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ABSTRACT 

A Heuristic Approach to Network Hardening Using Attack Graphs 

Tania Islam 

In defending against multi-step attacks, network hardening answers the following impor-

tant question: Which vulnerabilities must be removed from a network in order to prevent 

attackers from compromising critical resources while minimizing the implied cost in terms 

of availability or administrative efforts. Existing approaches to network hardening derive a 

logic proposition to represent the negation of the attack goal in terms of initially satisfied 

security conditions. In the disjunctive normal form (DNF) of the logic proposition, each 

disjunction then provides a viable solution to network hardening. However, such solutions 

suffer from an exponential time complexity. In this thesis, we study heuristic methods 

for solving this important problem with reasonable complexity. We evaluate our proposed 

solutions through extensive experiments. The results show that our solution can achieve 

reasonably good network hardening results in significantly less time than the optimal so-

lution would require. Also, for scenarios where additional cost constraints may render a 

perfectly secure network hardening solution impossible, we extend our heuristic methods 

to partial hardening solutions. Such solutions can provide best possible improvement in 

terms of security under given cost constraints. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Protecting computer networks in enterprises and critical infrastructures against malicious 

intrusions is crucial to the economy and national security. Various intrusion detection sys-

tems (IDSs) and vulnerability scanners have been developed to protect networks against 

malicious attacks. Nonetheless, we have seen an increasing threat from network intrusions 

in terms of both scale and severity despite over twenty years of research in vulnerability 

analysis and intrusion detection. 

One of the reasons to the increasing threat from network attacks is that most existing 

tools can only identify vulnerabilities or attacks in isolation. On the contrary, attackers usu-

ally exploit multiple correlated vulnerabilities to evade detection or firewalls or to gradually 

elevate their privilege in a network. The isolated alerts or vulnerabilities reported by IDSs 

and vulnerability scanners thus only provide a partial picture about multi-step sophisticated 
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attacks. The sheer number of alarms raised by those tools will usually render them difficult 

to analyze and eventually lead them to be completely ignored by security administrators. 

Moreover, a vulnerability analysis often assumes that all identified weaknesses will be 

immediately removed. However, in practice, this is usually not the case. The removal of 

vulnerabilities is often complicated by environmental factors (the availability of software 

patches or hardware upgrades), cost factors (in terms of money or administrative efforts), 

or mission factors (the demand for availability and usability). In many cases, a security 

administrator may have to live with some of the discovered vulnerabilities. A critical ques-

tion thus naturally arises: Which vulnerabilities should be removed first in order to prevent 

attacks while reducing the implied costs? This question is usually named the network hard-

ening problem. 

There exist solutions for network hardening using attack graphs [53,61] (the next chap-

ter will give a detailed review of the literature). Attack graph is a well accepted model 

for correlated vulnerabilities. By correlating vulnerabilities through common pre- or post-

conditions, an attack graph can help a security administrator to understand the threat of 

potential multi-step attacks and to determine potential attack paths, which may be regarded 

as an automated penetration testing. However, attack graph does not directly provide a 

solution for removing identified threats. Finding the solution by hands for large networks 

whose attack graphs are usually very complicated is generally not feasible. 

On the other hand, an automated hardening method regards correlated vulnerabilities 

as combinations of Boolean variables [61]. To secure critical resources represented as goal 

conditions in an attack graph, a logic proposition is derived based on the attack graph. 
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The logic proposition is then converted to its disjunctive normal form (DNF) in the set of 

initially satisfied conditions. Then a least-cost network hardening options can be chosen 

among the conjunctive clauses in the DNF. However, finding a minimum-cost solution in 

this way is expensive, because the length of a derived logic proposition may be exponential 

in the number of initial conditions or in the size of an attack graph. Nonetheless, con-

sidering the practical impact of the problem, heuristic solutions are clearly desirable for 

obtaining low-cost hardening solutions within a reasonable time limit. 

1.2 Thesis Contribution 

This thesis focuses on finding feasible solutions for network hardening when given time or 

cost constraints do not allow for an optimal solution to be derived. More specifically, our 

main contributions are the following. 

• We point out limitations of existing attack graph-based network hardening approaches. 

We show that such methods have an exponential worst case complexity which pre-

vents them from scaling to large networks. We also point out that given constraints 

on the cost of hardening solutions may lead such methods to produce no solution at 

all, which is clearly not desirable. 

• We study a series of heuristic algorithms as candidate solutions. The algorithms 

all aim to find a set of initially satisfied security conditions for disabling such that 

potential attacks on critical resources may be prevented while the cost for disabling 

such conditions remains reasonably low. We show the worst case scenario of each 
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such candidate algorithm and point out limitations of the algorithms. 

• We propose the main heuristic approach based on insights obtained while studying 

the candidate solutions. This approach sorts conditions based on not only cost but 

also the number exploits requiring that condition, and it includes a forward search in 

the attack graph with a limited degree of backtracking. We instantiate the approach 

as two heuristic algorithms with slightly different ways of sorting the conditions. 

• We also study situations where a perfectly secure hardening solution cannot be de-

rived due to given cost constraints. We extend our heuristic approaches to a partial 

hardening solution based on a probabilistic security metric. This solution reduces the 

risk of potential multi-step attacks to the least possible degree with respect to given 

cost constraints. 

• We conduct comprehensive experiments to compare the performance of our solu-

tions with the optimal solution in terms of the cost of resulted hardening solutions 

and the time taken to compute such solutions. We vary different parameters in gen-

erating random attack graphs, such as the size of attack graphs, the number of initial 

conditions, the ratio between exploits and conditions, and the ratio between different 

relationships among exploits and conditions. All results show that our solution can 

produce reasonably good hardening solutions while taking significant less time limit 

than exhaustive search does. 
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1.3 Organization of the Thesis 

In Chapter 2, we discuss related work on attack graph and its construction, analysis and 

different applications where it has been successfully applied. In Chapter 3, we review the 

background knowledge of our work. We describe attack graphs and related concepts, and 

we formally define the network hardening problem and the partial hardening problem. In 

Chapter 4, we first study candidate solutions which provide us critical insights to our main 

heuristic solutions. We then present our main heuristic solutions in details and analyze 

potential difficulties in reducing the cost and how our proposed algorithms can overcome 

them. We also discuss the proposed partial hardening solutions in this chapter. In Chapter 

5, we show experimental results on the comparison between our heuristic methods and the 

optimal method for network hardening with respect to both the cost of computed solutions 

and the time taken. Finally, in chapter 6 we conclude the thesis and discuss potential future 

work. 
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Chapter 2 

Literature Review 

In this chapter, we review the literature on the generation, analysis, and application of attack 

graphs. We also discuss other work that are relevant to our research. 

2.1 Attack Graph 

For protecting systems against malicious attacks, there exist various intrusion detection 

systems (IDSs) and vulnerability scanners, such as Nessus [16], Nmap [35], Snort [52], 

Cisco security scanner, SATAN [20], System Scanner by ISS [26], CyberCop [10] and 

Computer Oracle and Password System (COPS) [19]. Those solutions are being applied in 

real world networks and they can render attacking such networks much more difficult than 

without such solutions in place. However, existing solutions usually identify vulnerabilities 

or attacks in isolation, which only provides a partial picture about securing a network since 

today's attackers typically employ sophisticated multi-step attacks. 
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Phillips and Swiler [45] propose the concept of attack graph and they also present a 

graph-based approach for generating attack graphs. In their model, the inputs of an at-

tack graph include configuration files, attacker profiles, and a database of attack templates, 

which must be manually created. The nodes of the attack graph are attack templates in-

stantiated with particular users and machines, whereas edges are labeled by probabilities 

of success or cost of attacks. The graphs can be analyzed to find the shortest paths between 

given start and end nodes. The idea of grouping similar nodes is mentioned although the 

correctness critically depends on identical configuration among such nodes. 

Another model [58] expresses attack graphs with the require and provide approach 

using the precondition and postcondition of each exploit. For each successful attack, the 

attacker can obtain the ability to perform more attack steps so each successful exploitation 

increases his/her capabilities in launching new attacks. An attack specification language 

JIGSAW is used in describing attack steps. The language requires low level details of 

capabilities and requirements of attacks which may be hard to obtain. This require and 

provide approach brings flexibility in discovering potentially new attack scenarios. Using 

this language and the given specifications, an IDS and attack analysis system can be created. 

In [50], model checking is applied to the analysis of multi-step network attacks. Known 

vulnerabilities on network hosts, connectivity between hosts, initial capabilities of the at-

tacker are described as states and exploits as transitions between states. This model is given 

to a model checker as its input and the reachability in terms of given goal states is given 

as a query. The model checker then produces a counterexample if a sequence of exploits 

can lead to goal states. Such a sequence of exploits indicates a potential attack that must be 
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avoided to secure the network. The term topological vulnerability analysis is coined in [51] 

which provides more details on how connectivity should be modeled at different layers. 

In [29, 53], model checking is used for a different purpose, that is to enumerate all 

attack paths. A modified model checker is used to take as input the finite-state machine 

created from network information. The model checker provides all counterexamples to a 

query about the safety of the goal states. Those are essentially the possible attack paths. 

Other types of analysis are also discussed by the authors, including how to find a cut set 

in the attack graph, such that goal conditions can no longer to reached. The problem of 

finding the minimum possible attack that leads to the given goal conditions is shown to be 

intractable. One apparent limitation of this approach is that all attack paths are explicitly 

enumerated in its result, which leads to a combinatorial explosion. 

A monotonic assumption is adopted in [1] to address the scalability of model checking-

based approaches. It states exploits will never cause the attacker to relinquish any pre-

viously obtained privileges. Attack paths can then be implicitly modeled as paths in a 

directed graph including exactly one copy of each exploit and its pre- and post-conditions; 

edges interconnect exploits to their conditions. The assumption thus reduces the complex-

ity of attack graph from exponential to polynomial in the number of hosts. However, it also 

makes some attacks impossible if they disable services or invalidate vulnerabilities. Attack 

graphs are generated using a two-pass search that first links exploits by starting from the 

attacker's initial state and then removes those irrelevant states by searching backward from 

the goal state. 
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In [39] the authors proposed a logic-based approach to attack graph generation to im-

prove the efficiency. Using this approach, the generated attack graph always has a poly-

nomial size in the size of analyzed network. A Network security analyzer MulVAL [40] 

is used to build the attack graph generation tool. Here, each node of the attack graph 

represents a logical statement and the edges define the relationship between network con-

figuration and what the privileges the attacker potentially could gain. Here, the main focus 

is on the root causes of the attack. Using this logical attack graph representation, one can 

obtain all the possible attack scenarios using a simple depth-first search. Using this repre-

sentation, it can also be ensured that an attack graph will always have a polynomial size in 

the size of the network. 

Attack graph has many different applications, such as the proactive detection of po-

tential multi-step attacks, the realtime detection of anomalies, the network hardening, and 

computer forensic [29]. As attack graphs can reveal potential intrusions beforehand, it can 

be used to incorporate security policies and IDS models into vulnerability scanning and 

then to perform analysis and upgrade the defense system accordingly. It can be used to do 

a cost/benefit analysis by finding the least cost way for hardening an insecure network. In 

Forensics, attack graph is also use to find probable attacks and to assess damages of the 

system [56]. For taking legal action against the attacker, the analyst needs to show attack 

steps as evidence. Using attack graph, the whole attack paths can be matched to data ex-

tracted from IDS logs. In [22] the authors showed informal attack graphs are helpful in the 

iterative design of a system used to protect sensitive data at a customer site. 
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2.2 Network Hardening 

In [53] a minimum critical set is computed which is basically the minimum set of exploits 

in the attack graph by disabling which we can harden the network. The minimum critical 

attack set is essentially the concept of a cut set in graph theory. In [1], the authors propose 

an algorithm called findMinimul to find the attack that takes the least number of steps from 

the initial state to the goal condition to launch an attack. Another such approach proposed 

in [29] introduces the minimum critical attack set in a more scalable way. However, all 

these solutions cannot be directly used by system administrators as the set of exploits to 

be disabled are unavoidable consequences of other exploits, which must be disabled in the 

first place. 

The concept of network hardening with respect to initially satisfied conditions is first 

introduced in [36]. It is argued that disabling such initial conditions is a better choice 

than minimum critical sets with respect to the need of security administrators. To disable 

exploits in the critical set, we have also disable the causes of such exploits, which ultimately 

leads to a set of security conditions that are initially satisfied and do not depend on others. 

Such initial conditions are only the pre-condition of some exploits but they are not the post 

condition of any exploit. This indicates that these conditions can be disabled independently. 

Therefore, an effective hardening measure is to find the set of initial conditions disabling 

which can disable the goal conditions. 

This thesis is mainly inspired by the approach in [36] of finding a set of initial condi-

tions that can disable the given goal conditions and has the minimum cost. In that work, 
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the authors represent given critical network resources as a logic proposition of initial con-

ditions. To build the logic proposition, each vulnerability is first viewed as a Boolean 

variable. The two connectives AND and OR are used where AND is used between condi-

tions required by the same exploit, and OR is used between the exploits implying the same 

condition. A true condition means a condition is satisfied and false condition means it is 

disabled for hardening the network. The hardening option is made explicit by transform-

ing the logic proposition into its disjunctive normal form (DNF). Each of the disjunctive 

form is then treated as a solution to network hardening. The minimum-cost solution can be 

chosen among these options. However, as we shall show, the procedure has an unavoidable 

exponential worst-case complexity, because its result is exponential. So, for larger net-

works, enforcing this approach will be costly or even impossible depending on the number 

of hosts and their connectivity. Our work addresses this issue with a heuristic approach that 

yields reasonably good results in significantly less time . 

2.3 Security Metric 

The concept and overview of security metrics is given in [28] with methods of defining, 

creating, and utilizing security metrics in enterprises. Also, relevant issues of security met-

rics are given in the 2001 Workshop on Information Security System Scoring and Rank-

ing [2]. Existing standardization efforts include the assessment of methods for measuring 

the level of computer security [37], the security metrics guide for information technology 

systems [57]. Some properties of security metric are also discussed in [11,12,38]. They 
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use MTTF and Markov model to measure the security of a network, which is based on 

the success rate for an attacker that is distributed exponentially. In [3] the authors dis-

cussed using minimum efforts for executing exploits as a metric. Another approach uses 

the weakest attack model showing the least number of conditions for an attack as a met-

ric [44]. The attack surface concept is a metric for measuring the vulnerability in software 

against potential attacks [41^13]. 

Due to its capability of modeling correlated vulnerabilities, attack graph is used as the 

basis of developing network security metric in [62]. A framework for a security metric is 

proposed which includes several principles and methodologies. There are several general 

requirements that any security metric should satisfy. That is, a longer path leading to the 

attack goal means better security; multiple attack paths are less secure than any of the 

paths alone; executing an exploit may change the difficulty of executing another exploit, 

even if the two do not directly depend on each other in the attack graph; the security of a 

network should be measured against all relevant resources with different weights and each 

reconfiguration may incur a certain cost that must be considered together with security. 

The framework is instantiated as an attack resistance metric in [4]. The proposed attack 

resistance metrics is based on two compositions assuming the attack resistant either as 

a real number or a set of initial security conditions. This metric helps to quantify the 

comparison among the security of different network configurations. Another work defines a 

probabilistic security metric based on the same framework [60]. The goal is to calculate an 

overall score for the network and use it to measure how secure the given critical resources 

in a network are. To define the basic metric, each exploit and condition is associated with 



a probability to measure the intrinsic likelihood of the exploit. The value assignments 

for these individual probabilities are based on some basic measurements, such as, how 

difficult the exploit is, which are available in standards like CVSS [9]. Then, a cumulative 

probability score is calculated as the probability of an exploit to be successfully exploited 

in an attack graph based on the probability of other exploits. To calculate the cumulative 

scores, the conjunction and disjunction relationships among exploits must be distinguished. 

Cycles are handled during calculating the probabilities of exploits. 

2.4 Other Related Work 

A parallel research topic is alert correlation, which reconstructs multi-step attack scenarios 

from isolated alerts. They may employ prior knowledge about attack strategies [8,14,15,18] 

or the causal relationships between attacks [7,32,33]. Those methods may either aggregate 

alerts with similar attributes [6,13,55,59] or statistical patterns [30,46]. Hybrid approaches 

also exist that combine different techniques for better results [33,47,63]. Alerts missed 

by IDSs can be tolerated by clustering alerts with similar attributes [34], and incomplete 

knowledge can be pieced together through statistical analyses [46,47]. 

Alert correlation techniques are also used for other purposes such as to relate alerts 

to the same thread of attacks [25]. The privacy issue of intrusion detection and in par-

ticular alert correlation is investigated in [64], Alert correlation is a potential method for 

dealing with insider attacks in [48,49]. Existing efforts on integrating information from 

different sources exist, such as the model in M2D2 [31] and the Bayesian network-based 
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approach [65]. Some commercial products claim to support realtime analyses of alerts such 

as Tivoli Risk Manager [23]. 
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Chapter 3 

Preliminary 

In this section, we briefly review some important concepts that are relevant to our further 

discussions. First, we introduce attack graph and its related concepts. Second, we formalize 

the network hardening problem. Third, we introduce the probabilistic security metric in 

order to make our later discussion on partial hardening self-contained. Finally, we review 

standard heuristic approaches and explain how they can potentially be integrated with our 

heuristics. 

3.1 Attack Graph 

An attack graph is a graphical model of inter-dependent vulnerabilities on networked hosts. 

An attack graph is a directed graph whose set of nodes is partitioned into two classes, 

namely, exploits and security conditions (or simply conditions). An exploit is typically 

represented as a predicate v(hs, hd), where hs and hd represent two connected hosts and v a 
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vulnerability on the destination host hd. A security condition is a predicate c(h), indicating 

the host h satisfies a condition c relevant to one or more exploits. Notice that hs, hd, and 

v are abstract notations that could in practice possess different semantics, for example, hs 

and hd can be host names, IP addresses, and so on, and v can be the name of a vulnerability 

or its ID in a vulnerability database. These are formalized in Definition 1. 

Definition 1 An attack graph G is a directed graph G(E U C. Rr U /?.,;) where the set of 

nodes include E, a set of exploits, and C, a set of conditions, and the set of edges include 

the require relation Rr C C x E and the imply relation Ri C E x C. 

Corresponding to the inter-dependency between exploits and conditions, the two types 

of edges in an attack graph have different semantics. First, the require relation Rr is a 

directed edge pointing from a condition to an exploit, which means the exploit cannot be 

executed unless the condition is satisfied. For example, an exploit v(hs, hd) requires fol-

lowing two conditions, that is the existence of the vulnerability v on hd and the connectivity 

between hs and hd. Second, the imply relation R t pointing from an exploit to a condition 

means executing the exploit will satisfy the condition. Notice that there is no edge directly 

connecting two exploits (or two conditions). 

Figure 1 shows a small example of attack graphs. We assume a simple scenario where 

a file server (host 1) offers the File Transfer Protocol (ftp), secure shell (ssh), and remote 

shell (rsh) services; a database server (host 2) offers ftp and rsh services. The firewall 

only allows ftp, ssh, and rsh traffic from a user workstation (host 0) to both servers. In the 

attack graph, exploits of vulnerabilities are depicted as predicates in ovals and conditions 



as predicates in clear texts. The two numbers inside parentheses denote the source and 

destination host, respectively. The attack graph represents three self-explanatory sequences 

of attacks (attack paths). 

ftp(0,l) usei<0) ftp(0,2) 

Figure 1: An Example of Attack Graph 

Two important semantics of attack graphs are as follows. First, the require relation is 

always conjunctive whereas the imply relation is always disjunctive. More specifically, an 

exploit cannot be realized until all of its required conditions have been satisfied, whereas 
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a condition can be satisfied by any one of the realized exploits. Second, the conditions 

are further classified as initial conditions (the conditions not implied by any exploit) and 

intermediate conditions. An initial condition can be independently disabled to harden a 

network, whereas an intermediate condition usually cannot be [36]. 

To generate an attack graph, two types of inputs are necessary, namely, type graph and 

configuration graph. Type graph represents expert knowledge about the dependency rela-

tionshin between vulnerabilities. On the other hand, configuration eranh represents hosts 

and their connectivity and vulnerability information. We assume the domain knowledge 

required for type graph is available from tools like the Topological Vulnerability Analysis 

(TVA) system, which covers more than 37,000 vulnerabilities taken from 24 information 

sources including X-Force, Bugtraq, CVE, CERT, Nessus, and Snort [27]. On the other 

can be obtained using available network scanning tools, such as the Nessus scanner [17]. 

3.2 The Network Hardening Problem 

i i 

though Figure 1 is a relatively simple scenario with three hosts and four vulnerabilities, 

because multiple interleaved attack paths can lead to the goal condition, an optimal solu-

such a solution by hand may not be trivial, either. As an example of attack paths, the 
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Input: An attack graph G(E IJ C, Rr U Rt) and the goal 
conditions Cg C C 

Output: A solution set L which needs to disable 
Method: 
1. Calculate the smallest cost of the initial conditions 
2. Sort the initial conditions IC according to the cost and sort same cost elements 

according to their effective cost 
3. Make the cost of condition = 0 and cost of exploit = infinity 
4. Set 5 = GenSet(jc) 
5. Make each element of S explored 
6. TVa verse G in BFS manner 
7. For each condition c do 
8. If c is explored 
9. If all the exploits that imply c are explored 
10. Make solution of c = combination of all solutions of exploits implying c 
11. Make cost of c = combination of all the cost of the exploits that imply c 
12. Enqueue all the exploits that require c 
13. Else 
14. Put c back in queue 
15. For each exploit e do 
16. If e is explored 
17. If all the conditions required by e are explored 
18. Make solution of e = smallest cost solution of the condition that required by e 
19. Make cost of e = cost of the smallest cost condition 
20. Enqueue all the conditions that implied by e 
21. Else 
22. Put e back into queue 
23. If the Goal is not disabled 
24. Goto step 4 
25. Return solution of Cg 

Figure 10: The Second Heuristic Approach 

conditions are disabled) or condition (when all of the exploits implying it are disabled). 

More specifically, a condition should be marked as disabled only if all of the exploits 

implying it are explored and disabled; it should be marked explored (but not disabled) if all 

of the exploits implying it are explored but at least one of them is not disabled. Otherwise, 

we cannot make any decision since the unexplored exploit may or may not be disabled in 

the future when we explore it. For an exploit, it should be marked as disabled if at least one 

of the required conditions is disabled; it should be marked explored (but not disabled) if all 
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of the required conditions are explored but not disabled. We cannot make any decision if 

none of the required conditions is explored. 

However, cycles in attack graphs may bring additional difficulties to network hardening 

approaches. For example, consider the attack graph shown in Figure 11, which includes a 

cycle c5 —»• e3 —> c6 —» e4 —• c5. 

In traversing the graph, after we disable el and reach c5, we need to make the decision 

whether c5 should be marked as disabled and explored. As aforementioned, we cannot 

make any decision here since the unexplored exploit e4 implies c5 and e4 may or may not 

be disabled in the future when we explore it. Similarly, when we proceed from c3 and c4 

to e3, since e3 depends on c5 that is still not explored, we cannot make any decision. Such 

an inter-dependency between c5 and e4 thus will cause the algorithm to stop. However, we 

can easily see that in this particular case, e3 and e4 can never be exploited if el is disabled. 

cl 

Figure 11: An Example of Cycle in Attack Graph 
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Therefore, we should simply regard all nodes inside the cycle as disabled. 

More generally, the following enumerates the different cases we may have in handling 

cycles. 

• As illustrated in the left-hand side of Figure 12 (0 indicates disabled and 1 not dis-

abled), if we reach a cycle through a condition and if all the exploits required by 

this condition are not disabled, and if no other exploit from outside the cycle can 

satisfy the required conditions inside the cycle, then all the nodes will be considered 

disabled. 

• As illustrated in the right-hand side of Figure 12, if we reach a cycle through a condi-

tion and if all the exploits required by this condition are not disabled, and if any other 

exploit from outside the cycle can satisfy the required condition inside the cycle, then 

all the nodes will be considered not disabled. 

• As illustrated in the left-hand side of Figure 13, if we reach a cycle through an exploit 

and if all the conditions required by this exploit are not disabled, and if no other 

exploit from outside the cycle can satisfy the required condition inside the cycle, 

then all the nodes will be considered disabled. 

• As illustrated in the right-hand side of Figure 13, if we reach a cycle through an 

exploit and if all the conditions which required by this exploit are not explored, and 

if any other exploit from outside the cycle can satisfy the required condition inside 

the cycle, then all the nodes will be considered not disabled. 
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0 ^ J 0 

Figure 12: Case 1 and 2 

4.4 Partial Network Hardening 

In hardening a network, fully harden the network to disable the goal condition is not always 

an option. Sometimes this may require such a high cost that it outweighs the security risk. 

We consider a simple model where a constraint is given as the highest amount of cost that 

can be accepted for any hardening solution. With such a constraint, a network may not be 

fully hardened since the optimal solution may have a cost higher than the given constraint. 

The only remaining choice is a best effort approach in reducing the likelihood of attacks. 

We employ the security metric introduced in previous sections to measure such a likelihood. 

We then extend our previous approach to a partial hardening solution for reducing the risk 

of, instead of eliminating, potential attacks on the goal condition. 

In Figure 14, we annotate each exploit in the attack graph with its individual score. All 

the conditions have the individual score of 1, which is omitted. Assume the cost constraint 

is given as 12. We can easily see that the network cannot be fully hardened, as the least-cost 
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Figure 13: Case 3 and 4 

solution is to disable both cl and c2, which has a cost of 14. 

Table 2 and Table 3 show the calculations of the cumulative scores for conditions and 

exploits, respectively. 

Table 2: Cumulative Scores of Conditions 

Condition P(c) P(c) 
cl 1 1 
c2 1 1 
c3 1 1 
c4 1 0.9 
c5 1 0.6 
c6 1 0.4 
c7 1 0.24 
g 1 0.048 

We extend our algorithm in the previous section to provide partial hardening solutions 

for reducing the cumulative score of the goal condition. More precisely, we modify the 

algorithm in such a way that by disabling a node, we change its individual score as zero, 

indicating that the node cannot be reached any longer. We then update the cumulative 
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Figure 14: An Attack Graph with Probability Scores 

scores based on the new individual scores. In doing so, we attempt to search for a solution 

that can yield the least cumulative score for the goal condition, with the cost of the solution 

below the given constraint. 

The algorithm will thus starts with cl, which has the least cost. By disabling cl, we 

change the cumulative score of el, c4, and e4 to be zero (which in this particular case 

basically eliminates the left branch of the attack graph). Table 4 and Table 5 show the 

updated cumulative scores after this partial hardening. We can see that the goal condition 

now has a cumulative score of 0.014, which is smaller than its original value. 

The algorithm will then proceed to disable c2 and c3, respectively (since cl and c2 

together will not satisfy the cost constraint). The cumulative score for the goal condition in 

those two cases is 0.278 and 0.328, respectively. Clearly, the best solution is to disable cl. 
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Table 3: Cumulative Scores of Exploits 

Exploit P(e) P(e) 
el 0.9 0.9 
e2 0.6 0.6 
e3 0.4 0.4 
e4 0.2 0.18 
e5 0.3 0.072 
e6 0.2 0.048 

Table 4: Cumulative Scores of Conditions after Partial Hardening 

Condition p(c) P(c) 
cl 1 1 
c2 1 1 
c3 1 1 
c4 1 0 
c5 1 0.6 
c6 1 0.4 
c7 1 0.072 
g 1 0.014 

The above procedure is more formally described in Figure 15. 

Table 5: Cumulative Scores of Exploits after Partial Hardening 

Exploit P(e) P(e) 
el 0.9 0 
e2 0.6 0.6 
e3 0.4 0.4 
e4 0.2 0 
e5 0.3 0.072 
e6 0.2 0.0144 
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Input: An attack graph G(E U C ^ U Ri) ,the goal and Afford cost ac 
conditions Cg C C 

Output: A solution set L which needs to disable 
Method: 
1. Calculate the smallest cost of the initial conditions 
2. Sort the initial conditions IC according to effective cost 
3. Make the cost of condition = 0 and cost of exploit = infinity 
4. Set S = GenSet(IC) 
5. Make each element of S explored 
6. Traverse G in BFS manner 
7. For each condition c do 
8. If c is explored 
9. If all the exploits that imply c are explored 
10. Make solution of c = combination of all the solutions of the exploits that imply c 
11. Make cost of c = combination of all the cost of the exploits that imply c 
12. If cost c>ac 
13. Put c back to traverse again 
14. Else 
15. Enqueue all the exploits that require c 
16. For each exploit e do 
17. If e is explored 
18. If all the conditions required by e are explored 
19. Make solution of e = smallest cost solution of the condition that required by e 
20. Make cost of e = cost of the smallest cost condition 
21. If cost e>ac 
22. Put e back to traverse again 
23. 
24. 
25. 
26. 
27. 

Enqueue all the conditions that implied by e 
If the Goal is not disabled 

Goto step 4 
Return solution of Cg 

Else 

Figure 15: The Procedure for Partial Network Hardening 
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Chapter 5 

Simulation Results 

All experiments are based on a PC equipped with one Intel Core 2 Duo 1.86 GHz CPU, 1 

GB of RAM, Microsoft Windows XP Professional with Service Pack 2. For graph render-

ing we use the Graph Viz visualization package [54]. For development, Netbeans 5.5 and 

jdkl.6.0_01 is used. The main objective of the experiments is to compare the performance 

of the proposed heuristic algorithms and that of the optimal solution, in terms of both time 

taken and quality of the hardening result (that is, the cost of the hardening solution). 

All the synthetic attack graphs were randomly generated using a Java program we de-

veloped. The generation is based on a set of adjustable parameters. These parameters 

control the size of the network, the number of abstract exploits, the number of conditions, 

the relationships between exploits and conditions, the way exploits and conditions are as-

signed to hosts, the choice of goal conditions, and so on. We shall show simulation results 

based on varying choices of such parameters in the rest of this section to demonstrate the 

effectiveness of our algorithms when applied to different types of attack graphs. 



5.1 Performance Comparison Based on Time 

Figure 16 compares the performance of our heuristic approach 1 with that of the optimal 

solution (that is, exhaustive search) in terms of the time taken by the two methods (in mil-

lisecond). The size of attack graphs varies from 10 to 50 nodes. For attack graphs with 50 

nodes, the optimal cost calculation takes approximately 6000 ms for calculating the net-

work hardening solution and our proposed algorithm takes approximately 80 ms to gener-

ate the heuristic solution. We can see the time taken by the optimal solution increases very 

fast, which is as expected, whereas the heuristic algorithm increases significantly slower 

(not quite observable in this figure). The heuristic method thus provides administrators 

with a reasonably efficient solution. 

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 
Number of nodes 

Figure 16: Comparison of Time Taken by the Heuristic Approach 1 and the Optimal Solu-
tion 
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Figure 17 compares the performance of the two heuristic approaches in terms of the 

time taken. The size of attack graphs also varies from 10 to 50 nodes. We also vary 

the distribution of exploits among hosts. One set of the curves correspond to uniform 

distribution and the other set normal distribution. We can see that different distributions of 

exploits has only a small effect on the performance of both approaches. Also, the second 

heuristic approach (that is, to sort initial conditions first based on cost then on effective 

cost) performs slightly better than the first approach. 

Number of Nodes 

Figure 17: Comparison of Time Taken by the Two Heuristic Approaches with Different 
Distributions of Exploits 

Figure 18 compares the cost of solutions produced by the optimal solution and the 

heuristic approach. Although the cost of our solution is relatively higher than the optimal 

solution, the difference is small. Considering the significant gain in terms of performance, 
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our solution has clear advantages over exhaustive search. Also, we can see that the differ-

ence between the two solutions stays relatively stable when the attack graph size increases. 

Number of Nodes 

Figure 18: Comparison of the Cost of Solutions Produced by the Heuristic Approach 1 and 
the Optimal Approach 

Figure 19 compares the cost of different heuristic solutions with exploits assigned ac-

cording to uniform and normal distributions. We can see that, although the cost produced 

by both approaches is slightly lower with the normal distribution than uniform distribution, 

the difference is almost negligible. This indicate both approaches work well for different 

types of attack graphs. 
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Figure 19: Comparison of the Cost of Solutions Produced by the Heuristic Approaches 

5.2 Performance Comparison with Varying Number of Ini-

tial Conditions 

Since the cost of network hardening critical depends on the number of initial conditions, we 

study the effect of such number on the performance of our algorithms. Figure 20 compares 

the time taken by heuristic approach 1 and the optimal solution. The trends are very similar 

to Figure 16. Clearly, the heuristic solution has a much better scalability than exhaustive 

search. 

Figure 21 compares the time taken by the two heuristic approaches under different 

distributions of exploits. We can see the difference is minor. Both algorithms scale roughly 
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Number of Initial Conditions 

Figure 20: Comparison of Time Taken by the Heuristic Approach 1 and the Optimal Solu-
tion 

the same when the number of initial conditions increases. 

Figure 22 compares the cost of the solutions produced by the heuristic approach and 

that by the exhaustive search. We can see that difference is relatively small, which indicates 

the effectiveness of our approach. Also, we can see that although the absolute value of the 

difference increases as the number of initial conditions increases (due to the fact that both 

solutions have a higher cost), the relative difference does not change as much. 

Figure 23 compares the cost of the solutions produced by the two heuristic approaches. 

We can see that the difference is negligible. Both approaches produce roughly the same 

result, which indicates that the effectiveness of our solutions are not affected much by the 

distribution of exploits among hosts. 
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Figure 21: Comparison of Time Taken by the two Heuristic Approaches 

5.3 Performance Comparison with Ratio between Imply/Re-

quire Relations 

We have mentioned that there exists an important semantic difference between the imply 

relation over an exploit and its post-conditions, which is always disjunctive, and the require 

relation between an exploit and its pre-conditions, which is always conjunctive. Therefore, 

the ratio between those two types of relations may affect the way our algorithms search 

the attack graph. To measure such effect, we conduct experiments while varying the ra-

tio of require/imply relations. In Figure 24, we can see that the time taken by both our 

heuristic approach and the exhaustive search increases when the ratio increases. This is be-

cause when each initial condition is required by more exploits, the search starting from the 
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Initial Conditions 

Figure 22: Comparison of the Cost of Solutions Produced by the Heuristic Approach 1 and 
the Optimal Approach 

same number of initial conditions will involve a larger portion of the attack graph and thus 

takes more time. However, the heuristic approach clearly outperforms exhaustive search 

regardless of the ratio. 

In Figure 25, we compare the time taken by the two heuristic approaches under varying 

ratios of require and imply relationships. We can see that the difference is marginal. The 

two heuristic approaches both performs well regardless of the ratio. 

Figure 26 compares the cost of solutions produced by the exhaustive search and that by 

the heuristic approach 1 under varying ratios of require and imply relationships. We can see 

that the cost decreases with both approaches when the ratio increases. This is because when 

each exploit requires more conditions, it is easier to harden the network since disabling one 
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Initial Conditions 

Figure 23: Comparison of the Cost of Solutions Produced by the Heuristic Approach 1 and 
the Optimal Approach 

condition will prevent more exploits. We can see also that the difference between the 

heuristic approach and optimal solution is small, indicating our approach is effective. 

Figure 27 compares the cost of solutions produced by the two heuristic approaches 

under varying ratios of require and imply relationships. We can see that the difference 

between the two heuristic approaches is marginal indicating that both approaches perform 

roughly the same regardless of the ratio. 
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Figure 24: Comparison of Time Taken by the Heuristic Approach 1 and the Optimal Solu-
tion with Varying Require/Imply Ratio 

5.4 Performance Comparison with Ratio between Exploits 

and Conditions 

We now study the effect of the ratio between exploits and conditions on the performance 

of our approaches. Figure 28 compares the time taken by the heuristic approach and the 

optimal solution under varying ratio between exploits and conditions. We can see that when 

the number of conditions increases both solutions require more running time. The reason 

lies in the fact that the number of initial conditions also increases. However, we can see 

that the heuristic solution outperforms the exhaustive search regardless of the ratio. 

Figure 29 compares the time taken by both heuristic solutions. We can see that the 
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Figure 25: Comparison of Time Taken by the two Heuristic Approaches with Varying 
Require/Imply Ratio 

second heuristic approach takes slightly more time but the difference is small, so both 

approaches perform well regardless of the ratio. 

Figure 30 compares the cost of solutions produced by the heuristic solution 1 and that 

by the optimal solution. We can see that the cost decreases when the ratio increases. This 

is because when there are more conditions, it is relatively easier to disable each exploit so 

the cost of a solution decreases. We can also see that the difference is small, indicating our 

approach is effective regardless of the ratio. 

Figure 31 compares the cost of solutions produced by the heuristic solutions. We can 

see that the difference is marginal, indicating both approaches perform roughly the same 

regardless of the ratio. 
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Figure 26: Comparison of the Cost of Solutions of the Heuristic Approach 1 and the Opti-
mal Solution with Varying Require/Imply Ratio 

5.5 Performance Evaluation for Partial Network Harden-

ing 

To evaluate our performance of partial network hardening approaches we chose attack 

graphs which have individual probability assigned for each of the nodes then calculate 

the cumulative probability for them. Let all the cost constrain is the 20% of the optimal 

cost solution which is showed in the second figure. Then we calculate the cumulative prob-

abilities for the goal condition and hence compare them to show the reduced value. We 

denote the original cumulative probability of goal condition as P(g) and our calculated one 

as PS(g) in the graph. 
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Figure 27: Comparison of the Cost of Solutions of the Heuristic Approaches with Varying 
Require/Imply Ratio 

5.6 Summary 

From all the experiment results, we can clearly see that the heuristic approaches can pro-

duce a reasonably good solution in significantly less time then exhaustive search. The 

variation in different aspects of attack graphs has only a minor effect on the performance 

of our solutions both in terms of time taken and the quality of solutions (that is, the cost). 
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Figure 28: Comparison of Time Taken by the Heuristic Approach 1 and the Optimal Solu-
tion with Varying Exploit/Condition Ratio 
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Figure 29: Comparison of Time Taken by the Heuristic Approaches with Varying Exploit/-
Condition Ratio 
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Figure 30: Comparison of the Cost of Solutions of the Heuristic Approach 1 and the Opti-
mal Solution with Varying Exploit/Condition Ratio 
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Figure 31: Comparison of the Cost of Solutions of the Heuristic Approaches with Varying 
Exploit/Condition Ratio 
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Figure 32: Comparison of Probability of Goal Condition for without and with Partial Net-
work Hardening 
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Figure 33: Comparison of Actual Cost and Afford Cost for Partial Network Hardening 
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Chapter 6 

Conclusion 

In this thesis, we have pointed out that existing approaches to network hardening by de-

riving a logic proposition and converting it to its DNF suffer from an exponential time 

complexity. In this thesis, we have studied heuristic methods for solving this important 

problem. We evaluated our proposed solutions through extensive simulations. All results 

have shown that our solution can achieve reasonably good results in significantly less time 

than the exhaustive searches. For scenarios where additional cost constraints may prevent 

a full hardening, we have extended our heuristic methods to a partial hardening solution 

based on probabilistic security metric. Such solutions could provide best possible improve-

ments in terms of security. Our future work include integrating other heuristics to future 

improve the performance, especially for the case of partial hardening. 
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