRP-RC) structures, which is found to be 64 mm or less (Saafi (2002), Kodur 

and Bisby (2005), and CHBDC (2006)), is naturally fulfilled by the dimensions of 

masonry units. Moreover, the decreasing cost of FRP as well as lower transportation and 

handling costs of lighter materials are making the use of FRP in construction more 

competitive (Grace et al. (1998), and Kodur and Bisby (2005)). Significant amount of 

work has been directed to utilizing different types of FRP that are externally bonded or 

mounted on the surface of masonry walls for strengthening and rehabilitating reinforced 

and unreinforced masonry walls (URM). It is reported by several researchers that notably 

higher shear and flexural strength as well as sufficient ductility can be attained by adding 
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these external FRP systems to deficient masonry panels. On the contrary, to the author's 

knowledge, there is not much work corresponding to the use of FRP for reinforcing 

masonry walls and in particular, there have been no efforts to exploit FRP as interior 

reinforcement of masonry structural elements. 

1.2 Significance of the Research 

This research examines the use of Glass FRP (GFRP) rods as a new reinforcing 

technique in concrete masonry walls and its effect on their out-of-plane flexural 

behaviour through a comprehensive course of experiments, the outcomes of which are 

theorized by applying and introducing different methods of analysis and modeling. It is 

also intended to ensure that crucial criteria as per the serviceability of the walls (e.g. 

deformability) are maintained while higher load-bearing capacities are attained. 

Moreover, the use of GFRP rods as an alternative for steel rebars eliminates the most 

important durability related problem which is corrosion of the steel rebars. Another 

durability related concern is the fire resistance of the GFRP-reinforced masonry walls 

which is automatically resolved, since the cover is more than what is required. Finally, as 

mentioned earlier, due to less weight and more flexibility of the GFRP rods, handling and 

placement of the rods will be facilitated in construction. 

The experimental program comprises tests on eight full-scale masonry walls, six 

of which were reinforced with GFRP rods. The GFRP rebars used in this study are known 

as V-ROD™ and manufactured by Pultrall Inc located in Quebec (Pultrall (2007)). The 

main parameter of the research is the ratio of GFRP reinforcement that varies for GFRP-

reinforced specimens included in the experimental program. The effect of (not) filling the 
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cells, into which the longitudinal reinforcement is not positioned, has been considered as 

another aspect of this study that leads to a more efficient design. Test result of the 

unreinforced wall specimen proves the essential need of longitudinal reinforcement for 

masonry walls subjected to out-of-plane bending. The relative performance of the walls 

with different reinforcement ratios demonstrates the variation of their capacity with 

respect to their reinforcement ratio. The foregoing eventually verifies the proposed design 

diagram whieh can be used to get the proper amount of GFRP reinforcement for a given 

flexural demand similar to that of FRP-RC. In addition, the behaviour of the GFRP-

reinforced specimens compared with the control specimens, unreinforced and steel-

reinforced, exhibits the effectiveness of the suggested reinforcement methods It is 

intended to comprehend whether the possibility of over-reinforcing the section with 

GFRP, as opposed to steel, resolves the upper limit of flexural strength for a certain 

cross-sectional dimensions that confronts the designer when choosing steel as the 

reinforcing material for masonry. For this matter, an analogous steel-reinforced masonry 

wall, from the design point of view, is tested and compared with two of the GFRP-

reinforced walls. 

1.3 Scope of the Study 

Based on the aforesaid, the need for an advantageous method of reinforcing 

masonry walls in order to achieve higher capacity for resisting lateral loads and improve 

durability as well as out-of-plane flexural response, motivates the study brought in this 

manuscript. The scope of the research, briefly, is to fulfill the following objectives: 

• To introduce and utilize GFRP rods as the main internal reinforcement of concrete 

masonry walls for out-of-plane flexure, 

5 



• To demonstrate and compare the out-of-plane performance of unreinforced, steel-

reinforced (as the accustomed reinforcing method), and GFRP-reinforced (as a 

new method) masonry walls, 

• To reach a reliable method of predicting flexural strength of the walls based on 

available methods of section analysis for steel-reinforced masonry and FRP-RC, 

and validate and theorize the behaviour of the tested walls using the finest model, 

• To evaluate the available methods of predicting the deflection and introduce a 

more accurate prediction for the forced-deformation response of the tested walls, 

• To propose a design diagram based on the performance of the tested walls that is 

valuable in developing practical guidelines in designing GFRP-reinforced 

masonry elements in flexure, 

• To investigate whether or not the GFRP-reinforced masonry walls exhibit 

acceptable responses with respect to deformability requirements. 

It should be mentioned that this study is intended to examine the behaviour of 

specifically concrete masonry walls reinforced with FRP when subjected to out-of-plane 

lateral load, in particular. Therefore, nor the in-plane strength neither the shear behaviour 

of the walls is included herein. Besides, only single-wythe concrete wall structure is 

inspected in the course of the experiments and analyses. In addition, Anchorage strength 

of the longitudinal reinforcement is assumed to be sufficient in all analyses; and certain 

steps of current design codes may be excluded from the scope of this research. Moreover, 

strengthening existing masonry walls is not included in this thesis since it is intended to 

study the walls for new construction. The results of the experiments conducted in this 

research yield to a better perceptive of masonry walls' inelastic behaviour in out-of-plane 
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bending when reinforced with GFRP rods that can assist in theorizing a limit-states 

design methodology in future codes for masonry structures reinforced with FRP rods. 

1.4 Organization of the Thesis 

This thesis comprises seven chapters starting with chapter one, which delivers an 

introduction to the topic of the research, the main parameters that necessitate this 

research, and what this research has aimed to accomplish. 

Chapter two reports a brief survey in the literature concentrating on reinforced 

masonry, use of FRP in strengthening masonry, and masonry reinforced with FRP. 

The first part of Chapter three is devoted to the auxiliary tests accompanying the 

main tests on the walls. The second part of this chapter is meant to describe the main 

specimens, test setup, and instrumentation followed by procedure of the wall tests. 

Chapter four reports the results of the tests on full-scale masonry walls. Photos of 

the tested walls along with the force-deformation and force-strain diagrams are enclosed 

herein. In addition, it presents a qualitative discussion on behaviour of the walls including 

comparisons between the specimens. 

Chapter five includes different methods of analysis and numerical modeling 

focusing on two quantitative aspects of walls' response, flexural strength and deflections. 

In this chapter, efforts are made to establish finer methods of predicting walls' behaviour, 

closest to that of the tested walls. 

Chapter six examines of a number of analytical methods for evaluating the 

performance of the GFRP-reinforced masonry walls in terms of deformability. Ductility 

of the masonry walls is of notable importance since steel is replaced with GFRP, known 
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as a brittle type of material; hence, in this chapter it is investigated whether or not the 

GFRP-reinforced walls function with sufficient deformability. 

Chapter seven, lastly, summarizes this study, presents the conclusions derived 

based on the experimental results and analyses carried out in the course of this research, 

and recommends the areas to be studied further more. 
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Figure 1.1. The Crittenden Court, 17-story reinforced masonry high-rise, Cleveland, 
Ohio (Taly (2001)) 

Figure 1.2. Renaissance Hotel, 12-story reinforced masonry building, Springfield, 
Illinois (Taly (2001)) 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 General 

This chapter first delivers a review of the works that have been carried out in the 

field of reinforced masonry walls. In the following section, the use of FRP for 

strengthening and reinforcing masonry walls in previous literature is surveyed. Literature 

review indicates remarkable research with the purpose of improving the flexural capacity 

of unreinforced masonry and steel-reinforced masonry walls in terms of retrofitting and 

rehabilitation using new techniques and materials specifically FRP, while there is not 

much data available with regard to reinforcing new masonry walls with FRP to achieve 

higher level of lateral load-bearing capacity. Since concrete masonry walls are the subject 

of this research, the works conducted in the field of concrete masonry walls are mainly 

referred to herein. 

2.2 Reinforced Masonry Walls 

Similar to concrete, the major key to failure of masonry elements in flexure is the 

lack of sufficient tensile strength. Over the past four decades, considerable studies have 

been developed to assess and increase the resistance of masonry walls subject to lateral 

loads which mainly started by introducing steel rebars as the main reinforcing element to 

compensate for poor tensile strength in masonry assemblage. 

Hamid et al. (1992) are amongst the first researchers that introduced internal 

reinforcement to masonry panels. They conducted a series of tests on five panels 
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reinforced with horizontal steel rebars spanning parallel to the bed joints. The effects of 

amount of horizontal steel reinforcement, type of joint reinforcement, and bond pattern 

(i.e. running bond vs. stack bond) on out-of-plane flexural behaviour of masonry walls 

were investigated in the course of this research. Crack patterns, cracking moments, load-

deformation relationships, and flexural strengths of the panels were the parameters to be 

monitored during the tests leading to drawn comparisons and conclusions. Despite the 

fact that the joint reinforcement and bond pattern proved to be not influential on flexural 

strengths of the walls, the load-deflection curves were found to be a function of amount 

and type (i.e. ultimate tensile strength) of the horizontal steel reinforcement. It was the 

first time that the post-peak performance of horizontally reinforced masonry walls was 

inspected by experimental tests; however, the panels did not exhibit significant inelastic 

deformations. 

Abboud et al. (1996) carried out full-scale out-of-plane bending tests thoroughly 

on steel-reinforced masonry walls as a part of the U.S.-Japan Coordinated Program on 

Masonry Building Research (TCCMAR) in which the post-yield behaviour and 

displacement ductility of the vertically reinforced masonry walls were inspected for the 

first time. The tested walls were designed to have different amounts of reinforcing steel 

rebar with different arrangements (i.e. centered vs. staggered) and also different extent of 

grouting (i.e. fully vs. partially grouted). Schematic drawing of tested walls as well as the 

test setup are shown in Figure 2.1. The reported post-yield load-deformation curves 

proved the significant effect of longitudinal reinforcement on improving the deficient 

flexural resistance of unreinforced masonry walls and justified its necessity. They 

decided to draw a parallel theoretical analysis on walls' response based on the Whitney 
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stress block using the common method of ultimate strength, which eventually established 

agreeable correlation with the experimental results. The amount of longitudinal 

reinforcement showed to have significant effect on ductility of the walls; so did the extent 

of grouting, the other major factor of the study. It was reported that panels with higher 

amounts of longitudinal reinforcement exhibited less ductile behaviour; whereas, partially 

grouted walls compared to the fully grouted specimens accomplished higher 

displacement ductility. Another important remark that could be concluded from the test 

results was that the mode of failure and also the shape of the load-deformation curve of 

the walls depend on the reinforcement ratio. As can be seen in Figure 2.2, the tensile 

forces at ultimate stage in the wall with relatively lower reinforcement ratio were not 

enough to cause failure in compression zone of the masonry and as a consequence, the 

steel rebars continued yielding and the wall kept on deflecting without any change in the 

applied lateral load. However, walls with higher ratios of steel reinforcement encountered 

crushing of the masonry after the yielding of the steel, sooner or later depending on the 

reinforcement ratio, and accordingly exhibited dissimilar load-deflection behaviour. 

Liu (2002) inspected the beam-column behaviour of steel-reinforced concrete 

masonry walls through an experimental and theoretical program. The experimental part 

consisted of auxiliary laboratory tests and testing thirty nine full-scale masonry walls 

(three unreinforced and thirty six steel-reinforced walls) when subjected to axial load 

only and combined lateral and axial load. In the course of auxiliary tests, the effect of 

different Poisson ratios of masonry block and mortar was found to be influencing the 

mode of failure of the compressive masonry prisms. In some of the tests, the grouting 

was exposed intact after the face shell of the concrete block had spalled off at failure. 
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Strain of the masonry on both compression and tension sides of the walls were recorded 

during the tests and were used afterwards for calculation of curvature in developing 

moment-curvature diagrams which were eventually used to obtain the effective flexural 

rigidity (EIefr) of the tested walls at the ultimate stage. Moreover, a finite element model 

was established taking into account the parameters and characteristics of the walls' 

constituents, such as compressive and flexural bond strength of the masonry, amount and 

position of the steel reinforcement, and specific stress-strain relationship of the masonry. 

This model was implemented to obtain the response of the walls as well as the effective 

flexural rigidity. Since the results of the finite element analysis showed consistency with 

the test results, -a parametric study was performed to compare EIefr for various modeled 

walls with values suggested by the Canadian masonry design code CSA S304.1 (2004). 

As a result, the code was found to be underestimating the rigidity of the walls leading to a 

more conservative design. In addition, it was concluded that for higher moment-to-axial 

force ratios, EIeff reduces. 

2.3 Concrete Reinforced with FRP Bars 

Not until the mid-80's was FRP exploited as a new composite material to be 

utilized in structural engineering. However, the role of FRP in mechanical engineering 

and aerospace as well as auto industry had been proven to be indispensable earlier. FRP's 

have been examined and investigated in various applications of strengthening existing 

structures and reinforcing new structural components. Several research works conducted 

in the field of concrete and masonry structures illustrate their effectiveness in 

rehabilitation measures and retrofitting structures of insufficient strength. Moreover, 
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having several advantages compared to steel, such as higher durability and superior 

corrosion resistance, these composites have brought resolutions to the shortages that 

trouble the engineers when using steel, in particular, to reinforce concrete structural 

elements. 

Brown and Bartholomew (1993) conducted a preliminary experimental study in 

order to examine the performance of concrete beams reinforced with GFRP bars. Six 

GFRP-reinforced concrete beams, also reinforced for shear using steel stirrups, were 

tested in a third-point loading setup monotonically up to failure. Pullout tests were carried 

out on twenty four specimens to investigate the GFRP-to-concrete bond strength. The 

flexural strength of the tested beams were tried to be predicted using Whitney stress 

block which had agreement with the experimental results. It was reported, based on the 

results of the tests, that the GFRP-reinforced beams exhibited a ductile behavior prior to 

failure, and in general, the response of the GFRP-reinforced concrete beams was quite 

similar to the behaviour pattern that is expected for steel-reinforced concrete beams. 

However, according to the results of the pullout tests, the FRP-to-concrete bond strength 

was approximately two third of that of steel rebars. Proper anchorage was suggested in 

this study to resolve this shortage, particularly when composites with higher tensile 

strengths are used in the design. Higher deflections at service stage (four times the 

deflection expected for steel-reinforced beams) due to lower modulus of elasticity of the 

GFRP was another deficiency of the new reinforcing bars. 

Ehsani and Saadatmanesh (1996-b) carried out a research program inclusive of 

102 specimens for the purpose of developing design guidelines for bond strength of 

GFRP bars. For this matter, forty eight beams were constructed to be tested along with 
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eighteen pullout specimens and thirty six hooked rebar specimens. Concrete compressive 

strength, cover, and cast depth, rebar diameter and embedment length, radius of bend, and 

tail length were considered to be the main parameters of the study. The pullout and 

hooked rebar specimens were subjected to tensile load that was gradually applied up to 

failure. The specimens were being monitored during the tests by measuring the slip 

between the GFRP and concrete at the loaded and free ends. The expected modes of 

failure were splitting of the concrete, rebar fracture, or rebar pullout failure. Based on the 

results of the tested specimens, design guidelines were developed for calculating the 

development length of the hooked and straight GFRP rods. In addition, new criteria were 

established to define the acceptable bond performance of the GFRP rods when used to 

reinforce concrete flexural members. 

Laoubi et al. (2006) tried to investigate the creep effect and durability of GFRP 

bars when used to reinforce concrete flexural elements, by imposing individual and 

coupled presence of freeze and thaw cycles and sustained flexural stresses. For this 

purpose, twenty one concrete beams were designed to be reinforced with sand-coated 

GFRP bars and constructed to be exposed to different numbers of freeze and thaw cycles. 

The temperature ranged from -20 °C to +20 °C for each cycle. Some of the specimens 

underwent the cycles with no applied sustained load while the rest of the specimens were 

subjected to bending forces that produced stresses as mush as 27% of the ultimate tensile 

strength of the FRP bars. All the beams were tested, afterwards, in a four-point bending 

setup with a clear span of 1.5 m up to failure. The results of the beam tests showed that 

the effect of abovementioned conditionings was not significant on the flexural capacity of 

the GFRP-reinforced beams. Although the sustained stresses were fairly higher than the 
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suggested level of loading in ACI 440.1R (2006), the increase in the strain of the GFRP 

bars due to creep effect did not exceed 2.0% of its initial value. Furthermore, the equation 

introduced by ACI 440.1R (2006) for predicting the long-term deflections due to creep 

was proven to be overestimating the actual values found in the course of the conducted 

tests. 

El-Ragaby et al. (2006) studied the fatigue characteristics of concrete bridge deck 

slabs, when reinforced with GFRP rebars. The experiments of this study included testing 

six full-scale slabs. These slabs were constructed to be subjected to different patterns of 

cyclic load up to the ultimate failure. Types, configuration and amount of GFRP 

reinforcing rebars were taken into consideration as the parameters of the program. Along 

with the experimental program, a thorough finite element analysis was carried out to 

inspect the effect of fatigue on the ultimate capacity of the GFRP-reinforced concrete 

slabs when subjected to static loads. It was also intended to develop a model that can 

predict the fatigue life of the slabs. The superior fatigue performance of the GFRP-

reinforced slabs compared to steel-reinforced ones was the most important outcome of 

the experimental tests, which was attributed to the linear-elastic behaviour of the GFRP 

bars and also similar values for modulus of elasticity of concrete and GFRP rebars. 

Theriault and Benmokrane (1998) investigated the effect of different FRP 

reinforcement ratios on the flexural performance of concrete beams by testing twelve 

GFRP-reinforced concrete beams. The compressive strength of the concrete was included 

in the study as the other major parameter. Cycles of unloading and reloading were carried 

out prior to failure at different stage of the applied lateral load. Beams of 1.5 m of clear 

span were tested in a four-point bending setup up to the ultimate failure. Tensile strain in 
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the GFRP bars, strain of the concrete, mid-span deflection, and crack widths and spacing 

were being recorded during the experiments. Based on the results of the tests and 

analyses performed on the response of the beams with regard to the deflection and crack 

width, the following equation was proposed for predicting the post-crack deflection of the 

beams: 
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Moreover, it was suggested that the crack width can be predicted using this equation: 
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It was observed that for higher reinforcement ratios crack width (at the same level of 

applied moment) and residual crack width decrease. Cycles of the loading and unloading 

showed to have no significant effect on the stiffness of the beams. However, the GFRP 

reinforcement ratio seemed to have direct effect on the stiffness of the beams as the 

stiffness increased for higher amounts of reinforcement. Based on the strain distribution 

and crack pattern of the tested beams it was concluded that the GFRP bars used in 

reinforcing the tested beams exhibited acceptable bond behaviour with the surrounding 

concrete. Lastly, the deformability of the GFRP-reinforced beams was examined by 
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calculating the J-factor based on the experimental curvatures. The foregoing calculation 

proved that all the beams failed with sufficient ductility. 

Benmokrane et al. (2006) published a brief report on designing and testing 

Morristown Bridge, located in Vermont, United States. The decking system of this bridge 

is consisted of continuous concrete slab of 280 mm thickness which was entirely 

reinforced with two identical layers of GFRP bars at the top and the bottom. The bridge 

was well instrumented and tested for standard service truck loads while the strain in the 

reinforcing bars and concrete as well as the deflections of the decking system were 

monitored. The strains recorded during the service load tests showed that the AASHTO 

(2000) flexural design method overestimates the service and ultimate design moments. It 

was also observed that the tensile strains in the concrete were maintained well bellow the 

cracking strains, meaning that the use of GFRP instead steel did not diminish the 

serviceability of the bridge. In addition to the aforesaid observations, it was highlighted 

by this report that transportation, handling, and placement of the GFRP bars on the site 

were more convenient compared to steel rebars. 

Rasheed et al. (2006) presented a brief review on the available methods of 

deflection prediction for FRP-RC including the cracked section analyses and numerical 

methods of deflection calculation. Afterwards, a new method was proposed by the 

authors that estimates the deflection based on the distribution of the curvature of cracked 

and uncracked zones along the span of the beam. This method is established using an 

assumed function that defines a bilinear relationship for moment-curvature where the 

cracking differentiates the two segments of the moment-curvature diagram. The proposed 

model is developed for three particular common loading situations, four-point bending, 
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three-point bending, and uniform loading. Then, in order to verify the accuracy of the 

proposed method, experimental results of FRP-reinforced concrete beams tested by other 

researchers were compared to the predictions of the currently available methods and the 

proposed one. Figure 2.3 illustrates the comparisons for two beams with different 

reinforcement ratios. It can be seen that for higher amounts of reinforcement ratios, all 

the methods of deflection prediction provide very close results while for lower amounts 

of reinforcements the results of the predictions done by different methods are diverse. 

Design manual number three of ISIS (2001) presents a comprehensive guideline 

for designing concrete structures reinforced with FRP's. This manual provides the 

codified methods of flexural and shear design, crack width calculation, and deflection 

prediction based on a cracked section effective moment of inertia. In addition, different 

serviceability criteria such as maximum allowable deflection and crack width and 

minimum required deformability are defined therein. Lastly, as one of the most important 

features of this design manual, a number of diagrams are included that can be used for 

flexural design of FRP-RC members. Figure 2.4 illustrates a sample design diagram for a 

specified type of GFRP rebar, where the reinforcement ratio that is needed for a given 

section in order to satisfy the required flexural strength can be found. 

2.4 Use of FRP to Strengthen and Reinforce Masonry Walls 

Ehsani et al. (1993) are considered to be the pioneers in the field of seismic 

retrofitting of URM walls using composite fibres. Six clay brick masonry beams with a 

clear span of 1.19 m, representing single-wythe clay masonry walls with stack bond, were 

built and afterwards strengthened with three different types of glass fabrics. Type of 
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fabrics, type of mortar, overall surface roughness of the walls, and age of the masonry 

units were taken into account as the major parameters of the research. Beams were tested 

in a four-point out-of-plane bending setup accordingly. Substantial improvement in 

flexural strength, as much as twenty four times the self-weight of the beams, and 

deflections, as much as 1/48 times the span, were of the outcomes of the experiments. 

Later, Ehsani and Saadatmanesh (1996-a) integrated the same technique to strengthen the 

existing masonry walls in shear by testing series of specimens that consist of three 

running bond clay bricks. 

Mierzejewski et al. (2008) investigated the behaviour of strengthened URM walls 

made of hollow concrete blocks under out-of-plane bending. Different types of materials, 

including GFRP bars mounted in the pre-cut grooves and carbon-fibre reinforced 

polymer (CFRP) strips epoxy glued on the surface of the specimens were examined and 

compared to each other. Besides the significant increase in capacity and ductility, 

increasing the effective depth of the reinforcement by spreading them away from neutral 

axis and also avoiding grouting the cells were the other substantial advantages of the 

suggested methods. Near-surface mounted (NSM) reinforcement instead of internal 

reinforcement was also proposed as a new approach in constructing reinforced masonry 

providing that blocks with moulded grooves could be fabricated. 

Comparable experiments were reported by Galati et al. (2006) in which they 

investigated the improved performance and modes of failure of URM walls strengthened 

with NSM FRP bars considering different composite materials (GFRP and CFRP), ratios, 

and shapes (circular and rectangular) as well as embedding details as the main parameters 
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of the study. It was proven that "flexural strengthening with FRP systems" enhances the 

flexural strength and pseudo-ductility of masonry walls to a great extent. 

Turco et al. (2006) conducted a similar study that concerns the issue of retrofitting 

URM for shear and flexure walls with NSM FRP bars asserting the conclusions drawn by 

the aforementioned researchers. 

Several researchers have carried out experimental studies that assess the use of 

externally bonded FRP whether it be sheets or fabrics of GFRP or CFRP (Gilstrap and 

Dolan (1998), Hamoush et al (2001), Hamoush et al. (2002), Kiss et al (2002), Galal et 

al (2003), Ghobarah and Galal (2004), and Tan and Patoary (2004)). Remarkable boost 

to the out-of-plane load-carrying capacity and ductility of unreinforced and steel-

reinforced masonry walls, despite the brittle behaviour of both FRP and masonry 

assemblage, is the common major outcome that can be found in all of them while 

parameters such as thickness of the layers, adhesive material, surface preparation method, 

and surface mounting approach were the decisive variables in the experiments. 

As mentioned earlier, to the author's knowledge, there is not much work in the 

previous literature associated to reinforcing masonry walls using FRP and in particular, 

there have been no efforts to employ FRP as internal reinforcement in masonry structural 

elements. 
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CHAPTER 3 

EXPERIMENTAL PROGRAM AND AUXILIARY TESTS 

3.1 General 

The experiments that are carried out as a part of this study mainly consist of two 

parts: a) the auxiliary tests that are meant to provide the structural characteristics of the 

construction materials and also the whole masonry compound, and b) main tests that 

include testing eight full-scale masonry walls that are GFRP-reinforced, steel-reinforced, 

and unreinforced. All the auxiliary specimens (masonry prisms) and full-scale walls were 

constructed by domestic professional masons (registered with 1'Association des 

Entrepreneurs en Macoimerie du Quebec (AEMQ)) representing the current method of 

practice in Quebec during four consecutive days. 

3.2 Auxiliary Laboratory Tests 

3.2.1 Concrete Masonry Units 

The masonry unit that is used in this study is hollow concrete block available by 

domestic supplier (Simard-Beaudry (2008)) with nominal dimensions of 390*190x190 

mm. The minimum nominal compressive strength of the unit is 15 MPa and the average 

net-to-gross area ratio is 0.54 as per the supplier's provided specifications. 

3.2.2 Mortar 

Type S mortar which is a mixture of 0.5 volumetric units Portland cement, one 

unit masonry cement, 2.9 units sand, and 0.7 units water was chosen after several trial 
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mixtures to be conforming with the requirements brought in ASTM C270 (2002) and 

CSA A179 (2004). Since the compressive strength of the mortar was highly sensitive for 

each day of construction a series of six mortar 50 mm cubes were sampled and tested at 

the age of 7 and 28 days according to ASTM C780 (2002). The average 7-day and 28-day 

compressive strengths obtained were 8.6 MPa and 20.7 MPa, respectively. The former 

should not be less than 7.5 MPa and the latter should not be less than 12.5 MPa according 

to CSA A179 (2004) and ASTM C270 (2002) for laboratory made mortar cubes. 

3.2.3 Grout 

The grout used in the program, categorized as "coarse grout" in accordance with 

CSA A179 (2004) and ASTM C476 (2002), was mixture of one volumetric unit Portland 

cement, 2.8 units fine aggregate (sand), two units coarse aggregates with the maximum 

size of 7 mm (%"), and 0.9 units water. The average compressive strength at the age of 28 

days was 21.6 MPa. Slump test of fluid grout was done every day of the construction 

period reporting 260mm to 280mm slump that assures the lower limit in the Canadian 

code (CSA A179 (2004)). 

3.2.4 Compressive Strength of Masonry 

In order to determine the compressive strength of the masonry assemblage a series 

of five unreinforced grouted prisms were tested as stated in ASTM CI314 (2002). It was 

decided to build five-block high and one-block wide prisms for this purpose to minimize 

the influence of slenderness by providing a central uniform stress zone so that the prism 

is a better representative of the real circumstances in the walls (Chen (2002), and 
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Drysdale and Hamid (2005)). The axial deformation over a gauge length of 600mm on 

both sides of each prism was acquired by displacement transducers (potentiometers) and 

recorded as well as the applied load continuously up to the failure point. Figure 3.1 shows 

the masonry prisms to be tested in compression and flexure. The summary of the related 

results are tabulated in Table 3.1 and the failures at ultimate as well as the axial load-

strain curves for the tested prisms are shown in Figure 3.2 and Figure 3.3. The average 

compressive strength (f'm) from the tests was 10.9 MPa with a coefficient of variation of 

6.4% neglecting the result of the second prism. The Young's modulus (Em) of the prisms 

is also determined to be 6.0 GPa based on a Secant line between 5% and 33% of average 

ultimate load. CSA S304.1 (2004) specifies Em using 850x f m equal to 9.2 GPa which 

overestimates the reported value, so does MSJC (2005) using 900* f m giving 9.8 GPa. 

Typical splitting of the concrete blocks was observed as the dominant mode of failure 

initiated by cone and shear cracks. Previous studies has attested that the properties of the 

grout are of the major factors affecting the failure of grouted concrete masonry which 

may occur even at lower stress levels compared to ungrouted concrete masonry 

(Dhanasekar and Shrive (2002)). The relatively lower strength of the prisms of this 

program, compared to their constituents, can be attributed to the excess of grout 

expanding inside the cells that resulted in splitting the face shells. The grout cores that 

were found intact at the end of all five tests also account for this observable fact. 

3.2.5 Flexural Bond Strength of Masonry 

For the purpose of estimating the cracking moment of the walls, another series of 

five prisms were tested by third-point loading method described in ASTM E518 (2002). 
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Prisms with the height of seven blocks and width of one block were tested such as to 

locate the two point loads and supports in the middle of the block and also to provide for 

sufficient span-to-depth ratio (ASTM E518 (2002)). The mid-span deflection of the 

prisms was measured during each test using a potentiometer to establish the load-

deflection curves in Figure 3.5. The average flexural bond strength of the prisms, also 

referred to as modulus of rupture (R), was found to be 1.11 MPa with a coefficient of 

variation of 9.5% disregarding the result of the last prism (see Table 3.2). Table 3.3 

summarizes the properties of the masonry assemblage and its constituents. The failed 

prisms are depicted in Figure 3.4. 

3.3 Tests on Full-Scale Masonry Walls 

The main part of the experimental program in this study consists of testing eight 

full scale walls under out-of-plane bending. 

3.3.1 Description of the Walls 

Each specimen is a single-wythe masonry wall with nominal dimensions of 

lmx3m that is made of 15 courses of two and a half concrete blocks with half running 

bond. Figure 3.6 contains photos of construction of the masonry walls that was done by 

AEMQ certified masons. 

As shown in Table 3.4 and Figure 3.7, the first wall is unreinforced, the second 

wall is reinforced with customary steel rebars, and the other six walls are reinforced with 

different GFRP reinforcement ratios. The wall designation refers to: 1) type of 

reinforcement (Steel, GFRP, or Unreinforced), 2) number and size of the rebars, and 3) 
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the extent of grouting (Full or Partial). Wall G-3#13-P and G-4#13-P are identical, with 

regard to the reinforcement ratio, to wall G-3#13-F and G-4#13-F, respectively; yet they 

are only grouted at the locations of the longitudinal reinforcements, to study the effect of 

not grouting the empty cells. This is the common method of practice in construction of 

steel-reinforced concrete masonry walls; since, due to the height of the wall it is not 

practical to have the reinforcing rebars in place and pass the concrete blocks through, 

afterwards. Bed joint reinforcement that consisted of truss type 3.2 mm ('/si") gauge wire 

was placed in every other joint (with a spacing of 400 mm) for all the main specimens. 

The walls were designed to have adequate shear capacity in that a compression failure in 

concrete block due to flexural action was intended to be the dominant mode of failure. 

The longitudinal reinforcing bars were pushed into the grouted cells right after grouting 

the cells. 

Table 3.5 shows the properties of the GFRP rods as provided by the supplier 

(Pultrall (2007)), and Figure 3.8 depicts the three different diameters used in the 

experimental program. 400 MPa steel rebars were used in reinforcing wall S-5M10-F. 

Walls were constructed, cured, and hardened vertically. Afterwards, they were transferred 

and laid horizontally on the setup using a steel braced frame designed for this purpose. 

3.3.2 Test Setup and Instrumentation 

The main specimens were tested in a third-point loading setup, shown 

schematically in Figure 3.9 and Figure 3.10, with an effective span of 2.4 m. Two point 

loads, at third spans, were applied and monotonically increased by a 15-ton hydraulic 

actuator, reacting against a rigid steel loading frame, up to the ultimate failure. Load was 
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transferred through the loading apparatus and applied over two 152.4 mm (6") wide 

channels to avoid crushing the blocks due to stress concentration. The walls were tested 

while positioned horizontally on a hinge at one end and a roller at the other end (see 

Figure 3.11 and Figure 3.12), similar to previous tests on masonry walls performed by 

several researchers (e.g. Gilstrap and Dolan (1998), Kiss et al. (2002), Hamoush et al. 

(2002), Tan and Patoary (2004), and Galati et al. (2006)). The reason was that it was not 

as convenient and secure to test the walls vertically. Potentiometers were located to 

measure the displacement at ten different points of each tested wall (three at mid-span, 

six at third-spans and one at quarter-span), in order to obtain the longitudinal profile of 

the wall at various load levels and also to ensure that the wall is not tilted or twisted in 

width due to probable test setup imperfections. The maximum axial strain, assumingly in 

the mid-span, for every reinforcing rod (GFRP and steel) was recorded using strain 

gauges that had been installed on the rods before construction. Furthermore, the strain in 

two of the reinforcing rods for each reinforced wall at quarter-span was recorded. 

3.3.3 Testing Procedure 

Since the self-weight of the walls, compared to their nominal capacity, was 

considerable, walls were rested prior to the loading commencement properly over a set of 

temporarily wooden supports. These supports were removed after the data acquisition 

system had launched recording the applied load, deformations, and tensile strains (in the 

case of reinforced walls) so that the deformations and strains due to the own weight of the 

walls would not be missed. Afterwards, the out-of-plane lateral load was applied and 

increased monotonically until the ultimate failure of the wall occurred. After the failure 
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of four walls (including the steel-reinforced specimen), the load was removed to 

determine the permanent (i.e. inelastic) portion of total displacement. Three of them were 

reloaded gradually to examine the post-failure strength of the specimen. In order to avoid 

any unwanted incident, the unloading and reloading process was not done for all of the 

walls. Lastly, the failed walls were to be removed in a secure manner and the exact 

location of the reinforcing bars (in the cross section of the reinforced walls) at the section 

where failure had occurred were measured to aid the analyses. 
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Table 3.1. Summary of the test results for the compressive prisms 

Prisms 

1 
2 
3 
4 
5 

Failure load 
(kN) 
707.2 
538.3 
596.3 
687.0 
651.6 

Compressive 
Strength (MPa) 

11.6 
8.9 
9.8 
11.3 
10.7 

Axial strain at max. 
compressive stress (x106) 

1680 
1862 
2041 
2416 
2044 

Table 3.2. Summary of the test results for flexural auxiliary prisms 

Prisms Failure load (N) Modulus of rupture (MPa) 

1 
2 
3 
4 
5 

11890 
12232 
14456 
11120 
8117 

1.06 
1.09 
1.28 
0.99 
0.74 

Table 3.3. Properties of the masonry assemblage and its constituents 

Characteristic Average (MPa) Cv (%) 
Compressive strength of masonry unit 

Compressive strength of mortar 
Compressive strength of grout 

Compressive strength of masonry assemblage (f'm) 
Modulus of rupture of masonry assemblage (R) 

15.0 
20.7 
21.6 
10.9 
1.11 

— 
26.2 
3.9 
6.4 
9.5 
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Table 3.4. Matrix of the full-scale masonry walls 

Wall 

U-F 
S-5M10-F 
G-3#10-F 
G-3#13-F 
G-3#13-P 
G-4#13-F 
G-4#13-P 
G-3#19-F 

Reinforc. 
material 

— 

Steel 
GFRP 
GFRP 
GFRP 
GFRP 
GFRP 
GFRP 

Average effective 
depth (mm) 

Nominal Measured 

— 

95 
95 
95 
95 
95 
95 
95 

— 

90 
95 
100 
105 
105 
125 
125 

Reinforc. 

Nominal 

— 

0.53 
0.25 
0.42 
0.50 
0.56 
0.61 
0.89 

ratio (%) 

Measured 

— 

0.56 
0.25 
0.40 
0.45 
0.51 
0.46 
0.69 

Extent of 
grouting 

Fully 
Fully 
Fully 
Fully 

Partially 
Fully 

Partially 
Fully 

Table 3.5. Properties of the GFRP rods used in this program as provided by the supplier 
(Pultrall (2007)) 

Diameter 
(mm) 

Tensile modulus of 
elasticity (GPa) 

Ultimate tensile 
strength (MPa) 

Ultimate tensile 
strain (xlQ-6) 

10 
13 
19 

45.4 
46.3 
47.6 

856 
786 
728 

18900 
17000 
15300 
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Figure 3.1. Masonry auxiliary prisms to be tested in compression and flexure: (a) 
construction of the prisms; (b) after construction 
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Figure 3.2. Compressive masonry prisms at failure 
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Figure 3.3. Results of the compressive masonry prisms 
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Figure 3.4. Flexural masonry prisms at failure 
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Figure 3.5. Results of the flexural masonry prisms 
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Figure 3.6. Construction of the full-scale masonry walls to be tested under out-of-plane 
bending 
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Figure 3.8. The GFRP rods used in this program 
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Figure 3.9. Schematic elevation view of the test setup for the eight tested walls 
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Figure 3.10. Schematic plan view of a typical wall reinforced with 4 rods, showing the 
instrumentation (i.e. 10 potentiometers and 6 strain gauges) 
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Figure 3.11. Elevation view of the test setup 

Figure 3.12. Side view of the test setup 
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CHAPTER 4 

RESULTS OF THE WALL TESTS AND DISCUSSIONS 

4.1 General 

This chapter is divided into two main parts. The results and observations of the 

wall tests are described individually for each wall in the first part. The second part is 

allocated to the discussions and comparisons about the qualitative behaviour of the eight 

walls. 

4.2 Results of the Eight Tested Walls 

The test results of the eight full-scale masonry walls are presented in the 

following sections, starting with the control specimens and followed by the GFRP-

reinforced ones (with ascending reinforcement ratio). Photos of the wall at different 

stages of loading and deformed longitudinal profiles of the wall prior to and at failure 

associated to each specimen as well as force-deformation and force-tensile strain curves 

(exclusively for reinforced panels) are shown. 

During the tests, no notable relative deformation was observed along the width of 

the walls, nor did appear any sign of torsional deformations. Thus, the recorded 

displacement of mid-span, third-spans and quarter-span of the centerline were employed 

in developing the longitudinal profile of the walls. For the purpose of drawing the force-

deformation curves, one of the three points in the mid-span (i.e. center and the sides) 

whose deflections were being measured continuously by the potentiometers was selected, 

based on the observations during the tests, to be the reference of the data; inasmuch as 
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different phenomena in some of the tests (e.g. local crushing, spalling, or separation) 

close to the failure, lead to misrepresenting the overall deformed shape of the wall in one 

of the three mid-span reading points. As for the force-strain curves, the mid-span strain of 

the rod that had the closest effective depth to the average effective depth of all the 

reinforcing rods was chosen to be the reference of the data. It should be mentioned that in 

the following sections, the term "deflection" is shortly referring to the deflection of the 

mid-span according to the referenced potentiometer of each wall. 

The average self-weight of the fully-grouted walls was calculated, based on the 

weight of a portion of tested walls, to be 12.3 kN. This could produce the same moment 

as 10.2 kN of applied lateral load does. The self-weights of walls G-3#13-P and G-4#13-

P were similarly found to be 6.9 kN and 11.0 kN, equivalent to 6.1 kN and 9.2 kN of 

applied lateral load, respectively. The weight of the loading apparatus and hydraulic 

actuator, total amount of 1.2 kN, is also included in calculating the equivalent dead load. 

Table 4.1 contains the chronicled order of the tests of the eight masonry walls. 

4.2.1 WallU-F 

Wall U-F was designed to have no reinforcement and completely grout-filled. It 

was expected to fail no sooner than the cracking moment was reached by the applied load 

added to the self-weight of the wall. A sudden failure took place at the total moment of 

5.6 kN.m. Maximum applied lateral load of 3.8 kN at failure is only 0.4 times the 

equivalent dead load of the wall. The mid-span deflection of the wall at failure was 1.4 

mm. Figure 4.1 illustrates wall U-F before and after failure, in addition to the failed 

section. 
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4.2.2 WallS-5M10-F 

This wall was reinforced with five 1OM steel rebars (nominal reinforcement ratio 

of 0.53%), having one rebar in every cell of the cross-section. The first crack appeared 

when the moment reached 6.9 kN.m, in one of the mortar-to-block bed joints inside the 

maximum moment zone; the rebars started to yield at the moment of 14.4 kN.m and 

corresponding deflection of 15.5 mm; and lastly, the loading process was stopped, due to 

displacement restrictions of the setup, as the wall was experiencing 16.9 kN.m of moment 

and 143.2 mm of deflection. The flexural cracks in the bed joints were widely opened at 

that stage, as can be seen in Figure 4.2. Another interesting observation was that except 

the two bed joints next to the point load (with maximum shear forces), none of the joints 

outside the zero-shear region cracked, nor did occur any shear crack on the sides of the 

concrete blocks. The maximum applied lateral load of 32.1 kN represents 3.2 times the 

equivalent dead load of the wall. The reinforcement ratio based on the actual effective 

depth of the wall was found to be 0.56%. 

The load was removed, later on, to obtain the elastic deflection of the wall. 

Aresidual deflection of 131.1 mm was obtained after the load removal. It was 

unnecessary to reload the wall; because, theoretically, steel-reinforced wall should 

achieve the same level of applied load. The lateral load versus the out-of-plane 

deformation and tensile strain of the steel rebars are shown in Figure 4.3. It also depicts 

the deformed shape of the wall early after yielding to the point the loading stopped. 
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4.2.3 Wall G-3#10-F 

The first wall to be tested was the one with the least amount of GFRP 

reinforcement, three 10-mm GFRP rods (nominal reinforcement ratio of 0.25%). This 

specimen was fully grouted and the rods were located in the middle cell, as well as the 

cells on the sides of the section. The flexural cracks in the constant moment zone set off 

after the wall encountered bending force of 6.0 kN.m. Significant opening in one of the 

joints was followed by crushing the upper face shell of the blocks (see Figure 4.4) at 

bending moment of 14.2 kN.m accompanied by 111.4 mm of deflection. The final lateral 

load of 25.4 kN is 2.5 times the equivalent dead load of the wall. The actual 

reinforcement ratio happened to be the same as expected. The load-deflection and load-

strain performances of the wall can be seen in Figure 4.5. It also depicts the deformed 

shape of the wall early after the first cracks up till the ultimate failure. 

4.2.4 WallG-3#13-F 

The number and location of the reinforcing bars of wall G-3#13-F, with nominal 

reinforcement ratio of 0.42%, were similar to those of wall G-3#10-F, while the diameter 

of the GFRP bars used here was 13 mm. This specimen was also fully grouted. Not until 

the wall underwent 7.6 kN.m of bending moment did the flexural cracks start to appear. 

Notable shear cracks in the masonry blocks were propagated outside the constant moment 

region prior to the failure. As shown in Figure 4.6, a long and fairly wide crack grown 

diagonally on top of the wall between the point loads manifested the failure of the wall at 

the moment of 18.3 kN.m with corresponding deflection of 107.4 mm. The final lateral 
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load of 35.4 kN is approximately 3.5 times the equivalent dead load of the wall. The 

actual reinforcement ratio was found to be 0.40%. 

100 mm of deflection was maintained after the applied load was removed. 

Afterwards, the wall was reloaded gradually and reached the maximum bending moment 

of 6.3 kN.m. The lateral load versus the out-of-plane deformation and tensile strain of the 

GFRP rods are shown in Figure 4.7. It also displays the deflected shape of the wall at 

different stages of the test. 

4.2.5 Wall G-3#13-P 

Identical to wall G-3#13-F, wall G-3#13-P was only grout-filled in the cells 

accommodating the three 13-mm GFRP rods (i.e. the middle and side cells). First crack 

in the bed joints was initiated once the wall reached 4.3 kN.m of bending moment. Less 

shear cracks on the sides of the blocks were monitored, compared to the previous panel. 

Compressive failure was preceded by one side of the wall breaking off completely along 

the constant moment region (see Figure 4.8). Failure moment and deflection were 

reported 17.9 kN.m and 108.5 mm, respectively. The final lateral load of 38.6 kN is 

approximately 6.3 times the equivalent dead load of the wall. The actual reinforcement 

ratio was found after measuring the average effective depth to be 0.45% while the 

nominal reinforcement ratio was meant to be 0.50% 

After unloading the wall 66.7 mm of deflection was still residual; and, the total 

bending moment did not exceed 8.3 kN.m when the lateral load was applied again to the 

wall gradually. The corresponding load-deflection and load-strain curves are illustrated in 
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Figure 4.9. The deformed shape of the wall early after the first cracks untill the ultimate 

failure can be seen as well. 

4.2.6 WalIG-4#13-F 

Wall G-4#13-F was designed to have 0.56% of reinforcement ratio, provided by 

four GFRP rods of diameter of 13 mm. Although the middle cell was not accommodating 

any rod, it was filled with grout as well as the other four cells. The first bed joint cracked 

in the same way in the constant moment zone after the wall encountered bending force of 

5.8 kN.m. The very same joint had widened remarkably just before the typical 

compressive failure of the masonry manifested itself (see Figure 4.10), once the bending 

moment of 21.7 kN.m and deflection of 108.9 mm were attained. The final lateral load of 

44.0 kN is just as much as 4.3 times the equivalent dead load of the wall. The actual 

reinforcement ratio was eventually found to be 0.51%. The lateral load versus the out-of-

plane deformation and tensile strain of the reinforcing GFRP rods are demonstrated in 

Figure 4.11. It also depicts the deformed longitudinal profile of the wall early after initial 

cracks until the ultimate failure of the wall. 

4.2.7 WallG-4#13-P 

Wall G-4#13-P, analogous to the previous specimen, was only grouted partially. 

The reinforcement ratio was designed to be 0.61%. Despite the fact that the first crack 

was detected when the bending moment was 4.5 kN.m, the slope of the force-deformation 

curve was diminished after the wall undertook 5.9 kN.m of bending force. As displayed 

in Figure 4.12, similar to wall G-3#13-F, a diagonal crack on the upper side of the wall 
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exhibited the compressive failure of the masonry at the moment of 30.3 kN.m with 

corresponding deflection of 94.3 mm. Trivial shear cracks were observable on the sides 

of the blocks close to failure. The final lateral load of 66.5 kN is about 7.2 times the 

equivalent dead load of the wall. The actual reinforcement ratio was found to be 0.46% 

after measuring the actual depth of the rebars. The load-deflection and load-strain curves 

associated to wall G-4#13-P are demonstrated in Figure 4.13. It also displays the 

deformed shape of the wall at three different levels of loading including the ultimate 

failure. 

4.2.8 WallG-3#19-F 

Wall G-3#19-F, with the highest amount of GFRP reinforcement, was reinforced 

with three 19-mm rods in the middle and side cells. It was also fully grouted and 

designed to have 0.89% of GFRP reinforcement ratio. Cracking moment and the ultimate 

bending capacity of the wall were found to be 6.2 and 39.3 kN.m, respectively. The 

maximum deflection that was recorded before the failure was 93.6 mm. While the wall 

failed due to crushing of the blocks in the constant moment zone, the only notable 

observation was the considerable width of the shear cracks in the blocks. The maximum 

bending moment corresponds to the applied lateral load of 88.2 kN which represents 8.6 

times the self weight of the wall. 

After the load was removed, the remaining deflection was reported 60.1 mm. The 

post-failure flexural strength of the wall was found to be 18.6 kN.m once the wall was 

reloaded. Pictures corresponding to this wall test are gathered in Figure 4.14, while 
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Figure 4.15 shows the force-deformation and force-strain diagrams as well as the 

deflected profile of the wall. 

4.3 Discussions on the Qualitative Behaviour of the Eight Tested 

Walls 

The following sections discuss the qualitative behaviours of the eight tested walls; 

and useful comparisons are made between the walls concerning different aspects of their 

behaviour. To begin with, crack patterns and deformed shape of the tested walls will be 

discussed. The second part is expressing the relative performance of the walls in which 

both lateral" deflection and tensile fibre strain versus the applied load are demonstrated in 

different series of comparison. Lastly, walls' behaviour at ultimate and also after failure 

will be discussed in the third part. Table 4.2 contains a summary of the test results of the 

eight full-scale masonry walls. 

4.3.1 Cracks and Deformations 

Based on flexural bond strength of the tested auxiliary prisms, no cracking was 

expected to occur due to the self weight of the walls. The first crack was generated in the 

constant moment zone as the applied moment reached the vicinity of the expected 

cracking moment. More flexural cracks as well as shear cracks outside the constant 

moment zone started to appear by increasing the applied moment beyond the cracking 

moment which also deepened and widened the existing cracks gradually. All the cracks 

were initiated primarily from the bottom of the section at the interface of masonry unit 

and mortar and developed upward in the grout. Each crack resulted in separating the 
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block from mortar along the lower face shell at one instant and as a result the deflections 

increased dramatically. 

The threshold of flexural strength was preceded by big opening in one of the 

block-mortar joints between the two point loads and cracks in the concrete blocks that 

culminated in crushing of the masonry units in compression. In all the tested walls, that 

block-mortar (bed) joint was noticed to have shear reinforcement. In some of the tests, 

the mortar in the section of the cracked bed joint spalled off the compression side. The 

unreinforced wall experienced a sudden failure that followed a crack formed in one of the 

joints in the constant moment region. 

For the steel-reinforced wall, the shear cracks appeared, after the rebars had 

yielded, in two bed joints which underwent the maximum shear force (see Figure 4.2 (b) 

and (d)). The relatively higher contribution of steel reinforcement in shear strength 

compared to GFRP can be concluded. On the other hand, the less wide cracks in the 

GFRP-reinforced walls underline the superior bond characteristics of this type of 

reinforcement compared to steel. 

Another finding was the effect that the extent of grouting had on the cracking 

load. The partially grouted walls cracked at fairly lower levels of applied load when 

compared to their analogous companions. However, it can be stated that type of the 

reinforcement (steel vs. GFRP) had not a significant effect on the onset of cracking, nor 

did it on the immediate width of the cracks. 
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4.3.2 Load-Deformation and Load-Strain Relationships 

It should be mentioned that in order to take into consideration the self weight of 

the walls (between 6.9 and 12.3 kN), the equivalent load (dead load) that produces the 

same moment as the distributed self weight over the wall does, was added to the recorded 

live load which was applied by the hydraulic actuator. This was done without missing 

any useful information; in view of the fact that, as mentioned before, the expected 

cracking moment (6.6 kN.m) was larger than the moment produced by the own weight of 

the walls (between 2.5 and 4.1 kN.m). Furthermore, a pair of temporary supports were 

fabricated to carry the weight of the walls and removed after having launched the data 

acquisition system, so that the strains and deflections due to the self weight of the walls 

would not be missed either. Having the equivalent dead load and its corresponding 

deflection and strain, the initial portion of the force-deformation and force-strain curves 

was superimposed to that of live load. 

The drastic drops in the recorded loads correspond to cracks' occurrence, while 

the tiny drops can be associated with the existing cracks widening or extending in depth 

which also happened intermittently. It is observed that after each drop the load has caught 

up to a higher level but with a diminished stiffness. It illustrates how the section 

approaches to the cracked section properties progressively. Figure 4.16 shows the applied 

lateral load versus the deflection at mid-span of the GFRP-reinforced walls along with 

the steel-reinforced and unreinforced ones. 

The remarkably poor strength and deformation of the wall U-F simply depicts the 

drastic effect that the use of even smallest amount of GFRP reinforcement can have on 

the flexural performance of the masonry walls. More importantly, the sudden failure is 

51 



replaced with ample deformation of the walls after the first crack. Another notable 

observation is that G-3#19-F with the largest reinforcement ratio, when compared to S-

5M10-F, shows that we can reach higher capacities with acceptable deformability that 

could not be achieved by steel-reinforced masonry walls due to the constraint of not 

exceeding the balanced reinforcement ratio. 

As one of the intentions of this study, the relative performance of the steel-

reinforced wall is also demonstrated compared with that of the specimens which were 

designed to have comparable amounts of GFRP reinforcement from the design point of 

view. In other words, the product of reinforcement area and guaranteed design tensile 

strength (considering the reduction factors for steel and FRP (CHBDC (2006))) for these 

two walls (G-4#13-F and G-4#13-P) were intended to be close to that of the steel-

reinforced wall. This product was calculated for wall G-4#13-F and S-5M10-F 

respectively as shown below: 

AFRP*FRPfu,FRP = (4x126.7 Wm2)(0.5)(708MPa) = 179 kN 

A0 f = (5xl00mm2](0.85)(400MPa) = 170 JUV 

It can be seen that the GFRP-reinforced walls reached relatively higher strengths. 

Although the S-5M10-F experienced more deformation, the GFRP-reinforced walls had 

adequate deflections to forewarn the failure. Looking at the same graph, it can be 

concluded that grout-filling the empty cells does not have a positive effect on the general 

performance of the walls. Wall G-4#13-P exhibited significantly higher strength 

compared to wall G-4#13-F; this could be attributed to the actual location of the GFRP 

rods inside the cells which was determined for the walls after the tests. The average 
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effective depth of the bars for wall G-4#13-P was found to be 125 mm, whereas that of 

wall G-4#13-F was found 105 mm. 

Figure 4.17 illustrates the change in tensile strains of the longitudinal 

reinforcements with applied lateral load. Since the reinforcing rods are in the vicinity of 

the neutral axis of the gross section, there is not much stress and consequently strain 

recorded before the occurrence of the first crack, at which stage the neutral axis is raised 

up significantly. The effect of the cracks can similarly be detected herein. In general, the 

curves show that the tensile strain and accordingly the tensile stress increase linearly with 

the applied load up to the failure of the walls. The maximum recorded strains highlight 

the fact that the GFRP rods did not fail until the compressive crushing in masonry 

induced the failure of the walls. 

4.3.3 Modes of Failure and Post-Failure Behaviour 

The unreinforced wall encountered a sudden failure right after the first flexural 

crack formed. For the reinforced walls, the failure was always in compression zone of the 

masonry compound even though it was preceded by different phenomena. G-3#10-F 

failed after the joint next to the point load inside the moment zone had opened up 

significantly and the top face shell of one cell next to the same bed joint was crushed (see 

Figure 4.4 (c) and (d)). Same response occurred in G-3#13-F, G-4#13-F, G-4#13-P, and 

G-3#19-F; however, there were some diagonal cracks detected on the side of the blocks 

next to the failed joints. G-3#13-P failed after a strip of 3 consecutive grouted cells 

separated on one side of the wall inside the constant moment zone (Figure 4.8 (d)). A half 

block on one side was separated and misaligned before the failure of G-4#13-F (Figure 
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4.10 (d)). For the case of G-3#19-F, the cracks in the masonry units were relatively wide. 

G-3#13-F, G-4#13-P, and G-3#19-F experienced shear cracks on the side of masonry 

units outside the constant moment region. For G-3#13-F, these cracks joined a mortar-

block interface next to the point load which widened considerably, nevertheless the 

failure was induced by a long and wide crack on the top surface of the wall that was 

diagonally developed over the constant moment zone (Figure 4.6 (c) and (d)). The steel-

reinforced wall simply failed after the joint cracks were widened and compressive cracks 

had appeared on the compression side of the blocks, although no shear crack was 

detected on the masonry units. This could be attributed to the dowel action of the steel 

rebars. 

G-3#13-F, G-3#13-P, G-3#19-F, and S-5M10-F were unloaded and all but the last 

one were reloaded after the failure in order to investigate their post-failure strength and 

inelastic deformation. It was not practical to reload the steel-reinforced wall due to its 

substantial deformation. Their inelastic deformations as percentages of their total 

deformations were found to be 7.8%, 39%, 36.5%, and 7.3%, respectively. The post-

failure resistances corresponding to the first three were found to be 34.4%, 46.6%, and 

47.3% of the ultimate flexural capacity, respectively. It can be concluded that the larger 

amounts of GFRP reinforcement increase both parameters significantly. The notable 

observation therein is that not only did the post-failure strength of the FRP-reinforced 

walls exceed their dead loads, but also it helped to encounter considerable amount of 

applied live load. 

Another important characteristic to mention herein is the ratio of flexural capacity 

of the walls to their own weight. Table 4.2 contains this ratio for all the tested walls 
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which ranges from 1.4 (for the unreinforced wall) to 9.6 (for the wall with highest GFRP 

reinforcement area). The importance of this ratio is intensified when seismic response of 

the lateral load bearing structural element is of the design concerns. In general, the total 

seismic load exerted to the structural system is a function of the self-weight of the whole 

structure, a considerable part of which is constituted by walls. While the poor flexural 

strength of the unreinforced wall proves that this type of the walls is unsuitable when 

dealing with considerable lateral loads, the results of the GFRP-reinforced walls highlight 

the fact that higher flexural capacity, for the same cross-sectional dimensions and 

consequently weight, is reachable when FRP reinforcement. In addition, this ratio was 

magnified €2% and 55%, respectively, for G-3#13-P and G-4#13-P compared to their 

analogous panels (i.e. fully grouted ones) which, again, underlines the effectiveness of 

this approach of designing reinforced concrete masonry walls. 
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Table 4.1. Chronicled order of the wall tests 

Number 

1 
2 
3 
4 
5 
6 
7 
8 

Wall 

G-3#10-F 
U-F 

G-4#13-F 
G-4#13-P 
G-3#19-F 
G-3#13-P 
G-3#13-F 
S-5M10-F 

Date of the test 

06/20/2008 
18/07/2008 
29/07/2008 
01/08/2008 
21/08/2008 
05/09/2008 
12/09/2008 
30/09/2008 

Table 4.2. Summary of the test results for the eight full-scale masonry walls 

Wall 
Mcr 

(kN.m) (kN.m) 

M„ 

M self-weight 

Max. defl. 
(mm) 

Max. tensile 
strain Mode of 

failure 

U-F 5.6 5.6 1.4 

S-5M10-F 
G-3#10-F 
G-3#13-F 
G-3#13-P 
G-4#13-F 
G-4#13-P 
G-3#19-F 

6.9 
6.0 
7.6 
4.3 
5.8" 
5.9 
6.2 

16.9 
14.2 
18.3 
17.9 
21.7 
30.3 
39.3 

4.2 
3.5 
4.5 
7.3 
5.3 
8.2 
9.6 

1.4 

143.2 
111.4 
107.4 
108.5 
108.9 
94.3 
93.6 

— 

— 
14002 
11218 
9997 
9613 
10235 
8440 

Tens 
bed 

i 

ile in 
oint 
L 

Compressive 
in ma 

i 

sonry 

' 
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(c) 

Figure 4.1. Wall U-F: (a) wall before the loading was started; (b) wall after the sudden 
failure; (c) failed section 
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(a) 

(b) 

(c) (d) 

Figure 4.2. Wall S-5M10-F: (a) wall after cracking; (b) wall close to failure; (c) 
significant width of the flexural cracks; (d) cracked joints when the loading stopped 
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Figure 4.3. Test results of wall S-5M10-F: (a) load-deflection at mid-span; (b) load-
strain at mid-span; (c) deformed shape at three different stages 
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(a) 

(b) 

(c) (d) 

Figure 4.4. Wall G-3#10-F: (a) wall after cracking; (b) wall close to failure; (c) the 
widely opened joint next to the failed section; (d) compressive failure in masonry 
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Figure 4.5. Test results of wall G-3#10-F: (a) load-deflection at mid-span; (b) load-
strain at mid-span; (c) deformed shape at three different stages 
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(a) 

(b) 

** I i * * "* 

(c) (d) 

Figure 4.6. Wall G-3#13-F: (a) wall after cracking; (b) wall close to failure; (c) the shear 
cracks; (d) wide long crack manifesting the compressive failure in masonry 
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Figure 4.7. Test results of wall G-3#13-F: (a) load-deflection at mid-span; (b) load-
strain at mid-span; (c) deformed shape at three different stages 
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(b) 

(c) (d) 

Figure 4.8. Wall G-3#13-P: (a) wall after cracking; (b) wall close to failure; (c) the shear 
cracks; (d) a strip of grouted blocks separated from the wall (rear view) 
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Figure 4.9. Test results of wall G-3#13-P: (a) load-deflection at mid-span; (b) load-
strain at mid-span; (c) deformed shape at three different stages 
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(a) 

(b) 

(c) (d) 

Figure 4.10. Wall G-4#13-F: (a) wall after cracking; (b) wall close to failure; (c) the 
widely opened joint next to the failed section; (d) compressive failure (rear view) 
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Figure 4.11. Test results of wall G-4#13-F: (a) load-deflection at mid-span; (b) load-
strain at mid-span; (c) deformed shape at three different stages 
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(a) 

(b) 

(c) (d) 

Figure 4.12. Wall G-4#13-P: (a) wall after cracking; (b) wall close to failure; (c) the 
widely opened joint next to the failed section; (d) compressive failure in masonry 
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Figure 4.13. Test results of wall G-4#13-P: (a) load-deflection at mid-span; (b) load-
strain at mid-span; (c) deformed shape at three different stages 
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(a) 

(b) 

(c) (d) 

Figure 4.14. Wall G-3#19-F: (a) wall after cracking; (b) wall close to failure; (c) the 
shear cracks; (d) wide long crack manifesting the compressive failure in masonry 
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Figure 4.15. Test results of wall G-3#19-F: (a) load-deflection at mid-span; (b) load-
strain at mid-span; (c) deformed shape at three different stages 
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Figure 4.16. Load-deflection relative performance of the eight tested masonry walls 
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Figure 4.17. Load-strain relative performance of the eight tested masonry walls 
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CHAPTER 5 

QUANTITATIVE BEHAVIOUR AND NUMERICAL MODELING 

5.1 General 

In this chapter efforts are made to set up numerical models that are capable of 

predicting quantitative aspects of response of FRP-reinforced masony walls, flexural 

capacity of the section and load-deflection relationship, to an acceptable level of 

accuracy. As such, it is intended to present analytical models that correlate with test 

results of the walls and based upon which, the outcome of the wall tests can be 

theoretically quantified and predictable. It can be asserted, afterwards, that the same 

methods of analysis can be used to theorize a limit-states design methodology for 

designing masonry elements in flexure when reinforced with FRP rods. For this purpose, 

the methods of analysis and numerical models that are already available for steel-

reinforced masonry and FRP-RC are utilized to incorporate the presence and effects of 

FRP as the reinforcing material in concrete masonry. Concrete masonry is known to have 

similar structural characteristics to concrete, notwithstanding the fact that it is not a 

uniform material but a composite, formed by different cementious components; since, the 

main components are concrete block and grout (i.e. low strength concrete). Therefore, it 

is only reasonable to try to establish methods of analysis for FRP-reinforced concrete 

masonry analogous to those of FRP-RC. 
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5.2 Section Analysis in Flexure 

The tested walls' section analysis is conducted using the common method of 

ultimate strength conditions that is adopted in CSA S304.1 (2004). For the case of GFRP -

reinforced sections, necessary modifications are adopted to the procedures in accordance 

with ISIS (2001). The approach employed in this part is assumed to be appropriate, in 

that all the tested walls failed due to the compressive failure of the masonry. 

The analysis is carried out assuming that 1) plane sections remain plane, 2) the 

strain varies linearly in the depth of the section, 3) deformations are small, 4) tensile 

strength in the masonry and compressive strength of composites are negligible, 5) the 

GFRP rods bond with concrete with no interfacial slippage, 6) the ultimate compressive 

strain of the masonry compound is 0.003 as suggested in CSA S304.1 (2004), and 7) all 

the GFRP-reinforced sections fail due to masonry crushing as they were designed to be 

over reinforced. The ultimate fibre tensile strains were to be checked against the fibre 

rupture strains ultimately to verify the last assumption. The choice of 0.003 as the 

ultimate masonry strain (with 0.002 as the strain corresponding to the peak stress) agrees 

with the strain corresponding to the peak stress for the compressive masonry prisms 

which ranged from 0.0017 to 0.0024 (see Table 3.1). Moreover, the recorded strains in 

the GFRP rods of the tested walls were well below their ultimate tensile fibre strain, 

which shows that the sections were over reinforced. As for the GFRP rods, the stress-

strain relationship is presumed to be linear elastic up to the point where the rupture 

happens. Their tensile properties, as can be seen in Table 3.5, vary slightly for different 

diameters. Although the rods were initially intended to be placed in the middle of the unit 

cells with an effective depth (d) of 95 mm, after the failure of each wall the actual d of 
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the rods were measured at the failed section to have a more precise analysis. The average 

measured d ranged for the walls from 100 mm to 125 mm. 

5.2.1 Customary Method Based on Whitney Stress Block 

According to CSA S304.1 (2004), the two stress block factors that specify the 

Whitney uniform stress block, ai and Pi, are respectively 0.85 (constant) and 0.8 for 

concrete masonry using the following equation: 

P, = 0.8-0.J0 
10 

<0.80 (5.1) 
J 

For the over reinforced walls, the equilibrium equations of internal forces were solved to 

find the tensile stress in the GFRP at ultimate state directly as shown below: 

JFRP ~~ ^m^^FRPEm.u 
^ PFRP^FRP£m,u 

-1 (5.2) 

where PFRP is the actual GFRP reinforcement ratio of the wall (after the measurement of 

the depth of the rods), EFRP is the modulus of elasticity of the GFRP rod that varies for 

the three different diameters slightly (Pultrall (2007)), and em>u is the ultimate 

compressive strain of the masonry compound. Having the expected stress of the GFRP 

rods at ultimate, the expected flexural strength of the wall, then, was found as such: 

^ • ' (5.3) 'Mn = fFRPAFRP I d 

In the foregoing equation, AFRP and fFRP are, respectively, the reinforcement area and the 

expected stress of the GFRP rods at ultimate. Besides, the depth of the compressive block 

(c) can be found using the equilibrium of compressive and tensile forces in the section: 
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c = Im^rnL (5.4) 

The outcomes of the numerical evaluations state that the theoretical prediction is fairly 

conservative, since the ratio of experimental to theoretical ultimate strength varies from 

1.13 to 1.28. The corresponding results are tabulated in Table 5.1. 

5.2.2 Section Analysis Based on Stress-Strain Models for Masonry 

In order to have a more accurate prediction, in lieu of equivalent Whitney stress 

block, three different stress-strain models that account for more realistic stress-strain 

behaviour of concrete masonry were adopted in the aforesaid procedure. Dhanasekar and 

Shrive (2002) have proposed two stress-strain curves, defined by a simple and a refined 

equation: 

e.-rJr^) (Simple) (5.5) 

where uo and ui are constants, taken as 2.0 and 2.0 respectively for grouted concrete 

masonry and 1.4 and 2.6 for ungrouted concrete masonry, and x is the ratio of strain to 

the strain at maximum stress. 

om = f'm
 V °V '}L0 (Refined) (5.6) 

where uo and U] are 1.5 and 1.0 respectively for grouted concrete masonry and 2.1 and 0.1 

for ungrouted concrete masonry. These two models have been developed based on stress-

strain equations for concrete proposed by, respectively, Desayi and Krishnan (1964) and 

Loov (1991). Dhanasekar and Shrive found their proposed model reliable for predicting 
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flexural behaviour of reinforced masonry (Dhanasekar and Shrive (2002) and Assa and 

Dhanasekar (2002)). 

In an earlier research, Priestley and Elder (1983) had suggested the use of another 

model for concrete masonry based on modified Kent-Park curve for concrete (Park et al. 

(1982)). This stress-strain relationship for masonry is defined as such: 

°m = 1067/' 2e„ 
m 

0.002 
\£- T l 
10.002 J 

tfm
 =fLll-Zm(Em-0.00\5)\ 

m J m \ m \ m / 1 

e < 0.0015 

e > 0.0015 

(5.7) 

Where Zm is: 

Z„ = 
0.5 

3 + 0-29/; 
145/;-1000 

(5.8) 

-0.002 

Figure 5.1 illustrates the curves for these three stress-strain models. All the three 

curves were integrated into the walls' section analysis leading to closer estimate of 

strengths, even though still slightly conservative. Theoretical flexural strength of the 

sections based on the stress-strain models were evaluated in the same fashion but using 

the two stress block factors ai and Pi calculated for the presented stress-strain curves by 

means of these two integrals: 

2 \oeden 
J mm ttx 

A = 2—°~ 
zm „ I ade„ 

m.u \ m n. 

a. 
_ 0 

Em.uJmP\ 

(5.9) 

The model most conforming to the results of the tests was found to be the refined 

equation proposed by Dhanasekar and Shrive (2002). Furthermore, this stress-strain 

relationship estimates the modulus of elasticity of masonry equal to 10.7 GPa based on a 
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Secant line between 5% and 33% of f'm. Lastly, the ratio of experimental to theoretical 

ultimate strength using the chosen stress-strain curve varies from 1.01 to 1.15. The results 

of section analyses are summarized and compared with those of the wall tests in Table 

5.1. 

5.2.3 Discussion 

One valuable finding of abovementioned analyses is that the use of Whitney block 

factors <xi and Pi culminated in underestimating the nominal flexural capacity of the 

concrete masonry walls; whereas, the use of stress-strain models specified for concrete 

masonry provided us with more precise evaluation of walls' strength. 

The relatively lower theoretical values, in general, can be attributed to a number 

of causes. Concrete masonry as an assembly of nonhomogeneous compounds could not 

be accounted for perfectly by the same approach that is used for concrete unless its stress-

strain relationship is established properly. In addition, the structural properties of the 

masonry assemblage are influenced by labor and materials; hence, they acquire notable 

discrepancy from day to day of the construction period. 

Another parameter conducive to the results mismatch can be the presence of grout 

cores inside the hollow concrete blocks. The theoretical analysis is carried out assuming 

that, according to the results of auxiliary tests, f m is 10.9 MPa. For the prisms tested 

under compression, the grout expansion was of major reasons initiating the failure, 

whereas for the walls tested under out-of-plane bending the grout is not subjected to 

compression, thus not expanding, since the depth of the compression zone (c), except for 

G-3#19-F, is always less than the face shell thickness. Therefore, the masonry compound 
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can undertake larger amounts of stress in the compression zone leading to higher flexural 

resistance for the walls. Furthermore, it can be concluded that grouting the cells with no 

reinforcement is not necessarily effective, as seen before in the results of the wall tests, 

since the grout is not contributing to the flexural strength of the section. 

5.3 Force-Deformation Prediction 

As another facet of response of the walls to out-of-plane bending, it is invaluable 

to have the ability of foreseeing their force-deformation relationship up to the ultimate 

failure. To begin with, various models that have been proposed for predicting deflection 

in FRP-RC and masonry members are inspected and put on display in comparison to the 

results of the wall tests. Later on, a computer program is utilized for the same purpose; 

and accordingly, efforts have been made to come up with a finer numerical method of 

evaluating this characteristic of GFRP-reinforced walls based on the results and 

observations of the wall tests. 

Compressive strength and modulus of rupture used in calculating the deflections 

are the ones obtained in the course of the auxiliary tests, while for the modulus of 

elasticity it was decided to use the one corresponding to the stress-strain model defined 

by Dhanasekar and Shrive (2002). The mid-span deflections of tested walls before the 

cracking moment are calculated using the gross section properties. The post-crack 

deflections are tried to be calculated using the effective moment of inertia (Ieff) method 

such that the tension-stiffening below the neutral axis between the uncracked and cracked 

grout is taken into account. 
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5.3.1 Available Methods of Cracked Section Analysis 

CSA S304.1 (2004) defines an equation to calculate Iefr for steel-reinforced 

masonry similar to steel-reinforced concrete. Thus, it is an appropriate approach to use 

the proposed Iefr for FRP-RC members in calculating the deflections of the GFRP-

reinforced walls. There are various ways of determining Ieff which are proposed and 

verified by several researchers (Faza and GangaRao (1992), Benmokrane et al. (1996), 

Brown and Bartholomew (1996), Theriault and Benmokrane (1998), Gao et al. (1998), 

Abdalla (2002), and Mota et al. (2006)). Moreover, Horton and Tardos (1990) have 

suggested another way of predicting the post-crack deflection for masonry members, in 

particular. It was observed in the course of analysis and also can be detected by 

comparing Figure 5.2 and Figure 5.3 that different methods yield to diverse results for 

lower amounts of reinforcement while they converge for higher reinforcement ratios. 

However, all the different available numerical methods of deflection evaluation 

underestimate the out-of-plane deformation of the walls in view of the fact that they are 

either not taking the special characteristics and differences of concrete masonry into 

account or they have been developed based on a limited knowledge of FRP's bond 

characteristics. The methods proposed for FRP-RC would not completely be capable of 

explaining the significant openings that are imposed to take place in the bed joints of the 

maximum moment zone. Moreover, these models mostly contain parameters that are 

found by curve fitting the results of limited test specimens, reinforced by particular types 

of FRP, which need further experiments to be generalized. The ones that are specialized 

for reinforced masonry, on the other hand, could not be representative of the special 

characteristics of FRP. For instance, Lee (2001) predicted only 67% (and less) of the 
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experimental deflection of FRP-strengthened masonry walls with cracked section 

analysis which was explained to be due to local bond failure of the FRP that can not be 

accounted for in the available methods of analysis. The load-deflection relationships of 

the wall predicted using Ieff defined by Gao et al. (1998) has been picked herein, as the 

commonly acknowledged method, to be illustrated and compared with the test results; 

since, it has been recognized by ISIS M03 (2001) to be used for predicting the deflection 

of FRP-RC members in flexure. It is calculated using this equation: 

i« =4+(AWc) l -
'Af-Y 
KK 

(5.10) 

In which, Icr and Ig are the moment of inertia of the cracked and gross section, Mcr and Ma 

are the cracking moment and applied moment of the section at each stage, and lastly, Pb 

depending on the properties of the composites is calculated as follows: 

A = 0.5 
f 

J I '-'FRP 
^steel 

(5.11) 

The load-deflection performances of the GFRP-reinforced walls predicted in this last-

mentioned fashion are compared with test results in Figure 5.4 to Figure 5.9. 

5.3.2 Force-Deformation Prediction Using Response 2000 

In addition to the numerical evaluation, the tested walls were modeled in 

Response-2000 Version 1.0.5 (Bentz (2000)) which is a freely available specialty 

program for RC section analysis developed at the University of Toronto, based on the 

modified compression field theory. It has the ability to be given the full axial stress-strain 

curve of the masonry (i.e. the refined model proposed by Dhanasekar and Shrive (2002)) 
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as well as the tensile properties of steel and GFRP reinforcements for modeling the wall 

sections. The load-deformation responses of the walls using the analysis program are also 

shown in Figure 5.4 to Figure 5.9. It can be observed that the load-deformation curves 

given by the program are a finer evaluation of the experimental results for the walls with 

lower reinforcement ratios, although still underestimating. 

5.3.3 Proposed Method for Force-Deformation Prediction 

In general, it is concluded that all the methods that have been developed to predict 

the load-deformation behaviour of reinforced masonry members are underestimating the 

post-crack deformations. One of the potential reasons, that was observed in the course of 

the tests of the masonry walls, can be the considerable width of the flexural cracks 

occurring at the mortar to block interface which magnifies the deformed shape of the 

wall. In other words, the total displacement of the wall is also comprised by the 

displacement caused by cracking pattern, which is not accounted for by current methods 

of predicting the deflection. 

"lota! ~ ^analytical & crack (j.12) 

A simple approach is proposed here in order to improve the predictions of load-

deformation behaviour of masonry walls reinforced with GFRP by adding the effect of 

wide cracks to the deflections predicted by cracked section analysis (introduced in ISIS 

(2001)). The width of the cracks can be calculated similar to FRP-RC as stated in ISIS 

(2001): 

» W = 11 * 10^ §**- *6 / „ * ^ - {dcAf (5.13) 
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In this equation, h is the thickness of the cross-section of the wall (i.e. 190 mm), dc is the 

cover for the reinforcing rods, A is the effective tension area surrounding the reinforcing 

rods divided by the number of the rods, Esteei is the modulus of elasticity of the steel 

rebars, and kb is a bond dependent coefficient that is found by Gao et al. (1998) to be 

0.71, 1.00, and 1.83 for GFRP bars with superior, similar, and inferior bond properties 

when compared to steel (ISIS (2001)). kb equal to 0.71 is employed in the calculation of 

crack width for the GFRP-reinforced walls in this research for two reasons; firstly, it was 

observed in the course of the experiments that the GFRP-reinforced walls experienced 

less wide cracks than the steel-reinforced wall at the same level of loading, and lastly, 

Ahmed et al. (2006), who conducted an experimental investigation on a total ninety sand-

coated GFRP V-ROD™ specimens (i.e. the type that is utilized in the experimental 

program of this research) with respect to their bond behaviour, concluded that the 

required embedment length for the sand-coated V-ROD™ is 10db, which is considerably 

less than that of steel rebars. 

The additional deformation due to the crack width is then calculated based on the 

rotation of the wall at the cracking point assuming that 1) the cracks are imposed to occur 

at the interface of blocks and mortar, 2) the width of the cracks in all the joints inside the 

constant moment zone are the same, 3) the effect of shear cracks are neglected, 4) the 

crack width and depth increase linearly from zero, at the stage of cracking moment, to 

the maximum value at failure, and 5) maximum depth of the crack is the depth of the 

tension zone (i.e. h - c). The rotation due to each crack is calculated as such: 

d = K r a c k ^ (5.14) 
"crack 
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wCrack and dcrack are the width and depth of the crack and kcraci< is the ratio of the depth of 

the crack to the depth of the cross-section which represents the resistance of uncracked 

zone. The deflection due to 8 is the moment at mid-height of the conjugate structure of 

the wall, when a point load equal to 0 is applied at the location of the crack. Therefore, 

the total deflection of the wall at each post-crack stage of the loading is the 

superimposition of the deflection found by the cracked-section analysis and the extra 

deflection due to the excessive width of the cracks in the maximum moment zone. Figure 

5.4 to Figure 5.9 illustrate that the load-deformation performance of the GFRP-reinforced 

walls predicted by this new method introduced herein, shows agreeable consistency with 

the experimental result. The outcomes of the load-deflection analyses are also tabulated 

in Table 5.2. 

5.4 Proposed Design Diagram 

One of the main objectives of this research was to assure a facilitated approach to 

design the masonry walls for out-of plane bending when reinforced with GFRP rebars. 

For designing FRP-RC members in flexure, design charts are provided by ISIS (2001) for 

a given cross-sectional dimensions. The reinforcement ratio required for a certain amount 

of resistant moment can be chosen simply by following the proper curves of the charts. 

Having the results of the tested walls (i.e. the nominal flexural capacity and ultimate FRP 

tensile strain at failure) for different reinforcement ratios, a similar attempt has been 

made to propose a design diagram illustrated in Figure 5.10. The theoretical predictions 

are based on f m equal to 10.9 MPa and corresponding properties for different diameters 

of GFRP rods. However, in order to simplify the use of this type of diagrams, they can be 
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achieved eventually based on the average properties of the composites regardless of their 

slight variations due to the chosen diameters in design. The results of the tested walls 

seem to have consistency with the predicted values, that is to say the methods of analysis 

presented herein can be relied on to design this type of structural members. However, the 

author believes that further studies and experiments on FRP-reinforced masonry are 

required in order to validate and generalize the outcomes of this study. 
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Table 5.1. Summary of the section analyses for the full-scale masonry walls 

Flexural capacity (kN.m) \A \A 
, , , „ " * x i n , e x p . n, exp. 

Wall Whitney 
I OCT r o P l l TP •' 
Test results block 

inasekar 
1 Shrive 
6.6 
16.2 
13.1 
17.7 
17.6 
21.4 
27.3 
34.2 

" * n . Whitney 

0.89 
1.01 
1.15 
1.15 
1.13 
1.13 
1.23 
1.28 

M 
n, Dhanasckar 

0.85 
1.05 
1.09 
1.03 
1.02 
1.01 
1.11 
1.15 

U-F 
S-5M10-F 
G-3#10-F 
G-3#13-F 
G-3#13-P 
G-4#13-F 
G-4#13-P 
G-3#19-F 

5.6 
16.9 
14.2 
18.3 
17.9 
21.7 
30.3 
39.3 

6.4 
16.6 
12.8 
15.9 
15.8 
19.2 
24.5 
30.6 

Table 5.2. Summary of the load-deflection prediction for the full-scale masonry walls 

Wall 

G-3#10-F 
G-3#13-F 
G-3#13-P 
G-4#13-F 
G-4#13-P 
G-3#19-F 

Max. deflection at failure ( 

Test 
result 

111.4 
107.4 
108.5 
108.9 
94.3 
93.6 

(1) 
ISIS 

(2001) 
19.1 
32.8 
35.0 
42.5 
49.2 
43.7 

(2) 
Response 

2000 
86.0 
73.8 
74.5 
61.7 
57.3 
48.0 

mm) 
(3) 

Proposed 
method 
103.4 
96.7 
85.6 
89.4 
81.4 
72.7 

A(.) 
Exper. 

0.17 
0.31 
0.32 
0.39 
0.52 
0.47 

A ( 2 ) 

Exper. 

0.77 
0.69 
0.69 
0.57 
0.61 
0.51 

A ( 3 ) 

Exper. 

0.93 
0.90 
0.79 
0.82 
0.86 
0.78 
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Figure 5.2. Load-deflection prediction for wall G-3#10-F using different methods of 
cracked section analysis 
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Figure 5.3. Load-deflection prediction for wall G-3#19-F using different methods of 
cracked section analysis 
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Figure 5.4. Load-deflection prediction for wall G-3#10-F 
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Figure 5.5. Load-deflection prediction for wall G-3#13-F 
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Figure 5.6. Load-deflection prediction for wall G-3#13-P 
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Figure 5.7. Load-deflection prediction for wall G-4#13-F 

90 



0 10 20 30 40 50 60 70 80 90 100 

Out-of-plane deflection at mid-span (mm) 

Figure 5.8. Load-deflection prediction for wall G-4#13-P 
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Figure 5.9. Load-deflection prediction for wall G-3#19-F 
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Figure 5.10. Proposed capacity chart for designing masonry walls reinforced with GFRP 
rods (f m = 10.9 MPa, fu,FRp(ave.) = 790 MPa, EFRP(ave.) = 46.4 GPa) 
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CHAPTER 6 

DEFORMABILITY 

6.1 General 

When steel rebars are substituted with FRP ones whose behaviour is linearly 

elastic up to the sudden rupture, the ductility of the walls arises as a concern affecting 

their performance before failure. For steel-reinforced elements, conventional definition of 

deflection ductility as the ultimate-to-yield deformation ratio (uA=Au/Ay) determines 

whether or not the members have sufficient ductility; however, for FRP-reinforced 

elements ductility should be defined apparently in a fashion that is independent of 

reinforcement yield point. In order to evaluate the ductility of GFRP-reinforced masonry 

walls two different approaches have been utilized based on different aspects of the load-

deformation performance of the walls. 

6.2 Curvature-Based Deformability Factor 

One method is to calculate the deformability factor or J-factor proposed by Jaeger 

et al. (1995), which is modified to be introduced as a criterion for FRP-RC members in 

ISIS (2001), and calculated based on the curvature of the walls at ultimate and service 

load as such: 

Deformability factor = '*£] (6.,) 
vM,) 

where the s index refers to the service load that was primarily designated by Jaeger et al. 

(1995) to be the load at which point the compressive strain in concrete is 0.001. However, 
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ISIS (2001) associates it with a load due to which the tensile strain in the outermost FRP 

rebars reaches 0.002. The curvature therein was calculated based on the experimental 

deformed shapes of the walls. In other words, the absolute value of the second derivative 

of the deformed shape with respect to the length of the wall at each stage was considered 

as the curvature. This factor, which is required by ISIS (2001) to be more than 4 for all 

sections in flexure, is calculated for the tested GFRP-reinforced masonry walls to 

investigate their ductility (see Table 6.1). 

6.3 Energy-Based Ductility 

The second method that was used for evaluating the ductility of the GFRP-

reinforced walls is based on the energy absorption capacity. Having the load-

displacement diagram, the total absorbed energy by the wall can be calculated as the area 

under the curve. The permanent (i.e. inelastic) deformation and the unloading curve 

differentiate the elastic and inelastic energies. That is to say the dissipated energy by 

permanent deformations is represented by the inelastic portion of the area (i.e. the area 

surrounded between the loading and unloading curves). Given the fact that the more 

inelastic energy, the more ductile behaviour, the ductility of the walls can be evaluated 

based on the ratio of inelastic energy to total energy (energy ratio). Jeong (1994) 

expressed the ductility of FRP-RC members, disregarding the existence of yielding 

phenomenon although based on the same concept of deflection ductility, with a new 

ductility index (the Naaman index) using the energy ratio (see Figure 6.1 (a)): 

V ^elastic J 
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where u is the Naaman index, and Etotai and Elastic are respectively the total and elastic 

absorbed energy by the wall. 

A ductility index of 2.5, which has been adopted in structural codes (e.g. ACI 

(2008)) as the accepted level of ductility for steel-reinforced members, was considered to 

be adequate by Jeong (1994), since this new index was derived from the conventional 

definition of deflection ductility. Grace et al. (1998) have also categorized the flexural 

members with energy ratio of 75% and higher to have ductile behaviours. This energy 

ratio results in a ductility index of 2.5 and higher which was set to be the limit by Joeng 

(1994). 

6.3.1 Experimental Unloading Curves 

Three of the GFRP-reinforced walls (namely G-3#13-F, G-3#13-P, and G-3#19-

F) were unloaded after the ultimate failure, for which the energy ratio can be found based 

on The experimental results (see Figure 6.3 to Figure 6.5). As shown in the figures, 

removal of the load does not change the deformed shape of the walls up to a certain limit, 

from which point, the deflection starts decreasing with a slope close to that of the post-

crack loading curve. Table 6.2 contains the calculated energy ratios based on the 

experimental results for the foregoing GFRP-reinforced walls. 

6.3.2 Numerical Method 

Joeng (1994) proposed a method to predict the unloading part of the load-

deflection curve based on the loading part. In this method the slope of the unloading part 

is the weighted average of three different segments of the loading curve (see Figure 6.1 
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(b)). Grace et al. (1998), as shown in Figure 6.2, made some modifications to the 

foregoing method, such that it takes into account mode of failure (P), type of 

reinforcement (y), and properties of the FRP that is used as the flexural reinforcement. 

The slope of the unloading curve is consequently found by the following equation: 

s./r!al.,Jl-,''A*[P1-'i)s1*C,-P,)s, 
F f P 
^s Ju.FRP 13 

In which (3 for compressive failure is 1.0 and y for GFRP is 4.0. Pi, P2, and P3 are 

the loads corresponding to three different points of the loading curve where the slope of 

the load-defTection curve changes notably. Si, S2, and S3 are the slopes associated to three 

parts of the loading-curved that are differentiated with Pi, P2, and P3. The theoretically 

predicted unloading curves for the tested GFRP-reinforced masonry walls are illustrated 

in Figure 6.6 to Figure 6.11. The permanent deflections (after unloading) as a result of the 

proposed equation conform adequately with the results of the three unloaded walls (see 

Figure 6.7, Figure 6.8, and Figure 6.11), even though the predicted unloading curves 

underestimate the inelastic portion of total energy leading to a conservative evaluation of 

ductility of the walls. Table 6.2 categorizes the behaviour of the tested GFRP-reinforced 

walls based on their energy ratio that is calculated using the unloading curves predicted 

by the aforesaid method. 

6.3.3 Proposed Method 

Although the method that was introduced by Joeng (1994) and developed by 

Grace et al. (1998) for predicting the slope of the unloading part of load-deflection 

diagram has proven to be capable of foreseeing the unloading behaviour of the FRP-RC 
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members, the performance of the three GFRP-reinforced walls, of all the tested walls, 

that were unloaded after the failure, revealed that a different type of behaviour with two 

evident characteristics could be attributed to the GFRP-reinforced masonry walls. 

According to the performance of the abovementioned GFRP-reinforced walls, it 

can be stated that there exists a post-failure residual capacity after the failure occurs for 

the GFRP-reinforced masonry wall. Hence, when the loading stopped (due to failure of 

masonry), the recorded applied load decreased to a lower level which was partly due to 

the presence of the GFRP rebars which had not failed and were still capable of 

undertaking tensile stresses. The load and deflections would start to decrease from that 

point with a slope which is almost equal to the slope of the post-crack loading curve, as 

opposed to FRP-RC, if the wall was to be unloaded gradually. Thus, the residual capacity 

and the slope of the unloading curve are the main features of the unloading behaviour of 

the GFRP-reinforced masonry walls that differentiate them from FRP-RC. 

Based on the results of the walls that were unloaded gradually after failure, a 

simple method is proposed here to predict unloading behaviour of the GFRP-reinforced 

masonry walls assuming that the post-failure residual capacity is only 50% of the post-

crack strength of the wall and the slope of the unloading branch of the curve is equal to 

the slope of the post-crack loading diagram. These two parameters can be calculated as 

such: 

Residual Capacity = 0.5(M„ - Mcr) (6.4) 

and 

S . ILzM*- (6.5) 
A - A t 

u crack 
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S is similarly the predicted slope of the unloading part of the load-deflection curve. The 

numerically predicted unloading curves are shown in Figure 6.6 to Figure 6.11. 

Moreover, Table 6.2 includes the energy ratios calculated using the proposed method, 

based on which the bahaviours of the walls are categorized. 

6.4 Discussion 

The deformability factor of the GFRP-walls not only satisfies the lower limit set 

by ISIS (2001), but also this factor is fairly higher than the limit for all of the tested walls. 

This can be accounted for by the fact that the out-of-plane deflection and accordingly the 

curvature oflhe deformed shapes are trivial before the section is cracked. However, the 

presence of the GFRP reinforcing rods supplies for notable deformation prior to the 

ultimate failure. The deflection of the wall at the stage of cracking, in some cases, was 

less than one percent of the deflection at failure. The ratios of deflection at the cracking 

stage to deflection at ultimate for the tested GFRP-reinforced walls are listed in Table 

6.1. 

The experimental unloading curves express that the energy ratio for the GFRP-

reinforced walls is satisfactory since the permanent deflections compared to the total 

deflections of the walls are not significant. The theoretical unloading curves found by the 

approach proposed for FRP-RC (Joeng (1994), and Grace et al. (1998)) affirm the same 

conclusion. Regardless of the fact that this method does not account for the initial part of 

the load removal, due to which no deflection is recovered, it can be seen that the 

theoretical elastic deformation is closed to that of the walls that were unloaded during the 

tests. 
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The shapes of the predicted and experimental unloading curves in Figure 6.7, 

Figure 6.8, and Figure 6.11, and also the energy ratios calculated using the proposed 

predictions compared to the experimental energy ratios (see Table 6.2) proved that the 

method which is proposed herein for GFRP-reinforced masonry walls is capable of 

expressing the unloading performance of the tested GFRP-reinforced masonry walls more 

specifically and closer to the actual behaviour of the tested walls. The pre-failure 

behaviour of all the tested GFRP-reinforced masonry walls can be considered to have 

adequate deformability based on the numerically calculated energy ratios using the 

proposed model. 

Overall, despite the fact that the use of GFRP instead of steel diminishes the 

ductile behaviour of the masonry walls, the investigations and analyses carried out in this 

chapter showed that all the GFRP-reinforced walls have exhibited acceptable 

deformability. 
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Table 6.1. Classification of the GFRP-reinforced walls according to their curvature based 
deformability factor 

Wall 

G-3#10-F 
G-3#13-F 
G-3#13-P 
G-4#13-F 
G-4#13-P 
G-3#19-F 

crack ( o / o ) 

0.90 
0.75 
2.82 
2.45 
3.20 
0.53 

Curvature 
Factor 

13.7 
6.2 
5.8 
14.8 
10.1 
7.4 

Moment 
Factor 

3.3 
3.7 
2.7 
2.0 
3.8 
4.1 

Deformability 
Factor 

45.5 
22.9 
15.8 
29.8 
37.9 
30.6 

Type of 
Behaviour* 

Ductile 
Ductile 
Ductile 
Ductile 
Ductile 
Ductile 

Based on deformability factor limit of 4 for ductile behaviour ofFRP-RC members (ISIS 2001). 

Table 6.2. Classification of the GFRP-reinforced walls according to their energy based 
ductility 

Wall 

G-3#10-F 
G-3#13-F 
G-3#13-P 
G-4#13-F 
G-4#13-P 
G-3#19-F 

Experimental 

inelastic 

^total 

0.91 
0.81 
— 
— 

0.76 

Type of 
behaviour* 

— 
Ductile 
Ductile 

— 
— 

Ductile 

Grace et al. (1998) 

^inelastic T v p e Of 

P 
*" total 

0.94 
0.80 
0.82 
0.92 
0.57 
0.66 

behaviour* 

Ductile 
Ductile 
Ductile 
Ductile 
Brittle 
Brittle 

Proposed method 

inelastic 

F 

0.90 
0.89 
0.86 
0.88 
0.84 
0.83 

Type of 
behaviour* 

Ductile 
Ductile 
Ductile 
Ductile 
Ductile 
Ductile 

Based on minimum energy ratio of 75% for ductile behaviour ofFRP-RC members (Grace et al. (1998)). 
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Figure 6.1. Energy based ductility index: (a) definition of energy ratio based on the 
conventional deflection ductility; (b) prediction of unloading curve (Jeong (1994)) 
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Figure 6.2. Prediction of unloading curve (Grace et al. (1998)) 
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Figure 6.3. Experimental energy ratio for wall G-3#13-F 
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Figure 6.4. Experimental energy ratio for wall G-3#13-P 

102 



i 1 1 T 1 1 1 1 1 r 

0 10 20 30 40 50 60 70 80 90 100 110 120 

Out-of-plane deflection at mid-span (mm) 

Figure 6.5. Experimental energy ratio for wall G-3#19-F 
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Figure 6.7. Prediction of the unloading curve for wall G-3#13-F 
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Figure 6.8. Prediction of the unloading curve for wall G-3#13-P 
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Figure 6.9. Prediction of the unloading curve for wall G-4#13-F 
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Figure 6.10. Prediction of the unloading curve for wall G-4#13-P 
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Figure 6.11. Prediction of the unloading curve for wall G-3#19-F 
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CHAPTER 7 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

7.1 Summary 

Unreinforced masonry structures are known as one of the oldest types of 

structures and have been frequently used since ancient times. However, lack of tensile 

strength of the masonry assembly has been barricading the structural engineers when it 

comes to design unreinforced masonry structures for lateral loads. This deficiency 

manifests itself especially in seismic prone areas where adequate lateral load bearing 

strength is required while the dimensions of the structural components should not be 

massive. Reinforced masonry walls are known as one of the most common structural 

masonry elements that are widely used to undertake vertical loads as well as lateral loads. 

Depending on the loading conditions they can be subjected to out-of-plane lateral loads 

due to wind, soil pressure, or seismic excitations, in which situations, flexural 

reinforcement is the critical factor influencing the flexural strength and behaviour of the 

walls. Steel reinforcing rebars are currently employed as the accustomed internal 

reinforcement for concrete masonry walls. 

The objective of this study was to extract GFRP bars, with better durability 

characteristics, as the internal flexural reinforcement of the concrete masonry walls, so 

that the design constraint of having to not exceed the balanced reinforcement ratio (in the 

case of steel-reinforced walls) is resolved. Thus, higher flexural strength could be 

attained for the same cross-sectional dimensions; while, the ductility of the GFRP-

reinforced walls, as an imperative factor of serviceability, is inspected to ensure that the 
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pre-failure behaviour of the wall is agreeable, disregarding the presence of GFRP in lieu 

of steel. 

In order to fulfill the goals of this research, eight full-scale masonry walls 

(unreinforced and reinforced with steel and GFRP rebars) were built and tested under 

out-of-plane bending condition, in addition to the auxiliary masonry prisms that were 

meant to attain the properties of the masonry assemblage. One wall was unreinforced; 

another wall was reinforced with steel rebars and the other six walls were reinforced with 

different amounts of GFRP reinforcement. Two of the GFRP-reinforced walls were only 

grout-filled in the cells with the reinforcing bars in order to examine the effect of extent 

of grouting. The behaviour of the walls was studied by monitoring the cracking patterns 

and measuring the tensile strains of the reinforcing bars and deflections of different 

locations up to the ultimate failure. 

Besides the experimental program, various methods of analyses and numerical 

models were examined for predicting different facets of the response of the walls (i.e. 

flexural capacity and deflection). Moreover, efforts have been made to come up with 

finer numerical models, the results of which were closer to those of the tests of the walls. 

Accordingly, a design diagram is proposed based on the relative performance of the 

GFRP-reinforced walls, having theorized their flexural response. Lastly, the 

deformability of the GFRP-reinforced walls are inspected through different approaches 

asserting the fact that even though FRP's are known as not-ductile materials, the tested 

walls have exhibited a sufficiently ductile behaviour. 
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7.2 Conclusions 

Based on the results of the main and auxiliary tests and analyses performed on 

different aspects of behaviours of the walls, the following can be concluded: 

1. The partially grouted walls cracked at fairly lower levels of applied load when 

compared to their analogous companions (i.e. fully grouted). However, type of the 

reinforcement (i.e. steel or GFRP) was noted to have no effect on the onset of cracking, 

nor did it on the immediate width of the cracks. 

2. It was observed that for all the tested walls, the compression failure at the 

constant moment region occurred in the section of the bed joint that has shear 

reinforcement. This would imply that shear reinforcement could result in weakening of 

the bond in the block-mortar interface. 

3. It was observed that after the first crack the tensile strain and accordingly the 

tensile stress of GFRP rods increase linearly with the applied load up to the failure of the 

walls. 

4. The two GFRP-reinforced specimens that were designed to achieve ultimate limit 

flexural capacities equivalent to the steel-reinforced wall showed sufficient flexural 

deformability to forewarn the failure. 

5. The performance of G-3#19-F compared to that of S-5M10-F shows that we can 

reach higher capacities with acceptable deformability that could not be achieved by steel-

reinforced masonry walls due to the constraint of not exceeding the balanced 

reinforcement ratio. 

6. The ratio of flexural strength to the self-weight of the walls increased for more 

GFRP reinforcements up to 9.6 (for wall G-3#19-F). This ratio was magnified 62% and 
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55%, respectively, for G-3#13-P and G-4#13-P compared to their analogous specimens 

(i.e. fully grouted ones). 

7. The stress-strain model proposed by Dhanasekar and shrive (2002) showed good 

agreement with the experimental results which suggests that it could be used in 

developing capacity charts for designing masonry walls reinforced with GFRP. 

8. Despite the fact that the use of GFRP instead steel diminishes the ductile 

behaviour of the masonry walls, it was observed that all the GFRP-reinforced walls have 

exhibited sufficient deformability. 

In addition, the succeeding observations were noticed in the course of this research: 

1. The compressive auxiliary prisms failed due to splitting the face shells preceded 

by cone and shear cracks that were caused by the excess of grout expanding inside the 

cells. The relatively lower strength of the prisms compared to their constituent materials 

can be attributed to this fact. 

2. The GFRP-reinforced masonry walls exhibited a linear behaviour up to and after 

cracking moment, but the stiffness was decreased significantly after the first crack. It was 

observed that the stiffness of the GFRP-reinforced walls increased with higher 

reinforcement ratios. 

3. The fact that the steel-reinforced wall encountered less shear cracks highlights the 

relatively higher contribution of steel reinforcement in shear strength compared to GFRP. 

On the other hand, the less wide cracks in the GFRP-reinforced walls underline the 

superior bond characteristics of this type of reinforcement. 
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4. All the GFRP-reinforced walls encountered flexural failure due to the 

compressive failure of masonry as opposed to the unreinforced wall that collapsed due to 

tensile failure in the bed joint. 

5. It was concluded that with larger amounts of GFRP reinforcement post-failure 

resistance and elastic deformation increase significantly. The post-failure strength that the 

FRP-reinforced walls exhibited was enough to carry the dead load and also considerable 

amount of live load. 

6. Except for G-3#19-F, the depth of the compressive zone was found to be less than 

the face shell thickness. Hence, grouting the cells with no reinforcement is not 

necessarily effective since the grout is not contributing to the bending actions of the 

section. The results of the wall tests acknowledged this matter. 

7.3 Recommendations 

It should be noted that the abovementioned conclusions are based on the limited 

experimental work described herein and the author believes that further studies and 

experiments on FRP-reinforced masonry have to be conducted in order to validate and 

generalize the findings of this experimental program. 

As the results and mode of failure of the compressive masonry prisms 

highlighted, the importance and effects of the right choice of grout and concrete block on 

compressive strength of the masonry assemblage should be studied further. 

The need to reinforce masonry walls for shear forces, especially for GFRP-

reinforced masonry walls, calls for more research in shear strength of these walls and 

efforts to find more effective techniques to replace the joint reinforcement. 
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Since the compressive performance of GFRP is not notable, the response of 

GFRP-reinforced masonry walls when subjected to axial loads should be also inspected. 

More importantly, it is required to carry out further research on the beam-column 

behaviour of these walls, as in the actual situations walls are subjected to a combination 

of axial and lateral loads. 

In this study, a few advantages of designing partially-grouted concrete masonry 

walls were revealed. Further investigation should be focused on different aspects of 

behaviour of partially-grouted walls in order to ensure that design deficiencies are not 

accompanying the mentioned benefits. 

Lastly, since the walls that were tested in this-dissertation were designed to have 

width of 1.0 m, representing the one-way load-transferring masonry wall systems, it is 

also necessary to inspect the effect of different width of the walls on their response. 
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APPENDIX A: SECTION ANALYSIS 

In this appendix, section analysis based on Whitney stress block for wall G-3#13-

F is presented in details to explain the way the flexural capacity of the GFRP-reinforced 

walls is calculated in Chapter 5. There is no need to have an example for the section 

analysis based on the stress-strain model for masonry, since the only difference is that the 

stress block factors are substituted with the real values calculated by equation (5.9). 

Dimensions of the wall: 

Clear span: L = 2400 mm 

Width: b = 990 mm 

Thickness: h = 190 mm 

Properties of the masonry: 

Compressive strength: fm = 10.9 MPa 

Flexural bond strength: 7? = 1.11 MPa 

Ultimate compressive strain: em,u = 0.003 

Reinforcement specifications: 

Typeoftherebars: GFRP 

Number of the rebars: 3 

Diameter of the rebars: 13 mm 

Effective depth: d= 100 mm 

Modulus of elasticity: EFRP = 46.3 GPa 
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Ultimate tensile strength: /U.FRP = 786 MPa 

Ultimate tensile strain: SFRP.U - 0.0017 

Calculation of the cracking moment: 

bhl 

i: 
/ 

/ = ^ - = 571.6xl06 mm4 
g 12 

S=^j =6 .02xl0 6 mm" s h/ 
/ 2 

Mcr =R*Sg = 6.44 kN.m 

Calculation of the flexural strength: 

AFRP = 3x v ' = 398.2 mm2 

PFRP = — = 0004 FRP bd 

P, = 0 . 8 - 0 . 1 0 ( / w ~ 2 ° 1 =0 .8 
10 

a, = 0.8 

J FRP ~ "•3':'FRPEm.u 1+- 4«,A/; 
PFRP^FRP8 m.u 

= 443.8 MPa 

c = 
/FRPA FRP™ FRP — 

*M'mb 
23.8 mm 

Mn = fnpA, FRP J-i£ 15.88 W.m 
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APPENDIX B: CALCULATION OF DEFORMABILITY FACTOR 

This appendix explains, in detail, the calculation of experimental curvature based 

on the deformed shape of the wall, at service and ultimate stage, through an example 

(Wall G-4#13-P). The experimental curvatures were used in calculating the deformability 

factor in Chapter 6. 

In order to calculate the maximum curvature at each stage, the deformed shape of 

the wall is drawn using the recorded deflection at mid-span, third-spans, and quarter-

span. It is assumed that the deflection at the other quarter-span is identical to the recorded 

one. It is also assumed that the deflection at both ends of the wall is zero. Afterwards, the 

shape of the wall is fit to a second-degree polynomial equation (i.e. parabola) having 

seven points of the deformed shape. The absolute value of the second derivative of this 

polynomial with respect to x (which represents the length of the wall) is the curvature at 

that stage. 

Service stage: 

Deflection: A(x) =y= -6.5x2 +15.5x-0.1 

Rotation: 0(x) =y = -13.x+ 15.5 

Curvature: vi*) = y" = _ 13 

Max. Curvature: y/(x = 1.2 m) =13 l0%m 
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Calculating the deformability factor: 

Curvature factor: 

Moment factor: 

= 111=10.08 
13 

30.3 „ „ 
= = 3.76 

8.1 

Deformability factor = Curvature factor x Moment factor = 10.08 x 3.76 = 37.9 
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APPENDIX C: DESIGN EXAMPLE 

This appendix exemplifies the application of the capacity chart proposed in 

Chapter 5 (Figure 5.10) for designing masonry walls reinforced with GFRP. For this 

matter, a hypothetical design problem is defined as such: 

It is required to determine the ratio of longitudinal reinforcement using GFRP 

rods with ultimate tensile strength of 790 MPa, ultimate tensile strain of 0.0018, and 

tensile modulus of elasticity of 46.4 GPa, for a fully grouted 190 mm hollow concrete 

masonry wall spanning 3.0 m vertically to carry 5.0 kN/m2 unfactored wind load, f m is 

reported 10.9 MPa from prism tests. 

Dimensions of the wall: 

Clear span: 

Width: 

Thickness: 

L = 3000 mm 

b= 1000 ww 

h = 190 mm 

Properties of the masonry: 

Compressive strength: fm= 10.9 MPa 

Reinforcement specifications: 

Type of the rebars: 

Effective depth: 

Modulus of elasticity: 

Ultimate tensile strength: 

GFRP 

d= 95 mm 

EFRP = 46.4 GPa 

fu,FRP = 790 MPa 
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Ultimate tensile strain: £FRP.U = 0.0018 

Factored load and moment: 

w, = 1 . 4 x 5 . 0 ^ 2 = 7.0 kN/ 2 •' / m / m 

h.okN/ ){3.0mf 
M = S / m I = 79 kN.m/ 

f s /m 

Normalized moment factor: 

M. 
"A = M, = 7.9 kNm/ 

w / (l5.8 kN.m/\UtfN.mm/ \ 

bd (1000 mm){95 mmf 

Having Mn/bd2 = 1.8 MPa for 1.0 m of width of the wall, the required 

reinforcement ratio can be found from Figure 5.10, which is 0.0051. 
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