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ABSTRACT 

Collaborative Techniques for Achieving Spatial Diversity in Wireless Networks 

Hesam Khoshneviss 

Recently, there has been lots of interest in techniques that achieve spatial diversity 

to improve the reliability and/or the rate of the transmission in wireless networks. To 

achieve spatial diversity the transmitters need to be equipped with more than one antenna. 

To obtain maximum diversity gain, the fading among these antennas should be 

uncorrelated and hence the antennas should be well separated. This is usually not 

possible due to the cost and the small size of the wireless devices. In this case, the only 

way to achieve spatial diversity is a new technique which is known as cooperative 

diversity. In this technique, diversity is achieved through collaboration between the 

transmitting nodes in the network. 

In this thesis, we develop a collaboration protocol and a practical coding strategy 

for the collaborative communication in a three node network with no knowledge of 

channel state information (CSI) at the transmitter side. Unlike most other works, we have 

used a variable time-fraction scheme as the basis of our protocol and will show that this 

protocol achieves full diversity while providing a noticeable coding gain. Then, 

assuming the availability of the channel state information at the transmitters via a simple 

feedback from the destination to the relay or to both the source and the relay, we develop 
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collaboration protocols for both feedback scenarios. The performance of all of these 

protocols has been obtained using Monte Carlo simulations and has been compared with 

the outage probability of a single transmitter scenario. We have also obtained constant 

gain contours that demonstrate the loci of the relay that guarantees a minimum gain for 

all three scenarios. 

IV 



To my parents 

v 



ACKNOWLEDGEMENTS 

I would like to express my gratitude to all those who gave me the opportunity to 

complete this thesis. First of all, I am deeply grateful to my supervisor, Professor M.R. 

Soleymani, for his understanding, encouragements, constructive comments, and for his 

general support throughout this work. He has been always available when I needed his 

guidance in my research or my life. 

I would, like to thank members of our research group for their help and for all I 

have learned from them. I want to specially thank Mr. Patrick Tooher for the inspiring 

research discussions we had. 

I am always deeply grateful to my parents, Farahnaz and Ghasem, and my uncle 

Mohammad for their love and support throughout this degree and my life. Finally, I 

would like to thank Maryam for her love, understanding and patience. 

VI 



TABLE OF CONTENTS 

CHAPTER ONE 1 

1 Introduction 1 

1.1 Motivation 1 

1.2 Contributions 2 

1.3 Thesis Outline 4 

CHAPTER TWO 6 

2 Background and Related Work 6 

2.1 The Wireless Channels and Fading 6 

2.1.1 Path Loss 7 

2.1.2 Small-Scale Fading 8 

2.2 Diversity Techniques 17 

2.2.1 Combining methods 20 

2.3 Multiple-input, multiple-output (MIMO) channels 22 

2.4 Space-time codes 24 

2.5 Cooperative Diversity 26 

2.6 Conclusion 32 

CHAPTER THREE 33 

3 System Model and Channel Code Selection.... 33 

3.1 System Model 33 

vii 



3.2 Channel code selection 41 

3.3 Modified Pairwise Error Probability 43 

3.4 Code Construction 47 

3.4.1 Block Codes 49 

3.4.2 Convolutional Codes 51 

3.5 Chapter Summery 52 

CHAPTER FOUR 54 

4 Simulation Results for the System with No Feedback 54 

4.1 Simulation Parameters 54 

4.1.1 General Parameters 54 

4.1.2 Path Gain 56 

4.2 Encoder 57 

4.3 Decoder 58 

4.3.1 Branch Metric Equations 58 

4.4 Results 61 

4.4.1 Simulation Results for Path Loss Exponent of 4 65 

4.5 Conclusion 67 

CHAPTER FIVE 69 

5 Simulation Results for the System with Feedback 69 

5.1 CSI Available at Relay Only 69 

5.1.1 Modes of Collaboration 70 

5.1.2 Decision Criteria 71 

5.2 CSI available at Both Source and Relay 76 

viii 



5.2.1 Modes of Collaboration 76 

5.2.2 Decision Criteria 78 

5.3 Results 84 

5.4 Conclusion 88 

CHAPTER SIX 89 

6 Concluding Remarks 89 

6.1 Conclusion 89 

6.2 Future Work 91 

Bibliography 93 

APENDIX 99 

A Note on the Stop Criteria in the Simulations 99 

ix 



LIST OF FIGURES 

Figure 2.1 Bit error rates of BPSK modulation over AWGN and Rayleigh fading 

channels 14 

Figure 2.2 (a) Transmit diversity, (b) receive diversity, (c) transmit and receive diversity 

20 

Figure 2.3 Channel model for a system withZth order receive diversity 21 

Figure 2.4 A typical MIMO channel model 23 

Figure 3.1 Network Model for two-phase communication 34 

Figure 3.2 Collaborative communication with variable time-fraction 35 

Figure 3.3 Three modes of operation based on s-r channel, i) A= 13, ii) A= 23, Hi) A= 1 

(no collaboration) 37 

Figure 3.4 Convolutional encoder for collaborative communications 42 

3.5 Two-phase Collaborative Communication 47 

Figure 4.1 Network Model 56 

Figure 4.2 Encoder 57 

Figure 4.3 Trellis for the 8-state Code 58 

Figure 4.4 Mode (z), (A= 1/3) 59 

Figure 4.5 Mode (ii), (A= 2/3) 60 

Figure 4.6 Mode (/), (A= 1/3) 61 

Figure 4.7 FER performance of different codes [35] 62 

x 



Figure 4.8 Transmitted SNR Required to achieve FER=10"3, source is at (0,0) , 

destination is at (1,0) and relay moves on the plane 63 

Figure 4.9 Gain vs. Non-Collaborative Single Transmitter Capacity 64 

Figure 4.10 Constant gain contours 65 

Figure 4.11 Gain vs. Non-Collaborative Single Transmitter Capacity (Path Loss 

Exponent 4) 66 

Figure 4.12 Constant Gain Contours (Path Loss Exponent 4) 67 

Figure 5.1 Collaboration Modes in Partial Feedback Scenario 70 

Figure 5.2 FER of the 8-Sate Code at Rate 13 (mode i) 72 

Figure 5.3 FER vs. received bit SNR from the relay at different received bit SNR from 

the source in mode ii 73 

Figure 5.4 FER vs. received bit SNR from the relay at different received bit SNR from 

the source in mode Hi 74 

Figure 5.5 Collaboration mode areas when CSI is only available at the relay 74 

Figure 5.6 Collaboration modes when both source and relay have access to CSI 77 

Figure 5.7 FER of Rate l(mode i) 79 

Figure 5.8 FER of the 8-Sate Code at Rate 12 (mode ii) 79 

Figure 5.9 FER vs. received bit SNR from the relay at different received bit SNR from 

the source in mode iv 80 

Figure 5.10 FER vs. received bit SNR from the relay at different received bit SNR from 

the source in mode v 81 

Figure 5.11 FER vs. received bit SNR from the relay at different received bit SNR from 

the source in mode vi 81 

xi 



Figure 5.12 Collaboration mode areas when CSI is available at both source and relay... 82 

Figure 5.13 FER performance of different feedback scenarios (the relay is located at 

d=0.3 between source and destination) 85 

Figure 5.14 Gain vs. Non-Collaborative Single Transmitter Capacity with different 

feedback scenarios 86 

Figure 5.15 Constant gain contours, CSI available at relay 87 

Figure 5.16 Constant gain contours, CSI available at both source and relay 87 

Figure 5.17 Comparison of 4dB gain contours in different feedback scenarios 88 

xn 



LIST OF TABLES 

Table 2.1 Path Loss Exponent for Different Environments 8 

Table 3.1 Relay's time fraction Table 39 

Table 4.1. Relay's Required Received SNR 57 

xiii 



List of Acronym 

AWGN 

BER 

BLAST 

BPSK 

BS 

CDMA 

CSI 

FDMA 

FER 

MIMO 

MRC 

SC 

SNR 

STBC 

STC 

STTC 

TDMA 

WLAN 

Additive White Gaussian Noise 

Bit Error Rate 

Bell Laboratories Layered Space-Time 

Binary Phase-Shift Keying 

Base Station 

Code-Division Multiple-Access 

Channel State Information 

Frequency-division multiple access 

Frame Error Rate 

Multiple-Input, Multiple-Output 

Maximal Ratio Combining 

Selection Combining 

Signal to Noise Ratio 

Space-Time Block Codes 

Space Time Codes 

Space-Time Trellis Codes 

Time-Division Multiple Access 

Wireless Local Area Network 



List of Symbols 

at (t) Fading amplitude 

B Number of block in a frame 

B(c, e) Codeword difference matrix 

Bc Coherence bandwidth 

Bd Doppler spread 

BM Branch metrics 

CAWGN AWGN channel capacity 

Ch Instantaneous channel capacity in fading channel 

D Distance 

d(c, e) Hamming distance of c and e 

dmin Minimum Hamming distance 

Es Symbol energy 

Eb Bit energy 

E [x] Expected value of x 

h Fading coefficient 

L Number of channels 

Nt Number of transmit antennas 

Nr Number of receive antennas 

No/2 Additive white Gaussian noise variance 

Pr Average received power at the receiver 

xv 



Pt Transmitted power 

Pb.Ray Bit error probability over a Rayleigh fading channel 

Pe Probability of error 

Poutage Outage probability 

Pb,AWGN Bit error probability over an AWGN channel 

PGij Path gain between nodes i and j 

PL{d) Path loss at distance d 

Q(x) Complementary error function 

rank Rank of a matrix 

Tm Delay spread 

W Signal band width 

y(t) Received signal at time t 

a Fading amplitude 

Tj ( t ) Propagation delay 

a 2 Variance 

Cl Average fading power 

Y Instantaneous received SNR 

f Average received SNR 

Ymin Minimum required SNR 

Ysc.eff Effective received SNR at the decoder with selection combining 

YMRC.eff Effective received SNR at the decoder with maximal ratio combining 

(At) c Coherence time 

xvi 



CHAPTER ONE 

1 Introduction 

1.1 Motivation 

With the advancements in technology, the new portable electronic devices 

become more powerful and capable of running sophisticated applications. Many of these 

devices/applications need to communicate with each other and/or to the Internet to 

perform their services. Since these devices are mobile, this communication has to be 

done over a wireless channel. To support these services the demand for reliable, high 

data rate, low power communication over wireless channels has increased considerably. 

However the design of such a system is a very difficult task, due to various characteristics 

of wireless channels. One of the most challenging problems in the design of a wireless 

communication system for mobile devices is the random variations of the wireless 

channel gains, which is called fading. It has been shown that the most effective way to 

increase the transmission rate and/or reduce the power consumption of a communication 

system in a fading environment is to a use a type of diversity technique. This technique 
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is called spatial diversity and can be employed by installing several antennas on the 

transmitting and/or receiving nodes and forming a multiple-input, multiple-output 

(MIMO) channel [1] [2] [3] [4]. To be able to provide a full diversity gain, these 

antennas have to be well separated from each other to minimize the amount of correlation 

between the resulting channels [5]. Due to the size and cost of the mobile wireless 

devices, this is not possible in most cases. But on the other hand, in an urban 

environment, we are surrounded by tens if not hundreds of such devices at all time. If 

these wireless terminals cooperate with each other to transmit and/or receive their 

information, they can form a virtual multiple antenna system. In this case, proper spatial 

separation between antennas is usually guaranteed and the resulting channels can be 

modeled as independent fading channels. This way of achieving diversity is known as 

cooperative diversity [6] and it has been shown that it can provide a diversity gain equal 

to that of a multiple antenna system [7] [8] [9] [6] [10]. 

1.2 Contributions 

In this thesis we have initially assumed no knowledge of channel state 

information (CSI) at the transmitter side and developed a cooperation protocol and a 

practical coding strategy for the collaborative communication in a three node network. 

This network consists of a source, a relay, and an ultimate destination node. It is 

assumed that the relay is idle at the time of collaboration and can allocate all its resources 

to help the source node. The transmission of one frame of data is divided into two 

phases: the exchange phase and the collaborative (cooperation) phase. In the exchange 

phase the source transmits its information to both the relay and the destination. Then, if 
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the relay decodes the source message without error, they both transmit in the 

collaboration phase. And if the relay cannot decode the source message at the end of the 

exchange phase, it will remain silent and the source will be the only one who transmits 

during the second phase. One of the most important features of our protocol is its 

variable time-fraction. In a fixed time fraction protocol the relay may not be able to 

decode the source message at the end of the fixed-length exchange phase and therefore, 

remains silent during the collaboration phase. On the other hand when the source-relay 

channel is in good shape, the relay may not need to spend all that time to understand the 

message and could start the collaboration earlier. Our coding scheme allows the relay to 

increase the length of the exchange phase in gradual steps. This is being done despite the 

fact that the source does not know whether the relay collaborates or not. This, on the 

average, increases the chance of the relay to collaborate with the source by setting the 

length of the exchange phase closer to the optimum value. Hence the chance that the 

diversity gain be achieved by the systems increases. 

At the destination, we used a simple decoder that utilizes all the received 

information to decode the message, including the information obtained during the 

exchange phase. This guarantees the achievement of the full diversity advantage 

regardless of the channel code used by the source and the relay in the collaboration phase. 

It means that unlike the scheme proposed in [9], the focus in the channel code design can 

be concentrated on the coding gain instead of diversity advantage. Using our design 

criteria, we have selected a channel code and obtained the performance of our protocol in 

different environments via Monte Carlo simulation and showed that our system achieves 
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the full diversity advantage. Then we moved the relay in a plane around the source and 

the destination and used the simulation results to obtain the loci of the relay that 

guarantees a certain gain in the system. 

Furthermore, assuming the availability of the channel state information at the 

transmitters via a simple feedback from the destination to the relay or to both the source 

and the relay, we developed collaboration protocols for both feedback scenarios. The 

performance of these protocols has been obtained using Monte Carlo simulations and has 

been compared with the previous results. 

1.3 Thesis Outline 

This thesis is organized as follows. In Chapter 2, we represent a brief background 

on the wireless communication in fading environments, diversity techniques, MIMO 

channels, and space-time codes. Then, we continue with a review of the existing 

literature on cooperative diversity. Chapter 3 contains our system model and our 

proposed protocol and the coding strategies. In Chapter 4, we provide details of the 

simulation parameters; the encoder and the decoder used for the simulations and present 

the simulation results for the case where there is no CSI available at the transmitters. In 

Chapter 5, we assume limited knowledge of channel state information at the transmitter 

side via a simple feedback from the destination first to the relay and later on to both the 

source and the relay. Using this information, we design a protocol for each feedback 

scenario that improves the performance of the system. Then, we present the simulation 

results for the two feedback scenarios and will compare them with the results obtained in 
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Chapter 4. Finally the concluding remarks and suggestions for future work are given in 

Chapter 6. 



CHAPTER TWO 

2 Background and Related Work 

In this chapter we present the background and literature review of wireless 

communication in fading environments. We start by a brief introduction and modeling of 

large-scale and small-scale fading and continue by explaining different diversity 

techniques as an effective tool to combat the severe effects of fading on the performance 

of communication systems. Then, MIMO systems and space-time codes are explained as 

ways to employ spatial diversity. Finally, we review the existing literature on 

cooperative diversity as a new useful type of spatial diversity for wireless networks. 

Later, in Chapter 3 we will define our collaborative protocol as a practical and efficient 

way of implementing cooperative diversity. 

2.1 The Wireless Channels and Fading 

One of the main challenges in designing a reliable communication system over a 

wireless channel is the variation of the characteristics of the channel over time and 
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frequency. These variations can be generally divided into two major categories, namely 

large-scale fading and small-scale fading. Large-scale fading is mainly the result of path 

loss according to the distance and the medium between the transmitter and the receiver 

and shadowing by large objects like buildings and mountains in the environment. Small-

scale fading is the consequence of multipath nature of wireless channels. We start by a 

brief explanation of path loss and will continue by a more thorough introduction to the 

small-scale multipath fading. 

2.1.1 Path Loss 

Path loss can be defined as the drop in the average received power density of an 

electromagnetic wave as it moves through space. It includes the effects of propagation 

losses, transmitting antenna gain, and absorption losses when signal travels through 

different medium. Path loss is usually characterized by path loss exponent. To define 

path loss exponent, assume that Pr is the average received power at the receiver over a 

long period of time and let Pt be the transmitted power. We can write 

where c is a constant and d is the distant between the transmitter and the receiver. Then 

/? will be defined as the path loss exponent of the channel [11]. Path loss at a distance d 

from the transmitter can also be defined as a relative value corresponding to a known 

path loss at reference distance d0 that has been obtained via actual measurements. This 

way it can be presented as 
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PL{d) = 
fd^ 

\doj 
PL{d0). (2.2) 

Value of/? varies depending on the nature of the environment. Table 2.1 shows some 

typical path loss exponents measured in different environments. 

Table 2.1 Path Loss Exponent for Different Environments [12] 

Environment 

Free Space 

Urban area 

In building Line-of-sight 

Obstructed in building 

Path Loss Exponent, /? 

2 

2.7 to 3.5 

1.6 to 1.8 

4 to 6 

2.1.2 Small-Scale Fading 

Small-scale fading or multipath fading can be defined as the random variation of 

the received signal amplitude and phase during a short period of time or travel distance 

and is the result of the reception of several versions of the transmitted signal through 

different paths on the receive antenna. Each of these replicas of the transmitted signal, in 

general, has a different time varying amplitude, phase shift and delay. The variations in 

different multipath signals are the results of propagation, scattering, diffraction, and 

reflection of signal via/through different materials. Also, they can be caused by the 

relative motion of the transmitter and the receiver or their surrounding objects. Different 

multipath copies of the transmitted signal can add together in a destructive or 
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constructive manner and cause random fluctuations in the received signal amplitude and 

phase, which is called fading. lfx(t) is the transmitted signal and y(t) is the received 

signal, we can model the multipath wireless channel as 

X0 = 5>, (>)*('-r,(0) + «(0. (2.3) 
i 

In the above equation, cij(t) is the amplitude and T;(t) in the propagation delay of the 

ith component of the multipath received signals and n(t) is the Additive White Gaussian 

Noise (AWGN). Note that we have assumed that there are a finite number of multipath 

components, L. If L grows the summation will lead to integration. 

One of the important characteristics of a fading channel is the time between the 

reception of the first and the last multipath version of the signal and is called delay 

spread or multipath spread of the channel (7^). Based on Equation (2.3), it can be 

viewed as the difference between the minimum and maximum value of T;(t). If the 

delay spread of the channel is considerably smaller than the transmitted signal duration, 

we can assume that all multipath components of the received signal have arrived almost 

at the same time and hence the shape of the transmitted symbol is intact. In the frequency 

domain we can consider this as an equal treatment of different frequency components of 

the transmitted signal and therefore, we can say that the channel has a flat frequency 

response. Furthermore the coherence bandwidth of the channel (Bc) can be defined as 

Be"jr- (2-4) 
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If the bandwidth of the transmitted signal is smaller than the coherence bandwidth of the 

channel, then the channel is said to be a flat fading channel and otherwise it is called 

frequency selective fading channel. If we consider a flat fading channel, Equation (2.3) 

can be written as 

y(0 = x(oi>,.(0 + n(0- (2-5) 

If we define the channel fading coefficient as h(t) = Ef'a((t)> the above equation 

becomes 

y(t) = h(t)x(t) + n(t). (2.6) 

The time variation of the received amplitudes is the effect of the relative motion 

of the transmitter and the receiver or the movement of the objects in the surrounding 

environment. Doppler spread and coherence time of the channel are parameters that are 

defined to quantify these variations. Doppler spread (Bd) is defined as the range of 

frequencies for which the Doppler power spectrum is non-zero. Coherence time ((At)c) 

of the channel can be defined as the average time over which the attenuation factor or the 

channel fading coefficient remains essentially constant and is the inverse of Doppler 

spread. 

(A0C*-^- (2-7) 

If the duration of the transmitted symbol considerably smaller than the coherence time of 

the channel, then the channel is said to be a slow fading channel and otherwise it will be 
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called a fast fading channel. In a fast fading channel a single symbol may undergo 

several different fades and hence the received symbol can be severely distorted. 

In a flat fading channel if we assume that the number of received multipath 

signals, L, is large, the central limit theorem can be applied and we can approximate the 

distribution of the channel impulse response by a Gaussian process. If there is no line-of-

sight between the transmitter and the receiver, the Gaussian process will be zero-mean 

and therefore the absolute value of the channel gain at any time instant is a Rayleigh 

random variable and its phase is uniformly distributed over the interval (0,2n). Then the 

channel will be called a Rayleigh flat fading channel. If the Gaussian process has a non

zero mean then the absolute value of the channel can be modeled with a Rician 

distribution and the channel will be called a Rician fading channel and it is used when 

there is a line-of-sight between the transmitter and the receiver. There is also a general 

model for the fading channel based on the experimental observations and it is called 

Nakagami-m fading. Both of the above mentioned theoretical models can be represented 

(or approximated) as special cases of the Nakagami-m fading. One can refer to the [12] 

and [13] for a detailed explanation of these models. Since Rayleigh distribution provides 

a reliable model for the "worst case" fading scenario [11] (there is no line-of-sight), we 

will use a Rayleigh fading distribution to model our fading channels throughout this 

thesis. 

To show the severe effect of fading on wireless communication, let us derive the 

performance of a simple communication system over a slow flat fading Rayleigh channel 

and compare it with the performance of the same system over an AWGN channel. 
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Assume we use binary phase-shift keying (BPSK) modulation with average received 

signal to noise ratio SNR = —. We can model the received signal as 

y = hx + n (2.8) 

where h is the channel coefficient, y is the received signal, x is the transmitted signal 

with values +jE~l and n is the additive white Gaussian noise with mean zero and 

variance N°/2 per dimension. The conditional bit error rate of the channel for a specific 

value of h can be written as 

Pb(h) = QU2\h\2^-) (2.9) 

where Q(x) is complementary error function. Since we assumed Rayleigh fading 

distribution, the probability distribution function of \h\ is given by 

Pw(u) = ^e-% u > 0 (2.10) 

where D, — E(hz) and can be represented as the average fading power. Then y — 

h2 Eb/N° has a chi-square probability distribution with two degrees of freedom. We 

have 

P(r)=4exp(-^) (2.11) 
r r 
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where y is the average y. Now we can average the conditional bit error rate obtained in 

(2.9) over the probability distribution of y and obtain the average bit error rate of the 

system over a Rayleigh fading channel. We have 

Pb = [Pb{r)p{Y)dy. (2.12) 

Assuming that the average fading power is equal one (fi = 1) the result of the above 

integration is obtained as 

P = I 
b,Rayleigh ~ 

' m 
n + f 

(2.13) 

And for large y we have 

"b,Rayleigh ~ .— • VA-*-^) 

From basic communications, we know that the bit error rate of a BPSK modulation in 

AWGN channel is upper bounded by 

^ ) < - e x p ( - - ^ 
N/ 2 HV N. PKAWGN =QU2T7 ) ^ e x P ( - r f ) - (2-15) 

Both approximations are tight at high SNRs. It can be seen that the bit error rate 

decreases exponentially with SNR in AWGN channel, while it only decays with the 

inverse of SNR over Rayleigh fading channel. The obtained bit error rates are depicted in 
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Figure 2.1 The figure shows the severe effect of fading in the performance of a wireless 

communication system. 

SNR (clU) 

Figure 2.1 Bit error rates of BPSK modulation over AWGN and Rayleigh fading channels 

To obtain the bit error rate of the fading channel we averaged the conditional error 

rate over all possible fading values. This means we have to transmit an infinite number 

of bits in order to achieve the error rate of Equation (2.13). Since this is not practical in 

many applications, let us define another measure for analyzing the performance of a 

communication system in a Fading environment. Assume that a specific transmission 

system requires a minimum frame error rate (FER) to function properly and that to 

achieve that frame error rate a minimum signal to noise ratio {Ymin) 1S needed. In a 

fading environment the instantaneous SNR fluctuates with respect to variations of the 

channel coefficients. If we know the distribution of the channel coefficients, we can 

calculate the probability of the event when the instantaneous SNR falls below the 

minimum required SNR. This Probability is called the outage probability and indicates 
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the percentage of the time that the performance of the system is not satisfactory. Outage 

probability is a good measure of performance of the system when it is not possible to 

average over all fading coefficients. 

Consider the same slow flat Rayleigh fading channel and assume that the fading 

coefficient h remains essentially constant during the transmission of a fixed length frame 

of data {quasi-static fading). If we need ymin to achieve the required frame error rate, the 

outage probability can be written as 

/min / min 1 £_ ?min 

PoUlage = P[y^rmm}= \p{r)dr=\-e'7dy=\-e ' (2.16) 
0 0 y 

where y is the average received signal to noise ratio. At high signal to noise ratios, the 

above can be approximated by 

It can be seen that the outage probability only decays inversely with the signal to noise 

ratio which is not acceptable in most communication systems. For a quasi-static Fading 

channel, outage probability can be defined in terms of the transmission rate and 

instantaneous channel capacity. Capacity of a channel is defined as the maximum 

amount of information that can be reliably transmitted through a communication channel. 

Shannon proved that if the information transmission rate exceeds this limit, it is 

impossible to decode the received message with an arbitrary small probability of error 

[14]. Capacity of an AWGN channel can be written as 
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CAWGN=\og{\ + ̂ ) (2.18) 

where the capacity is measured in bits per channel use and Eb/N° is the information 

signal to noise ration. In a fading channel the instantaneous received signal to noise ratio 

(y) fluctuates with the variation of the channel gain, therefore, the instantaneous channel 

capacity is a function of the fading coefficient. We have 

Ch=\og(l+\h\2^). (2.19) 

Now we define an outage as the event when the instantaneous capacity (Ch) of the 

channel falls below the information transmission rate (R). Based on the definition of the 

channel capacity, this means that when an outage occurs, it is impossible to decode the 

received message without error. Now the information outage probability or simply the 

outage probability can be written as 

P0Ulage=F[Ch<Rl (2.20) 

For every outage probability, we can define an outage capacity as the maximum 

transmission rate that can be achieved with probability (1 — Poutage)- 1° block fading 

environments, the outage probability can be considered as the lower bound to the frame 

error rate of the system and hence it is a useful tool to evaluate the performance of a 

coded system. 
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2.2 Diversity Techniques 

In the previous section, we explained the undesirable effects of fading on the 

performance of a communication system. Now we will present some techniques to 

combat the effects of channel fading. These techniques are referred to as diversity 

techniques. Diversity techniques in general refer to the ways of improving performance 

of the system by providing the receiver with more than one replica of the same 

information through independently fading channels. To make it more clear let us give an 

example. Assume that in a given communication system, the received signal to noise 

ratio has to be above a certain threshold y for the receiver to be able to decode the 

message with a required error rate. Now assume that our system works in a fading 

environment and the received signal to noise ratio falls below the required threshold with 

probability p, then we can say that Poutage = V- If we supply the receiver with L replicas 

of the same information, each received through an independent fading channel, the 

probability that all the received replicas fall below the assumed threshold is pL and 

therefore,Poutage11 = PL- Since p < 1, pL < p. Therefore, if L independent diversity 

channels (branches) are available, the outage probability obtained in the previous section 

will decay inversely with the Lth power of the average signal to noise ratio. In this case 

the system is said to provide a diversity of order L. In general diversity order is defined 

as 

Diversity Gain = - lim — ° S ^ (2.21) 
»«-»» Log(SNR) 
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where Pe is the error rate of the system. Diversity can be achieved via several methods. 

The most famous types of diversity are frequency diversity, time diversity, and space 

diversity. 

Frequency diversity consists in transmitting the same signal via L different carrier 

frequencies. If the separation between each two of these carrier frequencies is more than 

the coherence bandwidth of the channel, then each of the received signals will encounter 

an independent fade. Therefore, we achieve a diversity of order L. Another method to 

implement frequency diversity is to transmit a wideband signal. If the bandwidth of the 

transmitted signal (W) is much larger than the coherence bandwidth of the channel, the 

received signal will encounter several independent fades in frequency domain. The 

achieved order of diversity can be approximated by L = W/Bc. 

Another way to achieve diversity is to transmit the same information several 

times. This is called time diversity if the transmitted signals are received via independent 

fades. To ensure this, the time separation between the consecutive transmissions should 

be equal or greater than the coherence time of the channel. If we transmit the same 

information L times, this can be considered as a repetition code with rate 1/L. 

Diversity can also be achieved by transmitting the same signal through spatially 

separated channels. For example if we have one transmit antenna and L receive antennas, 

we have L channels. If the spatial separation between the receive antennas is large 

enough (more than half of the wavelength [5]), the channels can be modeled as 

independent fading channels. Then the received replicas of the signal have encountered 
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different fading coefficients and we can achieve a diversity of order L. This diversity 

technique is called space or antenna diversity. 

Certainly nothing can be achieved for free and there are costs associated with 

different diversity techniques. In frequency diversity, the system needs extra bandwidth 

as well as one extra transmitter/receiver pair for every extra carrier frequency. The cost 

of extra hardware can be justified or reduced through selection diversity in many 

applications but in most wireless communication systems bandwidth is extremely 

precious and it is not possible to allocate extra bandwidth to the system. To achieve time 

diversity the transmitter has to send the same signal several times. This means that we 

have to reduce the transmission rate or increase the bandwidth. In the former case, delay 

will also be added. The added delay is proportional to the coherence time of the channel 

as well as the number of times that the signal is being repeated. Many communication 

systems cannot tolerate such a delay and hence cannot employ time diversity to combat 

fading. Spatial diversity does not have a burden on the system in terms of extra 

bandwidth or delay but it has its own limitation: It is not possible to have sufficient 

separation between antennas in many mobile wireless communication systems due to 

their relatively small sizes. 

To achieve spatial diversity, there should be more than one independent fading 

channel between the transmitter and the receiver. This can be achieved by employing 

several antennas at the receiver (receive diversity), several antennas at the transmitter 

(transmit diversity), or both at the receiver and the transmitter (transmit and receive 

diversity). Different types of spatial diversity are depicted in Figure 2.2. 
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Figure 2.2 (a) Transmit diversity, (b) receive diversity, (c) transmit and receive diversity 

2.2.1 Combining methods 

Consider a wireless communication system with one transmit and L receive 

antennas. If the receive antennas are sufficiently separated from each other, this system 

provides us with a spatial diversity of order L. A simple channel model for such a system 

is depicted in Figure 2.3. In such a system the receiver has access to L different versions 

of the transmitted signal, namely y1(y2, —,yh- There are several methods to use these 

received signals and achieve the available diversity gain. The simplest method to do this 

is called selection combining. In this method, the diversity branch that has the highest 

signal to noise ratio is selected. This method is easy to implement as the system only 

needs to measure the received signal power at each antenna and make its decision. Under 

this scheme the overall received signal can be modeled as 

y = I max \h, | x + n 
V=i.z i I 

(2.22) 

where n is a complex Gaussian random variable with variance No/2 per dimension. And 

the effective received signal to noise ratio can be written as 
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Y*r „ff = m a x I h, I21 
N. 

(2.23) 

In the environments where, the channel does not change very fast, the system can use 

several antennas and only one receiver stage and switch between the antennas only when 

the received SNR falls below a certain threshold. This method is called scanning or 

switch-and-stay diversity. 

X 

hi 

h: 

hL 

ni 

n? 

nL 

yi 

y2 

yi 

Figure 2.3 Channel model for a system with Z,th order receive diversity 

None of the above mentioned methods is optimal as they do not use the received 

signal from all branches. The optimal reception method is called maximal ratio 

combining (MRC) [15]. In this method all of the received signals are co-phased and 

weighted according to their individual signal to noise ratios and then combined (summed) 

together. Note that this method requires a perfect knowledge of the channel coefficients 

ate the receiver. The received signal from each branch can be written as 

yi=hix + ni (2.24) 
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where n; 's are independent samples of a complex Gaussian random variable with 

variance No/2 per dimension. Then, the output of the combiner can be written as 

( L \ 

y = 2>/i2 x+\lLhini 
\>=\ J 

(2.25) 
. 1=1 J 

The effective signal to noise ration of the combined output is 

( L 

III 
V /=i 

\ 2 

|2 

J YMRc,eff = KM
 L

 J = t\h, I2^ = ±y,. (2.26) 
M|>J2 /=1 N- '=• 

It can be seen that the effective signal to noise ratio at the output of the MRC is the sum 

of signal to noise ratios of all channels. Therefore a system with maximal ratio combiner 

can achieve a certain error rate at a lower energy level than a system that uses selection 

diversity. When the receiver cannot estimate the channel coefficients fast enough to do 

the maximal ratio combining, it is possible to only co-phase the received signals and 

combine them together. This method is called equal gain combining and its performance 

is slightly lower than that of the maximal ratio combining. 

2.3 Multiple-input, multiple-output (MIMO) channels 

In the previous section, we only talked about using multiple antennas at the 

receiver. It is possible to have multiple antennas both on the transmitter and the receiver. 

This results in a multiple-input, multiple-output (MIMO) system (Figure 2.4). In their 

influential works, Telatar [3] and Foschini and Gans [2] independently derived the 
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equations of the capacity of MIMO channels. They showed that the capacity of a 

wireless channel in a fading environment can be increased considerably by employing 

multiple transmitting and/or receiving antennas. Consider a system with Nt transmit and 

Nr receive antennas and assume that, Nt = Nr = n. It is possible to show that the 

channel capacity grows linearly with n when all fading channels are mutually 

independent. 

Figure 2.4 A typical MIMO channel model 

A MIMO system also provides spatial diversity. It can combine transmit diversity 

with receive diversity. It has been shown that for a MIMO system with Nt transmitter 

and Nr receiver antennas and independent fading between all antenna pairs, one can 

design codes with a probability of error that decays with SNR~NrNt [4; 16]. Which 

means that the system can achieve a diversity gain of NtNr. In the previous section we 

explained how to combine the received signals from different channels to achieve 
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diversity gain. In the following section the coding strategies that provide transmit 

diversity will be explained. 

2.4 Space-time codes 

To start, let us assume a system with several transmitting and one receiving 

antenna. This is a common scenario in wireless mobile networks. For example, it is 

easily possible to employ several antennas on the base station (BS) in a mobile cellular 

network or on the router in a wireless local area network (WLAN) but according to the 

size limitation of the mobile devices it is usually not possible to incorporate more than 

one antenna on those and maintain the proper spacing between antennas, not to mention 

the added cost of extra antenna on every single device. If there are Nt transmit antennas, 

it is easy to show that the system can achieve a diversity gain of Nt. The simplest way 

would be to retransmit the same symbol once from each antenna. This way the receiver 

will get Nt replicas of the transmitted signal each through an independent fading channel. 

Using one of the explained combining methods, it is strait forward to show that the 

system achieves a diversity gain of Nt. But this is equal to a repetition code and even 

though it achieves the diversity gain, the transmission rate of the system is reduced by a 

factor of 1/Nt. There has been lots of research around design of proper coding schemes 

that provide transmit diversity, while maintaining the transmission rate. To achieve this, 

these codes utilize both available degrees of freedom in a MIMO channel, namely space 

and time. As a result, this family of codes is called space-time codes. Space-time codes 

are first presented by Tarokh et al. in [4]. Space time codes (STC) can be divided into 
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two main categories of space-time block codes (STBC) and space-time trellis codes 

(STTC) [4] [16] [17]. In [4], authors derived the design criteria for their proposed family 

of codes under the assumption of Rayleigh and Rician fading channels and used their 

criteria to design several space-time trellis codes. And in [16], they have extended their 

design to block codes. One of the simplest and most practical space-time block codes is 

proposed by Alamouti in [17]. Alamouti scheme provides a simple transmit diversity 

scheme for two transmit and one receive antennas, but it can be expanded to the case of 

multiple receive antennas. For the case of one receive antenna, it achieves a diversity 

gain of 2, equal to that of one transmit and two receive antennas, while maintaining the 

same transmission rate. And when extended to the case of Nr receive antennas; it 

achieves a diversity gain of 2Nr at high SNR. As a result of its decoding simplicity and 

excellent performance, Alamouti scheme has been added to the many third generation 

(3G) cellular standards. 

As stated in the previous section, the capacity of a MIMO channel increases 

linearly with the number of transmit antennas in a fading environment. Therefore it is 

possible to employ a MIMO channel to increase the transmission rate of the system. It 

can be shown that the transmission rate can be as high as min {Nt, Nr] symbol per 

channel use [1]. This higher transmission rate can be achieved by use of spatial 

multiplexing. But then it is no more possible to achieve the diversity gain o£NtNr. In 

[18] it has been proven that for a diversity multiplexing gain of / = 0,1, ...,min {Nt,Nr}, 

the maximum achievable diversity gain can be written as 

Diversity Gain(l) = (Nr- l)(N, -1). (2.27) 
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When the block length of the code is more than or equal to Nt + Nr — 1. Therefore there 

is a tradeoff between the diversity and spatial multiplexing. For some wireless 

applications it can be useful to increase rate while maintaining some level of diversity. 

There are coding schemes that tradeoff diversity to achieve a higher transmission rate, 

some examples are Bell Laboratories Layered Space-Time (BLAST) codes [1] and 

multilayered space-time codes presented in [4]. 

2.5 Cooperative Diversity 

Nowadays, most wireless handheld devices need reliable high data rate 

communication protocols to support various high-bandwidth demanding multimedia 

applications. This has to be done without any increase or even if possible, with decrease 

of the power consumption of the system, as available power is always extremely limited 

in wireless devices. Considering what has been explained in the previous sections and 

knowing that these wireless devices usually work in rich scattering urban environments, 

using multiple transmit and/or receive antennas seems to be the answer to the problem. 

But wireless devices are usually small and it may not be possible to employ the extra 

antennas on the device and maintain the proper spacing between them to guarantee 

independent fading channels. Also the size and cost of the hardware itself is an important 

issue. To overcome these problems the idea of cooperation between nodes in a wireless 

network has been introduced recently. Cooperative communication can result in a virtual 

MIMO channel between the transmitting and the receiving nodes, by using the idle 

resources available in the network. 
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The main idea of the cooperation goes back to the introduction of the relay 

channel by Van der Meulen [19] where he models a three terminal wireless channel. In 

[20] Cover and El Gamal derived upper and lower bounds on the channel capacity for the 

specific case of AWGN channels (without fading) and showed that these two bounds 

converge together for specific case of degraded relay channel. Since then, there has been 

lots of work on the capacity of the relay channels in different environments and under 

different conditions. In [21] the authors proposed a novel coding scheme for the relay 

channel and derived a rate region for the case of AWGN channel with multiple relays. 

Authors in [22] have studied the capacity of multiple-access relay channels. Capacity 

gain for transmitter and receiver cooperation is presented in [23]. Some recent results on 

the coding strategies for multi-node relay channels that achieve the ergodic capacity 

under certain conditions are presented in [24] . 

User cooperation was first explained and studied in [7] and [8]. The authors 

assumed dedicated orthogonal sub-channels between the mobile users, developed a 

specific cooperation model for code-division multiple-access (CDMA) systems and 

derived the rate regions for communication to the base station under the assumption of 

the availability of some channel state information (CSI) at the transmitters. In [10] and 

[25], the authors integrated error control coding with cooperation and named it coded 

cooperation. It is assumed that both users want to transmit their own information to the 

destination, but each does it in its own fixed time slot. While user 1 transmits its 

information to the destination, user 2 remains silent and listens to user l's message. 

Then, if user 2 can decode user 1 's message, it will transmit that information after its own 

27 



data to the destination and if not, it will transmit its own information during the whole 

time slot. It has been shown that at high SNR the system achieve full diversity (diversity 

gain of 2 as there are 2 transmit and one receive antennas). This work has been continued 

in [26] by introducing a variable time fraction that changes based on the geometrical 

location of the nodes. 

The term cooperative diversity was first introduced in [6] by Laneman, et al. 

Unlike most of earlier works, they considered a more realistic half-duplex transmission 

mode (i.e., network nodes cannot transmit and receive at the same), developed several 

cooperation protocols, and obtained and compared their outage probabilities. These 

protocols define the details of the cooperation scheme from different perspectives. From 

the overall network point of view, these protocols can be named as fixed, selection, and 

incremental relaying. Since they assume a half-duplex transmission, in all of the 

proposed schemes, in general, the transmission time can be divided into two phases. 

During the first phase the source transmits its information and the relay terminal listens, 

then during the second phase, the source remains silent and the relay processes and 

retransmits the information it received. Finally the destination combined both of the 

received signals and decodes the message using all received information. After reception 

of the source message the relay can either do amplify-and-forward or decode-and-

forward. In amplify-and-forward, the relay simply amplifies its received signal and 

retransmits it to the destination. This can be viewed as a repetition code that is being 

transmitted from two antennas with the difference that the relay amplifies its own 

receiver noise as well as the signal. Despite of the noise amplification, fixed relaying 
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with amplify-and-forward achieves full diversity, i.e., diversity of order 2 since there are 

two transmitting antennas. On the other hand, the relay can decode the source message 

before forwarding the information to the destination. This is called decode-and-forward 

strategy. In the proposed decode-and-forward scheme the destination declares an error if 

the relay cannot decode the source message correctly. Therefore, in fixed relaying 

protocol the decode-and-forward scheme only achieves a diversity of order one. 

Fixed relaying is simple to implement, but in general is a very wasteful protocol, 

especially when the source-destination channel is in good state. In selection relaying, it is 

assumed that all nodes have access to the channel state information (CSI) and use this 

information to improve their cooperation strategy. The source constantly monitors the 

source-relay channel gain and when it drops below a certain threshold, it will continue 

transmitting an uncoded or a coded version of its message in the second phase. The 

authors in [6], shown that selection relaying achieves full diversity with both amplify-

and-forward and decode-and-forward strategies. 

In incremental relaying, the destination sends a one bit feedback to the relay at the 

end of the first phase and asks for its cooperation when it is needed. This way the relay 

does not transmit unnecessary information to the destination, therefore the system 

efficiency increases. In [6], it is shown that the incremental relaying achieves a diversity 

of order 2 and it has the best spectral efficiency. 

There is a general problem with amplify-and-forward and decode-and-forward 

strategies, none is bandwidth efficient especially when the number of the relaying 

terminals increases. The relays have to work in different time slots, time-division 
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multiple access (TDMA) or different frequency channels Frequency-division multiple 

access (FDMA) to avoid interference with each other. In [9], distributed space-time 

codes was proposed to combat this problem. In this scenario the source transmits its 

message in the first phase. Then, those relays who can decode the message without error 

will encode it using a specific code which is a column of the overall space-time code. 

This way all relays can cooperate at the same time and in the same frequency. Finally the 

authors have shown that distributed space-time coded protocols achieve a diversity gain 

equal to the number of the transmitting nodes (including the source) without increasing 

the bandwidth. Distributed space-time coded protocols have been further studied in 

many works including [27], [28], [29], [30], [31], and [32]. 

In [33], the authors extended the decode-and-forward protocol of [6] by utilizing a 

variable-rate transmission scenario between nodes. This means that when the relay is 

closer to the source the source-relay transmission rate can be higher and when it is closer 

to the destination the relay-destination rate can be higher. Therefore the transmission 

rates are set according to the geometrical location of the relay. They have proposed and 

analyzed the performance of several protocols in different situations. For example when 

the relay is closer to the source, transmit diversity protocol has a better performance but 

when the relay is closer to the destination receive diversity protocol outperforms. In the 

transmit diversity protocol both source and relay transmit during the second phase using 

an STC, but in the receive diversity protocol the source remains silent during the second 

phase and the relay uses a regular channel code to transmit the information to the 

destination. Other proposed protocols are simplified transmit protocol, where the 
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destination ignores the received information in the first phase, and multi-hopping, where 

only one node transmits at any time and the receiver only uses the received information 

from the relay to decode the message. They have shown that all protocols except multi-

hopping achieve full diversity. 

In [34], Mitran et al. proposed a variable time-fraction cooperation protocol. In 

their scheme, unlike the previous works, the transmission time is not divided into two 

fixed time-fraction. Instead, they use an adaptive fraction of the transmission time to 

transmit the information to the relay based on the instantaneous source-relay channel 

state. It has been shown that, under certain conditions (when relays are located around 

the source within 1/3 of the distance between the source and the destination), this 

protocol can essentially achieve the performance of a real MIMO system with two 

transmit and one receive antennas. Note that, in the real MIMO scenario, both of the 

transmitting antennas are physically connected to the source and have a prior knowledge 

of its information, while in a cooperative scenario the relay has to obtain this information 

before cooperation. The authors have derived the outage probability of the system as 

P =P 
outage 

iR - 1 
\HSd\

2+&\H , | 2 < - -
I s,a l l r,a I 

7 

(2.28) 

where Hsd is the fading matrix between the source and the destination nodes, Hrd is the 

fading matrix between the relay and the destination nodes, R is the information 

transmission rate of the system, y is the SNR and A is the time fraction defined as 

31 



( R \ 
A = min 1, (2.29) 

where yr is the average received SNR at the relay and C(// s r ,y r) is the instantaneous 

capacity of the source-relay channel. The outage capacity of the channel can be obtained 

by averaging (2.28) over all possible channel fades. In [34], it has been shown that this 

capacity is very close to the capacity of the ideal MIMO system when the relays are 

located in the previously mentioned distance from the source. 

2.6 Conclusion 

In the previous section we have presented several cooperation protocols. Many of 

these protocols are the same in the aspect of having two phases for the communication. 

Some divide the transmission time between the two phases in a fixed manner and 

therefore waste the network resources when the source-relay channel is in good 

condition. It is shown that [34] in the performance of the collaborative system can be 

improved by using a variable time fraction in the exchange phase, when the source 

transmits its information to the relays. Although, the proposed protocol in [34] is 

useful for evaluating the performance of a variable time fraction scheme, it is not 

physically realizable since when the relay is very close to the source, it requires the 

transmission of the information from the source to the relay in an arbitrarily small 

fraction of time. In this work, we present a practical protocol and coding strategy to 

employ variable time fraction in order to increase the performance of the system. 
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CHAPTER THREE 

3 System Model and Channel Code Selection 

In this chapter, we start by defining our communication network structure and 

explain the details of the corresponding channel parameters. Then we present our 

variable time-fraction collaborative protocol and explain and analyze the collaboration 

parameters. Finally the channel code design criteria for the collaborative protocol are 

explained. 

3.1 System Model 

The network is set up as in Figure 3.1. Without loss of generality we set the 

distance between the source and the destination to one and normalize associated path 

gain, PGSD = OdB. All other path gains are measured using their relative distances and a 

path loss exponent of 2 [12]. We assume that all the nodes are located on the same plane 

and the relay can move freely on this plane. We further assume that the distance between 

the relay and the source is always greater than zero and for the rare case that they are co-
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located it is fair to assume that the relay has full knowledge of the source message, hence 

the duration of the exchange phase is zero. 

Cih KFI -yj 

Figure 3.1 Network Model for two-phase communication 

In this scheme, transmitters do not have access to channel state information (CSI). 

It means that the source is neither aware of its transmission channel's fading coefficients, 

nor of the relay's collaboration status. The relay is aware ofs — r channel's fading 

coefficients (so it is able to determine its collaboration strategy) but not of its 

transmission channel's coefficients. Finally the destination has all the fading coefficients 

hence it can determine the relay's collaboration status as well. Lack of access to the 

channel state information at source means it cannot encode according to specific 

instantaneous channel realizations and it transmits to the destination regardless of 

whether relay collaborates with it or not. 

However, the source must encode its data in a way for the relay to have the 

potential of retrieving all the information within a fraction of the whole frame. In our 

two-phase collaborative scheme this time fraction is variable. If we assume that each 

frame consists of n channel uses we want the relay to be able to decode the source 

message after An channel uses where A< 1. If we let A take any real value (as in [ [34]]) 

the frame length has to be infinite which is not practical. Instead we use a set of 
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quantized time fractions AG {Alt A2, ...,1} where A= 1 means that the relay could not 

decode the source message hence was unable to collaborate with the source before the 

end of the frame. 

TX TX TX 

TX RX TX 

« /•; »..* n 

Figure 3.2 Collaborative communication with variable time-fraction 

To make sure that our system does not require extra bandwidth compared to a 

non-collaborative system, the above set of time fractions have to be further constrained 

and the modulation order has to be chosen in order to comply with it. For example if we 

are willing to transmit k information bits in n channel uses from the source to the 

destination, source should be able to transmit all those information bits in Atn time 

k 

period to the relay and this requires a modulation scheme with a minimum of 24i" 

constellation points to avoid bandwidth expansion. If we use equal length time fractions 

the set can be written as A£ {1 / P, 2 / P, ...,1} hence the minimum number of the 

constellation points will be 2 n . 

In this work we always use BPSK modulation and assume that the source 

transmits its k information bits in B blocks. We further assume that each block consists 

of I bits and all of the blocks are of equal length. It is important to mention that having 

RX 

n 
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equal length blocks is not a general requirement for our scheme. The above assumptions 

actually defines our set of A's as 

A e / 1 / 2 / 5 - 1 / 1} (3 n 

A= 1 represents the case where the relay could not decode the source message in 

time and remains silent during the frame. The frame length can be written as n = Bl and 

regardless of the collaboration status, the over-all transmission rate can be given as 

K 7n 7BV ^-Z) 

For our numerical results we have used B=3. This results in three different 

collaboration modes, which is shown in Fig. 3.3. In mode one, (£), the relay can decode 

the source message without error after the first block, i.e., the received signal to noise 

ratio at the relay is high enough so that it can decode the message with an acceptable bit 

error rate. The relay then transmits an encoded version of the source message during the 

second and third blocks. In mode two, (it), the relay cannot decode the message after the 

first block but can decode it reliably after the reception of the second block. In this mode 

it will only collaborate with the source during the transmission of the last block. In mode 

three, (Hi), it is not possible for the relay to decode the message reliably after the 

reception of the second block, hence it will stay silent during the rest of the frame and 

there will be no collaboration for this frame. 

36 



Block 1 Block 2 Block3 

listen , Block 4 Block 5 

listen ''.-' lislen: Block 5 

. l i s ten ' .';['- 'listen.'."'{ listen 

Figure 3.3 Three modes of operation based on s-r channel, i) A= /•>, ii) A= /•>, Hi) A= 1 (no 
collaboration). 

Regardless of the relay collaboration status, the source uses an (n, k) code for 

transmission. During the first phase, both the relay and destination receive signals 

y? = M+n? (3.3) 

yr,=4^rKX+v: , I<;<A« (3.4) 

where y{ is the received signal at node; G {s,r} and time t, x[ is the transmitted symbol 

at node j and time t, the noise components rjf and r\r
t are independent samples of a zero-

mean complex Gaussian random variable with variance N0 / 2 per dimension and the 

quasi-static fading coefficients hsd and hrd are assumed to be constant during a frame 

and are modeled as independent samples of complex Gaussian random variables with 

zero mean and variance 0.5 per dimension. In the second phase, the source and relay 

collaborate to transmit to the destination, 

yl = KA + V ^ A X + tf , An < t < n (3-5) 
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The information received at the destination during both phases will be used to 

decrease the decoding error. This will give us more options in defining the coding 

strategies for the collaborative phase. 

As we wish to compare the frame error rate (FER) performance of our 

collaborative system with a system without collaboration, the signal-to-noise ratio must 

be normalized. In general to compare the performance of different protocols the received 

SNR should be equal in all systems but in a collaborative system the received SNR will 

change as the relay moves in the space and when the relay gets very close to the 

destination the received SNR increases radically. If we want to compensate for this 

increase we have to reduce the relay's transmit power drastically and this will cause a 

poor performance of the system even when channel between the relay and the destination 

is in a good condition. Therefore, to compare the performance of our collaborative 

system to a non-collaborative one, we use transmitted signal-to-noise ratio, SNR™. The 

subscript sr is added to show that the power is transmitted from both source and relay. 

Assuming all transmitters have equal power we can easily derive the transmitted SNR as 

kN. 

where E[x2] is the transmitted symbol energy which can be normalized and E[A] is the 

expected value of the time fraction that relay listens to the source for an specific 

codebook and a fixed relay position and will be derived later. 
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The time fraction A depends on the channel code, the location of the relay (its 

distance to the source) and the source-relay channel fading coefficients. We assume that 

at the beginning of each frame the relay is aware of the s — r channel coefficients and of 

its received SNR. Utilizing this information the relay can calculate the required time 

fraction that ensures error free (i.e. BER < 10 - 5) decoding for each specific channel 

state and can determine the mode of collaboration. For a quasi-static fading channel 

where the fading coefficients change every frame, the relay has to decide on the 

collaboration status at the beginning of each frame. Since the source always uses the 

same error control code to transmit the information, the relay can use a table to determine 

the collaboration scenario based on the received signal-to-noise ratios, SNR§x,s (Table 

3.1). The source-relay link has the following instantaneous received SNR 

SNRKx = PG'ra2'rE[x2], (3.7) 

where PGsr is the path gain of the s — r channel and we have used hsr — asre°sr. 

3.1 Relay's time fraction Table 

Source-Relay 
Code Rate Rsr 

V, 
v2, 

Time fraction 

V B 
1 2 / B 

( B - % 

Required SNR?X 

for BER < 1CT5 

SNR?x\A=i/B 

SNRr
x\A=2/B 

5yV/?r
z|A=(B_1)/B 

As mentioned before, our assumption in this part of the work is that the relay does 

not have access to the source-destination or relay-destination channel state information 
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(hsd, hrd), therefore it assumes that the source-destination channel is in worst state while 

trying to determine the collaboration mode and will try to maximize collaboration time. 

To achieve this, the relay has to select the minimum value for A that guarantees an error 

free (BER < 10 -5) reception at the relay. Rewriting (3.7) we have, 

" PGrE[x'] r 

PC F \x ^ 1 -i 

where y = ——•—- and the transmitted bit energy can be normalized (i.e., E[x2] = 1). 
iV 0 

To maximize the collaboration time the time fraction A is being selected as follows: 

The relay knows y and asr and will select the smallest A (largest SNR?X from 

Table 3.1) for which 

SNR?\Ai<al-y. (3.9) 

Using the above method to obtain the time fraction, A, for each channel 

realization, we can analytically compute E [A]. We define p = a | r and note that the 

fading amplitude asr has a Rayleigh distribution and p is a random variable with an 

exponential distribution and its pdf cab be written as / (p) = e~p. We have 

E[A] = A,/?(A = A,) + A2/?(A = A2) +... + p(A = 1), (3.10) 

where p(A= Ax) is the probability of A= Ax. Substituting (3.1) in (3.10) we get 

£[A] = lp (A = i ) + 4p(A=- | ) + ... + />(A = l). (3.11) 
B B B B 
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Using (3.9) we have 

+... + p(p< —^-) 
Y 

' a = /a N 

y 
(3.12) 

£[A] = ̂ ( / > > tA) + ip( ~^<p< -^) 
B y B y y 

By straightforward algebra we get 

£[A] = 1 e y e r -... e y . (3.13) 
B B B 

3.2 Channel code selection 

As the source has no knowledge of relay's collaboration, it always uses the same 

channel code and the source transmission rate stays the same regardless of the relay's 

ability to collaborate. The source's codebook rate can be written as y = yDI. 
/n / DI 

If we consider the overall (source and relay) transmission, the situation is 

different and the rate is variable. For example, if we use the collaboration scheme 

depicted in Figure 3.3, it is easy to see that each mode will require a different code rate. 

In general a collaboration scenario operating at a specific A will transmit B blocks from 

k 
the source and (1 - A)B blocks from the relay, hence uses a code of rate C. = . 

V J y A (2-A)Bl 

Then the over-all collaboration scheme uses a set of codebooks that can be written as 

C e {C ,/, C 2/ 5 •••> Q=i} • Different types of channel codes can be utilized to obtain the 
A— /n A - / D 

/B "Va 
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required variable rate codebook. For example, we can use a bock code and set the first 

block to contain all the information bits and the other blocks can be different parity sets. 

Or a convolutional encoder with (2 — A) B outputs can be used and we can add or drop 

output sequences in order to achieve the proper rate. Note that the source always uses the 

same number of output sequences and the source code book remains the same (Fig. 3.4.). 

Input Data 

The Source 

Fixed Rate 
Convoloutional 

Encoder 

Over-all Collaborative Encoder 

Decoder 

The Relay 

Variable Rate 
Convoloutional 

Encoder 

Tx by Source 
»-

Tx by Relay 

Figure 3.4 Convolutional encoder for collaborative communications 

As mentioned before the destination is aware of A and will adjust its decoder to 

use all the received data to improve the performance of the system. If we use a 

convolutional code the branch paths on the trellis will be labeled as 

a,-/c\,i c2r~ CBJ C(i+A)fl,/-" c2B-2j c2B~\,i' where a, is the i'h input to the system and c*v and 

crj t are respectively the source's and relay's output bits in blocks j and k corresponding 

to the i'hinput and j e {1,2,...,B)and k e {(1 + A)B,...,2B-\). The maximum likelihood 

decoder utilizes the Viterbi algorithm with the following branch metric equation to 

minimize the path metrics 
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B-\, 

BMi = Y\yL -Kclu -JPG^KcUi 
/=o 

(3.14) 

It should be noted that the relay does not transmit during the first phase, i.e. 

c\ j = 0 for k < AB. 

3.3 Modified Pairwise Error Probability 

We need to obtain the probability of transmitting 

f cs cs cs^ 
r r r 

VC1 C2 •" Cn J 

(3.15) 

and deciding in favor of 

e = 
ex e 2 ... en 

Ke\ e2 -e
nJ 

(3.16) 

Given an ideal channel state information and considering that in our system, the number 

of transmit antennas at the source, ns, and at the relay, nr, are both equal to one and 

there is only a single receive antenna, from [4] this probability can be well approximated 

by, 

F(c —> e | hid,i = r,s)<e (3.17) 

where 
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</2(c,e) = X IM4-4) (3.18) 
ie(s,r) 

Since in general the path gain from the source to the destination is not the same as the 

path gain from the relay to the destination, we have to include the effect of this path gain 

difference in our equations, as in [35]. Hence Equations (3.17) and (3.18) become 

P{c^e\JPG~dhid,i = r,s)<e 
-</ z (c .e)£. 

(3.19) 

and 

J2(c,e) = X 
(=i 

EV^Mc,'-4) 
;'s{j,r) 

(3.20) 

By defining H = QPGsdhsd,^PGrdhrd) and following the method used in [4], (3.20) 

can be written as 

^2(C,e)= x Z (V^^V^wZc^'x^-o- <3-21) 
ie{s,r) /'G{.y,r} 

By setting 

A(c,e) = 
Z«-o2 Z« -<)«-<) 
r=l (=l 

2>;-<)(C;-o Z«-<)2 
(3.22) 

Equation (3.21) can be compressed in the matrix form as 
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c/2(c,e) = HAH\ (3.23) 

where H* is the Hermitian (transposed conjugate) of H . Note that A(c, e) = 

B(c, e)B*(c, e) where B(c, e) is the codeword difference matrix 

B(c,e) = (3.24) 

Now (3.19) can be written as 

P(c^e\JPG~ihud,i = r,s)<e 
-HA(c,e)H£ 

4N. (3.25) 

Given that A(c, e) is Hermitian, we can have VA(c, e)V* = D, where V is a unitary 

matrix composed of eigenvectors of A and D is a diagonal matrix with eigenvalues, At, of 

A as its diagonal elements. As A is nonnegative definite, its eigenvalues, At, are 

nonnegative real numbers. 

By defining (/?1( /?2) = HV*, equation (3.23) can be written as 

</(c,e) = |>,. |/?,. | . (3.26) 
i=i 

Considering that hsd, hrd are independent samples of complex Gaussian random 

variables with zero mean and variance 0.5 per dimension and the fact that the set of the 

rows of V, {v1,v2}, is an orthonormal basis, /J^'s are independent complex Gaussian 

random variables with variance per dimension 
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of-^M'+^W- <3-27> 

where vtj is they' t '1 element of the i t h eigenvector [35]. 

Then the modified pairwise error probability can be written as, 

P(c-> e ) < 
frank Y 

ram Y[2a*X, {EJAN0Y , (3.28) 
v 1=1 j 

where rank is the rank of the A(c, e ) matrix [35]. 

Furthermore, in our system, we make sure that the collaboration phase, if it exists, 

is long enough for the relay to transmit all the information to the destination. Therefore, 

we can guarantee a rank, diversity advantage, of 2 regardless of the code construction. 

The paiwise error probability can be written as 

( 2 v 
P(c -> e) < \\la]Xl {Es/4Noy . (3.29) 

V (=i J 

As shown in [4], to maximize the coding gain, we have to maximize the minimum 

value of n f = i 2ffi2/lj for all codeword difference matrices B(c , e ) . As we have no 

feedback from the destination to the source and the relay, the transmitters are not aware 

of each other 's channel path gain to the destination. For this reason they are not able to 

change their codebook and use the specific node configuration to their advantage. Given 

that on the average the worst possible assumption is that the two path gains are equal, we 

will use the coding criterion presented in [4], and we will try to maximize the minimum 
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of the determinant of A(c, e) taken over all pairs of distinct codewords c and e. 

3.4 Code Construction 

First we label the codebooks that are being used by the source and the relay at 

different times. Cx corresponds to the codebook used by the source during the first phase, 

C2 is the source's codebook for the second, collaboration, phase and C3 is the codebook 

used by the relay in case of collaboration. These assignments are illustrated in Fig 3.5. 

Since in this thesis we use a BPSK modulation with constellation points at -1 and 1, the 

first phase (exchange phase) constitutes transmission of n, = An bits and the second phase 

(collaborative phase) is composed of n2 = (1-A)« bits. It should be mentioned that the 

length of the codewords in these codebooks depends on the value of A, obtained from 

Table (3.1). 

"" ^ \ JPhase 
Node """-"--^ 

Source 

Relay 

First Phase 

(\ 

Second Phase 

c2 

c 
t\ = :W •»•« ;/, =(1 —i')>' 

3.5 Two-phase Collaborative Communication 

For code construction we start from the worst case scenario. In the worst case 

scenario the relay cannot decode the source message and will not collaborate, therefore 

the only transmitted signal is from the source to the destination (C1; C2). The minimum 

hamming distance, dli2mm, of the codewords in codebook C12 — {Ci.C^L a n fa,fc) 
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code, has to be maximized to ensure the maximum bit error rate performance of the 

system in this situation. This problem has been studied in details in [36]. 

Now we consider the case where the relay can collaborate. The first constraint on 

the code construction is that the codewords in the codebook Cx have to contain all the 

information bits that are to be transmitted to the destination. This condition allows the 

relay to detect the source message. In a binary code, this can be achieved by including all 

the information bits in each codeword and ensuring that the minimum Hamming distance 

of the codewords in the codebook Cx is greater than 1 (dx min > 1). 

As the relay does not transmit during the first phase, for all codewords c\ = 0 for 

i < (1 — A)n. Then the codeword difference matrix can be given as 

B(c,e) = 
c, - e , 

0 0 

C«, en, C"i+I e«i+1 

o cr -er 

•• cs-e 

•• cr-e 
(3.30) 

Since the minimum Hamming distance of the codewords in C1 is greater than 1, there is 

at least one nonzero cf — ef for, i < (1 — A)n. Therefore, to guarantee that each 

codeword difference matrix is of full rank and thus the code achieves maximum diversity, 

at least one of cf — ef for (1 — A)n < i <n have to be nonzero. This can be achieved 

by ensuring that the minimum Hamming distance of the codewords in C3 is greater than 1 

(d3min > 1). 

To minimize the pairwise error probability of the codebook, the determinant 

criterion as defined in [4] has been used. The matrix A(c, e) can be written as 
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A(c,e) = B(c,e)B//(c,e) = 
Z«-o 2 Z«,+i-<+,x<+,-<+,) 

" 2 " 2 

1=1 

.(3.31) 

In the above matrix, the weight distribution of the codewords can be used. In Blocks 1,2 

and 3, codewords c and e are separated by dt, d2 and d3 respectively. A(c, e) can be 

written as 

A(c,e): 
'4(4+d2) / 

/ 4 4 
(3.32) 

where | / | < 4d|d = m i n (d2,d3) [35]. And the determinant of A(c, e) is bounded by 

d e t , 4 > 1 6 4 ( 4 + 4 ) - 1 6 4 ^ 3 ) 

detA(c,e)<164(4 +d2). 

(3.33) 

(3.34) 

3.4.1 Block Codes 

Here we analyze the use of an orthogonal code, like Alamouti codes that have 

been presented in [17] and will show that the use of no other block codes in the 

collaboration phase can provide a higher coding gain for the system. 

The orthogonality of the code guarantees that / = 0. Hence, we have 

det A(e, c) = 16dy (4 + 4 ) (3.35) 
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It can be seen that the upper bound of the determinant have been achieved. Alamouti 

codes have the same minimum free distance for the codewords that are being transmitted 

from different antennas, this means d2 = d3. Let us define d12min as the minimum free 

distance of the overall code used by the source, C12 = {Ci,C2}. ^ ^ e definition of 

Hamming distance we have 

(d]+d2)>dh2mm. (3.36) 

Substituting (3.36) in (3.35) we get 

detA(e,c)>16^2 m j n . (3.37) 

Now consider a codebook that maximizes d12 min and let us choose the codeword 

that has the minimum d2 (d2min). If we select any other codeword from this codebook 

since it has a higher minimum free distance it will lead to a higher determinant of A(c, e). 

Using d2min we have 

detA(e,c)>16</2minc/12m,„- (3.38) 

Equation (3.38) shows that to maximize det A(c, e), minimize pairwise error 

probability, d12minand d2min have to be maximized. This can be done by selecting a 

codebook that maximizes d12min and rearrange it to maximize d2min as well. 

Now we show that a non-orthogonal block code in the collaboration phase cannot 

achieve a higher coding gain. Assume that there is a non-orthogonal block code that 

achieves a higher coding gain. For all codeword pairs in the codebook, we should have 
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l&/3(4 +d2)-\6d2
mm(d2A) > I6d'2mmd'l2mm. (3.39) 

where the d2min and d\2min are the maximized minimum free distance of the codebooks 

C2 and C12 = {Clt C2) respectively. The above inequality can be written as 

d3(dt +d2)-d;mind*l2imn > 4 W j ) > 0. (3.40) 

Since this has to hold true for the codeword that has d^ + d2 = d1>2min we have 

d,d,, -d* d* • >0. (3.41) 
3 l,2min 2min l,2min V / 

d12min has to be less than or equal to d{2rnin, since we have defined di/2mm a s the 

maximum possible minimum free distance of the codebook C12. Then the above 

inequality holds only if d3 > d2min. But the codewords in codebooks C2 and C3 are of 

equal length (note that these are code books used by source and relay in the collaboration 

phase) and d2min is the maximum possible minimum free distance of a codebook with 

that length, therefore this is not possible. We see that it is not possible to have a non-

orthogonal block code in the collaboration phase that achieves a higher coding gain. 

3.4.2 Convolutional Codes 

Here we explain the design parameters for the convolutional codes in our 

collaborative system. In contrast with block codes, there are no completely orthogonal 

convolutional codes. When the codewords used by the source and the relay in the 

collaborative phase are not orthogonal, the worst that can happen is that the 
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corresponding parts of the codeword difference matrix have nonzero value in all possible 

places. This means | / | = 4d|d=min(-d2d3-). Then we have 

detA = 16di(d,+d2)-16d2
mHd2A). (3.42) 

To design a convolutional code for our collaborative system we first determine the 

maximum number of blocks that are to be transmitted from the source and the relay. If 

source transmits B blocks the number will be (2B — 1), assuming that all the information 

bits are included in the first block. Then we select a convolutional code with rate 

R = that has the maximum free distance in the overall form. This means that the 
2 B - 1 

codebook £1,2,3 = {C1(C2,C3} had the maximum d123free. Then we use the B outputs 

that provide the highest dX2 free a s the source codebook and the rest of the outputs will 

be used by the relay when it collaborates. Note that each of the three codebooks 

(Clf C2,C3) can contain more than one output. These parameters have been considered in 

selecting the codes used for simulations in Chapter 4 and Chapter 5. 

3.5 Chapter Summery 

In this chapter we explained our communication network model and its 

parameters in details. We then introduced a novel collaborative protocol as a practical 

method of cooperative diversity in wireless networks. Then, the channel code selection 

and design criteria for our collaborative protocol are presented. In the next chapter we 

will use these code design strategies to construct a proper channel code for our system 
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and evaluate the performance of our variable time-fraction collaborative protocol via 

Monte Carlo simulations. 
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CHAPTER FOUR 

4 Simulation Results for the System with No 

Feedback 

In this chapter we will talk about the simulation parameters, the code used for the 

simulation and will provide and compare Monte Carlo simulation results obtained using 

different channel codes in our collaboration protocol. To obtain the results presented in 

this chapter, we assumed a system with no feedback from the receivers to the 

transmitters. Therefore the transmitters have no knowledge of their transmission channel 

state information. 

4.1 Simulation Parameters 

4.1.1 General Parameters 

The first assumption in this chapter is that there is no feedback from the receivers 

to the transmitter. The source and the relay have no knowledge of their transmission 

channels. Hence the source and the relay assume the worst case scenario while trying to 
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transmit data to the destination. The source assumes that the relay cannot collaborate and 

will transmit all the parity bits to the destination. The relay assumes that the channel 

between the source and the destination is not good and the destination cannot decode the 

source message, therefore, the relay starts transmitting the parity bits to the destination as 

soon as it can decode the source message. 

We set the frame length to 130 bits (I = 130) and choose the number of 

information bits that are going to be transmitted (k) accordingly to make sure that the 

trellis returns to state zero (k = 127). We assume that the source transmits its k 

information bits in three blocks {B = 3), hence we can write the set of A as 

Ae{/3,y3,\}. (4.1) 

This results in three possible collaboration modes that have been depicted in 

Figure 3.3. In mode one, (i), the relay can decode the source message without error after 

the first block, i.e., the received signal to noise ratio at the relay is high enough (Table 

4.1) so that it can decode the message with an acceptable bit error rate (BER < 10 -5). 

The relay then transmits an encoded version of the source message during the second and 

third blocks. In mode two, (ii), the relay cannot decode the message after the first block 

but can decode it reliably after the reception of the second block. In this mode it will only 

collaborate with the source during the transmission of the last block. In mode three, (Hi), 

it is not possible for the relay to decode the message reliably after the reception of the 

second block, hence it will stay silent during the rest of the frame and there will be no 

collaboration for this frame. 
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It should be noted that we assume equal transmit power from the source and the 

relay. We further assume that the duration of symbols transmitted by the source and the 

relay is of the same length. Therefore the destination can use the same matched filter 

regardless of the value of A. 

4.1.2 Path Gain 

Figure 4.1 Network Model 

We normalize the path gain between the source and the destination (PGsd — 1 = 

OdB) and set the path loss exponent /? = 2. We have also repeated the simulations with 

path loss exponent of 4 to show the consistency of our results in different environments. 

Now the other path gains can be defined as 

PG,=PG, sd 
KDsrJ 

' \ ^ 

\P.J 
(4.2) 

And 

PGrd=PGsd I A* J 
P ( 1 \ 

(4.3) 

where 
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Dri=^D^+Dl~2D,A^0ie 

4 l + Dl-2D.cosd. 
(4.4) 

4.2 Encoder 

We have used an 8-state code (Figure 4.2) represented in octal form as (15,17) 

and repeated the output in different blocks in a way that the overall code can be presented 

as (gBl,gB2,gB3,gB\gBs) = (15,17,15,15,17) where gBi is the generator polynomial of 

block i, Bt. The minimum free distance of the constructed rate 1/r code is dfree = 16. 

Input Data r1 Z"1 

•©-
P,=P3=P4 

z-1 

(±) ® <±> 
P2=P5 

Figure 4.2 Encoder 

The received signal to noise ratio required at the relay for being able to decode the 

source message reliably for each communication rate has been obtained from the 

simulation. These values can be found in Table 2.1. 

Table 4.1 Relay's Required Received SNR 

Source-Relay 
Nominal Code 

Rate Rsr 

1 

v2 

Source-Relay 
Actual 

Code Rate Rsr 

127/ 
/130 

127/ 
/260 

Time fraction 
(4) 

v3 
2 / 3 

Required SNR?X 

for BER < 10 - 5 

8.7 dB 

5.4 dB 
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4.3 Decoder 

The trellis for this code is obtained from the following graph (Figure 4.3). The 

branch paths on the trellis are labeled as at / clt cf; cf̂  c\{ c\(, where at is the ith input 

to the system and cfti and c ^ are, respectively, the source's and relay's output bits in 

blocks j and k corresponding to the ith input and j G {1,2, ...,B) and k G {(1 + 

A)B, ...,2B -1). 

Figure 4.3 Trellis for the 8-state Code 

4.3.1 Branch Metric Equations 

During the first phase (non collaborative part) the received signal at the 

destination can be written as 
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y?=hsdx;+Ti? ,\<t<&n (4.5) 

And for the second phase we have 

yl = KA + V ^ A X +1? M<t<n. (4.6) 

Now we define the received signals at the relay and the destination and the branch 

metrics for each mode of the collaboration. 

4.3.1.1 Mode (/) A= 1/3 

Block 1 Block 2 Block 3 

. - '^'llsteiy-;: ,'.' Block 4 Block 5 

Figure 4.4 Mode (/), (A= 1/3) 

In this mode the relay can decode the source message without error after the first 

block and will transmit during the second and third blocks. The received signals at the 

destination for the three blocks can be written as 

ys,.=KA+Vu (4.7) 

y2J = KA + yfPG^KA + v2 (4.8) 

and 

yi^hsA+JPG^KA+K- (4-9) 
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And the branch metric that must be minimized will be 

BM = k , - hsdci \2+\y2J- hsdc\. - JPG~KA,i
 2 + k , - KA, - JPG^KA, f • (4.1 o) 

4.3.1.2 Mode (//) A= 2/3 

Block 1 Block 2 Block 3 

listen listen Block 5 

Figure 4.5 Mode (»), (A= 2/3) 

In mode (ii) the relay needs to listen to the first and the second blocks before 

being able to decode the source message, therefore, it will only transmit during the third 

block. The received signals at the destination cab be written as 

yyi=KA+Vv (4.11) 

y2,i =Kd
p2+J72 (4.12) 

and 

y^ = hsA+4^KA+ni- (4.13) 

And the branch metric is 

BM = \yv-h„iC'u\ +\y2J-hsdc'2il\ + *.,-V^-V^A*c« • (4'14> 
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4.3.1.3 Mode (Hi) A= 1 

Block 1 Block 2 Block 3 

listen listen 

Figure 4.6 Mode (;), (A= 1/3) 

Finally in mode (Hi) the relay cannot decode the source message and will stay silent 

during the frame. The received signals and the branch metric are as follows: 

yu = KPx+m, (4-15) 

y2j = hsdp2+^ ( 4 - 1 6 ) 

* . , = « + % (4-17) 

and 

BM = \y}. -hsdc;.|2 + \y2J -hsdc\.\ + \y3, -hsdc\.\. (4.18) 

4.4 Results 

In Figure 4.7, we compare the FER performance of various codes in our 

Collaborative scheme. All codes use the same frame length of I = 130 and the number 

of information bits is k = 127. The three extra bits are used to bring the code trellis to a 

known final state. As illustrated in Figure 4.1 the distance between the source and the 
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destination is normalized (Dsd -l). To obtain the results shown in Figure 4.7, we further 

assume that the relay is located on the line connecting the source and the destination and 

its distance to source is 0.3 (Dsr =0.3). We define an outage event as an error in the 

decoding of a frame and compare the frame error rate performance of different codes 

with the outage probability obtained in [34] that has been modified to include the effect 

of different path gains in the source-destination and the relay-destination channels. 

FER Performance for d=0.3 ang=D 

Transmitted SNR MB) 

Figure 4.7 FER performance of different codes [35] 

All of the codes maximize the dfree for their complexity level. The 2-state code is 

(2,3,3,l,3)octai with dfree = 8, the 4-state code is (7,5,7,7,5)octai with dfree = 13, the 4-state 

space-time trellis code (STTC) is (7,3,3,6,4)octai with dfree = 10, the 8-state code is 

(15,17,15,15,17)octai with dfree = 16, and the 16-state code is (37,27,33,25,27)octai with 

dfree= 20. It can be observed that all of the codes achieve the diversity advantage and as 

the dfree increases the performance of the system improves (at FER=10"3 there is 3.5dB 
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difference between the 2-state and 16-state codes). We have also included a simple 

repetition code, where all the blocks transmitted from the source and the relay are 

identical. Even with this code the diversity advantage is obtained. We also notice that a 

4-state code with maximized dfree outperforms the 4-state STTC code. The reason is 

that the design restrictions imposed by STTC [4] ensure achieving the full diversity but 

do not guarantee a maximized dfree. 

For the rest of the results in this chapter and in the next chapter we use the 

previously mentioned 8-state code. 

We set the source location to (0,0) and the destination location to (1,0) and 

moved the relay on the plane by changing Dsr with increments of 0.1 and 6 with steps 

7r/8. For each location of the relay we have obtained the performance of our 

collaborative scheme through Monte Carlo simulation. 

\ v- : : ' \ —\- —1 
,,.V" \ J\ V i , 

- \ >^...,-v A— X 

y 

destination , •>'-

Figure 4.8 Transmitted SNR Required to achieve FER=10"3, source is at (0,0), destination is at (1,0) and 
relay moves on the plane 
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The 3-D plot in Figure 4.8 shows the transmitted SNR required to achieve 

FER=10"3. To be able to analyze the results we have presented a cross section of the 3-D 

plot in Figure 4.9. In this graph the relay moves on the line that connects the source and 

the destination and instead of transmitted SNR we have used the gain obtained versus the 

non-collaborative single transmitter outage probability. The single transmitter outage 

probability is obtained assuming the same distance, path gain and fading coefficients 

between the source and the destination. It indicates that 24 dB is required for achieving 

an outage of 10"3. 

Figure 4.9 Gain vs. Non-Collaborative Single Transmitter Capacity 

We note that the system is at the peak performance when the relay is between the 

source and the destination around d = 0.25 and it starts degrading after d — 0.3. We 

also note that our collaborative scheme outperforms a non collaborative system even 

when the relay is further than the destination. 
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In Figure 4.10 we show the constant gain contours, i.e., the geometrical loci of 

the relay to achieve a specific amount of gain when compared to a non-collaborative 

system. When the relay is located inside a specific contour, the amount of gain written 

on that contour is guaranteed. For example if the relay is located in the 3dB contour, the 

overall transmit power required to achieve an FER of 10"3 is half (—3dB) of that needed 

when there is no relay. These contours can also be used when there is more than one 

relay in the vicinity and one has to choose a relay to collaborate. 

2clB 

- - 3dB 
4dB 

Figure 4.10 Constant gain contours 

4.4.1 Simulation Results for Path Loss Exponent of 4 

To examine the performance of our system in different environments, we changed 

the path loss exponent from 2 to 4 and repeated the simulations. We have 

PG„ = PG, sd 

(Dsd) 
p (1 \ 

(4.19) 

and 
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PGrd = PGsd 

r ^ \ 
sd D. 

KDrdJ 

f i A 

\D«J 
(4.20) 

It should be noted that we still assume that path gain between the source and the 

destination is PGsd = 1 = OdB. Therefore the values obtained from the simulations for 

transmitted SNR or achieved gain cannot be compared with the results derived with path 

loss exponent of/? = 2. 

Figure 4.11 shows the obtained gain versus the non-collaborative capacity when 

the relay moves on the line connecting the source and the destination. The best 

performance of the system is achieved at a further distance from the source and closer to 

the center point between the source and the destination. It should be noted that as it was 

expected, the area in which the relay can move to provide gain is reduced from (-1.2, 1.8) 

to (-0.7, 1.4). 

Figure 4.11 Gain vs. Non-Collaborative Single Transmitter Capacity (Path Loss Exponent 4) 
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In Figure 4.12 we show the geometrical loci of the relay to achieve a specific 

amount of gain when compared to a non-collaborative system. 
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Figure 4.12 Constant Gain Contours (Path Loss Exponent 4) 

4.5 Conclusion 

In this chapter we presented the simulation parameters of our system in details. 

We compared the frame error rate performance of several codes with different dfree in 

our collaborative protocol with the non-collaborative single transmitter outage capacity 

and the collaborative outage capacity obtained in [34], We demonstrated that our system 

achieves full diversity without using an STC in the second phase. It was seen that the 

performance of the system improves when the minimum free distance of the code 

increases. We have also provided the results when the relay takes different locations in 

the plane and presented the fixed gain contours and areas that guarantee a minimum gain 
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when compare with the non-collaborative single transmitter system. In the next chapter 

we will analyze the effect of knowledge of channel at the transmitter side by assuming 

that the destination sends a feedback containing the channel state information to the 

transmitters (the source and the relay). We will try to minimize overall transmitted 

power while maintaining the same performance (FER) by using that feedback. 
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CHAPTER FIVE 

5 Simulation Results for the System with 

Feedback 

In this chapter, we will introduce two feedback scenarios. In the first case, the 

source-destination and relay-destination channel state information is available only at the 

relay. In the second scenario, both the source and the relay know the channel state 

information. This assumes a feedback channel between the destination and the relay or 

both the source and the relay. Then we will provide Monte Carlo simulation results 

showing the improvement in the performance of our collaborative protocol in a system 

where the channel state information is at least partially available at the transmitters' side. 

5.1 CSI Available at Relay Only 

We start with a simple feedback scenario. In this mode, we assume that only the 

relay receives the channel state information from the destination, therefore, the source 

69 



does not have any knowledge about its transmission cannel. In this scenario the relay 

decides about its collaboration mode at the beginning of each frame. It will only decode 

and forward the source message if its collaboration during this frame can improve the 

frame error rate performance of the system. 

5.1.1 Modes of Collaboration 

In this scenario there are three different modes of collaboration. The modes of 

collaboration are the same as those in a system with no knowledge of channel at the 

relay. But the frequency of their occurrence is different. The modes of collaboration for 

this scenario are plotted in Figure 5.1. 

Mode 
S 1 P| I P; 1 P, 

I J r . ' : ' . • . ; . ' . ' : 

Pi 

^ • ' . ' • ' " V ^ ; : ' • ' : • 

P, 
P4 

P3 
P5 

Figure 5.1 Collaboration Modes in Partial Feedback Scenario 

When the relay has no knowledge about source-destination and relay-destination 

channels, the best it can do is to start transmitting the extra parities as soon as it can 

decode the source message. But there are times that the relay is able to decode the source 

message in time and also the quality of the source-destination channel is good enough for 

the destination to decode the message with a frame error rate less than the required value. 

Even when the source-destination channel is not good, it is possible that the relay is able 
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to decode the source message after the first block and hence it will transmit two parity 

blocks but the relay-destination channel is so good that the destination can decode the 

message after receiving only one block from the relay. In these situations, the relay is 

wasting some energy transmitting extra parity bits. 

If the relay knows the source-destination and the relay-destination channel state 

information, it can calculate the received signal power from the source and the relay at 

the destination. In addition if the relay knows the frame error rate performance of 

different rates of the channel code being used in the system, it can evaluate the 

probability of error in decoding a frame at the destination, when the system is working in 

each of the three collaboration mode. Then the relay can decide whether its collaboration 

is needed or not, and if it is needed how many blocks should be transmitted in order to 

achieve the required frame error rate. Therefore, the system can achieve the same 

performance at a lower energy level. 

5.1.2 Decision Criteria 

As mentioned in the previous section, the relay needs to know the frame error rate 

performance of each rate of the code (each mode of collaboration) at different received 

signal to noise ratios to decide on the collaboration mode. In this chapter the 8-state code 

which was used in the previous chapter is used. In mode i the relay does not transmit and 

the source transmits with rate 1/3, hence we can present the code in octal form as (15, 

17, 15)octai- Figure 5.2 shows the achieved frame error rate versus the received bit SNR. 

Since the rate of the code is 1/3 the overall received SNR is 3 times (4.77dB) more than 
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the value depicted on the horizontal axis. It will be shown that, to be able to easily 

compare different modes and decide about the collaboration, it is more practical to use 

the received bit SNR. 

;>0(«:i) \ . i ', 1 i , ; . , ; 1 j 

•5 0 -t.u -3.11 -:i) -111 (I.II 1.0 

SNR (received hi!) 

Figure 5.2 FER of the 8-Sate Code at Rate 1/3 (mode i) 

In mode ii the source transmits with rate 1/3 and the relay transmits with rate 1, 

then the overall collaborative code can be written in octal form as (15, 17, 15, 17)octai and 

the overall code rate is 1/4. As the relay and the source both transmit in this mode, the 

achievable frame error rate depends on two variables, received signal power from the 

source and the received signal power from the relay. Figure 5.3 shows the achieved 

frame error rate versus received bit SNR from the relay at the destination at different 

received bit SNR's from the source. 
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Received Bit SNR al the Destination from the Relay 

Figure 5.3 FER vs. received bit SNR from the relay at different received bit SNR from the source in mode 
ii 

In mode Hi the source transmits during all available three blocks (rate 1/3) and the 

relay transmits two blocks (rate 1/2), then the overall collaborative code has a rate of 

1/5 and is written in octal form as (15, 17, 15, 15, 17)octai- Figure 5.4 shows the achieved 

frame error rate versus received bit SNR from the relay at the destination at different 

received bit SNR's from the source. 

Similar to the previous chapter we assume that a frame error rate of 10"3 is required 

at the destination and we set the relay's decision criteria to match the same number. 

Using the above results we can plot FER=10"3 curves as in Figure 5.5. Note that the 

values on the two axes are linear (not dB). 
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Figure 5.5 Collaboration mode areas when CSI is only available at the relay. 

At the beginning of each frame, relay knows the relay-destination and the source-

destination channel coefficients through the feedback it receives from the destination and 

can calculate the received signal power from each channel at the destination. These two 

values correspond to a point on Figure 5.5. During the transmission of the frame, the 

relay listens to the source till it can decode the message. Then the relay chooses an 
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available collaboration mode that guarantees a frame error rate less than 10"3 and uses the 

least number of blocks for transmission. If the point falls below the FER=10"3 curve of 

mode Hi, it will decide in favor of the highest possible mode. 

The relay decides in favor of mode i either when its collaboration is not needed or 

when it cannot decode the source message reliably. 

The relay decides in favor of mode ii when its collaboration is needed for only one 

block and it can reliably decode the source message after the first or the second block. 

Also when its collaboration is needed but the relay can only decode the source message 

after reception of the second block it has no option but to choose mode ii. 

Finally the system will be in mode Hi when the relay's collaboration is needed at the 

maximum possible rate and it can decode the source message without error after 

reception of the first lock. 

Here is an example. Let us assume that the relay can decode the source message 

after it receives the first block and the point corresponding to the transmission channel 

states is (1,3). If there was no feedback, the relay would start collaborating immediately 

and would transmit two parity blocks to the destination. However now the relay knows 

that even if it only transmits one block the probability of an error in the decoding of the 

frame at the destination is still less than 10"3 but if it does not transmit that single block 

then the probability of a frame error will be higher than 10"3. Therefore it will decide on 

mode ii. 
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In the next section, the second feedback scenario will be explained and then the 

simulation results for both scenarios will be presented and compared with the results 

obtained in the previous chapter. 

5.2 CSI available at Both Source and Relay 

Now we extend our feedback scenario to a case where both source and relay have 

access to the channel state information through a feedback channel. In this scenario we 

assume that both source and relay are aware of the source-destination, the relay-

destination and the source-relay channel states. Here both the source and the relay decide 

about the collaboration mode. They both try to achieve the required frame error rate 

while minimizing the energy consumption by optimizing the number of transmitted 

blocks in each frame. 

5.2.1 Modes of Collaboration 

Since not only the relay but also the source has access to all channel coefficients, 

there are several modes of transmission/collaboration in this scenario than the previous 

one. In Figure 5.6, all eight collaboration modes are presented. One may find other 

possible combinations but since we assume quasi-static fading (the channel state 

information remains constant for the entire frame), all of those combinations can be 

modeled as one of the depicted modes. It should be noted that the mode names in this 

section are not the same as the previous section, i.e., mode i hear is different than mode i 

in the previous csection. 
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Figure 5.6 Collaboration modes when both source and relay have access to CSI 

In no CSI scenario discussed in the previous chapter the source had no knowledge 

about source-destination, source-relay and relay-destination channels. So, the best it 

could do was to transmit all three blocks. However, in this scenario the source-

destination channel could be in a considerably good state that the destination is capable of 

decoding the source message within the required frame error rate after reception of one or 

two blocks. Even when this is not the case, the source-relay and the relay-destination 

channels may be able to provide a reliable path for transmission at a lower energy level 

while satisfying the frame error rate requirement. 

If both source and relay know the channel state information they both can 

calculate the received signal powers at the destination. In addition if they both have 

knowledge of the frame error rate performance of the system's variable rate channel code 
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in every possible collaboration mode, they can select the mode that guarantees the quality 

criterion and has the minimum number f blocks. Hence the amount of energy used to 

transmit that frame is reduced, without compromising the link reliability. 

5.2.2 Decision Criteria 

To be able to compare the results, we use the same 8-state trellis encoder that was 

explained in Chapter 4 and change the code rate by adding or dropping the outputs. In 

modes i, ii and Hi the relay does not transmit. They represent the cases when either the 

source-destination channel is in a good state or the relay cannot decode the source 

message without error even after receiving two blocks from relay. In mode i, source 

transmits with rate 1 (actual rate 127/130). Figure 5.7 shows the achieved frame error 

rate versus the received SNR. In mode ii, source transmits with rate (1/2). The trellis 

code can be presented in octal form as (15, 17)octai- The FER performance of the code is 

depicted in Figure 5.8. It should be noted that the numbers on the horizontal axis are 

received bit SNR, and since the code rate is (1/3) the overall received SNR is 2 times 

(3dB) more than the presented value. 
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Mode Hi is similar to mode i of the previous section. In this mode the source 

transmits with rate (1/3) and the code can be written in octal form as (15, 17, 15)octai-

The FER graph of this mode can be found in Figure 5.2. 
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Figure 5.8 FER of the 8-Sate Code at Rate 1/2 (mode it) 
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In mode iv source transmits one block and then the relay transmits another block. 

The overall code rate is (1/2) and the code can be shown in octal form as (15, 17)octai. 

As the destination receives each block through a different channel, the frame error rate of 

the code depends on two received signal to noise ratios. Figure 5.9 shows the achieved 

FER versus received bit SNR from the relay at the destination at different received bit 

SNR's from the source. 

10 -9 -8 -7 -*i -5 -4 -.1 -2 -I 0 S 2 .1 -S S t, 7 8 

Received Bit SNR at the Destination from the Relay (tIB) 

Figure 5.9 FER vs. received bit SNR from the relay at different received bit SNR from the source in mode 
iv 

In mode v the source transmits one block and the relay transmits two blocks. The 

overall code rate is 1/3. The code can be written in octal form as (15, 17, 15)octai- Figure 

5.10 shows the achieved FER versus received bit SNR from the relay at the destination at 

different received bit SNR's from the source. 
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Figure 5.10 FER vs. received bit SNR from the relay at different received bit SNR from the source, mode v 

In mode vi the source transmits two blocks and the relay transmits only one 

block. The overall code rate is still 1/3. The code can be written in octal form as (15, 

17, 15)octaibut the second parity in this mode in being transmitted by the source instead of 

the relay as in mode v. Figure 5.11 shows the achieved FER versus received bit SNR 

from the relay at the destination at different received bit SNR's from the source. 
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Figure 5.11 FER vs. received bit SNR from the relay at different received bit SNR from the source, modevt 

81 



Finally, modes vii and viii are exactly identical to modes ii and Hi in the 

previous section when CSI was only available to the relay. The overall code rates are 

1/4 and 1/5 and the codes can be presented in octal form as (15, 17, 15, 17)octai and (15, 

17, 15, 15, 17)octai. The frame error rate performance of mode vii can be found in Figure 

5.3 and the one for mode viii in shown in Figure 5.4. 

Similar to the previous section, we use these results to plot FER=10"3 curves. 

Note that the values on the two axes are linear (not dB). Since there are mode 

collaboration modes, there are more curves in Figure 5.12 than in Figure 5.5. 
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Figure 5.12 Collaboration mode areas when CSI is available at both source and relay. 

At the beginning of each frame both source and relay receive channel state 

information through the feedback channel. They calculate the received signal power 

from each channel at the destination as well as the received signal power at the relay from 

the source. Then they use the data provided in Figure 5.12 to choose the collaboration 
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mode. They select an available collaboration mode that provides a frame error rate equal 

or less than 10~3 and uses minimum number of blocks. 

They decide in favor of mode i when the probability of error in decoding a frame 

at the destination is less than the required value after receiving only one block. This is 

when the points is located on the right side of the boundary of mode i. 

Mode ii will be selected when the destination needs to receive two blocks from 

the source to decode the message reliably. This happens when the point in between the 

boundaries of mode i and ii. 

Mode Hi is used when the relay cannot decode the source message after the first 

block but the destination can do it when it receives all three blocks from the source. This 

is when the point is between the boundaries of mode ii and mode Hi and below the 

boundary of mode iv. 

They decide in favor of mode iv, when the destination cannot decode the source 

message reliably by receiving two blocks but it can do so if it receives one block from the 

source and one from the destination. This happens when the point is located to the left of 

the boundary of mode ii and above the boundary of mode iv. 

Mode v is selected when the source-destination channel is bad but the relay can 

decode the source message after the first block and the destination can decode the 

message if it receives two blocks from the relay. This is when the source-relay channel 

rate is one and we are located below the boundary of mode iv, above that of mode v and 

to the left of the boundary of mode ii. 
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The system will choose mode vi when the source-destination channel is not good 

but the relay-destination channel is in a good state and the relay needs to receive two 

blocks from the source to decode its message reliably. This will happen when the point 

falls below the boundary of mode iv, above that of mode vi and to the left of the 

boundary of mode Hi. Note that this mode will not occur if the relay can decode the 

source message after receiving only one block. 

Mode vii is used when the relay collaboration is needed but only for one block or if it 

cannot collaborate for more than one block. This is below the boundary of mode v above 

that of mode vii and to the left of mode Hi. And if the relay needs to receive two blocks 

from the source to decode its message it will be just below the boundary of mode v and 

to the left of mode Hi. 

Finally mode viii is used if none of the above cases is true. 

5.3 Results 

In Figure 5.13 the frame error rate performance of the two feedback scenarios are 

compared with the results obtained in the previous chapter when CSI was not available at 

the transmitters. Consistent to the previous chapter, we define an outage event as an error 

in the decoding of a frame and compare the simulated frame error rate curves to the 

outage probability of a single transmitter as well as the modified outage probability of the 

collaborative scheme presented in [34]. To obtain the results shown in the figure, we 

assumed that the relay is located on the line connecting the source and the destination and 
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its distance to source is 0.3 (Dsr = 0.3). Note that the latter two curves are drawn based 

on no-feedback assumption. It can be seen that both feedback scenarios achieve the 

diversity advantage. At FER=10"3 the first feedback scenario outperforms the no-

feedback scheme by almost 2dB. Further, when both source and relay have access to the 

channel state information (second feedback scenario), the performance of the system 

improves for about 5.5dB at high SNR. 

n s io r. id 
Transmitted SNR(UB) 

Figure 5.13 FER performance of different feedback scenarios (the relay is located at d=0.3 between source 
and destination) 

Now, we set the source location to (0,0), the destination location to (1,0) and 

moved the relay on the plane by changing Dsr with increments of 0.1 and G with steps 

n/8. For each location of the relay we have obtained the performance of each of the 

feedback schemes through Monte Carlo simulation. Figure 5.14 shows the achieved gain 

of the two feedback and the no-feedback scenarios versus a single transmitter scenario at 

outage probability of 10"3, when the relay moves on the line connecting the source and 
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the destination. The single transmitter outage probability is obtained assuming the same 

distance, path gain and fading coefficients between the source and the destination. 

I 

% 
1 

•] V -.1 )>5 <> OS 1 1*. 

Relay's LwMtion 

Figure 5.14 Gain vs. Non-Collaborative Single Transmitter Capacity with different feedback scenarios 

Figure 5.15 show constant gain contours, the geometrical loci of the relay, to 

achieve a specific amount of gain when compared to a non-collaborative system for the 

feedback scenario where CSI is available only at the relay. Figure 5.16 shows the 

constant gain contours for the feedback scenario where CSI is available both at source 

and relay. The numbers written on the contours show the minimum achieved gain versus 

a single transmitter, when the relay is located inside that each contour. For example in 

Figure 5.16, if there is a relay located in the 8dB contour and the system is operating 

under the collaborative scheme where the CSI is available at source and relay, the overall 

required power to achieve a frame error rate of 10"3 is 8dB less than a single transmitter 

with no knowledge of the channel. 
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Figure 5.15 Constant gain contours, CSI available at relay 
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Figure 5.16 Constant gain contours, CSI available at both source and relay 

Finally in Figure 5.17, the 4dB constant gain contours of the two feedback 

scenarios are compared with the no-feedback setting of Chapter 4. It can be seen that, 
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when CSI is available at both source and relay, the contour area is approximately 25 

times of the contour obtained in previous chapter for the no-feedback scenario. 
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Figure 5.17 Comparison of 4dB gain contours in different feedback scenarios 

5.4 Conclusion 

In this chapter we presented two different feedback scenarios. In the first scenario 

only the relay is partially or fully aware of its transmission channel state while in the 

second scenario full or partial knowledge of channel state information is available both at 

the source and the relay. After that we proposed variable time-fraction collaborative 

protocols for each feedback scenario. Finally, we used the same channel code used in the 

previous chapter and presented Monte Carlo simulation results for the two scenarios and 

compared the results with the results obtained in the previous chapter. 
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CHAPTER SIX 

6 Concluding Remarks 

6.1 Conclusion 

In this thesis we have developed and studied a new practical protocol for 

collaborative communication in fading environments. We designed our protocol 

assuming no knowledge of channel state information at the transmitter side (source and 

relay). Our variable time-fraction protocol, unlike the protocols presented in previous 

works, does not impose a fixed duration on the exchange and collaboration phases. 

Therefore, it benefits from all available diversity gain (number of transmitting nodes) in 

the network, while improving the coding gain of the system. The improvement in the 

coding gain is particularly considerable when the relay is relatively close to the source. 

In these situations in our system, the relay can understand the source message in a small 

fraction of the transmission time and can collaborate with the source during the rest of the 

frame, while in a fixed time-fraction protocol, it has to listen to the source for usually half 
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of the time and only collaborate, if possible, during the next half. On the other hand, the 

relay may need more time (receive more information) to decode the source message, but 

the fixed time-fraction will not allow this and the system will not benefit from the 

available diversity advantage in the network. However, in our collaborative protocol, the 

relay can adjust the length of the exchange phase. 

In Chapter 3, we presented our communication network model and its parameters 

in details. We then explained our novel collaborative protocol as a practical method of 

cooperative diversity in wireless networks. The channel code selection and design 

criteria for our collaborative protocol are also presented in this chapter. 

In Chapter 4, the simulation parameters of our system are presented in details. In 

this chapter the frame error rate of several codes with different minimum free Hamming 

distances in our collaborative protocol are compared with the non-collaborative single 

transmitter outage capacity and the collaborative outage capacity obtained in [34]. It is 

demonstrated that our collaborative protocol achieves full diversity without using an STC 

in the second phase. We have also showed that the performance of the system improves 

when the minimum free distance of the code increases. Fixed gain contours and areas 

that guarantee a minimum gain, compared to the non-collaborative single transmitter 

system are obtained via simulation. All of the mentioned results are obtained, assuming a 

path loss exponent /? = 2. To evaluate our results in a different environment, we 

repeated the simulations for path loss exponent n = 4 and showed that the results are 

pretty consistent in different environments. 
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In Chapter 5, we presented two simple feedback scenarios. In the first one, only 

the relay receives a feedback from the destination containing some information about the 

source-destination and relay destination channels. Using this information the relay tries 

to optimize its transmission, by re transmitting the source message only if it is necessary. 

Through simulation, we showed that this scheme can reach the performance of the no-

feedback scenario at 10"3 frame error rate, with 2 dB less SNR, while achieving the same 

diversity gain. In the second feedback scenario, both the source and the relay are aware 

of their transmission channel states through a feedback from the destination. This 

scheme also provides a full diversity advantage but the energy consumption of the system 

is dramatically improved, since the source and the relay will only transmit enough 

number of blocks to the destination to decode the message and avoid unnecessary 

transmission. It has been shown that this protocol can achieve the frame error rate of 10-

3 at almost 7 dB less signal to noise ratio. Finally, like Chapter 4, we obtained the 

constant gain contours for both of the feedback scenarios and compared them with the 

ones obtain for the no-feedback case. 

6.2 Future Work 

There are several ways to continue the research and obtain further important results in the 

framework of this thesis. We believe the following to be of the highest importance: 

• One can analytically evaluate the performance of the proposed protocols, 

regardless of the specific selection of the channel codes. This can be done for 

both the non-feedback and feedback scenarios. 
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• In the second feedback scenario, where both source and relay have knowledge of 

their transmission channels, one can look into the code design algorithm and 

improve the coding gain of the system using the available information about the 

channel. This can be extended also to efficient power allocation between the 

source and the relay. 

• In this thesis we only studied the performance of the system with three nodes (one 

relay). This work can be further extended to study and design of collaborative 

protocols in a network with several relay nodes. We believe that, the first step in 

this direction is the design of a proper relay selection protocol. The constant gain 

contours that are presented in this thesis can be of great help to design of such 

protocol. 
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APENDIX 

A Note on the Stop Criteria in the Simulations 

Here we want to find the minimum number of error events we need to observe in 

our Monte Carlo simulations to make sure that the obtained performance is in a required 

distance to the real performance. We use the sample mean to obtain an estimate of the 

expected value of the number of error events, 

- 1 ^ «, 
e=-Yjer~, (1) 

"b /=i nb 

where e 6 {0,1} and et = 1 represent an error event, nb in the number of transmitted 

information bits and ne is the number of error event. We know that if nb -* oo the above 

statistical value will converge to the real mean (JJ). Here we need to find the proper value 

of nb which guarantees that the statistical mean is close enough to the real mean. As the 

statistical mean is the sum of a large number of independent identically distributed 

random variables, we can consider it as a Gaussian random variable (central limit 

theorem). Then, we have 
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P(-zal2 <Z< zan) = P'2 e-*2'21 yfl^dz = 1 - a, (2) 

where Z is normally distributed random variable with zero mean, unit variance and can 

be written as 

Z = ^Z». (3) 
m/yl"b 

Therefore we have 

p(e-za/2a/yln'b</u<e+za/2cT/ylr^) = l-a (4) 

We can see that with probability 1 — a the error in the sample mean (|/z — ?|) is smaller 

than za/2 o/Jn^. The values for za/2 can be found in [37] page 290 for different given 

probabilities 1 — a. In all of the simulations in this thesis we used a 95% confidence 

interval (1 — a = 0.95) and a 10% tolerance (e = 0.1) on the e. Therefore we have 

za/2 = 1.96. We want 

ee>^jC. (5) 

We assume that the number of error events, ne, is large enough that sample variance 

(°stat) c a n be used as the real variance (cr2). We can write the statistical variance as 

M nb-l 
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Using the fact that e 6 {0,1}, we have 

^sta, 
2 ^ ( l - ^ ) 2 , V ^ ) 2 

,=1 nb-\ ,=1 « 6 - l 

(l-e)2 (e)2 . 
~ ~ne+ ±-L-(nb-ne) 

nb-\ nb-\ 

n - 2n~e + nJe1 

e e o 
nb-\ 

Now we can use (7) in (6) 

K(W e~l) . Za/2 
£-2^-= 19.6. 

nb~ne £ 

By approximating n e by Penb we get 

„t>19.6;(iz£!) + 1. 
* Pe 

Which for small Pe can be approximated by 

nb>-
19.62 

Pe 

Or 

« >384.16 

Therefore, for a bit error rate of 10 5, we need to observe at least 385 error events. 
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