
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

A HEURISTIC APPROACH TO NETWORK HARDENING

USING ATTACK GRAPHS

TANIA ISLAM

A THESIS

IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

MAY 2 0 0 9

© TANIA ISLAM, 2 0 0 9

1 * 1
Library and Archives
Canada

Published Heritage
Branch

Biblioth&que et
Archives Canada

Direction du
Patrimoine de l'6dition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63037-2
Our file Notre reference
ISBN: 978-0-494-63037-2

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

ABSTRACT

A Heuristic Approach to Network Hardening Using Attack Graphs

Tania Islam

In defending against multi-step attacks, network hardening answers the following impor-

tant question: Which vulnerabilities must be removed from a network in order to prevent

attackers from compromising critical resources while minimizing the implied cost in terms

of availability or administrative efforts. Existing approaches to network hardening derive a

logic proposition to represent the negation of the attack goal in terms of initially satisfied

security conditions. In the disjunctive normal form (DNF) of the logic proposition, each

disjunction then provides a viable solution to network hardening. However, such solutions

suffer from an exponential time complexity. In this thesis, we study heuristic methods

for solving this important problem with reasonable complexity. We evaluate our proposed

solutions through extensive experiments. The results show that our solution can achieve

reasonably good network hardening results in significantly less time than the optimal so-

lution would require. Also, for scenarios where additional cost constraints may render a

perfectly secure network hardening solution impossible, we extend our heuristic methods

to partial hardening solutions. Such solutions can provide best possible improvement in

terms of security under given cost constraints.

iii

Acknowledgments

I would like to thank all those who provided help for this thesis.

I would like to express my sincere thanks to my supervisor, Dr. Lingyu Wang, for his

help, guidance and advices to my study at Concordia University, especially to the published

papers and this manuscript.

I would like to thank my parents, relatives and all my friends for their kind support.

IV

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Background and Motivation 1

1.2 Thesis Contribution 3

1.3 Organization of the Thesis 5

2 Literature Review 6

2.1 Attack Graph 6

2.2 Network Hardening 10

2.3 Security Metric 11

2.4 Other Related Work 13

3 Preliminary 15

3.1 Attack Graph 15

3.2 The Network Hardening Problem 18

v

3.3 Probabilistic Security Metric 23

3.4 Standard Heuristic Approaches 25

4 Heuristic Solutions for Network Hardening 28

4.1 Scalability of Network Hardening Solutions 28

4.2 Potential Heuristic Solutions 29

4.2.1 Candidate Solution 1 29

4.2.2 Candidate Solution 2 31

4.2.3 Candidate Solution 3 32

4.2.4 Discussion 33

4.3 Main Heuristic Approaches 34

4.3.1 The Basic Approaches • 35

4.3.2 Handling Cycles in Attack Graphs 39

4.4 Partial Network Hardening 43

5 Simulation Results 48

5.1 Performance Comparison Based on Time 49

5.2 Performance Comparison with Varying Number of Initial Conditions 52

5.3 Performance Comparison with Ratio between Imply/Require Relations . . . 54

5.4 Performance Comparison with Ratio between Exploits and Conditions . . . 57

5.5 Performance Evaluation for Partial Network Hardening 59

5.6 Summary 60

6 Conclusion 64

vi

Bibliography

List of Figures

1 An Example of Attack Graph 17

2 An Example of Probability Security Metric 24

3 An Example of Attack Graph with Exponential Number of Hardening Options 30

4 An Example of Candidate Solution 1 31

5 An Example of Candidate Solution 2 32

6 An Example of Candidate Solution 3 34

7 The First Heuristic Approach 36

8 The Sub-Procedure GenSet 37

9 An Example of Heuristic Approach 1 38

10 The Second Heuristic Approach 40

11 An Example of Cycle in Attack Graph 41

12 Case land 2 . 43

13 Case 3 and 4 44

14 An Attack Graph with Probability Scores 45

15 The Procedure for Partial Network Hardening . 47

viii

16 Comparison of Time Taken by the Heuristic Approach 1 and the Optimal

Solution , 49

17 Comparison of Time Taken by the Two Heuristic Approaches with Differ-

ent Distributions of Exploits 50

18 Comparison of the Cost of Solutions Produced by the Heuristic Approach

1 and the Optimal Approach 51

19 Comparison of the Cost of Solutions Produced by the Heuristic Approaches 52

20 Comparison of Time Taken by the Heuristic Approach 1 and the Optimal

Solution 53

21 Comparison of Time Taken by the two Heuristic Approaches 54

22 Comparison of the Cost of Solutions Produced by the Heuristic Approach

1 and the Optimal Approach 55

23 Comparison of the Cost of Solutions Produced by the Heuristic Approach

1 and the Optimal Approach 56

24 Comparison of Time Taken by the Heuristic Approach 1 and the Optimal

Solution with Varying Require/Imply Ratio 57

25 Comparison of Time Taken by the two Heuristic Approaches with Varying

Require/Imply Ratio 58

26 Comparison of the Cost of Solutions of the Heuristic Approach 1 and the

Optimal Solution with Varying Require/Imply Ratio 59

27 Comparison of the Cost of Solutions of the Heuristic Approaches with

Varying Require/Imply Ratio 60

ix

28 Comparison of Time Taken by the Heuristic Approach 1 and the Optimal

Solution with Varying Exploit/Condition Ratio 61

29 Comparison of Time Taken by the Heuristic Approaches with Varying Ex-

ploit/Condition Ratio 61

30 Comparison of the Cost of Solutions of the Heuristic Approach 1 and the

Optimal Solution with Varying Exploit/Condition Ratio 62

31 Comparison of the Cost of Solutions of the Heuristic Approaches with

Varying Exploit/Condition Ratio 62

32 Comparison of Probability of Goal Condition for without and with Partial

Network Hardening 63

33 Comparison of Actual Cost and Afford Cost for Partial Network Hardening 63

x

List of Tables

1 Measurement of Effective Cost 37

2 Cumulative Scores of Conditions 44

3 Cumulative Scores of Exploits 46

4 Cumulative Scores of Conditions after Partial Hardening 46

5 Cumulative Scores of Exploits after Partial Hardening 46

xi

Chapter 1

Introduction

1.1 Background and Motivation

Protecting computer networks in enterprises and critical infrastructures against malicious

intrusions is crucial to the economy and national security. Various intrusion detection sys-

tems (IDSs) and vulnerability scanners have been developed to protect networks against

malicious attacks. Nonetheless, we have seen an increasing threat from network intrusions

in terms of both scale and severity despite over twenty years of research in vulnerability

analysis and intrusion detection.

One of the reasons to the increasing threat from network attacks is that most existing

tools can only identify vulnerabilities or attacks in isolation. On the contrary, attackers usu-

ally exploit multiple correlated vulnerabilities to evade detection or firewalls or to gradually

elevate their privilege in a network. The isolated alerts or vulnerabilities reported by IDSs

and vulnerability scanners thus only provide a partial picture about multi-step sophisticated

1

attacks. The sheer number of alarms raised by those tools will usually render them difficult

to analyze and eventually lead them to be completely ignored by security administrators.

Moreover, a vulnerability analysis often assumes that all identified weaknesses will be

immediately removed. However, in practice, this is usually not the case. The removal of

vulnerabilities is often complicated by environmental factors (the availability of software

patches or hardware upgrades), cost factors (in terms of money or administrative efforts),

or mission factors (the demand for availability and usability). In many cases, a security

administrator may have to live with some of the discovered vulnerabilities. A critical ques-

tion thus naturally arises: Which vulnerabilities should be removed first in order to prevent

attacks while reducing the implied costs? This question is usually named the network hard-

ening problem.

There exist solutions for network hardening using attack graphs [53,61] (the next chap-

ter will give a detailed review of the literature). Attack graph is a well accepted model

for correlated vulnerabilities. By correlating vulnerabilities through common pre- or post-

conditions, an attack graph can help a security administrator to understand the threat of

potential multi-step attacks and to determine potential attack paths, which may be regarded

as an automated penetration testing. However, attack graph does not directly provide a

solution for removing identified threats. Finding the solution by hands for large networks

whose attack graphs are usually very complicated is generally not feasible.

On the other hand, an automated hardening method regards correlated vulnerabilities

as combinations of Boolean variables [61]. To secure critical resources represented as goal

conditions in an attack graph, a logic proposition is derived based on the attack graph.

2

The logic proposition is then converted to its disjunctive normal form (DNF) in the set of

initially satisfied conditions. Then a least-cost network hardening options can be chosen

among the conjunctive clauses in the DNF. However, finding a minimum-cost solution in

this way is expensive, because the length of a derived logic proposition may be exponential

in the number of initial conditions or in the size of an attack graph. Nonetheless, con-

sidering the practical impact of the problem, heuristic solutions are clearly desirable for

obtaining low-cost hardening solutions within a reasonable time limit.

1.2 Thesis Contribution

This thesis focuses on finding feasible solutions for network hardening when given time or

cost constraints do not allow for an optimal solution to be derived. More specifically, our

main contributions are the following.

• We point out limitations of existing attack graph-based network hardening approaches.

We show that such methods have an exponential worst case complexity which pre-

vents them from scaling to large networks. We also point out that given constraints

on the cost of hardening solutions may lead such methods to produce no solution at

all, which is clearly not desirable.

• We study a series of heuristic algorithms as candidate solutions. The algorithms

all aim to find a set of initially satisfied security conditions for disabling such that

potential attacks on critical resources may be prevented while the cost for disabling

such conditions remains reasonably low. We show the worst case scenario of each

3

such candidate algorithm and point out limitations of the algorithms.

• We propose the main heuristic approach based on insights obtained while studying

the candidate solutions. This approach sorts conditions based on not only cost but

also the number exploits requiring that condition, and it includes a forward search in

the attack graph with a limited degree of backtracking. We instantiate the approach

as two heuristic algorithms with slightly different ways of sorting the conditions.

• We also study situations where a perfectly secure hardening solution cannot be de-

rived due to given cost constraints. We extend our heuristic approaches to a partial

hardening solution based on a probabilistic security metric. This solution reduces the

risk of potential multi-step attacks to the least possible degree with respect to given

cost constraints.

• We conduct comprehensive experiments to compare the performance of our solu-

tions with the optimal solution in terms of the cost of resulted hardening solutions

and the time taken to compute such solutions. We vary different parameters in gen-

erating random attack graphs, such as the size of attack graphs, the number of initial

conditions, the ratio between exploits and conditions, and the ratio between different

relationships among exploits and conditions. All results show that our solution can

produce reasonably good hardening solutions while taking significant less time limit

than exhaustive search does.

4

1.3 Organization of the Thesis

In Chapter 2, we discuss related work on attack graph and its construction, analysis and

different applications where it has been successfully applied. In Chapter 3, we review the

background knowledge of our work. We describe attack graphs and related concepts, and

we formally define the network hardening problem and the partial hardening problem. In

Chapter 4, we first study candidate solutions which provide us critical insights to our main

heuristic solutions. We then present our main heuristic solutions in details and analyze

potential difficulties in reducing the cost and how our proposed algorithms can overcome

them. We also discuss the proposed partial hardening solutions in this chapter. In Chapter

5, we show experimental results on the comparison between our heuristic methods and the

optimal method for network hardening with respect to both the cost of computed solutions

and the time taken. Finally, in chapter 6 we conclude the thesis and discuss potential future

work.

5

Chapter 2

Literature Review

In this chapter, we review the literature on the generation, analysis, and application of attack

graphs. We also discuss other work that are relevant to our research.

2.1 Attack Graph

For protecting systems against malicious attacks, there exist various intrusion detection

systems (IDSs) and vulnerability scanners, such as Nessus [16], Nmap [35], Snort [52],

Cisco security scanner, SATAN [20], System Scanner by ISS [26], CyberCop [10] and

Computer Oracle and Password System (COPS) [19]. Those solutions are being applied in

real world networks and they can render attacking such networks much more difficult than

without such solutions in place. However, existing solutions usually identify vulnerabilities

or attacks in isolation, which only provides a partial picture about securing a network since

today's attackers typically employ sophisticated multi-step attacks.

6

Phillips and Swiler [45] propose the concept of attack graph and they also present a

graph-based approach for generating attack graphs. In their model, the inputs of an at-

tack graph include configuration files, attacker profiles, and a database of attack templates,

which must be manually created. The nodes of the attack graph are attack templates in-

stantiated with particular users and machines, whereas edges are labeled by probabilities

of success or cost of attacks. The graphs can be analyzed to find the shortest paths between

given start and end nodes. The idea of grouping similar nodes is mentioned although the

correctness critically depends on identical configuration among such nodes.

Another model [58] expresses attack graphs with the require and provide approach

using the precondition and postcondition of each exploit. For each successful attack, the

attacker can obtain the ability to perform more attack steps so each successful exploitation

increases his/her capabilities in launching new attacks. An attack specification language

JIGSAW is used in describing attack steps. The language requires low level details of

capabilities and requirements of attacks which may be hard to obtain. This require and

provide approach brings flexibility in discovering potentially new attack scenarios. Using

this language and the given specifications, an IDS and attack analysis system can be created.

In [50], model checking is applied to the analysis of multi-step network attacks. Known

vulnerabilities on network hosts, connectivity between hosts, initial capabilities of the at-

tacker are described as states and exploits as transitions between states. This model is given

to a model checker as its input and the reachability in terms of given goal states is given

as a query. The model checker then produces a counterexample if a sequence of exploits

can lead to goal states. Such a sequence of exploits indicates a potential attack that must be

7

avoided to secure the network. The term topological vulnerability analysis is coined in [51]

which provides more details on how connectivity should be modeled at different layers.

In [29, 53], model checking is used for a different purpose, that is to enumerate all

attack paths. A modified model checker is used to take as input the finite-state machine

created from network information. The model checker provides all counterexamples to a

query about the safety of the goal states. Those are essentially the possible attack paths.

Other types of analysis are also discussed by the authors, including how to find a cut set

in the attack graph, such that goal conditions can no longer to reached. The problem of

finding the minimum possible attack that leads to the given goal conditions is shown to be

intractable. One apparent limitation of this approach is that all attack paths are explicitly

enumerated in its result, which leads to a combinatorial explosion.

A monotonic assumption is adopted in [1] to address the scalability of model checking-

based approaches. It states exploits will never cause the attacker to relinquish any pre-

viously obtained privileges. Attack paths can then be implicitly modeled as paths in a

directed graph including exactly one copy of each exploit and its pre- and post-conditions;

edges interconnect exploits to their conditions. The assumption thus reduces the complex-

ity of attack graph from exponential to polynomial in the number of hosts. However, it also

makes some attacks impossible if they disable services or invalidate vulnerabilities. Attack

graphs are generated using a two-pass search that first links exploits by starting from the

attacker's initial state and then removes those irrelevant states by searching backward from

the goal state.

8

In [39] the authors proposed a logic-based approach to attack graph generation to im-

prove the efficiency. Using this approach, the generated attack graph always has a poly-

nomial size in the size of analyzed network. A Network security analyzer MulVAL [40]

is used to build the attack graph generation tool. Here, each node of the attack graph

represents a logical statement and the edges define the relationship between network con-

figuration and what the privileges the attacker potentially could gain. Here, the main focus

is on the root causes of the attack. Using this logical attack graph representation, one can

obtain all the possible attack scenarios using a simple depth-first search. Using this repre-

sentation, it can also be ensured that an attack graph will always have a polynomial size in

the size of the network.

Attack graph has many different applications, such as the proactive detection of po-

tential multi-step attacks, the realtime detection of anomalies, the network hardening, and

computer forensic [29]. As attack graphs can reveal potential intrusions beforehand, it can

be used to incorporate security policies and IDS models into vulnerability scanning and

then to perform analysis and upgrade the defense system accordingly. It can be used to do

a cost/benefit analysis by finding the least cost way for hardening an insecure network. In

Forensics, attack graph is also use to find probable attacks and to assess damages of the

system [56]. For taking legal action against the attacker, the analyst needs to show attack

steps as evidence. Using attack graph, the whole attack paths can be matched to data ex-

tracted from IDS logs. In [22] the authors showed informal attack graphs are helpful in the

iterative design of a system used to protect sensitive data at a customer site.

9

2.2 Network Hardening

In [53] a minimum critical set is computed which is basically the minimum set of exploits

in the attack graph by disabling which we can harden the network. The minimum critical

attack set is essentially the concept of a cut set in graph theory. In [1], the authors propose

an algorithm called findMinimul to find the attack that takes the least number of steps from

the initial state to the goal condition to launch an attack. Another such approach proposed

in [29] introduces the minimum critical attack set in a more scalable way. However, all

these solutions cannot be directly used by system administrators as the set of exploits to

be disabled are unavoidable consequences of other exploits, which must be disabled in the

first place.

The concept of network hardening with respect to initially satisfied conditions is first

introduced in [36]. It is argued that disabling such initial conditions is a better choice

than minimum critical sets with respect to the need of security administrators. To disable

exploits in the critical set, we have also disable the causes of such exploits, which ultimately

leads to a set of security conditions that are initially satisfied and do not depend on others.

Such initial conditions are only the pre-condition of some exploits but they are not the post

condition of any exploit. This indicates that these conditions can be disabled independently.

Therefore, an effective hardening measure is to find the set of initial conditions disabling

which can disable the goal conditions.

This thesis is mainly inspired by the approach in [36] of finding a set of initial condi-

tions that can disable the given goal conditions and has the minimum cost. In that work,

10

the authors represent given critical network resources as a logic proposition of initial con-

ditions. To build the logic proposition, each vulnerability is first viewed as a Boolean

variable. The two connectives AND and OR are used where AND is used between condi-

tions required by the same exploit, and OR is used between the exploits implying the same

condition. A true condition means a condition is satisfied and false condition means it is

disabled for hardening the network. The hardening option is made explicit by transform-

ing the logic proposition into its disjunctive normal form (DNF). Each of the disjunctive

form is then treated as a solution to network hardening. The minimum-cost solution can be

chosen among these options. However, as we shall show, the procedure has an unavoidable

exponential worst-case complexity, because its result is exponential. So, for larger net-

works, enforcing this approach will be costly or even impossible depending on the number

of hosts and their connectivity. Our work addresses this issue with a heuristic approach that

yields reasonably good results in significantly less time .

2.3 Security Metric

The concept and overview of security metrics is given in [28] with methods of defining,

creating, and utilizing security metrics in enterprises. Also, relevant issues of security met-

rics are given in the 2001 Workshop on Information Security System Scoring and Rank-

ing [2]. Existing standardization efforts include the assessment of methods for measuring

the level of computer security [37], the security metrics guide for information technology

systems [57]. Some properties of security metric are also discussed in [11,12,38]. They

11

use MTTF and Markov model to measure the security of a network, which is based on

the success rate for an attacker that is distributed exponentially. In [3] the authors dis-

cussed using minimum efforts for executing exploits as a metric. Another approach uses

the weakest attack model showing the least number of conditions for an attack as a met-

ric [44]. The attack surface concept is a metric for measuring the vulnerability in software

against potential attacks [41^13].

Due to its capability of modeling correlated vulnerabilities, attack graph is used as the

basis of developing network security metric in [62]. A framework for a security metric is

proposed which includes several principles and methodologies. There are several general

requirements that any security metric should satisfy. That is, a longer path leading to the

attack goal means better security; multiple attack paths are less secure than any of the

paths alone; executing an exploit may change the difficulty of executing another exploit,

even if the two do not directly depend on each other in the attack graph; the security of a

network should be measured against all relevant resources with different weights and each

reconfiguration may incur a certain cost that must be considered together with security.

The framework is instantiated as an attack resistance metric in [4]. The proposed attack

resistance metrics is based on two compositions assuming the attack resistant either as

a real number or a set of initial security conditions. This metric helps to quantify the

comparison among the security of different network configurations. Another work defines a

probabilistic security metric based on the same framework [60]. The goal is to calculate an

overall score for the network and use it to measure how secure the given critical resources

in a network are. To define the basic metric, each exploit and condition is associated with

a probability to measure the intrinsic likelihood of the exploit. The value assignments

for these individual probabilities are based on some basic measurements, such as, how

difficult the exploit is, which are available in standards like CVSS [9]. Then, a cumulative

probability score is calculated as the probability of an exploit to be successfully exploited

in an attack graph based on the probability of other exploits. To calculate the cumulative

scores, the conjunction and disjunction relationships among exploits must be distinguished.

Cycles are handled during calculating the probabilities of exploits.

2.4 Other Related Work

A parallel research topic is alert correlation, which reconstructs multi-step attack scenarios

from isolated alerts. They may employ prior knowledge about attack strategies [8,14,15,18]

or the causal relationships between attacks [7,32,33]. Those methods may either aggregate

alerts with similar attributes [6,13,55,59] or statistical patterns [30,46]. Hybrid approaches

also exist that combine different techniques for better results [33,47,63]. Alerts missed

by IDSs can be tolerated by clustering alerts with similar attributes [34], and incomplete

knowledge can be pieced together through statistical analyses [46,47].

Alert correlation techniques are also used for other purposes such as to relate alerts

to the same thread of attacks [25]. The privacy issue of intrusion detection and in par-

ticular alert correlation is investigated in [64], Alert correlation is a potential method for

dealing with insider attacks in [48,49]. Existing efforts on integrating information from

different sources exist, such as the model in M2D2 [31] and the Bayesian network-based

13

approach [65]. Some commercial products claim to support realtime analyses of alerts such

as Tivoli Risk Manager [23].

14

Chapter 3

Preliminary

In this section, we briefly review some important concepts that are relevant to our further

discussions. First, we introduce attack graph and its related concepts. Second, we formalize

the network hardening problem. Third, we introduce the probabilistic security metric in

order to make our later discussion on partial hardening self-contained. Finally, we review

standard heuristic approaches and explain how they can potentially be integrated with our

heuristics.

3.1 Attack Graph

An attack graph is a graphical model of inter-dependent vulnerabilities on networked hosts.

An attack graph is a directed graph whose set of nodes is partitioned into two classes,

namely, exploits and security conditions (or simply conditions). An exploit is typically

represented as a predicate v(hs, hd), where hs and hd represent two connected hosts and v a

15

vulnerability on the destination host hd. A security condition is a predicate c(h), indicating

the host h satisfies a condition c relevant to one or more exploits. Notice that hs, hd, and

v are abstract notations that could in practice possess different semantics, for example, hs

and hd can be host names, IP addresses, and so on, and v can be the name of a vulnerability

or its ID in a vulnerability database. These are formalized in Definition 1.

Definition 1 An attack graph G is a directed graph G(E U C. Rr U /?.,;) where the set of

nodes include E, a set of exploits, and C, a set of conditions, and the set of edges include

the require relation Rr C C x E and the imply relation Ri C E x C.

Corresponding to the inter-dependency between exploits and conditions, the two types

of edges in an attack graph have different semantics. First, the require relation Rr is a

directed edge pointing from a condition to an exploit, which means the exploit cannot be

executed unless the condition is satisfied. For example, an exploit v(hs, hd) requires fol-

lowing two conditions, that is the existence of the vulnerability v on hd and the connectivity

between hs and hd. Second, the imply relation R t pointing from an exploit to a condition

means executing the exploit will satisfy the condition. Notice that there is no edge directly

connecting two exploits (or two conditions).

Figure 1 shows a small example of attack graphs. We assume a simple scenario where

a file server (host 1) offers the File Transfer Protocol (ftp), secure shell (ssh), and remote

shell (rsh) services; a database server (host 2) offers ftp and rsh services. The firewall

only allows ftp, ssh, and rsh traffic from a user workstation (host 0) to both servers. In the

attack graph, exploits of vulnerabilities are depicted as predicates in ovals and conditions

as predicates in clear texts. The two numbers inside parentheses denote the source and

destination host, respectively. The attack graph represents three self-explanatory sequences

of attacks (attack paths).

ftp(0,l) usei<0) ftp(0,2)

Figure 1: An Example of Attack Graph

Two important semantics of attack graphs are as follows. First, the require relation is

always conjunctive whereas the imply relation is always disjunctive. More specifically, an

exploit cannot be realized until all of its required conditions have been satisfied, whereas

17

a condition can be satisfied by any one of the realized exploits. Second, the conditions

are further classified as initial conditions (the conditions not implied by any exploit) and

intermediate conditions. An initial condition can be independently disabled to harden a

network, whereas an intermediate condition usually cannot be [36].

To generate an attack graph, two types of inputs are necessary, namely, type graph and

configuration graph. Type graph represents expert knowledge about the dependency rela-

tionshin between vulnerabilities. On the other hand, configuration eranh represents hosts

and their connectivity and vulnerability information. We assume the domain knowledge

required for type graph is available from tools like the Topological Vulnerability Analysis

(TVA) system, which covers more than 37,000 vulnerabilities taken from 24 information

sources including X-Force, Bugtraq, CVE, CERT, Nessus, and Snort [27]. On the other

can be obtained using available network scanning tools, such as the Nessus scanner [17].

3.2 The Network Hardening Problem

i i

though Figure 1 is a relatively simple scenario with three hosts and four vulnerabilities,

because multiple interleaved attack paths can lead to the goal condition, an optimal solu-

such a solution by hand may not be trivial, either. As an example of attack paths, the

18

Input: An attack graph G(E IJ C, Rr U Rt) and the goal
conditions Cg C C

Output: A solution set L which needs to disable
Method:
1. Calculate the smallest cost of the initial conditions
2. Sort the initial conditions IC according to the cost and sort same cost elements

according to their effective cost
3. Make the cost of condition = 0 and cost of exploit = infinity
4. Set 5 = GenSet(jc)
5. Make each element of S explored
6. TVa verse G in BFS manner
7. For each condition c do
8. If c is explored
9. If all the exploits that imply c are explored
10. Make solution of c = combination of all solutions of exploits implying c
11. Make cost of c = combination of all the cost of the exploits that imply c
12. Enqueue all the exploits that require c
13. Else
14. Put c back in queue
15. For each exploit e do
16. If e is explored
17. If all the conditions required by e are explored
18. Make solution of e = smallest cost solution of the condition that required by e
19. Make cost of e = cost of the smallest cost condition
20. Enqueue all the conditions that implied by e
21. Else
22. Put e back into queue
23. If the Goal is not disabled
24. Goto step 4
25. Return solution of Cg

Figure 10: The Second Heuristic Approach

conditions are disabled) or condition (when all of the exploits implying it are disabled).

More specifically, a condition should be marked as disabled only if all of the exploits

implying it are explored and disabled; it should be marked explored (but not disabled) if all

of the exploits implying it are explored but at least one of them is not disabled. Otherwise,

we cannot make any decision since the unexplored exploit may or may not be disabled in

the future when we explore it. For an exploit, it should be marked as disabled if at least one

of the required conditions is disabled; it should be marked explored (but not disabled) if all

40

of the required conditions are explored but not disabled. We cannot make any decision if

none of the required conditions is explored.

However, cycles in attack graphs may bring additional difficulties to network hardening

approaches. For example, consider the attack graph shown in Figure 11, which includes a

cycle c5 —»• e3 —> c6 —» e4 —• c5.

In traversing the graph, after we disable el and reach c5, we need to make the decision

whether c5 should be marked as disabled and explored. As aforementioned, we cannot

make any decision here since the unexplored exploit e4 implies c5 and e4 may or may not

be disabled in the future when we explore it. Similarly, when we proceed from c3 and c4

to e3, since e3 depends on c5 that is still not explored, we cannot make any decision. Such

an inter-dependency between c5 and e4 thus will cause the algorithm to stop. However, we

can easily see that in this particular case, e3 and e4 can never be exploited if el is disabled.

cl

Figure 11: An Example of Cycle in Attack Graph

41

Therefore, we should simply regard all nodes inside the cycle as disabled.

More generally, the following enumerates the different cases we may have in handling

cycles.

• As illustrated in the left-hand side of Figure 12 (0 indicates disabled and 1 not dis-

abled), if we reach a cycle through a condition and if all the exploits required by

this condition are not disabled, and if no other exploit from outside the cycle can

satisfy the required conditions inside the cycle, then all the nodes will be considered

disabled.

• As illustrated in the right-hand side of Figure 12, if we reach a cycle through a condi-

tion and if all the exploits required by this condition are not disabled, and if any other

exploit from outside the cycle can satisfy the required condition inside the cycle, then

all the nodes will be considered not disabled.

• As illustrated in the left-hand side of Figure 13, if we reach a cycle through an exploit

and if all the conditions required by this exploit are not disabled, and if no other

exploit from outside the cycle can satisfy the required condition inside the cycle,

then all the nodes will be considered disabled.

• As illustrated in the right-hand side of Figure 13, if we reach a cycle through an

exploit and if all the conditions which required by this exploit are not explored, and

if any other exploit from outside the cycle can satisfy the required condition inside

the cycle, then all the nodes will be considered not disabled.

42

0 ^ J 0

Figure 12: Case 1 and 2

4.4 Partial Network Hardening

In hardening a network, fully harden the network to disable the goal condition is not always

an option. Sometimes this may require such a high cost that it outweighs the security risk.

We consider a simple model where a constraint is given as the highest amount of cost that

can be accepted for any hardening solution. With such a constraint, a network may not be

fully hardened since the optimal solution may have a cost higher than the given constraint.

The only remaining choice is a best effort approach in reducing the likelihood of attacks.

We employ the security metric introduced in previous sections to measure such a likelihood.

We then extend our previous approach to a partial hardening solution for reducing the risk

of, instead of eliminating, potential attacks on the goal condition.

In Figure 14, we annotate each exploit in the attack graph with its individual score. All

the conditions have the individual score of 1, which is omitted. Assume the cost constraint

is given as 12. We can easily see that the network cannot be fully hardened, as the least-cost

43

Figure 13: Case 3 and 4

solution is to disable both cl and c2, which has a cost of 14.

Table 2 and Table 3 show the calculations of the cumulative scores for conditions and

exploits, respectively.

Table 2: Cumulative Scores of Conditions

Condition P(c) P(c)
cl 1 1
c2 1 1
c3 1 1
c4 1 0.9
c5 1 0.6
c6 1 0.4
c7 1 0.24
g 1 0.048

We extend our algorithm in the previous section to provide partial hardening solutions

for reducing the cumulative score of the goal condition. More precisely, we modify the

algorithm in such a way that by disabling a node, we change its individual score as zero,

indicating that the node cannot be reached any longer. We then update the cumulative

44

Cost: 6 Cost: 8 Cost: 10

cl c2 c3

c4 c5 c6

1
c p

Figure 14: An Attack Graph with Probability Scores

scores based on the new individual scores. In doing so, we attempt to search for a solution

that can yield the least cumulative score for the goal condition, with the cost of the solution

below the given constraint.

The algorithm will thus starts with cl, which has the least cost. By disabling cl, we

change the cumulative score of el, c4, and e4 to be zero (which in this particular case

basically eliminates the left branch of the attack graph). Table 4 and Table 5 show the

updated cumulative scores after this partial hardening. We can see that the goal condition

now has a cumulative score of 0.014, which is smaller than its original value.

The algorithm will then proceed to disable c2 and c3, respectively (since cl and c2

together will not satisfy the cost constraint). The cumulative score for the goal condition in

those two cases is 0.278 and 0.328, respectively. Clearly, the best solution is to disable cl.

45

Table 3: Cumulative Scores of Exploits

Exploit P(e) P(e)
el 0.9 0.9
e2 0.6 0.6
e3 0.4 0.4
e4 0.2 0.18
e5 0.3 0.072
e6 0.2 0.048

Table 4: Cumulative Scores of Conditions after Partial Hardening

Condition p(c) P(c)
cl 1 1
c2 1 1
c3 1 1
c4 1 0
c5 1 0.6
c6 1 0.4
c7 1 0.072
g 1 0.014

The above procedure is more formally described in Figure 15.

Table 5: Cumulative Scores of Exploits after Partial Hardening

Exploit P(e) P(e)
el 0.9 0
e2 0.6 0.6
e3 0.4 0.4
e4 0.2 0
e5 0.3 0.072
e6 0.2 0.0144

46

Input: An attack graph G(E U C ^ U Ri) ,the goal and Afford cost ac
conditions Cg C C

Output: A solution set L which needs to disable
Method:
1. Calculate the smallest cost of the initial conditions
2. Sort the initial conditions IC according to effective cost
3. Make the cost of condition = 0 and cost of exploit = infinity
4. Set S = GenSet(IC)
5. Make each element of S explored
6. Traverse G in BFS manner
7. For each condition c do
8. If c is explored
9. If all the exploits that imply c are explored
10. Make solution of c = combination of all the solutions of the exploits that imply c
11. Make cost of c = combination of all the cost of the exploits that imply c
12. If cost c>ac
13. Put c back to traverse again
14. Else
15. Enqueue all the exploits that require c
16. For each exploit e do
17. If e is explored
18. If all the conditions required by e are explored
19. Make solution of e = smallest cost solution of the condition that required by e
20. Make cost of e = cost of the smallest cost condition
21. If cost e>ac
22. Put e back to traverse again
23.
24.
25.
26.
27.

Enqueue all the conditions that implied by e
If the Goal is not disabled

Goto step 4
Return solution of Cg

Else

Figure 15: The Procedure for Partial Network Hardening

47

Chapter 5

Simulation Results

All experiments are based on a PC equipped with one Intel Core 2 Duo 1.86 GHz CPU, 1

GB of RAM, Microsoft Windows XP Professional with Service Pack 2. For graph render-

ing we use the Graph Viz visualization package [54]. For development, Netbeans 5.5 and

jdkl.6.0_01 is used. The main objective of the experiments is to compare the performance

of the proposed heuristic algorithms and that of the optimal solution, in terms of both time

taken and quality of the hardening result (that is, the cost of the hardening solution).

All the synthetic attack graphs were randomly generated using a Java program we de-

veloped. The generation is based on a set of adjustable parameters. These parameters

control the size of the network, the number of abstract exploits, the number of conditions,

the relationships between exploits and conditions, the way exploits and conditions are as-

signed to hosts, the choice of goal conditions, and so on. We shall show simulation results

based on varying choices of such parameters in the rest of this section to demonstrate the

effectiveness of our algorithms when applied to different types of attack graphs.

5.1 Performance Comparison Based on Time

Figure 16 compares the performance of our heuristic approach 1 with that of the optimal

solution (that is, exhaustive search) in terms of the time taken by the two methods (in mil-

lisecond). The size of attack graphs varies from 10 to 50 nodes. For attack graphs with 50

nodes, the optimal cost calculation takes approximately 6000 ms for calculating the net-

work hardening solution and our proposed algorithm takes approximately 80 ms to gener-

ate the heuristic solution. We can see the time taken by the optimal solution increases very

fast, which is as expected, whereas the heuristic algorithm increases significantly slower

(not quite observable in this figure). The heuristic method thus provides administrators

with a reasonably efficient solution.

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of nodes

Figure 16: Comparison of Time Taken by the Heuristic Approach 1 and the Optimal Solu-
tion

49

Figure 17 compares the performance of the two heuristic approaches in terms of the

time taken. The size of attack graphs also varies from 10 to 50 nodes. We also vary

the distribution of exploits among hosts. One set of the curves correspond to uniform

distribution and the other set normal distribution. We can see that different distributions of

exploits has only a small effect on the performance of both approaches. Also, the second

heuristic approach (that is, to sort initial conditions first based on cost then on effective

cost) performs slightly better than the first approach.

Number of Nodes

Figure 17: Comparison of Time Taken by the Two Heuristic Approaches with Different
Distributions of Exploits

Figure 18 compares the cost of solutions produced by the optimal solution and the

heuristic approach. Although the cost of our solution is relatively higher than the optimal

solution, the difference is small. Considering the significant gain in terms of performance,

50

our solution has clear advantages over exhaustive search. Also, we can see that the differ-

ence between the two solutions stays relatively stable when the attack graph size increases.

Number of Nodes

Figure 18: Comparison of the Cost of Solutions Produced by the Heuristic Approach 1 and
the Optimal Approach

Figure 19 compares the cost of different heuristic solutions with exploits assigned ac-

cording to uniform and normal distributions. We can see that, although the cost produced

by both approaches is slightly lower with the normal distribution than uniform distribution,

the difference is almost negligible. This indicate both approaches work well for different

types of attack graphs.

51

8

6

— H o u r i s t i c l (random)
—•— Heuristic2(random)

Heuristicl (normal disti
Heuristic2(ncrmal disti

5

</>4 o o
3

2

0
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 43 50

Number of Nodes

Figure 19: Comparison of the Cost of Solutions Produced by the Heuristic Approaches

5.2 Performance Comparison with Varying Number of Ini-

tial Conditions

Since the cost of network hardening critical depends on the number of initial conditions, we

study the effect of such number on the performance of our algorithms. Figure 20 compares

the time taken by heuristic approach 1 and the optimal solution. The trends are very similar

to Figure 16. Clearly, the heuristic solution has a much better scalability than exhaustive

search.

Figure 21 compares the time taken by the two heuristic approaches under different

distributions of exploits. We can see the difference is minor. Both algorithms scale roughly

52

Number of Initial Conditions

Figure 20: Comparison of Time Taken by the Heuristic Approach 1 and the Optimal Solu-
tion

the same when the number of initial conditions increases.

Figure 22 compares the cost of the solutions produced by the heuristic approach and

that by the exhaustive search. We can see that difference is relatively small, which indicates

the effectiveness of our approach. Also, we can see that although the absolute value of the

difference increases as the number of initial conditions increases (due to the fact that both

solutions have a higher cost), the relative difference does not change as much.

Figure 23 compares the cost of the solutions produced by the two heuristic approaches.

We can see that the difference is negligible. Both approaches produce roughly the same

result, which indicates that the effectiveness of our solutions are not affected much by the

distribution of exploits among hosts.

53

60

50

40

• Heuristic 1 (random)
—•—Heuristic2(random)

Heuristic 1 (normal dist)
Heuristic2(normal dist)

£ 3 0
©
E

H 2 0 — —

10

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Initial Conditions

Figure 21: Comparison of Time Taken by the two Heuristic Approaches

5.3 Performance Comparison with Ratio between Imply/Re-

quire Relations

We have mentioned that there exists an important semantic difference between the imply

relation over an exploit and its post-conditions, which is always disjunctive, and the require

relation between an exploit and its pre-conditions, which is always conjunctive. Therefore,

the ratio between those two types of relations may affect the way our algorithms search

the attack graph. To measure such effect, we conduct experiments while varying the ra-

tio of require/imply relations. In Figure 24, we can see that the time taken by both our

heuristic approach and the exhaustive search increases when the ratio increases. This is be-

cause when each initial condition is required by more exploits, the search starting from the

54

Initial Conditions

Figure 22: Comparison of the Cost of Solutions Produced by the Heuristic Approach 1 and
the Optimal Approach

same number of initial conditions will involve a larger portion of the attack graph and thus

takes more time. However, the heuristic approach clearly outperforms exhaustive search

regardless of the ratio.

In Figure 25, we compare the time taken by the two heuristic approaches under varying

ratios of require and imply relationships. We can see that the difference is marginal. The

two heuristic approaches both performs well regardless of the ratio.

Figure 26 compares the cost of solutions produced by the exhaustive search and that by

the heuristic approach 1 under varying ratios of require and imply relationships. We can see

that the cost decreases with both approaches when the ratio increases. This is because when

each exploit requires more conditions, it is easier to harden the network since disabling one

55

Initial Conditions

Figure 23: Comparison of the Cost of Solutions Produced by the Heuristic Approach 1 and
the Optimal Approach

condition will prevent more exploits. We can see also that the difference between the

heuristic approach and optimal solution is small, indicating our approach is effective.

Figure 27 compares the cost of solutions produced by the two heuristic approaches

under varying ratios of require and imply relationships. We can see that the difference

between the two heuristic approaches is marginal indicating that both approaches perform

roughly the same regardless of the ratio.

56

0 . 2 0 . 4 0 . 6 0 . 3 1 1 . 2 5 1 . 6 2 , 5 5
Ratio of require/imply

Figure 24: Comparison of Time Taken by the Heuristic Approach 1 and the Optimal Solu-
tion with Varying Require/Imply Ratio

5.4 Performance Comparison with Ratio between Exploits

and Conditions

We now study the effect of the ratio between exploits and conditions on the performance

of our approaches. Figure 28 compares the time taken by the heuristic approach and the

optimal solution under varying ratio between exploits and conditions. We can see that when

the number of conditions increases both solutions require more running time. The reason

lies in the fact that the number of initial conditions also increases. However, we can see

that the heuristic solution outperforms the exhaustive search regardless of the ratio.

Figure 29 compares the time taken by both heuristic solutions. We can see that the

57

0.2 0.4 0.6 0.8 1 1 25 1 6 2.5 5
Ratio of require/imply

Figure 25: Comparison of Time Taken by the two Heuristic Approaches with Varying
Require/Imply Ratio

second heuristic approach takes slightly more time but the difference is small, so both

approaches perform well regardless of the ratio.

Figure 30 compares the cost of solutions produced by the heuristic solution 1 and that

by the optimal solution. We can see that the cost decreases when the ratio increases. This

is because when there are more conditions, it is relatively easier to disable each exploit so

the cost of a solution decreases. We can also see that the difference is small, indicating our

approach is effective regardless of the ratio.

Figure 31 compares the cost of solutions produced by the heuristic solutions. We can

see that the difference is marginal, indicating both approaches perform roughly the same

regardless of the ratio.

58

0.2 0.4 0.6 0.8 1 1.25 1.6 2.5 5
Ratio of require/imply

Figure 26: Comparison of the Cost of Solutions of the Heuristic Approach 1 and the Opti-
mal Solution with Varying Require/Imply Ratio

5.5 Performance Evaluation for Partial Network Harden-

ing

To evaluate our performance of partial network hardening approaches we chose attack

graphs which have individual probability assigned for each of the nodes then calculate

the cumulative probability for them. Let all the cost constrain is the 20% of the optimal

cost solution which is showed in the second figure. Then we calculate the cumulative prob-

abilities for the goal condition and hence compare them to show the reduced value. We

denote the original cumulative probability of goal condition as P(g) and our calculated one

as PS(g) in the graph.

59

0.2 0.4 0.6 0.8 1 1.25 1.6 2.5 5
Ratio of require/imply

Figure 27: Comparison of the Cost of Solutions of the Heuristic Approaches with Varying
Require/Imply Ratio

5.6 Summary

From all the experiment results, we can clearly see that the heuristic approaches can pro-

duce a reasonably good solution in significantly less time then exhaustive search. The

variation in different aspects of attack graphs has only a minor effect on the performance

of our solutions both in terms of time taken and the quality of solutions (that is, the cost).

60

7000

6000

5000

— 4000 W
E
^ 3000
E

i= 2000

1000

0

Figure 28: Comparison of Time Taken by the Heuristic Approach 1 and the Optimal Solu-
tion with Varying Exploit/Condition Ratio

100

0 H I 1 1 1 1 1 : 1
0.2 0.4 0.6 0.3 1 1.25 1.6 2.5 5

Ratio of condition/exploit

Figure 29: Comparison of Time Taken by the Heuristic Approaches with Varying Exploit/-
Condition Ratio

m a;:;:;:; , :ri • -• I ar—-f—--»=, -mm—, m 1 ""=—i 1 **•
0.2 0.4 0.6 0.8 1 1.25 1.6 2.5 5

Ratio of condition/exploit

61

10
9
8

S 5

3 4
3
2
1

-Optimal

-Hauristicl

0.2 0.4 0.6 0.8 1 1.25 1.6
Ratio of condition/exploit

2.5

Figure 30: Comparison of the Cost of Solutions of the Heuristic Approach 1 and the Opti-
mal Solution with Varying Exploit/Condition Ratio

0.2 0.4 0.6 0.8 1 1.25 1.6
Ratio of condition/exploit

2.5

Figure 31: Comparison of the Cost of Solutions of the Heuristic Approaches with Varying
Exploit/Condition Ratio

62

J-
in

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

• p (g)

•P ' (g)

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Total Nodes

Figure 32: Comparison of Probability of Goal Condition for without and with Partial Net-
work Hardening

5

4.5

4

3.5

3

2.5

2

1.5

1
0.5

0

• Actual Cost

• Afford Cost

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 4 0

Total Nodes

Figure 33: Comparison of Actual Cost and Afford Cost for Partial Network Hardening

63

Chapter 6

Conclusion

In this thesis, we have pointed out that existing approaches to network hardening by de-

riving a logic proposition and converting it to its DNF suffer from an exponential time

complexity. In this thesis, we have studied heuristic methods for solving this important

problem. We evaluated our proposed solutions through extensive simulations. All results

have shown that our solution can achieve reasonably good results in significantly less time

than the exhaustive searches. For scenarios where additional cost constraints may prevent

a full hardening, we have extended our heuristic methods to a partial hardening solution

based on probabilistic security metric. Such solutions could provide best possible improve-

ments in terms of security. Our future work include integrating other heuristics to future

improve the performance, especially for the case of partial hardening.

64

Publication

Publication related to this thesis:

• Tania Islam, Lingyu Wang, "A Heuristic Approach to Reducing the Cost of Network

Hardening Using Attack Graph," Proc. The 2nd IFIP International Conference on

New Technologies, Mobility and Security (NTMS 2008), November 5 - 7, 2008,

pages 1-5.

• Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajodia, "An At-

tack Graph-Based Probabilistic Security Metric," Proc. 22nd Annual IFIP WG 11.3

Working Conference on Data and Applications Security (DBSEC 2008) , Springer-

Verlag Lecture Notes in Computer Science (LNCS), Vol. 5094, July 13-16, 2008,

pages 283-296.

65

Bibliography

[1] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network vul-

nerability analysis. In Proceedings of the 9th ACM Conference on Computer and

Communications Security (CCS'02), pages 217-224, 2002.

[2] Applied Computer Security Associates. Workshop on. In Information Security System

Scoring and Ranking, 2001.

[3] D. Balzarotti, M. Monga, and S. Sicari. Assessing the risk of using vulnerable com-

ponents. In Proceedings of the 1st Workshop on Quality of Protection, 2005.

[4] Steve Barker and Gail-Joon Ahn, editors. Measuring the Overall Security of Network

Configurations Using Attack Graphs, volume 4602 of Lecture Notes in Computer

Science. Springer, 2007.

[5] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Comput. Surv., 35(3):268-308, 2003.

[6] F. Cuppens. Managing alerts in a multi-intrusion detection environment. In Proceed-

ings of the 17th Annual Computer Security Applications Conference (ACS AC'01),

66

2001.

[7] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection

framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy

(S&P'02), pages 187-200, 2002.

[8] F. Cuppens and R. Ortalo. LAMBDA: A language to model a database for detection

of attacks. In Proceedings of the 3rd International Symposium on Recent Advances in

Intrusion Detection (RAID '01), pages 197-216, 2001.

[9] Common vulnerability scoring system - SIG. available at: http://www.first.org/cvss/,

Accessed May 2008.

[10] Network associates,cybercop scanner. Available at

http://www.nss.co.uk/grouptests/va/edition2/nai_cybercop_scanner/nai_cybercop_scanner.htm.

[11] M. Dacier. Towards quantitative evaluation of computer security. Ph.D. Thesis, Insti-

tut National Polytechnique de Toulouse, 1994.

[12] M. Dacier, Y. Deswarte, and M. Kaaniche. Quantitative assessment of operational

security: Models and tools. Technical Report 96493, 1996.

[13] O. Dain and R.K. Cunningham. Building scenarios from a heterogeneous alert sys-

tem. In Proceedings of the 2001 IEEE Workshop on Information Assurance and Se-

curity, 2001.

67

http://www.first.org/cvss/
http://www.nss.co.uk/grouptests/va/edition2/nai_cybercop_scanner/nai_cybercop_scanner.htm

[14] O. Pain and R.K. Cunningham. Fusing a heterogeneous alert stream into scenarios. In

Proceedings of the ACM Workshop on Data Mining for Security Applications, pages

1-13,2001.

[15] H. Debar and A. Wespi. Aggregation and correlation of intrusion-detection alerts.

In Proceedings of the 3rd International Symposium on Recent Advances in Intrusion

Detection (RAID'01), pages 85-103, 2001.

[16] R. Deraison. Nessus scanner, 1999. Available at http://www.nessus.org.

[17] R. Deraison. Nessus scanner, 1999. Available at http://www.nessus.org.

[18] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An attack language for state-

based intrusion detection. Journal of Computer Security, 10(1/2):71-104, 2002.

[19] D. Farmer and E.H. Spafford. The COPS security checker system. In USENIX Sum-

mer, pages 165-170, 1990.

[20] Dan Farmer and Wietse Venema. Satan:security administrator's tool for analyzing

networks, 1995.

[21] Manfred GILLI and Peter WINKER. A review of heuristic optimization methods in

econometrics. Swiss Finance Institute Research Paper Series 08-12, Swiss Finance

Institute.

[22] Suvajit Gupta and Joel Winstead. Using attack graphs to design systems. Security &

Privacy, IEEE, 5(4):80-83, July-Aug. 2007.

68

http://www.nessus.org
http://www.nessus.org

[23] IBM. IBM tivoli risk manager. Available at http://www.ibm.com/software/tivoli/

products/risk-mgr/.

[24] G. Laporte I.H. Osman. Metaheuristics: A bibliography. Annals of Operations Re-

search, 63(5):511-623, 1996.

[25] SRI International. Event monitoring enabling responses to anomalous live distur-

bances (EMERALD). Available at http:// www.sdl.sri.com/projects/emerald/.

[26] System Scanner Internet Security Systems. Internet security systems, system scanner.

Available at http://www.iss.net.

[27] S. Jajodia, S. Noel, and B. O'Berry. Topological analysis of network attack vulnera-

bility. In V. Kumar, J. Srivastava, and A. Lazarevic, editors, Managing Cyber Threats:

Issues, Approaches and Challenges. Kluwer Academic Publisher, 2003.

[28] A. Jaquith. In Security Metrics: Replacing Fear, Uncertainty, and Doubt. Addison

Wesley, 2007.

[29] S. Jha, O. Sheyner, and J.M. Wing. Two formal analysis of attack graph. In Proceed-

ings of the 15th Computer Security Foundation Workshop (CSFW'02), 2002.

[30] Klaus Julisch and Marc Dacier. Mining intrusion detection alarms for actionable

knowledge. In Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 366-375, 2002.

69

http://www.ibm.com/software/tivoli/
http://www.sdl.sri.com/projects/emerald/
http://www.iss.net

[31] B. Morin, L. Me, H. Debar, and M. Ducasse. M2D2: A formal data model for IDS

alert correlation. In Proceedings of the 5th International Symposium on Recent Ad-

vances in Intrusion Detection (RAID'02), pages 115-137, 2002.

[32] P. Ning, Y. Cui, and D.S. Reeves. Constructing attack scenarios through correlation

of intrusion alerts. In Proceedings of the 9th ACM Conference on Computer and

Communications Security (CCS'02), pages 245-254, 2002.

[33] P. Ning and D. Xu. Learning attack strategies from intrusion alerts. In Proceedings

of the 10th ACM Conference on Computer and Communications Security (CCS'03),

2003.

[34] P. Ning, D. Xu, C.G. Healey, and R.S. Amant. Building attack scenarios through

integration of complementary alert correlation methods. In Proceedings of the 11th

Annual Network and Distributed System Security Symposium (NDSS'04), pages 97-

111,2004.

[35] Nmap-network mapper. Available at http://nmap.org/index.html.

[36] S. Noel, S. Jajodia, B. O'Berry, and M. Jacobs. Efficient minimum-cost network hard-

ening via exploit dependency grpahs. In Proceedings of the 19th Annual Computer

Security Applications Conference (ACSAC'03), 2003.

[37] National Institute of Standards and Technology. Technology assessment: Methods for

measuring the level of computer security. NIST Special Publication 500-133, 1985.

70

http://nmap.org/index.html

[38] R. Ortalo, Y. Deswarte, and M. Kaaniche. Experimenting with quantitative evaluation

tools for monitoring operational security. IEEE Trans. Software Eng., 25(5):633-650,

1999.

[39] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable approach to attack

graph generation. In CCS '06: Proceedings of the 13th ACM conference on Computer

and communications security, pages 336-345, 2006.

[40] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. Mulval: a logic-

based network security analyzer. In SSYM'05: Proceedings of the 14th conference

on USENIX Security Symposium, pages 8-8, Berkeley, CA, USA, 2005. USENIX

Association.

[41] J. Wing P. Manadhata. Measuring a system's attack surface. Technical Report CMU-

CS-04-102, 2004.

[42] J. Wing R Manadhata. An attack surface metric. Technical Report CMU-CS-05-155,

2005.

[43] J. Wing P. Manadhata. An attack surface metric. In First Workshop on Security

Metrics (MetriCon), 2006.

[44] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. A weakest-adversary security

metric for network configuration security analysis. In Proceedings of the 2nd ACM

workshop on Quality of protection, pages 31-38, New York, NY, USA, 2006. ACM

Press.

71

[45] Cynthia Phillips and Laura Painton Swiler. A graph-based system for network-

vulnerability analysis. In NSPW '98: Proceedings of the 1998 workshop on New

security paradigms, pages 71-79, New York, NY, USA, 1998. ACM.

[46] X. Qin and W. Lee. Statistical causality analysis of INFOSEC alert data. In Proceed-

ings of the 6th International Symposium on Recent Advances in Intrusion Detection

(RAID 2003), pages 591-627, 2003.

[47] X. Qin and W. Lee. Discovering novel attack strategies from INFOSEC alerts. In

Proceedings of the 9th European Symposium on Research in Computer Security (ES-

ORICS 2004), pages 439^56, 2004.

[48] A. R. Chinchani andlyer, H. Ngo, and S. Upadhyay. Towards a theory of insider threat

assessment. In Proceedings of the IEEE International Conference on Dependable

Systems and Networks (DSN'05), 2005.

[49] I. Ray and N. Poolsappasit. Using attack trees to identify malicious attacks from

authorized insiders. In Proceedings of the 10th European Symposium on Research in

Computer Security (ESORICS'OS), 2005.

[50] R. Ritchey and P. Ammann. Using model checking to analyze network vulnerabilities.

In Proceedings of the 2000 IEEE Symposium on Research on Security and Privacy

(S&P'OO), pages 156-165, 2000.

72

[51] R. Ritchey, B. O'Berry, and S. Noel. Representing TCP/IP connectivity for topo-

logical analysis of network security. In Proceedings of the 18th Annual Computer

Security Applications Conference (ACSAC'02), page 25, 2002.

[52] M. Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of

the 1999 USENIX LISA Conference, pages 229-238, 1999.

[53] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated generation

and analysis of attack graphs. In Proceedings of the 2002 IEEE Symposium on Secu-

rity and Privacy (S&P'02), pages 273-284, 2002.

[54] AT&T Labs. Graphviz Graph Visualization Software. Graphviz - graph visualization

software. Available at http://www.graphviz.org/.

[55] S. Staniford, J.A. Hoagland, and J.M. McAlerney. Practical automated detection of

stealthy portscans. Journal of Computer Security, 10(1/2): 105-136, 2002.

[56] P. Stephenson. Using formal methods for forensic analysis of intrusion events- - a pre-

liminary examination, white paper, available at http://www.imfgroup.com/Document

Library, html.

[57] M. Swanson, N. Bartol, J. Sabato, J. Hash, and L. Graffo. Security metrics guide for

information technology systems. NIST Special Publication 800-55, 2003.

[58] Steven J. Templeton and Karl Levitt. A requires/provides model for computer attacks.

In NSPW '00: Proceedings of the 2000 workshop on New security paradigms, pages

31-38, New York, NY, USA, 2000. ACM.

http://www.graphviz.org/
http://www.imfgroup.com/Document

[59] A. Valdes and K. Skinner. Probabilistic alert correlation. In Proceedings of the 4th

International Symposium on Recent Advances in Intrusion Detection, pages 54-68,

2001.

[60] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-based prob-

abilistic security metric. In DBSEC'08: Proc. 22nd Annual IF IP WG 11.3 Working

Conference on Data and Applications Security, 2008.

[61] L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening using attack

graphs. Computer Communications, 29(18):3812-3824, 11 2006.

[62] L. Wang, A. Singhal, and S. Jajodia. Toward measuring network security using attack

graphs. In QoP '07: Proceedings of the 2007ACM workshop on Quality of protection,

pages 49-54, 2007.

[63] D. Xu and P. Ning. Alert correlation through triggering events and common resources.

In Proceedings of the 20th Annual Computer Security Applications Conference (AC-

SAC'04), pages 360-369, 2004.

[64] D. Xu and P. Ning. Privacy-preserving alert correlation: A concept hierarchy based

approach. In Proceedings of the 21st Annual Computer Security Applications Con-

ference (ACSAC'05), 2005.

[65] Y. Zhai, P. Ning, P. Iyer, and D. Reeves. Reasoning about complementary intrusion

evidence. In Proceedings of the 20th Annual Computer Security Applications Confer-

ence (ACSAC'04), pages 39-48, 2004.

74

