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A B S T R A C T 

Robust Decentralized Supervisory Control of 

Discrete-Event Systems 

Mohammad Rahnamaei 

In this thesis we study robust supervisory control of discrete event systems in 

two different settings. First, we consider the problem of synthesizing a set of de-

centralized supervisors when the precise model of the plant is not known, but it is 

known that it is among a finite set of plant models. To tackle this problem, we form 

the union of all possible behaviors and construct an appropriate specification, from 

the given set of specifications, and solve the conventional decentralized supervisory 

control associated with it. We also prove that the given robust problem has a solu-

tion if and only if this conventional decentralized supervisory control problem has a 

solution. In another setting, we investigate the problem of synthesizing a set of com-

municating supervisors in the presence of delay in communication channels, and call 

it Unbounded Communication Delay Robust Supervisory Control problem (UCDR-

SC problem). In this problem, We assume that delay is unbounded but it is finite, 

meaning that any message sent from a local supervisor will be received by any other 

local supervisors after a finite but unknown delay. To solve this problem, we rede-

fine the supervisory decision making rules, introduce a new language property called 

unbounded-communication-delay-robust (UCDR), and present a set of conditions on 

the specification of the problem. We also show that the new class of languages that 

is the solution to this problem has some interesting relations with other observational 

languages. 
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"One thing is certain and the rest is lies; 

The Flower that once has blown for ever dies." 

-Omar Khayyam 
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Chapter 1 

Introduction 

The expanding use of highly complex technological systems in everyday life has given 

rise to new dynamic systems: computer and communication networks, automated 

manufacturing systems, and intelligent transportation systems to name a few. The 

dynamics of these systems are best characterized by the occurrence of some discrete 

events, such as hitting a keyboard, in an asynchronous fashion. This way, sending a 

packet through a communication channel is as much an event as turning that piece of 

communication device "on". This makes way for a better understanding of underlying 

system structure without using differential and difference equations that have been 

used for many decades. Moreover, for this class of systems, which appropriately 

named discrete-event systems, the modelling frameworks and mathematical tools that 

have been used to study time-driven precesses are inefficient. Discrete-event systems 

(DES for short) have been studied in different disciplines; mathematicians, computer 

scientists, and engineers have all added to the capabilities of discrete-event systems 

and made them powerful yet relatively young tools. 

As our understanding of discrete-event systems grows, so does the size of the 

problems we face. To face these problems we need to adapt some of the concepts and 

1 



techniques that we have used for time-driven systems. For instance, there comes the 

problem of state explosion as the number of subsystems increases which calls for a 

modular solution, or an inherently distributed system will encourage one to think of 

decentralized design to solve the problem. 

The doctorate thesis of P.J. Ramadge [1] under W.M. Wonham in 1983, was the 

first attempt to bring about two areas of 'control systems' and 'discrete mathematic' 

together, and the result of their work is what is known as the "Supervisory Control 

Theory of Discrete-Event Systems". Since then, many researchers contributed to this 

topic and broadened its domain to include topics such as fault recovery (e.g. [2; 3]), 

robustness (e.g. [4; 5]), and communication (e.g. [6; 7; 8]). 

In this thesis we first consider the problem of robust supervisory control with the 

framework that was proposed by Lin [4]. The work of Saboori and Hashtrudi Zad [9] 

will be our starting point as it includes partial observation, which is inevitable in 

distributed systems, and also provides necessary and sufficient conditions for the 

existence of centralized supervisor that satisfies the given conditions. We try to 

extend the results of [9] to include the case where a set of decentralized supervisors is 

required rather than just one centralized supervisor. Then, we focus on the problem of 

delay in communication channels, specifically, the problem of synthesizing distributed 

supervisors in the presence of unbounded delay in communication channels. We show 

that the existing work on this subject does not fully capture the problem and propose 

a new language property which combined with other conditions form the necessary 

and sufficient conditions for the existence of a solution to this problem. The next 

section reviews some of the related and background works on these subjects. 
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1.1 Literature Review 

1.1.1 Supervisory Control 

In Ramadge-Wonham framework [1], a DES is modeled as the generator of a formal 

language and can be thought of as the set of trajectories (or behaviors) of the system 

(or plant). This generator models the 'uncontrolled behavior' of the system, and so 

a supervisor is an external agent whose task is to change and modify this behavior. 

Each run of the systems is modeled by a sequence of events executable by the plant, 

and is called a string. The set of all executable events is called the alphabet. This set 

is partitioned into two disjoint sets of controllable and uncontrollable events, and so 

the supervisor's task is to observe a string generated by the plant and to restrict its 

possible extensions by disabling a subset of controllable events. The desired behavior 

is called specification and is used by the supervisor to determine whether a controllable 

event should be disabled or not. The concept of controllability is introduced to solve 

the problem of synthesizing a supervisor that can implement a given specification. 

The necessary and sufficient conditions for the solavbility of this problem are presented 

by the authors in [1], 

Lin and Wonham [10] (also Cieslak et al. [11]) partitioned the set of all executable 

events into two disjoint sets of observable and unobservable events, based on the as-

sumption that some of the executable events might not be available for the supervisor 

to decide upon, either for the lack of appropriate sensor or the nature of the event 

(e.g. failure event), hence the term partial observation. A supervisor under partial 

observation of the system only sees observable events in any run (string) of the system 

and thus it is possible for two different strings to cause the same observation for the 

supervisor. Should a supervisor makes similar decisions for any two look alike strings, 

the supervisor is called feasible. The concept of observability is then introduced to 
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form a set of necessary and sufficient conditions to solve the problem of synthesizing a 

feasible supervisor that can implement a given specification under partial observation. 

In another approach, Lin and Wonham investigated the problem of controlling 

distributed systems [12] and discussed that in such systems, no single supervisor 

is enough to generate the useful solution. And so, they argued that this type of 

systems require a decentralized solution, meaning more than one supervisor working 

together to achieve the given specification. Each of these individual supervisors (local 

supervisors) observes and controls part of the overall process and fusion of their 

individual decisions forms the control pattern. The authors considered the case where 

a set of specifications is given (each over a set of local events) that the associated 

local supervisor should achieve, and called the problem of synthesizing such a set of 

supervisors DSCOP, for Decentralized Supervisory Control and Observation Problem; 

later Rudie and Wonham called this type of problems LP, for local problems [13]. [12] 

presented sufficient conditions for the existence of a solution to DSCOP. 

Cieslak et al. [11] worked on distributed systems but considered the case where 

a single specification is given over the whole set of events and the problem is syn-

thesizing local supervisors such that behavior of the overall system under supervision 

precisely matches the given specification. [11] provided necessary and sufficient con-

ditions for the existence of a solution to this problem. Later [13] called this class of 

problems GPZT, for global problem with zero tolerance, and presented another class 

of decentralized control problems which is more general than GPZT and called it 

GP, for global problem. GP is a synthesis problem with tolerance which asks for the 

existence of a set of decentralized supervisors such that the behavior of the system 

under supervision lies in some given range. 

In [13] the authors argued that while LPs are enough to consider for manufactur-

ing system problems, communication protocol synthesis problems require GPs to be 
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addressed fully. Therefore they presented a decentralized counterpart to the concept 

of observability, namely coobservability, and presented a set of necessary and sufficient 

conditions for the existence of a solution to GPZT. They also presented a condition 

for the solvability of GP but argued that their method for constructing supervisors 

"plays it too safe" by choosing a solution close to the lower end of the given range of 

specification, and that no largest solution in a given range exits. 

Tsitsiklis [14] showed that observability of a specification can be checked in poly-

nomial time but argued that no polynomial-time algorithm can be found to construct 

the supervisor implementing that specification. Rudie and Willems [15] extended 

the results of Tsitsiklis for coobservability property and showed that it can also be 

checked in polynomial time with respect to the number of system's states. Both of 

these results does not hold if the specification is given as a range and the question is 

whether there exists an observable (a coobservable) solution in a given range. 

The problem with coobservability is that it is not preserved under union whereas 

controllability is preserved under union and thus a controllable sublanguage of a given 

specification can be found. Coobservability in the way that was introduced in [13] 

was proved to be closed under intersection. Many researchers worked based on these 

results but Prosser et al. [16] was the first to considered other fusion rules to combine 

the local supervisor's decisions, and later Yoo and Lafortune [17; 18] completed that 

work. [18] renamed conventional coobservability as ChP coobservability, for Conjunc-

tive and Permissive, based on the fact that local supervisor's decisions are intersected 

to form global control action and thus the default control action for a supervisor with 

non-sufficient information is to "enable" an event. They presented the notion of DhA 

coobservability, for Disjunctive and Antipermissive, for an architecture that extracts 

global control actions by forming the union of local decisions and so requires the 

default control action of local supervisors to be disablement of an event. [18] Com-

5 



bined these two methods to bring forward the most general class of coobservability, 

known as C&zP V D&.A coobservability, which employs fusion by union for a subset of 

controllable events and fusion by intersection for the rest of the controllable events. 

[18] also showed that D&A coobservability and C&P V D&A coobservability are not 

preserved under union or intersection. 

Takai et al. [19] presented fixed-point based characterization of all the classes of 

coobservable languages, investigated their closure under intersection (resp. union), 

gave a formula for computing superlanguage (resp. sublanguage), and also provided 

upper (resp. lower) bound for their formula where the respective coobservable class is 

not preserved under intersection (resp. union). The authors' mathematical approach 

in [19] has lead to the introduction of four new classes of coobservable languages 

which are more restrictive than the three investigated by [18]. 

The common assumption that in a distributed systems a local supervisor's view of 

an event is fixed (i.e. it always observes or never observes an event) was challenged by 

Huang et al. [20]. They argued that a supervisor may observe only some occurrence 

of an event and derived necessary and sufficient conditions for solving this variant 

of the decentralized control problem. They assumed that observation of a particular 

event by a local supervisor is dependant on that supervisor's state and introduced 

an analogous coobservability notion, namely state-based coobservability. [20] argued 

that this idea is particularly useful in problems where observation of some events is 

communicated between agents. 

1.1.2 Communicating Agents 

As researchers were busy trying to extend the domain of decentralized control, some 

began exploring the idea of incorporating communication between local supervisors. 

[21] tries to shed some light on this subject by assuming that local supervisors commu-
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nicate their state-estimates among themselves, and also comes up with a set of states 

where these communications should take place. In their approach, after coobservabil-

ity fails and thus it becomes clear that no set of non-communicating supervisors could 

achieve the given specification, a set of communication pairs is identified which con-

sists of a communication state and a string leading to that state. The communication 

event is an event that is observable to both supervisors, the sender and the receiver, 

but is only controlled by the sender, and later will be incorporated into the system 

structure. Measures are taken to insure consistency of communication and also an 

algorithm to find a minimal set of communication pairs is provided by the authors. 

Their method asks for a communication between agents 'at first opportunity' and this 

was the motivation for others to explore the idea further. 

Barrett and Lafortune [22] propose a framework for communication between agents, 

and to this end they consider extended traces over plant events to model communica-

tion. They derive necessary and sufficient conditions for the existence of a communica-

tion policy that enables local supervisors to precisely achieve a given specification. In 

this process they identify two different cases when controllers do and do not anticipate 

future communication, and show that controllers that anticipate future communica-

tion achieve a strictly larger class of languages than the ones that do not anticipate 

future communication. Finally, they present an algorithm to find an optimal com-

munication policy but argue that such an optimal solution is not unique. As [21], 

their work assumes zero-delay and lossless communication channels and also what is 

communicated between agents are state-estimates, but unlike [21], communication is 

two-way broadcast which means both supervisors exchange their local state-estimates 

when they initiate communication. Also the method used in [22] asks for a 'latest 

opportunity' communication between agents. 

Other researchers such as Rudie, Lafortune, and Lin [7; 8; 23] model communi-
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eating agents that instead of state-estimates, send occurrence of events among them-

selves. [7] considers only two communicating supervisors whose task is to distinguish 

between the states of their associated finite-state automaton and communicate their 

direct observation to one another. They also provide an algorithm which produces 

minimal communication pairs with a computational complexity that is exponential in 

the number of states of the two given finite-state automata. Wang et al. [23] considers 

a more general problem in which only the system model is given and the objective 

is that agents distinguish between a given set of system states for their unspecified 

monitoring, diagnosis, or control task. They further assume that in the system model 

no cycles other than self-loops exist, and derive a polynomial-time complexity (with 

respect to the number of system states) algorithm that computes a set of minimal 

communication pairs. 

[8] continues the previous work in [7] and introduces a new problem, minimizing 

the set of communication pairs when some essential transitions should always be 

included in the set. The authors change the assumption of [7] pertaining agents' 

task but use some definitions of that work to solve the new problem. They argue 

that essential transitions problem is more general than state disambiguation problem 

in the sense that any state disambiguation problem could be solved by the method 

proposed for the essential transitions problem the reverse could not be done. [8], like 

[7], is restricted to two communicating agents and the question of how to identify the 

essential transitions for a specific problem is left unanswered. 

1.1.3 Delay in Communication 

"Delay in communication" has been addressed in several contexts. Balemi [24] inves-

tigats an input/output supervisory control problem in which the plant and supervisor 

work in harmony through a closed-loop connection, that may or may not be subject 
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to communication delay. [24] models the delay of a language as a shift to the right in 

the position of elements of the language, and derives conditions for the existence of a 

supervisor when the specification is given over the output event set. 

Debouk et al. [25] considers the coordinated decentralized failure diagnosis prob-

lem when local sites communicate to a coordinator responsible for diagnosis. [25] 

assumes that communication delay causes out-of-order messages at the coordinator's 

site and argues that to achieve global ordering of these messages, one might either 

time-stamp each message for which synchronization of local clocks is needed, or alter-

natively design algorithm that order the messages arriving at the coordinator's site. 

The authors choose the second approach and present conditions on system structure 

under which failure diagnosis is eventually possible. [25] is restricted to two local sites 

when delay causes at most 'one-step out of order' messages in the coordinator site. 

Ricker and Schuppen [26] present a model for failure detection in decentralized 

timed DES with an arbitrary communication delay in which communication of local 

clock values are used to restore the reordering of messages. This approach had been 

considered by the authors in [25] as "too constraining". 

Tripakis in [27] proposes a class of languages called jointly observable and proves 

that decentralized observation problem is undecidable whereas centralized counter-

part, i.e. checking joint observability w.r.t. one observer, is decidable. The proof of 

undecidability is by reduction of Post's Correspondence problem [28]. Tripakis also 

argues that observation is related to control in the sense that controllers should base 

their decisions on their observations and by reducing a decentralized control prob-

lem to checking joint observability, he suggests that decentralized control problem is 

undecidable as well. Interestingly, comparing joint observability with coobservability 

shows that these two classes of languages are incomparable. [29] extends the previous 

work and presents a hierarchy of control problems with communication delay and 
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provides a proof that the decentralized supervisor synthesis problem with unbounded 

communication delay is undecidable, while the same problem becomes decidable with 

bounded-delay assumption. 

Sengupta and Tripakis [30] consider the problem of distributed fault diagnosis 

with unbounded delay and prove it to be undecidable. Qui et al. [31] investigates 

the same problem of distributed diagnosis with the assumption of unbounded delay, 

argues that the proposed property called decentralized diagnosability [30] does not 

completely capture distributed diagnosis problem, and proposes another property 

called jointoo-diagnosability which proves to be polynomially decidable. 

In a different context, Park and Cho [32; 33; 34] investigate centralized (resp. 

decentralized) supervisor synthesis problem when delay can occur in sensor and actu-

ators and propose a new property called delay observability (resp. delay coobservabil-

ity) which is required for the existence of a solution. In their work, delay in sensors 

and actuators will cause some uncontrollable events to occur before proper control 

action is applied to the plant. 

1.1.4 Robust Supervisory Control 

Robust supervisory control has been studied in different frameworks. Cury and Krogh 

[35; 36] measure the performance in term of the largest possible language within 

specification. [36] assumes complete observation for the events and makes no specific 

assumption about the specification. [36] formulates robustness problem so that by 

maximizing the family of plants for which the system under supervision is within 

specification, one can achieve maximum robustness. [36] shows that this problem 

in general does not have a solution and only by restricting the specification such a 

maximum solution could be found and also proposes an algorithm for that. Takai 

[37; 38] extends the results of [36] to the partial observation case, and also removes the 
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restriction on the specification. [38] presents its results based on the permissiveness of 

each of the members of the family of plants and shows that under partial observation 

robustness could be maximized. [38] also proves that if every controllable event is 

observable, then the previous result also maximizes the permissiveness. Park and 

Lim [39] associate uncertainty with internal unobservable events of the system, and 

find necessary and sufficient conditions for the existence of a robust nonblocking 

supervisor, including the non-deterministic solutions. 

The work in this thesis is based on the framework presented by Lin [4] that can be 

regarded as the "most natural" [40]. Lin assumes that the precise model of the plant 

is not known, but it is known that it is among a finite set of plant models. [4] formu-

lates the robust problem considering partial observation and satisfying nonblocking 

condition for the resulting supervisor, but assumes a single design specification for 

all possible plant models. [4] further assumes that this specification is a subset of 

any of the marked languages generated by possible models, and forms the union of 

all possible behaviors to turn the robustness problem to a conventional supervisory 

control problem. The author then proves that the robust problem has a solution if 

and only if the conventional supervisory control problem regarding the union behavior 

and the specification has a solution. [41] extends this work by relaxing the assump-

tion on specification only requiring it to be prefix-closed, and shows that necessary 

and sufficient conditions presented in [4] are still valid. 

Bourdon et al. [5] extends the results of [4] by assuming a non-unique design 

specification, i.e. for every possible plant model there could be a separate specification. 

Nonblocking property is also addressed, but the partial observation assumption of [4] 

is changed to the full observation case. [5] synthesizes global specification based on the 

local specifications and proves that to guarantee a nonblocking solution for the robust 

problem a new property should be satisfied which they call it nonconflicting property. 
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The necessary and sufficient conditions for the existence of a robust nonblocking 

supervisor in an untimed DES are then presented and extended to the timed discrete-

event systems (TDES). 

Saboori and Hashtrudi Zad [9] show that the notion of nonconflicting in [40] is 

only necessary but not sufficient to guarantee a nonblocking solution to the robust 

problem. [9] also extends the work of Bourdon et al. to the partial observation 

case and presents another property, called G-nonblocking to replace nonconflicting 

property to ensure sufficiency. The authors in [9] present necessary and sufficient 

conditions for the existence of a solution to RNSC-PO, for Robust Nonblocking Su-

pervisory Control under Partial Observation, and provides a formula to compute the 

maximally permissive solution of this problem in [42], 

1.2 Thesis Contributions and Organization 

In Chapter 2, we present mathematical background for our work, covering set theory, 

automata theory and supervisory control of discrete-event systems. We will define 

many of the notions that we have introduced throughout this chapter and use them 

in our main work. 

In Chapter 3, we extend the existing solved robust centralized supervisory control 

problem to a decentralized setting and show that necessary and sufficient conditions 

for the existence of a solution to this new problem could be found. We show under 

which conditions a solution to Robust Decentralized Supervisory Control (RDSC for 

short) problem exists, and provide some insights as how to find this solution, although 

not specifically providing an algorithm for that. We provide an example that explains 

the difficulties in solving RDSC problems and another example to show that adding 

communication, without going into the details of using an specific framework, by itself 
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provides a much less restrictive (or larger in terms of languages) solution. 

In Chapter 4, we assume that we have already incorporated communication be-

tween our local supervisors in its primitive form, not to minimize the communication 

either in terms of bits or the times that we communicate, but to investigate a practical 

hindrance: delay in communication channels. Much work has been done on finding 

different frameworks that a minimal communication could solve a particular prob-

lem, and we have reviewed some of them here, but most of them assume zero-delay 

communication channels. Tripakis [29] explicitly announces that with unbounded 

communication delay, decentralized supervisor synthesis problem is an undecidable 

problem. We believe that there is another approach into solving this problem. What 

Tripakis expects from a controller is not using a controller to its full potential, as it 

becomes clear when comparing the class of jointly observable languages with the class 

of coobservable languages, the two are incomparable. But the class of coobservable 

languages is commonly known for being the class of languages that can successfully 

be implemented by a set of local supervisors without communicating with each other. 

The question is why such a language can not be implemented by a set of supervisors 

that communicate with each other but through a channel that has unbounded delay; 

meaning that the messages will be delivered eventually but could take arbitrarily long 

before doing so. This question was our motivation for Chapter 4 and we show that 

indeed there is another class of languages that can be implemented in the presence 

of unbounded delay. We call these languages UCDR languages, for Unbounded Com-

munication Delay Robust, and show that this class is strictly larger than the class of 

coobservable languages. We also show that the class of UCDR languages is incompa-

rable with the class of jointly observable languages, and so the undecidability results 

of [29] can not be applied to that. Unfortunately we were not able to provide an 

algorithm that checks UCDR property, so at this point this property is not known 
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to be decidable, but the reduction to well known undecidable problems such as PCP 

[28] has also failed. It is left as a rewarding future work to look for an algorithm 

that checks UCDR property, or to prove it to be undecidable. We also redefine the 

supervisor's decision making patterns to allow anticipation for future communication 

in them, and call them UCDR supervisors. We show that under certain conditions 

a set of UCDR supervisors can be found that can achieve a given specification in 

the presence of unbounded delay, and prove that these conditions are necessary and 

sufficient. 

In Chapter 5, we conclude this thesis and provide some directions for future work. 

14 



Chapter 2 

Backgrounds and Preliminaries 

2.1 Introduction 

In this chapter we will briefly review some of the definitions and theories we will need 

in the following chapters. 

2.2 Discrete-Event System (DES) 

Individually, a system is best defined as a combination of components that act to-

gether to perform a function not possible with any of the individual parts [43]; discrete 

as individually distinct entities, and event as something that happens. "Discrete-

event system" (DES for brevity) is an event-driven, in contrast to time-driven, dis-

crete state space system in which the occurrence of events lead to state transitions. 

The behavior of such a system can be seen as a sequence of those discrete events 

that will cause its state transitions, so, if one thinks of a set of events as alphabet 

and a sequences of such events as words, then we say that the behavior of a DES 

is a language, the set of all sequences of events the DES can generate. Automata 
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theory will be used throughout this work, and although it existed from the viewpoint 

of theory of computation [44], its application in control systems originates with the 

doctorate thesis of P.J. Ramadge [1] under W.M. Wonham. Automata are intuitive, 

easy to use, and form a basic class of DES models, but lack structure and for this 

reason might lead to a very large state space [43]. Other modeling formalism, Petri 

nets, have more structure than automata models, but not with that much analytical 

power. 

We proceed as follows. Section 2.3 presents some of the mathematical preliminar-

ies which will be used throughout this work, and includes topics such as set theory 

and automata theory. Section 2.4 covers the theory of supervisory control of discrete-

event systems. Section 2.5 introduces robust control theory in discrete-event systems, 

and includes some of the theorems that will be used in Chapter 3 for proving our main 

result. 

2.3 Linguistic Preliminaries 

2.3.1 Languages 

Let £ be a set of distinct symbols a,/3,... called an alphabet. Let £ + denote the set of 

all finite sequences of symbols, < 7 i . • • crk for k > 1 and <7; E £ (i E T = { 1 , . . . , k}). 

Let e represents the sequence with no symbol. Now, 

£* = {e} U £ + 

We call each element of £* a string over £, and e the empty string. For s E £*, |s| 

denotes the length of string s, and is defined according to 

0 if s = e 

k if s = o"i ... <jfc E £+ 
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Definition 2.3.1. A language is any subset o/E*. 

Thus, 0 (the empty set) and E are both languages. 

Nerode equivalence [45; 44]: Let L C E* be an arbitrary language. The Nerode 

equivalence relation on E* with respect to L is defined as follows. For s,t E E*: s =i t 

if and only if 

MUE E* : suE L <<=> tu E L 

We write ||L|| for the index of nerode equivalence relation =£,. 

Definition 2.3.2. //||-£>|| < oo; the language L is said to be regular. 

2.3.2 Operation on Languages 

Concatenation [44]: 

cat : E* x E* —> E* 

is defined according to (i) for s E E*, cat(e,s) = cat(s,e) = s, and (ii) for s,t E E + , 

cat(s, t) = st. Clearly e is the unit element of concatenation. Also |cat(s, = |s| + |£|. 

If tuv = s with t,u,v E E*, then 

• t is called a prefix of s, 

• u is called a substring of s, and 

• v is called a suffix of s. 

Prefix-closure [44]: Let L C E*, then 

L-{sE E|3i e E*,st E L} 
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Pi(<T) • = 

in other words, the prefix-closure of L is a language that contains all of the prefixes 

of the strings in L. If L = L, we call L prefix-closed. 

Prefix-closure of a language L keeps track of words in L, and so it is closely related 

to control problems. Notice that if s, t £ L (i.e. s,t G E* — L), then 

(Vw G E*) s u $ L k t t o ^ L 

Which means E* — L, if nonempty, is a single nerode cell, which we call the dump 

cell. 

Projection [45]: Let L\ C EJ, L2 C with EJ n ^ 0. Let E = U E2, we 

can define natural projection Pi : E* —> E* (i = 1,2), as follows, 

Pi(e) := e, 

e if a Ej 

<7 if a € Ej 

Pi(scr) := Pi(s)Pi(<j) V s e E * , V < x e E 

Natural projection of a string PJ(S) erases all the occurrences of events a not in Ej. 

Inverse image function of Pi, P~l : V{T,*) -» P(E*), is 

^ ( ^ - { ^ W e f f } H C E ; 

when P(E*) is the set of all the subsets of E*, called power set of E*. 

Synchronous product [45; 44]: Let Lj C Ej , L2 C E^, and E = Si UE2 . Define 

the synchronous product L i | |L2 C E* according to 

Li||L2 := PfxLi nP2-1L2 

Thus, a string s £ if and only if its projection on event set E j is in L\, and its 

projection on event set S 2 is in L2; i.e. Pi(s) G L\ and P2(s) G L2. 
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2.3.3 Automata and Generators 

Consider the following 5-tuple 

A = (X,X,Z,x0,Xm) 

with E being the alphabet, X a nonempty set, x0 G X, Xm C X, and £ a function, 

£ : I x E - > I 

A is then called a deterministic automaton over the alphabet E. X is the set of states, 

xq is the initial state, Xm is the set of marker states, and £ is the transition function. 

For convenience, we extend £ from domain X x E to X x E* according to, 

e) = x, x E X 

£(x,sa) = £(£(x,s),cr)). x e X, s e Y,*, cr e E 

Given an automaton A, the language L C E* recognized by A is 

A is also called a recognizer for L. 

Generator [45]: Generator is an automaton, in which at each state only a subset 

of all events can occur, therefore the transition function of a generator is a partial 

function, whereas the transition function of an automaton is a complete function. 

Consider the following 5-tuple 

G = (Y, E, 5, yo, Ym) 

with 5 : Y x E —> Y. 5 is defined at each state y EY, only for a subset of elements 

a £ E. We write 5(y,a)\ to state 5 is defined at y for a. Obviously 5 is a partial 
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function. Extension of 6 to domain Y x £* is done by, 

<5(y,e) = V, 

8(y, sa) = 5(S(y, s),a)), ify> := 5(y, s)\, S(y', a)\ 

Closed behavior [45]: The set of strings s £ E* for which S(yo,s)\, is called 

closed behavior, L(G) = {s G E*|<5(y0, s)!}. Closed behavior represents all the possible 

paths, starting from initial state, following along the state transition graph, and is 

prefix-closed by definition. 

Marked behavior [45]: The set of strings s £ L(G) for which y = S(yQ, s) € Ym, 

is called marked behavior, Lm(G) = {s £ L(G)|5(y0 ,s) £ Ym}. Marked behavior 

represents the subset of all those paths which end at a marker state in the state 

transition graph, and need not be prefix-closed. By definition, Lm(G) C L(G). 

Reachability [45; 43]: A state y £ Y is called reachable if there is a path from 

the initial state ending at it; i.e. there exists s £ L{G) such that y — 5(yo, s) provided 

5(2/0, s)!. The reachable subset of G is 

Yr = {y£Y\(3s£Z*)6(y0,s) = y}. 

and G is reachable if every state y £ Y is reachable; i.e. Yr = Y. 

Coreachability [45; 43]: A state y £ Y is called coreachable if there is a path 

starting from it, and ending at a marker state; i.e. there exists s £ L(G) such that 

y' = 5(y, s) £ Ym. The coreachable subset of G is 

Ycr = {y£Y\(3s£E*)5(y,s)£Ym}. 

and G is coreachable if every state y £ Y is coreachable; i.e. Ycr — Y. 

Nonblocking [45; 43]: Generator G is said to be nonblocking if every reachable 

state is also coreachable, i.e. 

L(G) = LJG) 
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which means that, any string in G is a prefix of a marker string of G. G is said to 

be blocking if Lm(G) C £(G). 

When a generator is blocking, it has a (reachable) deadlock or a livelock. Deadlock 

can happen where there exists a non-marker state y G Y in generator G with no 

transition out of y. Livelock can happen where there exists a set of non-marker states 

in G which are strongly connected to each other, but there is no transition going out 

of the set. 

Trim [45; 43]: G is said to be trim if it is both reachable and coreachable. It is 

important to note that G being trim implies G being nonblocking, but the converse 

is not true: a nonblocking generator with some non-reachable states is an example. 

2.3.4 Operation on Automata 

Consider two generators GI = (Yi, Si , <5i, y0i, Ymi), and G 2 = (Y2, S2 , S2, y02, Ym2), 

and further assume GI and G 2 are reachable, but not necessarily coreachable. We 

impose no restriction on Si and S2 . 

Synchronous product [45] (Parallel composition [43]): In the definition of syn-

chronous product in Section 2.3.2, let Li = Lm(Gi) and L2 = Lm(G2). Then it 

is easy to see synchronous product forces two generators to 'agree upon' executing 

common events, i.e. those events in Si fl S2 , while it puts no constraint on 'private 

events' that can be executed whenever possible. In this case, the synchronous product 

of GI and G2 , G i | |G 2 , is the reachable part of generator (Y', S', 5', y'0, Y^), where 
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r = Yi x V2, E ' = Ei U E 2 , y'0 = (y01,2/02), ^ = ^mi * F m 2 , with 

(5i(yi,o-),^2(y2,cr)) a € Ei U E2,<5i(yi,cr)!,and 5^(yua)\ 

(^1(2/1,cr),y2) O e Ei\E2,(5i(yi,o-)! 

(yi,^2(y2,cr)) a e E2\Ei,(52(y2,cr)! 

undefined otherwise 

^'((2/1,2/2), cr) = < 

And therefore, the languages resulting from the synchronous product are 

L(G!| |G2) - P f W G x ) ) n P^(L(G2)), 

Lm(GxllGa) = P f 1 ( L m ( G O ) n P2"1(Lm(G2)). 

Shuffle product [45]: In the special case where EiflE2 = 0, we use the term Shuf-

fle product in place of synchronous product to emphasize the disjointness of alphabets. 

Therefore, one can construct the shuffle product of Gi and G 2 by asynchronously 

generating Gi and G 2 . 

Meet [45] (Product [43]): The Meet of Gi and G2 , Gi x G 2 , is the reachable part 

of generator (F", E", 6", O where Y" = Y, x Y2, E" = Ei n E2, = (y01,y02), 

Y" = Ym 1 x ym2, with 

S"((yj,y2),a) 
<52(y2,cr)) <5i(yi,o-)!,and <5i(yi,cr)! 

undefined otherwise 

Gi x G 2 keeps track of all the strings that can be generated by Gi and G 2 in common. 

The following can be readily verified. 

L(Gj x G 2 ) = L(Gi) fl L(G2), 

Lm(Gx x G 2 ) = Lm(Gi) n Lm(G2). 
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Figure 2.1: System under supervision 

2.4 Supervisory Control Theory of DES 

What we have seen so far is a DES modelled by a generator, G, that executes its 

events according to its transition function. This "uncontrolled behavior" is not usually 

satisfactory, and thus a means to contain the behavior of G in the "acceptable range" 

must be presented. In order to modify this behavior, we introduce a supervisor; we 

denote supervisor by S or V. Figure 2.1 shows the schematic of a system under 

supervision. "Acceptable range" will be called specification, and is always a subset 

of L(G). There are different reasons why we might need to restrict the behavior of 

G: It might contain strings that violate some physical constraints, like using shared 

resources; it might contain some states that are not desirable, for instance states 

where G blocks; or it might even be some conditions that we impose on the DES, 

such as generating events in some specific order only. In this work E or K will be 

used to denote the language of specification. Then the control problem will be how 

V interacts with G: V observes some, possibly all, of the events that G executes. It 

then informs G of the set of events that are allowed to happen at the current state. 

This set of events is a subset or equal to the set of events that are feasible at that 

state. Note that control exertion of a supervisor V is limited in two ways: by the set 

of events V can observe, and by the the set of events V can disable. 
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2.4.1 Controllability and Supervision 

Let the structure of a DES to be controlled be that of a (nonempty) generator, 

G = (Q,E,S,q0,Qm) 

with E as a finite alphabet or a set of event labels, Q as the state set (at most 

countable), <5 as the (partial) transition function, q0 as the initial state, and Qm C Q 

as the set of marker states, as usual. The pair of languages L(G) and Lm(G) represent 

the closed behavior and the marked behavior of G, respectively. Let £ = Ec U Eu c , 

where 

• Ec is the set of controllable events, and 

• Eu c is the set of uncontrollable events 

and the two are disjoint from one another. The distinction between controllable and 

uncontrollable events arises from physical limitation, modeling limitation, or simply 

choice. In any case, the supervisor can only exert control over the set of controllable 

events, and those events in the uncontrollable event set should be allowed to be 

executed whenever possible. Thus it is convenient to adjoin all the uncontrollable 

events with the subset of controllable events to be enabled at each state. We call 

each such subset of events, a control pattern. Thus, a supervisor is an agent that 

specifies the control pattern at each state. The set of all control patterns will then be 

r = {7 E P (E) | 7 D EUC} 

A supervisory control for G is any map V : L(G) —> T. We write V/G to denote 

"G under the supervision of V". The closed behavior of V/G is defined recursively 

as, 

1. e e L{V/G) 
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2. (s G L{V/G)), (a G V(s)), and (sa G L(G)) (sa G L(V/G)) 

3. No other strings belong to L(V/G). 

From the definition L(V/G) is nonempty and close, and always {e} C L(V/G) C 

L(G). The marked behavior of V/G comprises of all the marker states of Lm(G) 

that 'survive' under supervision, or formally 

Lm(V/G) = L(V/G) n Lm(G) 

Marked behavior could be empty and thus always 0 C Lm(V/G) C Lm(G). We say 

V is nonblocking for G if 

Lm(V/G) = L(V/G). 

For practical reasons we might prefer a representation of a supervisor in the form of 

a generator. Let V be a nonblocking supervisor with Lm(V/G) = K, and L{V/G) = 

K where G = (Q,T,,S,qo, Qm). Let S be an arbitrary generator. We say S implements 

V where 

K = Lm(S)nLm(G), K = L{S)nL{G) 

In this fashion, the closed-loop system is represented by S/G = meet(S, G) as spec-

ified in Section 2.3.4, and the languages resulting from this construction have the 

following property. 

Lm(S/G) - Lm(V/G), L(S/G) = L(V/G) 

Some of the terminologies associated with 'supervisor' are as follows. 

• Admissible: A supervisor V is admissible if it never disables a feasible uncon-

trollable event. Since our definition of supervision allows uncontrollable events 

to be executed whenever possible, our supervisors are always admissible. 
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• Proper: A supervisor V is proper for G if it is nonblocking. 

As discussed earlier, control problems require construction of a (preferably proper) 

supervisor V for G such that either L(V/G) or Lm(V/G) exhibits some desirable 

behavior. This desirable behavior, or specification, is also called legal language. 

Definition 2.4.1. [45] Nonblocking Supervisory Control problem [NSC]: Given the 

plant G = (Q,E,d,q0,Qm), and nonempty legal language E C Lm(G), find a non-

blocking supervisor V such that 

1. Lm(V/G) C E 

2. L(V/G) = LjVjG). 

Note that, in general there are many solutions to the NSC problem; thus we form 

V={V\V solves the NSC problem.} 

and say that a supervisor V € V is maximally permissive if and only if 

W e V. Lm(V'/G) C Lm(V/G), L(V'/G) C L(V/G). 

We need two more definitions in order to characterize the solution to NSC problem. 

Definition 2.4.2. [46] Controllability: A language K C £* is controllable with 

respect to G if 

KEUC n L(G) C K 

In other words, K is controllable if the continuation of its prefixes by an uncon-

trollable event stays in prefix-closure of K. 

Definition 2.4.3. [46] Lm(G)-closedness: Let K C Lm(G) C £*. The language 

K is Lm(G)-closed if 

K = KnLm(G) 
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In other words, K is Lm(G)-closed if it contains every one of its prefixes that also 

belong to Lm(G). 

Theorem 2.4.4. [46] Let K C E be a nonempty language, G and E be the same as in 

NSC problem. There exists a nonblocking supervisor V for G, such that Lm(V/G) = 

K if and only if 

1. K is controllable with respect to G, and 

2. K is Lm(G)-closed. 

Theorem 2.4.4 shows that any subset of E that is controllable and Lm(G)-closed 

is a solution to NSC problem, and so the maximally permissive solution for the NSC 

problem is the 'largest' subset of E with those properties. However, this theorem does 

not specify how to find that 'largest' subset. As lattice theory and its application in 

DES is out of the scope of this work, we will only present the following propositions 

without going into the details. 

Proposition 2.4.5. [46J C(E) (the set of all controllable sublanguages of E) is 

nonempty and closed under arbitrary unions. In particular, C(E) contains a (unique) 

supremal element, which we denote by supC(E). 

Proposit ion 2.4.6. [46] Let E C E* be Lm{G)-closed. Then supC(E) is Lm(G)-

closed. 

2.4.2 Observability and Supervision 

So far we have assumed that the supervisor can 'see' or 'observe' all the events that 

the plant G executes. However, it is more realistic to assume only a subset of all 

event labels can actually be observed by the supervisor. Limitation in the number of 

sensors in the plant or the distributed nature of the plant that causes some events not 
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to be available at every location, are among the reasons one might consider partial 

observation versus full observation. In general, this subset of events has no relation 

to the subset of controllable events, and as such an unobservable event could be 

controllable, or an uncontrollable event could be observable, and so on. Formally, £ 

is partitioned into two disjoint subsets, 

£ = £ c U £ u o 

where, 

• £ 0 is the set of observable events 

• £ u o is the set of unobservable events 

In this setting, a supervisor is an agent that observes only a subset of events generated 

by the plant and then specifies the control pattern. A supervisor's view of the string 

can be captured by applying natural projection onto the set £ c , where P effectively 

erases all unobservable events. We extend the domain of natural projection to accept 

languages in the obvious fashion, in particular, we write P(L(G)) to denote the 

supervisor's view of the sequences of events generated by the plant G. Note that 

due to the presence of P, it is possible for two strings si and s2 to have the same 

projection, i.e. P(s\) = P{s2), and the supervisor should be designed in a way that it 

issues the same control pattern; thus the following terminology for feasible supervisors 

• Feasible [13]: Supervisor V is feasible if Vs,s' £ L(G): 

Ps = Pa' V(s) = V(s') 

Informally, feasibility ensures that the supervisor only changes its control action after 

the occurrence of an observable event. From now on, we restrict ourselves to feasible 

supervisors even if it is not mentioned specifically. It is also a common assumption 
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that when an observable event occurs, the control pattern update is instantaneous. It 

is important that this update occurs before any unobservable event could happen, as 

we may wish to change the controlling action for some of these unobservable events. 

A control problem involving partial observation is as follows. 

Definition 2.4.7. [10] Nonblocking Supervisory Control and Observation Problem 

[NSCOJ: Given the plant G = (Q,E,8,qQ,Qm), subsets SC,S0 Q and nonempty 

legal language E C Lm(G), find a nonblocking supervisor V such that 

1. Lm(V/G) C E 

2. L(V/G) = Ljy/G). 

To characterize the solutions to NSCO problem we need to define the following 

notion. 

Definition 2.4.8. [10; 45] Observability: Let P : £* —> £* be the natural projec-

tion. A language K is (G, P)-observable if 

Vs, s' E £* Vo- <E E. sa e K A s' E K A s'a e L(G) A Ps = Ps' => s'a £K 

Informally, observability ensures that P preserves enough information to prevent 

disputed membership of strings in K after occurrence of an event a. So, if two strings 

'looks the same', any control pattern that will be applied to one should also be applied 

to the other. 

Theorem 2.4.9. [10; 11] Let K C E be a nonempty language, G and E be the 

same as in NSCO problem. There exists a nonblocking supervisor V for G ; such that 

Lm(V/G) — K if and only if 

1. K is controllable with respect to G ; 
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2. K is (G, P)-observable, and 

3. K is Lm(G)-closed. 

Theorem 2.4.9 shows that any subset of E that is controllable, observable, and 

Lm(G)-closed, is a nominee for being the maximally permissive solution to NSCO, 

but again does not provide a means to find this largest subset. Following the method 

of the previous section, define 

O(E) = {K\K C E A K is (G, P)-observable} 

The difficulty of dealing with observability is that it is not preserved under union, 

and thus O(E) does not have a (unique) supremal element. As a suboptimal solution 

to NSCO problem, we define another property called normality. 

Definition 2.4.10. [12] Normality: A language K C M C £* is said to be (M , P)-

normal if 

K = MnP-\P{K)) 

Note that inclusion K C MCiP~1(P(K)) is automatic, but the converse is not. In 

other words, a normal language can be constructed by the knowledge of its projection 

and the structure of the plant, while in general this process yields a larger language 

than K. Let E C M. Define 

A/"(£; M) = {K\K C E A K is (M, P)-normal} 

J\f(E\ M) enjoys the following property. 

Proposition 2.4.11. [45] The class of languages Af(E\ M) is nonempty and closed 

under arbitrary unions and intersections. In particular M(E\ M) contains a (unique) 

supremal element, denoted by supJ\f{E; M), and defined as follows: 

supM{E• M) = E- P~1P(M - E) 
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From the viewpoint of a supervisor, the fundamental difference between a (G, P)-

observable languages and a closed (L(G), P)-normal, is that with a normal language 

there would be no controllable unobservable event that causes a sting to exit from 

legal language, while in general, this is not the case for an observable language. It is 

simply enough to look at the projection of an evolving string s, in a normal language, 

to tell if and when the string exists the legal language. Normality is obviously a 

stronger property than observability. Interestingly, there is an intermediate condition 

between observability and normality, called strong observability, but it is not in the 

scope of this work and will not be discussed here (see [47]). Let 

C(E) = {K | K C E A K controllable w.r.t. G} 

Jf(E- L{G)) = {K | K C E A K is (L(G), P)-normal} 

K{E) = {K | K C E A K is Lm(G)-closed} 

To characterize the solution of NSCO problem we present the following class of lan-

guages, 

S(E) = C(E) n JJ(E- L(G)) n 7Z(E) 

S(E) enjoys the following closure property. 

Proposition 2.4.12. [12; 47] S(E) is nonempty and closed under arbitrary unions, 

so that supS(E) exists in S(E). 

supS(E) gives a suboptimal solution to NSCO problem. 

2.4.3 Coobservability and Supervision 

Up until now, we have discussed only those control problems where a 'single' supervi-

sor should take actions to achieve the given specification. While in some systems this 

assumption works perfectly, in some other systems, most notably communication and 
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computer networks, no single supervisor is likely to be considered a useful solution, 

and therefore, we rather require a set of supervisors, which will be called hereinafter 

decentralized supervisors, each of which only controls and observes a subset of the sys-

tem. We note that the difference between this control architecture called decentralized 

control, and modular control [48], lies in the fact that in the decentralized control ar-

chitecture, individual supervisors may be partial observers and their respective sets 

of controllable events are not all the same. 

In decentralized control, as in modular control, the net control action is the inter-

section of the control actions taken by each supervisors. So we first have to define the 

control action of each supervisor. We have a set of n supervisors, and associated with 

them, are the sets Sj)0, the controllable and the observable event sets correspond-

ing to supervisor Vi, respectively. Natural projection corresponding to supervisor Vi 

is 

V i e J = { l , . . . , n } . F , : 

Then, the sets of controllable events and observable events are 

iei 

Given the supervisor Vi whose domain is PJ(L(G)), Vi denotes the supervisor whose 

domain is L(G). It takes the same control action as Vi for all o 6 Sj,c, and enables 

all a e E\£jiC. The supervisor Vi is called a local supervisor, while Vi is its global 

extension. With a slight abuse of notation we write Vi in place of V where the 

extension of domain is obvious. 

Let V\ and V2 be proper supervisors for G. To exercise control over the plant, 

the supervisors are fused together in a conjunctive fashion, written V\ A V2, as the 
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generator of the product 

V, A V2 = Vi x V2 = meet(Vi,V2) 

The resulting behavior is described by the languages L{ViI\V2/G) and Lm(Vif\V2/G) 

as follows. 

L(Vi A V2/G) = L{VX/G) n L{V2/G), 

Lm(V.L A V2/G) = Lm(V\/G) n Lm(V2/G). 

It is easy to verify that Vi A V2 only enables an event a if it is enabled by both V\ and 

V2. Note that the choice of two supervisors was for simplicity, and all the resulting 

properties can be extended to any fixed number of supervisors. 

Definition 2.4.13. [13] Nonblocking Decentralized Supervisory Control Problem 

[NDSC]: Given the plant G = (Q, E, q0, Qm), subsets i £ l = {1,..., n}. EiiC, EjjC C 

E ; and nonempty legal language E C Lm(G), find a set of nonblocking supervisors 

Vi (Vi € T) such that 

1. Lm(Ai€jVi/G) C E 

2. L(\eIV/G) = Lm(Ai&JVi/G). 

We define the decentralized version of observability property in the following man-

ner. 

Definition 2.4.14. [13] Coobservability: Let P : £* —> E*0 (Vi G 1) be the 

natural projection for each supervisor. A language K is (G, Pi,..., Pn)-observable if 
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Vs, s', s" e E* such that PiS = P^s' A Pjs = Pjs" (i j), we have: 

Vcr G EjiC n EjiC. s'a eT< As e~K Asa e L( G) sa e~K 

or s"a eKAseKAsaE L{ G) sa e K conjunct 1 

Vcr e E,iC/Ej)C. s'a e~K A s e7< A sa e L( G) sa e~K conjunct 2 

Vcr e E j iC/E i)C. s'V EKAseKAsaE L(G) => sa eK conjunct 3 

Informally, it is not enough to require any one of the supervisors knows what 

action to take in all instances; and it is too much to require that all of the supervisors 

always know when to disable an event. Instead, coobservability employs the policy 

of "pass the buck", in the sense that if continuing membership of a string in K 

after occurrence of an event a is disputed for a supervisor, then there is at least one 

supervisor which can control cr and also tell without ambiguity whether its occurrence 

is legal or not. In such an event, the former supervisor simply 'enables' the event and 

"passes the buck" to the other supervisor. Coobservability guarantees that this policy 

does not allow the occurrence of an illegal string. The following theorem characterizes 

the solution of NDSC problem in the case of n = 2. 

Theorem 2.4.15. [13] Let K C E be a nonempty language, G and E be the same 

as in NDSC problem. There exist nonblocking supervisors Vi and for G; such that 

Lm(V\ A V2/G) = K if and only if 

1. K is controllable with respect to G ; 

2. K is (G, P\, P2)-coobservable, and 

3. K is Lm{G)-closed. 
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Theorem 2.4.15 shows that any controllable, coobservable, and Lm(G)-closed sub-

set of E is a solution for NDSC problem. However, when the legal language E itself 

does not fall into this category, its largest subset with the aforementioned properties 

must be found if one desires to construct the maximally permissive set of supervisors. 

This proves to be almost an impossible job. Coobservability, similar its centralized 

counterpart observability, is not well-behaved. Consider the following set: 

Co(E) = {K\K C E, K is prefix-closed, and coobservable.} 

It has been shown that Co(E) is nonempty and closed under arbitrary intersec-

tions [49], Also, the set of prefix-closed and controllable languages containing a given 

language is nonempty and closed under arbitrary intersections [10], Therefore, the 

following class of languages 

CCCo(M) — {K\K D M, K is prefix-closed, controllable, and coobservable.} 

is nonempty and closed under arbitrary intersections, and more importantly it con-

tains a (unique) infimal element [13]. If the given specification is a range instead 

of one language, i.e. A C L{V\ A V2/G) C E, then one could form CCCo(A) and 

check if its infimal is still in E. Therefore the following theorem for the case when 

specification is given as a range states, 

Theorem 2.4.16. If A is nonempty then NDSC is solvable if and only if 

infCCCo(A) C E. 

The actual formula for computing this infimal element is given in [13]. However, 

this method does not yield a maximally permissive solution; in fact, it can be shown 

that no largest controllable and coobservable language exists within a given range, so 

no unique maximally permissive solution exists. Also while Theorem 2.4.16 provides 



the condition for the existence of solution to NDSC problem, it requires different form 

of specification than our original problem. 

It is worthwhile to note that coobservability can be tested in polynomial time [15], 

but the construction of such supervisors cannot be done in polynomial time. Also 

these results only hold for the case of a single language specification, and not for the 

case when the specification is given as a range. 

2.5 Robust Supervisory Control 

Up until now, one of our main assumptions was the determinism, in the different 

aspects of the particular control problem we are facing. Of these aspects, the plant 

model uncertainties are among the ones worth noting. Dealing with modeling un-

certainties can be regarded as a robust control problem. With the family of possible 

models given, one might try to construct a controller to achieve the given specifica-

tion, without trying to identify the real plant model. Another approach to deal with 

modeling uncertainties is adaptive control, which mainly is an attempt to resolve the 

uncertainty and to construct an appropriate controller afterward. Modeling uncer-

tainties can be encountered in fault recovery procedures, when the controller is just 

attached to the system, and it is not known, for the controller at least, whether the 

system has undergone some failures or not. In these cases, normal and faulty opera-

tion of the system usually are modelled differently, and their design specifications are 

also generally different. For the purpose of this section, we review the work that has 

been done by Saboori and Hashtrudi Zad [50; 9], as our work in Chapter 3 is mainly 

an extension of that. 
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2.5.1 Robust Nonblocking Supervisory Control - Full Obser-

vation 

The framework of this section has been first proposed by F. Lin [4]. It is assumed 

that the exact model of the system is unknown, but it is assumed that it belongs 

to a finite set of possibilities. We designate every possibility with its appropriate 

superscript, i.e. G1 (t £ I = { l , . . . , n } ) . Each of these possibilities has their own 

sets of alphabets, E \ as well as their own design specification, El [5]. For now, we 

assume every event is observable, and further assume that the system models agree 

on controllability of any common event, i.e. if one plant, say model i, regards an event 

a E E1 as (un)controllable, then any other model for which we have a £ EJ ( j ^ i) 

also regards a as (un)controllable. As before, a supervisor is a map 

5 : E* T s 

where 

E = | J S i 

iei 

In general E* ^ E. A supervisor Sl for G1 is a map Sl : E l —» r S i , which can be 

obtained from S by 

Si(s) = S{s)nEi, sEZ** 

Definition 2.5.1. [5] Robust Nonblocking Supervisor Control problem [RNSCJ: Given 

a set of plant models G1, with L(G1) C and a set of legal languages E%, with 

E1 C Lm(Gl) for all i E T = {1,... ,n}. Synthesize a supervisor S : E —> Ts, such 

that Vi El 

1. Lm(Sj&) C E\ 

2. Lm(S/Gi) = L(S/Gi). 
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As before, we are interested in the maximally permissive solutions to RNSC prob-

lem. Let 

§ = {515 solves the RNSC problem.} 

We call the supervisor S, a maximally permissive solution if and only if for all S' £ § 

and all i e l we have 

. Lm{S'/G') C Lm(S/G') 

• L{S'/Gk) C Lm(S/Gl) 

To characterize the solution of RNSC problem we need the following definition. 

Definition 2.5.2. [45] Nonconflicting: Two languages L and M are nonconflict-

ing if and only if 

LtlM = L n l 

Define G and E as follows 

L(G) = (J L(G% Lm(G) = |J LUG') 
i€ X ieJ 

and, 

E = F | (£? U (S* - Lm(&))) N Lm(G) 
»ex 

The solution to RNSC problem will be as follows. 

Theorem 2.5.3. [5] Let K C E be a nonempty language, G ' s and Els as in RNSC 

problem. There exists a supervisor S for solving RNSC only if 

1. K is controllable with respect to G, 

2. K and Lm(G') are nonconflicting, and 
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3. K is Lm(G)-closed. 

Remark 2.5.4. Conditions in Theorem 2.5.3 were given in [5] as necessary and suf-

ficient, but later [9] showed that these conditions are only necessary and not sufficient 

in general. 

The following two lemmas are useful in proving our main result in Chapter 3. 

Lemma 2.5.5. [36] Suppose G1 and G2 are two DESs over some alphabet £. If we 

have 

L{G1) C L(G2) 

then for any supervisor S : E* —* r^, we will have 

L(5/G1) = L(5 /G 2 )nL(G 1 ) . 

Lemma 2.5.6. [5] Suppose G1 and G 2 are two DESs over some alphabet E. If we 

have 

L(G1) C L(G2) A Lm(G1) C Lm(G2) 

then for any supervisor S : £* —> we will have 

Lm(S/G1) = Lm(S/G2) n ^ ( G 1 ) . 

2.5.2 Robust Nonblocking Supervisor Control - Partial Ob-

servation 

[9] extended the results of [5] to include the case of partial observation. It is as-

sumed that exact plant model in unknown but it is among a set of possible models, 

G' (i € 1 = {1, • • •, ft})- Associated with each model is a alphabet, E l, and a design 

specification, El. It is assumed that different plant models agree on controllability 
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and observability of common events. So the sets of controllable and observable events 

are, respectively 

£0 = U E o A SC = U S c 
i€X 

with E*,E* C E l as, controllable and observable event set of plant model i, respec-

tively. Also let E represent the set of all possible event labels 

E = I J E * 
i€l 

Definition 2.5.7. [50; 9] Robust Nonblocking Supervisor Control under Partial Ob-

servation problem [RNSC-POJ: Given a set of plant models G1, with L(G') C E1*, and 

a set of legal languages El, with El C Lm(G1) for all i € X = {1 , . . . ,n} . Synthesize 

a supervisor S : E —> Ts, such that Vi ET 

1. LmiS/G') C E\ 

2. Lm(S/G'1) = L{S/G{). 

In order to characterize the solution to RNSC-PO problem [9] defined a new 

property called G-nonblocking. 

Definition 2.5.8. [9] G-nonblocking: Let G be a generator over E. K C £* is 

called G-nonblocking if and only if 

KDLm{G) = KnL{G) 

[9] showed that G-nonblocking is a stronger property than (K, Lm{G)) noncon-

flicting, and that the class of G-nonblocking sublanguages of a given language is 

nonempty and closed under arbitrary unions. 

Theorem 2.5.9. [9] Define G as 

L{G) = ( J L(Gi), Lm(G) = ( J L^G') 
iel 
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and E as 

E = p|(E? U (£* - Lm(G*))) n Lm(G). 
iei 

There exists a supervisor S that solves RNSC-PO if and only if there exists a nonempty 

language K C E such that 

1. K is controllable with respect to G, 

2. K is G1 -nonblocking for all i S i , 

3. K is Lm(G)-closed, and 

4. K is (L(G),P)-observable. 

Remark 2.5.10. Conditions 1.-3. in Theorem 2.5.9 provide a set of necessary and 

sufficient conditions for Theorem 2.5.3. 
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Chapter 3 

Robust Supervisory Control 

Problem with respect to System 

Model 

Like many other areas of study, there are more than one framework in which robust 

supervisory control has been studied. Robust supervisory control has been studied in 

three different frameworks, and we reviewed Lin's work and its extension by Saboori 

and Hashtrudi Zad [50; 9] in Chapter 2. While we did not discuss the remaining 

two robustness paradigm, it is safe to say that Lin's work "seems most natural in 

the context of DES" [40]. In this chapter our aim is to extend the results of [9] to 

include the case where a set of decentralized supervisors are required to solve the 

given control problem. 
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Figure 3.1: System schematic of the RDSC problem, Q G { G i , . . . , G n } 

3.1 RDSC Problem Formulation 

Assume a set of plant models, G1 (i G J = { 1 , . . . , n}), over their respective alphabets, 

E \ We are given a set of specifications, one for each possible plant model, E\ a set 

of alphabets representing each decentralized supervisor local alphabet, E j ( j G X = 

{1, . . . , m}), and are required to synthesize a set of decentralized supervisors such 

that for each plant model the resulting 'plant under supervision' is nonblocking and 

stays inside its corresponding specification. Formally, 

Definition 3.1.1. Robust Decentralized Supervisor Control problem [RDSC]: Given 

a set of possible plant models { G 1 , . . . , G n } respectively over the sets of alphabets E®, 

with i G X — { 1 , . . . , n}, and a set of languages {E1,..., En} describing the legal 

behavior of each plant's possible models (Vi G X. E% C Lm(G1)), synthesize two 

feasible supervisors, 

51 : £]* —> Tgj, and 

52 '• ^2* 

such that Vi G X, 

1. Lm(S\ A S2/G«) C E\ 

2. Lm(Sj A 52/G«) = L(Sr A S2/G{). 

The solution to the RDSC problem is similar to that of RNSC-PO presented 

by Theorem 2.5.9 [9]. The only difference between the two is in the number of 

agents (i.e. supervisors) which have to control the given plant. Note that while we 
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have restricted the problem to the case where only two decentralized supervisors are 

required, this restriction is only for convenience and the generalization of the results 

to any number of supervisors is straightforward. Figure 3.1 shows the schematic of 

the RDSC problem. So, let £ be the set of all event labels, 

E = (J E< 
i^J 

Thus, 

E!,E2 C E 

Define G and E as follows, 

L(G) = | J L(G1), Lm(G) = | J L m (G' ) 
iei iei 

and, 

E = U (E* - Lm(G'))) n Lm{G) 
iei 

We need the following lemmas. 

Lemma 3.1.2. Assume Si and S2 are two supervisors solving RDSC problem. Let 

K* = Lm(Si A 5 2 / G ' ) and K = Lm(Si A S2/G), then 

K = \JK\ 
iei 

Proof. 
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K = Lm(S1 A S 2 / G ) 

- Lm(Si A S2/G) n Lm(G) (K C Lm(G)) 

= Lm(5! A S a / G J n d j M G 1 ) ) 
iei 

= (J(Lm(5 x A 5 2 / G ) n L M ( G I ) ) 
iei 

= [ J Lm(5i A Sa/G1) (by Lemma 2.5.6) 
iei 

= ! > ' • 
iei 

Lemma 3.1.3. Assume S\ and S2 are two supervisors solving RDSC problem. Then 

K = Lm(Sx A S2/G) = L(5i A S 2 /G) . 

Proof. Let K* = Lm(Si A 52 /G !) . 

if = (J7?* (by Lemma 3.1.2) 
iei 

= ( j L m ( S ' 1 A 5 2 / G i ) 
iei 

= U L(Si A 52/G1) (5 i A S2 solves RDSC) 
iei 

= U(L(S i A 5 2 / G ) n L(G !)) (by Lemma 2.5.5) 
iei 

= L(SI A S ^ / G ) N ( ^ J L ( G ' ) ) 

= L(5i A S2/G) n L(G) (by definition) 

= L(5i A5 2 /G) . 

Lemma 3.1.4. Assume S\ and S2 are two supervisors solving RDSC problem. Let 

Kl = Lm(5i A Sa/G1), then for i , j e l 

^ n L ( G ' ) c ^ n L ( G ' ) . 
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Proof. 

LO n L(G') = L(SI A 5 2 / G j ) n L(G') (Sx A S2 solves RDSC) 

= L(5X A 5 2 / G ) n L(Gj) n L(G') (by Lemma 2.5.5) 

= L(Si A 5 2 / G ' ) fl L(Gi)) 

C £,(SX A 52/G !) 

= (Si A S2 solve RDSC) 

= F n i ( G1) ( F C L f G 1 ) ) 

Remark 3.1.5. Lemma 3.1.4 specially implies, 

1.Wn Lm{Gl) C Tfi n Lm (G') , and 

2. Ionic n L(Ql) £ n f/™™ Lemma 3.1.4, and (A n B)E*c = 

AE^c n B^uc if A and B are closed.) 

3.2 Solution to RDSC Problem 

Theorem 3.2.1. There exist two supervisors Si and S2 solving RDSC if and only if 

there exists a nonempty sublanguage K C E such that 

1. K is controllable with respect to G ; 

2. K is (Lm(G), P\, P2)-coobservable, 

3. K is G1 -nonblocking for all i £ 1, and 

4. K is Lm(G)-closed. 

Remark 3.2.2. Before we proceed to the proof of Theorem 3.2.1, we like to comment 

on the computation of K. It turns out that finding a sublanguage of E that satisfies 

46 



the condition 1.-4• is not easy. In Chapter 2, in the solution to Theorem 2.4-15 we 

discussed that coobservability is not closed under arbitrary unions and thus a supremal 

sublanguage of a given language can not be found. The only remedy here is to check 

all of the conditions for a subset of E, starting from E itself, and upon failing remove 

one or more transitions, thus obtaining another (smaller) subset of E. This procedure 

converges in general to the empty language, but does not necessarily provides the 

maximally permissive solution. 

Proof.( if) By Theorem 2.4.15, with K being (1) Controllable, (2) (Lm(G), Pu 

P2)-coobservable, and (3) Lm(G)-closed, we can find two supervisors, Si and S2, such 

that Lm(Si A 5 2 /G) = K and L{Si A S2/G) = K. We have to show Si A S2 also 

solves RDSC problem. 

Lm(Si A Sa/G') = Lm(Si A S 2 /G) n Lm{G1) (by Lemma 2.5.6) 

= KnLm( G1) 

C EnLm(G'1) (KCE) 

= f ) ( E i U ( S * - L m ( G i ) ) ) n L m ( G i ) 
iel 

= f)(EinLm(Gi)) 
ie I 

C E\ 

Also for nonblocking property, 
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Lm(Si A S2/G'1) = Lm (5j A S2/G) n Lm(G') (by Lemma 2.5.6) 

= ^ n L m ( G ' ) 

= n L(G') {K being G'-nonblocking) 

= L(SI A S2/G) n L(G') 

= L(Si A Ss/G1). (by Lemma 2.5.5) 

(Only-if) Assume two supervisors S\ and S2 exist such that 

LM(SI A S2/GL) = KL C and 

Lm(S! A S2/GL) = L(5i A 5 2 /G ' ) 

Define the language # = [J K* , with AT® = LM{SI A ̂ / G * ) . We show that K CE 
iei 

and also has the quadruple properties. 

K'CE'^ LM(SI A S2/GI) C & 

=• Lm(5i A S2/G) n Lm(G") C (by Lemma 2.5.6) 

Lm(5i A S2/G) CE'U (E* - ^ ( G 1 ) ) 

LM{S, A 5 2 /G) C P | [E* U (E* - L m (G' ) ) ) 
iei 

=» Lm(5! A 5 2 /G) C (E* - LM(G1))) n Lm(G) 
iei 

(LM(S\ A S2/G) C Lm(G)) 

=» Lm(5i A Sa/G) C E. 

By Theorem 2.4.15 and the fact that Si A S2 solves RDSC problem, we can deduce 

that KL (I E X) is (1) Controllable wrt G \ (2) (Lm(G'), PU P2)-coobservable, and 

(3) Lm(Gi)-closed. Now, we use these properties to prove the quadruple properties 

of K. 
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Controllability. 

KEUC n L(G) = ( ( J K V j ) n (1J L(G-i)) (by Lemma 3.1.2) 
iei I 

= ( U ^ s t l c ) n ( U ^ ( G J ) 
ieJ j e i 

iexjex 

= ( J ( i ^ £ u c n L(G')) (by Remark 3.1.5) 
iez 

(TTs are controllable w.r.t. G !) 
t G l 

= i f . (by Lemma 3.1.2) 

Coobservability. We need to show that the three conjuncts of coobservability 

cannot fail. Note that for i G {1,2} P{ : £* £*0 is well-defined. So, Vs.s ' .s" G E* 

such that Pi(s) = P^s ' ) A P2(s) = P2(s") we have: 

Case 1, conjunct 1 fails: 3a G S l c n E 2 c. s'a, s"a G KAs G KAsa G L(G) Aser ^ 

K 

So there exists i,j,l G 1 such that, sa G -£/(G') A s 'a G /P' A s"<r G i f ' and we 

have, 

s e K ^ s e L(G') 

S E K ^ S E L(5I A S 2 / G ) =>SE L(5I /G) ASG L(S 2 /G) 

From the above two equations we can deduce 

s G L(5i /G 1 ) A 5 G L(S2/G'1) (3.1) 

Also, 

P \ ( s ) = Pi( s ' ) Si(s) = Si(s') 

s'a s'a G L(S i /G j ) =>a G S^s ' ) 
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Thus 

a G Si(s) (3.2) 

and 
\ 

P2(s) = P2(s") S2(s) = 52(s") 

5 V G K1 = • G L(s2/Gl) 5 2 ( S " ) 
/ 

Therefore 

<7 € S2(s) (3.3) 

From (3.1), (3.2), and (3.3) we have, 

5A G L(5X A 5 2 /G' ) C L(SJ A 5 2 / G ) = AT 

A contradiction, which shows that conjunct 1 in coobservability cannot fail. 

Case 2, conjunct 2 fails: 3a G E i J C \ S 2 I C . s'a G K A s G K A scr G L (G) A sa £ K 

We have 

A contradiction. Therefore conjunct 2 can't fail either. 

Case 3, conjunct 3 fails: Similar to conjunct 2. 

So none of the three conjuncts of coobservability could fail and therefore K is 

coobservable. 

Lm(G)-closure. 

a £ £2,c a G S2(s) 

which together with (3.2) yields, 

sa G L(Si A 5 2 /G' ) C K 
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if n Lm(G) = ( ( J i f ' ) n ( ( J Lm(Gj)) (by Lemma 3.1.2) 
iex je i 

iGXjeZ 

= ^ ( G 1 ) ) (by Remark 3.1.5) 
ig X 

= | J i T (iTs are ^(G^-c losed) 
iei 

= if 

G'-nonblocking. 

if n L m ( G ! ) = L m (5 j A Sa/G') (by Lemma 2.5.6 and if = Lm(5x A S 2 /G)) 

= L(5j A 5 2 /G ' ) (5I A S2 is nonblocking) 

= L(5i A S 2 /G) n L(G') (by Lemma 2.5.5) 

= i f n L ( G ! ) (by Lemma 3.1.3) 

This concludes our proof of Theorem 3.2.1. • 

3.3 Two Examples 

We examine each of the quadruple properties of the solution to RDSC problem by the 

following example, to show how each one is of importance and what happens when 

each is violated. 

Example 1. In the following example E = {ai, b2, c, d, /} , E1;C = E1>0 = {aj, c, d}, 

and E2,c = E2,0 = {b2,c,d} which leaves ' / ' as an unobservable uncontrollable event 

for both supervisors. Figure 3.2 and Figure 3.3 show a possible model, G 1 , for a 

plant and its specification. This plant model does not require any kind of control 
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Figure 3.2: Plant model 1 

Figure 3.3: Plant specification 1 

Figure 3.4: Plant model 2 

Figure 3.5: Plant specification 2 
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Figure 3.6: Plant model 3 
£3 : 
-+o+ 

f 

Figure 3.7: Plant specification 3 

as the specification is equal to the plant model. Figure 3.4 and Figure 3.5 show 

another possible model for the plant and its associated specification. Again this 

plant model does not require any control action. Figure 3.6 and Figure 3.7 show 

the last possible model for the plant and its associated specification. This plant 

model requires disablement of event 'd' after occurrence of 'c\ Note that event 'd' 

in Figure 3.7 is not part of the specification. It is shown as dashed event to indicate 

that it has to be removed from plant behavior. Also note that the states after the 

occurrence of ' / ' along with the initial state and the state after string s = a\ are 

not marker states. Now, the problem is to find two supervisors which could control 

the plant according to the specification that is provided for each of the possible plant 

models. As the plant model is uncertain our only option is to design two robust 

supervisors such that their cooperative action would not allow any illegal event to be 

executed regardless of which plant model is actually running at the time. For this, we 

construct the closed and marked behaviors of plant G, Figure 3.8, and its associated 

specification, Figure 4.6, according to, 

L(G) = ( J L(G'), Lm(G) = | J L m (G' ) 
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Figure 3.8: Plant model 

Figure 3.9: Specification 

and, 

E = U (E* - Lm(G'))) n Lm(G) 
iei 

Now, we only have to find K a sublanguage of E which has the quadruple properties 

in Theorem 3.2.1, and construct two supervisors Si and S2 such that the plant under 

supervision, (Si AS2)/G, recognizes K. Naturally, our first guess would be E itself, so 

we take Kx = E as our starting point and check if it satisfies all of the four properties: 

K\ is not coobservable, as taking s = aib2a,\fc, s' = a\b2a\b2c, s" = a\b2a\a\c, and 

a = d gives, 

s'a, s"a G ^ A s G ^ A s f f G L( G) A sa 

So we disable '<i' in plant models G 1 and G 2 to avoid the confusion for supervisors, 

which in turn gives us K2, Figure 3.10. Turns out that K2 is not G'-nonblocking. 

Comparing with G 1 it can be easily seen that s = a\b2a\a\C 6 (K2 fl L(G1)) but 

s <£ K2 fl ^ ( G 1 ) , and as such, 

T ^ n L t G 1 ) ^K2r)Lm(Gl) 
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Figure 3.10: K2 C E 

Figure 3.11: Kz Q E 

To remove this blocking we have to disable event 'c' in plant models G 1 and G 2 

which leads to the non-marker states, and thus we obtain K3, Figure 3.11. K3 is not 

coobservable, as taking s = a\b2a\b2, s' = a\b2a\f, s" — axb2b2f, and a = c gives 

s'a, s" a eT<l A S e A ^ A sa E L( G) Asa ^TC^ 

So we need to disable 'c' in plant model G 3 to ensure consistent decision making of 

our robust supervisors, namely to disable 'c' anywhere, which in turn gives us K4, 

Figure 3.12. K4 is not G'-nonblocking as taking s = a\b2a\f gives 

s G ^ n i ( G 3 ) A 3 t Ki n Lm{G3) 

Figure 3.12: K4 C E 
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Figure 3.13: K5 C E 

K 6 : «, „*© 

O 

Figure 3.14: K6 C E 

In other words, 

~Kl fl L(G3) if4 n L m (G 3 ) 

As before we have to disable some events to remove the blocking states, this time 

event ' / ' . This choice gives us yet another smaller sublanguage K5 C E, Figure 3.13. 

Ks violates another property in the quadruple set of properties; controllability. ' / ' is 

not controllable by any of the two supervisors and thus it can not be disabled, but it 

is possible to disable any event leading to where ' / ' can be executed if those events 

are controllable. It turns out that those events are indeed controllable, namely a\ and 

b2, but their disablement also removes most of the plants legal behavior. As there is 

no other way to deal with uncontrollability of other than adding some actuators 

to make ' / ' controllable perhaps, we obtain i f 6 , Figure 3.14. i f 6 is (1) Controllable, 

(2) {Lm(G), P\, P2)-coobservable, (3) Lm(G)-closed, and (4) G'-nonblocking for all 

i 6 I . Therefore local supervisor Si (S2) should be designed to enable la{ {'b2) at 

first, and disables it upon its first execution. While the maximally permissive solution 

to this problem is found, it is however very limited in behavior as our decentralized 

supervisors are only able to exercise control by what they can observe themselves, not 
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Figure 3.15: Plant model 1 

having access to the information of the other supervisor. It is interesting to see what 

would be the result of this example if both local supervisors had information about 

the other supervisor as well, to see the importance of communication between local 

supervisors and to compare the behavior of resulting 'plant under supervision' with 

the case where there is no communication. Incorporating communication between su-

pervisors changes the terminology that we have used thus far in this chapter, namely 

'decentralized supervisor', to 'distributed supervisor' and results in unwanted con-

fusion, so instead of implementing communication we simply change local events to 

global ones, implying the communication between supervisors without going through 

the troubles of implementing one. 

Example 2. In the following example E = {a, b, c, d, / } , £iiC = {a,c,d}, E2,c = 

{b, c, d], and E l o = E2,0 = {a,b,c,d}. ' / ' is an unobservable uncontrollable event 

for both supervisors. Possible plant models and their respective specification are 

similar to Example 1, so we have plant model G, Figure 3.15, and specification E, 

Figure 3.16. To find K a sublanguage of E with the properties in Theorem 3.2.1 we 

start by = E, Figure 3.17. It appears that Kx is (1) Controllable, (2) (Lm(G), Pi, 

P2)-coobservable, (3) Lm(G)-closed, and (4) G'-nonblocking for all i e i . Structure 

of Si and S2 are given in Figure 3.18 and Figure 3.19, respectively. Comparing K\ 

of Figure 3.17 to of Figure 3.14, we could easily see the impact of combining the 

information of local supervisors with each other. However when we changed local 
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Figure 3.16: Plant specification 1 

Figure 3.17: Kx C E 
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Figure 3.19: Supervisor S2 
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events to global to examine the effect of communication between supervisors, we 

implicitly assumed that any such communication is instantaneous and without delay. 

While a lot of work has been done through this assumption by many researchers, 

little work has been done on the subject of delay in communication channels. This is 

the subject of the next chapter. 

3.4 Conclusion 

In this chapter we introduced the decentralized version of the robust supervisory 

control problem (RDSC problem) previously formulated by Lin. We provided the 

necessary and sufficient conditions for the existence of the solution to RDSC problem, 

and formally proved it. We examined the conditions of the solution of RDSC problem 

with two examples and also showed the limitations of control without communication 

by comparing the results of those two examples. 
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Chapter 4 

Robustness With Respect To 

Communication Delay 

Plant model uncertainties, the subject of previous chapter, is not the only source of 

non-determinism, but the most discussed one. Working with communicating agents in 

a distributed system leads to the introduction of another source of non-determinism: 

delay. In this chapter we try to examine the requirements for the construction of a 

set of robust decentralized supervisors which are communicating with each other a 

non-ideal channel in which the delay in not zero. 

In the previous chapter we only considered noncommunicating decentralized su-

pervisors and we saw that the results of such restraint is the limited behavior of the 

plant under supervision. While working on implementing communication in our work, 

we noticed a huge difference between the amount of work that has been done on the is-

sue of communication between supervisors with the assumption of ideal channels, and 

what has been done with the assumption of delay in communication channels. This 

chapter can be viewed as an independent topic on robust decentralized supervisory 

control of discrete-event systems or serves as an extension of the previous chapter's 
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Figure 4.1: Example 4.1.1 

work when one desires to implement communication between supervisors in a practi-

cal setting, where delay is not-negligible. At the end of this chapter we also present 

an example to further examine the results of this chapter. 

4.1 Problem Formulation 

It is common in supervisory control of distributed discrete-event systems to assume 

that communication between supervisors is instantaneous, thus allowing for more 

sophisticated problems to be addressed. Interestingly, some control problems have 

the property that supervisors designed under the assumption of no-delay still work 

with the introduction of delay in communication between supervisors, while some 

other control problems simply can no longer be solved by the same supervisors with 

the introduction of delay. Our aim is to characterize the former group, which turns 

out to be a nontrivial subclass of control problems. Our motivation for this work 

could be better understood with an example. 

Example 4.1.1. Let £ = {01,62}, £1 = £c,i = £0)i = {ai}, and £2 = £c,2 = £0,2 = 

{62}- Plant model is shown in Figure 4-1 along with two different specification Ei and 

E2. Examining E\ and E2 shows that they are not coobservable, and therefore it is not 

possible to achieve any of them without communication between the two supervisors; 

61 



W , s 2 ) P>S P2s [V2(p2s,st) 

Figure 4.2: System schematic 

then it is easy to show that a simple communication policy, for example communicating 

'a\' to supervisor 2, is enough to achieve both specifications when communication is 

instantaneous. Thus, in our supervisor design, supervisor 1 does not do anything, 

while supervisor 2 can be implemented in each case by the automaton of Ei, i = 1,2. 

With the introduction of delay, however, we see a difference: we can no longer achieve 

Ei, while E2 can be achieved with the same supervisors. In the presence of delay, in 

case of Ei, supervisor 2 enables 'b2' until it receives 'a\ '. If 'b2' actually happens 

when 'ai' has happened but not yet received by supervisor 2, Ei is clearly violated. 

In case of E2, supervisor 2 disables 'b2' until it receives 'ai', in which case 'b2' is 

enabled. Because of the nature of E2 that allows supervisor 2 to "enable more" as 

new communication arrives, E2 can be implemented in the presence of delay. 

A class of unbounded-communication-delay-robust languages (UCDR languages for 

short), which will be formally defined later, could be regarded as the only class of 

specifications that can be achieved under the assumption of unbounded delay in the 

communication network. Figure 4.2 shows the schematic of the system, including the 

plant, a set of local supervisors, and the communication between them that will be 

discussed in details later. 

Our main assumptions for this work are as follows: 

• We assume that the plant consists of a number of distributed components, 
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each defined over a local alphabet i e l = {1,2 , . . . , n}. We assume that 

a supervisor for component i has control over some events in E.(, that local 

alphabets are disjoint, and that all events in Ej are observable to supervisor 

i G I ; thus £Cij C Ej, ECij = £j , EUC)j = S \ EC]j and £UOli = E \ E^. 

• (Unbounded delay assumption) It is assumed that in our setting all events are 

communicated, and all communications are eventually received. There is a 

First-input-first-output (FIFO) communication channel between every pair of 

supervisors; it is such that the network preserves communication order while, 

it might take an arbitrarily long time before a message is delivered. 

We shall also call UCDR supervisors those supervisors that implement a UCDR lan-

guage as the specification. UCDR supervisors prevent illegal strings without requiring 

any particular communication to be delivered to them. In other words a local supervi-

sor disables events that might generate illegal strings, with reliance solely on its own 

observations. Furthermore, local supervisors will enable some events after enough 

communication has been delivered to them to disambiguate look-alike cases. While 

it might take arbitrary long before any particular communication is delivered, the 

local supervisors will not be blocking as all those communications will be eventually 

delivered. These points are summarized in the following remark. 

Remark 4.1.2. In a set of UCDR supervisors, each supervisor decides when to dis-

able its locally controllable events based on its own observations. Enabling a locally 

controllable event, on the other hand, might require some communication to be deliv-

ered. 

Let G be a plant over alphabet E, where E is partitioned into n disjoint subal-
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phabets Si , S 2 , . . . , S n such that 

S = (JS 
i € l 

Also let SC)i C Sj and define the set of local control patterns for supervisor i as 

Ti := { 7 G ? ( S ) | 7 3 E \ E c , , } . 

Also for convenience define 

r : = { 7 G p ( I ] ) | 7 D £ \ ( j £ c , J . 
i € l 

Let s G I/(G). For i E 1, supervisor i can base its control decisions on its direct 

observation of the plant (i.e. Pis), and on the (possibly) incomplete information 

Sj < PjS that it has received thus far from all other supervisors j, j e l \ {z}. Then 

a natural way to define supervisory control for supervisor i is through a partial map 

iei 

such that Vi(si, {sj}jei\{i}) is defined if there exists s G L(G) such that: 

1. Si = PiS, and 

2. Sj < PjS for j e l \ { i } . 

Suppose at s G L(G), supervisor i has received Sj < PjS through communica-

tion from other supervisors, j G J \ {z}. Then supervisor i enables the events in 

Vi(PiS,{sj}j€j\{i}). At some unspecified time in future, supervisor i receives addi-

tional information through communication, leading it to form (still possibly incom-

plete) projections s'j < PjS, j G T \ {i}. Note that by FIFO assumption for the 

channels Sj < s'j (Vj ^ i), which is an indication that the information now is more 

complete, and is closer to the reality of what have actually happened in the plant 
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(i.e. Pjs). As a result of the additional information received, supervisor i updates its 

control decision to Vi(PiS, {Sj}jei\{i})- The process of updating control decisions con-

tinues until all communications from other supervisors are received in their entirety, 

in which case the control decision of supervisor i is updated to Vi(PiS, {-Pjs}jei\{i})-

Definition 4.1.3. (UCDR supervisors) A set of local supervisors {Vj}i6x is called 

UCDR i /Vs,s ' G L(G), Vi G I , Vsj < Pjs, s'j < PjS', j = 1\ {i} we have: 

{PiS = P,s' A Sj < s'j] Vi{PiS, {sj}j€l\{i}) C Vi{Pis', {SJ-}JEZ\{<}) 

For convenience we define a partial map 

n ^ n E J - T W G ) ) 
iei 

defined on (s^ {sj}jex\{i}) when Vi is defined, which for (sf, {sj}jei\{i}) gives the set 

of all strings that agent i thinks might have happened in the plant. Formally, 

Definition 4.1.4. 1 1 ^ , {s,-W\{i}) = W e L(G)| Pi(s') = Si AVj + i. Pj(s') > s,-}. 

The next lemma will come handy in the proof of our main result. 

Lemma 4.1.5. Lets G L(G) be the string generated by the plant, and(PiS,{sj}3^x\{i}) 

be the information agent i has received, through direct observation and communica-

tion, where Vj G T \ {i}. Sj < PjS. Then, 

s G IIi(PiS, {Sj}jei\{i}) 

in particular, 

S G Il^PiS, {PjS}j6l\{i})' 

Proof. Immediate from the definition. • 

Fusion of local supervisors' decisions is done in the following manner. Define 

V : L(G) —> T(T) 

65 



such that for s € L(G), V(s) is equal to 

{ f | v*(*i> = V s A s ) < p j S ( V j e z\{»})} 

Evidently V is a multi-valued function as control decisions might be updated with the 

arrival of new information at local sites. Since we are interested in UDCR supervisors, 

there is one value that we are mostly interested in, which corresponds to the case 

where all communications are received: 

iex 

According to the definition of UCDR supervisors, local supervisors are least restrictive 

in this case. We denote this "optimal" value by V*(s), thereby defining a single-valued 

map 

V* : L(G) T. 

Based on the above definitions, the problem of supervisor existence is posed as follows. 

Definition 4.1.6. (Unbounded Communication Delay Robust Supervisory Control 

Problem: UCDR-SC) Given a plant G whose closed behavior is L(G), an alphabet 

E partitioned into disjoint sets Ej, i 6 I , sets of ECij C Sj, and a legal non-empty 

language E C L m (G) , construct a set of UCDR supervisors {Vj}jej such that V* is a 

nonblocking supervisor for G and: 

L(V*/G) = E 

It is important to note that L(V*/G) can also be considered as the case that no 

delay is present and the channels are ideal. In fact, assuming a particular delay in an 

example might lead to a system behavior that is strictly smaller than L(V*/G), but 

as our unbounded delay assumption also contains zero delay this optimal behavior 

will always be achieved. 
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We define a language property, unbounded communication delay robust, as one of 

the conditions for the existence of a solution for UCDR-SC. 

Definit ion 4.1.7. (UCDR language) A language K C Lm(G) is called UCDR with 

respect to G if and only ifVs 6 E ' , Vcr G ECii s.t. sa G K, the following holds. 

Vs' G Ui(PiS, {Pjs} i e j \ { i } ) : s' eKAs'ae L( G) s'a eK 

4.2 Solution to UCDR-SC Problem 

Theorem 4.2.1. There exists a set of UCDR supervisors that solve UCDR-SC if and 

only if: 

1. E is Controllable 

2. E is Unbounded-Communication-Delay-Robust (UCDR) 

3. E is Lm(G)-closed 

Proof. (If) : Assume E has the three stated properties. We shall construct a set 

of UCDR supervisors {Vj}iSx, such that L(V*/G) = E and V* is nonblocking. 

For i G I, define Vi in the following way: Vi enables a controllable event in Ec i at 

(.Si, {sj}i6x\{i}) i f ^ i s l e S a l for a11 strings in n ^ , {sJ}:?ei\{i}), formally 

Vi(Si, isj}j£l\{i}) = 

{a G ECii| Vs' G n i ( s i , {Sj}jei\{i}). s' G E A s'a G L(G) => s'a eE}U EUCii. 

With this construction, proof of L(V*/G) = E is best done by induction on the 

length of strings: 
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Base of induction: For |s| = 0 (s — e), we have e G E as E is nonempty, and 

e G L(V*/G), so 

e G L i y j G) 

Induction Hypothesis: Assume for all |s| = n (n > 0), it is true that s G 

L(V*/G) s eE. We show that for all a G £ we have, 

so G L(V*/G) &soeE. 

Assume the nontrivial case where scr G £ (G) , there are two cases. 

1. a ^ Ui€J^c.« = sa e E (E is controllable), and Vi £ I . a G 

Vi(PiS, {Pjs](zz\{i}) (f is uncontrollable), and by definition of V*, a G V*(s), and 

scr G L(V*/G). Therefore for uncontrollable event cr 

sa G L(V*/G) &sa<=E. 

2. a E EC:i: suppose scr G E. Thus s G E, which yields 

s G L(V*/G) (by induction hypothesis) 

We have to show a G V*(s), i.e. a G fljeiV;(PjS, {Pjs}jex\{i})- Knowing that a is 

only controllable by supervisor i implies 

Vfc G X\{i}. a G Vk{PlS, {P j - s} , -^} ) . 

From our construction we have cr G V^PiS, {P/s}jex\{j}) if Vs' G ITi(PjS, {Pjs}jei\{i}) • 

s'a G L(G) As' G E =>• s'a G E, which is guaranteed by the fact that E is a UCDR 

language. Thus we have 

a G Vi{PiS, {Pjs}j(ix\{i}) 

from which it follows that a G V*(s). Together with sa G L{G), we conclude that 

sa G L(V*/G). 
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This proves one side of the equivalence, that is, 

s a G L ( V * / G ) saeE. 

For the other side, assume that sa G L(V*/G). It follows that a G V*(s), sa G 

L(G) and from the induction hypothesis that s G E. By contradiction assume that 

sa ^ E. By Lemma 4.1.5 we know that s € Il^PjS, {Pjs} jei\{j}). Since s E E, 

sa £ L(G) but sa ^ £ it follows from our construction that 

a <£ ViiPiS^Pjsjjex^i}) 

from which it follows that 

a £ V*(s) 

a contradiction. The inductive proof is complete. 

Now that we have shown L(V*/G) = E, we need to show the nonblockingness of 

V*: 

L m (VVG) = L ( V * / G ) f | L m ( G ) 

= £ f | L m ( G ) 

= E (by Lm(G)-closure of E) 

= L(V*/G) 

Finally, we have to show {Vi}i€j is UCDR. If not, assume by contradiction that 

for i G X there exist s, s' G L(G), Sj < PjS and Vj G X \ {i}. s'j < PjS1, such that 

PlS = PiS' A Vj 6 l \ { i } . < s'j A ^ ( P S , {sj^-eixw) £ ^ ( P s ' , {s;.} je I\{i}). 

In other words, there exists a G EC)j such that a G Vj(PjS, {sj}jex\{i}) but a ^ 

Vi(Pis', {Sj}jSz\{i})- From a ^ Vj(Pjs', {Sj-JjeAf*}) anc* ^he definition of Vj it follows 

that there exists s" G l imps ' , {s^}j6i\{j}) such that 

s"a G L{G) \ E A s" G E. 
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Since P s = Ps ' , Vj G T \ {i}. Sj < s'j and s" E I I^Ps ' , {Sj}jex\{i}) it follows that 

s" G n ^ P ^ s , {sj}j6z\{i}) 

combined with the facts that s"a G L(G) \ E and s" G E yields 

o £ Vi(PiS, {sj}j6X\{i}) (by definition of Vi) 

a contradiction. So, {Vi}iex must be UCDR. 

(Only if) : Controllability. Assume there exists a set of UCDR supervisors 

satisfying L(V*/G) = E. Let s E E and a G £ u c such that so G EEUC fl L(G), 

sa G EYUC n L(G) => sa G L(G) A s G L(V*/G) 

=> sa G L(V*/G) (since a is uncontrollable) 

=> so EE (L(V/G) = E). 

So, 

££ u c n L(G) c E 

Lm(G)-closure. 

£ = L(V*/G) 

= L m ( V 7 G ) (V* is nonblocking) 

= L(V*/G) fl Lm(G) 

= £ n L m ( G ) 

E is a U C D R language. By contradiction, suppose that E is not a UCDR 

language. It follows that there exist i G X, s G £*, cr G with sa G and 

s' G n , (Ps , {Pjs}jei\{i>) such that 

s' EE A s 'a G L(G) 
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Figure 4.3: Illustrative example, Si = S 2 = {0̂ 2}, and S3 = {03,63} 

Since Lm{V*/G) = E it follows that a £ V*{s) and a £ y*(s'). S i n c e a c a n b e 

controlled solely by supervisor i this in turn implies a £ Vi(PiS,{Pjs}j&x\{i}) and 

o i Vi(Pis', {Pjs'}jei\{i}). Therefore, 

ViiPiS^Pjs},^) £ ViiPis'^P.s'}^^}) 

while P{S = Pis' and Vj £ X \ {i}. PjS < Pjs', contradicting the assumption that 

{Vi}i€ 1 are UCDR. • 

We use the following example as an illustrative example. 

Example 4.2.2. Consider the DES E in figure 4-3 as an specification for the dis-

tributed plant G that has no restriction over the occurrence of events, i.e. any event 

can be executed at any state. Let EC)i = S0)i = {ai}, SCi2 = S0j2 = {a2}, and 

S C ] 3 = S 0 ] 3 = {<2,3,63}. For example, in the initial state only 'ai' is legal and all 

other events should be disabled. E is controllable and since marking is not an issue, 

it remains to check whether E is a UCDR language or not. Taking a — 'a\we have 

to look for s,s' £ S* such that P\S = P\s', i = 2,3.PjS < p s ' , s,s',scr £ E, and 

s'a £ E. The shortest string that satisfies sa1 £ E is s = e and for that there is no 

s' such that Pi5' = e. Then we take s = 'aia2a3' and observe that there is no s' such 

that P\s' = 'a\P2s' > ' a 2 P 3 S ' > 'a3', and continuation of s' with 'a\ 'produces an 

illegal sequence. Checking with the same method for a = 'a2 a = ', and a = 'b:i' 

shows E is UCDR according to the definition 4-1-7. Theorem 4-2-1 states that there 

exists a set of UCDR supervisors that can implement E. The supervisors are designed 
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as follows: Supervisor 1 initially enables 'a\ then disables it upon execution and waits 

for communication of 'a2' and 'a3'. Upon receiving both 'a2' and 'a3', in any order, 

indicating the system has gone back to the initial state, the supervisor enables 'a\ 

Supervisor 2 disables Vi2 ' until it receives 'a\', at that point it enables 'a2 '. It disables 

'a2' after its occurrence and waits for another communication of '. Supervisor 3 

disables both 'a3 ' and 'b3' until it receives 'a\At that point it enables 'a3'. If 'a3 ' 

occurs, it waits for 'a2' to be received, but if 'a2' is received before execution of 'a3 ', 

the supervisor also enables 'b3 '. The occurrence of 'a3 ' disables 'b3 ' and 'a3 and the 

system goes back to the initial state. The occurrence of 'b3' leaves 'a3' enabled and 

disables 'b3 ', at which point execution of 'a3' is required for supervisor 3 to disable 

'a3' and the system to return to the initial state. 

4.3 Properties of UCDR Languages 

4.3.1 Relation to other observational classes 

In this section we explore the relationship between UCDR class of specification lan-

guages with coobservable languages [13], jointly observable languages [27], and weakly 

jointly observable languages [51]. We first recall the definitions of joint observability 

and weak joint observability. 

Definition 4.3.1. (Joint observability [27]) Let K,L be two regular languages over 

E, with K C L. Given k subsets of E, i € 1 = { 1 , . . . , k}.Ej C E, we call K jointly 

observable with respect to L and Ei} if 

Vs G K, s' G L\K =>3i e l . P^ ± P j 

Definition 4.3.2. (Weak Joint observability [51]) Let K,L be two regular languages 

over E ; with K C L. Given k subsets of E, i G 1 = { 1 , . . . , &}.Ej C £ , we call K 
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weakly jointly observable with respect to L and Ej if 

Vs, s' E E', a E E, suc/i that sa E K, s'a E L\ K ^ 3i E 1. P s ^ Ps ' 

Our first result states that the class of UCDR languages is a proper superclass of 

coobservable languages. 

Proposit ion 4.3.3. Every coobservable language is a UCDR language, but the con-

verse is not true. 

Proof. First we prove that violating the UCDR property also violates coob-

servability, and then we show by an example that a UCDR language may not be 

coobservable. 

Assume that E C E* is not UCDR, so there exist i E T and strings s, s' E E* 

such that s' E IIj(PjS, {P/s}jez\{i}) a n d sa E E, s'a E L(G) and s' E E, but s'a ^ E 

(Bear in mind that only supervisor i controls a.) s' E I I ^ P s , {Pjs}jex\{j}) implies 

p ( s ' ) = P ( s ) , also sa E E, s' E E and s'a E L(G) \ E, i.e. E is not coobservable. 

This concludes the proof that coobservable class is a subclass of UCDR class. E2 

in Figure 4.1 is an example of a UCDR language which is not coobservable. Let 

s = 'ai ' , s' = e, and a = 'f>2\ and we have P2s = P2s'. s',s E E, sa = 'ai62 ' E E 

but s'a — '&2' ̂  E which shows that E2 is not coobservable. E2 can be implemented 

by UCDR supervisors as follows. Supervisor 1 disables 'ai ' after its first occurrence, 

and supervisor 2 keeps lb2 disabled until it receives 'a^. So coobservable class of 

languages is a proper subclass of UCDR class of languages. • 

Proposition 4.3.3 implies that every coobservable language that can be achieved 

by a set of decentralized supervisors can also be achieved when the local supervisors 

communicate with each other over a non-ideal channel. In other words, the extra 

information available for the local supervisors after incorporating communication will 

not affect the control commands. 
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Figure 4.4: A non-UCDR, jointly observable specification language. 
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Figure 4.5: A non-jointly observable, UCDR specification language. 

Our next result shows that the classes of UCDR and jointly observable languages 

are not related. 

Proposit ion 4.3.4. UCDR property and joint observability are incomparable. 

Proof. Let Sj = £Cji = {a} and £ 2 = £c,2 = {&}• E\, Figure 4.4, shows a 

language that is jointly-observable but not UCDR. Note that any illegal sequence 

should contain both 'a' and '6' while any legal one only contains exclusively either 

'a' or lb\ so E is jointly observable. But it is not UCDR as for s = e, s' = 'b\ and 

a = 'a' we have s' € n^e . e ) A s a = 'a' EE A s' = '6' eE/\s'o = '6a' E L(G) - E. 

On the other hand, i?2, shown in Figure 4.5, is UCDR but not jointly observable. 

Taking s = 'ab' and s' = 'ba\ we have P^s) = Pj(s') A P2(s) = P2(s') but s is illegal 

and s' is legal, implying that E2 is not jointly observable. It can be readily seen that 

E2 is UCDR because it can be implemented by UCDR supervisors: supervisor 1 takes 

no action, while all supervisor 2 needs to do is disable '6' until it receives 'a' from 

supervisor 1. • 

Our final result shows that UCDR class is a proper subclass of the class of weakly 

jointly observable languages. 

Proposition 4.3.5. Every UCDR language is weakly jointly observable, but the con-
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verse is not true. 

Proof. We first prove that violating weak joint observability also violates UCDR 

property, and then by an example we show a weakly jointly observable language that 

is not UCDR. 

Assume that E C E* is not weakly jointly observable. There must exist s,s' E E 

and a G Ec such that Vi G 1 : Pj(s) = P(s')> sa E~E and s'a E L(G) \ E. Assume 

that a G Efe, k E l . From Vi G 1: Pi(s) = Pi(s') we have s' G ITfc(Pfcs, {P,-s}jex\{fc}). 

Together with sa E E and s'a E L(G) \ E this implies that E is not a UCDR 

language. Figure 4.4 is an example of a weakly jointly observable language (since it 

is jointly observable) which is not UCDR. • 

4.3.2 Closure properties of U C D R languages 

Proposition 4.3.6. The union of two UCDR languages is not a UCDR language. 

Proof. By counterexample let E = {ai,a2}, Ec,i = E0|i = {ai}, and E C I 2 = 

E0,2 = {02}-

L(G) = E*, Ei = a l a i + a^aT, E2 — aia2ai 

It is clear that E\ and E2 are both UCDR, but their union is not. To see that 

E = Ei U E2 is not UCDR let s = laia2, s' = 'a2ai ' , and a = 'a j ' , and observe 

that s' E III(01,02) A sa = 'ai02ai ' G E. Should E is UCDR s'a must be in E, but 

s'a = '020101' G £(G) — E, which proves that the union of two UCDR languages is 

not UCDR in general. • 

Proposition 4.3.7. The intersection of two closed UCDR languages is a UCDR 

language. 

Proof. We proves that if the intersection of two closed languages fails the UCDR 

property, then none of the two languages are UCDR. 
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Figure 4.6: Plant and specification models 

Assume that E = E\ fl E2 C £* is not UCDR, so there exist i £ I and strings 

s,s' E £* such that s' E n^P^s, {Pjs}jez\{i}) and sa E E, s'a E L(G) and s' E E, 

but s'a <£E. As E = Ex n E2 and s,s' EE = E, then s, s' E Ex A s, s' E E2 which 

means that none of E\ and E2 are UCDR. • 

Proposition 4.3.6 and Proposition 4.3.7 show that UCDR property behaves much 

like how observability property behaves, but the results of the above propositions 

are useful after one develops an algorithm to check the UCDR property for a given 

language. To check the UCDR property one has to check the condition presented in 

Definition4.1.7 on the strings of a language, which in general are not finite. As such, 

developing an algorithm to check the UCDR property and prove that it terminates 

in finite time is one of our future works. 

4.4 An Example 

It is interesting to compare the results of introducing delay in communication between 

supervisors with the case when communication is instantaneous. First, we have to 

present an example that meet the requirements of this chapter, namely to assign each 

event to only one supervisor and to have all the events observable. So, we assign 'aj ' , 

'ci' and ld\ to supervisor 1, and 'b2' to supervisor 2. Plant model, G, and specification 

model, E, are given in Figure 4.6. When the communication is instantaneous with 
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Figure 4.7: Supervisors Si and S2 

the supervisors given in Figure 4.7 the specification will be achieved. Specification, E, 

is (1) Controllable, and (2) Lm(G)-closed. To check whether it is a UCDR language 

or not, take a = ld\, we look for s,s' G E* such that P\s = P\s', P2s < P2s\ 

s, s', sa G E, and s'a £ E. The only two strings that satisfy s'a ^ E are s'x = a\b2a\C\ 

and s'2 = aib2b2ci, and there are no string that satisfies, Pxs = P\s', P2s < P2s', and 

sa G E. So, E is a UCDR language; So, it is possible to achieve E with a set of 

UCDR supervisors using the construction proposed in the proof of Theorem 4.2.1. 

This example shows that it is possible to achieve the same system behavior after 

introduction of delay in a previously solved problem, with the assumption of ideal 

channels, if the UCDR property is satisfied. 

4.5 Conclusion 

In this chapter we proposed a new language property called unbounded-communication-

delay-robust (UCDR), and a new method of constructing local supervisors with the 

assumption of delay. We provided the necessary and sufficient conditions for the 

existence of distributed nonblocking supervisors achieving a given specification with 

the assumption of unbounded delay in communication network, and formally proved 

it. We also investigated the relation of UCDR languages with other observational 

languages, and argued that the property know as joint-observability does not capture 

the entire problem of distributed supervisory control with unbounded delay. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

In this thesis we studied robust supervisory control of discrete event systems and 

problems associated with it. We summarize our work as follows. 

We considered Robust Decentralized Supervisory Control (RDSC for short) as 

a natural extension of previous work in the area of robust supervisory control with 

respect to plant model, when the system under control is distributed in nature and 

thus no single supervisor is likely to be able to control the system. In this case, we 

would like to synthesize a set of decentralized supervisors (rather than one centralized 

supervisor) that can solve the given robust supervisory control problem. We derived 

necessary and sufficient conditions for the existence of a solution to RDSC problem 

and formally proved them. We observed that this approach is too restrictive. The 

nature of the coobservability condition, one of the conditions for the existence of a 

solution to RDSC problem, requires 'each' local supervisor to see enough of the plant 

to make its decisions. This observation led us to believe that having communicating 

local supervisors is a more realistic assumption when one tries to tackle the problem 
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of robust supervisory control in distributed systems. 

To this end, we formulated a robust supervisory control with respect to commu-

nication channel delay that arises from not-negligible delay in the communication 

between local supervisors when a global objective has to be achieved. This problem, 

rarely touched by previous researchers, required us to redefine supervisor and super-

visory decision making rules to account for the uncertainty associated with delay in 

communication channels. We defined the supervisory action in this setting when local 

supervisors should also take into account the possible future communications, and the 

fact that their view of the system might be out-of-date. 

We assumed that delay is unbounded but it is finite, meaning that any message 

sent from a local supervisor will be received by any other local supervisors after a 

finite but unknown delay. We then formulated Unbounded Communication Delay 

Robust Supervisory Control (UCDR-SC) problem and introduced a new language 

property called unbounded-communication-delay-robust (UCDR for short) as one of 

the conditions to solve it. UCDR property ensures that a particular language can 

be achieved by appropriate supervisors in the presence of delay. We then presented 

necessary and sufficient conditions under which a UCDR-SC problem can be solved, 

and formally proved them. 

Finally, we showed that the new class of UCDR languages has some interesting 

relations with other observational languages such as coobservable languages which we 

believe makes this class of languages a suitable subject for future researchers. 

5.2 Future Work 

We understand that this work is just some initial steps toward a comprehensive study 

on the robustness of decentralized supervisory control problems and mention some of 
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the challenges in the way. 

1. First and foremost, it is essential to find an algorithm to check the unbounded-

communication-delay-robust property of a given language to see if it can be 

implemented in the presence of delay, and also to open the way to come up 

with an algorithm to give a UCDR sublanguage of any given language. UCDR 

property imposes a condition on the strings of a language and thus can be 

checked by searching all the possible strings of a language, however, as we work 

with regular languages, this method will not yield an algorithm as the termina-

tion of the search can not be guaranteed. At this time, it is unclear whether such 

an algorithm exists or the problem of checking UCDR property is undecidable. 

One might try to find an algorithm on the structure of the language, which is 

finite, but should also account for the complications that having self-loops and 

loops brings into checking the UCDR property. On the other hand, one might 

try the reduction to one of the known undecidable problems [28], and proves 

that such an algorithm does not exist. 

2. We assumed that every event is observable by at least one local supervisor. 

While this assumption in general is not restricting, removing that would lead 

to a general solution of the problem. Also we assumed that any event can be 

controlled by at most one local supervisor which removes the common events 

decision fusion rules from our discussion. It seems that the disjunctive fusion 

rule ensures safety but formal proof should be presented. 

3. It might be interesting to investigate Bounded Communication Delay Robust 

Supervisory Control problem when the delay is finite and is known to be smaller 

than K 6 IN. It is interesting to see if the resulting class of languages that can 

be implemented by this assumption is larger than the class of UCDR languages. 
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4. It is interesting to see if the results of our work can be presented in a single 

formulation where the system bears uncertainties in both the system structure 

and in the delay in communication. 
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