
A FORMAL COMPONENT-BASED SOFTWARE 

ENGINEERING APPROACH FOR DEVELOPING 

TRUSTWORTHY SYSTEMS 

MUBARAK SAMI MOHAMMAD 

A THESIS 

IN 

THE DEPARTMENT 

OF 

COMPUTER SCIENCE AND SOFTWARE ENGINEERING 

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (COMPUTER SCIENCE) 

CONCORDIA UNIVERSITY 

MONTREAL, QUEBEC, CANADA 

APRIL 2009 

© MUBARAK SAMI MOHAMMAD, 2009 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Vote reference 
ISBN: 978-0-494-63417-2 
Our file Notre reference 
ISBN: 978-0-494-63417-2 

NOTICE: AVIS: 

The author has granted a non­
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduce, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

• • I 

Canada 



Abstract 

A Formal Component-Based Software Engineering Approach for 
Developing Trustworthy Systems 

Mubarak Sami Mohammad, Ph.D. 

Concordia University, 2009 

Software systems are increasingly becoming ubiquitous, affecting the way we experience 

the world. Embedded software systems, especially those used in smart devices, have be­

come an essential constituent of the technological infrastructure of modern societies. Such 

systems, in order to be trusted in society, must be proved to be trustworthy. Trustworthiness 

is a composite non-functional property that implies safety, timeliness, security, availability, 

and reliability. This thesis is a contribution to a rigorous development of systems in which 

trustworthiness property can be specified and formally verified. 

Developing trustworthy software systems that are complex and used by a large het­

erogenous population of users is a challenging task. The component-based software en­

gineering (CBSE) paradigm can provide an effective solution to address these challenges. 

However, none of the current component-based approaches can be used as is, because all of 

them lack the essential requirements for constructing trustworthy systems. The three con­

tributions made in this thesis are intended to add to the expressive power needed to raise 

CBSE practices to a rigorous level for constructing formally verifiable trustworthy systems. 

The first contribution of the thesis is a formal definition of the trustworthy compo­

nent model. The trustworthiness quality attributes are introduced as first class structural 

elements. The behavior of a component is automatically generated as an extended timed 

automata. A model checking technique is used to verify the properties of trustworthiness. 

A composition theory that preserves the properties of trustworthiness in a composition is 

presented. 

Conventional software engineering development processes are not suitable either for 

developing component-based systems or for developing trustworthy systems. In order to 

develop a component-based trustworthy system, the development process must be reuse-

oriented, component-oriented, and must integrate formal languages and rigorous methods 
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in all phases of system life-cycle. The second contribution of the thesis is a software engi­

neering process model that consists of several parallel tracks of activities including compo­

nent development, component assessment, component reuse, and component-based system 

development. The central concern in all activities of this process is ensuring trustworthi­

ness. 

The third and final contribution of the thesis is a development framework with a com­

prehensive set of tools supporting the spectrum of formal development activity from mod­

eling to deployment. 

The proposed approach has been applied to several case studies in the domains of 

component-based development and safety-critical systems. The experience from the case 

studies confirms that the approach is suitable for developing large and complex trustworthy 

systems. 
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Chapter 1 

Introduction 

Software systems are increasingly becoming ubiquitous affecting the way we experience 

life and perform work. For example, smart devices and intelligent sensors are currently 

used to capture information about human activities along with their physiological and psy­

chological status and communicate it through wireless connections [DSS08]. The col­

lected information triggers adaptation in a pervasive environment according to predefined 

preferences. Such systems are being used in the health-care sector to improve its ser­

vices. Another example can be found in avionics. Currently, aircrafts are being controlled 

fully by autopilot, a software that guides the aircraft. Moreover, modem day cars con­

tain up to 67 processors that implement around 270 user functions that a driver interacts 

with [PBKS07]. Modern day cars are expected to contain up to one gigabyte of embedded 

software [PBKS07]. Some of these software units perform safety critical missions such as 

controlling the engine, brakes, and steering. 

These examples show the current advancement of software development in areas that 

affect our daily lives. At the same time, it raises questions about the ability of the current 

software development paradigms to cope with the risky trends of pervasive computing, 

which provide highly customizable and personalized services that must have the capability 

to run anytime, anywhere and on any device with minimal user attention. Pervasiveness 

also raises concerns on trustworthiness: to which extent the current software development 

paradigms are capable of producing trustworthy systems that control the lives of people 

and manage their private data? 
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1.1 Trustworthiness 

Trustworthiness is a moral value concept which implies commitment and ability to be relied 

and depended on. Trust is a social aspect that is hard to define formally. It is a relation be­

tween two parties in which the trusting party places confidence, reliance, and dependance, 

whereas the trustee commits to take responsibility and never betray the trust. 

In social aspects, it is difficult to measure trust because it is based on beliefs, feelings, 

and accumulated experiences. In all cases, trust is relative. There is no absolute trust. It 

is always bound to defined tasks. For example, we trust the postman to deliver our mail 

on time and to the correct address. However, we may not trust him to run our business or 

perform our private financial transactions. Trust implies a factor of risk. However if the 

level of reliance exceeds the level of risk we are inclined to trust. 

In the domain of technology and computing, we rely on technology on which aircrafts, 

trains, traffic controllers, automated teller machines, and elevators serve us in our daily 

life although it fails from time to time causing many inconveniences, some even causing 

damage to property and humans. Yet, we continue to use them because they have been 

tried and tested for long periods of time that they seem to have passed our minimum ac­

ceptance level. Many embedded software systems have also become an essential part of 

the technological infrastructure of modern societies. Hence, there is a need to design these 

systems such that they are provably trustworthy. Towards this purpose, the credentials of 

trust should be formally defined along with their level of acceptance. 

There are many important questions arising from the user perspective. These are the 

following: 

• Is the system doing what it is supposed to do? 

• Is the system available when the user needs it? 

• Is the system protecting the private data? 

• Is the system safe for use? Is it likely to cause damage to the environment in which 

it is deployed or the user who is using it? 

• Will the system respond to user requests in a timely fashion. 

• Is it possible to repair the system in real-time, if it fails? How often the system is 

likely to fail? How long will it stay in failure mode? 
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These questions form an envelope to defining the essential requirements of trustworthy sys­

tems. In the literature, trustworthiness is defined as the system property that denotes the 

degree of user confidence that the system will behave as expected [SBI99, ALRL04]. The 

terms trustworthiness and dependability are used interchangeably [Som07]. Dependability 

is defined as "the ability to deliver services that can justifiably be trusted" [ALRL04]. A 

comparison between the two terms presented in [ALRL04] has concluded that the two prop­

erties are equivalent in their goals and address similar concerns. The goals of dependability 

are providing justifiably trusted services and avoiding outage of service that is unaccept­

able to the consumer. The above definitions emphasize the importance of justifying trust. 

In order to justify trust, we should define trustworthiness formally. 

There is a common consensus [SBI99, ALRL04, MdVHC02] that trustworthiness is a 

composite concept and that the essential quality properties contributing to trustworthiness 

are safety, security, reliability, and availability. Since many of the current systems are 

real-time, we also include timeliness to the quality attributes of trustworthiness. These 

properties are defined below. 

• Safety is the quality of the operational behavior of the system in which no system ac­

tion that may lead to catastrophic consequences will happen. Safety includes a set of 

properties that describe the correct and safe behavior of the system. Any violation to 

a safety property may cause dangerous consequences on the users and the environ­

ment. For example, modern vehicles have an anti-lock brake system (ABS) which 

prevents the wheels from locking while braking. The safety property states that if 

one wheel is rotating significantly slower than the others then the hydraulic pressure 

to the brake at the affected wheel must be reduced within a fraction of a second. On 

the other hand if the wheel is turning faster than the others, then the brake hydraulic 

pressure to the wheel should be increased so the braking force is reapplied and the 

wheel slows within a fraction of a second. 

• Security is a composite property that includes confidentiality, integrity, and avail­

ability. Confidentiality ensures that system services and information are not exposed 

or disclosed to unauthorized users. Integrity ensures that there is no improper al­

teration to the system state or the information. For example, in a banking system, 

confidentiality means that only the client or one of his authorized people can perform 

transactions and view information related to this client. Integrity means that when 

the client deposits $500 then his account should be increased by exactly $500 not 
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less or more. 

• Reliability is the quality of continuing to provide correct services despite any failure. 

It is possible to have an accepted frequency of failures. In this case the accepted 

mean time between failures should be precisely defined and respected. For example, 

many avionic systems have a required reliability of 109 hours mean time between 

failures [PBKS07]. 

• Availability means readiness for correct service. It is the quality of operation in 

which there is no unforeseen or unannounced disruption of service. A temporary 

outage of service may not cause big problems for a non-critical system. The required 

services can be requested at a later point of time when the system becomes available. 

However, any service outage for a safety-critical system may lead to catastrophic 

consequences. When a system fails, availability specifies the maximum accepted 

time of repair until the service returns back to operate correctly. 

• Timeliness refers to bounded time constraint behavior. It means, when a request 

for service is received, the system should respond within acceptable limits of time. 

Timeliness is an essential safety requirement for real-time systems. In these systems 

the correctness of system behavior depends not only on providing services but also 

on the time at which the services are provided. It is possible to regard timeliness as 

one of the safety properties. 

Some interesting questions are how can these properties be satisfied collectively in one de­

velopment process ?, and can the current state of the art of software development paradigms 

collectively address their requirements ? 

In the literature, there has been a tremendous research effort resulting in many publi­

cations about safety, security, reliability, and availability. However, research in specifying 

and verifying safety and security and estimating reliability and availability properties at the 

system architectural level have progressed only independently. This is due to many reasons 

such as (1) the early finding that safety and security properties cannot be formally specified, 

composed, and verified together in any one formal method [McL96], (2) the conventional 

ways of estimating reliability at a system architecture using stochastic methods which are 

based on uncertain and inaccurate parameters [Gok07], and (3) the lack of research in an­

alyzing availability [IN08]. There is no published work that we are aware of which has 

successfully managed to combine all these attributes in one formal approach. In order to 
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develop trustworthy systems, all these properties must be combined together in one formal 

approach. This thesis provides a novel formal approach which uses component-based soft­

ware engineering (CBSE) for developing trustworthy systems. Our approach enables the 

specification and verification of safety, security, reliability, and availability properties. 

1.2 Component-Based Software Engineering (CBSE) 

CBSE promises many advantages to software development including reuse, managing com­

plexity, and reducing development time, effort, and cost. CBSE is widely adopted in the 

software industry as the mainstream approach to software engineering [Som07]. It is in­

creasingly used to develop software systems, especially embedded systems, deployed in 

safety critical environments. Complexity is effectively managed by dividing the problem 

into smaller problems of manageable magnitudes, each of which handled separately in 

CBSE. The cost of development is reduced by reusing existing solutions to solve these sub-

problems. The essential constituents of CBSE are component model and component-based 

development process model [Som07]. The following subsections briefly discuss these two 

elements. 

1.2.1 Component Model 

A component model defines what components are (their syntax and semantics), their com­

position to develop component-based systems, and their deployment [LW07]. A compo­

nent is defined as "a software element that conforms to a component model and can be 

independently deployed and composed without modification according to a composition 

standard" [HC01]. Components provide and require services through public interfaces. 

The provided services are the operations performed by the component. The required ser­

vices are the operations that the component need in order to complete its provided services 

and produce results. The interfaces of a component provide specification of the public ser­

vices that are provided and required by the component. Component models describe the 

internal structure of components. A component can be primitive or composite [SG96]. A 

primitive component is the basic unit that can not be further divided. It is specified by its 

implementation. Primitive components can be composed together to form composite com­

ponents. Connectors are used to bind the interfaces of the constituent components. Figure 1 

depicts a composite component. 
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Figure 1: Composite Component 

1.2.2 Component-based Development Process Model 

A software development process defines the set of activities along with their interdepen-

dencies and relations that lead to the production of software systems. A typical process in­

cludes requirements definition and analysis, design, implementation, testing, deployment, 

and maintenance. A component-based development process (CBD) is a special type of 

software development process tailored for developing reusable components and building 

systems by integrating existing components. A conventional software development pro­

cess is not suitable for developing component-based systems. This is because CBD is bi­

ased towards reuse. In order to achieve a successful reuse and integration of the developed 

components, the development process should be tailored to CBSE [Som07]. Therefore, a 

different development process is required to develop component-based systems than the 

development process used for conventional software. 

CBD addresses the activities involved throughout the entire component and system 

life-cycles. It comprises two parallel activities: software component development and 

component-based systems development [CCL06, Pre05]. The former addresses the issues 

of components' specification, development, qualification, documentation, cataloguing, and 

adaptation and selection for reuse. The later addresses the issues related to assembling 

components to develop component-based systems. 

1.3 Research Motivation 

Pervasive computing raises major concerns about the ability of current development paradigms 

to develop trustworthy systems. Since CBSE is a mainstream approach to software engi­

neering [Som07], an important question is : can CBSE be used to develop systems which 

6 



are provably trustworthy? In order to answer this question, we first investigate whether or 

not CBSE has fulfilled its initial intended promises. 

1.3.1 Analyzing Component Models 

In general, software systems implement functional and non-functional requirements. This 

implies that component specification methods and qualification techniques should support 

both functional and non-functional requirements. However, generally, current component-

based development approaches have limited or no support for non-functional requirements. 

Furthermore, non-functional requirements and environmental constraints should be defined 

as contracts at the interfaces of a component. This is because environmental assumptions 

and non-functional requirements might not be valid when components are used in different 

deployment environments. For example, in real-time embedded systems, time constraints 

that define the maximum amount of time for a safe execution of a service might be different 

depending on hardware and software configurations of the deployment environment. The 

separation between the computation part of the component and its contract enables compo­

nents to be reused in different environments by changing only its contract. However, when 

studying current component models, there is limited or no support for contracts. Therefore, 

current component engineering practices can only support limited reusability of compo­

nents. Moreover, a study of current component models [LW07] revealed that components 

are composed using direct method calls or indirect message passing through connectors. 

Thus, these models produce tightly coupled components that are difficult to reuse. Also, 

when assembling components, special composition rules should be applied to ensure that 

the non-functional requirements of the constituent components are preserved in the assem­

bly. This requires a defined composition theory. However, there is no component model 

that defines a composition theory for both the structural and nonfunctional parts of compo­

nents [LW07]. Therefore, current component models are not suitable as is for specifying 

trustworthy systems. 

1.3.2 Analyzing Component-Based Development Process Models 

Safety and secure critical systems require a special type of software development process, 

preferably one based on formal methods for the representation and analysis of software 

specification. The primary goals of this process are to ensure the correctness of system 
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specification and design, and help to verify that the system implementation is consistent 

with its specification. Formal methods include specification, verification, and testing tech­

niques throughout the different stages of system development. In order to develop systems 

that can be certified to be trustworthy, validation and verification of trustworthiness features 

should be made a core activity linked to all activities in the development process. Typical 

component-based development processes presented in the literature focus on the general 

activities involved in developing component-based systems with emphasis on reuse and 

integration testing. There is no work, that we are aware of, which presents a rigorous de­

velopment process that is suitable for developing trustworthy component-based systems. 

Therefore, current component-based development processes are not suitable as is for de­

veloping trustworthy systems. 

1.3.3 Evaluation 

The above discussion about the current component models and component-based develop­

ment processes confirms that: 

1. they lack support for non-functional requirements, 

2. they lack composition theory, and 

3. current CBSE practices are not based on rigorous process models. 

Therefore, despite the wide adoption of CBSE in software industry and the tremendous 

number of publications about it in academic research, it is still lacking essential formal 

foundations for the specification, composition, and verification of non-functional require­

ments. Therefore, current CBSE practices do not provide the essential needs for developing 

trustworthy systems. 

1.4 Thesis Goals 

This thesis is a contribution to a rigorous CBSE and trustworthy systems. This thesis inves­

tigates the challenges of defining trustworthy components, composing trustworthy compo­

nents, and verifying trustworthiness in a unified model! The thesis provides a formal CBSE 

approach which satisfies the requirements of trustworthy systems. The approach provides a 
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remedy to the shortcomings of current component models by providing a component defini­

tion which collectively addresses the requirements of trustworthiness and component-based 

development. We do not intend to create a new component model, give it a new name, and 

add it to the list of component models in the literature. The goals of this thesis are: 

1. Provide a formal definition that can be adopted by other component models to en­

hance their support for trustworthiness, 

2. Show that it is possible to provide a single component definition that includes spec­

ifications of structural, functional, and non-functional requirements, especially the 

properties of trustworthiness, 

3. Show that it is possible to define a composition theory which includes rules for com­

posing both structural requirements and trustworthiness properties, 

4. Show that it is possible to use one formal verification technique for safety, security, 

reliability, and availability properties, and 

5. Provide a rigorous process model with tool support for the development of trustwor­

thy component-based systems. 

1.5 Thesis Outline 

This thesis is organized as follows: Chapter 2 presents a detailed literature survey that cov­

ers the work done in the areas of component models and component-based process models. 

Chapter 3 introduces our research methodology. We present our contributions and provide 

a detailed discussion of the research problems and research questions that are related to 

the development of trustworthy component-based systems. Then, we provide our proposed 

solutions. Chapter 4 introduces our trustworthy component model. We provide formal def­

initions of the structural, functional, and trustworthiness properties. Also, it introduces a 

composition theory that preserves the properties of trustworthiness. Chapter 5 introduces 

an architecture description language (TADL) that is based on the trustworthy component 

model. The TADL specification provides a high level description of systems to make it 

easy for software architects to use our formal approach. Chapter 6 provides an automated 

model transformation technique for generating component behavior and real-time mod­

els. Chapter 7 presents a novel approach for the specification and verification of reliability 
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and availability using model checking. Chapter 8 presents a process model for developing 

trustworthy systems. Chapter 9 presents a framework of tools support for implementing the 

process model. We discuss different kinds of tools that has been development or under de­

velopment. Finally, Chapter 10 concludes the thesis. It provides summary and assessment 

of the presented approach. 
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Chapter 2 

Literature Survey 

This chapter provides a survey of different component models and component-based de­

velopment process models that have been presented in the literature of component-based 

software engineering. Section 2.1 surveys the related component models. We study differ­

ent component models and describe their structural and behavioral definitions. Section 2.2 

provides an analysis of the current component models and shows the lack of support for 

non-functional requirements. Since both component models and architecture description 

languages (ADL) share the component concept, Section 2.3 surveys the related work in 

ADLs and analyze their support for non-functional requirements. Section 2.4 briefly sur­

veys the work done to specify trustworthiness properties. It describes the research efforts 

of the security and realtime research communities in putting forth one unified composi­

tion theory for trustworthiness properties, in particular how they failed to achieve it. Also, 

it give pointers to the work done in specifying and measuring reliability at an architec­

ture level. The section provides arguments for the need to find a new formal method for 

ensuring reliability. Then, Section 2.5 surveys the related work in defining component-

based development process models. We highlight the main activities used for developing 

component-based systems and provide a component-based process model for developing 

trustworthy systems. Section 2.6 explains the motivation behind our work. 

11 



2.1 Component Models 

There is a common agreement [CL02, Szy02] that component specification should include 

both structural and behavioral descriptions. Structural description includes, but is not lim­

ited to, specifying interfaces, connectors, and composition. These are central concepts in 

component-based development. An interface defines access points to the services provided 

and requested by components. A connector is a special component that defines the com­

munication between two components. Composition allows building systems by connecting 

existing components in such a way that preserves their essential properties. 

In the literature, there is a large number of different component definitions. However, 

only a few of them have been considered as component models in a taxonomy of software 

component models [LW05, LW07]. These are SOFA 2.0 [BHP06], Fractal [BCL+06], 

KobrA [APRS01], Koala [vOvdLKMOO], PECOS [NAD+02], and Pin [HIPW05]. We 

add SaveCCM [ACF+07] to this list. These component models provide a wide variety 

of component definitions and contributions to the advancement of CBD. In the following 

sections we provide an overview of these component models and analyze their relative 

merits. 

2.1.1 Koala 

Koala [vOvdLKMOO] is a component model used for specifying and developing embed­

ded systems in consumer electronics. Koala provides strict separation between component 

and configuration development. Components are developed with no assumption about the 

deployment configuration in which the component will be used. A component definition 

in Koala includes a set of interfaces. There are two types of interfaces: requires and pro­

vides. Requires interfaces are used to access functionality, whereas, provides interfaces 

are used to provide functionality. Diversity interfaces are special required interfaces that 

are attached to components and used to get configuration parameters that are controlled 

centrally. Switches allow requires interfaces to be bound to multiple different provides 

interfaces based on configuration parameters. Then, when the selection is resolved, only 

one binding is selected depending on the values returned through the diversity interfaces. 

Consequently, the switch will direct calls to one of the required interfaces bound to it. It 

is possible to define optional interfaces and query if they are available or not before try­

ing to connect to them. A configuration is a set of components bound together to form a 
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Figure 2: Koala component and its CDL description 

product. Modules are used to implement functions of interfaces. A module is a component 

with no interfaces. It is bound to interfaces of a component to provide initialization and 

implementation code. 

Koala has a component description language (CDL) used to specify systems and com­

ponents. A design viewer is used to view CDL descriptions. Koala provides code synthesis 

by mapping CDL to an implementation programming language. Figure 2 shows a Koala 

component and its corresponding CDL description. 

The above description shows that Koala provides only structural description for com­

ponents. It does not provide behavior specification or non-functional contract. Therefore, 

it is not a suitable model for specifying and verifying trustworthiness properties. 

2.1.2 PIN 

Pin [HIPW05] is a component model and runtime environment. It provides a basic and 

simple component technology suitable for building embedded safety critical systems. Pin 

components are fully encapsulated by applying the container concept. Containers provide 

a "prefabricated shell" in which the custom code of the component executes and through 

which all interactions between the custom code and its external environment are mediated. 

Systems are assembled by selecting components and connecting their interfaces, called 

pins. Component interfaces receive stimuli through sink pins and respond through source 

pins. Figure 3 depicts a Pin component. 

Each Pin component is implemented as a distributable dynamic link library (DLL). Pin 

CT 
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Figure 3: Pin component 

supports a model of pure assembly. Applications are constructed by connecting compo­

nents using connectors. A connector may impose coordination policies beyond those pro­

vided by containers. For example, a connector may impose a queuing policies on message 

buffers. 

Pin component technology includes a component runtime environment which provides 

services and enforces component interaction policies. Services include access to the under­

lying platform; for example, timers, interrupts, and input devices. Interaction policies gov­

erning shared resources, such as process scheduling and inter-component communication, 

are also provided by the runtime environment. Lastly, the runtime provides a portability 

layer for components and their assemblies. 

Similar to Koala, Pin does not provide support for non-functional properties. Hence, it 

is not a suitable model for specifying and verifying trustworthy component-based systems. 

2.1.3 PECOS 

PECOS [NAD+02] is used for specifying and developing component-based embedded sys­

tems of field devices such as sensors, actuators, and positioners. In PECOS, a component 

has a name, a number of property bundles, and ports. The ports of a component represent 

data that may be shared with other components. The behavior of a component consists of 

a procedure or an algorithm that reads internal data or the data available at its ports. Then, 

it produces data on the component ports or produce effects in the physical world. 

Figure 4 provides an overview of PECOS component model. Components can be ei­

ther simple or composite. A simple component can not be further defined by a model but 
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Figure 4: PECOS component model 

rather directly implemented in a programming language. A component may have multiple 

property bundles, where each of property bundle consists of one or more properties. A 

composite component contains two or more subcomponents connected together. Connec­

tors are used to connect ports of subcomponents. 

A port is specified using a unique name, the type of the data passed over the port, and 

the range of the correct values (minimum and maximum values) that can be passed through 

the port. A port is implemented as a shared variable which allows communication between 

components. The ports of subcomponents can be connected only if they have the same data 

type. A connector is specified using a name, a type, and a list of ports it connects. 

A property in PECOS is a tagged value, where the tag is an identifier and the value 

is typed. A collection of properties are grouped using a property bundle. It is used to 

characterize aspects of a component such as timing or memory usage. 

A system is specified in CoCo language, which can be easily translated into target 

languages such as C++ or Java. The component structure from the CoCo specification can 

be mapped directly to an identical class structure in the target language. The behavior of the 

component has to be implemented by programmers. Thus, PECOS does not have behavior 

specification method. 

PECOS provides a means to define simple non-functional requirements such as mem­

ory usage and timing. It is possible to perform real-time schedule analysis based on PECOS 

specification. Therefore, it provides only very limited support to non-functional require­

ments. Therefore, it is not a suitable model for specifying and verifying the trustworthiness 

properties. 
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2.1.4 KobrA 

KobrA [ABB+02, ABB+07] is not a formal language, but rather a methodology for model­

ing architectures. It comprises a set of principles for using mainstream modeling languages, 

such as UML, to describe and break down the design of complex systems in a component-

based way. 

KobrA divides the full specifications of a component into two parts: a specification 

and a realization. A specification describes what a component does; hence, it focuses on 

the external view of a component. On the other hand, a realization describes how the 

component does its functionality in terms of interaction with other components; therefore, 

it focuses on the internal design of subcomponents and interactions between them. UML 

diagrams are used to describe these parts. The specification description includes three main 

models: (1) one or more static structure diagram giving the structural view that describes 

the nature of classes and their relationships, (2) a set of operation specifications giving 

the functional view in a tabular form specifying name, description, receives, sends, rules, 

changes, assumes, and result, and (3) a state chart diagram giving the behavioral views 

in terms of events, operations and states. The realization description includes three main 

models: (1) a static structure diagram presenting the design level structural view, (2) a set of 

interaction diagrams (collaboration or sequence diagrams) giving the interaction-oriented 

view, and (3) a set of activity diagrams giving the algorithmic view. 

KobrA does not have tool support to ensure that a created model is compliant with the 

KobrA methodology. The process of modeling and analysis can be done only manually. 

Consequently, using the KobrA modeling technique for any large and complex project is 

both tedious and error-prone. 

2.1.5 Fractal 

A component in Fractal [BCL+06, BBC+07] consists of a content part and a control part. 

The content part contains either a hierarchical composition of subcomponents for a com­

posite component or a Java implementation for a primitive component. A component has 

a number of possible interfaces. Each interface is an instance of an interface type which 

states the signature of the interface, its kind, contingency, and cardinality as follows: 

e The interface is a server (required) or a client (provided) 

• Interface contingency defines whether an interface is mandatory or optional. 
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Figure 5: Fractal component 

• Interface cardinality defines the number of possible instances that can be created of 

a specific interface type. 

The control part is a composition of controllers, where each controller performs a particular 

management functionality such as creating components, binding client interfaces, manag­

ing sub-components, manipulating component's attributes, and managing the component's 

life cycle. 

Figure 5 depicts a fractal component. The content part represents a component com­

posed of two sub-components. The external interfaces are visible outside the components, 

whereas the internal interfaces are used to compose the constituent components of the con­

tent. Control interfaces are used to deliver management commands to components. Client 

and server interfaces are bound with internal interfaces that are not part of composition. 

The behavior of Fractal applications is specified using SOFA [BHP06] behavior pro­

tocols, which specify the valid sequences of method calls on component's interfaces. The 

FractalBPC, behavior protocol checker, platform is used for specifying behavior protocols 

and verifying whether or not the behavior of a component complies with its stated behav­

ior protocol. A correct behavior means absence of communication errors. There are three 

identified types of communication errors: 

® Bad activity: an issued method call cannot be accepted. 
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• No activity: all of the ready method calls are prefixed with input sign (deadlock). 

• Infinite activity: the composed protocols can not reach their final method calls, which 

means that the composed behavior contains an infinite trace. 

FractalBPC is made of two behavior protocol checkers: static (code) checking using Java 

Pathfinder [Pat] and run-time checking. Static checking allows exhaustive analysis to verify 

whether the implementation of each primitive component corresponds to its defined behav­

ior protocol. Run-time checking is done by monitoring method calls on the component's 

external interfaces at run-time to check whether or not the traces of component execution 

comply with the stated behavior protocol. 

FractalADL is an XML-based architecture description language for Fractal component 

model. Also, it-is the name of a tool-chain that parses the ADL, which describes how to 

instantiate components, and builds the application accordingly using Fractal API. 

The behavior protocol specification is limited to functional requirements, where se­

quences of valid invocation of methods are specified. It does not support specifying non­

functional requirements over those valid sequences such as security or reliability. Also, it 

does not support timing requirements. This is because Fractal is focused on the domain of 

distributed systems, not real-time systems. 

2.1.6 SOFA 2.0 

SOFA 2.0 [BHP06] is a hierarchical component model that inherits structure from its ances­

tor SOFA [PV02]. The main features of SOFA 2.0 include: (1) a meta-model based design 

of components, (2) support for dynamic reconfiguration of architectures using predefined 

patterns that allow adding/removing components and connecting to external services, (3) 

support for different communication styles by defining connectors as first class compo­

nents, (4) defining the control part of components using micro-components, (5) seamless 

support for version control, (6) provision of design time and runtime environments for the 

development and deployment of component-based systems, and (7) support for behavior 

specification and verification of compliance. 

A component in SOFA is specified by a frame and architecture. The frame specifies a 

black-box view of the component. It defines the requires and provides interfaces and prop­

erties of the component. An interface is an instance of an interface type, which specifies 

the signature of the provided or requested methods. An interface definition contains the 
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following specification attributes: (1) connection type, which determines whether an inter­

face can be used for reconfiguration control or not, (2) is collection, which captures the 

cardinality of an interface, and (3) communication style, which denotes the communication 

paradigm used at deployment time for the methods in the interface. 

The architecture specifies the implementation of the frame. A frame can be imple­

mented by several architectures. An architecture describes whether a component is com­

posite or primitive. It specifies the internal structure of composite components using con­

nectors and bindings. Connectors are first-class entities in the SOFA component model. 

There are three possible bindings: (1) delegation, which connects a provides interface of a 

component to one of its subcomponent's provides interfaces, (2) subsumption, which con­

nects a subcomponent's requires interface to a requires interfaces of the component, and 

(3) connector, which represents a connection between two or more subcomponents. 

SOFA 2.0 allows dynamic reconfiguration to components during run-time. There are 

three reconfiguration patterns allowed in SOFA 2.0: (I) factory, which allows adding new 

component to the architecture, (2) removal, which allows removing a component from the 

architecture, and (3) utility interface, which allows accessing interfaces across the compo­

nent boundaries. 

The behavior of a component is specified as a set of traces of events (method call re­

quests and their corresponding responses) appearing on component interfaces. A behavior 

protocol is an expression built using events, classical regular operators (';', '+', '* ' ) , and 

parallel composition by interleaving events. It defines the set of valid sequences. Tool 

support is provided to verify the compliance of component behavior to its defined behavior 

protocol. Static and run-time checking is provided. 

The component definition language (CDL) is used to describe interfaces, frames and 

architectures of SOFA components. Figure 6 shows an example CDL specification. The 

example shows the specification of a frame, DataAccess, which consists of one requires in­

terface of type lAuthorize and another provides interface of type IAccess. The specification 

of each interface type includes signatures of methods and the behavior protocol specifica­

tion of the corresponding interface type. For example, the behavior protocol of IAccess 

represents all the possible traces in which the method init is executed first and followed 

by zero or more executions of either executeQuery or executeReport and terminated by the 

method finish. An architecture specification is provided to implement the composite frame 

DataProcess by composing the two components DataAccess and AuthorizeData. SOFA 
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2.0 is supported by a tool-suite for developing, assembling, deploying, and controlling run­

time of applications. 

Similar to Fractal, SOFA modeling is targeted for the domain of distributed systems. 

Thus, it provides powerful support for defining hierarchical components, different commu­

nication styles, and dynamic reconfiguration. However, it does not support specifying and 

verifying the trustworthiness properties neither in the structural definition nor the behav­

ioral specification. 

2.1.7 SaveCCM 

SaveCCM [ACF+07] is a component model specially designed for vehicular systems. The 

model includes components, interfaces, switches, and assemblies. The SaveCCM model is 

based on the control flow paradigm using the pipe-and-filter architecture style. Interfaces 

are divided into input and output ports. A port can be used for data, control, or both data 

and control. Data ports are used to read and write data, whereas control ports are used 

to activate components. An interface may contain a set of name-value attributes such as 

the worst-case execution time value and the estimated reliability value. The functionality 

provided by a component is implemented by a single entry function using the C language. 

Therefore, each component in SaveCCM provides only one function, where its data ports 

act as data parameters for this function and its control ports activate the execution of the 

code. A component's function can be executed only if data has been received at all its input 

data ports and its input trigger ports are active. The execution model is read-execute-write: 

read input data from input ports, execute the component function, and write data to data 

output ports. Figure 7 depicts a SaveCCM component and shows the different possible 

ports that can be associated with it. 

The switch construct in SaveCCM is similar to its synonym in Koala. It allows changing 

the component interconnection structure using predefined conditions specified as logical 

expressions. An assembly is used for naming a set of components connected sequentially 

according to pipe-and-filter architecture style. 

The internal behavior of components is modeled using timed automata. 

The UPPAAL [BDL04] model checker is used to verify timeliness and safety properties. 

The component function is modeled as a real-time task associated with computation time, 

deadline, and sequence of variable assignments. The Times [AFM+03] tool is used to 

perform real-time schedule analysis. A transformation tool is used to automate the process 
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interface IAccess { 
void init(); 
void executeQuery(in string q); 
void executeReport(in string r); 
void finish(); 
protocol: init; (executeQuery + executeReport)*; finish 

}; 
interface IAuthorize { 

void requestAuthorization(); 
void requestStatus(); 
protocol: requestStatus; requestAuthorization 

} 
frame DataAccess { 

provides: IAccess p; 
requires: IAuthorize r; 
protocol: !r.requestAuthorization; ?p.init; 

(?p.executeQuery + ?p.executeReport)*; 
?p.finish; !r.requestStatus 

} 
frame DataProcess { 

} 
frame AuthorizeData { 

} 
architecture DatabaseAccess 

implements DataProcess { 

inst DataAccess da; 
inst AuthorizeData az; 

bind da.r to az.authorize; 
delegate processQuery to da.p; 

.. } 

Figure 6: Example SOFA CDL specification 
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Figure 7: SaveCCM component 

of analyzing components and generating extended timed-automata with tasks suitable for 

the Times tool. Also, an automatic code generation tool is used to create all the low-level 

platform dependent code, which is necessary for run-time. 

SaveCCM components are primitive with only one provided function. Its execution 

model is very restrictive. The architecture style used is limited. It is very well suited for 

its intended domain, which is the domain of vehicular systems. However, it cannot be used 

for modeling other types of component-based systems. Also, it provides little support for 

specifying non-functional requirements. 

22 Analyzing Current Component Models 

2.2.1 Comparison 

A detailed comparison between the component models mentioned above is presented in 

Table 1 and Table 2. In Table 1 we compare the static and dynamic aspects of the compo­

nent models. The model includes several views. These are : (1) structural view: a view of 

the component structure, (2) contract view: a view which includes description of the non­

functional requirements, (3) behavioral view: a specification of the behavior protocol, and 

(4) composition: a formal rule to compose simple components into a composite compo­

nent. In Table 2 we compare the ability of the component models to ensure trustworthiness 

during different phases of software development. This includes the type of tools used to 

perform analysis during: (1) design, (2) implementation, (3) run-time, and (4) dynamic 
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configuration at run-time. 

Table 1 compares the static and dynamic aspects of component models. It shows that: 

• Component structures are either hierarchical or flat, primitive, including interfaces 

and connectors with the exception that Fractal does not have connectors. 

• Only PECOS and SaveCCM define some non-functional requirements. All other 

component models have no support for non-functional requirements in their compo­

nent definitions. 

• PECOS and SaveCCM support only temporal requirements. PECOS's contract view 

is limited to execution-time, cycle-time, and memory consumption. SaveCCM en­

ables defining named values; however, it is not clear how invariants and non-functional 

constraints can be defined using these named values. 

• In SaveCCM the temporal requirements are encoded in the behavioral protocol. This 

limits the expressiveness of non-functional requirements by the behavior specifica­

tion language. 

• Component compositions define structural composition only. Although the compo­

nent definition mentioned earlier highlights the importance of the composition rule, 

there is no current component model that defines a compositional theory that includes 

both structural and non-functional requirements [LW05]. Such compositional theory 

is essential for ensuring trustworthiness. 

Table 2 compares the analysis ability and tool support of component models. It shows that: 

• PECOS and SaveCCM support real-time analysis at design time using formal verifi­

cation. All other component models don't have support for non-functional require­

ments analysis. 

• The non real-time component models, except KobrA, provide compilers to check the 

syntax of system definitions. 

• SOFA and Fractal support analysis at all development phases for protocol compliance 

(functional properties) to ensure that components behavior is restricted to the defined 

behavior protocol. However, their compliance analysis at implementation and run­

time can handle only non-parameterized protocols. 
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• Only SOFA and Fractal supports run-time reconfiguration of components. 

Therefore we find that, generally, current component models have limited or no support 

for non-functional requirements, specifically the properties of trustworthiness. 

2.2.2 Services 

Component can be defined generally as a software unit which provides or requires services. 

Service definitions are used to classify, search, and select components. A service can be 

defined as a function that maps a parameterized input request into an output action. We 

argue that non-functional requirements are generally concerned with component services. 

The following examples illustrate our hypothesis: 

• Component security is concerned with ensuring that only authorized users have ac­

cess to component data and services. It is possible to have different security classi­

fication and access levels to different services. However, integrity requirements are 

concerned generally with the component as a whole not a specific service. 

• Component safety is concerned with ensuring that service executions do not cause 

catastrophic consequences to users or the environment. Timeliness requirements are 

concerned with execution time of services. 

• Reliability is concerned with "the continuity of correct services" [ALRL04]. 

• Availability is concerned with "the readiness for correct service" [ALRL04]. 

These examples show that service definition is a central concept. Therefore, component 

definitions should include service definitions and enable assigning non-functional require­

ments, specially the properties of trustworthiness, to services. In current component mod­

els, services are defined indirectly as signatures in interface definitions. This makes service 

definitions a secondary concept with no attributes or properties assigned to them, which 

makes it difficult to specify and verify the non-functional requirements that are related to 

services. ' 

2.2.3 Component Contract 

We argue that non-functional requirements and environmental constraints, which are con­

straints related to the environment in which the component will be deployed, should be 
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Table 1: Comparison of static and dynamic aspects of component models 

Koala 

Pin 

PECOS 

KobrA 

Fractal 

SOFA 2.0 

SaveCCM 

Structural View 

hierarchical com­
ponents, inter­
faces, switches, 
and modules 
flat components, 
container, inter­
faces, and con­
nectors 

hierarchical com­
ponents, ports, 
and connectors 

hierarchical com­
ponent defined 
using UML and 
interfaces 
hierarchical 
components, 
controllers, and 
interfaces 
frame, architec­
ture, controllers, 
interfaces, and 
connectors 
flat compo­
nents, interfaces, 
switches, and 
assemblies 

Contract 
View 

execution 
and cycle 
time, and 
memory 
consump­
tion 

name-value 
properties 

Behavioral 
View 

stimulus-
response 
behavior 
using UML 
statechart 

UML inter­
action dia­
gram 

behavior 
protocol 

behavior 
protocol 

timed 
automata 

Composition 

structural 

structural 

structural 

binding inter­
faces 

binding in­
terfaces and 
behavioral com­
position 
structural and be­
havioral compo­
sition 

structural 
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Table 2: Comparison of analysis tools support 

Koala 

Pin 

PECOS 

KobrA 
Fractal 

SOFA 2.0 

SaveCCM 

Tools 

design 
viewer, 
code syn­
thesis, 
and ADL 
compiler 
run-time 
environ­
ment 
code syn­
thesis 

FractalADL 
and Frac-
talBPC 

runtime en­
vironment, 
designer, 
code syn­
thesis, 
and static 
checking 

designer, 
verifica­
tion tool, 
and code 
synthesis 

Design-Time 
Analysis 

real-time 
schedule 
analysis 

model check­
ing safety and 
performing 
real-time 
schedule 
analysis 

Implementa­
tion Analy­
sis 

static 
checking 
of behavior 
protocol 
compliance 
and cor­
rectness of 
communi­
cation 
static 
checking 
of behavior 
protocol 
compliance 
and cor­
rectness of 
communi­
cation 

Run-Time 
Analysis 

run-time 
checking to 
verify that a 
component 
code obeys 
its behavior 
protocol 

run-time 
checking to 
verify that a 
component 
code obeys 
its behavior 
protocol 

Dynamic 
Configura­
tion 

component 
life cycle 
manage­
ment and 
interface 
binding 
control 

adding and 
remove 
compo­
nents at run 
time 
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defined in a non-functional contract associated with the component. The contract speci­

fication should not be included as part of the component definition but rather assigned to 

it. This is because environmental assumptions and non-functional requirements might not 

be valid when the component is used in different deployments. For example, in real-time 

embedded systems, time constraints that define the maximum amount of time for a safe 

execution of a service might be different depending on hardware and software configu­

rations of the deployment environment. The separation between the computation part of 

the component and its contract enables components to be reused in different environments 

by changing only its contract. However, when studying current component models, we 

find that there is no support for non-functional contracts. In current component models, 

non-functional requirements, if they exist, are defined either as attributes in the compo­

nent definition or as part of the behavior protocol specification. For example, in PECOS, 

memory consumption and worst-case execution time are specified as attributes in the com­

ponent definition. On the other hand, in SaveCCM, timing requirements are specified in 

the timed automata. In the former case, specifying non-functional requirements inside the 

component definition makes it difficult to reuse the component for different deployments. 

In the later case, specifying non-functional requirements in the behavior protocol restricts 

the specification by the limitation of the behavior protocol specification language. Thus, 

the lack of contract specification in current component models severely limits the reuse of 

components, the very essential motivating factor for propounding component technology. 

2,2.4 Encapsulation and Composition Theory 

A component model addresses the issues of assembling components to develop component-

based systems. There are two major concerns when assembling components: encapsulation 

and composition of non-functional properties. 

First, components should be self contained and loosely coupled. The composition 

mechanism should preserve encapsulation of component's data and control. This is done 

by separating the computation part of the component from its interactional specification. A 

study of current component models [LW07] revealed that components are composed using 

direct method calls or indirect message passing through connectors. Thus, these models 

produce tightly coupled components that are difficult to reuse. 

Second, when assembling components, special composition rules should be applied to 

ensure that the non-functional requirements of the constituent components are preserved 

27 



in the assembly. This requires a defined composition theory. Composition is a central 

concept in component-based development. However, when analyzing the aforementioned 

component models we found that they define only structural composition by linking inter­

faces together. There is no component model that defines a composition theory for both 

structural and non-functional parts of a component. This finding has also been described 

in [LW07]. 

2.3 ADL Related Work 

This section discusses the related work in the architecture description languages (ADLs) 

literature. Both component models and ADLs share the component concept. A compre­

hensive study of ADLs was presented in [MTOO]. Recent studies have shown the limited 

support of ADLs for non-functional requirements. Garlan and Schmerl [GS06] remark that, 

"despite the notable progress and concern for ways to represent and use software architec­

ture, specification of architecture designs remains relatively informal, relying on graphical 

notations with weak or non-existent semantics that are often limited to expressing only 

the basic of structural properties". This section presents a brief review of three ADLs: 

Acme [GMWOO], secure-xADL [RT05], and AADL [AAD]. 

^©«3o JL i i U I l i ! 

Acme is a second generation architectural description language. It provides support for 

specifying the canonical set of structural elements of an architectural design. It includes 

definitions of component, port (runtime interface), connector, connector role, system, prop­

erty (attribute), constraint, and representation (substructure of a component or a connector). 

Acme is extensible. Therefore, it serves as a basis for developing new domain specific 

ADLs and integrating existing architectural design analysis tools. Acme is intended to pro­

vide a unifying ADL for interchanging architecture descriptions between different ADLs. 

It includes only the essential items that are common among ADLs. Since non-functional 

requirements are not common in ADLs, component definition in Acme does not include 

non-functional requirements. Hence, it is not suitable for defining architecture of trustwor­

thy component-based systems. 
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2.3.2 Secure-xADL 

A secure architectural description language (secure-xADL) was introduced in [RT05]. The 

proposed language is based on extending xADL, an XML based extensible ADL. The ba­

sic structural elements of architectural modeling in xADL are components and connectors. 

Secure-xADL uses an access control mechanism for modeling security at the architectural 

level. The access control model [Bis03] precisely defines the rights of every subject with 

respect to every other secured entity. In order to ensure security, components and connec­

tors play different, yet complementary, roles. Component types provide security contracts 

that specify the subject it acts for, the principals it can take, the privileges it possesses, and 

the safeguard it requires. These are defined as part of its interface specifications. On the 

other hand, connectors regulate and enforce the defined security contracts of the communi­

cating components. Connectors check the contracts at the two ends of the communicating 

components and decide whether they have sufficient privilege to communicate. Then it 

either lets the communication passes through or rejects it. 

Although Secure-xADL introduces a promising approach for modeling security at the 

architectural level, there are four major issues that, to the best of our knowledge, have not 

been addressed by Secure-xADL. First, it does not provide a solution to the compositional 

problem which is a major concern in component-based development. Second, Secure-

xADL does not provide mechanism for the formal verification of security policies in a 

component and in the whole system. Third, it does not provide a mechanism for perform­

ing consistency checking to ensure that the defined policies does not include conflicting 

specifications. Fourth, security contracts are maintained at a component level; therefore, 

there is a need to prove that the subject actually posses the claimed privileges on the ob­

jects. Otherwise, any component can make false claims and violate security by accessing 

restricted resources. There is a need for either a centralized or distributed authentication 

authority to confirm the legitimacy of the claimed privileges. To the best of our knowledge, 

Secure-xADL is the only secure ADL proposed in the literature. 

2.3.3 AADL 

The architecture analysis and design language (AADL) [AAD] is a textual and graphical 

architecture description language used to specify the design of real-time systems. AADL 

provides formal modeling abstractions for the specification of complex real-time embedded 
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systems. The structure of a system is specified as an assembly of communicating compo­

nents. Their interfaces, functional and data, and non-functional properties, such as timing 

requirements and space requirements, are precisely defined. Component specification in 

AADL includes an identity, possible interfaces with other components, properties, and 

subcomponents defining the internal structure of the component's implementation. Com­

ponents are divided into three categories: application software, execution platform (hard­

ware), and system. Each component category has its own predefined set of properties. 

Interactions between components are defined as flows of control and information through 

defined connections. Multiple predefined configuration settings and interactions between 

components can be defined using operational modes. The language enables deployment 

specification by allocating software components to execution platform components. It is 

possible to extend the language with more properties and analysis specific constructs that 

can be associated with components. The error model annex is a standard AADL extension 

that supports fault/reliability modeling and analysis. 

In AADL a primitive component represents a single service for which the defined data 

ports specify the stimulating input or triggered output event and the input and output data 

parameters. Therefore, AADL does not provide a clear distinction between a component 

and a service. In AADL, the critical safety requirements are specified as properties that de­

fine timing requirements, period, worst-case execution time, deadline, space requirements, 

and arrival rates. These properties are included in the component specification. This hin­

ders the reuse of components for different deployments. In our view, specifying contracts 

outside component definition enables reuse of components and contracts definitions and al­

lows changes to contract without affecting component specification. AADL does not sup­

port security specification, but it supports reliability specification by defining error models 

annotated with probability parameters. However, the values of the probability parameters 

are based on assumptions. Therefore, the accuracy and precision of these values can not be 

proven or justified. AADL does not provide a mechanism to analyze availability. 

2.4 Specifying Trustworthiness Properties 

This section reviews the research efforts made in the past for formally specifying trustwor­

thiness properties and summarize their conclusions. 
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2.4.1 Combining Safety and Security Properties 

In the literature, safety and security properties are formally specified and composed us­

ing different methods. This is due to the common consensus that while safety properties 

are defined as sets of "safe" sequences, security properties cannot be expressed as sets of 

sequences[McL96, Zak96, Man02]. It is well known [AL93] that safety properties can be 

preserved in a composition; however, some security properties are not preserved by any 

composition [McC88]. Hence it was concluded that it would not be possible to neither 

express safety and security using one formal logic nor use one compositional theory for 

both safety and security. This implies that different formal methods have to be used for the 

specification and verification of security independent of safety. 

Many security properties have been proposed as information flow properties [GM82, 

McC88, McL90, McL94, FG95, ManOO] which attempt to prevent a low-level user from 

inferring some thing that is confidential to a high-level user [Zak96]. Many interface secu­

rity properties that were presented early on were proved to be weak in later research and 

were replaced by stronger ones. See [GM82, McC88, McL90, McL94, FG95] for a history 

of the research related to the introduction of new information flow properties and an account 

of how they were either proven to be weak subsequently or proven that they failed to pre­

serve security in composition. Most importantly, the use of this type of security properties 

doesn't allow combining it with safety properties within one formal specification method 

so that composition, and verification can be formally achieved [McL96, Zak96, Man02]. 

Finding a single composition rule and a formalism to assure the satisfaction of trustworthi­

ness in composite components has been an open problem until now. 

In this thesis we propose a composition rule that unifies both access control and in­

terface security models. Access control models restrict access to component services, and 

validate user requests of authorized users. We apply this restriction at the interfaces of com­

ponents. We argue that the access control security properties suggested by this thesis can 

be expressed as sets of sequences. Hence, these security properties can be expressed in any 

mathematical logic in which safety properties are expressed. Therefore, one compositional 

theory can be used for both safety and security. 
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2.4.2 Reliability 

In the literature, there is a large number of publications aiming to predict the reliability 

of systems at architecture level [IN08, Gok07]. The comprehensive analysis of these ap­

proaches reveals that these practices suffer from a serious defect which is the fact that the 

estimated quantitative value of reliability is based on inaccurate or unjustified assumptions 

about component reliability [CRMG08, IN08, Gok07]. This is because the only way to 

quantitatively measure the exact accomplished reliability is by using operational profiles, 

sets of execution sequences of component behavior. Since the reliability prediction is done 

at design time and since the operational profiles are available only after deployment and 

execution time, many assumptions are made in order to quantify reliability. These assump­

tions are uncertain and unjustifiable. This is the motivation for seeking a new approach for 

defining reliability and availability in this thesis. We believe that reliability and availability 

must be architected at design time, specified in the component's contract, and ensured by 

the implementation. Model checking technique can be used to verify the correctness of 

architecting reliability and availability at design time. 

2.5 Process Models for Component-based Development 

A software engineering process defines a set of integrated activities to develop software 

systems. A typical software engineering process groups the related activities into stages 

of requirements acquisition and analysis, design, implementation, testing and verification, 

deployment, and maintenance. The type of activities involved may vary from one system 

to another depending on the type of system and the development methodology used. For 

example, the activities involved in designing a safety critical system differs from those 

used to design a library classification system. Rigor must be applied in the former. Also, 

the design of a system using the object-oriented methodology differs from the design of the 

same system using procedural programming. 

In order to achieve the benefits of component-based development (CBD), a component-

based process must be used. The design of a component-based system differs than the de­

sign of other types of systems. CBD is a reuse oriented process. Therefore, the development 

of reusable components and the integration of components to create systems are the main 

concerns in a CBD process. A major difference between conventional software engineer­

ing process and a CBD process is that the former results in a software system, whereas the 
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later results in a software system as well as a system with reusable components [TGG07]. A 

typical component-based development process comprises two parallel activities: software 

component development and component-based system development [CCL06, Pre05]. The 

former addresses the issues of component's specification, development, qualification, doc­

umentation, cataloguing, and adaptation and selection for reuse. The later addresses the is­

sues of assembling components to develop component-based systems. Several component-

based process models exist in the literature [Chr95, DT03, TGG07, CCL06]. The follow­

ing presents an overview of these process models highlighting their main features. The 

overview is arranged in a chronological order based on their presentation time. 

In [Chr95], a reuse-based software development process model was presented. This 

process is based on the hypothesis that domain engineering is the foundation for a reuse-

based software system development. A domain is a set of .applications that share similar 

requirements, capabilities, and data. Domain engineering is the set of activities that create 

and support a model, architectures, components, and applications specific to the domain. 

The domain analysis defines the requirements that are common for all products in the do­

main and the requirements that vary for each product. These requirements are used to de­

velop a domain model that includes requirements of all products. From the domain model, 

a domain architecture is developed to form the basis for all domain products. The architec­

ture is further refined to define the constituent reusable components. Domain applications 

are designed based on the domain architecture and developed by reusing existing domain 

components. 

In [DT03], a component-oriented development process was presented. The process 

focusses on system development by integrating existing components. It is based on the 

abstract design paradigm which suggests decomposing a system structure hierarchically 

into components and associating data, functions, and controls to each component. A design 

modeler starts with system requirements and uses a recursive structural decomposition to 

arrive to the definition of composite or simple components. Then, activities of component 

specification, search, modification, or creation starts. After that, the system is built by 

integrating components. 

In [CCL06] a process of three parallel tracks was presented: component development, 

component assessment, and system development. The activities in component assess­

ment include finding and evaluating existing components. It yields a repository of com­

ponents that includes the components' specifications, descriptions, documented tests, and 
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executable components. In [TGG07] two independent processes are defined for component 

and system development. 

Tables 3 and 4 provides a summary of the activities suggested in [Chr95, DT03, CCL06, 

TGG07] for both component and system development. Reviewing these models helps us 

to extrapolate the main activities involved in a general component-based development pro­

cess, which can be extended with rigorous methods to define a component-based process 

for developing trustworthy systems. 

2.5.1 Discussion 

From the above summary and Tables 3 and 4, we find that there are four major activities 

involved in component-based development. These are domain engineering, component de­

velopment, component assessment, and system development. These activities are important, 

however might not all be required at the same time. For example, it is possible to have a 

company which focuses only on developing and selling components. Therefore, there is 

neither domain engineering nor system development. On the other hand, there could be 

a company which has a domain engineering and system development but no component 

development because it buys the required components from others using the component as­

sessment activities. Also, it is possible to have a single project which uses CBD; therefore, 

it requires component development and system development only. It is quite possible, how­

ever, to have an enterprise which uses all the four types of activities for developing complex 

systems. Such examples may be found in avionics, automotive, and product-line develop­

ment industries. Therefore, a component-based development process should address all 

four types of activities. 

Component assessment through testing and verification is an important factor for the 

success of reuse. The assessment should be done at a component level, in which the func­

tional and nonfunctional requirements are tested and verified, and at a system level, in 

which composability tests are used to test the successful integration of reusable compo­

nents. Integration testing should assess not only structural assembling but more impor­

tantly nonfunctional requirements, specially unwanted properties that may emerge at sys­

tem level but remain invisible at component level. In safety/security critical systems, the 

issue of emergent properties is critical. Integration may violate safety or security proper­

ties. Verification of such properties is challenging [CCL06]. Therefore, a component-based 

development process for trustworthy systems must use rigorous formal methods, including 
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Table 3: A summary of the component and system development activities - Part 1 
Phase 
Requirements 

Analysis and De­
sign 

Implementation 

Component Development 
Domain analysis is used 
to identify required com­
ponents [Chr95]. The 
defined requirements should 
address ranges of require­
ments and the possibility of 
reuse [TGG07]. 

Assumptions are made about 
the environment in which the 
component will operate. A 
component technology is se­
lected for components, such 
as .NET, J2EE, COM+, etc. 
The design should be gen­
eral to enable reuse. Design 
adaptations to existing com­
ponents to fit into the sys­
tem [CCL06]. Detail com­
ponent specification are de­
signed including functional, 
structural, and nonfunctional 
specifications [TGG07]. 

The selected component 
technology determines 
the implementation de­
tails [CCL06]. The methods 
and events of components 
are implemented [TGG07]. 
Reuse is encouraged when­
ever possible. 

System Development 
In addition to require­
ments acquisition, existing 
components' information 
and documentation are 
reused [CCL06]. System 
requirements are captured 
and component requirements 
are defined to help in search­
ing and selecting existing 
components [TGG07]. 
The overall system architec­
ture is designed. Then, the 
architecture is refined and the 
constituent components are 
identified and specified in de­
tails [DT03, CCL06]. A 
component-oriented architec­
ture is selected and compo­
nents are identified. Detail 
design of new components is 
performed. Verification and 
validation of functionalities 
are conducted [TGG07]. 

The emphasis in implementa­
tion is put on component 
selection and adapta­
tion [DT03, CCL06]. 
Components must be as­
sessed before reuse [CCL06]. 
New components are de­
veloped and glue code is 
written [TGG07]. 
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Table 4: A summary of the component and system development activities - Part 2 
Phase 
Integration 

Testing 

Maintenance 

Component Development 
Integration considerations 
must be continuously in focus 
through all phases [CCL06]. 

Extensive tests such as unit 
and integration testing should 
be done to verify functional 
and nonfunctional require­
ments. Test results should 
be delivered with the com­
ponent to system develop­
ers [CCL06]. 
Strategies should be defined 
for component mainte­
nance [CCL06]. 

System Development 
Architectural matches should 
be tested, and functional 
and nonfunctional behavior 
should be verified thoroughly 
to insure successful integra­
tion [CCL06]. Connectors 
are used to integrate compo­
nents [DT03]. 
Tests must be performed 
during component selection 
and integration [CCL06]. 
Integration, system, and 
acceptance testings are 
required [TGG07]. 

Replace old components by 
new ones or add new compo­
nents into the system when­
ever necessary [CCL06]. 
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verification and testing techniques, in component development, assessment, and system 

integration to ensure a correct and trustworthy system behavior. 

Since software requirements form the foundation from which the development process 

starts and quality attributes can be assessed, there is a need for a formal specification lan­

guage that collectively and precisely define the software requirements related to functional, 

nonfunctional (such as trustworthiness), and structural parts of the software. The com­

bination of rich formal specification language and a rigorous development process pro­

vide a high assurance level of trustworthiness. Trustworthiness must be a central concern 

throughout the different activities in the component and system life-cycle as depicted in 

Figure 8. In every stage, established methods for the verification of trustworthiness are 

to be used. Iterative cycles exist between sequential phases to ensure that the trustworthi­

ness requirements are satisfied. Although formal methods may seem complex and costly, 

they are inherently supported by automation tools. Therefore, a rich specification language 

and tools support are essential for the success of the development process of trustworthy 

systems. 

Maintenanc 

Deployment 

Requirements 

Verification of 
Trustworthiness 

Testing 

Design 

mplementation 

Figure 8: Trustworthy development life-cycle 

2.6 Summary 

From the above discussion, we conclude that there is a need for: (1) a rich and unified for­

mal specification language for defining trustworthy components and systems, (2) a rigorous 

development process model that collectively includes domain engineering, component de­

velopment, component assessment, component reuse, and system development activities, 
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and (3) a framework of tool support to support formal specification and the development 

process model. In these elements, trustworthiness must be a central concern. From the 

above survey and analysis it is clear that none of the existing component modeling tech­

nique nor a development process model can fit our needs. This is both a challenge and 

opportunity for creating a new component modeling technique that is both formal and prac­

tical. 
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Chapter 3 

Research Methodology 

This chapter presents the objectives of this research and shows the different research steps, 

which together formulate the research methodology used to reach the objectives. 

3.1 Research Objectives 

The goal of this research is to develop a formal component-based software engineering 

approach for developing trustworthy systems. The objective is achieved by putting together 

the following three contributions: 

• A formal component model that collectively addresses the requirements of trustwor­

thiness and component-based development, 

• A formal development process model that describes component engineering and 

component-based development of trustworthy systems, and 

• A framework with a comprehensive set of tools that support the formal development 

process. 

3.2 Research Methodology 

The research methodology is divided into three phases. The first phase is concerned with 

defining a formal component model for trustworthy systems. The second phase is con­

cerned with defining a process model for the component-based development. Finally, the 

third phase is concerned with defining and implementing a development framework. The 

39 



following three sections describe the research problems, research questions, the solutions 

provided by our research for the stated problems, the limitations, and the future work of 

each phase. 

3.2.1 Phase 1: Defining A Formal Component Model for Trustworthy 

Systems 

This section presents the research problems in defining a formal component model for 

trustworthy systems. There are four research problems outlined in this section. For each 

problem, we discuss the corresponding challenging research questions and provide our 

proposed solution. 

Research Problem 1-A: The lack of support for non-functional requirements 

Problem Statement: Current component models provide limited or no support for defin­

ing non-functional requirements. Therefore, they do not fit the need to define trustworthy 

component-based systems. As discussed in our literature survey, current component models 

focus on the structural part of components. In order to profit form component technology 

to develop trustworthy systems, there is a need to extend component definitions with spec­

ification of trustworthiness. 

Research Questions: Below we discuss the questions related to the research problem 

1-A and provide solutions. 

Ql: What are the essential properties of trustworthiness? We define trustworthiness as a 

composite concept that involves safety, security, reliability, and availability proper­

ties. The safety property is an invariant property of the system. Thus the property is 

true at all system states. In general, a safety property is a constraint that will prevent 

a system state in performing an action that might injure the environment as well as 

damage its internals. For real-time systems that are safety-critical, both liveness and 

timeliness become part of safety property. Security properties include confidentiality 

and custom defined security policies that are concerned with security of the services 

provided by the component and its local data. Reliability and availability properties 

include constraints that will limit, if not prevent, the frequency of system failures and 

set acceptable duration on non-availability of service due to repairs. 
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Q2: What are the essential constituents of the component model? Components provide 

and request services at public interfaces. A component can have local data variables 

that are used by its services. Also, a component may have constraints that define 

invariants over its behavior or its structural definition. A component can have non­

functional requirements. Components interact with each other through connectors. A 

component can be primitive or composite. An architecture defines the internal struc­

ture of components. Therefore, in our perspective, a component definition should 

include structural, contract, and behavioral parts. The structural part defines the 

following concepts: component, interface, connector, architecture, attributes, con­

straints. The contract part defines the services, trustworthiness properties, and other 

non-functional requirements. The behavioral part defines the inter-play communica­

tion at the interfaces of a component and the trustworthiness restrictions. 

Q3: How can we define a trustworthy component model? In order to develop trustwor­

thy systems, rigorous methods should be applied for specifying and verifying sys­

tems. We use mathematical notations for formally specifying the structure, contract, 

and behavior of component-based systems. We formally specify the requirements of 

safety, security, reliability, and availability in the contract. The formalism provides 

abstract and precise definitions of the component model and trustworthiness prop­

erties. The formalism is the foundation of our engineering approach. It provides a 

unified language for describing the structure and the properties of trustworthiness. 

Also, it enables automatic techniques for formal analysis. Based on the formalism, 

verification of trustworthiness properties can be automated. 

Q4: How can we make the formalism easily accessible to non experts? Realizing that 

formal notations are difficult to use and communicate among software architects, we 

created an architecture description language (TADL), which is based on our formal­

ism. Our architecture description language provides complete descriptions for our 

trustworthy component model in a high level language that can be understood by 

software engineers. 

Q5: How can we define the behavior of trustworthy components? In order to analyze and 

reason about the behavior of trustworthy components, there is a need for a behavior 

specification method that combines all the trustworthiness properties. We provide an 

extended timed automata for describing the behavior of trustworthy components. In 
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our solution, timed automata are augmented with timing constraints, security poli­

cies, and failure and repair behaviors. This rich behavioral model is generated auto­

matically by analyzing the component structure and contract specification. 

Limitations and Future work: In our component model, the security mechanism fo­

cuses only on confidentiality and authorization aspects. However, security is a broad con­

cept that includes more considerations such as data integrity, encryption, intrusion detec­

tion, denial of service, and impersonalization. Some of these consideration must be guaran­

teed by the implementation of the component and the connector. For example, it is possible 

to implement connectors that analyze the communication and perform intrusion detection. 

Also, it is possible to implement encryption connectors that encrypt any communicated 

data or services. Moreover, our component model assumes a centralized security mecha­

nism, where a central authority authenticates and authorizes users. However, in distributed 

systems, it is possible to have distributed authorization. In order to support such require­

ments, we need to add a control unit to the component definition. This control unit will 

be responsible for trust management. It operates as a controlling filter through which all 

out-going requests are encrypted and digitally signed and assigned a public key. Also, It 

decrypts the received requests and verifies the identity and credentials of the requesters. 

In this case, distributed authorities are needed, which host lists of certified identities with 

credentials. The control unit can communicate with those distributed authorities to verify 

identities. For every component, in order to operate, it should seek a digital certificate along 

with a public key from one of the distributed authorities. Then, it can use this certificate 

when communicating with other components. The certificate involves information about 

the contract guaranteed by the components, some of its quality attributes along with their 

values, and its security credentials. 

Research Problem 1-B: The strong coupling of components 

Problem Statement: In current component models, components are composed using in­

terface binding or connectors. This binding makes components tightly coupled. The strong 

coupling of composite components in current component models severely limit the reuse of 

components, the very essential motivating factor for propounding component technology. 

Therefore, there is a need for a solution to define loosely coupled components that can be 

reused easily. 
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Research Question: Below we discuss the questions related to the research problem 1-B 

and provide solutions. 

Q6: How can we develop reusable components? We provide two solutions for this ques­

tion. First, the non-functional requirements of a component should be defined in 

a contract, which is associated with the component definition. This enables recon­

figuring the contract to fit different deployments and systems. Second, the relation 

between the requested services and the provided services is specified in the con­

tract, outside the component definition. The binding between services should not 

be included inside the component definition. This enables configuring different be­

haviors, relations between requests and responses, without affecting the component 

definition. Therefore, it increases reuse of the component definition. 

Research Problem 1-C: The need for a composition theory 

Problem Statement: Current component models define only structural composition by bind­

ing interfaces, either directly or using connectors. No composition theory exists for com­

ponents. The concept of component composition goes beyond connecting components. 

Composition allows analysis about the non-functional properties of the constituent compo­

nents after the composition. It ensures that the composition does not violate the properties 

that are already satisfied by the constituent components. Therefore, there is a need for a 

composition theory. 

Research Questions: we discuss the questions related to the research problem 1-C and 

provide solutions. 

Q7: How can we define a composition theory for trustworthy components? A composi­

tion theory should include both structural and contract composition. We provide a 

composition theory that defines two types of composition rules: composition rules 

for the structural part and composition rules for the contract part of our component 

model. The structural composition rules describe how a new component structure 

is formed by gluing compatible interfaces using connectors. It is possible to have 

multiple architectures for the new composite component. The contract composition 

rules specify how the services and trustworthiness properties are composed to form 

a new contract. There is only one possible contract for a component. Our proposed 
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solution is based on our ability to define both the structural and contract part of a 

component using one formalism. 

Q8: Is it possible to use one composition theory for safety and security properties? In 

the literature, it was not possible to compose safety and security properties together 

because they were defined in different ways. The security properties were defined as 

information.flow properties, which can not be composed in one method with safety 

properties. However, in our approach we use a role-based access control security 

mechanism. In this mechanism, security policies are specified using predicate logic. 

This makes it possible to specify, compose, and verify these policies with safety 

properties using one approach. 

Limitations and Future work: The composition theory proposed by our research pro­

vides rules for composing safety and security properties only. We need to extend the com­

position theory with rules for composing reliability and availability. When a service fails 

at one component, it either produces erroneous results or become unavailable. This will 

affect the other components that request this service. Therefore, failures can propagate 

from one component to another. If a service becomes unavailable then it may violate the 

timeliness requirements because the component will not respond to requests in within the 

safe limits of time. Therefore, there is a need to extend the component definition to prevent 

the propagation of failures. In this regard, it is possible to define a control unit to monitor 

the behavior of services. If a service failure occurs then this service must be hidden from 

the public interface of the component until it is corrected. Dynamic reconfiguration may 

provide solution in this case. For example, the control part may create a new instance of 

the component, rebind all connectors to the interfaces of the new component, and delete 

the faulty component. 

Research Problem 1-D: The need for an approach for specifying and verifying relia­

bility and availability at architecture level 

Problem Statement: The current approaches for analyzing reliability and availability 

at an architecture level are based on inaccurate or unjustified assumptions. Component 

reliability can be measured quantitatively by analyzing its execution sequences at run time. 

Since this information is not available at design time, the current approaches in the lit­

erature are trying to only estimate, but not measure, reliability. The estimation requires 
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assumptions about the deployment environment and the behavior of the component at run 

time. Since it is difficult to prove the accuracy and correction of the assumptions, there is a 

need for a qualitative approach for specifying and verifying reliability and availability. 

Research Question: Below we discuss the questions related to the research problem 1 -D 

and provide solutions. 

Q9: How can we provide a formal approach for specifying and verifying reliability and 

availability? In our trustworthy component model, the definition of reliability and 

availability are based on service failures and repair durations. A failure is a deviation 

from the correct service behavior. It is indicated by any violation to the functional 

or non-functional requirements including those of safety and security. A repair is a 

change from the state of service failure to the state of correct service. The acceptable 

level of reliability is defined based on the frequency and severity of service failures. 

The acceptable level of availability is defined based on the duration of service failure 

time. The component implementation and maintenance should guarantee the repair 

time. The failures, repairs, and the acceptable levels of reliability and availability are 

formally defined in the component contract. Also, the behavior model is extended 

with failure and repair specification. This enables us to use formal model checking 

to verify safety, security, reliability, and availability in a one approach. 

3„202 Phase 2t Defining A Process Model for Developing Trustworthy 

Component=Based Systems 

This section presents the research problems in defining a formal process model for devel­

oping trustworthy component-based systems. We discuss the corresponding challenging 

research questions and provide our proposed solution. 

Research Problem 2-A: The need for a process model for developing trustworthy sys­

tems 

Problem Statement: A conventional software engineering development process is not 

suitable for developing component-based systems. Also, a conventional component-based 

development process is not suitable for developing trustworthy systems. Current component 

technologies are focusing on the structural and implementation aspects of component-based 
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systems. The typical component-based development processes presented in the literature 

focus on the general activities involved in developing component-based systems with em­

phasis on reuse and integration testing. On the other hand, safety-critical development 

processes are not suitable for component-based systems. This is because component-based 

development generates two products: a component-based system and reusable components. 

Therefore, there is a need for a rigorous component-based process for developing trustwor­

thy systems. 

Research Questions: Below we discuss the questions related to the research problem 

2-A and provide solutions. 

Q10: What are the major activities in a component-based development process? Our re­

search found that a component-based development process should address four major 

types of activities. These are domain engineering, component development, compo­

nent assessment, and system development. 

Ql 1: What are the requirements of a component-based development process for trustwor­

thy systems? We provide a process that inclusively blends the activities of component-

based development and those of rigorous critical systems development. Our process 

includes the following merits: (1) it uses rigorous formal methods, including veri­

fication and testing techniques, in component development, assessment, and system 

integration to ensure a correct and trustworthy system behavior, (2) trustworthiness 

is a central concern throughout the different activities in the component and system 

life cycle, and (3) it has tool support for specifying and verifying component-based 

systems. 

3.2.3 Phase 3: Developing a framework with comprehensive tool sup­

port 

This section presents the research problems in developing a framework that supports the 

development process model. We discuss the corresponding challenging research questions 

and provide our proposed solution. 
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Research Problem 3-A: The need for tools support 

Problem Statement: Defining a rigorous development process is not sufficient to ensure 

trustworthiness. It requires tools to support the schematic implementation of the various 

tasks as in the process model. Formal development of systems without tools is a difficult 

task. Designing systems formally requires expertise and takes long time and effort. There­

fore, there is a need for building tools to automate and support the various activities defined 

in the rigorous development process model. 

Research Questions: Below we discuss the questions related to the research problem 

3-A and provide solutions. 

Q12: What are the necessary tools for realizing the trustworthy development process model ? 

We propose a blueprint of a framework for the development of trustworthy systems. 

The framework can be viewed in three layers: design, implementation, and deploy­

ment. Taken as a whole, the framework describes the tools necessary for the different 

stages outlined in the process model. As of now, we have implemented the visual 

modeling and the transformation tools which includes the activities of designing sys­

tems, translating design to ADL notation, generating behavior models, and generat­

ing real-time models. Also, we have successfully adopted UPPAAL and Times tool 

in our framework. 

Q13: How can we make the formalism accessible to software architects We provide a visual 

modeling tool, developed in our research lab, to design trustworthy component-based 

systems. The tool provides a graphical user interface that allows the user to select, 

drag, and drop different elements of our trustworthy component model on a design 

canvas. The user can specify the structural and contract requirements with no knowl­

edge of the underlying formalism. The tool provides syntactic checking and report 

any design errors to the user. The tool automatically generates formal system specifi­

cation in accordance with ourTADL language. Zhou Yun [Yun09] has implemented 

the visual modeling tool. 

Q14: How can we specify the behavior of trustworthy components easily? We use model 

transformation techniques to automate the process of generating behavior specifi­

cation and real-time models. We provide a transformation tool, developed in our 
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research lab, to automatically analyze the TADL specification, generated by the vi­

sual modeling tool, and generate a behavior model as extended timed automata. The 

behavior model contains functional and non-functional specifications including the 

requirements of safety, security, reliability, and availability. The transformation tool 

produces extended timed automata that conforms to the specification language of 

UPPAAL and Times model checkers. Naseem Ibrahim [Ibr08] has implemented this 

transformation tool. 

Q15: How can we verify the properties of trustworthiness? We use model checking to 

verify the trustworthiness properties. Safety, security, reliability, and availability re­

quirements are verified using UPPAAL model checker. Real-time requirements, such 

as schedule analysis, are verified using the Times tool. The extended timed automata 

that is produced by the transformation tool is input to UPPAAL and Times to conduct 

the formal verification. 

Limitations and Future work: The current implementation of the framework includes 

only the design time tools. We need to build a repository to host components definitions 

and the results of their testing and verification. 

3.3 Summary 

In this section, we presented our research methodology for achieving a formal software 

engineering approach for developing trustworthy systems. We provided our solution to the 

research problems and their corresponding research questions. We provided our solutions 

based on our conducted research and the results we found. We are not aware of any other 

approach to answer these problems. In the rest of the thesis the technical details of the 

proposed solutions are given. 
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Chapter 4 

Trustworthy Component Model 

This chapter introduces a formal model of a trustworthy component. Informally, a com­

ponent has a structure and behavior. The structure of a component is shown in Figure 9. 

This component structure is different from other models proposed earlier [LW07]. The 

novel contribution of the component model is the formal way in which safety contract and 

security mechanism are combined and in which reliability and availability are defined and 

verified. The rationale for the new model arises from the essential need for defining non­

functional requirements, composing them in such a way that preserves these non-functional 

requirements, and verifying them. Therefore, the new model is designed in such a way that 

it collectively addresses the requirements of CBD and trustworthiness. Also, the model is 

designed in a formal way that allows automated analysis and verification of trustworthi­

ness. The formal specification of reliability and availability is presented in Chapter 7. The 

remaining elements that make up the component model are formalized in the following 

sections. 

4.1 Event and Data Parameters 

Components provide and request services through public interfaces. Component technol­

ogy provides a means to define, implement, deploy, maintain, and reuse related services 

in one entity. Service definitions are used to classify, search, and discover components. 

Therefore, it is important to model services independently and include their definitions in 

components. We model a service as a function mapping an input request to an output re­

sponse. Requests and responses are parameterized events where a parameter is either a data 
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Figure 9: Structure of Trustworthy Component 

parameter or an attribute. A parameter has a type, value, and a set of constraints defined 

over the value. 

A component interacts with other components through stimulus and response. Let E 

denote a finite nonempty set of events. An event in E denotes either a stimulus, request for 

service, or a response, service provision, but not both. A request for service is an input event 

representing an information flow from outside the component to the inside. On the other 

hand, a service provision is an output event representing an information flow from inside the 

component to the outside. Input and output events are external events. Internal processing 

inside the component is done using internal events. Output events are divided into two 

types: output response and output request. An output response models the actual response 

to a request. An output request models an event sent to request additional processing from 

outside the component. Therefore, E is divided into a set of input events Einput, a set of 

output events Eoutput, and a set of internal events T:internai where T,output = Eresponse U 

Z-'OutRequest- -TOrmally, 2 J = l^input U ^output U ^internaU 2->input '[ ^output H ^internal. = V. 

An event representation has 4 tuples in it; one tuple denotes the set of data parameters, one 

tuple denotes the set of attributes, one tuple denotes the set of constraints, and one tuple 

denotes the event flow. 

Constraints: A constraint is a logical expressions, defined over data parameters and at­

tributes, which is an invariant associated with an event. Constraints are used to define the 

valid values of event's parameters. Let C denote the set of all logical expressions. A logical 
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expression x £ C is defined using first order predicate logic (FOPL). 

We use the following notation in all subsequent definitions: 

• T denotes the set of all data types. 

• V € T means V is a data type such as N. 

• v : V denotes that v is either a constant or variable of type V. 

• Xv is a constraint on v. If v is a constant then Xv is true-

Data parameters: A data parameter is information carried by an event. The definition 

of a data parameter includes name, data type, and value. In principle, abstract data types 

can be data parameter types; however, we restrict only to simple data types such as integer, 

char, boolean, and float and arrays defined over them. The set of data parameters is A = 

{A = (T>,v,Xv) | T> £ T, v : V, Xu £ C}. Modeling data parameters as architectural 

elements has three important implications. These are: 

• It allows modeling different types of simple and complex data communicated at the 

interfaces of a component, which results in a rich communication specification. 

» It provides a mechanism for securing the information passed through the interfaces of 

a component. Security is essential for both the services and the data communicated 

at the interfaces. Therefore, explicit modeling of data parameters enables designing 

information security at architectural level. 

• It enables rich specification of safety contracts by regulating reactions of the compo­

nent based on values of data parameters. 

Attributes: An attribute qualifies the semantic content associated with an element in the 

component model. A quality attribute has a type, which can be either simple or complex. 

As an example, attributes can be used to qualify real-time information, such as priority and 

worst-case execution time. These attributes are necessary for performing real-time schedule 

analysis. The set of attributes is A = {a = (V, va, Xav) | 2? 6 T, ua:V, Xau e C}. 

Event is formalized in Definition 1. 
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Definition 1 Let SY = {?,!, !!,e}. The set of events is formally defined by £ = {e = 

(Ae, Ae, xe, Qe) | Ae C A, A C A, Xe eC,gee SY} where 

Qe = < 

if e is an input event; 

if t is an output response; 

ife is an output request; 

if e is an internal event. 

Example 1 A sensor sends the current temperature in the room, where it is installed, to a 

centralized controlling unit. The upper and lower bounds on sensor reading constrain the 

temperature value sent to the controller. In order to formalize this event, which is a service 

request received by the controller, we let x be the current temperature and [-25,40] be 

the range for sensory observations. The behavior of the sensor's output is either periodic, 

sporadic, or controlled. 

Let A = {Xtemp = (N, x, x < 40 A x > -25)}. 

Let Behavior = {Periodic, Controlled, Sporadic} be the set of types to model the 

message output by the sensor. We define Periodic = N, Sporadic = [Low, High] where 

Low : N, High : N, Low < High, and Controlled = {0,1}. The set of attributes is 

A = { ctbehavior, Apriority, CYWCET} where abehavior = (Periodic, 10, true), 

Apriority = (N, v, true), and otwcET = (N, z, true). The values y of worst-case execution 

time (WCET) and z of priority are assigned by the designers of the system. No additional 

system constraint is imposed on the event. Therefore, the event specification is the tuple 

(A,A,true,7). 

4„2 Services and Contracts 

The behavior of a component must be predictable, deterministic. When a request for ser­

vice arrives at an interface, the component must react by providing a response. When a 

component receives a request for service at an interface, which will be discussed later, it 

reacts by doing one of the following actions: 

• performing internal processing and becoming silent, a log monitoring component for 

example; 

o performing an internal processing and sending a response to the calling component, 

a query analyzer component for example; or 
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• performing an internal processing, sending an output request to another component to 

get more information or perform further processing, and finally, sending the response 

to the initial caller. 

_S output request 
input request 

output response 

Figure 10: The different types of events 

Therefore, response events are either internal, output response, or output request events. 

On the other hand, the request for service, stimulus, can be an external input request or 

an internal event. Having internal events as stimulus enables modeling periodic events 

that stimulate the component to perform monitoring or self control activities. Therefore, 

stimulus events are either internal or input requests. Figure 10 depicts the different kinds 

of events occurring at a component. A service is defined as a function that maps stimulus 

to response with the help of data and time constraints as described bellow. 

Data Constraint: In general, a stimulus may have more than one possible response. Data 

constraints are used to avoid this nondeterminism. For each possible response, a data con­

straint is defined such that only one data constraint can be true at an instant. Therefore, only 

one response will be selected. A data constraint is a special type of constraint that is used 

to decide whether or not a specific response for a requested service should be sent. The 

decision is based on evaluating a logical expression defined over the values of the data pa­

rameters associated with the stimulus and the attributes of the stimulus and the component. 

The response is given only if the constraint evaluates to true. The set of data constraints is 

Q = {u = (Au, s, r, x^lAiQAsUAt, s e T,stimulus, r e ^response, Xu G C} where 

As is the set of attributes in the stimulus and A$ is the set of attributes of the component, 

which will be defined later in this chapter. If s has n responses than there must be n number 

of mutually exclusive data constraints defined for the responses of s in O. This ensures that 

the responses of s are mutually exclusive which ensures determinism. 

We define dc : 51 stimulus —* P ^ which extracts the data constraints for a given stimulus. 

dc(s) = Qs C Q such that Qs = {ui = ( ^ , s , - , r,, Xi | ̂ i G ^ A Sj = s)}. 

internal 
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Time Constraint: The correct behavior of real-time systems does not depend only on the 

provided services but also on the time at which the services are provided. Therefore, service 

provision can be governed by time constraints. A time constraint specifies the maximum 

amount of time allowed to elapse between the time of receiving a stimulus and the time 

of sending the response. This is an essential requirement for safety critical systems where 

timeliness is a critical factor in defining safety. The set of time constraints is F = {7 = 

{Ay, Xi, s, r, 5) \ Ay C A, x-y € C, s e T,stimulus, r e Zresponse, 5 : N} where 6 

defines the maximum safe time, the maximum safe time interval between the occurrence of 

a stimulus and the occurrence of its corresponding response. If x-y{Ay) evaluates to true 

then the maximum safe time is enforced on the response. However, if Xi{Ay) evaluates to 

false, then the maximum safe time need not be enforced. 

A response event can be accompanied by executing several update statements that set 

the values of local attributes. Also, a response can be accompanied by several actions, 

which are internal or external events that occur after a response. Service is formalized in 

Definition 2. 

Definition 2 Let V be a finite set of time constraints, Q be a finite set of data constraints, 

^stimulus — ^-'internal "—' ^inputi Cina ^-response ^internal '—' '-'output- "• Service IS uejineu as 

a function 6 : Sstimulus x fi x T x N ̂  Sresponse x FW x S x N 

where hi is a set of update statements defined using the function assign : T> —» A such that 

assign{a) = v assigns a value v from the domain T> to an attribute a £ i r U A0 where 

Ar is the set of attributes of the response and A0 is the set of attributes of the component, 

and S C T,output U £jn f e r n a / is a set of actions triggered by the service. 

The precondition for the function is defined as follows: 

Let s e Y;stimuius, s = {As, As, Xs, ?} such that: 

• A S C A , As = {XSt = {Vi, vu Xi) I Vi £ T, Ui : V%, Xl € C} 

* ASCA, As = {as, = (ZW.jtf) I V\ G T, v[ • V[, X[ e C} 

The stimulus occurs if the following conditions are satisfied: 

• the constraints defined for the data parameters are satisfied. That is, / \ ^ v, ^ Xi{ui) = 

true, 

» the constraints defined for the attributes are satisfied. That is, A(z>'.i/,x') XiM) ~ 

true, and 
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• the additional constraint defined in the stimulus specification is satisfied. That is, 

Xs = true 

0(s,ujSr,'yST,ti) = (r, R, £2) where t\ is the time at which the stimulus occurs, t2 is the 

time at which the response occurs, and: 

1. r is extracted from the tuple uSr = {A^ , s> r,Xi) £ ^s such that Xi evaluates to 

true, 

2. select -ySr = (A XiSr ,s,r,5) £T 

3. The post condition of the function is: 

a. r = (Ar, Ar, Xr, SYr), where SYr E {!,!!, e}, 

V. A r C A, Ar C A, JK C Lioutput U ^internal) and 

c. | i 2 - * i | <<5. 

For convenience, we define the function <f> : Ss tjmu;us —> P SresporjSe such that 4>(s) ^ 0. 

This function maps each stimulus to the set of responses associated with it. 

time constraint 

_,, response 
-> set of updates 
-> set of actions 
-> finish time 

Figure 11: Service 

Figure 11 Depicts a service. 

Safety Property: Safety properties can be defined at a component level to enforce safe 

behavior. A component safety property is an invariant over the behavior of a component. 

The behavior can be defined using timed automata which will be discussed later. A safety 

property is regarded as a special type of constraint over the services provided by the com­

ponent. A contract defines a nonempty set of services and safety properties. The rationale 

behind specifying the contract outside of the component type definition is to allow reuse of 

stimulus 
data constraint 
start time 
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a contract for other components that provide similar services and to enable reconfiguration 

of its specification. The reconfiguration updates maximum safe time, data constraints, and 

services for different system configurations and deployment plans. 

Definition 3 We define a set of safety properties V = {p = (£ p , x) I ̂ p ^ ^> X £ £}• ^ 

contract 3 is defined as a tuple 3 = ( 0 , fi, T, V). 

The service definition must satisfy the following conditions: 

• V7i,72 £ r , 7i = (Ai, x i , s i , n , <*i) A 72 = (*42, X2, s2, r2, S2) -» 5'i 7̂  

s2 V n 7̂  r2. That is, it is not possible to define two different time constraints for 

the same stimulus-response (service). 

• \/LOUU>2 6 n , wi = (vAj, Si, n , x i ) A w2 = («42. 52, r2, X2) -» si 7̂  s2 V ri 7̂  

r2. That is, it is not possible to define two different data constraints for the same 

stimulus-response (service). 

• Vs G T,stimulus, \4>{s)\ > 1 -> 39.s C Q»Vui,u)2 e fi5, u^ = („4i, s, n , x i ) , 

^2 = {A2, s, r2, X2), '̂1 7 ^ 2 A Xi © X2, i-e. if a stimulus has multiple possible 

responses then we must define a service for every stimulus-response relation and 

assign it a different data constraint. The data constraints must be mutually exclusive. 

Example 2 Assume a real-time Continuous Glucose Monitoring system which consists of 

(1) a sensor inserted subcutaneously in the abdominal area to measure interstitial fluid 

glucose levels, and (2) a small mobile monitoring device. The sensor takes glucose readings 

regularly and relays it to the monitoring device. The monitoring device has an attribute 

which specifies an alarm threshold glucose level. If the current glucose reading is above the 

defined threshold then the monitoring device should trigger the alarm within 5 units of time 

to alert the patient to potentially dangerous glucose level and display the level. Otherwise, 

the monitoring device should just display the current glucose level. The following defines 

only the service definition part of this example for the monitoring device. 

Let A = {A9;ucose} where \giUCose = (N, v, true) is the data parameter defining the 

current glucose level. 

Let A\ = {threshold} where threshold = (N, v. true). 

Let £ = {Level. Alarm, Display} be the set of events where T,input = {Level} and 

^internal = {Alarm. Display} such that: Level = (A, 0, true, ?), 

Alarm = (A. Ai, true, e), and Display = (A, A\, true,e). 
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Let T = {7} where 7 = (0, true, Level?, Alarm, 5). 

Let Q = {uaiarm, Unormai) where uaiarm = (0, Level?, Alarm, Xgiucose > threshold) and 

^normal — (0> Level?, Display, A9jucose < threshold). The service definitions are: 

Q{Level?, uaiarm, ^i, 11) = {Alarm, 0, {Display}, t2) and 

0(Leue/?,a;rior.maj,7,ii) = {Display, 0, 0,£2). 

4.3 Component Architecture 

The structural description of a component includes definitions of interface types, connector 

role types, connector types, architecture types, and component types. 

Interface Types: Interfaces are access points to the services provided and requested by 

components. An interface type is an enumerated type whose elements are events from E. 

An interface is an instance of an interface type, it inherits the events listed in the type 

definition. We define IT as the set of interface types where each interface type 7r is a triple 

7r = {Ait,X-n>a) s u c n t n a t Ar Q A is a set of attributes defined for the interface type, 

X-n G C is a constraint over the events and attributes of the interface type, and a : H —> PE 

is a function that associates a finite non-empty subset of external events to each interface-

type such that Wi, 7r2 G II, TT\ ^ 7r2, a{TTi)na{TT2) ~ 0. Two interface types ix\ and 7r2 are 

compatible if and only if for every event s e it\ there exists exactly one event s G 7r2 such 

that Q{S) =! and g{s) =? are complementary. That is, in designing component interactions 

both s and s will be assigned to occur simultaneously at component interfaces of interacting 

components. We define the predicate Compatible^3, 7r2) which is true if and only if wi 

and 7r2 are compatible. 

Connector role . „ , , ... ,. 
Attachement specification 

Component Component 

Interface Connector 

Figure 12: Connecting two components 
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Connector Type: A connector defines the connectivity between two or more compo­

nents. A connector type definition includes a non-empty finite set of connector role types 

in addition to attributes and constraints. A connector role type serves as an interface to a 

connector. It links a connector to a component interface. Figure 12 presents an attachment 

specification showing how two components can be attached together using a connector, two 

interfaces, and two connector role types. The attachment specification is inspired by the 

work in ACME [GMWOO]. Abstracting the connector role from the connector specification 

enables abstracting the communication method used in the connector from its access points. 

Therefore, it is possible to define different communication methods such as RPC, HTTP, 

and SOAP using the same access points (connector roles). Also, introducing connection 

points at the ends of a connector can help to reason about the integrity of the communica­

tion method by comparing representations of the data before and after the communication. 

A connector role type is defined as a triple p — (Ap, Xp, n) where Ap Q A and Xp £ C. 

A Connector type is defined as a tuple K = (Ak, Xk, 71., M) where 71 is a finite set 

of connector role types, Ak Q A is a set of attributes associated with the connector, and 

Xk £ C is a constraint that can be used to specify an invariant or restriction that controls 

whether or not the communication is allowed. The communication method M. specifies 

the type of communication used by the connector to deliver services. There are a number 

of common communication styles to choose from [SG96] such as procedure call, mes­

sage passing, remote procedure calls, etc. The communication is bidirectional. Details of 

the communication method fall outside the scope of this thesis. The attachment specifica­

tion is a tuple (K, p, ir, CT), where p G 7£K is a connector role type in the connector 

type K, CT is a component type (definition will follow), and re is an interface type that is 

defined in both p and CT. The attachments are specified outside the connector type defini­

tion to make the connector specification independent from how it is used. This abstraction 

enhances reuse and reconfiguration of connector type specification. A connector K is an 

instance of a connector type K. It inherits all the connector roles defined at the connector 

role type, implement the communication method, and restrict communication to the defined 

constraints. 

Architecture Type: A component can be primitive or composite [SG96]. A composite 

component is built by assembling existing components and specifying their connectors. An 

architecture type defines the structure of a composite component in which the constituent 
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components and their internal connections are specified. A component type can have multi­

ple possible architecture types. An architecture type comprises connector types, attributes, 

constraints, and attachments specifications. An attachment specifies how components are 

connected. This is specified by linking the interface type of a connector role type with 

an interface type of a component at the ends of a connector. The attachment specifica­

tion allows us to define the structural composition of components. We use the notation 

oc= p @ K ix] 7r @ CT, instead of tuple notation, to introduce an attachment specifica­

tion that links interface type IT of the connector role type to its corresponding one in the 

component type. Each attachment specification defines the connection at one end of a con­

nector. For example, a binary connector which connects two component types requires two 

attachment specifications each of which specifying the connection point at one end. We 

use the notation oci EB oc2 to introduce a structural composition of two components at 

an architecture type definition using one connector type. Defining the architecture outside 

of the component type definition increases reuse and allows reconfiguration of architecture 

without changing the component definition. 

Component Type: A component type definition includes definitions of events, interface 

types, architecture types, a contract, attributes, and constraints. If no architecture is speci­

fied then the component type denotes a primitive component. In a composite component's 

type definition, the list of interface types that are not attached to connector role types form 

the external interface types, whereas the attached ones form the internal interface types. 

Definition 4 .A Component Type is a tuple CT = (£, II, a, A, £, 3, Ac, Cc, T) where £ 

is the set of events, II is the set of interface types through which the events are accessed, o is 

a function that associates events to interface types such that V7r1; 7r2 G II, o~(iri) 0 0(^2) = 

0, A is the set of data parameters, £ : £ —> P A is a function that associates with each 

service request or provision a set of data parameters, E is a contract, Ac C A is a set of 

attributes, Cc C C is a set of constraints, and T is a set of architecture types describing the 

possible internal structures of composite component types. IfT = $ then the component is 

primitive. An architecture type r is defined as a tuple r = (O, J\f, TC, AT, CT) where O 

is the set of constituent component types, N is the set of connector types used to connect 

these component types, Ji is the set of attachment specifications used to attach connector 

types to interface types of component types, AT C A is a set of attributes, and CT C C is a 

set of constraints. 
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Figure 13: Component Definition 

Figure 13 depicts the component definition. 

Definition 5 A component 0 is an instance of a component type CT. The set of its ex­

ternal interface types 11/ is created from the set of interface types Y\ of CT by specifying 

for each interface type IT in U the number of interfaces (#TT) of type ix required in 0. If 

#7r = n, we let 0n = {7T1,... ,7rn} denote the interfaces created. A specification of 0 is 

(E, 11/, o, A, £, S, A0, C0, T), where 11/ = (Jw e u0v The a function is extended to 

interfaces: W^ G ix • a{iXi) = a (IT). This means that an event can be provided at mul­

tiple instances (interfaces) of the same interface type. Each instantiated interface will be 

used to provide the event to a specific component using a specific connector (instance of a 

connector type). 

A component architecture oTfrom a component type's architecture type r is created by 

defining (1) a set of components instantiated from the component types, (2) n connectors in 

0Tfor each connector type in rifn interfaces have been created in 0 corresponding to the 

interface type(s) in the connector type's role type definitions, and (3) a set of attachments 

instantiated from the attachment specifications 7i in r where each attachment is of the 

form 6c = p @ K CO p @ 0 where K is a connector instantiated from K, p is an interface 

instantiated from ix, and 0 is a component instantiated from CT. 

Component type and architecture type definitions satisfy the following properties: 

• V0 : CT • 0 = (E0, Il0 , cr0, A0, f0, S0 , A0, Ca, T) -> V7ri,7r2 G Il0 • cr(7ri) D 

cr(7r2) = 0 i.e. a service request and a service response events can be defined only 

once at only one interface type. 

Vc : K • (c = (Ac,Xc,K,M)) -> (V/^pa G ft.p! = ' ( . 4 i , X i , 7 r i ) A p 2 = 

(-42:X'2;7r2) —* Compatible^ 1,-n2)) i.e. the interface types used for connecting 
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components must be compatible. 

Example 3 The anti-lock brake system (ABS) is a safety critical system which prevents 

the wheels from locking while braking. The system is composed of (1) a central electronic 

control unit (ECU), (2) four wheel speed sensors, one for each wheel, (3) four hydraulic 

valves to release pressure, and (4) four hydraulic pumps to increase pressure. The sensors 

continuously sense the speed of the wheels and inform the ECU. The ECU continuously 

monitors the rotational speed of each wheel. When the ECU detects that a wheel is rotat­

ing significantly slower than the others it actuates the corresponding valve to reduce the 

hydraulic pressure; hence, it reduces the braking force on that wheel. Then the wheel turns 

faster and if the ECU detects that it is turning significantly faster than the other wheels 

then it increases the pressure so the wheel slows. The process is repeated many times. 

In this example, we focus only on the architecture part of the system. The architecture 

of the ABS system is composed of 4 different component types: ECU, Sensor, Valve, Pump. 

It also contains 3 different connector types: ECU-sensor(KJ, ECU-valvefKt,j, and ECU-

pumpfKp), and 3 different interface types: ISensing, IReleasing, IPressing. ECU contains 

all the interface types, Sensor contains only ISensing, Valve contains only IReleasing, and 

Pump contains only IPressing. The system consists of one instance of ECU, 4 instances 

of Sensor, 4 instances of Valve, and 4 instances of Pump. It also contains 12 connectors 

where 4 instances of each connector type are created to link the ECU instance component 

with the other instances of each type. The ECU instance includes 4 interface instances of 

each interface type so that each of which can be attached to a connector. 

Formally: let Ue = {ISensing, IReleasing, IPressing}, Us = {ISensing}, 

Ylv = {IReleasing}, and Up = {IPressing}. 

Let ECU = ((Ec, n c , ac, Ac, &, Ec, 0, 0,,0), 

Sensor = ((E s , n s , os, As, £s, E?, 0, 0, 0), 

Valve = ((E„, II„, av, Av, £„, Ev, 0, 0, 0), and 

Pump = ((Ep , rip, av, Ap, £p, Ep, 0, 0, 0). 

The connector role types are psi = (0, true, ISensing), ps2 = (0, true, ISensing), 

Pv\ — (07 true, I Releasing), pV2 = (0, true, 1Releasing), pp ] = (0, true, I Pressing), 

and pP2 = (0, true, I Pressing). The connector types are Ks = (0, true, {psi,pS2}, M), 

Kv = (0, true, {pv\,pv2}, M), andKp = (0, true, {ppi,pP2}, M). Figure 14 shows 

the structure of the ABS. 

The following attachment specifications are used to link the component types in the 
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Sensor 

ISensing| 

ISensing| 

ECU-Sensor 

IPressing I P r e s s i n9 

ECU Pump 

IReleasing 

IReleasing i 

ECU-Pump 

ECU-Valve 

Valve 

Figure 14: Structure oftheABS 

system architecture: 

oci= ps\ @ Ks tx I Sensing @ ECU, 

« 2 = Ps2 @ Ks co ISensing @ Sensor, 

ocx ffl oc2, 

0<:3= Pui (? Kv rxi I Releasing @ ECU, 

0^4= Pi,2 @ K„ tx] I Releasing @ Valve, 

oc3 ffl 0C4, 

« 5 = pPi (? Kp 00 IPressing @ ECU, 

o^e— Pp2 (? Kp 00 IPressing @ Pump, 

OC5 ffl OC6-

The architecture type of the system is T = {{ECU, Sensor, Valve, Pump}, 

{Ks, Kv, Kp}, {oci, oc2, oc3, oc4, oc5, oc6}, 0, 0). 

The following components are created: 

1. An instance of ECU: 0E = (S c , {ISensingi, ISensing2, ISensing3, ISensing^, 

IReleasingi, IReleasing^, IReleasing^, I Releasing^, 

IPressingi, I Pressing2, IPressing^, I Pressing^, 

(Jo* Hc, 0, 0, 0), 

2. 4 instances of Sensor: 0 s l = ( (£ s , {ISensingsi}, as, 3S, 0, 0, 0), 

0s2 = ((E s , {/S'ensmy^}, ors, 3S, 0, 0, 0), 

0t,3 = ((E s , { / S e n s i n g } , CTS, 3S, 0, 0, 0), 
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and0s4 = ((Es, {ISensings4}, as, z.s, 0, 0, 0), 

3. 4 instances of Valve: 0V\ — ((E„, {I Releasingvi}, o~v, Ev, 0, 0, 0), 

0v2 = ((E„, {IReleasingv2}, av, Ev, 0, 0, 0), 

0v3 = ((E„, {I'Releasingv3}, av, Ev, 0, 0, 0), 

and0v4 = ((E„, {IReleasingv4}, av, Ev, 0, 0, 0), 

4. 4 instances of Pump: 0pi = ((Ep, {I Pressingpi}, op, Ep, 0, 0, 0), 

0p2 = ((Ep, {IPressingp2}, ap, Ep, 0, 0, 0), 

0P3 = ((SP, { /P re s s ing} , ap, Ep, 0, 0, 0), 

and0p4 = ((EP, { /P re s s ing} , <JP, EP, 0, 0, 0). 

Attachments are created to link component instances. For example, 

°ti — Ps\ @ Ksi txi ISensingi @ 0E, 

«2 = Ps2 <? Ksi co ISensingsi @ 0sh 

OCi ffl (X2 

J'J created to link the component 0# with the component 0S\ using the connector Ks\. Other 

attachment specifications are created in the same manner to link all components. 

The architecture of the system is {{0E, 0S\ ••• 0s4> 0v\ ••• $v4, 0pi ••• 0p4}> 

{Ksi . . . Ks4, K„i . . . K„4, Kpi . . . Kp4}, {oci... 0C24}). Figure 15 depicts the compo­

nent instances. 

S1 S1 S1 S1 
•Sens ing s 1 h | r I L T j r J I - | j r J H^ 

Ks1 

ISensin9ij i i l i 

ECU 

K, V1 

IReleasingv-| U 
i l l 
v2 

JvSl 
v3 

!•= 

IReleasingpf I f I f W 

V>1 

§0= 

M. 
v4 

s§ Pf 

=*5 

=K 

=©*. 

P2 

P3 

P4 

iPressingp4 

Figure 15: ABS component instances 
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4.4 Security Mechanism 

There is a general consensus [ALRL04] that security is a composite concept that comprises 

confidentiality, "the prevention of any unauthorise discloser of information", integrity, 

"prevention of the unauthorized amendment or deletion of information", and availabil­

ity, "the prevention of the unauthorized withholding of information". This section focuses 

on confidentiality. 

The component type definition includes a user attribute. This attribute is set at com­

ponent's instantiation time with a value that denotes the identity of the client on whose 

behalf the component executes. The value of user identity is assigned from a domain of 

user identities defined at system level. In computer security [Bis03] the identity of the en­

tity executing a process is the basis for assigning and checking security access rights. We 

assume a list of all possible identities defined at the system level. In our discussion, the user 

identity, henceforth called user, is associated with the component at its instantiation time. 

All access control to system resources assume that the association is correct. Verifying the 

correctness of the identity and describing how it is associated to components falls outside 

the scope of this thesis. 

The security mechanism is based on role-based security access control (RBAC). The 

mechanism restricts access of services and data parameters to authorized users only. In [AM07a] 

we defined security property in terms of service security and data security. 

• Service security states that: (1) for every request received at the interfaces of a 

component, the request should be received from a user who has permission to request 

the service, and (2) for every response sent by the component, the user who will 

receive the response should have permission to receive it. 

• Data security states that: (1) for every request received, for every data parameter in 

the request, the user sending the request should have permission to access the data 

parameter, and (2) for every response sent, for every data parameter associated with 

the response, the user receiving the response should have permission to access the 

data parameter. 

If a user does not have a permission to send a request then the request will be ignored. 

Also, if a user does not have a permission to receive a response, the response will not be 

sent. On the same manner, if a user does not have a permission to access a data parameter, 

the data parameter value is set to null value. 
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Figure 16: Role-based Access Control 

The main concepts in RBAC are user, group, role, and privilege. Figure 16 depicts 

the elements of RBAC and their relations. A group defines a set of related users. A user 

can be individual or belong to one or more groups. A role defines a security responsibility 

that a user or a group of users can take in the system. A privilege defines a permission to 

access a service or a data parameter. A role comprises many privileges. A privilege can be 

assigned to many roles. The functions Group-User-Assignment, User-Roles-Assignment, 

and Group-Roles-Assignment are used to assign users to groups, roles to users, and roles to 

groups accordingly. 

There are two types of privileges: service privilege and data parameter privilege. A 

service privilege defines an access right for a service. Hence, it is associated with services 

and roles using the function Role-Service-Assignment. A data parameter privilege defines 

an access right for a data parameter. Therefore, it is associated with data parameters and 

roles using the function Role-Data-Assignment. 

Definition 6 Let User, Role, Group, and Privilege be defined as finite sets of users, 

roles, groups, and privileges respectively. The following functions are used to define the 

RBAC: 

9 Group-User-Assignment: GUA : Group —»• P User assigns for a group g e Group 

the users GUA(g) e P User. A user may belong to more than one group. The 

function UG : User —» P Group gives for each user u e User the set of groups 

UG(u) e P Group that he belongs to. 

• User-Role-Assignment: URA : User —> P Role assigns for a user u € User the 

roles URA{u) e P Role. The function RU : Role -> P User gives for each role 

r e Role the set of users RU(r) e P User that has r. 

© Group-Role-Assignment: GRA : Group —> P Role assigns for a group g G Group 

the roles GRA(g) € P Role. All users of a group are equally assigned the same set 
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of roles. The function RG : Role —> P Group gives for each role r G Role the set 

of groups RG{r) G P Group that has r. 

• Role-Service-Assignment: RSA : Role x S - > P Privilege assigns for a role r G 

Role and a service s G E the set of privileges RSA(r, s) G P Privilege. A service 

access control matrix is SAC = F(Role, E, P'(Privilege)). 

• Role-Data-Assignment: RDA : RolexA —• P Privilege assigns for a role r G Role 

and a data parameter X the set of privileges RDA(r, A) G P Privilege. A data access 

control matrix is DAC = F(Role, E, P(Privilege)). 

• Functions: 

- US : User x S ^ boolean returns true if a user u has a privilege to access a 

service s i.e. US(u, s) -» 3r G Role»r G URA(u) A RSA(r, s) ^ 0. 

- USP : User x E x Privilege —> boolean returns true if a user u has privilege 

v on service s. The function U D : User x A —> boolean returns true if a user u 

has a privilege to access a data parameter X i.e. UD(u, X) —> 3r G Role»r G 

URA(u) A RDA(r, X) ± 0. 

- UDP : User x A x Privilege —> boolean checks whether or not a user has a 

specific privilege on a data parameter. 

- GU : User x Group —> boolean returns true if a user u is part of a group g 

i.e. g G UG(u). 

- UR : Userx Role —> boolean returns true if a user u has role r i.e. r G RU(u). 

It is possible to extend the protected data to include not only the data parameters but also 

the local attributes of a component. This enables protecting the inner state variables of a 

component from any unauthorized change. 

The tuple (User, Group, Role, Privilege, SAC, DAC) defines the state of the security 

mechanism at any instance. The state changes with time as different security specifications 

are modified, for example when users are assigned or denied roles or when the privileges 

associated with roles are changed. We assume that there is a security officer component 

which is responsible for maintaining the state of the security mechanism. Every system 

that requires security mechanism has this component as part of it. A security policy T 

comprises service security and/or data security requirements. It is defined as an expression, 
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using first order predicate logic, that involves any conjunctions of the RBAC functions in 

Definition 6. The result of a security policy expression reflects the state of the security 

mechanism at the time of evaluating the expression. 

A component which has no security restrictions will respond to every stimulus received 

by it. The introduction of security mechanism will enrich its behavior by forcing (1) an 

analysis of the stimulus received before processing it internally, and (2) an analysis of the 

response before sending it. Therefore, the service definition will be extended to include 

security policies as follows. 

Definition 7 The set of security properties is $ = {ip = (s,x, T) | s G ^stimulus, x G 

^response U As U .4} where As is the set of data parameters of the stimulus s and T is a 

security policy defined for the relation between s and x. There are three possible relations 

between s and x: either x G 4>{s) is the response for s, x G As is a data parameter 

associated with s, or x G A is an attribute, ty is divided into a set of service security 

^service and a s e t of data Security ^data SUCh that \& = ^ service U ^data-

The service definition is extended to include secure services: 

" : ^stimulus X J i X l X N X W service x ^^data * ^response x FLA X o X r J X IrWservice X ir w data 

Note that, in the service definition: 

» On the left hand side, \E*serOTCe includes service security of the stimulus and F^data 

includes the data security properties of the data parameters associated with it. 

• On the right hand side, F^/service includes service security for the response and the 

actions in S, whereas f^data includes data security for the data parameters associ­

ated with the response and actions and the update statements in FU. 

The contract E is extended to include the security properties: S = (0, O, T, V, *$). 

Filtering services: 

The following part explains how security properties are used to filter the behavior of a 

service. 

The reactions of a component are filtered by the security properties defined for its ser­

vices. As mentioned earlier, the identity of the user on whose behalf the component is 

executing is assumed to be associated with the component at its initialization time. There­

fore, when a component requests a service, it provides the identity of the user as part of the 
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request. Let s be a stimulus and r be its corresponding response, let As be the set of data 

parameters associated with s and Ar be the set of data parameters associated with its cor­

responding response r. For convenience, we define the predicates: PROCESS(x) which 

means that event x will be processed by the component, ACCESS(X) which means that 

the value A will be accessed and used by the service, IGNORE(x) which means the event 

x will be ignored i.e. it will not trigger any service processing or change in the state of 

a component, NULL(v) which means v will be set to a null value. We use the function 

assign(a) — v which means that the value of the attribute a will be set to v. The behavior 

of a service 

" : t-1 stimulus X i Z x I x N X W s e r t , i C e x ^ ^ data ~* ^response x VIA X O X N X P^ service x IP V data 

is determined according to the following rules (Rl and R2 are related to service requests, 

whereas R2,R3,R4 are related to service provision): 

Rl: W> e Vservice, i> = (s ,r ,T), ( (T - • PROCESS{s)) V (-.T -» IGNORE(s)) ) 

i.e. if the security policy associated with the service evaluates to true then the stimu­

lus will be accepted and processed, otherwise, the stimulus will be ignored. 

R2: V^ e Vdata, VA e As, ifi = (s,A,T) -» ( (T - ACCESS(X)) V (-.T -

NULL(X)) ) i.e. for all the data parameters associated with the stimulus, if the secu­

rity policy associated with a data parameter evaluates to true then the data parameter 

will be used, otherwise, the data parameter will be set to null value. 

R3: W> e Vdata, VA e Ar, w = (s. A, T) -* ( (T - • ACC^55(A)) V ( -T -* 

NULL(X)) ) i.e. for all the data parameters associated with the response, if the 

security policy associated with a data parameter evaluates to true then the data pa­

rameter will be used, otherwise, the data parameter will be set to null value. 

R4: \fv) e Vservice, Vy <E S, ^P = (s,y.T) - ( (T -> PROCESS(y)) V (-Of -> 

IGNORE(y)) ) i.e. if there is a security policy associated with triggering an ac­

tion within the service then the action will be triggered only if the security policy 

evaluates to true. 

R.5: W> e Vdata, Vy e U, y = {assign(a) = v) A V = (s,2/, T) -» ( (T -> 

assign(a) = v) V 

(-•Y —> NULL(a)) ) i.e. if there is a security policy associated with an update state­

ment then the update statement will be executed only if the security policy evaluates 

to true, otherwise, the attribute will be set to null value. 
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Example 4 Consider a fingerprint-based car security system mounted on the door of a car. 

The system consists of three components: (I) a remote control which comprises a biometric 

sensor that collects user fingerprint, buttons that trigger the required actions such as start­

ing the car and locking/unlocking the doors, and a small monitor to show information such 

as the current status of the car, next maintenance time, and details about the last trip, (II) a 

controller which is responsible for starting the car, locking, unlocking the doors, and send­

ing information about the car, and (III) the security officer component which is responsible 

for defining and maintaining the security configuration. The security configuration at an 

instance includes (I) two roles: driver and passenger, (2) one group : family, (3) four priv­

ileges: start the car, lock, unlock, and view information, and (4) 4 users: father, mother, 

son, daughter. A driver has all privileges, whereas a passenger has only the privilege to 

lock and unlock the doors. The father has a driver role, whereas the other family members 

have passenger role. In this example we focus only on the representation of the security 

configuration and the secure service specification. 

Let User = {father, mother, son, daughter} be the set of users, 

Group = {family}, and GUA(family) = {mother, son, daughter} assigns the mother, 

son, and daughter to the family group. 

Let Role = {driver,passenger} be the set of roles, GRA(family) = {passenger} 

assigns passenger role to family group, andURA(father) = {driver} assigns driver role 

to the father. 

Let Privilege = {start, lock,unlock, view} be the set of privileges, 

RSA(driver) = {start, lock, unlock, view} assigns privileges to the driver role, and 

RSA(passenger) = {lock, unlock} assigns privileges to the passenger role. 

Let E = {start, lock, unlock, view, switchOn, open, close, show} be the set of events, 

A = {status,info} be the set of data parameters, and^(show) = {status,info} assigns 

data parameters to the show event. 

Let u G User be the current user using the remote control (the identity is recognized when 

the user swipes his finger on the scanner), the security policies are: 

• -ipi = (start, switchOn. US(u, start) V UR(u, driver)) is a service security prop­

erty associated with the stimulus slari.The security policy states that: either the user 

has the start privilege or he has the driver role; 

® xp-2 = (lock, close, US (lock) V UG(u, family) V UR(u, driver)) is a service 

security property associated with the stimulus lock. The security policy states that: 
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either the user has the lock privilege, he is member of the family group, or he has the 

driver role; 

• ip3 = (unlock, open, US(lock) V UG(u, family) V UR(u, driver)) is a service 

security property associated with the stimulus unlock. The security policy states that: 

either the user has the lock privilege, he is member of the family group, or he has the 

driver role; 

• i>4 — (view, show, US'(u, show) V UR(u, driver)) is a service security property 

associated with the stimulus view. The security policy states that: either the user has 

the show privilege or he has the driver role; 

• ^5 = (show, status, UD(u, status) V UR(u, driver)) is a data security property 

associated with the data parameter status. The security policy states that: either the 

suer has the status privilege or he has the driver role; and 

• ip6 = (show,info,UD(u,info) V UR(u, driver)) is a data security property 

associated with the data parameter info. The security policy states that: either the 

suer has the info privilege or he has the driver role. 

Thus the set of security properties ^ = {ibi, ip2, ips, i>4, V's, ipe}- Let fl = {u)\, U2,0J3, u>4} 

where u>\ = (0, start, switchOn, true), u>2 = (®, lock, close, true), 

uj3 = (0, unlock, open, true), u4 = (0, view, show, true). Let F = {71,72,73,74} where 

71 = (0, true, start, switchOn, 00), 72 = (0, true, lock, close, 00), 

73 = (0, true, unlock, open, 00), 74 = (0, true, view, show, 00). Service specifications 

are: 

• e(siar<, wi, 71, *i, ^ i , 0 ) = (sm<c/iOn, 0,0, <2,0,0}), 

• G(lock,u2,72, £1, ^ 2 , 0 ) = (cZose,0,0,i2,0,0}), 

• Q(unlock,uj3,-y3,ti,ip3,^) = (open, 0, 0,£2,0,0}), and 

• 0(meiv,u;4,74,ii,^4,0) = (show, 0, 0, £2,0, {^5, V^})-

4.5 Behavior 

The behavior of a component is determined by its services (stimulus and response) and the 

constraints defined over them. For a component 0 = (E0, Il0, o0, A0, £0, S0 
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where E0 = (00 , Q0, T0, V0, ^ 0 ) we define the behavior at an interface n as a set 5(7r) of 

timed sequences, where each sequence w G S{n) contains only stimulus and response 

events (in addition to actions triggered by the response and occurrence time of each event) 

belonging to U{-K) U E0 internal, and satisfies the following conditions: 

51 for every stimulus sinw, s G <r(7r), there exists exactly one response r such that 

r G 0(s) A r G w. The stimulus s may occur at many different times in vo\ therefore, 

let s[i] denote an occurrence of s in w then for every s[i] there exists exactly one 

response r[i] where r[i] G 4>{s),i : N, i < number of events in w. It is possible 

to have different responses for different occurrences of the same stimulus (based on 

data constraints in Q0); 

52 t(r[i]) > t(s[i]), where £(.) is the time function for event occurrences and r[i], s[i] 

denote an occurrence of sand r in w. Also, t(s[i\) > t(s[j]) At(r[i]) > t(r[j]),i,j : 

N, i > j A i,j< number of events in w. This means that an event may occur at 

different times in the timed sequence where always the time of the later occurrence is 

greater than the time of the former occurrence of the same event. Moreover, if there 

is an action a, a G S A a G S0 internal, defined in the reactivity then t(a) > t(s); 

53 for every stimulus s G w, response r G vo A r G <f>(s): if there is a time constraint 

7 = (.4, s, r, 5) A 7 G T0 then \t(r) - t{s)\ < 5; 

54 for every stimulus s G w, response r G wl\r G (f>(s): if there is a data constraint to = 

(A, s, r, x) A u> G Vt0 defined over the data parameters of s then the data constraint 

is satisfied i.e. \ ~^ true. If there are many data constraints defined on the data 

parameters of s then only one of them is satisfied; 

55 for every stimulus s £ r o , response r G w A r G 4>(s): if there is a security property 

T/> = (s, r, T) defined for the stimulus then T —> true ; 

56 for every stimulus s G w, response r 6 o A r 6 <f>(s)' for every data parameter 

d G £(s) and of' G £(r) A r G </>(s) if there is a security property -0S = (s, of, Ts) or 

i/V = (r, d', T r) then Ts A T r —> irue; 

57 for every action a, a G ro A a G <S: if there is a security property ijj = (s, a, T) 

defined for the action then T —> true ; 
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58 for every update statement u for an attribute a,ueU: if there is a security property 

ijj = (s, o, T) defined for the update then T —> true; and 

59 for every safety property p eV0,to satisfies p (w h p). 

Notice that [SI] assures predictability, [S2] and [S3] assure timeliness, [S4] and [S9] assert 

that safety requirements are satisfied, and [S5], [S6], [S7], and [S8] asserts that security 

properties are satisfied. 

Definition 8 The behavior of a component is the arbitrary interleaving of the behaviors 

at the interfaces of the component. Let II0 = {7Ti, 7T2,..., irn} be the set of interfaces and 

S(U) = {S(TT\), 5(^2), . . . S(nn)} be the set of its corresponding behaviors where Sfa) 

is the behavior at interface 7T,. We define the behavior of a component as the set 6 ( n 0 ) of 

timed sequences where each sequence w G <5(n0) is constructed by interleaving sequences 

from S(U) such that w = wx M^ll l ' • -\\\wn where Wi G £(7ri)AG72 € 5(7r2)A- • -/\wn G 

S(-nn) satisfying the following conditions: 

Bl : if a stimulus s is defined at one interface s G cr(iri) and the response is defined at 

another interface r G (f>(s) Are cr(j), i,j:N,i,j<nAi^ j , this means that 

s G Wi A r G Wj, then in the interleave sequence w: s,r G w A t(s) < t(r) always; 

and 

B2 : similar to [Bl], all the above conditions ([S1],[S2],[S3J,[S4],[S5],[S6],[S7],[S8] 

and [S9]) can be redefined for the interleave sequences and must be satisfied. Note 

that: 5 C E . 

4.6 System Definition 

The system definition includes two types of components, hardware and software, and con­

figuration. A hardware component is a special type of component on which the software 

components will be deployed i.e. a deployment unit. Resource capabilities of deployment 

units are specified as attributes. For example, a hardware component definition can include 

attributes such as the number of CPUs and the memory capacity. We define a standard 

attribute called type where its value is either software or hardware. If this attribute is not 

defined in a component then it is assumed to be a software component. The system config­

uration specification includes instances of the defined software and hardware component 
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types and deployment specification. Deployment Specification are assignments of software 

instances to hardware instances using the Deploy function, Deploy : CTS —> CTh where 

3types E As, 3typeh E Ah • assign(typeh) = hardware A assign{types) — software. 

Configuration is defined as a triple (CTS, CTh, Deploy) where CTS is a finite set of soft­

ware components, CTh is a finite set of hardware components. 

4.7 Composition 

Informally, composition means "gluing together" two or more components to form a new 

component. A given set of components can be composed in different ways to achieve 

different results. However, the challenging aspect is to develop a set of rules for a stated 

requirements of trustworthiness to be preserved in a composition. It should be possible 

to reason about the properties of the composite component relative to the properties of 

the constituent components. In this respect composition of components is different from 

component integration [CL02]. 

In this section we propose a composition rule that composes both the structural part 

and the contract part of components. For example, composing two components 0i and 02 

results in a new composite component 0 such that: (1) the structural part of 0 results from 

gluing the compatible interfaces Of 0i and 02, and (2) the contract part of 0 results from 

composing the contracts of 0i and 02. The composition should preserve the requirements of 

trustworthiness ([51], [52], [S3], [54], [55], [56], [57], [58], [59]). In this section we define 

the composition of two component types CT\ and CT2. 

Definition9 LetCT^ = ( E ^ I I i , ^ , Ai .^ .Hi , Au Ci,7"i) where ~! = {Qi,^li,TuVu^\) 

and CT2 = (E2, n2 , cr2, A2, £2, S2, A2, C2, T2) where E2 = (02 , fi2, r2 , V2, #2), their cor­

responding architecture types T\ and T2 are hidden. The compositional rule defines a 

unique CT which can have many architectures T. 

The composition CT = (E, n, a, A, f, S, ACT, CCT, T) where E = (6, Q, T, V, *) is de­

fined using the following rules: 

CI (Interfaces): II = {7r\{n E Uy A $Q E U2 • Compatible^, Q)) V (TT E U2 A $Q E 

lli • Compatible^, Q))}: compatible interface types are used to connect the com­

ponents together. They form the internal interface types of the composite component, 

whereas non-compatible interface types form the external interface types. 
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C2 (Events): E = Ei U E2 such that: 

' ^internal = ^ 1 internal^^2 internal^\S | (S G L j i npu tUEi output-, s £ Cr(7TJ A7T G 

I l iA3Q G U2»Compatible(TT,Q)) V (s 6 E2 input UE 2 output, s G <7(7r)A7r G 

n 2 A 3Q G ITj • Compatible^, Q))}: the events defined at the compatible 

interface types are regarded as internal events for the composite component. 

- ^output = E i output U E 2 output \ \S I (s G E i output-: s £ ^V71") A 7T G 111 A 3 Q £ 

n 2 • C'ompatible(ir, Q)) \/ (s £ ^2 output, s G a (IT) AIT G n 2 A 3Q G 

111 • Compatible^, Q))} 

- ^input = £1 input U E2 input \ {s I (s G Si input, s G a(ir) A TT G 111 A 3Q G 

112 • Compatible^, Q)) V (s G E2 j n p u t , s G a(7r) A TT G Il2 A 3Q G 

. Ili • Compatible^, Q))} 

C3 (Data Parameters): A = Ai U A2 

C4 (Event's data parameters): Vs G E, f (s) = {£i(s) | s G E J U {£2(s) | s G E 2} 

C5 (Interface's events): \/TT G II, a(n) = {GI(IT) \ TT G n j U {<72(7r) | 7r G n 2 } 

C6 (Attributes): ACT = A1UA2 

C7 (Constraints): CCT = ClUC2 

C8 (Architecture): T = {r} where T = {0,N,H,AT,CT} such that: 

- The set of component types: O = {CT\, CT2) 

- The set of connector types: \/TTJ G Ili,V7r2 G U2»Compatible(TT^,TT2) —> 3K G 

M, K = (Ak,Ck,{pup2},M) Apx =iAi,xi,ni)*p2 = (A2,X2,TT2) 

- The set of attachments: W i G Ili,V7r2 G Il2, Compatible^ \,TT2) —> 3 oci 

ffl oc2, 3K G A/", oci= pi @K \XITTI @ CTiA oc2= p2 @ K 1x17r2 (? CT2 

77zere cow/d be ma/ry architecture types for CT in T because not all the interfaces in 

the resulting connector types should be linked. Also, different component instances 

can have different number of connector and interface instances which enables the 

component to have different possible dynamic architectures. 

C9 (Services): 0 = 0 i U 0 2 
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CIO (Data Constraints): ft = f̂ i U f22 

CU (Time Constraints): T = F1ur2 

C12 (Safety Properties): V = V1uV2 

C13 (Security Properties): $ = ^ 1 ) ^ 

The security officer is defined at a system level. Therefore, RBAC functions are not affected 

by the composition. 

We assert that the composition rule stated in Definition 9 preserves the requirements of 

safety and security ([SI]... [59]). 

Theorem 1 The composition of two components that satisfy the requirements of safety and 

security ({Si}... [S9]) results in a component that satisfies these requirements. 

Proof 1 Let &\ and 02, instances of CT\ and CT2 respectively, be two components that 

satisfy the requirements of safety and security ([Si]... [S9]). Let 0 be an instance ofCT, 

the composition of CT\ and CT2 according to Definition 9. Let &i and &2 be behaviors 

representing the set of all possible observed sequences of 0\ and 02 respectively, 6 be 

the behavior of the composite component 0 representing the set of all possible observed 

sequences of 0, S(n) be the behavior at an interface instantiated from the interface type 

7r G II in 0. We want to proof that & satisfies the requirements of safety and security 

([S1]...[S9]). 

We use the following properties in the proof, which are derived from Definition 9: 

Prop. I From C5 in Definition 9 and from Definition 4, Every event is associated with only 

one interface type: \/n\, TT2 6 H,O(TTI) D O(TT2) = 0, 

Prop.2 From CI, every interface type in the composite component belongs only to one com-

. ponent definition CT\ or CT2: W G II • (n e III V n e n 2 ) A (re £ Ui n U2), 

and there are no two interface types that are compatible in the composite component: 

$T^I,Tf2 E U,Compatible(7Ti,7i2)-

Prop.3 The behavior of a component is the arbitrary interleaving of the behaviors at the 

interfaces of a component. From [Prop.2], II C ITi U Tl2, excluding the compatible 

interface types. From Definition 8, the observed behavior of the composite com­

ponent is the arbitrary interleaving of the timed sequences of the non-compatible 

interface types. 
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Prop.4 From Definition 8, the behavior of an interface iv is the set of timed sequences S(TT). 

From [Prop.2] an interface in the composite component either belongs to CTX or 

to CT2. Since, CTX and CT2 satisfy ( [ S I ] . . . [59]; then VTT e n , U n 2 , Vro e 

S(TC), to h ( [51] . . . [59]) i.e. every timed sequence in the behavior of every interface 

satisfies ( [51] . . . [59];. 

[Prop.3] defines the behavior of the composite component and [Prop.4] shows that the 

timed sequences of the behavior of the composite component satisfy ( [ 5 1 ] . . . [59];. There-

fore, the behavior of the composite component is an interleaving of sequences which al­

ready satisfy ( [51] . . . [59];. Therefore,we need to prove that the composition rule doesn't 

violate any of ( [51] . . . [59]) so that the sequences remain to satisfy ( [51 ] , . . [59]) after 

interleaving. 

51 for every stimulus there is a response: We need to show that stimulus and response 

relations exist after composition and stimulus and response events are still available 

in interface definitions after composition: From C2, the events of CT\ and CT2 are 

preserved in CT after composition. From C5, interface definitions preserve their 

events after composition. From C9, service definitions doesn't change after composi­

tion. Therefore, stimulus-response relations doesn't change after composition. This 

means that in every timed sequence of every interface behavior, for every stimulus 

there exists one response. Since the interleaving doesn 't change the time sequences 

then the behavior of the composite component is an interleaving of timed sequences 

where for every stimulus in each sequence there exists one response. Therefore, in 

the result interleaved sequence, for every stimulus there exists one response. 

52 response occurs after stimulus: From Bl in Definition 8, the interleaving preserves 

the timing of events. Therefore, building on the previous proof, for every timed se­

quence in the behavior of the composite component the time of the response occurs 

after the time of the stimulus. 

53 \t(r) — t(s)\ < 5: From the previous two proofs, stimulus and response relations 

are preserved and their timing order is preserved. Therefore, we need to prove that 

time constraints are preserved and their associations with stimulus-response rela­

tions are preserved in the composition: From CI J, time constraints are preserved in 

the composition. From C9, service definitions are preserved; therefore, the associa­

tions between time constraints and services are preserved in the composition. Since 
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the interleaving doesn 't change the occurrence time of events in a sequence then 

t(s), the time of a stimulus s, before the interleaving equals t(s) after the interleav­

ing. Also, t(r), the time of the corresponding response remains the same. Therefore, 

\t(r) — t(s)\ is the same before and after the interleaving and since time constraints 

are preserved then 5 is the same. Thus \t(r) — t(s) < 5\ is preserved. 

S4 data constraints are preserved: We need to prove that the data constraints are pre­

served and that the evaluation of the logical expression doesn't change before and 

after the interleaving. (1) From CIO, data constraints are preserved in the composi­

tion. From C9, service definitions are preserved. Therefore, the association between 

data constraints and stimulus-response are preserved. Similar to the previous proof, 

for every sequence, any data constraint defined before the interleaving will remain 

after the interleaving. (2) The evaluation of the logical expression depends on the 

values of event's data parameters and on the attributes. Therefore, we need to prove 

that the sequences of the other component doesn't affect the values of data param­

eters and attributes so that the evaluation of the logical expression doesn't change 

before and after the interleaving: First, each event defines a set of data parameters. 

The values of the data parameters are not affected by other events because they are 

defined locally for the event. Therefore, the interleaving doesn't affect the values of 

data parameters of events. Second, each component define its own set of attributes. 

The services defined in each component affect only the attributes defined for that 

specific component. Since, CT\ and CT<i satisfy [S4], the time sequences of each 

component satisfy [S4]. Therefore, each interleaved sequence consists of two parts. 

One part from CT\ and another part from CT2. Since each part doesn't affect the at­

tributes of the other part then the evaluation of logical expressions remains the same 

after interleaving. Therefore, the composition preserves [S4]. 

S5,S6,S7,S8 security properties are preserved: We need to prove that the security properties are 

preserved in the composition and that the behavior of the composite component does 

not violate the defined security properties. First, From C3, the data parameters are 

preserved. From C4, the associations between events and data parameters are pre­

served. From C9 and CI3, the defined security properties are preserved in the com­

position. Second, from [Prop.4], each sequence of 0\ and 02 satisfies the security 

properties before the interleaving. Therefore, in each sequence of 0\ and 02, for ev­

ery security policy, if the security policy of a service security evaluates to false then 
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an event will be filtered out and not included in the sequence. Also, if the security pol­

icy of a data security evaluates to false then the value of the data parameter will be 

set to Null value. Since interleaving does not change events and does not introduce 

new events then any event that exists in the sequences of will exist in the interleaving 

and any blocked event that does not exist in the sequences of&\ and 02 will not exist 

in the interleaving. Therefore, for any event that exists in an interleaved sequence, 

either there is no service security defined for it or the security policy evaluates to 

true in the original sequence before the interleaving. Data security can be proved 

in similar way. Information flow is prevented because response events and data pa­

rameters associated with them are filtered based on the user to whom the service is 

provided. Therefore, in the interleaved sequence, if the destination user doesn't have 

privilege then events and data will be filtered. 

S9 safety properties are preserved: We need to proved that safety property definitions 

are preserved and that the behavior of the composite component does not violate a 

safety property which is satisfied by any of its constituent components. First, from 

CI 3 and [Prop.4], safety property definitions are preserved. Second, Vp G V, p G 

V\ V p G 7̂ 2- Case I (p G V\): 1) p is defined over the attributes and evens of 

CT\, 2) Vcci G ©i, VD\ V p, 3) Vw G ©, vo = vo\ ||| tj72 where w^ G ©2 i-e-

each sequence of the behavior of the composite component is defined from two parts: 

one part comes from the behavior of0i and the second part from the behavior of ®i-

From 1, w\ h p. Since a safety property is defined over events and attributes of a 

specific component then p is defined over T*i and A\. Since W2 consists of events 

that belong to £2 then these events doesn 't violate p. Therefore, p is satisfied after 

the composition. Case 2: it can be proved in a similar way to case 1. 

4.8 Summary 

This chapter presented a formal description of the structure, contract, and behavior of trust­

worthy components. The structural definition included the essential elements of component-

based development. The contract definition included timeliness, safety and security prop­

erties. The behavior specification of components are generated automatically as extended 

timed automata. Chapter 6 provides detail description of the behavior specification. Reli­

ability and availability properties will be discussed on Chapter 7. This chapter introduces 
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a composition theory that includes rules for composing the structural part and the contract 

part of trustworthy components. We provided a proof that the composition theory preserves 

the defined requirements of timeliness, safety, and security. 
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Chapter 5 

TADL: Trustworthy Architecture 

Description Language 

Formal notations are difficult to use and communicate among software architects. In order 

to comprehend and use the formally expressed content, some mathematical background 

and expertise in the formal language's semantics are essential. Therefore, we created an 

architecture description language (TADL), which is a light-weight formal notation based 

on our formalism. TADL provides complete descriptions of our trustworthy component 

model in a high level language that can be understood by software engineers. This chapter 

introduces the TADL syntax for architectural elements. 

The formalism described in Chapter 4 is an abstract description of a component. Fig­

ure 17 shows the meta model of a component as well as a system that can be composed of 

components. There is a one to one correspondence between the formal elements and the 

elements shown in Figure 17. 

5.1 Meta-Architecture 

Our component model is a meta-architecture, an architecture type from which different 

system architectures can be created. Figure 17 depicts the component model. The main 

building blocks of the component model are component definition, component architec­

ture definition, contract, security mechanism, system definition, package, constraint, and 

attribute. All the elements in the model inherit from the System Element which contains 
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ElementType < name > { 
(Attribute < name >)*; 

} 

Figure 18: The TADL syntax of Element Type 

basic class definition along with attributes and constraints. A component definition in­

cludes an architecture definition, the internal structure of the component implementation, 

and contract specification, a description of services together with restrictions that constrain 

the behavior of component interactions. In addition, a component definition includes a se­

curity mechanism to filter the services and data that are communicated through interfaces. 

The system definition contains hardware components and system configuration specifica­

tion. A package contains a collection of definitions of related elements. The formal defi­

nitions of the elements of the component model has already been introduced in Chapter 4. 

The following section describes the TADL syntax definition of the elements of the meta 

architecture shown in Figure 17. Note that, reliability and availability properties are not 

shown in Figure 17. They will be introduced in Chapter 7. 

5.2 TADL 

In this section we give a concrete syntax of a component description and call the lan­

guage of description TADL. Consequently, corresponding to each element of the compo­

nent model in Figure 17 there is a description in TADL. Moreover, the abstract formal 

description given in Chapter 4 for each element is written in a concrete syntax within the 

structural element of this unit. 

In TADL, every element of the meta-architecture is described separately. The rationale 

behind this is to increase reuse of elements for designing different systems and allow re­

configuration without affecting other definitions. The description of an element contains: 

(1) element type, (2) element name, and (3) specification of the contents of the element. 

Figure 18 gives an example of an element specification. Note that (Attribute < name >)* 

means that 0 or more attributes can be defined as part of the element. 
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ParameterType < name > { 
< DataType >< name >; 
Default < value >; 
Constraint < FOPL >; 

} 

EventType < name > { 
(Attribute < name >)*; 
Constraint < FOPL >; 
(ParameterType < name >)*; 
Direction < name >; 

} 

Attribute< name > { 
< DataType >< name >; 
Default < value >; 
Constraint < FOPL >; 

} 

Figure 19: The TADL syntax of Parameter Type, Event Type, and Attribute 

5.2.1 Event and data parameter 

The formal description of a data parameter, attribute, and event, which were given in Chap­

ter 4, are: A = (T>, u, Xv), a = (£*- va, Xav), and e = (Ae, Ae, Xe, Qe)- The TADL syntax of 

the data parameter, attribute, and event type are presented in Figure 19. The TADL syntax 

of the data parameter and attribute include data type, default value, and constraint. The 

TADL syntax of the event type includes a set of attributes, a constraint, data parameters, 

and the direction of the event. 

Figure 20 shows an example specification of an event type called ControlTemperature. 

It has one data parameter of integer type, CurrentTemperature, and two attributes, priority 

and WCET. The event type definition includes one constraint stating that the value of the 

current temperature data parameter must not exceed 100 or be less than -25. 
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ParameterType CurrentTemperature{ 
DataType Integer;} 

Attribute Priority! 
DataType Integer; 
Default 1;} 

Attribute WCET{ 
DataType Integer; 
Default 30;} 

EventType ControlTemperature{ 
CurrentTemperature temp; 
Priority p; 
WCET w; 
Constraint temp > —25 A temp < 100; 
Direction input; 

} 

Figure 20: An example definition of an event type 

5.2.2 Contract 

The formal description of a time constraint, data constraint, service, safety property, se­

curity property, and contract, which were given in Chapter 4, are: u> = (A^, s, r, Xw), 

1 = V ^ 7 i X 7 ! si r? " /> " • 2-istimulus X \l X L X N X ^service X i rWdata > 2-jreSp0nse X 

FUxSxNxF^servicex^data,p = (Ep, x ) , ^ = ( s , x ,T ) , andS= (6, ft, T, V, # ) . 

Figure 21 shows the TADL syntax of a time constraint, data constraint, service, safety 

property, security policy, and contract. 

The TADL syntax of time constraint, data constraint, and service include a set of at­

tributes and two event types defining the request event and the response event and two 

predicates specifying which event is the request (RequestService) and which event is the 

response {ResponseService). The TADL syntax of time constraint includes the maximum 

safe time, whereas the TADL syntax of data constraint includes a logical expression stated 

using first order predicate logic (FOPL). The syntax definition of a service includes a data 
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constraint, time constraint, security policies, update statements, and action event types as­

sociated with the service. The TADL syntax of a safety property and security policy include 

a set of event types, a set of data parameter types, set of attributes, and a logical expression. 

The TADL syntax of a contract includes one or more services, a set of safety properties, 

and a set of security policies. 

An example of a contract specification is presented in Figure 22. It includes three Event 

types: ControlTemperature (defined earlier), Raise, and Lower. ControlTemperature repre­

sents a request for service aimed to control the current temperature in a room. In response, 

either Raise or Lower should be executed. Therefore, there is a need to define two data 

constraints to specify the conditions based on which either Raise or Lower will be selected 

as a response to ControlTemperature. The two data constraints are RaiseDataConstraint 

and LowerDataConstraint. The first constraint requires the current temperature, which 

is a data parameter defined in ControlTemperature, to be less than or equal to 20. The 

second constraint requires the current temperature to be more than 20. Two services are 

defined: Control-Raise, which will be activated if the data constraint RaiseDataConstraint 

evaluates to true, and Control-Lower, which will be activated if the data constraint Low­

erDataConstraint evaluates to true. Time constraint specification mandates the interval of 

time between the two actions "request to control the temperature" and "raising the temper­

ature to the desired level" be less than or equal to 45 units of time. The time constraint is 

associated with the Control-Raise service. Also, a safety property is defined as part of the 

contract. 

5.2.3 Component architecture 

The structural description of a component includes definitions of interface types, connector 

role types, connector types, architecture types, and component types. Their corresponding 

formal definitions are: IT = (A-.XTT.C), P = (Ap, Xp. n), K = (Ak, Xk, Tl,M), 

r = (O, M, H, AT, CT), and CT = (E, II, a, A, f, E, Ac, Cc, T). Figure 23 presents 

the TADL syntax of these elements. An interface definition includes a set of attributes, a 

constraint, and one or more event types. The TADL syntax of a connector role type includes 

a set of attributes, a constraint, and an interface type. The TADL syntax of a connector type 

includes one or more connector role types in addition to a set of attributes and a constraint. 

Also, it includes communication method. The TADL syntax of an architecture type in­

cludes one or more component types, one or more connector types, a set of attributes, a set 
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TimeConstraint < name > { 
(Attribute < name >)*; 
Constraint < FOPL >; 
EventType < request — name >; 
Requests ervice 
(< request — name >); 
EventType < response — name >; 
Responses ervice 
(< response — name >); 
float MaxSafeTime; 

} 

DataConstraint < name > { 
(Attribute < name >)*; 
EventType < request — name >; 
Request Service 
(< request — name >); 
EventType < response — name >; 
Responses ervice 
(< response — name >); 
Constraint < FOPL >; 

} 

ContractType < name > { 
(Service < name >)+; 
(SafetyProperty< name >)*; 
(SecurityPolicy< name >)*; 

} 

Service < name > { 
EventType < request — name >; 
Request Service 
(< request — name >); 
EventType < response — name >; 
Responses ervice 
(< response — name >); 
DataConstraint < name >; 
TimeConstraint < name >; 
(Update statements)*; 
(EventType < action — name >)*; 
(SecurityPolicy< name >)*; 

} 

SafetyProperty < name > { 
(EventType < name >)*; 
(ParameterType < name •>)*; 
(Attribute< name >)*; 
Constraint < FOPL >; 

} 

SecurityPolicy < name > { 
(EventType < name >)*; 
(ParameterType < name >)*; 
(Attribute< name >)*; 
Constraint < FOPL >'; 

} 

Figure 21: The TADL syntax of Time Constraint, Data Constraint, Service, Safety Property, 
and Contract 
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EventType Raise{... }; 
EventType Lower{... }; 

DataConstraintRaiseDataConstraint{ 
ControlTemperature Control; 
Request Service(Control); 
Raise raise; 
ResponseService(raise); 
Constraint Control.temp < 20; 

} 

DataConstraintLowerDataConstraint{ 
ControlTemperature Control; 
Request Service(Cor\tro\); 
Lower lower; 
Responses'ennce(lower); 
Constraint Control.temp > 20; 
} 

TimeConstraintRaiseTimeConstraint{ 
ControlTemperature Control; 
Request Service(Cor\tro\); 
Raise raise; 
Responses'eruzce(raise); 
float MaximumSafeTime = 45; 

} 

Figure 22: An example of 

Service Control-Raise{ 
ControlTemperature Control; 
Requests ervice{Cox\txo\); 
Raise raise; 
ResponseService(raise); 
RaiseDataConstraint del; 
RaiseTimeConstraint tel;} 

Service Control-Lower{ 
ControlTemperature Control; 
Requests ervice(Contro\); 
Lower lower; 
Responses'ermce(lower); 
LowerDataConstraint del;} 

SafetyProperty Safety{ 
ControlTemperature Control; 
(Control.temp > 20 —>• 
Control — Lower)\/ 
(Control.temp < 20 —> 
Control — Raise);} 

ContractType Contract{ 
Control-Raise cr; 
Control-Lower; cl 
Safety p; } 

contract specifications 

87 



of constraints, and a set of attachment specification. Each attachment specification binds a 

connector role type of a connector to an interface type of a component. The TADL syntax 

of a component type includes sets of event types, attributes, constraints, and architecture 

types. Also, it includes a contract, one or more interface types, and a special attribute called 

user, which identifies the client on whose behalf the component is executing. 

Figure 24 shows an example of a composite component specification. It shows two 

components types, DataStore and QueryManager which are connected together using a 

connector type DBConnector. The architecture specification is defined using the archi­

tecture type DatabaseArchitecture. Each constituent component defines an interface type. 

DataStore contains IDataProvider and QueryManager contains IDataReader. Two con­

nector role types are used to connect DBConnector to the interface types of the two com­

ponents. The system is defined as a composite component, DatabaseSystem, whose archi­

tecture is of type DatabaseArchitecture. 

5.2.4 Security mechanism 

Figure 25 presents the TADL syntax of role based access control (RBAC) specifications. 

The syntax of RBAC includes assigning users to groups, users to roles, roles to groups, 

privileges to roles, service privileges and data parameter privileges to roles. The formal 

description of a user, role, group, and privilege is identical to the formal description of an 

attribute. The formal description of the assigning functions are described in Chapter 4. 

Figure 26 shows an example of RBAC specification using TADL. The user Anne is 

assigned the role Accountant. This role has the privilege GenerateReport, which allows 

Anne to generate the account receivable report GenerateAccountReceivableReport. 

5.2.5 System definition 

Figure 27 includes the TADL syntax of system configuration. It includes one or more 

system elements and a deployment specification, which assign software component types 

to hardware component types. 

Figure 28 shows an example configuration specification using TADL. It includes one 

software component DatabaseSystem which is deployed on a hardware component, called 

server. This hardware component is configured with Xenon processor and 4GB memory. 

The meta-architecture elements are units of reuse. Towards this purpose we include a 
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InterfaceType < name > { 
(Attribute < name >)*; 
(EventType < name >)*; 
Constraint < FOPL >; 

} 

ConnectorRoleType < name > { 
(Attribute < name >)*; 
Constraint < FOPL >; 
InterfaceType < name >; 

} 

ConnectorType < name > { 
(ConnectorRoleType < name >)+; 
(Attribute < name >)*; 
Constraint < FOPL >; 
Communication Method < name >; 

} 

ArchitectureType < name > { 
(ComponentType < name >)+; 
(ConnectorType < name >)+; 
(Attribute < name >)*; 
(Constraint < FOPL >)*; 
(Attachment 
(ConnectorType.RoleType.InterfaceType, 
ComponentType.InterfaceType))*; 

} 

ComponentType < name > { 
(EventType < name >)*; 
(Attribute < name >)*; 
(Constraint < FOPL >)*; 
User u; 
(InterfaceType < name >)+; 
(ArchitectureType < name >)*; 
ContractType < name >; 

} 

Figure 23: The TADL syntax of Interface Type, Connector Role Type, Connector Type, 
Architecture Type, and Component Type 
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repository in the design. All meta-architecture elements' definitions are stored in a repos­

itory, a storage place to store and reuse the specified and developed meta-architectural 

elements. The repository provides storage facilities for system specification, development 

source code, and compiled, execution ready assembly of components. The repository al­

lows storing and retrieving different versions of the same component. Detailed discussion 

of the repository is provided in Chapter 9. 

5.3 Summary 

This chapter introduced TADL, an architecture description language that is based on our 

trustworthy component model. We described the TADL syntax for the elements of our trust­

worthy component model. A visual modeling tool [Yun09] is used to design component-

based systems based on our component model. The tool provides user interface to design 

systems and automatically generates the corresponding TADL specification of the system. 

We use an automatic model transformation technique to analyze the resulting TADL spec­

ification and generate behavior specification and real-time models. 
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InterfaceType IDataProviderj} 
InterfaceType IDataReader{} 
ConnectorRoleType Provider{ 
IDataProvider iRoleDataProvider;} 
ConnectorRoleType Reader{ 
IDataReader iRoleDataReader;} 

ConnectorType DBConnectorj 
Provider providerRole; 
Reader readerRole;} 

ComponentType DataStore { 
IDataProvider idataProvider;} 
ComponentType QueryManager{ 
IDataReader idataReader;} 

ArchitectureTypeDatabaseArchitecture{ 
DataStore storeDB; 
QueryManager queryDB; 
DBConnector connect; 
Attachment 
(connect.providerRole.iRoleDataProvider, 
storeDB. idataProvider); 
Attachment 
(connect.readerRole.iRoleDataReader, 
queryDB .idataReader); 

} 

ComponentType DatabaseSystem{ 
DatabaseArchitecture dBArchitecture;} 

Figure 24: An example of a composite component specification 
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User< name > { 
(Attribute < name >)*; 
Constraint < FOPL >;} 

Group< name > { 
(Attribute < name >)*; 
Constraint < FOPL>;} 

Role< name > { 
(Attribute < name >)*; 
Constraint < FOPL >;} 

Privilege< name > { 
(Attribute < name >)*; 
Constraint < FOPL >; 

} 

RBAC< name > { 
(User < name >)*; 
(Group < name >)*; 
(Role < name >)*; 
(Privilege < name >)*; 
(User — Groups — Assignment(User,Gro\xp))*; 
(User — Roles — Asszgnmen^User.Role))*; 
(Group — Roles - /lss^nment(Group,Role))*; 
(ServiceType < name >)*; 
(ParameterType < name >)*; 
(Privileges—for — services 

(Service,Privilege,Role))*; 
(Privileges—for — date — parameters 

(DataParameter,Privilege,Role))*; 

} 

Figure 25: The TADL syntax of RBAC specification 
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RBAC Accounting{ 
User Anne; 
Role Accountant; 
Privilege GenerateReport; 
User-Roles-Assignment(Ar\ne,Accountant); 
ServiceType GenerateAccountReceivableReport{ } 
Pn'v//ege5'-/or-i'erv/ce5(GenerateAccountRecievableReport, 
GenerateReport, Accountant); 

} 

Figure 26: An example RBAC specification using TADL 

Configuration< name > { 
(SystemElement < name >)+; 
(Deploy(HardwareComponentType,ComponentType))+; 

} 

Figure 27: The TADL syntax of system configuration specification 

ComponentType DatabaseSystem{} 

Attribute Processor! 
DataType String; 
Default "Xenon";} 

Attribute RAM{ 
DataType String; 
Default "4GB";} 

HardwareComponent Server { 
Processor Xenon; 
RAM memory;} 

Configuration Deployment! 
DatabaseSystem DBS; 
Server server; 
Deploy(server,DBS);} 

Figure 28: An example configuration specification using TADL 
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Chapter 6 

Model Transformation and Formal 

Verification 

Our goal is to achieve a uniform specification language for specifying and analyzing the 

different kinds of trustworthiness properties. The contract specification enables regulating 

services through time constraints, restricting services through constraints, and specifying 

safety properties. The security mechanism specification enables filtering services and infor­

mation so that only authorized users can request services and view information. Therefore, 

These features enable specifying trustworthiness properties at the architecture level. 

) Desgin Artifact 

( ^ ) Process 

Figure 29: The process of transformation and analysis 

The next step is to reason about safety and security in a uniform manner. Figure 29 

depicts the transformation and analysis process. During this process, the specification is 

analyzed and undergoes an automatic transformation process. The transformation process 

automatically generates behavior protocols and real-time models. The behavior is gener­

ated as an extended finite-state machine. The resulting state machine is input into a model 

checker to verify safety and security. The real-time model is generated as a finite-state 
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machine augmented with real-time tasks specification. The resulted state machine and task 

specification are input into a real-time schedule analysis tool to verify timeliness require­

ments. 

The next sections describe how the specification is transformed into behavior protocols 

and real-time models and how safety and security properties are verified. 

6.1 Verifying Safety and Security 

This section introduces transformation rules from our component model into UPPAAL 

model checker [BDL04]. We explain how the formal specification of a component is trans­

formed into UPPAAL extended timed automata. First, we present brief information about 

UPPAAL model checker. Then, we introduce transformation rules for the automatic gener­

ation of component behavior. Finally, we describe how the verification process is conducted 

using UPPAAL model checker. 

6.1.1 UPPAAL 

UPPAAL [BDL04] is a mature model checker that has been used successfully for more 

than a decade to model check several types of concurrent real time systems. The UPPAAL 

modeling language is based on timed automata TA = (L, lQ, K, A, E, I) where L is the 

set of locations denoting states, l0 is the initial location, K is the set of clocks, A is the set 

of actions denoting events that cause transitions between locations, E is the set of edges, 

and / is the set of invariants. Formally, E Q L x A x B(K) x 2K x L where B(K) is 

the set of clock and data constraints denoting guard conditions that restrict transitions, 2K 

is the set of clock initializations to set clocks whenever required, and / : L —> B{K) is 

a function assigning clock constraints to locations as invariants. UPPAAL extends timed 

automata with additional features. We present some of these features that are relevant to 

the transformation process: 

• Templates: Timed automata are defined as templates with optional parameters. Pa­

rameters are local variables that are initialized during template instantiation in system 

declaration. 

• Global variables: Global variables and user defined functions can be introduced in 

a global declaration section. Those variables and functions are shared and can be 
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accessed by all templates. 

e Binary synchronization: Two timed automata can have a synchronized transition 

on an event when both move to a new state at the same time when the event occurs. 

An event that causes synchronous transition is defined as a channel, a UPPAAL data 

type. A channel can have two directions: input(labeled with ?) and output(labeled 

with!). 

• Committed Location: Time is not allowed to pass when the system is in a commit­

ted location. If the system state includes a committed location, the next transition 

must involve an outgoing edge from the committed location. 

• Expressions: There are three main types of expressions: (1) Guard expressions are 

evaluated to boolean and used to restrict transitions; guard expressions may include 

clocks and state variables, (2) Assignment expressions are used to set values of clocks 

and variables, and (3) Invariant expressions are defined for locations and used to 

specify conditions that should be always true in a location. 

• Edges: Edges denote transitions between locations. An edge specification consists 

of four expressions: Select: assigns a value from a given range to a defined variable, 

Guard: an edge is enabled for a location if and only if the guard is evaluated to true, 

Synchronization: specifies the synchronization channel and its direction for an edge, 

and Update: assignment statements that reset variables and clocks to required values. 

In UPPAAL, system properties are expressed formally using a simplified version of CTL 

[BDL04] as follows: 

• Safety property is formulated positively stating that some thing good is invariantly 

true. For example, let </? be a formula, An <p means that (p should be always true. 

• Liveness property states that some thing good will eventually happen. For example, 

A o ip means that tp will eventually be satisfied. 

6.1.2 Transformation Rules 

In this section, we introduce the transformation rules for the automatic generation of com­

ponent behavior based on the analysis of component's structure and contract defined in its 
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specification. A component-based system is a network of connected components. Every 

component is mapped to a UPPAAL template in a one to one manner. We assign a param­

eter to every UPPAAL template to denotes the identifier of the user on whose behalf the 

component is running. This parameter will be used for ensuring service and data security. 

Let O = {0i , . . . , 0n} be the set of components in a system where 

0, = (Ej, Ui, au A*, &, Ei, Ai, Cu %) and ^ = ( 6 ^ ^ , ^ , ^ , ^ ) . Let TA = 

(L, Lo, K, A, E, I, u) be the definition of UPPAAL timed automata where u denotes the 

user identity parameter associated with the template at its instantiation. Then, the trans­

formation rules construct T = {ti,..., tn}, a set of UPPAAL templates, where U is the 

template constructed from component 0j. In brief, during the process of constructing 

TA = (L, l0, K, A, E, I) from the component specification: 

• Ej is used to construct L where every location in L denotes the state of processing a 

service request in Ej, 

• Fl is used to construct K and / where a clock in K and an invariant in / are defined 

for every time constraint in Tj, 

• Ej is used to construct A where an action in A is defined for every service request 

and response in Ej, and 

• Ej, A,, £j, Oj, fij, and \I/j are used to construct E and its associated expressions. More 

precisely, A; defines data parameters in & which in turn are used in defining data 

constraints in fij that are used along with T to define Guard conditions for edges. 

Ej and Oj are used in defining Sync expressions. ^ is used to control data parameters 

access in Update expression. 

We extend the UPPAAL formal template by adding security features. In the global decla­

ration section, we define: (1) lists of groups, roles, privileges, and a list of representative 

users where a user defined for each role and group, (2) a service-access control matrix, 

SAC, that defines role access rights to services, (3) a data-access control matrix, DAC, 

that defines role access rights to service data parameters, and (4) implementation of the 

security functions defined in Definition 6. 

The steps for constructing TA = (L, LQ, K, A, E, I, u) re given bellow: 

Locations [L]: We use locations to denote the states for processing services. The function 

A : E —> L constructs for an event e a location A(e) in L. The location is the state 
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for processing the event e. The set of locations L can be constructed with the help of E as 

follows: 

• [L.l] Create an initial location lQ to denote the idle state where the component is 

waiting for a stimulus. 

• [L.2] For every stimulus event, create a location to represent the service of processing 

the stimulus. 

o [L.3] For every output request event, create a location to represent the state of re­

questing that service. 

• [L.4] For every action in the service definition, create a location to represent the state 

of processing the service action. 

Clocks [K]: Time constraints in T can be represented by clocks in K and invariants repre­

senting clock constraints in / . The set of clocks K can be constructed by creating a clock 

for every time constraint that constrains the response of a stimulus. Clocks are defined as 

template's local variables. 

Invariants [I]: Time constraints are defined as location invariants in / . We create an invari­

ant in / for each time constraint in T and assign it to A(e) to form the set of invariants for 

that state, I/\(e). Also, the constraint that is defined for service request (stimulus) is added 

to / : Vx G E, x = (A, A, *, g), X € / A X G /AOO-

Actions [A]: The set of actions A can be constructed by creating an action in A for every 

stimulus and response in £> stimulus U Eresponse. Actions are defined as synchronous chan­

nels. Input actions are decorated with ? and output actions are decorated with !. 

Edges [E]: The behavior of a component is based on stimuli and responses. Therefore, E 

can be constructed using E according to the rules [E.l], [E.2], and [E.3] defined bellow. 

The specifications of edge expressions are derived from the data parameters A and the con­

straints in Q and ^ that are related to the action a, which is the stimulus, service action, or 

response that causes the transition, according to the following rules [E.Ex]: 

• Select: It is used to get a value in a temporary variable for each data parameter in 

£{a). These values will be assigned to their corresponding data parameters in the 

Update expression. The data type of the parameter, V, is used to specify the type of 

the temporary variable. 
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• Guard: A guard condition is a conjunction u A T such that: w £ 0 is a predicates 

over the value of data parameters in £(a) and of component, service, and reactivity 

attributes, and T is a service security policy related to a where (a, r, T) G $. 

• Sync: the action, which is the event causing the transition. 

• Update: It includes assignment statements that: (1) update the value of data parame­

ters in f (a), (2) reset the clock in K related to the time constraint in T that is defined 

for a, and (3) update the value of component attributes. In order to ensure data secu­

rity, update statements are constrained by T as follows: 

yd E £(a), d := T?Select(d) : Null, which means that if there is a data security 

property tpd = (a,d, T) associated with the data parameter then d will be assigned 

the selected value only if T evaluates to true; otherwise, d will be set to Null. Also, 

\/u ElA,u := assign(a,v) A (a, a, T) E \& —> a := T?Select(a) : Null which 

means that in the update statements of the service, the value of the attribute will be 

set only if the security policy evaluates to true. 

The following rules are used to construct template edges. Constructing edges is based on 

the service definitions in 0; therefore, the following steps will be repeated for every service 

definition: 

• [E.l] For every stimulus e, an edge from the initial location l0 to A(e) is created. If 

there is a time constraint defined for the service then the defined clock of this time 

constraint should be reset in the update expression, as defined above in [E.Ex]. 

After finishing the processing of e, the response is sent and the component can go 

back to idle state waiting for the next stimulus. Therefore, for every response, an 

edge from A(e) back to IQ is created. 

• [E.2] In order to provide the required services, the component may request services 

from other components. When a stimulus e has a response r G ^outRequesttnen a n 

edge from A(e) to A(r) is created and a second edge from A(r) to l0 is also created 

• [E.3] If the stimulus has multiple possible responses where data constraints are used 

to select the proper response then an edge for each case is created and the data con­

straint defined in the service is added to the guard condition of the edge. The edge 
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is created from A(e) to: (1) I0, if the response is internal or output response i.e. 

T € ^internal U Z output, OX ( 2 ) A ( r ) , if T is an OUtpUt request i .e . T e Eouiflesponse-

• [E.4] the component may have a concurrent behavior. It can receive stimuli while 

processing others. Therefore, an edge is created from every location that represents 

stimulus processing location lpl to the other stimulus processing locations lp2. An 

intermediate committed locations is used to split the edge into two edges: (1) an 

edge from lpi to the committed location labeled with the stimulus and (2) an edge 

from the committed location to lp2 labeled with the response of lpX. The reason for 

having two edges is that UPPAAL doesn't allow having two synchronous channels 

on an edge. 

• [E.5] If there is one or more actions defined in the service i.e. <S 7̂  0 then a location 

A(XJ) is created for each action x £ S where i : N, 0 < i < n, n = \S\. Then, the 

edge created for the response (in E.l, E.2, and E.3) is pointed to A(xi) and edges are 

created between A(xi ) . . . A(xn). Then a final edge is created back to l0. 

After constructing each edge, the rules in [E.Ex] are used to define its expressions. All 

attributes are defined as local variables of the component. 

6.1.3 Example 

Figure 30 shows the extended timed automata generated for the following service defini­

tion: 

Q{s,u.^Jui-s,{i'd}) = (r,{k := x},{a},<2j{^o},faM) where £(s) = {d} and 

7 = (s, r, 5) 

The construction is done as follows: 

Locations: idle is created according to rule [L.l], A(s) according to [L.2] and [E.5], the 

invariant c < 5 at A(s) according to [I], and A(a) according to [L.4]. 

Edges: created according to the following rules and [E.Ex]: (1) (idle, s, A(s)) is created 

according to [E.l], (2) (A(s),r, A(a)) and (A(a),a,idle) is created according to [E.5]. 

Clocks: c and the invariant at A(s) are created according to rules [K] and [I]. 

Actions: s?, r! are created according to [A] and [E.Ex] 

The security properties, events security and data security, can be specified in UPPAAL 

language in the following way: 
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Select: v:int 
Guard: U) l\lbs 
Sync: s? , T 

Update: d:= ^ d ? v : Null, 
c:=0 

c<=5 

Select: x:int \ / S e l e c t 

Guard: lb \ / G u a r d : 

Sync: T \^-^\L Sync: r! 
Update: k:= ipu ? x : Null (A(aT Update: 

Figure 30: Example Transformation 

• Event security: An event can be triggered only by a user who has access right. This 

is expressed as the CTL formula: 

AU for all(i:int[l,NoOfUsers]) C.user==i && C.eventx imply US(i,eventx). It 

means: invariantly, in all system executions, eventx can be triggered by authorized 

users only. Each user is identified with a unique identifier. 

• Data security: A data parameter value should be visible only to authorized users. 

This is expressed as the CTL formula: 

Ad for all(i:int[l,NoOfUsers]) C.user==i && DataParameterl-Null imply 

UD(i,DataParameter). It means: invariantly, in all system executions, the value of 

DataParameter can be visible only to authorized users; otherwise, it is set to Null; 

Figure 31 shows the extended timed automata generated for the controller component of 

the fingerprint car security system presented in Example 4. 

6.1.4 Preserving the requirements of safety and security 

Theorem 2 The transformation rules preserve the requirements of safety and security 

([5i]... [59];. 

The following proof shows that the transformation process preserves safety and security 

requirements: 

Proof 2 In order to proof that the transformation process preserves the safety and secu­

rity requirements we need to show that the sequences generated by the UPPAAL extended 
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Guard: US(u, unlock) // UG(u, family, 
UR(u,driver) 

Sync: unlock? 
Select: x:inl, y:int 
Guard: 
Sync: show! 
Update: 
status:= (UD(u,status) II UR(u,driver))?x: Null 
info:=(UD(u,info) II UR(u,driver))?y:Null 

Guard: US(u.view) II UR(u, driver) 
Sync: start? 

Guard: US(u.start) II UR(u.driver) 
Sync: start? //T~* 

(start) 

Sync: SwitchOn! 

Guard: US(u.lock) II UG(u, family) II 
UR(u,driver) 

Sync: lock? 

Figure 31: The UETA of the controller component 

timed automata (UETA) satisfy [51]... [59]. This can be shown by proving that the trans­

formation rules preserves [51]... [59]. In this proof we use the rules [SI]... [59] as the 

equivalency conditions. If these rules are satisfied in the component behavior and in the 

UETA then we say that the component behavior and its UETA are equivalent. 

[SI] for every stimulus, there is exactly one response: in the component model, services 

are defined by 0. In UETA, transitions are defined as edges. The transformation rules 

[E.J ] and [E.2] ensure that for every stimulus there is two edges and a state. The first edge 

is labeled with the stimulus and the second edge is labeled with the response. Therefore, 

every sequence generated by the timed automata will have exactly one occurrence of a 

response for each occurrence of a stimulus. 

[S2] a stimulus occurs before a response in any sequence: since the edge created for 

a stimulus precedes the edge created for a response([E.I] and [E.2]), a stimulus always 

occurs before its corresponding response. 

[S3] time constraints are respected: in the component model, time constraints are defined 

in r as part of the contract definition H. In the UPPAAL template, a time constraint is cre­

ated by defining a clock and assigning the time constraint as an invariant to a location. The 

transformation rules [K] and [I] ensure that a clock is defined for every time constraints 

and that the time constraint is assigned to the location that represents the state of process­

ing the stimulus. Therefore, for every sequence generated by UETA, time constraints are 

enforced. 
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[S4] data constraints are respected: in the component model, data constraints are defined 

in Vt as part of the contract definition 5. In UETA, data constraints are defined as guard 

conditions restricting transitions. The transformation rules [E.Ex - Guard] and [E.3] en­

sure that a guard condition is defined over the edge that represents the response transition. 

Therefore, for every sequence generated by UETA, data constraints are enforced and only 

the proper responses are included in the sequences. 

[S5 and S7] event security properties are enforced: in the component model, security 

policies are defined in $ and included in the service definition 0. In UETA, event security 

policies are defined as guard conditions restricting transitions. The transformation rule 

[E.Ex - Guard] ensures that the security property is defined as part of the guard condition 

of the edge that represents the response transition. Therefore, for every sequence generated 

by UETA, security properties are enforced. 

[S6 and S8] data security properties are enforced: in the component model, security poli­

cies are defined in $ and included in the service definition 0 . In UETA, data security 

policies are defined as conditions restricting the update statements of an edge. The trans­

formation rule [E.Ex - Update] ensures that the data security property is defined as a 

condition on updating data values. Therefore, for every sequence generated by UETA, data 

security properties are enforced. 

Theorem 3 The composition of two UPPAAL extended timed automata (UETA) preserves 

the safety and security requirements ( [SI] . . . [S9]). 

The following proof shows that the composition of two UPPAAL extended timed automata 

(UETA) preserves the safety and security requirements: 

Proof 3 let Mj = (Lu IQ^K^A^E^ 7j) and M2 = (L2, Z02, K2, A2, E2,12) be two UE-

TAs. The composition of M\ and M2 is M = (L,l0,K,A,E,I) where: L = L\ x L2, 

h = (loi J02). k = K\ U K2, I — I\ U I2 such that the invariant of a composite loca­

tion is the conjunction of the invariants of all its constituent locations i.e. Ml = (h,l2) E 

L • 1(1) = I(li) A I(l2), and E is given as follows (Edge Composition Rule): an edge 

is defined as a tuple (I, a, g, r, u, I') where I is the initial location, a is an action, g is a 

guard condition, r resets clock values, u is an update expression, and V is the destination 

location. For (/i,a ] : gi,ri,Ui, l\) G E\ and (l2,a2,g2,r2,u2,l'2) 6 E2 : 

if ax = a2 then E includes ((li, l2), &i, #1 A g2,r\ U r2,U\ A u2, (l[, 1'2)); 
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ifai $ A\ n A2 then E includes ((/i, l2),ai,gi,T\,u\, (l'i,l2)); and 

if a,2 $. A\ n A2 then E includes (fa,l2),a2,g2,i'2,U2, fa,l2))-

Since Mi and M2 satisfy [Si]... [59], we need to show that M satisfies those require­

ments: 

[SI] for every stimulus, there is exactly one response: since Mx and M2 satisfy [SI] then 

for every stimulus a E A: a E Ax V a E A2 V a E Ai D A2 and there is a location 

I E L] V I E L2 V Li UL2 that represents the state of processing a. Since L = Li x L2 then 

there exists a set of states La C L such thatMx E La»(x = (l,y)Al E Li,y E L2) V (x = 

(y,l) A I E L2,y E Li) V ( x = (I, I) A I E Lx U L2). Also, since Mx and M2 satisfy [SI] 

then there exists two edges ei = (l0,a,g,r,u,l), e2 = (l,s,g',r',u',l') As E 0(a) such 

that ei,e2 E Ei V ei, e2 E E2 V ej, e2 E E\ U E2 that represents receiving the stimulus 

and triggering response to it. From the Edge Composition Rule, there exists edges in E 

corresponding el, e2. Therefore, the composition preserves the reactivity requirement. 

[S2] a stimulus occurs before a response in any sequence: in the previous proof, e\, 

which is created for the stimulus, precedes e2, which is created for the response; therefore, 

a stimulus always occurs before its corresponding response in M. 

[S3] time constraints are respected: since Mi and M2 satisfy [S3], then there exists a 

clock c E K\ V c E K2 and an invariant % E I\ V % E I2 for every time constraint. 

Since k = Kx U K2, I = h U I2, and VZ = {h, l2) E L • 1(1) = I fa) A I fa) then the 

composition preserves time constraints and every sequence in the composed model respects 

time constraints. 

[S4,S5,S7] data constraints and event security are respected: since M\ and M2 satisfy 

[S3], then for every edge e = (/, a, g, r, u, I'), e E Ei V e 6 E2 V e <E Ex U E2 the guard 

condition g is a conjunction wAT. From the Edge Composition Rule, guard conditions are 

preserved in the composition. Therefore, data constraints and event security are preserved 

in the composition. 

[S6 and S8] data security properties are enforced: since Mi and M2 satisfy [S3], then for 

every edge e = (/, a,g,r,u,l'), e E Ex V e E E2 V e E Ei U E2 the update expression u 

contains the data security properties. From the Edge Composition Rule, update expressions 

are preserved in the composition. Therefore, data security are preserved in the composition. 

Model checking has been used effectively for verifying safety critical systems. However, 

model checking falls short when used for large and complex systems because it suffers 

inherently from the state-space explosion problem. This problem limits the application 
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of model checking to small size problems. Our formal approach provides a technique to 

overcome the state-space explosion problem by using incremental model checking. Prim­

itive components can be verified for trustworthiness properties. Then, large and complex 

systems can be built by composing these components. There is no need to perform model 

checking on the composite component because the composition preserves the trustworthi­

ness properties. Therefore, Theorem 3 provides an important contribution for incremental 

model checking. Thus, the model checking problem is tractable despite the size of the 

component-based system. 

6.2 Real-Time Analysis 

It is possible to conduct real-time scheduling analysis relative to criticality, priority, and 

other real-time non-functional properties based on the formal specification. Times [AFM+03] 

is used to perform the real-time analysis. First, the formal specification are transform into 

timed automata extended with tasks, which is the language used by Times tool. Then, times 

tool performs the scheduling analysis. 

Times uses a timed automata extended with tasks to model real-time systems. The 

structure of the timed automata is similar to the structure of UPPAAL timed automata. In 

addition, Times extends UPPAAL model by defining real-time tasks and their real-time 

attributes, which are explained bellow. In order to define real-time models, events must 

be annotated with real-time task attributes. These attributes are used to build the real-time 

characteristics of the service when executed at run-time. Therefore, we define a standard 

set of attributes that must be defined for every stimulus and response events. These at­

tributes are: 

• Behavior, an enumeration type whose value is: Controlled, Periodic, or Sporadic. 

This attributes specifies the execution behavior of the service type. 

• Priority: an integer value specifying the priority of the service type. 

• Computing time: an integer vale specifying the computation time of a service, the 

total time required for the service to finish executing. 

• Deadline: the maximum safe time before which the service must finish its execution. 

It is similar to the specified time constraint. 
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• Period: this attributes specifies the time before two consecutive executions of the 

same service type. 

• Offset: this attribute specifies the variable time allowed for the service to start after 

its period time occurs. 

• Max number of tasks: this attribute specifies the number of concurrent instances of 

the same task. 

Since Times model is similar to UPPAAL model, the transformation process follows the 

same rules as those specified earlier for UPPAAL with few added rules that are related to 

the new concept of Task. These are: 

• Defining tasks: a task is created for every stimulus. 

• Assigning attributes: the service attributes are mapped into task attributes. 

• Generating templates: templates are created in the same way used for UPPAAL in­

cluding their timed automata. Note that some templates are environmental templates; 

therefore, an attribute is used at the component type level to specify if a component . 

is environmental or not. 

» Global declaration: similar to the former transformation rules of UPPAAL, global 

declarations are added to the system. 

® Instantiation: an instance for each template is created and added to the system. 

® Local declaration: a local declaration is created for each template, same as UPPAAL. 

» Assigning tasks to locations: for every stimulus, its task is associated with the loca­

tion which represents the state of processing the stimulus. 

• Deciding policy: a scheduling policy is selected. 

6.3 TADL Semantics 

In this section we give an argument as to why TADL has a formal semantics. The se­

mantics basis of the formalism is grounded on set theory. Let the transformation from the 
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formal model to UPPAAL formal model, described in this Chapter, be called / . The im­

plementation of / has a TADL file as input. Therefore, we have Figure 32 where u is the 

automatic transformation developed within UPPAAL model checker and g is the transfor­

mation described in Chapter 5. Therefore, for every formal model m we have the equation 

f(g(m)) = u(f(m)). Since / and u are both sound and complete, it follows that g is sound 

and complete. That is, TADL has a set theoretical formal semantics. 

Formalism-

9 

TADL-

/ 
-> UPPAL Formalism 

u 

-> UPPAAL Presentation 

Figure 32: TADL Semantics 

6.4 Summary 

This chapter introduced a model transformation technique for analyzing systems built using 

our trustworthy component model and generating two types of extended timed automata. 

One type is suitable for UPPAAL model checker and another type is suitable for the Times 

tool. Formal transformation rules were provided to describe how the extended timed au­

tomata is generated from the formal component specification. This approach allows us 

to formally verify the requirements of safety, security, and real-time systems using model 

checking. A model transformation tool [Ibr08] has been developed to automatically gen­

erate UPPAAL and Times timed automata from TADL specification based on the transfor­

mation rules. Detail description of the tool is available in Chapter 9. 
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Chapter? 

Reliability and Availability 

This section introduces a novel formal approach for specifying and verifying reliability 

and availability properties using model checking. The section includes modeling service 

failures and repairs. An example case study is provided to explain our approach. 

7.1 Service Failures and Repairs 

Reliability and availability are two related trustworthiness attributes. In the literature [ALRL04], 

reliability is defined as the "continuity of correct servic", whereas availability is defined as 

the "readiness for correct service". A service failure is defined as a deviation from the 

correct service behavior [ALRL04]. The deviation is defined with respect to the required 

functional and non-functional requirements of the system. We assume that the require­

ments have been reviewed and validated at the system analysis phases. Therefore, the 

stated specification is used as the basis for deciding whether or not the behavior complies 

with the required and stated specification. A service has functional and non-functional re­

quirements. While in operation, the service can change the values of attributes and local 

variables. It can also trigger events. A service failure is indicated by any violation to the 

requirements of safety and security stated in ([SI]... [59]): 

1. If a service request arrives but no response is triggered; 

2. If a service request arrives but an event other than the expected response is triggered; 

3. If the time of the response precedes the time of the request; 

4. If a service delivers results later than the maximum safe time; 
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5. If a service request violates a data constraint (precondition); 

6. If one of the constraints associated with data parameters or events is violated; 

7. If service security is violated; and 

8. If data security is violated. 

These failures can be categorized into 4 classes: reaction{\ and 2), timing{3 and 4), condi­

tion^ and 6), and security{l and 8) failures. A service failure has the following attributes: 

• Class: an enumerated value that defines the class of a service failure {reaction, timing, 

condition, security); 

• Conditions: a set of logical expressions that define the situation leading to the failure; 

• Severity: an enumerated value that classifies the consequences of a service failure 

{critical, minor); 

• Persistence: an enumerated value that classifies the duration of a service failure {per­

manent, transient); and 

• Acceptable frequency: a pair {u, t) where v defines the number of occurrences of a 

service failure during time t. This pair defines the acceptable frequency of service 

failure. (0, oo) means that the service failure is not accepted at all. 

We define the set of service failures: 

F = {/ = {T,stimuius, Tiresponse, Class j , Conditions, Severity, Persistence, Frequency)} 

A service repair is defined as a change from incorrect service to correct service. A 

repair can be internal or external. Internal repairs are done by internal events automatically 

when a failure is detected. An external repair is done by an external entity such as human 

or system control component. An external repair can be part of system maintenance. Main­

tenance includes all modifications to the system throughout its deployment and execution 

phase [ALRL04]. A service repair has the following attributes: 

• Class: an enumerated value that defines the class of a service repair {internal, exter­

nal); 

• Actions: a set of events executed to remedy the effect of a service failure; 
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• Updates: a set of update statements to reset the values of attributes affected by the 

service failure; 

• Time to recover: an integer value specifying the mean time to recover the service 

failure starting from the time in which a failure is detected; and 

• Type of recover: an enumerated value that states the type of recovery (Full, partial). 

Full recover means that the failure has been remedied and the service will return 

back to correct behavior. Partial recover means the service will continue to work in 

degraded mode, during the failure period, until a full recover repair arrives. 

We define R = {r = (Classr, Action, Updates, Type, Time)} as a set of service repairs. 

7.2 Defining Reliability and Availability 

The acceptable level of reliability is defined based on the frequency and severity of service 

failures. The acceptable level of availability is defined based on the duration of service 

failure time. In order to assure trustworthy services, there should be a repair or set of re­

pairs defined for each failure. Repairs are reactions to failures aimed to recover failures 

and return to correct service behavior. The component implementation must guarantee the 

failure-repair relations and acceptable levels of reliability and availability of services. The 

component implementation and maintenance must guarantee the repair time. The accept­

able levels of reliability and availability should be added to the component contract. Then, 

operational profiles are used to assess the validity of the values specified in the contract. 

Reliability and availability are formally defined in Definition 10. 

Definition 10 We define a total function FR : F —> Pi? that associates a set of repairs to 

every failure such that V/ E F, FR(/) ^ 0. 

The following defines reliability and availability requirements: let / i , /2 E F be service 

failures and rp\, rp2 E R be service repairs such that FR(fi) = {rpi}, FR(f2) = {T2} 

- Reliability is defined as a set of invariants Re where each invariant is a logical ex­

pression defined over the severity and frequency of service failures. For example the 

reliability invariantfrequency(fi) < 5/100 means that the occurrence frequency of 

the service failure fi should be less than or equal to 5 times every 100 units of time. 

Another reliability invariant example is severity (f2) = critical —> frequency>(j?
2) < 
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1/100 which means that if a service failure f2 has a critical severity then the occur­

rence frequency of /2 should be less than or equal to once every 100 units of time. 

- Availability is defined as a set of time constraint Av where each time constraint spec­

ifies the maximum time allowed between the occurrence of a failure and its corre­

sponding repair. For example, t(rpi) — i(/i) < 5 means that the service repair rp\ 

should occur within 5 units of time from the occurrence time of the service failure 

fi, where t(.) means the occurrence time of the failure or repair. This ensures that 

the service will be available within 5 units of time in case of failure. 

The contract definition of components is extended to include the requirements of reliability 

and availability. 

Definition 11 Let F be the set of service failures, R be the set of service repairs, Re be 

the set of reliability invariants, Av be the set of availability time constraints, and FR be the 

total function that maps failures to repairs. The contract definition is extended to include 

reliability and availability as follows E = (0, Q, T, V, $, F, R, Re, Av, FR). 

7.3 Verifying Reliability and Availability 

Specification of 
Failure and Repair 

Extend UPPAAL 
timed automata 
with Failure and 
Repair Specification 

Specify Reliability 
and Availability 
properties using 
UPPAAL CTL 

Figure 33: The process of modeling and verifying reliability and availability 

Figure 33 presents our qualitative approach to specify and verify reliability and avail­

ability properties. The process includes the following steps: 

1. The failure and repair specifications are formally defined. These information are 

part of the system requirements. Domain knowledge helps extrapolate these require­

ments. 

2. The UPPAAL extended timed automata for each component is extended to include 

not only the correct service behavior but also the failure and repair behavior. A ser­

vice failure is a transition from a state of processing the service request to the state 
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that represents the service failure. A service partial repair is a transition from a state 

of service failure to a state of partial repair. A service full repair is a transition from 

a state of service failure or partial repair to a state of correct service behavior. The 

destination of the transition depends on the actions specified in the repair specifica­

tion tuple. Clock variables are used to model availability time constraints. Local 

variables are used to hold the frequencies of failure occurrences. 

3. The requirements of reliability and availability are specified as UPPAAL CTL for­

mulas. 

4. UPPAAL model checker is used to formally verify that component's behavior satis­

fies the requirements of availability and reliability. 

The next section provides an example case study that illustrates this process. 

7.4 Steam Boiler Controller Case Study 

The steam boiler controller case study [ABL96] is a benchmark case study for modeling 

real-time systems. We adopt a simplified component-based version of the case study to 

explain reliability and availability modeling. 

7A1 System specification 

The steam boiler controller system consists of hardware and software components. Hard­

ware components are: (1) A steam boiler characterized by two safe limits of water: min­

imum {miri) and maximum (max). The minimum value indicates the lowest safe level of 

water under which the steam boiler will be in danger. The maximum value indicates the 

maximum safe level of water above which the steam boiler may be in danger. (2) A water 

pump to pour water inside the steam boiler in order to increase the level of water. (3) A 

valve to evacuate water from the steam boiler in order to reduce the level of water. (4) 

A water level measuring sensor which is continuously measuring the current quantity of 

water (q — water) inside the steam boiler. (5) A steam level measuring sensor which is 

continuously measuring the current quantity of steam (q — steam) coming out of the steam 

boiler. 
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Software components are: (1) A controller component responsible for maintaining a 

safe level of water inside the steam boiler. (2) A control monitoring component responsible 

for monitoring and managing the system in cases of failure. 

7.4.2 System operation 

When the system is initialized, the controller sends a stimulus Program-Ready to check 

if all hardware components are ready. If all hardware components are ready then the con­

troller will receive a response from each hardware component within 5 units of time. In this 

case the controller will set the value of the local attribute operational mode to Normal and 

be ready to receive stimulus from sensors. However, if one of the hardware components is 

not ready then the system will operate in failure modes as explained later. 

If the controller is in the normal operating mode then the water level measuring sensor 

reads the current quantity of water (q — water) inside the steam boiler, and the steam level 

measuring sensor reads the current quantity of steam q — steam. They send stimulus to 

the controller component informing it about the current quantities. To simplify the require­

ments, we assume that one stimulus Level will carry the readings of the two sensors. The 

stimulus is parameterized by q — water and q — steam. The controller component should 

react to the stimulus within 5 units of time. The reaction depends on the value of q — water. 

If the value is bigger than the maximum allowed i.e. q — water > max, the controller 

will send a stimulus to instruct the valve to open and evacuate water. However, if the value 

is less than the minimum allowed i.e. 0 < q — water < min, the controller will send a 

stimulus to instruct the pump to open and pour water inside the steam boiler. If the value 

is within the safe limit i.e. min < q — water < max, the controller does nothing and 

waits for the next stimulus. 

7.4.3 Failure and repair operations 

In this simplified version, we define the following failures: 

Fl : If the controller sends Program-Ready to the hardware components and does not 

receive Pump-Ready, Valve-Ready, Water-Ready, or Steam-Ready within 5 

units of time then this indicates that there is a failure in the pump, valve, water level 

measuring sensor, or steam measuring sensor. In this case there are three possible 
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repairs Rl, R2, and R3 which switch the operational mode according to the following 

conditions: 

Rl : if the responses Pump-Ready, Valve.Ready, or Steam -Ready are not re­

ceived within 5 units of time since Program-Ready is sent then an internal 

repair switches the controller to Emergency.Stop mode. This is a partial in­

ternal repair. 

R2 : if the responses Pump-Ready, Valve-Ready, and Steam-Ready are all re­

ceived within 5 units of time but Water-Ready is not received then an inter­

nal repair switches the controller to Rescue mode. In this mode, the value of 

q — steam is used to estimate the quantity of water inside the boiler. This is a 

partial internal repair. 

R3 : if the controller is in Emergency Stop then a full external repair fixes the 

defective hardware components and switches the mode to Initialize. 

F2 : The water level measuring should always send a positive non-zero value indicating 

the current quantity of water. If q — water < 0 then the sensor is malfunctioning 

and it indicates a failure. In this case, if all other hardware components are working 

properly then an internal partial repair switches the mode into Rescue. The full ex­

ternal repair R3 fixes the defective water level measuring and switches the controller 

back to Initalize. 

F3 : The steam level measuring should also send a positive value indicating the current 

quantity of steam. If q — steam < 0 then the steam measuring sensor is malfunc­

tioning and it indicates a failure. In this case an internal partial repair switches the 

controller to Emergency Stop mode. 

Local variables (attributes) are used to hold the current status of each hardware component. 

These are PumpOK, ValveOK, SteamOK, and WaterOK. Initially these attributes are set to 

zero to indicate that the ready response is not received yet from each hardware component. 

When a ready response is received, its corresponding attribute is set to 1 to indicate that 

it has responded. If 5 units of time passed and the value of an attribute is still 0 then this 

indicates that no response was received. 

The set of failures is F = {fu f2, /3 , /4, /5, h) where: 

/i = {Program-Ready, {Pump-Ready}, condition, 
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(t(Pump-Ready) — t(Pro gram-Ready) > 5 A PumpOK = 0), critical, transient, 

V* *-maxi " '•time))i 

J2 = (Program-Ready, {Valve-Ready}, condition, 

(t(Valve-Ready) — t{Pro gram-Ready) > 5 A ValveOK = 0), critical, transient, 

{" ^-rnaxi •** ±time))i 

fz = {Program-Ready, {Steam-Ready}, condition, 

(t(Steam-Ready) — t(Progr am-Ready) > 5 A SteamOK = 0), critical, transient, 

V-' ±maxi " *-time)i 

/4 = (Program-Ready, {Water-Ready}, condition, 

(t(Water-Ready) — t(Program-Ready) > 5 A SteamOK = 1), critical, transient, 

{* *-maxi " *-time))> 

f5 = (Level, 0, condition, (q — water < 0), critical, transient, (F2max,F2time)); 

fe = (Level, 0, condition, (q — steam < 0), critical, transient, (Flmax,Fltime)). 

For example, / i defines a failure that occurs due to the following scenario: the con­

troller issues Program-Ready and resets a clock to measure the time passed starting from 

Program-Ready until it receives the response Pump-Ready. If 5 units of time passed 

and the controller did not receive Pump-Ready, which means the value of the attribute 

PumpOK is still set to 0, then the controller will assume that the pump is not working 

and a failure is detected. The severity of this failure is critical and the acceptable frequency 

is indicated by the constant F\max during F\time units of time. The other failures can be 

explained in the same manner. 

The set of repairs is R = {rp\, rp2, rp3, rp4} where: 

rpi = (internal, 0, {mode := Emergency Stop}, Partial, 1); 

rp-i — (internal. 0, {mode := Rescue}, Partial, 1); 

rpz = (external. Fix-Level, {mode := Normal}, Full, 100); and 

rp\ = (external, FixJJnits, {mode := Initialize}, Full, 100). 

The first two repairs are internal partial repairs, no action assigned to them. They switch 

the operational mode of the controller to either Emergency Stop or Rescue within one 

unit of time. The third and fourth repairs are external events issued by the control moni­

toring component to indicate that the defective hardware components have been fixed. The 

component stays in a repair state until a full repair is received. The associations between 

the failures and repairs are: 

FR{fx) = FR(f2) = FR(f3) = FR(f6) = {rPl,rp4}; 
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FR(f4) = FR(f5) = {rp2,rp3}; 

c_avl<=lOO 

G: ValveOK=1 && 
S: Pump^Ready? PumpOK.1 S& 
U: PumpOK=1 

S: Valve_Ready? 
U: ValveOK=1 

S: Steam_ Ready' 
U: SteamOK=t 

S: Water_Ready' 
U: WaterOK=1 

G: c3 > 5 && 
(ValveOK=0 
PumpOK=0 
SteamOK=.0) && 
( c j i < F1Jime&& 
F1 (req< F1 max) 

U: F1 freq:=F1 j r e q + 1 
cji:=(F1Jreq=0)?0:cJ1 

Legend 

G: Guard 
S: Sync 
U: Update 

Reliability violation \ 
state 

| Failure state f F M Repair state ( J I 

Figure 34: The UETA of the steam-boiler controller component 

Figure 34 depicts the UPPAAL extended timed automata of the controller component. 

In this Figure, state 0 is the initial state. States 1,2,3, and 4 represent the correct behavior 

of the component. Since there are two equivalent types of associations between failures 

and repairs, we create two states Fl and F2 that represent the occurrence of failures and 

two states Rl and R2 that represent the occurrence of repairs corresponding to the failures. 

There are 4 transitions that indicate the occurrence of a failure: (1) from state 1 to Fl if 

j \ , /2, or /3 occurs, (2) from state 1 to F2 if f4 occurs, (3) from state 2 to F2 if /5 occurs, 

116 



and (4) from state 2 to Fl if /6 occurs. There are 4 transitions that indicate the occurrence 

of a repair: (1) from state Fl to Rl when rpi occurs, (2) from state F2 to R2 when rp2 

occurs, (3) from state Rl to 0 when rp4 occurs, and (4) from state R2 to 0 when rp3 occurs. 

There is one state V which represents the state of violating reliability requirement. There 

are two transitions to state V: (1) from R2 to V if the occurrence frequency of failure / 6 

exceeds the maximum allowed number within the maximum allowed time period, and (2) 

from state 2 to V if the occurrence frequencies of failures / 5 or /6 exceed the maximum 

allowed number. The transitions to failure states are guarded by conditions that check if the 

occurrence frequencies of failures exceed the maximum allowed numbers. For example, 

the transition from state 2 to state Fl has the following guard condition: q — steam < 

0 A (c/i < Fltirne A Flfreq < Flmax) this means that if the value of steam quantity is 

invalid and if the frequency of failure Fl (Flfreq) has not exceeded the maximum allowed 

number Flmax within Fltirne then Fl occurs; otherwise, if Fl exceeds those limits then 

the system moves to V states indicating a violation to the stated reliability requirement. 

The clock variable cj\ is used to keep track of the time since the first occurrence of Fl. 

Similar conditions are used for F2. Figure 34 includes two availability requirements: (1) 

the full repair rp4 should occur within 100 units of time from the occurrence of the failure. 

This is specified by the time constraint cavi < 100 which is associated with the repair 

state Rl indicating that the system should move from this state within 100 units of time. 

(2) the system should be restarted within 500 units of time after the violation of reliability 

requirements. This is specified by the time constraint caV2 < 500 which is associated with 

the V state. 

Reliability and availability properties can be stated as CTL formulas in UPPAAL as 

follows: 

• Reliability: " F l —> Fljreg < Flmax && c/i < Fl t i m e" , which means if failure 

Fl occurs then the frequency is less than the maximum allowed and the value of the 

clock variable associated with the failure is within the acceptable period of time. 

• Availability: " F l —» stateO && cav\ < 100", which means if failure Fl occurs then 

the system will recover and move back to the initial state within 100 units of time 

i.e. the services will be available within 100 units of time after the occurrence of the 

failure. 

Therefore, using the extended state machine depicted in Figure 34, along with the other 

state machines of the other components, and the stated reliability and availability properties, 
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it is possible to use the UPPAAL model checker to verify the availability and reliability of 

the steam boiler controller case study. This shows that it is possible to use model checking 

techniques to provide a qualitative approach to ensure reliability and availability. 

7.5 Summary 

This chapter provided an extension to our trustworthy component model. Formal defini­

tions of reliability and availability were provided based on the failure and repair models. A 

model checking technique is used to verify reliability and availability properties. 
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Chapter 8 

Process Model for Developing 

Trustworthy Systems 

This chapter introduces our proposed rigorous process model for developing trustworthy 

systems. The process is based on the formal component model which is introduced in 

Chapter 4, the TADL which is introduced in Chapter 5, the model transformation process 

which is introduced in Chapter 6, and the specification and verification of reliability and 

availability which is introduced in Chapter 7. The process integrates these formal methods 

in the phases of systems life-cycle. In particular, it incorporates incremental design using 

TADL, validation and formal verification using our model checking technique, iterative 

development, traceability analysis, and certification. 

The entire development process is divided into several tracks that can run in parallel. 

The tracks are domain engineering, component development, component assessment, com­

ponent reuse, and system development. Figures 35 and 40 depict the rigorous development 

process tracks. Figures 35 presents the domain engineering and component development, 

assessment, and reuse tracks. Figure 40 presents the system development track. The activ­

ities along these tracks are explained in the following sections. 

8.1 Domain Engineering 

We propose an ontology-based approach to domain engineering which consists of two 

phases: building ontology and deriving components and component-based systems speci­

fications from it. 
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Figure 35: Domain Engineering and Component Engineering (development, assessment, 
and reuse) 

The goal of domain engineering is to define, model, construct, and catalogue a set of ar­

tifacts that can be reused in all applications within a specific domain [Pre05]. Thus, domain 

analysis involves identification and analysis of the applications, their detailed requirements, 

and the relations and data that exist in a specific domain. For example, the domain of au­

tomotive industry deals with designing, manufacturing, and marketing motor vehicles. A 

car, for example, contains many control systems such as cruise control, cooling and heat­

ing, stability control, anti-lock braking, and fingerprint-based security systems. Domain 

analysis aims towards understanding each system, its interactions with other systems, the 

constituent components in the system, their functional and non-functional requirements, 

and the data and events stored and communicated between them. For example, the car 

control systems mentioned above share the usage of smart sensors which collect relevant 

data about the current status of the car and use it to perform control actions. The results of 

the domain analysis is a domain model which consists of knowledge about the domain and 
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all its applications and its reusable components. This knowledge can be stored in a knowl­

edge base. Domain analysis plays a key role in software reuse, which has been recognized 

earlier on in the literature [Nei84]. 

An Ontology is a "content theory about the sorts of concepts, their properties, con­

straints, and the relations between concepts that are possible in a specified domain of 

knowledge"[CJB99]. It provides terms for describing the knowledge about a domain cap­

turing the intrinsic conceptual structure of the domain[CJB99]. Building ontologies is a 

major approach for capturing and representing reusable knowledge. Many methodologies, 

tools, and languages are available for building and maintaining ontologies [CFLGP03]. In 

order to allow sharing and reusing ontologies, a common ontology language was developed 

and named ontology web language (OWL) [SWM04, GHM+08]. OWL allows represen­

tation of and reasoning about ontologies. Reasoning involves: (1) syntax checking, (2) 

consistency checking, ensuring that the ontology doesn't contain contradictory facts (3) 

subsumption, checking whether a class description is more general than another class de­

scription, and (4) query answering, retrieving knowledge from the knowledge base. 

Both ontologies and domain models are forms of models that result in detailed speci­

fications of reusable knowledge. The former produces detailed specifications of reusable 

concepts and their relations and the later, when applied to component-based development, 

produces detailed specification of reusable components and component-based architec­

tures. Achieving efficient component-based development depends on building an appro­

priate domain ontology. The ontology can be used as a basis for specification and devel­

opment of domain applications. The captured conceptualization and relations should be 

formally specified. OWL can be used to formally represent the results of domain analysis. 

Consequently, this enables mapping the OWL ontology formalization into TADL. Thus, 

our proposed ontology-based approach for domain engineering consists of the following 

steps: 

• Design an ontology for representing the knowledge captured during domain analysis. 

• Represent in a precise and unambiguous way the elements that model the existing 

domain entities. Tools such as Protege [Pro], which provides a graphical user inter­

face, can be used to capture the ontology of domain model and communicate it with 

domain experts. The tool uses OWL to describe the ontology. 
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• Analyze the resulting ontology and map its concepts and relations into TADL. Map­

ping occurs between OWL language constructs and their relevant TADL constructs. 

Details about this mapping are explained later in this section. 

• Visualize the TADL model using a graphical editing tool. 

The following example is used to illustrate our approach. We use the fingerprint-based car 

security system example, which was introduced earlier on, with slight modification. 

Example 5 Consider a fingerprint-based car security system mounted on the door of a car. 

The system consists of two entities: (I) a remote control which comprises a biometric sensor 

that collects user fingerprint and buttons that trigger the required actions such as starting 

the car and locking/unlocking the doors, and (II) a controller which is responsible for 

starting the car, locking, and unlocking the doors. The functional requirements includes: 

start the car, lock, and unlock doors. The security requirements state that only authorized 

drivers have access to these functions. The safety requirements state that the doors must 

be locked/unlocked within 1 unit of time. Reliability requirements states that if the remote 

control fails to lock/unlock then it must be possible to luck/unlock manually using the car 

key. 

The basic constructs that define an ontology are the concepts, properties, and instances 

of concepts {individuals). Properties are binary relations on individuals. The first step 

in designing an ontology is defining what these constructs represent. Figure 36 depicts 

our proposed abstract design of ontology for capturing domain analysis. In this Figure, 

rectangles represent concepts, arrows represent properties which model relations between 

concepts, and dash-arrows indicate that a concept is sub-class-of another concept. The do­

main consists of multiple applications where each of which consists of entities that perform 

functions and are restricted by non-functional requirements. An entity can be composed of 

multiple entities. This is indicated by the is-part-of relation. Also, an entity can be sub-

class-of another entity, which means that any instance of the sub-class is an instance of the 

super-class. Non-functional requirements include safety, security, reliability, availability, 

and other non-functional requirements. 

Figure 37 presents an ontology for Example 5. It is an instance of the abstract ontology 

model presented in Figure 36. In this example, the domain is car and it comprises multiple 

applications: anti-lock brake, stability control, cruise control, and fingerprint security. The 
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Figure 36: An ontology for domain analysis 

example focuses on the fingerprint security application and shows its entities. Two indi­

viduals instantiated from the entity concept are shown in the figure: remote control and 

controller. The controller contains individual requirements instantiated from the functional 

and non-functional requirement concepts. Relations between individuals are represented by 

properties. Two kinds of properties exist in the model: has-property and request-property. 

For example, the controller has five functional requirements: lock, unlock, start car, manual 

lock, and manual unlock. These functional requirements has some non-functional require­

ments. For example, the lock function has a security requirement (LockDoorSecurity) and 

a safety requirement (LockUnlockOnTime). The request-property relation relates an indi­

vidual of type entity or functional to and individual of type functional to indicate that the 

former is requesting the function provided by the later. When creating this ontology ex­

ample in the Protege tool, the OWL language specification are generated automatically. 

Figure 38 shows part of the OWL language generated for the example. It focuses on the 

controller entity and its functional and non-functional requirements and their relations. 

TADL specification can be generated by mapping OWL language constructs to TADL 

constructs as follows: 

Entities are mapped to components. The part-of relation between entities is mapped 

to composite components where a component consists of multiple constituent com­

ponents. Note that the sub-class-of relation is not supported in the current version of 

TADL. 
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Individual (Instance of a concept) 

A—->B Property: A has B (Relation) 

A B Property: A request B (Relation) 

A o — B Property: B is part of A (Composition) 

Figure 37: Car ontology example focusing on the fingerprint security system 

Data are mapped to attributes. An attribute is a data element that can be associated 

with any construct in TADL. 

Functional requirements are mapped to services. For every functional requirement, a 

service is created in TADL. Also, two events are created for each service: a request 

for service and a response of the service. The has-property and request-property 

relations help identify which component is providing the service and which compo­

nents are consuming it. A service is provided by the component which is related to 

the functional requirement by the has-property relation. An interface is created for 

each component. The request and response events are associated with this interface. 

The services provided and consumed by the component are provided and requested 

at this interface. A connector is created for every request-property relation to provide 

a means to communicate requested and provided services. If two components are 

related by multiple service requests then it is sufficient to create one connector for 

the communication between the two components. 
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// some classes 
<owl:Class rdf:about="#Functional"> 

<rdfs : subClassOf rdf:resource="#Requirements"/> 
<owl:disjointWith rdf:resource="#Non_Functional"/> 

</owl:Class> 
<owl:Class rdf:about="#Non_Functional"> 

<rdfs:subClassOf rdf:resource="#Requirements"/> 
</owl:Class> 
<owl:Class rdf:about="#Reliability"> 

<rdfs:subClassOf rdf:resource="#Non_Functional"/> 
</owl:Class> 
<owl:Class rdf:about="#Requirements"> 

<rdfs :subClassOf rdf:resource="&owl;Thing"/> 
</owl:Class> 
<owl:Class rdf:about="#Safety"> 

<rdfs:subClassOf rdf:resource="#Non_Functipnal"/> 
</owl:Class> 
<owl:Class rdf:about="#Security"> 

<rdfs:subClassOf rdf : resource="#Non_Functional"/> 
</owl:Class> 
//some Individuals 
/ / / / / / / / / / / / / / / / / . • " 

<Entity rdf:about="#Controller"> 
<hasRequirements rdf:resource="#Lock"/> 
<hasRequirements rdf:resource="#ManualLock"/> 
<hasRequirements rdf:resource="#ManualUnlock"/> 
<hasRequirements rdf:resource^"#StartCar"/> 
<hasRequirements rdf:resource="#Unlock"/> 

</Entity> 
<Functional rdf:about="#Lock"> 

<hasSecurityProperty rdf:resource="#LockDoorsSecurity"/> 
<hasSafetyProperty rdf:resource="#LockUnlockOnTime"/> 

</Functional> 
<Security rdf:about="#LockDoorsSecurity"/> 
<Safety rdf:about="#LockUnlockOnTime"/> 
<Functional rdf:about="#ManualLock"> 

<hasReliabilityProperty rdf:resource="#ManualLockUnlockReliability"/> 
</Functional> 
<Reliability rdf :about = "#ManualLockb*nlockReliability"/> 
<Funet ional rdf : about = "f)ManualUnlock"> 

<hasReliabilityProperty rdf:resource="#ManualLockUnlockReliability"/> 
</Functional> 
<Functional rdf:about="#StartCar"> 

<hasSecurityProperty rdf:resource="#StartCarSecurity"/> 
</Functional> 
<Security rdf:about="#StartCarSecurity"/> 
<Functional rdf:about="#Unlock"> 

<hasSafetyProperty rdf:resource="#LockUnlockOnTirae"/> 
<hasSecurityProperty rdf:resource="#UnlockDoorsSecurity"/> 

</Functional> 
<Security rdf:about="#UnlockDoorsSecurity"/> 

Figure 38: OWL specification of the controller concept 
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• Non-functional requirements are used to define the contract of each component. The 

contract contains services, safety, security, reliability, availability, and any other non­

functional requirements. A one to one mapping occurs between elements of these 

types of non-functional requirements. For example, a safety property is created in the 

component contract for every safety requirement in the ontology. A manual interven­

tion is required in this step of generating TADL. Domain experts should translate the 

non-functional requirements, such as safety, to their corresponding representation in 

TADL, such as first order predicate logic expressions. 

• Constraints are mapped into their corresponding synonym in TADL. A constraint is 

an invariant on services. Here also, a manual intervention is required to translate 

the constraints specified in the requirements to first order predicate logic suitable for 

TADL. 

Figure 39 presents the TADL specification of the fingerprint security example. The speci­

fication includes only the controller component. 

Therefore, domain engineering yields an ontology representing the knowledge base of 

the domain. The domain architecture can be deduced from the ontology. It includes the 

applications and their relations. Then, an architecture is created for each application. This 

architecture is specified by TADL specification which is generated from the ontology. The 

constituent domain components and their detail specifications are also defined in TADL. A 

component's definition includes details about functional, data, non-functional, and struc­

tural requirements. This knowledge and the resulting TADL specification will be used for 

both component and system development processes. The formal specification of TADL 

will enable formal analysis and reasoning about trustworthiness properties in the following 

steps. The ontology and TADL specification will be stored in a "repository" and reused by 

the next steps. 

Domain engineering is a challenging task. We have provided an ontology-based ap­

proach for domain engineering. The approach is directly related to TADL which has been 

introduced in Chapter 5. There are many challenges in domain engineering. Further re­

search is required in order to address the following questions: 

• how to transform the system requirements which are collected by system analysts 

into the ontology? 
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Service Lock{ 
•••} 

Service Unlock{ 
• • • } j 

Service StartCar{ 

• • • } • 

Service ManualLock{ 

. . .} 

Service ManualUnlock{ 

• • • } 

SecurityPolicy LockDoorSecurity{ 
•••} 

SecurityPolicy UnlockDoorSecurity{ 

...} 

SecurityPolicy StartCarSecurity{ 

•••} 

TimeConstraint LockUnlockOnTime{ 
RequestLock rl; 
Request Service(r\); 

LockDoor Id; 
-ResponscSeraceOd); 
float MaximumSafeTime = 1; 

} 

ContractType Contract{ 
Lock 1; 
Unlock ul; 
StartCar sc; 
ManualLock ml; 
ManualUnlock mul; 
LockDoorSecurity Ids; 
UnlockDoorSecurity uds; 
LockUnlockOnTime luot; 
StartCarSecurity scs; 
ManualReliabilityAvailability mra; 

} 

InterfaceType IController{ 
RequestLock rl; 
LockDoor Id; 
RequestUnlock ru; 
UnlockDoor ud; 
RequeststartCar rsc; 
StartTheCar stc; 
RequestManualUnlock rmu; 
DoManualUnlock dmu; 
RequestManualLock rml; 
DoManualLock dml; 

} 

ComponentType Controller{ 
User u; 
IController ic; 
Contract c; 

} 

Figure 39: TADL specification of the Controller component 
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• how to translate the requirements of trustworthiness from a human readable text into 

formal properties suitable for formal analysis? 

• how to minimize the human intervention or guide it in such a way that will avoid 

errors in the specification? 

8.2 Component Development 

This section describes the activities done during component development, which are de­

picted in Figure 35. Component requirements are defined for new components or reused for 

existing domain components. The requirements are defined using TADL which is based on 

our formal component model introduced in Chapter 4. Therefore, formal component defini­

tions are created using TADL or reused from the repository. The formal definitions specify 

component's structure, functional, and trustworthiness requirements in details using TADL 

syntax. Safety, timeliness, security, reliability, and availability properties should be de­

fined formally using some mathematical logic which is compatible with the adopted model 

checking tool. The syntax of TADL specification is validated to check its correctness with 

reference to the correctness rules specified in Chapter 4. An iterative process occurs here 

until the specification passes the validation successfully. Then, the specification is analyzed 

and the component behavior is generated automatically as an extended time-automata us­

ing our approach which is presented in Chapter 6. The output is an extended time automata 

which is compatible with the UPPAAL modeling language. The transformation rules has 

been discussed in Chapter 6. After that, verification is conducted using UPPAAL model 

checking techniques to verify the correctness of the design. An iterative process of verifi­

cation occurs until the design passes all functional, safety, security, reliability, availability, 

and timeliness requirements checks successfully. In case of errors or violation of any re­

quirement, the component is redesigned using TADL specifications and the process starts 

over. 

After finishing the iterative process of design and verification, the component is imple­

mented by the developers. A component technology is selected to determine the imple­

mentation details. Emphasis during implementation should be on component reuse. Soft­

ware engineering design concepts such as abstraction, hiding, functional independence, 

refinement, and structural programming can effectively help in developing reusable com­

ponents [Pre05]. 
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In this thesis we provided a formal approach to the analysis and design activities of the 

component development in Chapter 4, Chapter 5, Chapter 6, and Chapter 7. However, the 

correct design of components does not guarantee that its implementation is correct. There­

fore, further investigation is needed to analyze the challenges in component implementation 

such as: 

• what is the suitable programming language for developing trustworthy components? 

• how to ensure that the developers will implement all the trustworthiness require­

ments? 

• how to ensure that the implemented trustworthiness requirements are implemented 

correctly? 

• how to minimize the developed code? Is it possible to generate code automatically? 

• how to implement the component contract? 

• how to keep the components loosely coupled? 

8.3 Component Assessment 

This section describes the activities used for component assessment, which are depicted in 

Figure 35. The implemented component undergoes iterative cycles of code inspection and 

traceability analysis to ensure that the implementation satisfies the verified design. An au­

tomated black-box testing method is applied to ensure the correctness and predictability of 

components' behavior. Then, the new component is certified and stored in the component 

repository. Traceability, testing, and certification are discussed later in Sections 8.6 and 8.8. 

The component's requirements documentation, design, implementation, testing reports and 

verification results, traceability analysis and certificates are all stored as meta-data in the 

repository . This requires a powerful and automated classification technique that eases stor­

ing and retrieving components and their meta-data. Examples of automated approaches for 

searching and retrieving reusable components in large repositories and on the Internet exist 

in the literature [YEV08]. 
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8.4 Component Reuse 

This section describes the activities involved in component reuse, which are depicted in 

Figure 35. During system design, designers and integrators can reuse existing components. 

If there exists no component which satisfies the requirements, a new component should be 

developed. System designers start searching for candidate components that could satisfy 

the stated requirements, both functional and non-functional. The meta-data stored in the 

repository along with the automated classification and retrieval approaches will facilitate 

an efficient searching of the repository. If the search is successful in finding some compo­

nents, the selection task is carried out to qualify the candidate components and select the 

most appropriate one. Selection is based on domain knowledge and components meta-data 

retrieved from the repository. If the component requires some modifications to fit in the 

new deployment environment, the adaptation task is carried out to perform the required 

modifications. These modifications must be tested using the component assessment ac­

tivities. After finishing the testing, the adapted component is certified and stored in the 

component repository for future reuse. 

reuse components requirements, 
P o n n c i t r i r w I design, implementation, and assessment 
t i e p U S U O r y y , r o m t h e repository 

Analysis and Design 
- Elicitate system requirements: functional, 

structural, and trustworthiness. 
-- Eiicitate environmental requirements. 
- Eiicitate deployment requirements. 
••• Reuse existing domain knowledge from repository. 

- Selecting components using component reuse. 
- Formal definition of the system using TAOL. 
- Reuse application architecture from domain 
J exists. 

CFormal model of software unit | 
by composing components 
specification from the repository^ 

<5 

0 
Formal model of trustworthiness 

Formal model of environment 

C Formal model of deployment ) 

w y Integration and Testing ~\ 
Integration of components' 
implementations retrieved from the 
repository and writing glue code. 

Testing 

I 
Validation and Verification 

Validate formal definitions using TADL 
correction rules. 

X Verify safety, security, timeliness, 
predictability, and constraints of the 
composite system using Model Checking. 

Figure 40: Component-based system development 

Component Adaptation involves many challenges. System integrators need to evaluate 

the effectiveness of adapting an existing component versus implementing a new one. Fur­

ther research is required to investigate the following questions that are related to component 

adaptation: 
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• how to ensure that the trustworthiness properties will be preserved during the adap­

tation process? 

• how to create a sub type of an existing component type? 

8.5 System Development 

Figure 40 presents the system development process. It consists of four phases: analysis 

and design, validation and verification, integration and testing, and deployment. In system 

requirements definition, reuse of domain knowledge is to be encouraged whenever possi­

ble. We have outlined our approach for the reuse of domain knowledge in Section 8.1. 

Requirements should include functional, structural, and trustworthiness aspects of the sys­

tem. The requirements are stated in TADL. The requirements analysis leads to selecting 

components to build the component-based system. The reuse of components is discussed 

in Section 8.4. Once the components are selected, their formal specifications are retrieved 

to build the software unit formal specification. The formal specifications are based on our 

formal component model introduced in Chapter 4. Domain application architecture can be 

used, if exists, to build the system architecture and define relations between components. 

The trustworthiness properties of the system must be defined using a formal logic language. 

There is a need to translate the trustworthiness properties from TADL specification into a 

formal logic language. The language depends on the kind of model checking tool used, 

such as UPPAAL [BDL04]. A formal model of the environment is required to test the 

boundaries of the system. A formal deployment model is required to verify the correct­

ness of the deployment, relations between hardware and software components. The formal 

model of the environment is specified using TADL. 

An iterative process of validation is conducted to ensure that the system design is syn­

tactically and semantically correct with respect to TADL rules. Then, the formal models 

of software unit is formed by composing the extended time-automata for all the constituent 

components using UPPAAL according to our approach which is introduced in Chapter 6. 

Also, the trustworthiness properties are specified using UPPAAL's CTL language. Then, 

the formal verification process starts. The goal is to ensure that the composition of compo­

nents does not violate the stated trustworthiness properties, which are already satisfied at a 

component level. 

If the system design is proven correct, integration activities take place to integrate the 
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implementations of the selected components, which are retrieved from the repository, ac­

cording to the system architecture. Glue code is written whenever required. The implemen­

tation undergoes an iterative cycle of extensive system testing. Different kinds of testing 

can be applied such as unit, integration, and acceptance testing. Then, the software is 

deployed according to the formal deployment plan in a run-time environment that allows 

dynamic reconfiguration. While in operation, the run-time software is continuously mon­

itored and analyzed to ensure that its behavior respects the trustworthiness properties and 

conforms to the verified formal models. Run-time monitoring (see Section 8.9) is a pow­

erful mechanism to ensure availability and analyze reliability. During maintenance, com­

ponents can be substituted to fix bugs or install new upgraded versions that provide more 

services. In this case, the formal model of the new component must be composed with the 

software unit design and validation, verification, and integration testing activities should be 

applied to ensure that the new component does not compromise the trustworthiness of the 

system. 

The formal component model and TADL are the basis for the formal specification of 

component-based systems. We provided a compositional theorem which preserves the re­

quirements of trustworthiness when assembling components together. This theorem makes 

the model checking of large component-based systems tractable. There are many chal­

lenges in the component-based development for trustworthy systems that need further in­

vestigation such as: 

• what is the effect of the glue code between components on their trustworthiness re­

quirements? 

• what the the requirements of a trustworthy deployment environment in which trust­

worthy systems can be deployed? 

• how to perform run-time monitoring? what is the effect of runtime monitoring on the 

performance of the system? 

• how to guarantee that the maintenance will be applied whenever it is needed? 

• how to perform dynamic reconfiguration? what is the effect of the dynamic recon­

figuration on the properties of trustworthiness? 
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8.6 Traceability 

The goal of traceability is to analyze newly developed components and verify their confor­

mance to design specifications. Traceability verifies that the code satisfies the functional, 

structural, and trustworthiness specifications. Traceability analysis is not a trivial task. It 

requires scrutinizing the generated and developed component code. We propose the fol­

lowing techniques to perform this operation: 

Traceability of functional and structural specifications: During the automatic code 

generation or manual development of components, there is a need to maintain the relation 

between each functional and structural design element and its implementation construct. 

These relations can be kept in a transformation file in which the name and type of each 

design element is associated with the name and type of its actual implementation. For ex­

ample, the services that are defined at the interfaces of a component in TADL are associated 

with implementation methods, functions in C# or Java. Then, model transformation analy­

sis techniques, such as [CHM+02], can be used to verify the completeness and correctness 

of the code generation and development. At the same time, information can be added to 

component's meta-data to link the implementation to its source design time specification. 

For example, current programming languages like C # and Java support defining custom 

attributes. These attributes can add semantic information to implementation constructs 

such as methods and classes. Then, Reflection techniques are used to read attributes and 

analyze component's meta-data. Therefore, the traceability uses attributes and reflection to 

analyze the conformance of component's implementation to its design specifications. 

Traceability of real-time specification: Worst case execution time (WCET) of services 

can be specified as an attribute to a service at design time and as a custom attribute at 

implementation time. Then, during traceability analysis, the functions that implement real­

time services can be executed to check if their measured execution time is bound by their 

specified WCET attribute. 

Traceability of trustworthiness: The actual traceability of security, availability, relia­

bility, and safety behavior can be analyzed using run-time analysis techniques described in 

Section 8.9. 

Traceability analysis is a challenging task. Further research is needed to investigate the 

following directions: 

• how to implement a custom attribute for the different language constructs of TADL? 
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• how to build an efficient reflection mechanism to verify that the developers have 

implemented all the requirements? 

• how to verify that the implementation of each requirement is correct? 

• how to link a language construct to its implementation? Is it sufficient to use names 

to link a requirement to an implementation? 

• the execution time at a development or test environment may be different than the 

execution time at a real deployment environment. Therefore, how to validate the 

implementation of worst-case execution time? 

8.7 Certification 

After traceability analysis, there is a need to interact with a certification authority to obtain 

a certificate that indicates the trustworthiness of the component and the level of develop­

ment conformity to design and quality attributes stated in its specifications. Certification 

authorities do exist for electronic components [ECC]. However, for software components, 

the issues of certification exists only in research. Despite many publications about this 

topic in the literature [AdAdLM05], there is no general official certification authority that 

currently exists. A certification authority could exist only at a domain level. For example, 

in the domain of avionics, the Federal Aviation Administration (FAA) and the European 

Aviation Safety Agency (EASA) use the DO-178B guidance to give certificates to software 

components. Also, it is possible that the same company develops and reuses its compo­

nents; therefore, it can have a local certification body. 

The certificate can be issued based on analyzing the following information: (i) the 

information of the software development firm, (ii) component's design specification and 

implementation code, (iii) the results of the conducted design-time verification. It is pos­

sible to submit the state space generated by the local model checker for external reviewer 

to verify properties, in case the company does not want to submit the detail design, (iv) the 

results of the traceability analysis of components implementation relative to its design, (v) 

the test results from the automated black-box testing, and (vi) detailed information about 

the tools used to generate the analysis reports. Then, the certification authority can verify 

the claimed analysis reports ( may perform the verification and traceability checks again) 
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and issue the certificate. Certificates are stored with components along with their analysis 

reports in the component repository. 

Certification is still a challenging task. Further research is required to investigate the 

following questions: 

• what are the requirements of a trustworthy certification authority? 

• how to ensure that a certified component has not been modified after certification? 

• how to validate certificates? 

• what is the effect of component modification on certificates? what type of modifica­

tions invalidate a certificate? 

8.8 Automated Component Testing 

The formal specification approach is necessary for having an automated, contract-based 

testing. The component formal definition, introduced in Chapter 4, includes specifications 

of the services provided or requested by the component along with the data parameters 

communicated through them. It is possible to use the constraints that are defined for data 

parameters to specify the valid ranges of values. Service specification defines the relation 

between requests for services and their corresponding responses. It can be used also to 

define the relation between the valid input and output values. These formal information 

can be used to define automatic, black-box test scenarios for each component. A selection 

of input data both from the valid and invalid ranges can be used to test the responses of 

components. Then these responses are analyzed according to the service specification to 

determine whether or not the correct responses ware issued and whether or not the valid 

outputs were attached to it. 

The technique described above helps building automatic testing scenarios for the ob­

servable behavior of a component. However, there are more research problems that need to 

be investigated to develop an effective and automated component testing such as: 

• how to test the composition and communication between components? 

• how to ensure that the internal, non-observed, behavior of a component is correct? 
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8.9 Run-Time Monitoring 

In this activity, a tool performs run-time analysis during system execution. The tool ensures 

that system behavior conforms to the stated functional and trustworthiness properties. This 

is done by observing input, output, and system states during program execution. Execution 

sequences can be monitored, logged, and visualized to ease analyzing system behavior. 

These sequences are used to build usage profiles for components. These profiles can be 

used to monitor the availability and analyze the reliability of components and system. The 

execution profiles can be subjected to formal verification. Verification is done by ensuring 

that system executions do not reach a state that violates trustworthiness. It can produce a 

counter-example in case of system failure. 

Run-time monitoring is a challenging task. The following research problems require 

further investigation: 

• what are the requirements of a run-time environment for trustworthy systems? 

• how to ensure that the run-time environment is supplying all the essential needs of 

trustworthy components? 

• how to intercept the interplay communication between components to build execu­

tion profiles? 

® is it possible to monitor the internal behavior of a component? 

© how to perform efficient formal verification using the execution profiles? 

8.10 Accomplishments 

This chapter provided our perspective of a process model for the development of trustwor­

thy component-based systems. The process model consists of several phases that cover the 

different activities that are necessary for developing such systems. We have outlined the 

essential activities that are necessary for a rigorous component-based development process 

model. We provided a brief discussion about each activity. This thesis accomplished the 

following tasks: 

• Domain Engineering: we provided an ontology oriented approach for domain on­

tology in Section 8.1. The approach includes providing an ontology for trustworthy 
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systems, designing systems using this ontology, and transforming the design into 

TADL. We provided an example to illustrate our approach. 

• Component Development: we provided a formal component model in Chapter 4 and 

TADL in Chapter 5 which is based on the formal component model. TADL is used to 

specify trustworthy components. Specifically, it provides language descriptions for 

the functional, trustworthiness, and structural requirements. Validation rules have 

been defined in Chapter 4 to validate the syntactic correctness of component speci­

fication. We provided an automated model transformation technique for specifying 

the behavior of components automatically in Chapter 6. We provided a technique for 

the formal specification of reliability and availability in Chapter 7. We integrated two 

model checkers, UPPAAL and Times, for verifying the trustworthiness properties of 

the component. 

• Component-based system development: the formal component model, TADL, model 

transformation technique, and model checking contributions that we provided for the 

component development are applicable also for the component-based system devel­

opment. We provided a composition theorem which insures that the trustworthiness 

properties are preserved in the composition. Therefore, incremental model check­

ing can be used effectively to model check component-based systems using our ap­

proach. 

We provided a brief discussion and research directions about the other activities, which in­

clude component implementation, traceability analysis, automated black-box testing, com­

ponent reuse, and deployment. These activities need to be explored further. 
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Chapter 9 

Framework Architecture 

The framework is being built on the rigorous process model. Tools are provided to prac­

tise CBSE to develop trustworthy systems. The framework can be viewed in three layers: 

design, implementation, and deployment. Taken as a whole, the framework describes the 

tools necessary for the different activities outlined in the process model, which was intro­

duced in Chapter 8. Figure 41 depicts the framework architecture showing the tools in the 

three layers. This chapter gives a detailed description of the tools and highlights the merits 

of each tool. 

9.1 Design-Time Tools 

9.1.1 Visual modeling tool 

This tool is used in the component development activity described in Section 8.2 and 

the system analysis and design activity described in Section 8.5. This tool provides a 

user friendly interface to model components and systems and specify functional and non­

functional properties. It acts as an interface to perform design without being directly ex­

posed to the formal notation. The tool projects both textual and visual representations of 

the design. Also, it projects the model into 3 different views for different users: CBD, 

real-time, and trustworthiness view. The tool has been implemented using Java [Yun09]. 

Every architectural element has a defined visual representation. The user designs a sys­

tem by dragging and dropping visual elements into a design canvas. Relations, properties, 

attributes, and conditions can be associated with the design elements. The system specifi­

cation are saved in an XML file according to TADL syntax. Figure 42 shows a screen shot 
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Figure 41: Framework Architecture 

of the visual modeling tool. 

9.1.2 Compiler and model transformation 

This tool is used in the component development activity described in Section 8.2 and the 

system analysis and design activity described in Section 8.5. This tool checks the syntac­

tic correctness of the visual modeling design with respect to its abstract definitions. The 

compositional correctness of component design elements and the architectural mismatches 

such as incompatibility of the interface types defined in the connector types or those used 

in the architectures of composite components are checked. Error messages are given when 

inconsistent or incompatible definitions appear in the design. If the design is syntactically 
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Figure 42: Visual Modeling Tool 

correct, the compiler generates a formal descriptions of the visual model. The compiler 

generates different types of output by transforming the valid design according to formally 

defined transformation rules. The current version of the compiler generates three types of 

output: 

• a textual description in TADL syntax, 

• a behavioral model descriptions as UPPAAL extended timed automata, and 

• a real-time model using timed automata extended with tasks. 

Manual transformation of component specification at design time into other models is com­

plex and error-prone. Therefore, applying automatic model transformation techniques is 

very important to ensure a highly convincing level of trustworthiness. The transformation 

process is implemented using XSLT [XSL], a standard mechanism for transforming XML 

documents into other types of documents. The process uses the formal transformation rules, 
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defined in Chapter 6, to transform the system specification from the saved XML file into 

the required output format. The transformation rules are implemented using XSLT instruc­

tions and XPath, an expression language for finding information in an XML document. The 

implementation of this tool can be easily extended to accommodate more views. This is 

because the transformation is implemented using XSLT. This means that the transformation 

rules can be maintained, updated, and extended without affecting the transformation pro­

cess or requiring reimplementation. Figure 43 shows a snap shot of the compiler and model 

transformation tool [Ibr08]. The window is divided into two sections: system specification 

and model translation. The system specification part displays the TADL specification using 

XML tree or textual format. The model translation shows the generated UPPAAL or Times 

extended timed automata, which is resulted from the transformation process. 
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Figure 43: The compiler and model transformation tool 
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9.1.3 Transformation analysis 

This tool is used in the component development activity described in Section 8.2 and the 

system analysis and design activity described in Section 8.5. Automatic model transfor­

mation is increasingly being adopted as a technique to reduce the complexity and faults of 

transformation. However, the correctness and completeness of the transformation process 

must be subject to reasoning. Design and implementation flaws are still possible during the 

development of the automatic transformation tools. Therefore, it is necessary to subject the 

transformation process to inspection in order to make it trustworthy. The transformation 

analysis tool is crucial to verify the correctness, completeness, and compatibility of the 

views produced by the transformation process of the compiler. A view is complete with 

respect to the visual model if every feature in the view is a feature in the visual model. That 

is, there is no extraneous feature in a view. A view is correct with respect to a visual model 

if the view is complete and every feature in the visual model is mapped to only one feature 

in the view. Two views are compatible if and only if both views are correct with respect to 

the visual model. Depending on the type of output (ADL, behavior protocol, or real-time 

model) and defined formal transformation rules, the tool will analyze the transformation 

process and produce the result to the user. 

The transformation analysis is done by reversing the transformation process and vali­

dating the resulting output with the original XML file that specifies the system. This is done 

by defining an XSLT with reverse transformation rules, from extended timed automata to 

system specification in XML. The process takes a behavioral specification as input and 

produces a system specification as output. Then, the resulted XML file is validated against 

the original XML file. In this process, every component specification, including its ser­

vices, attributes, data constraints, time constraints, and security specification, should match 

a component specification in the original XML file. 

9.1.4 Simulation and model checking 

This tool is used in the component development activity described in Section 8.2 and the 

system analysis and design activity described in Section 8.5. 

The distinct advantage of the compiler tool is that it can generate the behavior model in 

different notations, thus allowing different model checkers to be integrated into the frame­

work to perform formal verification. There exists no general purpose model checker, in the 
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sense that no existing model checker has the ability to model check any stated property. 

Since trustworthiness attributes can be defined differently by developers for different ap­

plications, a developer must be given the facility to plug in the model checker that is most 

suitable for verifying the chosen trustworthiness properties. This is the rationale behind 

our design decision to translate the model into different formal notations. 

By design the translator in our tool is syntax-directed and hence extensional. The trans­

lator in our compiler will only require the grammar of the target language to produce an 

output in the target language. No change to the translator code is necessary. 

In the current implementation, the compiler supports only UPPAAL [BDL04] format. 

Therefore, we use UPPAAL tool for simulation and model checking. 

9.1.5 Real-time analysis 

This tool is used in the component development activity described in Section 8.2 and the 

system analysis and design activity described in Section 8.5. 

This tool supports real-time scheduling and real-time analysis relative to criticality, pri­

ority, and other real-time non-functional properties. We are currently using Times [AFM+03] 

to perform real-time analysis. 

9.1.6 Architectural analysis 

This tool is used in the component development activity described in Section 8.2 and the 

system analysis and design activity described in Section 8.5. 

This tool analyzes the correctness of the architectural style and system configuration 

specification relative to architectural constraints defined in the system design. 

9.2 Implementation Tools 

9.2.1 Component repository 

This is a storage place to store and reuse developed trustworthy components. The repository 

provides storage facilities for: (i) component specification (structure and contract), (ii) 

development source code, (iii) compiled, execution ready assembly of the component, and 

(iv) usage profiles and certificates. The repository allows storing and retrieving different 

versions of the same component. 
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9.2.2 Code generation 

This tool is used in the component development activity described in Section 8.2 and the 

system analysis and design activity described in Section 8.5. 

This tool produces source code. It supports different programming languages such as 

C++, C#, and java. It analyzes the system design specification. Then, for every component 

or connector, if the component exists in the component repository then it should reuse 

it; otherwise, it should produce source code or skeleton for new components. The tool 

will also develop code for new components by refining existing implementations. The 

tool provides facilities to use language specific compilers such as C# or java to perform 

syntactic and semantic analysis of components code. Contracts will be handled as cross-

cutting concerns implemented as aspects. 

9.2.3 Traceability analysis 

This tool performs the traceability activity, which is described in 8.6. It takes a component's 

specification and its corresponding implementation as input. Then, it queries the meta­

data of the component implementation using reflection techniques to retrieve the custom 

attributes. After that, it compares the implementation constructs of the component with its 

specification. For example, it checks if all the defined services has been implemented or 

not. 

93 Run-time Tools 

93.1 Run-time environment 

This tool supports running systems and dynamically reconfiguring executions. The tool is 

a middleware between the component repository and the run-time environment that com­

municates with the operating system (e.g., J2EE or .NET run-time environment). It com­

municates with the component repository to load component assemblies. The tool allows a 

controlled reconfiguration to the running system (e.g., adding a new component or replac­

ing an existing one). 

144 



9.3.2 Run-time analysis 

This tool performs the run-time analysis activity, which is desribed in 8.9. This tool moni­

tors that interplay communications between components and logs it for further analysis. It 

is possible to extend the implementation of connectors by adding logging mechanism. This 

enables logging all the interactions between components. Then, the logs of all connectors 

of a component can be composed together to analyze the overall behavior of the compo­

nent. These logs build operational profiles that can be used to perform run-time analysis of 

the trustworthiness properties. 

9.4 Summary 

This chapter introduced a framework which is designed to implement the rigorous process 

model. Currently, the design time tools has been implemented and tested on several case 

studies in the domains of component-based development and safety critical systems. The 

other tools are under different stages of design and development. Figure 44 shows the 

currently implemented tools. The visual modeling tools, which is implemented by Zhou 

Yun [Yun09], is used to design and specify trustworthy component-based systems. Then, 

the tools exports the TADL specification as an XML file. This file is input into the compiler 

tool, which is implemented by Naseem Ibrahim [Ibr08]. Then, the compiler produces two 

output XML files one with UPPAAL representation language and the other with Times 

representation language. After that, the two files are input into the model checkers to 

perform verification. 

f Times | | UPPAAL 
I Model Checker I I Model Checker 

Figure 44: The implemented and adopted tools 
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These implemented tools have the following limitations: 

• The visual modeling tool is used to design component-based systems. However, the 

whole component-based system specification is saved into one XML file. Therefore, 

it is not possible to reuse an existing component specification for another system. 

There is a need to improve the tool to allow reuse of system elements. 

• The output of the compiler tool is limited to UPPAAL and Times representation 

languages. There is a need to extend the tool to support other compiler representation 

languages. 

• There is a need to embed the compiler functionality inside the visual modeling tool. 

This will facilitate the design and avoid the use of an intermediate XML file between 

the two tools. 
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Chapter 10 

Conclusion 

In this thesis we have evaluated the state of the art of CBSE approaches. The analysis 

shows that the CBSE has not fully realized its objectives and still has a long way to go 

to fulfilling its promises. Hence, it is unlikely that current practices of CBSE can lead to 

developing trustworthy systems. Therefore, we have introduced a formal approach that 

aims to remedy the shortcomings of CBSE by proposing a trustworthy component model, 

a rigorous development process model, and a framework that implements the development 

process. 

Component modeling techniques with whom we have compared our work, do not pro­

vide all the tools necessary for rigorous analysis at different stages of system life-cycle. The 

reason is that these component models are designed and implemented for different specific 

domains. For examples, SaveCCM, Pin, and PECOS are real-time component models. 

Hence they provide tools for real-time analysis and verification of safety and liveness. On 

the other hand, SOFA is a distributed component-based model focusing on distributed sys­

tems' architecture and communication aspects. 

A virtue of the presented software engineering approach is that it can be a unified 

platform for developing component models, regardless of their application domain. The 

proposed component model provides both real-time elements and essential architectural 

features for hierarchical, as well as distributed systems. Also, it supports the specification 

and verification of trustworthiness properties. 

It is reasonable not to claim that systems developed under this proposed framework will 

be absolutely trustworthy, but it is justifiable to claim that such systems can be provable to 

meet the trustworthiness criteria, provided that the tools in the framework are correct. 

147 



As of now, the visual modeling, the compiler, the automatic translator to ADL notation, 

and translating the model to UPPAAL language for model checking have been completed. 

We tested the translation to UPPAAL model checker on the steam boiler controller case 

study [ABL96] and the common component modeling example [RRMP08] and verified 

timeliness, safety and security properties. Times tool has been used to perform real-time 

analysis. We are optimistic in realizing the rest of the tools. 

10.1 Summary 

In this section we discuss and evaluate the results achieved in this thesis with respect to the 

goals stated in Chapter 3. 

1. Defining "A Formal Component Model for Trustworthy Systems": there are 4 re­

search problems stated for this goal. The research problems and the solution provided 

by this thesis are stated bellow: 

• The lack of support for trustworthiness requirements in component models: the 

solutions provided for this problem and their limitations are listed bellow: 

- Solution 1: in Chapter 4 we provided a formal component model which 

supports the specification of safety and security requirements. 

- Solution 2: in Chapter 7 we provided a formal specification for reliability 

and availability. 

- Solution 3: the trustworthiness properties are define in the component con­

tract. 

- Solution 4: in Chapter 5 we provided an architecture description language 

for describing trustworthy component-based systems. 

- Solution 5: in Chapter 6 we provided an automated approach to specify the 

behavior of trustworthy components using extended timed automata. 

- Limitation 1: the security properties are limited to role-based access secu­

rity. Further research is required to explore other security mechanisms and 

distributed authentication. 

• The strong coupling of components: the solution for this problem is provided 

in in Chapter 4. The dependence between components is defined in the com­

ponent contract. Therefore, component specification does not need to include 
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information about the components it communicates with. 

• The need for a composition theory: 

- Solution: in Chapter 4 we provided a composition theory for trustworthy 

components. 

- Limitation: the composition theory includes only safety and security re­

quirements. Further research is needed to investigate the composition of 

reliability and availability. 

• The need for an approach for specifying and verifying reliability and availabil­

ity at architecture level: in Chapter 7 we provided a novel approach for the 

specification and verification of reliability and availability at architectural level. 

2. Defining "A Process Model for Developing Trustworthy Component-Based Systems": 

the solution provided for this goal and the limitations are stated bellow: 

• Solution: in Chapter 8 we provided process models for component engineering 

and component-based development of trustworthy systems. 

• Limitation: brief discussion was provided for the activities of component imple­

mentation, traceability analysis, automated black-box testing, component reuse, 

and deployment. Further research is required to explore these activities. 

3. Developing "A Framework with Comprehensive Tool Support": the solution pro­

vided for this goal and the limitations are stated bellow: 

• Solution: in Chapter 9 we introduced a framework with comprehensive set of 

tools for supporting the activities in the process model. 

• Limitation: We implemented only the design time tools. Further research is 

required to design and implement the rest of tools. 

10.2 Assessment 

The formal approach presented in this thesis is a contribution to CBSE. A model is a corner 

stone in any engineering practice. A formal model helps in understanding and reasoning 

about a problem very well. Our formal approach includes tools to support the engineering 

activities. In this section, we evaluate our formal approach with respect to the following 

149 



criteria: completeness, comprehensibility, modifiability, testability, reusability, scalability, 

and usability. 

Completeness: Are the elements of the formal component model sufficient to model trust­

worthy systems? The following factors support our argument that the elements of the formal 

model are sufficient to express various trustworthy component-based systems: 

• Component Model: When we analyze the various component definitions in the liter­

ature, we find that the essential defining elements of a component model are: compo­

nent, interface, connector, attribute, architecture, and behavior specification. These 

elements might have different names or syntactic definitions but there is a common 

consensus about their semantics. The formal component model that is introduced in 

this thesis includes all these elements. 

• Trustworthiness: When we analyze the definition of trustworthiness in the literature, 

we find that safety, security, reliability, and availability are the essential properties 

of trustworthiness. The contract of our component model inclusively defines these 

properties. 

• Case Studies: We have tested our component model on two benchmark case studies: 

(1) steam boiler controller case study [ABL96], which is a benchmark case study in 

the domain of safety critical systems, and (2) Common Component Modeling Exam­

ple [RRMP08], which is a benchmark case study for testing the modeling ability of 

component models. The results are provided in [Ibr08, AM07b]. It shows that our 

component model is capable of modeling such case studies. The early definition of 

our trustworthy component model appeared in [AM07a]. 

Comprehensibility: Are the formal descriptions easy to understand? Mathematical no­

tations are not easy to understand for a non expert. This motivated us to create an architec­

ture description language (TADL). TADL uses high level language to describe component-

based systems. Therefore, it is easy to understand by non experts in our formalism. TADL 

appeared in [MA08]. The behavior specifications are generated in timed automata, which 

is widely used in the literature to describe the behavior of different types of systems, spe­

cially safety-critical ones. Trustworthiness properties are modeled using guard conditions 

and state invariants which makes it easy to the reader to understand their rule in governing 

system transitions. 
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Modifiability: How easy it is to modify the specification? Every element in our formal 

model is described separately. For example, a contract is specified separately from a com­

ponent definition. This enables modifying the contract without affecting the definition of a 

component. Also, the definition of an architecture type is specified separately form a com­

ponent. This enables customizing the structural definition of components without affecting 

their definition. 

Testability: Is it possible to validate whether or not a specification is right? We have 

provided rules of well-formedness for the elements of the formal model. A visual modeling 

tool [Yun09] is used to design systems according to our component model. This tool checks 

the rules of well-formedness and report any error to the user. 

Reusability: Does the formal model support reuse? Since every element in our com­

ponent model is described separately, it is possible to reuse these definitions for different 

systems. We are currently designing a repository tool to host the component-based system 

specifications so that the elements can be reused. 

Scalability: Does the formalism scale up to handle large problems? The scalability issue 

can be analyzed in the following two contexts: 

® Specification: The formal specifications of component-based systems is scalable to 

large systems. It is possible to define hierarchical components and analyze it at differ­

ent levels of granularity. Architectures can be used to specify the design of complex 

systems and encapsulate the details in one composite component specification. 

• Verification: Our design time verification is based on model checking. Scalability 

of model checking is still an open challenge. The problem of state-space explosion 

limits the scalability of the verification process. Techniques such as symbolic model 

checking have been applied successfully to improve the scalability of model check­

ing. In our model, incremental composition can be used to effectively address the 

state-space explosion problem. 

Usability: Is it easy to use the formal approach? Our formal model can be used easily by 

software architects to specify and verify component-based systems. The user uses a visual 

modeling tool to design the system and configure its elements. Then, the visual modeling 
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tool will generate the corresponding TADL. After that, a model transformation tool will 

take the generated TADL as input and produce two types extended timed automata. The 

syntax of one extended time automata conforms to the syntax of UPPAAL model checker 

and the syntax of the other conforms to the syntax of the Times tool. Then, the design is 

verified against any trustworthiness properties. Thus, the whole process is supported by 

tools and the user needs to know only how to user the graphical user interface of the visual 

modeling tool and the property specification language of UPPAAL. 

10.3 Case Studies 

In this section we briefly describe the work done to apply our design methodology on two 

benchmark case studies in the fields of component-based development and safety-critical 

systems. The two case studies are: the common component modeling example [RRMP08] 

and steam boiler controller [ABL96]. The goals of applying our methodology on these two 

case studies are: 

• test the expressiveness power of TADL, 

• test the automatic model transformation process, which transforms TADL specifica­

tion into extended timed automata, 

• test the formal verification of the properties of trustworthiness using one unified 

model and one model checking tool, and 

• test the visual modeling and compiler tools. 

10.3.1 The common component modeling example 

A common component modeling example (CoCoME) has been introduced by the com­

ponent development community [RRMP08] to be used by different component models to 

evaluate and compare the practical application of existing component models using a com­

mon component-based system as a modeling example. The details of specification and 

verification of the case study was introduced in [Ibr08] and [Yun09]. In this section, we 

provide a brief description and show the results. 

The CoCoME defines the Trading System, which is concerned with all aspects of 

handling sales at a supermarket, including the interaction with the customer at the cash 
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Figure 45: Store System Components 

desk (product scanning and payment) and recording of the sale for inventory purposes. It 

also deals with ordering goods from wholesalers and generating various kinds of reports. 

Figure 45 shows the architecture of the trading system. It consists of the following compo­

nents: 

• Cash Box: this component is responsible of performing the selling operation by the 

cashier. 

• Bar Code Scanner: this component is responsible for scanning the items to be sold 

and reading their bar code. 

• Card Reader: this component is responsible for managing the process of card pay­

ment. It reads the card information and sends it to the bank to approve the payment. 

• Bank: this component represents the financial institution that is responsible for per­

forming and approving the card payment. 
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• Printer, this component is responsible for printing the sale receipt. 

• Stock Manager, this component represents the stock manager which is responsible 

for receiving arriving orders and checking them then rolling them into the inventory. 

• Light Display: this component represents the display light above the cash box which 

is used to indicate if this cash box is in express mode. 

• Inventory: this component represents that store server (inventory). 

First, we used the visual modeling tool to model the system. Figure 46 shows the ar­

chitecture of the cash desk in the visual modeling tool. After that, the visual modeling 

tool automatically generated TADL specification for the case study. Figures 47 and 47 

show parts of the generated TADL. The full TADL specification and verification is pro­

vided in [Ibr08] and [Yun09]. After that, the TADL was input into the compiler tool which 

generated the timed automata for all the components in the system using UPPAAL specifi­

cation language. For example, Figure 49 shows the extended timed automata of the Cashier 

component. After that, we performed model checking to verify safety and security require­

ments. 

The limitation of our methodology is that it does not handle the concurrency require­

ments which are part of the requirements of this case study. 

Therefore, applying our methodology to the common component modeling example 

shows that the language constructs of TADL were sufficient to specify the requirements of 

the common component modeling example. Also, we were able to transform the require­

ments successfully to UPPAAL extended timed automata and perform verification of safety 

and security properties. 

10.3.2 The steam boiler controller case study 

In Chapter 7 we used the steam boiler controller case study to illustrate the expressive 

power of our formalism and design methodology in specifying and verifying reliability 

and availability requirements. We included the extended timed automata of the controller 

component which is the main component in this case study. 
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TimeConstraint ProcessCashPay{ 
Cash cash; 
RequestEvent (cash); i 
ReturnChange returnChange; 
ResponseEvent(returnChange); 
float MaxSafeTime=120; 

) 
DataConstraint CashBoxDataConsli 

ChecklfExpress checklfExpress; 
RequestEvent(checklfExpress); 
CheckLastHour checkLastHour; 
ResponseEvent(checkLastHour); 
Constraint Mode==done; 

( 
Service CashReturn) 

Cash cash; 
RequestEvent(cash) ; 
ReturnChange returnChange; 
ResponseEvent(returnChange) ; 
TimeConstraint ProcessCashPay; 
Security Policy ; 
Update ( 
) 
Action ( 
) 

) 
Service ExpressHourf 

ChecklfExpress checklfExpress; 
RequestEvent(checklfExpress); 
CheckLastHour checkLastHour; 
ResponseEvent(checkLastHour); 
DataConstraint CashBoxDataConsl; 
Security Policy ; 
Update ( 

Statement Mode:=waiting; 
Security Policy null; 

) 
Action ) 
) 

} 
ContractType CashBox_Contract( 

Service CashReturn; 
Service ExpressHour; 

) 
InterfaceType Cashier_cashBox( 

Passltem passltem; 
Cash cash; 
Card card; 
SaleFinished saleFinished; 
DisableExpress disableExpress; 
Pay pay; 
IsMoreltem isMoreltem; 

) 
InterfaceType CashBox_internal{ 

ChecklfExpress checklfExpress; 
ReturnChange returnChange; 
AddTotal addTotal; 
Ignore ignore; 
ChangeModeToNormal changeModeToNormal; 

) 
) 

Figure 47: Part of the TADL specification of CocoMe 
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Component Type CashBox) 
Contract CashBox_Contract; 
CashBox_scanner cashBox_scanner; 
CashBox_displayLight cashBox_displayLight; 
CashBox_printer cashBox_printer; 
CashBox_cashier cashBox_cashier; 
CashBox_cardReader cashBox_cardReader; 
CashBox_inventory cashBox_inventory; 
CashBox_internal cashBox_internal; 

} 
ArchitectureType CashDesk) 

DisplayLight displayLight; 
CashBox cashBox; 
Scanner scanner; 
Bank bank; 
CardReader cardReader; 
Cashier cashier; 
Printer printer; 
Cash-CashierCNN'Cash-Cashier; 
Card-CashCNN Card-Cash; 
Card-BankCNN Card-Bank; 
Display-CashCNN Display-Cash; 
Cash-ScannerCNN Cash-Scanner; 
Cash-PrinterCNN Cash-Printer; 
Attachment (Cash-Cashier.Connector2 9Role30.cashier_cashBox,Cashier.cashier_cashBox); 
Attachment(Cash-Cashier.Connector2 9Role31.cashBox_cashier,CashBox.cashBox_cashier); 
Attachment(Card-Cash.Connector32Role33.cashBox_cardReader,CashBox.cashBox_cardReader); 
Attachment(Card-Cash.Connector32Role34.cardReader_cashbox,CardReader.cardReader_cashbox), 
Attachment(Card-Bank.Connector3 5Role3 6.cardReader_bank,CardReader.cardReader_bank); 
Attachment(Card-Bank.Connector35Role37.bank_CardReader,Bank.bank_CardReader) ; 
Attachment(Display-Cash.Connector2 3Role2 4.displayLight_cashBox, 
DisplayLight.displayLight_cashBox); 
Attachment(Display-Cash.Connector23Role25.cashBox^displayLight, 
CashBox.cashBox_displayLight); 
Attachment(Cash-Scanner.Connector20Role21.cashBox_scanner,CashBox.cashBox_scanner); 
Attachment(Cash-Scanner.Connector20Role22.scanner_cashBox,Scanner.scanner_cashBox); 
Attachment(Cash-Printer.Connector26Role27.printer_cashBox,Printer.printer_cashBox); 
Attachment(Cash-Printer.Connector2 6Role28.cashBox_printer,CashBox.cashBox_printer); 

} 

Figure 48: Part of the TADL specification of CocoMe 
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Figure 49: Extended timed automata of the Cashier component 
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