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ABSTRACT 

Doppler Shift Estimation of MIMO-OFDM Systems Based on Auto-correlation 

Function of Channel Estimate 

Qin Zhu 

Multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing 

(OFDM) techniques have been considered as a strong candidate for the next-generation 

wireless communication systems, due to their well-known advantages in high data-rate 

wireless transmission as well as high frequency spectrum efficiency. In the mean time, 

channel state information (CSI) is required for precise detection and recovery of signals. 

Therefore, channel estimation plays a significant role in MIMO-OFDM systems. On the 

other hand, due to the high mobility of wireless terminals, Doppler shift (DS) can be one 

of the major side-effects of utilizing MIMO-OFDM techniques, which may lead to severe 

performance loss. Many schemes on DS estimation have been developed for broadband 

single-input single-output (SISO) systems. A commonly used method is to exploit the auto

correlation property of the channel impulse response (CIR) estimated by well-developed 

channel estimation approaches, which not only has high accuracy but also moderate com

putational complexity. Hence, we first investigate an efficient channel estimation method 

in this thesis. We will then focus on Jakes' model based DS estimation schemes, and further 

extend to independently identically distributed (i.i.d.) MIMO-OFDM fading channels with 

both Rayleigh and Rician distributions. 

In the first part of the thesis, a training-sequence (TS) based least square (LS) channel 

estimation scheme is presented for MIMO-OFDM systems along with plenty of computer 
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simulations and corresponding analyses. Experimental study shows that the CIR estimates 

obtained by the LS method are reliable under moderate channel conditions, and can effi

ciently be utilized for DS estimation. 

The second part of the thesis first studies the auto-correlation function (ACF) based 

DS estimation schemes for SISO-OFDM systems in Rayleigh fading channels, and then 

extends it to Rician fading channels by developing a new approach along with the analysis 

of its accuracy and complexity. Thereafter, we apply those approaches to MIMO-OFDM 

systems and present a few enhanced methods by using non-linear interpolation under certain 

circumstances. Detailed computer simulations and comparisons are performed, confirming 

that the proposed ACF based schemes give satisfactory estimation performance over i.i.d. 

Rayleigh or Rician fading channels with various channel conditions. 
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Chapter 1 

Introduction 

1.1 Background 

With the increasingly growing demand for mobile communications and Internet and multi

media services, the frequency bandwidth becomes a bottleneck in the next generation wire

less communications. This problem is difficult to solve without significantly increasing the 

wireless channel bandwidth. On the other hand, the transmission performance in wireless 

mobile environments is another main issue in the next generation communications. Due to 

the shadowing effect of multi-path fading channel and the high mobility of wireless termi

nals, the performance of communication system might be severely degraded. 

Many approaches have been proposed to solve the bandwidth and reliability problems, 

and most well known schemes are multiple-input multiple-output (MIMO) systems and 

orthogonal frequency-division multiplexing (OFDM) systems, which are also considered 

as strong candidates for the next generation wireless communication network, or the 4th 

generation network. 
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The 4th generation (4G), or beyond 3G (B3G), describes the next level of evolution 

in wireless communications. A 4G system will offer a complete replacement for exist

ing communication networks and is expected to provide a comprehensive and secure IP 

based solution, varieties of multimedia services will be provided at higher data rates on 

an "Anytime, Anywhere" basis. The following objectives of the next generation wireless 

communication standard have been defined by the 4G working group [1][2]: 

• A spectrally efficient system to be designed. 

• High network capacity which means more simultaneous users per cell. 

• A nominal data rate of 100 Mbps while the client physically moves at high speeds 

relative to the base station, and 1 Gbps while client and base station are in relatively 

fixed positions as defined by the ITU-R. 

• A data rate of at least 100 Mbps between any two points. 

• Smooth hand-off across heterogeneous networks. 

• Seamless connectivity and global roaming across multiple networks. 

• High quality of service (QoS) for next generation multimedia support. 

• Interoperability with existing wireless standards. 

• An all IP, packet switched network. 

2 



1.2 OFDM and MIMO Technologies 

1.2.1 Orthogonal Frequency Division Multiplexing 

OFDM, a multi-carrier modulation method, has already been developed as a popular scheme 

for wide-band communications. The principle of OFDM is to split a high-rate data stream 

into a number of orthogonal parallel streams at lower rates, which are transmitted simultane

ously over a number of sub-carriers. Since the symbol duration increases for the lower rate 

parallel sub-carriers, the relative dispersion in time caused by multi-path delay is largely de

creased. A guard interval (GI) is inserted in each OFDM symbol, during which, the OFDM 

symbol is cyclically extended, such that inter symbol interference (I SI) can be eliminated. 

As a result, each sub-channel can be considered as flat fading. Furthermore, the sub-carrier 

frequencies are chosen so that they are orthogonal to each other, which eliminates the in

ter carrier interference (ICI) as well as increases spectral efficiency without requiring extra 

bandwidth. 

Although OFDM technique simplifies the complexity of communication systems, or

thogonality does introduce a severe frequency-sensitive problem. Typically, frequency off

sets are caused by the mismatching between the transmitter and receiver oscillators, or by 

Doppler shift (DS) due to relative movement. This thesis focuses on the DS issue. 

The primary advantages of OFDM systems over other modulation schemes are listed as 

follows: 

• Resistance to frequency-selective fading, since each sub-channel is almost flat fading. 

• Simple equalization, due to the flat fading feature of the sub-channels. 



• Robustness against ISI by the insertion of appropriate GI in each OFDM symbol. 

• High spectral efficiency by overlapping the orthogonal sub-carriers. 

• Easy implementation using FFT chips at both the transmitter and the receiver. 

OFDM also has some disadvantages, such as: 

• Sensitivity to DS and frequency synchronization error, which creates ICI. 

• High peak-to-average-power ratio (PAPR), which reduces efficiency of the RF power 

amplifier. 

1.2.2 Multiple Input Multiple Output Technology 

Essentially, OFDM is a single-input and single-output (SISO) technique. Although it in

troduces orthogonality and GI to improve communication performance, the low data rate 

limits its applications in the modern wireless communications. Therefore, multiple-input 

and multiple-output, or MIMO, which uses the multiple antennas at both the transmitter and 

receiver, gets in our sight. 

MIMO technology makes use of the effect of multi-path fading or spatial diversity, as 

well as efficient coding algorithms, such as the most well known space-time coding [3], to 

increase the data rate and capacity of the system without sacrificing bandwidth and transmit 

power. It also has been chosen as one of the major techniques in the IEEE 802.16e and IEEE 

802.1 In standards. 

A list of several advantages of MIMO system are shown below: 
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• It provides higher data rates, which will be suitable for current and future usage such 

as Internet surfing, voice conference, data sharing, etc. 

• It reduces the effects of interference and as a result lower transmission power and 

longer battery lifetime. 

• Adjustable power and phase of each transmit antenna in terms of water-filling criteria 

to further improve QoS. 

• Secured transmission due to multiple transmit and receive antennas. 

• Various coding systems can be utilized to alleviate the performance loss due to multi-

path fading. 

• Well combined with OFDM modulation for simple receiver design. 

1.2.3 Combination of MIMO and OFDM Techniques 

The combination of OFDM and MIMO technologies not only solves the frequency-selective 

fading problem, but also increases channel capacity greatly, which is the most attractive 

feature. In the mean time, the increase of total transmission power or bandwidth is entirely 

not required as compared with its single antenna counterpart. And the channel capacity 

has been proved to grow linearly with the number of antennas when perfect knowledge 

of the wireless channel status is available at the receiver. However, the channel status 

information (CSI) is never known a prior. Therefore, channel estimation is in great need to 

play a significant role in MIMO-OFDM systems. 
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MIMO-OFDM Channel Estimation 

To make full use of the spectral efficiency, blind channel estimation methods have been 

developed. Using second order cycle-stationary statistics or correlative coding or other 

properties, channel matrix can be estimated just from transmitted data [4]. Despite their 

advantages such as a gain in capacity, most of blind techniques are not very robust and only 

allow estimating channel under a number of ambiguities. Furthermore, some methods may 

have poor convergence and some channels are not identifiable [5]. 

Traditionally, to learn the channel, some known training signals are required to be 

sent during some portion of the transmission interval. The training-sequence (TS) based 

schemes can be divided into training phase and data transmission phase. In the training 

phase, with the knowledge of the training signal at the transmitter and the received version 

of the training signal at the receiver, we can estimate the channel matrix using some TS 

based channel estimation algorithms, such as least square (LS), maximum likelihood (ML), 

maximum a posterior (MAP) and minimum mean squared error (MMSE) [6] algorithms. 

Thus the estimated channel matrix is used in the subsequent data transmission phase to 

enhance the reception performance. 

Hence in this thesis, we will restrict our attention to TS based channel estimation. 

DS Estimation for MIMO-OFDM Systems 

As stated before, the OFDM system is frequency-sensitive due to various factors, such as 

DS resulting from relative motions. Therefore, it is necessary to estimate DS so as to com

pensate for the introduced ICI in fast-fading MIMO channels. The DS information is also 
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required for the estimation of vehicle speed, and can be utilized to improve performance and 

reduce complexity in adaptive receivers. Many DS estimation methods have been proposed, 

which can be categorized into several groups, such as the one based on the level crossing 

rate (LCR) [7], the one based on the auto-correlation [8][9][10][11] and the one based on 

the ML algorithm [12]. The LCR based methods are not suitable for wide-band communi

cations, since the DS is much smaller than the signal spectrum. While the methods based 

on auto-correlation can be used for both the narrow-band and wide-band signals, where 

an accurate calculation of the inverse of Bessel function is required, which may lead to a 

moderate to a high computational complexity. The ML based methods in general provide 

high accuracy and also incur a high computational complexity. Taking all these estima

tion approaches into consideration, we will focus on auto-correlation based schemes in this 

thesis. 

1.3 Motivation and Objectives of the Research 

In the preceding sections, the new trends of wireless communications are reviewed. It is 

shown that the combination of MIMO and OFDM techniques with channel estimation offers 

promising performance for the forth coming 4G network. However, the corresponding DS 

or even velocity estimation techniques are necessary. This thesis is concerned with DS 

estimation using estimates of channel impulse responses (CIRs) for MIMO-OFDM systems. 

The first objective of the thesis is to obtain reliable channel estimates from the time-

domain MIMO-OFDM channel estimation using optimal TSs in conjunction with the LS 

algorithm. The second objective is to develop several DS estimation approaches for MIMO-
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OFDM systems by exploiting CIR estimates, which are formerly used in SISO-OFDM sys

tems. The performance of the estimation algorithms will be investigated by considering 

different system parameters and channel conditions. In addition, the proposed algorithms 

will be compared with each other in terms of performance and computational complexity. 

1.4 Organization of the Thesis 

This thesis is organized as follows: 

Chapter 1: The proceeding chapter provides an overview on the background of next 

generation wireless communications with MIMO, OFDM and related channel estimation 

and DS estimation techniques. 

Chapter 2: Fundamentals of MIMO-OFDM systems are reviewed, including the ba

sic concepts of wireless channels, the cause of DS and corresponding correlation features, 

OFDM symbol design and MIMO-OFDM system model. 

Chapter 3: The TS based MIMO-OFDM channel estimation that uses LS algorithm is 

introduced. First, the mean squared error (MSE) of channel estimates is derived, and then 

optimal pilot sequences are deduced with respect to the MSE, followed by performance 

studies of the whole system. 

Chapter 4: Three auto-correlation function (ACF) based DS estimation algorithms are 

proposed for i.i.d. MIMO-OFDM systems under Rayleigh channels, by employing channel 

estimates obtained in Chapter 3. The first method utilizes the first zero-crossing point of 

ACF. while the other two utilize a partial ACF curve and calculates the maximum DS by 

polynomial curve fitting or looking up a table of Bessel function. Then the underlying sys-
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tern is extended for Rician fading channels, and an estimator which utilizes the periodicity 

of ACF curve is proposed for the DS of the direct path. The performance of the proposed 

methods is then evaluated through computer simulations with necessary comparisons. 

Chapter 5: This final chapter concludes the whole research and points out some pos

sible directions for future work. 

1.5 Contributions 

The most significant contributions of this research are summarized as follows: 

1. A TS based LS (TSLS) channel estimation approach for MIMO-OFDM systems is 

studied with plenty of simulation work. Simulations show that such channel estima

tion scheme is rather reliable and efficient for further DS estimations. 

2. Four DS estimation algorithms using the ACF of channel estimates are proposed for 

uncorrelated MIMO-OFDM systems under both Rayleigh and Rician fading chan

nels. The proposed estimators are analyzed with the enhanced non-linear interpola

tion schemes being proposed, followed by performance simulations. The estimators 

are summarized as follows: 

• Zero-crossing scheme: It utilizes the first zero-crossing point on the ACF 

curve, which is estimated by linear interpolation. Simulations show that it is 

almost noise-insensitive and thus is well suited for general use. Spline interpo

lation can improve the estimation performance to some extent. 

• Partial-curve scheme: It utilizes the properly chosen region of ACF curve for 
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accuracy improvement, and is implemented by following methods: 

- Polynomial curve fitting: It uses a 6th-order polynomial to fit the Bessel 

function with certain progressive deviation. Then the positive and real root 

of this polynomial is used to calculate the maximum DS. As a higher-order 

polynomial is required, higher computational complexity is expected. 

- Look-up table: Instead of calculating the inverse of Bessel function by 

evaluating the root of high-order polynomial, it searches a pre-stored ta

ble of values of Bessel function with controllable precision, which reduces 

computational time considerably. Computer simulations indicate that this 

scheme is better than the zero-crossing scheme under moderate channel 

conditions. Spline interpolation is implemented to compensate for systems 

with an extremely large DS, which may make it undetectable. 

• Half-period scheme: Unlike the other three estimators, this scheme is only ap

plicable to direct path DS in Rician fading channels. It utilizes the periodicity 

of the ACF curve, and makes use of the effective first valley point for DS com

putation. Simulations show that it is suitable for Rician fading channels with 

any K-factor and channel conditions. Spline interpolation is a compensation for 

channels with large DSs. 
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Chapter 2 

Fundamentals of MIMO-OFDM 

Systems 

We have undertaken an overview of the upcoming wireless communication systems in 

Chapter 1, which provides us with a bright insight into the combination of MIMO and 

OFDM techniques. In this chapter, we will briefly review the fundamentals of related tech

nologies, including the model of wireless channels, symbol design for OFDM systems, and 

the concept of DS as well as auto-correlation property of fading channels. Then, we will 

discuss about the channel and signal models of MIMO-OFDM systems, which will be uti

lized in the following chapters to develop channel and Doppler frequency shift estimation 

techniques. 
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2.1 Basic Concepts of Wireless Channels 

2.1.1 Types of Multi-path Fading Channels 

In wireless communications, multi-path fading is a common propagation phenomenon, 

which can be caused by reflection from scatterers such as mountains and buildings. The 

signals coming from different paths result in multiple delayed versions at the receiver. 

Figure 2.1: Multi-path fading 

Fig. 2.1 is a typical example of multi-path propagation between a base-station and a 

moving vehicle. As can be seen from the figure, the fading process consists of line-of-sight 

(LOS) and non-line-of-sight (NLOS) fadings, in which LOS fading has a distribution of 

Rician and NLOS, however, is Rayleigh distributed. In addition, Doppler frequency shift 

can be incurred by the relative motion between the transmitter and the receiver. 

Fading channels can be classified into several groups in terms of fading features. 
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Slow and Fast Fading Channels 

Wireless fading channel is normally modeled as a linear time-variant (LTV) system. The 

speed of varying with regard to time refers to how fast the magnitude and phase of sig

nals are changing in propagation, which is measured by the coherence time of the channel 

denoted by (A<)c and the delay requirement that usually chooses the symbol duration Ts. 

When (At)c » Ts, the amplitude and phase change caused by the channel can be con

sidered constant over a certain time period, the channel is relative slowly fading compared 

with signals, which is so called slow fading. On the contrary, fast fading occurs when the 

coherence time of the channel is relatively smaller or comparable to that of the symbol 

duration. 

Moreover, the coherence time has been proved to be inverse proportional to the Doppler 

spread denoted by Bd, i.e. 

(AOc*-^ - (2-1) 

Hence, the fading speed of channels can be also measured by the Doppler spread. Larger 

Doppler spread can result in faster fading than that of a smaller one. 

Flat and Frequency-selective Fading Channels 

Similarly, coherence bandwidth, or (A/) c is to measure the fading in terms of frequency. 

In the coherence bandwidth, all frequency components of the signal experience coherent 

interference. If the coherence bandwidth is smaller than that of the transmit signals, i.e. 

(A/) f < Bs, the channel is known as frequency-selective, as those signals whose frequency 

components exceed the coherence bandwidth experience uncorrelated fading. And severe 
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ISI can be introduced at the receiver. On the other hand, the channel is non-selective, ox flat, 

when (A/) c 3> Bs, all frequency components of the signal experience the same magnitude 

of fading. 

Besides, we have a useful relation between the coherence bandwidth and the multi-path 

delay spread: 

(A/)c « J- (2.2) 

which indicates that the fading channel can be also measured by the delay spread. With 

Ts = 1/BS as well as (2.2), we can derive that, the channel is frequency-selective when 

Tm <^TS, and on the contrary, Tm > Ts implies flat fading. 

Fig. 2.2 and 2.3 summarize the relation between channel parameters and various fading 

types. 

T, A 

Flat Slowly Fading Flat Fast Fading 

(a/Li Frequency-selective Frequency-selective 
Slowly Fading Fast Fading 

w~i T. 

Figure 2.2: Relationship of fading and symbol duration 
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Frequency-selective 
Fast Fading 

Flat Fast Fading 

Frequency-selective 
Slowly Fading 

Flat Slowly Fading 

BA B 

Figure 2.3: Relationship of fading and symbol bandwidth 

2.1.2 Fading Channel Model 

Fading channel can be considered as a equivalent base-band LTV model. Hence, the C1R 

at time t can be expressed by [13] 

/ l(r,t) = 5^a i(4)(J(r-r i(<)) (2.3) 

where a^t) and Tj(i) is the complex attenuation and propagation delay at time t of the ith 

delay path, respectively; and a Dirac function 8 is defined by 

*(*) = 

0, t^O 

oo, t = 0 

(2.4) 

and 

5(t) = 
• o o 

(2.5) 
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Thus, the corresponding output of the channel can be described as 

y(t) = h(r,t)*x(t) 

/

oo 

h{r,t)x(t - T)(IT 
•oo 

= £a i(*)z(*-Tt-(t)) (2-6> 
i 

where * denotes convolution operation. 

For digital implementation, we normally use a discrete time base-band model, the multi-

path fading channel is modeled as a linear finite impulse response (FIR) filter. Then, the 

propagation of such model can be expressed by 

V" = iL, hnXn-l (2.7) 

I 

where hi „ is denoted as the Zth channel tap at time n. Especially, if the path gain a* and the 

path delays are time-invariant during a certain time slot, for example, one symbol period, 

the Zth tap can then be simplified to: 

hi = ] T a, sinc(Z - ^ ) (2.8) 
i 

where T is the input sample period to the channel. 

Moreover, the CIR h(t) is a composition of multiple scatters and an LOS component 

(see Fig. 2.4). We use the following model for the multi-path CIR described in the base

band [7]: 

h(t) = * \ ^ Q.mcJ\^fdCos(l)i)t+4>i] _j_ / * cj\2nJlicos(0o)t-+0O] ^2.9) 

V j = l v v s 
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where the K-factor K = E{\Z2{t)\2}/ E{|Zi(i)|2} is defined as the ratio of the power of 

the LOS component to the NLOS component, on denotes normalized amplitudes, satisfy

ing J2i=i a1 = 1- fd is the maximum DS, 0* denotes the angle of arrival (AOA), which is 

independently and identically distributed (i.i.d.). </>; are independently identically and uni

formly distributed phases on (—7r,7r]. 6Q and (f>o are the AOA and the initial phase of the 

LOS component, respectively. 

Transmitter - r==Ha > exp(y(27r / r f cos(0 1 . ) /+0 | . ) ) 

-exp/(27r/rfcos(0o)f+tf>. 

Receiver 

Figure 2.4: The NLOS and LOS paths 

Aside from the form expressed in Eq. (2.9), the CIR can be statistically described as 

i 

h(t) = ^2a,(t)e-^'il) + a0(t)e-^oW = [MO + jh2{t)] + T(t) (2.10) 
i = l 

in which 

ipi = 2nfd cos 9t + 4>, 

M O = E ' = i M 0 c o s ^ ( 0 

M 0 = £ j = i M 0 s i n & ( 0 

(2.11) 

HO = ao(0e- -H'o(t) 

where ao{t)e J",'°''' represents the LOS component, along with h\ (t) + .7/12(0 denoting the 
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NLOS components. According to the central limit theorem, when / is large, the NLOS 

component hi(t) + j7i2(f) tends to be a complex Gaussian random variable, in which h\(t) 

and fi2{t) are both Gaussian random variables subjecting to A/"(0, a2). And in turn, \h(t)\, 

the amplitude of a nonzero-mean complex Gaussian process, is Rician distributed. Its prob

ability density function (pdf) is expressed as [14]: 

ra0x, 
/(*) = >p(-^).exp(-ii)./0(^) 

Rayleigh Modifier 

a* 2a as (2.12) 

where a2, denotes the power of the LOS component, 2a2 is the total power of all other NLOS 

2 

scatters, or in another word, K = ̂ ; and I0 is the zeroth-order modified Bessel function 

of the first kind. While in the absence of a LOS component, i.e. K = 0, \h(t)\ subjects to a 

Rayleigh distribution with a pdf of 

/(x) = ^ e x p ( - ^ ) 

The pdf of Rayleigh and Rician distributions are shown in Fig. 2.5. 

(2.13) 

Figure 2.5: The pdf of Rayleigh and Rician distributions when a = 1. 
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2.1.3 Doppler Effect and Auto-correlation of CIR 

Concept on DS 

As stated before, wireless fading channels are LTV due to relative motion between mobile 

stations and base-stations, which can introduce frequency offset, or normally DS. DS may 

lead to severe performance loss especially when frequency-sensitive schemes are employed, 

such as OFDM. 

^ Base Station 

J-
Mobile; 
Station 
f-s, - /-< 

e 

Figure 2.6: Doppler effect 

Fig. 2.6 shows a mobile station moving towards a base station with a speed of v. The 

AOA of the wave relative to the motion direction is denoted by 9. Thus, the received 

frequency of the mobile station can be expressed by /o + / , in which / is the DS and 

can be given by 

f=-f0cosB (2.14) 
c 

where c is the the speed of light, and f0 is the original frequency of signals. The maximum 

DS is achieved when 9 = 0, i.e. 

h = -h c 
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In addition, if the following conditions [15] are satisfied, the well-known Jakes Doppler 

power spectrum will have a normalized form (see Fig. 2.7): 

1 
S(f) 

- V 1 - <£>s 

• The radio waves are horizontally propagated. 

=, l/l < fd (2.16) 

The AOA 0* of the radio waves are uniformly distributed over [—ir, -K] at the receiver. 

The receive antenna has a circular-symmetrical pattern. 

-50 0 50 
frequency in Hz 

150 

Figure 2.7: Jakes Doppler spectrum, fd = 100 Hz 

Moreover, if there exists an LOS component, i.e. Rician fading channel, a modified 

Doppler power spectrum is given by 

S(f) + KS(f - ULos) 

20 
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where fd,Los — /dCos 90 denotes the DS of the direct path, and 6(-) is a Kronecker Dirac 

function satisfying 

1, x = 0 
S(x) = { (2.18) 

0, x^O 

-j2nfdcos(eoh 

ACFofCIR 

The ACF of CIR h{t) (2.9) can be simply calculated by [7] 

Rhh(r) = E{h(t)h*(t + T)} 

where p(9) is the pdf of the AOA 9{. According to the Jakes' model [16], if 0* is uniformly 

distributed on [—ir, ix\ and also K = 0 , i.e. Rayleigh fading, then we obtain 

Rhh(T) = J0(2nfdT) (2.19) 

where J 0 ( ) represents the zeroth-order Bessel function of the first kind. Therefore, the 

ACF of a Rician distributed CIR can be expressed by 

Rhk(r) = ^p[Jo(2nfdr) + JL-e-i**f«*"(«>»• (2.20) 

Note that the CIR can be also modeled in a complex form of h(t) = 3R(f) + j^s(t), with 

5R(/,) and $s(t) denoting the real and imaginary component of h(t), respectively. As a result, 

the ACF (see Fig. 2.8) of the real component can be expressed as [11 ] 

Rm(T) = E{W)W + T)} 

-L-JQ(27rfdT) + -£-cos (2nfd cos (90)T) (2.21) 
V\ + 1 K + 1 
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And in the special case of a Rayleigh fading channel, 3? and S are both i.i.d. Gaussian 

random variables. Therefore, their ACFs can be simply obtained by 

Rsat(r) = R<ZQ(T) = Jo(27r/dr) (2.22) 

R*R3t(k) 

k' 

Figure 2.8: ACF of CIR of Rayleigh and Rician channels 

2.2 OFDM Systems 

OFDM was designed to increase the robustness against frequency-selective fading and 

multi-path delay, it also increases the frequency spectral efficiency for modern wireless 

communication systems. In this section, we will take a brief review of the principle of this 

multi-carrier scheme. 
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2.2.1 Transceiver 

A transmitter diagram of OFDM systems is illustrated in Fig. 2.9. Data stream is demulti

plexed into N parallel sub-carriers and then mapped commonly using quadrature amplitude 

modulation (QAM) or phase-shift keying (PSK). An IFFT is performed thereafter, gener

ating an OFDM symbol in the time domain, which are then appended by a copy of its tail 

of length Lg. By using digital-to-analogue converters (DACs), the digital signals are con

verted to the analogue domain. Finally, the analogue signals are modulated at the carrier 

freauencv f„ and transmitted troueth the antenna. 

~~i s[t)h 

s{n) 
S/P 

1 
- • ! 0> 

C 

ap
p 

^ 0 
— * > 

': 

f- .v-i 

1*0 

IFFT! 

"IX N-L. 

l A / - ) 

Add J 
CP \x» 

•! P/S r > D/A 

fi 

k , v - i ! XN-l 

Figure 2.9: The transmitter model of OFDM systems 

As shown in Fig. 2.10, the signals that arrive at the receive antenna are demodulated and 

converted back to the discrete domain. Cyclic prefixes (CP) are then removed, followed by 

FFT processing resulting in N parallel streams in the frequency domain, which are further 

detected by a symbol detector. Estimated signals are finally formed into a serial stream. 

2.2.2 OFDM Symbol Design 

Now we consider a data sequence 

X — [Ao: • • • • A'/v_]]J (2.23) 
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r(t) 
A/D 

/ c 

S/P 

^ 0 

yL„ 
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yN+ i+1.-1 

Q_ 
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> 
o 
E 
a> 

y,. 

FFT 

^ . 
* 

— • 
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• 

— ^ 

o> 
c 
'o. 
Q . 
fO 

E 
a> 
Q 

P/S 
S(w) 

JK .V+/. - I N + L-\ 

Figure 2.10: The receiver model of OFDM systems 

Assume the signals are sampled at i , thus the entire OFDM symbol duration is NT. After 

IFFT or OFDM modulation, we obtain the base-band signals in the time domain: 

1 
N-l 

Jjr, J2Xkej2**n 

fc=0 
N-l 

- j= V Xke^^T, n 6 {0,..., TV - 1} 
vN k=0 

(2.24) 

(2.25) 

where fk = j£f is the frequency of the kih sub-carrier. Moreover, the low-pass equivalent 

OFDM signal can be expressed as 

1 
N - l 

s(t) = -= Y " Xke
]27ifk\ 0<t<NT (2.26) 

Orthogonality of OFDM Signals 

In OFDM systems, the sub-carrier frequencies are chosen such that the sub-carriers are 

orthogonal to each other as shown in Fig. 2.11, each tone represents a sub-carrier, and the 

ICI is eliminated by overlapping these sine shaped frequency spectra. The orthogonality 

requires that each sub-carrier has exactly an integer number of cycles in the FFT interval, 

and the number of cycles between adjacent sub-carriers differs by exactly one [17]. This 
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property can be expressed as 

JNT ^^ ^ ^ t y d t = jNT
e^Jn-Mtdt = ^ ̂  

where (•)* denotes the complex conjugate operator, and 8 is the Kronecker delta function 

defined as 

1, k\ = k2 
JkiM 

o, h^k2 

(2.27) 

Orthogonal sub-carriers in frequency domain 

\ ' • / \ y 

v./ -- v ' \y 
Subcarriers within one OFDM symbol 

Figure 2.11: Orthogonal subcarriers in the frequency and time domain 

By overlapping, high spectral efficiency is possible. However, accurate frequency syn

chronization between the receiver and the transmitter are required. Orthogonality will be 

destroyed for a small frequency deviation, which causes ICI. Frequency offsets are typi-
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cally caused by mismatched transmitter and receiver oscillators, or by DS due to relative 

movement. Moreover, Doppler effect worsens as motion speed increases. Hence, DS in

formation is required for accurate signal recovery. 

Cyclic Prefix 

A CP of length Lg, which is a cyclic extension of the OFDM symbol, is inserted before 

transmission in order to avoid ISI in multi-path fading channels. It also reduces the sensi

tivity to time synchronization problems. From Fig. 2.9, we can see that the OFDM symbol 

after CP prefixing can be defined by 

x = [XN-L9,..., x;v_i, x0, • • •, XN-I]T (2.28) 

As discussed before, for the linear time invariant (LTI) system, discrete-time base-band 

model is expressed as 
L-\ 

yn = ^2hixn^i (2.29) 
1=0 

Assuming Lg = L and taking (2.28) into consideration, then (2.29) can be rewritten as 

L-l 

Vn = 2_^ hlX[{n-L-l) mod N] (2.30) 

We can rewrite (2.30) as 

Vn = hn<8>xn (2.31) 

with 0 denoting the cyclic convolution. By taking the DFT of both sides of (2.31), we thus 

obtain 

DFT(yn) = DFT(/ in 0 x„) = DFT(/in) • DFT(x„) 

Or 

Yk = HkXk: ke{Q.....N-l} (2.32) 
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where 
L-\ 

Hk = Y,hie~J2"*k (2-33) 

Therefore, a multi-path channel is converted into N parallel sub-channels in the frequency 

domain, which can also simplify the receiver. 

2.3 MIMO-OFDM Systems 

2.3.1 MIMO Channel Model 

MIMO-GFDM scheme is designed for broadband wireless communications. Since the sig

nal bandwidth is always larger than the coherence bandwidth, the channel can be viewed as 

frequency-selective. 

Figure 2.12: MIMO channel with Nt transmit antennas and Nr receive antennas 

Fig. 2.12 shows a typical block diagram of a MIMO system. The received signal vectors 
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can be simply represented by 

y = H x + v (2.34) 

where y and x are the received and the transmitted signal vectors, respectively; H denotes 

the NT x Nt channel matrix of the MIMO system, with v representing the noise vector at 

the receiver. We assume that the noise in this thesis is always an additive white Gaussian 

noise (AWGN). Each link between a pair of transmit and receive antennas can be regarded 

as an L-tap FIR filter. Moreover, the channel can usually be assumed constant over the 

transmission of one OFDM symbol, though it may vary for different symbols, which is also 

known as the quasi-static model. Hence, we define a channel matrix for the /th tap as: 

H«(m) = 

h{ (m) h^ (m) 

hf (m) h[' (m) 

h]'Nt(m) 

hfm(m) 
(2.35) 

/VrXiVt 
\h^\m) h^'2(m) . . . h^Nt(m) 

where h"Tnt (m) stands for the CIR between the nr\h receive antenna and the n(th transmit 

antenna of the /th tap during the mth OFDM symbol. 

2.3.2 M I M O - O F D M System Model 

Fig. 2.13 shows a block diagram of a simple MIMO-OFDM transmitter, which consists of 

Nt independent links. For the mth OFDM symbol, we define 

Xnt{m) = [X\lt(m),...,X^(m)]i (2.36) 
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Figure 2.13: MIMO-OFDM transmitter 

as the input frequency-domain signals for the IFFT unit, where K denotes the number of 

sub-carriers. Similarly, the output signals of the IFFT processor can be defined as 

x"<(m)=[x?<(m),...,x£(m)f (2.37) 

which is normally called time-domain signals. After adding a CP, the signals are transmitted 

from the ntth antenna. 

A r 
S/P 

Remove 
CP 

y\{m) Y\(m) 

FFT 

yN{m) " Y\,{m) 

S/P 
> 
: 
> 

Remove 
yh\'(m) r 

- - - - • ! 
CP I 

• 
FFT 

Y'i'im) . 
• 

Ys'(m) 

Figure 2.14: MIMO-OFDM receiver 

Fig. 2.14 shows a diagram of a simple MIMO-OFDM receiver, which consists of Nr 

receive antennas. For the nrth link, samples of the received signals corresponding to the 
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CPs are removed first. Then, the received time-domain signals can be expressed as 

y n r M = [yir(m),... ,yn
N

r(m)]T (2.38) 

After FFT processing, we finally obtain the received signals in the frequency domain: 

Y""(m) = [Yr(m),...,Y^(m)]r (2.39) 

With the received signals, the MIMO channel can be estimated via various schemes. 

The information data can then be recovered by the MIMO-OFDM decoder based on the 

estimated channel matrix. 

2.3.3 MIMO-OFDM Signal Model 

First, we take a look at the signal model in the time domain. Assuming that the channel 

is constant during one OFDM symbol, and the CP is perfectly set to be no less than the 

channel length. For the mth OFDM symbol, the signal model for the frequency-selective 

fading channel can be expressed as 

Nt 

V?(m) = E knr'nt(m) * x?(m) + v?(m) (2.40) 
n< = l 

Nt L-l 

= E E ftrMCM+CM (2.4i) 
nt = l 1=0 

where n denotes the discrete time index, and i>"r (m) is the spatial-temporally uncorrelated 

noise with zero mean and variance of o\. We can also rewrite (2.40) in a common matrix 

form as 

yn{m) = E H,(m)xn_,(m) + vn(m) (2.42) 
1=0 
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where 

x n ( m ) = [ x i ( m ) 1 . . . ) x ^ ( m ) ] T (2.43) 

yn(m) = [yliml..., y»'(m)]T (2.44) 

vn(m) = [v1
n(m),...,v^(m)]T, E{V i (m)vf(m)} = erjftjl (2.45) 

where ( ) w denotes Hermitian or conjugate transpose, I is an identity matrix. 

Now we derive the signal model in the frequency domain. After the CP is removed, the 

received signal at the nrth receive antenna, which is defined in (2.38), can be rewritten as 

[18] 
Nt 

ynr(m) = ] T H£ r '
n ,F"Xn t(m) + vn--(m) (2.46) 

nt = l 

whereH^r
r'

nt is an iVxiVcirculant matrix with the first column given by [(hnr'nt(m))T, Oix(yv-z,)] , 

withh"-"'(m) = [h%r'nt(m),...,h1£:,lt(7n)]T;vn*(m) = K r ( m ) , . . . ,v%(m)]T is the 

spatial-temporally uncorrelated noise vector, and F is the NxN unitary DFT matrix, where 

the entries are defined as 

Ffrn = e-
j2n^ (2.47) 

By using the eigendecomposition [13], H"'r'
n'(m) can be further expressed as: 

H £ n ' ( m ) = F H d iag{v / AfF[ (h—(m)) r
; 0 l x ( i V _ L ) ]

r }F (2.48) 

After taking the DFT of both sides of (2.46), we can obtain the signal model in the frequency 

domain as 

Yn ' (m) = ^ T d i a g j V i V F . [ ( h n - n ' ( m ) ) ^ 0 l x ( „ _ L ) f j X n ' ( m ) + Vn ' (m) (2.49) 
n, = l 

where V" r (???,) = Fv"'(m). 
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2.3.4 Recovery of MIMO-OFDM Signals 

Since the MIMO-OFDM system can be divided into independent flat-fading MIMO sub

systems for different sub-carriers, the algorithm for flat-fading MIMO channel receiver can 

be used for each MIMO sub-system. Based on the estimated channel matrix, the optimum 

detection algorithm is ML algorithm, which chooses 

x = arg{ min | | y - H x | | 2 } 
x6{xi,...,xcjv t} 

where C represents the constellation size. Since this algorithm needs a lot of searching, it 

is one of the most complex detection methods. 

Zero-forcing (ZF) algorithm is the simplest one. The information data are detected by 

using pseudo-inverse of the channel as [19] 

5c = H f y = {H"H)-lHHy 

where (•)* represents matrix pseudo inverse. 

And MMSE algorithm is another linear detection algorithm, which has an intermediate 

computational complexity [6] 

x = HV = ( g ^ U + HHH)_1H"y 

From these methods, we can conclude that the CSI is needed for signal recovery, and 

therefore a channel estimation has to be done a prior. 
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2.4 Conclusion 

In this chapter, we started with a brief description of general wireless fading channels as 

well as the corresponding properties of each fading model. We have then discussed the 

ACF of Rayleigh and Rician fading channels and stated the possibility of using the ACF for 

DS estimation. The OFDM symbol transmission principle was then discussed along with 

CP and ISI elimination. The combination of MIMO and OFDM techniques, i.e., MIMO-

OFDM systems, including channel and signal models and MIMO-OFDM transceivers were 

also reviewed. 
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Chapter 3 

Training based LS Channel Estimation 

for MIMO-OFDM Systems 

In this chapter, we investigate a TSLS channel estimation algorithm [20] for MIMO-OFDM 

systems. We start with an analysis of LS channel estimation in the time domain. The 

MSE of channel estimates is then used for the derivation of optimal pilots. Simulations are 

performed to show the reliability and efficiency of the channel estimation approach. 

3.1 LS Channel Estimation Using TSs 

In this section, we introduce a TSLS channel estimation in the time domain. Optimal pilots 

at specific sub-carriers are employed for the estimation of the time-domain channel Hi, 

(I = 0 , 1 . . . . , L—1). With a few or even a single OFDM symbol, accurate channel estimates 

can be obtained. 

Fig. 3.1 shows a block diagram of a simplified transmitter of a MIMO-OFDM system 
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with an architecture of VBLAST [13]. The data stream is firstly encoded and mapped by a 

QPSK modulator, and then divided into Nt sub-carriers followed by optimal pilots insertion 

before IFFT processing or OFDM modulation. The modulated streams are padded by CP 

of length Lg in each link before transmission. Normally, the length of CP is assumed to be 

no less than the maximum path delay L of all channels for the robustness against the ISI. 

A 

QPSK 
Modulator * i S/P 

- • l S/P 
Insert 
Pilot 

X\(m)_ x\(m) 
•T " T — H Add 

IFFT : CP 

x'MJ 

P/S 

*J, W 
-N, 

S/P 
;H Insert 

i Pilot 

Xx'{m) x , ' ( w ) 
— H " "~ |—• 

: ilFFTj 
Add N 

I CP : • 
P/S 

,L-;V •!...... i"~-H_. 

Figure 3.1: MIMO-OFDM transmitter with optimal pilots 

Fig. 3.2 is a diagram of a MIMO-OFDM receiver with 7Vr receive antennas. The re

ceived signals, in which CPs have been removed, pass through FFT processing or OFDM 

demodulation module. Then training pilots are extracted in conjunction with known trans

mitted TSs for the LS channel estimation. Finally, the channel estimates are further utilized 

for DS estimation, which will be discussed in Chapter 4. 

Here, we assume that the pilots are inserted at Np out of N sub-carriers of each OFDM 

symbol that carries the pilot signals. The transmitted pilot vectors of the mth OFDM symbol 

at each antenna can be written as 

X?(m)=[XZS{m):...:X;!Np(m)]r 
(3.1) 
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Figure 3.2: MIMO-OFDM receiver with TSLS channel estimator and DS estimator 

Similarly, the received pilot vectors in the corresponding pilot sub-carriers are given by 

Yr(™) = Kr(™)>---^>)f (3.2) 

We define a matrix Fp(m) of size Np x L, which is ViV times the first L columns and the 

Np rows corresponding to the pilot sub-carriers ofaNxN unitary DFT matrix F for the 

mth OFDM symbol, Eq. (2.49) can now be rewritten for the pilot sub-carriers as 

Nt 
Y ; r M = E X ^ H F . H h ^ H + V - ( m ) (3.3) 

nt = 1 

where X"'dj. (m) = diag (Xp'(m)), and Vpr(m) is the noise vector corresponding to the 

pilot sub-carriers. 

Assume that the pilots are transmitted over g consecutive OFDM symbols, m £ {0,..., g-

1}. Thus, the total number of pilots is g x Np. Also in the LS algorithm, it is assumed that 

the channel remains unchanged during these g consecutive OFDM symbols. Therefore, the 

index m for h71^-7" (???) can be omitted. The model of (3.3) can be then rewritten as 

-ynr 
p 

Ahr!r + v;"- (3-4) 
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where 

Yp"" = [ (Y-(O)f , . . . , (Y?(g - l))Tf 

V ^ = [ V ^ ( 0 ) , . . . , V p " - ( 5 - l ) ] r 

h n r = [ ( h ^ 1 ) r , . . . , ( h n - A r ' ) T ] T 

Xj,dia9(0)Fp(0) . . . X ^ ( 0 ) F p ( 0 ) 

A = 

Xj , r f i a 9 (p-1)F P (^ -1) . . . X ; j a j ( r l ) F p ( j - l ) 
gNpXLNt 

From (3.4), we can verify that if A has a full column rank of LNt, which is equivalent 

to gNp > LNU the channel for the nrth antenna can be estimated via the LS approach, 

yielding a channel estimate 

hn r = A f Y ^ = h" r + A f V ^ (3.5) 

Furthermore, if taking all receive antennas into consideration, we can derive from (3.4) 

that, 

Yp = A H + Vp (3.6) 

where matrices Y p - [ Y j , . . . , Y ; f ] , H = [h 1 , . . . , h"-] and Vp = [V*, . . . , V"*]. 

Thus the estimated channel matrix of size LNt x Nr can be obtained by 

H = A fYp = H + A fVp (3.7) 

Fig. 3.3 presents a flowchart at the receiver of the TSLS channel estimation scheme. 

37 



START 

Receive signals ! 
[y-L,+ i(m),...,y0

n'(m),y"'(m),...,yN,(m)]1j 

Remove CP 
yn '(m)=[y"'(m),...,yN'(m)]T 

FFT 
Yn-(m)=[Yr'(m),...,Y^(m)]T 

Extract received pilots 

Y"p'(m)=[Y£1(m),...,Y*NF(m)]T 

Optimal pilots are known to the receiver 

Xn
p(m)=[Xn

p;,(m),...,X^Nr(m)]T 

Xn
p;diag(m) = diag(X" ' (m)) ! m €{0, . . . ! g - l ] 

A = 
,(0)FD(0) Xp,diag(0)Fp(0) 

X ' d i a g ( g - l ) F p ( g - l ) ••• X " d i a g ( g - l ) F p ( g - l ) 

Yp=[Yp-...,Y^j Yn
p '=[Y;'(0),. . . ,Y^(g-l)]T 

.. . . * . . 

H=A f Y, 

...T 

FINISH 

Figure 3.3: Flowchart for LS algorithm at the receiver 



3.2 Optimal Pilot Design over Multiple OFDM Symbols 

Assume that the transmitting power of training signals is constrained as | j A | \j? = E, where 

E is a constant. Then we can find the optimal signals minimizing the channel MSE based 

on this constraint, which becomes: 

\l = E min JLS = minE {||H - HjrS | |U, subject to \\A\\2
F 

A A 

where || • \\f denotes Frobenius norm. It has been proved [20] that the pilot is optimal if 

A A " = El, which means the optimal training sequences at different transmit antennas 

must be equally powered, equally spaced and phase shifts orthogonal. Moreover, due to the 

full column rank requirement of A, we obtain gNp > LNt. Considering FFT, gNp should 

also be the power of 2. Therefore, the optimal pilot sequences can thus be derived as [20] 

pj .„ nnt(m+kg) 

X^{m) = \lwv'^
w~ (3-8) 

where m G {0, . . . , g - 1}, k € { 1 , . . . , Np}, nt <E { 1 , . . . . Nt}, nnt = (nt - 1)L, and 

gNp = 2V°^LNM. Note JjjLe-
i2imn<lm+kMterfP). c(k} i s a j s o optimal as long as c(k) is 

an arbitrary unit modulus sequence (|c(fc)| = 1), which can be given by 

c(k) = ej2nSk (3.9) 

where sk is uniformly distributed on [0.1]. 

For simplicity, we use one trained OFDM symbol for channel estimation, i.e. g = 1, in 

the following section. The optimal TS can now be designed as 

X;:k=J^-e-j2n!^r.c(k) (3.10) 
V J p 
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*;.,(!) xl2{\) - j r ^ ( i ) jrj.,(2) jrj.2(2) - x";,Kp(2) x";A(D 

data data data data data Hdata 
m data 

lth OFDM symbol 2nd OFDM symbol 

Figure 3.4: Training over a single OFDM symbol 

Fig. 3.4 shows the structure of the OFDM symbols at the ntth transmit antenna. Each 

OFDM symbol consists of Np equally spaced optimal pilots created by (3.10) and N — Np 

data signals. Note the optimal sequences of different symbols are not necessarily the same. 

3.3 LS Channel Estimation Performance of MIMO-OFDM 

Systems 

In this section, different system parameters are used to investigate the performance of the 

TSLS channel estimation for MIMO-OFDM systems. We consider a MIMO-OFDM system 

with 2 transmit and 4 receive antennas. A fading channel modeled by an 8-tap MIMO-FIR 

filter is assumed, where each tap corresponds to a 4 by 2 random matrix whose elements are 

i.i.d. complex random variables with a maximum DS at 100 Hz. The signals are sampled 

at 1 MHz and modulated by QPSK, 128 sub-carriers are applied thereafter, which contains 

16 optimal pilots. A CP of length Lg = 8 is then padded for each OFDM symbol. Note 

the optimal pilot sequences are designed over one OFDM symbol and also known a prior 

at the receiver. In the first four experiments, a Rayleigh fading channel model is assumed. 

While in the last experiment, the TSLS channel estimator is examined under both Rayleigh 
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and Rician fading channels with different K-factors. Besides, the SNR is defined as 

S N R = ^ # (3.11) 
n 

where a\ and a\ denote the averaged power of the AWGN and the path gains, respectively; 

and also the power of transmitted signals is denoted by Eb. 

Another thing should be noted is, in the previous sections, a quasi-static channel model, 

that is time-invariant over one OFDM symbol, was assumed for simplicity. However, the 

real wireless channels are time-varying. To be practical, the upcoming simulations are 

carried out under time-varying fading channels. As a result, due to Doppler effect caused by 

relative movement between the transmitter and the receiver, ICI at the receiver is expected 

to cause estimation error. 

3.3.1 Experiment 1: Effect of Antenna Configurations 

This experiment investigates the channel estimation performance for systems with different 

antenna configurations varying from Nt x 7Vr = 1 x 1 to Nt x JVr = 2 x 4. Fig. 3.5 shows 

the MSE of channel estimate versus SNR for each antenna configuration. Here, the MSE 

is calculated by 

-. Nr Nt L - l 
MSE = M E E E WTnt(m) - />rV) |2 (3-12) 

where M = Nr x Nt x L, and h"r'nt (m) denotes the estimated CIR. 

As expected, with the increase of SNR, a better MSE performance can be achieved. 

Obviously, the data rate or system capacity can be increased by employing more transmit 

antennas. However, as defined in (3.11), a^ is supposed to be raised when more transmit 
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antennas are in use for a specific SNR. As a result, a 3 dB performance loss is noticed 

in the 2 transmit antenna schemes compared with the 1 transmit antenna counterparts with 

the same number of receive antennas. It is also clear that, a 3 dB gain is achieved when 

the number of receive antennas is doubled, which is independent of the number of transmit 

antennas. Therefore, in the following experiments we focus on the 2 x 4 MIMO channel 

which will be further studied in Chapter 4. 

1Q J[ I I I I I 

0 5 10 15 20 25 
SNR in dB 

Figure 3.5: MSE versus SNR with different antenna configurations 

3.3.2 Experiment 2: Effect of Guard Interval 

In this experiment, the channel estimation performance with different guard intervals is 

investigated. As has been pointed out, to decrease the effect of ISI, a CP with a length of L,f 
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that is at least equal to the channel length L should be used. Thus, Lg is set between 0 and 10. 

Fig. 3.6 shows the MSE versus SNR plots for different guard lengths Lg € {0,4,6,8,10}. 

It is seen that a short CP with length that is less than the channel length L = 8 leads to a poor 

channel estimation results due to the occurrence of ISI. On the other hand, a CP length that 

is larger than the channel length does not help to improve channel estimation. Therefore, 

the best trade-off in view of the channel estimation performance and the spectral efficiency 

is Lg = L. 

1 M . ' ' I i I 

0 5 10 15 20 25 
SNR in dB 

Figure 3.6: MSE versus SNR with different guard lengths 
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3.3.3 Experiment 3: Effect of Optimal Pilots 

In this experiment, we investigate the performance of channel estimator by using different 

number of optimal pilots, Np <= {8,15; 16,32,64,128}. Fig. 3.7 depicts the MSE versus 

SNR plots when the number of optimal pilots used varies from 8 to 128. 

10 ' • ' ' ' ' 
0 5 10 15 20 25 

SNR in dB 

Figure 3.7: MSE versus SNR with different number of optimal pilots 

Simulation results show that as we increase the number of pilots, the performance is im

proved noticeably. In particular, when 128 sub-carriers of each OFDM symbol are replaced 

by 128 optimal pilots, the best performance is achieved. It should be mentioned that, ac

cording to the criterion of optimal pilot design, we have Np > LNU where Np is the number 

of pilots, L and Nt. are the channel length and the number of transmit antennas, respectively. 
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In this experiment, we have set L = 8 and Nt = 2, which suggest that a minimum of 16 

optimal pilots are required for better channel estimation performance. Therefore, in this 

particular case, the MSE with respect to Np = 8 or Np = 15 is not acceptable. It is also 

interesting to note that, the MSE is twice better in the range of 0 to 20 dB SNR when Np is 

doubled and Np > LNt, which means that, more optimal pilots can significantly improve 

the estimation results at low to moderate SNRs when Np > LNt. At a higher SNR level, 

the MSE improvement is less significant with the increase of pilot length. 

3.3.4 Experiment 4: Effect of Maximum DS 

In this experiment, we examine again the MSE performance of the channel estimator as a 

function of the SNR but with various DS as well as sample durations. Fig. 3.8 shows the 

channel estimation results with DS ranging between 0 Hz and 1000 Hz, along with a sample 

rate of 1 MHz. The estimation performance at small fds almost keeps unchanged, which 

implies that the MIMO channel can be regarded as constant or quasi-static over an OFDM 

symbol. However, a MIMO channel with a maximum DS of more than 100 Hz can lead 

to performance degradation, since the channel within one OFDM symbol can no longer be 

regarded as quasi-static, i.e. the channel relatively fades faster. In addition, due to larger 

DSs, the ICI becomes a major factor of performance loss at high SNRs. As a result, the 

static channel assumption made in the previous sections dose not hold in such a case. 

For comparison, another simulation with a sample rate of 10 MHz is performed. The 

simulation results are shown in the Fig. 3.9, which indicates that with a higher sample rate, 

the channel can be viewed as static over on OFDM symbol even with larger DSs. such as 

1000 Hz. Hence, estimation performance loss may occur in systems with longer symbol 
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durations. We can also deduce that, the channel estimator using training over multiple 

OFDM symbols performs worse than that of using training over a single OFDM symbol, 

especially under fast-fading channels. 

10 15 
SNR in dB 

Figure 3.8: MSE versus SNR with different DSs, T = 1 [is 

10 15 
SNR in dB 

Figure 3.9: MSE versus SNR with different DSs, T = 0.1 us 
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3.3.5 Experiment 5: Estimation of Rician Channels 

This final experiment investigates the performance of the TSLS channel estimator for Ri

cian fading channels with different K-factors. All system parameters are kept the same as 

previous experiments, except for a non-zero K-factor which denotes a Rician fading channel 

as opposed to Rayleigh fading where K = 0. Note in this experiment, only the first channel 

tap is Rician process [21], while other 7 taps are Rayleigrician-amplitude.figh distributed. 

Thus, we only examine the estimation performance of the first tap. 

Firstly, we test on a system with an AOA being 9Q = 90° and give the MSE results in 

Fig. 3.10, where K varies from 0 to 10, and K = 0 indicates Rayleigh fading. It is seen that 

when #o = 90°, the channel is nearly quasi-static during the period of on OFDM symbol. 

To explain this phenomenon, we recall Eq. (2.9) for CIR of fading channels: 

UA =
 1 \ ^ Q.eJ[^fd cos (9i)t+4>,} + / IX

 cJ[27r/dcoS(go)t+0o] (3.13) 

where the initial phase 0O is normally set to 0. Hence, when #o = TT/2, Eq. (3.13) becomes 

h(t) = —!= J ] f l i ^ ™ » ^ l + y i E I (3.14) 

which means that the CIR is a sum of the Rayleigh fading CIR plus a constant term. As 

shown in the left half of Fig. 3.12, with the increase of K-factor, the amplitude of CIR 

begins to increase and gets closer to 0 dB; on the other hand, the fading speed keeps almost 

unchanged in terms of the K-factor, and therefore explains the situation in Fig. 3.10. 

The second experiment is carried out with #0 = 0, or fj±os = 100 Hz. Apparently, this 

channel fades faster than the former one, and a larger K can lead to visible performance loss 

as shown in Fig. 3.11. This is because the second term on the right side of (3.13) becomes 
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a complex periodic function with a frequency of 100 Hz. 
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Figure 3.10: MSE versus SNR in Rician fading channels, 0O — 90° 
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Figure 3.11: MSE versus SNR in Rician fading channels, 60 — 0 
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Figure 3.12: Rician fading 

3.4 Conclusion 

In this chapter, we have conducted a thorough study of the TSLS MIMO-OFDM channel es

timation approach in the time domain. Optimal training-sequences were derived according 

to the minimal MSE criterion, and implemented into consecutive OFDM symbols. Com

puter simulations were carried out by using one training symbol with different system pa

rameters and channel conditions. The simulation results indicated that, for a MIMO-OFDM 

system, where the guard interval of each OFDM symbol is no less than the channel length 

and a minimum of L x Nt optimal pilots are equispacedly inserted within one OFDM sym

bol, the TSLS channel estimator provides very satisfactory channel estimates under mod

erate channel conditions, which are well suitable for DS estimation. We have also pointed 

out that the TSLS estimation is easy to implement in practical application. 
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Chapter 4 

ACF based DS Estimation for 

MIMO-OFDM Systems 

In this chapter, we present a DS estimation method for MIMO-OFDM systems. It is based 

on the ACF of the CIR, which is obtained by using the TSLS channel estimation method 

in Chapter 3. Firstly, we give a brief overview of auto-correlation property of the fading 

channels as well as two algorithms for the calculation of the DS under Rayleigh fading 

channels. The two algorithms will be then extended for i.i.d. MIMO channels in the later 

sections. The first one utilizes the first zero-crossing point of the ACF curve, and the second 

one calculates the inverse of Bessel function by employing the partial ACF curve, which 

is divided into polynomial fitting and look-up tables schemes. The ACF based DS esti

mator is also extended for Rician fading channels with another DS estimator proposed for 

LOS path. Accuracy analyses for different algorithms are investigated thereafter. Interpo

lation techniques are then proposed to improve the estimation performance under certain 

circumstances. Finally, we give a detailed computer simulation study of the DS estimation 
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for MIMO-OFDM systems with different system parameters and channel conditions, along 

with comparisons between the proposed algorithms. 

4.1 ACF based DS Estimation for SISO Systems 

4.1.1 Auto-correlation Feature of Rayleigh Fading Channels 

As reviewed in Chapter 2, the CIR can be expressed by 

h(t) = X(t)+j*(t) (4.1) 

For a Rayleigh fading channel, 3?(<) and *3(t) are independent Gaussian random variables 

with zero-mean and unit variance. That is, E{5R(t)} = E{S(£)} = 0, a| ( t) = er|(1) = 1. In 

this case, the normalized ACF of random variable 5R or S has the following closed form: 

Rm(r) = RSS(T) = E {ft(t)to(t.+ r )} = E {3(t)3(f + r )} = J0(2nfdr) (4.2) 

where E{} represents expectation and Jo() is the zeroth-order Bessel function of the first 

kind; fa is the maximum DS and r denotes the time delay of the delay path. 

We should notice that, r can only be discrete values in practical processing, i.e. r = kTs, 

where k is the index of OFDM symbols, and Ts represents the time duration of an OFDM 

symbol. Thus, (4.2) can be rewritten as 

Rxx(k) = E {»(m)»(m + fc)} = J0(2TrfdkTs) (4.3) 

where m denotes the mth OFDM symbol. The maximum DS fd can now be calculated by 

the inverse of Bessel function 

_ J^{E{^(mMm + k)}) __ J^(R^(k)) 
hl

 2TTATTS 2nkTs 
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Note that the ACF is generated by the CIRs, which are already estimated in Chapter 3 by 

using optimal training pilots along with the LS algorithm. Let the CIRs be denoted by 

h(m) = !R(ra) + j$s(m), the normalized ACF can be calculated as 

Jo(2TTfdkTs) = E {&(m)&(m + k)} = Rm(k) (4.5) 

where 5R(m) and Rm(k) denote, respectively, the real component of the CIR estimates and 

the generated ACF with lag k. 

Now the question becomes how to get the inverse of generated ACF. In the succeeding 

sections, several ACF based algorithms are proposed. 

4.1.2 DS Estimation Employing Zero-crossing Point of ACF 

' 0 2 2.4048 4 6 8 10 
x 

Figure 4.1: Zeroth-order Bessel function of the first kind 

52 



Theoretically, the generated ACF which employs channel estimates is equal to a zeroth-

order Bessel function of the first kind [22] as shown in Fig. 4.1. We can see that the 

Bessel function is monotonically decreasing between 0 and the first zero-crossing point 

k0 = 2.4048. From (4.4) and (4.5), the estimated maximum DS fd can be calculated by 

[22] 

fd = 
Jo

_1(0) 2.4048 
(4.6) 

27tkoTa 27rk0Ts 

where ko represents the estimated first zero-crossing point of the normalized ACF. Assum

ing that adequate CIRs are available for ACF computation. Hence it should be accurate 

enough to estimate the first zero-crossing point ko simply by utilizing linear interpolation 

for the generated ACF curve. 

Rmt(k) 

Figure 4.2: Linear interpolation of ACF curve for estimating the first zero-crossing point 
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Fig. 4.2 shows that an ACF curve has a first zero-crossing point ko, which could be de

termined by using linear interpolation between Rm(ki) and Rmfa), where k2 = ki + 1. 

Therefore, the estimated first zero-crossing point fco can be obtained by solving the equa

tions below: 

^JRSR(fcl)-flj«ift(fc2) _ ^SR»(fcl)-fi;Rj»(fco) 
k-i-ki ki-ko 

* Rm(h) = 0 (4-7) 

k2 = h + 1 

Namely, 

k0 = h - , Am{h) (4.8) 
-R»»(^2) — R^tn(ki) 

provided that RsRft(ki) > 0 and .RRSR^) < 0. 

The zero-crossing algorithm is summarized in Fig. 4.3 

4.1.3 DS Estimation Employing ACF Curve 

The zero-crossing scheme for DS estimation is efficient and simple. However, since it 

utilizes linear interpolation, it does not give a high accuracy. Moreover, the first zero-

crossing point may not be obtained accurately due to insufficient channel estimates for ACF 

computation, or poor channel conditions such as low SNR. To overcome such drawbacks, 

we can exploit the generated ACF curve for a better estimation result. Two schemes making 

use of the ACF curve are proposed as follows. 
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Figure 4.3: Flowchart of zero-crossing algorithm 
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Polynomial Curve Fitting Scheme 

It is known that the zeroth-order Bessel function of the first kind can be expanded using 

Taylor series as 

~ (-\)n
x

2n 

n=0 K ' 

As Jo(x) is monotonically decreasing in the span of [0, 3.8317) (see Fig. 4.1), we choose 

[0, 2] as our observation interval, or Jo(x) £ [1.0.2239], equivalently. Then, Jo(x) can be 

approximated by a 6-order polynomial [23]: 

x2 x4 
X" 

Jo(z) = l - T + 6 4 2 3 Q 4 + o Q , * £ [ 0 , 2 ] (4.9) 

Due to Jo(2irfdkTa) = Rxx(k.) = E {R(m)ft(m + A:)}, (4.9) can be rewritten as 

X X X - ( X \ 

1 - — + — - ^ T T = Rm{k) = R9t^(2^fYJ 4 64 2304 

i.e. 

2304 [Rsst(k) - 1] + 576x2 - 36x4 + x6 = 0 (4.10) 

In addition, the companion matrix of the monic polynomial p(x) = Co + C\x + • • • + 

c„^].rn_1 + xn is a square matrix as given by 

0 0 . . . 0 -co 

1 0 . . . 0 - c i 

C(p) 0 1 0 - C 2 
, n > 2 

0 0 1 - c n _ i 
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which can be rewritten with the given coefficients of (4.10) as 

C(p) 

0 0 0 0 0 2304[1 - Rm(k)] 

1 0 0 0 0 0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

-576 

0 

36 

0 

(4.11) 

The eigenvalues of the companion matrix C(p) equal the roots of p(x) = 0. Therefore, 

the roots of (4.10) can be resolved by calculating the eigenvalues of the companion matrix 

(4.11). 

Finally, the maximum DS can be estimated by 

fd — 
277kTe 

(4.12) 

where x is the only real and positive root of the 6-order polynomial (4.10) in the range of 

[0, 2]. A flowchart summarizing the proposed DS estimator is shown in Fig. 4.4. 

Look-up Table Scheme 

Despite the fact that the proposed polynomial curve fitting method using high-order poly

nomials could be more accurate than searching for a single zero-crossing point by linear 

interpolation, a higher order polynomial results in higher accuracy as well as slower cal

culation of the eigenvalues of the corresponding companion matrix. In order to reduce 

computational complexity, a look-up table 4.1 of Bessel function within [0, 2] is required. 

Therefore, it becomes simply searching in this table for a certain value of Jo(x), which is 
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ure 4.4: Flowchart of polynomial curve fitting algorithm 
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the closet to the estimated normalized ACF Ryiyi(k): 

x = arg min \JQ(X) - Rm(k)\ (4.13) 
xe[o,2] 

x is then utilized to calculate the maximum DS by the following equation similar to (4.12): 

i'-T^f. (4!4) 

For example, if the estimated ACF Rmi{k) = 0.765, the closet value of J0(x) found in the 

look-up table is J0(10) = 0.7652. Thus, an estimate of fd is obtained using (4.14) with 

i, = 1.0. Fig. 4.5 is a flowchart of the proposed algorithm: 

[ START j 

•_ _. _ ._ 

Get CIRs using TSLS algorithm 
h(m),me{\,...,Nx} 

. f ._..... 

Generate normalized A C F & R K U ) 

using real components of 
Ns channel estimates 

Search for x from the look-up 
table, which satisfies 

5c = arg minxel02l\J 0{x)- Rw(k)\ 

T . 

! / . / = 
2nkT 

FINISH 

Figure 4.5: Flowchart of look-up table scheme 
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Table 4.1: Look-up table of JQ(X) with x ranging from 0 to 2.09 

X 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

0.00 

1.0000 

0.9975 

9900 

9776 

9604 

9385 

9120 

8812 

8463 

8075 

7652 

7196 

6711 

6201 

5669 

5118 

4554 

3980 

3400 

2818 

2239 

0.01 

1.0000 

9970 

9890 

9761 

9584 

9360 

9091 

8779 

8426 

8034 

7608 

7149 

6661 

6149 

5614 

5062 

4497 

3922 

3342 

2760 

2181 

0.02 

0.9999 

9964 

9879 

9746 

9564 

9335 

9062 

8745 

8388 

7993 

7563 

7101 

6611 

6096 

5560 

5006 

4440 

3864 

3284 

2702 

2124 

0.03 

9998 

9958 

9868 

9730 

9543 

9310 

9032 

8711 

8350 

7952 

7519 

7054 

6561 

6043 

5505 

4950 

4383 

3806 

3225 

2644 

2066 

0.04 

9996 

9951 

9857 

9713 

9522 

9284 

9002 

8677 

8312 

7910 

7473 

7006 

6510 

5990 

5450 

4894 

4325 

3748 

3167 

2586 

2009 

0.05 

9994 

9944 

9844 

9696 

9500 

9258 

8971 

8642 

8274 

7868 

7428 

6957 

6459 

5937 

5395 

4838 

4268 

3690 

3109 

2528 

1951 

0.06 

9991 

9936 

9832 

9679 

9478 

9231 

8940 

8607 

8235 

7825 

7382 

6909 

6408 

5884 

5340 

4781 

4210 

3632 

3051 

2470 

1894 

0.07 

9988 

9928 

9819 

9661 

9455 

9204 

8909 

8572 

8195 

7783 

7336 

6860 

6356 
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4.1.4 DS Estimation for Rician Fading Channels 

In the preceding sections, a Rayleigh fading channel model is assumed. Nevertheless, the 

proposed schemes cannot be directly applied to Rician fading channels since the generated 

ACF is no longer a Bessel function. As shown in Fig. 2.8 where K = 10, fd = 100 Hz 

and #o = 0, 1000 CIR estimates are utilized to generate the normalized ACF curve. For a 

specific fa, both channels have different ACF curves. As a result, a large MSE would occur 

if the previous estimation schemes proposed for Rayleigh fading channels are employed for 

Rician channels. 

Recall that the ACF of Rician fading channel (2.21) with a substitution of r = kTs is 

given by 

RMk) = j^Jo(27rfdkT8) + ^ y c o s (2n fd cos (e0)kTs) (4.15) 

where K is the ratio of the power of the LOS component to the scattered component, 80 is 

the AOA of the LOS component. Here, we separate the ACF into two cases with regard to 

0O. While e0 is equal to 90° (see Fig. 4.6), (4.15) becomes 

R*m(k) = - ^ - J O ^ T T / ^ T , ) + - ^ — (4.16) 

Thus the second term of (4.16) can be viewed as a Direct Current (DC) component, which 

can be further removed by eliminating the mean value of the estimated CIRs [11]. When 

#o 7̂  90°. we have an interesting result, 

lim Rm(k)= lim { T T ^ — J0(2nfdkTs) + —^— cos (2irfdkTs cos#0)} 

= cos(2nfdk.Tacos80) (4.17). 
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Rmt(k) 

0 

k 

Figure 4.6: Normalized ACF when 0„ = 90° 

which implies that the ACF can be approximated by a cosine function with a relative large 

value of K. 

Fig. 4.7 shows an ACF curve of Rician fading channels with K = 10 in reference to a 

cosine function, that is generated based on 1000 CIRs, where kv represents the first valley 

point and also the half-period (n) of the ACF curve. It indicates that with a relative large K-

factor, the ACF curve is periodical with the same period as the reference cosine function. On 

the other hand, the envelope of ACF curve drops gradually. The more the channel estimates 

used for ACF computation, the slower the envelop of ACF declines. Fortunately, the first 

half-period of the generated ACF can always be reliably utilized to calculate fd cos 0O, which 

is actually the DS of the direct path, or LOS path. According to Eq. (4.17), the direct path 
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• R H R M - -cos{2nfdyLOskTs) 

Normalized ACF of Rician channel 

Figure 4.7: Normalized ACF curve of Rician fading channel 

DS can be determined by 

2nfdkvTs cos 0Q = n 

or, 

fd,LOS — fd COS 90 — 
TT 1 

Zlii rZyJ. § £fcyj. $ 
(4.18) 

where kv denotes the first valley point of the estimated ACF curve. 

Moreover, if 90 is known a prior to the receiver, the maximum DS can be simply obtained 

by 

fd = 
1 

(4.19) 
2kvTs cos #o 

A flowchart (Fig. 4.8) is drawn below to summarize the proposed algorithm for Rician 

fading channels. 



START 

Get CIRs using TSLS algorithm 
h(m),me{l,...,N,} 

Generate normalized ACF-R*«(*) 
using real components of 
N, channel estimates 

Find out the first valley 
point £vof ACF curve 

/ 
1 

J.LOS 2 k J 

FINISH 

Figure 4.8: Flowchart of LOS DS estimator 
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4.2 ACF Based DS Estimation for i.i.d. MIMO-OFDM Sys

tems 

In this section, we propose several ACF based DS estimation approaches for i.i.d. MIMO-

OFDM systems. 

4.2.1 Rayleigh Fading Channels 

First of all, we recall the MIMO channel model described in Chapter 2 

L - l 

yn(m) = ^Hi(™)xn-i{m) + vn{m) 
1=0 

where the /th tap channel matrix for the mth OFDM symbol is given by 

H,(m) 

/ ij ' (m) ht' (m) 

h(' (TO) ht' (m) 

h}^{m) 

•2,Nt hr(m) 

NrX.Nt 

(4.20) 

(4.21) 

\h^'\m) h^2{m) ... h^Nt(m)^ 

Here, the element h™rnt (m) represents the CIR between the nrth receive antenna and the 

n(th transmit antenna. For the i.i.d. MIMO channel, elements h™T'nt(m) (nr G {0 , . . . , Nr}, 

nt G {0, . . . , jV(}) are independent complex random variables. If there is no LOS propa

gation, i.e. the Rayleigh fading case, they are also known as circular symmetric Gaussian 

random variables. Therefore, for each pair of transmit and receive antennas, we have an 

ACFof/?^"(fc) = E{h"Tnt{m){h"r-nt{m + k))*} = J0{2itfdkTs), where Ts denotes 

OFDM symbol duration and k represents the index of OFDM symbols. 

65 



Define 

h(m) = [hftro) , . . . , h£_!(m)]T (4.22) 

as the mth discrete-time CIR vector, where h/(m) = vec(H;(m)), and the operation 

vec (Hj{m)) represents the vector associated with the Ith channel tap H/, i.e. 

Mm) = [(h}(m))T,..., (h^(m)H r (4.23) 

where 

h|"(m) = [ / ^ ( m ) , . . . , Af- , , ,(m)]T (4.24) 

Thus, the correlation matrix of vector h can be expressed as 

R.hh(k) = E{h(m)hH(m + k)} 

= diag {Khoho{k),..., KhL_lhL^(k)} 

= Jo(2irfdkTs)ILNtNr (4.25) 

where lLNtNr
 1S a n identity matrix of size LNtNr x LNtNr, and 

R*|h|(fc) = [RlJ fc ) , • • •, RffiJ*)] (4-26) 

with 

%,(*) = tew. • • •. <r(*)] (4-27> 

For the real components of CIRs, we have a similar form as given by 

R**(fc) = Jo(2irfdkTs)ILNiNr (4.28) 

Therefore, the estimated DS /rf for each h"r7"(m) can then be/obtained by the proposed 

algorithms as follows: 
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zero-crossing algorithm: 

iZr - fff (4,9, 
where ko is the estimated first zero-crossing point of the estimated normalized ACF 

*K(*) = E W r ' n V ) 3 * r n V + *)} = Jo(2nfdkTs) (4.30) 

which is obtained by linear interpolation 

k0 = k l - ~nrtnt
R™nt{kllnt (4-31) 

polynomial curve fitting algorithm: 

x 
xr - ̂ rs <«z> 

where x is the real and positive root of the polynomial 2304 [72^* (A;) — 1] + 576x2 — 

36x4 + x6 = 0, and x G [0,2]. 

look-up table algorithm: 

«•" ' = 2^T, <4"> - S 

where x , determined by (4.13), is the closest value of R%{£{(k) in the look-up ta

ble 4.1 of Bessel function JQ(X). 

Note that for a MIMO channel with Nr receive antennas, Nt transmit antennas and L 

FIR taps, the estimated maximum DS can be simply calculated by taking an average of all 

the DS estimates over all pairs of antennas: 

/- = E {fir ) 4 l E E fnm (4-34) 

where M = Ar
r x Nt x L. 
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However, due to relatively small number of CIR estimates or severe channel conditions 

such as low SNR, the maximum DS calculated by (4.34) may lead to performance loss (see 

Fig. 4.9), such as the absence of zero-crossing point and a shape change of the ACF curve. 

Therefore, the more efficient way is to reform an averaged ACF over all CIR h"r'nt (m) in 

advance, namely, 

1 Nr Nt L-\ 

Rm(k) = E {F%g(k)} = ̂  E E E < ? ( * ) <4-35> 
n r = l nt=1 1=0 

and then calculate fd by employing the proposed estimators. This way can save processing 

time greatly and can also have little effect from incorrectly estimated / ^ ' n < s . 

R$w{k) 
Averaged ACF of all links 
ACF of single link 

Figure 4.9: Averaged ACF of all links versus the ACF of single link, SNR = 0 dB 
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4.2.2 Rician Fading Channels 

In general, all the multi-path components can be divided into two groups in MIMO channels 

[21]. Some of the discrete paths present Rician fading processes which contain a LOS com

ponent with a non-zero K-factor. The remaining discrete paths are independent Rayleigh 

fading processes which have no LOS component at all. 

In this thesis, we assume that only the first tap of the FIR filter, or non-delay path, is a 

Rician fading process, and the remaining NTxNix(L—l) NLOS paths are Rayleigh fading 

processes. Under this assumption, we conduct two estimations, one for the maximum DS 

fd that can be estimated by normal DS estimators using the NrxNtx(L — 1) NLOS paths; 

the other for the direct path DS, or fd,Los, that can be done by utilizing Eq. (4.18), along 

with the first FIR tap, containing Nr x TV, paths in total. Moreover, the AOA #0 can be 

determined by using Eq. (4.19), i.e. 

0O = arccos ( l ^ l \ (4.36) 
^ fd ' 

4.3 Accuracy Analysis of Proposed Algorithms with Pos

sible Practical Solutions 

In this section, we first analyze the accuracy of the proposed four DS estimation algorithms. 

We will also provide some suggestions for practical implementation of these algorithms. 
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4.3.1 Zero-crossing Scheme 

A decent investigation of the accuracy problem of zero-crossing method has been done in 

[22]. It was pointed out that the pdf of the zero-crossing point estimated by linear interpo

lation dose not strictly follow a normal distribution. As a result, a normal arithmetic mean 

is no longer suitable for such a scheme. At the same time, the pdf of the zero-crossing point 

varies with the DS, and thus an accurate estimation is relatively difficult to achieve. 

Beside the non-normal distribution, the generated ACF curve is hard to stabilize without 

sufficient channel estimates, and sometimes even no zero-crossing point can be found due to 

inadequate estimated CIRs. As mentioned in the previous section, to improve the estimation 

accuracy, all ACFs generated by all pairs of the transmit-receive links shall be averaged to 

reform an ACF, which on the other hand can largely reduce the entire processing time. 

We can make a simple transform from Eq. (4.6) 

2.4048 / A ^ 
k0 = ^— (4.37) 

27r/rfTs 

which indicates that with a larger fd, less points are available in the range of [0, ko\. Con

sequently, the accuracy of estimating the zero-crossing point between two points k\ and 

k.\ + \ will degrade. To improve the performance of this estimator, non-linear interpola

tion techniques can be employed, such as spline method and polynomial fitting. Spline 

interpolation uses low-degree polynomials in each of the given intervals, and chooses the 

polynomial parameters such that the ACF is well matched. Fig. 4.10 compares the linear 

interpolation and spline interpolation in reference to the Bessel function. Apparently, the 

ACF with spline interpolation almost coincides perfectly with the ideal Bessel function, and 
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hence can largely improve the estimation accuracy. 

RsR3l{k) Normalized ACF with linear interpolation 
Normalized ACF with spline interpolation 
Bessel function JQ(2TcfdkTs) 

Figure 4.10: Linear interpolation and non-linear interpolation 

On the contrary, a small fd may also lead to a low accuracy. According to (4.37), with 

a smaller /,/, a larger k0 occurs, which means in order to obtain the zero-crossing point, a 

minimum of ho O R estimates are required to generate an ACF curve. Furthermore, it is 

undetectable when /^ = 0, due to ko = oo in this case. Hence, sufficient CIR estimates 

should be collected prior to DS estimation. 

4.3.2 ACF Curve Schemes 

Two algorithms have been proposed to make full use of the generated ACF curve. Unlike 

the zero-crossing scheme, /^ is not estimated by linear interpolation but directly calculating 
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an inverse of Bessel function. That is to say, the estimation is supposed to be accurate as 

long as there exists a single point on the observation span of the ACF curve. However, 

performance degradation is observed in simulations and can be explained in Fig. 4.11. 

x 

Figure 4.11: Choosing partial ACF curve 

From Fig. 4.11, we can see that the closer to 1 the Bessel function moves, the larger 

offset is observed on the x-axis while with the same offset on the y-axis. Fig. 4.12 shows 

the slope of the Bessel function JQ(X) in the range of x = [0, 3]. Taking Fig. 4.11 and 4.12 

into consideration, we can conclude that a large error could be induced by a large slope. 

Therefore, we need to choose a part of the ACF curve that has the lowest slope, which in 

particular can be approximately determined by JQ(1.7) = 0.398 and Jo(2) = 0.2239. An

other typical problem for such schemes is point-lacking while the mentioned span is too 
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-0.5 
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-0.7 
( 

Figure 4.12: Slope of Bessel function Jo(x) 

small. In other words, fd is too large such that no point exists within the region, since fd 

is proportional to | according to Eq. (4.12). In that case, it also can be solved by interpo

lation, such as spline interpolation method shown in Fig. 4.10. In addition, similar to the 

zero-crossing scheme, a tiny fd can also lead to a large estimation error especially when 

inadequate CIR estimates are used. 

Polynomial Curve Fitting Scheme 

Since it is essentially a polynomial fitting method, estimation errors can be expected with 

lower-order polynomials. In the previous section, we discussed about a six-order polyno

mial (4.10) with an error term of 0(-~) when x G [0, 2]. Although higher-order polyno-
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mials are more accurate, it on the other hand results in higher computational complexity. 

Therefore, in the simulation section we only test on a simple yet more precise method, 

which searches for the x = JQ1{V) values from a look-up table. 

Look-up Table Scheme 

This method stores the inverse value of Bessel function into a read-only memory (ROM). 

Precision is therefore controllable within [1.7,2]. However, despite of such promising fea

tures, memory capacity increases with higher accuracy requirement, and meanwhile, the 

time spent on searching the closest value in the look-up table may also increase. A better 

searching method such as binary search tree (BST) (see Fig. 4.13) could be utilized to ac

celerate the searching process [24]. This operation requires a running time of 0(log n) on 

the average, which is much better than a linear search that requires 0(n), especially when 

searching in a large table that is well-sorted. 

7 ; (13' 
v -/ 

Figure 4.13: A typical binary search tree 
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4.3.3 Half-period Scheme for LOS DS 

Estimation performance also depends on the LOS DS according to fd,ios — /dcos#o = 

When #0 is equal to 90° or fd = 0, the valley point of the ACF curve is 
2-nkvTs 2kvTs' 

thus undetectable, i.e. the first valley point kv is infinite (Fig. 4.6). And if fd is tiny or 00 

is considerably large, more channel estimates are required for an accurate estimation. The 

extreme case occurs when fd is small or 0O is close to 90 degrees with inadequate channel 

estimates. In this case, no real valley point exists. The remedy is to consider the minimum 

value of the ACF min Rsft&(k), and the corresponding index k is viewed as the valley point 

kv as shown in Fig. 4.14. It shows an offset between the real valley point and the lowest 

Rm(h) 
— Normalized ACF 
-cos(2?r fd,LOskTs) 

Figure 4.14: ACF when fd.Los is small 
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point of the ACF denoted by Ah = kv^reai — kv, where kv,reai is the real valley point. As a 

very large error could happen in this case, a large number of CIR estimates should be used 

at the cost of higher computational complexity. 

On the other hand, when fd,Los is quite large, less points are available within one period 

of ACF. As shown in Fig. 4.15, the smallest valley point has a large shift Ai from the real 

one and consequently yields an incorrect estimate. Non-linear interpolation can largely 

improve the performance in such situations as shown in Fig. 4.15, which will be verified in 

the experiments in the next section. 

cos(27rfdtLoskTs) 

Normalized ACF with spline interpolation 

Normalized ACF 

Figure 4.15: Cosine-like ACF curve and interpolation 

Besides, since the period of the ACF almost keeps constant as shown in Fig. 4.7, instead 

of simply picking the first valley point kv, multiple valley as well as peak points on the ACF 
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curve can be used together to improve the estimation performance by taking an average of 

all these valley and peak points against their corresponding periods. The direct path DS is 

thus determined by 

fd.LOS — 
1 

£t\>p-L Q 
(4.38) 

where ke denotes the effective first valley point, as given by 

Ku 1 (kx k2 kv\ lpfc, 

1 4 = 1 

(4.39) 

where U is the number of available valley and peak points on the generated ACF curve, and 

ku represents those estimated valley and peak points of the uth half-period (n), which are 

ordered as shown in Fig. 4.16. 

Rm{k) 

Figure 4.16: Valley and peak points on the ACF curve 
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4.4 Simulation Results 

In this section, the performance of the TSLS channel estimator and the three DS estima

tors are investigated through computer simulations. Different system parameters and two 

channel conditions are considered. 

4.4.1 Rayleigh Fading Channels 

We start with simulation study of the DS estimators in i.i.d. Rayleigh fading channels. By 

default, a MIMO-OFDM system with 4 receive and 2 transmit antennas is examined. The 

QPSK modulation is used in the transmitter to create signals with a sample duration of 

1 fis. The guard interval is set to be 8, which is equal to the channel length. A total of 

16 optimal pilots are inserted equispacedly within one symbol which consists of 128 sub-

carriers before OFDM modulation. The fading channel is modeled as an 8-tap FIR filter 

with a maximum DS of 100 Hz. Those channel taps are normalized with averaged path 

gains of 0 dB, and path delays vary from 0 to 1 x 8 = 8 fis by one sample duration of 1 

JJLS. At the receiver side, AWGN is added at each receive antenna with an SNR defined by 

Eq. (3.11). TSLS channel estimation is performed right after OFDM demodulator, with 

100 channel estimates being attained to compute a normalized ACF, which is the average 

of Nr x iV( x L = 4 x 2 x 8 = 64 ACFs. Thereafter, two DS estimators are simulated and 

compared. The estimator using a look-up table is tested in the first four experiments, where 

the precision of the look-up table of J0(x) is assigned to 10 - 3 with x e [1.7, 2]. In another 

word. 301 values of Bessel function is stored in advance. In the last three experiments, the 

DS estimator using look-up table is compared with the one using zero-crossing point. 
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Experiment 1: Effect of Receive Antenna Configurations 

In this experiment, the number of receive antennas varies from 1 to 4, while the transmit 

antennas are fixed at 2. Here, the normalized mean square error (NMSE) of the estimated 

DS is defined as 
Nr Nt L—\ l rnr,nt 

NMSE=f?EEE 
/ rnr,nt r \2 
Ud,l ~ U) 

M ^ ^ ^ f 
nr=lnt=l 1=0 Jl 

(4.40) 

where M = NrxNtxL. Note that in Eq. (4.35), ACF is pre-averaged over all channel links 

of L taps before processing for stability and accuracy. Thus, (4.40) can now be simplified 

to 

N M S E - (fd - fd) 
f2 
Jd 

(4.41) 

W 
CO 

10 15 
SNR in dB 

25 

Figure 4.17: NMSE of fj versus SNR for different receive antenna configurations 
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In a similar test of channel estimator in Chapter 3, it turns out that a 3 dB gain is achieved 

when receive antennas are doubled. However, as Fig. 4.17 indicates, the performance im

provement with increasing the number of receive antennas is almost ignorable, since the 

average difference between the best (Nt x Nr = 2 x 4) and the worst (Nt x Nr = 2 x 1) 

cases is around 5 x 10~3. On the other hand, the AWGN has a great effect on the NMSE. 

As seen from Fig. 4.17, the NMSE gradually decreases as SNR is getting larger, and starts 

to stabilize at SNR « 15 dB. This is due to the disturbance of the TSLS channel estimator, 

which affects the shape of the generated ACF curve. Therefore, a better channel estimator 

is required for systems with low SNRs. 

Experiment 2: Effect of Guard Intervals 

10 15 
SNR in dB 

Figure 4.18: NMSE of f(j versus SNR with regard to guard interval 
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This experiment compares the performance of the DS estimator with different guard 

intervals or CP. From Fig. 4.18, we could confirm that sufficient guard length Lg, which is 

no less than the maximum channel length L (L = 8), results in a promising performance. 

In addition, the tolerance of unpredictable path delays makes it a satisfactory estimator. 

Experiment 3: Effect of Optimal Pilots 

In this experiment, the system is performed with different numbers of optimal pilots over 

one OFDM symbol, which varies from a minimum of 16 pilots to 128 pilots or pilot sym

bol. A better performance is observed in Fig. 4.19, which is due to a larger amount of 

pilots. When pilot symbols are utilized in the simulation, the performance of partial-curve 

10" 

in 

10 

Np = 16 
-0— Np = 32 
e— Np = 64 
e— Np = 128 (pilot symbol) 

10 15 20 25 
SNR in dB 

Figure 4.19: NMSE of fd versus SNR with different number of pilots 
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algorithm which is SNR-sensitive can be largely improved especially at low SNRs. There

fore, a better channel estimation scheme, such as the combination of optimal pilots and data 

stream, a.k.a. semi-blind channel estimation, is required for ACF based DS estimators using 

part of the ACF curve. 

Experiment 4: Effect of Sample Rates 

In this experiment, two MIMO-OFDM systems with different sample rates are investigated 

as shown in Fig. 4.20. The figure indicates that a system with a longer symbol duration has 

10 15 
SNR in dB 

25 

Figure 4.20: Comparison between systems with different sample rates of 1 /.is and 0.5 fxs 

a better performance. According to k = x/(2TrfjTs), the index k is inverse proportional 

to the symbol duration Ts for a specific fd and same amount of CIR estimates. As a result, 

longer symbol duration leads to a smaller k. or in other words, with the same amount of 
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CIR estimates required to form the ACF curve, a DS estimator with a small k can be much 

more accurate than that with a large k. 

Experiment 5: Comparison of Two Estimators with Different Number of CIR Esti

mates 

In this experiment, the proposed two estimators are compared at 20 dB. Since /<* = 100 Hz, 

the amount of available points within [0,2.4048] can be calculated by 

2.4048 0.3828 
k = = ; r w 28 

2TT fdT3 100 • (128 + 8) • 10~6 

which means, at least 28 CIR estimates are required for generating the ACF curve on 

[0, 2.4048]. Hence, a number of CIR estimates varying from 50 to 1000 should be suffi

cient. 

Undoubtedly, Fig. 4.21 indicates that with the increase of CIR estimates for ACF gener

ation, higher accuracy is achieved. The zero-crossing scheme performs better with a small 

number of CIR estimates, however, with adequate estimates, the estimator using partial 

ACF curve overtakes the former when the number of CIR estimates reaches 200. There

fore, we could conclude that the zero-crossing scheme is suitable for the situation where a 

small number of CIR estimates are available at the estimator, while the partial-curve scheme 

is for higher accuracy purposes. Besides, for the partial-curve estimator, the accuracy will 

infinitely near 0 as long as we provide with more accurate channel estimates and a look

up table that has a higher precision; on the other hand for the zero-crossing estimator, the 

precision is limited, it depends on the precision of the two points k\ and k\ + 1, which are 

affected by various factors according to Eq. (4.6). 
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200 400 600 800 
Number of channel estimates 

1000 

Figure 4.21: Comparison of two estimators with different number of CIR estimates 

Experiment 6: Comparison of Two Estimators for Different DSs with A Spline Inter

polation Enhanced Method 

Two schemes are implemented and examined for different DS varying from 50 Hz to 1 

kHz, when SNR equals 20 dB and 100 channel estimates are used. As it is shown in the 

Fig. 4.22, generally no matter which scheme we choose, a better performance is observed 

with larger DS. Unsurprisingly, partial-curve scheme does a better job than its counterpart 

when U > 200 Hz. 

In this experiment, the minimal channel estimates required for obtaining the first zero-

crossing point varies from 2.4048/(2TT50 • 10"6(128 + 8)) « 56 down to 2.4048/(2TT1000 • 

10"6(128 + 8)) « 3. Hence, larger DS can result in higher accuracy. A performance loss 
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Figure 4.22: Comparison of two estimators for different DSs with a spline interpolation 

enhanced method at 20 dB 

of zero-crossing scheme has happened as expected when DS is extremely large, which is 

due to the low precision of the two points k-[ and k\ + 1 that determine the zero-crossing 

point by linear interpolation. 

However, we can see that the partial-curve scheme is unable to detect the DS at 1000 

Hz, which is due to nonexistence of R$m(k) within the optimally chosen span of the ACF 

curve: [1.7, 2]. It can be solved by expanding the stated span, which may increase error 

probability or introducing interpolation methods without any performance gain though. 

As has been analysed in the preceding section, this experiment confirms that, the per

formance of zero-crossing method degrades with the increment of fj at higher DSs. Thus, 

we compare the original zero-crossing method with the spline-interpolation powered one, 
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and the latter shows a performance gain at large DSs. 

Experiment 7: Comparison of Two Estimators at Different SNRs 

The simulation is carried out at 0 and 20 dB respectively for both estimators at different 

DSs varying from 50 to 1000 Hz. Simulation results from Fig. 4.23 show that zero-crossing 

10' 

10° 

•3 10"' 
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w 
CO 

gio-2 

io-3 

io~4 

0 200 400 600 800 1000 
fd i n Hz 

Figure 4.23: Comparison of two estimators at different SNRs 

scheme is almost noise-insensitive with a slightly performance loss at 0 dB. On the contrary, 

partial-curve scheme performs relatively worse than its rival at low SNRs, which can be 

improved by introducing better channel estimation algorithms according to Experiment 3. 

We could also conclude that, the zero-crossing scheme is more suitable for severe channel 

conditions and a low accuracy requirement; and the other scheme is better for high accuracy 
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purpose at moderate to higher SNRs. 

4.4.2 Rician Fading Channels 

All of the previous experiments are carried out in Rayleigh fading channels. While in the 

next five experiments, Rician fading channel is considered with similar system parameters 

except for an LOS component with specific K-factors and different AOAs. By default, it 

is modeled as an 8-tap FIR with 2 transmit and 4 receive antennas, only the first tap or 

non-delay path is assumed to be Rician fading with an AOA of 0 degree and a K-factor of 

10, and other paths are normal Rayleigh fading channels with a maximum DS of 100 Hz, in 

another word, the direct path DS is set to the same as maximum DS fd,ios = fd cos 6>0 = 

100 • cosO = 100 Hz. The normalized ACF is generated and averaged by employing all 

channel links of the first tap, which contains Nr x Nt = 4 x 2 = 8 links. In the following 

experiments, we merely examine the performance of the direct path DS estimator, since 

other NLOS paths are all Rayleigh fading processes which can be utilized to calculate DS 

by corresponding estimators, and the performance is supposed to be the same as those in 

Rayleigh fading channels. The direct path DS estimator makes full use of all the valley and 

peak points on the normalized ACF curve generated by channel estimates, and the DS is 

calculated by Eq. (4.38). 

Experiment 1: Effect of SNR 

In this experiment, the estimation is performed for SNRs varying from 0 to 25 dB as shown 

in Fig. 4.24. Clearly, the proposed estimator for direct path DS is noise-insensitive. The 

poorly estimated CIRs at low SNRs indeed affect the shape of the generated ACF curve. 
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Figure 4.24: NMSE of fd,LOs versus SNR 

however, those peak or valley points do not make remarkable offsets from their real posi

tions. Moreover, the average of ACFs over all the links of the first channel tap, which in 

this case is NT x Nt = 4 x 2 = 8 in total, can greatly relieve the effect of AWGN (see 

Fig. 4.9). On the other hand, the average of all peak and valley points by Eq. (4.38) and 

(4.39) provides a considerably higher accuracy than a single valley point representing the 

first half period of ACF. 

Experiment 2: Effect of CIR Estimates 

In this experiment, we investigate the performance of the proposed LOS DS estimator using 

different number of CIR estimates with a SNR of 20 dB. Here, we assume the direct path DS 
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is 200 Hz, as doubled peak or valley points are available on the ACF curve with 100 points 

in total than that of 100 Hz, so as to make estimation results more stable. For example, the 

available points during one period of the ACF with a fd,LOS = 100 Hz is 1/(100 • IO -6 • 

(128 + 8)) « 73, while the one with a fd,LOS = 200 Hz is 1/(200 • 10~6 • (128 + 8)) « 

36. For a specific number of channel estimates, e.g. 100, the former offers 100/73 « 1 

period, or a valley point plus a peak point for further averaging. While the latter offers 

100/36 « 2.5 periods, or in other words, 4 valley points along with 3 peak points for 

averaging. Obviously, the latter is much more stable and accurate. 
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Figure 4.25: NMSE of fd LOs versus number of channel estimates 

Simulation results show that the performance improves rapidly as we increase the num

ber of C1R estimates utilized for ACF generation. We can also presume from Fig. 4.25 that 
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the NMSE will reach a limit around 10 - 7 with more than 1000 CIR estimates. According 

to Eq. (4.38) and (4.39), with more channel estimates, more periods, or peak and valley 

points of the ACF curve are available for average, thus giving a more accurate yet stable 

result. 

Experiment 3: Effect of K-factor 

This experiment simply investigates the effect of K-factor when SNR equals 20 dB. Ac

cording to our assumption in the previous section, the ACF curve is cosine-like when K is 

considerably large. Fig. 4.26 implies that, with the increase of K-factor, the NMSE of the 
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Figure 4.26: Effect of K-factor 

estimator keeps almost constant, which means the proposed algorithm for estimating the 
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direct path DS is very suitable for Rician fading channels. Nevertheless, we should note 

that these simulation results are based on quantities of Monte Carlo tests, which provides 

an average performance. Thus, a lower K-factor may lead to unstable estimates in real-time 

processing as the ACF curve is influenced by the NLOS components from Eq. (4.15). 

Experiments Effect of AOA 

0 10 20 30 40 50 60 70 80 90 
AOA in degree 

Figure 4.27: Effect of AOA 

This experiment investigates a MIMO-OFDM system in the Rician fading channels 

with a maximum DS of 200 Hz at 20 dB. The AOA is varying from 0 to 85 degrees, and 

correspondingly the direct path DS ranges between 17 Hz and 200 Hz according to jd.Los — 

fd cos 60. In addition. 100 channel estimates are in use. Hence, no real valley point exists 

(Fig. 4.14) when AOA is no less than 80 degrees, that is to say more than 1/(2 • (128 + 8) • 

10~6 • 200 • cos 80°) ^ 106 > 100 points are required for obtaining a valley point on the 

ACF curve. As discussed in the previous section, we choose the minimum of R^^(k) as 
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the valley point, which causes the estimation error shown in Fig. 4.27. 

Starting from 80 degrees, CIR estimates becomes insufficient for searching for the real 

smallest valley point of the ACF curve. Those estimated direct path DSs are thus unreliable. 

The extreme case occurs when 6Q = 90°, i.e. fdxos = 0, the index A; —> oo, which means 

fd,Los is undetectable. We can also conclude from Fig. 4.27 that, when AOA is smaller or 

equivalently fd,Los is relatively larger, a better estimation performance is obtained. 

Experiment 5: Estimation of fd,Los with and without Interpolation 

This experiment investigates the estimation performance with different LOS DSs. We have 

analyzed the possible performance degradation due to inadequate points during one period 

of the ACF curve when fd.Los gets larger, which is shown in Fig. 4.15. To overcome such 

drawback, non-linear interpolation is implemented. Through extensive simulations, we 

have found that spline interpolation is the best method to improve the estimation accuracy. 

A total of 200 channel estimates are used for ACF generation to make sure at least 1 period 

of ACF curve is available. 

Fig. 4.28 shows two simulation plots obtained under 20 dB with fd,LOS varying from 50 

to 1000 Hz. Similar to the proposed estimators for Rayleigh fading channels, the index k is 

inverse proportional to fd.Los- Thus, for a larger DS, fewer points are required to generate 

an ACF curve within a period. On the other hand, with fewer points during one period, 

the valley or peak points, which are estimated by searching for the minimum or maximum 

value of ACF within their spans, are very likely to have an offset from the real valley or 

peak points, as shown in Fig. 4.15. Therefore, thanks to the average of all available peak and 

valley points on the ACF curve, a performance gain is achieved at large fdxosS- With the 
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help of spline interpolation, a noticeable improvement emerges when fd,Los varies between 

200 and 1000 H 

10"' 

CO 
O 

•4 
<+-! 

o 

S 
£ 

io-2 

10"3 

io"4 

io"5 

io'6 

io'7 

io"8 

( 

z. 

: : : : : : : ( : : : : : : • • • : : : : t : : : • • : - • • 

- : : : % " . , : : , • . ' • . : • . • . • . • . • . - . - . - . - . • . • . • . • : . • . • • . - . • . • • . - . : 

. . . i . . . 

—e— 

• • • • " : : : : : : : l : : : : : : : : : : • : : : 

- no interpolation 
spline interpolation 

• : , : , : : • : T : •:• : : : : : • r r r r :•:•:•:•:• r : •: • :• : • , 

v . • 

: , -iJSsjj, , , : : : : : : : : : : : : : • : • : • : : : : : : : : , 

;... - ^ j s - : 

- r : r r : : - : : : : : r ; : : ; > : : r ; : : , : : : : : , 

J S < ^ . yr~r~-~-^^^_^.. 

-L^JJ : : : : : : . : : : : ^Kj : : : : : : 
• ^ ~ > ^ - - •. ^ S < • • 

) 200 400 
faxos in 

600 
Hz 

800 10 

Figure 4.28: NMSE of faxos versus fa with and without spline interpolation 

4.5 Conclusions 

In this chapter, four DS estimation algorithms have been proposed for MIMO-OFDM sys

tems by taking Rayleigh and Rician fading channels into consideration, which employ the 

ACF generated by the TS based channel estimation utilizing LS algorithm. A zero-crossing 

algorithm is proposed in the first place, followed by two algorithms that make use of part 

of the ACF curve, one of which calculates the inverse of Bessel function by polynomial 
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curve fitting, and the other searches for the nearest values of Bessel function by a look-up 

table. Then, the fourth estimator is proposed for MIMO-OFDM systems in Rician fading 

channels, which searches for valley and peak points in each period of the ACF. A detailed 

analysis of estimation accuracy and computational complexity is presented for the proposed 

DS estimators, along with several suggestions on various situations. 

Thereafter, a computer simulation study of the proposed DS estimators is carried out 

with different system parameters and channel conditions. In Rayleigh fading channel case, 

seven experiments are performed including different antenna configurations, guard inter

vals, optimal pilots, signal sample rates, channel estimates and comparisons between the 

zero-crossing scheme and look-up table scheme with regard to different SNRs and inter

polation approach. While in Rician fading channel case, five experiments are performed 

including different SNRs, amount of channel estimates. K-factors, angle of arrivals, and 

comparisons of the estimators with and without the enhancement of interpolation. 

Finally, we can conclude from all the simulation results that, under moderate noise con

ditions with adequate MIMO channel estimates, ACF based DS estimators provide promis

ing performance for MIMO-OFDM systems in either Rayleigh or Rician fading channels. 

All proposed estimators perform well in fast-fading channels, or large DSs; while in slow-

fading channels, or in other words, with small DSs, higher computational complexity is 

required. As for specific estimators, the zero-crossing scheme is very noise-insensitive, 

which is well suited for severe channel conditions and a moderate accuracy requirement. 

The partial-curve schemes offer higher accuracy, although at low SNRs they do not perform 

as well as that at higher SNRs. Besides, non-linear interpolation method such as spline inter

polation can be regarded as enhancement of the proposed estimators in particular situations. 
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Chapter 5 

Conclusions and Future Work 

5.1 Summary 

In this thesis, the TS based channel estimation issue of MIMO-OFDM systems has been 

first studied. The resulting channel estimates are then utilized to develop the ACF based DS 

estimators. Thereafter, four ACF based DS estimation methods for MIMO-OFDM systems 

have been proposed under both Rayleigh and Rician fading channels, with detailed accuracy 

analysis. Computer simulations and comparisons have been carried out to investigate the 

performance and computational complexity of different schemes. 

The first chapter has highlighted the next generation wireless communication tech

niques, including the M1MO and OFDM systems, their channel estimation and DS esti

mation for performance improvement. 

In Chapter 2, the latest techniques for wireless communication systems, such as MIMO 

and OFDM technologies, have been briefly reviewed along with basic concepts of DS and 

wireless channel models. The combination of MIMO and OFDM techniques have also been 
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discussed. 

Chapter 3 is dedicated to a TS based MIMO channel estimation method. First, the mod

elling of MIMO-OFDM systems including the transceiver, channel model, signal model and 

the design of optimal pilots has been studied. Next, we have studied channel estimation in 

the time domain for MIMO-OFDM systems, followed by a simulation study with several 

system parameters and channel conditions to prove the reliability of the channel estimation 

algorithm. 

Finally in Chapter 4, four ACF based DS estimation schemes for i.i.d. MIMO-OFDM 

systems have been proposed under Rayleigh and Rician fading channels. Three of them are 

used in NLOS paths, in which one calculates the DS by employing the first zero-crossing 

point of ACF, while others employ partial ACF curve for obtaining the direct inverse of 

Bessel function by polynomial curve fitting and looking up a table, respectively. The re

maining estimator is particularly for the LOS paths, which utilizes the periodicity of ACF 

curve. After that, we have performed plenty of experiments to study the performance of 

the proposed four DS estimators. The simulation results have shown that, the zero-crossing 

scheme achieves rather homogeneous performance for all channel conditions and a rela

tive low computational complexity than partial-curve schemes, which makes it perfect for 

general use; whereas the partial-curve scheme performs better under relative better channel 

conditions, making them more suitable for higher accuracy situations. Also a satisfactory 

performance of the direct path DS estimator for LOS paths has been shown in MIMO-

OFDM systems with various K-factors and channel conditions. Moreover, non-linear inter

polation techniques have also been implemented for the proposed estimators under certain 

circumstances as far as the performance and stability issues are concerned. 
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5.2 Future Research 

The possible directions of future research are listed as follows: 

• As described in this thesis, ideally uncorrelated channel model has been chosen. Al

though it is widely accepted as an effective model, in practice, correlated channel is 

possibly expected, for instance, insufficient antenna spacing. Therefore, correlated 

channel model should be considered in the future research with proper channel esti

mation algorithms [25] and corresponding decorrelation techniques. 

• The TS based channel estimation algorithm has been used for further Doppler estima

tion. While it has one drawback, that is, sacrificing frequency efficiency to get a more 

reliable estimation result. This can be solved by introducing a combination of train

ing sequence and blind estimation schemes, which is well known as the semi-blind 

algorithm [4][5]. The idea of semi-blind channel estimation is a good compromise 

both in performance and frequency usage, which is very helpful in modern wireless 

communication systems. 

• We have assumed perfect timing and ideal signal shaping in this thesis. However, in 

practice, we have to take those issues into consideration. Therefore, timing synchro

nization and pulse shaping methods could play important roles in my future work. 

• As a frequency synchronization scheme, DS estimation is very important in signal 

recovery and many other tasks in receivers, especially in mobile communications. 

Thus, more work on such implementations is needed. 
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• A simplified model for MIMO-OFDM systems has been used in the thesis. More 

MIMO-OFDM related techniques such as space-time coding [3] [26] and solutions to 

PAPR problem shall be integrated into the system model. 
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