
Novel Approaches for Generating Video Textures

Wentao Fan

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Information Systems Security) at

Concordia University

Montreal, Quebec, Canada

July 2009

© Wentao Fan, 2009

Library and Archives Biblioth&que et
Canada Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Direction du
Patrimoine de l'6dition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre rSf^rence
ISBN: 9 7 8 - 0 - 4 9 4 - 6 3 1 0 7 - 2
Our file Notre reference
ISBN: 9 7 8 - 0 - 4 9 4 - 6 3 1 0 7 - 2

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Biblioth&que et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

Abstract

Novel Approaches for Generating Video Textures
Wentao Fan

Video texture, a new type of medium, can produce a new video with a continuously varying

stream of images from a recorded video. It is synthesized by reordering the input video frames in a

way which can be played without any visual discontinuity. However, video texture still experiences

few unappealing drawbacks. For instance, video texture techniques can only generate new videos

by simply rearranging the order of frames in original videos. Therefore, all the individual frames

are the same as before and the result would suffer from "dead-ends" if the current frame could not

discover similar frames to make a transition.

In this thesis, we propose several new approaches for synthesizing video textures. These ap-

proaches adopt dimensionality reduction and regression techniques to generate video textures. Not

only the frames in the resulted video textures are new, but also the "Dead end" problem is avoided.

First, we have extended the work of applying principal components analysis (PCA) and autore-

gressive (AR) process to generate video textures by replacing PCA with five other dimension

reduction techniques. Based on our experiments, using these dimensionality reduction techniques

has improved the quality of video textures compared with extraction of frame signatures using

PCA. The synthesized video textures may contain similar motions as the input video and will

never be repeated exactly. All frames synthesized have never appeared before. We also propose

a new approach for generating video textures using probabilistic principal components analysis

(PPCA) and Gaussian process dynamical model (GPDM). GPDM is a nonparametric model for

learning high-dimensional nonlinear dynamical data sets. We adopt PPCA and GPDM on several

movie clips to synthesize video textures which contain frames that never appeared before and with

similar motions as original videos. Furthermore, we have proposed two ways of generating real-

time video textures by applying the incremental Isomap and incremental Spatio-temporal Isomap

111

(IST-Isomap). Both approaches can produce good real-time video texture results. In particular,

IST-Isomap, that we propose, is more suitable for sparse video data (e.g. cartoon).

iv

Acknowledgements

First and foremost, I would like to express my greatest gratitude to my supervisor Dr. Nizar

Bouguila. He is such a wonderful advisor, mentor and motivator. I learned a lot from his valuable

tutoring, not only technical knowledge but also about dealing in real life. I will be always grateful

to him for his support and persistent encouragement.

I would also like to give my appreciation to all professors in CIISE, especially Dr A. Ben

Hamza for his patience and guidance through my INSE6510 project.

Many thanks to my colleagues in the lab, for their helpful suggestions during my two years

study.

And finally, I would like to thank my family for unconditional support throughout my studies,

your endless love and care always encourage me all the time.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 The Video Texture Technique 2

1.1.1 Analysis 2
1.1.2 Synthesis 7
1.1.3 Rendering 8

1.2 Video Sprites 8
1.3 Extensions and Research Works Based on Video Texture 9
1.4 Contributions 11
1.5 Thesis Overview 12

2 Generate Video Textures by Dimensionality Reduction Techniques 14
2.1 Introduction 14
2.2 Dimensionality Reduction Approaches 15

2.2.1 Probabilistic principal component analysis 16
2.2.2 Kernel principal component analysis 19
2.2.3 Isomap and ST-lsomap 20
2.2.4 Locally linear embedding 21
2.2.5 Independent component analysis 23

2.3 Experimental results 24
2.3.1 Extract Frame Signatures and Synthesize New Video Textures 25
2.3.2 Comparison of the results 26
2.3.3 More experimental results 29

3 Generate Video Textures by PPCA and Gaussian Process Dynamical Model 33
3.1 Introduction and Related Works 33
3.2 Gaussian Processes 35

3.2.1 Linear regression in function space 35
3.2.2 Gaussian process regression 36

3.3 Gaussian Processes Dynamical Models 38

vi

3.3.1 Latent Space Mapping 40
3.3.2 Dynamic Mapping 41
3.3.3 Priors On Hyperparameters 41
3.3.4 Learning the parameters 42

3.4 Experimental Results 43
3.4.1 Generation of new frames 44
3.4.2 Comparison of the results 45

4 Generate Real-time Video Textures by Incremental Isomap and Incremental ST-Isomap 49
4.1 Introduction and Related Works 50
4.2 Isomap 51
4.3 Incremental Isomap 52

4.3.1 Updating the Neighborhood Graph and Geodesic Distance 53
4.3.2 Finding the Low-dimensional Coordinates of the New data 53

4.4 Incremental Spatio-temporal Isomap 54
4.4.1 Spatio-temporal Isomap 55
4.4.2 Incremental Version of Spatio-temporal Isomap 56

4.5 Experimental Results 57
4.5.1 Experimental Results by incremental Isomap 57

4.5.2 Experimental Results by 1ST Isomap 62

5 Conclusions 63

List of References 65

vii

List of Tables
2.1 Performances of Different dimension reduction techniques for generating video

textures 26
2.2 The noise start to blur the result at which frame number 26
2.3 The noise start to blur the result at which frame number for different input movies

and techniques) 32

4.1 Runtime (Seconds) for Generating Video textures by'Original Batch Isomap and
Incremental Isomap. 59

4.2 Runtime (Seconds) for Generating Video textures by Original Batch Isomap and
Incremental Isomap 60

4.3 Runtime (Seconds) for Generating Video textures by Original Batch Isomap and
Incremental Isomap 60

4.4 Runtime (Seconds) for Generating Video textures by Original Batch Isomap and
Incremental Isomap 61

viii

List of Figures
1.1 An example of the distance matrix (right) from the input video (left) 3
1.2 Example of the probability matrix with different parameter a, a = 1 on the left

and a = 10 on the right 4
1.3 Example of preserving dynamics 5
1.4 The process of generating video sprites 9

2.1 The original input video 25
2.2 The first frame that is synthesized by using: (a) PCA , (b) PPCA, (c) kernel PCA,

(D) Isomap, (e) LLE and (f) ICA 27
2.3 The signatures of frames extracted by (a) PCA , (b) PPCA, (c) Kernel PCA, (D)

Isomap, (e) LLE and (f) ICA. The last 100 signatures are newly created by AR
process. Here, the x-axis means the number of frames and the y-axis represents the
value of coefficient of each input frame. Each color stands for one dimensionality
of the frame signature (up to 30-dimensions) 28

2.4 The synthesized video frame which contains visible noise 28
2.5 The first frame that is synthesized by using: (a) PCA , (b) PPCA, (c) Kernel PCA,

(D) Isomap, (e) LLE and (f) ICA 29
2.6 The first frame that is synthesized by using: (a) PCA , (b) PPCA, (c) Kernel PCA,

(D) Isomap, (e) LLE and (f) ICA for an animation of cartoon 30
2.7 The first frame that is generated by using: (a) PCA , (b) PPCA, (c) Kernel PCA,

(D)Isomap, (e) LLE and (f) ICA for a movie of fountain 30
2.8 The first frame that is generated by using: (a) PCA , (b) PPCA, (c) Kernel PCA,

(D)Isomap, (e) LLE and (f) ICA for a movie of flag 31
2.9 The first frame that is generated by using: (a) PCA , (b) PPCA, (c) Kernel PCA,

(D)Isomap, (e) LLE and (f) ICA for a movie of waterfall 31

3.1 The first three frames are synthesized by PPCA and GPDM 45
3.2 The first three frames are synthesized by PPCA and GPDM 46
3.3 The first three frames are synthesized by PPCA and GPDM 46
3.4 The first three frames are synthesized by PPCA and GPDM 46
3.5 The first three frames are synthesized by PPCA and GPDM 47
3.6 The first three frames synthesized by PPCA and GPDM 47

ix

3.7 (a), (b) and (c) illustrate the 20th, 25th and 30th frames synthesized by PPCA and
GPDM; (d), (e) and (f) demonstrate the 20th, 25th and 30th frames generated by
PCA and AR process 48

4.1 The input video 57
4.2 The first three frames synthesized by incremental Isomap 58
4.3 The frame signature synthesized by Incremental Isomap 59
4.4 The first three frames synthesized by incremental Isomap 59
4.5 The first three frames synthesized by incremental Isomap 60
4.6 Compare the real-time video texture results generated by IST-Isomap and incre-

mental Isomap for a cartoon animation: (a) and (b) are the 30th and 40th frames
synthesized by IST-Isomap; (c) and (d) are the 30th and 40th frames synthesized
by incremental Isomap 61

x

Chapter 1

Introduction

Recently, in the computer graphics community, image-based modelling and rendering (IBMR)

techniques have drawn considerable attention because of their potential to generate realistic images

[1] [2] [3] [4]. In IBMR, a collection of existing images are used to render novel views rather than

geometric primitives. IBMR techniques provide a simpler and faster solution for representing more

complex scenes in the real world.

Video texture, introduced by Schodl et al. [5], has common features with image-based render-

ing (IBR) technique. It can reuse a recorded video to make a new video stream without visual

discontinuity by changing the order of the original frames. Therefore, video texture can be viewed

as a "video-based rendering" technique. Video rewrite [6] is the most similar technique to video

texture. It can create a new video by using an existing video footage of a speaking person. This

technique can also be used in movie production to match new sound track with an actor's lip.

Nowadays, photographs and videos are the most widely used mediums to conduct information.

They can be seen everywhere in our daily lives, but each of them has its own drawbacks. A

photograph is a static image with a time-invariant information, but without dynamic properties.

There are many natural phenomena that cannot be represented by- a single snap shot photograph

(e.g. leaves swinging in the breeze, water descending from a waterfall, snow falling from the sky).

On the other hand, a video is able to capture the dynamic properties of a phenomena, but with

limited time.

Video texture is a new type of medium that can be placed somewhere between static images

and dynamic videos. It incorporates the properties of a video and a photograph in order to generate

1

a continuous, infinitely changing stream of images. The term "video texture" is used because it is

very similar to image texture. The frames in the original source video are randomly rearranged to

generate a new video texture. Although the individual frames are still the same as before, the whole

video sequence is infinitely varying. A video texture combines the properties of a photograph and

a video to produce a dynamic and timeless result, which can be applied in many different fields.

Indeed, a displayed digital photo can be replaced by a video texture. For instance, in the digital

photo frame, a video texture of a waterfall with water descending can be used instead of a static

picture of waterfall. Or in the cell phone, iPod or computer, you can display a video texture of your

child with continuously changing facial expressions like smiling or making funny faces instead of

one single expression. Besides, video textures can be used on web pages to replace static images

and make the web pages more vivid and interesting. Some other applications related to movies or

computer games are also possible.

1.1 The Video Texture Technique

In order to generate a video texture, a video clip or a sequence of still images can be used as an

input followed by three steps: analysis, synthesis and rendering. The analysis step is to uncover

good transition points by extracting and examining each frame in the original input video clip.

The synthesis step synthesizes a new video stream from the analyzed video clip by rearranging

the order of the original video frames. The rendering step makes the sequence of video frames

together in a way with minimal visual discontinuities. Then a new video texture is created at the

end of the generation process.

1.1.1 Analysis

The first step of creating video textures is to analyze the data from the input video. It involve

extracting every frame out from the input video and computing the similarities between all pairs

2

Figure 1.1: An example of the distance matrix (right) from the input video (left).

of them. Before calculating the similarity, it is often required to equalize the brightness in frames

in order to reduce the visual discontinuities from one frame to another in the video texture. Addi-

tionally, the input video may contain some shakes because of bad capturing conditions. Thus, it is

necessary to apply a video stabilization tool to make the video clip more stable.

According to the original algorithm of video texture [5], L2 distance is used to compute the

dissimilarity between frames with the result stored in the matrix

Di3 = \\Ii-Ij\\ (1)

here, D(] is the matrix that represents the L-2 distance between each pair of images It and Ij. Figure

1.1 gives an example of distance matrix (right) from an input video (left). In this video, a person

moves a pen continuously in front of the camera. Since video texture reorders the original video

frames into a new sequence, it is important to insure that the new transitions are visually smooth.

More precisely, a transition from frame i to frame j occurred when the successor of frame i in the

original video is substituted by the frame j and the predecessor of frame j is substituted by the

frame i. Thus, frame i should be similar to frame j — 1 and frame i 4-1 should be similar to frame

j . This also means that the value of A - i j needs to be small if we want to make a transition from

frame i to j without visual discontinuity.

Basically, video textures are Markov processes, with each video frame represents a state. The

Markov process can be represented as a matrix of probabilities, and each element Py in the matrix

3

\
X

Figure 1.2: Example of the probability matrix with different parameter a, a = 1 on the left and
a = 10 on the right.

is the probability of a transition from frame i to frame j. The frame-to-frame distance Dv} can be

mapped to the probabilities through an exponential function

here, the parameter a controls the mapping between the L2 distance and the probability of transi-

tion. Smaller values of <7 means only to select the very best transitions and larger values of a allow

for greater variety and relatively poorer transitions. Figure 1.2 gives an example of probability

matrix with a = 1 and a = 10, respectively. All the probabilities for the transitions from the same

frame should be normalized so that ^ P,3 = 1. The transition from a frame to the next is done

according to the distribution of P^.

Preserving dynamics

The similarity is not the only factor needed to be considered for a good transition, but also the

dynamics of the system is needed to be preserved. Figure 1.3 also shows that there are two possible

transitions from frame i to either frame js or jo, but only j2 has the same dynamics as i, which is

swinging from left to right. On the other hand, if the transition is from frame 1 to frame j l5 it will

result in sudden and unpleasing directional changes for the moving pen.

Thus, it is necessary to enforce the coherence in the direction of the movement. One possible

Pij ex exp('i+hj
a

(2)

4

Frame i

Frame j1

Figure 1.3: Example of preserving dynamics

solution is to consider the similarities of the neighboring frames as well rather than just the current

frame. This subsequence match can be accomplished by filtering the Lo distance matrix Di j with

a diagonal kernel with weights [u'_m,.... wm_i]

(3)
k—~m

here, the parameter m controls the size of the window. In the implementation, m is set to 1 or 2 to

make it a 2 or 4 tap filter with binomial weights. And the new probabilities P/j after filtering can

be given as

P[, oc exp(-
-D' i—l.j

a (4)

After the filtering, the unacceptable transitions will be eliminated.

5

Avoiding dead ends

The algorithm so far can create good results, but it only considers the local cost for the given

transition. This means that only the similarities and dynamics between two frames are involved in

a transition; there is no consideration for the situation in which the transition may lead a video into

a "dead end". A "dead end" problem happens when a transition is made from one frame to another

and this will lead into some portion of the video which there is no graceful exist, the video will be

stuck forever.

In order to solve this problem, the anticipated future cost for choosing a transition needs to

be considered. Let Z?" • be the future cost of a transition from frame i -•• 1 to frame j, this cost

represents the expected average cost of future transitions. D"3 is defined by summing up all future

anticipated costs and k is the number of future transitions

• < > £ W (5)

k

here, p is a constant used to control the tradeoff between taking multiple good transitions from

frame i to j or just a single poor transition. Normally (but not always) p is set to an integer

between 1 and 5 (you can choose between a single transition or up to 5 transitions). The parameter

q is the convergent rate used to control the relatively weight of the future transition in the metric.

For convergence, a must be set as 0 < a < 1; in practice, it is set as 0.99 < a < 0.999. P"k is

similar as in (2)

P"i c x e x p (^ ± M) . (6)
J <7

(5) and (6) can be solved using iterative algorithm, but it is very slow to converge. To improve

the algorithm, since as a —» 0, the value of probability P"k in (6) will be close to 1 for the best

transition. (5) can be modified as

U)':,J' • <>in\n!);,. (7)

The above equation is known as Q-learning [7] in the reinforcement learning community, and it

6

has been proven to always converge. D'^ is initialized , with D'^ = D'^ and the value of D"j is

obtained by iterating until it becomes stable.

1.1.2 Synthesis

After good transition points are found, the next step is to decide the order of playing video frames

from the input video. There are two methods to sequence the frames into a video texture: random

play and video loops.

Random play

Random play is the simplest and fastest method to create a video texture. Basically, the video

texture can be started at any frame which has the transition probability larger than zero. The next

frame is selected by walking through all other frames and choosing one with higher transition

probability. A new video texture can be generated by repeating the above steps. This generation

algorithm is very simple and fast, but it produces very poor results which contain many visible

jumps and discontinuities.

Video loops

Video loops are needed when playing video textures using existing digital video players or web

browsers. For the video textures produced by finite duration video loops, they do repeat in a fixed

period and can be continuously played in a standard "loop mode" in the player without any visible

discontinuities.

Video loops is a more difficult and complex synthesis method but also produces better results.

The general idea is to find out transitions in the original video that have similar beginning and end.

Then it may be possible to jump from the end of this transition to its beginning without any visible

jumps. This kind of transition is known as a primitive loop. One or more primitive loops will be

7

combined into cyclic sequences which are called compound loops. Using such compound loops to

jump from one to another will give video texture a much more smooth and natural look.

1.1.3 Rendering

Even though there is only a small amount of discontinuities in the sequence after the analysis and

synthesis steps, the transitions produced by jumping from one frame to another are still noticeable

in the video texture. Therefore, the cross-fading algorithm is applied in the rendering step. By

using this method, frames of the sequence before and after the transition are blended together,

which means that the frames around the source of the transition are linearly faded out, while the

ones around the destination of the transition are faded in. In this implementation, a cross-fading

algorithm is provided as

here, ati is the blending weight and is normalized such that — 1.

After the rendering step, a continuously, infinitely varying video texture is generated with a

very smooth look and much less visible discontinuities.

Video sprite is an extension of the video texture [8] [9]. The term "video sprites" was introduced

by Pollard et al. [10], the idea is also used in Finkelstein et al.'s multi-resolution video work [11].

Instead of using the whole image to generate video textures, we can just use an object in the image.

First this object can be shot against a green or blue screen and then use background-subtraction

method to extract the object from the background, which is considered as a sprite. Similar to

video texture algorithm, new video sprite animations can be made by replacing all the sprites

in an appropriate visually appealing order. The new animation of the object can be placed at an

arbitrary image location and controlled by defining a cost function [12]. This means that the desired

(8)

1.2 Video Sprites

8

Input
Video >

(Extract sprites

^ Sequence
of sorites

Find transition
pairs

\
Sprites
oairs

S Minimize cost ^
/

Video
sprites

Figure 1.4: The process of generating video sprites

animation can be archived by optimizing the parameters of the animation which in turn minimizes

the cost function. Figure 1.4 shows the process of generating video sprites.

1.3 Extensions and Research Works Based on Video Texture

The idea of video texture has inspired many other researchers. Li and Shum [13] presented a

new technique called motion texture which is a two-level statistical model that can use the existing

motion capture data to synthesize complex human-figure motions (e.g. dancing). Celly and Zordan

[14] introduced a technique based on pre-recorded footage, which can control characters in video-

based animation in order to generate new realistic sequences. Some other similar works [15], [16]

9

and [17] also provide solutions for finding good transitions between motion capture data samples in

order to create new and longer continuous sequences of motion data. These video-based rendering

works can be used to create background elements and special effects in games or movies.

Additionally, there are many attempts on the application of new algorithms to create video

textures. For example, Campbell et al. [18] employed an auto-regressive process to generate video

textures. First, each frame from the input video is transformed into an eigenspace using Principal

Components Analysis (PCA), which in turn allow the original sequence to be viewed as a signature

through this low-dimensional space. Then a new sequence is created by moving through this space

and creating similar signatures.

Another related work introduced by Kalnins et al. [19] is quite interesting. They created a

system to let artists and designers directly annotate 3D models with strokes. In other words, artists

can choose the "brush" style to draw strokes and convey the aesthetic style onto a 3D object from

different view angles. Part of Kalnins's work closely followed the algorithm of video textures.

They synthesized new sequences of stroke offsets from the set of example strokes rather than

synthesized new sequences of frames from an existing video footage. Vivek et al. [20] introduced

a new algorithm for image and video texture synthesis by using graph cuts which can improve

the quality of video textures. Briefly, they synthesized a new texture by copying and transforming

patches from sample images or video to the output and then stitch them together along optimal

seams.

One of the most interesting extensions for video texture is panoramic video texture (PVT)

introduced by Agarwala et al. [21]. A series of photos were taken from a single view point and

then stitched into a single large image, which is called panoramic image. Panoramic video has the

same concept as panoramic image but only needs to replace photos with videos. Nowadays, many

web sites have panoramic images or videos, especially web pages for hotels or tourism places.

Those images can provide people a much more immersed sense than just a single snapshot. Also,

it can be used as a forensic tool to reconstruct criminal scene.

10

1.4 Contributions

The contributions of this thesis are as follows:

^ Compare Different Dimensionality Reduction Techniques for Creating Video Textures: Recently,

a new method of generating video textures has been proposed. It first applies principal com-

ponents analysis (PCA) to extract signatures or patterns from the original video sequence;

and then implements an autoregressive process (AR) model to synthesize new video tex-

tures. In this thesis, we extend this video texture generation method by comparing PCA

with other dimensionality reduction techniques such as probabilistic principal components

analysis, kernel principal components analysis, independent component analysis, local lin-

ear embedding and Isomap. According to our experiments, these approaches outperform the

original approach by providing us video textures with better quality.

•cs" Generate Video Textures by PPCA and Gaussian Process Dynamical Model: We propose a

new method of generating video textures by implementing probabilistic principal compo-

nents analysis (PPCA) and Gaussian Process Dynamical model (GPDM). Compared to the

original video texture technique, video texture synthesized by PPCA and GPDM has the

following advantages: it is able to generate new video frames that have never existed in the

input original video clip; the "dead-end" problem is totally avoided; and it could also provide

video textures that are more robust to noise.

Generate Real-time Video Textures by Incremental Isomap and Incremental ST-Isomap:

We also propose two different approaches for synthesizing real-time video textures. The first

approach is applicable to generate real-time video textures using incremental Isomap and

Autoregressive (AR) process. Nonetheless, it does not extend well for videos that are more

sparse, such as cartoons. Inspired by spatio-temporal Isomap (ST-Isomap), we propose an

extension of incremental Isomap, which contains spatio-temporal coherence in the data set

and can also be applied in an incremental mode. We name it as Incremental spatio- temporal

11

Isomap (IST-Isomap). Our second real-time video texture generation approach exploits IST-

Isomap and AR process. It provides more efficient and better quality results for sparse videos

than the first approach. Compared with other video texture generation approaches, both of

our approaches are able to synthesize new video textures in a real-time fashion which in turn

offer advantages (e.g. faster and more efficient) in applications where data are sequentially

obtained.

1.5 Thesis Overview

The organization of this thesis is as follows:

• Chapter 1 introduced the original video textures technique. It provides the background in-

formation for the following chapters.

• In Chapter 2, we extend a recently proposed video texture generation method (based on

PCA and AR process) by comparing PCA with five other dimensionality reduction tech-

niques. The comparative results and case studies demonstrate that these approaches prevail

the original approach by providing us video textures with better quality.

• In Chapter 3, we propose a new method for generating video textures by applying PPCA and

Gaussian GPDM. The experimental results demonstrate improved performances according

to the robustness to noise compared with the standard video textures technique.

• In Chapter 4, we propose two different approaches for synthesizing real-time video textures.

The first approach applies incremental Isomap and AR process, which works well except for

sparse videos. The other one applies incremental ST-Isomap and AR process, which provides

better results for sparse videos (e.g. cartoon) than the first approach. Our experimental

results show that these two real-time approaches can process sequential data more efficiently

than the batch approach.

12

• In Conclusions, we summarize our contributions.

13

Chapter 2

Generate Video Textures by Dimensionality

Reduction Techniques

Video texture is a new type of medium which can provide a new video with a continuously varying

stream of images from a recorded video. It is created by reordering the input video frames in a

way that can be played without any visual discontinuity. Recently, a new method of generating

video textures has been proposed. It first applies principal components analysis (PCA) to extract

signatures or patterns from the original video sequence, and then implements an autoregressive

process (AR) model to synthesize new video textures. In this chapter, we extend this video texture

generation method by comparing PCA with other dimensionality reduction techniques such as

probabilistic principal components analysis, kernel principal components analysis, independent

component analysis, local linear embedding and Isomap. According to our experiments, these

approaches ourperform the original approach by providing us with better quality video textures.

2.1 Introduction

Video texture which has been introduced by Schodl et al. [5], is a new type of medium that can gen-

erate a continuous, infinitely changing stream of images from a recorded video. The term "video

texture" is used because it is very similar to image textures. This technique can be considered as

video-based rendering (VBR) because it has similar features with image-based rendering (IBR)

technique [1], that is, both of them are able to reuse the already existing resources to synthesize

14

new objects. For video textures, a recorded video is used to make a new video stream without any

visual discontinuity by changing the order of the original frames. This would be useful in movie

and game industries, since it may create new objects by reusing existing resources so that time and

human resources may be saved. More applications may be found in [9] [8] [21] [13]. However,

same as the original video textures technique, all of these works can only generate new videos by

just switching the order of frames and the results would suffer from 'dead-ends'.

Recently in computer vision, there are increased number of researches on time series analysis

to model the dynamical characteristics of complex systems. Autoregressive (AR) process [22] is a

tool used for understanding and predicting future values in a time series. In [23], Fitzgibbon have

introduced a new method for creating video textures by applying principal components analysis

(PCA) and AR process. All frames in the generated video are new and consist with the motions

in the original video, and 'dead ends' would never appear. In [18], Campbell et al. have extended

this approach to work with strongly non-linear sequences by applying a spline and a combined

appearance model.

The rest of this chapter is organized as follows: We briefly review different dimensionality re-

duction techniques in section 2.2. Then, we compare the experimental results by applying different

dimensionality reduction techniques to generate video textures in section 2.3.

2.2 Dimensionality Reduction Approaches

Dimensionality reduction is an important research topic in the area of data analysis. The goal of

dimensionality reduction techniques is to discover a low-dimensional subspace that best represents

a given set of data points. In this chapter, we extend the work of Fitzgibbon [23] by compar-

ing PCA with other representative dimensionality reduction techniques to extract signatures from

video frames and then synthesize new video textures. The techniques we have applied are: proba-

bilistic principal components analysis, kernel principal components analysis, Isomap, local linear

embedding and independent component analysis. In this section, we will give a brief introduction

15

for each technique individually.

2.2.1 Probabilistic principal component analysis

PCA is a quite effective technique for dimensionality reduction and has been used in different

image processing and pattern recognition applications. It is based on a linear projection of input

data into a lower dimensional space than the original data space. But one disadvantage of PCA is

that there is no associated probabilistic model for the observed data. In [24], Bishop et al propose

a probabilistic model for PCA by showing that PCA is able to be represented as the maximum

likelihood solution of a probabilistic latent variable model. This novel form of PCA is known as

probabilistic PCA (PPCA) \ and it has some practical advantages compared with PCA:

• PPCA represents a constrained form of the Gaussian distribution in which the number

of free parameters can be restricted while still catch the dominant correlations in a data

set.

• In PPCA, expectation-maximization (EM) algorithm can be used, this can be compu-

tationally efficient by avoiding the computation of the data covariance matrix as an

intermediate step.

• By using PPCA and EM algorithm, we can deal with missing values in a data set.

® In PPCA, the existence of likelihood function makes it possible to compare with other

probabilistic density models directly.

• PPCA can be used for dimensionality reduction as well as a general Gaussian density

model.

'We have also applied mixtures of probabilistic principal component analysis [25] to generate the signatures of
video frames, but the only good result we obtained is when the mixture size is equal to one which is same as the
standard PPCA.

16

Maximum likelihood estimation for Probabilistic PCA

PPCA can be formulated by first choosing an explicit latent variable z corresponding to the prin-

cipal component subspace and then sampling the observed variable x conditioned on this latent

variable. We define a Gaussian prior distribution p(z) for the latent variable, and a conditional

Gaussian distribution p(x|z) for the observed variable x conditioned on the latent variable z. The

latent variable distribution over z is defined as

p (z) = j V (z | 0 , I) . (1)

The distribution of x conditioned on z is again Gaussian

p(x|z) = AA(x|Wz + cr2I) (2)

where the D x M matrix W and the D-dimensional vector [i are used to regulate the distribution

of z. The variance of the conditional distribution is governed by the scalar a2 .

The observed variable x can be defined by a linear transformation of latent variable z and an

additive Gaussian noise

x = Wz + n + e (3)

where z is an M-dimensional Gaussian latent variable, and e is a D-dimensional Gaussian noise

with zero-mean and covariance cr21.

Then, we require to determine the values of the unknown parameters W , p and a 2 by using

maximum likelihood algorithm. The marginal distribution of observed variable x can be acquired

by

p(x) = J p(x\z)p(z)dz . (4)

From (1) and (2), this marginal distribution p(x) is again Gaussian, and is given by

17

p(x) = A/"(x|/x, C) (5)

where the D x D covariance matrix C is defined by

c = W W T + a21. (6)

Given a data set X = {xn} of observed data points, we may obtain the corresponding log

likelihood function from (5) as

lnp(X|W,/J., cr2) = ~{Dln(2w) + ki\C\ +triC^S)} (7)

where S is the covariance matrix of the data set and is given by

1 N

n=1

Setting the derivative of the log likelihood to zero with respect to W, we may acquire the

solution in an exact closed-form

W A / i = U m (L m - <t2I)1 / 2R (9)

where U.v is a D x M matrix whose columns are composed of the principal eigenvectors of S,

and the M x M diagonal matrix h M contains the corresponding eigenvalues Ai..... AM. R is an

arbitrary M x M orthogonal matrix.

Similarly, the maximum likelihood solution for a 2 is given by

D 1
'ML = lT^M

1 v - > <J1,T. = TT A, (10)
1=M+1

where a\1 L is the average variance for the discarded dimensions.

18

2.2.2 Kernel principal component analysis

Kernel principal component analysis (KPCA) [26], is an extension of the conventional principal

component analysis (PCA) using the technique of kernel methods. The operations of standard PCA

are linear. Using nonlinear kernels, it is possible to generate nonlinear distributions.

At the beginning, the distribution of the input data is non-linear. One way to deal with such a

distribution is to attempt to linearise it by non-linearly mapping the data from the input space to a

new feature space. Consider a set of observations {x„} with dimensionality D, where n — 1,.... iV.

Instead of implementing standard PCA directly, each data point in {xn} is transformed into an

higher dimensional feature space with dimensionality M by using a nonlinear transformation func-

tion (j>(x)

xn-><?(x„). (11)

Then we can perform standard PCA in this new feature spac. We also assume that </>(xn) has

zero mean. We can then calculate the covariance matrix C by

1 N

n = l

Then the formula of its eigenvector is defined as

Cvj = AiVj . (13)

where ?" = 1, ...,M. According to the definition ofC, Cv^ is a linear combination of vectors <p(xn).

Therefore, we can obtain v,; by
-V

\i = ain6(xn) (14)
n=1

where ain is the coefficient of linear combination. Substituting (12) and (14) into (13), we have

^ N N N
— <i(x„)<?(x7J)T aim<p{yLm) = Xi • (15)

?) = 1 m=1 n=1

19

Instead of using the scalar product of o(xn)T 0(xm), we define a kernel function />;(x„, xm) =

4>(xn)T (j>(xm), and multiply both sides of (15) by <p(xq)T, we then have

j N m N
— X«) a i m k { X - n - = A.t ^ aink(xq., Xn) . (16)

n=1 m=l n=l

By defining a matrix K with elements Km>n = fc(xm,xn),the above equation can also be

represented as

JVAjKai = K % (17)

where a,: is an N-dimensional vector which contains the elements a m for n = 1,..., N. By remov-

ing a factor K from both sides of (17), this is equivalent to

NXiai = Ka, . (18)

We can obtain the vector a, by extracting the eigenvectors of K. It is also required that the

principal component v, needs to be normalized. Then, we obtain

N N
vfv,; --- ^ ainaim(p(xn)T (i){xm) = a / K a , = A?:Arafa,: = 1 . (19)

n — 1 777 — 1

After solving the eigenvector problem, the principal component projections can then also be

expressed in terms of kernel function. A data point x can be projected onto eigenvector i by
N

fi(x) = <?(x)TVI = amk(x:xn) . (20)
71=1

Then we can use this to extract a data point's features when applying kernel PCA.

2.2.3 Isomap and ST-Isomap

Isomap [27] is global nonlinear dimensionality reduction technique which extend multidimen-

sional scaling (MDS) technique. In MDS, we first calculate the pairwise dissimilarity (or similar-

ity) between all pairs of data points, then we try to discover a low-dimensional embedding of a set

20

of high-dimensional data points. Normally, Euclidean distance is used to calculate the dissimilar-

ity between pairs of data points in MDS. In Isomap, instead of using Euclidean distance, Geodesic

distance [28] [29] on the manifold is used as the measurement of dissimilarity.

Isomap algorithm contains three major steps. The first step is to determine the neighborhood

relations for all data points by constructing a weighted graph, it uses edge weights to indicate

distances between all data points in original space. The second is to discover the geodesic distances

between all pairs of data points on the manifold by computing the shortest path distances in the

weighted graph. The last step is to apply classical MDS to the dissimilarity matrix formed by the

shortest path distances, constructing an embedding of the data points in a low-dimensional space.

Isomap is an efficient technique that is capable to discover a low-dimensional manifold em-

bedded in a high-dimensional space. However, Isomap is not able to uncover the underlying

spatio-temporal structure of the data set. Since we are dealing with videos. There exist temporal

dependencies between sequentially adjacent frames. This drawback can be solved by the modified

version of Isomap: spatio-temporal Isomap (ST-Isomap) [30]. It augments the general Isomap

framework to consider the temporal relationships in local neighborhoods of data points. Similar

as the standard Isomap, ST-Isomap preserves the intrinsic geometry of the data, and it retains the

structure of temporal coherence as well.

More details of Isomap and ST-Isomap are introduced in chapter 4.

2.2.4 Locally linear embedding

Locally linear embedding (LLE) [31] is a local nonlinear dimensionality reduction technique. It is

able to compute a low-dimensional embedding of the high dimensional data while preserving the

neighborhood structure of the original space. It has been proved that this method guarantees the

generation of globally optimal solution and does not involve local minimum.

The LLE algorithm is based on simple geometric intuitions. That is, for a high-dimensional

manifold, it can be decomposed into many small patches. If each patch is small enough, it can

21

be approximated as linear patch. Suppose a data consist of N real valued vectors x,t with dimen-

sionality D, sampled from one smooth underlying manifold. If there exists sufficient data points,

we may assume each data point and its neighbors lie on or close to a locally linear patch of the

manifold. In the simplest case of LLE algorithm, the neighbors for each data can be calculated by

K nearest neighbors in Euclidean distance. Thus, each data point can be represented by a linear

combination of its neighbors

j

here, Wij is the coefficient of the local geometry of each patch. The matrix W of the linear coeffi-

cients for all data points can be computed by minimizing the reconstruction error as following

i 3
There are two constraints that need to be considered for minimizing the reconstruction error

E(W): first, each data point x, is reconstructed only from its neighbors, w^ = 0 if \ } is not a

neighbor of x,. Second, the rows of the coefficient matrix W must sum to one: • w^ = 1. The

optimal weights W^ can be obtained by solving a least squares problem.

After finding the weight matrix W, the next job is to obtain a linear mapping of each neighbor-

hood structure from high-dimensional coordinates to a lower-dimensional space. Since the weights

w^ reconstructed the data point x,- in the original space, it is expected that the same weights re-

construct each data point from its neighbors in the lower-dimensional space. Therefore, a mapping

matrix Y = [y1,y2, ...,yiV] that preserves the local neighborhood information can be obtained by

minimizing the embedding cost function

w = £ 11 * - II2 <23>
i 3

here, the vector y, is the global internal coordinates of the data point x, on the manifold. This cost

function is also based on locally linear reconstruction errors, but here we fix the weights u \ j while

optimizing the mapping matrix Y.

In summary, the LLE algorithm contains three major steps:

1. Compute the K nearest neighbors for each data point xt.

2. Compute the weights Wij by minimizing the reconstruction error in (22).

3. Compute the embedding vector yi by minimizing the cost function in (23).

2.2.5 Independent component analysis

Independent component analysis (ICA) [32] is a statistical technique for separating a multidimen-

sional random vector into linear additive subcomponents which are maximally statistically inde-

pendent from each other. One of the most essential features of ICA model is nongaussianity, this

feature is the key to reveal the independence of each components. Recently, ICA has gained much

more attention in the filed of image processing, audio processing, biomedical signal processing

and economics.

The goal of ICA is to maximize the statistical independence between the components of the

basis vectors. Compared with other methods such as PCA, or PPCA, ICA searches for components

which are both statistically independent and nongaussian. We can find the independent components

by maximizing nongaussianity, it is an important principle in ICA estimation.

Normally, before implementing the ICA algorithm, the preprocessing steps of centering and

whitening should be applied to make ICA estimation simpler and better conditioned.

We can use a statistical latent variables model to define ICA. For instance, we have observed

the random vector x = (x\. ,...xm)T, and the independent component vector s = (si. . . . ,sn)T .

Therefore, the component x{ can be defined as

Xi = CL-nSi + ai2s2 + ...aiksk + ainsv (24)

here, o,fc are the mixing weights. If we use the matrix A to denote the weights of mixing compo-

nents, then the generative ICA model can be defined as

x = As . (25)

23

The independent component can be represented by

s = Wx (26)

here, W is called the de-mixing matrix, and it is obtained by calculating the inverse of matrix A.

Then, our job is to discover the mixing matrix A and the independent sources s. This can be

fulfilled by adaptively evaluating the value of W [32],

In our experiments, the process for generating new video textures contains three steps: the first step

is to implement the dimensionality reduction techniques to extract the signatures from the frames

of a input video. The second step is to apply an AR process to predict new frame signatures based

on the signatures we obtained in the previous step. Here, we have a time series made of a sequence

of frame signatures {x„} where n = 1,.... N, and N is the total number of frames. A zero-mean

AR process of order p for a series of frame signatures in a (/-dimensional space may be modelled

where the d x d matrices A = { A}..... Ap) are the coefficient matrices of the AR process model.

And w is a (/-dimensional random vector drawn from Gaussian white noise distribution with zero-

mean. In our case, the order p is set to 2, which means, the next frame signature will be generated

based on the previous 2 signatures. The last step is to project these new frame signatures back to

the image space and compose them together as a video texture. All of our experiments are done by

using Matlab on a Windows platform.

2.3 Experimental results

by
p

(27)
k=1

24

Figure 2.1: The original input video.

2.3.1 Extract Frame Signatures and Synthesize New Video Textures

In order to test the effect of choosing different dimension reduction techniques for creating video

textures, we implemented several input videos.2 For instance, one of the input videos we used is a

video clip of a person moving a pen (as shown in Figure 2.1). It is 15 seconds long and contains

450 frames, and each frame has a size of 160 x 128 (20480) pixels . For each frame, the new

image vector would be a vector with 20480 dimensions, and the total image matrix for 450 frames

is a 450 x 20480 matrix, with images in the rows, and dimensions in the columns.

After acquiring the image matrix, we apply different dimensionality reduction techniques to

capture the signatures of frames. In our experiments, the dimensionality of 30 to 40 is good enough

for representing each individual frame. In the implementation of LLE and Isomap approaches, we

use A"-nearest method with the number of neighbors K = 12. In the case of applying ICA, we

implemented the FastICA algorithm. A 'gaussian kernel' with the form /,;(x. x') exp(— || x —

x' ||2 /0.1) is implemented for the Kernel PCA. At the end of this step, each frame is represented

by its signature which only has 30 dimensions. 3

Subsequently, AR process is applied to synthesize new signatures. The number of new sig-

natures is decided manually, for this input video, we set it to 60. At the end, 60 new frames are
2 Some of our input test movies are obtained from the "Video Textures" web site:

http://www.cc.gatech.edu/cpl/projects/videotexture
3We have also applied mixtures of probabilistic principal component analysis [25] to generate the signatures of

video frames, but the only good result we obtained is when the mixture size is equal to one which is same as the
standard PPCA.

25

http://www.cc.gatech.edu/cpl/projects/videotexture

Table 2.1: Performances of Different dimension reduction techniques for generating video textures
Technique Complexity Run-time

PCA 0{D'i) 30.56
PPCA 0(nD2) 38.17

Kernel PCA 0(n3) 60.41
Isomap 0(n3) 56.05

LLE 0(Dn2) 45.49
ICA 0(Dn2) 49.20

Table 2.2: The noise start to blur the result at which frame num
Dimensionality Reduction Techniques Frame Number

PCA 16th
PPCA 50th

Kernel PCA 18th
Isomap 24th

LLE 20th
ICA 45th

?er

synthesized and then define our video texture.

2.3.2 Comparison of the results

We have Implemented six different approaches (PCA, PPCA, Kernel PCA, Isomap, LLE and ICA)

separately, all of them can produce good quality video textures. Each frame in the result is new

and consists with the motions in the original video sequence. Figure 2.2 illustrates the first frame

of the result generated by PCA, PPCA, kernel PCA, Isomap, LLE and ICA respectively. Table 2.1

demonstrates the computational complexity and the run-time for generating the new video texture.

In Table 2.1, I? is the dimensionality of the input data in the observed space, n represents the

number of input data points and the unit for measuring run-time is in seconds. The Figure 2.3

shows the signatures extracted by applying different dimension reduction techniques.

Although the result seems very appealing, there still exist one problem, which is the occurrence

of noise (i.e frames contain some 'ghost' in it as shown in Figure 2.4). For all the results, after

26

(a) (b) (c)

(d) (e) (f)

Figure 2.2: The first frame that is synthesized by using: (a) PCA, (b) PPCA, (c) kernel PCA, (D)
Isomap, (e) LLE and (f) ICA.

some periods, the noise will start to become visible and make the video blur. The reason is that

the AR process model predicts the new frame signature based on previous frames, the noise is

cumulated as the AR process iteratively generates more new signatures. And this feature reflects

the difference among PCA, PPCA, Kernel PCA, Isomap, LLE and ICA approaches for generating

video textures. Table 2.2 demonstrates the noise start to appear at which frame in the synthesized

video texture.

From Table 2.2, we may notice that for PCA, the noise starts to blur the frame at 16th frame,

which is the earliest among all the six techniques. For PPCA and ICA, the noise appeared later

than others (at 50th and 45th frames, respectively). That means, a more robust decomposition

approach such as PPCA and ICA would generate more typical signature and therefore can improve

the performance of the result. Among all the six approaches, PPCA provides the best result. This

is reasonable, for PPCA, it is a latent variable model which conditioned on the observations data

set, and it naturally reduces the dimensionality of the data from a probabilistic perspective. The

order p of the AR process is another factor that may affect the performance of synthesizing video

27

(d) (e) (f)

Figure 2.3: The signatures of frames extracted by (a) PCA , (b) PPCA, (c) Kernel PCA, (D)
Isomap. (e) LLE and (f) ICA. The last 100 signatures are newly created by AR process. Here, the
x-axis means the number of frames and the y-axis represents the value of coefficient of each input
frame. Each color stands for one dimensionality of the frame signature (up to 30-dimensions).

28

(a) (b) (c)

(d) (e) (f)

Figure 2.5: The first frame that is synthesized by using: (a) PCA , (b) PPCA, (c) Kernel PCA, (D)
Isomap, (e) LLE and (f) ICA

textures. According to our experiments, as the value of p increases, the noise may blur the results

earlier and faster. The reason is that, order p represents the amount of previous signatures that will

be used for predicting a new signature, higher value of p will make the noise accumulated much

faster. In our case, the best results are obtained when p is set to 2.

2.3.3 More experimental results

We have also experimented other movies during our study. Here, the goal is to test the video tex-

ture generation approach on some structurally complex scenarios such as fountain. And we also

investigated to use it on some cartoon movies, since compared to the real shooted movie, cartoon

movies contain more sparse space and less color intensity. Figure 2.5 shows the synthesized result

from a movie which contains a movement of a burning candle for each dimensionality reduction

technique. In Figure 2.6, we illustrate the generated video textures for a cartoon animation. Fig-

ure 2.7 demonstrates the results of the video textures for a movie of fountain. Figure 2.8 and

29

I) 'J
•AS

- f V

(a) o
s- y

(b)

v . _„«• < \
u '• i » \

(C)

(d) (e) (f)

Figure 2.6: The first frame that is synthesized by using: (a) PCA , (b) PPCA, (c) Kernel PCA, (D)
Isomap, (e) LLE and (f) ICA for an animation of cartoon.

Figure 2.7: The first frame that is generated by using: (a) PCA , (b) PPCA, (c) Kernel PCA,
(D)Isomap, (e) LLE and (f) ICA for a movie of fountain.

30

Figure 2.8: The first frame that is generated by using: (a) PCA , (b) PPCA, (c) Kernel PCA,
(D)Isomap, (e) LLE and (f) ICA for a movie of flag.

Figure 2.9: The first frame that is generated by using: (a) PCA , (b) PPCA, (c) Kernel PCA,
(D)Isomap, (e) LLE and (f) ICA for a movie of waterfall.

31

Table 2.3: The noise start to blur the result at which frame number for different input movies and
techniques)

Movie PCA PPCA K-PCA Isomap LLE ICA
Flame (Figure 2.5) 17th 47th 21th 20th 18th 38th

Cartoon (Figure 2.6) 20th 34th 24th 38th 35th 30th
Fountain (Figure 2.7) 13th 39th 15 th 22th 24th 35th

Flag (Figure 2.8) 17 th 40th 19th 25th 22th 34th
Waterfall (Figure 2.9) 14th 36th 15th 24th 23th 33th

Figure 2.9 show the video texture results of a movie of waving flag and a waterfall, respectively.

Tables 2.3 demonstrates at which frame number the noise start to become visible for the flame,

cartoon, fountain, flag and waterfall movies, respectively. Here, from Table 2.3 we may notice

that, for cartoon movie, IsoMap and LLE provide better solution. This is because a cartoon movie

are more spare compared to the real movies, and dimensionality reduction techniques based on

preserving the neighborhood relationship such as Isomap and LLE are more suitable than others 4.

4ST-IsoMap is also tested for cartoon movies, it can generate a better results than all other results. A work based
on using ST-IsoMap to generate cartoon textures can be found in [33].

32

Chapter 3

Generate Video Textures by PPCA and Gaussian

Process Dynamical Model

In the previous chapter, we presented the approach of synthesizing video textures by dimensional-

ity reduction techniques and AR process. This approach is efficient and can provide good quality

results. However, the synthesized video textures still contain noise and this may blur the video af-

ter some periods. Therefore, discovering a model which is more robust to noise is our next task. In

this chapter, we propose a new method of generating video textures by implementing probabilistic

principal components analysis (PPCA) and Gaussian Process Dynamical models (GPDMs). Com-

pared to the original video texture technique, video textures synthesized by PPCA and GPDM has

the following advantages: it may generate new frames that have never existed in the input video

clip, the problem of "dead-end" is totally avoided, and it can also provide video textures that are

more robust to noise.

3.1 Introduction and Related Works

Recently, a number of extensions and applications of video texture have emerged. In [34], the

authors propose a novel method of generating video texture based on wavelet transform. Instead

of creating video textures by simply changing the order of frames in the input video clip, they con-

struct the new frames based on wavelet coefficients which are computed from the decomposition

of the pixel values of neighboring frames. In [23], video texture is synthesized first by applying the

33

principal components analysis (PCA) to obtain the signatures of each frame, then autoregressive

process (AR) is used to predict new frames.

Our work is inspired by [23], where the authors have shown that video texture may be created

by implementing regression methods such as Autoregressive Process (AR) which allow the predic-

tion of new video frames. Accordingly, new video textures are obtained by appending synthesized

frames. Gaussian process [35] [36] [37] is another approach which can be exploited to solve re-

gression problems. Via Gaussian process, we can define probability distributions over functions

directly. We can combine a Gaussian process prior with a likelihood to acquire a posterior over

functions.

In our work, we adopt an extension of Gaussian process namely Gaussian process dynamical

model (GPDM) [38] [39]. It is a latent variable model that can be applied for nonlinear time

series analysis. Its idea is derived from the Gaussian process latent variable model (GPLVM)

[40], However, GPLVM is not a dynamical model, it considers that data points in the data set

independent, and it ignores the continuity of data points. The GPDM augments the GPLVM with

a latent dynamical model. It includes a low-dimensional space account for dynamics in the time

series data, as well as a mapping from the latent space to observation space. It can make predictions

about future data and also consider the temporal dependence between the data sets. Since video

sequence is a time series data, in principle, GPDM is a suitable method to synthesize new video

textures. Therefore, we implemented GPDM on serval video clips to synthesize new video textures

and compared the results with video textures generated by AR process. The authors in [41] have

applied PCA as a dimensionality reduction technique to obtain the frames signatures. However, we

have shown in a previous works [42] that probabilistic principal components analysis (PPCA) [24]

is more robust to noise and provide better results. Thus, our video texture generation framework

will be based on both PPCA and GPDMs.

The remainder of this chapter is organized as follows. First we introduce Gaussian processes

in Section 3.2. Then GPDM for video texture is discussed in Section 3.3. Section 3.4 is devoted to

the experimental results.

3.2 Gaussian Processes

A Gaussian process is defined as a probability distribution over some functions y(x), such that the

set of values of y(x) evaluated at an arbitrary set of points Xi,.... xN jointly have a Gaussian distri-

bution. Although it may seems impossible to work with uncountably infinite space of functions at

the first view, we only need to consider the values of the function at input data points x„. Gaussian

process can also be applied on classification problem, but we will not discuss it here.

3.2.1 Linear regression in function space

In order to illustrate Gaussian process, we can first illustrate a particular example of Gaussian

process. It is provided by analyzing a linear regression model that its predictive distribution is

defined by working over functions. Let us define a model as

y(x) = wre>(x) (1)

where x is an input vector, w is an M-dimensional weight vector and o(x) are the fixed basis

functions for input x. The prior distribution over w is an isotropic Gaussian

p(w) = A/'(w|0;a;"1I) (2)

where the hyperparameter a is the precision of the distribution. From (1), we know that any

value of w defines a specific function of x, therefore, the prior distribution of w in (2) implies a

probability distribution over function y(x). We are interested in discovering the joint distribution

of function values y(xi), ,...y(xN) given the data points x1;..., Xjv- Then, we can rewrite (1) as

y = (3)

where y is a vector containing the values of y1:.... yN and $ denotes the N x M design matrix with

elements $nk = e>A-(*n)- Since y is a linear combination of w and w is a Gaussian distribution, thus

35

y is also Gaussian. Therefore, we can obtain the probability distribution of y by just computing its

mean E\y\ and covariance covjy]. They are calculated as

E\y] = w] = 0 (4)

cou[y] = E[yyT] = &E[ww T]$ T = = K (5)

where K is the Gram matrix and its elements can be represented through a kernel function k(x, x')

as

Knm = k(xn: xm) = -<p(xn)Td>(xm) . (6)
a

The model above is a specific example of Gaussian process. In Gaussian processes, the joint

probability distribution of function values y\,...y^ over N variables is fully defined by the mean

and covariance. In general, we will not have any prior knowledge about the mean, so for simplicity

we choose it to be zero. Then, the Gaussian process is fully defined by its covariance which is the

kernel function.

3.2.2 Gaussian process regression

In the last section, we have seen a specific example of Gaussian process given by defining the

predictive probability distribution of a linear regression model over function space. Here, we will

illustrate how Gaussian process can be applied for general regression problems. We consider a

model where the observed target values tn are corrupted with some random noise

tn = Vn + fn (7)

where yn = y(xn) for input data x. en is the random noise which has Gaussian noise with zero

mean and 3 v a r i a n c e

36

(26)

0 is the precision (inverse variance) of the noise distribution. Then the probability distribution

of the observed target values is also Gaussian

p(tn\yn) = N(tn\yn, P *) • (9)

Since the noise is independent for each data point, given the values of y = (yi, ...y^)T, the

joint distribution of target values t — (£1;..., tjy) is an isotropic Gaussian

where Ijv is the N x N unit matrix. From (5) in the last section, we know that in Gaussian process,

the marginal distribution of p(y) is a Gaussian with zero mean and the covariance is defined by a

Gram matrix K as

here, K is determined by some kernel functions /c(xn. xm) . This represents how strong the corre-

lation is between two target values. For instance, if two points x„ and xm are similar, that means

the values of yn and ym are strongly correlated, and vise versa.

In order to make predictions with this mode], first we need to calculate the marginal distribution

of p(t). That is, given the input values of x1 ; ...xa-, we need to integrate over y. The result of the

marginal distribution of t is

p (t | y) = A r (t | y ; r 1 l A O (10)

p(y) = ,V(yjO.K) (11)

(12)

where the elements of covariance matrix C are given by

C(x„.xm) = A;(xn. xm) 4- ,3 (13)

37

where 5nm is the Kronecker delta which is qual to one iff m = n and zero, otherwise.

After obtaining the marginal distribution of t, the next job is to evaluate the conditional

distribution p(tj^+1\t) where ijv+i is the next target value that we wish to predict. In order to find

]t), we first need to find the joint distribution of p(tw±i) for this can be done

from (12)

p{ tN+1)=tf(tN+1\0,CN+1) (14)

where C^+i is an (iV + 1) x (N + 1) covariance matrix.

Since the joint distribution p(t Ar+1) is also a Gaussian distribution, our next goal is to compute

the predictive distribution p(£jv+i[t). The covariance matrix C needs to be partitioned as

, C v k ,
CN+i = I I (15)

k T c

where C ^ is the N x N covariance matrix of the training data, vector k represents the N x 1

covariance matrix of training data and the predictive target and the scalar c denotes the

variance of i.iy-f i • We can obtain the mean and covariance of the conditional distribution p(t,y+i |t)

in the form of

m(x A > 1) = k T C ^ t . (16)

a2(xA:_i) = c - k T C ^ k . (17)

These results represent the core idea of Gaussian process regression. More details and discus-

sions about Gaussian processes can be found in [43].

3.3 Gaussian Processes Dynamical Models

The Gaussian process dynamical model (GPDM) [39] is a latent variable model, it has two non-

linear mappings. One mapping is from the latent space to the observation space, the other is the

38

dynamical mapping in the latent space. In the GPDM, these two mappings are learned from Gaus-

sian process regression. Because of the properties for the Gaussian process regression, the GPDM

does not need to select many parameters in order to learn nonlinear dynamical models.

Suppose {yi , . . . ,yN} denotes the D-dimcnsional observation data set and y t represents a par-

ticular observation output at the specific time t, yt G M.D. xi,..., x,y is a data set in the latent space,

x t represents the (/-dimensional latent coordinate of the observation data at time index t, x (6 l d .

A and B are parameters of the dynamical and observation mapping functions, respectively. In

order to generate the GPDM, the parameters in the two mappings need to be marginalized out, and

the latent coordinates of the training data need to be optimized. First we expect to evaluate the

joint probability distribution of Y = y1 ; . . . , y^r. The vector x repents a data point in the latent

space where the dimensionality is much lower than the observation space. The first-order Markov

dynamics is used to represent the dynamical system in the latent space

In the above equation, x t £ it shows the d-dimensional latent coordinates at time t, the dynam-

ical mapping function / is parameterized by A, and nx. ; is a zero-mean, isotropic, white Gaussian

noise process. The mapping from the latent space to the observation space is

here, the function g is parameterized by B, and same as nT_u ny.t is a zero-mean, isotropic, white

Gaussian noise process.

The task now is to infer the function from the given data, in a parametric approach for regres-

sion, functions / and g can be expressed in terms of two nonlinear functions f(x: A) and g(x: B)

parameterized by parameters A and B, respectively. Two basis functions o, and (f j are used for /

and g

x t = / (x t_i ; A) + nx,t . (18)

y t = s (x t ;B) + n ^ (19)

(20)

39

5 (X ; B) (2 1)
3

where weights A = [a1; a2, ...]T and B = &2, ...]T. f and 3 are nonlinear functions of x, but

the dependencies of / and g on the parameters A and B are linear. To infer this model with the

training data, the parameters A and B must be estimated and the number of basis functions must

be appropriately selected. It is also required to ensure that there is enough data to constrain the

shape of each basis function. In the Bayesian view, because the model parameters A and B are

very uncertain, for the GPDM, the parameters should be marginalized out if possible.

3.3.1 Latent Space Mapping

For the mapping from latent space to the observation space, function g in (21) is a linear combi-

nation of columns of B, where B has an isotropic Gaussian prior. After marginalizing over g, the

joint distribution of Y can be represented as

/;(YjX. 3. W) = , ^ = exp(- - t r (KC. 1 YW 2 Y r)) . (22)

This denotes the probability of the observations Y given the latent coordinates X and hyperpa-

rameters 3 and W. K>- is the kernel matrix of the mapping g and 3 are the hyperparameters of

the kernel. W represents the scale parameters which account for the overall scale in each data

dimension. This is because for many data sets, different data dimensions have different variances.

The scaling parameters W = diag{w\,.... wjj) are used to model the variance in each observation

dimension. The elements of Ky are defined by a kernel function (K y) i j = ky(xi, Xj). We choose

the radial basis function (RBF) as the kernel function for the latent mapping g

fcy(x:x') = 31 e x p (- ^ | | x - x'||2) + (23)

here, the hyperparameter 3i represents the output scale of the kernel function, and ,82 represents

the inverse width of the RBF. gives the variance of the isotropic noise term 11 y / .

3.3.2 Dynamic Mapping

The dynamic mapping for latent coordinate is similar to the latent space mapping. The weights A

are marginalized for the joint probability density over the latent coordinates

p(X|a) = j p (X , A\a)dA = J p(X|A, a)p(A\a)dA . (24)

In the above equation, a is a vector of hyperparameters for the kernel. If the first-order Markov

dynamical property in (18) is considered, the result is

N

p(X |a) = p (x i) / J J p (x t | x t _ 1 ; A,a)p(A\a)dA . (25)
f=2

Just like in the latent space mapping, we take an isotropic Gaussian prior on the columns of the

weights A, then (25) can be simplified to the form

p (X | a) = , P ^ = = exp(--t'r(KT-1X2.A /XjA,)) . (26)

In the above equation, it is assumed that Xi also has a Gaussian prior, and X2:.y = [x2, . . . xvf de-

notes the input data that except the first element. K\- is the kernel matrix build from [xi, ...Xjv-i].

In this dynamic mapping, the form "RBF + linear" is defined for the kernel function

M x , x ') = ot\ e x p (- y !jx - x'li2) + a3zTx' + (27)

here the RBF term is used to model nonlinear dynamics, and the linear term is used to make the

system to regress to linear dynamics when predictions are made from the training data, a* and

«3 is the output scale parameter of the RBF term and linear term, respectively, and a 2 represents

inverse width of the RBF term, a^ 1 represents the variance of the noise term nT t in (18).

3.3.3 Priors On Hyperparameters

In order to reduce the chance of overfitting in the learning process, a principled way is to attach

prior distributions on the parameters, so that certain values of the parameters are preferred to others

41

that may cause overfitting. According to the GPLVM, uninformative priors are placed on the kernel

hyperparameters a and <3 as follows

p ^ a j j a r 1 . (28)
i

p (0) o c] l 0 r i . (29)
i

These priors assign high probabilities to small values of a and Small values of a2 and 82 denote

a preference for a large width of the RBFs. Small values of c^ and Pi represent small output scales

and small values of a 4 and (3$ represent large noise variances. For the hyperparameter W , a broad

half-normal prior is placed on it

M W) = n ^ e x p (- g) (30)
m= 1

where wm are the variances that contain the elements of W . In our implementation, a value 103 is

assigned to k. This prior shows that on every dimension of the data, there is a nonzero variance.

Then a generative model for time-series observations can be obtained through the latent space

mapping, the dynamic mapping and the priors

p(X, Y, a, (3, W) = p(YjX, 3, W)p(X.\a)p{W)p{a)p(0) . (31)

This represent the general form of the GPDM. The details of how does GPDM work can can found

in [38].

3.3.4 Learning the parameters

In order to learn the GPDM from an observation data set Y, the unknowns in the model (X, a, 3,

W) need to be estimated using numerical optimization method. An intuitive method is to apply

maximum a posteriori (MAP) algorithm for estimating all the unknowns (X, a . 8. W)) up to an

42

additive constant. For simplicity, it is same as minimizing the negative log-posterior of the un-

knowns

L = - l n p (X , a J , W | Y) . (32)

Then, it gives

L = Ly + Lx + Y1
 ln

 & + E l n
 <*i + ('W2) (33>

j j
where

Ly = ^ ln | K y | + ^ r (K ^ Y W 2 Y T) - AT In |W| (34)

and

Lx = ^ l n | K x | + ^ X ^ v X ^) + ^ x f X l . (35)

For learning the unknown parameters {X, a, 3, W}, first the input data is mean-subtracted, and

the latent coordinates are initialized with dimensionality reduction techniques (e.g. PCA or PPCA).

Then L is minimized with respect to parameter W in closed form: Wk <= N(yT
kKy1y.ji. + -^y1

and with respect to the parameters {X. a , 3} by using the scaled conjugate gradient (SCG) method

[36], This algorithm will be iterated until an additive constant is found. Then, we will obtain these

unknown parameters.

3.4 Experimental Results

In our work, the goal is to apply GPDM to synthesize video textures. The performance of our

approach is evaluated by comparing our results with the video textures generated by AR approach

in [41], In the AR approach for synthesizing video textures, frame signatures are first calculated

by adopting the dimension reduction technique: principal components analysis (PCA), followed

by the synthesis of new video textures using AR process. In our case, in order to test our ap-

proach under different scenarios, several input video clips are selected. First, the input video clip

is decomposed into a sequence of frames. Each individual frame is an input vector x, with dimen-

sionality D. The value of D is the number of pixels contained in each frame. Second, these input

43

vectors are mean-subtracted and the latent coordinates are initialized with PPCA. Last, GPDM is

applied to synthesize new video frames which are then composed together to generate a new video

texture.

3.4.1 Generation of new frames

As described above, new video frames are predicted using GPDM. In other words, it is to predict

the next video frame x y - i conditioned on the previous frame The marginal distribution of

the new frame p(x jV+1) derived from the conditional distribution p (x tv+ i |x tv) is also a Gaussian

distribution

Xiv+i - A/"(/ux(xAr);<r|(x7v)) - (36)

We can solve this prediction problem by applying the similar ideas as in Gaussian process regres-

sion. According to results in (16) and (17), the mean and covariance can be calculated as

^ (x) = X ^ K ^ k Y (x) . (37)

<4 (x) = k-x (x, x) - k Y (x) x K x
1 k y (x) . (38)

In the above equations, k.y(x) represents a vector that contains the covariance k^-(x,xj) in

the i-th entry and x, denotes the i-th training vector. Then, the next frame in the latent space is:

xyv^j = /ix(xiv)- Therefore, the new video frames can be generated by yjy+i — My(xiv+i)-

New video textures are successfully generated from input video clips by applying PPCA and

GPDM with 50 frames in each video texture. They can be played without any visual discontinuity

but with similar motions as the original one. Moreover, all resulted frames have never appeared

before in the input videos. Figure 3.1 ~ Figure 3.6 demonstrate the first three frames generated by

PPCA and GPDM.

4 4

3.4.2 Comparison of the results

In this section, we compare the performance of synthesizing video textures by GPDM and AR

process. Via the AR process, although the result seems very good, there is still one problem which

is the occurrence of noise. For all results, after a certain time, the noise will start to become visible

and make the video blur. However, through GPDM, it is more robust to noise compared to AR

process since it contains a latent space account for the dynamics in the input data. As shown in

Figure 3.7, the 20th, 25th and 30th frames generated by PCA and AR process contain much more

noise than the ones produced by PPCA and GPDM at each corresponding frame number. Based on

our experimental results, we may conclude that video textures generated by PPCA and GPDM can

provide better results with more robustness to noise than AR approach. The synthesized new video

textures contain similar motions as the input video clips and all frames in the new video textures

are completely new.

(a) (b) (c)

Figure 3.1: The first three frames are synthesized by PPCA and GPDM.

45

(a) (b) (c)

Figure 3.2: The first three frames are synthesized by PPCA and GPDM.

Figure 3.3: The first three frames are synthesized by PPCA and GPDM.

(a) (b) (c)

Figure 3.5: The first three frames are synthesized by PPCA and GPDM.

Figure 3.6: The first three frames synthesized by PPCA and GPDM.

47

Figure 3.7: (a), (b) and (c) illustrate the 20th, 25th and 30th frames synthesized by PPCA and
GPDM; (d), (e) and (f) demonstrate the 20th, 25th and 30th frames generated by PCA and AR
process.

48

Chapter 4

Generate Real-time Video Textures by Incremental

Isomap and Incremental ST-Isomap

Recently, some new approaches for generating video textures have been proposed. All these ap-

proaches operate in a batch mode, meaning that all the input data points (input video frames in our

case) have to be available during the generating process. Batch approach works well in most cases.

However, in some applications, such as surveillance, since data are observed sequentially, batch

methods are computationally demanding and take a longer time to generate a new video texture.

In this chapter, we propose two different approaches for synthesizing real-time video textures. The

first one applies incremental Isomap and Autoregressive (AR) process to generate real-time video

textures, which is applicable for most videos. Nonetheless, it does not extend well for videos

that are more sparse, such as cartoons. Inspired by spatio-temporal Isomap (ST-Isomap), we pro-

pose an extension of incremental Isomap which contains spatio-temporal coherence in the data set

and can also be applied in incremental mode. We name it as Incremental spatio-temporal Isomap

(IST-Isomap). Instead of applying incremental Isomap, our second real-time video texture gener-

ation approach exploits IST-Isomap and AR process. It provides more efficient and better quality

results for sparse videos than the first approach. Compared with other video texture generation

approaches, both of our approaches are able to synthesize new video textures in a real-time fash-

ion which in turn offer advantages (e.g. faster and more efficient) in applications where data are

sequentially obtained.

49

4.1 Introduction and Related Works

Video texture introduced by SchodI et al. [5] is a new type of medium that can generate a continu-

ous, infinitely changing stream of images from a recorded video. Furthermore, more applications

related to video textures may be found in [9] [8] [21] [13]. A similar idea as video texture, "dy-

namic texture", proposed by Doretto et al. [44], represents sequences of images that exhibit the

same form of temporal stationarity, such as waves, smoke, etc. Besides, dynamic textures are able

to use a small number of resource data to generate a larger or even infinite number of new data.

Doretto and coworkers first built a statistical model which accounts for the intrinsic dynamics in the

input data; then they optimized this model by maximizing likelihood or minimizing the prediction

error variance. More related works and details can be found in [45] [46],

To the best of our knowledge, all of the video texture generation methods so far work in a batch

mode, which means, all the frame data have to be collected before the generation process starts.

The drawback of the batch video texture methods is that, in some situations where the training

images become available sequentially such as surveillance, the computations become prohibitive.

Another problem is that, in order to update the lower dimensional subspace for frame 'signatures'

with a new observed image, we have to recompute the low-dimensional representation for the

whole data set.

In this chapter, we propose two different approaches that allow video textures to be generated

in a real-time fashion. Our work is inspired by Fitzgibbon's work [41], where dimension reduction

technique and AR process were implemented to synthesize new video textures. In our case, we

extend Fitzgibbon's method by applying incremental Isomap (recently proposed in [47]) and AR

process [22] to establish a real-time version of video texture generation process. This approach

produces good results for most videos except for comparable sparse video data such as cartoons.

The reason is that the cartoon data are more inherently spare and also contain exaggerated deforma-

tions between frames. Juan and coworkers [33] applied spatio-temporal Isomap (ST-Isomap) [48]

to generate better results for cartoon textures than original Isomap since it maintains the temporal

50

coherence in the data set while finding the low-dimensional embedding. Thus, ST-Isomap is ap-

propriated for dealing with cartoon data. However, it still works in a batch mode. Based on the idea

of incremental Isomap, we propose an extension of ST-Isomap which contains spatio-temporal co-

herence in the data set and works in real-time. We name it as incremental spatio-temporal Isomap

(IST-Isomap). Our second real-time video texture generation approach applies IST-Isomap and

AR process and can produce better quality results for sparse videos such as cartoons. Based on

our experiments, both of our methods can process the image frame data sequentially and more

efficiently in terms of computational efficiency and time-consuming than the batch methods.

The rest of this paper is organized as follows: The original Isomap approach is briefly intro-

duced in section 4.2. The incremental version of Isomap is discussed in section 4.3. Section 4.4

explains the IST-Isomap algorithm. Experimental results for generating real-time video textures

are demonstrated in section 4.5.

4.2 Isomap

Isometric feature mapping (Isomap) [27] is a global nonlinear dimensionality reduction technique

which reduces the dimensionality by searching a low dimensional manifold hidden in observational

space. If we have a data set {X} which contains n data points: (xi, ...,xn) in a D-dimensional

space, Isomap can be applied to map x, onto a lower dimensional space with the representation

yi by preserving the geodesic distances between data points in the original space. The geodesic

distance between two data points is defined as the shortest curve on the manifold connecting the

two data points.

Tsomap algorithm contains three major steps. The first step is to determine the neighborhood

relations for all data points by constructing a weighted graph. We choose k-nearest neighbors (fcnn)

algorithm to represent neighborhood relations. For any two data points x, and Xjf "X.j is considered

as a neighbor of x5 if Xj is one of the k nearest neighbors of xz. The Euclidean distance between

these two vertices is defined as Ajj. The value of k is manually defined. After obtaining the

relationships for all data points, a weighted undirected neighborhood graph G can be constructed

by defining each data point as a vertex in this graph. The edge e^ between two vertices vt and

Vj exists only if these two data points x, and Xj are neighbors for each other. The weights of the

edges are set to Euclidean distance between two vertices.

The next step is to discover the geodesic distances between all pairs of data points on the

manifold. Here, the assumption is that we can estimate the geodesic distance between two data

points approximately by the shortest path between the corresponding vertices in the neighborhood

graph. We define gVJ as the length of the shortest path sp(i,j) between two vertices vr and Vj.

The last step is to apply classical multidimensional scaling (MDS) [49] to discover y t in a

lower-dimensional space d. We define the data points in the lower dimensional space as {Y} =

(yi> •••)y«)- The matrix B is the target inner products between different x*, it can be calculated

as B = —HSH/2, where S is the matrix of squared distances {stJ = g^} and H = {hij} is the

"centering matrix" {h^ = 5ij — 1}, is the Kronecker delta. Since Y r Y is required to be set

as close to B as possible, this can be done by Y = (\Aivi>..... y/XdVd), where Aj,.... Ad are the d

largest eigenvalues of the matrix B, and v-t..... vd are corresponding eigenvectors.

4.3 Incremental Isomap

Incremental Isomap was proposed by Law et al. [47], is a modified version of the original Isomap.

First assume that we have already obtained the low-dimensional coordinates y* of x.t for the first

n data points. Then, a new data point x„_i is observed in the sequence of data. Therefore, we

need to update the existing low-dimensional coordinate set of yj and estimate . Similar to the

original Isomap algorithm, there are three steps for the incremental Isomap. The first step is to

update the neighborhood graph and then update the geodesic distance g lj in the view of the change

of the neighborhood graph when the new data point x„_! is observed. The second step is to apply

the geodesic distance of the new point to the existing points to estimate the x„.+1's low-dimension

coordinate yn+i- The last step is to update all low-dimensional coordinates set x. after obtaining

52

the new geodesic distance <7̂ .

4.3.1 Updating the Neighborhood Graph and Geodesic Distance

After observing the new input data point x„ + i , the new vertex vn+\ is inserted into the neighbor-

hood graph. We define A and D as the set of edges needed to be added and deleted after inserting

the new vertex, respectively. For any vertex vu we set r,: as the index of the /eth nearest neighbor

of Vj. A vertex v3 is the knn neighborhood of only if A^ < A,.Ti . Thus, the neighborhood graph

is updated as following:

A = (e(i,'n + l) : Ai>T. > A i ;„+1}

D = {e(i, Ti) : AiiTi > A^n +i and A r , ; A r , }

where ^ is the index of the fcth nearest neighbor of vT after the new vertex vn+i is inserted

into the graph. Then, the geodesic distance between vn+\ and the other vertices can be updated as

follows:

4.3.2 Finding the Low-dimensional Coordinates of the New data

We can discover the low-dimensional coordinate y.n+1 by matching its inner product with y, to the

values obtained from the geodesic distances. This is similar to the original Isomap approach. First,

for the original Isomap, let's define:

9n+i,i - 9i.n+i = min(g.u + 1) • (1) j

9ij =11 y« - yj l!2=l! II2 + II yj II2 - 2 y f y ^ (2)

where y« = 0- ^ w e s u m o v e r 3 then over 1 for g,:1, we can obtain

(3)
j 3

53

and

2 n j y
Similarly, in incremental Isomap, if we define ^ =| | y, — yn+i ||, then we can have

n t—1 —' i=l i=1

and

y£+1yi = ~\(9i~ II yn+i II2 - II y* II2) • (6)

Then, we can estimate the target inner product fi between yn+i and y, as

0 , _ Hj9ij Hij9ij , Hi 91
.n-t-l 2 rn\

n nl n

Thus, we can obtain yn+\ by solving Y r y „ + 1 = f in the sense of least square, where f =

(/i; •••• fn)T- We can represent Y = (V^iVi: •••, V^idvd)T , here (A,. vt) is an eigenpair of the

target inner product matrix. This leat square problem can be solved as

The next objective is to update the whole set of low-dimensional coordinates in the view of the

modified geodesic distance matrix. This can be observed as an incremental eigenvalue problem and

the solution can be obtained by eigen-decomposition. The detailed algorithm is described in [47].

4.4 Incremental Spatio-temporal Isomap

Incremental Isomap works well for uncovering low-dimensional intrinsic data structure where data

are collected sequentially. However, it is incapable to consider the temporal coherence in data.

Spatio-temporal Isomap (ST-Isomap) [48] is an extension of the original Isomap framework which

includes temporal relationships in data set. Nevertheless, it works in a batch mode and is not

54

appropriate when data are observed sequentially. We propose a new method named as incremental

spatio-temporal Isomap (IST-Isomap), which is able to account for temporal coherence as while

operate in a real-time manner. IST-Isomap inherits the framework of ST-Isomap and augments it

with the ability to deal with sequentially collected data efficiently.

4.4.1 Spatio-temporal Isomap

Similar to the framework of original Isomap, the algorithm for ST-Isomap [48] contains five steps.

The first step is windowing of the input data into temporal blocks in order to give a temporal history

for each individual data point. This windowing step results in a sequentially ordered set of data

points.

The second step is to identify the neighborhood relationships and build the neighborhood graph.

The neighborhood graph in ST-Isomap is constructed based on common temporal neighbors (CTN)

relationships. CTNs are determined by /-^-nearest nontrivial neighbors (KNTN) using Euclidean

distance. A vertex va is considered to be a nontrivial match of vh if a = b + 1, or a i- b and

Ab.a < &b.Th where rb is the index of the /,;th most similar nontrivial neighbor of v .̂ We use D

denotes the Euclidean distance matrix of the data set with each element Aij represents the distance

between two points i and j.

In the third step, the distance matrix D between data points is reduced with spatio-temporal

correspondences. Other than CTN, another temporal relationship between data is defined as adja-

cent temporal neighbors (ATN). ATNs represent the adjacent points in the sequential order of data

set. The reduced new distance A- • between vertices and vj is calculated as following:

/

Aj-.y/ (c c t n C a t n i f Vj e CTN of and Vj G ATN of vy,

^ ^ Aj.j /CCTN, if Vj e CTN of VI,

Aij/catn- if Vj € ATN of v^,
A a . otherwise, v J

where CCTN a n d <' \ > \ are constant factors for controlling how strong the temporal relationships

55

between data pairs are. As CQTN or C,ATN increases, the distance between data pairs with spatio-

temporal correspondences decreases and their similarity increases.

In the fourth step, geodesic distance is calculated by applying Dijkstra's algorithm.

The final step applies classical MDS to construct an embedding of the data in low-dimension

space as in original Isomap.

4.4.2 Incremental Version of Spatio-temporal Isomap

IST-Isomap inherits the framework of incremental Isomap and ST-Isomap. Assume that we already

calculated the low-dimensional coordinates for the first n data points, then we need to update the

low-dimensional coordinates for the existing data set after observing a new data point. In IST-

Isomap, since we assume data are collected sequentially, it has the same result as the first step

(windowing the input data) in ST-Isomap's algorithm. Therefore, the block size is one for data set

in IST-Isomap which means each data point is treated as one single block as in ST-Isomap. The

algorithm for IST-Isomap includes four steps:

1. Update the neighborhood graph. In IST-Isomap, whenever a new point is observed,

the existing neighborhood graph has to be updated corresponding to the new vertex vn+i- Let r,

be the index of the fcth most similar nontrivial neighbor of u;,. It is straightforward to add a new

edge from to the new vertex vn+i if vnjrl belongs to the CTN of The edge from Vi to vTi is

deleted if A i Ti > A , - a n d ATi i > where ^ is the index of the &th most similar nontrivial

neighbor of vTi after inserting A new distance matrix D' for representing the neighborhood

graph is obtained after this step.

2. Reduce the distance matrix D' between data points with spatio-temporal correspondences.

This step is similar to the corresponding step in ST-Isomap, except that we only need to reduce the

distance for vertex pairs where edges have been deleted or added.

3. Update geodesic distance matrix. Since the deleted and added edges may affect the geodesic

distance of some vertices, the first task is to update these vertices with new distances followed by

56

Figure 4.1: The input video.

calculating the geodesic distance between vn+i and the other vertices by using (1).

4. In its final step, first the low-dimensional coordinates of the new data point yn + 1 is calculated.

Then the low-dimensional coordinates of the whole existing data set is updated with respect to the

new geodesic distance. We apply the same algorithm for this step as in section 3.2 for incremental-

Isomap.

4.5 Experimental Results

In our experiments, we implemented incremental Isomap and IST-Isomap on several input videos

in order to produce real-time video textures. Our goal is to compare the quality and efficiency

between the batch and incremental methods for generating video textures. Here, we apply same

input videos as previous chapters. The only difference is now the frames are collected sequentially.

For instance, the input video clip as shown in Figure 4.1 is 15 seconds long and contains 450 frames

with a size of 160 x 128 (20480) pixels per frame.

4.5.1 Experimental Results by incremental Isomap

The preprocessing step is the initialization step. In this step, we are given the first 50 frames from

an input video and then extract the signatures from these frames by applying the original Isomap.

In our experiments, the dimensionality of 30 to 40 is good enough for representing each individual

frame. This is done in the batch version of the Isomap, with a Ann neighborhood of size 7. After

57

(a) (b) (c)

Figure 4.2: The first three frames synthesized by incremental Isomap

this step, the rest of the frames in the input video will be observed one by one sequentially. Thus,

the incremental Isomap is applied in order to extract the signatures of the up coming frames in a

real-time fashion.

After preprocessing step, the rest of the process for generating new video textures contains

three major steps: the first step is to implement incremental Isomap to extract the signatures when

a new frame is coming from the input video. The next step is to apply an AR process to predict new

frame signatures based on signatures obtained in the previous step1. Here, the order p of the AR

process is set to 2, which means, the next frame signature will be generated based on the previous

two signatures. Normally, in our experiments, we use the previous predicted frame signature and

the new frame signature to predict the next frame. By combining the predicted signature with the

new up coming signature, the level of noise in the result is reduced.

The last step is to project the new predicted frames signatures back to the image space and to

compose them together as a video texture. Figure 4.2 shows the first three synthesized frames as

a results of applying incremental Isomap to generate real-time video textures. Figure 4.3 shows

the frames signatures resulted by incremental Isomap. We also tested our approach on some other

video clips such as flame and fountain. The results are in Figure 4.4 and Figure 4.5.

Table 4.1 shows the comparison of runtime (seconds) for generating video textures between

batch Isomap and incremental Isomap. Here, n is the number of new frames synthesized as the

new video textures. "Dist" represents the time for distance computation for different n frames.

'Details of this step can be found in section 2.3

58

Figure 4.3: The frame signature synthesized by Incremental Isomap.

Table 4.1: Runtime (Seconds) for Generating Video textures by Original Batch Isomap and Incre-
mental Isomap.

n Dist. Batch Incremental Speed-improved
50 0.19 10.45 3.78 63.83%
100 0.56 16.15 7.41 54.12%
150 0.83 21.54 11.35 47.31%
200 1.36 28.78 16.84 41.49%
250 1.88 36.12 20.09 44.38%

(a) (b) (c)

Figure 4.4: The first three frames synthesized by incremental Isomap

59

Table 4.2: Runtime (Seconds) for Generating Video textures by Original Batch Isomap and Incre-
mental Isomap.

n Dist. Batch Incremental Speed-improved
50 0.08 9.03 2.55 71.76%
100 0.19 14.54 5.64 61.21%
150 0.43 19.30 9.21 52.28%
200 0.61 25.17 14.19 43.62%
250 0.98 32.89 18.03 45.18%

(a) (b) (c)

Figure 4.5: The first three frames synthesized by incremental Isomap

Table 4.3: Runtime (Seconds) for Generating Video textures by Original Batch Isomap and Incre-
mental Isomap.

n Dist. Batch Incremental Speed-improved
50 0.17 11.59 4.50 61.17%
100 0.40 15.32 6.93 54.77%
150 0.79 18.77 13.38 28.72%
200 1.22 25.04 17.67 29.43%
250 1.63 31.28 21.10 32.54%

60

Table 4.4: Runtime (Seconds) for Generating Video textures by Original Batch Isomap and Incre-
mental Isomap.

n Dist. Batch Incremental Incremental ST
50 0.24 13.89 6.19 7.62
100 0.68 18.24 10.22 10.03
150 1.05 24.17 14.09 13.79
200 1.51 34.51 20.78 18.47
250 1.97 40.56 26.42 24.61

o o
w <S*L>

(a) (b)

"i n
(C) (d)

Figure 4.6: Compare the real-time video texture results generated by IST-Isomap and incremental
Isomap for a cartoon animation: (a) and (b) are the 30th and 40th frames synthesized by IST-I-
somap; (c) and (d) are the 30th and 40th frames synthesized by incremental Isomap

Tables 4.2 and 4.3 represent the comparison results for the other input video clips (flame and

fountain, respectively). From these experimental results, we can conclude that, applying incre-

mental Isomap to generate video textures is much faster than applying the original Isomap when

the input data is available sequentially and the quality of the new video textures is appealing as

while. Unproportionately, noise still exist, which in turn causes the frames to become blur after

some period of time; however, in a short run, this provides us very good results.

61

4.5.2 Experimental Results by 1ST Isomap

In this section, we applied IST-Isomap to generate real-time video textures for cartoon data. In our

experiments, we set the KNTN to 3, the values of constant factors CQTN ar)d C.ATN are set to 10

and 5, respectively (in our case, this provide the best results). The result is compared with the one

generated by incremental Isomap as shown in Figure 4.6. It is clearly shown that the noise is no-

ticeable in the 40th frame for incremental Isomap but not visible for IST-Isomap. Table 4.4 shows

the comparison among batch Isomap, incremental Isomap and IST-Isomap in term of runtime (sec-

onds) for generating video textures. According to the results, it is concluded that IST-Isomap is

more robust to noise and more efficient for producing real-time video textures than incremental

Isomap for cartoon data since they are inherently sparse and include exaggerated deformations

between frames.

62

Chapter 5

Conclusions

Video texture is a new type medium which can provide a continuous, infinitely varying stream

of video. It can synthesize an arbitrary length of video from a short input video clip. However,

this technique can only generate video textures by just switching the order of frames in the input

video and the results would suffer from 'dead-ends'. In this thesis, we have presented several new

approaches for synthesizing video textures.

First, we have extended the application of PCA and AR process to generate video textures

by replacing PCA with five other dimension reduction techniques (PPCA, Kernel PCA, Isomap,

LLE and ICA). Based on our experiments, by using these dimensionality reduction techniques, the

quality of video textures are improved compared with applying PCA to extract frame signatures.

The synthesized video textures may contain similar motions as the input video and will never be

repeated exactly. All the frames in the results are synthesized and have never appeared before.

By comparing the experimental results among these dimensionality reduction techniques, PPCA

provides more typical signatures which can be used to synthesize video texture than others. But

unfortunately, noise may still appear and makes the video frame blur after some period of time.

Second, we have proposed a new approach for generating video textures using PPCA and

GPDM. GPDM is a nonparametric model for learning high-dimensional nonlinear dynamical data

sets. We have tested PPCA and GPDM on several movie clips, it can generate video textures con-

taining frames that never appeared before with similar motions as the original video. Compared

with PCA and AR process, PPCA and GPDM can produce better results with more robustness to

63

Chapter 5. Conclusions

noise. Unfortunately, video textures synthesized by PPCA and GPDM still have visual discontinu-

ities for some highly structured and variable motions (e.g. dancing and fighting). Thus, there might

be some more potential improvements on generating video textures. Since GPDM is highly de-

pendent on the kernel functions, selection of a better function would be a key factor for improving

the predictive power.

Last, we have proposed two approaches of generating real-time video textures by applying the

incremental Isomap and IST-Isomap. Both approaches can produce good real-time video texture

results. In particular, IST-Isomap is more suitable for sparse video data (e.g. cartoon). Gener-

ating real-time video textures is extremely useful for some scenarios where data points are avail-

able sequentially (e.g. surveillance). Based on our experimental results, the runtime for creating

new video textures is much faster with incremental Isomap and IST-Isomap than with the original

Isomap in batch mode. The results are not only visually appealing with similar motions as the

original video, but also contain frames that have never appeared before.

In conclusion, compared to the original video texture technique, our approaches not only can

generate video textures with new frames that have never appeared in the input video, but problems

of "dead ends" are also prevented. Our approaches can also process sequential data more effi-

ciently than the original video texture technique, this can be considered as real-time video texture

generation. Unfortunately, noise may still emerge in a long run and make the synthesized frame

blur. Thus, one of our future works is to build a more robust statistical model in order to generate

video textures with less noise but still in a real-time fashion.

64

List of References
[1] M. M. Oliveira. Image-Based Modeling and Rendering Techniques: A Survey. RITA,

9(2):37-66, 2002.

[2] A. Watt and F. Policarpo. 3D GAMES: Real-time Rendering and Software Technology, vol-

ume One. ADDISON-WESLEY, 1 edition, 2001.

[3] H. Yeung, Shum and S. Kang. A Review of image-based rendering techniques. Proc.SPIE,

4067:2-13, May 2002.

[4] J. Foley. Getting There: The Ten Top Problems Left. IEEE Computer Graphics and Appli-

cation, 20(1):66-68, 2000.

[5] A. Schodl, R. Szeliski, D. Salesin and I. Essa. Video Textures. In Proceedings ofSIGGRAPH

2000, pages 489-498, July 2000.

[6] C. Bregler, M. Covell and M. Slaney. Video rewrite: Driving visual speech with audio.

Computer Graphics (SIGGRAPH97), pages 353-360, August 1997.

[7] L. P. Kaelbling, M. L. Littman and A. W. Moore. Reinforcement learning: A survey. In

Journal of Artificial Intelligence Research, April 1996.

[8] A. Schodl and I. Essa. Controlled animation of video sprites. In ACM SIGGRAPH Sympo-

sium on Computer Animation, pages 121-128, July 2002.

[9] A. Schodl and I. Essa. Machine learning for video-based rendering. In Advances in Neural

Information Processing Systems., 13:1002-1008, 2001.

65

References

[10] S. Pollard, M. Pilu, S. Hayes and A. Lorusso. View synthesis by trinocular edge matching

and transfer. In British MachineVision Conference (BMVC98), September 1998.

[11] A. Finkelstein, C. E. Jacobs and D. H. Salesin. Multiresolution video. In Proceedings of

SIGGRAPH 96, pages 281-290,1996.

[12] A. Witkin and M. Kass. Spacetime Constraints. In Proceedings of the 15th annual conference

on Computer graphics and interactive techniques, pages 159-168. ACM, August 1988.

[13] Y. Li, T. Wang and H. Shum. Motion Texture: A Two-Level Statistical Model for Character

Motion Synthesis. In Proceedings of ACM SIGGRAPH 2002, pages 465-472, New York,

NY, USA, 2002. ACM.

[14] B. Celly and V. Zordan. Animated People Textures. In Proceedings of the 17 th International

Conference on Computer Animation and Social Agents, 2004.

[15] L. Kovar, M. Gleicher and F. Pighin. Motion graphs. ACM Transactions on Graphics,

21(3):473-482, July 2002.

[16] O. Arikan and D. A. Forsyth. Interactive Motion Generation from Examples. ACM Transac-

tions on Graphics, 21(3):483-490, July 2002.

[17] J. Lee, J. Chai, P. Reitsma, J. Hodgins and N. Pollard. Interactive control of avatars ani-

mated with human motion data. In Proceedings of the 29th annual conference on Computer

graphics and interactive techniques, pages 491-500, San Antonio, Texas, USA, 2002. ACM.

[18] N. Campbell, C. Dalton, D. Gibson and B. Thomas. Practical generation of video textures

using the auto-regressive process. Image and Vision Computing, 22(10):819-827, September

2004.

66

References

[19] R. Kalnins, L. Markosian, B. Meier, M. Kowalski, J. Lee, R Davidson, M. Webb, J. Hughes

and A. Finkelstein. WYSIWYG NPR: drawing strokes directly on 3D models. In Proceed-

ings of the 29th annual conference on Computer graphics and interactive techniques, pages

755-762, 2002.

[20] V. Kwatra, A. Schodl, I. Essa, Greg Turk and A. Bobick. Graphcut textures: Image and video

synthesis using graph cuts. ACM Transactions on Graphics, 22(3):277-286, July 2003.

[21] A. Agarwala, C. Zheng, C. Pal, M. Agrawala, M. Cohen, B. Curless, D. Salesin and R.

Szeliski. Panoramic Video Textures. ACM Transactions on Graphics, 24(3):821-827, Au-

gust 2005.

[22] S. M. Pandit and S. M. Wu. Time series and system analysis with applications. John Wiley

& Sons Inc., 1983.

[23] A. W. Fitzgibbon. Stochastic rigidity: Image registration for nowhere-static scenes. In Pro-

ceedings Computer Vision, 200L ICCV 2001. Eighth IEEE International Conference, pages

662-669, 2001.

[24] Christopher M. Bishop. Probabilistic Principal Component Analysis. In Journal of the Royal

Statistical Society, Series B, pages 611-622, 1999.

[25] C. M. Bishop. Mixtures of probabilistic principal component analyzers. Neural Computa-

tion, pages 443-482, 2000.

[26] A. Smola and K. Mller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem,

pages 1299-1319. Neural Computation, 1998.

[27] J. B. Tenenbaum, V. de Silva and J. C. Langford. A global geometric framework for nonlinear

dimensionality reduction, pages 2319-2323. Science 290, 2000.

67

References

[28] E. W. Dijkstra. A note on two problems in connexion with graphs, pages 269-271. Nu-

merische Mathemati, 1959.

[29] R. W. Floyd. Algorithm 97: Shortest path, page 345. Communications of the ACM, 1962.

[30] O. C. Jenkins and M. J. Mataric. A spatio-temporal extension to Isomap nonlinear dimension

reduction. In Proceedings of the twenty-first international conference on Machine learning,

pages 441-448. ACM, 2004.

[31] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding,

pages 2323-2326. Science 290, 2000.

[32] A. Hyvarinen and E. Oja. Independent component analysis: algorithms and applications.

Neural Networks, 2000.

[33] C. Juan and B. Bodenheimer. Cartoon textures. In Proceedings of the 2004 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 267-276, 2004.

[34] J. Y. Dong, C. X. Zhang, Y. J. Wang and H. Y. Zhou. A video texture synthesis method

based on wavelet transform. In Wavelet Analysis and Pattern Recognition, 2007. ICWAPR

'07. International Conference, volume 3, pages 1177-1181, Nov 2007.

[35] C. E. Rasmussen and C. Williams. Gaussian processes for machine learning, the MIT Press,

2006.

[36] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms . Cambridge

University Press, 2003.

[37] D. J. C. MacKay. Introduction to Gaussian processes. In Neural Networks and Machine

Learning, volume 168, pages 133-165. Springer, 1998.

68

References

[38] J. M. Wang and D. J. Fleet and A. Hertzmann. Gaussian process dynamical models. In

Advances in Neural Information Processing Systems 18, pages 1441-1448. MIT Press, 2006.

Proc. NIPS'05.

[39] J. M. Wang and D. J. Fleet and A. Hertzmann. Gaussian process dynamical models for human

motion. In Pattern Analysis and Machine Intelligence, pages 283-298. IEEE Transactions,

Feb 2008.

[40] N. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process

latent variable models. In The Journal of Machine Learning Research, pages 1783 - 1816.

MIT Press, Cambridge, MA, USA, 2005.

[41] R. Shumway and D. Staffer. Time Series Analysis and its Applications. Springer, 2000.

[42] W. Fan and N. Bouguila. On video textures generation: a comparison between different

dimensionality reduction techniques. In IEEE International Conference on System, Man,

and Cybernetics, 2009.

[43] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press,

2006.

[44] G. Doretto, A. Chiuso, Y. N. Wu and S. Soatto. Dynamic Textures. International Journal of

Computer Vision., pages 91-109, 2 2003.

[45] P. Saisan, G. Doretto, Y. N. Wu and S. Soatto. Dynamic Textures Recognition. Computer

Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer

Society Conference on., page 58, 2001.

[46] G. Doretto, D. Cremers, P. Favaro and S. Soatto. Dynamic Texture Segmentation. In IEEE

International Conference on Computer Vision., pages 1236-1242, 2003.

69

References

[47] H. C. Law and A. K. Jain. Incremental Nonlinear Dimensionality Reduction by Manifold

Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence., 28(3):377-391,

2006.

[48] O. C. Jenkins and M. J. Mataric. A spatio-temporal extension to Isomap nonlinear dimension

reduction. In Proceedings of the twenty-first international conference on Machine learning,

pages 441^448. ACM, 2004.

[49] T. F. Cox and M. A. A. Cox. Multidimensional scaling. Chapman and Hall, 2001.

70

