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Abstract 

An antioxidant metabolon at the red blood cell membrane 

Bing Li 

Red blood cells (RBCs) transport oxygen and carbon dioxide as their main 

function and repeatedly circulate through the lung and capillaries during their 120 day 

life spans. RBCs concentrate large amounts of oxygen and are exposed continuously to 

intracellular reactive oxygen species (ROS) derived from autoxidation of oxyhemoglobin 

(oxyHb). 

Limiting the potential damage caused by these ROS is important in the RBC. 

Therefore, the antioxidant enzymes, CuZn-superoxide dismutase (CuZnSOD), catalase, 

glutathione peroxidase (GPx), and its substrate glutathione (GSH) are found in red blood 

cells. The localization of these antioxidants under physiological and oxidative stress 

conditions was examined. Our results showed that most CuZnSOD and catalase were 

concentrated at the RBC membrane and less in the cytosol, while GPx localized at the 

membrane under physiological conditions. After prolonged exposure of RBCs to air (1 

h), CuZnSOD and catalase migrated to the membrane and they both associated with the 

cytoplamic domain of band 3 (CDB3). No association at the membrane of the three 

proteins was observed when RBCs were deaerated. Small amount of catalase and GPx 

localized to the membrane while CuZnSOD and GSH remained evenly distributed in the 

cytosol under two types (H2O2 and O2") of ROS stress. In summary, CuZnSOD and 

catalase form a complex with CDB3 at the membrane, and the association of these 

proteins is mediated by the oxygenation state of the RBC. It is speculated that GPx 
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cooperates with catalase to protect the whole RBC (membrane and cytoplasm) from ROS 

damage. 
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Chapter 1: Introduction 

1.1 Environment and function of RBCs 

Blood is critical for nutrient and oxygen delivery to and waste clearance from 

tissue. Blood is composed of cells and a liquid (plasma). More than 99% (by number) of 

blood cells are erythrocytes or red blood cells (RBCs). The major function of RBCs is to 

carry O2 from the lungs to tissues, and CO2 from tissues to the lungs. RBCs contain a 

large amount of hemoglobin (Hb) which reversibly binds O2. The red color of blood 

comes from oxygenated Hb in RBCs. 

RBCs are small bioconcave discs thicker at the edges than in the middle (Figure 

1.1). Their high surface-to-volume ratio ensures that O2 and CC^can diffuse rapidly to 

and from the interior of the cell. In order to travel through microcapillaries (5-10 urn in 

diameter), RBCs are flexible and can change their shape. 

Figure 1.1. A red blood cell. The RBC is < 2 

|xm thick and has a diameter of ~7 (im, and a 

biconcave disk shape. Adapted from 

http://services.epnet.com/GetImage.aspx/getIma 

ge.aspx?ImageIID=7297 

< > 

7 |xm 

In humans, RBCs are produced in the bone marrow. With differentiation, they 

ultimately lose their nuclei and organelles to become mature RBCs that leave the bone 

marrow and enter the blood. Because RBCs have no nuclei and organelles, they can not 

divide nor maintain their normal structure for very long. The average life span of a RBC 

is 120 days (/). 

2 nm 
A 

v 
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RBCs are suspended in the plasma which constitutes -55% of whole blood and 

acts as a buffer to maintain human arterial blood pH at 7.35-7.45. The plasma is 

essentially an aqueous solution containing -92% water, 8% plasma proteins, and trace 

amounts of other materials. 

1.2 Oxidative stress 

Oxygen plays both deleterious and beneficial roles in living organisms. Its 

poisonous property is attributed to its partially reduced forms, which are collectively 

called reactive oxygen species (ROS) (2). ROS include oxygen-centered radicals (3), 

such as the superoxide anion ( 0 2 ) , the hydroxyl radical (HO) and nitric oxide (NO-), 

but also non-radical species, hydrogen peroxide (H202). 

ROS can be produced from both endogenous and exogenous sources. Endogenous 

sources include mitochondria, cytochrome P450 metabolism, peroxisomes, and 

inflammatory cell activation (4). Exogenous sources include environmental agents such 

as non-genotoxic carcinogens, which can directly generate or indirectly induce ROS in 

cells. ROS are also observed following exposure to chlorinated compounds, metal ions, 

radiation, and barbiturates (4). 

Since ROS are products of normal cellular metabolism, living organisms have not 

only adapted to coexistence with ROS but have developed mechanisms for the 

advantageous use of ROS in various physiological functions. The beneficial effects of 

ROS occur at low and moderate concentrations. ROS play a physiological role in the 

intracellular killing of bacteria by neutrophil granulocytes and in cell signalling. A further 

beneficial example of ROS function is the induction of the mitogenic response (5). 
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ROS are highly reactive which explains their participation in unwanted side 

reactions resulting in cell damage. Disturbance of the ROS balance can damage all cell 

components, including DNA, lipids and proteins, and could also lead to many human 

pathologies. For example, the hydroxyl radical could react with the DNA double-helix at 

both purine and pyrimidine bases and at the deoxyribose backbone (6). Permanent 

modification of the genetic material as a result of oxidative damage is the cause of 

mutagenesis, carcinogenesis, and aging. ROS can attack not only DNA, but also lipids, 

in particular the polyunsaturated fatty acid residues of phospholipids (4). The side chains 

of amino acid residues of proteins, in particular cysteine and methionine, are also 

susceptible to oxidation by the action of ROS (7). Oxidation of cysteine residues may 

lead to the formation of a reversible disulfide bond between two thiol groups. The 

harmful effects of ROS causing potential biological damage are collectively termed 

oxidative stress. Oxidative stress results from ROS overproduction or from the 

weakening of the antioxidant defense system. In humans, oxidative stress is involved in 

many pathological conditions, including cardiovascular disease, cancer, neurological 

disorders, diabetes, ischemia, and aging (5). 

1.3 Effects of oxidative stress on RBCs 

In most cells, the major source of ROS is the mitochondrion (S). In the RBC, the 

major source of ROS is the oxygen carrier protein hemoglobin (Hb), which has two 

forms (oxyHb and deoxyHb). The mature RBC continuously produces ROS due to its 

physiologic role of transporting oxygen and its abundant heme iron content. OxyHb 

undergoes slow autoxidation to produce superoxide and metHb, which can not transport 

oxygen. This results in loss of the most important task of RBCs (9). During autoxidation 
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an electron is lost from the heme Fe" to give Fe"1. This superoxide, either generated 

spontaneously or due to the effect of an exogenous source such as certain drugs (10), is 

capable of attacking the RBC membrane directly and causing structural alterations in 

lipids and proteins (77). Furthermore, dismutation of superoxide readily generates a 

second ROS, F^C^Eq 1.1) (70), which adds to the extracellular flux of H2O2 that enters 

the RBC (9). 

02" + 0 2
- + 2H+ > H2O2 + 02 Equation 1.1 

Human RBCs undergo various modifications including formation of oxidized 

lipids, crosslinking of membrane proteins to membrane lipids, altering protein function 

by modifying sulfhydryl groups, and denaturing Hb when exposed to oxidative stress. 

(9). H2O2 can easily damage polyunsaturated fatty acids within the membrane (77) 

leading to altered phospholipid fluidity, loss of membrane integrity and loss of cellular 

homeostasis, which may cause cell death (72). Malondialdehyde (MDA) (Fig. 1.2), a 

highly reactive bifunctional molecule, is an end product of membrane lipid peroxidation 

(9) and has been shown to crosslink RBC phospholipids and proteins. This may result in 

the impairment of membrane-related functions that could ultimately diminish survival. 

MDA accumulation can affect the anion transport of band 3 (AE1) as well as the function 

of its associated enzymes, such as glyceraldehyde-3-phosphate dehydrogenase and 

phosphofructokinase (73). Band 3 is an important structural component of the RBC 

membrane with molecular weight of -93 kDa. Band 3 is an integral, assymetrically 

disposed, transmembrane glycoprotein. It consists of transmembrane and cytoplasmic 

domains. Its transmembrane segment is 55 kDa and has been identified with the anion 

transport property (transports CI - and HCO3). The 41 kDa cytoplasmic domain of band 
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3 (CDB3) is also its amino terminus and specifically binds RBC cytoskeleton proteins, 

ankyrin (band 2.1) and band 4.2, and at least four different cytoplasmic proteins (14). 

Figure 1.2. Structure of MDA 

Among the membrane proteins that are possible targets for oxidants, the calcium 

ATPase may be of crucial importance for the survival of RBCs. Ca-ATPase contains one 

or more reactive sulfhydryl groups that are susceptible to oxidation with resultant loss of 

enzyme activity. Because this enzyme is critical in maintaining the very steep gradient 

between extracellular and intracellular calcium, loss of activity is associated with 

decreased RBC deformability and premature destruction (15). 

Like RBC membrane proteins, cytosolic proteins, such as Hb, are also susceptible 

to peroxidation. OxyHb oxidative modifications as a result of H2O2 exposure have been 

proposed to act as selective signals for proteolysis in RBCs (16). In addition to the 

modification of Hb by H2O2, peroxidation may result in Hb crossl inking to membrane 

proteins, such as spectrin and band 3, and also the aggregation of band 3 (17, 18). Synder 

et al. demonstrated that H2O2 induces a complex formation between spectrin and Hb, as 

well as alteration of phospholipid organization, cell shape, membrane deformability, and 

cell surface characteristics (19). The crosslinking of spectrin and Hb and the aggregation 

of band 3 can trigger the phagocytosis of altered RBCs (20, 21). The formation of 

crosslinked spectrin and Hb results in the RBC membrane becoming rigid, less 

deformable and less adaptable (19, 22). Decreased membrane deformability, which is one 

of the factors that influences blood flow/shear rate, makes the blood more viscous and 

o o 
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results in vascular abnormalities such as thrombotic events, atherosclerosis, and coronary 

artery disease (CAD). 

1.4 Importance of antioxidant function and antioxidant defense 

systems in RBCs 

During its lifetime, a RBC circulates through the body about 75,000 times (23), 

and is loaded with Cte on each cycle As a consequence of their physiological role, RBCs 

are exposed to continuous oxidative stress. In addition, cells are exposed to high shear 

rates in laminar and turbulent flow, and must pass through narrow capillaries. 

Since the RBC concentration of oxyHb is high (5 mM), even a low rate of 

autoxidation can produce substantial levels of O2-. Superoxide crosses membranes only 

via transmembrane anion channels such as band 3, but H202, its dismutation product (Eq 

1.1) can cross the cell membrane almost as readily as water (24). H2O2 is not especially 

toxic to macromolecules within cells, but it can pass through membranes and this feature 

is potentially important because the extracellular environment possesses few antioxidant 

defense mechanisms (24). Thus, not only does oxidative stress damage the RBC itself, 

but the exit of large quantities of ROS from the RBC could damage other components of 

the circulation (25). To fulfill their physiological requirements, the cell membrane and 

cytosol must remain in an active state, despite the fact that the human RBC demonstrates 

limited resynthesis processes (26). Furthermore, the mobility of the RBC makes it an 

ideal oxidant scavenger throughout the circulation. 

Aerobic organisms need a continuous flow of oxygen to their tissues, while 

simultaneously protecting themselves from the inherent toxicity of 02 . Oxygen-carrying 

proteins provide the required O2, and oxidant defense systems protect against its toxicity 
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(27). The antioxidant system in human RBCs consists of non-enzymatic and enzymatic 

pathways. 

Endogenous non-enzymatic low-mass antioxidants are divided into lipophilic 

(vitamin E, carotenoids, ubiquinone, melatonin, etc.) and hydrophilic (vitamin C, 

glutathione, uric acid, etc.) compounds. Three vitamins, A, C, and E, protect RBCs 

against oxidative damage. Vitamin C acts in the aqueous phase, and is chemically known 

as ascorbic acid. As a reducing and antioxidant agent, it directly reacts with O2 and OH-, 

and it also recycles vitamin E (12, 28). Vitamin E is chemically referred to as D-a-

tocopherol and it acts in the lipid phase as a chain-breaking antioxidant (9). Vitamin E is 

the most widely distributed antioxidant in nature. When vitamin E donates an electron to 

a lipid peroxyl radical, its radical form is stabilized by resonance (9). Vitamin A, a potent 

radical scavenger, is also a lipophylic antioxidant (12). Carotenoids can exert antioxidant 

effects as the precursors of vitamin A (29). In all cell types, GSH is the most important 

non-enzymatic regulator of intracellular redox homeostasis (30). It assumes a vital role in 

keeping vitamin E and vitamin C in their reduced states (57). Uric acid is an end product 

of purine metabolism in mammals. Its antioxidant properties were confirmed by its 

protection against oxidative damage (37). 

A group of enzymatic antioxidants is additionally found in cells. In RBCs, the 

best characterized members of this group include catalase, glutathione peroxidase-1 

(GPx-1), metHb reductase, and CuZnSOD. Catalase, GPx-1 and CuZnSOD have long 

been considered to possess central antioxidant functions in RBCs (9). 
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1.5 Copper, zinc-superoxide dismutase (CuZnSOD) 

SOD enzymes were previously considered as metalloproteins with unknown 

function. For example, CuZnSOD was known as erythrocuprein because of its high 

concentration (1.8 uM) in RBCs (32, 33). The SOD function (Eq 1.1) of the protein was 

proposed by McCord and Fridovich in 1969 as a result of various observations on the 

reduction of cytochrome C by the superoxide radical generated from the 

xanthine/xanthine oxidase reaction. (34). The SOD family of enzymes is comprised of 

three major classes depending on the metal cofactor: CuZn (which binds both copper and 

zinc), Fe and Mn (which bind either iron or manganese), and Ni, which binds nickel. The 

best known function of SODs is the protection of cells from ROS, particularly O2-. In 

humans, three forms of SOD are present. SOD1 is located in the cytosol, SOD2 in the 

mitochondrion and SOD3 is extracellular. Both SOD1 and SOD3 contain CuZn, while 

SOD2 has Mn at its active centre. 

1.5.1 Properties of human CuZnSOD (SOD 1) 

Human RBCs contain only CuZnSOD, a homodimer with a molecular weight of 

-32 kDa. The two subunits are held together primarily by hydrophobic interactions and 

each subunit contains one active site. The distance between the two active sites in the 

homodimer is over 30 A. Each monomer consists primarily of an eight-stranded P-barrel 

with two large loops - an 'electrostatic loop' and a 'metal binding' loop. The metal-

binding region is fully contained within each monomer and consists of one Cu- and one 

Zn-binding site. The two metal binding sites share an imidazolate ligand, His63, 

indicating their close proximity. This structure around the metal-binding sites is further 
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stabilized and linked to functionally important portions of the protein by a hydrogen-bond 

network (35). 

The Cu and Zn ions play structural and catalytic roles in CuZnSOD. The Cu is 

bound by His46, 48, 63, and 120 in a distorted tetrahedral geometry. There is a fifth 

ligand, H2O, for Cu11 (36). Cu1 is also bound by His46, 48, and 120 in a distorted trigonal 

planar geometry (37). The Zn ion, bound by His63, 71, 80, and Asp83, is thought to play 

a structural role and act as a positively-charged sink (Fig. 1.3). The positively charged 

active site makes up approximately 11% of the total exposed surface (38). The rest of the 

surface is negatively charged, and the charge gradient contributes to substrate binding by 

electrostatic steering (39). 

The crystal structure of the Cu1 form of the enzyme is only slightly changed from 

that of the Cu" enzyme, except in one aspect: the Cu1 undergoes a 1.3-A shift, moving 

away from the His63 nitrogen to which it is bound in the Cu11 form of the enzyme. 

Besides releasing His63, the Cu1 ion also releases the water ligand upon reduction. This 

causes it to alter its irregular five-coordinate geometry to a trigonal planar three-

coordinate configuration. At the same time, His63 gets protonated and exclusively binds 

to the Zn ion (35, 39) (Fig. 1.4). CuZnSOD is a very stable protein because dimerization 

reduces the surface area of the protein and makes it less solvent accessible (40). When 

fully loaded with metals, the protein melts at 85 - 95°C depending on the buffer (41), and 

is enzymatically active in 8 M urea or 4 M guanidine-HCl (42). 
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Figure 1.3. Structure of human CuZnSOD dimer (pdb 1SPD) (adopted from (39)). The left subunit is 

shown in the stick representation for detail. Copper is colored blue, zinc is colored lavender, and the metal 

bridging His63 is shown in red. The secondary H-bond bridge includes His46 (yellow), Asp 124 (magenta), 

and His71 (yellow). The remaining metal binding histidines are shown in cyan. The right subunit is shown 

as a ribbon cartoon to illustrate the overall architecture of the CuZnSOD subunit. The p-barrel is shown in 

gray, the metal binding loop in green, and the electrostatic loop in blue. 

Figure 1.4. Oxidized and reduced metal-

binding sites of bovine CuZnSOD (adopted 

from (35)). The Cu11 form of the enzyme (top; 

from pdb ICBJ) possesses an intact imidazolate 

bridge between Cu11 and Zn11. Cu11 is five-

coordinate bonded to four histidyl side chains 

and one water molecule. In the Cu1 form of the 

enzyme (bottom; from pdb IQOE) the 

imidazolate bridge is broken between the 

bridging histidine (His63) and the Cu1, which 

becomes three-coordinate, bonded to only three 

histidyl side chains. 
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1.5.2 Superoxide dismutase (SOD) activity of CuZnSOD 

The copper site is where the dismutation of two molecules of superoxide to O2 

and H202 takes place (Eq 1.1). This catalysis is a two-step process, involving copper 

reduction and re-oxidation: One molecule of C>2~ is first oxidized by Cu" to form O2 (Eq 

1.2) and then a second molecule of O2- is reduced by Cu1 to form H202. The enzyme's 

catalytic cycle is described as a ping-pong mechanism (39): 

H202 * ^ ^ * Cu" -^v / ^ ~ O 2 

V jl Equation 1.2 

2H++ O 2 - ^ ^ ^ Cu1 ^ ^ - 0 2 

CuZnSOD is a very efficient catalyst and the activity is nearly independent of pH 

over the range of 5.0 to 9.5 (35). Under nonsaturating conditions, the rate-limiting step in 

the dismutation catalyzed by CuZnSOD is the diffusion of O2 toward the active-site 

cavity. Based on the estimated diffusion rates of 02~ and CuZnSOD, the catalytic rate 

constant of 2x 109 M"1 s"1 corresponds to that of a diffusion-controlled reaction (43). 

1.5.3 Antioxidant role and physiological importance of CuZnSOD 

In biological systems, 02~ reacts with itself (dismutation) or with another radical 

such as NO to form peroxynitrite. Although 02~ spontaneously dismutates to O2 and 

H202 quite rapidly (~105 M"1 s"1 at pH 7), the half-life of 02~ is actually quite long at low 

concentrations (e.g., 14 h at 0.1 nM 02~). SODs are biologically necessary to outcompete 

the damaging reactions of 02~, thus protecting the cell from 02~ toxicity. 
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The CuZnSOD concentration in aerobic cells is normally 10"5 M, which maintains 

the steady-state superoxide concentration at 10"10 M(44, 45). For a given O^ molecule, 

the probability of meeting a molecule of CuZnSOD is much higher than meeting another 

O2- molecule. Taking these concentrations into account, CuZnSOD in the cellular 

environment shortens the lifetime of Oi~ by a factor of 1010 (46). Since superoxide is one 

of the main ROS in the cell, CuZnSOD is believed to play a major role in front-line 

antioxidant defense. 

The physiological importance of SODs is illustrated by the severe pathologies 

evident in mice genetically engineered to lack these enzymes. Mice lacking SOD1 

develop a wide range of pathologies, including hepatocellular carcinoma, an acceleration 

of age-related muscle mass loss, an earlier incidence of cataracts, and a reduced lifespan 

(47, 48). Mutations in gene coding for SOD1 can cause familial amyotrophic lateral 

sclerosis (FALS), a form of motor neuron disease (35). 

1.6 Catalase 

Catalase is found in most organisms that are exposed to oxygen. It catalyzes the 

decomposition of H2O2 to water and oxygen. Catalase was first reported in 1811 by 

Thenard who discovered H2O2 in living tissue and proposed that its breakdown is caused 

by a specific molecule (49). In 1900, Loew named this H202-degrading enzyme 'catalase' 

(50). In 1937, the first crystal of catalase from beef liver was obtained by Sumner and 

Dounce (49), and its molecular weight was determined in 1938 (51). In 1969, the amino 

acid sequence of bovine liver catalase was determined by Schroeder (52), and more than 

300 catalase sequences are now available (53). 
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Catalases can be organized into four main groups (54). The most widespread class 

in nature is composed of the monofunctional, heme-containing enzymes, which are 

subdivided based on subunit size (> 75 kDa or < 60 kDa) (53). The second group is 

composed of the bifunctional, heme-containing catalase-peroxidases. The third class 

includes the nonheme or Mn-containing catalases. Miscellaneous proteins with minor 

catalatic activities are grouped in the fourth class (54). 

1.6.1 Properties of catalase 

Human catalase is a homotetramer of 60-kDa subunits (Fig. 1.5c) and it belongs 

to the first group of monofunctional catalases. Each subunit contains a heme group 

(ferriprotoporphyrin IX) at the active site, which is internally located and approachable 

by a passageway that becomes narrow at the heme (55). Each subunit can be divided into 

four domains (Fig. 1.5a). The first domain, the hydrophobic core of each subunit, is 

generated by an eight-stranded antiparallel P-barrel. The P-barrel loops and nine helices 

(the second and third domains, respectively) cap the hydrophobic core on both sides. The 

N-terminal threading arm is the fourth domain. It connects two subunits by interacting 

with the wrapping loop on another subunit to form a dimer (Fig. 1.5b). The two dimers 

assemble to form the tetramer, which is roughly square with overall dimensions of 100 A 

x 100 A x 70A (Fig. 1.5c) (56). Tetramerization forces the threading arms from the arm-

exchanged dimer to cover the heme active sites in the other dimer (56). Tetramerization 

could be critical for sequestering the active sites. This allows the enzyme to complete the 

reaction cycle rather than allowing generation of hydroxyl radicals from exposed hemes. 

The heme active site is at the bottom of a 25-A channel extending from the 

enzyme's surface. A 3-A-wide hydrophobic constriction, lined by the side chains of 
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Val74, Vail 16, Phel53, Phel54, and Trpl86 (Fig. 1.6), is located directly above the 

active site. It allows only H20, H202 or other small molecules to reach the heme. 

Throughout the catalase structure, H20 fills packing defects between the four domains of 

each subunit, and between subunits within the tetramer. At either end of the hydrophobic 

constriction, well-ordered H20 molecules form hydrogen bonds to the protein, which 

promotes the selection of H202as substrate (56). 

In addition to heme, human catalase has another cofactor, NADPH. This binds in 

a cleft between the helical and the p-barrel domains on the surface of the enzyme. The 

redox-active nicotinamide C4 atom of NADPH is -19 A from the nearest heme iron (Fig. 

1.5a) (56). 

Catalase is a very stable enzyme and is resistant to treatment with ethanol and 

chloroform mixtures (53). When the solution pH falls outside the range of 3.5-11, the 

heme completely dissociates from the active site and catalase completely loses its 

enzymatic activity (57). Catalase exhibits strong absorbance in the Soret region (S405nm = 

3.24 x 105 M"1 cm") (49, 58). RBC catalase possesses one of the highest known 

enzymatic rates with a turnover number of 2.25 x 107 s"1 (59) at its pH optimum of ~7 

(60). Human catalase works at an optimum temperature of 37°C (61), which is 

approximately the temperature of the human body. 
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Figure 1.5. Structure of human 

catalase (adopted from (56)). (a) 

Stereo view of an individual subunit 

with the central P-barrel in yellow, 

surrounding helices in blue, and 

active-site heme in red. The heme is 

surrounded by the P-barrel, a-helix 

and loops with one open face. The 

NADPH in dark green is on the far 

side of the molecule in this view, (b) 

Stereo review of an arm-exchanged 

dimer of the yellow and blue subunit 

and a second purple subunit. (c) 

Stereo view of the catalase tetramer 

with the addition of a second arm-

exchanged dimer of orange and 

green subunits. Formation of the 

tetramer buries the heme active sites 

from solvent. 
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Figure 1.6. Active-site channel of human catalase (adopted from (56)). A 25-A channel leads from the 

enzyme's surface to the heme active site and forms a hydrophobic constriction 2-3-A wide immediately 

above the heme. This is critical for the 'molecular ruler recognition' mechanism for H202 (56). Side chains 

making up the hydrophobic channel and the Tyr358 ligand are displayed in green. The backbone is shown 

in white, water in red, and the heme in dark red. 

1.6.2 Catalysis of H2O2 decomposition 

The 'catalatic' reaction is very simple on paper, 2H2O2 —> 2H2O + O2, with two 

distinct stages in the reaction pathway. The first stage involves oxidation of the heme iron 

using H2O2 to form compound I (Cpd I), an oxyferryl group with a cationic porphyrin 

radical (Eq 1.3). In the second stage, reduction of Cpd I regenerates the resting-state 

enzyme (Enz) by involving a second molecule of H2O2 as an electron donor (Eq 1.4). 

Enz (Por-Fem) + H202 *- Cpd I (Por+'-Fe^O) + H20 Equation 1.3 

Cpd I (Por+'-Fe^O) + H202 - Enz (Por-Fem) + H20 + 02 Equation 1.4 

2H,0, - 2H,0 + O-, S u m of Equations 1.3 and 1.4 
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1.6.3 Antioxidant role and physiological importance of catalases 

As stated above, catalase is present in both mammalian and nonmammalian 

aerobic cells. The major defined role of catalase is the destruction of H2O2 by the 

catalatic reaction (Eq 1.3 and Eq 1.4). In RBCs, catalase functions alongside other 

systems (GPx and metHb reductase) to prevent the accumulation of methemoglobin 

(metHb), either by preventing the oxidation of Hb by H202 (catalase, GPx) or by 

reducing the metHb (metHb reductase) at a comparable rate as it is being formed. The 

amount of metHb generated in RBCs by exposing them to H2O2 has been found to be 

inversely proportional to their catalase content {57), suggesting that catalase is a critical 

enzyme in the defense against oxidative damage and inactivation of Hb in RBCs (56). 

However, the true biological significance of catalase is not easy to assess because 

genetically engineered mice that lack catalase are phenotypically normal (62) and 

humans with low levels of catalase (acatalasia) show few ill effects (63). However, 

catalase has been implicated as an important factor in inflammation, mutagenesis, 

prevention of apoptosis, and in the stimulation of a wide spectrum of tumors. Loss of 

catalase leads to the human genetic disease known as acatalasemia, or Takahara's disease 

(57). 

1.7 GSH and glutathione peroxidase (GPx) 

GPx was discovered in 1957 by Mills as a RBC enzyme that protects Hb from 

oxidative breakdown (64). In 1973, Rotruck (65) in the United States and Flohe (66) in 

Germany independently found that selenium was a component of GPx. GPx is the general 

name of an enzyme family with peroxidase activity. There are several isozymes encoded 

by different genes, which vary in location and substrate specificity. Four distinct GPx 
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isoforms have been identified so far in mammals, each containing one Se in the form of 

selenocysteine (SeCys) per subunit (67, 68). GPx-1 is the most abundant isoform. It is 

found in the cytosol of nearly all mammalian tissues and has also been called cytosolic or 

cellular GPx. A second form of GPx (GPx-2) is an intestinal enzyme, which is also 

located in the cytosol. It has approximately 65% amino acid sequence identity and 60% 

nucleotide identity to GPx-1 (67). Both GPx-1 and GPx-2 have similar substrate 

specificities because they reduce H2O2 or fatty acid hydroperoxides rapidly but not 

phospholipid hydroperoxides (67). GPx-3 is found in the extracellular space. It is 

especially abundant in plasma with distinct properties from GPx-1 (67). Phospholipid 

hydroperoxide GPx (GPx-4) is the forth GPx that has been characterized. GPx-4 has a 

high preference for phospholipid hydroperoxide as a substrate. It is expressed in most 

mammalian cells but at much lower levels than GPx-1. The sequence similarity between 

GPx-1 and GPx-4 is between 30% and 40% (67). There are many differences between 

GPx-4 and the other GPxs, the main one being that GPx-4 is a monomer in contrast to the 

tetrameric structure of the other GPxs. It also has a wider range of substrates than the 

tetrameric GPxs (67). 

Glutathione (GSH) is the most abundant intracellular thiol, reaching high (mM) 

concentrations in most cell types. GSH is involved in antioxidant defense via direct 

interaction with ROS or as a substrate of detoxification enzymes like GPx. Importantly, 

GSH plays an essential role in maintaining a constant redox environment inside the cell 

that is critical for the function of cellular proteins. GSH is a tripeptide of glycine, 

glutamate, and cysteine. Cysteine, a sulfur-containing amino acid, is the "rate-limiting" 

amino acid for the production of GSH (69). 
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GSH has reduced and oxidized forms. Cellular GSH is predominantly present in 

the reduced form (70). Under oxidizing conditions, oxidation of GSH to its disulfide, 

GSSG, results in a decreased GSH-to-GSSG ratio. 

1.7.1 Properties of RBC GPx 

Two GPx forms have been identified in blood: cellular (GPx-1 present in RBCs), 

and extracellular (GPx-3 present in plasma). GPx-1 is a tetramer with four identical 

subunits each with a molecular weight of -23 kDa. Each subunit contains one active-site 

SeCys, in which the cysteine sulfur atom has been replaced by a selenium atom. In 

general, GPx proteins consist of 201 amino acid residues and the SeCys residue is located 

47 residues from the N-terminal end of the protein (71). Bovine RBC GPx-1 has been 

crystallized (72). It consists of four spherical subunits, each with a diameter of 3.8 nm, 

arranged in a square-planar configuration (71). Each subunit contains four a-helices, four 

P-sheets, and connecting loops involved in subunit contact. The active centres of GPx-1 

are readily accessible for the solvent via channels in the crystals. The x-ray structure 

reveals that the catalytically active SeCys is located at the end of an a-helix associated 

with two adjacent parallel P-strands in a PaP structure (Fig. 1.7). This arrangement is 

important for catalysis and substrate binding (72). The Se atoms are no closer than 20 A, 

which strongly suggests that each Se functions independently (71). 

With GSH as an electron donor, the specific activity of GPx-1 is 193.6 nmol/min 

per mg of protein. The Km values for GSH and H2O2 are 3.7 mM and 0.24 mM, 

respectively (73). 
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Figure 1.7. Structure of bovine GPx-1 (dimer). Each subunit consists of 4 a-helixes, 4 p-sheets and 

connection loops, arranged in an almost flat configuration. The active centres of GPx-1 are in flat 

depressions on the molecular surface. The catalytically active SeCys residues are the multicolored sticks 

and each is located at the end of an a-helix associated with two adjacent parallel p strands in a pap (72). 

1.7.2 Catalysis of H202 decomposition 

GPx-1 removes H2O2 by coupling its reduction to H2O with oxidation of reduced 

GSH. GPx-1 also reduces fatty acid hydroperoxides (74). 

H202 + 2GSH • GSSG + 2H20 Equation 1.5 

During the catalytic cycle of GPx, the ionized selenol (Enz-Se-) reacts with H2O2 

to give a selenenic acid (Enz-SeOH), which is trapped by a GSH molecule to form Enz-

Se-SG and H2O. The Enz-Se-SG is reduced back to Enz-Se- by another GSH molecule 

and GSSG is released as a by-product (Scheme 1.6) (6). 
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Enz-Se" + ROOH + H+ • ROH + Enz-SeOH 

Enz-SeOH + GSH • Enz-SeOH-GSH • Enz-Se-SG + H20 

Enz-Se-SG + GSH • Enz-Se-SG-GSH • Enz-SeH-GSSG 

Enz-SeH-GSSG • Enz-Se" + H+ + GSSG Scheme 1.6 

1.7.3 Antioxidant role and physiological importance of GPx 

GPx is another major enzyme that protects against the oxidative stress caused by 

H2O2. The physiological role of this enzyme is difficult to evaluate because both GPx and 

catalase decompose H2O2. Although GPx shares its substrate, H2O2, with catalase, GPx 

alone can react effectively with lipid and other organic hydroperoxides. The 

physiological importance of GPx has been demonstrated by using animals on a selenium-

deficient diet (75). A dramatic decrease of GPx activity has been implicated in causing a 

number of diseases found in selenium-deficient animals (75). More experiments further 

underline that the physiological relevance of GPx is difficult to evaluate. A transgenetic 

mouse model deficient in cellular GPx-1 was generated (75). Mice deficient in this 

enzyme were healthy and fertile and showed no increased sensitivity to hyperoxia. Their 

tissues exhibited neither a retarded rate of extracellular H2O2 consumption nor an 

increased content of protein carbonyl groups or lipid peroxidation compared with those of 

wild-type mice (75). These results suggest that the contribution of GPx-1 to cellular 

antioxidant defense under normal animal development and physiological conditions and 

to pulmonary defense against hyperoxic insult is very limited (75). Thus, the potential 

antioxidant role of this enzyme in protecting cells and animals against the pathogenic 

effect of ROS remains to be defined (75). 
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1.8 Immunofluorescence 

Immunofluorescence requires the labelling of antibodies or antigens with 

fluorescent dyes. The purpose of immunofluorescence is to detect the subcellular 

distribution and relative abundance of a protein of interest. Since antibodies are small and 

can not be visualized directly, a fluorescent dye covalently attached to the antibody is 

used. When the dye is illuminated, it absorbs the light and emits a light of different color 

which is visible to the investigator and which can be photographed (76). 

There are two strategies used for the immunofluorescence detection of antigens in 

cells, the direct method (Fig. 1.8) and the indirect method (Fig. 1.9). The former is a one-

step staining method where a labelled antibody reacts directly with the protein of interest. 

The indirect method involves an unlabeled primary antibody and a labelled secondary 

antibody. The primary antibody reacts with protein of interest, and then the secondary 

antibody is introduced to recognize the primary antibody. Usually immunofluorescence 

uses the indirect method as it is more sensitive due to the researcher's ability to amplify 

the signal. The amplification is accomplished through the reaction of several secondary 

antibody molecules with different antigenic sites on the primary antibody (77). 

Immunofluorescent-labelled cells, tissue sections or cultures are studied using a 

fluorescence or confocal microscope. 
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Figure 1.8. The direct method of immunofluorescent staining. The green triangle is the protein A of 

interest. The fluorescent or staining-tag-conjugated antibody (anti-A) binds directly to protein A. Adopted 

from http://en.wikipedia.org/wiki/Immunohistochemistry. 
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Figure 1.9. The indirect method of immunofluorescent staining. This method uses one antibody (rabbit 

anti-A) against the protein A, and a second, labelled, antibody (goat anti-rabbit) against the first. Adopted 

from http://en.wikipedia.org/wiki/Immunohistochemistry. 

1.9 Confocal microscopy 

Confocal microscopy is an imaging technique that allows the researcher to view 

images more clearly than possible with a conventional light microscope. In a 

conventional light microscope, object-to-image transformation takes place 

simultaneously for all object points. All parts of the specimen are excited at the same 

time and fluorescence is sensed by a photodetector. In conventional fluorescence 
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microscopy, the in-focus image from the object plane of interest is mixed with the out-of-

focus image from planes outside of the focal pane, which reduces image contrast. 

The specimen in a confocal microscope is irradiated in a point-like fashion. The 

laser beam used in confocal microscopy is focused to a spot which illuminates only a 

single point of the object at a time. Furthermore, in a confocal microscope the pinhole 

eliminates out-of-focus information. The pinhole diameter is variable; ideally, it is 

infinitely small, and thus the detector looks at a point. The image quality of confocal 

microscopy is much better than that of images from conventional light microscopy (78, 

79). 

While the light microscope requires cutting through a specific cross-section, the 

confocal microscope allows viewing of 3D images by combining images from different 

cross-sections. There is no need to cut through the cross-section that is about to be 

viewed because the confocal microscope is a depth-discriminating optical system. The 

confocal microscope can image a thin optical slice in a thick specimen, a method known 

as optical sectioning. Under suitable conditions, the thickness of such a segment may be 

less than 500 nm. 

In addition to the possibility of observing a single plane of a thick specimen in 

good contrast, optical sectioning allows a large number of slices from different planes to 

be recorded. As the specimen is moved along the optical axis (Z) in small increments, the 

resulting Z-scan provides information about the 3D structure of the object. Also, the 

spatial rearrangement of living specimens can be recorded by confocal microscopy (79). 

Three types of confocal microscopes are commercially available: confocal laser 

scanning microscopes (LSM), spinning-disk confocal microscopes, and programmable 
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array microscopes (PAM) (80). The LSM yields better image quality than the other two 

(80). 

Detector (PVir) 

Emission filter 

asam expander 

Detection volume 

Figure 1.10. Ray path in a confocal LSM (from (79)). A microscope objective is used to focus a laser 

beam onto the specimen, where it excites fluorescence. The fluorescent radiation is collected by the object 

and efficiently directed onto the detector via a diachronic beam splitter. The interesting wavelength range 

of the fluorescence spectrum is selected by an emission filter, which also acts as a barrier blocking the 

excitation laser line. The pinhole is arranged in front of the detector, on a plane conjugate to the focal plane 

of the objective. Light coming from planes above or below the focal plane is out of focus when it hits the 

pinhole (broken line), so most of it cannot pass the pinhole and therefore it does not contribute to the 

image. 

1.10 Outline and scope of thesis 

This thesis describes antioxidant function in human RBCs using 

immunofluorescence to localize the antioxidant enzymes, CuZnSOD, catalase, GPx, and 

its substrate GSH. RBCs have a strong antioxidant defense system that not only protects 

the cells themselves from oxidative damage, but also RBCs function as a ROS sink to 
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protect other cells and tissues (81). Understanding the properties and specific roles of 

these antioxidant enzymes in RBCs is of critical importance to fundamental cell biology 

as well as biomedicine. 

Chapter 1 introduces the properties of human RBCs, ROS, and the effects of ROS 

on RBCs. Next, basic information is provided about the antioxidant defense in RBCs, 

especially the antioxidant enzymes, followed by a description of the main technique used 

in the project. 

Chapter 2 describes the experimental procedures including the materials and 

methods for preparing, fixing, permeabilizing, and staining RBCs, as well as the confocal 

settings for RBC visualization. The treatment of cells for different studies as well the 

methods used for H202 and 02~ generation are also outlined. 

Chapter 3 summarizes the results, and the functional relevance of antioxidant 

enzymes under different experimental conditions is discussed in Chapter 4. The final 

conclusions and future studies are discussed in Chapter 5. 

All the immunofluorescence images in Chapter 3 are provided in electronic 

format in the DVD submitted with the thesis. Also, additional images and Z-stacks are 

provided in the DVD as listed in the Appendix. 
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Chapter 2: Materials and methods 

2.1 Materials 

Phosphate-buffered saline (PBS) tablets (one tablet was dissolved in 200 mL of 

deionized water to give 137 mM NaCl, 2.7 mM KC1, 8.1 mM K2HP04, 1.5 mM KH2P04 

at pH7.4), Triton X-100, fish skin gelatin, sodium azide, poly-lysine, ABTS, acrolein, 

PMS, NBT, glucose oxidase (GOx), catalase, and CuZnSOD were from Sigma. Glucose 

was from EMD. Glycine was from Bioshop. Aqua-mount was from Lerner Laboratories. 

Formaldehyde was from Pierce (now Thermo Scientific). HRP and NADPH were from 

Boehringer Mannheim (now Roche). EDTA and 30% ammonia solution were from BDH 

Inc. Butan-1-ol was from Fisher Scientific. All the chemicals were analytical grade. 

Rabbit polyclonal anti-human CuZnSOD (SOD-100, affinity purified) was from 

Stressgen, mouse monoclonal anti-human CDB3 (abl 1012, Ascites), and rabbit 

polyclonal anti-human GSH (ab9443, whole antiserum), sheep polyclonal anti-human 

antibodies for Hb (ab35306, IgG fraction), catalase (ab8954, IgG fraction), and 

glutathione peroxidase-1 (GPx-1, ab8850, IgG fraction) were from Abeam. The 

secondary antibodies, Cy2-(711-226-152), Cy3-(711-166-152), and Cy5-(711-176-152) 

conjugated donkey anti-rabbit, FITC-(713-096-147), Cy3-(713-166-147), and Cy5-(713-

176-147) conjugated donkey anti-sheep, and Cy3-(715-166-150) and Cy2-(715-226-150) 

conjugated donkey anti-mouse were from Jackson ImmunoResearch. Alexa 488-

conjugated donkey anti-sheep (A-11015) was from Invitrogen. All the secondary 

antibodies were supplied as affinity purified. 
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2.2 Methods 

2.2.1 Preparation of RBCs 

All procedures involving the collection of human blood samples from healthy 

female volunteers 25-35 years old were approved by Concordia's Human Research 

Ethics Committee. All blood donors provided their informed consult. Blood was drawn 

into heparin-coated blood collection tubes from the antecubital area of the arm and gently 

mixed by reversing the vial several times. The collected blood was maintained at 4°C and 

processed within 2 h. The whole blood was transferred to 2.0-mL Eppendorf tubes and 

centrifuged at lOOOxg for 10 min at room temperature. After removal of the upper layer 

(plasma and buffy coat) by pipette, the RBC pellet was washed three times in glucose-

PBS (G-PBS) (137 mM NaCl, 2.7 mM KC1, 8.1 mM K2HP04, 1.5 mM KH2P04, pH7.4 

containing 5 mM glucose) and resuspended in this buffer at 10% hematocrit (Ht). Cells 

were examined using a light microscope (40x objective) to ensure their viability before 

fixing and staining. 

2.2.2 Fixing and permeabilizing RBCs 

A 50-uL aliquot of cells at 10% Ht in G-PBS was centrifuged at lOOOxg for 5 min 

at room temperature. The RBC pellet was resuspended in 1 mL of 0.5% acrolein in PBS, 

gently mixed for 5 min at room temperature, centrifuged at 650xg for 1 min and the 

supernatant was removed. The RBC pellet was rinsed 3x with rinsing buffer (PBS 

containing 0.1 M glycine), the cells were permeabilized in 1 mL of rinsing buffer plus 

0.1% Triton X-100 for 5 min, and rinsed 3x in rinsing buffer. To ensure complete 

neutralization of unreacted acrolein, the cells were incubated in rinsing buffer at room 
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temperature for 30 min. Acrolein reacts with the free amino group of glycine in the 

rinsing buffer. 

2.2.3 Staining of RBCs 

2.2.3.1 Staining of RBCs for a specific protein 

Fixed, permeabilized RBCs were next processed for immunofluorescence 

microscopy. After incubation in rinsing buffer for 30 min, the RBCs were pelleted by 

centrifugation at 650xg for 1 min. To prevent nonspecific antibody binding, the pellet 

was resuspended (0.5% Ht) and incubated in blocking buffer (PBS containing 0.05 mM 

glycine, 0.2% fish skin gelatin, and 0.05% sodium azide) for a minimum of 60 min. 

Staining of the fixed, permeabilized RBCs (5% Ht) was performed by incubating with the 

primary antibody at 1% dilution in blocking buffer overnight at 4°C with gentle shaking. 

The RBCs were rinsed 3x in rinsing buffer, and incubated with secondary antibodies at 

2% dilution in blocking buffer with gentle shaking at room temperature for 2-3 h. After 

labelling, the RBCs were rinsed 2x in rinsing buffer and lx in PBS, and resuspended in 

PBS. A 5-uL aliquot of labelled RBCs was allowed to attach to a glass slide coated with 

10% polylysine, and mounted using Aqua-Mount. 

2.2.3.2 Double staining 

Double staining is used to reveal the localization of two different proteins in the 

same cell. The two primary antibodies used must be raised in different species. For the 

first antigen, fixed and permeabilized RBCs (Section 2.2.2) were resuspended (0.5% Ht) 

and incubated in blocking buffer (Section 2.2.2) for a minimum of 60 min. The cells were 
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incubated at 5% Ht with the primary antibody at 1 % dilution in blocking buffer overnight 

with gentle shaking at 4°C, rinsed 3x in rinsing buffer, and incubated with secondary 

antibody at 2% dilution in blocking buffer with gentle shaking at room temperature for 2-

3 h. Before staining for the secondary antigen, the RBCs were incubated in blocking 

buffer again for 1 h. The next staining steps were the same as for the first antigen, and 

after double labelling, the RBCs were rinsed 2x in rinsing buffer, lx in PBS, and 

resuspended in PBS. A 5-uL aliquot of labelled RBCs was allowed to attach to a glass 

slide coated with 10% polylysine, and mounted using Aqua-Mount. 

2.2.3.3 Competitive binding of antibodies 

The procedure was the same as that used for double staining, except that the order 

of staining with the two primary antibodies was reversed in two separate vials under the 

same experimental conditions. For example, the details for competitive staining of 

CuZnSOD and CDB3 are outlined in Table 2.1. 

Table 2.1: Competitive staining with anti-CuZnSOD and anti-CDB3 

Experiment 1 (vial 1) 

Fixing and permeabilizing of RBCs 

Staining with rabbit anti-CuZnSOD 

Staining with anti-rabbit Cy2 

Blocking 

Staining with mouse anti-CDB3 

Staining with anti-mouse Cy3 

Cell mounting and protein visualization 

Experiment 2 (vial 2) 

Fixing and permeabilizing of RBCs 

Staining with mouse anti-CDB3 

Staining with anti-mouse Cy3 

Blocking 

Staining with rabbit anti-CuZnSOD 

Staining with anti-rabbit Cy2 

Cell mounting and protein visualization 
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2.2.4 Confocal microscopy of labelled RBCs 

Stained RBCs were visualized using the 63X/1.32 optical object of a Leica TCS 

SP2 (CSFG, Concordia University) or a Zeiss LSM 510 (Imaging Facility, McGill 

University) laser confocal microscope. The laser lines used for the excitation of the dyes 

in the stained RBCs were the blue excitation (488 nm) of an Argon laser for Cy2, Alexa 

488, and FITC; the green excitation (543 nm) of a GreNe laser for Cy3, and the red 

excitation (633 nm) of a HeNe laser for Cy5. The laser lines and emission filters were 

selected to ensure that the fluorescence from the samples did not include any laser light 

and that emission crosstalk was avoided in the double labelling experiments. The 

excitation and emission spectra of the dyes used for RBCs staining are shown in Figure 

2.1. The pinhole size was 1 Airy unit, which produces the best signal-to-noise ratio. The 

laser power was adjusted according to the dye used. The power was set to ~ 10% for the 

Argon laser, -100% for the GreNe laser, and -50% for the HeNe laser of the Zeiss LSM 

510 laser confocal microscope. The power was set to 100% for all the laser lines using 

the Leica TCS SP2 since the laser was old and its output was weak. 

2.2.5 DeaerationofRBCs 

After removal of the plasma and buffy coat and after washing (Section 2.2.1), 

RBCs were suspended at 10% Ht in 2 mL of G-PBS in a 2-mL sealed Eppendorf tube. 

Nitrogen gas at 15 psi was flushed gently above the RBC suspension for 2 min. To fix the 

cells, formaldehyde was then added to a final concentration of 1% to the sealed tube 

through the gas-inlet needle. Initial fixation of the cells with formaldehyde was necessary 

because acrolein cannot fix cells in the absence of O2. After 20 min at room temperature, 

an aliquot of formaldehyde-fixed cells was centrifuged at 650xg for 1 min, resuspended 
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in 1 mL of 0.5% acrolein in PBS, permeabilized, and stained as described in Section 

2.2.2. 
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Figure 2.1. Excitation (blue) and emission (red) spectra of the different dyes. The wavelength used for 

excitation is marked by the green triangles, and the area under the pink broken lines is emission wavelength 

range detected by the confocal microscope. For Cy2, Alexa 488, and FITC, the excitation wavelength was 

488 nm, and the emission wavelength range was 500-530 nm. For Cy3, the excitation wavelength was 543 

nm, and the emission wavelength range was 560-620 nm. For Cy5, the excitation wavelength was 633 nm, 

and the emission wavelength range was 660-690 nm. Modified from http://www.ope-

tech.com/doc/image/cy3-2.gif, http://www.ope-tech.com/doc/image/cy5_2.gif 
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2.2.6 Aeration of RBCs 

Washed RBCs (Section 2.2.1) were suspended at 10% Ht in 2 mL of G-PBS in a 

2-mL Eppendorf tube and exposed to air on the bench for ~ 1 h at ambient temperature 

with gentle reverse mixing for 15 s at 10-min interval. An aliquot of aerated RBCs was 

fixed, permeabilized, and stained as described in Sections 2.2.2 and 2.2.3. 

2.2.7 Steady-state H202 production 

The generation of H2O2 by glucose and GOx was monitored 

spectrophotometrically. The rate of horseradish peroxidase (HRP)-catalyzed 2,2'-azino-

di-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) oxidation depends on the H2O2 

concentration, so it can be used to quantify the peroxide: 

H202 + 2 ABTSred - ^ - 2 H20 + 2 ABTS„ &»"*» 2 ' ' 

Stock solutions containing 9.15 nM HRP (concentration determined using the 

Soret band with S403nm=100 mM-1cm_l) (82) in 50 mM sodium phosphate buffer (pH 

7.0), 9.1 mM ABTS (concentration determined using S340nm=36.6 mM-1cm-1)(S5) in 100 

mM sodium phosphate (pH 5.0), and 10 mM H2O2 in water were prepared. For the 

standard assay, 10 uL of HRP stock was added to 550 uL of ABTS stock in a 1.5-mL 

quartz cuvette (1-cm pathlength), and the UV-vis spectrophotometer (Beckman DU 800) 

was blanked using this assay solution. After blanking, 50 uL of H202 standard (10 uM to 

120 uM; concentration determined using S240nm=40 mM 'cm - ') (84) was added to the 

cuvette and the solution was mixed quickly. The final concentrations of HRP, ABTS, and 

H202 in 610 uL of assay solution were 0.15 nM, 8.20 mM and 0.82-9.84 uM, 
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respectively. The absorbance was measured at 405 nm every 10 s over 90 s, and the slope 

of the initial absorption increase was measured. 

To determine the efficiency of H2O2 production, 0.915-2.135 units of GOx were 

added to 2 mL of G-PBS in a sealed 2-mL Eppendorf tube. The sample was incubated for 

10 min with gentle reverse mixing for 15 s at 2-min intervals. A 50-uL aliquot of each 

GOx solution was added to the HRP/ABTS assay solution and ABTS oxidation was 

followed as described above for the H2O2 standards. The concentration of H2O2 generated 

in samples was determined from the H2O2 standard calibration plot. 

2.2.8 Monitoring 02 production by phenazine methosulfate (PMS) 

Nitroblue tetrazolium salt (NBT) is stochiometrically reduced by O2 to a blue 

product (formazan) that absorbs light at 560 nm (Eq 2.2). Hence, the production of 

superoxide by PMS and NADPH (Eq 2.3) was quantified using the NBT reduction assay. 

NBT oxidized NBT reduced (formazan) 
A.max 560 nm 
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NADPH NADP+ 

Equation 2.3 
202 202 

Stock solutions of 3.15 mM PMS (8387nm=26.3 mM_1cm-1) (85) in deionized 

water, 605 uM NBT (s257nm=61.3 mM_1cm_1) (86) in PBS, and 9.26 mM NADPH 

(£340nm=6.22 mM^cm-1) (87) in PBS were prepared spectrophotometrically. For the 

assay, 5 to 18 uL of NADPH stock was added to 1 mL of NBT stock in an open 3.0-mL 

cuvette (1-cm pathlength), and PBS was used to adjust the volume to 2.0 mL. The 

spectrophotometer (Beckman DU 800) was blanked using this solution, 10 uL of PMS 

was added to the cuvette, the solution was mixed quickly, and the absorbance at 560 nm 

was determined every 30 s over 10 min. The final concentrations of PMS, NBT, and 

NADPH in the assay solution were 4.7 uM, 302 uM and 23-85 uM, respectively. To 

establish the effect on superoxide production, a range of PMS concentrations (1.6-7.9 

uM) was added to an assay solution containing 302 uM NBT and 46.3 u.M NADPH. 
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2.2.9 Effects of H 2 0 2 and 02 on RBCs 

RBCs (Section 2.2.1) were resuspended at 10% Ht in 2 mL of G-PBS. To 

generate H2O2 in the sample, 1.22 units of GOx were added. The 2-mL cell suspension 

was incubated in a sealed 2-mL Eppendorf tube at room temperature for 10 min with 

gentle reverse mixing for 15 s at 2-min intervals. A 400-u.L aliquot was centrifuged at 

l,000xg for 1 min, the supernatant was removed, the RBC pellet was fixed, 

permeabilized, and stained as described in Sections 2.2.2 and 2.2.3. 

To examine the effect of O2- generation, RBCs (Section 2.2.1) were resuspended 

at 10% Ht in 2 mL of G-PBS and 5 uM PMS was added. The 2-mL cell suspension was 

incubated in a sealed 2-mL Eppendorf tube at room temperature for 5 min, and processed 

as described above for the L^C^-exposed cells. 

2.2.10 Cu and Fe concentrations of human RBCs 

Whole blood (1 mL) was centrifuged at l,000xg for 10 min at room temperature 

in 2.0-mL Eppendorf tubes. After removal of the upper layer (plasma and buffy coat) by 

pipette, a 100-uT aliquot of the RBC pellet was diluted 20-fold using 1.9 mL of ICP-MS 

(inductively coupled plasma mass spectrometry) buffer containing ~0.7 mM ammonia, 

0.01 mM EDTA, and 0.07% (v/v) Triton X-100. A 30-uL aliquot of butan-1-ol was 

added as a carbon source at 1.5% (v/v) to improve matrix matching between the 

standards and samples and thereby increase the accuracy of the measurements. The ICP-

MS buffer was also used for pre- and post-analysis rinsing to keep the chemistry of the 

sample introduction system stable throughout the run. 45Sc and 72Ge were selected as 

internal standards (IS) for 56Fe and 63Cu, respectively, and their solutions were prepared 

the same way as the RBC samples. An Agilent 7500ce ICP-MS was used in helium-gas 
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mode. Quantitation was performed for each isotope by averaging the signals at the 

isotope mass (M, amu) and at M+0.05 and M-0.05. For example, the signal for 63Cu is 

average of the signals at 62.95, 63.00, and 63.05 amu. Triplicate measurements were 

performed on each sample. The standard calibration plots for 56Fe and 63Cu both 

exhibited an R2 value of 1.0000 (data not shown). The ICP-MS operating conditions, 

integration times, and gas mode (He) for the multielement determinations are 

summarized in Tables 2.2 and 2.3. 

Table 2.2: ICP-MS settings for multielement analysis in He gas mode 

Isotope 

4>Sc 

/2Ge 

wCu 

5bFe 

Mass, M 
(amu) 

45.00 

72.00 

63.00 

56.00 

Detection 
Mode 

Auto 

Auto 

Auto 

Auto 

Integration time 
(s/point) 

0.30000 

0.30000 

0.30000 

0.30000 

Integration time 
(s/Mass) 

0.90000 

0.90000 

0.90000 

0.90000 
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Table 2.3: ICP-MS tuning parameters 

Plasma 
conditions 
RF power: 
1,500 W 

Carrier gas: 
0.7 L/min 

S/C temp: 
2degC 

Ion lenses 

Extract 1: 
OV 

Extract 2: 
-110V 

Omega bias-ce: 
-22 V 

Omega lens-ce: 
-0.6 V 

Cell entrance: 
-30 V 

QP focus: 
-11 V 

Cell exit: 
-38 V 

Octopole 
parameters 
Octp bias: 
-18 V 

Q-pole 
parameters 
QP bias: 
-14 V 

Reaction cell 

Reaction mode: 
on 

He gas: 
5 mL/min 

RF power: radio frequency power 
S/C temp: spray chamber temperature 
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Chapter 3: Results 

3.1 Localization of Hb and CDB3 in fixed human RBCs 

Cell fixing is a necessary step in immunohistochemistry before visualization (88). 

This is to preserve the structure of cells with minimum alteration from the living state and 

to protect cells against subsequent treatment including rinsing, permeabilizing and 

staining. Acrolein (Fig. 3.1), an aldehyde, was used for fixation since it reacts with many 

chemical groups. For example, the reaction between acrolein and proteins involves the 

intermolecular and intramolecular formation of crosslinks with cysteine, histidine, and 

lysine residues (89). Crosslinking may limit the access of antibodies to epitopes on the 

target proteins. Furthermore, aggressive fixation changes the spatial relationships of 

macromolecules (90). To characterize the localization of target proteins under 

physiologically relevant conditions, a method developed for RBCs by Low and 

coworkers (2004) (90) was used to rapidly fix freshly isolated human RBCs. The 

localization of antioxidant enzymes in the intact cells was then examined by confocal 

microscopy. 

O 

< ^ / \ Figure 3.1. Structure o f acrolein 

It is known that band 3 is an important structural component of the RBC 

membrane. Each RBC contains approximately 106 copies of band 3 (91). Hb is the main 

protein in the RBC cytosol, being present at 5 mM or -270,000,000 copies (9). The 

working conditions for cell fixing and staining were established by examining the 

localization of Hb and CDB3, the cytoplasmic N-terminus of band 3 in intact human 

RBCs. Under the filter settings used, autofluorescence was negligible in treated and 
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untreated cells. Invariably, staining for CDB3 revealed that the protein was concentrated 

at the membrane and Hb staining revealed that this protein was evenly dispersed 

throughout the cytosol (Fig. 3.2). CDB3, which comprises the first 403 amino acid 

residues of band 3 {92), binds cytoplasmic proteins. The monoclonal anti-CDB3 antibody 

used in these studies specifically recognized an epitope within residues 1-136 of CDB3. 

Hence, the membrane pattern of CDB3 staining in intact RBCs (Fig. 3.2B) confirmed that 

its antibody had access to the cytosplic side of the membrane after cell fixing and 

permeabilizing. Also, the Hb distribution (Fig. 3.2A) demonstrated that the highly dense 

macromolecular network of crosslinked Hb expected after chemical fixation does not 

restrict access of the antibody to the cell interior. Therefore, the staining patterns 

observed for target proteins should reflect their actual localization (90). 

Figure 3.2. Confocal immunofluorescence images of Hb and CDB3 in fixed intact human RBCs. A. 

Hb was stained by sheep polyclonal anti-human Hb and FITC anti-sheep IgG. B. CDB3 was stained by 

mouse monoclonal anti-human CDB3 and Cy2 anti-mouse IgG. Filter settings were as follows: excitation 

488 nm; emission 500-530 nm. The RBC pellet was fixed and stained as described in Sections 2.2.2 and 

2.2.3.1. Cells were exposed to air for < 5 min, and fixed within 2 h of drawing blood. 
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3.2 Localization of CuZnSOD, catalase, and GPx in fixed human 

RBCs 

CuZnSOD, catalase, and GPx are antioxidant enzymes (Chapter 1). To establish 

the response of these enzymes to various oxidative-stress conditions, their localization 

under physiological conditions needs to be characterized. Freshly drawn human RBCs 

were fixed and stained immediately after washing. CuZnSOD, catalase, and GPx were 

stained as described in Section 2.2.3.1. Using the filter settings given in the figure 

legends, the confocal images reveal that CuZnSOD was more concentrated at the cell 

membrane with a punctate distribution, and less was distributed throughout the cytosol 

(Fig. 3.3A). Catalase was also partially distributed at the membrane and partially in the 

cytosol (Fig. 3.3B). GPx exhibited a definite membrane distribution with low detection in 

the cytosol (Fig. 3.3C). Notably, the punctate membrane staining of the antioxidant 

proteins is clearly different from the even membrane staining of CDB3 (Fig. 3.2B) in 

these intact human RBCs, which were exposed to air for < 5 min and fixed within 2 h of 

drawing blood. 

3.3 Localization of CuZnSOD, catalase, and GPx in fixed RBCs 

following deaeration 

Oxygen is essential for life, and cells have developed numerous adaptive 

responses to changes in O2 levels. RBCs, the major supplier of O2 to tissue, also serve as 

an O2 sensor (93). In nucleated CD34(+) cells, hypoxia decreased the mRNA expression 

of both catalase and GPx but not of SOD. The cellular antioxidant enzyme activity under 

hypoxia was also affected in these cells (94). However, the RBC is an anucleated cell, so 

enzyme levels and activities can not be altered by protein synthesis. We examined 
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Figure 3.3. Confocal immunofluorescence images of CuZnSOD, catalase, and GPx in fixed intact 

human RBCs. A. CuZnSOD stained by rabbit polyclonal anti-human CuZnSOD and Cy2 conjugated anti-

rabbit IgG. B. Catalase stained by sheep polycolonal anti-human catalase and Alexa 488 conjugated anti-

sheep IgG. C. GPx stained by sheep anti-human GPx-1 and Alexa 488 conjugated anti-sheep IgG. Filter 

settings for both Alexa 488 and Cy2 were as follows: excitation 488 nm; emission 500-530 nm. The RBC 

pellet was fixed and stained as described in Sections 2.2.2 and 2.2.3.1. Cells were exposed to air for < 5 

min, and fixed within 2 h of drawing blood. 
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whether the O2 tension influenced the location of the key antioxidant enzymes to affect 

their local activity. 

RBCs were deaerated under N2 for 2 min, fixed, and stained as described in 

Sections 2.2.2, 2.2.3.2 and 2.2.5. CuZnSOD, catalase, and GPx were stained with the 

antibodies listed in the figure legends. As a control, CDB3 was stained at the same time 

by double labelling (Section 2.2.3.2) but CuZnSOD, catalase, and GPx were stained first. 

The confocal images showed that CuZnSOD (Fig. 3.4D), catalase (Fig. 3.4E), and GPx 

(Fig. 3.4F) were evenly distributed in the cytosol of deaerated RBCs. In contrast, CDB3 

(Fig. 3.4G-I) showed membrane staining in all cells. The bright-field images revealed 

that the deaerated cells remain intact and exhibit biconcave shape. From Figure 3.4, it 

appears that relocalization of these antioxidant enzymes to the cytosol is the response of 

RBCs to 2 min of hypoxia. 

3.4 Localization of CuZnSOD, catalase, and GPx, in fixed aerated 

human RBCs 

Oxygen not only is transported by RBCs to meet the metabolic requirements of 

tissues, but also regulates the mechanical properties of the cells (95) including their 

membrane (96). Thus, Hb may act as a transducer regulating cellular function in an O2-

dependent manner through its interaction with cytoskeletal proteins. Furthermore, the 

autoxidation of oxyHb is the main source of ROS in RBCs. To examine whether 

exposure of RBCs to room air for 1 h would change the localization of their antioxidant 

enzymes, aerated cells were fixed and stained as described in Sections 2.2.2 and 2.2.3.1. 

The confocal images show that prolonged aeration induced more CuZnSOD (Fig. 

3.5A vs Fig. 3.3A) and catalase (Fig. 3.5B vs Fig. 3.3B) to localize at the membrane 
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Figure 3.4. Confocal immunofluorescence and corresponding bright field images of CDB3, 

CuZnSOD, catalase, and GPx in fixed intact deaerated human RBCs. A-C. Bright field image. D. 

CuZnSOD stained by rabbit polyclonal anti-human CuZnSOD and Cy5 conjugated anti-rabbit IgG. E. 

Catalase stained by sheep polycolonal anti-human catalase and Cy5 conjugated anti-sheep IgG. F. GPx 

stained by sheep anti-human GPx-1 and Cy5 conjugated anti-sheep IgG. G-I. CDB3 stained by mouse 

monoclonal anti-human CDB3 and Cy2 conjugated anti-mouse IgG. Filter settings were as follows: for 

Cy2, excitation 488 nm; emission 500-530 nm, and for Cy5, excitation 633 nm; emission 660-690 nm. 

Within 3 h of drawing blood, RBCs at 10% Ht in G-PBS buffer were deaerated under nitrogen gas at 

ambient temperature for 2 min then fixed as described in Section 2.2.5. Cells were stained for enzyme first 

and then for CDB3 as outlined in Section 2.2.3.2. 
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compared to their distribution in fresh RBCs exposed to air for < 5 min (Fig. 3.3). In 

contrast, GPx exhibited a similar amount of membrane staining under both conditions 

(Fig. 3.5C vs Fig. 3.3C). The cells retained their biconcave-disk shape after prolonged 

exposure to air as evidenced from their bright field images (Fig. 3.5, upper panels). 

Although both CuZnSOD and catalase exhibited increased membrane staining in aerated 

RBCs, their staining patterns are considerably different (Fig. 3.5A vs 3.5B). CuZnSOD 

immunofluorescence suggests that the protein aggregates around the center of the RBCs 

biconcave membrane whereas catalase staining shows a more even membrane 

distribution. Note the two bright spots at the membrane of a single RBC in the catalase 

image (Fig. 3.5B, lower panel). The bright field image revealed two small fragments 

attached to the cell at these sites (Fig. 3.5B, upper panel, at arrows). These fragments may 

correspond to autofluorescent particles such as dye-conjugated antibody bound to the cell 

surface. 

3.5 Colocalization of CuZnSOD, catalase, and CDB3 

An examination of their localization in aerated and deaerated RBCs revealed that 

CuZnSOD and catalase exhibited a similar response to 02 variation (Fig. 3.3-3.5). For 

example, both enzymes showed membrane staining in aerated RBCs (Fig. 3.5). Thus, we 

next investigated colocalization of these proteins. Since CDB3 is considered to regulate 

several 02-dependent RBC functions by its interaction with cytoplasmic proteins (91, 97, 

98), we tested whether CuZnSOD and catalase colocalize with CDB3. In a separate 

experiment from that in Figure 3.5, RBCs were exposed to room air for 1 h at ambient 

temperature, and then fixed and stained as described in Sections 2.2.2, 2.2.3.2 and 2.2.6. 

As seen before for aerated RBCs (Fig. 3.5), the images show that CuZnSOD aggregates 
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Figure 3.5. Confocal immunofluorescence and corresponding bright field images of CuZnSOD, 

catalase, and GPx in fixed intact aerated human RBCs. The bright field images are shown in the upper 

panels and the corresponding immunofluorescence images in the lower panels. A. CuZnSOD stained by 

rabbit polyclonal anti-human CuZnSOD and Cy2 conjugated anti-rabbit IgG. B. Catalase stained by sheep 

polycolonal anti-human catalase and Alexa conjugated anti-sheep IgG. C. GPx stained by sheep anti-human 

GPx-1 and Alexa 488 conjugated anti-sheep IgG. Filter settings for both Cy2 and Alexa 488 were as 

follows: excitation 488 nm; emission 500-530 nm. Within 3 h of drawing blood, RBCs at 10% Ht in G-PBS 

were exposed to room air for 1 h at ambient temperature. Cells were then stained as outlined in Section 

2.2.3.1. The arrows on bright-field image B correspond to the two bright spots on the immunofluorescence 

image B. 
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at the membrane, especially at the biconcave sites (Fig. 3.6A,l). Catalase exhibits 

punctate distribution at the membrane (Fig. 3.6E,J) while CDB3 is more evenly 

distributed (Fig. 3.6B,F). The overlay images in panel D reveals yellow spots at the cell 

surface implying colocalization of CuZnSOD and CDB3 at the membrane. The overlay 

images in panel H and L also reveal yellow spots at the membrane, indicating that 

catalase colocalized with both CDB3 and CuZnSOD. The bright-field images (Fig. 

3.6C,G,K) confirmed that the aerated RBCs possessed normal shape as also seen in 

Figure 3.5. 

3.6 Competition between anti-CuZnSOD and anti-CDB3 

In Section 3.5, CuZnSOD and CDB 3 were shown to colocalize in aerated RBCs. 

If two proteins colocalize or their locations are very close, their antibodies would have to 

compete for binding within a limited space. Hence, antibody binding to one protein 

should hinder antibody binding to the second protein. Competition between anti-

CuZnSOD and anti-CDB3 binding was performed to further confirm the results of the 

study in Section 3.5. RBCs were exposed to room air for 1 h, fixed and stained as 

described in Sections 2.2.2, 2.2.3.2, 2.2.3.3, and 2.2.6. 

The images clearly reveal that the intensity of CuZnSOD staining is lower if 

anti-CDB3 was added first than when anti-CuZnSOD was added first (Fig. 3.7A vs 

3.7B). In contrast, the intensity of CDB3 fluorescence is similar whether anti-CDB3 or 

anti-CuZnSOD were added first (Fig. 3.7C vs 3.7D). The decrease in CuZnSOD 

intensity upon first binding anti-CDB3 reveals that this antibody inhibits anti-CuZnSOD 

binding. However, the intensity of CDB3 is not noticeably affected due to the high 
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abundance of CDB3 relative to CuZnSOD. Thus, anti-CuZnSOD could only block a 

small fraction of anti-CDB3 binding. 

Figure 3.6. Colocalization of CuZnSOD, catalase, and CDB3 in fixed intact aerated human RBCs. A. 

CuZnSOD stained by rabbit polyclonal anti-human CuZnSOD and Cy2 conjugated anti-rabbit IgG. B. 

CDB3 stained by mouse monoclonal anti-human CDB3 and Cy3 conjugated anti-mouse IgG. D. Overlay of 

image A and B (CuZnSOD and CDB3). E. Catalase stained by sheep polycolonal anti-human catalase and 

Cy3 conjugated anti-sheep IgG. F. CDB3 stained by mouse monoclonal anti-human CDB3 and Cy2 

conjugated anti-mouse IgG. H. Overlay of image E and F (catalase and CDB3). I. CuZnSOD stained by 

rabbit polyclonal anti-human CuZnSOD and Cy2 conjugated anti-rabbit IgG. J. Catalase stained by sheep 

polycolonal anti-human catalase and Cy3 conjugated anti-sheep IgG. L. Overlay of image I and J 

(CuZnSOD and catalase). C,G,K. Bright-field images. Filter settings were as follows: for Cy2, excitation 

488 nm; emission 500-530 nm; and for Cy3, excitation 543 nm; emission 560-620 nm. Within 3 h of 

drawing blood, RBCs at 10% Ht in G-PBS at ambient temperature were exposed to room air for 1 h. The 

cells were then stained as outlined in Section 2.2.3.2. 
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Figure 3.7. Competition between anti-CuZnSOD and anti-CDB3 in fixed intact aerated human 

RBCs. A,C. Anti-CDB3 was added first, then anti-CuZnSOD. B,D. Anti-CuZnSOD was added first, then 

anti-CDB3. A,B. CuZnSOD stained by rabbit polyclonal anti-human CuZnSOD and Cy2 conjugated anti-

rabbit IgG. C,D. CDB3 stained by mouse monoclonal anti-human CDB3 and Cy2 conjugated anti-mouse 

IgG, Filter settings were as follows: for Cy2, excitation 488 nm; emission 500-530 nm, and for Cy3, 

excitation 543 nm; emission 560-620 nm. Within 3 h of drawing blood, RBCs at 10% Ht in G-PBS at 

ambient temperature were exposed to room air for 1 h. The cells were then stained as outlined in Section 

2.2.3.2. 
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3.7 Steady-state generation of H202 and superoxide 

3.7.1 H202 

Some investigators have exposed RBCs to H2O2 by the direct addition of H2O2 or 

by diffusion of gaseous H202 (99). However, both of these methods cause the H2O2 

concentration at the surface, or at the site of H2O2 addition, to be much higher than 

elsewhere in the RBC suspension. To examine the physiological response of RBCs to 

H2O2, the generation of H2O2 should be uniform throughout the RBC suspension and 

relatively constant. The addition of GOx to cells in the presence of 5 raM glucose should 

expose the RBC to a steady-state concentration of H202(Eq. 3.1). 

0 If 1^ ^ glucose oxidase ° jf [^ ^ ^ , 
J + 0 2 — • I I + H202 Equation 3.1 

o o 

P-D-glucose D-glucono-l,5-lactone 

A preliminary study was performed to establish the GOx concentration that 

provided suitable steady-state generation of H2O2. GOx activity assays were performed as 

described in Section 2.2.6. Figure 3.8 shows that the rate of ABTS oxidation, which was 

followed spectrophotometrically at 405 nm, linearly increased over 90 s at each H2O2 

concentration examined. Also, the rate of ABTS oxidation (AA405 /s) increased linearly 

with [H2O2] as shown in the H2O2 standard calibration plot in Figure 3.9. 
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Figure 3.8. HRP-catalyzed ARTS oxidation by H202. The assay solution contained 0.15 nM HRP, 8.20 
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Figure 3.9. H202 calibration plot. Rates of ABTS oxidation (104x AA40s/s) observed in Figure 3.8 are 

plotted vs [H202]. See legend of Figure 3.8 for experimental details. y=5E-06x + 5E-05, R2=0.9966. 
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Rates of ABTS oxidation at different GOx concentrations were compared to the 

H202 calibration plot (Fig. 3.9.). To generate -10 uM H202 per min (or -100 uM H202 

within 10 min) (Fig. 3.10), 1.22 units of GOx were required. To ensure that H202 was 

generated at a constant rate over longer times, the H202 concentration of the glucose/GOx 

solution was determined at different time points using the calibration plot in Figure 3.9. 

Figure 3.11 shows that H202 was produced at a constant rate of 8 uM per min and 

reached a concentration of- 70 uM in 9 min. The effects of extracellular H202 on protein 

localization within RBCs are discussed in Section 3.8. 
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Figure 3.10. H202 generation by GOx-catalyzed oxidation of glucose. GOx (1.22 units) in G-PBS (pH 

7.4) containing 5 mM glucose at room temperature linearly generated H202 (y= 5E-4x - 3E-4, R2=0.9977) 

as determined by HRP (0.15 nM)-catalyzed ABTS (8.2 mM) oxidation by H202. GOx addition initiated the 

ABTS oxidation, which was followed spectrophotometrically at 405 nm in a 1-cm pathlength cuvette. 
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Figure 3.11. H202 production by GOx/glucose vs time. The H202 generated by 1.22 units GOx in 2 mL 

of G-PBS at room temperature over 9 min in a sealed 2-mL Eppendorf tube. Aliquots of 50 uL 

GOx/glucose solution were added to the ABTS/H202 assay buffer at 1.0, 3.5, 6.0, and 9.0 min. ABTS 

oxidation was followed at 405 nm in a 1-cm pathlength cuvette (See legend to Figure 3.8 for ABTS/H202 

assay conditions). 

3.7.2 Superoxide generation 

Both external generation of O2 by activated leukocytes, and internal generation 

by Hb autoxidation can affect RBCs (P). Superoxide possesses a negative charge so it can 

not freely penetrate the RBC membrane (P). Since the goal in the current work is to 

mimic 0?~ production by Hb autoxidation, PMS was used to generate O2- within the 

RBC. PMS easily enters RBCs (100) where it catalyzes the direct transfer of an electron 

from NAD(P)H to O2 to produce 02~ (Eq 2.3) (101). Generation of 02~ can be monitored 

spectroscopically by following its reaction with NBT, which leads to an absorbance 

change at 560 nm (Eq 2.2). 

O2- production by different concentrations of PMS was investigated in solutions 

of NBT and NADPH in PBS (pH 7.4). Figure 3.12 shows that the absorbance at 560 nm 
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due to NBT reduction by O2- (Eq 2.2) increased after PMS addition, indicating that PMS 

reacted with NADPH to generate 02~ (Eq 2.2). From Figure 3.13, it is observed that 

absorbance increased linearly over ~ 0.7 min and the initial rate increased with the PMS 

concentration but the final absorbance (A56o ~ 0.9, Fig. 3.12) was the same as expected 

since NADPH was the limiting reagent. Figure 3.14 shows that both the rate of O2 

generation and its final concentration increased with the NADPH concentration, 

supporting the NADPH dependence of 02~ production. These results are consistent with 

PMS catalysis of O2 generation using NADPH as a reducing agent (Eq 2.2 and 2.3). 
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Figure 3.12. PMS-catalyzed superoxide generation. Superoxide was generated by 1.6 uM (0), 4.7 uM 

(•), or 7.9 uM (A) PMS, and 46.3 uM NADPH in 2 mL of PBS in an open 1-cm cuvette without stirring. 

The reaction was initiated by PMS addition and monitored spectrophotometrically by NBT (302 uM) 

reduction at 560 nm in the 1-cm cuvette at ambient temperature. 
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Figure 3.13. Initial rates of superoxide generation by PMS/NADPH in 2 mL of PBS in an open 1-cm 

cuvette at room temperature. The absorbance changes (data points) over the first 0.7 min are plotted 

using data from Figure 3.12. 
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Figure 3.14. NADPH concentration dependence of superoxide generation. Superoxide was generated 

by 4.7 uM PMS and 23 uM (0), 46.3 uM (•), 70 uM (A) or 85 uM (x) NADPH in 2 mL of PBS in an open 

1-cm cuvette at room temperature without stirring. The reaction was initiated by PMS addition and 

monitored spectrophotometrically by NBT (302 uM) reduction at 560 nm in the 1-cm cuvette at ambient 

temperature. 
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The reduction of NBT by superoxide should be inhibited by SOD activity. Figure 

3.15 shows that in the presence of 60 nM CuZnSOD, the absorbance increase is almost 

half that in the absence of the enzyme. The reduction of NBT by 02 is inhibited by 

CuZnSOD specifically and efficiently. Also CuZnSOD has negligible absorbance at the 

concentration used and thus does not interfere with the absorbance measurements at 560 

nm. 
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Figure 3.15. CuZnSOD inhibits superoxide generated by NADPH/PMS. Superoxide was generated by 

4.7 uM PMS and 46.3 uM NADPH in 2 mL of PBS in an open 1-cm cuvette without stirring at room 

temperature in the absence (0) and presence (A) of 60 nM CuZnSOD. The reaction was initiated by PMS 

addition and monitored spectrophotometrically by NBT (302 uM) reduction at 560 nm in the 1-cm cuvette 

at ambient temperature. 

3.8 Localization of CuZnSOD, catalase, GPx, and GSH in fixed 

human RBCs under an exogenous H202 flux 

CuZnSOD, catalase, GPx, and GSH play a major role in the protection of RBCs 

from oxidative stress. The localization of these enzymes in response to exogenous H2O2 
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was first examined. Washed RBCs at 10% Ht in G-PBS were exposed to an 8 |iM/min 

H2O2 flux (Section 3.7.1). The cells were incubated in the same glucose buffer both 

without GOx and with 35 nM catalase as controls. In the absence of GOx, RBCs were not 

exposed to exogenous f^C^ while with exogenous catalase present, RBCs were exposed 

to decreased H202 flux since catalase decomposes H2O2 efficiently (Section 1.6.1). 

The confocal images in Figure 3.16 show that the RBC catalase staining patterns 

(A-C) were similar under all three conditions. Catalase was partially membrane stained 

and partially cytosol stained in G-PBS with or without exogenous catalase and GOx. In 

contrast, GPx exhibited staining patterns that were different for the negative controls and 

the test sample. In glucose only (D) and glucose with GOx plus catalase (F), GPx was 

partially membrane stained and partially cytosol stained. However, GPx was 

predominantly membrane stained in glucose plus GOx (E). The staining patterns of 

CuZnSOD (Fig. 3.16G-I) and GSH (Fig. 3.16J-L) were the same, and showed that these 

species are evenly distributed throughout the cytosol under all three working conditions. 

3.9 Localization of CuZnSOD, catalase, GPx, and GSH in fixed 

human RBCs under intracellular 02 generation 

The main source of 02~ inside RBCs is the autoxidation of Hb (25). The response 

of CuZnSOD, catalase, GPx, and GSH to additional superoxide generated intracellularly 

by PMS was examined. Washed RBCs were incubated in G-PBS with 5 uM PMS for 10 

min (Section 3.7.2). Cells were also incubated in the same buffer without PMS as a 

negative control. 
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Figure 3.16. Confocal immunofluorescence images of CuZnSOD, catalase, GPx, and GSH in fixed 

intact human RBCs under H202 flux. A-C. Catalase stained by sheep polycolonal anti-human catalase 

and Alexa conjugated anti-sheep IgG. D-E. GPx stained by sheep anti-human GPx-1 and Alexa conjugated 

anti-sheep IgG. G-H. CuZnSOD stained by rabbit polyclonal anti-human CuZnSOD and Cy2 conjugated 

anti-rabbit IgG. J-K. GSH stained by rabbit polyclonal anti-human GSH and Cy2 conjugated anti-rabbit 

IgG. Within 3 h of drawing blood, RBCs at 10% Ht in G-PBS at ambient temperature were exposed to 8 

|j.M/min exogenous H202 for 10 min. The cells were then stained as outlined in Section 2.2.3.1. Left 

column, control (5 mM glucose only). Middle column, 5 mM glucose plus 1.22 units GOx. Right column, 5 

mM glucose plus 1.22 units GOx and 35 nM catalase. Filter settings were as follows: for both Cy2 and 

Alexa, excitation 488 nm; emission 500-530 nm. 
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The confocal images in Figure 3.17 show that the staining patterns of catalase are 

similar in both the negative control (A) and test sample (B). Most of the catalase is 

distributed in the cytosol with less localized at the membrane. The staining patterns of 

GPx are different for the negative control (C) and test sample (D). In the negative control, 

GPx was partially membrane stained and partially cytosol stained, but GPx was 

predominantly membrane stained in the test sample. The staining patterns of CuZnSOD 

(Fig. 3.17E,F) and GSH (Fig. 3.17G,H) showed an even cytosolic distribution in the 

presence and absence of PMS. 

3.10 ICP-MS determination of RBC Cu and Fe concentrations 

The concentration of copper and iron detected by ICP-MS is summarized in Table 

3.1. The [Fe]/[Cu] ratio is -2000 based on the ICP-MS results. Each human RBC 

contains -270,000,000 copies of Hb (102), the most abundant protein (5 mM) in these 

cells (9). The concentration of other heme proteins in human RBCs are in the micromolar 

range; for example, 2.6 uM catalase has been reported (33). Assuming that all sources of 

Fe detected by ICP-MS come from Hb, we estimate the CuZuSOD copy number to be 

-270,000 from the ICP-MS data. This calculation took into consideration that there are 

four hemes per Hb tetramer and two copper ions per CuZnSOD dimer. We also assumed 

that all the copper in the RBC was from CuZnSOD. 

Table 3.1: ICP-MS analysis of Cu and Fe concentrations in human RBCs 

Trial 1 

Trial 2 

Average 

Cu (uM) 

12.64 

14.86 

13.75 

Fe (mM) 

23.59 

25.49 

24.54 
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Figure 3.17. Confocal immunofluorescence images of CuZnSOD, catalase, GPx, and GSH in fixed 

intact human RBCs under intracellular 0 2 _ generation. A-B. Catalase stained by sheep polycolonal 

anti-human catalase and Alexa conjugated anti-sheep IgG. C-D. GPx stained by sheep anti-human GPx-1 

and Alexa conjugated anti-sheep IgG. E-F. CuZnSOD stained by rabbit polyclonal anti-human CuZnSOD 

and cy2 conjugated anti-rabbit IgG. G-H. GSH stained by rabbit polyclonal anti-human GSH and cy2 

conjugated anti-rabbit IgG. Within 3 h of drawing blood, RBCs at 10% Ht in G-PBS at ambient 

temperature were exposed to intracellular 02 generated by 5 uM PMS for 10 min. The cells were then 

stained as outlined in Section 2.2.3.1. Left column, G-PBS only. Right column, G-PBS plus 5 uM PMS. 

Filter settings were as follows: for both cy2 and Alexa, excitation window, 488 nm; emission window, 500-

530 nm. 
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Chapter 4: Discussion 

4.1 Evaluation of methods 

Determining subcellular localization is important for understanding protein 

function as proteins must migrate to the appropriate location to perform their desired 

function. Localization of the antioxidant enzymes, CuZnSOD, catalase, GPx-1 as well as 

GSH in human RBC was studied to determine their responses under physiological and 

oxidative-stress conditions. Proteins are too small to visualize directly under the 

microscope, so an immunofluorescence technique was adopted in this project. Antibodies 

are an important tool for detecting both the presence and the subcellular localization of an 

antigen. Since antibodies can not freely penetrate cell membranes, the first step is to fix 

and permeabilize the cells. This ensures free access of the antibody to its immobilized 

antigen (103). 

Fixation arrests biological activity and stabilizes cellular components with 

minimal alteration of conformational and spatial relationships between the cellular 

constituents (104). If cells are not fixed within 1 h after washing, considerable autolysis 

would be noticed in most samples. Fixation is a critical step in ensuring accuracy of 

detection protocols and in determining the subsequent success or failure of a given 

experiment. An ideal fixative maintains the original in vivo distribution of the antigen 

without diffusion or rearrangement. Ideally, cell morphology should be conserved, the 

antigen of interest should remain accessible to the probe, and the fixation should cause 

negligible denaturation of the antigen. Perfect fixation would immobilize the antigen to 

minimize post-fixation changes. At the same time it should retain cellular and subcellular 

structure while permitting free access of antibodies to all subcellular compartments (103). 
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Both chemical and physical fixation methods are used, but chemical fixation is most 

commonly employed (104). A broad range of chemical fixatives are available, and can be 

divided into two classes: organic solvents and crosslinking reagents. Organic solvents 

such as alcohols and acetone remove lipids and water from the cells, while precipitating 

the proteins. They could alter the localization of some antigens (103). Crosslinking 

reagents, such as formaldehyde, form intermolecular bridges through free amino groups, 

creating a network of linked antigens (103). Since crosslinkers preserve cell structure 

better than organic solvents, the former were used here to examine protein localization. 

Several considerations should be taken into account when selecting a fixative. The 

speed of penetration of the fixative is the most important consideration because the speed 

determines the success of the procedure. Smaller fixative molecules penetrate more 

rapidly than larger ones. There is a variety of small fixatives, such as acrolein, 

formaldehyde, and glutaraldehyde. Acrolein and formaldehyde penetrate more rapidly 

than glutaraldehyde (104). The former was selected for human RBC fixation because 

formaldehyde would have been washed out when rinsed with an aqueous solution (103). 

Acrolein reacts with protein side chains in the cell (Scheme 4.1) (105) after which the 

non-reacted fixative is washed out with rinsing buffer. Acrolein optimally fixes RJBCs 

within 5 min under the experimental conditions adopted here (90). Different fixation 

times (3 min, 10 min) were also tested here. As reported (103), 3-min fixation of the 

sample led to altered cell morphology, whereas 10-min fixation led to high nonspecific 

background signals. Incubation in rinsing buffer, which contained 0.1 M glycine, for 30 

min after permeabilization was also important because the glycine scavenged any 

unreacted acrolein. In the absence of this step, a strong background signal was detected 
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even when fixation lasted only 5 min. Acrolein, the simplest unsaturated aldehyde, is also 

subject to polymerization to an insoluble, crosslinked solid. This is catalyzed by light and 

air at room temperature (106), so to minimize polymerization when exposed to air, 

diluted acrolein needs to be freshly prepared. If the acrolein stock becomes yellow or the 

pH drops below 3.5, it should be discarded (104). Intermediate A and Schiff-base A in 

Scheme 4.1 correspond to the forms that give rise to the protein crosslinks expected after 

fixation with acrolein. 

o OH 
Ri-SH + 

< ^ , 
R2—NH2 

H 

Acrolein Michael Addition Adduct 

-H,0 

I 
H 

Intermediate A 

-HoO 

N r\ 

Schiff-base B 
H 

Intermediate B 

N 

Schiff-base A 

Scheme 4.1. Reaction of acrolein with proteins (Adapted from (105)). 

Crosslinkers maintain the spatial relationships within cells, but may diminish the 

antigenicity of some cell components (103). Assessing how fixation affects the 

distribution of proteins is necessary before examining target proteins (88). The 

monoclonal anti-CDB3 antibody used in these studies specifically recognizes an epitope 

within residues 1-136 of CDB3 (107), which contains 403 residues (92). The membrane 

pattern of CDB3 staining in intact RBCs (Fig. 3.2) indicated that this antibody could 

penetrate through the membrane after cell fixing and permeabilizing. Also, the uniform 

Hb staining with a polyclonal antibody (Fig. 3.2) demonstrated that the highly dense 
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macromolecular network formed by crosslinked Hb after chemical fixation does not 

restrict access of the antibody to the cell interior. Therefore, the staining patterns 

observed for the target proteins of interest here should reflect their actual localization as 

assumed previously for the enzymes involved in glycolysis (90). 

A buffering system is used to maintain the pH of the cells near physiological 

levels during fixation and to maintain near-isotonic conditions. The tonicity of a solution 

can be adjusted by adding an electrolyte (sodium chloride) or a nonelectrolyte (sucrose). 

The buffer (G-PBS, Section 2.2.1) used to preserve RBCs during preparation contains 5 

mM glucose (108) as glucose is present at ~ 5 mM in plasma. Glucose is the only sugar 

used in RBC anaerobic glycolysis. It tends to decrease the rate of fixative penetration into 

the cells and it also increases the extraction of cellular components (104). Thus, RBCs 

were fixed in acrolein diluted into PBS instead of G-PBS. 

Following fixation by crosslinking, the plasma membrane is permeabilized to 

allow entry of impermeable species. Permeabilization is required for 

immunofluorescence detection of intracellular and transmembrane membrane proteins 

because it allows the antibody to enter the cell (103). The target proteins, Hb, CuZnSOD, 

catalase, and GPx-1, as well as the GPx substrate (GSH) are localized in the cytosol, 

while CDB3 is at the cytosolic face of the membrane. Thus, we permeabilized RBCs 

before antibody staining. Detergents are used to increase permeability and organic 

solvents to extract lipids from the plasma membrane (103). There is a wide variety of 

available detergents which differ in their efficiency in extracting lipids from membranes. 

Triton X-100 is the most commonly used permeabilization agent for immunofluorescence 
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staining as it efficiently solubilises phospholipid membranes without altering protein-

protein interactions (103). 

The last step involves incubation of the cell preparation with the primary 

antibody. Unbound antibody is removed by washing, and the bound antibody is detected 

indirectly using a fluorochrome-labelled secondary antibody. Selection of an appropriate 

primary antibody is an important step in the protocol. Monoclonal antibodies recognize 

only one epitope and have weaker avidity relative to polyclonal antibodies, which 

recognize different epitopes on their target protein. As some antigenic sites on the protein 

may be destroyed or masked during fixation, loss of one or two epitope sites on the 

protein may not be critical when working with polyclonal antibodies, but may be of 

crucial importance with monoclonal antibodies. Partial masking or destruction of a 

particular antigen recognized by a monoclonal antibody could result in misleading 

immunofluorescence data. 

Band 3 is the major erythrocyte membrane protein with 1.2 xlO6 copies per RBC 

(91). Its cytoplasmic domain (CDB3) is the binding site of cytoskeletal proteins (ankyrin, 

protein 4.1, protein 4.2), glycolytic enzymes (aldolase, GAPDH, phosphofructokinase), 

deoxyHb, Hb denaturation products (hemichromes), and the protein tyrosine kinase (p72 

Syk). Each of these interactions appears to be of importance for the structure and function 

of RBCs (97). A monoclonal anti-CDB3 antibody was used to specifically recognize 

CDB3 and not the transmembrane domain, which might have been recognized by a 

polyclonal antibody. Compared with band 3, CuZnSOD, catalase, and GPx-1 have 

relatively low copy number (< 3 x 105), so polyclonal antibodies were selected as the 

primary antibodies for these proteins. Although Hb has a high copy number (2.7 x 108), 
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we used polyclonal anti-Hb antibodies for its detection because the Hb epitope is 

irrelevant here, so monoclonal and polyclonal antibodies would accomplish the same 

task. 

The secondary antibodies used to label the target proteins were attached to 

fluorescent probes. These probes are more environmentally friendly than radioactive 

labels and are highly selective. Fluorescent probes are grouped according to their 

excitation and emission characteristics, as well as their chemical and biological 

properties. Based on excitation wavelength, the common commercial fluorescent probes 

are divided into seven groups, excited by laser lines at 351 nm, 488 nm, 514 nm, 543 nm, 

568 nm, 633 nm, and 647 nm, which correspond to the lines available with confocal 

microscopes. The laser lines available for this study were 488 nm, 543 nm, and 633 nm, 

so the selection of fluorescent probes was limited to those that could be excited by these 

laser lines. 

There is a variety of green fluorescence dyes including FITC, Cy2, and Alexa 488 

(Fig. 4.1), which were selected here. Fluorescein isothiocyanate (FITC), a derivative of 

fluorescein, has an excitation maximum at 494 nm, which is close to the 488-nm line of 

the argon laser. Cy2, a cyanine dye, absorbs at 492 nm; Alexa 488, a sulfonated 

compound, has an excitation maximum at 488 nm. These probes possess the advantages 

of relatively high molar absorptivity (e 68,000-150,000 M'cm"1), excellent fluorescence 

quantum yields (0=0.7-0.85), and good solubility in water. They also possess distinct 

characteristics including variable photostability, brightness, and a tendency to self-

quench. FITC has a relatively high rate of photobleaching compared to Cy2 and Alexa 

488, and a greater tendency to self-quench {109). In fact, photobleaching limits FITC 
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sensitivity, which is undesirable for the localization of low abundance proteins (109). 

Cy2 and Alexa 488 can be visualized longer and brighter than FITC, so these dyes are 

used to detect target proteins when a strong signal is needed (110). In fact, Alexa 488 is 

the brightest of all dyes that absorb at 488 nm (110). 

H,N 

FITC Alexa 488 

. / 
H3CH2C N VJ 

r\ n 
Cy2 

/ 
,CH3 

CH, 

Cy3 Cy5 

Figure 4.1. Structures of the dyes used in this work. 

Multiple staining probes with distinct emission spectra are used for simultaneous 

visualization of multiple targets within a single image. Alexa 488 and FITC have similar 

broad emission spectra, which limits their efficiency in multicolor applications (Fig. 4.2), 

so Cy2 is used with Cy3 and Cy5 in multiple staining. To avoid the crosstalk of two dyes, 

orange-red (Cy3) or far-red (Cy5) emitting dyes are selected with green-emitters for 
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multiple staining. TRITC and Cy3 (Fig. 4.1), the orange-red emitters, can be excited 

maximally at 550 nm, which is close to the 543-nm laser line, and they exhibit peak 

emission at 570 nm. However, Cy3 is brighter, more photostable, and gives less 

background than TRITC. Cy5 (Fig. 4.1), a far-red fluorescing dye, is excited maximally 

at 650 nm, which is close to the 633-nm laser line, and it fluoresces maximally at 670 nm. 
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Figure 4.2. Normalized emission spectra of Cy2, FITC, and Alexa 488. Left: Overlapping emission of 

FITC and Alexa 488. Right: Resolved emission of FITC and Cy2. Modified from 

http://www.mcb.arizona.edu/IPC/spectra_page.htm. 

4.2 RBC response to changes in oxygenation 

The high Hb concentration exposes RBCs to continuous intracellular oxidative 

stress due to autoxidation of oxyHb (9). RBCs not only generate free radicals but are 

additionally exposed to xenobiotics, pathogens, hyperglycemic conditions, and to radical 

generating cells of the immune system. Superoxide and hydroxyl radicals produced by 

neutrophils and other phagocytes during phagocytosis have an important role in 

bactericidal and inflammatory processes. However, ROS release from these cells may 

cause tissue damage (5, 111). 

RBCs possess efficient intracellular reducing machinery which, when coupled 

with their high density, makes them an effective circulating 'sink' for reactive species 
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(772). Not only the blood, but also the whole organism benefits from the RBC's 

scavenging ability (772). The non-enzymatic antioxidants in RBCs include GSH, 

ascorbic acid, NAD(P)H, and vitamin E. Furthermore, compared with other cell types, 

RBCs exhibit high activities of the most important antioxidant enzymes, including 

CuZnSOD, catalase, GPx, glutathione reductase, and plasma membrane oxidoreductases 

(772). Altogether, this powerful antioxidant machinery makes the RBC a highly efficient 

antioxidant system. 

The confocal results (Fig. 3.3A,B, Fig. 3.3C) reveal different localization patterns 

for the antioxidant enzymes, CuZnSOD, catalase, and GPx in RBCs. Both CuZnSOD and 

catalase are distributed between the membrane and the cytosol, while GPx is largely 

localized at the membrane. As discussed above, RBCs scavenge both intracellular and 

intercellular ROS, so the distribution of CuZnSOD and catalase between the membrane 

and cytosol may reflect these two different roles. The antioxidant enzyme population at 

the membrane deactivates ROS produced outside the RBC as these species pass through 

the membrane either by free diffusion or via a transporter, thereby protecting membrane 

proteins. The cytosolic enzyme population scavenges the ROS produced by the RBC 

itself, and protects the cytosolic proteins, especially Hb. 

The repeated uptake and release of O2 by RBCs causes them to switch between 

high- and low-oxygenation states. Many studies have suggested that the oxygenation state 

regulates RBC properties. First, the activity of many membrane transporters changes with 

the O2 content of the cell. The K+/Cf cotransporter, for example, is reported to be 20-fold 

more active in oxygenated than in deoxygenated RBCs (773, 774). Second, RBC 

metabolism is adjusted according to the O2 tension of the medium. Glucose, the only 

78 



energy source in the RBC, is metabolized via the pentose phosphate pathway twice as 

quickly in oxygenated as in deoxygenated cells (115). Third, RBC oxygenation-

deoxygenation cycles may affect membrane properties (91). 

Our data show that high O2 tension drives CuZnSOD and catalase to relocate at 

the membrane in highly aerated RBCs (Fig. 3.5A,B). We question the physiological 

importance of their relocalization under high O2. The molecular events that link the 

modulation of RBC properties to its O2 state are very complex and cannot be easily 

elucidated. Several of these events are probably confined to the membrane with band 3 

playing a primary role (91). The transmembrane domain of band 3 responsible for anion 

exchange across the membrane and CDB3 binds cytoskeletal proteins and several 

glycolytic enzymes, such as aldolase, phosphofructokinase, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), lactate dehydrogenase, and protein tyrosine kinase (91). In 

addition, CDB3 binds deoxyHb (116). 

The accepted transport function of band 3 is the exchange of CI" and HCO3" 

through its transmembrane domain. However, it is reported that band 3 can exchange 

anions other than CI" and HCO3 , and the anion transport rate is Ch-dependent in human 

RBCs (91). Band 3 anion transport works about three times faster when Hb is 100% vs 

15% saturated with 02(91). Some studies have shown that band 3 also has the capacity to 

exchange 02~for HCO3 (117). Thus, we can speculate that high O2 tension stimulates 

O2 transport by band 3 from the external environment, and increases the intracellular 

H2O2 concentration as a consequence of O2 dismutation, especially near the membrane. 

The non-nucleated RBC is unique among human cells in that the plasma 

membrane, its only structural component, accounts for all of its antigenic, transport, and 
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mechanical characteristics. Protection of its membrane by antioxidant enzymes is critical 

for RBC survival. This is supported by the relocalization observed here of CuZnSOD and 

catalase to the membrane in highly aerated RBCs (Fig 3.5A,B). To effectively remove the 

02 transported by band 3, CuZnSOD not only concentrates at the membrane, but it also 

likely binds to CDB3 as supported by our colocalization data (Fig 3.6D). This conclusion 

is further supported by the competitive antibody binding results (Fig. 3.7). Catalase also 

binds to CDB3, and since the catalase substrate, H2O2, is a product of CuZnSOD 

catalysis, we speculate that CuZnSOD and catalase are organized into a complex at 

CDB3 to effectively remove ROS transported by the transmembrane domain of band 3. 

This is also supported by the colocalization of these two proteins as revealed by confocal 

microscopy (Fig. 3.6L). Such a complex would serve to compartmentalize ROS by the 

channelling of substrates through this assembly. ROS escape by diffusion from the 

complex would be dangerous for the RBC membrane and tissues. The glycolytic 

enzymes form a complex for the efficient metabolism of glucose, and some enzymes of 

this complex bind to CDB3 (90). Carbonic anhydrase isoform II (CAII) is an enzyme that 

catalyzes the conversion of CO2 to HC03~ in RBC. CAII attaches to the cytoplasmic C-

terminus of band 3 to form a complex that has been called a bicarbonate transport 

metabolon. This metabolon increases the HC03~transmembrane flux (118). 

In addition to its superoxide dismutase activity, CuZnSOD exhibits anion-binding 

capacity (119, 120), as well as inactivation by its own reaction product, H2O2 (121-123). 

The rate of CuZnSOD inactivation by H2O2 is significantly enhanced in the presence of 

physiologically relevant concentrations (-25 mM) of bicarbonate (124). Complex 
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formation at CDB3 may protect CuZnSOD from inactivation and metal release, 

especially at the RBC membrane where high concentrations of bicarbonate exist (118). 

The membrane localization of GPx is not affected by increasing oxygen exposure 

(Fig 3.3C vs 3.5C). GPx not only shares the same substrate, H2O2, with catalase, but it 

also metabolizes a range of organic peroxides, including cholesterol and long-chain fatty 

acid peroxides (77). Thus, the membrane localization of GPx allows it to specifically 

stabilize cell membranes since these are composed of unsaturated fatty acids and 

cholesterol that are susceptible to oxidation (725). 

The band 3 transport activity curve is of similar shape to the oxygen binding 

curve of human Hb when plotted against pC>2 (91). Therefore, band 3 activity may be 

regulated by deoxyHb binding. DeoxyHb binds to CDB3 more tightly than oxyHb (126) 

and it has been reported that a number of glycolytic enzymes also bind to CDB3 (127). 

Thus, deoxyHb-CDB3 association may be responsible for the 02-dependent modulation 

of RBC glucose metabolism (775). If the association between CDB3 and CuZnSOD 

and/or catalase is physiological, one would expect to observe at least partial displacement 

of the enzymes upon deoxygenation. Binding of deoxyHb to CDB3 induces structural 

changes throughout the entire band 3 molecule (128, 129), and a gradual increase in 

bound Hb will consequently increase the structural hindrance to other protein binding. 

Since CuZnSOD and catalase are not membrane bound in deaerated RBCs (Fig. 3.4D,E), 

we conclude that both enzymes bind at or near the N-terminus of CDB3. This binding site 

is also supported by the observation that the monoclonal anti-CDB3 antibody, which 

recognizes an epitope within residues 1-136 of CDB3 (36), competed with the binding of 

anti-CuZnSOD to CuZnSOD at the membrane (Fig 3.7A,B). As the antibody used for 
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CuZnSOD staining was polyclonal, we did not expect complete inhibition of anti-

CuZnSOD binding. The binding of anti-CDB3 to CDB3 should also be reduced by first 

staining with anti-CuZnSOD; however, the intensity was similar in the present and absent 

of anti-CuZnSOD (Fig. 3.7C vs Fig. 3.7D). The likely explanation for this observation is 

that the number of band 3 molecules in the membrane is 1.2 x 106 (91), which is over 4-

fold greater than the total number of CuZnSOD molecules (-2.7 x 105) per RBC as 

estimated from the ICP-MS results, Section 3.10. Assuming that 50% or less of 

CuZnSOD is bound to the membrane, the CDB3 concentration at the membrane could be 

up to 10-fold higher than that of CuZnSOD. Thus, the drop in fluorescence intensity on 

anti-CuZnSOD binding gives rise to no detectable changes in CDB3 fluorescence. The 

images in Figures 3.3-3.5 clearly demonstrate that the association of CuZnSOD and 

catalase with the RBC membrane is regulated by its oxygenation state. 

Comparing the images for immunofluorescence of CDB3 and the antioxidant 

enzymes in the same RBC field reveals that membrane staining for the former is 

obviously smooth whereas staining for the enzymes is measurably punctate. This 

indicates that a fraction of the enzymes are organized into larger complexes, which 

appear as discrete fluorescent spots on the membrane (e.g., Fig. 3.3). The significance of 

this punctate staining as well as the aggregation of CuZnSOD towards the center of the 

biconcave membrane in highly aerated RBCs (Fig. 3.5) is not clear at the present time. It 

was reported that Hb degradation products (hemichromes) have a strong affinity for 

CDB3. The association of hemichromes with CDB3 triggers band 3 clustering and the 

clusters show increased affinity for naturally occurring band 3 antibodies (NAbs). The 

binding of NAbs to the surface of RBCs triggers the phagocytosis of altered RBCs. 
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However, the reasons for band 3 aggregation and its importance are still not clear (21). 

We suspected that CuZnSOD aggregation at the RBC membrane after air exposure (Fig 

3.5) was the result of band 3 clustering. However, CDB3 did not show punctate 

distribution in post-oxygenated RBCs. These results warrant further investigation. 

In addition to being a binding site for proteins, another major function of CDB3 is 

to anchor the RBC membrane to the underlying cytoskeleton by association with multiple 

cytoskeletal components. This is essential for the structure and function of the entire 

RBC. The biconcave disk shape of the cell is maintained by the strong cohesion between 

the bilayer and the membrane skeleton through interaction with CDB3. Missense 

mutations in CDB3 result in global changes in RBC shape and deformability (98). For 

example, hereditary spherocytosis (HS) is caused by mutations in a variety of RBC 

proteins, including CDB3 (130). A common feature of all forms of HS is the loss of 

membrane surface area and a change in cell shape from discocytes (normal cells) to 

stomatocytes (cup cells) and spherocytes (spheral cells) (131). Thus, we can assume that 

oxidation of band 3 at the center of the RBC membrane causes cell deformation. Under 

air-saturated conditions, oxyHb is considerably oxidized to metHb with generation of O2 

(132). The biconcave site allows O2 and C02 to move more quickly through the 

membrane, so band 3 may be more active, and more O2 may be generated and 

transported at this site. Hence, we speculate that CuZnSOD concentrates at this site to 

protect membrane proteins from oxidative damage. 

In addition to changes in localization of the antioxidant enzymes, we also noticed 

that the cells clump together in deaerated and aerated RBCs (Figs. 3.4 and 3.5, bright-

field images). A possible reason may be that the properties of the membrane's outer face 
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change on prolonged exposure to air or N2 (1 h air and 2 min N2). In contrast, RBC gas 

exchange occurs within seconds in the lung (98, 133). Alteration of RBC surface 

properties caused cell clustering and the cells were not well spread out on the slides. 

Thus, too many cells were visualized in one image and too few in another (Fig 3.5 A and 

C). 

The fluorescence signal of the target enzymes in deaerated RBCs was weaker (Fig 

3.4 D, E, F) compared with their signal in RBCs exposed to air for < 5 min (Fig 3.3). An 

explanation is that proteins dissociated from CDB3 and were evenly distributed 

throughout the cytosol in deaerated cells. Since the protein concentration per unit area in 

the cytosol was lower than that at the membrane, the fluorescence intensity was lower. 

Also, formaldehyde may be less efficient than acrolein at cell fixation (Section 4.1). 

4.3 RBC response to H202 and 02~ 

The antioxidant enzymes catalase and CuZnSOD change their localization in 

response to increased O2 tension (Fig. 3.3A,B vs Fig. 3.5A,B). Under this condition, it is 

speculated that the ROS concentration increases both intracellular^ and extracellularly. 

Response to increased O2 tension provides indirect evidence for the response of these 

enzymes to ROS. Direct responses are examined by artificially increasing extracellular or 

intracellular ROS. RBCs are exposed to both endogenous and exogenous peroxides 

during their lifetime. H2O2 sources outside the RBC include phagocytic cells, leukocytes, 

and macrophages. Peroxides are the by-products of the oxidative destruction of foreign 

matter in these cells. The main endogenous source of H2O2 is the dismutation of O2 

(134). RBCs have efficient enzymes for the decomposition of H2O2 and the best 

characterized ones are catalase and GPx (735). 
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The discovery of GPx initiated an intense debate as to which enzyme plays the 

predominant role in scavenging H202 (136). GPx catalyzes H202 decomposition at the 

expense of two GSH molecules, which are very important for maintenance of 

intracellular redox status. From our experiments, we can not say which enzyme is more 

important in H202 metabolism but our data support GPx's role in scavenging organic 

peroxides as discussed in Section 4.2. However, the production of organic peroxides is 

not critical to the functioning of the RBCs as these are by-products of the reactions 

between lipids, ROS and xenobiotics (137). Therefore, we want to determine whether 

GPx also plays a role in protecting RBCs from H202. GPx is seen to respond to the 

exogenous H202 generated in situ by GOx and glucose in the medium as the peroxidase 

concentrates at the membrane (Fig. 3.16). Under saturating conditions, the H202 

degradation rate depends linearly on the GPx concentration, and GPx becomes saturated 

at >1 uM H202 (136). The rate of H202 generation is ~8 uM/min (Fig. 3.11) in our 

experiment, so more GPx relocalizes to the membrane to decompose H202 compared 

with control cells where H202 is present at basal levels. Catalase is efficient at H202 

deactivation as it exhibits the highest turnover number (106 s) of known enzymes. In fact, 

1% of the catalase activity of RBCs would remove most of the H202 generated in these 

cells (e.g., ~ 50% at 10"5 mol/L H202) (136). GPx attains only - 8 % of the rate at which 

catalase decomposes H202 (136), and two molecules of GSH are oxidized per H202 

molecule. Thus, H202 removal by catalase is efficient and economic. However, catalase 

can not replace GPx in organic peroxides detoxification, which is critical for protection of 

the RBC membrane. Thus, H202 removal in normal RBCs is mainly the domain of 
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catalase (136), while GPx works as a deactivator of organic peroxides, especially at the 

RBC membrane (137). 

H2O2 is the main substrate of catalase (55), so we expected it to respond to an 

exogenous source of H2O2 and localize at the membrane as observed at high O2 tension 

(Section 4.2). However, catalase remained distributed between the membrane and the 

cytosol in both control and H202-exposed cells (Fig. 3.16). Possible explanations are: 

first, during H2O2 generation by GOx-catalyzed glucose oxidation, oxygen is consumed 

at a 1:1 ratio of 02 per H202 produced (Eq 3.1). Hence, the 02 concentration in the RBC 

incubation would have decreased since the 2-mL Eppendorf tube was sealed. The 

increased deoxyHb concentration would displace catalase from the membrane even in the 

presence of increased H202. The partial cytosolic localization of GPx in the 

glucose/GOx/catalase control (Fig. 3.16F), in which there was less H2O2 influx into the 

PvBC but similar deoxyHb generation as in the absence of exogenous catalase, suggests 

that GPx might not compete with deoxyHb for CDB3. Second, catalase forms a complex 

with CuZnSOD at the membrane when the O2 level is high (Fig. 3.6L). However, 

CuZnSOD redistributes to the cytosol when RBCs are exposed to exogenous H202 (Fig. 

3.16H), suggesting that CuZnSOD may anchor catalase at the membrane. Third, H2O2 

entering the cell may react with GPx more efficiently than with catalase. Catalase could 

execute a dual function in the cell. Since catalase is more abundant in the cytosol than at 

the membrane, it possibly protects cytosolic proteins from oxidative damage. Yet, 

catalase found in the membrane possibly reacts with H2O2 to maintain GSH levels and 

thereby GPx activity (136). 
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As the substrate of GPx in H202 decomposition, GSH was expected to show 

partial membrane staining, but Figures 3.16J,K,L reveal even distribution of the 

tripeptide throughout the cytosol. GSH-associated metabolism is a major mechanism of 

cellular protection against agents that generate oxidative stress (136). Thus, GSH 

provides the cell with multiple defences not only against ROS but also against their toxic 

products (136). It can directly scavenge free radicals or act as a substrate for GPx during 

the detoxification of H2O2 GSH near the membrane, where the H2O2 concentration is 

high, will react with H2O2 directly or as a GPx substrate and form GSSG (136). 

Furthermore, acrolein rapidly binds and depletes cellular GSH (89, 138), and membrane 

localized GSH will likely be consumed first. The formation of acrolein-GHS adducts (Eq 

4.1) or protein S-glutathionylation (89, 138, 139) may influence antibody binding to 

GSH. Note that the antibody used (ab9443), recognized both oxidized and reduced GSH. 

Furthermore, the pores in the RBC membrane after permeabilization are large enough for 

antibody access. Antibodies are large macromolecules (-150 kDa), whereas GSH is a 

small soluble molecule (307 Da). Thus, GSH close to the membrane may diffuse out of 

the permeabilized cells before staining. No membrane-localized GSH was detected in our 

confocal results (Fig. 3.16). 

o c 

Equation 4.1 
GSH + H ' \ ? H v SG 

acrolein 

Basal ROS in RBCs come from the autoxidation of oxyHb which produces O2-. 

To mimic the autoxidation of oxyHb, RBCs were incubated with PMS, which reacts with 

hydrogen donors (e.g., NADPH) in RBCs to generate intracellular O2- (Eq 2.3) (100). In 
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vitro, 02 production by PMS was confirmed in a preliminary experiment, and the 

generation of O2 was found to be dependent on the NADPH concentration and inhibited 

by CuZnSOD (Figs. 3.14 and 3.15). 

CuZnSOD is the only known SOD in RBCs, and partial CuZnSOD localization at 

the membrane under physiological conditions was observed here (Fig. 3.3). We expected 

to observe increased membrane localization of CuZnSOD in the PMS-treated RBCs. 

However, even distribution throughout the cytosol is seen in the confocal images of 

CuZnSOD in PMS-treated RBCs (Fig. 3.17F). CuZnSOD localized at the membrane will 

dismutate 02~generated by oxyHb autoxidation near the membrane. Since the RBC 

membrane is the 02 exchange site, we speculated that endogenous 02~generation from 

oxyHb is greater near the membrane than in the cytosol. Thus, CuZnSOD is more 

concentrated at the membrane than in the cytosol where 02~ generation may be lower. In 

PMS-treated RBCs, 02~ may be uniformly produced throughout the RBC without any 

compartmentalization. But 02 generation over 5 min by PMS consumes 02 (Eq 2.3) so 

the 02 level will decrease as the 2-mL Eppendorf tube was sealed. The deoxyHb formed 

on 02 consumption will bind to CDB3, hindering the binding of CuZnSOD. 

The RBC substrates that react with PMS are not completely understood (100). We 

question if there are other reactions of PMS in RBCs. Indirect evidence for PMS-

catalyzed 02~ formation in RBCs was reported by Ricardo (100) at high concentrations 

of PMS (0.1-2.0 mM). However, it was reported that RBCs become significantly altered 

from control cells at 25 uM PMS, and even 10 uM PMS caused alterations slightly 

exceeding those seen for sickle RBCs (140). Thus, we chose to incubate RBCs with only 

5 uM PMS (Section 2.2.9), but we have no evidence that endogenous 02 production 
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would be significantly increased by 5 uM PMS in the cells. In any event, CuZnSOD 

distributed in the cytosol would be able to dismutate the additional 02 generated 

intracellular^ by PMS. 

In addition to NAD(P)H, PMS may be reduced to generate 02~ by other RBC 

metabolites such as GSH. Oxidation of GSH by PMS and acrolein may affect antibody 

recognition such that no membrane staining of GSH is seen in the confocal images (Figs. 

3.16J-L and 3.17G,H). GPx shows similar distribution in GOx-treated and PMS-treated 

RBCs (Figs. 3.16E and 3.17D). Since GPx mainly protects the membrane, this may be a 

response to enhanced cytosolic H202 on 02~ dismutation in PMS-treated cells and 

elevated extracellular H202 in the GOx-treated cells. 

The CuZnSOD, catalase, and GPx staining patterns in control samples as well as 

in the GOx- and PMS-treated samples (Fig. 3.16 A,D,G and Fig. 3.17A,C,E) are different 

from those in cells exposed to air for < 5 min and fixed immediately after washing 

("fresh RBCs") (Fig. 3.3). Less membrane localization is seen in the control samples in 

Figures 3.16 and 3.17 than in the fresh RBCs (Fig. 3.3). The reasons for this are not clear. 

Comparing the experimental procedures, the only difference is that before fixing, the 

control RBCs were incubated in G-PBS for 10 min in sealed 2-mL Eppendorf tubes 

(Section 2.2.9) whereas the fresh RBCs were incubated in G-PBS for < 1 min in unsealed 

2-mL Eppendorf tubes (Section 2.2.1). Further experiments are required to clarify the 

role of glucose exposure, if any, on protein localization. 
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Chapter 5: Conclusions and future studies 

RBCs function both in O2 transport and as ROS sinks for tissues to maintain 

homeostasis. Defenses against ROS, such as O2- and H202, are clearly mandatory. RBCs 

possess a strong antioxidant system, including enzymatic and non-enzymatic 

antioxidants. CuZnSOD, catalase, and GPx are key players. CuZnSOD protects RBCs 

from oxidative damage by scavenging O2 and keeping its concentration low. Catalase 

and GPx serve the same function by decomposing H2O2 and organic peroxides. GPx 

mainly protects membrane lipids and proteins, and catalase protects the cytosolic 

proteins. Their combined effects minimize the likelihood of interaction between RBC 

components and ROS. Furthermore, their effective scavenging actions are maintained by 

their localization, which is regulated by the oxygenation state of the RBC. 

The presence of CuZnSOD, catalase, and CDB3 within one structural 

macrocomplex makes it likely that the individual components have linked roles. We can 

speculate on the possible nature of this function: CuZnSOD, catalase, and CDB3 form a 

metabolon at the cytosolic surface of the RBC membrane that accepts 02~ transported by 

band 3 into the cell. The 02~ is dismutated by CuZnSOD to H202, which is then 

channelled to catalase for decomposition (Eq 1.4). The membrane localization and 

substrate channelling offered by this metabolon would control 02~and H2O2 diffusion and 

promote their efficient deactivation thereby protecting the RBC from oxidative damage. 

In summary, this very efficient antioxidant machinery ensures a reducing environment in 

RBCs to maintain both a functional membrane and Hb in its active form for efficient 02 

delivery and waste removal. 
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There are a number of interesting results observed here that we can not explain 

clearly. Thus, more investigations need to be performed to clarify several observations. 

Suggested future studies include: 

1) It is speculated that CuZnSOD, catalase, and CDB3 form a metabolon for 

ROS deactivation based on the experiments described in this thesis, but more 

direct evidence for their binding is required. In vitro binding experiments 

using recombinant CDB3 could be performed as was carried out for Hb (141). 

2) Binding of catalase and GPx-1 to CDB3 should also be examined in the RBC 

by competitive antibody binding experiments similar to those described in 

Section 3.6. If evidence for association is obtained, then in vitro experiments 

could be carried out to characterize the protein-protein complexes in greater 

detail as proposed in (1) above. Furthermore, competition with carbonic 

anhydrase II (CAII) should be carried out to confirm that the antioxidant 

enzymes bind to CDB3 and not the C-terminus of band 3. Anti-CAII should 

compete with the protein binding to the C-terminus but not CDB3. 

3) In addition to catalase and GPx-1, peroxiredoxin 2 (Prx2) is an abundant 

peroxidase in RBCs (142). Prx2 uses cysteine residues to decompose H2O2 

and is the third most abundant protein in RBCs after Hb and carbonic 

anhydrase (142). Thus, Prx2 could compete effectively with catalase and GPx 

to scavenge low levels of H2O2, including that derived from oxyHb 

autoxidation. In fact, due to its high cellular concentration, Prx2 acts as a non-

catalytic scavenger of H2O2 at concentrations up to 250 uM (142). Prx2 

rapidly decomposes not only H202 but also organic peroxides, including lipid 
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hydroperoxides, and peroxynitrite. Prx2 associates with the RBC membrane 

(142), but what controls its membrane association and whether it competes 

with catalase or GPx for CDB3 binding have not been established. The 

localization of Prx2 under both physiological and oxidative-stress conditions 

should be examined in future work. 

4) Antioxidant enzyme relocalization was examined in Chapter 3 in response to 

prolonged exposure (1 h) of RBCs to air. However, RBC gas exchange occurs 

within seconds (98, 133). If the membrane association of antioxidant enzymes 

in highly aerated RBCs is physiologically relevant, then this association 

should be reversible. Thus, enzyme localization in RBCs exposed to air for 

shorter times and association-dissociation mediated by the RBC oxygenation 

state should be examined in further detail. Also, quantitation of cytosol vs 

membrane stained protein should be performed using the appropriate 

software. It would additionally be of interest to repeat the 02-dependent 

localization at 37°C. 

5) RBCs should be exposed to exogenous H2O2 and O2 in open vessels and O2 

levels should be monitored. This would allow full evaluation of competition 

between deoxyHb and the antioxidant enzymes for CDB3 binding under 

oxidative stress. Fluorescent dyes (e.g., hydroethidine for O2 , 2,7-

dichlorodihydrofluorescein for H2O2) could also be used to monitor C>2~ and 

H202 levels within RBCs. 

6) RBCs fixed with formaldehyde under air should be carried out as an 

additional control for the studies on cells exposed to N2 (Section 2.2.5). 
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Appendix: List of images and Z-stacks of images on DVD 

submitted with this thesis 

Figure 3.2 

• Fig. 3.2 Images in the thesis 

• Fig. 3.2 Additional images - same experimental conditions as for Fig 3.2 

Figure 3.3 

• Fig. 3.3 Images in the thesis 

• Fig. 3.3 Additional images - same experimental conditions as for Fig 3.3 

Figure 3.4 

• Fig. 3.4 Images in the thesis 

• Fig. 3.4 Z-stacks of images - same experimental conditions as for Fig 3.4 

Figure 3.5 

• Fig. 3.5 Images in the thesis 

• Fig. 3.5 Additional images and Z-stacks of images - same experimental 

conditions as for Fig 3.5 

Figure 3.6 

• Fig. 3.6 Images in the thesis 

• Fig. 3.6 Additional images and Z-stacks of images - same experimental 

conditions as for Fig 3.6 

Figure 3.7 

• Fig. 3.7 Images in the thesis 

• Fig. 3.7 Additional images - same experimental conditions as for Fig 3.7 
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Figure 3.16 

• Fig. 3.16 Images in the thesis 

• Fig. 3.16 Z-stacks of images - same experimental conditions as for Fig 

3.16 

Figure 3.17 

• Fig. 3.17 Images in the thesis 

• Fig. 3.17 Additional images and Z-stacks of images - same experimental 

conditions as for Fig 3.17 
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