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ABSTRACT 

The progress in recent years and the advent of new powerful computers have allowed 

experts to simulate combustion-turbulence interaction reasonably well and predict 

temperature and velocity fields with acceptable accuracy. However, the current 

technology and available computer power do not suffice in predicting the concentration 

of minor species such as NOx and CO. As the reduction of these pollutants requires 

expensive experimentation, much attention has been directed towards more cost effective 

ways of simulating pollution emission via numerical methods. This research project has 

been conducted in order to obtain a universal cost effective method for predicting 

emissions via a system of Chemical Reactor Networks (CRN). This was achieved via 

coupling of CFD-CRN. While CFD provided temperatures, residence time and major 

species' concentrations, CRN was able to accurately tackle the complex chemical kinetics 

for prediction of minor species on a personal computer; A task which would have taken 

months via CFD on a computer cluster. RANS and LES simulations of an industrial Rolls 

Royce RB211 combustor were performed with and without Discrete Phase Modeling. 

CRNs were then extracted from the CFD field based on temperature, composition and 

geographical location via an efficient coded algorithm. It is demonstrated that the 

chemical kinetic computation based on the extracted CRNs from CFD provides 

reasonable results compared with experimental data on some of the CO predictions. It is 

strongly believed that higher resolutions of reactors will at least provide reasonable trends 

upon boundary condition variations. The algorithm developed in this study leads to a 

more universal approach for cost effective prediction (quantitatively or qualitatively) of 

combustion emissions, which contribute to cardiovascular and respiratory ailments. 

Ill 
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1 INTRODUCTION 

In recent years special attention has been directed towards modern technologies' impact 

on the environment and consequently human health. Health Canada summarizes the 

effects of air pollution to be principally on respiratory and cardiovascular systems (1). 

Some of the recent initiatives such as the NOx Budget Trading Program (2) under the NOx 

SIP call and Ozone Transport Commision NOx Budget Program in the-United States and 

the Kyoto Protocol (3) ratified by 180 nations show the global determination in battling 

the air pollution issues around the world. According to the World Health Organization, 

2.4 million people die each year as a direct result of air pollution (4). 

Therefore, various initiatives have been taken to introduce more environmentally friendly 

sources of energy such as solar energy, wind energy, the oceans' energy and even nuclear 

energy. These resources suffer from their unique set backs and have been slow in 

replacing fossil fuel as the main source of energy. It is apparent that fossil fuels will not 

leave our daily lives any time soon; therefore alternative means of utilizing fossil fuel 

energy with minimized impact on the well being of the global village is required. 

Industrial combustion contributes to roughly 18% of NOx emission in the United States 

based on a study in 2000 which ranks it as the second highest pollution source in the 

category of stationary sources. Pollution production can be altered via the choice of fuel 

and the method of combustion. The use of natural gas in stationary gas turbine makes 



them a relatively clean source of energy. Natural gas, which is mainly composed of 

methane, has a high hydrogen to carbon ratio of 4 to 1 which results in its low emissions 

of CO. Also a lack of sulphur in natural gas eliminates the possibility of sulphur dioxide 

emission which is considered hazardous. 

Although natural gas is a relatively clean fuel, it is still capable of producing 

unacceptable levels of NOx and CO which has led the industry to seek new ways of 

controlling the emissions in natural gas. New combustion methods can be categorized 

into pre-treatment, modern combustion mechanisms and post-treatment. Catalytic 

treatment and fuel switching are some of the pre- and post-treatment methods currently in 

place. The complexity of design and manufacturing of combustion chambers requires a 

thorough computational analysis of the flow before producing the combustor for further 

experiments. Gas turbine companies have been facing new stringent emission and 

efficiency demands from their governments and clients. In order to meet the demand at 

reasonable costs, they are obliged to take advantage of modern fluid dynamic simulations 

to reduce the number of rig tests required. Computational Fluid Dynamics (CFD) has 

been used extensively for the reasons mentioned above, however, the complexity of long 

reaction mechanisms pose severe time penalties for detail combustion simulations (5). The 

coupling of CFD-combustion interaction often takes advantage of simplified models 

which can predict temperature, velocity and fast species' (such as CH4, 02) 

concentration with reasonable accuracy while failing to predict the production of slower 

species such as CO and N0X. Some attempts have been made at reducing and 

customizing the complex mechanisms for specific conditions in order to achieve 
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reasonable computational time. For example, Novosselov et al have proposed an eight 

step global mechanism for methane at certain conditions (6'7). However, effective CFD 

simulations still require expansive computational capacity. The complex nature of 

combustion processes and their comprising intermediate reactions render detail CFD 

turbulent combustion simulations impractical. In order to control emissions, a great deal 

of computational/theoretical research is being conducted to potentially predict the output 

emissions. The alternative in combustion simulation is believed to lie in decoupling of 

combustion from the CFD field. One of the potential methods is to simultaneously solve 

the combustion equations separately from the CFD. 

The definition of a general method to estimate NOx and CO emissions in large industrial 

combustion systems is the principal goal of this research. The current project aims at 

decoupling the CFD simulation from detail chemical kinetics. The flow field information 

(such as temperature, composition and residence time) is transferred into a purely 

chemical kinetics solver which simultaneously solves the underlying governing 

equations. With this simplification, the simultaneous solution of the equations in a purely 

chemical kinetics solver with no turbulent and flow effects shall enhance the solution 

time by several orders of magnitude. 

One method to compute the chemical kinetics is via a simplified Chemical Reactor 

Network (CRN). CRNs allow the user to investigate the concentration, of slower species 

such as NOx and CO. A typical CRN comprises of a series of theoretical reactors (e.g. 

perfectly stirred reactor PSR, plug flow reactor PFR and partially stirred reactor PaSR) 
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which resemble unique parts of the CFD flow field. The simple reactors are modeled only 

by energy and species transport equations. Although seemingly simple, many attempts 

have so far failed to devise a universal method which would systematically generate a 

chemical reactor network representative of the CFD flow field. This thesis aims to offer a 

universal method of creating CFD dependent chemical reactor networks which is easy 

and robust to implement using the conventional CFD softwares and reasonable 

computing power. It also takes into account the limitations and shortcomings of the 

available algorithms and offers ways around them. The chemical reactor network is 

created based on CFD predictions of an industrial RB211 combustor. A systematic 

approach (that accounts for mass flow splits and residence time without the need for user 

adjustment) is devised to produce the desired reactor network. The reactor network 

generated would be of reasonable complexity considering the available computing power. 

Although large reactor networks could not be used (as done by Falcitellie et al (8)) due to 

numerical and software limitations, Falcitelli et al's (* systematic approach in reactor 

network generation has been used in the current project. Falcitelli et al generate a reactor 

network based on the flow field's composition and thermal characteristics as 

implemented in this thesis. Once the geometry is discretized according to its temperature 

and composition field, a representative reactor network is solved using the commercially 

available software "Chemkin". Due to the stiff nature of the equations and the complexity 

of the flow field, it is highly challenging to obtain convergence with reasonable accuracy. 

This requires several iterations in producing a reactor network and numerical adjustments 

in the solver's settings. Care must be taken to avoid averaging over large thermal and 
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compositions gradients and to avoid generating small reactors which would only pose 

further convergence difficulties without playing a major role in the solution of the flow 

field. Averaging over large gradients can also result in unreasonable predictions of 

species' concentration. 

1.1 S u m m a r y 

The negative effects of pollutants caused by combustion have been recognized. There has 

been a tendency towards using cleaner sources of energy such as the natural gas. 

However, new methods of emissions prediction are vital to design environmentally 

friendly combustion chambers. Currently, CFD simulations require unfeasible amount of 

computing power to predict minor species' concentrations. Since CFD simulations are 

capable of predicting temperature and flow field properties with reasonable accuracy, a 

novel method is proposed and implemented by decoupling the chemical kinetics involved 

from the CFD flow field. Decoupling of chemical kinetics from CFD allows tackling of 

large combustion mechanisms and calculation of minor species within a short period of 

time with limited computing power. The goal is to devise a method that allows 

quantitative or at least qualitative prediction of emissions with reasonable accuracy 

within a reasonable time frame and using the available computing power. 
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2 FUNAMENTALS OF CHEMICAL REACTOR 

NETWORK MODELING 

The current study is to model the CFD flow field solution by a chemical reactor network 

which can predict emissions with reasonable accuracy or can at least predict the trend in 

emissions production with changes in the flow field. A chemical reactor network is 

comprised of a series of theoretical reactors. In this Chapter, the basic CRN theory 

including different types of reactors and their mathematical models are reviewed and 

discussed. The commercial software Chemkin, which is capable of carrying out CRN 

computations, is introduced. 

2.1 Types of Chemical Reactors 

Traditionally, chemical reactor network typically consists of the following types of 

reactor element combinations. 
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2.1.1 PSR (Perfectly Stirred Reactor) 

The PSR can be defined in terms of a PFR cut into a number of small sections where each 

section has an almost uniform temperature and composition. The Perfectly Stirred 

Reactor (PSR) or the Continuously Stirred Tank Reactor (CSTR) which has been utilized 

extensively for academic and industrial purposes is an ideal reactor within which the 

temperature and composition are uniform throughout due to the instant mixing of the 

incoming flow. The reactor composition can change over time but not over space. Kee et 

al (9) describe the instantaneous perfect mixing to be due to high molecular diffusion (for 

example at low pressures) or high turbulence intensity. The state of the mixture is 

determined based on the temperature, composition and residence time of the flow. In 

theoretical models, one could fix the temperature in the reactor if the main concern is to 

study reaction chemistry while neglecting the energy balance. The temperatures are 

usually extracted from a CFD analysis or experimental data. 

2.1.2 PFR (Plug Flow Reactor) 

Annamalai et al ( define the PFR to be "a reactor in which there is no radial variation of 

the system properties". Plug flow reactors are one-dimensional reactors where the flow 

composition and thermodynamic state can vary along the flow path but not radially. It 

must be noticed that also the diffusive transport is neglected along the flow direction. 
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2.1.3 PaSR (Partially Stirred Reactor) 

One of the other elements which may be considered for use in the future is the partially 

stirred reactor. As the name indicates, this reactor differs from the PSR due to its mixing. 

In many industrial applications such as gas turbines and internal combustion engines, the 

mixing is not always fast enough for the flow to represent a PSR. Therefore, the partially 

stirred reactor could offer a more realistic approach by taking unmixedness into account 

( ' ' \ The thermo chemical properties of a PaSR are homogeneous spatially while 

maintaining some unmixedness on the molecular level. This unmixedness is usually fed 

into the reactor in terms of mixing frequency or eddy turn over time. A choice of mixing 

models is also available (,2). While PSRs and PFRs can take the fluid flow field 

information via the residence time only, partially stirred reactors can take more of the 

flow field information via the residence time and unmixedness. 

2o2 Conservation Laws and CRN Theory 

The mathematical formulation in CRN modeling turns the complex CFD problem into a 

purely kinetics problem and allows the user to solely focus on the reactions involved in 

the combustion field. In this section a summary of the main equations involved in solving 

of a reactor network are described. 

8 



2.2.1 Conservation Laws for a Perfectly Stirred Reactor 

The species conservation equation for the klh species can be written as; 

rdmA = r 

dt J ** 
/ srs lent 

®W*dV Equation 2.1 

The right hand side would indicate the production or the consumption of the species. 

Therefore, the integration over the control volume would expand the equation to; 

f —{pYk)dV+ ipYkV.ndA= [ <bkWkdV Equation 2.2 
l~v Qi JCS i:v 

It may be worthwhile to point out that the species equation (Equation 2.2), when applied 

to large chemical mechanisms for complex mass flow splitting, generates very stiff 

matrices. In simple words, stiff equations require a much smaller time step to remain 

stable compared with the time step they require to maintain accuracy. Special numerical 

treatment, smaller time steps, and frequent updating of the Jacobian are used to achieve 

convergence. Kee at al(9) address the treatment of stiff equations in full detail. 

For a fixed volume of uniform properties the integration over the volume would simplify 

9 



the equation further to; 

^pYk>V+ I pYkV.ndA = <bkWkV Equation 2.3 
dt £s 

The details of the mathematical derivation could be found in Ref 9. The final derivation 

of the species conservation equation for the perfectly stirred reactor is; 

dYk _>n( * Y) *kWk 
dt pV\ k k) p 

Y _y \+ * ^ Equation 2.4 

The energy equation can be simplified by neglecting the kinetic and potential energy due 

to gravity. The energy equation in its general form can then be written as follows; 

\dt j 
system 

dQ dW 
i j Equation 2.5 

The Reynold's transport theorem could be used to transform the equation in its general 

form into; 

{.„. jMdV +\cspeV.ndA = Q- \pV.ndA Equation 2.6 
cs 
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where ~ and Q is the heat crossing the control surface. 

The enthalpy definition could be incorporated into the above equation to derive a more 

comprehensive equation. 

[vj{pe)dV+[shpV.ndA = Q 
dt 

Equation 2.7 

Notice that a positive Q indicates heat being transferred to the reactor. 

The energy equation can be finalized as follows; 

dT m K K h,d)Wy rvyk, Q E Y, \h, -ht - I -5 ^ + ̂  Equation 2.8 
p dt pvk = l H k k) k = l p pv 

2.2.2 Conservation Laws for a Plug Flow Reactor 

The plug flow reactor is always used in steady state for the current project's purpose. The 

general conservation laws are similar to the ones already defined for the case of perfectly 

stirred reactors. Therefore only the equations in their final forms are written here. 

The continuity equation for the perfectly stirred reactor can be finalized as; 
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pu-± = a>kWk 
dz 

Equation 2.9 

The energy equation in its final format can be written as; 

dz Ac t=l 

Equation 2.10 

where: 

A=l 
Equation 2.11 

CP =lLYkcP,k 

m = pAcu 

pW 
P = RT 

Equation 2.12 

Equation 2.13 

Equation 2.14 

2.3 Description of Chemkin 

These conservation equations are the backbone of chemical kinetics solver. Temperature, 

species mole fraction, pressure and volume are the main variables required in solving 

these equations. This information is extracted from a CFD flow field and is written in a 

format recognizable by Chemkin to perform the subsequent kinetic analysis. 

12 



Chemkin is a software provided by Reaction Design which specializes in calculation of 

reactive flow systems. It was originally provided by Sandia National Laboratory as an 

open source software but was later purchased by Reaction Design and is currently a 

commercial software. 

Chemkin is made up of 5 major infrastructural subroutines for: 1) gas phase chemical 

kinetics 2) transport properties 3) surface kinetics 4) two point boundary value solver and 

5) the thermodynamic data base. 

It was originally devised as a simple chemical kinetics solver and contained basic reactor 

models such as the perfectly stirred reactor and the plug flow reactor. Today it is a high-

tech software and includes highly specialized models such as the partially stirred reactor 

model with PDF and mixing models. 

This software was chosen due to its long history of validation, robustness and technical 

support. 

2.3.1 CRN Validation using Chemkin 

Since the information available on chemical reactor networks and Chemkin is relatively 

scarce compared with CFD and Fluent applications, it was decided to examine Chemkin's 

results with an experiment. The experiment by Rutar et al(l j ) was therefore chosen where 
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they simulate a PSR behaviour using a high pressure jet stirred reactor at a very short 

residence time of 0.5 ms. The pressure and temperature were held at 6.5 atm and 1825 K 

respectively. It must be noticed that according to Rutar et al(14) the NOx reduction with 

pressure is only noticable for pressures of up to 5 atm and almost negligible at pressures 

over 7 atm at a temperature of 1825 K. Therefore there is reasonable correspondence to a 

typical industrial combustor's operating conditions in terms of NOx production 

sensitivity. The mass flow rate was adjusted to simulate a residence time of 0.5 ms at a 

volume of 1.5 cm3 corresponding to Rutar's experiment. However Keller et al(15) indicate 

that NOx and CO production is not a systematic function of the mass flow rate as long as 

the equivalence ratio is held constant for lean mixtures. 

Chemkin calculations estimate the NO concentration to be at 1.39 x 10" and a water mole 

fraction of 0.15 which corresponds to about 16 ppm NO. NO2 mole fraction is on the 

order of 10"8 and is almost negligible. The NOx was then corrected to 15% oxygen (16) and 

the corrected NOx was calculated to be 5 ppm which closely corresponds to the measured 

value (!3). 

23.2 Chemcial Reaction Mechanism (GRI 1.2 vs GRI 3=0) 

To reduce the numerical weight on Chemkin a few initial trials on the CRN were carried 

out with GRI 1.2 which is slightly less developed than GRI 3.0. Sensitivity analysis in an 

equilibrium model (1 was implemented to see the difference between the two reaction 

mechanisms. The GRI 1.2 showed a consistent over prediction of equilibrium 
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temperature by about 5 degrees over all the air fuel ranges which is not significant. This 

may be justified by a lack of endothermic reactions in the simpler GRI 1.2 model 

however the difference is not significant. The final simulations in this thesis were 

however implemented with the full GRI 3.0. 

2 .33 Mechanism Interaction 

It was realized that for the understanding of the role of each NOx production route, a 

sensitivity analysis is required to determine the amount of interaction between the major 

NOx producing reaction paths in the GRI 3.0. The developers of the GRI mechanism 

recommend that the mechanism has to be used as a whole and any changes may result in 

inaccuracies (1 . 

Based on the work of Guo et al (18) it was decided to modify the GRI 3.0 to account for 

only one of NO formation path at a time. Therefore, for the thermal Zel'dovich 

mechanism the following routes were disabled based on Ref 9. 

N+NO<=>N2+0 

N+02<=>NO+0 

N+OH<=>NO+H 

The N2O path was recognized and disabled based on the work of Steele et al (,9). The 

following paths were singled out. 

15 



N20+0<=>N2+02 

N20+0<=>2NO 

N20+H<=>N2+OH 

N20+OH<=>N2+H02 

N20(+M)<=>N2+0(+M) 

Two reactions categorized by Kee et al (9) as the most important initiating prompt 

reactions were disabled. These reactions are: 

C+N2<=>CN+N 

CH+N2<=>HCN+N 

From the available literature, it was assumed that three main routes contribute to the NOx 

formation and these are N20 intermediate, thermal Zel'dovich and prompt mechanisms. 

As a sensitivity analysis each path was run individually and the NO production was later 

added up to see the disparity between the full GRI and the modified GRI in order to 

evaluate the interaction effects. The sensitivity analysis was done on an 8 reactor CRN 

model of a 45 degree RB211 primary zone model. 

The average disparity between the NOx produced by using the full GRI 3.0 and the NOx 

calculated by the addition of each NOx producing mechanism was calculated to be 

6.72%. The average 6.72% corresponds with the work of Guo et al (18) who predicted a 
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4% disparity due to a lack of interaction in their laminar premixed flame models. 

2.4 S u m m a r y 

In this chapter the concept of Chemical Reactor Networks (CRN), their composing 

elements and the governing equations have been introduced. It was shown that the 

chemical kinetics could "be separated from the flow and solved more efficiently in a 

kinetics solver package. The current software Chemkin has been introduced due to its 

simplicity and available technical support. Validations on the software performance and 

the GRI mechanisms have been done to show the adequacy of Chemkin for the current 

project. 

17 



3 FLOW FIELD DISCRETIZATION METHODOLOGY 

Many attempts have so far failed to devise a universal method which would 

systematically generate an accurate chemical reactor network representative of the flow 

field. At present, there is no hard rule for the number of reactors needed. Reactor 

networks for various purposes vary in sophistication and complexity and they seem 

highly case dependent. This chapter first reviews different previous methods and then 

discusses the current systematic approach to generating CRN from CFD solutions. 

3.1 F r o m C F D to CRN? Tradi t ional Approaches 

Studies have been conducted since the 50s to simplify the flow field in order to 

concentrate the computer time on resolving the kinetics involved in combustion 

processes. In 1953, Bragg ( proposed the idea of presenting a combustion chamber with 

a perfectly stirred and a plug flow reactor for the primary and secondary parts of the 

combustor. Flow properties (composition and temperature) are homogeneous within a 

perfectly stirred reactor while they can change axially only in a plug flow reactor. Zonal 
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combustion modeling was later proposed by Swithenbank ( ' which set the path for the 

creation of more elaborate reactor networks. At present, there is no hard rule for the 

number of reactors needed. Reactor networks for various purposes vary in sophistication 

and complexity and they seem highly case dependent. While Schlegel et al (2 ) have used 

a simple combination of PSRs and PFRs in their model. Falcitelli et al ( ) have used 

hundreds of PSRs to represent their network. Ehrhardt et al<23) have taken advantage of a 

large number of PFRs to represent their combustor's simple flow field. At a basic level, 

the experimental Jet Stirred Reactors (JSR) have been studied extensively by Rutar et al 

(14) in order to simulate one PSR or multiple PSRs and PFRs and the results have been 

validated against the experiments. 

So far, the majority of reactor networks generated require the user to adjust very 

important factors like residence time and mass flow splits, to ensure compliance with 

experimental data. Only simple cases which are represented with hundreds of reactors 

require minimal adjustment from the user. Large reactor networks similar to that of 

Falcitelli et aPs t8) are not justifiable due to numerical and time penalties involved in 

complex combustor geometries. 

The transformation of a CFD flow field into a chemical reactor network requires the 

grouping of control volumes or cells with similar properties. Each group of control 

volumes or cells is assumed to behave as a perfectly stirred or a plug flow reactor. Fig 3-1 

is a representation of an RB211 primary zone which is divided into several regions 

enclosed by the red rectangles. Each rectangle represents one perfectly stirred reactor 
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representing the corresponding part of the flow field. 

Figure 3-1: Image of the primary zone of the combustor with virtual PSRs 

In Fig 3-1, each section represented by the red rectangle comprises of control volumes 

with similar properties. Each region corresponds to a perfectly stirred reactor as shown by 

Chemkin's PSR icons. 

The reactor arrangement has traditionally been done in three different ways: 
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3.1.1 Method I 

On the most basic level, for very simple 2D geometries with no recirculating flows, the 

streamlines are drawn and divided into several plug flow reactors. The division is refined 

until no considerable change is observed in the results; or in other words a sensitivity 

analysis is implemented via the number of reactors. The figure below is a portrayal of this 

approach. 

axis of 
symme* 

Figure 3-2: Based on the streamlines, cells are grouped to represent PFRs in series and 

parallel<23) 
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Ehrhardt et al( ' implemented a CFD analysis of a very simple 2D geometry via the 

k-epsilon model and chose a flow field where downstream convection is much stronger 

than upstream diffusion therefore simplifying the solution by solving parabolic equations. 

The cross sectional diffusion or mass transfer could be corrected using the eddy viscosity 

via the turbulent Schmidt number. A grid sensitivity analysis would then determine the 

right number of the plug flow reactors. 

This method is straight forward to use and requires little modifications in the CRN while 

easing the numerical solution of the energy equation which is difficult to resolve. A grid 

sensitivity analysis is easy to implement since the reactors are extracted by simply 

coarsening the mesh by various degrees. 

The over simplified geometry approach however renders this approach futile for complex 

geometries where a combination of recirculation zones, inlets and cooling air need to be 

taken into account. The flow does not act in ID or 2D in real geometries therefore 

requiring a more complex approach. Implementing the equivalent 2D streamlines in large 

complex 3D geometries and dividing them in 3D space is immensely time consuming if 

not impractical. 
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3.1.2 Method II 

Falcitelli et al u have divided the full combustor into many small perfectly stirred 

reactors. This solution is theoretically correct since according to Levenspiel (24) even a 

PFR can be represented by a number of PSRs given the number is large enough. In this 

method, the flow field is broken down into many small regions based on temperature and 

composition parameters. The grouping is done regardless of the geometrical properties 

and the validity of assuming a PSR behavior for each group of cells is mainly judged 

based on the unmixedness index in the reactor The recycling flow (the flow that enters 

one reactor from another) is directly taken from the CFD calculations between the 

adjacent cells. 

As every few cells are grouped into one reactor, the network's resolution would not be far 

from the CFD's resolution therefore making it easier to obtain accurate results. The 

resulting CRN closely resembles coarsening of the CFD mesh and running the 

calculations required. 

For a hexahedral mesh of about 70148 nodes, which would roughly result in less than 

40000 cells and for a relatively simple flow field of an opposite wall fired steam 

generator, over 400 reactors were needed to obtain satisfactory results (8). This means on 

complex flow fields with several million cells, an unacceptable number of reactors would 

be required. Long calculation times could render the method less efficient than expected. 
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3.1.3 Method III 

The classic method of reactor network generation is more based on skills and experience 

of dividing the flow field into various regions based on their velocity vectors, temperature 

and composition. This method has been in existence since Bragg (20) proposed the idea of 

representing the combust or by a PSR followed by a PFR and Swithenbank (21) suggested 

the use of zonal combustion modeling. It consists of dividing every section of the 

combustor into a few reactors. Usually a few PSRs are allocated in the primary and 

secondary combustor zones followed by one or two PFRs in the discharge nozzle. This is 

the simplest method and mainly based on an analysis of Discrete Phase Modeling results 

to define the reactor volumes. This method largely depends on the user's judgment 

therefore it may prove inefficient and time consuming for complex combustors. Andreini 

et al(25) have also created a reactor network based on method III. 
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Figure 3-3: Representation of a reactor network for a LP combustor (Andreini et al ) 
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This method offers the user the ease of setting up the problem and running it within a 

short period of time. However, possible significant inaccuracies due to a very general 

representation of the flow field which is also considerably based on the user's judgment 

could not be justified. 

3.2 From CFD to CRN: Current Approach 

In this work, a systematic approach is proposed. The current approach uses the best 

features of each traditional method while avoiding their limitations to offer a more 

practical way for industrial combustion analysis. An algorithm was developed to extract 

a CRN on an RB211 combustor. This is a DLE partially premixed combustor used on 

Rolls Royce's industrial RB211 engines. The method aims at initial discretization of the 

flow field based on its temperature and mixture fraction similar to the works of Falcitelli 

et al ( ' and Bitondo ( . A higher concentration of the perfectly stirred reactors (PSRs) is 

located in the primary and secondary zones of the combustor while the discharge nozzle 

area is mainly represented via one or a series of plug flow reactors (PFRs). The reactor 

network is refined around the flame (hot zones of the primary section) to better resolve 

the most influential emission regions. The fluxes are taken directly from the CFD 

therefore taking average mass transport between the reactors (Appendix A). This way, a 

systematic approach is devised using a user defined function to convey as much CFD 

influence as possible into the reactor network and to set up the network in the shortest 

possible time. Each reactor is also initialized through its species and average temperature 
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which are taken directly from the CFD flow field. 

The logical steps for the current approach are; 

» Discretization of the flow field with regards to temperature, mixture fraction and 

geographical location or Zone of Influence (See section 3.3 and 3.4). 

• Obtaining each discretized zone's volume (see section 3.5). 

• Obtaining mass flow splits between reactors (see section 3.6). 

• Incorporation of the cooling air added to each reactor (see section 3.8). 

» Obtain each zone's average properties such as the average temperature and 

mixture fraction. 

• Calculation of each zone's averaged species' mole fractions. Chemkin's 

performance can be enhanced if an initial guess of each reactor's species mole 

fractions is provided. Therefore the user can average some of the main species in 

each reactor and provide Chemkin with the initial species' mole fractions to speed 

up the computational process. A reactor network initialized with flow field's 

averaged species can improve Chemkin's computational time up to 3 times 

compared with an uninitialized reactor network. 

Reactor network generation has always been a difficult task since no set of firm rules 

have been devised regarding the degree of reactor refinement and accurate representation 

of inter reactor flux exchange. Also, the current chemical kinetics software package. 
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Chemkin, poses serious limitations on the number of inter reactor flux exchange and the 

type of reactors which could be linked. For example, in the main flame region where high 

thermal and composition gradients dominate the flow, any reactor could be exchanging 

mass flow with several other reactors exceeding a maximum permissible number of 10 

reactor flux interconnections. Also, the higher the number of connections and the smaller 

the amount of mass exchanged between them, the more challenging the task of obtaining 

convergence would be. The current approach aims at tackling the following principal 

challenges; 

For accurate refinement of flow field discretization a semi automatic method 

needed to be devised which would ease the way for the user to generate CRNs 

rapidly and determine the most promising discretization parameters (ex. 

temperature, mixture fraction, eddy turnover time, NOx approximation from the 

NOx post processor, turbulent kinetic energy etc..) 

A method was required where the user could extract the amount of mass flow 

exchange between the reactors automatically. 

Previously the amount of mass exchanged between reactors could not be extracted 

directly from the CFD simulation. The user was obliged to do the daunting task of 

defining simple and large reactors where the amount of mass flow rate could be 

roughly estimated via analytical, experimental or primitive post processing 

methods such as defining of iso surfaces. The author has taken advantage of an 
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inherent feature of Finite Volume Methods, which is the calculation of fluxes on 

each face, by extracting the fluxes directly from the CFD solution. 

» Limitations of Chemkin had to be taken into account and only reasonable sized 

CRNs could be produced. 

® For realistic geometries, the addition of cooling air would have serious impacts on 

the flow field and novel techniques would be required to take cooling air into 

account. 

• Flexibility to deal with unstructured or some times hybrid meshes was needed. 

• It was required to obtain the flexibility to run LES cases and generate CRNs 

within them. Since no way of accessing averaged LES results from the Fluent data 

file was discovered within the specified short period of time, a novel method was 

devised to discretize the averaged LES results in Fluent via a developed UDF. 

The CRN generating UDF would then discretize the field based on the user 

averaged LES data. 

3 3 Mix ture Fract ion and T e m p e r a t u r e 

The first step in creating a reactor network is to determine the criteria based on which the 

geometry would be divided into smaller sections. Based on the definitions of perfectly 

stirred and plug flow reactors, temperature and mixture fraction were used to divide the 
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flow field since they represent the thermodynamic and composition state of the flow. 

Falcitelli et al (8) use the stoichiometry and temperature to break down the flow field 

while Bitondo (26) suggests the use of temperature and mixture fraction. Mixture fraction 

has been used since Fluent solves the mixture fraction equation and its value is an 

indication of the composition of the mixture in every cell. The mixture fraction value for 

every cell is readily available to be accessed in Fluent and is stored by Fluent in an array. 

The mixture fraction is a non-dimensional variable and is defined in terms of a passive 

scalar that complies with the scalar transport equation without the source term. 

The flow is then discretized into sections to ensure relative homogeneity in composition 

and thermal properties. This division is arbitrary at first, but via reactor network 

sensitivity analysis a final division is later selected. The idea of reactor refinement is 

similar to a CFD mesh sensitivity analysis. The reactor numbers are increased in regions 

where high thermal or composition gradients exist to ensure the flow properties in each 

region comply with the definition of PSRs and PFRs. 

In complex geometries such as the RB211 a refined reactor network is required to 

represent the flow field accurately. Species such as NOx and CO are highly sensitive to 

temperature. Therefore the temperature gradients were specified to produce more reactors 

in the primary compared with the secondary and the discharge nozzle. The primary 

section of the combustor (see Fig 3-4) is the heart of the combustor and it has higher 

temperature gradients to be captured; therefore a higher number of reactors are required 

for this region. The high concentration of the reactors is generally applied for 
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temperatures exceeding 1700 K as the temperature interval that describes the 

homogeneity of each reactor cannot be too large. The NOx formed via the thermal 

Zel'dovich mechanism increases significantly with temperatures exceeding 1700 K-1800 

K (27). Therefore care is taken to avoid averaging over large temperature intervals at high 

temperatures. Temperature intervals of 50 degrees and smaller are used for high 

temperature gradient regions in the primary section of the combustor. The variation of 

reactor concentration in the primary, secondary and discharge nozzle is entirely up to the 

user's judgment, but this variation is usually non linear. 
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Figure 3-4: Depiction of refined reactor resolution (left) and original resolution of 

reactors around the flame (right). 

Fig 3-4 is a 2D plane, cut through the RB21 i-DLE combustor on a RANS model{2S). The 

image on the right shows the division of the flow field without the refinement around the 

flame in the primary section. The image on the left shows the primary section with a 

higher concentration of reactors around the flame. Notice that the colors are arbitrary and 
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each one simply represents one reactor. The image on the right shows 1 reactor 

representing the entire flame region while the image on the left divides the flame into 3 

reactors. The higher concentration of reactors ensures better uniformity of the flow 

properties within the reactor. The two circles on the left image indicate the clear cut lines 

which are the boundaries separating the primary, the secondary and the pre-mixer as a 

consequence of the Zone of Influence criteria (see section 3.4). 

3.4 Zone of Influence 

In order to avoid grouping of the distant cells which fall into the same mixture fraction 

and temperature category, a numerical construct so-called 'the Zone of Influence (Zol)' 

traverses the flow field (by looping through every x, y, z value of the domain), creating 

reactors according to the thermal and mixture fraction filtering criteria. Zol (simply the 

delta x, y, z in three-dimensional space) can be used in order to control the number of 

reactors being formed. For example, a greater delta x value will create fewer reactors 

within an interval of x. In this manner, the 'zone' moves throughout the combustor 

region, creating reactors as it passes through. Therefore, the concept of Zol is mainly 

used by the author to distinguish every stage of the combustor which are the primary, the 

secondary and the discharge nozzle and to avoid any insignificant pieces such as the fuel 

bars to be discretized into reactors. This is because the ideal reactor formulations are only 
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•valid for the bulk flow and not for flows close to walls where boundary layers Influence 

the flow field(9). 

mm 

t 

*M 

_* 
J? 

t 

,£. ^m '?'"» V I 4. 

•'•? 
Mi 

* • * 

* • • * .» -5 !" , , 

• .01 -S 
i » 

Figure 3-5: A sample of the flow field discretization within each Zol on a RB211 RANS 

model. 

In Fig 3-5, the colors are random and each represents one reactor. It is noticed that the 

boundaries indicated by the purple lines divide the flow field geometrically first before 
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the reactor extraction based on temperature and composition occurs within each zone 

(Zol). The circular figure on the right is a cross sectional cut of the geometry where the 

arrow points at. There is a clear division of the cells as they move further away from the 

walls. Since Zol works on the entire domain, it is useful to construct the grid as 

consisting of two or three fluid domains (primary, secondary, discharge nozzle) in order 

to constrain the Zol to work on specific regions and to visualize them. 

3.5 Volume and Residence Time 

The issues regarding the residence time and reactor generation were an exhausting and 

challenging part of this project. Almost in all of the available literature, the calculation of 

the recycling flows has not been explained in detail and the residence time calculation has 

been done in different ways. For example, Bitondo (26) has made an attempt at using the 

classic particle tracking method for residence time estimation. Although major problems 

(such as—proprietary info--) prevented him from obtaining a reasonable reactor network, 

his techniques are acceptable and useful. Rubins and Pratt(29) carried out a water tunnel 

test to become familiar with the flow field in their ALF-502 GT combustor before 

generating their reactor network. 

Traditionally the residence time has been obtained via particle tracking and steady or 

pulse tracer methods. These options have been examined and used by researchers such as 

Pedersen et al(30) and Bitondo (26). 
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The current method is based on accessing the cells and summing of their volumes and 

masses. Chemkin calculates.the residence time based on each reactor's net mass flow rate 

and volume. Therefore, the simplest method is to provide Chemkin with reactor volumes 

directly taken from the CFD flow field. The current approach is based on the works of 

Mohamed (31) and Novosselov(32) and is used by Chemkin(l2). The mass of each reactor is 

calculated by the addition of the mass of every composing cell and the total reactor mass 

is divided by the mass flow rate to obtain an average residence time which is directly fed 

into Chemkin (Equations 3.1-3.2). 

Although Discrete Phase Modeling was tried for the RB211 combustor (33, it has been 

rejected as a reliable method due to its complexity and time consumption for complex 

reactor networks. Moreover, automatic creation of complex iso-surfaces is not possible in 

Fluent and the task of iso-clipping surfaces, which define PSR zones, according to the 

filtering criteria is not a practical option. CRN Generation is thus needed to be semi

automatic at least and considerable programming has been required to ease this problem. 

The residence time can be calculated as follows; 

pV 
rR = Equation 3.1 

m 
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Or 

V 

* V 

Equation 3.2 

3.6 Flow Mass Split 

Chemkin requires the flow mass split to be defined as the percentage of exit mass flow 

rate. The sum of the exit reactor mass flow fractions must equal 1 up to 6 decimal digits. 

Due to the high accuracy required in Chemkin regarding the specification of the recycling 

mass flow fractions, it is therefore suggested to use the double precision "3ddp" version 

of Fluent. The mass flow splits may not always be equal to 1 up to 6 decimal digits in the 

single precision "3d" version of Fluent due to the round off errors. While care is taken to 

isolate and regroup such reactors, it is necessary to avoid round off errors. 

The mass flow splits are extracted between each two adjacent reactors. When two 

reactors neighbor, the flow density, the flow velocity and the area at their interface are 

taken to calculate the mass flow rate between them. Finally, all the mass flow rates 

between the neighboring cells are added up to obtain the total mass flow exchange with 

the surrounding reactors. The steps for obtaining mass flow split for each reactor are; 
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1. First the total mass flow rate through reactor Rj is calculated. 

WRUCal = E \Pc.lU X A.f,c,R, X Vf,c,Ri) 
1 

Equation 3.3 

2. Then the mass flow rate from reactor R, into Rj is calculated and divided by 

the total mass flow rate through reactor Rj to produce the recycling fraction 

ratio from R, to Rj. This value is required by Chemkin. 

™m,Rj = — 

Equation 3.4 

• ™RI RJ 1S trje mass flow rate from R; into Rj 

• ™Ri total ' s t n e t o t a ' m a ss flow rate through Reactor Rj 

• Pc,/?/ is the density at cell "c" of reactor Rj which is a boundary cell 

• AfcRI\s the area of face "f' of reactor Rj which is a boundary face belonging to 

cell "c" 

• vrcRi'ls t n e velocity at the boundary face "f" in reactor Rj which belongs to cell 

® v/• <r w « ' s m e velocity vector from Reactor Rj into Reactor Rj at face "f' of cell 
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• NRj is the maximum number of faces (belonging to cell "c") which comprise the 

boundaries of Reactor Rj 

• Nm Rj is the maximum number of boundary faces shared by Reactors Ri and Rj 

3.7 Removal of Small Reactor 

On complex geometries with millions of cells such as the case of the RB211, there are 

cells which may form small reactors due to unphysical characteristics originating from 

the numerical or mesh quality inaccuracies or simply due to the division intervals used. 

These small groups of cells can hinder the reactor network analysis in two ways: 

1. Creation of negligibly small recycling mass flows sometimes causes the reactor 

recycling interconnections to exceed the allowable limit which is 10 recycling 

connections for PSRs. 

2. Convergence difficulties in Chemkin due to small residence times in these 

reactors 

From experience, the residence times in these reactors are extremely small and the 

number of cells in them may be less than 300 in a mesh containing millions of cells. In a 
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CFD field with millions of cells, it would be practical to remove these reactors and avoid 

all the numerical and software difficulties associated with them. (Appendix B). 

3.8 Addition of Cooling Air via Source Terms 

In the CFD simulations of the RB211-DLE combustor, it was realized that the use of 

source terms for the effusion cooling air were much more preferable to converting walls 

into mass flow inlets to introduce cooling air. The use of source terms proved to achieve 

more realistic CFD temperature fields. However, since these source terms are not 

available with regular identification names (thread ID, cell ID, inlet boundary ID e t c . ) , 

the problem of introducing their existence into the CRN needed to be solved. The 

following technique was devised to incorporate their effect into the reactor network. 

» Mark the layer of cells adjacent to the walls in the primary, the secondary and the 

discharge nozzle of the combustor separately in order for Fluent to assign each 

one a unique thread ID (34). The author identifies each thread by naming them 

flux-primary, flux-secondary and flux-discharge nozzle. 

® Apply the source terms uniformly across the marked zones in each stage of the 

combustor 

® For each reactor that includes cells from one of the flux-primary, flux-secondary 
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or flux-discharge nozzle, calculate the volume of cells and multiply them by the 

source term mass flow constant. The contribution of source terms due to each one 

of these flux zones is then reported to the user. 

The source term effects can be incorporated into the reactor network via the extra inlets 

attached to the source term containing reactors. This approach was validated and 

presented in the technical communication (35). 
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Equation 3.5 

where; 

• "z" is the cell number 

® Fis the cell volume 

« "A/" is the maximum number of cells which contain source terms 

• Q is the source term mass flow constant 

• mj,so„,ce is the mass flow rate due to source terms in reactor j 

CFD-CRN Genera t ion Algori thm Flow C h a r t 
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Once a well validated CFD simulation is in hand, a set of standard steps need to be 

taken for the creation of reactor networks. The following flow chart describes a 

summary of these steps. 
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4 ALGORITHM APPLICATIONS 

It was soon found out that manual post processing of the CFD simulations with millions 

of cells for the discretization and generation of CRNs would be extremely time 

consuming if not impractical. The need for a semi automated robust way of discretizing 

the flow field based on various parameters for sensitivity analysis encouraged the 

development of a program in the form of a User Defined Function or UDF. The 

limitations of Fluent, lack of available information and initial unreasonably slow speed of 

the UDF posed difficulties in coding of the algorithm. 

An initial success in the coding of the CRN generating algorithm (in the form of a User 

Defined Function) was achieved via the extensive use of the data structures which at the 

same time proved to be too slow to be considered highly efficient. The running of about 

20,000 cells would take over 20 minutes and over an hour for 60,000 cells. The flow field 

was successfully divided into various regions and the recycling flows and the temperature 

fields were averaged. 

Several attempts at restructuring the coding mechanism were made in order to improve 

speed. The current use of look up tables and reducing the use of link lists has proven to 
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guarantee efficiency and high speed. The current division of the field based on various 

parameters and without initializing the species for even' reactor takes about 5 minutes for 

3 million cells which is an astounding enhancement compared to the initial versions of 

the UDF. 

d - Slow «M>k cells In over an hour to be resolved) 
gE| • Accurate 
H • Not very flexible 
Wm • Mesh sensitive 

:;t. ''=" . . . H S • I'seof data structure 
S 9 * Mamialinput of Beundaries(InH Exit, Wall) 

. » ^ 

v J • Much faster (3 million cells resolved in 5 minutes!!) 

' ;I•'•••'}'• ''.'• >i| * More flexible 
' ''$&%i. ''i'i-' ~.\' ' Mesh sensitive 
' f & ^ ' A ' '&4 * Little use of data struct 
••••. i< ••« -l ' " " '• v » Aufnm*.rf!f riefpctinn o f 

• • & & •w 

ucture 
Automatic detection of boundaries and boundary type 

• As fast as the second code 
• More flexible than the second code for debugging and manipulation 
• Mesh insensitive 
• Little use of data structures 
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Figure 4-1A representation of the programming phases of the developed algorithm for 

RB211 analysis 
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Chemkin imposes limits on the number of connections each reactor can have. For PSRs a 

maximum of 10 recycling connections can be specified. Occasionally a reactor might 

neighbor a few other reactors where it feeds and receives mass flow with each one 

therefore exceeding a maximum of 10 connections. 

It happens very often that some of these recycling ratios are negligibly small and 

therefore the user can define a cut off recycling ratio threshold under which all mass flow 

recycling fractions are removed and their mass flow rate is evenly distributed among the 

other neighboring reactors. This method conserves mass while avoiding small recycling 

ratios which cause modeling difficulties in Chemkin. 

4.1 CFD Simulation of an RB211 Combustor' 

Initially, a RANS simulation of the RB2I1 was implemented via a polyhedral mesh to 

reduce the cell count and speed up the reactor network generation. The CRN generating 

algorithm was developed with respect to this model and later was utilized on averaged 

LES models for the cases mentioned before. The k - s realizable model was used with 

a standard wall function. Mr.Sandeep Jella compared the CFD with the validated 

geometry presented for his MASc ( and confirmed the validity of the flow field. The 

geometry consisted of 3379137 cells. 21558796 faces and 17831079 nodes. The cooling 

air is simulated via the source terms in the layer of cells adjacent to the walls separately 
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for primary zone, secondary zone and the discharge nozzle. 

Fig 4-2 to 4-5 show the type of flow field, geometry and the grid initially used for the 

development of CRN Generator (the CRN generating algorithm). The algorithm was 

successfully run for hexahedral, tetrahedral and polyhedral meshes on preliminary cases. 

47 



^Premixer Inlets . ^ a £ a v *'* 

J 

• * *:. 

W 

- f t . * ' . . • - • * ! * 

.•--• 7&&y& 

Figure 4-2: 2D portrayal of velocity vectors and the premixer grid 
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Figure 4-4: 3D complex mesh on RB2J1 
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Figure 4-5: Premixer and secondary windows' mesh 

Fig 4-3 is a cut through the geometry showing the unstructured grid. As observed there is 

a higher concentration of mesh points in the primary section of the combustor due to high 

gradients and detail turbulence-combustion effects. The premixer region is not of concern 

to chemical reactor network generation since no reaction occurs. Ideal reactors are also 
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not capable of dealing with boundary layers and strain rate effects which dominate the 

premixer flow; therefore their use is mainly limited to the bulk flow. 

42 CFD Simulation of Simpler Models 

The CFD and CRN simulations were initially started on a simple academic combustor 

l37>. The Lockwood combustor was believed to be a reasonable case to tackle even though 

the higher temperature and composition gradients, as a result of being a diffusion flame, 

are generally not favorable in forming CRNs. The CFD simulation was well validated 

based on the mixture fraction and velocity data. 

m^.^M^mMm^mmt p^^^mstfj'**:* .:* .- - •».> •.•-».«•*. «* 

Figure 4-6: Lockwood geometry 
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Later, a 45 degree slice of the primary section of the RB211 combustor was also analyzed 

and the CFD results were compared with Ref 36. The flow field was in reasonable 

correspondence with the experimental data except for a very small patch of higher 

temperature region which was also unexplained by the experimental data. 

Fig 4-7 is a depiction of the temperature contour in the 45 degree slice of the primary 

section of the combustor. 

Figure 4-7: RB211 combustor 45 degree slice 



43 Reactor Generation 

The current method aims at automatic generation of a ready to use input file for use in 

Chemkin which describes the PSR arrangement and their recycling ratios. Chemkin 

provides the capability of defining each type of reactor (PSR, PFR etc ...) via an input 

file. This feature is an inherent characteristic from its original source code, but the 

capability of integrating different types of reactors is not available via the input file. For 

example, a PSR connected to a PFR can not be generated via an input file. Chemkin 

provides this capability only via the graphical user interface. Therefore the current 

approach is to generate a network of PSRs and manually attach any non PSR reactors via 

the graphical user interface. 

The input file generated is directly read into Chemkin and is made up of 4 principal 

sections which describe the number of reactors, reactor arrangement, reactor properties 

and cooling air inlets from source terms (if available). 

43.1 Description of Input File 

The input file includes commands which instruct Chemkin to use a steady state or 

transient solver, to solve the energy equation or assume fixed temperatures. This part also 

informs Chemkin of the number of reactors in the network. Failure to have the exact 
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number of reactors inserted into the input file will prevent Chemkin from reading the 

input file. The "!" sign is used to add comments in Chemkin. 

! CRN 2007-2008 

!By Sam G.Hesami 

Jin collaboration with Rolls Royee Canada and Concordia University 

Figure 4-8: Input file heading 

NPSR17 

STST 

TGIV 

Figure 4-9 

Section I of the input file to Chemkin includes the headings and defines the number of 

reactors and the type of solver. Fig 4-9 is part of the input file generated which specifies 

the number of reactors, the solver type and the status regarding the solution of the energy 

equation. 

! Number of Reactors After Reactor Re-arrangement and Downsizing 

I Instructs Chemkin to Use a Steady State Solver 

! Instructs Chemkin to Use Fixed Gas Temperature 

Input file part I 
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Part II of the input file includes the information regarding the mass flow splits. Each line 

starts with RECY which stands for "recycle" followed by the donor and the receiver 

reactor IDs respectively. For example, in the 1st line of Fig 4-10, 1.007885157 % of the 

mass flow through reactor 17 recycles into reactor 4. 

LINE 1) RECY 17 4 

LINE 2) RECY 17 5 

LINE 3) RECY 17 6 

LINE 4) RECY 2 3 

LINE 5) RECY 2 4 

LINE 6) RECY 2 1 

LINE 7) RECY 3 17 

LINE 8) RECY 3 2 

LINE 9) RECY 3 4 

Figure 4-10: Input file part II 

0.01007885157 ! Reactor 17 feeds reactor 4 

0.02287825415 IReactor 17 feeds reactor 5 

0.00987549046 !Reactor 17 feeds reactor 6 

0.9728576482 IReactor 2 feeds reactor 3 

0.01820507898 ! Reactor 2 feeds reactor 4 

0.008937272792 IReactor 2 feeds reactor 1 

0.0156725567 IReactor 3 feeds reactor 17 

0.2984216001 IReactor 3 feeds reactor 2 

0.6859058432 IReactor 3 feeds reactor 4 

Part III of the input file contains information about each reactor's volume, pressure, 

temperature and the average species (optional). The following sample has been taken 

from "an input file. The number "17" in bold refers to the reactor number for which the 

conditions are defined. The underlined values correspond to the quantity of pressure, 

temperature, volume and species mole fractions. 
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!Surface_Temperature 1 !Surface Temperature Same as Gas Temperature 

PEES 3 17 (Pressure (atmospheres) 

TEMP 1292.58 17 (Temperature (Kelvins) 

VOL 5153.88 17 !Volume(cmA3) 

XEST H2 1.76194e-06 IMole fraction 

XESTH 4.54261e-08 IMole fraction 

XESTO 6.72712e-06~ IMole fraction 

XEST 02 0.147503 IMole fraction 

Figure 4-11: Input file part 111 

In part IV, the inlets to the reactor network are defined. The physical boundary inlets 

need to be defined manually via the GUI. but the source terms appear automatically as 

mass flow inlets in the input file. These mass flow inlets are defined via their mass flow 

rate, temperature and the reactors they feed. The following sample is from an 

automatically generated input file which defines the inlet streams to the reactor. The 

number 10 in bold in the first line defines which reactor the stream feeds and the 

following lines define the inlet stream's temperature, composition and mass flow rate. 
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INLET Syflux 10 ! Inlet Stream-> defines which reactor it feeds 

TML Syflux 702 ! Inlet Temperature (K) 

REAC Syflux N2 0.78991 ! Reactant Fraction (mole fraction) 

REAC Syflux 02 0.21008 ! Reactant Fraction (mole fraction) 

REAC Syflux CH4 0_ ! Reactant Fraction (mole fraction) 

FLRT Syflux 3.24187 ! Mass Flow Rate (g^sec) 

Figure 4-12: Input file part IV 

An experienced user can change these parameters in any text editor in Windows or 

Linux. 

4.3.2 Graphical Display 

The reactors within the CFD field are referred to in Fluent by their ID numbers. The 

I'1A\ 

reactor number each cell belongs to is stored in the cell via the User Defined Memory 

The reactor configuration can be visualized in Fluent via the Contour option. 
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Figure 4-13: Eleven 3D reactors displayed on Fluent GUI 

In Fig 4-13 and Fig 5-6 the reactors represent the entire RB211 combustor and each color 

on the CFD field corresponds to the reactor number it represents. This method allows the 

user to visualize the generated reactor network within Fluent itself, and helps in 

identifying each reactor's location, for post processing purposes. 
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4.4 Reactor Networks in Chemkin 

The current method groups and processes the cells available and generates a complex 

reactor network where the temperature and species' mole fractions have been averaged 

over each reactor. It then generates an input file which could be directly read into 

Chemkin for further analysis (see section 4.3.1). At the first glance the reactors appear as 

a simple group of reactors connected in a row as shown below. 
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Figure 4-14: Initial view of CRN in Chemkin 's GUI 
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However by expanding the reactor network the complexity of the connections can be 

revealed as depicted in Fig 4-15. 
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Figure 4-15: Expanded view of CRN on Chemkin's GUI 
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The user can find more information about each reactor in the network on the screen in its 

expanded version. Since the premixer does not play a role in the reactor network analysis, 

the recycling flows into the premixer section of the combustor (which are very small and 

due to flow discretization) are manually set to zero. The reactor network appears as a tree 

on the left side of Chemkin's graphical interface and the Chemkin post processor allows 

the user to view the calculated properties in each reactor. The user can select each reactor 

or its recycling connections for further information or modification. The user can also 

verify the properties of the reactor network by implementing a contour of the flow field 

properties in Fluent under the "Display" option. Convergence in Chemkin is a difficult 

task for complex reactor networks. There is no hard rule for numerical stability and better 

convergence can only be obtained via more advanced solvers. Incorporation of more 

advanced solvers in Chemkin is up to Reaction Design and is not within the user's ability 

to modify the solver in Chemkin. However utilization of smaller number of reactors 

would enhance convergence. 

The flow connections in the central reactors in Fig 4-15 represent the cooling air which 

have been extracted and connected to their corresponding reactors. The cooling air has 

been represented as source terms adjacent to the walls in the CFD simulations. 
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4.5 Summary 

A review has been done of the challenges posed by the complicated geometry, CFD 

solution and coupling of CFD-CRN. A method and an algorithm were developed in order 

to discretize the CFD flow field and generate an input file containing all the CRN 

information. This input file could later be read into Chemkin with minimum user 

interaction. The cooling air would also be taken into account via source terms allocated 

adjacent next to the walls. The source terms would be automatically picked up and their 

mass flow rate would be reported into the input file. The automatic generation of an input 

file would turn hours of CRN generation into minutes and therefore enhancing any 

sensitivity analyses required. 

The reactors could also be displayed on Fluent via its contour option. The reactors would 

be displayed based on their allocated ID numbers; however the colors assigned to them 

are arbitrary. Reactor visualization would allow the author to analyze and troubleshoot 

the state of the reactors for any further adjustments. 
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5 RESULTS 

A series of geometries were examined starting from the simplest one (see section 5.1) to a 

very complex RB211 combustor (see section 5.3). The simpler geometries were used in 

order to troubleshoot the methodology and the algorithm before taking over more 

difficult tasks. The results illustrates the robustness and efficiency of the present 

algorithm developed. 

5.1 CRN Simulat ion of the Lockwood Combus to r 

Lockwood did not conduct emissions measurements on his combustor (37). However due 

to the simplicity of the flow field and the accuracy of the CFD simulation, Fluent's NOx 

post processor was run and a 7 reactor CRN model was also generated. The NOx exit 

predictions from the CRN were within 5% of the NOx predictions from the Fluent NOx 

post processor. 
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Figure 5-1: Lockwood CRN on Fluent 
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Figure 5-2: Lockwood CRN on Chemkin 
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The CRN above was the first attempt at creating a reactor network. Time constraint did 

not allow the author to extensively investigate and validate the method on Lockwood's 

geometry. Several other CRNs were generated during which a sensitivity analysis and 

debugging of the method was successfully done. 

5.2 CRN Simulation of the RB211 Combustor's 45 Degree Slice 

The RB211 combustor's 45 degree slice of the primary zone was the first complex CFD 

model run and it was used as a benchmark to further develop and scrutinize the method 

used for CRN generation. Later a 45 degree slice of the entire RB211 combustor (with 

straightened discharge nozzle and most of the externals removed) was analyzed. The aim 

was to simplify the flow field and the number of cells for better analysis of the results. 

Soon new challenges regarding complex geometry analysis surfaced such as exclusion of 

the premixers and injectors from the bulk flow. The RB211 was at one point simulated 

with the premixer and the entire array of fuel injections. These created unnecessary 

volumes which would not be of interest to the author for CRN generation. Several 

attempts were made at simulating the entire 45 degree combustor with inlet profiles 

(velocity, temperature, mixture fraction etc..) read in directly from iso surfaces created 

on the 360 degree full combustor with the premixer attached. These inlet profiles would 

be read in only where the flow entered the bulk flow of the combustor. Fluent showed 

difficulties in obtaining convergence when a large number of inlet profiles were 
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interpolated. Therefore, an elaborate method of using Zoi5 temperature and mixture 

fraction discretization was used to keep the premixer volumes out of the generated CRN. 

Since there were no NOx measurements available to us for the premixed case of RB211, 

the RB21 l's 45 degree slice was only used for debugging and development purposes. 

mmm 

Figure 5-3: Sample RB211 Pie slice CRN 
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Figure 5-4: Sample extended RB211 Pie slice with straightened discharge nozzle 

The O radicals were traced as they take part in the major NOx producing mechanisms as 

Guo et al(!8) define it as the most important species to contribute to NOx production in LP 

combustion. The O radicals in each region of the RB211's 45 degree section of the 

primary zone and were compared with the PDF generated averaged O radical 

concentration. It was noticed that the general trends of O radical concentrations between 

the CFD and CRN simulation were in accordance in regions away from the walls. This 

may be explained by the CRN's inability to take wall effects into account. Fig 5-5 shows 

the O radical trend in an 8 reactor CRN which was generated during a trial ran. The 

reactor number in the CRN is defined by the last digit in the reactor's name. For example 

C1_R1 indicates reactor one which is portrayed in blue on Fluent's GUI contour. 
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Figure 5-5: RB211 CRN-species concentration 

The blue reactor simply represents one inlet and the orange reactor represents another 

inlet. Notice that the inlets and premixers are simulated via low temperature short 

residence time reactors since the assumption is that no reactions could occur in them. In 

Fig 5-5, the CFD analysis showed a considerable amount of cooling air entering the 

flame region however it seriously underestimated the amount of radicals entering the 

flame from the sides. The CRN simulation picked where the CFD was inadequate and 

calculated a higher concentration of the radicals entering the core of the flame from the 

sides. This could explain the complex stable nature of the combustion phenomenon in 

RB211 combustors. The flame seems to be slightly suppressed by the right amount of the 
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cooling air which also augments it by feeding it ready-to-react radicals. If accurate, the 

flame is being controlled by a push and pulls mechanism. 

The major species are averaged for each reactor in CFD and compared with the CRN 

predictions. As mentioned before, for a well validated CFD solution, the PDF method is 

believed to predict the major species with reasonable accuracy. Therefore, the major 

species' concentrations obtained from the CFD are compared with the major species' 

concentrations obtained from the CRN. It is believed if the concentrations of the major 

species correspond between CFD and CRN, there will be confidence in the predictions of 

the CRN regarding the minor species. 

Despite significant improvements in CRN generation obtained from the simple geometry 

simulations and increased understanding of the chemical reactions, these initial studies 

regarding the CFD CRN predictions of the major species were halted as instructed by the 

sponsoring organization. 

5.3 CRN Simulation of the Full RB211 Combustor 

6 Fluent CFD files were received from Rolls Royce Canada to be examined against the 

experimental data. The 6 cases which generally vary in temperature field were singled out 
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from a series of experiments. Therefore the case numbers, which were previously labeled 

by their ID number, are kept as the original ones in all the tables which follow. The cases 

and their temperature field are presented in Table 1. For more information on the inlet 

boundary conditions and the flow field see Ref 28. 

C A S E l 

TPZ=Tref+50 (K) 

Te»= Trer (K) 

Natural Gas 

CASE 2 

TPZ=T re f+50(K) 

Tex= Tref+125 (K) 

Natural Gas 

CASE 4 

TPZ=Tref (K) 

T„ = Tref+125(K) 

Natural Gas 

CASES 

TPZ=Tref+50 

(K) 

Tex
 = Tref (K) 

Natural Gas + 

Ethane 

CASE 6 

TPZ=T re f+50(K) 

TM = Tref+125 

(K) 

Natural Gas 

+Ethane 

C A S E S 

TPZ=T r e f (K) 

Tex = Tref+125 

(K) 

Natura l Gas + 

Ethane 

Table 1: A summaiy of the cases which were analyzed 

The 6 cases were chosen since they cover a range of flow fields with different thermal 

and composition properties. TPZ refers to the temperature in the primary zone and Tex 

refers to the exit temperature of the combustor. The complex flow fields and the 

limitations of Chemkin posed a challenge in generating a reactor network which would 

closely represent the flow field while avoiding convergence issues. In order to have 

similar reactor networks for comparison, the reactor networks varied from 16-19 

elements depending on the temperature range and gradients in each case. The size of the 

reactor network ensured consistency between each reactor network for further analysis 

while enhancing convergence in each case. The boundary conditions were taken 

accordingly from the CFD simulations. 
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Fig 5-6 is a representation of a 16 reactor CRN (15 PSRs + 1 PFR) generated on an 

averaged LES simulation. Reactors 1 and 2 are displayed with the red arrow. These 

volumes correspond to the regions which provide the secondary and primary zones with 

fuel and air. As Noticed the fuel and air enter one PSR reactor which indicates 100% 

prefect mixing. This is not exactly the case in real life. Novosselov (38) has proposed the 

use of several PSRs with a variation in composition to simulate a more realistic level of 

mixing. 
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Figure 5-6: CRN on Fluent GUI and Chemkin 
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Figure 5-7: Sample of 3D complex full RB211 combustor's CRN 

The image above is a comprehensive 3D representation of the reactors generated (and 

represented by distinct coJors) in a full RB211 geometry. The regions in dark blue mainly 

comprise the non bulk flow regions which are not of interest and therefore have been 

dealt with accordingly. 
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Figure 5-8: RB211 Combustor schematic (Re/39) 

The image above (j is a general representation of an RB211 combustor which shows the 

main flow paths and the major vortices in the combustor in a schematic way. 
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5.4 NOx Emission 

The NOx values were in general all roughly about one order of magnitude lower than the 

experimental values. The trend of the exit NOx emissions have been shown in Fig 5-9 

against the experimental measurements. The CRN results do not show a trend similar to 

the experimental trend of the NOx values. The NOx results show little sensitivity to the 

variation of conditions in each case. However trials on the temperature field of the reactor 

network showed the NOx to be highly sensitive mainly to reactors at very high 

temperatures exceeding 1800 degrees Kelvin. This was observed as the temperature in 

the reactors around the flame was artificially increased in a sensitivity analysis. It is 

therefore necessary to generate a reactor network at higher resolutions especially around 

the flames to ensure accuracy in NOx results. It must be kept in mind that reactor network 

generation depends heavily on the resolution of the flame thickness. Typically, it is less 

than the filter width on the LES simulation. Moreover, the CRN network needs to 

agglomerate cells in order to avoid a large number of reactors which results in more 

artificial thickening. This corresponds to the trials made in a preliminary analysis. The 

flame can be represented with reactor networks of various sizes in order to understand the 

sensitivity of emissions to temperature gradients around the flame. The user can also 

manually adjust the temperatures in each reactor and note down the response of the 

reactor network to any change in temperature and residence time. Previous preliminary 

examination of the reactor networks showed that the network only responded to 

temperature variations which were about 1800 degrees Kelvin and higher. However, a 

thorough study of the flame and emission dependence on temperature is required before 
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any conclusion could be drawn. 

The way forward then, would be to refine the reactors at the flame-front. In order to 

avoid the flame-front thickness produced in CFD, the reactor filters can be refined in 

order to create reactors that are biased towards a thinner flame-front - perhaps by 

homogenizing the surrounding temperature zones in the neighboring reactors and 

iterating against experimental data until a match is obtained. It is believed that a large 

number of reactors need to be concentrated around the hot zones to ensure reliable 

predictions of NOx. A thorough sensitivity analysis regarding the concentration of 

reactors required to capture NOx and to track the species in each reactor is the subject of 

future research. 

CASE 

1 

2 

4 

5 

6 

8 

RATIO 

CASE1/CASE1 = 1 

CASE2/CASE1=1.38 

CASE4/CASE1=1.035 

CASE5/CASE1=0.82 

CASE6/CASE1=1.02 

CASE8/CASE1=0.54 

NOx (ppmv) 

—Proprietary Info— 

—Proprietary Info— 

—Proprietary Info— 

—Proprietary Info— 

—Proprietary Info— 

—Proprietary Info— 

Table 2: It represents the NOx values and the normalization of NOx values based on 

Case] 
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NOx vs Exit Temperature 
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Figure 5-9: CRN and experimental NOx values 

* TPZ=Tref 
• TPZ=Tref+50 
A CRN Resutts-TPZ=Tref 
• CRN Results-TPZ=Tref+50 
— Linear (TPZ=Tref+50) 
— Linear (TPZ=Tref) 

In Fig 5-9 TPZ refers to the temperature in the primary zone of the combustor. The y axis 

on the right corresponds to the CRN results and the y axis on the left corresponds to the 

rig data. (Values are removed due to Copy Right compliance). 

Fig 5-9 is a representation of the CRN generated NOx predictions against the 

experimental values for the 6 cases described in Table 1. Case 2, Case 4 and Case 6 

which have higher exit temperatures compared with Case 1 and Case 5 show consistently 

higher values of NOx as expected. However Case 8's exit NOx is estimated to be lower 

than Case 1 and Case 5 even with a higher exit temperature. It is believed that such 

inconsistencies (as in Case 8) would be eliminated with more complex reactor networks 

which would be more representative of the combustion flow field. It is vital to capture 

much smaller temperature gradients to see noticeable response from NOx production 
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source terms. The addition of ethane —Proprietary Info— to show a noticeable change 

in the NOx results as —Proprietary Info— by the rig data. 

NOx formation highly depends on temperature and residence time. Its formation rate at 

high temperatures increases exponentially therefore necessitating temperature regulation 

to manage the emissions. It is always a challenge to strike a balance between CO and 

NOx formation since they generate rapidly under opposite conditions. 

5.5 CO Emission 

The CRN results for CO showed large variations as seen in Table 3. However, Case 2, 

Case 4, Case 6 and Case 8 have CO values under 100 ppmv which are considerably lower 

than the CO obtained from Case 1 and Case 5. Case2, Case 4, Case 6 and Case 8 all share 

a hotter discharge nozzle which seems to reduce the CO levels considerably. The slight 

jump in the CO level in case 8 could be simply attributed to the reactor arrangement and 

inadequate capturing of hot temperature zones. Table 3 indicates that CO is highly 

sensitive to any changes in temperature at the discharge nozzle since the cases with 

higher exit temperature have significantly lower CO compared with the cases with lower 

exit temperature. Therefore CO shows a higher sensitivity to exit temperature than NOx 

as shown in the previous section. A higher concentration of reactors is expected to 

eliminate the discrepancies and generate more accurate results. In case of wall quenching. 
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a higher resolution of reactor would be required at the walls for CO calculations. 

However, this is subject to future studies since ideal reactors can not take boundary layers 

(wall effects) in to account due to their mathematical nature and a more developed 

algorithm is required for very large reactor networks. 

CASE 

1 

2 

4 

5 

6 

8 

RATIO 

CASE1/CASE 1=1 

CASE2/CASE 1=0.0031 

CASE4/CASE 1=0.00728 

CASE5/CASE1=1.405 

CASE6/CASE 1=0.0164 

CASE8/CASE 1=0.0794 

CO (ppmv) 

-Proprietary Info-

—Proprietary Info-

—Proprietary Info-

—Proprietary Info-

—Proprietary Info-

—Proprietary Info-

Table 3 represents the CO values and the normalization of CO values based on Casel 

CO vs Exit Temperature 

« TPZ=Tref 

• TPZ=Tref+50 

A CRN Results-TPZ=Tref+50 

• CRN Results-TPZ=Tref 
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— Poly. (TPZ=Tref) 

Figure 5-JO: CRN and experimental CO values 
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In Fig 5-10, the green triangles and the red circles represent the CO values obtained from 

the corresponding CRNs. A Log scale was used since Case 1 and Case 5 generate 

unreasonably high CO. 

5.6 Summary 

The first CRN, comprising of 7 reactors, was created on a simple combustor and NOx 

value obtained from the CRN simulation at the exit of the combustor was within 5% of 

the CFD predicted NOx. Later a 45 degree slice of the RB211 primary zone was 

discretized into a CRN and the NOx values predicted by the CRN were within 10% of the 

experimental measurements. 

Finally, 6 LES simulations of the full RB211 combustor with various boundary 

conditions were analyzed via 6 different CRNs ranging from 16-19 reactors depending on 

the CFD temperature ranges. Consistent under prediction of NOx and some over 

prediction of CO at the exit of the combustor are mainly attributed to the use of small 

CRNs and neglecting of temperature fluctuations. Larger CRNs could not be used due to 

Chemkin's limitations, however the 6 cases were run in accordance with the agreement 

with Rolls Royce Canada. 

83 



6 CONCLUSION 

A method of producing chemical reactor networks has been devised based on the CFD 

results obtained from Fluent. Initial obstacles were faced with regards to the computation 

time required for generating CRNs. Several improvements were made to enhance the 

processing time of the UDF from days to minutes. The current project has been able to 

introduce an optimized methodology for reactor network generation based on previous 

research publications. A semi automatic algorithm has been developed for direct 

extraction of CRNs from CFD flow fields. The optimized CRN approach and the robust 

algorithm would allow highly accurate CFD based CRNs to be generated within minutes. 

As CRNs are robust and capable of predicting species' concentrations, emissions 

predictions could be implemented via a personal computer within minutes; a task which 

would have taken months if not years via conventional CFD methods. 

Further studies are advised starting from simple premixed geometries. The most 

challenging part of generating CRNs is on non premixed flames where high temperature 

and composition gradients require high reactor density. On the other hand, premixed 

flames provide smooth variation in temperature and composition therefore easing the task 

of CRN generation. Considering that the simulation of premixed flames has also proven 

to be more challenging compared with diffusion flames, the relative ease of CRN 
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generation on premixed combustion would be most valuable to the industry and to the 

academic society. 

During the course of this investigation several other aspects of CRN generation for future 

enhancement of the current algorithm have been researched. Discretization of the flow 

field based on turbulent kinetic energy and eddy turnover time was partially studied. The 

study was mainly with regards to diffusion flames where mixing and its relation to 

reactor type become of great importance. Unmixedness indices, temporal and spatial 

standard deviations of mixture fraction and temperature were studied to investigate any 

possibility of defining the reactor type in non premixed combustors where mixing is of 

great significance. Almost in all cases some level of correlation was discovered, however 

further studies on well validated geometries will be implemented in order to validate any 

findings. There is currently no guaranteed way of defining the reactor types in certain non 

premixed combustors. Engineering judgment or the direction of the velocity field has 

traditionally been used to determine the suitable reactor type for a specific flow region. 

Where velocity angle gradients were high, engineers would automatically assume high 

levels of turbulence and therefore PSR behavior. Complex industrial combustors with 

non linear geometries and flame controlling recirculation zones, where thermal and 

composition gradients vary significantly across recirculation zones, render the traditional 

approaches for defining the reactor types impractical. For example, a large velocity 

gradient could simply indicate geometric non linearity in a modern combustor geometry 

and may not indicate PSR behavior in that specific region. Definition of reactor type 

based on velocity angle gradients is inaccurate and impractical. Further studies are 

required to devise a reliable method of defining the reactor types via new methods such 
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as the second temporal and spatial variances of mixture fraction and temperature. These 

studies were not completed as the current thesis is focused on the RB211 partially 

premixed combustor and well mixed flow fields are generally represented with PSRs. 

Some of the past difficulties such as conservation of mass flow in each reactor, 

geographical discretization and calculation of residence times were tackled and an 

automatic method of generating input files to Chemkin was incorporated. Although the 

developed UDF is for use on Fluent and requires further work, the underlying 

programming techniques and engineering methods can be applied to any other in-house 

or commercial CFD soft wares. The current methods and achievements can be generally 

summarized as follows; 

• Discretization of flow field based on their geographical location, mixture fraction 

and temperature (other parameters could easily be incorporated as well) 

• Rapid generation of reactor networks (within minutes) extracted from CFD flow 

field 

® Obtaining conserved mass flow within each reactor - no need to 'guesstimate' it. 

® Automatic averaging of temperature and composition in each reactor 

• Automatic simplification of flow field reactor network based on the user's input 

® Automatic generation of the reactor data into a Chemkin format 

® Accounting for cooling air influence 
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• Graphical representation of the reactors on the CFD 

6 chemical reactor networks were generated (from Fluent CFD case files) to represent the 

RB211 combustor with different temperature and flow fields (see section 5.3). Although 

the NOx was under predicted consistently, CO predictions showed results which varied 

considerably according to the temperature field and the flow fields. There was some 

agreement between the CRN and experimental values on CO for certain cases. The hotter 

temperature fields seemed to predict results which were within the reasonable range, 

while the colder temperature field over predicted the CO production. 

It is believed that the accuracy of the results could be improved in three principal ways; 

® Refinement of reactor resolution (increase of reactor numbers) within the 

combustor especially around the flame and a more extensive use of non PSR 

reactors (such as PFR, PaSR, MIXERs etc..) via more robust soft wares. 

© Incorporation of temperature correction factors due to the steady state assumption 

on the temperature field. 

» Tracking of influential species such as O and OH in each reactor and validation 

against experimental data in order to find any sources of inaccuracies. 
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6.1 Future Work 

An important and challenging task ahead is to use an alternative soft ware (except for 

the current version of Chemkin 4.1) that allows the user to integrate various types of 

reactors (using an input file) and connections (such as PSR, PFR. MIXERs etc..) to 

obtain an accurate representation of the flow field. At first, a large reactor network 

needs to be generated with a large number of PSRs in order to guarantee homogeneity 

in each PSR. Then every few PSRs could be replaced by the corresponding 

alternative reactor (such as PFR, PaSR etc...) where the flow properties allow. 

It is of great significance to conduct the analysis of temperature fluctuations on NOx 

and CO. It is believed that the steady state assumption of temperature could result in 

considerable under prediction of NOx and inaccuracies in CO calculations <3240). This 

is consistent with the under predicted NOx values obtained before. An analysis for the 

correction of temperature in the reactor network is recommended in order to 

incorporate the effect of temperature fluctuations on the emissions. The temperature 

fluctuations and consequently the residence time fluctuations can be taken into 

account via a temperature correction factor. The temperature variance in each cell 

could be found based on its mixture fraction via the PDF table. It has been noted that 

for example as a general rule of thumb ,on the RB211 Pie slice, that the addition of 

75% of the variance of temperature to the averaged temperature results in reasonable 

prediction of NOx and CO emissions. 
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Another task ahead is to continue studying the main species' trends (such as OH and 

O, CO, NO etc..) in each reactor and to compare them with the results obtained from 

CFD or preferably from the experiments. The comparison would be highly beneficial 

in determining the reasons for the deviation of the numerical results from those of the 

experiment. The species' mole fractions averaged for every reactor can be plotted and 

compared against Chemkin's calculated species' mole fractions. This approach has 

been examined on a preliminary basis where a 45 degree of the RB211 was used for 

the generation of a chemical reactor network. The general trends of the O and OH 

radicals obtained corresponded qualitatively around the flame between the CFD and 

the CRN, although they slightly differed in their quantities. It is believed a more 

thorough analysis and tracking of species is required in order to tackle the source of 

inaccuracies in chemical reactor networks 

The effect of non homogeneity (circumferentially and radially) of fuel air mixture at 

the inlet could also be simulated by representing the inlet with more than one PSR. 

The series of PSRs could have slight variation in mass flow rate, temperature and 

mixture fraction. 

Following the end of the current project. Reaction Design has introduced its new 

version of Chemkin called Chemkin Pro. This software claims to have removed a few 

limitations such as the number of PSR-PSR connections. They also claim to have a 

significantly more robust solver with much better convergence capabilities. It is 

highly recommended to examine this software in the future. 

89 



6.2 Contribution to Knowledge 

A practical methodology based on previous literature and the available tools and 

softwares has been presented for the coupling of CFD-CRN for cost effective prediction 

of polluting emissions. The methodology which is partially based on CFD results has 

been implemented on a complex industrial combustor in order to discuss the strengths 

and the limitations of CRNs and their range of applicability. It has been shown that 

efficient generation of CRNs for further research could be done with some programming 

in the form of a UDF coupled with mainstream commercial CFD and chemical kinetics 

softwares or any in house code. 

Emissions prediction and sensitivity analysis could be potentially implemented on 

personal computers in a matter of minutes and hours instead of weeks and months. 

Although this thesis is not concerned about the CFD aspect of the work, some CFD tips 

and techniques have been discussed to facilitate numerical convergence and CRN 

development even on complex geometries. 

Future steps for the completion of this work have been discussed (see Section 6.1). The 

need for higher resolution of the reactor networks and the necessity for more elaborate 

solvers have been articulated. The author strongly believes that with further research on 

the current advancements, most combustion phenomena and even other types of reactions 

can be analyzed in detail via the presented methodology. 
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APPENDIX A-FLUX CALCULATIONS 

The fluxes are extracted directly from the CFD field via the macro FFLUX. The validity 

of this macro was examined after correspondence with Fluent USA. A separate UDF was 

written to compare the FFLUX performance at the boundaries with the direct calculation 

of the flux terms at the boundaries where the exact flux is known. The dot product of 

velocity vectors and face normal vector at the boundary faces were obtained and 

compared with the FFLUX values and they corresponded exactly therefore ensuring the 

validity of using this macro. 

The case was also tried on the Lockwood (37) combustor by dividing the geometry into 

two zones right after the corner recirculation zone to avoid the effect of reverse flow as 

much as possible. The Lockwood combustor was selected due to its simplicity compared 

with the RB211. The Lockwood combustor acts similar to a plug flow reactor at a 

distance from the inlets. Therefore the total mass flow rate at the inlet is expected to be 

equal to the mass flow rate at a cross section further downstream. The difference between 

the net mass flux across the cross section calculated by the CRN Generator and the total 

mass flow inlet was 0.003% which shows great correspondence and validity of the flux 

calculation method. The volumes of all reactors were also added (for Lockwood and 

RB211) and compared with Fluent's volume integral option for the entire geometry and 

they corresponded accurately. 
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APPENDIX B-TRIMMING OF REACTORS 

Due to the discretization parameters defined by the user, small reactors may form which 

may further complicate the CRN and pose numerical difficulties in obtaining 

convergence. Falcitelli et al(8) tackle this problem by regrouping the smaller reactors into 

larger reactors based on their level of unmixedness. 

They define an unmixedness index for each reactor as follows; 

1 N 

Z TOTAL = T7 X Z, Equation B. 1 

Where; 

Z = ^ ^ - — Equation B. 2 
Y,{\-Y) 

Y, = 
Y pV 

J2^PjVj Equation B. 3 

— Y oV 
Y,2 = X ^ ' Equation B.4 

JLJPJVJ 
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Each cell which is supposed to be regrouped into a new reactor is then arbitrarily 

reassigned into a neighbouring reactor and the increment is calculated via Equation 9.5. 

(n + \)Z*mT - nZTor = increment Equation B.5 

The reassignment which corresponds to the minimum value of the increment is 

permanently kept. 

This method was shortly used in generating of a CRN via the mixture fraction as 

described below; 

J""~/f/0 — f) EquationB.6 

It must be noticed that as / tends to 1, the Equation 9.6 tends to infinity. 

The regrouping approach was complicated and seemed to add little value to the CRN on a 

preliminary basis. The new regrouped cells would further extend the range of the 

temperature and composition over which the reactor properties were being averaged. This 

introduced further inaccuracies in the model. Since the number of unassigned cells was 

generally small it was decided to remove them for the initial studies as their very short 

residence times would barely have any effect on the kinetics calculations. 
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AIMENMX C-CWN SIMWLWIEB 

Figure C-l: Depiction of reactors extracted from the CFD field 

A typical CRN with 15 reactors is displayed in Fig 9-1. The sum of each reactor's exit 

mass flow recycling fractions suras to 1 (except for the discharge nozzle reactor which 

mainly directs the flow into the exit). The first column.indicates the donor reactor and the 

following rows indicate the receiver reactors and what percents of recycling mass flow 

they receive. 
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• Reactors 8,9,10,11,12,13 and 14 are in the primary zone 

• Reactors 3,4,5,6 and 7 are in the secondary zone. 

• Reactor 15 directs the flow to the exit and is the reactor representing the discharge 

nozzle 

• Reactors 1 and 2 refer to the premixer 
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