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ABSTRACT 

Light-induced Conformational Changes in the Photosynthetic Reaction 

Center from Rhodobacter sphaeroides 

Sasmit S. Deshmukh 

The photosynthetic reaction center (RC) from purple photosynthetic bacteria is a 

membrane-bound protein-pigment complex that serves as an excellent model for studying 

biological energy conversion. This energy conversion takes place by electron transfer 

reactions, which occur within the protein and are often coupled to conformational 

changes: In order to study these conformational changes, recovery of the oxidized 

bacteriochlorophyll dimer, from the RC of the purple photosynthetic bacterium 

Rhodobacter sphaeroides, to its original state was measured by light-minus-dark optical 

difference spectroscopy. Laser flash excitation generated an electron transfer that takes 

place across the membrane; creating the primary charge-separated state with a lifetime of 

100 ms. Prolonged illumination induced subsequent conformational rearrangements in 

the RC protein complex which result in lifetimes of the same charge-separated state that 

are significantly different from that measured after flash excitation. The structural details 

of the conformational rearrangements on the molecular level will be discussed. The 

conformational changes were sensitive to duration and wavelength of illumination, pH, 

temperature, hydrophobic environment (liposome or detergent), head-group charge of the 

detergent, and presence of a bound metal ion. By systematically varying these 

parameters, we were able to extend the lifetime of the charge-separated state up to 21 

mins. Based on these results, our goal is to utilize the bacterial RC protein complex as a 

biocapacitor, since the positive and negative charges are separated by a hydrophobic core 

of the protein with a low dielectric constant. This biocapacitor can be discharged rapidly 

by inducing pH jump. 
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C h a p t e r ! 

Introduction 

1.1 Basic principles of photosynthesis 

Photosynthesis is the primary solar energy conversion and every aspect of life 

currently on the Earth is dependent on it. Oxygen producing photosynthesis made, 

and makes, life possible for aerobic organisms. Essentially all of our food is 

related to photosynthesis and all of our current fossil fuels are the products of 

photosynthetic activities that occurred many millions of years ago. The first step 

of the conversion of light energy into chemical energy, is accomplished in 

pigment-protein complexes, termed reaction centers in green plants, algae, 

cyanobacteria and purple nonsulfur bacteria. In green plants and cyanobacteria 

water is used as the electron donor and carbon dioxide is the carbon source in the 

conversion of light energy into chemical energy, while sugars are synthesized and 

oxygen as a byproduct is released (Figure 1.1). In algae, cyanobacteria and 

chloroplasts of green plants, Photosystem II (PS II) reaction center is responsible 

for splitting the water into molecular oxygen, electrons and protons. Oxygen is 

released to the atmosphere while the electrons and protons are used to reduce 

plastoquinones. These protons also create a proton gradient across the membrane 

to drive ATP synthesis, which in turn can catalytically empower many 

biochemical reactions ultimately leading to the synthesis of glucose [1]. 
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carbon^ ^ ^ V i oxygen 
dioxide 

— — Photosynthesis 
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Light energy—* Chemical energy 

Figure 1.1 Photosynthesis. The process of oxygenic photosynthesis, where carbon 

dioxide and water are converted into oxygen and glucose using the energy of light. 

Photosystem II contains three extrinsic proteins that are required exclusively for 

splitting water. They include a cluster of four manganese ions and two specific 

tyrosine residues. The manganese cluster acts as a "four electron gate" that 

releases four oxidizing equivalents in the form of an oxygen molecule as a result 

of a cyclic four step electron transfer process to the primary electron donor 

(P680), which is mediated by the secondary electron donor, a tyrosine residue [1]. 

The sequence of electron transfer can be given as: 

H2O —• Manganese cluster —• Tyrosine —• Primary donor (P680) —• 

Bpheo —• QA ** QB 

Bpheo: Pheophytin molecule (The primary electron acceptor) 

QA and QB: Plastoquinones 
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In the case of bacterial reaction center (BRC), cytochrome c acts as an external 

electron donor, which re-reduces the primary electron donor. Bacterial 

photosynthesis does not produce oxygen therefore it is termed anoxygenic 

photosynthesis. The structural and functional similarities between the 

evolutionarily related but way more complex PS II and the simpler BRC make the 

latter an excellent model for studying biological energy conversion. 

1.2 Structure of photosynthetic BRC from Rb. sphaeroides 

The three dimensional structure of the BRC from Rb. sphaeroides has been 

determined by X-ray diffraction at a resolution of 2.8 A, which is helpful in 

elucidating the structure-function relationship [2, 3]. 

The RC from photosynthetic bacteria is an integral membrane protein-pigment 

complex, with around -800 amino acid residues, which contains nine cofactors 

that mediate the primary photochemistry. The RC from the Rb. sphaeroides has 

three protein subunits L- (light), M- (medium) and H- (heavy) as determined from 

early gel electrophoresis, with molecular masses -21 , -24, and -28 kDa 

respectively. The actual molecular weights were later determined to be incorrect 

since the mostly polar H-subunit was migrating in the gel slower and that is why 

it was labeled as heaviest. Actually, it is the lightest one but the names remained. 

The L- and M- subunits each contain five membrane spanning helices and several 

helices that do not span the membrane (Figure 1.2A). The H- subunit has one 

membrane spanning helix and a globular domain on the cytoplasmic side, which 
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contains one helix that does not span the membrane and several P-sheets. The L-

and M- subunits are related to each other by a 2-fold rotational symmetry axis, 

which is approximately the same as determined for the cofactors. Cofactors are 

associated with the L- and M-subunits across a two fold symmetry axis, which 

includes one bacteriochlorophyll dimer (P) composed of two 

bacteriochlorophylls, two bacteriochlorophyll monomers (BChlA and BChle), two 

bacteriopheophytine (BpheoA and Bpheoe), two ubiquinones (QA: Primary 

quinone and QB: Secondary quinone), and a non-heme iron (Figure 1.2B). The 

two fold symmetry axis passes through (BChl)2 and non-heme iron [2, 3]. 

Figure 1.2 Structure of the bacterial reaction center (BRC) from the carotenoidless 

strain of Rhodobacter sphaeroides A. The arrangement of protein subunits: L, M, and 

. The molecules colored RED are the cofactors bound to the protein by noncovalent 

interactions. B. Details of the 9 cofactors of the BRC, which are aligned across the 2-fold 

symmetric axis passing vertically through the plane of paper from (BChl)2 to non-heme 

iron (Fe). Cofactors are tightly bound and solvent inaccessible. The periplasmic side of 

the membrane is near the top and cytoplasmic side is near the bottom of the structure [2, 

3]. Figures were prepared by Pymol software from PDB file 4RCR [4]. 
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1.3 Electron transfer process in BRC 

Light induced electron transfer takes place from the primary donor (P) to the 

secondary quinone (QB) via a series of intermediate acceptors including 

bacteriochlorophyll monomer (BChU), bacteriopheophytine (BpheoA) and 

primary quinone (QA) (Figure 1.3A). Oxidized dimer (P+) can be re-reduced by 

the exogenous electron donor cytochrome C2 (cyt C2) then after a second excitation 

a transfer of a second electron takes place and the secondary quinone can be 

reduced twice. It accepts two protons in this process from the cytoplasmic side to 

become quinol (QBH2). The primary quinone (QA ) serves as an electron donor to 

QB. Despite the apparent two fold symmetry, QA and QB have different properties: 

QA is tightly bound and functions as a one-electron acceptor in the primary 

photochemistry while QB is more weakly bound and functions as a two-electron, 

two-proton acceptor that dissociates after reduction [5] and shuttles protons and 

electrons across the membrane. The first proton transfer to QB is coupled with the 

second electron transfer from QA" to QB". The pathway of proton transfer to QB 

deduced from mutagenesis experiments [6-12] indicates that the first proton, 

H+(l), is bound by the carbonyl oxygen of QB , which is distal to the iron atom 

and the secdnd proton, H+(2), is bound by the carbonyl oxygen proximal to the 

iron atom [13]. 
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cyt c2' 

Figure 1.3 Light-induced electron transfer process in photosynthetic bacterial 

reaction centers. A. The pathway of the light induced forward electron transfer indicated 

by the green arrows and the red arrows represent the charge recombination. B. The 

energy levels of various redox states formed during the electron transfer process. As in 

panel A, the green arrows show the forward electron transfer while the red arrows show 

the charge recombination processes. P+I" represents intermediate charge separated states 

involving the dimer and the pheophytine. Indicated times represent the lifetimes of the 

redox states in the forward electron transfer and in the charge recombination. 

Free energy levels suggest that forward electron transfer is favorable to the charge 

recombination from intermediate state because it is orders of magnitude faster 

(Figure 1.3B). The electron transfer is highly unidirectional proceeding via the A-

branch because there are three natural lipids found in the RC (Figure 1.4) namely 

glycolipid, phospholipid and cardiolipin [14]. The lipid composition in natural 

cell membrane environment depends on growth condition of the bacterium, for 

example oxygen level [14]. Interaction of these lipids with the cofactors alters the 

energy levels of the charge separated state (Figure 1.4) compelling highly 
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unidirectional electron transfers. The electron transfer from QA to QB takes place 

due to the different amino acid surroundings of QA and QB respectively. This 

electron transfer is attributed by a conformational gating step, which causes the 

movement of QB from distal to proximal position [15]. 

Figure 1.4 Position of the integrated lipids with nearby cofactors and their influence 

on the energetics of the unidirectional electron transfer. A Glycolipid (yellow 

molecule) molecule binds near BChlA. The phospholipid phosphatidylcholine binds near 

the BpheoB. The cardiolipin (cyan molecule) binds near M- subunit but does not interact 

directly with cofactors. Due to interactions of these lipids the energy levels of the 

cofactors are altered. As a result, the electron transfer proceeds along the "A- branch" of 

the cofeactors only. 

1.4 Generation of the proton electrochemical gradient in the membrane of 

Rb. sphaeroides 

In the natural membrane environment the transmembrane electron transfer takes 

place upon light excitation. After accepting two electrons and two protons, the 
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secondary quinone (QB) becomes a quinol (QBH2). Then this quinol will be 

replaced by a new quinone molecule from the quinone pool and the quinol 

becomes oxidized by cytochrome bci complex. In this process protons are 

released to periplasmic side, which can create a proton electrochemical gradient to 

drive the ATP synthase [16]. Electrons can be transferred from cyt bcj complex to 

RC through the mobile electron carrier cyt C2 (Figure 1.5). 

To study the BRC in detail, it needs to be isolated from the natural membrane 

environment because studies of BRCs in membrane fragments (chromatophores) 

using optical techniques are hampered by the presence of light harvesting (LH) 

complex pigments and therefore are most often performed on isolated, detergent 

solubilized BRC complexes [17]. 

Periplasmic Side 

Figure 1.5 The photosynthetic electron transfer cycle in the membrane of the 

photosynthetic bacterium Rb. sphaeroides. Light induces transfer of an electron from 

the primary donor, (BChl)2 of RC through a series of electron acceptors to reduce a 

reversibly bound QB. Reduced quinone is released by the RC and gets re-oxidized by 

cytochrome bci complex [18] pumping protons across the membrane. The mobile 

electron carrier cyt Cj accepts an electron from cytochrome bci complex and migrates to 

the RC to transfer an electron to re-reduce the primary donor. 
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1.5 Hydrophobic environment of the reaction center protein 

Bacterial reaction center is an integral membrane protein and thus it has to be in a 

amphyphilic environment in order to function. Therefore after extracting BRC's 

from the natural membrane environment, it has to be incorporated in detergent 

micelles that are substitutes for the membrane. The BRC has a large hydrophobic 

region and as a result is not soluble in water. Solubilization and incorporation of 

isolated BRC is achieved in detergent micelles, which encompasses its 

hydrophobic region (Figure 1.6). The detergent forms a belt like structure 

surrounding the hydrophobic part of the BRC and has a hydrophobic thickness of 

-23 A that is about 5 A thinner than the hydrophobic transmembrane helices as 

both determined by neutron diffraction experiments [19]. 

For solubilization, the detergent concentration always has to be higher than the 

critical micelle concentration (c.m.c). The c.m.c is defined as the concentration 

above which micelles are spontaneously formed in the bulk solution. When 

detergent is dissolved in water, it concentrates at the surface, where by orienting 

so that their hydrophobic groups are directed away from the solvent, the free 

energy of the solution is minimized. 

Above the c.m.c, this can be achieved by forming micelles, where the detergent 

hydrophobic tails are directed towards the interior of the cluster and the 

hydrophilic groups are directed towards the solvent [20]. These detergent micelles 
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then cover the hydrophobic region of the protein and help to disperse it in aqueous 

environment. 

C* r*> 

U 1) 

Q 

membrane proteins 
in natural membrane 
environment 

Liposome 

Figure 1.6 BRC in the natural membrane environment, in detergent micelles, and in 

liposomes. BRC's in natural membrane environment (pink) can be isolated and 

incorporated into detergent micelles (blue). These detergent micelles form a belt like 

structure around the hydrophobic environment of the BRC. To mimic, and to some extent 

restore, the hydrophobic environment of the membrane, the BRCs can be incorporated 

into liposomes by removing detergent micelles. Figure was modified from reference 19. 

In this project, lauryldimethylamine-oxide (zwitterioninc at pH 7 and above [21] 

with pKa~ 6.6 [22]) and Triton X-100 (non-ionic) detergents have been used to 

disperse the BRC protein having c.m.c. of 0.023% and 0.033% in the solution 

respectively. 
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lauryldimethylamine-oxide (LDAO) (zwitterionic detergent) 

H3C> 

H3C" 
CH3 

f ^ l Aj 
] CH3 

CH3 

y.O-[CH2-CH2-0],^ 

if 
J 

Triton X-100 (non-ionic detergent) 

Changes in temperature, detergent concentration, and structural groups in the 

detergent may all cause change in the size, shape, and aggregation number of the 

micelle. 

Ionic detergents show aggregation numbers, the number of molecules present in a 

micelle, of less than 100 in aqueous solutions of low ionic strength and these vary 

only slightly with the detergent concentration. This is indicative of spherical 

micelle formation. At high ionic strength (20 mM and above), however, the 

aggregation number increases sharply with detergent concentration, with 

formation of cylindrical micelles. This means a decrease in the ionic strength of 

the solution and a resulting increase in the value of surface area of head group due 

to charge-charge interaction, producing smaller aggregation number. Aggregation 

numbers of LDAO and Triton X-100 detergents are 70 and 140 respectively in 

solutions without salt [20]. 
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An increase in the temperature appears to cause a small decrease in the 

aggregation number in aqueous medium, presumably because the area of the 

head-groups is increased due to thermal agitation [20]. 

The structure of the detergent affects the value of the c.m.c. in aqueous media. 

The c.m.c. decreases as the number of carbon atoms in the hydrophobic group 

increases. For non-ionic and zwitterionic detergents, the decrease in c.m.c. with 

increase in the hydrophobic group is somewhat larger; an increase by two methyl 

units reduces the c.m.c. by about one order of magnitude. A phenyl group that is 

part of a hydrophobic group with a terminal hydrophilic group is equivalent to 

about three and one-half methyl groups. When the number of carbon atoms in a 

straight-chain hydrophobic group exceeds 18, the c.m.c may remain substantially 

unchanged with further increase in the chain length. This may be due to the 

coiling of these long chains in water [20]. 

1.6 Interaction between the membrane proteins and the surrounding 

environment (hydrophobic mismatch) 

After isolation and purification, BRC's can be incorporated into different 

detergent micelles or different liposomes (Figure 1.7). Liposomes are closed 

assemblies formed by bilayers of lipid molecules. In BRC detergent micelles the 

hydrophobic alkyl chains are pointing towards the hydrophobic part of the BRC 

and hydrophilic head groups points at the external surface of the detergent belt 

(Figure 1.7C). If we have more than one RC in the system then the detergent belt 
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of one RC may interact with the detergent belt of other RC (Figure 1.7A). 

Depending on the hydrophobic environment BRCs have different features as far 

as electron transfer is concerned. For example, charge recombination from QB in 

detergent micelles takes place in ~1 s while it takes ~10 s in case of liposomes 

upon flash excitation [23, 24]. 

Hydrophobic interactions play a major role in stabilizing membrane proteins. 

BRC incorporated in liposomes, lipid bilayers, or detergent micelles are 

surrounded by the hydrophobic tails of the lipids or detergent molecules covering 

the hydrophobic part of the BRC (-24-28 A) (Figure 1.7). Hydrophobic mismatch 

could occur if the hydrophobic length of the BRC is shorter or longer as compared 

to the hydrophobic tail length of the surrounding environment. This disorder can 

be minimized by two ways: 

1. Compensation from the lipid or detergent, and 

2. Compensation from the protein. 

1.6.1 Compensation from the lipid or detergent 

If the hydrophobic tail length of the lipid is shorter or longer than the hydrophobic 

length of the protein then the lipid has to extend, or compress, in order to 

minimize the hydrophobic mismatch (Figure 1.8). Compensation from the 

detergent micelles in proteins dispersed in detergents are also expected but the 

flexibility in that matter of the detergent molecules is generally less than the 
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lipids. If the hydrophobic length of the lipid matches with the hydrophobic length 

of the protein then that is the most favorable situation. 

53 Jkc^ M 
1 5B$« l'_Q*. 

Detergent micelle Lipid bilayer 

Figure 1.7 Protein-detergent interactions in BRC from Rb. sphaeroides A. 

Alignment of interacting detergent rings (blue) and BRC molecules, which are 

surrounded by these rings (pink) B. Detergent forms belt like structure (blue) around 

BRC (yellow) where thickness of the detergent belt is 5 A smaller than the thickness of 

hydrophobic part of the BRC (23 A) [19]. C. BRC incorporated in detergent micelles. D. 

BRC incorporated in lipid bilayer. 
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During hydrophobic mismatch lipid has to undergo a large perturbation near the 

BRC protein in order to minimize the hydrophobic mismatch. This perturbation 

extends over a few lipid molecules around the BRC protein and recovers back to 

its normal thickness following an exponential function [25]. These local 

perturbations in acyl chain causes an overall upward or downward shift (AT) in 

the phase transition temperature of the lipid. Lipids have gel and liquid crystalline 

(lamellar) phases. In the gel phase the acyl chains are stretched and rigid while in 

the liquid crystalline phase the acyl chains are fluidic and randomly oriented. The 

temperature at which the lipid undergoes physical change from liquid crystalline 

phase to the gel phase is called the transition temperature [26]. 

Lipid bilayer Protein Lipid bilayer 
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Figure 1.8 Compensation for hydrophobic mismatch from lipid. A. Hydrophobic 

length of the protein matches exactly with the hydrophobic chain length of the lipid. B. 

Hydrophobic length of the protein is larger than that of the acyl chain length of the lipid, 

and compensation occurs by extending the acyl chain length. C. Hydrophobic length of 

the protein is smaller than that of the acyl chain length of the lipid, then compensation 

occurs by compressing the acyl chain length [27]. 
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1.6.2. Compensation from the protein 

The proteins also undergo conformational changes to compensate for the 

hydrophobic mismatch. The protein has to tilt in such a way that the hydrophobic 

a-helices interact with the hydrophobic tails of the lipid bilayer (Figure 1.9), 

which causes tilted a-helices. In the X-ray structure of the BRC from Rb. 

sphaeroides, it was found that the a-helices were slightly tilted due to structural 

constraints indicating that compensation to minimize hydrophobic mismatch with 

detergent micelle environment [28, 29]. The average tilt angle is 22° for 

transmembrane helices determined from crystal structures reported for membrane 

proteins [29]. There is a certain critical angle beyond the a-helices cannot tilt 

further to avoid hydrophobic mismatch and the protein aggregates. Due to 

limitation for tilt, hydrophobic mismatch cannot be avoided completely by tilting. 

Aggregation causes loss in the function of the protein. On the other hand it can be 

utilized for protein purification, namely selective precipitation of proteins from a 

mixture. 
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Bilayer adjusts. 
Protein adjusts facilitated by non-bilayer 

lipids 

Figure 1.9 Compensation for hydrophobic mismatch from protein. If the 

hydrophobic length of the protein does not match the hydrophobic chain length of the 

lipid then the protein can tilt its a-helices to compensate for the hydrophobic mismatch 

but only up to a certain extent so, protein adjustment cannot compensate solely for 

hydrophobic mismatch. In natural membranes this mismatch can also be minimized by 

the other lipid molecules (shown in red) disrupting the lipid bilayer. Figure adapted from 

[30]. 

In the case of BRC's, hydrophobic mismatch causes some conformational 

changes in the protein even if the compensation occurs in the lipid. These 

conformational changes cause altered rates for the forward electron transfer 

and/or charge recombination. The charge recombination from primary (P+QA" —• 

PQA) and secondary quinones ( P + Q B — • PQB) take place in 100 ms and 1 s in the 

presence of detergent micelles, respectively [23]. The electron transfer is 

accompanied by proton uptake and conformational changes. After light excitation, 

the electron travels to the primary quinone (QA) and then a further electron 
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transfer to the secondary quinone (QB) depends on the occupancy of the quinone 

binding site. 

The secondary quinone has two different binding sites: proximal and distal as 

shown in Figure 1.10 [15]. In the distal position, the head group of the quinone is 

outside of the binding pocket having one hydrogen bond with the protein whereas 

in the proximal position head group is in the binding pocket with four hydrogen 

bonds. Reduced quinone ( Q B ) is always found in the proximal position, 

consistent with the stabilization of negative charge by the four hydrogen bonds. 

The electron transfer from primary to secondary quinone is found to be a 

conformational gating step, where the secondary quinone moves from the distal to 

the proximal position, which involves a movement of 5 A and a rotation of the 

benzene ring along the isoprenoid tail [15]. Similarly, on the periplasmic side, two 

distinct conformations of the primary electron donor were found depending on the 

type of detergent micelles in which the BRC's were incorporated [31]. 
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Figure 1.10 View onto the two quinone binding sites of QA and QB demonstrating 

the approximate symmetry between QA and proximal QB position. The central non-

heme iron is coordinated by four His residues (LI90, L230, M219, and M266) and a Glu 

residue (M234). Possible hydrogen bonds are indicated by broken green lines, with their 

length given in A [32]. 

Upon continuous, non-saturating illumination, the BRC undergoes conformational 

rearrangements, which produces altered light adapted conformations with longer 

lifetimes. The hydrophobic environment (detergent micelles or liposomes) have 

different effects on these conformational rearrangements, altering the lifetime of 

the charge separated states. The effect of these hydrophobic environments can be 

studied along with other parameters like pH, temperature, bound metal ion, effect 

of detergent concentration, type of detergent, occupancy of quinone binding site 

etc. on the conformational rearrangements. 
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1.7 Optical spectrum of if b. sphaeroides 

The BRC from Rb. sphaeroides can be characterized by optical difference 

spectroscopy. The absorption spectrum of BRC (Figure 1.11 A [33]) shows that in 

the QY region bacteriochlorophyll dimer absorbs around 865 nra, 

bacteriochlorophyll monomer absorbs around 800 nm, bacteriopheophytine 

absorbs around 760 nm and in the Qx region bacteriochlorophyll absorbs around 

600 nm and bacteriopheophytine absorbs around 540 nm. The strong band below 

400 nm indicates a Soret band which is characteristic of the porphyrin macrocycle 

and the aromatic amino acids show absorption around 260 nm [33]. 

The Qx and QY are two transition wavelengths, where the Qx transition has a 

dipole moment in the direction from ring 4 to ring 2 while the QY has a dipole 

moment in the direction from ring 3 to ring 1 (Figure 1.1 IB). Depending on the 

extent of derealization, absorption can be observed in different spectral regions. 

The conjugation level in the direction of the QY transition is more than in Qx 

transition therefore the absorption is shifted to longer wavelength. The (BChl)2 

has even more conjugation due to the two halves of BChl electronically coupling 

together, which results in an absorption band of the dimer at 865 nm in the wild 

type protein. 
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Bacteriochlorophyll 

Figure 1.11 Absorption spectrum of the BRC and bacteriochlorophyll molecule. A. 

Optical spectrum of BRC where the (BChl)2, BChl and Bpheo absorb around 865, 800 

and 760 nm in QY transition region respectively while bacteriochlorophylls and Bpheo 

absorb around 600 and 540 nm in Qx transition region respectively and B. The 

bacteriochlorophyll molecule, which is a tetrapyrrole system coordinated with central 

magnesium. R is a phytyl chain. Ring 1 has acetyl and ring 5 has keto carbonyl group. 

Dipole moments of Qx and Qy transition are from ring 4 to 2 and from ring 3 to 1 

respectively. Figure was adapted from reference 33. 

The near infrared spectrum is very informative because the bacteriochlorophyll 

dimer has a strong absorption band at ~865 nm in the dark adapted state of the 

BRC (Figure 1.12A). During illumination electron transfer takes place from the 

bacteriochlorophyll dimer and is oxidized resulting in bleaching of the dimer band 

in the light adapted state i.e. BRC which is illuminated (Figure 1.12A). 
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Figure 1.12 NIR light-minus-dark difference spectrum of BRC. A. NIR dark adapted 

spectrum of BRC is shown in gray. Upon illumination, transmembrane electron transfer 

takes place from the bacteriochlorophyll dimer to the quinone resulting in the bleaching 

of the (Bchl)2 dimer band (red arrow), a hypsochromic shift in the Bchl monomer band 

(blue arrow) and a bathochromic shift in the Bpheo band (dark green arrow). The 

spectrum recorded under illumination is shown in black. B. Light-minus-dark difference 

spectrum (red trace) can be fit to the sum of Gaussians for (Bchl)2, Bchls and Bpheos to 

determine the shifts in the band positions from dark adapted to light adapted states. Black 

trace is the total fit to the measured spectrum. The values of the fit are listed in the text. 

The hypsochromic shift in the bacteriochlorophyll monomer band and a 

bathochromic shift in bacteriopheophytin absorption band in the light adapted 

state are observed due to electrochromic effects. After taking the difference of 

these two spectra, small changes in the spectrum can be highlighted (red trace in 

Figure 1.12B) [23]. Decomposition of the light-minus-dark difference spectrum 

(Figure 1.12B) reveals the presence of oxidized bacteriochlorophyll dimer (P+) 

and the electrochromic shifts in the bacteriochlorophyll monomer and 

bacteriopheophytine bands. These spectral changes are indicators of the presence 

of the charge separated state (P+Q~)-
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The light-minus-dark optical spectrum can be decomposed in terms of shifts in the 

absorption bands of the individual chromophores of the BRC. The ground state 

spectrum has bands centered at 760, 800, and 865 nm, due to absorption of the 

bacteriopheophytins, bacteriochlorophyll monomers, and P, respectively (Figure 

1.12A) [33]. The widths of the absorption bands were determined by Gaussian fits 

of the individual bands of the optical spectrum, yielding band widths at half-

maxima (BWHM) of 28 nm centered at 865 nm for the P band, 8 nm each 

centered at 790 and 810 nm for both bacteriochlorophyll monomers contribution 

to the 800 nm band, and 14 nm centered at 760 nm for both of the 

bacteriopheophytins. The shift in the bacteriopheophytin band is much smaller 

and mainly due to the formation of QA", that band was not decomposed into the 

two individual contributions for simplicity. 

1.8 Kinetic analysis of BRC 

Absorption changes at the bacteriochlorophyll dimer band position (865 nm) were 

monitored for kinetic analysis [47, 57]. Before illumination there was no change 

in the kinetic trace but after turning on the external illumination source, a sudden 

change in the kinetic trace was observed due to the instant charge separation (PQA 

•j-»- P+QA") (Figure 1.13). After prolonged illumination this charge separated 

state slowly undergoes into different conformational changes, which can be seen 

as a slow increase of the signal in the spectral response (note that the absorption 

changes are negative since the oxidized form of the dimer absorbs the light less 
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than the reduced form). Once the external illumination is turned off then the 

charge separated state from the dark adapted state recombines rapidly showing a 

sudden change in the kinetic trace. The fraction of the charge separated state, 

which was present in the altered conformation, recovered on a long time scale 

(Figure 1.13). 

< 

time (mim) 

Figure 1.13 Identification of different conformational states formed after the 

illumination by the kinetic analysis: Multiple components can be distinguished in the 

kinetic traces. RED component represents sudden change in the absorption upon 

illumination due to the formation of charge separated state in the dark adapted 

conformation. Prolonged illumination causes light induced conformational changes 

resulting in the charge separated state with longer lifetimes. This is shown as the BLUE 

part of the kinetic trace. The GREEN unresolved part represents the charge 

recombination from the dark adapted conformation (-100 ms or 1 s from primary or 

secondary quinone respectively) after turning the illumination OFF, while the PINK part 

corresponds to the recovery of that fraction of P+ in reaction centers that are recovering 

from the light adapted state. 
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1.9 Research perspective 

Life began very early in Earth's history, perhaps 3.5 billion years ago in the form 

of photosynthetic organism like photosynthetic bacteria and algae [1]. Then 

oxygen producing photosynthetic bacteria made aerobic life possible on Earth. 

Nature has created life on Earth in the form of photosynthetic bacteria, which has 

been present over billions of years, and represents the most efficient biological 

energy converting system. 

The goal of this research project is to identify the conformational changes that 

take place in the BRC from Rhodobacter sphaeroides upon prolonged 

illumination. The existence of such conformational rearrangements has been 

known for more than two decades but the explanations from various different 

studies are by far not unambiguous and still under debate at the molecular level. 

Since the lifetimes of the redox states are altered significantly by the 

conformational rearrangements we also set the goal to control and extend the 

lifetime of the first stable charge separated state in an attempt to demonstrate that 

the BRC can function as a biocapacitor. 

The transmembrane electron transfer creates negative and positive charges 

separated by a low dielectric medium, the hydrophobic core of the BRC, making 

it a potential model for a capacitor, provided that the charging and discharging of 

the capacitor are controlled properly. 

First, we will present a study of the conformational changes after systematically 

altering the local electrostatics and the hydrogen bonding pattern between the 
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protein and the bacteriochlorophyll dimer, in order to find the cause of the 

structural changes at the molecular level. Then we demonstrate how to control 

those conformational rearrangements by systematically changing various 

parameters like pH, illumination time, temperature, head-group charge of 

detergent and environment, detergent concentration, presence of a bound metal 

ion, illumination source etc. With these systematic changes the lifetimes of the 

charge separated states were increased by 6 orders of magnitude. Part of the 

research effort presented here is aimed not only for controlling the storage of the 

electrical potential (increasing the lifetimes) of the proposed biocapacitor but also 

finding ways to rapidly discharge it. 
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Chapter 2 

Materials and methods 

2.1 Growing Rb. sphaeroides bacterium 

Growth of BRC involves preparation of media, sterilization of media, inoculation 

and growing bacteria in the presence of light. Growth media was prepared by 

using 4 g of casamino acid, 4 ml of growth factor, 80 ml of concentrated base, 40 

ml of potassium succinate, 80 ml of phosphate buffer (1M), and 25 ml of 

ammonium sulfate. Finally the volume was adjusted to 4 L. 

The growth factor was prepared by combining 2 mg of biotin, 50 mg of sodium 

bicarbonate, 100 mg of nicotinic acid, 50 mg of thiamine-hydrochloride, and 100 

mg of p-amino benzoic acid. The solution was boiled to dissolve all the 

ingredients and the final volume was adjusted to 100 ml. Once it is dissolved the 

solution was autoclaved by putting into three smaller vessels. 

Concentrated base was prepared by using 12 g of potassium hydroxide and 20 g 

of nitrilotriacetic acid. The solution was stirred for 20 minutes and only the 

supernatant was used. Then 58 g of magnesium sulfate heptahydrate, 6.8 g of 

calcium chloride dehydrate, 200 mg of ferrous sulfate heptahydrate, and 4 ml of 

ammonium molibdenate solution in the portion of 1 ml were added slowly. All 

contents were dissolved before adding the next. Finally the 'metals 44' solution 

was added, pH adjusted to 6.7 and volume brought to 2 L. 
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'Metals 44' contains 200 mg of EDTA, 1.1 g of zinc sulfate heptahydrate, 500 mg 

of ferrous iron sulfate heptahydrate, 150 mg of manganous sulfate monohydrate, 

40 mg of cupric sulfate pentahydrate, 20 mg cobalt chloride, 12 mg of boric acid, 

and 150 ul of 6 N sulfuric acid. The volume was adjusted to 100 ml. The color 

was greenish at the beginning but becomes amber later. 

The 20% potassium succinate was prepared by pouring 200 g of succinic acid in a 

beaker with 250 ml water and stirring, it did not dissolve completely. In another 

beaker 200 g of potassium hydroxide was dissolved and cooled. Using an ice 

bath, the potassium hydroxide was added slowly to the beaker containing 

succinate. The final volume was adjusted to 1 L and pH was brought to 7 by 

adding HC1. 

The 1 M phosphate buffer was prepared by 274 g of dibasic potassium phosphate 

trihydrate in 1200 ml of distilled water and dissolving 136 g of monobasic 

potassium phosphate in 800 ml of distilled water then slowly combining the 

solutions. Final volume was made to 2 L at a pH of 7. 

The 10% ammonium sulfate was prepared by dissolving 50 g of ammonium 

sulfate to 500 ml with pH of 7. 

All solutions were prepared in distilled water and final solutions were stored at 

4°C. 

The growth media was sterilized in an autoclave (type SV-120) scientific 

prevacuum sterilizer for 1 hour and cooled to room temperature. Inoculation with 

bacteria was done near the Bunsen burner to avoid any external contamination. 

The inoculated media was put in the dark for a maximum of 6 hours in order to 
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consume the oxygen. Rb. sphaeroides was grown under anaerobic conditions in 

the presence of light (60 W power) for two days. Once the cells were completely 

grown, they were centrifuged using a Beckman J2-HS centrifuge at 4° C at 7,000 

g's for 20 minutes with a JA-10 rotor. The supernatant was discarded and all cells 

were collected and stored at -20° C. 

2.2 Purification of BRC 

The BRCs were prepared by treatment with the detergent LDAO as described 

earlier [34-36]. Briefly, 100 g of collected cells were allowed to stir in 200 ml of 

distilled water and 2 ml of 1 M Tris buffer for 1 hour. At the end of stirring a 

homogenized solution was obtained. Then 2 ml of EDTA, 1.25 g of sodium 

chloride salt for ionic strength and 1.7 ml of lauryldimethylamine-oxide (LDAO) 

detergent was added. The cells were lysed with 40 minutes of sonication in 10 s 

intervals in a ice bath using a Mandel Scientific company's ultrasound processor 

to avoid excessive temperature. The final volume of the solution was adjusted to 

210 ml, which was filled in 8 tubes and centrifuged at 200,000 g's at 4° C for 2 

hours in Beckman Optima XL-100K ultracentrifuge with Ti-70 rotor. After the 

first centrifugation, pellets were resuspended in 205.34 ml of TEN buffer. TEN 

buffer contains 15 mM Tris-HCl, 1 mM EDTA, and 0.1 M NaCl. Then 4.66 ml of 

LDAO was added in the dark and allowed to stir for 10 minutes at room 

temperature. Centrifugation of this solution was done with same parameters as the 

above mentioned ultracentrifuge procedure to solubilize BRCs in detergent 
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micelles. Crude BRC micelles were collected from the supernatant discarding the 

pellets containing cell membranes. For 220 ml of supernatant 72 g of ammonium 

sulfate and 7.3 ml of 30% LDAO were used for the isolation of crude BRCs. The 

mixture was allowed to stir for 15 minutes at room temperature. These crude 

BRCs were centrifuged at 10,000 g's at 4° C for 15 minutes in Beckman J2-HS 

centrifuge machine with a rotor type of JA-17 and resuspended in TEN buffer. 

Resuspended BRC micelles were dialysed overnight dialysis, to remove 

ammonium sulfate, in TL0-1E which contains 15 mM Tris-HCl, 1 mM EDTA, and 

0.1% LDAO. 

For further purification of the BRCs, ion exchange column chromatography was 

used. The Toyopearl 650 M column was equilibrated with TL°JE buffer then 

protein was loaded onto the column, which binds to the column material then 

again TL°JE buffer was loaded. By creating a linear salt gradient from 0.03 to 

0.25 M NaCl in TL° !E buffer purified protein and other free pigments can be 

separated. The purity of the BRC protein was checked by taking the ratio of the 

absorbances at 280 nm and 800 nm. This ratio was kept below 1.5 but for the 

purest protein this ratio has to be 1.2. Aromatic amino acids have absorbance at 

280 nm, which is 1.2 times that of bacteriochlorophyll monomer at 800 nm. For 

pure BRC, the ratio of absorption bands of bacteriochlorophyll dimer, 

bacteriochlorophyll monomer and bacteriopheophytine has to be 1:2:1. After the 

column chromatography, salt was removed by dialysis against salt free TL°'025E 

buffer, which contained 15 mM of Tris-HCl, 1 mM of EDTA, and 0.025 % 

LDAO. All dialysis were done at 4° C in the dark using dialysis membranes with 
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a molecular weight cut off (MWCO) of 12-14 kDa. Bacterial reaction center 

protein micelles were further concentrated by ultrafiltration using Millipore 

membranes having a nominal molecular weight limit (NMWL) of 30 kDa under 

nitrogen pressure. The concentration of BRC protein was checked by absorption 

ratio spectroscopy. Purified protein was stored at -80° C in the dark. BRC can be 

incorporated into Triton X-100 detergent micelles by running same column 

chromatography technique explained before for the purification with TT01E (15 

mM Tris-HCl, 0.1% Triton X-100 and 1 mM EDTA) buffer and salt gradient was 

applied to elute protein. All used chemicals were ordered from Sigma-Aldrich. 

2.3 Construction of the mutants 

A series of reaction center mutants have been constructed by our collaborators to 

modify the hydrogen bonding pattern on the conjugated carbonyl groups of P by 

introducing histidine residues in the hydrogen bonding position or replacing His 

LI68. In the mutants, Leu to His at L131, LH(L131), Leu to His at Ml60, 

LH(M160), Phe to His at M197, FH(M197) and His to Phe at L168, HF(L168), 

the formation and removal of hydrogen bonds were confirmed both by Raman and 

infrared spectroscopies [37-42]. Comparison of reaction centers with different 

combinations of hydrogen bonds in terms of the light-minus-dark optical 

difference spectra and the kinetics of the absorbance changes after long 

continuous illumination allowed us to identify the contribution of hydrogen bonds 

to possible structural changes involving P. 
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The construction of the mutant strains of Rb. sphaeroides by oligonucleotide-

directed mutagenesis has been described before [29-31] and construction was 

done by our collaborators. The term wild type used in this study refers to those 

isolated from the deletion strain complemented with a plasmid bearing the wild-

type reaction center genes. Reaction centers were kept in 15mM Tris-HCl, pH 8.0, 

0.025% LDAO and 1 mM EDTA. The purity of the reaction centers, defined as 

the ratio of the absorbance at 280 nm to 802 nm, was between 1.2 and 1.4 for all 

preparations used in this study. 

Terbutryn (100 uM) in ethanol was used as an inhibitor, which binds 

competitively to the secondary quinone binding site, preventing further electron 

transfer. 

2.4 Buffer preparation 

Different buffers were used for different pH and different detergent micelles. 

These buffers were prepared in distilled water by taking 15 mM of respective 

buffer, 0.1 % LDAO (zwitterionic) or Triton X-100 (non-ionic) detergent, and 1 

mM EDTA. The following buffers were used for different pH measurements. 

pH 5.5: MES (2-(A^-morpholino)ethanesulfonic acid) 

pH 6: MES (2-(A^-morpholino)ethanesulfonic acid) 

pH 7: BIS-TRIS Propane (l,3-bis(tris(hydroxymethyl)methylamino)propane) 

pH 8: BIS-TRIS Propane (l,3-bis(tris(hydroxymethyl)methylamino)propane) 

pH 9: CHES (A^-Cyclohexyl-2-aminoethanesulfonic acid) 

pH 10: CAPS (jV-cyclohexyl-3-aminopropanesulfonic acid) 
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2.5 Biophysical techniques used in the characterization 

2.5.1 Laser flash photolysis (LFP) 

To measure the kinetics of the charge recombination reactions, a laser flash 

photolysis unit (LFP-112) with a Nd:YAG laser from Luzchem Research 

Incorporation's (Ottawa, Canada) was used. The BRC protein was excited at 

532 nm with a 5 ns saturating laser pulse directed perpendicularly to the direction 

of the monitoring beam and data were collected by monitoring the transient 

absorption changes at 865 nm. The monitoring light was generated by an "ozone-

free" Xe lamp and was guided to the sample with fiber optics. For better signal to 

noise ratio, 10 traces were averaged with manual laser fire. All data were 

collected on a Tektronix TDS-2012 oscilloscope in DC coupled mode, which was 

used as an analog to digital converter. The digitized signal was then processed 

using a software supplied with the LFP unit. The recorded traces were analyzed 

with Sigma Plot software by decomposing the signals to exponentials. Bacterial 

reaction center protein (1 uM) was added in 3 ml of respective buffer with 

100 uM terbutryn to block the secondary quinone binding site and charge 

recombination was measured by recording the kinetic trace at dimer band position 

(865 nm) in a 3 ml quartz cuvette. 

2.5.2 Steady state absorption spectroscopy 

All measurements for conformational rearrangement and charge recombinations 

were measured with a Varian (Varian Inc. Mulgrave, Victoria, Australia) 

spectrophotometer or a Cary 5000 UV-VIS-NIR. An external tungsten lamp light 
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source with output power of 40 to 250 W was connected to the cuvette holder by 

using an optical fiber to illuminate the BRC sample. 

The light-induced states of the reaction centers were generated by continuous 

illumination through the tungsten lamp and its intensity was altered by changing 

the power of the illumination source. The light intensity was set to -30% of the 

saturating value for wild type at a 2 uM reaction center concentration. Terbutryn 

was used at a concentration of 100 uM to eliminate secondary quinone activity. 

The measurements were taken in the 3 ml quartz cuvette with the following 

parameters. 

Scanning wavelength: 700-1000 nm 

Average time to scan: 0.033 s 

Data interval: 0.5 nm 

Scan rate: 909.091 nm/min 

Spectral bandwidth: 2 nm 

The light-minus-dark difference spectra were recorded by taking baseline with the 

BRC sample and then a series of spectra were recorded during and after the 

prolonged illumination with 1 minute intervals up to 5 minutes and with 5 minute 

intervals until the signals recovered completely. During illumination the spectra 

were recorded every minute. 

For the temperature-dependent measurements, a dual Peltier-cell accessory was 

connected to the cuvette holder and the temperature was varied from 5 to 40° C 

with 0.1° C accuracy including water circulation around the Peltier-cell for 

cooling. 
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Matching buffers were used as the reference and the baseline was recorded prior 

to each measurement. Kinetic analysis was done in kinetic mode of the 

spectrophotometer by monitoring the absorption change at 865 nm i.e. 

bacteriochlorophyll dimer band position. 

For the metal binding study to BRC, Co2+, Mn2+, and Cu2+ metal ions were 

titrated in BRC sample in the cuvette and kinetic traces were recorded at different 

concentrations of metal ion with 5 minutes of illumination. 

To change the pH during the measurement, the lid of the spectrophotometer was 

kept open by deactivating the sensor switch for the lid. After turning off the 

illumination, while continuing the measurement, the pH was increased from 6 to 

10 by addition of potassium hydroxide solution and the kinetic trace was 

recorded. A small magnetic stirrer was used to mix the solution in the cuvette 

which was controlled by Peltier cell assembly. 

2.6 Data analysis 

2.6.1 Analysis of the kinetic traces 

Kinetic traces of the charge recombination were measured by LFP and absorption 

spectroscopy depending on the time scales characteristic to the various 

conformational substates. This charge recombination was analyzed by exponential 

decomposition assuming three kinetic componets according to following 

equation: 

A(t) = Be~kiX' + Ce-"1*' + De'k'xt (1) 
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Where, 

A: total signal amplitude at any time t 

B, C, and D: amplitudes of the decaying kinetic components 

t: time 

ki, k2, and k3: Rate constants of the decaying kinetic components 

Standard errors in determining the rate constants on the fitted data are within 

±0.5s_1. 

Time constant (x) = — (2) 
k 

Where, k is the rate constant of the kinetic component. 

The temperature dependence of charge recombination was analyzed by using the 

Arrhenius equation: 

ln(£) = ̂  + ln(C) (3) 

Kl 

Where, 

k: first order rate constant of the charge recombination 

Ea: activation energy 

R: universal gas constant 

T: absolute temperature 

C: maximal electron transfer rate constant in the activationless process 

In an Arrhenius plot, ln(k) versus — gives a straight line and it's slope can be 

used to determine the activation energy (Ea). 
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2.6.2 Analysis of metal binding 

The Hill equation was used to fit the data of metal binding. 

k = —\™1 (4) 
Kn" +[M]"" 

Where, 

k: rate constant of decaying component 

K: binding constant 

nH: Hill constant 

[M]: metal ion concentration 

2.6.3 Decomposing the absorption spectra into individual components 

Fitting of the ground state spectrum was done by sum of Gaussians for the 

bacteriochlorophyll dimer, bacteriochlorophyll monomer, and bacteriopheophytin 

as follws: 

A = C + axe L (5) 

Where, 

A: absorbance at any given wavelength 

C: offset, applied if the traces did not recover to zero 

a: peak absorbance 

W: wavelength 

Wo: peak position in the wavelength scale 

L: Bandwidth at half maxima (BWHM) 
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2.6.4 Determining the proton dissociation constant 

The Henderson-Hasselbalch curve was used to explain pK shifts of the amino acid 

residues, which is expressed by the following equation: 

/ ( / / ) = i + i o ( ' M ) (6) 

Where, 

f(H): fraction protonated 

pK: negative logarithm value of the proton dissociation coefficient 
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Experimental Results 

Chapter 3 

Molecular assignments of the conformational rearrangements 

based on genetic modifications near the periplasmic side of the 

BRC's 

3.1 The formation and disappearance of the conformational^ altered charge 

separated states upon prolonged illumination in the wild type BRC's 

Light-minus-dark difference spectra were recorded during and after prolonged 

illumination of the BRC samples. These spectra were analyzed for spectral band 

shifts. Representative light-minus-dark spectra are shown below in Figure 3.1 

They were decomposed into the following contributions a bleaching in the 

(BChl)2 band (865 nm), shifts in the two BChl (790 and 810 nm) and in Bpheo 

bands (760 nm) for analysis purposes as described earlier in Section 1.7. 
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Figure 3.1 Representative near infrared light-minus-dark difference spectra. Steady 

state absorption difference spectra reveal the features from the oxidized (BChl)2 at 865 

nm, the hypsochromic shift in BChl and bathochromic shift in Bpheo bands. Light-

minus-dark difference spectra were recorded immediately after illumination (P) untill 5 

minutes of illumination. The color code of the spectrum and number represent time in 

minutes after the illumination turned ON. The P* spectrum was taken immediately after 

illumination turned OFF. The numbers with prime indicate the time in minutes after 

illumination was turned OFF. Conditions: Spectra were recorded from 1 uM of wild type 

BRC in 0.1% LDAO detergent at pH 8 with 100 uM terbutryn upon 5 min of 

illumination. The tungsten lamp (120 W) was used as illumination source. 

Each of the recorded spectrum had spectral signatures of the charge separated 

state P+Q" revealing the formation of the charge separated state upon illumination 

but with an altered lifetime. In order to study the kinetics of recovery of the 

oxidized bacteriochlorophyll dimer, absorption changes were monitored at the 

dimer band position 865 nm indicated by the vertical line in the Figure 3.1 The 

series of the kinetic traces were recorded at the dimer band position by varying 

illumination time from 5 s to 10 minutes (Figure 3.2). The representative kinetic 
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traces for different illumination times show multi-exponential recovery of 

oxidized bacteriochlorophyll dimer monitored at 865 nm. For the very short 

illumination of 5 s (red trace in the Figure 3.2), the recovering component is only 

bi-exponential. The fast kinetic component is attributed to the charge 

recombination from the dark adapted conformation and the slower component is 

assigned to the charge recombination from an altered conformation caused by the 

prolonged illumination. With increasing illumination time a slow evolution of 

longer lived components could be observed (Figure 3.2). 
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Figure 3.2 Representative normalized kinetic traces for the formation and 

disappearance of the long lived charge separated states upon increasing illumination 

time monitored at the dimer band position (865 nm in wild type). Traces were 

recorded after 5s (red), 10 s (dark blue), 30 s (green), 1 min (pink), 2 mins (cyan), 3 mins 

(gray), 5 mins (mustard), and 10 mins (brown) of illuminations. The recovery kinetics 

become multiphasic requiring up to three kinetic components to describe them. The 

traces were fit to Equation (1) and the results of the fits are tabulated in Table 3.1. 

Conditions: Traces were recorded containing luM of wild type BRC in 0.1% LDAO 

detergent with 100 uM terbutryn at pH 8 with varying illumination time from 5 s to 10 

minutes with a tungsten lamp (120 W). 

41 



Table 3.1 Kinetic parameters of the wild type reaction center upon 5 s to 10 

minutes of prolonged illumination. 

Time 
(s) 

5 

10 

30 

60 

120 

180 

300 

600 

kslow x 

lO 2 ^" 1 ) 
4.7 

4.6 

4.6 

2.8 

2.8 

2.6 

2.5 

2.5 

^slowest X 

103 (s"1) 
CND 

°ND 

5.2 

5.2 

5.1 

3.3 

2.4 

2.4 

aRate constants of the slow recovering component (determined from Figure 3.2); 
bRate constants of the slowest recovering component (determined from 

Figure 3.2); 

°ND- not detectable 

Upon prolonged illumination, same P+Q" charge separated states can be formed 

(Figure 3.1) but with increased lifetimes and hence they were attributed to the 

altered conformational states (Figure 3.2). The rate constants of slow and the 

slowest components in the recovery kinetics were found to be in the 10" s" and 

around 10"3 s"1 ranges, respectively (Figure 3.2). These two slow kinetic 

components are missing from the charge recombination induced by a single laser 

flash excitation and therefore were assigned to the recovery of the charge pair 

from different conformational states. The charge recombination from the dark 
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adapted state has a rate constant in the wild type of 10 s"1 or 1 s" depending on 

presence or absence of the potent inhibitor terbutryn, respectively. Based on the 

kinetic separation of the components, proposals for conformational changes in the 

reaction center stem primarily from the observation of multiphasic kinetics in the 

light-induced absorption changes. 

There is also another way to look for these conformational changes. The light-

minus-dark difference spectrum was recorded immediately after illumination and 

after prolonged illumination of 2 minutes in the wild type BRC (Figure 3.3A). 

The difference between these two spectra should indicate the altered conformation 

due to the prolonged illumination. The wild type BRC has a carotenoid pigment 

near BChle (Figure 3.3C). It was also found that during illumination the BChl 

bands in the wild type BRC underwent spectral band shifts (Figure 3.3B). 

Analysis of the light-minus-dark spectrum revealed that immediately after 

illumination the BChU band moved hypsochromically from 786 to 783 nm. 

Further illumination caused a reversing red shift to 785 nm. In summary, initial 

illumination causes a blue shift in the BChU and prolonged illumination reverses 

this shift. The BChle undergoes similar shifts from 810 nm to 802 nm and further 

reversing red shift to 805 nm. The difference between the two light-minus-dark 

spectra revealed a major change in the BChl band around 800 nm (red trace in 

Figure 3.3B). This altered conformation has individual contributions from the 

BChlA and BChlB. 
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Figure 3.3 Light-minus-dark difference spectra for recovery of the P+Q" state in the 

wild type BRC. A. Light-minus-dark difference spectra, immediately after (red trace) 

and 2 min (black trace) after the illumination. The spectrum recorded after 2 min of 

illumination represents the P+Q" redox state in an altered conformation. The spectra are 

vertically shifted by 0.05 AU for better comparison. During recovery from these states, 

BChl bands were found to be shifted that indicated altered long lived conformational 

states. B. Double difference spectrum (red trace) generated from the difference between 

prompt and 2 min after the illumination represents the altered conformation at the 

monomer band ~ 800 nm. Black trace represents total fit. BChlB (dotted pink trace) 

shifted from 805 to 802 nm, BChlA (dotted cyan trace) moved from 785 to 783 nm, and 

Bpheo (dotted green trace) shifted from 755 to 751 nm during this conformational 

rearrangement. C. The wild type BRC with carotenoid pigment (beige colored molecule) 

near BChls Figure was prepared by Pymol software from PDB code 1M3X. Conditions: 

1 uM of BRC micelles from the wild type reaction center in 0.1% LDAO detergent with 

100 uM terbutryn at pH-8 with 2 minutes of illumination using a tungsten lamp (120 W). 
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3.2 Spectral signatures of the conformationally altered states in the R-26 

mutant 

A similar shift for the bacteriochlorophyll monomer was observed in the case of 

mutant (R-26), which differs only from wild type by the lack of a carotenoid 

molecule near the BChle (Figure 3.4C). The double difference spectrum (Figure 

3.4B) showed that in this strain of the BRC, the shift in the bacteriochlorophyll 

dimer band was also observed along with the BChlA. 

Clues to the conformational arrangements in the vicinity of the dimer can be 

found in the optical spectra, where upon illumination changes in the BChl bands 

are observed in the wild type BRC (Figure 3.3B). These changes lead to the 

longer lifetimes of the same charge separated states. This argument was supported 

by the similar shifts in the BChl bands in the carotenoidless strain R-26 (Figure 

3.4B). 

Much of this spectroscopic work was centered on the quinones. Light-induced 

structural changes of the quinones were indicated by significant differences in the 

rate of P+QA~ —> PQA charge recombination for reaction centers cooled under 

illumination compared to cooled in the dark [32, 43]. Two, or more, phases 

observed in the QA~ -> QB electron transfer have been interpreted by assuming a 

conformational gating mechanism [44-46]. 

In contrast to the detailed information concerning the conformational changes 

involving the quinones, no specific structural changes involving the tetrapyrroles 

or specific amino acid residues have been identified [47]. 
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Figure 3.4 Light-minus-dark difference spectra for recovery of P+Q" state in the R-

26 BRC mutant A. The light-minus-dark difference spectra were recorded in LDAO at 

pH 6 immediately and 2 min after illumination. The spectra are vertically shifted by 1 AU 

for better comparison. During recovery from these states the BChl monomer and dimer 

bands were found to be shifted which caused altered long lived conformational states. B. 

Double difference spectrum (in red) was generated by subtracting the light-minus-dark 

difference spectra. The black trace is the total fit to the spectrum. It reveals the major 

change in BChlA (pink) from 796.5 to 794.5 nm, change in (BChl)2 (purple) from 850.5 

to 853.5 nm, which indicates the movement of the bacteriochlorophyll dimer with respect 

to the bacteriochlorophyll monomer and Bpheo (green). There was a 3 nm red and 2 nm 

blue shift found in (BChl)2 and BChlA respectively. Similarly, it shows prolonged 

illumination causes an initial blue shift in the BChlA and subsequent red shift. C. The R-

26 BRC that lacks carotenoid pigment near the BChlB The figure was prepared by Pymol 

software from PDB code: 4RCR. Conditions: 1 uM of BRC from carotenoidless R-26 

strain in 0.1% LDAO detergent with 100 uM terbutryn at pH-8 with 5 minutes of 

illumination using tungsten lamp (120 W). 
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3.3. Light-induced conformational changes in mutants with altered hydrogen 

bonding pattern between the dimer and the surrounding protein 

A number of specific interactions of the amino acid residues with the dimer have 

been investigated. The two bacteriochlorophylls of P contain two 7t-conjugated 

groups, the 2-acetyl and the 9-keto carbonyl, that are possible proton acceptors for 

hydrogen bonds. 

Structural and spectroscopic data demonstrate that in the wild-type Rb. 

sphaeroides reaction center only one hydrogen bond exists between His LI 68 and 

the 2-acetyl group of the L half of the dimer [37] (Figure 3.5A). In order to 

identify the conformational changes at the molecular level a series of reaction 

center mutants have been constructed by our collaborators to modify the hydrogen 

bonding pattern on the conjugated carbonyl groups of P by introducing histidine 

residues in the hydrogen bonding position or replacing His LI 68 (Figure 3.5B). 

The light-minus-dark difference spectra in the near infra-red region for the BRCs 

representing all four hydrogen bonds between the dimer and the surrounding 

amino acids (triple mutant-[LH(L131)+LH(M160)+FH(M197)]) and the wild type 

were recorded (Figure 3.5C). The spectrum of the triple mutant showed a marked 

blue shift at around 790 nm involving the bacteriochlorophyll monomer compared 

to the spectrum of the wild type. The double difference spectrum was generated 

by taking the difference between the light-minus-dark difference spectra of the 

wild type and triple mutant showed a marked blue shift in the bacteriochlorophyll 

monomer band (red trace in Figure 3.5D). 
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M197 

L131 
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Figure 3.5 Comparison of the light-minus-dark difference spectra for the wild type 

and triple mutant BRC. Top view of the bacteriochlorophyll dimer (upper panel). A. L 

half of the dimer (yellow) has one hydrogen bond (green dotted line) to His (LH-168 in 

orange) in wild type reaction center. B. Bacteriochlorophyll dimer and nearby amino acid 

residues. The mutant dimer has four hydrogen bonds (green dotted lines) to the His 

residues (orange) created by mutations. C. The light-minus-dark difference spectra 

recorded for both the wild type (WT) and mutant RCs, which indicates the shift in the 

bands of the BChls towards the blue from 790 nm to 784 nm in the triple mutant 

compared to the wild type. The spectra are vertically shifted by a constant offset. D. The 

double difference spectrum (in red) revealing the major change that was fitted (black 

trace) with Gaussians involving BChlA (cyan) and BChlB (pink). The fit shows that 

BChlB moved from 811 to 803 nm and 6 nm blue shift in BChlA band from 790 to 784 

nm. The structure figures were prepared by Pymol software by using PDB files 1Z9J and 

4RCR for the mutant and wild type reaction centers respectively. Conditions: 2 uM 

reaction center at pH 8, 100 mM NaCl, 100 uM terbutryn. Illumination time: 1 minute 

through a 870 nm interference filter with a bandwidth of 20 nm using water bath as a 

heat filter between the illumination source and the BRC sample. 
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After comparing light-minus-dark spectra of the wild type and the triple mutant, it 

was found that there was only change in the bacteriochlorophyll monomer (Figure 

3.5), which was shifted towards blue region in case of the triple mutant [47]. 

There was no change in the bacteriochlorophyll dimer because in the triple mutant 

the bacteriochlorophyll dimer was immobilized. Hence upon illumination it 

cannot undergo any movement but movement of the monomers cannot be 

prevented. 

In case of BRC's from the carotenoidless R-26 strain the bacteriochlorophyll 

dimer can undergo movement with respect to the bacteriochlorophyll monomer 

due to the permanent dipole and induced dipole attractive force (Figure 3.4), 

which causes formation of long lived conformational states. In the triple mutant 

the bacteriochlorophyll dimer was fixed by hydrogen bonds, and it cannot 

undergo any movement with respect to the bacteriochlorophyll monomer and 

hence cannot form long lived conformational states (Figure 3.5). 

Since the spectral bandshift associated with the accessory bacteriochlorophylls 

(BChU and BChle) are due to dipole-dipole interactions from these two 

experiments we concluded that during prolonged illumination these pigments 

moved from the dimer and changed the distances and/or the angles between the 

dipoles as evidenced by change in the electrochromic shifts. 

49 



The light-minus-dark optical difference spectra of the mutants 

In order to investigate the contribution from each of the hydrogen bonds to the 

bacteriochlorophyll dimer, a systematic study of the mutants altering the amino 

acid environment near the dimer was carried out. Therefore for further 

investigation of the light-induced conformational changes, light-minus-dark 

difference spectra in the near infrared region were measured for the reaction 

centers from the wild type and the 11 hydrogen-bonding mutants with different 

hydrogen bonding pattern (Figure 3.6). Significant differences were found in the 

position of the QY band of the dimer, which is at 865 nm in the wild type, as 

reported earlier for absorption spectra of the mutants [41]. Generally, the 

formation of a hydrogen bond on the M half of the dimer resulted in a blue-shift 

in the position of the dimer band and the addition of the L half one caused a red-

shift in this parameter. The presence of the hydrogen bond between the 2-acetyl 

group of the L half of the dimer and the histidine at the LI 68 position in the wild-

type reaction centers results in a 16 nm red-shift relative to the HF(L168) mutant 

(His residue was replaced to Phe at LI68), which lacks any of the hydrogen 

bonds. Interestingly, the introduction of the symmetrical hydrogen bond between 

the 2-acetyl group of the M half of the dimer and the histidine substituted at the 

Ml 97 position resulted in a shift of almost the same magnitude (-17 nm) but in 

the opposite direction (to the red) in the HF(L168)+FH(M197) double mutant 

with respect to the hydrogen-bond-less HF(L168) mutant. Formation of the 

hydrogen bonds with the 9-keto groups on both sides of the dimer showed smaller 

shifts of - 9 nm (to the blue) and + 7 nm (to the red) in the HF(L168)+LH(M160) 
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and HF(L168)+LH(L131) double mutants, respectively, relative to the HF(L168) 

mutant. The differences in the position of this band were smaller in mutants with 

more than one hydrogen bond. For example, the shift resulting from the second 

hydrogen bond to the M-side is only - 2 to - 3 nm in the LH(M160) and 

FH(M197) mutants relative to the wild type, which has one hydrogen bond. A 

small shift of + 5 nm was also observed for the presence of the hydrogen bond to 

the L side of the dimer in the LH(L131) mutant. At the level of three and four 

hydrogen bonds the observed shifts become negligible [47]. 

The near infrared P + Q A / P Q A optical difference spectra of the mutants showed 

differences in the position of the Qy band of the dimer and in the position of the 

peak centered to 790 nm in wild type (Figure 3.6). Generally, the keto-groups 

caused smaller changes in the position of the dimer band compared to the acetyl 

groups. 

Changes were also seen in the near-infrared absorption band of the accessory 

bacteriochlorophyll, which upon light excitation undergoes an electrochromic 

shift due to the oxidized dimer. The basis of the comparison was the position of 

the peak observed around 790 nm in the wild-type spectrum (Figure 3.6) 

corresponding to the BChU. Those mutants that contain the LH(L131) mutation 

showed a significant (- 6 to - 9 nm) blue shift in the position of this peak relative 

to the wild type, while the other mutants resulted in no or negligible (- 1 to 

- 2 nm) changes (Figure 3.7). A consistent difference for the reaction centers 

containing the LH(L131) mutation was in the position of the lower wavelength 
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band (790 nm in wild type) of the electrochromic shift on the accessory BChl 

(Figure 3.6). 

700 750 800 850 900 950 1 000 

Wavelength (nm) 

Figure 3.6 Near infrared light-minus-dark absorption difference spectra of reaction 

centers isolated from the wild type (WT) and hydrogen bond mutants of Rb. 

sphaeroides. The spectra were taken using nonsaturating (30% of the saturating value for 

wild type) continuous illumination. The spectra are normalized to the Qy band of the 

dimer (832-870 nm depending on the mutant) and vertically shifted by a constant offset 

for better comparison. Peak positions are tabulated in Table 3.2. Conditions were as 

follows: 2 ^M reaction centers in 15 mM Tris (pH 8), 0.1% LDAO, 1 mM EDTA, 100 

mM NaCl, and 100 uM terbutryn. Illumination time: 1 minute through a 870 nm 

interference filter using water bath as a heat filter [47]. 
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Since the electrochromic shift on the BChl originates from the interaction 

between the permanent dipoles of P+ and the induced dipoles of BChl, this reflects 

either different orientations of the permanent dipoles of P+ in the mutants or 

interactions between the altered residue and the bacteriochlorophyll monomer. 
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Figure 3.7 Shift in the BChlA in the mutants against oxidation potential of the dimer 

from respective mutant with respect to the wild type reaction center. In wild type 

BRC, BChlA absorbs at 790 nra. In LH(L131) mutants BChlA shifts towards blue by 6 to 

9 nm (triangles) while the other family of the mutants show only 1 to 2 nm shift as 

compared to wild type BRC. The oxidation potentials (Em) of the mutants were 

determined earlier [41]. 

Due to these pronounced shifts in the BChU in the case of mutants having 

LH(L131) hydrogen bond with respect to the wild type BRC, these different 

mutants were categorized into two families, the mutants which do not have 

LH(L131) hydrogen bond and mutants which have LH(L131) hydrogen bond. 

After studying the effect of presence of different hydrogen bond to the dimer, 
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absorption changes were monitored at the respective dimer band position of the 

mutants (Figure 3.6) for the kinetic study of recovery of the oxidized dimer. 

Kinetics of the formation and recovery of the light-induced states in the mutants 

The kinetics of the absorption changes caused by non-saturating illumination were 

measured at the center of the Qy band of the dimer observed in the reaction 

centers from each mutant (Figure 3.8) at pH 8. In the presence of terbutryn, the 

P+QA state is formed within a few tens of milliseconds, but electron transfer to 

the secondary quinone is inhibited. In addition to the rapid absorption change, a 

further slower bleaching was also observed in all reaction centers. Since the 

excitation was non-saturating, with only -30% of wild-type reaction centers 

excited, this increase in kinetic trace can be interpreted as arising from another 

light-induced state being formed with a longer lifetime. Once the light is turned 

off, complex recovery kinetics were observed that depended on the duration of the 

illumination, and the mutation (Table 3.2). A one minute illumination was used at 

pH 8 to compare the recovery kinetics of the oxidized dimer. A fraction of the 

reaction centers followed the fast P+QA —» PQA charge recombination while the 

rest of the oxidized dimer recovered on a much longer time scale. 

In reaction center mutants containing the Leu to His mutation at LI31, the slower 

component of the P+ decay was 7 to 8 s, corresponding to rate constants of 12 to 

14 x 10~2 s~l. In reaction centers without this mutation, this kinetic parameter was 

longer, with lifetimes of 30 to 63 s, corresponding to rate constants of 1.6 to 

3.3 x 10"2 s"1. The LH(M160)+FH(M197) mutant showed an intermediate value 
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with a 14 s lifetime, or a ksiow of 7.1 x 10-2 s-1, for that slow phase. The relative 

contribution of the slow phase in the formation (during the illumination) and in 

the recovery (in dark) is much smaller in the case of the LH(L131)-containing 

mutants and the LH(M160)+FH(M197) double mutant compared to the others 

(Figure 3.8 and Table 3.2). 

• A . light 
ON OFF 

Figure 3.8 Formation and disappearance of the continuous light induced P+QA~state 

in the wild type and 11 hydrogen bonding mutants measured at the position of the 

dimer band (832-870 nm depending on the mutant, see Figure 3.6) at pH 8. A. 

Mutants containing the LH(L131) mutation. B. All other mutants and wild type. 

Illumination time is 1 minute. The traces were normalized to 1 and vertically shifted for 

better comparison. Conditions were as follows: 2 uM reaction centers in 15 mM Tris (pH 

8), 0.1% LDAO, 1 mM EDTA, 100 mM NaCl, and 100 uM terbutryn. Illumination time: 

1 minute through a 870 nm interference filter using water bath as a heat filter [47]. 
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The light-induced changes that take place on relatively long time scales were 

studied in the reaction centers from the wild type and a number of mutants. For 

one-minute illumination times, the formation and recovery kinetic traces were 

multiphasic (at least 3 components) (Figure 3.8) in the same manner as previously 

found for reaction centers from the R-26 strain. The behaviour of the reaction 

centers with regard to the slow rate (ksiow) of recovery of the P+ fell into distinct 

groups depending upon the mutations present. 

A correlation is evident between the midpoint potential of the dimer and the rate 

of the P+ recovery in one set of mutants (Figure 3.9). For this reaction, the free 

energy difference is directly related to the midpoint potential of P, with a 

correction for the midpoint potential of the exogenous reductant. Assuming very 

large reorganization energy of at least 1 eV, a linear dependence of log ksiow upon 

the free energy difference is expected from Marcus theory [48]. The observed 

dependence indicates that in the wild type and these mutants, the process is 

controlled by the electron transfer rate. 

For mutants with the Leu to His at LI 31 alteration, the relative rate constant 

ksiowmutant/ ksiow™1 is independent of the driving force thus, the observed rate must 

be limited by another factor, e.g. the rate of protonation and/or the conformational 

change. Because some of these mutants show a faster rate than other mutants with 

similar midpoint potentials, the presence of the Leu to His mutation at LI 31 must 

result in an increase in the electron transfer rate, so that the electron transfer rate 

is significantly faster than the observed rate. 
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Figure 3.9 Dependence of the rate constant of slow recovery of the oxidized dimer 

on the difference in driving force between the wild type and 11 hydrogen-bonding 

mutants in reaction centers. Regression lines were generated through the data points 

associated with the mutants containing LH(L131) (red), LH(M160) (blue), FH(M197) 

(magenta) and HF(L168) (green) mutations. The difference in the driving force for the 

electron transfer between the mutants and the wild type was calculated using the 

midpoint potentials from [41]. 

For the R-26 strain without any mutation, the biphasic properties of the optical 

spectroscopy and proton uptake/release measurements were interpreted by many 

authors as arising from two different conformations, a dark and light-adapted state 

[49, 50]. The biphasic behavior was significantly altered in the mutants that 

contain the LH(L131) mutation, and the observed rate ksiow is the same as 

measured for flash illumination. The presence of the hydrogen bond between the 

9-keto group of the L half of the dimer and His LI31 appears to prevent the 

previously proposed conformational change in the vicinity of the dimer. The 

kinetics of the absorption changes caused by non-saturating illumination were 
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measured at the (BChl)2 band position (determined from Figure 3.6) in one-one 

representatives of the two groups of the mutants, wild type and in the LH(L131) 

mutant at pH 6, where the conformation changes were even more pronounced 

(Figure 3.10). Similarly, as found at pH 8, the recovery of charge separated states 

are much faster in the LH(L131) mutant as compared to wild type RC. This 

indicates that the light-induced conformational changes resulting to longer-lived 

charge separated states are blocked in the mutants, where the L half of the dimer 

is immobilized by both hydrogen bonds between the LI68 His and the 2 acetyl 

group and the LI31 His and the 9-keto group of the dimer. This structural 

constrain is in line with the lack of the reverse shift in the Bchl bands in the 

mutants containing the LH(L131) mutations. 
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Figure 3.10 Formation and disappearance of the long (5 min) continuous light 

induced P+QA" redox states in the reaction centers of wild type and LH(L131) 

mutant at pH 6 measured at 865 and 870 nm, respectively. Conditions were as follows: 2 

uM reaction centers in 15 mM MES (pH 6.0), 0.1% LDAO, 1 mM EDTA, 100 mM 

NaCl, 100 uM terbutryn. Illumination time: 5 minute through 870±15 nm interference 

filter using water bath as a heat filter. 
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Table 3.2 Kinetic and steady state optical spectroscopic parameters of the wild 

type and 11 hydrogen bonded mutants measured in the reaction centers of Rb. 

sphaeroides. 

# 

1 
2 
3 

W 
4 
5 
6 

7 
8 
9 
10 
11 

Strain 

HF(L168) 
LH(M160)+HF(L168) 
FH(M197)+HF(L168) 

WILD TYPE 
LH(M160) 
FH(M197) 
FH(M197)+LH(M160) 

HF(L168)+LH(L131) 
LH(L131) 
LH(M160)+LH(L131) 
FH(M197)+LH(L131) 
FH(M197)+LH(M160)+ 

LH(L131) 

aP pos 
(nm) 

849 
840 
832 

865 
862 
863 
864 

856 
870 
868 
865 
865 

"790 pos 
(nm) 

790 
788 
790 

790 
788 
790 
788 

784 
784 
781 
782 
784 

cksiow decay 
xlO^s'1) 

1.63 
1.72 
1.69 

1.96 
2.56 
3.33 
7.14 

13.3 
14.28 
12.5 
12.5 
14.28 

aPosition of the Qy band of the dimer in the light-minus-dark different spectra of 

the strains in QA active reaction centers (determined from Figure 3.6); 
bPosition of the lower wavelength band of the electrochromic shift on 

bacteriochlorophyll observed at 790 nm in the light-minus-dark difference 

spectrum of wild type (data determined from Figure 3.6); 
cRate constants of the slowest decaying component of P+ after 1 minute 

illumination (determined from Figure 3.8). 

Hence, the rate of recovery of the oxidized dimer depends systematically on the 

protein environment of the dimer. In particular, changes in certain residues 

appear to prevent a light-induced conformational change that results in a slow 

recovery and a large proton release [47]. 
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This can also be explained by comparing kinetic traces for LH(L131) and wild 

type reaction center (Figure 3.10). Since the L half of the bacteriochlorophyll 

dimer in LH(L131) mutant is fixed, it cannot move with respect to the BChl 

monomer resulting fast recovery of the oxidized dimer (Table 3.2) as compared to 

the wild type reaction center. 

In summary, by altering the H-bonding pattern near the bacteriochlorophyll 

dimer, different conformational states can be formed (Figure 3.11). The 

intermediate state, with a rate constant of 0.1 s"1, was observed in all mutants. 

This indicates that the formation of this conformational state is due to the 

conformational changes that are occurring near the quinone side, which was found 

by many authors [43-46]. The longer lived conformational state was observed 

upon movement of the monomer followed by the dimer at pH 6 (black squares in 

Figure 3.11). 
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Figure 3.11 Correlation between the rate constants of the kinetic components for the 

charge recombination from different conformational states due to the genetic 

alteration of the H-bond pattern of the dimer. Charge recombination from the dark 

adapted state was measured upon flash excitation (open circles). At pH 8 the 

conformational change cannot proceed all the way down resulting in rate constants 

between 10"1 and 10"2 s'1, (open diamonds), while at pH 6 the recovery rate constants are 

in the 10"3 s"1 range (closed squares) with amplitudes varying depending on the mutants. 
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Chapter 4 

Environmental factors affecting the light-induced conformational 

rearrangements 

4.1 Occupancy of the secondary quinone binding site 

Formation and recovery of the oxidized dimer was monitored by recording 

absorption changes at the dimer band position (865 nm). The lifetimes of the 

charge separated states from the primary (QA) and secondary (QB) quinone are 

significantly different [23], which can be studied by using the potent inhibitor 

terbutryn. Kinetic traces were recorded in LDAO and Triton X-100 detergents in 

the presence and absence of terbutryn (Figure 4.1). 

Kinetic traces in the presence of inhibitor for both detergents are similar to each 

other but in the absence of inhibitor charge formation and charge recombination 

are different for different detergents. The formation of a very long lived charge 

separated state does not depend on the presence of the secondary quinone [23] but 

its lifetime may be altered. 
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Figure 4.1 Comparison between the kinetic traces for the formation and recovery of 

the charge separated states from primary (QA) and secondary quinone (QB)- Charge 

formation and charge recombination in the absence (left side) and presence (right side) of 

the potent inhibitor (terbutryn) recorded at 865 nm upon prolonged illumination with a 

non-saturating light source in LDAO (cyan) and Triton X-100 (purple) detergent 

micelles. In the absence of inhibitor the charge separated state is P+QB" and in the 

presence of inhibitor the charge separated state is P+QA" (schematic representation at the 

bottom of the kinetic traces). Rate constants of recovering component were 0.013 and 

0.014 s"1 for LDAO and 0.023 and 0.029 s"1 for Triton X-100 without inhibitor but with 

inhibitor those were 0.021 and 0.023 s"1 for LDAO and 0.024 and 0.027 s"1 for Triton X-

100. Conditions: Kinetic traces were recorded for 1 uM BRC from carotenoidless strain 

R-26 at pH-8 upon 3 min and 5 min. of illumination with detergent concentration of 1%. 

A tungsten lamp (120 W) was used as illumination source. 
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In the presence of a potent inhibitor such as terbutryn, P+QA" charge separated 

state was formed. Since the primary quinone (QA) is surrounded by the 

hydrophobic environment, it is not accessible to the external solvent therefore it 

cannot sense the change in the hydrophobic environment and the kinetic traces 

were similar in the presence of LDAO and Triton X-100 detergent micelles 

(Figure 4.1). In the absence of inhibitor the P+QB" charge separated state was 

formed. The secondary quinone (QB) is accessible to the external environment and 

therefore can sense the change in the environment and causes different kinetic 

traces for the charge separation and charge recombination (Figure 4.1). 

4.2 Illumination time dependence of the rate constant of the slowest 

disappearing component 

The absorption change at the dimer band position (865 nm) was monitored by 

varying illumination times. After turning off the light the rate constants of the 

slowest kinetic component became independent of the illumination time after 30 

s, and 2 minutes in LDAO and Triton X-100 detergents respectively for various 

pH values (Figure 4.2). Upon increasing illumination time only the fraction of the 

slowest component increases but the rate constant remain independent. 
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Figure 4.2 Illumination time dependence of rate constant of the recovering 

component in LDAO and Triton X-100 detergent micelles. Rate constant of the 

slowest recovering component becomes independent of the illumination time 30 s and 2 

min after the illumination in LDAO (left panel) and Triton X-100 detergent micelles 

(right panel) respectively. Conditions: 1 uM of BRC from carotenoidless strain R-26 in 

0.1% LDAO and 0.1% Triton X-100 detergent with 100 uM terbutryn. Tungsten lamp 

with a power of 120 W was used as illumination source. 

Prolonged illumination causes conformational rearrangements, which lead to long 

lived charge separated states. Charge recombination from P+QA' to PQA is a first 

order electron transfer process therefore it is independent of illumination time at 

various pH values. In the case of LDAO detergent micelles the charge separated 

state goes to the final conformation after a short illumination of 30 s but in the 

case of Triton X-100 detergent micelles, it takes at least 2 min of illumination to 

reach the final conformational state down the cascade (Figure 4.2). After 2 min 

these rate constants of the slowest recovering component become independent of 

the illumination time because the charge recombination takes place from the same 

altered conformational state. These rate constants were in the range of 0.01 s"1 to 
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0.1 s or in other words the lifetime of these charge-separated states were in the 

range of 10 s to 100 s and can be altered by altering pH. The rate constant at pH 6 

in the presence of LDAO detergent micelles shows moderate dependence on 

illumination time because of positive head-group charge of the detergent at this 

pH (pKa ~ 6.6 [22]) which causes readjustment of the a-helices [17, 31]. 

The pH dependence of these rate constants (Figure 4.3) indicates that for both 

zwitterionic LDAO and non-ionic Triton X-100 detergents the rate constant 

increases as pH increases between pH 6 and 10. 
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Figure 4.3 pH dependence of the rate constant of the slowest recovering component 

in LDAO and Triton X-100 detergent micelles. Rate constant of the recovering 

component increases with increasing pH in LDAO (cyan triangles) and Triton X-100 

(purple diamonds) detergent micelles. Conditions: 1 uM of BRC from carotenoidless 

strain R-26 in LDAO and Triton X-100 detergent with 100 uM terbutryn. Tungsten lamp 

(120 W) was used as illumination source. The data were taken after 3 minutes of 

illumination. 
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In BRC, 158 protonatable residues are present. These residues are near 

periplasmic or cytoplasmic part of the BRC, which is hydrophilic and accessible 

to external solvent. The majority of these protonatable residues (58 residues) are 

acidic residues (Asp, Glu) and have pKa around 6 in the protein environment [22, 

51]. At and below pH 6 positively charged residues are higher in number near the 

cytoplasmic side (quinone side) than the periplasmic side (dimer side), which 

stabilizes the negative charge on the quinone and causes maximum lifetime for 

the charge separated state (Figure 4.3). 

4.3 Temperature dependence of the charge recombination kinetics of the 

slowest component 

As temperature increases the dimer band position was moved towards the blue. 

This behavior can be reversed as the temperature decreases (Figure 4.4). At 30° C 

dimer band shifted to 846 nm at pH-6 and similar band position was observed in 

the HF(L168) mutant, where introduction of the Phe residue replacing the His 

removed the H-bond between the LI68 and the 2 acetyl group of the dimer 

(Figure 3.6) [47]. 

Since the dimer band position in HF(L168) mutant was 849 nm (Table 3.2), the 

spectral band shift in the (BChl)2 upon increasing temperature can be anticipated 

as weakening of the hydrogen bond, which is present between the L half of the 

bacteriochlorophyll dimer and His residue (LH168) in BRC as shown in Figure 

4.4. Positive head-group charge of the LDAO detergent at pH 6 causes large 

difference in overall upward and downward shift of the dimer band position. 
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Figure 4.4 Movement of the BchI dimer band position as a function of the 

temperature in the carotenoidless R-26 strain. The shift in the band position was found 

to be reversible at pH 8 and 6 (upward and downward) as temperature changes. At pH-8 

(BChl)2 moved from 868 to 853 nm and at pH-6 it moved from 853 nm to 846 nm. 

Lower panel shows the top view of the L- (yellow) and M half (red) of the (BChl)2 from 

the wild type BRC. His (LH-168) residue in orange forms hydrogen bond (green dotted 

line) with L half of the dimer at the 2-acetyl group. The figure was prepared by Pymol 

software from PDB code: 4RCR. 

The kinetic traces at different temperatures were recorded at the dimer band 

position and analyzed. Activation energies were calculated from the Arrhenius 

plots of the data for the slowest kinetic component (using Equation 3) (Figure 

4.5). They were found to be similar in LDAO and Triton X-100 detergent (Figure 

4.6). 
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Figure 4.5 Arrhenius plot for charge recombination from BRC incorporated in 

LDAO detergent micelle upon prolonged illumination. Recovery of the oxidized 

dimer (865 nm) of BRC incorporated in LDAO detergent micelles was measured at 

various temperatures. Linear regression was used to best fit the data points and to 

calculate the activation energy from the slope. The activation energy was found to be 45 

± 3 kJ/mol. Conditions: 1 uM of BRC from carotenoidless strain R-26 in 0.1% LDAO 

detergent at pH 8 with 100 uM terbutryn and 5 minutes of illumination. Tungsten lamp 

(120 W) was used as illumination source. 

The pH dependence of activation energy for the recovery of the oxidized dimer 

indicates that pH 6 and 7 have the lowest activation energies for LDAO and 

Triton X-100 detergents respectively and it increases with pH thereafter (Figure 

4.6). 

After analyzing Arrhenius plots at different pH values, activation energies were 

calculated (Figure 4.6). These activation energies have similar trend in the case of 

LDAO and Triton X-100 detergents but when the temperature dependence was 

measured in the case of the proteoliposome then the breaking point was observed 

where the lipid changes from its liquid crystalline phase into a gel phase [52]. The 

liquid crystalline phase has a similar activation energy to that of the detergents but 
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(1000/T) 
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the gel phase has a much higher activation energy, indicating a slow process of 

charge recombination [52]. 
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Figure 4.6 pH dependence of activation energy for BRC incorporated into LDAO 

and Triton X-100 detergent micelles. Activation energy was found to be lowest at pH 6 

and pH 7 for LDAO (cyan circles) and Triton X-100 (purple squares) detergent micelles 

respectively and it increases with pH thereafter. Conditions: 1 uM of BRC from 

carotenoidless strain R-26 in 0.1% LDAO and 0.1% Triton X-100 detergent micelles with 

100 uM terbutryn and 5 minutes of illumination. Tungsten lamp with power of 120 W 

was used as illumination source. 

In BRC's, the majority of the carboxylic amino acids have pKa's around 6 [22]. 

The carboxylic acid residues near the dimer, upon protonation, destabilize the 

positive charge on the bacteriochlorophyll dimer. In turn, the positive charge on 

the dimer lowers the pKa values by releasing protons (Figure 4.7). This effect is 

pronounced at pH 6 and becomes unaffected at higher and lower pH values 

therefore the activation energy was lowest at pH 6 and 7 for LDAO and Triton X-

100 detergent micelles respectively and increases with increasing pH (Figure 4.6). 
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As pH increases the amino acid residues near the quinone also deprotonate and 

destabilize the negative charge on the quinone, which also causes an increase in 

the activation energy. 
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Figure 4.7 Shift of the pK, simulated Henderson-Hasselbalch curve. The presence of 

a positive charge (e.g. on the bacteriochlorophyll dimer) near a protonatable amino acid 

residue induces a downshift in the pK of a given amino acid (blue curve in upper graph) 

as compared to its previous (black curve). This shift can be observed as a 

substoichiometric proton release as the differences between the two Henderson-

Hasselbalch curves (lower curve). The effect is mostly observable at pH values between 

the unaltered and shifted pKs. 

The temperature dependence of the charge recombination was measured by using 

laser flash photolysis and analyzed by Arrhenius plot in order to determine the 

activation energy of the process upon flash excitation (Figure 4.8), which was 

found to be 25 ± 8 kJ/mol. 
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Figure 4.8 Arrhenius plot for charge recombination from the dark adapted state in 

BRC incorporated in LDAO detergent micelle followed a flash excitation. Recovery 

of the oxidized dimer (865 nm) of BRC incorporated in LDAO detergent micelles was 

measured at various temperatures by using Peltier cell upon flash excitation. Linear 

regression was used to best fit the data points and to calculate the activation energy of 25 

± 8 kJ/mol from the slope. Conditions: 1 uM of BRC from carotenoidless strain R-26 in 

0.1% LDAO at pH 8 with 100 uM terbutryn. 

The temperature dependence of flash induced charge recombination (Figure 4.8) 

was explained as a result of different numbers of hydrogen bonds to quinone in 

the reduced and oxidized states as a result the probability of electron tunneling 

depends on temperature non-monotonously [53]. 

4.4 Effect of the bound metal ion on kinetics of the charge recombination 

Binding of metal ions (copper, cobalt) to a local protein environment has been 

shown to modulate the forward electron transfer and the charge recombination 

[54]. Transition metal ions like Cu2+, Co2+ and Mn2+ form octahedral structures 

with water molecules as ligands in solution. When these water molecules are 
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replaced by amino acid side chains from the macromolecule then binding of this 

transition metal ion becomes stronger with each binding (Figure 4.9). 

H20 

RCOO 

RCOO-

Figure 4.9 Coordination of a metal ion with eight ligands to form octahedral 

geometry. The central metal ion (M2+) coordinates with water molecules (cyan) in 

solution but upon availability of negatively charged residues (red) binding becomes 

stronger. The more negatively charged residues that are available, the stronger the 

binding will be. 

The strongest binding can be achieved if all six water molecules can be replaced 

with amino acid side chains with the smallest possible distortion from the 

symmetrical octahedral geometry. 

Being divalent these metal ions have less affinity for the binding site that is 

surrounded by positively charged residues. Bicarbonate can coordinate with metal 

ions and maximizes the possibility of binding the metal ion to these positively 

charged binding sites by reducing the net positive charge to zero. Manganese and 

copper metal ion binding showed a pronounced difference with and without 
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bicarbonate unlike cobalt metal ions in the rate constant of the slowest recovering 

component (Figure 4.10). 
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Figure 4.10 Hill plots for the binding of a metal ion to the BRC. Metal ions were 

titrated in BRC solution. Cu2+ (blue) and Co2+ (brown) metal ions without bicarbonate 

show only one binding site and can be best fitted with the Hill equation (Equation 4) to 

determine the binding constant (Table 4.1) and nature of the binding. Co2+ (pink) in the 

presence of bicarbonate does not show much difference in binding but Mn2+ (yellow) and 

Cu2+ (green) show two binding sites and can be best fitted by the summation of two Hill 

equations. Gray symbols represent Mn2+ without bicarbonate and drawn lines are the best 

fit to the measured data points (Equation 4). Conditions: 1 uM BRC from carotenoidless 

strain R-26 at pH 8 with 100 uM terbutryn and 5 min of illumination with a tungsten 

lamp (120 W). The BRC was dialyzed for 24 hours to remove EDTA in order to prevent 

chelation of metal ion. 
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The data was analyzed by using the Hill equation (Equation 4), which tells about 

the co-operative nature of binding [55, 56]. Analyzed results are tabulated in 

Table 4.1. 

Table 4.1 Hill constants (nn) and binding constants (K) for manganese, cobalt, 

and copper metal ion with and without bicarbonate determined from Hill plots 

(Figure 4.10). Figures in red are much higher values than unity. 

Metal 

ion 

With 

HC03 

Without 

HCO3 

Mn2+ 

nH 

2.9±0.1 

2.1±0.67 

3±0.2 

1.6±0.43 

K(uM) 

5±0.6 

182±32 

3.7±0.23 

1042±105 

Co5+ 

nH 

2.2±0.9 

1.8±0.7 

K(uM) 

13±3 

17±4 

Cu5+ 

nH 

2.4±0.16 

1.14±0.21 

1.2±0.75 

K(jiM) 

9.7±0.5 

1750±243 

9.1±0.4 

Binding of the metal ion inhibits the formation of long lived conformational states 

as it accelerates the rate constants of the recovering component (Figure 4.10). 

After fitting these data by using the Hill equation (Equation 4), binding constants 

and Hill constants were obtained as indicated in Table 4.1. 

The Hill constant tells about the cooperative binding of the metal ion to a 

macromolecule. If the Hill constant is less than unity then there is negative 

cooperative binding which means binding of a metal ion disfavors the subsequent 

binding of metal ions. If the Hill constant is more than unity then there is positive 
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cooperative binding which means binding of a metal ion favors the binding of 

subsequent metal ions to the macromolecule. If the Hill constant is equal to unity 

then it is non-cooperative binding [56]. Figures in red (Table 4.1) are much higher 

than unity indicating positive cooperative binding, which can be interpreted as 

two binding sites in case of manganese ion with and without bicarbonate and only 

with bicarbonate in case of copper ion within the concentration range studied. 

High binding site affinity or first binding site causes an increase in the rate 

constant of the slowest recovering component from 0.001 to 0.01 s"1 indicating 

inhibition of the long lived conformational state. While the low binding site 

affinity or second binding site in the presence of bicarbonate further inhibits the 

formation of 100 s component in the case of copper and manganese. On the other 

hand, in the case of cobalt, bicarbonate does not facilitate the binding to the low 

affinity site. This can be interpreted as the difference in geometry. Cobalt and 

copper have known binding sites near the secondary quinone [54] in accordance 

with high affinity binding sites, which do not inhibit the formation of the 100 s 

component (Figure 4.10). The low binding site affinity inhibits the formation of 

this conformational state indicating the possible binding site near the 

bacteriochlorophyll dimer, which alters the local electrostatics and hence the 

interaction between the (BChl)2 and BChl monomer. Manganese has at most 7 

binding sites in the reaction center as reported earlier [57]. 
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4.5 Effect of the detergent concentration on kinetics of the charge 

recombination 

Purification and incorporation of BRC's was done in 0.1% LDAO detergent at pH 

8. Varying amounts of quinone were removed by incubating the BRC's for 3-6 

hours at 25° C in the presence of different amounts of LDAO (1-4%) and 

o-phenanthroline [58]. Therefore, two different detergents were studied to analyze 

the effect of detergent concentration on the recovery kinetics of the oxidized 

dimer after prolonged illumination. After analyzing the kinetics of the slowest 

kinetic component it was found that at pH 8, for both LDAO and Triton X-100 

detergents, the rate constants were almost independent of the detergent 

concentration provided that it was above the c.m.c. (Figure 4.11). In contrast, at 

pH 6 the ionic detergent LDAO and the nonionic Triton X-100 showed opposite 

trends in the detergent concentration dependence of the rate constant of the 

slowest recovering component. The LDAO, which has a pKa of 6.6 [22], and is 

therefore slightly positively charged at pH 6, showed a markedly accelerated 

recovery of the dimer upon increasing detergent concentration. The nonionic 

Triton X-100 detergent on the other hand moderately decreased the value of the 

rate constant of the slowest component upon increasing concentration. The 

opposite behaviour of these two different detergents indicates that the charges, 

and thus the charged amino acid residues, near the dimer and the quinone play a 

key role in the formation and disappearance of the light-induced conformational 

substates. 
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In the wild type reaction center, the carotenoid is present near the BChle to 

prevent photo-degradation of the pigments [59]. In the carotenoidless reaction 

center (R-26) this place was filled by the detergent molecule [59] (Figure 4.12) 

and moreover BChle is solvent accessible [60]. Triton X-100 is a non-ionic 

detergent and hence cannot alter the electrostatic interaction between the 

bacteriochlorophyll dimer and the bacteriochlorophyll monomer, therefore at pH 

8 the rate constants of the slowest recovering components became independent of 

the concentration of detergent (Figure 4.11). 

0.1 T 1 
• • 

: : 

s • 
"55 
c 
o 

CJ 
2 * 
£ 0.001 -
or • 

0.0001 -I 1 , 
0.01 0.1 1 10 

Concentration of detergent (%) 

Figure 4.11 Rate constants of the recovery of the oxidized dimer as a function of 

detergent concentration. Detergents were titrated in the BRC solution. LDAO (green 

circles) and Triton X-100 (brown squares) at pH 8 show independent nature of rate 

constant as a function of detergent concentration but Triton X-100 at pH 6 (black 

squares) show moderate dependence. LDAO at pH 6 (red circles) was found to be 

markedly dependent on concentration; increasing concentration accelerates the recovery 

of oxidized dimer. Conditions: luM BRC from carotenoidless strain R-26 at pH 6 and 8 

with 100 uM terbutryn and 5 min of illumination. Tungsten lamp (120 W) was used as 

illumination source. 
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LDAO is a zwitterionic detergent and at pH 8 it has a zero net charge in solution 

[21], therefore an incoming LDAO molecule cannot alter the bacteriochlorophyll 

dimer and monomer interaction. But it has a net positive charge at pH 6, which 

alters the permanent dipole-induce dipole interaction of bacteriochlorophyll dimer 

and monomer respectively resulting in inhibition of the formation of the long 

lived conformational state (1000 s component) at higher concentrations. 

At very high concentration of LDAO detergent the rate constant of the slowest 

recovering component became lower, which resembled the rate constant of the 

slowest recovering components in Figure 4.1 in the presence of the inhibitor. This 

can be explained as at very high concentration of LDAO, the primary quinone 

becomes accessible to the solvent [58]. While Triton X-100, at pH 6, moderately 

altered the rate constants as the concentration was increased and it is was as 

effective as LDAO in accessing the primary quinone. 

Figure 4.12 Cofactors of the BRC with LDAO detergent molecule. Left: BRC 

cofactors and the LDAO detergent molecules (pink) near the BChlA and BChlB. LDAO 

detergent molecule can go closer to BChlB because it is solvent accessible Right: 

Position of LDAO molecule (white) near BchlB (yellow) in the BRC. Figure was 

prepared by Pymol software from the PDB file 1RG5. 
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This was also verified by analyzing the light-minus-dark difference spectra for the 

detergent concentrations as determined earlier for the spectral band shifts (data 

not shown). From the analysis, it was found that BChU moved from 790 to 788 

nm and Bpheo moved from 760 to 758 nm but the major change was observed in 

BCMB, which moved from 810 to 796 nm for a 3% concentration of LDAO at pH 

6. This indicated that the incoming detergent molecule was altering the local 

electrostatics near BChle and inhibiting the formation of the long lived 

conformational state. 

4.6 Ionic strength dependence 

In order to investigate the role of charge-charge interactions for the 

conformational changes, the ionic strength dependence was studied to screen 

these interactions. Increasing ionic strength caused an increase in the rate constant 

up to 20 mM salt concentration but after that it became independent of the ionic 

strength. The rate constant of the slowest recovering component was lowest in 

zero ionic strength but at higher ionic strength all charge-charge interactions were 

screened and the rate became become independent of the ionic strength (Figure 

4.13). 
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Figure 4.13 Ionic strength dependence of the rate constant of the recovering 

component. Upon increasing salt concentration the rate constant of the recovering 

component accelerates and after 20 mM of salt concentration the rate constant remained 

unaltered. Conditions: 1 uM of BRC from carotenoidless strain R-26 at pH 6 with 100 

uM terbutryn and 5 min of illumination. Sodium chloride was used to increase the ionic 

strength. Tungsten lamp (120 W) was used as illumination source. 

The dipole-dipole interactions between the dimer and the monomers are important 

as far as conformational changes are concerned. After screening the charge-

charge interaction with sodium chloride salt, the rate constants of the slowest 

recovering component became faster, this was studied by ionic strength 

dependence. 

4.7 Effect of the excitation wavelength and excitation intensity 

For all measurements the same tungsten lamp was used with a power of 120 W 

but it was found that the kinetics of the charge recombination was not dependent 
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upon the light intensity (Figure 4.14B). In contrast, this kinetic of charge 

recombination varies depending on excitation wavelength (Figure 4.14A). 

B. 

CO 

» « » » I B Ul l « W ' « S9 2X 

Light intensity (W) 

Time (min) 

Figure 4.14 A. Wavelength dependence on the recovery of oxidized dimer monitored 

at 865 nm. Blue trace was recorded with white LED as illumination source, black trace 

was recorded with tungsten lamp as illumination source, and red trace was recorded by 

using band pass filter at 865 nm. B. Rate constants of slowest recovering component as 

a function of light intensity. The intensity of illumination source was altered by 

increasing power of the source. Conditions: 1 uM of BRC from carotenoidless strain R-

26 in LDAO detergent with 100 uM terbutryn at pH 8 with 5 min of illumination. 

The rate constants of the charge recombination were independent of the intensity 

of illumination source (Figure 4.14B). At high intensity the B-side electron 

transfer was promoted by absorbance of multiple photons [61] but in the presence 

of an inhibitor (terbutryn) BpheoB was reduced without altering the kinetics of the 

A-side charge separated state. As the intensity of the illumination source was 

increased, the charge separated state was populated faster i.e. dark adapted state 

but the charge recombination took place from the same altered conformational 

state. This charge recombination was found to be dependent on excitation 

wavelength (Figure 4.14A) due to either excitation wavelength dependent 
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photochemistry or of special heterogeneity in the reaction center population, 

where the charge separated state can be formed due to the oxidation of the 

monomer A or the bacteriopheophytine A [61]. If the bacteriochlorophyll was 

excited directly by 865 ± 20 nm then rate of the charge recombination was 

slowest. The spectrum from the tungsten lamp has some emission in near infra­

red region which is closer to the bacteriochlorophyll dimer absorption band 

therefore it gives slower charge recombination than that of illuminated by white 

LED, which does not have emission in the near infra-red region. 

4.8 BRC as a biocapacitor 

In Nature, the charge recombination from the primary quinone takes place in 100 

ms in the BRCs (Figure 4.15A). Upon prolonged illumination this charge 

recombination can be extended up to several minutes in the presence of detergent 

micelles (Figure 4.15B). Lower temperatures in case of the detergent micelle, do 

not cause a significant difference in the rate constant of charge recombination; it 

indeed recovers within 30 minutes. In the gel phase of DLPC liposomes the 

charge separated state can be further extended up to more than 9 hours i.e. 3 

million times slower charge recombination compared to in Nature [52] (Figure 

4.15C). The hydrophobic mismatch causes the overall upward shift in the DLPC 

phase transition temperature from 0 to 10° C. 
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Figure 4.15 Recovery of the oxidized primary donor of the R-26 strain monitored at 

865 nm under certain conditions. A. Lifetime of primary charge separated state was 

measured by laser flash photolysis (~ 100 ms) at room temperature. B. Upon prolonged 

non-saturating illumination of the BRC incorporated in a detergent micelle environment, 

charge recombination was extended up to several minutes at room temperature, which 

has a 105 times slower charge recombination. C. In the gel phase of DLPC the same 

charge separated state was extended up to several hours at 8° C, which is 3 million times 

slower charge recombination. Figure was taken from reference 52. 

So, upon external illumination of the BRC, a charge separated state can be 

formed, which has an altered conformation with an extended lifetime. These 

charges are separated by the hydrophobic core of environment with dielectric 

constant ~ 4. Since these charges can be kept apart for an extended period of time, 

this photosynthetic machinery can be used as biocapacitor (Figure 4.16). 
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Figure 4.16 Bacterial reaction center as a biocapacitor. 

In order to discharge this biocapacitor rapidly, a pH jump can be used. Since, pH 

6 has the maximum effect compared with the higher pH values, during the rapid 

discharge pH can be changed from 6 to 10 (Figure 4.17). Upon change in the pH, 

the majority of the amino acid residues get deprotonated, disfavoring the charge 

separated state which causes rapid charge recombination. This can happen rapidly 

in the presence of detergent micelles because change in pH can easily be sensed 

by the protein but in case of liposome it takes a few hours for the protein to sense 

the change in pH due to the random orientation of protein inside the liposome and 

it also takes few hours for the hydroxyl ion to penetrate through the membrane 

(Figure 4.18). 
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Figure 4.17 Discharging of a biocapacitor by a pH switch. A. Longest kinetic trace 

recorded in the gel phase of DLPC liposome at 8° C, which takes 90 minutes of 

illumination for saturation. Figure was taken from the reference 52. B. Longest kinetic 

trace in the presence of 0.05% LDAO detergent micelle environment, which takes 10 

minutes of illumination for saturation. C. pH jump from 6 to 10 after the illumination 

causes fast charge recombination. 

Charging and discharging of the biocapacitor is faster in the case of the detergent 

micelles than that of in the liposomes (Figure 4.17), therefore detergent micelles 

are a more effective environment for a biocapacitor where a pH switch acts as a 

better tool for rapid discharge. In solution, BRC's have random orientation and 

for biocapacitor the charge pairs should be oriented properly. Therefore, to obtain 

proper orientation of the BRC micelles in the solution, electric field can be 

applied. 
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Figure 4.18 Random orientation of BRC in the liposome. Cytoplasmic side of the 

BRC may be oriented either inside the liposome or outside the liposome. 

In summary, a cumulative figure can be prepared from all the factors that affect 

the formation of different conformational states. For simplicity only Figure 4.2, 

4.3, and 4.11 were combined to emphasize different conformational states (Figure 

4.19) that can be formed between 0.1 to 0.001 s*1 by altering the local 

electrostatics near the dimer. The conformational rearrangements are sensitive to 

various different parameters like illumination time, pH, concentration and head-

group charge of the detergent, temperature, hydrophobic environment, bound 

metal ion etc. 
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Figure 4.19 Cumulative figure for the environmental factors that form different 

conformational states upon prolonged illumination. Triangles and circles represent the 

illumination time dependence in the presence and in the absence of the potent inhibitor 

terbutryn at different pH values. The red circles at the bottom represent LDAO 

concentration dependence at the pH 6. At 0.05% of LDAO concentration the slowest 

conformational state was formed. 
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Chapter 5 

Conclusion 

Upon illumination, instant charge separated states are formed (P+Q') as shown 

symbolically by a rectangular shape for the RC in Figure 5.IB. This is attributed 

to the charge recombination of the dark adapted conformation, with a 1 s to 100 

ms lifetime, depending on occupancy of the secondary quinone binding site. Upon 

prolonged illumination these charge separated states undergo slow conformational 

rearrangements to form altered light adapted conformations as shown 

symbolically by the ellipses or circles (Figure 5.IB). These conformational 

changes take place to different extents with rate constants of 0.1 s"1 to 0.001 s"1 

between the dark adapted (rectangle) and fully light adapted states (circle). 

Different conformational states can be formed by altering the H-bonding pattern 

(Figure 5.1 A) or local electrostatics (Figure 5.1C) near the dimer. Hence, the 

mutant study and other environmental factors' study can be correlated and put in 

the context of the minimal model of different conformational states. 

In the case of mutants that lack LH(L131) H-bonding, and in the case of other 

environmental factors which do not alter the dipole-dipole interaction between the 

dimer and monomer, evolution of the slowest kinetic component was observed. 

These extended lifetime charge separated states can be attributed to the 

conformational rearrangements in the BRC, which involves the movement of the 

bacteriochlorophyll monomer upon illumination followed by the movement of the 

bacteriochlorophyll dimer. The movement of the bacteriochlorophyll dimer can be 
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altered by changing various parameters, which help or hinder the charge-charge 

interactions for its movement resulting in different lifetimes. With these 

systematic changes, the lifetimes of the charge separated states were increased by 

5 orders of magnitude. 

The most favorable conditions to increase the lifetime of charge separated state 

are pH 6 with 0.05% of LDAO detergent with no EDTA in BRC protein. The 

research effort presented here was aimed not only at controlling the storage of the 

electrical energy (increasing the lifetimes) of the proposed biocapacitor but also 

ascertaining that a rapid discharge of it can be induced by a pH jump. 

90 



100 

10 

1 

0.1 

0.01 

0001 

A 

• 

• 

Mutants 

. 

pH-8 0 

o 
0 0 Flash-induced 
o charge recombination 

Dark adapted state 

Slow component 

o o o % 
o • * • 

pH-6 w 

• o 
• o 

C& O PH-8 

Slowest component 
a tpH6 

' • • " . . . 

R-26 strain 

-100 0 100 200 300 
Driving force (meV) 

IJO 

Dark adapted state 
<ot 

PQ Ig^fFQ1 

It 
Slow component 

Slowest component 

)C1 

am 

Daft adapted state 

Illumination time for 
LDAO 

7 v V v PH9 
5 T T T T "% 

n H S R * pHS*' 
• » 

, LDAO detergent 
Concentration at pH 6 

Figure 5.1 Comparison of different conformational states in the mutants and R-26 

strain to the minimal model of the light-induced conformational changes. The 

conformational changes can take place to different extents with rate constants of-0.1 s"1 

to -0.001 s"1 between the dark adapted (rectangle) and fully light adapted (circle) states, 

depending on various factors, such as mutations, pH, ionic strength, illumination time, 

detergent concentration, QB occupancy etc.(Panel A and C). In some cases the 

conformational changes can only go up to the intermediate states represented by ellipses 

between dark and light adapted states in our model (Figure 5.1 scheme) but in case of the 

use of the lipid environment it can go down further. The extent of the conformational 

changes were monitored by the kinetic analyses of the light-induced absorption changes. 
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Chapter 6 

Future work 

This project can further be extended in order to increase the lifetime of the charge 

separated state in detergent micelles by-

i. Increasing viscosity upon light-induced conformation. In the 

carotenoidless R-26 strain the BChls is solvent accessible so, increase in 

viscosity by titrating glycerol can inhibit the back movement of the dimer 

and the monomer that may lead to longer lifetimes of the charge separated 

states. In recent works, glycerol molecule was also found near the BChU 

as show in Figure 6.1 below. 

Figure 6.1 The wild type BRC with the carotenoid pigment near the BChlB and 

glycerol molecule (pink) near the BChlA. Figure was prepared by Pymol software from 

PDB code: 2UWW. 

ii. Titrating the metal ion in the BRC sample after the light-induced 

conformational rearrangement to change local electrostatics. If 

conformational rearrangements facilitate binding of the metal ion near the 
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dimer then slowest conformational state can be formed by inhibiting back 

movement of the dimer and monomers, 

iii. Using different composition of detergents because use of more than one 

detergent causes different conformational changes in the BRC protein to 

compensate for the hydrophobic mismatch. 
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