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Abstract 

Salt scaling resistance - the effect of curing and one-week presaturation 

Reza Mohammadi Ahani 

In cold climates de-icing salts (NaCl, CaCb) are regularly used to prevent the freezing 

of water on the horizontal surface of concrete structures like roadways and walkways 

which results in salt scaling, one of the major durability issues of the concrete. 

In this experimental research, the effect of one-week pre-saturation and three curing 

methods (standard 14-day moist curing, three-day curing, and the usage of a curing 

compound) on salt scaling resistance was studied in three concrete types including the 

plain concrete and concretes made with fly ash and slag at 25% and 35% cement 

replacement, respectively. Two salt scaling test methods used in this research included 

ASTM C 672/C 672M and its proposed replacement method (one-week presaturation). 

One-week pre-saturation was observed to improve the salt scaling resistance of the 

plain concrete and slag concrete while decreasing the resistance of fly ash concrete. 

The application of the curing compound resulted in lower salt scaling resistance than 

the standard 14-day moist curing method in fly ash and slag concretes and higher 

resistance in the plain concrete. The three-day moist curing method showed higher 

resistance than the standard 14-day moist curing method in fly ash concrete, lower 

resistance in slag concrete, and similar resistance in the plain concrete. 
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The concrete made with slag showed the highest salt scaling resistance in accordance 

with ASTM C 672 and its proposed replacement method followed by the plain concrete 

followed by the concrete made with fly ash. 
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Chapter 1 

Introduction 

1.1 Background 

Concrete is the most widely used building material in the world which is a composite 

material consisting of coarse and fine aggregates, Portland cement, and water. The role of 

aggregates in the concrete is providing the stiffness and reducing drying shrinkage 

(Valenza II, 2005) while the paste, the mixture of cementitious materials and water, can 

be thought as an adhesive that binds the other materials together where the cement has 

reacted and set. Fresh and hardened properties, in addition to performance in service and 

costs, are factors in determining a suitable mixture of the component ingredients. Where 

needed, chemical admixtures including water-reducers and air-entraining admixtures may 

be also added to the concrete mixture. In some applications, part of cement may be 

replaced by supplementary cementing materials like silica fume, fly ash, or ground 

granulated blast furnace slag. 

One of the most important issues regarding concrete is the durability of concrete 

structures which results in high maintenance costs. For example, salts (NaCl, CaCb) are 

regularly used in cold climates to avoid the freezing of water on the horizontal surface of 

concrete structures like roadways and walkways. The application of salt on the concrete 

surfaces results in salt scaling, one of the major durability issues of the concrete which 

should be prevented. Salt scaling is defined by Valenza II and Scherer (2007a) as the 

"superficial damage caused by freezing a saline solution on the surface of a concrete 
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body" which can advance into concrete over time (Pigeon and Pleau, 1995) and takes 

place by the removal of "small flakes or chips" of the paste (Arnfelt, 1943; Jacobsen, 

1995) with the removal of very few small aggregates (Jacobsen, 1995). The first 

observation of salt scaling was reported through laboratory tests by Arnfelt (1943) as well 

as Verbeck and Klieger (1957) which was later verified by Jana (2004) through field 

tests. 

Generally, salt scaling is not visually pleasing because of the exposure of the coarse 

aggregate. Also, the surface of a scaled specimen would be more sensitive to the 

penetration of fluids and detrimental ions like chloride which results in the corrosion of 

the reinforcing steel and concerns the durability of the concrete body (Valenza II and 

Scherer, 2007a). 

A list of characteristics of scaling damage is presented in Chapter 2. Finding a way to 

prevent salt scaling is not so easy because there are different causes for this damage 

(Valenza II and Scherer, 2007a). Several mechanisms for salt scaling have been proposed 

but only the glue spall mechanism was found to account sufficiently for all the 

characteristics of salt scaling damage which are given in Chapter 2 (Valenza II and 

Scherer, 2007b). The other mechanisms for salt scaling proposed by several researchers 

include internal crystallization (hydraulic pressure, crystallization pressure), role of salt 

(thermal shock, precipitation and growth of salt, salt concentration in the pore solution 

(reduction in vapour pressure, osmotic pressure)), diffusion theory, supercooling, 

Litvan's model, and Solar effects. These mechanisms are further defined in the next 

chapter. 
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There are several test methods regarding salt scaling including ASTM C 672/C 672M 

(2003), the capillary suction of de-icing chemicals and freeze-thaw test (CDF) (Valenza 

II and Scherer, 2007a), the Swedish Standard SS 13 72 44 (SIS, 1992) also known as 

Boras method, BNQ NQ 2621-900 (2002), and the proposed replacement method for 

ASTM C 672. 

Parameters which influence the salt scaling resistance of a concrete surface include the 

role of supplementary cementing materials (silica fume, fly ash, ground granulated blast 

furnace slag, ternary blended cement) and their replacement amount, the effects of 

different curing methods, entraining air and spacing factor, field exposure, saline 

solution, finishing, compressive strength, water to cement ratio, bleeding, late exposure to 

the freezing-and-thawing cycles, maturity, minimum temperature, freezing rate, osmotic 

pressure, and polypropylene fibre. These parameters and their effects on salt scaling 

resistance are described in detail in Chapter 2. 

1.2 Objective and scope 

The main objectives of the present research are: 

• Comparing the current ASTM C 672/C 672M (2003) with its proposed 

replacement method for three concrete types (the plain concrete and the concretes 

made with fly ash and slag at 25% and 35% replacement of cement, respectively) 

• Studying the effects of three different curing methods (the standard 14-day moist 

curing method, the three-day curing method, and the usage of a curing compound) 

on salt scaling resistance 
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The experimental program consists of testing two specimens for each variable studied 

in this research regarding the salt scaling. Totally three different concrete types were 

produced including the plain concrete and the concretes made with fly ash and slag at 

25% and 35% replacement of cement, respectively, but due to the mixer capacity two 

mixtures for each type were cast. After mixing each concrete mixture, the slump, the unit 

weight, and the air content were determined according to ASTM standards followed by 

the compression tests on each of three cylinders from each concrete mixture at the age of 

28 days. One batch of each concrete mixture was used to compare the ASTM C 672/C 

672M (2003) with its proposed replacement method while the second batch was used to 

study the effects of the three-day curing method and the usage of a curing compound on 

salt scaling resistance of concrete surfaces. 

1.3 Outline of thesis 

In the following chapter, a detailed literature review regarding the salt scaling is 

discussed. In this chapter, the proposed mechanisms for salt scaling, different salt scaling 

test methods, and all parameters influence the salt scaling resistance of a concrete surface 

are explained. 

A detailed description of experimental program and two different salt scaling test 

methods used in this study is presented in Chapter 3. This chapter also includes the 

specification of the materials, various tests conducted on the aggregates (sieve analysis, 

specific gravity, absorption, bulk density, and the moisture content), the properties and 

mix proportion of concrete, fresh concrete tests (slump, unit weight, and the air content), 

compression test, and the description of three different curing methods (the standard 14-
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day moist curing method, the three-day curing method, and the usage of a curing 

compound). 

The experimental results are presented and discussed in Chapter 4. First, the results of 

the tests conducted on the fresh concrete including the slump, the unit weight, and the air 

content are presented. Then the compressive strengths of different concrete mixtures 

made in this research are given. Finally, the results of salt scaling test are presented 

which include the visual rating and the relationship between mass loss and the number of 

freezing-and-thawing cycles. Based on the experimental results of the salt scaling (mass 

loss), a comparison of ASTM C 672 and its proposed replacement method for each 

concrete type, the effect of different curing methods on salt scaling, and a comparison of 

three concrete types according to each variable studied in this research is demonstrated 

and discussed in this chapter. 

The final chapter includes a summary of the conclusions and recommendations for the 

further research in the area of salt scaling as well as the discussion of the results. 
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Chapter 2 

Literature review 

2.1 General 

The application of salts (NaCl, CaC^) on the horizontal surface of concrete structures 

like roadways and walkways is a common precaution to prevent the freezing of water on 

the concrete surfaces in cold climates. However, this practice can result in salt scaling, 

one of the major durability issues in concrete. 

Valenza II and Scherer (2007a) addressed a difference between salt scaling and usual 

freeze/thaw damage. They indicated that freeze/thaw damage caused by internal 

crystallization occurs with the stiffness and strength reduction while salt scaling does not 

have an influence on the mechanical properties of the concrete due to its superficial 

characteristics. They also mentioned that salt scaling is not visually pleasing due to the 

exposure of the coarse aggregate and the surface of a scaled specimen would be more 

sensitive to the penetration of fluids and detrimental ions like chloride which results in 

the corrosion of the reinforcing steel and concerns the durability of the concrete body. 

Valenza II and Scherer (2007a) prepared a list of characteristics of scaling damage that 

every acceptable mechanism must take into consideration as follows: 

"1 . Salt scaling consists of the progressive removal of small flakes or 
chips of binder. 

2. A pessimum exists at a solute concentration of ~ 3%, independent of 
the solute used. 

3. No scaling occurs when the pool of solution is missing from the 
concrete surface. 
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4. No damage occurs when the minimum temperature is held above 
-10°C; the amount of damage increases as the minimum temperature 
decreases below -10°C and with longer time at the minimum 
temperature. 

5. Air entrainment improves salt scaling resistance. 
6. The salt concentration of the pool on the surface is more important than 

the salt concentration in the pore solution. 
7. Susceptibility to salt scaling is not correlated with susceptibility to 

internal frost action. 
8. The strength of the surface governs the ability of a cementitious body to 

resist salt scaling." 

2.2 Mechanism of salt scaling 

Having the air void distance smaller than the critical spacing factor, strength loss is 

lowered or avoided by the entraining air (Powers and Helmuth, 1953; Helmuth, 1962; 

Maclnnis and Beaudoin, 1968; Kobayashi et al., 1981; Pigeon et al., 1986). This issue 

beside the improvement of salt scaling resistance by the addition of air-entrainment led 

Lindmark (1998) and Sommer (1979) to suggest internal frost action as the reason of the 

salt scaling deterioration of concrete surfaces. 

Several other mechanisms for salt scaling have been proposed as follows; but, only 

glue spall mechanism was found to explain all the characteristics of salt scaling damage 

mentioned in the previous section (Valenza II and Scherer, 2007b). 

2.2.1 Internal crystallization 

Internal crystallization has been considered as a reason for the salt scaling (Valenza II 

and Scherer, 2007b). The role of hydraulic pressure and crystallization pressure is 

discussed in the following sections. 
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2.2.1.1 Hydraulic pressure 

When water freezes, it expands and forms into ice which has a volume 9% greater 

than water. The freezing of water and the ice formation initiates in the larger pores and 

voids then progresses into the smaller ones as the temperature further lowers which 

causes the water to be released from the capillaries as they freeze and creates the 

hydrostatic pressure (Boyd, 1995). Water will move from the freezing part of a 

permeable concrete sample by the formation of ice and the volume expansion (Valenza II 

and Scherer, 2007b) and the hydraulic pressure was addressed by Powers (1945) as the 

reason of this movement. Powers and Helmuth (1953) indicated that the detrimental 

expansion due to the internal crystallization can be lowered by minimizing the spacing 

between the air voids to 250-300 urn. 

Boyd (1995) addressed the hydraulic pressure as dependent on the permeability, the 

freezing rate, and the distance between the capillary and the void edge. Valenza II and 

Scherer (2007b) indicated that the damage due to the internal crystallization is not related 

to hydraulic pressure and reported that this mechanism cannot explain the pessimum 

concentration or improved salt scaling performance when the top surface of the 

specimens are not covered with the saline solution. 

2.2.1.2 Crystallization pressure 

Some researchers observed damage in frozen permeable concretes having fluids with 

larger specific volume than the solid body (Beaudoin and Maclnnis, 1974; Browne and 

Cady, 1975). It was observed by Valenza II and Scherer (2007b) that the melting point is 

lowered at the water solidification in a fine pore due to the higher surface-to-volume ratio 
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of the ice crystals, but the system energy is not reduced because there is a balance 

between the solidification energy and the energy of the interface of crystal and fluid. 

Scherer (1999) addressed a very high pressure required to push the crystals to be in 

contact with the pore wall as higher than the cement paste tensile strength. Some 

researchers addressed the crystal development around the wall placing force onto it 

(Corte, 1962; Uhlmann and Chalmers, 1964; Chernov et al., 1976). 

Valenza II and Scherer (2007b) indicated that crystallization pressure creates 

detrimental expansion if entraining air is not used in the concrete mixtures and reported 

that this mechanism, like the hydraulic pressure, cannot explain the pessimum 

concentration or better salt scaling performance when the top surface of the specimens 

are not covered with the saline solution. 

2.2.2 Role of salt 

Several mechanisms have been proposed to study the effect of salt on the salt scaling 

resistance. These theories are explained in the following sections, but Valenza II and 

Scherer (2007b) indicated that none of them sufficiently explained all of the 

characteristics of salt scaling described earlier. 

2.2.2.1 Thermal shock 

The application of the de-icing salt solution results in a reduction in the melting point 

of ice. The heat required to melt the ice is taken from the concrete surface which results 

in a temperature gradient at the concrete surface and creates differential stress and strain 

(Valenza II and Scherer, 2007b). They mentioned that this minor thermal shock as the 
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result of the de-icing salt application on a frozen concrete surface layer cannot create 

detrimental stresses and concluded that this mechanism cannot explain the pessimum 

concentration and the salt scaling damage is not considerably related to this mechanism. 

2.2.2.2 Precipitation and growth of salt 

As ice is pure water, freezing a saline solution increases the salt concentration in the 

rest of the solution. In the salt scaling test, the concrete surface is exposed to a 

concentrated saline solution whose volume decreases by reducing the initial 

concentration of the saline solution. At -20 °C, the concentration of the solution increases 

to almost 22% by weight from an initial concentration of 3% (Valenza II and Scherer, 

2007b). They concluded that in the temperature range used in the salt scaling test, 

damage from the salt precipitation does not happen and this mechanism also cannot 

explain the pessimum concentration. 

2.2.2.3 Salt concentration in the pore solution 

Generally, freezing damage occurs in concrete when the saturation degree exceeds the 

critical value (Verbeck and Klieger, 1957). Valenza II and Scherer (2007b) addressed an 

argument if the salt concentration in the pore solution can increase the saturation degree 

of the concrete surface. They also indicated that intermediate salt concentrations do not 

extremely increase the saturation degree although they severely scale the concrete 

surfaces. 
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2.2.2.3.1 Reduction in vapour pressure 

Vapour pressure decreases with increasing salt concentration in solutions, causing 

higher degree of saturation. However, since the maximum scaling occurs at 3% 

concentration rather than higher concentrations, this theory has been dismissed by 

Valenza II and Scherer (2007b). 

2.2.2.3.2 Osmotic pressure 

The existence of different soluble materials in the pore water like alkalies, free lime 

and chloride increases concentration at the ice formation and its growth in the rest of 

capillary water. This difference in salt concentration creates the osmotic pressure and 

results in the movement of gel water to the capillaries where the ice will be formed 

(Boyd, 1995; Powers, 1956). It was reported by Valenza II and Scherer (2007b) that the 

osmotic pressure will not have a critical influence regarding the salt scaling. 

2.2.3 Glue spalling 

The glue spall mechanism was proposed by some researchers as the initial reason of 

the salt scaling damage (Valenza II, 2005; Valenza and Scherer, 2006). This method is 

used to decorate a glass surface with scallops (Gulati and Hagy, 1982 and 1973). This is 

done by sandblasting the surface of the glass, covering its surface with an epoxy at high 

temperature, and decreasing the temperature which causes the epoxy to shrink relatively 

more than the glass and creates tension in this layer, distributes the flaws in the glass 

layer where finally a thin glass scallop is removed (Valenza II and Scherer, 2007b). 
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Freezing a saline solution on the top surface of a concrete specimen creates an 

ice/concrete composite similar to the procedure mentioned above (Valenza II and 

Scherer, 2007b). By lowering the temperature of the ice/concrete composite under the 

melting point of the saline solution, the ice layer shrinks significantly more than the 

concrete layer beneath (5 times more) (Pounder, 1965; Gagnon and Jones, 2001; Scherer, 

2004; Ciardullo et al., 2005) where the role of ice in the ice/concrete composite is the 

same as the epoxy in the epoxy/glass composite (Valenza II, 2005; Valenza and Scherer, 

2006). 

2.2.4 Diffusion theory 

The free energy of gel water is similar to that of the capillary water at 0 °C which will 

be increased when the capillary water freezes, makes the gel water to move to capillaries 

resulting in the contraction of gel pores, preparing more water to freeze, and therefore 

more expansion (Boyd, 1995). 

2.2.5 Supercooling 

Boyd (1995) indicated that the freezing of the cement paste water occurs under the 

melting temperature and addressed the size of the capillary and the solution concentration 

as the parameters affect the pore water supercooling which will influence the ice 

distribution rate and therefore the hydraulic pressure progress. Radjy et al. (1972) 

observed the mechanical failure of the specimen caused by extreme supercooling which 

was followed by the freezing. 
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2.2.6 Litvan's model 

Litvan (1976a and 1976b) observed the concrete drying and water travelling to the 

surface due to the vapour pressure difference between the supercooled water in the pores 

and the ice at the surface layer and addressed the possibility of mechanical failure due to 

the prevention of this movement as in low permeable surface layer. 

2.2.7 Solar effects 

The influence of the energy of sun on the freezing-and-thawing of the concrete surface 

was investigated by Moukwa and Adkins (1988). They observed a fast heating of the 

concrete surface by this energy and a two-directional freezing at its absence, from the top 

surface to the bottom and from the frozen concrete to the surface, which produces ice 

lenses, generates a weak layer, and scales the top layer. 

2.3 Different test methods for salt scaling 

The test methods used by several researchers regarding the salt scaling are as 

following: 

• ASTM C 672/C 672M (2003), most of the experiments regarding the salt scaling 

were conducted in accordance to this method which will be described in detail in 

Chapter 3. 

• The capillary suction of de-icing chemicals and freeze-thaw test (CDF), an upside 

down version of ASTM C 672 developed in Germany. In this method, before starting 

the test, the concrete slab with a thickness of 50 to 75 mm is maintained at 20 °C and 

65% relative humidity until equilibrium and then is supported 3 mm above the bottom 
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of a stainless steel container having NaCl solution where 20 mm of insulation covers 

the slab top surface (bottom molded surface). The temperature in this test method 

varies twice a day between -20 °C and +20 °C and the mass loss is determined after 7, 

14, 28, 42, and 56 freezing-and-thawing cycles (Valenza II and Scherer, 2007a). 

• The Swedish Standard SS 13 72 44 (SIS, 1992), also known as Boras method, is a 

similar method to ASTM C 672 with two differences. First, the bottom and sides of 

the specimens are covered with almost 20 mm of insulation to assist unidirectional 

freezing. Second, to avoid the evaporation, a plastic foil sheet is placed 20 mm above 

the salt solution. In this test method, the thickness of the specimens is 50 mm, the 

depth of salt solution is 3 mm, the temperature is lowered to -15 to -20 °C during the 

first 12 hours followed by keeping the temperature for four hours at this minimum 

temperature followed by increasing the temperature to 15 to 25 °C during the next 

eight hours. The mass loss is determined after 7, 14, 28, 42, and 56 freezing-and-

thawing cycles (Valenza II and Scherer, 2007a). 

• BNQ NQ 2621-900 (2002) is another similar method to ASTM C 672 with some 

differences as follows. This method does not require brushing the surface after the 

bleeding; the concrete surface is covered with a polyethylene sheet right after 

finishing with a wooden trowel to minimize the evaporation. But its latest version 

requires a layer of dry non-weaved polypropylene geotextile with a thickness of 7 

mm ± 1 mm at the bottom of the mold to provide some drainage which helps concrete 

mixtures sensitive to bleeding. The BNQ standard also requires a 13-day (after one 

day in the mold) moist curing at 23 ± 2 °C followed by a 14-day dry-curing at 15 to 

30 °C and 50 ± 20 % relative humidity and finally a 7-day pre-saturation of the 
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concrete surface with the saline solution prior to the beginning of freezing-and-

thawing cycles. ASTM C 672 requires Calcium chloride (4% CaCl2) while the BNQ 

standard requires NaCl (with a concentration of 3.0 ± 0.1 %). The BNQ standard 

requires using a 3% NaCl solution to washing out the scaling residues from the 

specimen surface while most laboratories use pure water when tested according to 

ASTM C 672 (Bouzoubaa et al., 2008). In the BNQ standard, the scaling residues are 

collected and weighed at the end of 7, 21, 35, and 56 cycles of freezing-and-thawing 

but in the ASTM C 672, this process is done after every 5 cycles. The minimum 

surface area of the specimens in the BNQ standard is 0.05 m versus 0.045 m as 

required by ASTM C 672 and the visual rating in these two standards have different 

scales. And finally the BNQ standard requires stopping the freezing-and-thawing 

cycles where the cumulated mass loss exceeds 1.50 kg/m2. 

• The proposed replacement method for ASTM C 672, which is based on the BNQ 

standard and will be described in detail in Chapter 3. The major difference between 

the existing and proposed standard is the 7 day pre-saturation of the specimens. 

Bouzoubaa et al. (2008) found the ASTM C 672 method more severe in the 

laboratory than the field (as agreed to by Hooton and Boyd, 1997; Thomas, 1997; 

Langley and Leaman, 1998; Bleszynski et al., 2002; Marchand et al., 2005; Krishnan 

et al., 2006; Boyd and Hooton, 2007) and addressed the BNQ procedure as a better 

means to evaluate the salt scaling resistance of concrete incorporating the 

supplementary cementing materials. They reported greater scaling residue and higher 

visual rating of specimens tested in accordance with ASTM C 672 than the BNQ 

standard in concrete specimens made with fly ash and slag. 
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2.4 Parameters influencing salt scaling resistance 

There are many parameters studied by several researchers which were found to have 

an effect on salt scaling resistance of a concrete surface. These parameters are discussed 

in detail in the following sections. 

2.4.1 Supplementary cementing materials (SCMs) 

Fly ash, silica fume, and ground granulated blast furnace slag are the common 

supplementary cementing materials used in concrete as Portland cement replacement. 

Generally with a proper design, replacing the Portland cement partially with 

supplementary cementing materials results in a comparable or improved mechanical 

properties and durability of concrete (Hassan et al., 2000; Blomberg, 2003; Nikam and 

Tambvekar, 2003; Bouzoubaa and Fournier, 2005; Bouzoubaa et al., 2008). Although 

using SCMs, especially fly ash and slag, in concrete usually improves the long-term 

strength, elastic modulus, permeability, and chemical resistance (Radlinski et al., 2008), 

these concretes may have a poor salt scaling resistance (Afrani and Rogers, 1994; Boyd, 

1995; Pigeon et al., 1996; Bleszynski et al., 2002; Deja, 2003; Krishnan et al., 2006). In 

concrete mixtures made with supplementary cementing materials in the laboratory, some 

researchers noticed a thicker porous surface layer than the regular concrete which is more 

sensitive to the scaling while this layer was not observed in the field concretes which 

somehow can be the reason for their better scaling resistance (Pigeon and Marchand, 

1996). 
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2.4.1.1 Silica fume 

"Silica fume (or microsilica or condensed silica fume) is a by-product material of the 

manufacture of silicon or ferrosilicon alloys" (Valenza II and Scherer, 2007a). They 

indicated that the addition of silica fume to the concrete improves the early strength (age 

< 7 days) and the salt scaling resistance which could be due to the increased strength. 

Some researchers indicated that the addition of silica fume to the concrete mixture 

having water-to-cement ratio > 0.4 improves the salt scaling resistance if the 

compressive strength of the concrete mixture is higher than 40-45 MP a (Aitcin and 

Pigeon, 1986; Jacobsen et al. 1991) while a little influence on the salt scaling resistance 

was observed at lower w/c ratio (< 0.35) where the minimum compressive strength is 40-

45 MPa (Sorensen, 1983; Gagne et al., 1991; Sellevold and Farstad, 1991). On the other 

hand, rapid and severe scaling was reported in silica fume concrete by extending the 

freezing-and-thawing cycles (Petersson, 1986; Sellevold and Farstad, 1991; Jacobsen, 

1995). 

2.4.1.2 Fly ash 

Fly ash is a by-product of the coal-fired power industry having particles similar size to 

unhydrated cement grains. Concrete made with fly ash achieves higher strength at the 

later curing periods (1-2 months) (Valenza II and Scherer, 2007a). 

Many researchers indicated that the salt scaling resistance decreases by the addition of 

fly ash (Gebler and Klieger, 1986; Johnston, 1987; Whiting, 1989; Bilodeau et al., 1991; 

Bilodeau and Malhotra, 1992). Part of its poor salt scaling resistance was found to be 

related to lower strength at short moist curing periods (3-28 days) (Whiting, 1989; 
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Bilodeau et al., 1991; Bilodeau and Malhotra, 1992). Better performance of class C fly 

ash was reported by Boyd (1995) than class F fly ash. Naik et al. (2005) indicated that 

postponing the salt scaling test to a later time after the concrete made with high-volume 

fly ash gets higher strength, would be useful. 

Bilodeau et al. (1994) showed that addition of fly ash to the concrete significantly 

reduces its salt scaling resistance regardless of the type of fly ash. They used eight 

different fly ashes form U.S. sources at the replacement rate ranges from 55 to 60 % and 

observed the severe scaling (level 5) at the end of both 50 and 100 cycles with the 

exception of one mixture which showed moderate to severe scaling (level 4). 

Bouzoubaa et al. (2008) compared the salt scaling resistance of laboratory specimens 

with sidewalk sections after four winters of outdoor exposure in accordance with both the 

ASTM C 672/ C 672M (2003) and BNQ NQ 2621-900 (2002). They compared the 

control mixture made with 25% blended silica fume cement (HSF, ~ 8% silica fume) and 

75% regular GU Portland cement (ASTM type I) with mixtures containing one ASTM 

Class F fly ash (ASTM C 618, 2008) at 25% and 35% cement replacement. They kept the 

specimens in the mold for two days followed by 12 days moist-curing (instead of 13 days 

as required by ASTM C 672) and 3% NaCl solution was used in both the ASTM C 672 

and the BNQ standard (instead of using 4% CaCl2 in the ASTM C 672). They observed a 

poor salt scaling resistance (severe scaling, level 5) of the concrete mixtures 

incorporating fly ash in accordance with ASTM C 672 but a satisfactory resistance (level 

2 for 35% fly ash and level 3 for 25%) according to BNQ (2002) in comparison with the 

control mixture (level 1 according to both ASTM C 672 and BNQ) which agrees with the 

findings of other researchers (Gebler and Klieger, 1986; Johnston, 1987; Whiting, 1989; 
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Bilodeau et al., 1991; Johnston, 1994; Hooton and Boyd, 1997; Talbot et al., 2000). At 

the end of 50 freezing-and-thawing cycles, Bouzoubaa et al. (2008) reported greater 

scaling residue and higher visual rating of specimens tested in accordance with ASTM C 

672 than the BNQ standard in all control mixture and fly ash concretes. They indicated 

that all of the fly ash concrete specimens failed to meet the requirement of the Ministry of 

Transportation of Ontario, Canada (MTO) (having a mass loss smaller or equal to 0.8 

kg/m2) when tested in accordance with ASTM C 672. But when the BNQ standard was 

used, the requirement of having a maximum mass loss of 0.5 kg/m was met. The results 

for sidewalks under field exposure will be discussed later. 

Based on the results from the research done by Bilodeau and Malhotra (1992), it was 

found that most of the scaling occurred in the first 20 freezing-and-thawing cycles after 

which in the concrete mixtures with low 28-day strength, the rate of scaling was higher 

and the concrete mixtures without fly ash showed an acceptable salt scaling resistance 

without fast initial scaling (Valenza II and Scherer, 2007a). 

On the other hand, Gebler and Klieger (1986) studied the effect of Class C and F fly 

ash (ten different fly ashes) on salt scaling resistance according to five different curing 

methods and found that the addition of fly ash (at 25% replacement) to the air-entrained 

concrete reduces salt scaling resistance regardless of the curing method or the type of fly 

ash. They also reported that the concrete mixtures made with class F fly ash showed 

slightly lower salt scaling resistance than the concrete mixtures containing class C fly ash 

only at lower temperature curing methods (4.4 °C) and the same resistance was observed 

at 23 °C curing methods. 
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2.4.1.3 Ground granulated blast furnace slag (GGBFS) 

"Slag is a waste product of the pig iron production which must be cooled to produce 

granulated glass and after being cooled and highly grounded, it is called ground 

granulated blast furnace slag (GGBFS)" (Valenza II and Scherer, 2007a). They indicated 

that at younger ages (7-14 days), the concrete mixture incorporating the slag results in 

lower strength than the ordinary Portland concrete due to the slower hydration while 

higher strength of slag concrete is achieved after extended curing time (28 days). 

A reduction in salt scaling resistance was reported by some researchers when the slag 

was added to the concrete (Bilodeau and Malhotra, 1993; Setzer, 1993; Copuroglu et al., 

2004). Based on their results, Valenza II and Scherer (2007a) observed an increased 

scaling residue in the first ten freezing-and-thawing cycles which was reported to be 

related to the formation of a weak surface, not to the difference in the strength. 

Afrani and Rogers (1994) addressed two potential reasons for the increased amount of 

scaling residue in the concretes made with slag; firstly, the early finishing before the 

bleeding has stopped due to the late set of slag concrete which may form a weak layer 

with a high w/c ratio so close to the surface, and secondly, not enough curing length due 

to a lower hydration heat of slag concrete at normal temperature. 

Bouzoubaa et al. (2008) compared the salt scaling resistance of laboratory specimens 

with sidewalk sections after four winters of outdoor exposure in accordance with both the 

ASTM C 672/ C 672M (2003) and BNQ NQ 2621-900 (2002). When ASTM C 672 was 

used, they observed a better salt scaling resistance (lower scaling residue) of the concrete 

mixture incorporating slag at 25% cement replacement than the control mixture which 

met the requirement of MTO (having a mass loss smaller or equal to 0.8 kg/m2) and 

20 



addressed the slightly higher air content of slag concrete as leading to its better salt 

scaling performance. On the other hand, the concrete mixture made with slag at 35% 

cement replacement was observed to have a lower salt scaling resistance (moderate to 

severe scaling, level 4) than the control mixture in accordance with ASTM C 672 and did 

not meet the MTO requirement but they showed a higher salt scaling resistance (level 1) 

when tested according to the BNQ standard (scaled significantly less) in comparison with 

ASTM C 672. They also reported that the concrete mixtures made with slag showed 

better salt scaling resistance than the fly ash concretes and addressed the higher air 

content and lower air-void spacing factors of the slag concretes as their better 

performance. 

Afrani and Rogers (1994) studied the salt scaling resistance of six different concrete 

mixtures including 50% high-alkali Portland cement (HAPC) and 50% slag, 82% HAPC 

and 18% type F fly ash, 75% HAPC and 25% slag, 24% HAPC, 51% PSFC (blended 

cement having 7.5% silica fume and 25% slag), 100% low-alkali Portland cement, and 

100% HAPC. They reported the greatest salt scaling resistance in 100% HAPC concrete 

mixture and the mixture made with 75% HAPC and 25% slag disregarding the curing 

method while the concrete mixture made with 50% high-alkali Portland cement and 50% 

slag was reported to have the least salt scaling resistance. They also reported the 

unexpected higher scaling residue (lower salt scaling resistance) of the concrete mixture 

made with the low-alkali cement cured under the standard curing method in comparison 

with the concrete mixture having the high-alkali cement. 

21 



2.4.1.4 Ternary blended cement 

While using a single SCM in the concrete mixture shows poor salt scaling resistance, 

the ternary blends of cement with fly ash and silica fume were reported to improve the 

salt scaling resistance (Lilkov and Stoitchkov, 1996; Stoitchkov et al., 1996; Thomas et 

al., 1999; Olek et al., 2002; Blomberg, 2003; Nikam and Tambvekar, 2003; Bouzoubaa et 

al., 2004; Radlinski et al., 2006). 

On the other hand, Bouzoubaa et al. (2008) reported a poor salt scaling resistance of 

both ternary blended cements used in their study (fly ash-silica fume and slag-silica 

fume) in accordance with ASTM C 672. They observed a severe scaling (level 5) in the 

concrete mixture made with fly ash-silica fume ternary blended cement and a moderate to 

severe scaling (lever 4) in the concrete mixture made with slag-silica fume ternary 

blended cement and reported more scaling residue in the concrete made with fly ash-

silica fume ternary blended cement than the concrete made with slag-silica fume ternary 

blended cement when tested according to ASTM C 672. 

2.4.1.5 Replacement amount 

Using large amounts of cement replacement with supplementary cementing materials 

(more than about 20% fly ash or 30% slag) throughout the laboratory tests was reported 

to show a poor slat scaling performance (Gebler and Klieger, 1986; Johnston, 1987; 

Whiting, 1989; Bilodeau et al., 1991; Johnston, 1994; Hooton and Boyd, 1997; Talbot et 

al., 2000). However, the other researchers reported a good salt scaling resistance of the 

concretes made with high amounts of these supplementary cementing materials in the 
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field (Hooton and Boyd, 1997; Thomas, 1997; Langley and Leaman, 1998; Marchand et 

al., 2005). 

Neville (1996) reported the maximum effective replacement amount for fly ash, slag, 

and silica fume to be 30%, 50%, and 10%, respectively. The maximum amount of slag 

and fly ash replacement (when used individually) is limited to 25% and 10%, respectively 

by the Ontario Ministry of Transportation for the concrete mixtures exposed to the 

freezing-and-thawing, but in a concrete mixture made with both fly ash and slag, the 

maximum replacement amount of fly ash and the total slag and fly ash is limited to 10% 

and 25%, respectively (Afrani and Rogers, 1994). Most government agencies in Canada 

(municipalities, provincial departments of transportation) usually limit the maximum 

replacement amount of fly ash and slag to 20% or less in the concrete mixtures exposed 

to de-icing salts (Bouzoubaa et al., 2008). 

Valenza II and Scherer (2007a) indicated that low replacement amount (< 10 %) of 

silica fume results in higher salt scaling resistance in a concrete mixture having a 

minimum compressive strength of 40 MPa. They also reported more scaling residue by 

using slag or increasing its replacement amount in the concrete based on the results from 

the experiments done by Bilodeau and Malhotra (1993) which is agreed by other 

researchers too (Afrani and Rogers, 1993; Setzer, 1993). 

It was reported that by limiting the fly ash replacement amount to 30%, the salt scaling 

resistance will not be influenced significantly (Bilodeau et al., 1991; Afrani and Rogers, 

1993). Naik et al. (2005) investigated the effect of different replacement amounts of class 

C fly ash in the laboratory concrete mixtures and reported no scaling or very slight 

scaling for up to 45% replacement, slight to moderate scaling for 50 to 60% replacement, 
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and severe scaling for 74% replacement. They also reported very slight scaling damage in 

the pavement sections having up to 50% class C fly ash. They addressed the possibility of 

making a concrete mixture by replacing up to 56% of cement with class C fly ash which 

will resist the salt scaling. They also reported slight to moderate scaling in the laboratory 

concrete mixture having 40% class F fly ash while only slight scaling was found in the 

field pavement sections. 

Neuwald et al. (2003) reported more bleeding by increasing the fly ash replacement 

amount and the negative influence of high volume replacement of fly ash (> 30 %) on 

scaling was reported by the other researchers (Whiting, 1989; Afrani and Rogers, 1993). 

Bilodeau et al. (1994) reported the severe scaling (level 5) at the end of both 50 and 100 

cycles in all concrete mixtures containing eight different fly ashes form U.S. sources at 

the replacement rate ranges from 55 to 60% with the exception of one mixture which 

showed moderate to severe scaling (level 4). 

Using fly ash and slag or increasing their replacement amount in the concretes made 

with high-alkali Portland cement and these supplementary cementing materials resulted 

in lower salt scaling resistance (Afrani and Rogers, 1994). Boyd and Hooton (2007) also 

observed the negative effect of increasing the replacement amount of supplementary 

cementing materials on the salt scaling resistance. They have studied six different 

laboratory concrete mixtures made with slag (at 25, 35, and 50% cement replacement), 

fly ash (at 15% cement replacement), 25% slag combined with 10% fly ash, and 100% 

Portland cement. Except the concrete mixture containing 50% slag and the slag and fly 

ash ternary blend (25% slag and 10% fly ash), the other concrete mixtures were found 

within the required mass loss range by MTO. Radlinski et al. (2008) observed a reduction 
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in the salt scaling resistance by increasing the replacement amount of class C fly ash in 

the ternary concrete mixture due to the fact that ternary concrete mixture made with 20% 

class C fly ash and 5 or 7% silica fume showed higher scaling resistance than ternary 

concrete mixture made with 30% class C fly ash and 5 or 7% silica fume. They reported a 

very good salt scaling resistance of ternary concrete mixtures having 20% fly ash and 5 

or 7% silica fume when testes at both the early and late ages while in the concrete 

mixtures made with 30% class C fly ash and 5% silica fume using the early age testing, a 

large amount of scaling residue (poor salt scaling resistance) was observed which was 

significantly decreased at the late age testing. They also reported a considerable scaling 

residue of the concrete mixture made with 30% class C fly ash and 7% silica fume when 

tested at the both ages. 

Bilodeau et al. (1987) reported more scaling of the concrete mixtures made with 

different types of slag at 25% and 50% cement replacement in comparison with the 

concrete mixture made with Portland cement. In contrast, Fagerlund (1982) reported a 

significant improvement of salt scaling resistance when the replacement amount of slag 

was increased (to 65%) and observed a fair to good salt scaling resistance in the concrete 

mixtures made with slag at 65% cement replacement even without entraining air. 

However, Fagerlund (1982) used the Swedish method, an upside down version, covering 

the bottom surface of the samples with NaCl solution and conducting the test on the sawn 

surfaces of cylinders cured for seven months followed by one week drying at 50 °C 

before the test. 
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2.4.2 Mixture design factors 

In this section the effect of mixture design factors on the salt scaling resistance is 

explained. These factors include the entraining air and spacing factor, compressive 

strength, water-to-cement ratio, and polypropylene fibre. 

2.4.2.1 Entraining air and spacing factor 

Several researchers reported the improvement of salt scaling resistance by the addition 

of air entrainment to the concrete (Verbeck and Klieger, 1957; Jackson, 1958; Sommer, 

1979; Sorensen, 1983; Aitcin and Pigeon, 1986; Fournier et al., 1987; Siebel, 1989; 

Stark, 1989; Jacobsen et al., 1991; Sellevold and Farstad, 1991; Setzer, 1993; Marchand 

et al., 1995b). This improvement can be seen in Figure 2.1. 
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Figure 2.1 — The relationship between solution concentration, entraining air, and 
scaling visual rating (Verbeck and Klieger, 1957). 
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Acording to Valenza II and Scherer (2007a), air entrainment improves the salt scaling 

resistance by reducing the bleeding and compressing the permeable sample which 

happens when the ice in the air voids absorbs pore liquid from the cement paste. 

Deja (2003) showed that adding 5 to 6 % entraining air to the concrete mixture 

containing high volume granulated blast furnace slag (57%) increased its salt scaling 

resistance even at high w/c ratio (0.5). They observed a considerable scaling damage in 

non-air-entrained concrete mixture at early age (after 14 cycles) which was significantly 

decreased by the addition of the air-entraining admixture. They also showed that 

increasing the air content reduces the amount of scaling residue. 

Several researchers reported the critical spacing factor of 250-300 um and indicated 

that the concrete mixtures having a spacing factor smaller than the mentioned critical 

value show an acceptable salt scaling resistance regardless of the concrete type (Sommer, 

1979; Fournier et al., 1987; Langlois et al., 1989; Siebel, 1989; Marchand et al., 1995a) 

while Bouzoubaa et al. (2008) indicated a maximum spacing factor of 200 um for air-

entrained concrete to prevent the salt scaling damage. Some researchers indicated that in 

the concrete mixture having an air void spacing greater than the critical limit, the mass 

loss is dependent on the spacing factor (Klieger, 1980; Siebel, 1989; Bordeleau et al., 

1992). On the other hand, for internal frost action other researchers addressed a variable 

critical spacing factor dependent on the concrete type (Kobayashi et al., 1981; Pigeon et 

al., 1986; Foyetal. 1988). 

Pigeon et al. (1986) as well as Backstrom et al. (1958) indicated that by increasing the 

volume of air entrainment in the concrete, the spacing factor is reduced which results in 

less bleeding (Bruere, 1958; Powers, 1968; Mindness and Young, 1981; Neville, 1996) 

27 



(Figure 2.2). Bruere (1958) indicated that air bubbles stick to the cement grains, making 

them float and result in less bleeding. He also observed that even without any air 

entrainment, some air-entraining admixtures result in less bleeding (Figure 2.2). 

0.100 

g 0.040 
13 
M 0.030 

0.020 
5 W 15 20 25 M) 

Air Content (•%.) 

Figure 2.2 — The relationship between air content and bleeding (Bruere, 1958). 
(Surface-active agents: 1-Sodium abietate, 0.05% by cement weight 

2-Saponin, 0.10% by cement weight) 

Siebel (1989) observed an increased scaling mass loss when the volume of air voids 

having a diameter smaller than 300 urn decreases and the critical volume was found to be 

around 1.5% (Siebel, 1989; Hammer and Sellevold, 1990; Setzer, 1993) (Figure 2.3). 
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Figure 2.3 — Air void content and weight loss relationship (Siebel, 1989). 
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2.4.2.2 Compressive strength 

Bouzoubaa et al. (2008) reported a lower salt scaling resistance of fly ash concrete 

mixtures than control concrete and suggested the lower compressive strength of fly ash 

concrete at the beginning of the drying period (at the age of 14 days) as the reason of this 

poor performance. However, they also observed a lower salt scaling resistance in the 

concrete made with 35% slag as the cement replacement and the concrete mixtures 

incorporating fly ash-silica fume and slag-silica fume ternary blended cements is spite of 

having a higher 14-day compressive strength than the control mixture. Therefore, they 

indicated that the surface layer characteristics as well as the mechanical properties of the 

bulk concrete have an effect on the salt scaling resistance. 

Valenza II and Scherer (2007a) indicated that in order for silica fume and fly ash 

concrete to have acceptable performance regarding salt scaling, a minimum compressive 

strength of 40-45 MPa is necessary, but not necessarily adequate. Bilodeau et al. (1991) 

as well as Bilodeau and Malhotra (1992) reported a significant reduction of the amount of 

scaling damage if w/c < 0.5 or the 28-day compressive strength reaches 40 MPa. Naik et 

al. (2005) observed a lower salt scaling resistance in a concrete mixture having lower 

compressive strength than a higher-strength concrete. 

2.4.2.3 Water to cement ratio (w/c) 

Some researchers indicated that decreasing the water-to-cement ratio reduces the 

bleeding (Taylor, 1961; Powers, 1968; Neville, 1996) and increases the strength 

(Mindness and Young, 1981; Neville, 1996). Many researchers observed that reducing 

the water-to-cement ratio improves the salt scaling resistance (Jackson, 1958; Klieger and 
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Landgren, 1969; Sorensen, 1983; Petersson, 1986; Johnston, 1987; Bilodeau and Carette, 

1989; Rose et al., 1989; Whiting, 1989; Whiting and Schmitt, 1989; Hammer and 

Sellevold, 1990; Bilodeau and Malhotra, 1992; Marchand et al., 1995a) and mentioned 

that in concretes with a w/c < 0.3 there is no need for air entrainment regarding the salt 

scaling resistance (Foy et al., 1988; Gagne and Pigeon, 1990; Hammer and Sellevold, 

1990; Jacobsen and Sellevold, 1993; Marchand et al., 1995a) due to a very little bleeding 

(Valenza II and Scherer, 2007a). Powers (1968) mentioned that a cement paste having 

w/c = 0.3 has a very low bleeding capacity like cement past having w/c ~ 0.45 and 20% 

air. 

2.4.2.4 Polypropylene fibre 

Deja (2003) showed that adding the fibrillated polypropylene microfibres (length 19 

mm) to the concrete mixtures containing high volume (57%) granulated blast furnace slag 

results in a significantly higher salt scaling resistance. 

2.4.3 Fresh state 

In this section the influence of fresh state on the salt scaling resistance is explained 

which include the bleeding and finishing. 

2.4.3.1 Bleeding 

It was observed by some researchers that bleeding or segregation varies the water-to-

cement ratio and the density through the concrete thickness with the greatest density at 

the specimen's bottom (Taylor, 1961; Powers, 1968; Kreijger, 1984). Valenza II and 
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Scherer (2007a) indicated that the strength varies due to the density variation forming the 

weakest concrete at the top and suggested that the better salt scaling resistance of air-

entrained concrete is due to the prevention of bleeding from reducing the surface 

strength. Afrani and Rogers (1993) as well as Janeva et al. (2002) conducted the salt 

scaling test on the bottom molded surface of the specimens and observed no scaling 

damage on the bottom surface while the top surface was damaged. 

2.4.3.2 Finishing 

Some researchers observed a greater salt scaling resistance when the surface of the 

specimens was brushed before the salt scaling test (Pigeon et al., 1987, Bilodeau and 

Carette, 1989; Bilodeau et al., 1991; Bilodeau and Malhotra, 1993). 

On the other hand, Bouzoubaa et al. (2008) mentioned that by brushing the surface too 

early or much later (after the bleeding has stopped), the surface air-void network may be 

damaged which results in lower salt scaling resistance. After comparing the salt scaling 

results of ASTM C 672 and BNQ standards, they suggested that skipping the brushing 

(not touching the surface) improves the salt scaling resistance mainly with a slight 

bleeding. Bilodeau et al. (1994) also indicated that finishing may change the air-void 

system, making it insufficient to resist the freezing-and-thawing damage, resulting in 

poor scaling performance in concrete mixtures containing high volume of fly ash (at 55 to 

60 % cement replacement). 

Bouzoubaa et al. (2008) indicated that the field-type finishing of the concrete surface 

resulted in more scaling residue than the laboratory-type finishing. They addressed a 
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rougher surface of the field-finished samples having greater paste content as the reason of 

their worse performance. 

Boyd and Hooton (2007) observed a slight influence of different finishing time (early 

finishing and normal finishing), related to bleeding, on the salt scaling resistance of 

concrete in the field. On the other hand, Taylor et al. (2004) reported the benefit of the 

early finishing in fly ash and slag concrete mixtures and the late finishing in the Portland 

cement concrete mixtures. They made three concrete mixtures with 100% type I Portland 

cement, grade 100 slag at 50% cement replacement, and class C fly ash at 25% cement 

replacement and did the finishing of the specimens at three different times including very 

soon after filling the molds, after bleeding stopped, and near initial setting. They 

observed the lowest salt scaling resistance at early finishing in the Portland cement 

concrete mixture which was improved by postponing the finishing while the opposite 

result was observed in fly ash and slag concrete mixtures in which the best salt scaling 

resistance was observed at the earlier finishing times. 

2.4.4 Curing 

The importance of initial curing of concrete was reported by many researchers, 

especially in the concrete mixtures made with slow reaction materials such as fly ash and 

slag (Khan and Ayers, 1993; Shafiq and Cabrera, 2004). Increased salt scaling resistance 

of a Class F fly ash concrete mixture was observed when the moisture equilibrium was 

achieved before the salt scaling test (Waktola et al., 2005) which is verified by Krishnan 

et al. (2006) who also addressed the advantage of extended curing in fly ash and slag 
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concretes. In contrast, Bilodeau et al. (1991) reported more scaling as a result of extended 

moist curing. 

Some researchers reported a lower salt scaling resistance by curing at high 

temperature for a short time (-24 hours) (Langlois et al., 1989; Jacobsen and Sellevold, 

1993). Curing temperature has a negative influence on the durability (Jacobsen and 

Sellevold, 1993). The 28-day strength is reduced 10% by one-day curing at 38 °C 

(Richardson, 1991) and 25% by 18-hour curing at 70 °C (Langlois et al., 1989). 

Therefore, Valenza II and Scherer (2007a) concluded that curing at high temperatures 

reduces the strength and makes the specimens more sensitive to the salt scaling. Langlois 

et al. (1989) as well as Gagne et al. (1991) addressed the increased salt scaling resistance 

by extended moist curing. 

Drying ordinary concrete at 45 °C (Sorensen, 1983) or 100 °C (Bilodeau and Carette, 

1989) results in more sensitivity to the salt scaling while drying at room temperature (~23 

°C) has a slight influence on the salt scaling resistance (Verbeck and Klieger, 1957; 

Whiting, 1989; Bilodeau et al., 1991). Valenza II and Scherer (2007a) indicated that 

drying at high temperature or at very low relative humidity (<30%) increases the 

sensitivity to the salt scaling by forming a weak surface of the concrete. It was observed 

that in the concrete mixtures made with silica fume, drying at 45 °C does not affect the 

durability (Sorensen, 1993) while a reduction in durability was observed by drying these 

mixtures at 100 °C (Bilodeau and Carette, 1989). 

Bilodeau et al. (1991, 1998) indicated that in fly ash concrete, extending the moist 

curing period in the laboratory (from 28 to 91 days) decreased the salt scaling resistance 

while an improvement in the salt scaling resistance was observed by decreasing the 
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drying period before the salt scaling test. Afrani and Rogers (1993) showed that covering 

the specimens right after the casting with a plastic sheet until the demolding time (24 

hours later) reduced the salt scaling resistance, while Neuwald et al. (2003) reported a 

significant increased salt scaling resistance by allowing evaporation after the casting and 

then sealing after a short time (6 hours). This technique would permit bleed water to 

evaporate, but still promote reasonable curing. 

Radlinski et al. (2008) studied the effect of four different curing methods on salt 

scaling resistance which included air drying (storage at 23 °C and 50% relative humidity), 

three and seven days curing under wet burlap and covered with plastic sheet, and seven 

days covered with curing compound (applied on all surfaces except the bottom right after 

demolding which was removed by a wire brush after seven days). They reported lower 

sensitivity of the mixtures made with 20% class C fly ash to the initial curing conditions 

in comparison with the mixtures having 30% fly ash. They also observed that air drying 

(lack of curing) at the early age may decrease the salt scaling resistance at the late age 

and found that increasing the curing duration of the wet burlap from three to seven days 

resulted in slightly better salt scaling resistance at the early age which disappeared at the 

late age. And finally they observed that using the curing compound resulted in the best 

salt scaling resistance at the early age and a very good resistance at the late age which is 

in line with the findings by Krishnan et al. (2006). Radlinski et al. (2008) suggested that a 

thin layer of curing compound prevents the salt and moisture; reduces the saturation 

degree of the pore system in the very top layer, and results in the good performance at the 

early age in these specimens. 
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Copuroglu et al. (2004) studied the effect of eleven curing methods on salt scaling 

resistance of slag mortars including: 

• Five weeks curing with 3% NaCl at 20 °C 

• Five weeks immersed in tap water and sealed in a plastic bag at 20 °C 

• Six days water curing followed by three weeks placed in desiccators having 0% 

relative humidity and 0% CO2 at 20 °C before 3% NaCl saturation period (extremely 

dried, no carbonation) 

• Six days tap water curing followed by three weeks placed in desiccators having 50% 

relative humidity and 28% CO2 at 20 °C followed by one week 3% NaCl saturation 

(dried, no carbonation) 

• Six days water curing followed by three weeks placing in the laboratory having 50%) 

relative humidity at 20 °C before 3% NaCl saturation period (dried, carbonated) 

• Six days water curing followed by three weeks placing in a container having 3% CO2 

and 50% relative humidity at 20 °C before 3%> NaCl saturation period (dried, rapid 

carbonation) 

• Five weeks curing by demineralised water at 20 °C (demi water) 

• Five weeks curing by tap water at 20 °C (plain water) 

• Five weeks curing by saturated CaS04 solution at 20 °C 

• Five weeks curing by saturated lime solution at 20 °C 

• Curing with one molar NaOH solution at 20 °C to maintain the pH above 13 and 

increase the activation rate of slag. 

Copuroglu et al. (2004) addressed the critical influence of carbonation on salt scaling 

resistance of slag mortars at a fixed relative humidity. They also compared the non-
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carbonation curing methods (extremely dried and dried) and found that by increasing the 

drying rate, the salt scaling resistance decreased. They mentioned that the carbonation has 

more influence on the salt scaling resistance of slag mortars than the drying. They finally 

addressed the limewater curing to have the best salt scaling resistance and the carbonated 

curing methods (dried-carbonated and dried-rapid carbonation) to have the worst salt 

scaling resistance. 

Afrani and Rogers (1994) studied the effect of five different curing methods on salt 

scaling resistance of six concrete mixtures made with low and high alkali Portland 

cement, slag, fly ash, and silica fume. The curing regimes in their study included: 

• 14-day moist curing at 23 °C followed by 14 days curing in the laboratory air 

• 14-day outdoor curing under wet burlap covered with polyethylene followed by 14 

days curing in the laboratory air 

• Covering the concrete surface with a resin-based curing compound, Sealtight 1220®, 

and 28 days curing in the laboratory air 

• Finishing the concrete surface by using a magnesium hand float, brushing it with a 

broom, covering it with the same curing compound, 14 days outdoor curing followed 

by 14 days curing in the laboratory air 

• Finishing like the previous method followed by 14 days outdoor curing under wet 

burlap covered with polyethylene followed by 14 days curing in the laboratory air 

Afrani and Rogers (1994) addressed the outdoor curing under wet burlap covered with 

polyethylene as the best curing method used in their study with the exception of one 

mixture made with 50% high-alkali Portland cement (HAPC) and 50% slag where the 

moist curing showed a better salt scaling resistance. They reported a good performance of 
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the curing compound regarding the salt scaling at the early cycles and a rapid scaling 

after five cycles in the weaker concrete mixtures and also the negative effect of the 

laboratory curing in ambient condition. 

Jonsson and Olek (2004) studied the influence of high curing temperatures on salt 

scaling resistance of four non-air-entrained high-strength concretes prepared at different 

temperatures (10 to 35 °C). They placed the concrete into a big polystyrene container and 

recorded the concrete temperature continuously observing the maximum temperature 

ranged from 59 to 69 °C. They reported a significantly lower salt scaling resistance of the 

temperature-match-cure (TMC) specimens (7 to 63 times less) than the normal specimens 

cured at ambient temperature and indicated that higher maximum curing temperature 

resulted in more scaling. 

Gebler and Klieger (1986) also studied the effect of five different curing methods on 

salt scaling resistance in the fly ash concrete mixtures (at 25% cement replacement) 

including: 

• One day storage in the molds, covering with a damp burlap at 23 ± 1.7 °C followed by 

13 days moist curing at 23 ± 1.7 °C followed by 14 days air curing at 23 ± 1.7 °C and 

50 ± 5% relative humidity (moist curing at 23 °C) 

• One day storage in the molds at 23 ± 1.7 °C without a protection followed by air 

curing at 23 ± 1.7 °C and 50 ± 5 % relative humidity until the age of 28 days (air 

curing at 23 °C) 

• Application of a curing compound on top surface of the specimen followed by a 

storage at 23 ± 1.7 °C and 50 ± 5 % relative humidity until the age of 28 days (curing 

compound at 23 °C) 
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• One day storage in the molds, covering with a damp burlap at 4.4 ± 1.7 °C followed 

by 13 days moist curing at 4.4 ± 1.7 °C followed by 14 days air curing at 4.4 ± 1.7 °C 

and 95 ± 5% relative humidity (moist curing at 4.4 °C) 

• Application of a curing compound on top surface of the specimen followed by a 

storage at 4.4 ± 1.7 °C and 95 ± 5 % relative humidity until the age of 28 days (curing 

compound at 4.4 °C) 

Gebler and Klieger (1986) indicated that in concrete mixtures containing 25% fly ash, 

a slightly better salt scaling resistance of the method using the curing compound at 23 °C 

was observed than the air curing and the moist curing at this temperature while in the 

concrete mixtures without fly ash, all the curing methods at 23 °C showed almost the 

same salt scaling resistance. On the other hand, they reported a better salt scaling 

resistance of low-temperature moist curing (at 4.4 °C) in both concrete mixtures with and 

without fly ash than the high-temperature moist curing (at 23 °C) while almost the same 

salt scaling resistance was observed in the method using the curing compound at both low 

and high curing temperatures. 

It has been reported that using the sealers or curing compounds (surface treatment) 

postpones the surface scaling (Afrani and Rogers, 1993; Sedran et al., 1993; Setzer, 1993; 

Cleland and Basheer, 2002) but has no influence on the salt scaling resistance at the end 

(Perenchio, 1988; Setzer, 1993; Cleland and Basheer, 2002). No effect on salt scaling 

resistance was observed by using the sealers on bridge decks (Perenchio, 1988). 

Sedran et al. (1993) investigated three sealers including a silane, an oligometric 

siloxane and a polymeric siloxane while Afrani and Rogers (1993) used sealtight® 1220, 

a resin-based curing compound which all postponed the moisture penetration throughout 
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the salt scaling test. Klieger and Perenchio (1963) used a similar silicone surface 

treatment and found that an untreated specimen achieves similar moisture content to a 

treated specimen after being submerged for one day while this small difference does not 

exist after three days. 

Cleland and Basheer (2002) indicated that the scaling damage is postponed 

significantly when the depth of the treated surface increases due to the removal of this 

surface throughout the initial cycles. Valenza II and Scherer (2007a) mentioned that in 

treated specimens, most of the cracks form in places with little or no treatment, and 

develop to a depth under the treated layer, and therefore, result in the removal of this 

layer. Boyd (1995) indicated that the pores in the surface of fresh concrete may be 

blocked when the curing compound is applied which stops the moisture penetration and 

leads to a "false" good frost resistance. 

On the other hand, Pigeon et al. (1987) reported an improved salt scaling resistance in 

concrete made with silica fume by the application of a curing compound. In their study, 

the curing compound was applied after one day in the mold followed by a 6-day curing 

followed by brushing the surface with a metallic mechanized brush to take away as much 

as the weak layer having the curing compound prior to the test. Other researchers also 

reported the better performance of some curing compounds in comparison with long 

moist curing periods (Klieger and Gebler, 1987; Langlois et al., 1989; Marchand et al., 

1992). Boyd and Hooton (2007) reported a better salt scaling resistance of the specimens 

treated with the curing compound in comparison with the specimens covered under 

burlap and plastic sheet. 
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2.4.5 Age 

In this section the effect of age on the salt scaling resistance is explained which 

include the late exposure and maturity. 

2.4.5.1 Late exposure to the freezing-and-thawing cycles 

Radlinski et al. (2008) studied the effect of the exposure time to the freezing-and-

thawing cycles on salt scaling resistance initiating the test at the early age (14, 17, or 21 

days based on the initial curing method) or at the late age (90 days). For the scaling 

testing at early age, the initial curing was followed by the 14-day drying period (23 °C 

and 50% relative humidity) prior to the test while for the test at late age, the drying period 

was extended until the age of 69 days after the initial curing followed by 7 days re-

saturation in a moist room having 100% relative humidity followed by 14 days air-drying 

at 23 °C and 50% relative humidity before the scaling test. They indicated that the late 

exposure did not considerably increase the salt scaling resistance and addressed the 

different scaling modes regarding the exposure time as the possible reason. They 

observed the uniform surface scaling (thin flakes of paste) due to the paste failure in 

specimens tested at the early age while popouts (large and thick chips) was observed in 

the samples tested at the late age due to the failure at the paste-aggregate interface. 

2.4.5.2 Maturity 

Bouzoubaa et al. (2008) prepared two cores from each slab cast in the field prior to the 

starting of the freezing-and-thawing cycles in the field (at the age of about 180 days) and 

conducted the salt scaling test on them according to ASTM C 672 in the laboratory to 
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study the effect of the maturity on the salt scaling resistance. They compared the scaling 

residue and visual rating of these cores with the cores subjected to the freezing-and-

thawing cycles at the age of 28 days and found that this extended curing under field 

conditions (wetting and drying) considerably increased the salt scaling resistance of all 

concrete mixtures expect one. Bilodeau et al. (1991, 1998) indicated that in fly ash 

concretes, extending the moist curing period from 28 to 91 days in the laboratory 

decreased the salt scaling resistance while shorter drying periods before starting of the 

freezing-and-thawing cycles increased the salt scaling resistance. Bouzoubaa et al. (2008) 

suggested that the results of the preceding authors are due to the extended curing time 

and lack of drying before the test as the possible reasons for the better salt scaling 

resistance of the cores tested at the age of 180. Bouzoubaa et al. (2008) indicated that the 

extended maturing period (180 days), consisting of several wetting and drying cycles 

which cannot easily be simulated in the laboratory, increased the salt scaling resistance. 

2.4.6 Environmental factors 

In this section the effect of environmental factors on the salt scaling resistance is 

explained. These factors include the saline solution, minimum temperature, freezing rate, 

and osmotic pressure. 

2.4.6.1 Saline solution 

Several researchers observed the maximum salt scaling damage at a moderate salt 

concentration in the saline solution, 3% by weight (pessimum of solute concentration) 

(Arnfelt, 1943; Verbeck and Klieger, 1957; Petersson, 1986; Sellevold and Farstad, 1991; 
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Studer, 1993; Lindmark, 1998; Marchand et al., 1999) (Figure 2.1). Arnfelt (1943) as 

well as Verbeck and Klieger (1957) observed that the type of the saline solution does not 

have any effect on this pessimum (Figure 2.1). Verbeck and Klieger (1957) used calcium 

chloride, sodium chloride, urea, and ethyl alcohol in their study while Arnfelt (1943) used 

barium chloride, potassium ferrocyanide, and potassium ferricyanide. It was also 

observed that by keeping the top surface of the specimens free of saline solution, the salt 

scaling will not occur (Verbeck and Klieger, 1957; Sellevold and Farstad, 1991; Studer, 

1993). 

McDonald and Perenchio (1997) studied the effect of salt type on salt scaling 

resistance of the concrete. They used 4% salt solutions including 80% rock salt with 20% 

calcium chloride (CaCb), 100% rock salt, proprietary salt, 69% rock salt with 30% KC1 

and 1% CaCl2, 50% rock salt with 50% KC1, and the deionized water (for the control 

mixture). They observed more scaling damage in the concrete mixtures with higher 

strength (lower water-to-cement ratio) than the mixtures having lower strength when the 

surface of the specimens was ponded by the proprietary salt. In two out of three concrete 

mixtures made in their study, the salt scaling damage due to the ponding with the 

proprietary salt was considerably lower than the other saline solutions except the pure 

deionized water which could be due the large amount of magnesium of the proprietary 

salt. They also indicated that ponding the specimens with the salt solutions having KC1 

resulted in the worst salt scaling damage. 
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2.4.6.2 Minimum temperature 

Several researchers reported that increasing the minimum temperature of the thermal 

cycles decreases the scaling damage (Hammer and Sellevold, 1990; Sellevold and 

Farstad, 1991; Studer, 1993; Lindmark, 1998). It was observed that the scaling damage 

reduces more by increasing the minimum temperature from -18 °C to -16 °C than 

increasing it from -13 °C to-11 °C (Studer, 1993). The other researchers indicated that 

keeping the minimum temperature above -10 °C results in no scaling damage (Sellevold 

and Farstad, 1991; Marchand et al., 1995b) while more scaling damage was observed in 

the specimens kept for longer period at the minimum temperature (-10 °C) (Sellevold and 

Farstad, 1991; Jacobsen, 1995). 

2.4.6.3 Freezing rate 

Studer (1993) as well as Marchand et al. (1995b) indicated that the rate of freezing 

does not have a huge effect on the scaling damage. 

2.4.6.4 Osmotic pressure 

Cordon (1966) addressed the osmotic pressure as one of the major reasons of the salt 

scaling. Bouzoubaa et al. (2008) mentioned that the one-week pre-saturation period as 

used in the BNQ standard may balance the ions between the saline solution on top 

surface and the top layers' voids, decrease the osmotic pressure and result in less salt 

scaling. 
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2.4.7 Field exposure 

Bouzoubaa et al. (2008) visually evaluated sidewalks after four winters and observed a 

good performance in the control and slag concretes (25% and 35% cement replacement 

with slag and the concrete made with slag-silica fume ternary blended cement), 

acceptable performance in the fly ash concretes (at 25% and 35% cement replacement), 

and poor performance in the concrete made with fly ash-silica fume ternary blended 

cement. The salt scaling test was conducted according to ASTM C 672 and the visual 

ratings are presented in Table 2.1. 

Table 2.1 — Visual rating of sidewalk sections after four winters (Bouzoubaa et al., 
2008). 

Concrete type 

Control 

35% fly ash 

35% slag 

25% fly ash 

25% slag 

Fly ash-silica fume ternary blended cement 

Slag-silica fume ternary blended cement 

Visual rating 

0 

2-3 

0-1 

3 

1-2 

>4 

0-1 

As it can be seen in Table 2.1, the field evaluation by Bouzoubaa et al. (2008) showed 

the greater salt scaling resistance of the sidewalks made with slag concretes in 

comparison with the ones made with fly ash concretes which agrees with their laboratory 

results. Also an acceptable salt scaling resistance of all sidewalks except the one made 

with fly ash-silica fume ternary blended cement was observed by them in accordance 

with ASTM C 672 (having visual ratings of 0 to 3). After comparing the salt scaling 
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resistance of the field and laboratory specimens, they found ASTM C 672 to be a severe 

salt scaling test method while the BNQ standard was found to be a better way to describe 

the salt scaling resistance of the concrete mixtures incorporating the supplementary 

cementing materials. 

Boyd and Hooton (2007) indicated that the specimens subject to field exposure 

(removed from the field after 127 days and tested at the laboratory) showed a 

significantly increased salt scaling resistance and met the requirement of MTO except the 

mixture containing 50% slag. They addressed the severity of the laboratory testing 

method in comparison with the field condition. Some visible scaling was observed in 

only one concrete mixture (containing 50% slag under moist curing with burlap and 

plastic) after a ten-year exposure while slight scaling was found in the other specimens. 
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Chapter 3 

Experimental program 

3.1 General 

The experimental program was planned to study the salt scaling resistance of concrete 

surfaces exposed to freezing-and-thawing cycles in the presence of de-icing chemicals. In 

this study, ASTM C 672/C 672M (2003) was compared to its proposed replacement 

method (WK 9367) which is based on the method developed by Bureau de Normalisation 

du Quebec (BNQ). As specified in the proposed replacement method, the current ASTM 

C 672 method has been reported to be more severe than field experience i.e. concrete that 

fails the test has been observed to perform satisfactorily in the field. The particular 

concerns from the point of view of the proposed replacement method are severity of 

osmotic effects in samples not pre-saturated with salt solution and the significant 

influence of finishing activities and curing. 

Besides the two test methods, other variables were investigated. Two additional types 

of curing, a specific curing compound and a three-day lime-water curing, were studied. 

Finally the concretes with cement replacements of 25% fly ash and 35% slag were 

compared with the plain concrete regarding the salt scaling resistance. 

The concrete mixing, casting of the samples, slump test, air content measurement and 

compression tests were conducted in the structural laboratory of Concordia University 

located in Hall building's basement while curing and the freezing-and-thawing cycles of 
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the samples were carried out in the building materials laboratory located on the 15 floor 

of E.V. building. 

3.2 Materials 

In this section, all the materials used in this research including aggregates, cement, 

supplementary cementing materials (fly ash and slag), and chemical admixtures are 

described in detail. 

3.2.1 Aggregates 

The coarse and fine aggregates used in concrete mixtures in this experimental research 

were obtained from St. Lawrence Cement from a local source near Montreal, Quebec. 

The tests conducted on the fine and coarse aggregates included sieve analysis, specific 

gravity, absorption, bulk density, and moisture content which will be explained in more 

detail later. 

3.2.2 Cementitous materials 

In this study, Portland cement, fly ash, and slag were used as cementitous materials 

which are described in detail as follows. 

One type of Portland cement, General Use Hydraulic cement (Type GU), was used in 

this experimental research. The cement was provided by St. Lawrence Cement, Joliette, 

Quebec, Canada. The chemical analysis and physical tests are given in Tables 3.1 and 3.2 

respectively. 
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Table 3.1 — The chemical analysis of the cement used in the concrete mixtures (%). 

Chemical composition 

Alkalies (Na20 equi.) 

Loss on ignition 

Insoluble residue 

Free lime 

Si02 

A1203 

Fe203 

CaO 

MgO 

S03 

0.88 

2.2 

0.7 

0.8 

20.6 

4.5 

2.7 

62.7 

2.0 

3.6 

Mineralogical composition 

C3S 

C2S 

C3A 

C4AF 

54 

18 

7 

8 

Table 3.2 — The physical tests of the cement used in the concrete mixtures. 

Fineness: Blaine 

Residue 45 \x 

Autoclave expansion 

(A3004-B5) 

Expansion in water 

(A3004-C5) 

Setting time: 

Initial 

Final 

Air content 

False Set 

Compressive strength 

3 days 

7 days 

28 days 

392 m2/kg 

5 % 

0.004 % 

0.009 % 

180 min. 

240 min. 

7.4 % 

67% 

27.0 MPa 

31.4 MPa 

39.7 MPa 
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The fly ash used in this research was type F which was obtained from a source in 

Quebec. Fly ash was used in concrete mixtures at 25% replacement of cement. 

The slag used in this research was Grade 100 which was obtained from Hamilton, 

Ontario. Slag was used in concrete mixtures at 35% replacement of cement. 

3.2.3 Chemical admixtures 

All of the following chemical admixtures used in this research are products of Master 

builders, BASF chemical company. All the information about these products was derived 

from Master builders' product information obtained from their website. The additional 

information of these chemical admixtures including their features, benefits, performance 

characteristics, applications, guidelines for use, storage and handling, packaging, and so 

on are available in Appendix A. 

To achieve adequate cement dispersion at the relatively low water to cement ratio 

used, PolyHeed® 997 - a mid-range water-reducing admixture meeting ASTM C 494/C 

494M (2008) Type A and F - was used in all concrete mixtures. This chemical admixture 

was added to the water used for concrete mixing. In all six concrete mixtures in this 

study, 35 mL of this admixture was used for 30 litres of concrete (292 mL/100kg of total 

cementing material). 

To keep the slump within the required range (75 ± 15 mm) as specified in ASTM C 

672, a high-range water-reducing admixture, Glenium® 7500, was also used in all 

concrete mixtures. This admixture was added to the concrete mixtures gradually. Usually 

half of the predicted amount was added to the water which was used for making the 

concrete and the other half was added during the three minutes rest time after the first 
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three minutes mixing. After mixing for the additional two minutes, the slump was 

measured and if the slump was not within the range, an additional amount of admixture 

was added followed by mixing for one minute and performing the slump test again. This 

procedure was repeated until the slump fell within the required range. The amounts of 

used admixture for each concrete mixture will be presented in section 3.4. 

To meet the required air content (6 ± 1 %) as specified in ASTM C 672, an air-

entraining admixture meeting ASTM C 260 (2006), MB-AE™ 90, was used in all six 

concrete mixtures. This chemical admixture was added to the fine aggregate. The 

amounts of this admixture used for each concrete mixture will be presented in section 3.4. 

3.2.4 Supply water 

All the water used in concrete mixing and preparation of calcium chloride solution 

was the city of Montreal tap water. 

3.2.5 Curing compound 

An evaporation reducer, Confilm®, was used in this research to see the effects of a 

curing compound on the salt scaling resistance of concrete surfaces. First one part of 

Confilm® evaporation reducer was mixed with nine parts of water to produce ten parts of 

sprayable solution as instructed by the manufacturer. Then based on the surface area of 

the scaling specimens, the mass of Confilm® evaporation reducer needed for each scaling 

specimen was determined. Since the product guidelines of Confilm® specified that 37.9 

litres of solution should cover 186 to 372 m2 (101.9 to 203.7 millilitres per one m2) of the 

surface area, for each scaling specimen 8 millilitres per 0.0554 m (135.84 millilitres per 
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one m2) of the solution were sprayed on the surface, after the scaling specimens were 

prepared, the final finishing was done and the bleeding stopped. 

3.2.6 Calcium chloride solution 

As specified in ASTM C 672 and its proposed replacement method, the saline solution 

used for the salt scaling test, the pre-saturation period in the proposed replacement 

method, and rinsing the surfaces of the scaling specimens after each five cycles was a 

mixture of calcium chloride and water, having a concentration such that each 100 mL of 

solution contains 4 g of anhydrous calcium chloride. In this research, ACS certified 

calcium chloride dehydrate (CaCl2-2H20) was used with a molecular weight of 147.01 g. 

Therefore, its anhydrous equivalent was calculated and used in the tests. Instead of 4 g of 

anhydrous calcium chloride, 5.297 g of dihydrate were used in each 100 mL of solution. 

3.3 Tests conducted on the aggregates 

In this study, the tests conducted on the aggregates included sieve analysis, specific 

gravity, absorption, and bulk density which will be explained in more detail in the 

following sections. Also the moisture content of the aggregates was measured for each 

concrete mixture which will be described in more detail in the concrete mixing and 

casting section. 

3.3.1 Sieve analyses 

Sieve analyses were conducted on both the fine and coarse aggregates used in this 

research in accordance with ASTM C 136 (2006). The fineness modulus of the fine 
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aggregate was calculated to be 2.64 which is within the accepted range of between 2.3 

and 3.1. The result for sieve analysis of the fine aggregate is presented in Figure 3.1. The 

minimum and maximum limits presented in Figure 3.1 are according to ASTM C 33 

(2007). As it is observed in Figure 3.1, the passed percentage of the fine aggregate used 

in this study is within the minimum and maximum limits in accordance with ASTM C 33 

(2007) except for the sieve # 4 (4.76 mm) which had 93.20% passed, a little lower than 

the minimum limit (95%). 
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Figure 3.1 — Sieve analysis of the fine aggregate used in this study. 

The nominal maximum aggregate size of the coarse aggregate was determined to be 

10 mm and the result for sieve analysis of the coarse aggregate is presented in Figure 3.2. 

The minimum and maximum limits presented in Figure 3.2 are according to ASTM C 33 
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(2007). As it is observed in Figure 3.2, the passed percentage of the coarse aggregate 

used in this study is within the minimum and maximum limits corresponding to size 

number 8 in accordance with ASTM C 33 (2007). 
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Figure 3.2 — Sieve analysis of the coarse aggregate used in this study. 

3.3.2 Specific gravity 

Specific gravity of both the fine and coarse aggregates was determined according to 

ASTM C 128 (2007) and ASTM C 127 (2007), respectively and the results are presented 

in Table 3.3. 

53 



Table 3.3 — Specific gravity of the fine and coarse aggregates used in this study. 

Specific gravity 

Oven-dry 

Saturated-surface-dry 

Apparent 

Fine 

aggregate 

2.675 

2.692 

2.721 

Coarse 

aggregate 

2.562 

2.529 

2.479 

3.3.3 Absorption 

Absorption of the fine and coarse aggregates was determined in accordance with 

ASTM C 128 (2007) and ASTM C 127 (2007), respectively. Two 200 litre barrels of the 

coarse aggregate were used in this research. The first one which was used in concrete 

mixture numbers one to four had water absorption of 0.95 %. The second barrel of the 

coarse aggregate with water absorption of 1.05 % was used in the last two concrete 

mixtures (numbers five and six). Only one barrel of the fine aggregate was used in this 

research for all six concrete mixtures with water absorption of 0.63 %. 

3.3.4 Bulk density 

According to ASTM C 29/C 29M (2007), bulk density of the fine and coarse 

aggregates were determined to be 1610 kg/m and 1470 kg/m , respectively. 

3.4 Mixture proportions 

In this research, three different concrete types were made. Due to the concrete mixer 

capacity, two mixtures of each type were cast. Mixture numbers one and two were the 
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concrete made with fly ash at 25% replacement of cement. Mixture numbers three and 

four were the concrete made with slag at 35% replacement of cement. And finally 

mixture numbers five and six were the plain concrete. Mixture numbers one, three, and 

five were used to compare the ASTM C 672/C 672M (2003) with its proposed 

replacement method while mixture numbers two, four, and six were used to study the 

effects of a curing compound and a three-day curing method on the salt scaling resistance 

of concrete surfaces. 

The mixture proportions used in this study were similar to the ones used by 

Bouzoubaa et al. (2008) to compare the results. As well, the cement replacements used 

are typical for the concrete industry. The mixture proportions for all six concrete mixtures 

used in this research are given in Table 3.4. 

Table 3.4 — Mixture proportions used in this research for 30 litres of concrete. 

(w/c) ratio 

Water, kg 

Fine aggregate, kg 

Coarse aggregate, kg 

Cement, kg 

Fly ash, kg 

Slag, kg 

Total Cementitious materials, kg 

Air-entraining admixture, mL 

Mid-range water-reducing 
admixture, mL 

High-range water-reducing 
admixture, mL 

Concrete made 

with fly ash 

Mix#l 

0.40 

4.8 

20.1 

33.0 

9.0 

3.0 

-

12.0 

11.0 

35.0 

40.0 

Mix #2 

0.40 

4.8 

20.1 

33.0 

9.0 

3.0 

-

12.0 

11.0 

35.0 

55.0 

Concrete made 

with slag 

Mix #3 

0.40 

4.8 

20.1 

33.0 

7.8 

-

4.2 

12.0 

15.0 

35.0 

60.0 

Mix #4 

0.40 

4.8 

20.1 

33.0 

7.8 

-

4.2 

12.0 

14.0 

35.0 

50.0 

Plain concrete 

Mix #5 

0.40 

4.8 

20.1 

33.0 

12.0 

-

-

12.0 

10.0 

35.0 

85.0 

Mix #6 

0.40 

4.8 

20.1 

33.0 

12.0 

-

-

12.0 

12.0 

35.0 

65.0 
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3.5 Casting and curing of the test specimens 

In this section, the casting procedure including concrete mixing, casting, and three 

different curing methods will be described in detail. 

3.5.1 Concrete mixing and casting 

Concrete mixing in this study was conducted in accordance with ASTM C 192/C 

192M (2007). For the design a concrete mixture, the saturated surface dry condition of 

the aggregates is assumed. Since the aggregates may contain some moisture in their pores 

or on their surface, the moisture content of the aggregates should be determined to adjust 

the amount of water needed for the mixture proportion. In this study, the moisture content 

of both the fine and coarse aggregates was determined in accordance with ASTM C 566 

(2004). One day before making each concrete mixture, both the fine and coarse 

aggregates were placed in an oven at a temperature of 110 ± 5 °C for sufficient time to 

reach a constant dry mass. Then the aggregates were cooled at room temperature for 

almost one hour and a half and the mass was measured. Then the moisture content of 

both the fine and coarse aggregates was determined and used to adjust the amount of 

water needed for the mixture. Due to the settling of the water to the bottom of the storage 

barrels, the moisture content of the aggregates varied throughout the depth of the barrels. 

The results for the moisture content of the aggregates for each concrete mixture are 

presented in Table 3.5. 
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Table 3.5 — Moisture contents of the fine and coarse aggregates used in this study. 

Concrete made 

with fly ash 

Concrete made 

with slag 

Plain concrete 

Mix#l 

Mix #2 

Mix #3 

Mix #4 

Mix #5 

Mix #6 

Moisture content (%) 

Fine aggregate 

1.61 

2.35 

2.39 

0.76 

3.93 

5.74 

Coarse aggregate 

0.30 

0.69 

0.69 

0.29 

0.68 

0.69 

After determining the moisture content of the fine and coarse aggregates, the amount 

of water needed for each concrete mixture was adjusted. The original and the adjusted 

amounts of water used in each concrete mixture are presented in Table 3.6. 

Table 3.6 — The original and the adjusted amounts of water used in each concrete 
mixture made in this study. 

Original amount of water, kg 

Adjusted amount of water, kg 

Concrete made 

with fly ash 

Mix#l 

4.80 

4.82 

Mix #2 

4.80 

4.54 

Concrete made 

with slag 

Mix #3 

4.80 

4.53 

Mix #4 

4.80 

4.99 

Plain concrete 

Mix #5 

4.80 

4.26 

Mix #6 

4.80 

3.89 

Based on the required amount of materials for each concrete mixture as listed in 

section 3.4, cement, water, the fine and coarse aggregates in all concrete mixtures and fly 

ash or slag (in some concrete mixtures when required) were weighed and placed in 

separate buckets. Required amounts of chemical admixtures for each concrete mixture as 

listed in section 3.4 were placed in separate graduated cylinders. 
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The inside of the mixer was first dampened by a wet sponge to avoid any water 

absorption by the dry mixer. The entire mid-range water-reducing admixture and half of 

the high-range water-reducing admixture were added to the mixing water and were mixed 

thoroughly while the air-entraining admixture was added to the fine aggregate. 

Coarse aggregate and some of the mixing water including water-reducing admixtures 

were added to the mixer. Then the mixer was started and the fine aggregate, cement, the 

rest of the water, and fly ash or slag (when required) were added to the mixer while it was 

running. After all ingredients were in the mixer, the concrete was mixed for three 

minutes, followed by a three-minute rest, followed by a two-minute final mixing period. 

The other half of the high-range water-reducing admixture was added to the concrete in 

the mixer during the three-minute rest period. 

As required by ASTM C 672 and its proposed replacement method, the minimum 

surface area and depth for each scaling specimen should have been 0.045 m2 and 75 mm, 

respectively. In this research plastic containers with a roughly rectangular shape having a 

surface area of 0.0554 m and a depth of 90 mm were used for the scaling slabs. For each 

combination of variables to be tested two duplicate specimens were made. 

Interior surfaces of the plastic slab molds were sprayed by a thin layer of WD-40 oil 

prior to fabrication of the specimens. The concrete was poured into the molds using a 

scoop in one layer as specified in ASTM C 672 and its proposed replacement method. 

Since it was required by the mentioned ASTM standards to rod one time for each 1400 

mm2 of the surface, forty times of rodding were conducted for each scaling specimen and 

a slight excess of material was left after the final rodding. The sides of the molds were 
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tapped to close any voids and the surface of the scaling specimens was levelled with 

several passes of a wood strike-off board (2" by 4" wooden board). 

After the bleeding of the concrete stopped, the surface of the scaling specimens was 

finished with three sawing-motion passes of a wood strike-off board (2" by 4" wooden 

board) proceeded in a back-and-forth (horizontal sawing) motion with a ± 50 mm 

amplitude in both directions, along the length and along the width. This procedure was 

repeated until achieving a uniform surface free of holes and exempt of any aggregate 

while avoiding any excessive finishing (ASTM C 672/C 672M, 2003; the proposed 

replacement method for ASTM C 672). 

At the end, the surface of the scaling specimens was brushed with a medium-stiff 

brush as the final finishing operation. In cases where used, the curing compound was 

sprayed on the surface of the scaling specimens after the brushing. 

Three cylinders were prepared from each concrete mixture for the compression test 

according to ASTM C 39/C 39M (2005). In this research typical plastic cylinder molds 

with a nominal diameter of 100 mm and a height of 200 mm were used. A hole was 

prepared at the bottom of each cylinder to help release the samples at the time of the 

demoulding with compressed air. In addition, the interior of the cylinders were lightly 

sprayed with a release agent prior to casting. 

Each cylinder was filled in two layers and each layer was rodded 25 times as specified 

in ASTM C 192/C 192M (2007). A plastic lid was used on the top of each cylinder to 

avoid the evaporation of the moisture from the surface of the cylinders. 
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3.5.2 Curing procedure 

In this experimental research, three different curing procedures including the standard 

curing method, the three-day curing method and the use of a curing compound were 

employed which will be explained in more detail in the following sections. 

3.5.2.1 The standard curing method 

As specified in ASTM C 672 and its proposed replacement method, after the final 

finishing of the concrete specimens, they were immediately covered with a plastic sheet 

without any contact with the concrete surface. The slab specimens and cylinders were 

removed from the molds at an age of 20 to 24 hours after addition of water to the 

concrete mixture (beginning of casting) and were submerged in the moist storage as 

provided for in specification ASTM C 511 (2006). In this study, large plastic containers 

were used as storage tanks having a mixture of water and calcium hydroxide (lime). The 

concentration of calcium hydroxide was three grams in each litre of water; therefore for 

each container having 25 litres of water, 75 grams of calcium hydroxide were used. 

The scaling specimens were removed from the moist storage at the age of 14 days and 

were stored in the air for 14 days at the laboratory temperature of 23 ± 2 °C while the 

cylinders were kept in the moist storage until the age of 28 days. 

3.5.2.2 The three-day curing method 

In this method, the same steps as the usual curing, specified in section 3.5.2.1, were 

followed except that the scaling specimens were removed from the moist storage at the 
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age of three days and were stored in the air for 25 days at the laboratory temperature of 

23 ± 2 °C. 

3.5.2.3 The curing compound 

In this method, an evaporation reducer, Confilm®, was used as a curing compound to 

see the effect of a curing compound on the salt scaling resistance of concrete surfaces. 

The evaporation reducer was sprayed on the scaling specimen's top surface after the 

samples were prepared, the final finishing was done and the bleeding was stopped. The 

mass of the curing compound used for each scaling specimen was eight grams which 

were sprayed on the surface of each scaling specimen. 

After spraying the evaporation reducer on the surfaces of the scaling specimens, they 

were kept in the laboratory. The slab specimens were removed from the molds at an age 

of 20 to 24 hours after addition of water to the concrete mixture (beginning of casting) 

and were stored in the air for 27 days at the laboratory temperature of 23 ± 2 °C. 

3.6 Procedures of the tests 

In this section, all the tests performed in this study will be described in detail. The 

tests conducted on fresh concrete included slump, unit weight, and air content and the 

tests performed on hardened concrete included compression test, and salt scaling test. 

3.6.1 Fresh concrete tests 

After mixing each concrete mixture, the slump test was carried out in accordance with 

ASTM C 143/C 143M (2008) to make sure that the slump was within the required range 
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(75 ± 15 mm). If the slump was lower than the minimum required limit, more high-range 

water-reducing admixture (Glenium® 7500) was added to the mixture. The concrete was 

mixed for another one minute and the slump test was performed again. This procedure 

was repeated until the slump was within the required range. 

After finishing the slump test, unit weight of each concrete mixture was determined in 

accordance with ASTM C 138/C 138M (2008). 

After obtaining an adequate slump, the air content of each concrete mixture was 

measured according to ASTM C 231 (2008) to make sure that the air content was within 

the required range (6 ± 1 %). In cases where the air content of the concrete mixture was 

not in the required range (lower than 5% or higher than 7%), that mixture was abandoned 

and another mixture with more or less air-entraining admixture was made to have the air 

content within the required range. 

3.6.2 Compression test 

At the age of 28 days, a compression test was conducted on all three cylinders of each 

concrete mixture in accordance with ASTM C 39/C 39M (2005). Cylinders were 

removed from the moist storage tanks at the age of 28 days and were transported in a 

mixture of water and calcium hydroxide to the structural lab to perform the compression 

test. Before starting the test, the specimens were cleaned by a moist towel, and their 

height and diameters (both the rough and smooth surfaces of each cylinder) were 

measured. Then the specimens were placed hardened face up between two load bearing 

caps (Figure 3.3) to distribute the load equally all over the surface of specimens, because 
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the cast face of the specimens usually does not have a completely smooth surface. Inside 

of the caps, there was a hard thick plastic which could be replaced after several uses. 

The cylinders with the caps were placed on the compression machine and compressive 

axial load was applied until the failure occurred (Figure 3.3). ASTM C 39/ C39M (2005) 

requires a uniform rate of loading; however, in this research the rate of loading was 

visually controlled in a continuous rate without any shocks applied to the specimens since 

the machine used in this study did not have the capability for rate control. Failure load 

was recorded for each cylinder and photographs of the failed specimens were taken. 
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3.6.3 Salt scaling test 

The salt scaling resistance of concrete surfaces was evaluated according to two 

different procedures, ASTM C 672/C 672M (2003) and its proposed replacement method 

which will be described in detail in the following sections. 

For testing the scaling resistance, calcium chloride solution is ponded on the top 

surface of the cast and cured specimens. To maintain a pond on top of the specimen 

throughout the freezing-and-thawing cycles, a flexible plastic material (designed for use 

as flooring baseboard) with thickness of 3 mm and height of 65 mm was adhered to the 

scaling specimen with silicon based glue along the perimeter of the top surface of the 

specimens (Figures 3.4 and 3.5). Approximately 40 mm of the plastic baseboard 

projected beyond the top of the specimen's surface to maintain enough height for the 

saline solution (6 mm depth) and to prevent splashing on transport of specimens. To 

avoid any possible leakage of the saline solution from the corners where the plastic 

baseboard was adhered to the specimen, another type of silicon based sealant was used at 

the corners and at the bottom of the baseboard. 
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3.6.3.1 ASTM C 672 

As specified in ASTM C 672, after completion of the moist and air curing, the flat 

surface of the scaling specimens was covered with approximately 6 mm of calcium 

chloride solution as described in section 3.2.6 and the freezing-and-thawing cycles were 

started. First, the scaling specimens were placed in a freezer for 16 to 18 hours. As 

specified in ASTM C 672 and its proposed replacement method, the freezing equipment 

should be capable of lowering the temperature of the scaling specimens to -18 ± 3 °C 

within 16 to 18 hours and maintaining this temperature with a full load of specimens. To 

determine the temperature at the interface of the concrete surface and the saline solution 

and also inside the freezer, a temperature data-logger was placed in different positions 

both at the interface of specimens' surfaces and saline solution and also on different 

shelves inside the freezer. The typical results of measured temperature are presented in 

Figures 3.6 and 3.7. 
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Figure 3.6 — Temperature at the interface of the concrete surface and the saline 
solution for one freezing-and-thawing cycle. 

It can be seen in Figure 3.6 that the temperature at the interface reached the required 

temperature (-18 ± 3 °C) after approximately eight hours (the freezing cycle started at 

19:00 hours and the temperature reached -15 °C at 03:07 hours on the next day). The 

sample was removed from the freezer at the end of 17-hour freezing period (at 11:56 

hours in Figure 3.6) after which the temperature was increased. The scaling specimen 

was placed in the laboratory at 23 ± 2 °C for another 7 hours (thawing period) to 

complete a full freezing-and-thawing cycle (24 hours). 
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Figure 3.7 — Temperature at a random shelf of the freezer for one freezing-and-
thawing cycle. 

It can be seen in Figure 3.7 that the temperature at a random shelf of the freezer 

reached the required temperature (-18 ± 3 °C) after approximately less than an hour (the 

freezing cycle started at 19:10 hours and the temperature reached -15.5 °C at 19:43 

hours). It should be mentioned that for the temperature measurement at a random shelf, 

the first spike to -10° C and the varying temperature between -15 °C and -20° C was due 

to the temperature cycling of the freezer and was unavoidable. The specimen was 

removed from the freezer after 17 hours (at 12:21 hours in Figure 3.7) after which the 

temperature was increased. The scaling specimen was placed in the laboratory at 23 ± 2 

°C for another 7 hours (thawing period) to complete a full freezing-and-thawing cycle (24 

hours). 
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At the end of the freezing period, the scaling specimens were removed from the 

freezer and then were placed in the laboratory air at 23 ± 2 °C for 6 to 8 hours. Between 

each cycle water was added to the solution on the surface of the specimens to maintain 

the proper depth of the solution due to the water evaporation during the thawing period (6 

to 8 hours in the room temperature). In case of any leakage of the saline solution, instead 

of adding water, additional saline solution was prepared and added to the solution on the 

surface of the scaling specimens. This procedure was repeated daily. In the one case 

where the cycling schedule could not be maintained, scaling specimens were kept frozen 

until thawing could occur. This event happened only once for one day in this study (all 

four scaling specimens of concrete mixture number four and only two out of four scaling 

specimens of mixture number five). The lengthened cycle had 41.5 hours of freezing 

(instead the usual 16 to 18 hours), but was still counted as one cycle as per the directions 

in the standard. 

At the end of each five cycles, the surface of the scaling specimens was flushed off 

thoroughly with the same saline solution specified in section 3.2.6 to remove all flaked 

off particles. The scaling residue was collected on a pre-weighed filter paper. Then the 

filter paper with the scaling residue was placed in an oven having a temperature of 110 °C 

for 24 hours. At the end of the oven drying period, the filter paper with the scaling 

residue was removed from the oven and was weighed again. The difference in the mass 

of the empty filter paper and the mass of the filter paper with the scaling residue was 

measured to be the mass of the scaling residue from the surface after every five cycles. 

The surface area exposed to the saline solution was measured to the nearest one square 
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centimetre as specified in section 3.5.1. Therefore the mass loss in kg/m was determined 

by dividing the mass of scaling residue by the exposed surface area. 

Photographs of the scaled surface of the specimens were taken and after a visual 

examination of the surface, a visual rating was reported for each scaling specimen 

according to Table 3.7. After these processes, the surface of the scaling specimens was 

covered by the same saline solution specified in section 3.2.6 and the freezing-and-

thawing cycles were resumed. 

Table 3.7 — Visual rating in accordance with ASTM C 672/C 672M (2003). 

Rating 

0 

1 

2 

3 

4 

5 

Condition of surface 

No scaling 

Very slight scaling 

(3 mm depth, max, 

no coarse aggregate visible) 

Slight to moderate scaling 

Moderate scaling 

(Some coarse aggregate visible) 

Moderate to severe scaling 

Severe scaling 

(Coarse aggregate visible over entire surface) 

As specified in ASTM C 672, generally 50 freezing-and-thawing cycles are sufficient 

to evaluate a surface or surface treatment. Therefore in this research the freezing-and-

thawing cycles were repeated until 50 cycles had been completed. The mass loss and 

visual rating of the concrete surfaces were determined after every five cycles. 

It should be mentioned that ASTM C 672 requires only visual rating and does not 

include measurement of the mass loss. But in this research to have a comparison between 
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ASTM C 672 and its proposed replacement method, the mass loss was also determined in 

addition to the visual rating in both methods after every five cycles. Also both ASTM C 

672 and its proposed replacement method require the visual rating and flushing off the 

surface after 5, 10, 15, 25, and every 25 cycles thereafter but in this study to have more 

results this procedure was done after every 5 cycles until 50 cycles. 

3.6.3.2 The proposed replacement method for ASTM C 672 (WK 9367) 

The same procedure as ASTM C 672 was conducted in its proposed replacement 

method. The only difference was that in the proposed replacement method, after 

completion of the moist and dry curing, instead of starting the freezing-and-thawing 

cycles as in ASTM C 672, the surface of the scaling specimens was pre-saturated with a 

layer of 5 mm ± 2 mm of the same saline solution as specified in section 3.2.6. The 

period of the pre-saturation was seven days and the surface of the scaling specimens was 

covered with a plastic sheet not touching the surface to prevent any evaporation of the 

solution. At the end of the seven days pre-saturation period, the freezing-and-thawing 

cycles were started and resumed until completion of 50 cycles. All the details about 

flushing off the surface and determining the mass loss in the proposed replacement 

method were as the same as ASTM C 672 except the visual rating which was according 

to a different scale as given in Table 3.8. 
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Table 3.8 — Visual rating according to the proposed replacement method for 
ASTM C 672. 

Category 

0 

1-A 

1-B 

2-A 

2-B 

3 

4 

Characteristics of the scaling surface 

No significant scaling observed 

Slight scaling of the surface mortar with no popouts * 

Important scaling of the surface mortar with no popouts 

No significant scaling of the surface mortar, 

but presence of few popouts 

No significant scaling of the surface mortar, 

but presence of several popouts 

Combination of scaling of the surface mortar 

mainly with cracked coarse aggregate 

Combination of cracked coarse aggregate 

mainly with scaling of the surface mortar 

*The causes for the formation of popouts are: a) The rupture of the aggregate 
b) The sudden detachment of the mortar over the aggregate 
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Chapter 4 

Experimental results 

4.1 General 

In the previous chapter, an experimental program to study the salt scaling resistance of 

concrete surfaces exposed to the freezing-and-thawing cycles in the presence of de-icing 

chemicals was described. Three concrete types (two mixtures of each) including plain 

concrete, and concretes with 25% replacement of cement with fly ash and 35% with slag 

were made. Eighteen cylinders (three specimens from each concrete mixture) were 

prepared and tested to determine the compressive strength of each concrete mixture at the 

age of 28 days. Totally 24 slab specimens (four specimens from each concrete mixture) 

for all the different variables studied in this research were prepared and tested to study 

the salt scaling resistance of concrete surfaces. 

In the following sections, the results of the experimental investigation are reported and 

discussed. All the tests were conducted according to ASTM standards which are 

explained in detail in the previous chapter. First the results of fresh concrete tests 

including slump, unit weight, and air content will be presented followed by the 

compressive strength results at the age of 28 days for all concrete mixtures. Thereafter, 

the results of salt scaling test will be shown which include the comparison of ASTM C 

672/C 672M (2003) with its proposed replacement method, the comparison of the salt 

scaling resistance of the plain concrete and the concretes with 25% replacement of 
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cement with fly ash and 35% with slag, and study the effects of a specific curing 

compound and a three-day curing method on salt scaling resistance. 

4.2 Experimental results of fresh concrete 

In this section, experimental results of tests conducted on fresh concrete including 

slump, unit weight, and air content are described and discussed (Table 4.1). 

Table 4.1 — Test results of fresh concrete for all concrete mixtures. 

Concrete made with fly ash at 

25% replacement of cement 

Concrete made with slag at 

35% replacement of cement 

Plain concrete 

Mix#l 

Mix #2 

Mix #3 

Mix #4 

Mix #5 

Mix #6 

Slump, 

mm 

75 

65 

80 

60 

75 

85 

Unit weight, 

kg/m3 

2,237 

2,268 

2,257 

2,238 

2,328 

2,296 

Air content 

(%) 

6.5 

5.5 

7.0 

7.0 

5.0 

5.5 

As mentioned in section 3.6.1, the slump test was conducted according to ASTM C 

143/C 143M (2008) after making each of six concrete mixtures in this research. The 

experimental results of slump are listed in Table 4.1. 

The slump test results of all six concrete mixtures varied from 60 to 85 mm which are 

all within the required range (75 ± 15 mm) by both ASTM C 672 and its proposed 

replacement method. Although the amount of the mid-range water-reducing admixture 

was constant for all six concrete mixtures (35 mL for 30 litres of concrete or 292 

mL/lOOkg of total cementing material), the amount of the high-range water-reducing 

admixture varied in each concrete mixture to keep the slump within the required range. 
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As mentioned in section 3.6.1, unit weight of each concrete mixture made in this 

research was determined according to ASTM C 138/C 138M (2008) to the nearest 1.0 

kg/m3. The experimental results of unit weight are also given in Table 4.1. 

The unit weight of concretes made in this research varied from 2,237 to 2,328 kg/m3 

which are all found to be within the expected range of concrete's unit weight. The range 

of unit weight of conventional concrete, normally used in pavements, buildings, and other 

structures is 2,200 to 2,400 kg/m3 and in the design of reinforced concrete structures, the 

unit weight of the combination of conventional concrete and reinforcing bars is assumed 

to be 2,400 kg/m3 (Kosmatka et al., 2002). 

As mentioned in section 3.6.1, after obtaining an adequate slump, the air content of 

each concrete mixture was measured in accordance to ASTM C 231 (2008). As it can be 

seen in Table 4.1, the air content of all six concrete mixtures made in this study varied 

from 5.0 to 7.0 % which are all within the required range (6 ± 1 %) by both ASTM C 672 

and its proposed replacement method. 

4.3 Experimental results of compressive strength 

As mentioned in section 3.6.2, the compression test on all three cylinders of each 

concrete mixture was conducted according to ASTM C 39/C 39M (2005) at the age of 28 

days. The maximum load at failure derived from the compression testing machine was 

converted from pound force (lbf) to Newton (N) by multiplying the loads by 4.448222. 

The cylindrical specimens in this study had a nominal diameter of 100 mm and a height 

of 200 mm. Therefore the cross-section area of each cylindrical specimen was calculated 

from equation 4.1. 
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A = 7i x (D/2)2 = 7i x (100/2)2 = 7854 mm2 (4.1) 

The compressive strength (a) of each cylindrical specimen in MPa was calculated by 

division of the load (P) in Newton by the area (A) in mm2 as specified in equation 4.2. 

a (MPa) = P (N) / A (mm2) (4.2) 

The compressive strength of all six concrete mixtures was determined and rounded to 

the nearest 0.1 MPa according to ASTM C 39/C 39M (2005). The experimental results of 

the compressive strength, the coefficient of variation, and the standard deviation are 

given in Table 4.2. The results of each mixture represent the average of the three 

specimens cast. Since each mixture was cast twice due to mixer capacity constraints, the 

average of the two mixtures is also given. 

Table 4.2 — Compressive strength test results of all concrete mixtures at 28 days. 

Concrete made with 

fly ash at 25% 

replacement of cement 

Concrete made with 

slag at 35% 

replacement of cement 

Plain concrete 

Mix#l 

Mix #2 

Mix #3 

Mix #4 

Mix #5 

Mix #6 

Maximum 

load, KN 

374 

350 

434 

378 

461 

396 

Compressive 

strength, MPa 

Each 

mixture 

47.7 

44.6 

55.2 

48.1 

58.7 

50.5 

Average 

46.1 

51.7 

54.6 

cov 
(%) 

3.1 

2.3 

0.7 

0.3 

0.9 

1.8 

Standard 

deviation, 

MPa 

1.46 

1.04 

0.41 

0.15 

0.55 

0.92 
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It can be concluded from Table 4.2 that among all three concrete types, the plain 

concrete showed the highest average compressive strength followed by the concrete made 

with slag, followed by the concrete made with fly ash. These results were expected since 

concretes made with fly ash usually obtain strength at the later ages and the compressive 

strength of the concretes made with slag is almost as the same as the one of the plain 

concrete. It can be seen in Table 4.2 that there are slight differences in the compressive 

strength of each two mixtures in every concrete type. Since only three cylinders from 

each concrete mixture were prepared and tested to determine the compressive strength, 

there could be a slight difference in the compressive strength. When the number of 

samples in each concrete mixture increases, the average compressive strength of each 

mixture in every concrete type will vary less than it was observed in this study. 

Acceptable value of the coefficient of variation for compressive strength of the 

concrete according to ASTM C 39/C 39M (2005) is 3.2 % for 100 by 200 mm cylinders. 

The coefficient of variation of all concrete mixtures presented in Table 4.2 found to be 

less than the maximum acceptable value (3.2%). 

4.4 Experimental results of salt scaling test 

In this section, the results of salt scaling test for all three concrete types will be 

presented and compared. First, the visual rating of the scaling specimens will be 

presented in accordance to ASTM C 672/C 672M (2003) and its proposed replacement 

method after each five cycles. Then the relationship between mass loss and freezing-and-

thawing cycles will be presented to compare all of the variables studied in this research. 
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As mentioned previously, three types of concrete were cast in two batches. The first 

mixture of each pair tested the current ASTM C 672 standard and its proposed 

replacement method. The second mixture tested the curing variables (curing compound 

and three-day curing) subject to the proposed standard method. 

4.4.1 Visual rating of the scaling specimens 

In this section, the visual rating of the scaling specimens after each five cycles will be 

presented in accordance with ASTM C 672 and its proposed replacement method as 

specified in Tables 3.7 and 3.8 in sections 3.6.3.1 and 3.6.3.2, respectively. It should be 

mentioned that this visual rating is found to be very subjective. The mass loss can show a 

better view of the salt scaling resistance, as will be shown later. 

4.4.1.1 According to ASTM C 672/C 672M (2003) 

A visual rating of the scaling specimens after every five cycles was conducted 

according to ASTM 672 as specified in Table 3.7 in section 3.6.3.1 and the results are 

given in Table 4.3. As it was mentioned before this visual rating is very subjective. 
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Table 4.3 — Visual rating of the scaling specimens according to ASTM C 672. 

Concrete 
made 

with fly 
ash 

Concrete 
made 

with slag 

Plain 
concrete 

1st 

sample 
2nd 

sample 
1st 

sample 
2nd 

sample 
1st 

sample 
2nd 

sample 

Visual rating after cycle # 
5 

3 

3 

3 

3 

3 

3 

10 

3 

3 

3 

3 

3 

3 

15 

3 

3 

3 

3 

3 

3 

20 

3 

3 

3 

3 

3 

3 

25 

3 

3 

3 

3 

3 

3 

30 

3 

3 

3 

3 

4 

4 

35 

3 

3 

3 

3 

4 

4 

40 

3 

3 

3 

3 

4 

4 

45 

3 

3 

3 

3 

4 

4 

50 

5 

3 

3 

3 

5 

5 

Two replicate specimens were tested for each of the three concrete types investigated. 

It can be seen in Table 4.3 that at the end of the first five cycles, moderate scaling (level 

3) was observed in all concrete types. The visual rating remained constant (moderate 

scaling, level 3) in the fly ash specimens throughout the test period until the end of the 

th 

50 cycle with the exception of one specimen which showed severe scaling (level 5) only 

at the end of the 50th freezing-and-thawing cycle. The visual rating remained constant 

(moderate scaling, level 3) as well in the slag specimens throughout the test period until 

the end of the 50' cycle. For the plain concrete samples, the visual rating increased to 4 

(moderate to severe scaling) after 30 cycles and to 5 (severe scaling) at 50 cycles. 

Photographs of the samples are shown later. 

4.4.1.2 According to the proposed replacement method for ASTM C 672 

A visual rating of the scaling specimens after every five cycles was conducted 

according to the proposed replacement method for ASTM 672 as specified in Table 3.8 in 
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section 3.6.3.2 and is given in Tables 4.4, 4.5, and 4.6. For each concrete type, two 

replicate specimens were tested for each of the three curing methods investigated. The 

visual rating in accordance with the replacement method for ASTM C 672 was found to 

have a limited use, since only three categories (0, 1-A, and 1-B) were usable in this study; 

no cracking was observed (cracking are linked to unsuitable aggregate rather than 

concrete properties). In some scaling specimens, few or several popouts were observed. 

Since there is no category for the combination of scaling and popouts in the proposed 

replacement method for ASTM 672, the numbers in the parentheses right after the 

categories (1-A or 1-B) in Tables 4.4, 4.5, and 4.6 refer to the presence of popouts (1 for 

few and 2 for several) combined with the surface scaling. 

Table 4.4 — Visual rating of the scaling specimens of the concrete made with fly ash 
according to the proposed replacement method for ASTM C 672. 

Standard 

curing 

Curing 

compound 

Three-day 

curing method 

(1) : Fewpo 

1st sample 

2nd sample 

1st sample 

2nd sample 

1st sample 

2nd sample 

jouts ( 

5 

1-A 

1-A 

1-A 

1-A 

1-A 

(1) 

1-A 

(1) 

2) :S 

10 

1-A 

1-A 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

svera 

Visual rating after cycl 

15 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

popo 

20 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

uts 

25 

1-B 

(2) 

1-B 

(2) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

30 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

35 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

e# 

40 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

45 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

50 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 
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It can be seen in Table 4.4 that at the end of the first five cycles slight scaling 

(category 1-A) was observed in all curing scenarios for the fly ash mixture. The visual 

rating was increased to important scaling (category 1-B) at the end of the 15' cycle in the 

standard curing method and at the end of the 10th cycle in both the method using the 

curing compound and the three-day curing method. Then the visual rating remained 

constant (important scaling, category 1-B) throughout the test period until the end of the 

50th cycle. Photographs of the samples are shown later. 

Table 4.5 — Visual rating of the scaling specimens of the concrete made with slag 
according to the proposed replacement method for ASTM C 672. 

Standard 

curing 

Curing 

compound 

Three-day 

curing method 

(1) : Fewpo 

1st sample 

2nd sample 

1st sample 

2nd sample 

1st sample 

2nd sample 

pouts ( 

5 

1-A 

1-A 

0 

0 

0 

0 

2) :S 

10 

1-A 

1-A 

0 

0 

0 

0 

svera 

Visual 

15 

1-A 

1-A 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

popo 

20 

1-A 

1-A 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

uts 

rating after cycl 

25 

1-A 

1-A 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

30 

1-A 

1-A 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

35 

1-A 

1-A 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

e# 

40 

1-A 

1-A 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

45 

1-A 

1-A 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

50 

1-A 

1-A 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

1-B 

(2) 

It can be seen in Table 4.5, for the slag mixtures, that at the end of the first five cycles 

slight scaling (category 1 -A) was observed in the standard curing method which remained 
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til 

constant (slight scaling, category 1 -A) throughout the test period until the end of the 50 

cycle. On the other hand, at the end of the first five cycles no significant scaling (category 

0) was observed in both the method using the curing compound and the three-day curing 

method which was increased to important scaling (category 1 -B) at the end of the 15 

cycle and then was remained constant (important scaling, category 1-B) throughout the 

test period until the end of the 50th cycle in both methods. Photographs of the samples are 

shown later. 

th 

Table 4.6 — Visual rating of the scaling specimens of the plain concrete according to 
the proposed replacement method for ASTM C 672. 

Standard 

curing 

Curing 

compound 

Three-day 

curing method 

(1) : Fewpo 

1st sample 

2nd sample 

1st sample 

2nd sample 

1st sample 

2nd sample 

pouts ( 

Visual rating after cycle # 

5 

1-A 

1-A 

1-A 

1-A 

1-A 

1-A 

2) :S 

10 

1-A 

1-A 

1-A 

1-A 

1-B 

1-B 

svera 

15 

1-A 

1-A 

1-A 

1-A 

1-B 

(1) 

1-B 

(1) 

popo 

20 

1-B 

(1) 

1-B 

(1) 

1-A 

1-A 

1-B 

(1) 

1-B 

(1) 

uts 

25 

1-B 

(1) 

1-B 

(1) 

1-A 

1-A 

1-B 

(1) 

1-B 

(1) 

30 

1-B 

(2) 

1-B 

(2) 

1-B 

1-B 

1-B 

(1) 

1-B 

(1) 

35 

1-B 

(2) 

1-B 

(2) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

40 

1-B 

(2) 

1-B 

(2) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

45 

1-B 

(2) 

1-B 

(2) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

50 

1-B 

(2) 

1-B 

(2) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

1-B 

(1) 

It can be seen in Table 4.6 that at the end of the first five cycles slight scaling 

(category 1-A) was observed in all three different curing methods for the plain concrete. 
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The visual rating was increased to important scaling (category 1 -B) at the end of the 20 

cycle in the standard curing method, at the end of the 30th cycle in the method using the 

curing compound and at the end of the 10th cycle in the three-day curing method. Then 

the visual rating was remained constant (important scaling, category 1-B) throughout the 

test period until the end of the 50th cycle for all three different curing methods. 

Photographs of the samples are shown later. 

4.4.2 Photographs of the scaling specimens after 50 freezing-and-thawing cycles 

The photographs of the scaling specimens were taken at the end of 50 freezing-and-

thawing cycles which are presented in Appendix C. 

4.4.3 Comparison of the mass loss results 

In this section, the mass loss results of the scaling tests for each variable studied in this 

research will be presented and compared. First ASTM C 672/C 672M (2003) will be 

compared to its proposed replacement method. Then the effects of curing (standard, 

curing compound and three-day curing methods) on salt scaling resistance will be 

studied. Finally the salt scaling resistance of the plain concrete and the concretes made 

with 25% replacement of cement with fly ash and 35% with slag will be compared in 

accordance to all variables studied in this research. It should be mentioned that the mass 

loss results are an average of the two replicate specimens regarding each variable and all 

the detailed results for each scaling specimen are included in the Appendix B. 
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4.4.3.1 Comparison of ASTM C 672 with its proposed replacement method 

In this section, the results of mass loss for different concrete mixtures including the 

plain concrete, and the concretes made with 25% replacement of cement with fly ash and 

35% with slag are presented according to ASTM C 672 and its proposed replacement 

method. The relationship between mass loss and the number of freezing-and-thawing 

cycles for all three types of concrete mixtures made in this research is presented in 

Figures 4.1, 4.2, and 4.3 in accordance with both ASTM C 672 and its proposed 

replacement method. 

Concrete made with fly ash at 25% replacement of cement 

• ASTM C 672 " • • "Proposedreplacement 

1.60 

1.40 

1.20 

M
as

s 
lo

ss
, 

kg
/i

 

1.00 

0.80 

0.60 

0.40 

0.20 

0.00 

10 15 20 25 30 35 40 

Number of freezing-and-thawing cycles 

45 50 

Figure 4.1 — Mass loss versus number of freezing-and-thawing cycles in the 
concrete made with fly ash. 
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Concrete made with slag at 3 5 % replacement of cement 

• ASTM C 672 —Hi • Proposed replacement 

0.30 

10 15 20 25 30 35 40 

Number of freezing-and-thawing cycles 

45 50 

Figure 4.2 — Mass loss versus number of freezing-and-thawing cycles in the 
concrete made with slag. 

Plain concrete 

•ASTM C 672 • Proposed replacement 

10 15 20 25 30 35 40 

Number of freezing-and-thawing cycles 

45 50 

Figure 4.3 — Mass loss versus number of freezing-and-thawing cycles in the plain 
concrete. 
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As it can be observed in Figures 4.2 and 4.3, ASTM C 672 showed greater mass loss 

than its proposed replacement method in both the plain concrete and the concrete made 

with slag (74% more in the plain concrete and 95% more in the concrete made with slag 

at the end of 50 freezing-and-thawing cycles). In the concrete made with fly ash (Figure 

4.1), the mass loss of the replacement method was less until the 15l cycle. However, 

after cycle #15, the proposed replacement method showed greater mass loss (39% more 

at the end of 50 freezing-and-thawing cycles) than ASTM C 672. Although in the 

concrete made with fly ash (Figure 4.1) the proposed replacement method started out 

with less mass loss than ASTM C 672, the rate of increase was high throughout which led 

to a greater mass loss at the end of 50 freezing-and-thawing cycles. 

Greater mass loss results in lower salt scaling resistance. Therefore, it can be 

concluded that the salt scaling resistance of the concrete made with slag as well as the 

plain concrete according to the proposed replacement method was higher than ASTM C 

672. But in the concrete made with fly ash, based on the final mass loss at the end of 50 

freezing-and-thawing cycles, it can be concluded that ASTM C 672 showed higher salt 

scaling resistance than its proposed replacement method. 

4.4.3.2 The effects of curing on salt scaling resistance 

In this section, the results of salt scaling test for each of three concrete types made in 

this research are presented separately to study the effects of curing on salt scaling 

resistance. The relationship between mass loss and freezing-and-thawing cycles for each 

concrete type in accordance to all variables studied in this research is presented in Figures 

4.4, 4.5, and 4.6. These variables included standard 14-day moist curing, curing 
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compound, and three-day moist curing method. All tests were carried out using the 

proposed replacement method. The differences in these three methods are regarding the 

curing. In the standard 14-day moist curing, as specified in section 3.5.2.1, the specimens 

were cured in the moist storage until the age of 14 days while in the three-day moist 

curing method, as specified in section 3.5.2.2 the specimens were cured in the moist 

storage until the age of 3 days. At the end of the moist curing in both mentioned method, 

the scaling specimens were cured in the air until the age of 28 days. But in the method 

using the curing compound, the scaling specimens were cured only in air until the age of 

28 days. At the end of the curing period (at the age of 28 days), the surface of the scaling 

specimens in all three methods were pre-saturated with the saline solution for seven days 

before starting the salt scaling test. 

Concrete made with fly ash at 25% replacement of cement 

—• • Standard curing — ̂ — Curing compound • • 'X* • Three-day curing 

2.40 

2.10 

. 1.80 
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0.30 

0.00 

H j i 

^ ^ — 

- * - * : 
•X-

75^7 • x ^ . * • •X 

10 15 20 25 30 35 40 

Number of freezing-and-thawing cycles 

45 50 

Figure 4.4 — Mass loss comparison of different curing methods in the concrete 
made with fly ash. 
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As it can be observed in Figure 4.4, in the concrete made with fly ash in this study, 

using the curing compound, as specified in section 3.2.5, resulted in greater mass loss 

than the standard 14-day moist curing method (54% more at the end of 50 freezing-and-

thawing cycles). 

On the other hand, the three-day moist curing method resulted in less mass loss than 

the standard 14-day moist curing method (34% less at the end of 50 freezing-and-thawing 

cycles). Only prior to the 10th cycle, the mass loss of the three-day moist curing method 

was slightly more than standard 14-day moist curing method. It also can be observed that 

the three-day moist curing method showed less mass loss than the method using the 

curing compound (57% less at the end of 50 freezing-and-thawing cycles). 

Therefore it can be concluded that in the concrete made with fly ash, using this 

particular curing compound, as specified in section 3.2.5 with the mentioned dosage, 

resulted in lower salt scaling resistance than the standard 14-day moist curing method, 

while the three-day moist curing method showed higher salt scaling resistance than both 

the standard 14-day moist curing method and the method using the curing compound. 
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Concrete made with slag at 35% replacement of cement 

- • • Standard curing — ̂ — Curing compound • • -X* • Three-day curing 
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Figure 4.5 — Mass Loss comparison of different curing methods in the concrete 
made with slag. 

As it is shown in Figure 4.5, in the concrete made with slag in this study, using the 

curing compound, as specified in section 3.2.5, as well as the three-day moist curing 

method resulted in greater mass loss (196% and 207% more, respectively at the end of 50 

freezing-and-thawing cycles) than the standard 14-day moist curing method. The method 

using the curing compound also showed more mass loss than the three-day moist curing 

method until the 45 cycle but the result was slightly opposite after cycle #45 where at 

end of 50 freezing-and-thawing cycles, the three-day moist curing method showed 4% 

greater mass loss. 

Therefore it can be concluded that in the concrete made with slag, using this particular 

curing compound, as specified in section 3.2.5 with the mentioned dosage, as well as the 
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three-day moist curing method resulted in lower salt scaling resistance than the standard 

14-day moist curing method. Also the three-day moist curing method showed higher salt 

scaling resistance than the method using the curing compound (except for the last five 

cycles). 
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Figure 4.6 — Mass loss comparison of different curing methods in the plain 
concrete. 

As it can be seen in Figure 4.6, in the plain concrete made in this study, using the 

curing compound as specified in section 3.2.5 resulted in greater mass loss than the 

standard 14-day moist curing method until approximately the 20th cycle and less mass 

loss afterwards (48% less at the end of 50 freezing-and-thawing cycles). 
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On the other hand, the three-day moist curing method resulted in greater mass loss 

than the standard 14-day moist curing method throughout the 50 freezing-and-thawing 

cycles but the mass loss at the end of 50 cycles was exactly the same. It also can be 

observed that the three-day moist curing method showed greater mass loss than the 

method using the curing compound (92% more at the end of 50 freezing-and-thawing 

cycles). 

Therefore, it can be concluded that in the plain concretes, the three-day moist curing 

method resulted in lower salt scaling resistance than both the standard 14-day moist 

curing method and the method using the curing compound. Based on the final mass loss 

at the end of 50 cycles, it can be concluded that the method using the curing compound 

showed higher salt scaling resistance than the standard 14-day moist curing method in 

spite of its lower salt scaling resistance until approximately the 20 cycle. 

As a summary, the method using the curing compound, as specified in section 3.2.5 

with the mentioned dosage, showed lower salt scaling resistance than the standard 14-day 

moist curing method in the concretes made with fly ash and slag at 25% and 35% 

replacement of cement and higher salt scaling resistance in the plain concrete. 

On the other hand, the three-day moist curing method showed higher salt scaling 

resistance than the standard 14-day moist curing method in the concrete made with fly 

ash but lower salt scaling resistance in the concrete made with slag and the plain 

concrete. 

And finally the method using the curing compound showed lower salt scaling 

resistance than the three-day moist curing method in the concretes made with fly ash and 

slag but higher salt scaling resistance in the plain concrete. 
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4.4.3.3 Comparison of concrete types 

In this section, all three concrete types made in this study including the plain concrete 

and the concretes made with 25% fly ash and 35% slag cement replacement will be 

compared in accordance to all variables studied in this research. These variables included 

ASTM C 672/C 672M (2003), its proposed replacement method, curing compound, and 

three-day curing. The relationship between mass loss and freezing-and-thawing cycles for 

all three concrete types according to each variable is presented in Figures 4.7 to 4.10. 
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Figure 4.7 — Mass loss comparison of different concrete types in accordance with 
ASTM C 672/C 672M (2003). 
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As it can be observed in Figure 4.7, among all three concrete types made in this study 

in accordance with ASTM C 672, the concrete made with fly ash showed the greatest 

mass loss (49% more than the plain concrete and 277% more than the concrete made with 

slag at the end of 50 cycles of freezing-and-thawing). The plain concrete also showed 

greater mass loss than the concrete made with slag (153% more at the end of 50 cycles of 

freezing-and-thawing). 

Therefore it can be concluded that in accordance with ASTM C 672, the concrete 

made with slag showed the highest salt scaling resistance followed by the plain concrete 

followed by the concrete made with fly ash. 

Figure 4.8 — Mass loss comparison of different concrete types in accordance with 
the proposed replacement method for ASTM C 672/C 672M. 
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As it can be observed in Figure 4.8, among all three concrete types made in this study 

in accordance with the proposed replacement method for ASTM C 672/C 672M, the 

concrete made with fly ash showed the greatest mass loss (263% more than the plain 

concrete and 924% more than the concrete made with slag at the end of 50 cycles of 

freezing-and-thawing). The plain concrete also showed greater mass loss than the 

concrete made with slag (182% more at the end of 50 cycles of freezing-and-thawing). 

Therefore it can be concluded that in accordance with the proposed replacement 

method for ASTM C 672/C 672M, the concrete made with slag showed the highest salt 

scaling resistance followed by the plain concrete followed by the concrete made with fly 

ash. 
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Figure 4.9 — Mass loss comparison of different concrete types in accordance with 
the method using a curing compound. 
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As it can be observed in Figure 4.9, among all three concrete types made in this study 

in accordance with the method using the curing compound, the concrete made with fly 

ash showed the greatest mass loss (431% more than the concrete made with slag and 

965% more than the plain concrete at the end of 50 cycles of freezing-and-thawing). The 

concrete made with slag also showed greater mass loss than the plain concrete (101% 

more at the end of 50 cycles of freezing-and-thawing) in spite of its slightly less mass 

loss before the 20th cycle. 

Therefore it can be concluded that in accordance with the method using the curing 

compound, the plain concrete showed the highest salt scaling resistance followed by the 

concrete made with slag followed by the concrete made with fly ash. 

Figure 4.10 — Mass loss comparison of different concrete types in accordance with 
the three-day curing method. 
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As it can be observed in Figure 4.10, among all three concrete types made in this study 

in accordance with the three-day curing method, the concrete made with fly ash showed 

the greatest mass loss (140% more than the plain concrete and 121% more than the 

concrete made with slag at the end of 50 cycles of freezing-and-thawing). The plain 

concrete also showed greater mass loss than the concrete made with slag throughout the 

freezing-and-thawing cycles until the 45th cycle (5% more at the end of cycle #45) but 

slightly less mass loss at the end of 50 cycles (8% less). 

Therefore it can be concluded that in accordance with the three-day curing method, the 

concrete made with slag showed the highest salt scaling resistance followed by the plain 

concrete followed by the concrete made with fly ash. 

To summarize the findings, it can be concluded that in accordance to ASTM C 672, its 

proposed replacement method, and the three-day curing method, the concrete made with 

slag showed the highest salt scaling resistance followed by the plain concrete followed by 

the concrete made with fly ash. According to the method using the curing compound, the 

plain concrete showed the highest salt scaling resistance followed by the concrete made 

with slag followed by the concrete made with fly ash. 

4.4.3.4 The additional scaling residue after detaching the plastic baseboard 

After detaching the plastic baseboard from the scaling specimens at the end of 50 

freezing-and-thawing cycles in the first concrete mixture, it was observed that some 

scaling residues were passed through the corners and attached to the plastic baseboard. 

Therefore, from the second concrete mixture, the additional scaling residue was collected 

and weighed to get an idea of its relationship to the cumulative scaling residue at the end 
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of 50 cycles. The additional scaling residue after detaching the plastic baseboard and its 

relationship with the scaling residue at the end of 50 freezing-and-thawing cycles for all 

scaling specimens are presented in Tables 4.7, 4.8, and 4.9. 

Table 4.7 — Scaling residue of the specimens made of the fly ash concrete. 
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2nd sample 
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68.523 
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cycles, % 

N/A 

N/A 

N/A 

N/A 
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11.80% 
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1.66% 
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Table 4.8 — Scaling residue of the specimens made of the slag concrete. 
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Table 4.9 — Scaling residue of the plain concrete specimens. 
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0.387 
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Percentage of 

additional scaling 
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2.87% 

1.03% 

2.12% 

2.44% 

3.15% 

2.71% 

1.52% 

2.39% 

This additional scaling residue after detaching the plastic baseboard cannot be clearly 

assigned to a specific cycle. The maximum ratio of this additional scaling residue to the 

cumulative scaling residue at the end of 50 freezing-and-thawing cycles was limited to 

3.5%, 12%, and 15.5% in the plain concrete, the slag concrete, and the fly ash concrete, 

respectively. 
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Chapter 5 

Discussion, conclusions, and recommendations 

5.1 Introduction 

The main emphasis of the experimental program presented in this research was to 

investigate the salt scaling resistance of three different concrete types using two different 

salt scaling test methods and three different curing regimes. In this chapter, the discussion 

and conclusions of this experimental research are presented. Also the recommendations 

for the further research in the area of salt scaling are given. 

The main objectives of this experimental research were to compare the current ASTM 

C 672/C 672M standard (2003) with its proposed replacement method regarding the salt 

scaling resistance, to study the effect of different curing methods on the salt scaling 

resistance, and to compare the salt scaling resistance of different concrete types. 

Three concrete types were made and tested according to both mentioned test methods 

including the plain concrete (100% Portland cement) and the concretes made with fly ash 

and slag at 25% and 35% replacement of cement, respectively. Three curing methods 

used in this research included the standard 14-day moist curing, three-day curing, and the 

usage of a curing compound. 

In the previous chapter, the experimental results of the tests conducted on fresh 

concrete including slump, unit weight, and air content and the compressive strengths of 

all concrete mixtures prepared in this research were presented and discussed. Also the 

visual rating and the photographs of the scaled specimens at the end of 50 freezing-and-
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thawing cycles according to both salt scaling test methods were given. The relationship 

between mass loss and the number of freezing-and-thawing cycles for all three concrete 

types made in this research in accordance with both salt scaling test methods and three 

different curing regimes were presented and discussed in detail in the previous chapter. 

5.2 Discussion 

The mass loss of all scaling specimens at the end of 50 freezing-and-thawing cycles 

for all three concrete types according to three curing regimes and two salt scaling test 

methods is presented in Table 5.1. 

Table 5.1 — Mass loss of all the scaling specimens at the end of 50 freezing-and-
thawing cycles according to three curing methods. 
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with fly ash 
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1.006 

1.528 

2.559 

1.140 

2nd 

sample 

1.237 

1.595 

2.237 

0.928 

Concrete made 

with Slag 

1st 

sample 

0.302 

0.150 

0.536 

0.565 

2nd 

sample 

0.293 

0.155 

0.367 

0.370 

Plain concrete 

JS, 

sample 

0.871 

0.403 

0.222 

0.543 

2nd 

sample 

0.630 

0.458 

0.229 

0.320 
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It was observed in this research that the addition of fly ash to the concrete, at 25% 

cement replacement, decreased the salt scaling resistance according to all variables 

studied in this research (ASTM C 672, its proposed replacement method, the three-day 

curing method, and the method using the curing compound) in comparison with the other 

two concrete mixtures (slag concrete and the plain concrete). This reduction of salt 

scaling resistance when adding fly ash to the concrete has been addressed by several 

researchers (Gebler and Klieger, 1986; Johnston, 1987; Whiting, 1989; Bilodeau et al., 

1991; Bilodeau and Malhotra, 1992; Afrani and Rogers, 1994; Bilodeau et al., 1994; 

Johnston, 1994; Boyd, 1995; Pigeon et al., 1996; Hooton and Boyd, 1997; Talbot et al, 

2000; Bleszynski et al., 2002; Krishnan et al., 2006; Bouzoubaa et al., 2008). Part of the 

poor salt scaling resistance of the concrete made with fly ash was found to be related to 

its lower strength (46.1 MPa) in comparison with the plain concrete (54.6 MPa) or the 

concrete made with slag (51.7 MPa) which is in line with the findings of other 

researchers (Whiting, 1989; Bilodeau et al., 1991; Bilodeau and Malhotra, 1992). The 

concrete incorporating fly ash achieves higher strength at later curing periods (1-2 

months) (Valenza II and Scherer, 2007a). Afrani and Rogers (1994) have addressed the 

early finishing (before bleeding has stopped due to the delayed set) and/or inadequate 

curing length as the reason of the lower salt scaling resistance of slag concrete which may 

be true in fly ash concrete too. They indicated that the former may cause a weak layer 

with higher w/c ratio to form near the surface and mentioned the reduced hydration heat 

at normal temperature as the cause for the latter. 

On the other hand, substituting 35% of cement with slag increased the salt scaling 

resistance in accordance with ASTM C 672 and its proposed replacement method while it 
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decreased the resistance according to the method using the curing compound significantly 

and the three-day curing method slightly. The scaling specimens made of slag concrete 

when tested according to the three-day curing method showed lower scaling residue than 

the plain concrete specimens until the 45th cycle but slightly higher scaling residue was 

observed at the end of 50 freezing-and-thawing cycles. This could be due the higher air 

content of slag concrete (7.0%) in comparison with the plain concrete (5.0 or 5.5%) or fly 

ash concrete (5.5 or 6.5%). Bouzoubaa et al. (2008) observed a higher salt scaling 

resistance of the concrete made with 25% slag than the control concrete when tested in 

accordance with ASTM C 672 and addressed the higher air content as the reason but they 

indicated that the concrete made with 35% slag performed poorly (moderate to severe 

scaling, level 4) in accordance with ASTM C 672. In contrast, some other researchers 

reported a reduction in salt scaling resistance when slag was added to the concrete 

(Bilodeau and Malhotra, 1993; Setzer, 1993; Copuroglu et al., 2004). 

It was also observed in this research that the concrete made with slag showed greater 

salt scaling resistance than the concrete made with fly ash regardless of the curing 

methods or the salt scaling test methods. This could be due to the higher compressive 

strength and air content of slag concrete (51.7 MPa and 7.0%, respectively) in 

comparison with fly ash concrete (46.1 MPa and 5.5 or 6.5%, respectively). Bouzoubaa et 

al. (2008) also reported the higher salt scaling resistance of slag concrete in comparison 

with fly ash concrete and addressed the higher air content and lower air-void spacing 

factor as the reason. 

The proposed replacement method resulted in greater salt scaling resistance than 

ASTM C 672 in the plain concrete and the concrete made with slag. Bouzoubaa et al. 
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(2008) reported a poor performance of the concrete made with 35% slag (moderate to 

severe scaling, level 4) in accordance with ASTM C 672 while a satisfactory performance 

(level 1) according to BNQ procedure (scaled significantly less). The proposed 

replacement method for ASTM C 672 is based on the method developed by Bureau de 

Normalisation du Quebec (BNQ). The better salt scaling resistance of the proposed 

replacement is thought to be due to one-week pre-saturation period which may balance 

the ions between the saline solution and the concrete's voids, decrease the osmotic 

pressure and result in less salt scaling (Bouzoubaa et al., 2008). Bouzoubaa et al. (2008) 

found the ASTM C 672 more severe in the laboratory than the field (as agreed to by 

Hooton and Boyd, 1997; Thomas, 1997; Langley and Leaman, 1998; Bleszynski et al., 

2002; Marchand et al., 2005; Krishnan et al., 2006; Boyd and Hooton, 2007) and 

addressed the BNQ procedure as a better way to evaluate the salt scaling resistance of 

concrete incorporating supplementary cementing materials. They reported greater scaling 

residue and higher visual rating of specimens tested in accordance with ASTM C 672 

than the BNQ standard in concrete specimens made with fly ash and slag. 

On the other hand, ASTM C 672 showed higher salt scaling resistance than its 

proposed replacement method in the concrete made with fly ash based on the final mass 

loss at the end of 50 freezing-and-thawing cycles, in spite of its lower resistance until 

approximately the 15th cycle. Although the proposed replacement method started out with 

less mass loss than ASTM C 672, the rate of increase was high throughout and resulted in 

a greater mass loss at the end of 50 freezing-and-thawing cycles. This is in contrast with 

the other two concrete mixtures made in this study or the published data and further 

research in this area is recommended. Bouzoubaa et al. (2008) observed poor salt scaling 
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resistance (severe scaling, level 5) of concrete mixtures incorporating fly ash at 25% and 

35% cement replacement in accordance with ASTM C 672 but a satisfactory resistance 

(level 2 for 35% fly ash and level 3 for 25%) according to BNQ (2002) in comparison 

with the control mixture (level 1 according to both ASTM C 672 and BNQ) which is in 

line with other published data (Gebler and Klieger, 1986; Johnston, 1987; Whiting, 1989; 

Bilodeau et al., 1991; Johnston, 1994; Hooton and Boyd, 1997; Talbot et al., 2000). They 

also reported greater scaling residue and higher visual rating of specimens tested in 

accordance with ASTM C 672 than the BNQ standard in all control mixture and fly ash 

concretes. Bouzoubaa et al. (2008) used 3% NaCl solution in both ASTM C 672 and the 

BNQ standard while in this research 4% calcium chloride (CaCb) was used in both 

ASTM C 672 and its proposed replacement method which could be the reason of 

different results in these two studies. Another possible reason for the lower salt scaling of 

the specimens made with fly ash concrete could be the excessive finishing of the concrete 

surface since it was the first concrete mixture made in this study and it is possible that the 

finishing was done too early before the bleeding has stopped. However, all four 

specimens were cast from the same batch and the source of this poor performance 

remains in doubt. Bouzoubaa et al. (2008) mentioned that by brushing the surface too 

early or much later (after the bleeding has stopped), the surface air-void network may be 

damaged which results in lower salt scaling resistance. Bilodeau et al. (1994) also 

indicated that finishing may change the air-void system, making it insufficient to resist 

the freezing-and-thawing damage, resulting in poor scaling performance in concrete 

mixtures containing high volume of fly ash. However, they used 55 to 60 % fly ash as the 

cement replacement which is much higher than the amount used in this research. 
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The application of the particular curing compound as used in this research resulted in 

different results for all three mixtures investigated. Table 5.2 presents the ranking for salt 

scaling resistance of three different curing methods in each concrete type made in this 

study. 

Table 5.2 — Salt scaling resistance ranking of three different curing methods in all 
three concrete types. 

Standard 14-day 

moist curing 

Curing 

compound 

Three-day 

curing 

25% fly ash 

2 

3 

1 

35% slag 

1 

2 

3 

Plain concrete 

2 

1 

2 

Note: 1 indicates the highest salt scaling resistance, 3 the lowest 

In the concrete made with fly ash, the curing compound resulted in significantly lower 

salt scaling resistance than the standard 14-day moist curing method, while the three-day 

moist curing method showed higher salt scaling resistance than both the standard 14-day 

moist curing method and the method using the curing compound. On the other hand, in 

the concrete made with slag, using the curing compound as well as the three-day moist 

curing method resulted in lower salt scaling resistance than the standard 14-day moist 

curing method. For this mixture, the mass loss at 50 cycles was nearly the same for the 

curing compound and three-day curing. Finally, in the plain concretes, the curing 

compound showed significantly more salt scaling resistance than the two other curing 

methods investigated. The three-day moist curing method showed similar salt scaling 
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resistance to the standard 14-day moist curing method. Based on the final mass loss at the 

end of 50 freezing-and-thawing cycles, higher salt scaling resistance of the method using 

the curing compound was observed in comparison with the standard 14-day moist curing 

method in spite of its lower salt scaling resistance until approximately the 20 cycle. 

The application of the curing compound in this study resulted in lower salt scaling 

resistance than the standard 14-day moist curing method in the concretes made with fly 

ash and slag at 25% and 35% replacement of cement, respectively and higher salt scaling 

resistance in the plain concrete. In this research, after applying the curing compound on 

the concrete surface, the samples were kept in the laboratory room temperature until the 

age of 28 days when the one-week pre-saturation started. The surface of the specimens 

was not brushed off by a metal brush or other tools and therefore the weak layer at the top 

was not removed. This could be the reason of the poor salt scaling resistance of fly ash 

and slag concretes. It has been reported that using the sealers or curing compounds 

(surface treatment) postpones the surface scaling (Afrani and Rogers, 1993; Sedran et al., 

1993; Setzer, 1993; Cleland and Basheer, 2002) but has no influence on the salt scaling 

resistance at the end (Perenchio, 1988; Setzer, 1993; Cleland and Basheer, 2002). Boyd 

(1995) indicated that the pores in the surface of fresh concrete may be blocked when the 

curing compound is applied which stops the moisture penetration and leads to a "false" 

good frost resistance. Afrani and Rogers (1994) indicated that applying the curing 

compound showed a good salt scaling resistance at the early stage according to ASTM C 

672 but after five cycles, the rate of the scaling was very fast. 

On the other hand, Pigeon et al. (1987) reported an improved salt scaling resistance in 

concrete made with silica fume and the application of a curing compound where the 
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surface of the samples was brushed with a metallic mechanized brush to remove as much 

as the weak layer having the curing compound prior to testing. Boyd and Hooton (2007) 

also showed a better salt scaling resistance in the specimens treated with the curing 

compound in comparison with the specimens covered under burlap and plastic sheet and 

Gebler and Klieger (1986) indicated that in concrete mixtures containing 25% fly ash, a 

slightly better salt scaling resistance of the method using the curing compound (stored at 

23 °C) was observed than the air curing and the moist curing at this temperature. 

Radlinski et al. (2008) reported the higher salt scaling resistance of the specimens treated 

with the curing compound exposed both at the early and late age in comparison with air 

drying (storage at 23 °C and 50% relative humidity), three and seven days under wet 

burlap and covered with plastic sheet which is in line with the findings by Krishnan et al. 

(2006). Radlinski et al. (2008) suggested that a thin layer of curing compound avoids the 

salt and moisture penetration; reduce the saturation degree of the pore system in the very 

top layer, and results in the good performance at the early age in these specimens. 

The three-day moist curing method showed higher salt scaling resistance than the 

standard 14-day moist curing method in the concrete made with fly ash but lower salt 

scaling resistance in the concrete made with slag. At the end of 50 freezing-and-thawing 

cycles, the same salt scaling resistance of the plain concrete specimens was observed in 

both the three-day moist curing method and the standard 14-day moist curing method in 

spite of the lower resistance of three-day curing method throughout the salt scaling test. 

Bilodeau et al. (1991, 1998) indicated that in fly ash concrete, extending the moist curing 

period in the laboratory (from 28 to 91 days) decreased the salt scaling resistance, which 

could be the reason for better salt scaling resistance of fly ash concrete in this research 
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cured under the three-day curing method in comparison with other two curing methods. 

Moist curing was reported to increase the scaling resistance of the concrete incorporating 

the class F fly ash having reached moisture stabilization prior to the salt scaling test 

(Waktola et al., 2005). On the other hand, the improvement of salt scaling resistance due 

to the longer moist curing periods was reported by some researchers (Langlois et al., 

1989; Gagne et al., 1991) which could be the reason for better salt scaling resistance of 

the standard 14-day moist curing method in the plain concrete and the concrete made 

with slag in this research. 

And finally, using the curing compound resulted in lower salt scaling resistance than 

the three-day moist curing method in the concretes made with fly ash, slightly higher 

resistance in slag concrete, and significantly higher resistance in the plain concrete. 

5.3 Conclusions 

Based on the relationship between mass loss and the number of freezing-and-thawing 

cycles for all three concrete types made in this research in accordance with both salt 

scaling test methods and three different curing regimes presented in the Chapter 4, the 

following conclusions can be drawn from the present experimental research: 

1. Compared to the other concrete mixtures, the addition of fly ash to the concrete, at 

25% cement replacement, decreased the salt scaling resistance according to all 

variables studied in this research (ASTM C 672, its proposed replacement method, 

the three-day curing method, and the method using the curing compound). This could 

be due to the lower compressive strength of the fly ash concrete, early finishing, 

and/or inadequate curing length. 
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2. Compared to the other concrete mixtures, the addition of slag to the concrete, at 35% 

cement replacement, increased the salt scaling resistance in accordance with ASTM C 

672 and its proposed replacement method while it decreased the resistance according 

to the method using the curing compound significantly and the three-day curing 

method slightly. This could be due to the higher air content of slag concrete in 

comparison with the plain concrete or fly ash concrete. 

3. The specimens tested according the proposed replacement method showed greater salt 

scaling resistance than ASTM C 672 in the plain concrete and the concrete made with 

slag at 35% replacement of cement. This is likely due to one-week pre-saturation 

period which may balance the ions between the saline solution and the concrete's 

voids, decrease the osmotic pressure and result in less salt scaling. This result agrees 

with the published literature. 

4. In the concrete made with fly ash, based on the final mass loss at the end of 50 

freezing-and-thawing cycles, ASTM C 672 showed higher salt scaling resistance than 

its proposed replacement method in spite of its lower resistance until approximately 

the 15 cycle. This is in contrast with the other two concrete mixtures made in this 

study or the published data and further research in this area is recommended. This 

could be to the application of different de-icing salt, excessive finishing, and/or early 

finishing before the bleeding has stopped. However, all four specimens were cast 

from the same batch. 

5. The application of the curing compound in this study resulted in lower salt scaling 

resistance than the standard 14-day moist curing method in the concretes made with 

fly ash and slag at 25% and 35% replacement of cement, respectively, and higher salt 
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scaling resistance in the plain concrete. This could be because of not removing the 

weak layer from the surface of fly ash and slag specimens by using a metal brush or 

other tools. However, in the plain concrete this weak layer seemed to be not as critical 

as in fly ash and slag concretes. Using the curing compound resulted in lower salt 

scaling resistance in fly ash concrete, slightly higher resistance in slag concrete and 

significantly higher resistance in the plain concrete than the three-day moist curing 

method (based on the final mass loss at the end of 50 freezing-and-thawing cycles). 

6. The three-day moist curing method showed higher salt scaling resistance than the 

standard 14-day moist curing method in the concrete made with fly ash, lower salt 

scaling resistance in the concrete made with slag, and similar salt scaling resistance in 

the plain concrete (based on the final mass loss at the end of 50 freezing-and-thawing 

cycles). This could be due to the longer moist curing period which was found by other 

researchers to have a negative effect on the salt scaling resistance of fly ash concrete 

and the positive effect in the plain concrete and the concrete made with slag. 

7. The concrete made with slag showed the highest salt scaling resistance in accordance 

with ASTM C 672 and its proposed replacement method followed by the plain 

concrete followed by the concrete made with fly ash. This could be due the higher air 

content of slag concrete in comparison with the other concrete mixtures. According to 

the method using the curing compound and the three-day curing method, the highest 

salt scaling resistance was observed in the plain concrete followed by the concrete 

made with slag, followed by the concrete made with fly ash (based on the final mass 

loss at the end of 50 freezing-and-thawing cycles). However, the mass loss of the 

scaling specimens made of slag concrete at the end of 50 freezing-and-thawing cycles 
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was slightly higher than the plain concrete specimens according to the three-day 

curing method while this difference was really significant in accordance with the 

method using the curing compound. 

5.4 Recommendations for further research 

To study the effect of other parameters on salt scaling resistance of a concrete surface 

and to provide a comprehensive understanding of the salt scaling, its characteristics and 

mechanisms further research is needed. Some of the recommended investigations which 

should be noticed in the further researches are as follows: 

1. The scaling specimens made of fly ash concrete showed lower salt scaling resistance 

when tested according to the proposed replacement method in comparison with, 

ASTM C 672 which was in contrast with the other two concrete mixtures made in this 

study (slag concrete or the plain concrete) or the published papers. Therefore, further 

research is recommended regarding the comparison of ASTM C 672 with its 

replacement method in fly ash concrete from the point of view of salt scaling 

resistance to verify the validity of the findings of this experimental research. 

2. Application of all other curing methods mentioned in Chapter 2 at the same time for 

each concrete mixture is recommended to study the effect of curing on salt scaling 

resistance and to find the most appropriate curing method resulting in the highest 

resistance. 

3. The investigation regarding the effect of the curing compound on salt scaling 

resistance could be continued by using other dosages of the curing compound and 
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studying the effect of brushing the concrete surface prior to freezing-and-thawing 

cycles (removing the weak layer). 

4. The effect of silica fume and other replacement amounts of fly ash and slag on salt 

scaling resistance according to these two salt scaling test methods could be 

investigated. 

5. Application of other de-icing salts rather than calcium chloride (CaCb) or other 

concentrations could be studied. 

6. Although compressive strength was only used for information purposes, equipment 

improvements such as the ability of maintaining the load rate control is 

recommended. 
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BASF 
The Chemical Company 

Description 
PolyHeed 997 admixture is a 
patented multi-component, 
non-chloride, mid-range water-
reducing admixture. PolyHeed 
997 admixture meets ASTM 
C 494/C 494M requirements 
for Type A. water-reducing, 
and Type F, high-range water-
reducing, admixtures. 

Applications 
Recommended for use in: 

S Conventionally placed 
concrete mixes containing a 
wide range of cements, 
sfag cement, Class C and 
F fly ashes, silica fume and 
aggregates 

8 Reinforced, precast, 
prestressed, lightweight or 
normal weight concrete and 
pumped concrete 

S3 Residential/commercial 
flatwork and formed 
surfaces 

• Rheodynamic® Self-
Consolidating Concrete 

i 4x4™ Concrete 

• Pervious Concrete 

POLYHEED® 997 
Mid-Range Water-Reducing Admixture 

Features 
S True mid-range water reduction (5-15%) and excellent performance across a wide 

concrete slump range, especially the difficult slump range of 5-8 in, (125-200 mm) 

B Superior workability, pumpabllity and finishability qualities even in concrete mixes 
containing low amounts of cementitious materials 

H Compressive and ftexurai strength performance increased at all ages 

• Strength performance comparable to chloride-bearing, water-reducing 
admixtures at all ages 

H Superior finishing characteristics for residential/commercial flatwork 
and formed surfaces 

Benefits 
3 Significantly reduced placement and finishing time resulting in lower in-place 

concrete costs 

B Improved concrete durability to damage from freezing and thawing 

B Increased service life of concrete structures 

Performance Characteristics 
Mixture Data: 500 lb/yd3 (295 kg/m3) of Type I cement; slump, 6-7 in. (150-180 mm); 
5-6% air: concrete temperature 70 °F (21 X ) ; ambient temperature, 70 *F (21 ° C). 

Sotting Tima Performance1 

Mixture 
Initial Set 
hmin 

Difference 
Inn in 

Plain 6:01 

PolyHeed 997 admixture © 
5 fl os'cwt (325 mL/100 kg) 
10 floz/cwt (650 ml/100 kg) 
15 floz/owt (980 ml/100 kg) 

6:22 
6:57 
7:31 

+0:21 
+0:56 
+1:30 

Compressive Strength Performance 
7-Day 

Mixture psi MPa 
Plain 2360 16.3 

% 
100 

28-Day 
psi MPa 
3320 22.9 

% 
100 

PolyHeed 997 admixture @ 
5 fl oz/cvvt (325 mL/100 kg) 3080 
10floz/cvvt(650mL/100kg) 3740 
15floz/cwt(980inL/100kg) 4620 

21.1 129 3930 27.1 118 
25.8 158 4610 31.8 136 
31.9 196 5460 37.7 165 

'-Note: The data shown are based on controlled laboratory tests. Reasonable variations from the results shown hare 
may be experienced as a result oi differences in concrete making materials andjobsite conditions. 
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Product Data: POLYHEED® 997 

Guide l ines for Use 

Dosage; PoiyHssd 997 admixture ha9 a recommended 
dosage range of 3-15 fl oz /cwt (195-980 ml7100 kg) of 
cementitlous material for most concrete mixes. 

A3 the dosage of PolyHeed 997 admixture increases to 
15 fl oz/cwt (980 mL/100 kg) of cementitious materials, 
normal concrete setting characteristics are maintained and 
early and ultimate compressive strengths increase. 

BASF Construction Chemicals does not recommend the use 
of dosages outside the recommended range without trial 
testing. Consult your local BASF Construction Chemical 
sales representative for assistance in determining the dosage 
for optimum performance. 

Product Notes 
Coirosivity - Non-Chloride, Non-Corrosive; PolyHeed 
997 admixture will neither initiate nor promote corrosion of 
reinforcing or prestressing steel embedded in concrete, or 
of galvanized steel floor and roof systems. PolyHeed 997 
admixture does not contain intentionally added calcium 
chloride or other chloride-based ingredients. 

Compatibility: PolyHeed 997 admixture may be used 
in combination with any BASF Construction Chemicals 
admixtures. When used in conjunction with other admixtures, 
each admixture must be dispensed separately into the 
concrete mixture. 

Storage and Handling 

Storage Temperature: If PolyHeed 997 admixture freezes, 
thaw at 35 "F (2 °C) or above and completely reconstitute by 
mild mechanical agitation. Do not use pressurized air for 
agitation. 

Shelf Life: PolyHeed 997 admixture has a minimum shelf life 
of 18 months. Depending on storage conditions, the shelf 
life may be greater than stated. Please contact your BASF 
Construction Chemicals representative regarding suitability 
for use and dosage recommendations if the shelf life of 
PolyHeed 997 admixture has been exceeded. 

Packaging 
PolyHeed 997 admixture Is supplied in 55 gal (208 L) drums, 
275 gal (1040 L) totes and by bulk delivery. 

Related Documents 

Material Safety Data Sheets: PolyHeed 997 admixture. 

Additional Information 
For additional information on PolyHeed 997 admixture or 
its use in developing concrete mixtures with special 
perfomiance characteristics, contact your BASF Construction 
Chemicals representative. 

The Admixture Systems business of BASF Construction 
Chemicals is a leading provider of innovative additives 
for specialty concrete used in the ready mix, precast, 
manufactured concrete products, underground constrirction 
and paving markets throughout the NAFTA region. The 
Company's respected Master Builders brand products are 
used to improve the placing, pumping, finishing, appearance 
and performance characteristics of concrete. 

NSE' 
Cjj1*cg*; : 

BASF Construction Chemicals, LLC 
Admixture Systems 
www.mssterbuilders.co m 
United Stales 23700 Chagrin Boulevard, Cleveland. Ohio 44122-5644 m Tel. 800 623-9990 m Fax: 216 639-8821 

Canada 1800 Cfark BouSevard, Brampton, Ontario L6T 4M7 m Tei: 800 387-5862 ffi Fax: 905 792-0651 

® Construction Research & Technology GMBH 

© BASF Construction Cnemicats. LLC 2007 m Printed m USA M 03/07 m t!T 4 1017014 
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I a n BASF 
The Chemical Company 

Description 
GLENIUM* 7500 high-range 
water-reducing admixture is 
based on the next generation 
of polycarboxylate technology 
found in all of the Glenium 
7000 series products. This 
technology combines state-of-
the-art molecular engineering 
with a precise understanding 
of regional cements to provide 
specific and exceptional value 
to all phases of the concrete 
construction process. 
GLENIUM 7500 admixture Is 
very effective in producing 
concrete mixtures with different 
levels of workability including 
applications that require 
seif-consolidating concrete 
(SCC). The use of GLENIUM 
7500 admixture results in 
faster setting characteristics 
as well as improved early 
age compressive strength. 
GLENIUM 7500 admixture 
meets ASTM C 494/C 494M 
compliance requirements for 
Type A, water-reducing, and 
Type F, high-range water-
reducing, admixtures. 

Applications 
Recommended for use in: 

B Concrete with varying water 
reduction requirements 

(5-40%) 

E3 Concrete where control of 
workability and setting time 

is critical 

0 Concrete where high 
flowability, increased stability, 
high early and ultimate 
strengths, and improved 
durability are needed 

D Production of 
Rheodynamic® Self-
Consolidating Concrete 
(SCC) mixtures 

S 4x4™ Concrete for fast-
track construction 

a Pervious Concrete mixtures 

GLENIUM® 7500 
High-Range Water-Reducing Admixture 

Features 
B Excellent early strength development 

13 Controls setting characteristics 

H Optimizes slump retention/setting relationship 

El Consistent air entrainment 

13 Dosage flexibility 

Benefits 
B Faster turnover of forms due to accelerated early strength development 

• Reduces finishing labor costs due to optimized set times 

a Use in fast track construction 

B Minimizes the need for slump adjustments at the jobsite 

B Less jobsite OC support required 

S Fewer rejected loads 

D Optimizes concrete mixture costs 

Performance Characteristics 
Concrete produced with GLENIUM 7500 admixture achieves significantly higher 
early age strength than first generation polycarboxylate high-range water-reducing 
admixtures. GLENIUM 7500 admixture also strikes the perfect balance between 
workability retention and setting characteristics in order to provide efficiency in placing 
and finishing concrete. 

Guidelines for Use 
Dosage: GLENIUM 7500 admixture has a recommended dosage range of 
2-15 fi oz/cwt (130-975 mL/100 kg) of cementitious materials. For most applications, 
dosages in the range of 5-8 fl oz/cwl (325-520 mL/100 kg) will provide excellent 
performance. For high performance and Rheodynamlc Self-Consolidating Concrete 
mixtures, dosages of up to 12 fl oz/cwt (780 mL/100 kg) of cementitious materials 
can be utilized. Because of variations in concrete materials, jobsite conditions and/or 
applications, dosages outside of the recommended range may be required. In such 
cases, contact your local BASF Construction Chemicals representative. 

Mixing: GLENIUM 7500 admixture can be added with the initial batch water or as 
a delayed addition. However, optimum water reduction is generally obtained with a 
delayed addition. 
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Product Data: GLENIUM® 7500 

Product Notes 
Corrosivity - Non-Chloride, Non-Corrosive: GLENIUM 
7500 admixture will neither initiate nor promote corrosion of 
reinforcing steel embedded In concrete, prestressing steel or 
of galvanized steel floor and roof systems. Neither calcium 
chloride nor other chloride-based ingredients are used in the 
manufacture of GLENIUM 7500 admixture. 
Compatibility: GLENIUM 7500 admixture Is compatible with 
most admixtures used in the production of quality concrete, 
including normal, mid-range and high-range water-reducing 
admixtures, air-entrainers, accelerators, retarders. extended 
set control admixtures, corrosion inhibitors, and shrinkage 
reducers. 

Do not use GLENIUM 7500 admixture with admixtures 
containing beta-naphthalene sulfonate. Erratic behaviors 
in slump, workability retention and pumpability may be 
experienced. 

Storage and Handling 
Storage Temperature: GLENIUM 7500 admixture must be 
stored at temperatures above 40 *F (5 °C). If GLENIUM 7500 
admixture freezes, thaw and reconstitute by mechanical 
agitation. 

Shelf Life: GLENIUM 7500 admixture has a minimum shelf 
life of 6 months. Depending on storage conditions, the shelf 
life may be greater than stated. Please contact your BASF 
Construction Chemicals representative regarding suitability 
for use and dosage recommendations if the shelf life of 
GLENIUM 7500 admixture has been exceeded. 

Packaging 
GLENIUM 7500 admixture is supplied in 55 gal (208 L) drums, 
275 gal (1040 L) totes and by bulk delivery. 

Related Documents 
Material Safety Data Sheets: GLENIUM 7500 admixture. 

Additional Information 
For additional information on GLENIUM 7500 admixture 
or on its use in developing concrete mixtures with special 
performance characteristics, contact your BASF Construction 
Chemicals representative. 

The Admixture Systems business of BASF Construction 
Chemicals is a leading provider of innovative admixtures 
for specialty concrete used in the ready mix, precast, 
manufactured concrete products, underground construction 
and paving markets throughout the North American region. 
The Company's respected Master Builders brand products 
are used to improve the placing, pumping, finishing, 
appearance and performance characteristics of concrete. 

BASF Construction Chemicals, LLC 
Admixture Systems 
www.m3sterbuilders.com 
United Status 23700 Chagrin Boulevard, Cleveland. Ohio 44122-55J4 0 Tel 800 628-9990 3 Fax: 216 839-8821 
Canada 1800 Clark Bouievard. Brampton. Ontario 16T 4M7 m Tel: BOO 387-5862 m Fax: 905 792-0651 

® Construction Research & Technology GMBH 

© BASF Construction Chemicals. LLC 2007 8 Printed in USA a 03/08 • LIT * 2000025 
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The Chemical Company 

Description 
MB-AE 90 air-entraining 
admixture is for use in 
concrete mixtures. It meets the 
requirements of ASTM C 260. 
AASHTO M 154 and CRD-C 13. 

Applications 
Recommended for use in: 
B Concrete exposed to 

cyclic freezing and 
thawing 

• Production of high-quality 
normal or lightweight 
concrete (heavyweight 
concrete normally does not 
contain entrained air) 

MB-AE™ 90 
Air-Entra in ing A<Jm iXtUi 

Features 
B Ready-to-use in the proper concentration for rapid, accurate dispensing 

Benefits 

i Improved resistance to damage from cyclic freezing and thawing 

3 Improved resistance to scaling from deicing salts 

1 Improved plasticity and workability 

• Reduced permeability - increased watertightness 

B Reduced segregation and bleeding 

Performance Characteristics 

Concrete durability research has established that the best protection for concrete from 
the adverse effects of freezing and thawing cycles and deicing salts results from: proper 
air content in the hardened concrete, a suitable air-void system in terms of bubble size 
and spacing, and adequate concrete strength, assuming the use of sound aggregates 
and proper mixing, transporting, placing, consolidation, finishing and curing techniques. 
MB-AE 90 admixture can be used to obtain adequate freeze-thaw durability in a properly 
proportioned concrete mixture, if standard industry practices are followed. 
Air Content Determination: The total air content of nonnal weight concrete should be 
measured in strict accordance with ASTM C 231, "Standard Test Method for Air Content 
of Freshly Mixed Concrete by the Pressure Method" or ASTM C 173/C 173M. ''Standard 
Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method." 
The air content of lightweight concrete should only be determined using the Volumetric 
Method. The air content should be verified by calculating the gravimetric air content in 
accordance with ASTM C 138/C 138M, "Standard Test Method for Density (Unit Weight), 
Yield, and Air Content (Gravimetric) of Concrete." If the total air content, as measured by 
the Pressure Method or Volumetric. Method and as verified by the Gravimetric Method, 
deviates by more than 1 -1/2%, the cause should be determined and corrected through 
equipment calibration or by whatever process is deemed necessary. 

Guidelines for Use 
Dosage: There is no standard dosage for MB-AE 90 admixture. The exact quantity of 
air-entraining admixture needed for a given air content of concrete varies because of 
differences in concrete-making materials and ambient conditions. Typical factors that 
might influence the amount of air entrained include: temperature, oementitious materials, 
sand gradation, sand-aggregate ratio, mixture proportions, slump, means of conveying 
and placement, consolidation and finishing technique. 
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Product Data: MB-AE™ 90 

The amount of MB-AE 90 admixture used will depend upon the 
amount of entrained air required under actual job conditions. 
In a trial mixture, use 1/4 to 4 fl oz/cwt (16-260 mL/100 kg) 
of cementitious material. Measure the air content of the trial 
mixture, and, if needed, either increase or decrease the quantity 
of MB-AE 90 admixture to obtain the desired air content. 
In mixtures containing water-reducing or set-control 
admixtures, the amount of MB-AE 90 admixture needed may 
be somewhat less than the amount required in plain concrete. 
Due to possible changes in the factors that can affect the 
dosage of MB-AE 90 admixture, frequent air content checks 
should be made during the course of the work. Adjustments 
to the dosage should be based on the amount of entrained air 
required in the mixture at the point of placement. 
If an unusually high or low dosage of MB-AE 90 admixture is 
required to obtain the desired air content, consult your BASF 
Construction Chemicals representative. In such cases, it may 
be necessary to determine that, in addition to a proper air 
content in the fresh concrete, a suitable air-void system is 
achieved in the hardened concrete. 
Dispensing and Mixing: Add MB-AE 90 admixture to the 
concrete mixture using a dispenser designed for air-entraining 
admixtures, or add manually using a suitable measuring device 
that ensures accuracy within plus or minus 3% of the required 
amount. 

For optimum, consistent performance, the air-entraining 
admixture should be dispensed on damp, fine aggregate. If 
the concrete mixture contains fine lightweight aggregate, field 
evaluations should be conducted to detemiine the best method 
to dispense the air-entraining admixture. 

Precaution 
In a 2005 publication from the Portland Cement Association 
(PCA R&D Serial No. 2789), it was reported that problematic 
air-void clustering that can potentially lead to above normal 
decreases in strength was found to coincide with late 
additions of water to air-entrained concretes. Late additions 
of water include the conventional practice of holding back 
water during batching for addition at the jobsite. Therefore, 
caution should be exercised with delayed additions of water 
to air-entrained concrete. Furthermore, an air content check 
should lie performed after any post-batching addition to an 
air-entrained concrete mixture. 

Product Notes 
Corrosivity - Non-Chloride, Non-Corrosive: MB-AE 90 
admixture will neither initiate nor promote corrosion of 
reinforcing and prestressing steel embedded in concrete, or 
of galvanized floor and roof systems. No calcium chloride or 
other chloride-based ingredients are used in the manufacture 
of this admixture. 

Compatibility: MB-AE 90 admixture may be used in 
combination with any BASF Construction Chemicals 
admixture, unless stated otherwise on the data sheet for 
the other product. When used in conjunction with other 
admixtures, each admixture must be dispensed separately 
into the concrete mixture. 

Storage and Handling 
Storoge Temperature: MB-AE 90 admixture should 
be stored and dispensed at 31 SF (-0.5 °C) or higher. Although 
freezing does not harm this product, precautions should be 
taken to protect it from freezing. If MB-AE 90 admixture 
freezes, thaw at 35 "F (2 °C) or above and completely 
reconstitute by mild mechanical agitation. Do not use 
pressurized air for agitation. 

Shelf Life: MB-AE 90 admixture has a minimum shelf life 
of 18 months. Depending on storage conditions, the shelf 
life may be greater than stated. Please contact your BASF 
Construction Chemicals representative regarding suitability 
for use and dosage recommendations if the shelf life of MB-
AE 90 admixture has been exceeded. 
Safety: Chemical goggles and gloves are recommended 
when transferring or handling this material. 

Packaging 
MB-AE 90 admixture is supplied in 55 gal (208 L) drums, 275 
gal (1040 L) totes and by bulk delivery. 

Related Documents 
Material Safety Data Sheets: MB-AE 90 admixture. 

Additional Information 
For additional information on MB-AE 90 admixture, or 
its use in developing a concrete mixture with special 
peformance characteristics, contact your BASF Constaiction 
Chemicals representative. 

The Admixture Systems business of BASF Construction 
Chemicals is a leading provider of innovative additives 
for specialty concrete used in the ready mix, precast, 
manufactured concrete products, underground construction 
and paving markets throughout the NAFTA region. The 
Company's respected Master Builders brand products are 
used to improve the placing, pumping, finishing, appearance 
and performance characteristics of concrete. 

BASF Construction Chemicals, LLC 
Admixture Systems 
www.masterbullders.com 
United States 23700 Chagrin Boulevard. Cleveland. Ohio 44122-564.I B Tel: 600 628-9990 B Fax: 216 839-8821 

Canada 1800 C!an\ Boulevard. Brampton. Ontario L6T 4M7 m Tel: 800 387-5862 B Fax: 905 792-0651 

™BASF Construction Chemicals. LLC 

© BASF Construction Chemicals, LLC 2007 • Printed in USA B 03/07 B LIT » 1017027 
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Description 

Confilm evaporation reducer 
helps produce high quality 
concrete flatwork and reduces 
surface moisture evaporation. 
Because Confilm retards 
evaporation, it is especially 
effective in combating rapid 
drying conditions Including, 
high concrete and/or ambient 
temperatures, low humidity, 
high winds, direct sunlight or 
work in heated interiors during 
cold weather, etc. 

Applications 
Recommended for use in: 

S Concrete surfaces where 
the evaporation rate 
exceeds the rate of 
bleeding of the concrete 

B Air-entrained and non-air-

entrained concrete 

S Silica fume concrete 

S Concrete containing fly ash 

CONFILM® 
Evaporation Reducer 

Features 
S3 Reduces surface moisture evaporation about 80% in wind and about 40% in sunlight 

0 Eliminates or reduces crusting, stickiness and underlying sponginess which often 

cause unevenitess and poor surface texture 

H Reduces and, in many instances, eliminates plastic shrinkage cracking and wind 

crusting of flatwork surfaces 

8 Supplements the recommended practices for hot weather concreting 

S3 Safeguards against the ill effects of evaporation 

6 Allows lower slump and lower unit water content in concrete used for flatwork 
S Facilitates use of air-entrained concrete, required for durability and workability, in 

situations where air-entrainment might be avoided for fear that it would increase 
concrete's susceptibility to crusting and stickiness under drying conditions 

Benefits 
EO Virtually eliminates need to add extra mixing water to compensate for rapid 

evaporation during finishing 

B Saves time and money by increasing the amount of surface handled per finisher 

even under rapid drying conditions 

B Timing of the operations is less critical, thus reducing overall cost 

Performance Characteristics 
A detailed technical discussion about the action of monomolecular films, typified by 
Confilm evaporation reducer, is contained in the Journal of the American Concrete 
Institute. Volume 62, pp. 977-985. The use of a monomolecular film to prevent rapid 
drying of fresh concrete is recommended in the following ACI documents: ACI 302.1 R, 
"Guide for Concrete Floor and Slab Construction"; ACI 305R, "Hot Weather Concreting"; 
ACI 308R, "Guide to Curing Concrete"; and ACI 345R. "Guide for Concrete Highway 
Bridge Deck Construction". 

Guidelines for Use 
Dosage: One gal (3.8 L) of Confilm evaporation reducer mixed with 9 gal (34.1 l_) 
of water yields 10 gal (37.9 L) of sprayable solution. This diluted amount of Confilm 
evaporation reducer (1:9) should cover 2,000 to 4,000 ft2 (186 to 372 m2) of fresh 
concrete. If more than one application of Confilm is made, as under adverse drying 
conditions, the quantity required will be increased accordingly. 

Mixing: Depending on the application, Confilm evaporation reducer can be mixed at a 
ratio of up to 1 part Confilm concentrate to 9 parts of water. Agitate Confilm evaporation 
reducer before mixing with water. Re-agitate mixed materials before applying. 
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Product Data: CONFILM® 

Application: Apply with a constant pressure or industrial-
type sprayer. Confilm evaporation reducer forms a 
monomolecular film when sprayed onto the concrete surface 
immediately after soreeding and/or between finishing 
operations (as needed). This protective shield usually lasts as 
long as concrete remains plastic, despite succeeding floating 
and troweling operations. 

Treated surfaces are easily distinguished from untreated 
surfaces because of the greenish-yellow color of the film in 
the presence of surface moisture and ultraviolet rays (sunlight 
or artificial lighting). The fluorescent color tint disappears 
completely upon drying. The residue remaining on the surface 
of hardened concrete does not impair bonding or alter color. 

Product Notes 
Precaution: Do not use Confilm evaporation reducer as a 
finishing aid to facilitate finishing of: 

H Cementitious dry-shake surface hardeners or 

toppings 

• Air-entrained and non-air-entrained concrete, silica fume 
concrete or fly ash concrete 

Confilm evaporation reducer Is not to be applied during final 
flatwork steel troweling operations. Confilm evaporation 
reducer is not a curing agent. Concrete treated with this 
product must still be cured. BASF Construction Chemicals 
is not responsible for compatibility or results when Confilm 
evaporation reducer is used with other manufacturers' 
products. Confilm reduces evaporation only while concrete 
is in its plastic state. It is not a substitute for early curing 
of hardened concrete nor does it alter the effectiveness of 
membrane-type curing compounds. Confilm evaporation 
reducer is not to be applied during any finishing operation nor 
should it be worked into the concrete surface. 

Any residue remaining from spillage or spraying of Confilm 
evaporation reducer concentrate on the surface of hardened 
concrete should not be allowed to dry. Wipe it immediately, 
then rinse the surface with water. If the Confilm concentrate 
residue is allowed to dry on hardened concrete, a reddish-
brown stain may appear. To remove the stain, place a cloth 
saturated in a household-type, chlorinated bleach onto 
the stain, then cover it with plastic to retard evaporation. 
After approximately one hour, the stain should disappear 
completely. Rinse the area with water. 

Storage and Handling 
Storage Temperature: Confilm evaporation reducer must be 
protected from freezing. Extreme cold may cause segregation 
after which the product cannot be reconstituted. 
Shelf Life: Confilm evaporation reducer has a minimum shelf 
life of 12 months. Depending on storage conditions, the shelf 
life may be greater than stated. Please contact your BASF 
Construction Chemicals representative regarding suitability 
for use if the shelf life of Confilm evaporation reducer has 
been exceeded. 

Packaging 
Confilm evaporation reducer is supplied in 1, 5 and 55 gal 
(3.8.18.9 and 208 L) containers. 

Related Documents 
Material Safety Data Sheets: Confilm evaporation reducer. 

Additional Information 
For suggested specification information or for additional 
product data on Confilm evaporation reducer, contact your 
BASF Construction Chemicals representative. 

The Admixture Systems business of BASF Construction 
Chemicals is a leading provider of innovative additives 
for specialty concrete used in the ready mix, precast, 
manufactured concrete products, underground construction 
and paving markets throughout the NAFTA region. The 
Company's respected Master Builders brand products are 
used to improve the placing, pumping, finishing, appearance 
and performance characteristics of concrete. 

BASF Construction Chemicals, LLC 
Admixture Systems 
www. mo3t9ri5ui lders.com 
United Stales 23700 cnagrin Boulevard, Cleveland, Ohio 44122-5544 s Tel.: 800 628-9990 IB Fax: 216 839-8821 
Canada 1800 Clark Boulevard. Brampton. Orrtario L6T 4M7 • Tel: 600 387-5862 a Fax: 905 792-0651 
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Appendix B 

Details of the tests results 
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B.l Tests conducted on the aggregates 

In this study, the tests conducted on the aggregates included sieve analysis, specific 

gravity, absorption, bulk density, and the moisture content. 

B.l.l Sieve analyses 

Sieve analyses were conducted on both the fine and coarse aggregates used in this 

research in accordance with ASTM C 136 (2006) and are given in Figures 3.1 and 3.2, 

respectively. The detailed information is given in Tables B.l and B.2. The initial mass of 

the fine and coarse aggregates was 350 and 600 grams, respectively. The duration of 

sieve analysis test was 15 minutes. 
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Table B.l — Sieve analysis of the fine aggregate used in this study. 

Sieve size 

9.51 mm 
(3/8 in) 

4.76 mm 
(No. 4) 

2.38 mm 
(No. 8) 

1.19mm 
(No. 16) 
0.60 mm 
(No.30) 
0.30 mm 
(No.50) 
0.15 mm 
(No. 100) 

Pan 

Total 

Mass, g 

Empty 
sieve 

558.3 

489.9 

489.3 

454.2 

422.8 

378.1 

360.2 

322.7 

-

Sieve and 
aggregate 

560.0 

511.8 

520.1 

498.6 

484.1 

469.8 

434.4 

343.8 

-

Retained 
aggregate 

1.7 

21.9 

30.8 

44.4 

61.3 

91.7 

74.1 

21.1 

347.0 

Percentage 
of retained 
aggregate 
on each 
sieve, % 

0.49 

6.31 

8.88 

12.80 

17.67 

26.43 

21.35 

6.08 

100.00 

Cumulative 
percentage 
of retained 
aggregate, 

% 

0.49 

6.80 

15.68 

28.47 

46.14 

72.56 

93.92 

100.00 

-

Percentage 
of passed 
aggregate 
from each 
sieve, % 

99.51 

93.20 

84.32 

71.53 

53.86 

27.44 

6.08 

0.00 

-
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Table B.2 — Sieve analysis of the coarse aggregate used in this study. 

Sieve size 

37.5 mm 
(1 '/2 in) 
31.5 mm 
(1 % in) 
25.4 mm 

(lin) 
19mm(% 

in) 
12.5 mm 
O/2 in) 

9.5 mm 
(3/8 in) 

4.76 mm 
(No.4) 

2.36 mm 
(No.8) 

Pan 

Total 

Mass, g 

Empty 
sieve 

566.7 

558.8 

529.0 

595.8 

569.7 

593.2 

522.5 

488.6 

378.0 

-

Sieve and 
aggregate 

566.7 

558.8 

529.0 

595.8 

569.7 

634.8 

999.6 

559.0 

384.2 

-

Retained 
aggregate 

0.0 

0.0 

0.0 

0.0 

0.0 

41.6 

477.1 

70.4 

6.2 

595.3 

Percentage 
of retained 
aggregate 
on each 
sieve, % 

0.00 

0.00 

0.00 

0.00 

0.00 

6.99 

80.14 

11.83 

1.04 

100.00 

Cumulative 
percentage 
of retained 
aggregate, 

% 

0.00 

0.00 

0.00 

0.00 

0.00 

6.99 

87.13 

98.96 

100.00 

-

Percentage 
of passed 
aggregate 
from each 
sieve, % 

100.00 

100.00 

100.00 

100.00 

100.00 

93.01 

12.87 

1.04 

0.00 

-

B.1.2 Specific gravity 

Specific gravity of both the fine and coarse aggregates was determined according to 

ASTM C 128 (2007) and ASTM C 127 (2007), respectively and is given in Chapter 3, 

Table 3.3. The detailed information is given in Tables B.4 and B.5. 

139 



Table B.3 — Preparation information of specific gravity of the fine aggregate. 

Oven-dried aggregate 
(A) 

Mass, g 

506.83 

506.83 g of oven-dried fine aggregate is equal to 
510 g of SSD fine aggregate 

(S) 
Pycnometer, aggregate, and water 

(C) 
Pycnometer and water 

(B) 

1012.6 

692.06 

The specific gravity of the fine aggregate was calculated according to ASTM C 128 

(2007) as follows: 

Specific gravity (oven dry) = A / (B+S-C), (B-l) 

Specific gravity (saturated-surface-dry) = S / (B+S-C), (B-2) 

Specific gravity (apparent dry) = A / (B+A-C), (B-3) 

where: 

A = mass of oven-dry specimen = 506.83 g, 

B = mass of pycnometer filled with water to calibration mark, B = 692.06 g, 

C = mass of pycnometer filled with specimen and water to calibration mark, 

C = 1012.60 g, 

S = mass of saturated-surface-dry specimen, S = 510.00 g. 
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Table B.4 — Preparation information of specific gravity of the coarse aggregate. 

Oven-dried aggregate 
(A) 

Saturated-surface-dry aggregate 
(B) 

Basket in water 

Basket and aggregate in water 

Aggregate in water 
(C) 

Mass, g 

2095.0 

2067.7 

850.0 

2100.0 

1250.0 

The specific gravity of the coarse aggregate was calculated according 

(2007) as follows: 

Specific gravity (oven dry) = A / (B-C), 

Specific gravity (saturated-surface-dry) = B / (B-C), 

Specific gravity (apparent dry) - A / (A-C), 

where: 

A = mass of oven-dry test sample in air, A = 2095.0 g, 

B = mass of saturated-surface-dry test sample in air, B = 2067.7 g, 

C = apparent mass of saturated test sample in water, C = 1250.0 g. 

toASTMC 127 

(B-4) 

(B-5) 

(B-6) 
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B.1.3 Absorption 

Absorption of the fine and coarse aggregates was determined in accordance with 

ASTM C 128 (2007) and ASTM C 127 (2007), respectively and is given in Chapter 3, 

Section 3.3.3. The detailed information is given in Tables B.5 and B.6. Two 200 litre 

barrels of the coarse aggregate were used in this research. Barrel number 2 was used in 

concrete mixture numbers one to four while barrel number one was used in the last two 

concrete mixtures (numbers five and six). 

Table B.5 — Preparation information of absorption of the fine aggregate. 

Saturated-surface-dry aggregate 
(S) 

Oven-dried aggregate after being 
cooled in the room temperature 

(A) 

Mass, g 

445.63 

442.86 

The absorption of the fine aggregate was calculated according to ASTM C 128 (2007) 

as follows: 

Absorption, % = 100 [(S-A) / A], (B-7) 

where: 

A = mass of oven-dry specimen = 442.86 g, 

S = mass of saturated-surface-dry specimen, S = 445.63 g. 
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Table B.6 — Preparation information of absorption of the coarse aggregate. 

Saturated-surface-dry 
aggregate 

(B) 
Oven-dried aggregate after 
being cooled in the room 

temperature (A) 

Mass, g 

Barrel #1 

1st test 

1963.80 

1943.77 

2nd test 

2423.90 

2398.16 

Barrel #2 

1st test 

1990.20 

1972.64 

2nd test 

2276.50 

2253,53 

The absorption of the coarse aggregate was calculated according to ASTM C 127 

(2007) as follows: 

Absorption, % = 100 [(B-A) / A], (B-8) 

where: 

A = mass of oven-dry test sample in air, g, 

B = mass of saturated-surface-dry test sample in air, g. 
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B. 1.4 Bulk density 

Bulk density of both the fine and coarse aggregates was determined according to 

ASTM C 29/C 29M (2007) and is given in Chapter 3, Section 3.3.4. The detailed 

information is given in Table B.7. 

Table B.7 — Preparation information of bulk density of the aggregates. 

Measure alone 
(T) 

Measure full of water 

Measure full of aggregate 
(G) 

Density of water, kg/m3 

Volume of measure, m3 

(V) 

Mass, g 

Fine aggregate Coarse aggregate 

3.94 

11.10 

15.50 14.47 

1000 

0.00716 

The bulk density of the aggregate was calculated according to C 29/C 29M (2007) as 

follows: 

M = (G-T) / V, (B-9) 

where: 

M = bulk density of the aggregate, kg/m3, 
G = mass of the aggregate plus the measure, kg, 
T = mass of the measure, T = 3.94 kg, 
V = volume of the measure, V = 0.00716 m3. 
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B.1.5 Moisture content 

In this study, the moisture content of both the fine and coarse aggregates was 

determined in accordance with ASTM C 566 (2004) and is given in Chapter 3, Table 3.5. 

The original and the adjusted amount of water needed for each concrete mixture are given 

in Chapter 3, Table 3.6. The detailed information is given in Tables B.8 and B.9. 

Table B.8 — Preparation information of moisture content of the fine aggregate. 

Aggregate in the room 

temperature 

(W) 

Oven-dried aggregate 

(D) 

Mass, g 

Mix#l 

1000.50 

984.60 

Mix #2 

1000.30 

977.30 

Mix #3 

1000.70 

977.30 

Mix #4 

1000.40 

992.84 

Mix #5 

1000.13 

962.34 

Mix #6 

1000.87 

946.58 

Table B.9 — Preparation information of moisture content of the coarse aggregate. 

Aggregate in the room 

temperature 

(W) 

Oven-dried aggregate 

(D) 

Mass, g 

Mix#l 

1000.70 

997.70 

Mix #2 

1000.90 

994.00 

Mix #3 

1000.90 

994.00 

Mix #4 

1000.60 

997.66 

Mix #5 

1000.95 

994.18 

Mix #6 

1000.74 

993.89 
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The moisture content of the aggregate was calculated according to ASTM C 566 

(2004) as follows: 

P = 100[(W-D)/D], (B-10) 

where: 

P = total evaporable moisture content of sample, percent, 

W = mass of original sample, g, 

D = mass of dried sample, g. 

The adjusted amount of water needed for each concrete mixture was calculated as 

following and is given in Chapter 3: 

Water needed = original water ± water in the fine and coarse aggregates (B-l 1) 

= original water + [mass of aggregate * (water absorption - moisture Content)] 
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B.2 Tests conducted on fresh concrete 

Tests conducted on fresh concrete in this research included the slump according to 

ASTM C 143/C 143M (2008), the unit weight in accordance with ASTM C 138/C 138M 

(2008), and the air content according to ASTM C 231 (2008). The experimental results of 

these tests are given in Chapter 4, Table 4.1 and the detailed information of the unit 

weight is given in Table B.10. 

Table B.10 — Preparation information of the unit weight of each concrete mixture. 

Concretes 
made with 

fly 

Concretes 
made with 

slag 

Plain 
concrete 

Mix#l 

Mix #2 

Mix #3 

Mix #4 

Mix #5 

Mix #6 

Mass, kg 

Empty 
measure 

(Mm) 

3.93 

3.93 

3.93 

3.93 

3.93 

3.93 

Measure 
filled with 
concrete 

(MC) 

19.97 

20.19 

20.11 

19.98 

20.62 

20.39 

Measure 
filled with 

water 
(Mw) 

11.10 

11.10 

11.10 

11.10 

11.10 

11.10 

Density 
of water, 

kg/m3 

1,000 

1,000 

1,000 

1,000 

1,000 

1,000 

Unit weight 
of concrete, 

kg/m3 

2,237 

2,268 

2,257 

2,238 

2,328 

2,296 

The unit weight of the concrete was calculated according to ASTM C 138/C 138M 

(2008) as follows: 

D = (MC-Mm)/Vm, 

where: 

D = unit weight (density), kg/m , 
Mc = mass of the measure filled with the concrete, kg, 
Mm = mass of the measure, kg, 
Mw = mass of the measure filled with water, kg, 
Vm = volume of the measure, m3, 

= (Mw-Mm)/ density of water. 

(B-12) 
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B.3 Compression test 

The compression test was conducted on all three cylinders of each concrete mixture 

made in this study according to ASTM C 39/C 39M (2005) and the results are given in 

Chapter 4, Table 4.2. The detailed information is given in Table B.l 1 and the calculation 

details are described in Chapter 4, Section 4.3. 

Table B.l l — Information of the compression test of each concrete mixture. 

Concrete 
made 

with fly 
ash 

Concrete 
made 
with 
slag 

Plain 
concrete 

Mix 
#1 

Mix 
#2 

Mix 
#3 

Mix 
#4 

Mix 
#5 

Mix 
#6 

Sample # 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

Failure Load 

lbf 

87,100 

82,900 

82,400 

80,700 

78,200 

77,100 

96,700 

97,700 

98,100 

84,900 

84,800 

85,300 

104,400 

104,100 

102,600 

88,000 

91,000 

88,400 

N 

387,440 

368,758 

366,533 

358,972 

347,851 

342,958 

430,143 

434,591 

436,371 

377,654 

377,209 

379,433 

464,394 

463,060 

456,388 

391,444 

404,788 

393,223 

Compressive 
strength, 

MPa 

49.3 

47.0 

46.7 

45.7 

44.3 

43.7 

54.8 

55.3 

55.6 

48.1 

48.0 

48.3 

59.1 

59.0 

58.1 

49.8 

51.5 

50.1 
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B.4 Salt scaling test 

Salt scaling test was conducted according to ASTM C 672/C 672M (2003) and its 

proposed replacement method using three different curing methods (standard 14-day 

moist curing, three-day curing, and the usage of a curing compound) and the results are 

given in Chapter 4, Figures 4.5 to 4.14. The detailed information is given in Tables B.12 

to B.26. 

Table B.12 — Date of casting and salt scaling test of the concrete mixtures made 
with fly ash. 

Mix 
#1 

Mix 
#2 

ASTM C 672 

The proposed 
replacement 

method 

The proposed 
replacement 

method 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Casting 

October 23rd, 
2008 

November 
26% 2008 

Freezing-and-thawing 
cycles 

Start 

November 
20th, 2008 

November 
27*, 2008 

December 
31st, 2008 

December 
31st, 2008 

Finish 

January 
9th, 2009 

January 
16*, 2009 

February 
19*, 2009 

February 
19*, 2009 

149 



Table B.13 — Date of casting and salt scaling test of the concrete mixtures made 
with slag. 

Mix 
#3 

Mix 
#4 

ASTM C 672 

The proposed 
replacement 

method 

The proposed 
replacement 

method 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Casting 

December 
12*, 2008 

January 16th, 
2009 

Freezing-and-thawing 
cycles 

Start 

January 
9th, 2009 

January 
16th, 2009 

February 
20th, 2009 

February 
20th, 2009 

Finish 

February 
28th, 2009 

March 7th, 
2009 

April 12th, 
2009 

April 12th, 
2009 

Table B.14 — Date of casting and salt scaling test of the plain concrete. 

Mix 
#5 

Mix 
#6 

ASTM C 672 

The proposed 
replacement 

method 

The proposed 
replacement 

method 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Casting 

February 20th, 
2009 

March 23rd, 
2009 

Freezing-and-thawing 
cycles 

Start 

March 
20*, 2009 

March 
27th, 2009 

April 27th, 
2009 

April 27th, 
2009 

Finish 

May 9th, 
2009 

May 17th, 
2009 

June 16th, 
2009 

June 16*, 
2009 
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Table B.15 — Scaling residue of each specimen made with fly ash concrete (1st 25 
cycles). 

M
ix

#
l 

M
ix

 #
2 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass of scaling residue after 
cycle #, g 

5 

22.305 

16.547 

19.426 

10.384 

5.440 

7.912 

20.135 

14.953 

17.544 

11.228 

11.282 

11.255 

10 

32.454 

29.480 

30.967 

27.095 

19.776 

23.436 

50.983 

41.474 

46.229 

21.921 

20.053 

20.987 

15 

37.038 

37.036 

37.037 

39.127 

33.805 

36.466 

79.650 

64.319 

71.985 

29.446 

26.238 

27.842 

20 

40.368 

42.982 

41.675 

47.019 

41.967 

44.493 

97.357 

80.471 

88.914 

35.712 

30.666 

33.189 

25 

43.702 

48.877 

46.290 

54.311 

49.132 

51.722 

111.583 

91.905 

101.744 

41.962 

35.421 

38.692 

Table B.16 — Scaling residue of each specimen made with fly ash concrete (2n 25 
cycles). 

M
ix

#
l 

M
ix

 #
2 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass of scaling residue after 
cycle #, g 

30 

47.006 

53.500 

50.253 

60.329 

55.915 

58.122 

122.48 
8 

100.12 
0 

111.30 
4 

47.321 

38.841 

43.081 

35 

49.261 

57.415 

53.338 

65.220 

62.444 

63.832 

129.61 
8 

106.82 
8 

118.22 
3 

51.361 

42.541 

46.951 

40 

51.320 

60.665 

55.993 

70.502 

69.640 

70.071 

137.45 
2 

113.77 
9 

125.61 
6 

54.695 

45.591 

50.143 

45 

53.245 

64.256 

58.751 

76.914 

78.558 

77.736 

139.87 
0 

120.06 
4 

129.96 
7 

58.954 

48.685 

53.820 

50 

55.709 

68.523 

62.116 

84.638 

88.356 

86.497 

141.754 

123.955 

132.855 

63.165 

51.425 

57.295 

151 



Table B.17 — Scaling residue of each specimen made with slag concrete (1st 25 
cycles). 

M
ix

 #
3 

M
ix

 #
4 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass of scaling residue after 
cycle #, g 

5 

7.528 

6.507 

7.018 

0.984 

1.273 

1.129 

1.987 

1.755 

1.871 

1.489 

1.323 

1.406 

10 

10.072 

8.944 

9.508 

1.673 

2.033 

1.853 

3.351 

2.727 

3.039 

2.210 

1.985 

2.098 

15 

11.475 

10.534 

11.005 

2.163 

2.693 

2.428 

5.319 

4.199 

4.759 

3.097 

2.792 

2.945 

20 

12.476 

11.235 

11.856 

2.673 

3.328 

3.001 

7.480 

6.050 

6.765 

4.367 

3.793 

4.080 

25 

13.339 

12.146 

12.743 

3.316 

3.948 

3.632 

10.265 

8.180 

9.223 

6.053 

5.150 

5.602 

Table B.18 — Scaling residue of each specimen made with slag concrete (2n 25 
cycles). 

M
ix

 #
3 

M
ix

 #
4 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass of scaling residue after 
cycle #, g 

30 

14.209 

12.912 

13.561 

4.281 

4.699 

4.490 

12.671 

10.573 

11.622 

8.802 

7.226 

8.014 

35 

14.906 

13.821 

14.364 

5.180 

5.524 

5.352 

15.999 

12.956 

14.478 

12.173 

10.084 

11.129 

40 

15.510 

14.677 

15.094 

6.252 

6.544 

6.398 

20.015 

15.616 

17.816 

18.888 

12.980 

15.934 

45 

16.044 

15.467 

15.756 

6.948 

7.335 

7.142 

24.587 

17.997 

21.292 

25.602 

17.500 

21.551 

50 

16.709 

16.214 

16.462 

8.312 

8.581 

8.447 

29.705 

20.319 

25.012 

31.292 

20.511 

25.902 

152 



Table B.19 — Scaling residue of each specimen made with plain concrete (1st 25 
cycles). 

M
ix

 #
5 

M
ix

 #
6 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass of scaling residue after 
cycle #, g 

5 

10.701 

7.585 

9.143 

1.839 

1.875 

1.857. 

3.872 

3.529 

3.701 

6.486 

3.425 

4.956 

10 

19.271 

13.114 

16.193 

3.133 

3.305 

3.219 

5.138 

4.529 

4.834 

13.016 

6.222 

9.619 

15 

24.718 

17.367 

21.043 

4.987 

5.197 

5.092 

6.144 

5.499 

5.822 

17.566 

8.874 

13.220 

20 

29.143 

20.328 

24.736 

7.304 

7.310 

7.307 

6.967 

6.476 

6.722 

20.639 

10.756 

15.698 

25 

32.729 

23.111 

27.920 

9.593 

9.892 

9.743 

7.723 

7.489 

7.606 

22.745 

12.369 

17.557 

Table B.20 — Scaling residue of each specimen made with plain concrete (2n 25 
cycles). 

M
ix

 #
5 

M
ix

 #
6 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass of scaling residue after 
cycle #, g 

30 

36.240 

25.801 

31.021 

12.063 

12.747 

12.405 

8.638 

8.482 

8.560 

24.814 

13.660 

19.237 

35 

39.258 

28.074 

33.666 

13.930 

15.346 

14.638 

9.391 

9.392 

9.392 

26.198 

14.581 

20.390 

40 

42.388 

30.731 

36.560 

16.362 

18.304 

17.333 

10.279 

10.533 

10.406 

27.619 

15.608 

21.614 

45 

45.263 

32.828 

39.046 

19.321 

21.847 

20.584 

11.406 

11.612 

11.509 

28.857 

16.598 

22.728 

50 

48.270 

34.906 

41.588 

22.328 

25.383 

23.856 

12.275 

12.667 

12.471 

30.075 

17.701 

23.888 

153 



Table B.21 — Mass loss of each specimen made with fly ash concrete (1st 25 cycles). 

M
ix

#l
 

M
ix

 #
2 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass loss after cycle #, kg/m2 

5 

0.403 

0.299 

0.351 

0.187 

0.098 

0.143 

0.363 

0.270 

0.317 

0.203 

0.204 

0.203 

10 

0.586 

0.532 

0.559 

0.489 

0.357 

0.423 

0.920 

0.749 

0.834 

0.396 

0.362 

0.379 

15 

0.669 

0.669 

0.669 

0.706 

0.610 

0.658 

1.438 

1.161 

1.299 

0.532 

0.474 

0.503 

20 

0.729 

0.776 

0.752 

0.849 

0.758 

0.803 

1.757 

1.453 

1.605 

0.645 

0.554 

0.599 

25 

0.789 

0.882 

0.836 

0.980 

0.887 

0.934 

2.014 

1.659 

1.837 

0.757 

0.639 

0.698 

Table B.22 — Mass loss of each specimen made with fly ash concrete (2n 25 cycles). 

M
ix

#l
 

M
ix

 #
2 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass loss after cycle #, kg/m2 

30 

0.848 

0.966 

0.907 

1.089 

1.009 

1.049 

2.211 

1.807 

2.009 

0.854 

0.701 

0.778 

35 

0.889 

1.036 

0.963 

1.177 

1.127 

1.152 

2.340 

1.928 

2.134 

0.927 

0.768 

0.847 

40 

0.926 

1.095 

1.011 

1.273 

1.257 

1.265 

2.481 

2.054 

2.267 

0.987 

0.823 

0.905 

45 

0.961 

1.160 

1.060 

1.388 

1.418 

1.403 

2.525 

2.167 

2.346 

1.064 

0.879 

0.971 

50 

1.006 

1.237 

1.121 

1.528 

1.595 

1.561 

2.559 

2.237 

2.398 

1.140 

0.928 

1.034 
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Table B.23 — Mass loss of each specimen made with slag concrete (1st 25 cycles). 

L M
ix

 #
3 

M
ix

 #
4 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass loss after cycle #, kg/m2 

5 

0.136 

0.117 

0.127 

0.018 

0.023 

0.020 

0.036 

0.032 

0.034 

0.027 

0.024 

0.025 

10 

0.182 

0.161 

0.172 

0.030 

0.037 

0.033 

0.060 

0.049 

0.055 

0.040 

0.036 

0.038 

15 

0.207 

0.190 

0.199 

0.039 

0.049 

0.044 

0.096 

0.076 

0.086 

0.056 

0.050 

0.053 

20 

0.225 

0.203 

0.214 

0.048 

0.060 

0.054 

0.135 

0.109 

0.122 

0.079 

0.068 

0.074 

25 

0.241 

0.219 

0.230 

0.060 

0.071 

0.066 

0.185 

0.148 

0.166 

0.109 

0.093 

0.101 

Table B.24 — Mass loss of each specimen made with slag concrete (2n 25 cycles). 

M
ix

 #
3 

M
ix

 #
4 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass loss after cycle #, kg/m2 

30 

0.256 

0.233 

0.245 

0.077 

0.085 

0.081 

0.229 

0.191 

0.210 

0.159 

0.130 

0.145 

35 

0.269 

0.249 

0.259 

0.094 

0.100 

0.097 

0.289 

0.234 

0.261 

0.220 

0.182 

0.201 

40 

0.280 

0.265 

0.272 

0.113 

0.118 

0.115 

0.361 

0.282 

0.322 

0.341 

0.234 

0.288 

45 

0.290 

0.279 

0.284 

0.125 

0.132 

0.129 

0.444 

0.325 

0.384 

0.462 

0.316 

0.389 

50 

0.302 

0.293 

0.297 

0.150 

0.155 

0.152 

0.536 

0.367 

0.451 

0.565 

0.370 

0.468 
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Table B.25 — Mass loss of each specimen made with plain concrete (1st 25 cycles). 

M
ix

 #
5 

M
ix

 #
6 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass loss after cycle #, kg/m2 

5 

0.193 

0.137 

0.165 

0.033 

0.034 

0.034 

0.070 

0.064 

0.067 

0.117 

0.062 

0.089 

10 

0.348 

0.237 

0.292 

0.057 

0.060 

0.058 

0.093 

0.082 

0.087 

0.235 

0.112 

0.174 

15 

0.446 

0.313 

0.380 

0.090 

0.094 

0.092 

0.111 

0.099 

0.105 

0.317 

0.160 

0.239 

20 

0.526 

0.367 

0.446 

0.132 

0.132 

0.132 

0.126 

0.117 

0.121 

0.373 

0.194 

0.283 

25 

0.591 

0.417 

0.504 

0.173 

0.179 

0.176 

0.139 

0.135 

0.137 

0.411 

0.223 

0.317 

Table B.26 — Mass loss of each specimen made with plain concrete (2nd 25 cycles). 

M
ix

 #
5 

M
ix

 #
6 

ASTM 
C672 

Proposed 
replacement 

The proposed 
replacement 
method for 

ASTM C 672 

Standard 

14-day 

moist 

curing 

Curing 

compound 

Three-day 

curing 

Sample 
# 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

1 

2 

Average 

Cumulative mass loss after cycle #, kg/m2 

30 

0.654 

0.466 

0.560 

0.218 

0.230 

0.224 

0.156 

0.153 

0.155 

0.448 

0.247 

0.347 

35 

0.709 

0.507 

0.608 

0.251 

0.277 

0.264 

0.170 

0.170 

0.170 

0.473 

0.263 

0.368 

40 

0.765 

0.555 

0.660 

0.295 

0.330 

0.313 

0.186 

0.190 

0.188 

0.499 

0.282 

0.390 

45 

0.817 

0.593 

0.705 

0.349 

0.394 

0.372 

0.206 

0.210 

0.208 

0.521 

0.300 

0.410 

50 

0.871 

0.630 

0.751 

0.403 

0.458 

0.431 

0.222 

0.229 

0.225 

0.543 

0.320 

0.431 
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Appendix C 

Photographs of scaling specimens after 50 freezing-and-thawing cycles 
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1st sample 

2nd sample 

Figure C.l -— Photos of the scaling specimens made of fly ash concrete according to 
ASTM C 672. 
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1st sample 

2nd sample 

Figure C.2 — Photos of the scaling specimens made of slag concrete according to 
ASTM C 672. 
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1st sample 

• 

2nd sample 

Figure C.3 — Photos of the scaling specimens made of plain concrete according 
to ASTM C 672. 
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1st sample 

2nd sample 

Figure C.4 — Photos of the scaling specimens made of fly ash concrete according to 
the proposed replacement method for ASTM C 672= 
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1st sample 

2nd sample 

Figure C.5 -— Photos of the scaling specimens made of slag concrete according to 
the proposed replacement method for ASTM C 672. 
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2m sample 

Figure C.6 — Photos of the scaling specimens made of plain concrete according to 
the proposed replacement method for ASTM C 672. 
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1st sample 

>nd 2na sample 

Figure C.7 — Photos of the scaling specimens made of fly ash concrete according to 
the method using the curing compound. 
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M 

1st sample 

,nd 2na sample 

Figure C.8 — Photos of the scaling specimens made of slag concrete according to 
the method using the curing compound. 
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1st sample 

Figure C.9 — Photos of the scaling specimens made of plain concrete according to 
the method using the curing compound. 
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2nd sample 



*s I • 

1st sample 

4 V -. '" ' - • 

2nd sample 

Figure C.10 =~ Photos of the scaling specimens made of fly ash according to the 
three-day curing method. 
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Is sample 

2na sample 

Figure C.ll — Photos of the scaling specimens made of slag according to the 
three-day curing method. 



2nd sample 

Figure C.12 — Photos of the scaling specimens made of plain according to the 
three-day curing method. 
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