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ABSTRACT 
Rate Assignment in Wireless Networks: Stability Analysis and Controller 

Design 

Seyed Kian Jalaleddini 

In this thesis, the problem of resource allocation in IS-856 is studied. The problem 

is first formulated in an interference model framework on reverse channel (uplink). 

A simple controller is then designed for the system and the closed-loop stability 

is analyzed using the Lyapunov technique. The possible oscillation in the network 

output caused by the limit cycles associated with the nonlinear elements in the 

control loop is analyzed in the framework of describing functions. A dynamic control 

strategy is developed subsequently for efficient rate assignment in the network. This 

is carried out in two steps: in the first step, the controller is designed for a simple 

case when the number of users in the network is fixed and known, and all users are 

full-buffered. The asymptotic stability property of the proposed controller is verified. 

Then, the designed controller is further developed for a dynamic network, where the 

number of active users is subject to change but is known to the users by means 

of the communication link between the base station and users. In this step, the 

activation/deactivation of users at different time instants is formulated as a switched 

system, and sufficient conditions on the speed of activation and deactivation of users 

are obtained in the control theoretic framework to achieve stability and the desired 

performance. In the next step, the obtained controller is adjusted properly for the 

case when the information about the number of active users is not communicated to 

the users (in order to allocate more bandwidth for data transmission). A controller 

is also designed to guarantee network stability and performance in the presence of 

time-delay in the feedback loop. Finally, the long-term fairness in rate allocation is 

studied. Simulation results are also provided throughout the thesis to elucidate the 

effectiveness of the proposed approach. 

iii 



To my parents 

for their love and support 



ACKNOWLEDGEMENTS 

This thesis would not have been possible without the supervision and encour­

agement of Dr. Amir Aghdam whose guidance and support from the initial to the 

final level enabled me to develop an understanding of the subject. I would like to 

thank him for creating a motivating academic environment for his students. I am 

also grateful to benefit from the constructive comments of Dr. Vahid Tarokh and 

Dr. Mehdi Alasti on my project throughout my studies at Concordia University. 

I would also like to show my gratitude to my friends in Concordia University. 

I would especially like to thank my friend Kaveh Moezzi, with whom I co-authored 

two papers throughout my studies. Many thanks also go to Ms. Ranjbaran and Dr. 

Ahmadreza Momeni for their sincere support and valuable remarks throughout this 

work. 

v 



TABLE OF CONTENTS 

List of Figures viii 

List of Abbreviations xi 

1 Introduction 1 

1.1 Motivation and Literature Survey 1 

1.2 Thesis Outline and Contribution 6 

2 Background 9 

2.1 Introduction 9 

2.2 Nonlinear Systems Analysis 10 

2.3 Lyapunov Theory 12 

2.4 Switched Systems 15 

2.5 Describing Function Technique 16 

2.5.1 Prediction of Existence of Limit Cycles 18 

2.6 Quasi-Newton Methods in Optimization 19 

3 Interference Model for IS-856 Uplink 21 

3.1 Introduction 21 

3.2 Access Terminal 21 

3.3 Access Network 22 

4 Limit Cycle Analysis in Rate Assignment Control Loop 27 

4.1 Introduction 27 

4.2 Oscillation in Network Output: Limit Cycle Analysis 28 

4.3 Simulation Results 36 

5 Controller Design Using Adaptive Strategy: Stability Analysis 47 

5.1 Introduction 47 

vi 



5.2 Controller Design for Fixed Number of Users 48 

5.2.1 First-Order Approximation for the Mapping F(-) 52 

5.2.2 Second-Order Approximation for the Mapping F(-) 54 

5.2.3 Dynamic Rate Selection 56 

5.2.4 Probabilistic Rate Selection 58 

5.3 Controller Design for Unknown-fixed Number of Users 58 

5.4 Controller Design in Presence of Time-Delay 61 

5.5 Stability Analysis for Varying Number of Users 66 

5.6 Equilibrium Point Adjustment: Long-Term Fairness Study 69 

5.7 Simulation Results 71 

6 Conclusions and Future Work 78 

References 81 

vn 



List of Figures 

2.1 A nonlinear control system 17 

3.1 The mapping F(-) from the feasible rate set T to the feasible TIP set 

A 23 

3.2 Rate-control loop in IS-856 uplink, with n active users available in 

the sector 25 

3.3 The nonuniform quantizer F(-) as the pragmatic counterpart of the 

mapping F(-) (solid circles indicate the corresponding feasible set in 

the mapping F) 26 

4.1 The uplink rate control loop of IS-856 28 

4.2 The root locus trajectories of the IS-856 uplink controller using the 

discrete-time LTI control law (4.3) 30 

4.3 The Nyquist diagram of the uplink rate controller along with the 

describing function of the nonlinear element of AN 31 

4.4 A three-level nonlinear A/D block at the AT 33 

4.5 Typical input and output signal of a three-level quantizer in the AN. 34 

4.6 The describing function of the three-level quantizer with D = 0.1. . . 36 

4.7 The Nyquist diagram of G(ju>) and — Nr\ul\ drawn to identify possible 

limit cycles in the IS-856 uplink with the control law (4.3) and a three-

level error comparison 37 

4.8 The step response of the IS-856 uplink using the control law (4.3) 

with K = 1.23 and no nonlinear element in the model 38 

4.9 The step response of the IS-856 uplink using the control law (4.3) 

when K = 0.1, and a two-level error comparison 39 

viii 



4.10 The step response of the IS-856 uplink using the linear control law 

(4.3) with K = 0.01, and a two-level error comparison 39 

4.11 The step response of the IS-856 uplink using the optimal values ob­

tained by applying the BFGS method with the initial parameters 

z0 = 0, p0 = 0 and K = 0 41 

4.12 The step response of the IS-856 uplink, using the optimal values ob­

tained by applying the BFGS method with the initial parameters 

z0 = - 0 . 1 , p0 = -0 .7 and K = 0.1 42 

4.13 The step response of the IS-856 uplink using the linear control law 

(4.3) with K = 0.1, and a three-level error comparison 43 

4.14 The step response of the IS-856 uplink, which includes a limit cycle 

as the control gain is greater than Kcritica\ 43 

4.15 The step response of the IS-856 uplink, using the optimal values ob­

tained by applying the optimal controller given by z0 = —0.0998, 

Po = -0.7001 and K = 0.111 44 

4.16 The step response of the IS-856 uplink, using the optimal values ob­

tained by applying the BFGS method with the initial parameters 

zQ = 0.4781, po = -0.7990 and K = 0.2027 45 

5.1 IS-856 uplink rate controller block diagram with the control law (5.1), 

for the case when the number of users is fixed 48 

5.2 Linear approximation of the piecewise constant function F(-) as well 

as two boundary lines containing the function 53 

5.3 A second-order curve as the continuous approximation for the piece-

wise constant mapping F(-), and second-order curves for its upper 

and lower-bounds 55 

ix 



5.4 Magnitude of the error produced when the first-order approximation, 

second-order approximation, and dynamic allocation method are used 

for TIP in a cell versus number of available active users 57 

5.5 IS-856 uplink rate controller block diagram with the control low (5.40). 62 

5.6 The network output y(t) resulted from using first-order approxima­

tion (a) a = 10; (b) a = 100. (c) The number of available ATs 

considered in the simulations at different times 73 

5.7 The network output y(t) resulted from using second-order approxi­

mation (a) a = 10; (b) a = 100. (c) The number of available ATs 

considered in the simulations at different times 74 

5.8 The network output y(t) resulted from using dynamic probability 

rate allocation method (a) a = 10; (b) a = 100. (c) The number of 

available ATs considered in the simulations at different times 75 

5.9 The output y^t) resulted from using dynamic probability rate allo­

cation method; (a) the ATs with the control parameters given by 

(5.70); (b) the ATs with the control parameters given by (5.69). (c) 

The number of available ATs considered in the simulations at different 

times 77 

x 



List of Abbreviations 

A/D 

AN 

AT 

BFGS 

CDMA 

DF 

DFP 

DRC 

EV-DO 

HDR 

LTI 

PDF 

QAM 

QoS 

QPSK 

RAB 

RHP 

ROT 

SNIR 

SNR 

TCP 

TDMA 

T2P 

VT 

Analog to Digital 

Access Network 

Access Terminal 

Broyden Fletcher Goldfarb Shanno 

Code Division Multiple Access 

Describing Function 

Davidon Fletcher Powell formula 

Data Rate Channel 

Evolution Data Optimized 

High Data Rate 

Linear Time Invariant 

Probability Density Function 

Quadrature Amplitude Modulation 

Quality of Service 

Quadrature Phase Shift Keying 

Reverese Activity Bit 

Right Half Plane 

Raise Over Thermal 

Signal to Noise plus Interference Ratio 

Signal to Noise Ratio 

Transmitted Control Proocol 

Time Division Multiple Access 

Traffic to Pilot ratio 

Video Telephony 

xi 



Chapter 1 

Introduction 

1.1 Motivation and Literature Survey 

Evolution data optimized (EV-DO, also referred to as EV) is a telecommunication 

standard for wireless data transmission, typically for broadband Internet access. 

This standard uses code division multiple access (CDMA) as well as time division 

multiple access (TDMA) to maximize not only individual user's throughput, but 

also the total system throughput. In 2000, EV-DO working group was first estab­

lished in Third Generation Partnership Project 2 (3GPP2), which is a collaborative 

effort between many standard development organizations (SDO). It was adopted 

by 3GPP2 as C.S0024, and by Telecommunications Industry Association / Elec­

tronic Industries Alliance (TIA/EIA) as IS-856. This technology is compatible with 

CDMA networks and is optimized for packet data services. It is also used by many 

mobile phone service providers around the world, particularly the ones that previ­

ously employed CDMA networks [1], [7], [2]. 

EV-DO was initially developed to meet IMT-2000 requirements, i.e., having 

minimum rate of 2 Mbit/s in downlink for both the stationary and walking users 

or 348 kbit/s for the users in a moving vehicle. Second generation systems, on the 
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other hand, provide (only) rates ranging from 9.6 kbit/s to 28.8 kbit/s. Originally, 

the standard was called high data rate (HDR), but was later renamed to EV-DO 

after being ratified by the International Telecommunication Union (ITU) and was 

given the numerical designation IS-856 [3], [4]. The forward link and reverse link 

in IS-856 consume 1.25 MHz of spectrum. However, due to multi-user diversity, its 

forward link supports higher bit rates compared to reverse link [28]. In EV-DO, the 

channel on forward link is time-multiplexed, which means that a single mobile has 

full access of the forward traffic channel during a particular time slot, i.e, it receives 

the full power of the cell transmitter. In particular, at any point in time, each mobile 

measures signal to noise plus interference ratio (SNIR). Then, the mobile estimates 

its air-link capacity accordingly [4], as well as the rate that the estimated SNIR can 

support with a sufficiently error rate. Moreover, the mobiles report their air-link 

capacity (often called data rate channel (DRC)) to the base station at any time 

to request the computed rate [28], [4], [29]. By employing this technique, EV-DO 

is able to modulate each user's time slot independently. Therefore, on one hand, 

mobiles in favorable RF condition can benefit from complex modulation techniques, 

and on the other hand, mobiles in poor RF condition can use simpler and more 

redundant signals. 

In EV-DO Rev.O, the peak data rate that a user can have in the network 

is achieved by employing 16-QAM modulation which is equal to 2458 kbit/s in 

good channel condition with high signal to noise ratio (SNR). Scheduler is the other 

important component of the EV-DO on downlink channel. The scheduler is designed 

to maximize the sector throughput while guaranteeing each user a certain quality 

of service. EV-DO also benefits from employing parallel codes and turbo decoding 

techniques [1], [7], [4]. 

On the uplink of EV-DO Rev.O, a pilot signal is included along with the data, 

which is useful for decoding purposes. The reverse link has both open and closed 
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loop power control. In the open loop structures the transmission power is set based 

upon the received power on the forward link. In the closed loop structure, on the 

other hand, the uplink power is adjusted up or down 800 times a second, as specified 

by the serving sector. All the mobiles use code division and transmit signals to the 

base station using QPSK modulation. The maximum available rate for user data 

is 153.2 kbit/s. In reality, however, this maximum can rarely be achieved, and the 

typical rates are between 20-50 kbit/s [1], [7], [5]. 

In EV-DO Rev.A, some new features are added to the protocol while keep­

ing it compatible with the EV-DO Rev.O which allows the system for low-latency 

communication. In particular, on the downlink several new data rates are added, 

increasing the maximum data rate to 3072 kbit/s. Also, the ability for sharing the 

same time slot (multi-user packets) by more than one mobile is incorporated into 

the system, and the quality of service (QoS) flags are introduced. Moreover, similar 

to the downlink, some changes are made on uplink to support more complex mod­

ulation and high bit rates. A Secondary pilot was added, which is activated by the 

users in order to achieve enhanced data rates. As a result, the maximum data rate 

on the uplink was increased to about 1.8 Mbit/s [7], [36]. 

By comparing EV-DO Rev.O and EV-DO Rev.A, one can observe that most 

developments were made on the reverse link. In other words, EV-DO Rev.O was 

designed particularly for data applications where the volume of data received by the 

user is greater than the volume transmitted on the uplink. This means that EV-DO 

Rev.O provides asymmetric data transfer on the uplink and downlink. While this 

type of data transfer is utilized in the majority of existing data applications, the new 

multimedia applications such as interactive wireless gaming, video telephony (VT) 

and camera phones require a wireless network that is able to provide symmetry on 

uplink and downlink [36]. 

The presence of interference in IS-856 uplink is an important issue which is 
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caused by the spectral overlap, and needs to be taken into consideration in perfor­

mance analysis. Practically, in CDMA systems any user that transmits data to the 

base station is, in fact, a source of interference. In addition, there are other inter­

ferences caused by those users that are not in soft hand-off with the base station. 

This issue is of great importance because in such networks users transmit data at 

the same time over a prescribed spectrum in a common medium [8], [9], [37]. A 

reference value for the interference magnitude can be defined based on the ideal 

expectations. There will be performance implications as the interference increases 

above this reference level [9]. On the other hand, as the interference level decreases 

below this level, the problem of under-utilization of the network resources is en­

countered. The effect of interference in this type of networks is often compensated 

by transmitting minimal control signaling from the base station to the users (and 

vice versa), and applying a proper control strategy. In other words, the base station 

broadcasts a common signal to all users based on its measurement of network in­

terference, and users adjust their rates accordingly. This is a single bit signal which 

is called the reverse activity bit (RAB). This bit is set to +1 by the base station 

if the existing interference in the network is below the reference value, and is set 

to 0 if the interference level is above this threshold [7]. In the context of control, 

this binary comparison introduces a nonlinearity (on-off element) in the closed-loop 

system through the control operation. 

A simple state transition mechanism is implemented in IS-856 Revision 0 stan­

dard, to properly adjust user rates [7], [1], [19]. In this algorithm, each user sets 

its transmission rate locally by monitoring a common single bit and acting upon it, 

accordingly (note that it is normally desirable to assign as many bits as possible for 

data, and as few bits as possible for control signal). Due to its performance defi­

ciency, this mechanism is replaced by a token bucket mechanism in IS-856 Revision 

A [10], [7]. In [10], [11], [13], [38], [39], using a framework analogous to the one 
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presented in [17], [18], the rate control problem is formulated as a utility maximiza­

tion problem and the fairness and stability issues are studied. In the above works, 

distributed resource allocation is formulated as a utility maximization problem, anal­

ogously to transmitted control protocol (TCP) congestion-control algorithms for the 

Internet. In other words, the rate allocation problem in the above-mentioned papers 

is studied in the context of auctioning algorithms subject to existing constraints in 

the physical system in order to allocate the available resources to all users in a 

fair manner. In particular, a resource allocation algorithm is proposed in [11], and 

its long-term and short-term fairness is verified with respect to interference power 

constraint. Short-term fairness which has been previously studied in the context of 

contention-based wireless multiple access protocols such as [32] cannot be applied in 

CDMA where multiple mobiles transmit data simultaneously. In [11], the long-term 

fairness is investigated based on the results in [30], [31] and [28] which is, in fact, the 

average-rate guarantee for a particular mobile. Then, the admission control mech­

anism of the network is then ensures that maintaining this average rate guarantees 

for all mobiles does not cause the total received interference to exceed a certain 

threshold. 

In [14], a novel framework is proposed to tackle the underlying problem using 

a control theoretic view. Transmission of the RAB from the base station to the users 

is incorporated in the forward path of the closed-loop model, and a simple compen­

sator is designed for the network to achieve output regulation. The stability of the 

resultant closed-loop system is then verified using describing function technique, as 

the overall system is nonlinear due to the existence of the two-level comparator in 

the control loop. While this type of stability analysis is quite reliable in general, 

the result in [14] may not be accurate enough in practice, due to the simplifying 

assumptions in the network model. 
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In this thesis, control techniques are employed to investigate important prop­

erties of the network such as stability and output oscillation. A dynamic adaptive 

control strategy is introduced, and the Stability of the network is analyzed using 

the Lyapunov technique. The proposed algorithm suffers mainly from two short­

comings: First, the signaling between the base station and users is not minimal in 

the underlying algorithm. Furthermore, the effect of delay in the control loop is 

not taken into account in the stability analysis. These shortcomings are addressed 

later by using minimal control signaling and a more accurate model for the network, 

in which time-delay is modeled in the forward path of the control loop. A fairness 

strategy is also provided for a more efficient rate assignment. 

1.2 Thesis Outline and Contribution 

This thesis consists of the results in [22] and [26], as well as some new results 

concerning oscillation in the network output, and a fairness strategy for a more 

efficient rate assignment. The papers [22] and [26] are: 

[22] K. Jalaleddini, K. Moezzi, A. G. Aghdam, M. Alasti, and V. Tarokh, "Con­

troller design for rate assignment in wireless networks," in Proceedings of IEEE 

International Conference on Communications, Dresden, Germany, June 2009. 

[26] K. Moezzi, K. Jalaleddini, A. G. Aghdam, M. Alasti, and V. Tarokh, "An 

adaptive rate assignment strategy for CDMA2000 IS-856 subject to RAB de­

lay," in Proceedings of IEEE Global Communications Conference, Honolulu, 

USA, December 2009. 

Furthermore, a complete version of the above papers with some additional results 

will be submitted for journal publication in August 2009. 

As the main contribution of this thesis, powerful control techniques are em­

ployed to solve some of the existing problems in wireless communication networks. 
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These techniques are used to investigate the presence of oscillation in the network 

output, design adaptive rate assignment strategies, and derive conditions for the 

stability of the network. A model is first developed using certain approximations, 

and rate assignment is formulated as a regulation problem in the control framework. 

The control analysis is then performed to tackle a number of problems concerning 

the network. The contributions of this work are as follows: 

• Using describing function approach to identify limit cycles and hence possible 

oscillation in the network output. 

• Designing an adaptive rate assignment scheme for the case of zero delay in the 

control loop and a fixed number of active users in the network. 

• Obtaining sufficient conditions for network stability under the proposed adap­

tive rate assignment scheme in the presence of delay. 

• Formulating activation and deactivation of the users as a switched system in 

the context of control, and deriving sufficient conditions for the stability of the 

network in terms of the speed of activation and deactivation. 

• Developing a model for the network with a dynamic rate allocation method. 

• Designing a fairness strategy which prioritizes the users according to the sub­

scription fees. 

The rest of the thesis is organized as follows. In Chapter 2, some relevant control 

techniques are studied, which will be used later in the thesis. In Chapter 3, a 

model is developed for IS-856 uplink, and the control configuration is introduced 

subsequently. Using a technique similar to the one presented in [29], the oscillation 

in the network output is analyzed using describing function approach in Chapter 4, 

and the effect of allocating two bits to the control signal (instead of just one bit) is 

discussed in detail. In Chapter 5, an adaptive control scheme is presented for rate 
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assignment, and the conditions for the stability of the resulting closed-loop network 

are derived. The controller is first designed for the case of zero delay and a fixed 

number of active users in the network. The results obtained are then extended to 

the most general case. Finally, concluding remarks are drawn in Section 6, followed 

by some suggested topics for future work. 
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Chapter 2 

Background 

2.1 Introduction 

In this chapter, some important concepts and fundamental techniques from classical 

control theory are presented, which will be employed later in the thesis. First, a 

brief description of nonlinear systems is provided and the important notion of limit 

cycle is introduced. This notion will be used later in the thesis to identify possible 

oscillations in the network output and to analyze the stability of such oscillations. 

Then, the stability analysis using Lyapunov theory is studied. This method will 

be used later in controller design, to derive stability conditions for the closed-loop 

network. The problem of switched systems will be introduced briefly, followed by 

some important issues regarding the stability of this type of systems. The concept 

of switched systems will be used later to model the activation and deactivation of 

users in a wireless network. Finally, a basic optimization technique which is often 

used in control systems will be presented. 
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2.2 Nonlinear Systems Analysis 

It is known that all physical systems are nonlinear, in the sense that the relationship 

between the input and output of the system cannot be characterized by a linear static 

or dynamic equation. It is often desirable to approximate a nonlinear system with 

a linear model, because of the powerful analysis and synthesis techniques available 

for linear systems (due mainly to the superposition principle). Depending on the 

degree of nonlinearity, however, such an approximation may not be accurate enough 

in describing the system behavior. Hence, efficient methods are required to study 

various aspects of nonlinear systems. 

There are fundamental differences between linear and nonlinear systems from 

the control theoretic view. For instance, unlike linear systems, there is no neces­

sary and sufficient condition for the stability of nonlinear systems, in general. More 

precisely, all stability analysis techniques for general nonlinear systems provide suf­

ficient conditions only. Furthermore, the stability of a nonlinear system may also 

depend on the initial condition and the equilibrium state, not just the nonlinear 

dynamics itself. Moreover, for certain types of nonlinearities (which also exist in the 

wireless networks considered in this thesis), the response of the system can demon­

strate permanent oscillations. In order to investigate the behavior of a nonlinear 

system, it is necessary first to express the dynamics of the system analytically as a 

set of equations that govern the evolution of the state variables. Such a model can 

be derived either mathematically from the relationship between different variables 

of the physical system, or experimentally by using a proper system identification 

technique. Assume for now that the state-space model of the system is given in 
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the form of a finite set of first-order nonlinear (and time-varying) differential equa­

tions [23], [6] 

X\ = fi{t,XU...,Xn,UU...,Up) 

X2 = f2(t,Xi,...,Xn,Ui,...,Up) 

(2-1) 

Xn = Jn[t, X\ , ..., Xn, U\ , ..., Up) 

where X{ and Uj are the i-th state variable and j - t h control input, respectively 

(i = 1 , . . . , n, and j = 1, ...,p). Furthermore, fi is a given nonlinear function which 

characterizes the system dynamics analytically. Define the following vectors 

x 

xx 

x2 

Xn 

, U = 

U\ 

u2 

up 

, f{t,x,u) = 

f\(t,x,u) 

f2(t,x,u) 

fn(t,X,u) 

(2.2) 

(note that Xi and Ui are functions of time, but the time argument is omitted in the 

above equations for brevity). Using the above vectors, the system equations given 

by (2.1) can be rewritten in the following form 

x = f(t,x,u) (2.3) 

For simplicity and without loss of generality, assume that the system is time-

invariant (or autonomous [6], [23], and that x is the only independent variable in 

the system function /(•) (e.g., u is either a function of x, or a prescribed function 

of time). In this case, the state equation can be expressed as 

x = f(x) (2.4) 

Definition 1. [23] The state x* is called an equilibrium point of the system, if 

x(t) = x*, Vi > to, provided x(to) = x*. It is to be noted that a nonlinear system can 

have multiple equilibrium points, in general; in other words, x* is not necessarily 
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unique. For the autonomous system given by (2.4), the equilibrium points are the 

real roots of the following equation 

f(x) = 0 (2.5) 

The notion of a limit cycle is introduced to characterize the possible oscillation 

in a nonlinear system. 

Definition 2. [23] An oscillation of fixed amplitude and frequency in a nonlinear 

system is called a limit cycle. Limit cycle is a unique feature of a nonlinear system, 

and is classified as stable, unstable and semi-stable. 

i) A stable limit cycle: All trajectories in the vicinity of the limit cycle will con­

verge to it. 

ii) An unstable limit cycle: All trajectories in the vicinity of the limit cycle will 

diverge from it. 

in) A semi-stable limit cycle: Some of the trajectories in the vicinity of it converge 

to it, while others diverge from it. 

2.3 Lyapunov Theory 

The first and the most important question about a control system is whether it is 

stable, since unstable systems are useless and potentially dangerous. One of the most 

popular and effective approached for studying the stability of a nonlinear system is 

the Lyapunov theory. In this method the stability of a nonlinear system is checked 

by constructing a scalar function for the system and monitoring the function's time 

variation. Some important definitions which will be used later in the thesis are 

presented in the sequel. 
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Definition 3. The equilibrium state x = 0 is called stable, if for any R > 0 there 

exists r > 0 such that if | |x(0)|| < r, then \\x(t)\\ < R for all t > 0, where \\.\\ 

denotes the norm operator. Otherwise, the equilibrium point is unstable. 

Definition 4. The equilibrium point x = 0 is asymptotically stable if it is stable, 

and there exists r > 0 such that | |x(0)|| < r implies that x(t) —> 0 as t —> oo. The 

ball | |x(0)|| < r is often called the domain of attraction for a specific equilibrium 

point. In other words, the domain of attraction represents the set of all points such 

that if selected as the initial point, the trajectories will finally converge to the origin. 

If the domain of attraction is the entire state space, then the system is referred to as 

globally asymptotically stable; otherwise, it is called locally asymptotically stable [6J. 

Definition 5. The equilibrium point x = 0 is exponentially stable if there exist two 

strictly positive numbers a and A such that 

\\x{t)\\ < a| |z(0)| |e-A t , W > 0 (2.6) 

where the number X is called the rate of exponential convergence [6j. 

Definition 6. A function f(x,t), where f : D x [a,b] —> Rn for a region D C R", 

is said to be continuously differentiable over D x [a, b] if both f(x; i) and -^ are 

continuous over D x [a, b}. 

Definition 7. A continuously differentiable function V : Rn —> R is said to be 

positive definite in a region D o /R n that contains the origin if 

© V(x) > 0, Vz G D, x + 0 

• V(x) — 0 if and only if x = 0, and 

• all subsets of V are bounded. 

Moreover, V is positive semi-definite ifV(x) > 0,Vx G D, x ^ 0. V is negative 

definite, if the first condition is replaced by V(x) < 0 and negative semi-definite if 
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it is replaced by V(x) < 0. Similarly, a symmetric matrix Anxn is positive definite 

if for any non-zero vector x € Cn 

Re{x*Ax} > 0 (2.7) 

where x* is the conjugate transpose of the vector x. For a real symmetric matrix A, 

the condition (2.7) can be simplified as follows 

xTAx > 0 (2.8) 

It can be shown that all eigenvalues of a positive definite matrix A are in the open 

right-half plane (RHP). 

Definition 8. A real-valued function f defined on a subset of real numbers D C l , 

/ : D —> M is called Lipschitz continuous if a constant B > 0 can be found such that 

for any X\, x<i in D the following inequality is valid 

| / ( x 1 ) - / ( o ; 2 ) | < B | | x 1 - x 2 | | (2.9) 

The function f is called locally Lipschitz continuous if for any x in D a neighborhood 

of x can be found such that f restricted to this neighborhood is Lipschitz continuous. 

Consider the system 

x = f(x), xeR (2.10) 

where / : D —* R" is locally Lipschitz, and D C M" is a domain that contains the 

origin. Moreover, it is assumed that the origin is the equilibrium point of the system 

(2.10). Let V : D —> M be a continuously differentiate function, positive definite 

in D. The Lyapunov theory states that if V(x) = -^ is negative semi-definite, then 

x = 0 is a stable equilibrium point and if V(x) = ^ is negative definite, then 

x = 0 is an asymptotically stable equilibrium point. Here V is called the Lyapunov 

function [23], [6]. Note that the Lyapunov theory provides sufficient conditions only 

for stability or asymptotic stability of an equilibrium point. 
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2.4 Switched Systems 

Switched systems are continuous-time systems with discrete switching events. In 

other words, switched systems consist of multiple modes of operation, orchestrated 

by a switching rule that determines the active mode of operation (subsystem) at 

each instant of time. Switching events in switched systems can be classified as 

state-dependent and time-dependent, or autonomous (uncontrolled) and controlled 

switching. In the formulation of wireless networks, time-dependent switching will 

be used in this thesis [15]. 

The stability of a switched system has been extensively investigated in the 

literature [24]. As a simple approach, one can seek a common Lyapunov function 

whose derivative along the states of all systems satisfies the desired inequalities. 

Considering {t\, t2,t3, • • • } as a sequence of strictly increasing impulse time, the 

general impulsive system can be modeled as follows 

±(t) = f (x(t)), t^tk,VkeN 
(2.H) 

x(t) = g(x(t~)), t = tk, VA; GN 

where / is locally Lipschitz and the function g represents the jump in the states x(t) 

as a function of x(t~) [16]. It is well known that the switched system is stable if all 

individual subsystems are stable and the switching is sufficiently slow such that it 

allows the transient effects to dissipate after each switching. The simplest way to 

specify slow switching is to restrict the switching signals in a way that the switching 

times *i, *2, • • • satisfy the inequality ti+i — U > r, i = 1,2,3,.... The interval r 

is referred to as the dwell time. It can be shown that if all subsystems are stable 

and the dwell time is sufficiently large, then the switched system is stable. The 

dwell time can be explicitly calculated from the exponential decay bounds on the 

transition matrices of each individual subsystems. Note that one can also achieve 

stability by allowing fast but limited switchings then letting the Lyapunov function 
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of the last subsystem to decay until it reaches to a desired region [15]. 

2.5 Describing Function Technique 

It is known that frequency domain analysis is very useful for LTI systems. In par­

ticular, the Nyquist method is very effective in determining the stability of an LTI 

system. Describing function analysis uses the Nyquist stability criterion by consid­

ering the nonlinear element as a simple gain (which is a function of the magnitude 

and frequency of the input signal). Using this technique, one can identify any possi­

ble oscillations in the system, which are called limit cycles. Limit cycles is of great 

importance in analysis and synthesis of nonlinear control systems. Limit cycles are 

often used in the design of electronic oscillators. However, in most control systems 

limit cycles are undesirable [23], [6]. 

One of the useful tools in the analysis of nonlinear control systems is the 

describing function technique. Any closed-loop control system containing an element 

with hard nonlinearity such as frictions, hysteresis, saturation actuator, dead zone, 

etc. can be analyzed using the describing function technique [6]. This technique can 

be effectively used in identifying limit cycles and their types in a nonlinear control 

system. The idea behind this technique is that the oscillation in a nonlinear control 

system described above can be approximated by a sinusoidal signal with a particular 

frequency and amplitude. In fact, the input to the linear element in Fig. 2.1 can be 

expanded as the sum of infinitely many harmonics. Since typical control loops have 

a low-pass filtering property, the high frequency components are filtered out, and 

the output y(t) is composed mostly of the lower harmonics. 

In order to present the describing function method, the following assumptions 

are required. 

Assumpt ion 1. There exists only one nonlinear element in the overall system. 
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Nonlinear Element Linear Element 

r(t) = 0 • > * ( ' ) ^ 

I w-fix) qif) G(s) y(t) 

Figure 2.1: A nonlinear control system. 

Assumption 2. The nonlinear system is time-invariant. 

Assumption 3. Given a sinusoidal input x(t) = sin(uit), only the fundamental 

component q\(t) is dominant in the output q(t). In other words, the control loop 

acts as a low-pass filter, attenuating the higher-order harmonics. 

Consider a sinusoidal input of amplitude A and frequency u, which is applied 

to the nonlinear element in Fig. 2.1. Suppose that the output of the nonlinear 

element is periodic. Using the Fourier series expansion, the periodic signal q(t) can 

be written as 
oo 

q(t) = — + Y j (ancos(nujt) + bnsin(nujt)) (2-12) 

The Fourier coefficients <Zj and 6j can be obtained from the following integrals 

a0 
- [ q(t)d(LJt) 
7T7-7T 

7T 
q(t)cos(nL>t)d(u>t) 

i r 
bn = — q(t)sin(nut)d(ut) 

IT J-n 

(2.13a) 

(2.13b) 

(2.13c) 

mant, i.e., 

From Assumption 3, only the fundamental component q\(t) is supposed to be dom-

q(t) ~ qi(t) = aiCOs(ujt) + bism(tut) = Msm(cut + 0) (2.14) 
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where 

M(A,LO) = yja\ + ti{ (2.15a) 

<f>(A,u) = arctan(^-) (2.15b) 

Now, the describing function of the nonlinear element is defined as the complex 

ratio of the fundamental component of the nonlinear element output to the input 

sinusoid. In other words 

^jeJ{ujt+4>) M -j. 1 
N{Auj) = -A&r- = ^ e = A{th +M (2-16) 

It is to be noted that the describing function is real because a\ is zero for odd 

nonlinearities. 

2.5.1 Prediction of Existence of Limit Cycles 

Assume that there exists an oscillation of amplitude A and frequency u> in the system 

of Fig. 2.1. Therefore, the variables in the loop should satisfy the following: 

x = -y (2.17a) 

q = N(A,u)x (2.17b) 

y = G(ju)q (2.17c) 

Therefore, y = G(ju>)N(A,u)(—y), which can be written as 

G^» - -wb) (2'18) 
As a result, the amplitude A and frequency u of the limit cycle in the system must 

satisfy (2.18). The idea is to plot both sides of (2.18) in the complex plane and 

find the intersection points of the two curves which correspond to the possible limit 

cycles. One can also check the stability of the limit cycles using the extended Nyquist 

criterion [23]. 
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2.6 Quasi-Newton Methods in Optimization 

In order to find local maximum or minimum of a given function quasi-Newton meth­

ods are developed in the literature, which use Newton's approach to find the sta­

tionary point of a function. In quasi-Newton methods, the Hessian matrix of second 

derivatives of the function to be minimized does not need to be computed since 

the full Hessian matrix is usually difficult to calculate in practice. Instead, these 

methods use an approximation of the Hessian matrix. The well-known quasi-Newton 

algorithms are the rank-one correction Davidon Fletcher Powell (DFP) and Broyden 

Fletcher Goldfarb Shanno (BFGS) [25]. 

Definition 9. The gradient (or gradient vector field) of a scalar function f{x\,X2,Xs, 

• • • , xn) is denoted by V / or V / , where V represents the vector differential operator. 

The gradient of f is defined as a the vector field whose components are the partial 

derivatives of f, i.e.: 

V / = 
df df (2.19) 
dxi' ' dxn 

Definition 10. The Hessian matrix is a square matrix whose elements are the 

second partial derivatives of a given function, and it describes the local curvature 

of a function of many variables. For a real-valued function f(x\,X2, • • • ,xn), the 

Hessian matrix can be written as follows: 

d2f 

H(f) = 

a2/ 
dx\ 
d2.f 

dxidx\ 

d2f 

a2/ 
3xi9a;2 

dxf 

d2f 

dx\dxn 

d2.f 
dx,2dxn 

dxl 

(2.20) 

dxndx\ dxndx2 

Consider the problem of minimizing the function f(x), and let following iter­

ative algorithm be used: 

Cfe+i = xk - akSkVfT(xk) (2.21) 
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where ak is chosen to minimize f(xk — dkSkV fT (x_k)) and Sk is a symmetric n x n 

matrix. It is desired at each iteration to choose Sk as close as possible to F~x(xk), 

i.e., the inverse of the Hessian matrix. 

Algorithm 1. 

Initialization: Start with any symmetric positive definite matrix Ho and vector XQ 

and set k = 0. Then: 

i) Calculate 

dk = -Hk.gk (2.22) 

where g is the transpose of the gradient of the function to be minimized. Find 

the parameter a of the following optimization problem using any line search: 

min f{xk + ad,k), a> 0 (2.23) 

n) Set xk+1 = xk + adk, pk = ak.dk, and gk+1 = g{xk+l) 

Hi) Set q = g — g_ and update the approximation of Hessian matrix as follows: 

HM -Hh+(l + &**) (*&) - P - ^ \ + H t i ^ (2.24) 

Replace k with k + 1 and go to step (i). 
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Chapter 3 

Interference Model for IS-856 

Uplink 

3.1 Introduction 

In this chapter, a model is developed for IS-856 uplink, and the rate assignment in 

the network is formulated as a regulation problem in the context of feedback control 

system. In this model, the one-bit control signal transmitted from the base station 

in represented by an on-ofl block (which is a nonlinear element), and the mapping 

from the feasible rate set to the feasible T2Pi(t) set is expressed in a modified form 

for practical purposes. Important definitions and assumptions are introduced, and 

the rate assignment objectives are presented subsequently. 

3.2 Access Terminal 

Access terminals (AT) are the mobile components of the network that provide data 

to users. Access network (AN), on the other hand, is the fixed element of the 

network, i.e., a base station which provides data for ATs. A CDMA channel in an 

AN along with the corresponding covered area is called a sector [7], [10]. 
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Let the number of ATs available in a sector of an IS-856 network be denoted 

by n, and assume that all of these ATs are full-buffered. Assume also that the 

base station receives the same pilot power from all ATs [10], [11], [14]; this strategy 

is often called perfect power control and is studied in a number of papers such 

as [21], [34], [35]. 

The ATs transmit data with a rate Ri(t) G T, \/t > 0, where T is the set of 

all feasible rates (which is a known standard set) [19]. Let T2Pi(t) (traffic to pilot 

ratio) denote the ratio of the total data power to the pilot power for the i-th AT; 

this ratio belongs to a given feasible set A. Define a one-to-one mapping F(-) from 

the feasible rate set T to the feasible T2P set A as shown in Fig. 3.1, and denote it 

as [7] 

T2Pi{t) = F{Rl{t)) (3.1) 

The total traffic power of the z'-th AT is then given by 

P(t) = T2P(t)m{t) (3.2) 

where ir^t) denotes the pilot power of the z-th AT. 

3.3 Access Network 

Let NQW represent the total background noise, which is assumed to be Gaussian. 

The raise over thermal (ROT) in the base station at any time instant t is defined 

as [10], [20] 

Z(t) = 101og10 ^ — j (3.3) 

where J(t) is the out-sector interference coming from the ATs that are not in soft 

hand-off with the base station. Furthermore, I(t) is the total in-sector interference 

which is given by 
n 

I(t) = ^T2Pi(t)Ppilot (3.4) 
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Figure 3.1: The mapping F(-) from the feasible rate set T to the feasible TIP set 
A. 
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where Ppiiot is the received pilot power from each AT at the AN, in the case of perfect 

power control. 

On one hand, the existence of strong interference in the network results in high 

ROT, which has performance implications. On the other hand, weak interference in 

the network leads to low ROT, which can be interpreted as under-utilization of the 

network resources. Therefore, it is desired to keep the ROT close to a prescribed 

threshold denoted by Zth [33]. 

By substituting T2Pi(t) in (3.4) with (3.1) and assuming that the out-sector 

interference J(t) in (3.3) is negligible compared to I(t) for all t, one can conclude 

that the term ^Z"=1 F(Ri(t)) (which is the feedback signal from the ATs to the AN) 

should be regulated to a reference value ZT given below [11], [40] 

Z r = ^ (10Z- /1 0 - 1) (3.5) 
-Ppilot 

The feedback signal received by in the AN is compared to the reference ZT provided 

above, and the error signal 
n 

e{t) = Zr-^2F(Ri(t)) (3.6) 

is produced. This error signal then passes through a two-level comparator, generat­

ing a signal called reverse activity bit (RAB) [7]; this process is formulated below 

U(t) = sgn(e(t)) (3.7) 

This means that if the overall rate of the ATs is less than a desired value, then 

U{t) = 1; otherwise, U(t) = —1. The objective is to design a set of controllers to 

regulate the rate of the ATs such that I(t) reaches the desired level in a reasonably 

short period of time. The closed-loop network configuration is shown in Fig. 3.2 as 

a feedback control system. 

R e m a r k 1. Throughout this thesis, the signal U(t) is referred to as control signal. 

This notion should not be confused with the output of the controllers in Fig. 3.2, as 

this term is often used to describe the controller output in the control literature. 
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Figure 3.2: Rate-control loop in IS-856 uplink, with n active users available in the 
sector. 

Remark 2. The assumption of J{t) being negligible compared to I(t) in (3.3) is 

only made to simplify the analysis (i.e. as in the case of a single sector network) 

[10], [11 J, [13], [14]. However, in some practical settings this may not be a realistic 

assumption. 

Remark 3. Note that the output of the controller can take any real value, but 

according to the mapping F(-) shown in Fig. 3.1, the domain of this mapping (i.e., 

the allowable values of its input) is limited to the finite set V. In order to overcome 

this difficulty, a new mapping F(-) is introduced whose domain is all positive real 

values between 0 and 500 Kbps. This mapping is obtained by considering a piecewise 

constant T2P, where each discontinuity is centered at a point between two feasible 

rates in the set I \ This leads to a mapping F(-) shown in Fig. 3, which is, in fact, 

a nonuniform quantizer. 
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Chapter 4 

Limit Cycle Analysis in Ra te 

Assignment Control Loop 

4.1 Introduction 

In this chapter, the describing function technique is introduced for the rate assign­

ment in IS-856, using the results in [14]. The possible oscillation of the system due to 

the existence of a nonlinear element in the AN is identified in the framework of limit 

cycle analysis. The stability of the oscillation is verified using Nyquist criterion, and 

the effect of controller parameters on the magnitude of oscillation and the transient 

performance are discussed. Furthermore, it is shown that using a three-level quan­

tization for the comparison error instead of a simple on-off element (corresponding 

to a single-bit control signal transmitted from the base station to the ATs) would 

significantly improve the rate assignment performance. 
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Figure 4.1: The uplink rate control loop of IS-856. 

4.2 Oscillation in Network Output : Limit Cycle 

Analysis 

As the first step in limit cycle analysis, assume that there is no limitation in broad­

casting the control signal from the base station (AN) to the ATs, i.e., the nonlinear 

relay in AT in Fig. 3.2 is removed. Thus, 

AN{s) = 1 (4.1) 

Assume also that the mapping F(-) is approximated by a first-order curve, and 

hence it can be replaced by a simple gain u>\. In other words, the mapping F(-) is 

to be approximated by the closest line of the form 

Fi =u1xi2(t)+uQ (4.2) 

With these assumptions, the system to be controlled is, in fact, modeled by a simple 

delay z~D followed by a constant gain wi, as shown in Fig. 4.1 for one AT. 

One can design a discrete-time controller G(z) to place the poles of the re­

sultant closed-loop system in the desired locations in the complex plane. It follows 

from the internal model principle [41], [42] that in order to achieve zero steady-state 

error for a step input, an accumulator (the discrete-time equivalent of an integrator) 

is required in the forward path. Similarly, if the input ZT has a ramp component 

then it is required that G{z) to have two poles at z — 1. However, one should 
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ensure that adding integrator(s) to the forward path would not lead to closed-loop 

instability. 

Given the single AT with the structure shown in Fig. 4.1, it is desired to 

design an LTI controller using classical control methods, for the case when the delay 

includes two frames. Let a controller of the following form which consists of an 

accumulator (for steady-state performance) and a lead compensator (for transient 

performance) be used: 

G^ = Kn -mT"1 -n (43) 
(1 - z l){\ -p0z

 J) 

For a 5% overshoot, the closed-loop poles can be placed at the following locations: 

zx = 0.248 + jO.752, z2 = 0.248 - jO.752, z3 = -0.196. This can be achieved by 

choosing p0 = —0.7, zQ = —0.1, and K = 1.23. To check stability, the root locus 

trajectories of the closed-loop system is depicted in Fig. 4.2. It can be verified that 

the system with the controller (4.3) is stable for 0 < K < 1.625. 

Consider now the on-off block in the AN in Fig. 3.2 (which reflects minimal 

communication between ATs and AN), where the base station broadcasts the sign of 

the comparison error (3.7), instead of the error signal itself. In this case, the control 

block of AN is, in fact, a relay, and has applications in many practical systems. 

In order to study the stability of this control strategy, one can use describing 

function analysis to investigate the existence of possible limit cycles in the closed-

loop system and their characteristics (in terms of stability). Assume that if the error 

signal right before the relay block is the periodic signal e(t) = Asin(u>t), then the 

output of the relay will also be a periodic signal that can be expressed using the 

Fourier series expansion as follows 

A OO OO 

U{t) = n(ut) = -y + ^ Akcos(kut) + ^ Bksin{kujt) (4.4) 
fc=l k=\ 

Since U(t) is an odd function (as the sign function of the odd function e(t)), (4.4) 
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Figure 4.2: The root locus trajectories of the IS-856 uplink controller using the 
discrete-time LTI control law (4.3). 

can be simplified as 

n(uit) = 2_] Bksin(kujt) (4.5) 
fc=i 

Assume that the loop transfer function acts as a low-pass filter that eliminates 

the high-frequency harmonics of (4.4), and hence only the main harmonic of (4.4) 

passes through the loop (this is a realistic assumption in typical control systems). 

Therefore, the describing function of the relay element can be written as 

N(ju,A) = ^-Z0 (4.6) 

where Bj can be calculated as 

B\ = — I / —sin(a)da + / sin(a)da J 

Thus, the describing function of the relay can be simplified to 

4 

(4.7) 

N(A) = 
TXA 

(U 
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Nyquist Diagram 

0.5 
Real Axis 

Figure 4.3: The Nyquist diagram of the uplink rate controller along with the de­
scribing function of the nonlinear element of AN. 

The magnitude and frequency of the limit cycle satisfy the following condition 

1 -JUIQD xG{juQ) 
N(A) 

(4.9) 

Now, let the controller (4.3) with the same parameters given earlier be used 

here. The intersection of the Nyquist diagram of e~juJ°DG(ju>o) and — w^y deter­

mines the amplitude and frequency of the limit cycle which is depicted in Fig. 4.3 

with blue and red curves, respectively. The Nyquist diagram hits the real axis 

at —0.61 and 1.5 which correspond to Woi = 1-34 rad/sec and W02 = TT rad/sec, 

respectively. 

It is desired now to check the stability of each limit cycle. To this end, consider 

first the intersection at —0.61, which corresponds to a limit cycle with amplitude 

A\ and frequency woi- Let the amplitude of the input to the nonlinear element 

be slightly disturbed. On one hand, if the amplitude is increased, then the corre­

sponding point on the real axis is no longer encircled by the Nyquist plot of G(jcu). 

According to the extended Nyquist criterion [23], since the system is stable in this 
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case, the amplitude decreases and as a result the corresponding point on the real 

axis returns to the original position. On the other hand, if the amplitude of the 

oscillation decreases, then the corresponding point on the real axis is encircled by 

the Nyquist of G(ju>), and hence the system becomes unstable. As a result, the 

amplitude of the oscillation increases and the point returns to the original position. 

Therefore, the left intersection corresponds to a stable limit cycle of the frequency 

UQ = 1.34. Using a similar argument, it can be shown that the limit cycle corre­

sponding to the right intersection with the real axis is unstable. It is to be noted that 

since the trajectory of — JJTJ\ covers the whole real axis, a limit cycle is inevitable 

with this type of controller. 

On the other hand, the amplitude of the limit cycle can be obtained from 

equation (4.9) as follows 

IT A 

e- j 2 x l '3 4G(jl .34) = -0.616A" = —— =• A = 0.784^ (4.10) 

This means that a greater K leads to a limit cycle with greater amplitude. 

To improve the overall control performance, it is desired now to increase the 

number of bits assigned for the communication between the base station and ATs 

(i.e., U(t)) to two. In the control formulation, this implies that the on-off relay in 

the AN is replaced by a four-level nonlinear quantizer. For the simplicity of analysis, 

however, a three-level quantizer will be used here, which will show that adding one 

quantization level to the error comparison would significantly improve the control 

performance. 

Using a similar approach, the stability of the limit cycles in the case of a 

three-level error comparison can be verified using the describing function analysis. 

Suppose the error signal before the nonlinear element is purely sinusoidal as depicted 
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Figure 4.4: A three-level nonlinear A/D block at the AT. 

in Fig. 4.5. Therefore, the output signal U(t) can be written as 

0, 0 < cut < m 

1, m < ut < IT — m 

u(f) = { 0, Tr-m<ut<ir + m (4-11) 

— 1, Tr + m< ujt < 2TT —m 

0, 2TT - m < urf < 2TT 

where m is the angle (in radians) at which the amplitude of the sinusoidal error 

signal e(t) reaches the level D (i.e., m = arcsin(^)). This signal can be expressed 

using Fourier series as follows: 

. 0 0 OO 

U(t) = n(ut) = - y + Y^ AkCos(kiut) + ^ Bksin{kut) (4.12) 

fc=i fc=i 

Since [/(£) is an odd signal, thus A; = 0, i = 0,1, 2 , . . . . Therefore, (4.12) can be 

rewritten as 
OO 

n{ut) = Y2 Bksin{kcjt) (4.13) 
fe=i 
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Figure 4.5: Typical input and output signal of a three-level quantizer in the AN. 
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Following a discussion similar to that provided in the previous case, the describing 

function of the three-level quantizer is obtained as 

N(ju,A) = ^ 0 (4.14) 

The symmetric property of U(t) over the four quarters of a period yields 

Bi = - J U(t)sin(ut)dt =-l j sin(ut)dt ] (4.15) 

which can be simplified as 

4 r D2 

Bl = -Vil--#) (4.16) 

Therefore, the describing function of the three-level quantizer can be written as 

0, A<D 
N(A) = { (4.17) 

£V(i -$) . A*D 

which is depicted in Fig. 4.6 for D = 0.1. 

Again, let the amplitude and frequency of the limit cycle be denoted by A and 

CJ, respectively. As in the case of a two-level quantizer, the parameters A and u> are 

related by the following equation 

a{M = -mb) (4-18) 
Consider the compensator (4.3) with the parameters z0 = —0.1, p0 = —0.7 and 

k = 0.1. The corresponding Nyquist diagram as well as the function — N,\u\ are 

depicted in Fig. 4.7 in blue and red, respectively. 

As it can be seen from Fig. 4.7, the two curves have no intersection. It is 

to be noted that the Nyquist diagram of G(ju>) is scaled by K; as a result, for 

a sufficiently large K, there is the possibility of having a stable limit cycle. In 

particular, the Nyquist diagram of G{ju>) and the real axis intersect at —0.616A'. 

Moreover, the function — Wl) covers the portion of real axis from oo to —0.3. This 

35 



7 

6 

5 

_ 4 

3 

2 

1 

0 
0 0.5 1 1.5 2 2.5 3 3.5 4 

A 

Figure 4.6: The describing function of the three-level quantizer with D = 0.1. 

implies that for any controller gain K smaller than -^critical, there will be no limit 

cycle, where 

^critical = Q ^ g = 0 .4870 (4 .19) 

4.3 Simulation Results 

Consider first the simple case of no nonlinear element in the network. In this case, 

the step response of the uplink rate control system is depicted in Fig. 4.8 using the 

LTI controller (4.3) with the parameters po = —0.7, ZQ = —0.1, and K = 1.23. 

Now, let the two-level quantizer be used in the AN, along with the controller 

(4.3) with the parameters po = —0.7, ZQ = —0.1. The step response of the network is 

depicted in Figs. 4.9 and 4.10 for two different values of the controller gain K — 0.1 

and K = 0.01, respectively. It can be seen from these figures that the amplitude of 

the limit cycle increases by increasing the control gain K, as expected from (4.10). 
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Figure 4.7: The Nyquist diagram of G(ju>) and — wjif^y drawn to identify possible 
limit cycles in the IS-856 uplink with the control law (4.3) and a three-level error 
comparison. 
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Figure 4.8: The step response of the IS-856 uplink using the control law (4.3) with 
K = 1.23 and no nonlinear element in the model. 

However, the transient response of the system is faster for a larger value of K, which 

is desirable. This introduces a trade-off in choosing the controller gain K. 

One can also use a proper optimization technique to find a controller which 

minimizes a prescribed performance index. It is first required to choose a cost 

function which reflects the design objectives. Then, an appropriate numerical or 

analytical technique needs to be adopted to minimize the cost function. For instance, 

consider the following cost function: 

J= te2{t)dt (4.20) 
Jo 

This cost function reflects the energy of error, with a weighting which increases by 

time. In other words, the objective is to reduce the error as quickly as possible. 

One can use the Broyden Fletcher Goldfarb Shanno (BFGS) optimization method 

to minimize J [25]. This method is known to be superior to other existing techniques 

in terms of accuracy and the convergence rate. Like any other numerical method, it 
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Figure 4.9: The step response of the IS-856 uplink using the control law (4.3) when 
K = 0.1, and a two-level error comparison. 
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Figure 4.10: The step response of the IS-856 uplink using the linear control law (4.3) 
with K = 0.01, and a two-level error comparison. 
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Table 4.1: The intermediate points obtained by applying the BFGS optimization 
method to the underlying problem with the initial control parameters ZQ = 0, po = 0 
and k = 0. 

Iteration 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Func-count 

4 
16 
24 
28 
36 
40 
44 
48 
52 
56 
60 
64 
68 
72 
88 
100 
112 
124 

fix) 
80200 

863.585 

793.029 

780.323 

780.32 

780.312 

780.272 

780.186 

779.943 

779.335 

777.81 

774.451 

768.187 

755.884 

746.343 

733.435 

721.413 

708.72 

Step-size 

1.55948-009 

10 
1 
10 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.271 

0.19 

0.19 

0.19 

is required to choose initial parameters (which are often required to be stabilizing 

parameters). Choosing pQ = 0 and ZQ = 0, the underlying iterative optimization 

method arrives at z0 = —0.1276, po = 0.1275 and K = 0.0492. The system output 

under this controller is depicted in Fig. 4.11, and the intermediate points in the 

optimization procedure are given in Table 4.1. 

By setting the initial point to z0 = —0.1, p0 = —0.7 and K = 0.1, the results 

in Table 4.2 are obtained. The iterative BFGS optimization procedure arrives at 

the optimal parameters z0 = -0.1028, p0 = -0.7004 and K = 0.0496. The step 

response of the system under resultant controller is depicted in Fig. 4.12. 

Using a three-level quantization in the AN, the output of the system regulated 

with this controller is depicted in Figs. 4.13 and 4.14 for K = 0.1 and K = 0.5, 
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Figure 4.11: The step response of the IS-856 uplink using the optimal values obtained 
by applying the BFGS method with the initial parameters ZQ = 0,po = 0 and K = 0. 

Table 4.2: The intermediate points obtained by applying the BFGS optimization 
method to the underlying problem with the initial control parameters ZQ = —0.1, 
Po = -0 .7 and K = 0.1. 

Iteration 
0 
1 
2 
3 
4 
5 

Func-count 
4 
16 
24 
28 
36 
40 

/ (*) 
923.911 
261.139 
261.123 

261.1 
260.97 

260.716 

Step-size 

2.31264-006 
0.01 

1 
1 
1 
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Figure 4.12: The step response of the IS-856 uplink, using the optimal values 
obtained by applying the BFGS method with the initial parameters ZQ = —0.1, 
p0 = -0 .7 and K" = 0.1. 

respectively. It can be observed from these figures that using the control parameter 

K > /̂ critical results in a stable limit cycle. 

It can be verified that in the case of a three-level quantization after seven 

steps of optimization iteration, the local minimum for the performance index is 

found. The intermediate results are provided in Table 4.3, and the optimization 

procedure converges to the optimal control parameters ZQ = —0.0998, po = —0.7001 

and K = 0.1110. The resultant network output under this controller is depicted in 

Fig. 4.15. 

In the next step, the initial points for control parameters are set to certain 

values that result in high-amplitude limit cycle, e.g. ZQ = —0.1, po = —0.7 and 

K = 1. The intermediate results in Table 4.4, and the procedure approaches a local 

minimum with control parameters z0 = 0.4781, p0 = —0.7990 and K = 0.2027 that 

is depicted in Fig. 4.16. It can be seen from this figure that under this optimal 
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Figure 4.13: The step response of the IS-856 uplink using the linear control law (4.3) 
with K = 0.1, and a three-level error comparison. 
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Figure 4.14: The step response of the IS-856 uplink, which includes a limit cycle as 
the control gain is greater than identical-
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Table 4.3: The intermediate points in the optimization used in Fig. 4.15. 
Iteration 

0 
1 
2 
3 
4 
5 
6 
7 

Func-count 

4 
16 
24 
32 
36 
56 
68 
84 

/(*) 
125250 

94.1572 

52.0568 

48.4 

260.97 

39.5542 

37.2541 

36.3494 

Step-size 

2.1032e-009 

10 
0.1 
1 

0.19 

0.19 

0.109 

T ! 1 1 1 1 ! r 

J i i 1 i I i i I 
"0 10 20 30 40 50 60 70 80 90 100 

Time (s) 

Figure 4.15: The step response of the IS-856 uplink, using the optimal values ob­
tained by applying the optimal controller given by ZQ = —0.0998, po = —0.7001 and 
# = 0.111. 
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Table 4.4: The intermediate points in the optimization used in Fig. 4.16. 
Iteration 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Func-count 

4 
16 
24 
28 
36 
52 
56 
64 
68 
76 
80 
84 
100 
120 

/(*) 
140162 

637.123 

336.14 

38.6611 

37.8516 

37.4599 

37.22495 

37.0647 

36.5922 

36.4555 

36.1081 

35.8111 

35.4664 

35.4389 

Step-size 

3.28324e-006 

0.1 
1 

0.190739 

820 
1 

0.446584 

1 
0.465285 

1 
1 

0.271 

0.0271 
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Figure 4.16: The step response of the IS-856 uplink, using the optimal values ob­
tained by applying the BFGS method with the initial parameters zQ = 0.4781, 
po = -0.7990 and K = 0.2027. 
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controller, the steady state error is negligible compared to the previous cases. 
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Chapter 5 

Controller Design Using Adaptive 

Strategy: Stability Analysis 

5.1 Introduction 

In this chapter, a nonlinear control framework is proposed for IS-856 uplink. The 

controller design technique is then introduced and the stability analysis for the 

resultant closed-loop system is presented. First, it will be assumed that the number 

of ATs in the network is constant [n = N), and the controller is designed accordingly. 

Then, the controllers will be revisited to use a single-bit feedback (RAB) as defined 

in IS-856 standard. The stability analysis will be provided for the case when the 

number of ATs is subject to change (n = N(t)), using the theory of switched systems 

[15]. Finally, the controllers obtained will be modified properly to retain network 

stability and performance in the presence of time-delay and an upper-bound for 

the tracking error is obtained in the presence of time-delay in the control loop. 

The simulation results are presented to elucidate the effectiveness of the proposed 

approach. 
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Figure 5.1: IS-856 uplink rate controller block diagram with the control law (5.1), 
for the case when the number of users is fixed. 

5.2 Controller Design for Fixed Number of Users 

Assume that n (the number of ATs in the network) is constant; denote this constant 

number with N. Consider a control structure consisting of two simple first-order 

controllers with two time-varying coefficients kn(t) and ki2(t) for the i-th AT, i £ 

N := { 1 , . . . , N}. The closed-loop system model can be written as follows 

xn(t) 

XN2(t) 

-a 0 

kn(t) -a 

0 

0 

0 

0 

—a 

km(t) 

0 

0 

0 

— a 

xn(t) 

xu{t) 

XNi(t) 

XN2{t) 

+ 

axn + kn{t)U(t) 

axu 

axN\ + kNi(t)U(t) 

CLXN2 

U(t) = sgn (Zr - y(t)) 

I(t) 

(5.1a) 

V(t) = 
P, pilot 

(5.1b) 

(5.1c) 
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where a is a strictly positive scalar. The structure of the controller introduced above 

is depicted in Fig. 5.1. 

It is desired that the network output y(t) in the closed-loop model (5.1c) 

reaches a sufficiently close neighborhood of ZT. In other words, the objective here 

is to ensure the convergence of the state vector [ in( t ) x\2{t) • • • XN\{1) XN2(t)]
T to 

a nominal state [ in X\2 • • • %N\ XN2]
T which is, in fact, an equilibrium point for 

the network, and is assumed to lie in a desired region. This nominal state is chosen 

based on the reference ROT and the number of active users. The dynamic equations 

of the time-varying control coefficients kn{t) and ka{t) are designed as follows 

kn(t) = -afco(t) - U{t)xu(t) + U(t)xn (5.2a) 

ki2{t) = -aki2(t) - Xii(t)xi2(t) + Xn(t)xi2 (5.2b) 

for any i G N, to guarantee the stability of the network as will be seen in Theorem 1. 

Define the new state vector Y(t) as follows 

Y(t) = 

yn(t) 

Vu(t) 

ymit) 

_ VN2{t) _ 

:= 

Define also the matrices A(t) and B(t) as 

A(t) = 

-a 0 • 

ku(t) -a • 

0 0 • 

0 0 • 

xn(t) - xn 

xu{t) -x12 

xm{t) - xNi 

_ xN2(t) - xN2 

0 0 

0 0 

-a 0 

• kN2(t) -a 

(5.3) 

(5.4) 
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B(t) = 

kn{t)U{t) 

xnk12(t) 

(5.5) 

km(t)U(t) 

XN\kN2{t) 

The state-space model (5.1) can now be expressed in the new coordinates as 

Y(t) = A(t)Y{t) + B(t) (5.6) 

and the dynamic equations of the time-varying coefficients (5.2) can then be simpli­

fied to 

hi(t) = -afcii{t) - U(t)yil(t) (5.7a) 

ki2{t) = -aki2(t) - yn{t)yi2(t) - xuyi2(t) (5.7b) 

for all i e N. 

The following theorem provides a sufficient condition for the stability of the 

system (5.6). 

Theorem 1. The state trajectories of system (5.6) with the time-varying control 

coefficients knit) and h2(t) given in (5.7) are globally exponentially stable in the 

sense of Lyapunov. 

Proof: To carry out the stability analysis, choose the Lyapunov function can­

didate as 

v(t) = \YT{t) Y(t) + ̂  5>2i(o + ̂  E *&(*) (5-8) 
i = l 1=1 

The derivative of this Lyapunov function along with the state trajectories of system 

(5.6) yields 

V{t)=l-{YT{t)Y{t) + YT{t)Y{t)) 

N N 

+ EM*)M*) + Ek2(*)M*) 
(5.9) 

i=\ i = l 
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(5.10) 

(5.11) 

Substituting (5.6) in (5.9) yields 

V(t) = - ay2
u(t) + kn{t)U{t)yn(t) + k12(t)yu{t)y12{t) 

- ay\2{t) + xnku(t)yi2{t) + ••• 

- ay2
N1 + kN1U(t)yN1(t) + kN2(t)yN1(t)yN2(t) 

- ay2
N2 + xNlkN2(t)yn2{t) 

N N 

+ J2 fcii (*)*;« (*) + J2 kl2(t)kl2(t) 
i=\ i = l 

Now, using (5.7) one will arrive at the following relation 

V{t) = -aYjyi{t)-aYjyUt) 
i = l i = l 

N N 

-a^klW-aJ^k&t) 
i = i i = i 

It can be concluded from (5.11) that 

V{t) = -2aV(t) (5.12) 

which guarantees the negative definiteness of the derivative function V(t) (note that 

a is strictly positive, as mentioned earlier). This means that the origin is an equi­

librium point for the system (5.6), and that this equilibrium point is globally expo­

nentially stable. • 

Remark 4. The stability of system (5.1) follows directly from the stability of system 

(5.6), and hence the state trajectories of system (5.1) converge exponentially to 

[xn ••• xm xN2]
T. 

In order to achieve exact tracking, the trajectories of Xi2(t), Vz € N should be 

such that y(t) = Zr for some t. Therefore, xi2 should be defined in such a way that 

F{xi2) = ^p, \/i € N. Define the tracking error similarly to (3.6) 

/ W) \ 

e(t)= IZ r-£F(s i 2( t))J (5.13) 
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Since A is a finite set consisting of specific values only, it is not always possible to 

find a value for xi2 in this set, for which F(xi2) is exactly equal to ^ y . In order 

to overcome this hurdle, it is desired to fit the points in the mapping (3.1) with 

first and second-order continuous functions with appropriate uncertainty bounds, 

to cover the whole mapping F(-). Moreover a probabilistic dynamic rate selection 

scheme method [11] is also studied. 

5.2.1 First-Order Approximation for the Mapping F(-) 

For the case when the number of ATs is fixed, one can fit the closest line of the form 

Fi{xi2{t))=w1xi2(t)+uo (5.14) 

to the points in Fig. 3.1. The optimal coefficients (in the sense of least mean squares) 

are given by u)\ — 0.2698 and uQ = —2.2958. One can write 

F(xl2(t)) = F,{xl2(t)) + 6(xl2(t)) (5.15) 

where 5(xi2(t)) is the approximation error whose maximum magnitude is denoted 

by 5mi (i.e., |<5(XJ2(£))| < <5mi). The first order approximation Fx is depicted in Fig. 

5.2, along with the original nonuniform quantizer F, and two lines parallel to the 

resultant first-order approximation, which enclose F. These lines are obtained by 

shifting the resultant first-order approximation up and down by a value less than or 

equal to 5m\. 

Now, by substituting Fi(xi2(t)) with jf (when A'' users are active), xi2 can be 

approximated as 

xi2 = -*• — (5.16) 7v - ^ o 

Using the above formula, the maximum magnitude of the output error (5.13) in 

steady state can be found as 

max|e(i)| = \Zr - NF^x^l = NSml (5.17) 
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Figure 5.2: Linear approximation of the piecewise constant function F(-) as well as 
two boundary lines containing the function. 
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5.2.2 Second-Order Approximation for the Mapping F(-) 

The points in Fig. 3.1 can alternatively be fitted by a second-order polynomial (to 

attain a higher precision). For the case when the number of ATs is fixed, this results 

in 

F2{xi2{t)) = v2x\2{t) + vxxi2{t) + u0 + 52(xi2(t)) (5.18) 

Analogously to the first-order case, the optimal coefficients are obtained as v2 = 

0.0003, v\ = 0.1516, and v0 = 3.034. In addition, the approximation error (52(xi2(£)) 

in this case (which is defined similarly to the first-order approximation) has an upper-

bound equal to 5m2. This bound is smaller than <5ml corresponding to the first-order 

case, as expected. The result of this approximation along with the second-order 

upper and lower bounds for F(-) parallel to F2(-) are shown in Fig. 5.3. Now, 

similar to the development presented in the first-order approximation, Xj2 can be 

approximated by 

x*2 = F2-\^) (5.19) 

and consequently in steady state the maximum bound on the error can be found as 

follows 

max\e(t)\ =\Zr - NF2(xi2o)\ 
(5.20) 

=N5m2 

Remark 5. It is to be noted that for a more accurate approximation of F in (5.14) 

and (5.18), one can take into account the amount of existent traffic of the network. 

For example, in peak hours, the mapping should be approximated more accurately 

near the points in the set T, which are closer to the origin i.e. feasible rates close 

to the origin in the nonuniform quantizer represents higher traffic and should nor­

mally be approximated more precisely in peak times and should have stronger impact 

on the curves being sought. Furthermore, one can consider a probability density 

function (pdf) for the data rate in order to characterize the relative importance of 
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Figure 5.3: A second-order curve as the continuous approximation for the piecewise 
constant mapping F(-), and second-order curves for its upper and lower-bounds. 
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different rates (in terms of how frequently they are being assigned in the network). 

This pdf can then be used as a weighting function in deriving the coefficients of the 

corresponding curves. 

5.2.3 Dynamic Rate Selection 

An online dynamic allocation algorithm is proposed now for ATs to dynamically ad­

just their equilibrium points (xt2). The steady-state error is calculated like previous 

methods. In this method each AT keeps calculating ^ y and the two levels of the 

Mapping F(-) that surround -fifa, continuously. Supposing that at the time t! there 

are N' active users available in the network and the distances between jfi and the 

lower level and the upper level are d^'i and djv'i accordingly, and also suppose that 

the feasible rates associated with these two levels are R\ and R2 accordingly. If djv'i 

is smaller than d^i2, the feasible rate xi2 = R\ is selected as the equilibrium point 

for the iih AT, otherwise xi2 = R2 is chosen. 

Xi2 = R\, djv'l < dNi2 

(5.21) 
Xi2 = R2, dflf'l > djv'2 

It can be shown that using this method the error (5.13) is as follows 

\eN'\ = N' mm{dN'i,dNi2} (5.22) 

In Fig. 5.4, the magnitude of the steady-state error is shown for a network with 

up to 50 active full-buffered users and the three proposed methods for Xi2 provided 

by (5.16), (5.19) and (5.21). It can be observed from this figure that as the number 

of users increases, the second-order approximation results in a smaller error, and 

hence a more desirable behavior compared to first-order approximation. Moreover, 

the dynamic allocation's error is always equal or smaller than using first-order and 

second-order approximations. It is to be noted that the error depicted in Fig. 5.4 is, 

in fact, the overall error of all users; in other words, the average error of each user 

is roughly N(t) times smaller than the overall error. 
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Figure 5.4: Magnitude of the error produced when the first-order approximation, 
second-order approximation, and dynamic allocation method are used for T2P in a 
cell versus number of available active users. 
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5.2.4 Probabilistic Rate Selection 

If the output of the controller of the z-th AT at time t0 is between two feasible rates 

R\ and R2, i.e. 

R\ < xi2{t0) < R2 (5.23) 

then this AT transmits data at the rate R\, with the probability p\ given by 

n _ Fk(R2)-Fk(xi2(t0)) 
Pl~ Fk(R2) - Fk(Rx)

 ( 5 - 2 4 ) 

or at the feasible rate R2, with the probability p2 given below 

V2 ~ Fk(R2) - Fk(Rl)
 ( 5 ' 2 5 ) 

Note that Fk(.) in (5.24) and (5.25) is, in fact, a proper approximation of the map­

ping F(-) from the feasible rates to feasible T2P, which can be the first-order ap­

proximation Fi, or the second-order one F2. 

5.3 Controller Design for Unknown-fixed Num­

ber of Users 

Let N be the maximum number of ATs in a cell. Like previous section the control 

structure in Fig. 5.1 with two time varying coefficients kn(t), ki2(t) for the i-th 

AT, i £ N is considered. The state space representation for the closed-loop system 

is shown in (5.1). The objective is to ensure the convergence of the state vector 

[xn(t) Xi2(t) ••• XNi(t) XN2(t)}
T to a nominal state [xu{t) xu(t) ••• x^\{t) XN2(t)]

T 

which is, in fact, an equilibrium point for the network (which corresponds to the 

perfect regulation of ROT). This nominal state is chosen only based on the common 

single-bit signal (3.7) received from AN as follows 

xl2(t) = U(t) (5.26) 
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for a l i i G N. For simplicity and with no loss of generality, assume that 

xn{t) = 0 (5.27) 

(notice that the above assumption does not limit the scope of the results). The 

dynamic evolution of the time-varying coefficients kn(t) and ki2(t) is given by (5.2). 

Define the new state vector Y(t) 

Y(t) = 

Vn(t) 

yn(t) 

VNl{t) 

ymit) 

xn(t) -

xu(t) -

xm(t) -

XNz{t) -

-xn 

- ^12 

- xN1 

-xN2 

(5.28) 

The state-space representation (5.1) in the new coordinates can be obtained as 

follows 

Y(t) = A{t)Y(t) + B(t) (5.29) 

where and B(t) is defined as 

" ku(t)U(t) 

-U(t) 

B(t) = (5.30) 

km(t)U(t) 

-U(t) 

It can be easily verified that the origin is the equilibrium point in the new coordi­

nates. Note that using (5.28), the adaptive gains kn(t) and ki2(t) can be rewritten 

as follows 

ki(t) = -aka{t) - U(t)yn(t) (5.31a) 

ki2(t) = -akl2(t) - yn(t)yi2(t) (5.31b) 

for all i e N. 
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The following theorem states that the state of the system converges, and even­

tually remains in a certain neighborhood of the equilibrium. 

Theorem 2. The state trajectories of system (5.29) along with the time-varying 

coefficients (5.31) are globally ultimately stable in the sense of Lyapunov. 

Proof: Choose the same Lyapunov function like (5.8) The derivative of (5.8) 

is given by 

V{t)=\(YT{t)Y{t) + YT{t)Y(t)) 

N N (5.32) 

+ Yl M*)M*) + Y, M*)M*) 
i = i i = i 

Substituting (5.29) in (5.32) yields 

V(t) = - ay2
n{t) + ku(t)U(t)yn(t) + k12(t)yn(t)y12(t) 

- ay?2(*) - u(t) - ay2m • • • 

+ kmU(t)ym(t) + km{t)yNl(t)yN2{t) - ay2
N2 

N N 

+ Y kx{t)hx{t) + Y ki2(t)ki2{t) 

(5.33) 

i = l i = l 

Now, using (5.31) one will arrive at the following relation 

N N N 

(5.34) 

Considering (5.34), and i-n light of Lyapunov theorem [23], one can conclude thai 

the overall system (the communication network and the control gains) is globally 

ultimately stable. This completes the proof. • 

Corollary 1. The maximum bound on yi2(t) in steady state is given by 

\vn(t)\ < ̂ ± 1 (5.35) 
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where I G N . Furthermore, the bound on the overall performance of the system in 

steady state (5.29) is 
N N 

$ > « ( « ) ! < - (5-36) 

Proof: For stability of the system (5.29), the derivative of the Lyapunov func­

tion as given by (5.34) has to be negative. In other words, to find the region of 

attraction, the trajectories yn(t), yn{t), kn(t) and k&(t) must be such that the 

following inequality holds 

V < 0 (5.37) 

for all i G N. In this region of attraction, the maximum error magnitude for the 

l-ih AT {yi2(t)) is resulted when yn(t) = 0, kn(t) = 0, ki2{t) = 0, for all i G N, and 

yi2 = 0, for allz ^ I, i.e., \yl2(t)\ < ^g±±. 

In addition, to find the bound on the overall performance Yli=i 12/»21 s s e t 

yn(t) = 0, kn(t) = 0, ki2(t) = 0, for all i e N. Then, using (5.37) one arrives 

at the following inequality 

This bound can be simplified as 

N IV 
$ > « ( * ) ! < - (5-39) 

a 
=i 

Remark 6. According to Corollary 1, in steady state, the upper bound on the dis­

crepancy between the nominal rate Xi2 and the actual AT rate Xi2 for each AT is 

equal to 2^
x • This implies that the upper bound on said discrepancy is inversely 

proportional to the control parameter a. 

5.4 Controller Design in Presence of Time-Delay 

It is now desired to investigate the impact of transmission delay on stability, and 

revisit the controller design proposed in the preceding section accordingly. Let the 
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K 

xm(0 
— • < 

km(t) axm{t) kN2(t) axN2(t) 

Figure 5.5: IS-856 uplink rate controller block diagram with the control low (5.40). 

time-delay in the forward path be denoted by r , as shown in Fig. 5.5. In other 

words, AN transmits the signal U(t) to ATs, and the ATs receive it after some 

delay. In terms of control operation, the input to the adaptive controller in this case 

is U(t — T). The state space representation of the system with time delay is given 

by 

-a 0 

ku(t) -a 

and 

±11 (t) 

iu(t) 

XNi{t) 

xm(t) 

+ 

0 0 • 

0 0 • 

axn(t) + kn(t)U(t-T) 

axn{t) 

axN\{t) + k,N\{t)U{t - T) 

axN2{t) 

0 

0 

—a 

kN2{t) 

0 

0 

0 

—a 

xn(t) 

xu(t) 

xNX(t) 

XN2{t) 

(5.40) 

xi2{t) = U[t - T) 

Similar to the preceding section, the objective here is to ensure that Xn(t) 

and xi2(t) are regulated to a satisfactorily small neighborhood of the ideal nominal 
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values 0 and xi2(t), respectively, where xi2(t) = u(t). It is to be noted that the 

controller cannot generate xi2(t) because the signal U(t) is not available to ATs. 

Instead, the controller will be using U(t — T) in order to generate the signal x»2, i.e. 

xi2 = U(t — T) . By defining 

yn(t) = xn(t) -xn{t) (5.41a) 

Vi2{t) = xi2(t) - xi2(t) (5.41b) 

the state space representation (5.40) in the new coordination can be rewritten as 

follows 

Y(t) = A{t)Y{t) + B(t) (5.42) 

where 

B(t) = 

kn(t)U(t-r) 

a{xu{t)-Xn(t))-U{t) 

(5.43) 

km(t)U(t-r) 

a{xN2(t) - xN2{t)) - U{t) 

Using (5.41), the differential equations governing the adaptive gains can be written 

analogously to (5.31) to obtain 

kzl{t) = -akzl(t) - U{t - r)yzl{t) (5.44a) 

(5.44b) ki2{t) = -aki2(t) - yii{t)(yi2(t) + xi2{t) - xi2(t)) 

for a l i i G {1,...,N}. 

The following theorem provides a sufficient condition for the stability of the 

system (5.42) in terms of the control parameter a. 

Theorem 3. The state of the system (5.42) and the time-varying coefficients (5.44) 

are globally ultimately stable in the sense of Lyapunov if a> r. 
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Note that 

\Xi2 ~ Xi2\ — 

/•to rto 
/ U(t-r)- U(t) 

Jo Jo 
< 2T 

(5.45) 

Proof: Choose the same Lyapunov function as (5.8). Differentiating (5.8) 

along the state trajectory of the system (5.42) yields 

V(t) = - ay2
n{t) + ku(t)U(t - T)yu(t) + k12{t)yn{t)y12{t) 

- ay2
2{t) + ayi2(t){xu - x12) - U(t)yn(t) • • • 

- ay2
m{t) + km{t)U(t - T)ym(t) 

+ kN2{t)yNl(t)yN2{t) - ay2
N2(t) + ayN2(t)(xN2 - xN2) 

N N 

- U{t)yN2(t) + Y,kn(t)kn(t) + J2M*)M*) 
i= l i = l 

Now, substituting (5.44) *n (5-45), one will arrive at 

V(t) = - ay2
n(t) - ay2

u(t) - ak2
n{t) - ak2

2(t) 

+ ayn(t)(xi2 - x12) + k12(t)yn(t)(x12 - x12) 

~ U(t)yu(t) ay2
m(t) - ay2

N2{t) - ak2
N1(t) 

- ak2
N2(t) + ayN2(t)(xN2 - xN2) 

+ km(t)yNi(t)(xN2 - xN2) - U{t)yN2(t) 

(5.46) 

for all to > 0. Therefore, the derivative of the Lyapunov function in (5.46) can be 
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rewritten as follows 

V(t) < - ay2
n(t) - ay2

12(t) - ak2
u(t) - ak\2{t) + 2a\y12(t)\T 

+ \ku{t)\\yxl{t)\2T - U(t)yu(t) •••- ay2
m{t) 

- ay2
N2{t) - ak2

m(t) - ak2
N2(t) + 2a|yjv2(*)|7-

+ '2\kN2{t)\\ym{t)\T-U(t)yN2(t) 

= - < ( 0 - ( > / 5 | y i a ( * ) | - 2 a r
2 ^ ( t ) ) a 

- f ^ i y i l ( Q i - ^ a i V + ^ - ^ 2 (5-47) 

-ki2{t)\a- — \+---

-ak2
m{t) - [ y/a\yN2(t)\ 

2ar - U(t) 2 

( KU (+\\ \kN2Jt)\T\ 
\Va\yN\{t)\ -T=— I + 

2 y ^ 

kN2(t)\rY , {2aT-U{t)f 

4a 

- k2
N2(t) (a- — 

r2 

a 

Since a > r , it can be concluded from Lyapunov theorem [16], [18] that the system is 

stable and all state variables and control parameters remain bounded. This completes 

the proofM 

The following corollary gives an upper bound for each state variable and for 

the overall performance of the system. 

Corollary 2. The maximum bound on each ^ ( i ) in steady state is given by 

\v«(t)\<&?£V(l + VN) (5.48) 

In addition, the bound on the sum of state variables in steady state is 

A N 
V > 2 ( * ) | < 2 W V + - (5.49) 

Proof: The proof is similar to the one given for Corollary 1, and is ommitted 

due to space restrictions. 
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Remark 7. Considering the stability condition a > r in Theorem 2, in steady state, 

the maximum bounds on the state variables and the overall performance of the system 

can be obtained as follows 

max \yi2(t)\ = (T + ±) ( l + VN) (5.50) 

N N 
max'y\yi2(t)\ = 2TN + - (5.51) 

5.5 Stability Analysis for Varying Number of Users 

Assume now that the number of active ATs in the network is subject to change. 

Denote this number with n = N(t) < N, where TV is a known natural number, and 

let changes in N(t) occur in the time sequence {ti,t2,t3, •••}, where U < ti+u \/i € N. 

This implies that the number of active ATs in t^ and tjj" (k £ N), are different. 

To maintain the balance in output y(t), the z-th AT adjusts the parameter Xi2 

continuously according to the number of active ATs available in the sector, denoted 

by N(t), and the reference signal Zr. To model changes in the number of users, 

(5.42) will be reformulated as an impulsive switched system [16], in such a way that 

any new activation or deactivation is translated to the jump from one subsystem to 

another. One can write 

Y(t) = A (t) Y(t) + B(t), t^tk,\/ken 
(5.52) 

Y(t) = f(Y(t-),N(t)), t = tk,Vk£N 

(note that the state vector Y(t) is right-continuous). Here /(•) represents the jump 

in Y(t) as a function of Y{t~) and N(t). For example, when a new activation or 
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deactivation occurs in the i-th AT, the function /(•) is expressed as 

f(Y(r),N(t)) = Y(t-) + 

Xi2aid ~ Xi% old " ' " n e w 

(5.53) 

0 

In the above representation, for the case of activation xi2M = 0 and x,2new is set by 

the AN. For the case of deactivation, on the other hand, £i2new is equal to zero and 

fi2new is the last value calculated from (5.26) immediately before deactivation. 

The objective now is to find a time interval for ATs, within which the network 

output is guaranteed to settle in a reasonably close neighborhood of the equilibrium 

point, when certain number of switches (instants of activation and deactivation of 

users) occur. To measure the performance, a strictly positive scalar Vd is chosen, and 

it is desired that the Lyapunov function becomes smaller than Vd after S switches 

(S is an arbitrary natural number), and remains less than Vd as time increases. It 

is to be noted that the maximum error in the system output is directly dependent 

on the value of Vd. 

To proceed further, the following theorem is introduced. 

Theorem 4. Denote the maximum value of x~i2 with A, and let a strictly positive 

value Vd and a natural number S be given. Then, the maximum time it takes for the 

Lyapunov function to reduce to Vd after the S-th change in the number of activations 

and deactivations, does not exceed a finite value T§ given below 

Ts = 
1 5-1 0 5 -

2{a-T-\) 
In 

2s max{Vfo), Vd} + E t ' o 2S~'A 
Vd 

(5.54) 

Proof: If the initial value of the Lyapunov function V(£o) is greater than the 

desired upper-bound Vd, then the maximum jump in the Lyapunov function (5.8) at 
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the first switching instant t\ can be calculated as 

V(t+) < 2V{t{) + 2A2 

which after S switches leads to the following inequality 

5-1 

V(4) < 2sV(t^) + J2 25"'A2 

i=0 

(5.55) 

(5.56) 

The derivative of the Lyapunov function in (5.47) can be shown to satisfy the fol­

lowing inequality 

N N 

V{t) <- (a-r - -)J2vUt) - (a-r - -)J2vlH) 
2 y ^ * l I W v 2' 

(a-r-hf2kl(t)-(a-r-bj2^2(t) 
N 

(5.57) 

t = i i-l 

+ N 
(1 + 2ar)2 

Let the time it takes for the Lyapunov function to decay down to Vd following the 

S-th switch be denoted by Ts- Using (5.57), one can conclude that the inequality 

given below holds 

e-2(a-T-\)TsV{t+} < yd (g gg) 

and subsequently, the time Ts defined in the theorem (5.54) is given by 

/ 5 - i \ 

Ts = 
1 

S 2 ( a - r - i ) 

which can be simplified as 

In 2sV{ti) + J2 2s-1 A2 - ln(Vd) 
i=0 

(5.59) 

Ts = 
1 

-In 2s V(t0) + Ef=o 25"lA 5-1 o 5 - i A 2 ' 
(5.60) 

2 ( a - r - i ) \ Vd J 

On the other hand, a conservative estimate for the Lyapunov function for the 

case when Vd > V(to) would be Vd, after S switches. Therefore, one arrives at the 

following equality instead of (5.60) at in this case 

Ts = 
1 

2 ( a - r - i ) 
In ' 2 ^ + Eto1 25-*A 

Vd 

(5.61) 
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This completes the proof. • 

Remark 8. It follows immediately from Theorem 3 (by substituting S = 1 in (5.54)) 

that if after any changes in the number of active users, no new activation or deac­

tivation occurs in the network for a time interval given by 

then the Lyapunov function decays down to the prescribed value Vd, and stays smaller 

than that as time increases (it is to be noted that this is only a sufficient condition for 

the desirable decrease in the size of the Lyapunov function, which is closely related 

to the output performance). 

5.6 Equilibrium Point Adjustment: Long-Term 

Fairness Study 

Consider a long-term fairness strategy, under which subscription fees vary by the 

assigned rates. In other words, the customers can receive a higher data rate within 

the allowable range if they choose to pay a higher access fee, accordingly. It is to be 

noted, however, that just like the uniform rate-assignment strategy, in the fairness 

strategy also the overall interference of the network is to be regulated around Zr. 

To formulate fairness in the rate assignment, one can use an appropriately 

weighted function of RAB (instead of a simple integral implied by (5.26)) in the reg­

ulation problem. For example, by employing different weighting and bias coefficients 

for different users, one can introduce the following function: 

xa(t) = Ci f U(t')dt' + bi (5.63) 
Jo 

where Q and 6, are positive constants with known upper bounds Cj < ip and 6j < /?, 

for alH € N (the constants yj and (3 depend on the number of users and the allowable 
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deviation between different users' assigned rates). The minimum guaranteed rates 

for ATs can be set through the parameter 6, for each AT, and the parameter Cj can 

then be adjusted in accordance with the subscription contracts of different users. 

It can be shown that 

/•to /•to 

\xi2 - xi2\ = \tp U{t -r)dt -i> U(t)dt\<2Tijj 
Jo Jo 

(5.64) 

Now, for the case of fixed number of users, using an approach similar to the one 

in Theorem 3 and employing the same Lyapunov function as in (5.8), it can be 

concluded that the system is globally ultimately stable in the sence of Lyapunov if 

a > TI/J 

i= l i = l ^ V / 

-£*£(*) («--fj + £ - 4a 

Furthermore, the maximum bound on each y»2(0 in steady state is given 

\Vi2(t)\ < Ya (l + ^ ) (2aT + !) (5-66) 

The result in (5.65) is derived for the case of fixed number of users. In order to 

show the stability of the network for the case when the number of users is subject to 

change and to find the sufficient condition for stability (in terms of the time interval 

between the consecutive changes in the number of users), one can take an approach 

similar to the one in Theorem 4. To proceed further, a new bound can be obtained 

on the derivative of Lyapunov function as 

N N 

V(t) < - (a - tfr - - ) £ > ? ! ( t ) - (a - Vr - - ) £ y?2(t) 
i=\ i = l 

-{a-i,r-l-)j^kl{t)-{a-^r-\)Y^kUt) ( 5 ' 6 7 ) 

i = l i = l 

(0 + 2aV>r)2 

2 
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Therefore, the maximum time it takes for the Lyapunov function to reduce to 

Vd after the 5-th change in the number of activations and deactivations, does not 

exceed a finite value Ts given below 

l s
 2 ( a - t f T - i ) l n ^ Vd 

Remark 9. The results obtained show that choosing a large value for the control 

parameter a would be advantageous in terms of the maximum bound on the output (as 

can be seen from (5.35), (5.36), (5.48) and (5.49)), in terms of the minimum required 

time for consecutive activation and deactivations (as can be seen from (5.62)), and 

also in terms of convergence time (as can be seen from (5.12)). However, a large a 

can have implications in terms of the implementation of the system in practice. A 

large a would increase the control bandwidth, which in turn increases its sensitivity 

to noise. Furthermore, a large a can cause saturation due to the increase in the 

magnitude of some of the signals in the loop. This introduces a trade-off in the 

choice of the coefficient a in the control law. 

5.7 Simulation Results 

In this section, a simulation scenario is considered where multiple ATs are available 

in a single cell. The reference Zr is set to 171.23, which corresponds to the system 

capacity of 600 Kbps [1]. The simulation is repeated for two different values of the 

parameter a to demonstrate the effect of this parameter on the system response. Let 

the initial number of the users in the cell be N(0) = 20, and note that this number 

changes at different points in time due to the new activations and deactivations. As a 

result, active ATs adjust their control parameters continuously (using the proposed 

adaptive control scheme). In these simulations, Vd is set to 1, which results in 

T\ = 500 msec for a = 10 and T\ = 50 msec for a = 100, that are realistic values in 

practice. Furthermore, the delay in the network structure is assumed to be constant 
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Table 5.1: Performance comparison for different methods and different values of the 
parameter a. 

First-order Approximation; a=10 
First-order Approximation; a=100 
Second-order Approximation; a=10 

Second-order Approximation; a=100 
Dynamic probabilistic Allocation; a=10 

Dynamic probabilistic Allocation; a=100 

Performance Index x 104 

13.298 
13.274 
4.373 
4.196 
1.085 
0.912 

and equal to 13.36 msec, which is equivalent to 8 time slots. In addition, let the 

instants (in seconds) at which the number of active users changes be 10, 15, 20, 25, 

40, 50, 65, 80, 85, 90, 95, 100. It is to be noted that in all simulations the exact 

mapping F(-) is used to find the network output. 

In Fig. 5.6(a), the network output y(t) with first-order approximation (5.15) 

for the mapping function is depicted for a = 10 along with its moving average. 

In Fig. 5.6(b), analogous results are shown for a = 100. The number of active 

users in the network (which is considered in all simulations) is drawn versus time 

in Fig. 5.6(c). Note that the smallest time gap between two consecutive changes in 

the number of users in this example is 5 sec, which is greater than T\ = 500 msec 

introduced in Remark 7. Thus, it is guaranteed that the desired performance (in 

terms of the final magnitude of the Lyapunov function) will be achieved. However, 

since the time limit obtained is only a sufficient condition, the network may perform 

desirably for a more frequent change of active users as well. The results obtained by 

using second-order approximation for the mapping function are shown analogously 

in Fig. 5.7. In Fig. 5.8, the same scenario is considered for the case when the 

number of users is unknown to the ATs, and the probabilistic rate selection method 

is adopted. For each one of the scenarios discussed above, the performance index 

/ 0 e2(t)dt is computed and the results are provided in Table 1. 
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Figure 5.6: The network output y(t) resulted from using first-order approximation 
(a) a = 10; (b) a = 100. (c) The number of available ATs considered in the 
simulations at different times. 
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Figure 5.7: The network output y(t) resulted from using second-order approximation 
(a) a = 10; (b) a = 100. (c) The number of available ATs considered in the 
simulations at different times. 
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In all Figs. 5.6-5.8, the network output y(t) is regulated around the reference 

signal Zr. By Comparing the instantaneous and average outputs of Fig. 5.6 with 

those of Figs. 5.7, 5.8, and from the performance indices provided in Table 5.1, 

it can be deduced that the network output is better regulated when the dynamic 

probability rate allocation method is utilized, and a larger value for the control 

parameter a is chosen. 

A simulation scenario is also considered, in which the parameters of two active 

ATs are set to 

bx = b2 = 30 
(5.69) 

c\ — c2 = 5 

while the control parameters of all other ATs are given by 

(5.70) 
c, =100 

for i = 3 ,4 , . . . , N. In this case, the network output for an arbitrary always-active 

AT is depicted in Fig. 5.9 (a) while the network output for the first and second 

ATs is depicted in Fig. 5.9 (b). The number of active users in the network (which 

is simliar to the previous simulations) is drawn versus time in Fig. 5.9 (c). From 

this figure, one can compare the effect of network load as well as the activation 

and deactivation of users on the output for these two particular ATs. The first and 

second ATs which have higher subscription fees (which is formulated by a large ft* 

and small c») have higher transmission rates compared to other users (with a small 

bi and large Cj). Moreover, the sensitivity of these two users to the network load is 

less than that of the other users, as it can be seen at the instants of change in the 

number of active users, while the outputs of other ATs highly depend on these time 

instants. 
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Figure 5.9: The output j^(t) resulted from using dynamic probability rate allocation 
method; (a) the ATs with the control parameters given by (5.70); (b) the ATs with 
the control parameters given by (5.69). (c) The number of available ATs considered 
in the simulations at different times. 
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Chapter 6 

Conclusions and Future Work 

In this thesis, the problem of rate assignment in wireless communication networks 

is investigated in the control theoretic framework. The IS-856 uplink is modeled for 

one user and also for the entire network. Effective control methods such as Lyapunov 

analysis and describing function are then employed to tackle important problems 

concerning rate assignment in the network. 

The control signal transmitted from the base station to the users is binary, 

which is formulated as an on-off nonlinear element in the context of control. A simple 

delay is considered as the model of each user, and a first order approximation is 

made for the mapping of the feasible rate set to the feasible T2P set; the describing 

function technique is used subsequently to analyze any possible oscillation in the 

output of the system in the framework of limit cycles. It is shown that using a 

two-bit control signal (instead of one-bit) to quantize the error can significantly 

improve the performance of the system output. This, however, introduces a trade-off 

between allocating as many bits as possible to the transmitted data, and improving 

the system performance. 

As a first step in control design, a model is developed for IS-856 uplink. Dif­

ferent approximations are introduced for the mapping of the feasible rate set in this 
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model. An adaptive control scheme is then designed, which uses the current state 

of the network to adjust the control parameters accordingly. It is shown that using 

a dynamic rate selection in the mapping of feasible rate set can enhance the overall 

control performance in the network. 

There are certain issues in a practical environment which need to be incor­

porated in the network model for the control design. For example, the number of 

active users in the network changes by time. Furthermore, the control signal in 

the forward path is subject to delay. However, in the design procedure, it is first 

assumed that the number of users in the network is fixed and that there is no delay 

in the control loop. The stability of the resulting closed-loop network is analyzed 

thoroughly using an effective control tool, namely Lyapunov technique. The results 

obtained are then extended to the case of nonzero delay, and a sufficient condition 

for stability is obtained in terms of the magnitude of delay. In addition, the varying 

number of active users in the network is formulated as a switched system. A suf­

ficient condition is obtained subsequently for the stability of the network in terms 

of the speed of activation/deactivation of the users. More precisely, a lower-bound 

on the time-interval between consecutive changes in the number of active users is 

obtained to guarantee the stability of the network. Simulations show that the re­

sultant lower-bound is not too conservative; in other words, the sufficient condition 

obtained is close to necessity in a practical setting. A novel technique is also in­

troduced to attain an upper-bound on the magnitude of the regulation error in the 

network. 

The proposed adaptive controller provides an efficient rate assignment mecha­

nism for the users in the wireless network. However, it is often desirable to develop 

a fairness strategy with a prescribed non-uniform rate assignment feature. In order 

to take fairness in rate assignment into account, a weighted function of RAB is con­

sidered in the regulation problem to prioritize users according to their subscription 
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fees. Using this formulation, an approach similar to the one used in the previous 

case (uniform rate assignment) can be taken to solve the fairness problem. 

While the techniques provided in this thesis prove effective in analysis of rate 

assignment and control design for wireless networks, certain issues can be further 

investigated as the continuation of the present work. First of all, a more precise 

model can be used for the network, by considering channel fading and mobility, 

noise, variation of network parameters, etc. into account. One can also consider 

the undesirable effect of imperfect power control in the network. The interferences 

caused by those users that are not in soft hand-off with the base station can be 

incorporated in the model for a better accuracy, as another direction for future 

research. Finally, the adaptive controller designed in this thesis consisted of a fixed 

first-order transfer function (in addition to the state-dependent parameters). It 

would be interesting to consider more complex control laws instead of this simple 

first-order unit to achieve a higher performance. 
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