
Visual Representation of a Customizable Software Maintenance 

Process Model 

Fuzhi Chen 

A thesis 
in 

The Department 
of 

Computer Science and Software Engineering 

Presented in Partial Fulfillment of the Requirements 
for the Degree of Master of Computer Science at 

Concordia University 
Montreal, Quebec, Canada 

June, 2009 

© Fuzhi Chen, 2009 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
OttawaONK1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-63130-0 
Our file Notre reference 
ISBN: 978-0-494-63130-0 

NOTICE: AVIS: 

The author has granted a non
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduce, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1+1 

Canada 



Abstract 

Visual Representation of a Customizable Software Maintenance Process 

Model 

Fuzhi Chen 

Managing the evolution of complex and large software systems involves many 

different types of resources and knowledge such as software artefacts, user expertise, 

tools and techniques, etc. Variations and interrelationships among these types of 

resources and knowledge create well-known challenges for maintainers. Current 

research mainly focuses on establishing comprehension model, and developing tools 

to tackle a specific aspect of maintenance problems. Little research has been 

conducted to study how resources and knowledge work collaboratively together to 

provide guidance to maintainers to complete specific maintenance tasks in a given 

context. 

In this research, we introduce a customizable maintenance process model, which 

extends an existing IEEE standard process model, to allow visually link various 

resources (e.g. tools, artifacts, maintainers etc.) and knowledge to relevant 

maintenance process elements. A visual metaphor has been created to graphically 

represent the process model. Finally, a tool environment has been developed to 

provide utilities for maintainers to create, customize and apply our maintenance 

process to provide guidance for maintainers for their maintenance tasks. 

iii 



Acknowledgements 

I would like to thank my supervisor, Dr. Rilling, for his guidance, patience, support, 

and confidence throughout my research work. Without his guidance, this thesis would 

not have been possible. I am grateful that he provided me the opportunity to pursue 

this research. 

I would also like to thank my wife, family and friends for their dedicated support, 

help and encouragement. I would like them to know that they are loved. 



Table of Contents 

List of Figures vii 

List of Tables ix 

Chapter 1 Introduction 1 

1.1 The Current State of Software Maintenance Process Models 2 

1.2 The Current State of Process Modeling Languages and Meta-models 4 

1.3 Research Hypothesis and Goals 5 

1.4 Organization of Thesis 6 

Chapter 2 Background 7 

2.1 Software Maintenance 7 

2.2 Software Maintenance Process Models 9 

2.2.1 Quick Fix Model 10 

2.2.2 Iterative Enhancement Model 11 

2.2.3 Full-reuse Model 13 

2.2.4 ISO/TEC 14764 Maintenance Process Model 14 

2.3 Process Modeling Languages and Their Notations 17 

2.3.1 BPEL 18 

2.3.2 BPMN 20 

2.3.3 UML's Activity Diagram 25 

2.4 Visualization Techniques 28 

2.4.1 Zooming and Panning 29 

2.4.2 Overview and Details 32 

2.4.3 High Complexity 33 

2.5 Existing Process Modeling Tools 34 

2.5.1 EPF Composer 34 

2.4.2 IBM Rational Method Composer 36 

2.4.3 Spemmet 37 

2.4.4 APSEE 38 

Chapter 3 Software Maintenance Process Modeller 40 

3.1 Maintenance Process Model 42 

3.1.1 Maintenance Process Model Adoption 43 

3.1.2 Process Execution Ability 45 

V 



3.1.3 Process Flow 46 

3.2 Process Meta-model and Graphical Notations 48 

3.2.1 Process Meta-model 48 

3.2.2 Graphical Notations 52 

3.2.3 Layout Strategy 56 

3.3 Stakeholders and Their Roles 58 

3.4 Establishing Context-sensitive Supports 60 

3.5 Data/User Experience Collection 63 

3.6 Tool Integration 64 

Chapter 4 Implementation 70 

4.1 System Requirements 70 

4.2 System Overview 71 

4.3 System Implementation..... 73 

4.3.1 Process Meta-model 74 

4.3.2 Graphical Notations 77 

4.3.3 Model - Notations Mapping 78 

Chapter 5 Application 81 

5.1 Process Design 81 

5.2 Process Template Creation 84 

5.3 Process Customization 88 

5.4 Process Application 92 

5.4.1 Process Instantiation 93 

5.4.2 Process Navigation 93 

5.4.3 Process Application 94 

5.4.4 Feedback Collection 98 

5.5 Discussion and Limitation 99 

Chapter 6 Related Work 101 

Chapter 7 Conclusion and Future Works 104 

Bibliography 106 

vi 



List of Figures 
Figure 2-1 The Quick Fix Model [6] 11 
Figure 2-2 The Iterative Enhancement Model [6] 12 
Figure 2-3 The Full-reuse Model [6] 13 
Figure 2-4 ISO/IEC--14764 Maintenance Process Model [9] 16 
Figure 2-5 Event Notation of BPMN [23] 22 
Figure 2-6 Activity Notation of BPMN [23] 22 
Figure 2-7 Gateway Notation of BPMN [23] 22 
Figure 2-8 Sequence Flow Notation of BPMN [23] 23 
Figure 2-9 Message Flow Notation of BPMN [23] 23 
Figure 2-10Association Notation of BPMN [23] 23 
Figure 2-11 Pool Notation of BPMN [23] 24 
Figure 2-12 Lane Notation of BPMN [23] 24 
Figure 2-13 DataObject Notation of BPMN [23] 25 
Figure 2-14 Group Notation of BPMN [23] 25 
Figure 2-15 Annotation Notation of BPMN [23] 25 
Figure 2-16 An Example of UML's Activity Diagram (Adopted From [48]) 26 
Figure 2-17 An Example of UML's Activity Diagram with Swimlane [48] 28 
Figure 2-18 The Construction of Zooming and Panning [52] 30 
Figure 2-19 The EPF Approach [65] 35 
Figure 2-20 The Notations of theAPSEE Meta-model Elements[16] 39 
Figure 3-1 The Overview of the Software Maintenance Process Modeller 40 
Figure 3-2 The Tailored Software Maintenance Process Model 44 
Figure 3-3 A Sample Process Model 48 
Figure 3-4 The Maintenance Process Meta-model 51 
Figure 3-5 Activity Notation of SMPM 54 
Figure 3-6 Task Notation of SMPM 54 
Figure 3-7 StartPoint Notation of SMPM 54 
Figure 3-8 EndPoint Notation of SMPM 55 
Figure 3-9 Mandatory Task-step Notation of SMPM 55 
Figure 3-10 Optional Task-step Notation of SMPM 55 
Figure 3-11 Unexecuted Optional Query Notation of SMPM (Grey) 55 
Figure 3-12 Unexecuted Mandatory Query Notation of SMPM (Grey) 55 
Figure 3-13 Failed Optional Query Notation of SMPM (Red) 55 
Figure 3-14 Successful Optional Query Noation of SMPM (Green) 56 
Figure 3-15 Failed Mandatory Query Notation of SMPM (Red) 56 
Figure 3-16 Successful Mandatory Query Notation of SMPM (Green) 56 
Figure 3-17 Connection Notation of SMPM 56 
Figure 3-18 Task-step Layout Strategy 57 
Figure 3-19 Task Layout Strategy 57 
Figure 3-20 Activity Layout Strategy 58 

vii 



Figure 3-21 User Roles and Their Responsibilities 58 
Figure 3-22 Implementation of Context-sensitive Support 62 
Figure 3-23 Design of Feeback View 64 
Figure 3-24 The GUI Outline of SMPM 65 
Figure 3-25 The Resource View of SMPM 66 
Figure 3-26 The Outline View of SMPM 67 
Figure 3-27 The Properties View of SMPM 67 
Figure 3-28 The Graphical Editor Area of SMPM 68 
Figure 4-1 System Overview 72 
Figure 4-2 System Architectural Structure 74 
Figure 4-3 Maintenance Process Meta-model Class Diagram 75 
Figure 4-4 Connection Class Diagram 77 
Figure 4-5 Graphical Notation Class Diagram 78 
Figure 4-6 Process Model to Graphical Notations Mapping 79 
Figure 4-7 Graphical EditPart Class Diagram 80 
Figure 4-8 Tree EditPart Class Diagram 80 
Figure 5-1 The Process Design Perspective in SMPM 86 
Figure 5-2 The Completed Process Template Graph 87 
Figure 5-3 Customization of the Execution Type 90 
Figure 5-4 Customization of the Context Level 91 
Figure 5-5 Customization of the Pre-defined Queries 92 
Figure 5-6 The Software Maintainer Perspective in SMPM 95 
Figure 5-7 Display of Query Results 96 
Figure 5-8: Feedback Collection View 98 

vii i 



List of Tables 
Table 3-1 Context Level Description 61 
Table 3-2 Feedback Ranking Level 64 
Table 5-1 Task-steps and Queries for Task 5.2.2.1 83 
Table 5-2 Task-steps for Task 5.2.2.2 83 
Table 5-3 Task-steps and Queries for Task 5.3.2.1 84 
Table 5-4: Results of all Queries of Step 5.2.2.1.a 97 

i\ 



Chapter 1 Introduction 

Managing the evolution of complex and large scale enterprise level software 

systems involves many different kinds of resources, such as artifacts (e.g., source 

codes, documents, etc.), tools (e.g., parsers, debuggers, source code analyzers, 

visualization tools, etc.) and knowledge (e.g., maintenance tasks, historical data, 

environment settings, etc.) [1,2,3]. Currently, research in software maintenance 

process domain mainly focuses on developing process models to describe activities to 

be performed and resources to be used within a maintenance a process context [4,5]. 

However, there is little research on how these supporting resources (tools, artifacts, 

knowledge, etc.) should be integrated within a process in a given context in order to 

complete a maintenance task [4,5]. There exists a need to link these resources and 

knowledge with relevant maintenance activities in a process context. In this chapter 

we will introduce the present state of software maintenance process models and 

highlight the need to link these artifacts, tools and knowledge with software 

maintenance activities in a process context. 

Since one of the main contributions of the presented research is to visualize and 

enact the software maintenance process in a tool environment, we will introduce the 

current state of process modeling language and meta-modeling, key techniques used 

for process representation/definition, which are fundamental in process visualization 

and enactment domain. 

i 



1.1 The Current State of Software Maintenance 

Process Models 

Software maintenance process domain has been actively researched for many 

years. Many process models [6,7,8,9] have been proposed to support the evolution of 

software systems. Common to these process models are that: 1) they separate the 

entire maintenance lifecycle into phases, for example, the iterative enhancement 

model [6] divides the maintenance process into five phases: requirements, design, 

code, test and analysis, and ISO/IEC 14764 [9] organizes maintenance lifecycle into 

six activities/phases: process implementation, problem and modification analysis, 

modification implementation, maintenance review/acceptance, migration and 

retirement; and 2) they mainly focus on listing and describing the sequence of related 

activities and their task-steps to be performed within a maintenance process, and 

resources to be used in order to complete a maintenance task [10,5]. However, these 

process models do not describe how the resources (tools, artifacts, knowledge, etc.) 

should be integrated within the model. 

Software maintenance is a knowledge intensive process involving many different 

types of resources and knowledge. Maintainers may use or interact with various tools, 

artifacts and knowledge in order to complete a particular maintenance task. There are 

numerous tools existed to support software maintenance, for example, reverse 

engineering tools such as RIGI [11] and CppETS [12] are used to extract information 

2 



by parsing source code; visualization tools such as CodeCrawler [13], Creole [14] and 

SeeSoft [15] provide maintainers with understanding of software systems, which are 

useful in program comprehension; bug tracking tools such as bugzilla and Eventum 

2 are used to help manage modification requests and problems reports and so on. 

Each of these tools is used to address a specific aspect of maintenance problem. 

Typically, different tools are used to tackle issues in different maintenance process 

phases, and multiple tools are used in the same maintenance phase. Identifying tools 

to tackle problems in different maintenance process phases can become challenge 

because there is no existing guidance to guide maintainers on how to select tools for a 

specific maintenance task in a given maintenance process context [5]. In order to 

address this problem, there exists a need to link these tool resources with their related 

process phases. 

Software artifacts and knowledge are other types of resources that are considered 

as important as tools to software maintenance. Since knowledge about software 

systems is often spread in several different software artifacts, such as source code, 

documentation, manuals, bug description, etc., obviously, some artifacts are more 

useful and important than others in a specific maintenance process phase. In order to 

identify these artifacts and knowledge for a particular maintenance task in a process 

context, there also exists a need to link these artifacts and knowledge with their 

' http://www.bugzilla.org 

" http://eventuin.mysql.org 

3 

http://www.bugzilla.org
http://eventuin.mysql.org


related process phases. 

1.2 The Current State of Process Modeling Languages 

and Meta-models 

In the past years, many process modeling languages have been created to 

represent various process models, for example, APSEE/APSEE-PML [16], 

SPADE/SLANG [17], Oikos/ESP [18], PSEE/CSPL [19], RHODES/PBOOL [20], 

and so on. Recently, research trend tends to unify process modeling languages 

according to particular application domains, for example, BPEL [21,22] and BPMN 

[23] are process languages used specific for modeling business processes. UML 

[24,25] and SyUML are modeling languages used to describe software systems. 

Nowadays, meta-modeling technique is becoming a hotspot in process modeling 

research field [26]. Quite a few meta-models such as WfMC [27] and SPEM [28] 

have been developed to represent various process models. Particularly, SPEM is a 

meta-model used specific to software process engineering domains. 

However, software maintenance processes have different characteristics than 

business processes and software development processes. Therefore, the process 

modeling languages and process meta-models mentioned above cannot model well 

with maintenance processes. Specific to software maintenance process domain, there 

is no such a standard process modeling language or meta-model existed. In order to 

http://www.omgsysml.org 

4 

http://www.omgsysml.org


describe a software maintenance related process model so that it can be visualized or 

enacted, developers usually either create a new process modeling 

language/meta-model or adapt from an existed one. For example, in [29] Rasovska et 

al proposed a maintenance process and described it using UML's class diagram. At the 

time we conducted this research, there is no existing process modeling 

language/meta-model for the ISO/IEC 14764 maintenance process model. In order to 

describe this maintenance process so that we can visualize and manipulate it, there 

exists need to create a process model language/meta-model to describe it. 

1.3 Research Hypothesis and Goals 

One goal of the presented research is to link various resources and knowledge 

with a software maintenance process model so that it can provide guidance on which 

resources and/or knowledge should be used for a given maintenance task in a process 

context. The maintenance process model used in the research is extended from the 

existing ISO/IEC - 14764 maintenance process model [9]. The second goal of the 

research is to graphically represent the maintenance process model in a tool 

environment. 

Our research hypothesis, therefore, is that it is feasible to extend the ISO/IEC -

14764 maintenance process model to allow link various resources and knowledge 

with maintenance activities and their task-steps so that it can provide guidance on 

which resources and/or knowledge should be used for a given maintenance task in a 



process context. 

The research goal can be further decomposed into the following sub-goals: 

• Extend the ISO/IEC-14764 maintenance process model to link various resources 

and knowledge with their process activities and task-steps; 

• Create a process meta-model to describe the extended process model; 

• Create a set of graphical notations to represent the maintenance process model 

elements; and 

• Implement the maintenance process model in a tool environment. 

The null-hypothesis is any of the above sub-goals is not met. 

1.4 Organization of Thesis 

Chapter 2 provides the necessary background related to software maintenance, 

specifically software maintenance process model. Process modeling languages and 

some other visualization techniques will also be reviewed. The proposed approach 

will be detailed in Chapter 3. A tool environment that implements our presented 

approach is described in Chapter 4. This is followed in Chapter 5 with the application 

of the tool environment, and a discussion and limitation section is also included in this 

chapter. Related work will be discussed in Chapter 6. Finally, conclusion and future 

works will be presented in Chapter 7. 



Chapter 2 Background 

In this chapter, we will review background relevant to software maintenance, 

process models, process modeling languages and information visualization techniques. 

This is followed by a review of several existing process modeling tools. 

2.1 Software Maintenance 

In existing literature, several definitions of software maintenance are found 

[30,31]. One commonly used definition by the IEEE is: 

The modification of a software product after delivery to correct faults, to improve 

performance or other attributes or to adapt the product to a modified environment 

[32] 

This definition implies that software maintenance is not limited to the correction 

of latent faults. It usually refers to all the changes that must be made to softwares after 

they have been delivered. Lientz and Swanson [33,34] categorized software 

maintenance activities into four classes: adaptive maintenance, perfective 

maintenance, corrective maintenance and preventive maintenance. 

Adaptive Maintenance provides enhancements necessary to accommodate 

changes in the environment in which a software product must operate. These changes 

are those that are required in order to keep pace with the changing environment. The 

7 



term environment in this context refers to the totality of all conditions and influences 

which act from outside upon the system, for example, business rule, government 

policies, work patterns, software and hardware operating platform [35]. 

Perfective Maintenance is the modification of a software product after delivery to 

detect and correct potential faults before they are manifested as failures. It concerns 

functional enhancements to the system and activities to increase the system's 

performance or to enhance its user interface [36]. 

Corrective Maintenance deals with the repair of faults or defects found. A defect 

can result from design errors, logic errors and coding errors [35]. Design errors occur 

when, for example, changes made to the software are incorrect, incomplete, wrongly 

communicated or the change request is misunderstood. Logic errors result from 

invalid tests and conclusions, incorrect implementation of design specifications. Fault 

logic flow or incomplete test of data. Coding errors are caused by incorrect 

implementation of detailed logic design and incorrect use of source code logic. The 

need for corrective maintenance is usually initiated by problem report (PR) drawn up 

by the end users. 

Preventive Maintenance concerns, activities aimed at increasing the system's 

maintainability, such as updating documentation, adding comments, and improving 

the modular structure of the system [36]. The long-term effect of corrective, adaptive 

and perfective changes increases the system's complexity [35]. As large software 

8 



systems continuously changed, their complexity increases unless work is done to 

maintain or reduce it. This work is known as preventive maintenance. The preventive 

maintenance is usually initiated from within the maintenance organization with the 

intention of making software systems easier to understand and hence facilitating 

future maintenance work [35]. 

Among these four types of maintenance, only corrective maintenance is 

considered as 'traditional' maintenance. The other types can be considered as software 

'evolution'. The term evolution has been used since the early 1960s to characterize 

the growth dynamics of software [37]. Software evolution is now widely used in the 

software maintenance community. 

2.2 Software Maintenance Process Models 

Software maintenance process domain has been researched for many years. 

Various process models [6,7,8,9,38] for software maintenance have been proposed. 

Traditionally, software maintenance was considered as the final activity of the 

software development process. Even a few years ago, IEEE 1074-1997 [39] still 

represents software maintenance as the seventh step of eight software development 

steps. Recently, research trend tends to derive software maintenance from the 

development process. An extensive collection of maintenance process models 

[6,2,9,40] have been created based on this observation. These models describe 

software maintenance as a sequence of activities instead of the final stage of the 

9 



software development process. In particular, the latest version of the international 

standard, ISO/IEC 14764-2006 [9] is such maintenance-specific process model. 

In what follows, we review some of maintenance-specific process models, e.g., 

quick-fix model, iterative enhancement model, full-reuse model and ISO/IEC 

14764-2006 software maintenance process model. 

2.2.1 Quick Fix Model 

The quick fix model [6] is to directly identify the problem in the code and then fix 

it as quickly as possible. As shown in Figure 2-1, it demonstrates the work flow that 

the quick fix model usually follows. Ideally, changes should be made to 

accompanying requirements, design and documentation after the code has been 

changed. However, due to time and/or cost constraints, changes are often made on the 

fly, without proper planning, design and documentation. The advantage of this model 

is that it gets work done quickly with lower cost. The disadvantage is that it does not 

pay attention to the long-term effects of the fixes. Repeated changes may outdate the 

documentation and destroy the original design, making future changes more 

expensive and difficult to carry out. 

10 



Old System New System 

Requirements 

Design 

Code 

Test 

Requirements 

Design ^ 

> Code 

Test ^ 

Figure 2-1 The Quick Fix Model |6] 

2.2.2 Iterative Enhancement Model 

The iterative enhancement model [6] is one of the evolutionary life cycle models 

that considers the changes made to the software make up an iterative process. The 

idea of this model is that the requirements of a system cannot be understood initially. 

As a consequence, systems are to be changed in iterations each of which completes, 

corrects and refines the requirements of the previous iteration based on the feedback 

collected from users. As shown in Figure 2-2, the process starts with the analysis of 

the existing system's requirements, design, code and test documentation and continues 

with the modification of the highest-level document affected by the changes, 

propagating the changes down to the full set of documents. At each of iteration of the 



evolutionary process, the system is redesigned based on an analysis of the existing 

system. 

One of the key advantages of the iterative enhancement model is that 

documentation is consistent with the code changed [10]. So it is well suited for 

systems that have a long life and evolve over time. The drawback of the model is that 

it is not effective when the documentation of the system is not complete, as the model 

assumes that a full and update-to-date documentation of the system exists [41]. 

Old System New System 

Requirements 

Design 

Code 

Test 

Analysis 

- • Requirements 

Design 

Cock 

Test 

Analysis 

Figure 2-2 The Iterative Enhancement Model [6] 

12 



2.2.3 Full-reuse Model 

Old System Repository New System 

Requirements ^ {Ri} ««—• Requirements 

Design • {Di} <—• Design 

Code ^ {Ci} <—• Code 

Test ^ {Ti} <—• Test 

Figure 2-3 The Full-reuse Model [6] 

The full-reuse model [6], as shown in Figure 2-3, is a particular case of 

reuse-oriented software development. Central to the full-reuse model is that it assumes 

there exists a repository of software artifacts from the current and earlier versions of 

the subject system or other similar systems. The full-reuse model begins with the 

requirement analysis and design of a new system by reusing the appropriate 

requirements, design, code, and tests from earlier version of the existing system. The 

full-reuse model promotes the development of reusable artifacts and encourages their 

reuse in modification tasks. The effort spent on building reusable artifacts tends to be 

more costly on the short term, however the advantage may be sensible in the long 

13 



term, because the accumulation of reusable artifacts of all kinds and at many different 

levels of abstractions makes future development more cost effective [10]. 

2.2.4 ISO/IEC 14764 Maintenance Process Model 

The ISO/IEC 14764 maintenance process model [9] describes activities, tasks and 

task-steps necessary to perform software maintenance. The entire process is divided 

into six activities with respect to the software lifecycle model as shown in Figure 2-4: 

process implementation, problem and modification analysis, modification 

implementation, maintenance review/acceptance, migration and retirement. Each of 

these activities contains a set of tasks, which are further refined by a list of task-steps. 

Process implementation: This activity contains tasks for 1) developing plans and 

procedures for software maintenance, 2) establishing procedures for receiving, 

recording, and tracking maintenance requests and problem reports, and 3) developing 

configuration management plans for managing modification to the existing system. 

According to ISO/IEC 14764, this activity is the start point of the maintenance life 

cycle. It develops and documents strategies and plans for performing maintenance 

tasks. Actually, the maintenance plan should be developed in parallel with the 

development plan. 

Problem and modification analysis: This activity is further divided into several 

tasks. The first task mainly focuses on analyzing the received problem report or 

14 



modification request to classify the type of maintenance (e.g. corrective, adaptive, 

preventive and perfective maintenance), and determine its impact and scope (e.g., size 

of modification, cost involved, and time required, etc). The next task concerns with 

the verification of maintenance request by reproducing the reported problem on the 

affected software version. The other tasks of this activity regard the development and 

the documentation of alternative for change implementation and the approval of the 

selected option as specified in the contract. 

Modification implementation: During this activity, the elements to be modified 

are identified, and then the development process (e.g., ISO/IEC 122074) is invoked to 

actually implement the changes. Finally, tests are performed to ensure that changes 

are correctly implemented and the original unmodified requirements are not affected. 

Maintenance review/acceptance: This activity includes tasks to review the 

modifications to the software system are correct and comply with approved standards 

using the correct methodology. Approval is obtained if maintenance request is 

complete and satisfactory. Several supporting processes may be invoked during this 

activity, including quality assurance process, verification process, validation process, 

and joint review process. 

Migration: When a software system is moved from one environment to another, 

this activity is invoked. Prior to the activity is really performed, maintainers should 

A http://www.12207.com 

15 

http://www.12207.com


develop a migration plan, notify users of the migration, provide training to the users, 

assess the impact of the new environment, and archive the data of the old software 

system. Other tasks of this activity are the parallel operations of the old and new 

environments and the post-operation review to assess the impact of changing to the 

new environment. 

Figure 2-4 ISO/IEC--14764 Maintenance Process Model [9] 

Retirement: It is the last activity of the maintenance life cycle. It contains tasks to 

develop retirement plan and give the notification of the retirement to the users. It also 

contains tasks concerning about parallel operations of the old and new systems, 

providing training to the users if it is specified in the contract, and archiving the data 

of the old system. 

16 



2.3 Process Modeling Languages and Their Notations 

Process modeling languages and process meta-models are two closely related 

concepts in process modeling domain. A process modeling language is used to 

describe a process model [42], while a meta-model is the description of a set of other 

models [43]. Favre [44] defines a meta-model as a model of a modeling language. 

This means that "the task of creating meta-model is the task of creating a modeling 

language that is capable to describe the relevant aspects of a subject under 

consideration [43]". In this thesis, we consider process modeling languages and 

process meta-models as the same concept and use them interchangeable, although 

they are not. 

As the model-driven development is popular nowadays [45], many process 

modeling languages [45,46,24,21] have been designed to describe, visualize, control 

and execute different process models. 

Among these modeling languages, the Business Process Execution Language [21], 

known as BPEL, is a de facto standard for describing the behavior of business 

processes. Since BPEL is only a modeling language, there is no graphical notation 

defined in BPEL specification [22]. Business Process Management Initiative (BPMI5) 

proposed a specification, called Business Process Modeling Notation (BPMN) [23], to 

fill this gap. BPMN defines a set of notations as graphical front-ends, and maps these 

"̂  http://\v\vw.bpmi.org 

17 

http:///v/vw.bpmi.org


notations to process elements defined in BPEL processes. Therefore, BPEL 

combining with BPMN provide full functionalities to graphically model business 

processes. 

The Unified Modeling Language [24], also known as UML, is another graphical 

modeling language for visualizing, specifying, constructing, and documenting the 

artifacts of software systems, as well as for business modeling and other non-software 

systems. According to UML 2.0 specification [24], there exists 13 types of diagrams 

divided into three categories, e.g., class diagram, component diagram, object diagram, 

package diagram, activity diagram, use case diagram, etc. A diagram is a partial 

graphical representation of a system's model. Among these diagrams, activity diagram 

is suitable for business process modeling, which closely relates to the presented 

research. SPEM [28] which is a meta-model for software development process is 

closely related to the UML as well. It adopts a lot of UML diagrams such as package 

diagram, use case diagram, class diagram, activity diagram, sequence diagram, and so 

on [47], and offers an object oriented approach using the UML notations. 

In this section, we will review those modeling languages that are closely related 

the presented research, e.g., BPEL, BPMN and UML's activity diagram. 

2.3.1 BPEL 

BPEL is a modeling language for describing the behavior of business processes. 

18 



Such a business process can be described in two different ways: either as an 

executable process or as an abstract process. An executable process models the 

behavior and the interface of a partner in a business interaction. It specifies the 

execution order between a collection of activities, the partners involved, the message 

exchanged between these partners, and the fault and exception handling mechanisms. 

An abstract process, in contrast, is a business protocol only modeling the interface 

and the message exchange of a partner. It specifies the message exchange behavior 

between different parties without revealing the internal behavior of any of them. 

For the specification of a business process, BPEL provides two kinds of activities. 

An activity is either a basic activity or a structured activity. The set of basic activities 

includes: 

Invoke: to invoke a partner; 

Receive: to wait for a message from a partner; 

Reply: to reply to an external source; 

Wait: to wait for some time; 

Assign: to copy a value from one place to another; 

Throw: to indicate an error in the execution; 

Terminate: to terminate the entire service instance; and 

19 



Empty: to do nothing. 

A structured activity defines a causal order on the basic activities. It can be nested 

with other structured activities. The set of structured activities includes: 

Sequence: to process activities sequentially; 

If: to process activities conditionally; 

While and RepeatUnit: to execute activities repeatedly; 

Pick: to process events selectively; 

Flow: to process activities in parallel; and 

Scope: to group activities into a block, to link this block to transaction 

management, and provide fault, compensation, termination and event handling. 

Except basic activities and structured activities, another important component in 

BPEL is link. A link is used to define the execution order between two concurrent 

activities in a process flow. A link contains a source activity and a target activity. The 

target activity may only start when the source activity has ended. 

2.3.2 BPMN 

Since there is no graphical notation defined in BPEL specification [23,22], 

BPMN is developed to provide a set of notations as graphical front-ends, and maps 

20 



these notations to process elements defined using BPEL. The basic goal of the BPMN 

is to provide a set of notations that is understandable by all business participants. 

Therefore, notations are chosen to be distinguishable from each other, and the shapes 

of the notations are familiar to their users. 

BPMN provides a small set of notation categories so that the users can easily 

recognize the basic type of elements and understand the diagram. The four categories 

of elements are as follows: flow objects, connecting objects, swimlanes and artifacts. 

Flow objects are the main describing elements in BPMN, and consist of three 

core elements: events, activities, and gateways. 

An event is represented by a circle (Figure 2-5). Events happen during the course 

of a business process. They affect the flow of a process and usually have a cause 

(trigger) or an impact (result). There are three types of events, based on when they 

affect the flow: start, intermediate, and end. 

An activity is represented by a rounded-corner rectangle (Figure 2-6). It is a 

generic term for work that company performs. Activities can be atomic or non-atomic 

(compound). The types of activities are: task, sub-process and transaction. 

A gateway is represented by a diamond shape (Figure 2-7) and is used to control 

the divergence and convergence of sequence flow which will be described later in this 

section. Therefore, it can be used to determine branching, forking, merging, and 

2! 



joining of paths. 

Figure 2-5 Event Notation of BPMN [23] 

. „ _ - ^ 

V. ) 

Figure 2-6 Activity Notation of BPMN [23] 

Figure 2-7 Gateway Notation of BPMN [23] 

The connecting objects are used to connect flow objects together in a diagram to 

create the basic skeletal structure of a business process. There are three connecting 

objects which are: sequence flow, message flow and association. 

A sequence flow is represented by a solid line with a solid arrowhead (Figure 2-8) 

which is used to show the sequence that activities will be performed in a business 

process. 

A message flow is represented by a dashed line with an open arrowhead (Figure 

22 



2-9). It is used to show the flow of messages that are sent and received between two 

separate participants. 

An association is represented by a dotted line with line arrowhead (Figure 2-10). 

It is used to associate data, text, and other artifacts with the flow objects. 

Figure 2-8 Sequence Flow Notation of BPMN [23] 

O 1> 

Figure 2-9 Message Flow Notation of BPMN [23] 

8 * 3 t * l f f t ! S J I S i l S t l S I I f ! 9 4 F ^ 

Figure 2-10Association Notation of BPMN [23] 

A swimlane is a visual mechanism of organizing and categorizing activities. It 

arranges and groups activities into separate visual categories according to the 

responsibilities of those sxvimlanes. BPMN supports swimlane with two main types of 

swimlane objects: pool and lane. 

Apool (Figure 2-11) represents a major participant in a process. A pool contains 

one or more lanes, which likes a real swimming pool. It acts as a graphical container 

for partitioning a set of activities from other pools. Pools are used when the diagram 

involves two or more separate business entities or participants and are physically 

separated in the diagram. The activities within separated pools are considered 

23 



self-contained processes. 

A lane (Figure 2-12) is a sub-partition within a pool, used to organize and 

category activities according to function or role. It depicts as a rectangle stretching the 

width or height of the pool. A lane can contain flow objects, connecting objects and 

artifacts. 

Figure 2-11 Pool Notation of BPMN [23] 

Figure 2-12 Lane Notation of BPMN [23] 

Artifacts allow developers to bring more information in the process diagram. So 

the process model becomes more readable. There are three pre-defined artifacts and 

they are: data objects, group and annotation. 

A data object (Figure 2-13) is a mechanism to show how data is required or 

produce by activities. It is connected to an activity through an association. 

A group is represented by a rounded corner rectangle drawn with a dashed line 

24 



(Figure 2-14). It is used for documentation or analysis purposes, which does not affect 

the sequence flow. 

An annotation (Figure 2-15) is a mechanism to provide additional text 

information for the users of a BPMN diagram. 

I K 

Name 

Figure 2-13 DataObject Notation of BPMN [23] 

Figure 2-14 Group Notation of BPMN [23] 

Descriptive Text Here 

Figure 2-15 Annotation Notation of BPMN [23] 

2.33 UML's Activity Diagram 

UML's activity diagram can be used to describe the business and operational 

workflows of components in a system. An activity diagram can show workflows of 

25 



stepwise activities and actions, with support for choice, iteration and concurrency. 

Figure 2-16 depicts a typical business process that is described using UML's 

activity diagram. We will use this figure as an example to describes some of basic 

notations of an activity diagram. 

Start Point 

1 
[ Cone Condition 

Fill Out Enrollment" 
Foros 

[otherwise] (Decision") 

•̂ [incorrect] ,J<f\helf) available] 
Qg Activity j Entailing in Bw | \ 

(tohrtt^ty fai tb« fits! 

Figure 2-16 An Example of UML's Activity Diagram (Adopted From [48]) 

A start pont is represented as a filled in circle, which is the starting point of the 

diagram. Every activity diagram should have a start point. 

An ending point is modeled with a filled in circle with a border around it, 

indicating the end of the process. An activity diagram can have zero or more ending 

points. 

An activity is represented using a rounded rectangle. It is typically used to 

represent activities, such as invocation of an operation, a step in a business process, or 

26 



an entire business process. 

A flow is an arrow on the diagram. The direction of the arrowhead indicates the 

direction of the flow. 

A fork is depicted as a black bar with one incoming flow and several outgoing 

flows. It denotes the beginning of parallel activity. 

A join is depicted as a black bar with several incoming flows and only one 

outgoing/iW. All incoming/7ow5' must reach the join before processing may continue. 

A join denotes the end of parallel processing. 

A condition is text information attached to a flow. It defines a condition which 

must evaluate to true in order to traverse a transition. 

A decision is a diamond with one incoming/few and several outgoing/Jews. The 

outgoingy7ow5 typically include conditions. 

A merge is a diamond with several incoming flows and one outgoing flow. A 

merge implies that one or more incoming flows must reach it until processing 

continues. 

In addition to the basic notations described above, UML also uses swimlane to 

group activities in an activity diagram. Figure 2-17 illustrates an activity diagram that 

uses swimlane to group activities by actors. As shown in the figure, there are three 

27 



actors: stakeholder, requirement analyst and enterprise architect. Therefore, there are 

three lanes included in the diagram, one for each actor. 

Stakeholder Requirements Analyst Enterprise Architect 

Prioritize 
Enterprise 

Requirements *e 

Describe 
Enterprise 

Requirements 

«e-

J 

V V V 

Model 
Enterprise 

Requirements 

A 

-s> 

Model 
Enterprise 
Business 

Architecture 

\f 

Support 
Project Teams 

A 

- > 

V 

Model 
Enterprise 
Technical 

Architecture 

Figure 2-17 An Example of UML's Activity Diagram with Swimlane [48] 

2.4 Visualization Techniques 

One of the main challenges faced in the process modeling domain is the ability to 

provide users with meaningful visualization tools. The process model is usually 

presented by different types of flow charts and diagrams. If the modeling process is 

simplified in its representation to users, it improves the understanding of the results. 

This involves the techniques of process visualization. One of the common problems 

associated with visualization is the relatively small space through which a large 



amount of information is displayed [49,50]. Because of the problem of needing to 

display large amounts of information in a limited space, substantial research has been 

invested to find solutions to fit more relevant data into limited space while reducing 

irrelevant information. In this section, we will review various types of techniques in 

the information visualization domain. These techniques can also be applied to process 

visualization. 

2.4.1 Zooming and Panning 

The use of zooming and panning in visualization is one of the most basic 

approaches used to display large amount of information. The key to a zooming and 

panning visualization is the notion of what is so-called multi-scale viewing [50]. 

Information, and its inherent structure, can be displayed at many different 

space-scales/magnifications. The basic idea of zooming and panning visualization is 

to create many copies of the same 2-D image, one at each possible magnification, and 

then stacking them up to form an inverted pyramid as demonstrated in the right hand 

side of Figure 2-18. The vertical axis represents scale/level of magnification; each 

concentric plane represents a different level of magnification. A viewing window 

(indicated as (a) in Figure 2-18) can be represented as a fixed-size screen, which can 

be moved through the space-scale diagram, generating all possible views of the 

original 2D picture. As seen from Figure 2-18 (d), when the viewing window moves 

in horizontal directions, different parts of the picture can be shown at the same 

29 



magnification level. This is so-called panning. However, if the viewing window 

moves in a downward vertical direction, a bigger part of the original picture with less 

detail will be displayed (Figure 2-18 (c)); this is called zoom out. Whereas, if the 

viewing window moves in an upward vertical direction, a smaller part of the original 

picture with greater details can be displayed (Figure 2-18 (b)), this is called zoom in. 

One of the main advantages of zooming and panning visualization technique is 

that it renders an undistorted visualization of a large dataset in a relatively small space, 

while allowing users to navigate this data using pan and zoom [52], 

Figure 2-18 The Construction of Zooming and Panning [52] 

However, the biggest problem of the zooming and panning approach is that the 

representation may still contain too much information therefore making it too difficult 

to comprehend and navigate. Many techniques have been devised to ease the 

30 



navigation between zooming and panning positions. Olston and Woodruff [53] 

summarized six techniques which allow users to rapidly navigate large amount of 

information. 

• Visual Hyperlinks - It is a hypertext style of hyperlink. Like web pages, it 

allows users to instantly jump from one location to another location. 

• Bookmarks - Bookmarks are visual hyperlinks that allow users to bookmark 

and recall at any time. 

• Coordinated Views - A coordinated view shows a different representation of 

the same data in a main window. It is quite useful for the area where data has 

multiple alternative representations showing different features [54]. 

• Overviews - It is also a technique used to help orient the user during 

navigation. In practice, it is almost always used in combination with a detail 

view, which is so-called overview and detail view, which will be further 

discussed in Section 2.4.2. 

• Filters - Filters allow display of the same set of data in two different graphical 

representations [55]. For example, suppose we have defined a bar chart filter 

which can "see" all the tabular data as a bar chart. By applying such a bar 

chart filter to a canvas which contains some tabular data, the effect is that the 

bar chart filter will "see" any tabular data as a bar chart, but will see other data 

in their usual way. 

• Magnifying Glasses - a magnifying glass is used to show a specific portion of 

31 



the data in greater detail by zooming in. It is useful because it enables users to 

see different portions of the data in detail without navigation. Actually, fisheye 

is a kind of magnifying glasses technique. 

2.4.2 Overview and Details 

Although Zooming and Panning approaches can provide support for smooth and 

rapid navigation among large datasets, it does not provide context support for the 

users while navigating these large-scale information spaces [49]. Overview and detail 

visualization is one of the solutions to address this problem. This technique is also 

called multi-view or multi-window arrangement [56,57,58]. As implied by its name, 

overview and detail visualization consists of two or more views. One view is the 

overview which always displays the entire collection of information, while other 

views are the detail views. Each of these detail views shows a close-up of a portion of 

the information in a specific aspect. 

Overview and detail visualization technique is considered as one of 

non-distortion-oriented presentations [49], and has been used for quite some time to 

visualize both the textual and graphical data [59,60]. It has been proven especially 

suitable for displaying data that has inherently or implicitly spatial relationships, for 

example, geographic information systems. 

One of the most significant features in overview and detail visualization is that it 

32 



displays overview and detail views simultaneously on the same screen. This technique 

helps users orient themselves in the large information space, meanwhile still 

providing them with enough details [61]. 

Although overview can support users in orienting themselves in large information 

spaces, switching the focus back and forth between the overview and detail views and 

the need for reorientation within the overview will still result in a frequent loss of 

orientation and context [61]. Leung & Apperley [49] addressed this problem by using 

a visual marker in the overview to indicate the position of the detail view within the 

overvew. 

2.4.3 High Complexity 

One important issue in information visualization is the reduction of complexity. 

Many visualization techniques work well with a small set of data, but they do not 

scale well [62]. For instance, graph-based representations become cluttered and users 

get overwhelmed by the sheer number of nodes and relations rendering on the limited 

space of the computer screen [50,63]. This problem can be solved by filtering [62,64]. 

By using filtering, only the elements and relations of interest are visualized. 

Aggregation [62] is another approach to reduce the complexity by getting higher 

level of abstraction from a large amount of information. It is an appropriate and 

effective way to help understanding of information. The basic idea of aggregation is 

33 



that an entity works as a container representing all of its children and all of the 

relationships between these children. Recursively, the current entity also represents 

the entities (grandchildren) and relationships inside each of the children. By doing 

aggregation, we can get a bigger picture of the information. For example, in Java 

language, a package structure is an aggregation unit containing a set of related classes. 

And a class is an aggregation of methods and variables. It is useful for creating views 

at a higher level of the entire software system. 

2.5 Existing Process Modeling Tools 

Many tools have been developed for the process modeling domain. In what 

follows, we will review those that closely relate to software re/engineering process 

modeling. 

2.5.1 EPF Composer 

The Eclipse Process Framework composer (EPF6 Composer) is a process 

management tool platform and conceptual framework developed by eclipse.org. It is a 

customizable software process engineering framework supporting a broad variety of 

project types and development styles. EPF Composer provides an easy-to-learn user 

experience and simple-to-use features for authoring, tailoring, and deploying of 

development process frameworks. 

6 http://www.eclipse.org/ept 

34 

http://eclipse.org
http://www.eclipse.org/ept


As shown in Figure 2-19, the most fundamental principle in the EPF is the 

separation of reusable core method content from its application in processes. Method 

content describes what is to be produced, the necessary skills required, and the 

step-by-step explanation describing how specific development goals are achieved. 

These method content descriptions are independent of a development lifecycle. 

Processes describe the development lifecycle. They take the method content elements 

and relate them into semi-ordered sequences that are customized to specific type of 

projects. 

The EPF Approach 
Standardize representation and 

manage libraries of reusable 
Method Content 

Develop and manage Processes 
for performing projects 

Content on agile \ji [ ] iYs\ *j 11 

development / r ^ f l l i j r * — 

Content on y 
managing 

iterative development 

Guidance on 
serialized Java beans 

JUntt user 
guidance 

-*, Content 
on J2EE 

Configuration 
mgmt 
guidelines 

Process for 
Custom Application 

Development with J2EE 

IW Process for 
^ " Embedded System 

Development 

Process for 
SOA Governance 

Configure a cohesive process framework 
customized for my project needs 

Process assets 
patterns 

Standard or 
reference processes 

Enactaole project 
plan templates 
Corporate 

^ guidelines 
on compliance 

Create project plan templates for 
Enactment of process in the context of my project 

Figure 2-19 The EPF Approach [65] 

Main EPF Composer Features 

EPF Composer stores method contents into knowledge base which allows 

developers to browse, manage, and deploy. These method contents can be 

35 



licensed, acquired, and accommodates the user's own content such as, method 

definitions, whitepapers, guidelines, templates, principles, best practices, 

internal procedures and regulations, training material, and any other general 

descriptions of how to develop software. 

• EPF Composer provides the facilities required in order to define reusable 

method content, processes, building blocks, and tools that are used to create 

project or organization specific processes and methods. 

• The elements in the knowledge base can be used for reference and education 

while building a process. In order to ease the creation of processes, EPF 

Composer provides catalogs of pre-defined processes for typical project 

situations that can be adapted to individual needs. 

• All content managed in EPF Composer can be published to html and deployed 

to Web servers for distributed usage. 

2.4.2 IBM Rational Method Composer 

IBM Rational Method Composer (RMC7) is a flexible process management 

tool built on top of Eclipse platform to provide process authoring, configuration, 

and publishing capabilities. The main purposes of RMC are: 1) to provide a 

common management structure for managing process content, and 2) provide 

developers with the capability of selecting, tailoring and assembling processes for 

http://www.ibm.com/software/avvdtooIs/rmc 

36 

http://www.ibm.com/software/avvdtooIs/rmc


their concrete development projects. RMC adopted and customized the IBM 

Rational Unified Process (RUP) process framework as its foundation for building 

software development processes. 

The RUP process framework within RMC includes: 

• A process content library contains a collection of best practices that are 

commonly used in RUP projects around the world. 

• Delivery processes describe a process used to identify what milestones to 

have in the project, what work products to be delivered by each milestone, 

and what resources are needed for each phase. These processes can be used 

out-of-the-box or as a starting point for further customization. 

• Capability patterns describe a reusable cluster of activities in a common 

process area that expresses and communicates process knowledge for a key 

area of interest, such as a discipline. Capability patterns can be used as 

building blocks to assemble delivery processes or larger capability patterns. 

2.4.3 Spemmet 

Spemmet [66] is a tool for modeling software processes. The software 

processes in this tool are described using SPEM meta-model. The tool was 

developed as a web application and used a shared data storage so that the tool can 

be available anywhere around the world without installation and supports 

37 



simultaneous access. 

Spemmet offers a set of necessary elements for modeling software processes 

and it is a flexible modeling solution allows users to use different modeling 

techniques. However, it does not provide a graphical representation of the process 

model and only display data in textual form. 

2.4.4 APSEE 

APSEE [16] is a software framework for software process management 

which evolved from PROSOFT [67], a formal object-based software 

development paradigm, to handle the dynamic and evolving characteristic of 

flexible software process management, process simulation, improvement and 

reuse. The APSEE software framework has been built based on the APSEE 

meta-model and APSEE-PML. 

The APSEE meta-model is used to describe processes. It includes 

information about the modeling language components, and is created based on an 

activity-based paradigm, describing processes as partially ordered collection of 

activities. 

The APSEE-PML is a graphical representation of the process elements 

described using APSEE meta-model. The main graphical notations in 

APSEE-PML are summarized by Figure 2-20. As shown in the figure, 

38 



APSEE-PML includes notations to represent not only fragments, activities and 

artifacts, but also various connections, such as sequence connection, feedback 

connection, join connection branch connection and artifact connection. 

Fragments and Activities Artifact connections Artifacts 

Decomposed activity Haiti Normal 
(fragment) activity 

Activity-Id 

Ptain Automatic activity 

Artifact connection • — 

Actrvjty.output artifat 

Artifact • -

- ^ Ac&vstyjnput artifact 

' Artifact connection 

Join or Branch 
connecsons 

jmmmr ' •Ar t i fecMd. ' : 

Artifact connection 

Simple connections Multiple connections 
- » | Syx tye^ j ' > Where: 

Sequence connection 

^ condition,., 

Feedback connection 

s y n c j r y p e : end_start, start.sfcart, 
end „end or ? (Undefined) 

condition: logical expression 
evaluated during enaction time 

^frypM^ 
*>1 '-yiK type' 

Join connetiian 

teli-
Branch connection 

-> . Where: 

*yne_type: end_«an% 5tart_5tart, 
^ end .end or 7 (Undefined) 

- * > Type: AND, Oft or XOR (OR and XOR 
have conditions} 

Figure 2-20 The Notations of the APSEE Meta-model Elements[16] 

39 



Chapter 3 Software Maintenance Process 

Modeller 

The goals of this research are 1) to extend the ISO/1EC 14764 maintenance 

process model to link various resources and knowledge with its process activities and 

task-steps so that it can provide guidance to maintainers to support their maintenance 

tasks; 2) to create a meta-model to describe the maintenance process model; 3) to 

create a set of graphical notations to represent the process model; and 4) All of the 

above three concepts will be included in a tool environment called Software 

Maintenance Process Modeller, or SMPM for short. 

Software Maintenance Process Modeler 

/Activity 5;4 

• ' /Activity 5.3 
/ • / ' 

-M s ^Activity5.2 

Maintenance Process Model 

Task 5.2.1 Task 5.2.2 Task 5.2.3 

feedback: 

Histarfcal 5at|T 

Experience' 

Knowledge Base 

Tool Info 

1 

/* fel 
k A ^ Artifact Info 

Maintainor Info 

MWPR 

Figure 3-1 The Overview of the Software Maintenance Process Modeller 

As shown in Figure 3-1, the SMPM serves as the front-end of the Knowledge 

40 



Base (KB). The KB is comprised of ontologies , which can be considered as a kind of 

data storage medium similar to traditional databases. The design of KB has been 

published in [4], which is out of scope of the presented research. This research mainly 

focuses on SMPM. In what follows, we will describe in detail the design of the 

SMPM. 

SMPM is built based on a software maintenance process model. We adopt the 

latest version of IEEE software maintenance process model (ISO/IEC 14764-2006) [9] 

as the basis for integrating the knowledge and resources in our approach. This will be 

detailed in Section 3.1. 

In order to integrate the software maintenance process model into our SMPM, a 

meta-model is created to describe the model. Meanwhile a set of notaitons are also 

created to allow graphically represent the model. Section 3.2 will describe the 

meta-model and notations. 

In practice, a software maintenance task involves many different types of 

stakeholders all with differing duties and responsibilities. In our approach, these 

stakeholders are categorized into three different groups: process designer, domain 

expert and software maintainers. Section 3.3 will describe their duties and 

responsibilities. 

This is followed in Section 3.4 with the description of Context-sensitive support 

' Ontology http://en.wikipedia.org/wiki/Ontology 

41 

http://en.wikipedia.org/wiki/Ontology


in our SMPM tool environment. 

SMPM generates and collects historical data while it is riming. Maintainers gain a 

lot of valuable experience (best practices) in their daily practice. This historical data 

and experience can be used to enrich the underlying KB, and can be shared with other 

maintainers. Therefore, SMPM needs to provide an interface to collect these historical 

data and experience. This will be described in detail in Section 3.5. 

Finally, Section 3.6 describes the integration of the software maintenance process 

model into the SMPM tool environment. 

3.1 Maintenance Process Model 

Activities are an integrated part of any software maintenance task and require the 

integration and sharing of available knowledge within the process. Based on this 

observation, we have decided to adopt the latest version of IEEE software 

maintenance process model (ISO/IEC 14764-2006) [9] as the basis for integrating the 

knowledge and resources in our approach. The IEEE standard describes a software 

maintenance process, which defines activities, tasks and task-steps that are necessary 

to perform software maintenance tasks. However, it does not specify the details of 

how to implement or perform these activities, tasks and task-steps included in a 

process. 

42 



Furthermore, a process model is commonly used to specify how a process should 

be operated over time and which resources should be allocated or involved in its 

activities. Marshak [68] believes that modeling can be considered as a process of 

knowledge acquisition about the target business operations. Based on this observation, 

a maintenance process model should concretize activities, information, and flow, 

which are embedded in the software maintenance domain, into maintenance tasks 

with explicit reference context such as organizations, artefacts, tools and maintainers. 

Although, the IEEE standard mentions that artefacts should be involved in particular 

activities, it does not give the solution of how these artefacts are related to specific 

tasks or task-steps as the process is performing. 

In this section, we will describe the maintenance process model adoption (Section 

3.1.1). This is followed by a section describing how to equip our process model with 

execution ability (Section 3.1.2). Finally, we will discuss the process flow in Section 

3.1.3. 

3.1.1 Maintenance Process Model Adoption 

As the basis for our software maintenance process model we adopt the IEEE 

Software Maintenance process model [9], which describes in general the various 

activities, task-steps to be performed towards a maintenance request. This IEEE 

Standard can be divided into six sub activities: process implementation, problem and 

modification analysis, modification implementation, maintenance review and 

43 



acceptance, migration and retirement. In this research, we will limit our scope and 

focus only on those activities which are most closely related to software 

comprehension aspects of a maintenance task, e.g. problem modification analysis, 

modification implementation, maintenance review/acceptance, and migration. 

Problem and 

Modification Analysts 

2 

Maintenance Review/ 

Acceptance 

\ 
Modification 

Implementation 

3 / 

\ 
\ _ 

Migration 

Figure 3-2 The Tailored Software Maintenance Process Model 

Figure 3-2 illustrates such a tailored process model used as the basis for the 

knowledge and resources integration in our approach. The process starts with the 

activity of problem and modification analysis, followed by modification 

implementation, and then maintenance review/acceptance. The process completes 

with the software product migration. The arrows between problem and modification 

analysis, modification implementation, and maintenance review/acceptance indicate 

44 



that these three activities can be executed iteratively if necessary. 

3.1.2 Process Execution Ability 

Most of the nowadays process models can be executed. For example, as discussed 

in Section 2.3.1, a business process model described using BPEL [21] may contain 

invoke activity to invoke a remote partner, or contain receive activity to receive 

information from another partner. A process described using SPARK may contain an 

executor to perform actions [46]. 

In the presented approach, we enhance the process model to have such execution 

ability by using query elements. A query is a new process element we add to the 

maintenance process model. It is linked to a task-step. A task-step may contain zero or 

more queries, while a query may be contained by multiple task-steps. The use of 

query equips the process model with ability to extract information from the 

underlying KB. A query element represents 1) a piece of query statements writing 

using Description Logic language, or DL-language9 for short. A DL-Ianguage (DL), a 

knowledge representation formalism, is used as a standard ontology language [69,70]. 

The design of DL-based queries is out of the scope of the presented research. Our 

query elements link with a collection of existing DL-based query statements which 

have been designed by another research team. We are not going into detail of this part; 

and 2) the results of the execution of the DL-based queries. Usually, the relationships 

9. Description Logic Language http://en.wikipedia.org/wiki/Description_logic 

45 

http://en.wikipedia.org/wiki/Description_logic


between the process activities including their task-steps and the resources such as 

tools, artefacts, maintainers are explicitly specified in the KB [4]. The execution of 

the DL-based queries returns the resources that are associated with the relevant 

process task-step, which create a link between the process model and the resources. 

The execution results may provide guidance for maintainers to perform the containing 

task-step. 

3.1.3 Process Flow 

The original IEEE standard maintenance process only lists task-steps to be 

performed. It does not suggest which task-steps are required, or which ones are not. 

However, we realize that not all of the task-steps suggested in the IEEE standard 

process are necessary to be performed to complete a maintenance task. Therefore, our 

tailored process model should have ability to allow maintainers to determine if a 

task-step should be executed or not based on the process context they encounter. The 

same consideration is also applied to queries. Based on this observation, we classify 

task-steps and queries into two categories: mandatory and optional. A mandatory 

task-step/query must be completed in order to being able to continue/complete the 

process. In contrast an optional task-step/'query does not have to be executed. It is the 

maintainer's choice to decide if it is executed or not. Before the process flow can 

continue with the next process activity, all of the mandator}' task-steps and queries in 

the current activity must be completed. 

46 



Figure 3-3 depicts a sample process showing how the mandatory!optional 

task-steps affect the process flow. The process contains two tasks: Task A and TaskB. 

All of the steps included in these tasks are mandatory except Step 2. The arrowhead 

with solid line represents the process flow. To complete such a simple process, Task A 

and Task B have to be performed in order. To finish Task A, Step 1 and Step 3 must be 

executed because they are mandatory. But Step 2 is not required to be executed, 

because it is an optional step. The arrowhead with dash line indicates the optional 

process flow. The process flow cannot move to Task B until all the mandatory steps in 

Task A are executed. In this example, Step 1 and Step 3 must be executed to make the 

process move to Task B. And finally Step 4, Step 5 and Step 6 must be orderly 

executed to finish Task B because all of them are mandatory. 

The classification of task-steps into mandatory and optional task-steps 

implements an algorithm similar to the pick activity in BPEL. It provides choices to 

maintainers to pick one path from multiple possible paths. Taking Figure 3-3 as an 

example, making step 2 as optional creates two possible paths which are 

Stepl->Step2->Step3 path and Stepl->Step3 path. Maintainers must pick either of 

them to continue the process flow. This approach is very efficient when several 

optional task-steps continuously linked together. Imagine one optional task-step 

pedicts two possible process flow paths. However, two optional task-steps linked 

continuously pedicts four possible process flow paths. By using this approach, we can 

describe multiple process Hows and still keep the diagram clear and neat. 

47 



Mandatory o 
( J Optional 

Figure 3-3 A Sample Process Model 

3.2 Process Meta-model and Graphical Notations 

In Section 3.1, we have introduced the overall process model being adopted and 

the enhancement made to the process model. In what follows, we will focus on 

designing a metam-model to describe the process model, which is detailed in Section 

3.2.1. A set of notations used to graphically represent the process model will be 

described in Section 3.2.2. This is followed by Section 3.2.3 with the discussion of 

layout strategy implemented in the SMPM. 

3.2.1 Process Meta-model 

The presented process meta-model is used to describe our tailored software 

maintenance process model described in Section 3.1. In the presented approach, we 

categorize the process model elements into four categories: 

Basic model element - The basic elements are the basic building blocks used 

to construct maintenance processes. Most of these elements directly derive 

48 



from the original IEEE standard; 

• Execution model element - It is the query element that has been introduced in 

Section 3.1.2; 

• Connecting element - It is used to represent the process flow; and 

• Swimlane - It is a layout mechanism used to organize process elements in a 

process diagram. 

In the rest of this section, basic model element, execution model element and 

connecting element will be presented. And Swimlane will be discussed in detail in 

Section 3.2.3. 

Basic Model Element 

In our meta-model, basic model elements are the basic building blocks used to 

construct maintenance processes. Most of them are derived from the original IEEE 

standard process. The following describes these process elements. 

A StartPoint presents the start of the maintenance process. As illustrated in Figure 

3-4, every process diagram should contain one StartPoint. 

An EndPoint indicates the end of a maintenance processs. Every process diagram 

can only have one EndPoint as indicated in Figure 3-4. 

An activity element models maintenance activities described in the original IEEE 

standard. According the discussion in Section 3.1.1, there are four activities have been 

49 



included in the tailored process model, therefore, we only model these four activities 

in the meta-model, which are problem modification analysis, modification 

implementation, maintenance review/acceptance, and migration. Figure 3-4 shows 

that a diagram can have one or more activity elements. 

A task describes a specific aspect of concerns that maintainers need to consider 

while performing an activity. As shown in Figure 3-4, an activity element can contain 

one more task elements. 

A task-step is one of the refinements of its containing task element. Each of these 

task-steps is an example of what must be performed in order to complete the 

maintenance process. A task element contains zero or more task-steps as indicated by 

Figure 3-4. 

A diagram represents a software maintenance process. It contains various process 

model elements that are described in the meta-model. 

Execution Model Element 

An execution model element is an element used to describe the behavior aspect of 

the maintenance process. Specific to the presented meta-model, there is only one 

model element belongs to this category, which is the query. A query element is used to 

extract information from the KB as described in Section 3.1.2. Figure 3-4 shows that 

query! elements are contained by task-steps. A task-step element can have zero or more 

50 



query elements, each of which specified the details of how to perform its containing 

task-step in order to complete a maintenance process. 

A query element must be in one of three states: unexecuted, successful and failed. 

The unexecuted state indicates that a query has not been executed. The successful 

state means that a query has been successfully executed. And the failed state implies a 

query has been executed but failed. 

Connecting Element 

A connecting element is used to connect basic model elements together in a 

diagram to create the basic skeletal structure of a software maintenance process. There 

is only one connecting element available in the meta-model which is connection. A 

connection element represents the process flow in a maintenance process model. 

1 $tep_J+—™{j3uery 

Figure 3-4 The Maintenance Process Meta-model 

In Figure 3-4, process flow is represented using an arrow with solid line. 

According to Figure 3-4, a SartPoint is the start of a process. It connects to an activity. 

51 



An EndPoint is the ending of a process, which accepts a connection from an activity. 

An activity may connect to another activity, while activities and task-steps can 

connect each other. And a task-step may connect to another task-step. 

A meta-model is a conceptual framework made of rules and elements that allows 

building models. It contains all concepts and relations included in the subject under 

study. Therefore, the presented meta-model can be used to create software 

maintenance process models. 

In this research, maintenance process models created using the presented 

meta-model are further classified into three kinds. They are: process template, 

domain-specific model and process instance. 

A process template is a general process model created using the presented 

meta-model. Usually, a process template is a general maintenance solution for 

maintaining various types of maintenance tasks in an organization. A domain-specific 

model is a process model refined and customized from a process template in order to 

meet specific needs of a particular domain. A process instance is a copy of a 

domain-specific model. A process instance is a process model ready to be navigated 

and executed to help maintainers to complete their particular maintenance tasks. 

3.2.2 Graphical Notations 

The process meta-model has been presented in Section 3.2.1. In the next step we 

52 



create a set of graphical notations so that process model elements can be mapped onto 

them. We describe these notations in the rest of this section. 

A StartPoint (Figure 3-7) is represented as two concentric circles filled with grey 

color in the middle. 

An EndPoint (Figure 3-8) is represented as two concentric circles filled with 

black color in the middle. 

As shown in Figure 3-5, an activity is represented using a swimming pool with a 

vertical anchor bar at the left side with two anchors at each end of that anchor bar. The 

top anchor is a target point that its previous activity connects to. This top anchor is 

also the source point that the tasks-steps within the activity start from. On the other 

hand, the bottom anchor is the source point that its next activity connects from. It is 

also the target point that ends the process flow within the current activity. 

Figure 3-6 depicts a task notation, it is presented as an unfilled horizontal bar 

with a task title on the left side of the bar. Actually, a task notation cannot stand alone 

in a process diagram. Instead, they must be embedded into activity notation. We might 

imagine task notations as lanes which are used to constructed a swimming pool which 

is an activity notation. 

A task-step notation is represented as either Figure 3-9, an unfilled rectangle with 

bold line as its frame representing a mandatory- task-step, or Figure 3-10, an unfilled 

53 



rectangle with regular line as its frame representing an optional task-step. 

The notation of a query varies as shown in Figure 3-11 to Figure 3-16. . A square 

fully filled in grey (Figure 3-12) represents an unexecuted mandatory query, and a 

square partly filled in grey (Figure 3-11) represents an unexecuted optional query. The 

color is meaningful to query notations. Grey color indicates a query has not been 

executed while green color indicates a query has been successfully executed. Finally, 

a red color indicates that a query has been executed but failed. 

As shown in Figure 3-17, the notation of the connection element is represented as 

an arrow with solid line. 

ho 

Figure 3-5 Activity Notation of SMPM 

Figure 3-6 Task Notation of SMPM 

Figure 3-7 StartPoint Notation of SMPM 

54 



Figure 3-8 EndPoint Notation of SMPM 

Figure 3-9 Mandatory Task-step Notation of SMPM 

Figure 3-10 Optional Task-step Notation of SMPM 

Figure 3-11 Unexecuted Optional Query Notation of SMPM (Grey) 

Figure 3-12 Unexecuted Mandatory Query Notation of SMPM (Grey) 

Figure 3-13 Failed Optional Query Notation of SMPM (Red) 



Figure 3-14 Successful Optional Query Noation of SMPM (Green) 

Figure 3-15 Failed Mandatory Query Notation of SMPM (Red) 

Figure 3-16 Successful Mandatory Query Notation of SMPM (Green) 

• 

Figure 3-17 Connection Notation of SMPM 

3.2.3 Layout Strategy 

One of the challenges in process visualization is how to organize the process 

elements in an appropriate manner in a diagram. This is the work that layout strategy 

should do. We adopt a swimlane [24,23] mechanism which is popular in BPMN and 

UML as the layout strategy in our SMPM. 

In the SMPM, the swimlane layout arranges process elements into a set of rows 

called lanes. The attributes of each process element determines which row (lane) it is 

56 



placed. In our swimlane layout, a lane represents a task. The lane header, the vertical 

bar with label on the left hand side, is the task title. Multiple related lanes (implied 

from their lane headers) construct a pool, which is an activity (Figure 3-20). 

Task-steps are embedded into lanes where they belong (Figure 3-19). No task-step can 

be in more than one lane. 

Query elements are rendered as small squares linked to a task-step where they 

reside (Figure 3-18). All of the basic model elements are connected using connection 

elements. The process element where the connection starts from is called the source 

node. Along with the arrow head the connection ends with a target node. To avoid the 

edge crossings, y-axis offset of a task-step, inside the same activity, is arranged at the 

right side of its preceding task-step, regardless the task to which it belongs. As shown 

in Figure 3-20, this layout strategy can eliminate edge crossing inside an activity. 

5.2.2.1.3 

1BI11 

Figure 3-18 Task-step Layout Strategy 

I 5.2.2.1.3 • 5.2.2.1.C • 5.2.2.1.1 
* l _ _ I I — I ' I 1 
=1: 1 | @ H H 1 1 1 1 1 

13BB3E1 

Figure 3-19 Task Layout Strategy 

57 



5.3 

' * : <» 
I J S.3.2.1.b I——J 5.3.2.1c I • S.3.2.1.d I 

Figure 3-20 Activity Layout Strategy 

3.3 Stakeholders and Their Roles 

C 
Process Designer 

c 
Domain Expert 

Software Mamtainer 

Design process templates 

Refine domain-specific models 1o 
meet she specific needs of a 
particular domain 

Execute process models 

Collect user feedback and other 
data 

Figure 3-21 User Roles and Their Responsibilities 

In this research, the process visualization is considered as a central information 

hub for all process related information. In particular, different stakeholders (e.g. 

process designers, domain experts, and software maintainers) may access the 

environment for different purposes depending on their particular role in an 

organization. In what follows we introduce three different types of stakeholders, each 

with a specific role in the organizational context. The user role defines the behaviour, 

58 



responsibilities and knowledge of individuals involved in a maintenance task. 

The stakeholders of our SMPM can be categorized into three different roles as 

shown in Figure 3-21. 

Process Designer Role 

Our research makes assumption that stakeholders associated with a process 

designer role are usually senior software maintainers. They are responsible for 

designing process templates based on the organization's maintenance plans and 

strategies. As discussed in Section 3.2.1, a process template is a general maintenance 

solution suitable for different types of maintenance tasks within an organization. That 

means a process template should not involve any domain specific content. 

Domain Expert Role 

Domain experts have rich experience and knowledge in their specific field. They 

are responsible for creating domain-specific models from process templates, and 

refining and customizing the domain-specific models to meet specific needs of the 

domain. 

In a domain-specific model, domain experts can customize some of its attributes. 

The following summarizes the major attributes that can be changed by domain 

experts. 

59 



• Change the execution type: Execution type describes whether a process element 

must be executed or not. As described in Section 3.1.3, the value of an 

execution type can be either mandatory or optional. This attribute is available 

to task-steps and queries elements. 

• Change the context level: Context level defines the constraints when 

maintainers retrieve knowledge from the KB. There are four context levels 

defined in our process model which will be further discussed in section 3.4. A 

context level can be applied to query, task-step and task elements. 

• Management of pre-defined queries: Queries are process elements used to 

retrieve information from their underlying KB. Domain experts are allowed to 

create new queries, add queries to and/or remove queries from a 

domain-specific model. 

Software Maintainer Role 

Software Maintainers are typically the end users of the process models. They are 

responsible for executing process instances to complete their maintenance tasks. They 

also represent the main source for collecting feedback resulting from their experience 

during the execution. 

3.4 Establishing Context-sensitive Supports 

In this section, we will describe the establishment of context-sensitive support in 

60 



the SMPM. 

As Rilling et al described in [4], a context-sensitive process can generally be 

described as the steps involved in identifying any information that might be relevant 

to characterize the situation of an entity. An entity is typically a knowledge resource 

that is considered relevant to the interaction between a user and a process. Based on 

these assumptions, a process can be called context-sensitive if it establishes a 

relationship between relevant information resources, users and organizational factors 

that have a direct/indirect impact on a specific task. 

Context 

Level 

Level 0 

Level 1 

Level 2 

Level 3 

Description 

Considers all resources and knowledge available within the KB. 

Refines level 0 by restricting the KB to a specific user and its 

organization. 

Refines context level 1 by considering inter-tool, inter-artifact 

and task dependencies. 

Provides an additional refinement to the context level 2 through 

data mining of historical data collected from previous tasks. 

Table 3-1 Context Level Description 

Rilling et al [4] divide the context-sensitive into four levels as depicted in the 

Table 3-1. 

61 



As shown in Table 3-1, a process element with context level 0 is considered no 

constraints associated with the supporting queries. Meaning all of the resources and 

knowledge available will be considered during knowledge retrieval. A process with 

context level 1 is restricted in scope to only those resources and knowledge relevant to 

specific users and/or organizations. The most restrictive constraints are imposed to the 

process with context level 3. The inter-resources relationships and information from 

historical data are important factors for creating the constraints for the processes at 

this context level. 

tSProperties K •Log jJhg | : - '.•'•_ ' ± : : . : V . \ , . '• • • ' _ ':•'ti ; 

Considers all resources and knowledge available within the KB 
Refines LEVEL 0 by restricting the KB to a specific user and its organization 
Refines LEVEL 1 by considering inter-tool, inter-artifact and task dependencies 
Provides an additional refinement to the context LEVEL 2 through data mining of historical data 

Figure 3-22 Implementation of Context-sensitive Support 

Our SMPM supports context-sensitive by providing a context configuration view 

to allow change the context-sensitive level of process elemenets. Figure 3-22 shows 

the context configuration view in the SMPM. Domain experts can use this view to 

customize the level of context-sensitive support of process elements. By default, all 

process elements are set to context level 0. Once the context-sensitive level of a 

process element is changed, the scope of information retrieving from the KB will be 

changed accordingly. Actually, the major portion of work regarding context-sensitive 

support is done within the back-end KB which is not included in the presented 

62 

•3 Step5221a 

Info 

Context 
Queries 

Properrjes 

> 
, ^ 
• 

LEVEL 0 -
LEVEL 1 -
LEVEL 2 -
LEVEL 3 -



research. The presented research mainly focus on providing a GUI to allow configure 

the context-sensitive level for each process element. 

3.5 Data/User Experience Collection 

The SMPM will generate various historical data and best practices when it runs. 

Moreover, maintainers may give feedback and comment when they use the SMPM to 

help complete a maintenance task. This historical data, best practices and feedback are 

fundamental to the KB. If this data is not collected, it will be lost. In this section, we 

will describe how the SMPM supports the collection of historical data / best practices 

and user feedback. 

As shown in Figure 3-1, the SMPM will collect various types of historical 

data/best practices and user feedback while it is running. This information is supposed 

to be stored in the KB. However, at the time we were developing the SMPM, the team 

responsible for developing the KB did not deliver APIs to allow "write" operation. As 

a trade-off, we temperately store this information in the local drive as a regular file. 

Once the "write" APIs are available, this information will eventually be stored into the 

KB. 

In the SMPM, historical data such as which maintainer uses the tool, when do 

they use it, which tasks and task-steps have been executed, what is the execution order, 

etc., are automatically captured and stored. 

63 



In the SMPM, we also provide feedback v/ewto allow collect user feedback. The 

feedback view (Figure 3-23) includes a comment section and a ranking section which 

are manually input by software maintainers. As listed in Table 3-2, there are 4 ranking 

levels ranging from "poor" to "excellent". The user selects the ranking based on the 

support the tool provides during a particular process context. 

Level 

Poor 

Fair 

Good 

Excellent 

Description 

A process element has no or very limit contribution to the entire process 

A process element has minor contribution to the entire process 

A process element has major contribution to the entire process 

A process element has significant contribution to the entire process 

Table 3-2 Feedback Ranking Level 

HH Propa ties IX' 

•-- Queiy 

O poor O far O good © excellent 

i comments goes here| 

Figure 3-23 Design of Feeback View 

3.6 Tool Integration 

In the previous sections, we have described various aspects of our process model 

and the techniques for linking the resources and knowledge to the process model 

64 

Info 
Conditions 

Result 

feedback 



elements. In what follows, we will discuss how these various pieces can be integrated 

in our tool environment. 

The advantage of a graphical visualization is the ability to represent semantic rich 

data at varying abstraction levels. As discussed in Section 2.4.2, the overview and 

detail visualization technique is suitable for visualizing large amount of information. 

More importantly, it provides context support during the navigation of the information 

space. Based on this observation, we designed to apply the overview and detail 

technique to our SMPM. 

Resource 
View 

Graphical Editor 
Area 

Properties View 

Outline 
View 

Figure 3-24 The GUI Outline of SMPM 

With these considerations in mind, we introduce a visualization approach that 

incorporates multiple views as shown in Figure 3-24. They are resource view, outline 

view, properties view and graphical editor area. These views are integrated to allow 

for rendering and organizing different resources and knowledge relevant to a specific 

software maintenance task. 

Resource view: The resource view (Figure 3-25) organizes resources relevant to a 

65 



process model in a hierarchical structure. These resources include process templates, 

domain-specific models, process instances, users, tools and artifacts. From here, we 

can create new process templates, open domain-specific mdoelfor editing or select 

process instances for navigation and execution. 

• Resource Navigator 11 \ __ " a 

*,-, J % ^ 

e & Debrief 
;s23> artifacts 

©• domains 
; iB> maintainer views 

: ••••££• requests 

B & templates 

# Debrief Template.tfemplate 

3 i& tools 
•••# Eclipse.tool 

• \ \ - % JBuikJer.tool 
; -<• SeeSoft.tool 

". # SOUND.tOOl 

# Structure 101.tool 

•••# svSD.tool 

a & users 

# Fuzhi Chen.user 

•-$ Hongfei Zhu.user 

# Maryam Shiri.user 

' • # Oliver Wong.user 

•Ki .project 

* S Lobo 

Figure 3-25 The Resource View of SMPM 

Outline view: The outline view (Figure 3-26) displays the process model that is 

currently under editing in a tree hierarchy. 

66 



'§= Outline JS^:•;:•;•' ; - ':';/';..0:;" ' * ; ! : ' : ; ^ ^ ^ f f f c f 

i § | Start Port 
f IS 5:2;:: 
j e- Ml 5.2.2.1 

i B © 5.2.2. l a 

;-<S» EEE_14764_06_Q_2_2_l_cJDebrief 
: -«s> EEE_14764j06_Q_5_3_2_ljC_Programm 
i- *»EEE_14764_06_Q_5_3_2_l_c_Programm 
j -•** EEE_14764_06_Q_5_3_2_l_c_Programm 
•••<$=• EEE_14764_06_Q_3_2_2_a 

1 S©-5.2.2. l.C i 

" S* IEEE_14764_06_Q_3_2_2_a \ 
\ ®-& 5.2.2.1.1 I 

; fii--C© 5.2.2.2 j 
I Ql 5.2.2.3 ; 
; Cg 5.2.2.4 | 
' Cl 5.2.2.5 ! 

S B 5.3 j 
' % End Port ] 

Figure 3-26 The Outline View of SMPM 

Properties view: The properties view (Figure 3-27) displays detailed information 

of a selected process element in either the graphical editor area or in the outline view. 

The properties view is also a place for domain experts to customize domain-specific 

models. This has been discussed in Section 3.3. 

;_ Properties V. 

5.2 Problem and Modification Analysis Context Level: Level 0 

i During the Problem and Modification Analysis Activity, the maintained 
| - Analyzes MRs/PRs; 
! — Replcates or verifies the problem; 
i - Develops options for implementing the modification; 
\ - Documents the MR/PR, the results, and execution options; 
; -- Obtains approval for the selected modification option. 

;The inputs for the Problem .and Modification Analysis activity should be: 
i - MR/PR 
:-- BaseSne 
- Software repository 
~ System documentation 
System Documentation includes: 

;-- Configuration status information 
-- Factional requirements 

• -- Interface requirements 
• ~ Protect planning data 

Figure 3-27 The Properties View of SMPM 

Graphical Editor Area: The graphical editor area (Figure 3-28) is the central 

8; Activity52 

info Nmne: 

T a s k s : . '•• 

Description: 

inputs': 

67 



area of the entire GUI. It is used to graphically display software maintenance process 

models. Depending on the stakeholder using the system, different functionalities are 

available. The graphical editor area provides: 1) process designers with a place to 

visually construct process templates; 2) domain experts with a means to customize the 

domain-specific models; and 3) software maintainers with an interface to execute the 

process instances and collect the feedback. 

?: - i 

I J 5221c I •! 52211 I 

I B i g . 

5.2 

Palette 
t& Select 
..Marquee 

1 Connection 

^ Process Elements 
Start Pccit 

• End Pewit 
i,? Activity 5.2 
^Activi ty 5.3 
= Activity 5.4 
^Activi ty 5.5 

I "•"•' I " 

' ; 3 Steps for Activity5.2 
i^Steps for AcDvity5.3 

i : V^ Steps for AcOvity5.4 

Figure 3-28 The Graphical Editor Area of SMPM 

The views described above are organized into perspectives, where a perspective 

defines a collection of views, their layout, and applicable actions available to a 

specific stakeholder. As discussed earlier (Section 3.3), no visualization method 

addresses all the needs of the users, however, the creation of multiple views or 

perspectives has been shown to be useful in many circumstances. [71,72]. Each view 

typically focuses on the visualization of information to a given task, or user context 

by combining different levels of abstraction. Given the fact that in our SMPM tool 

68 



there are three distinct groups of users of our system, we therefore provide three 

distinct perspectives. They are process designer perspective, domain expert 

perspective, and software maintainerperspective. 

Figure 3-25 and Figure 3-26 show the resource view and outline view provided in 

the STMM tool. Both views are based on a tree structure. Tree structures are a 

common way of visualizing the hierarchical structure of information [73,74]. In a tree 

structure, process model elements are represented as nodes, while visual links (lines) 

in front of nodes visualize the parent-child relationships of these process elements. By 

applying indentation and meaningful icon to each tree structure item, combining with 

the "expand-collapse" feature that a tree structure inherently has, a tree structure 

provides the concept of level of abstraction. Furthermore, selecting an item in the 

outline view will also synchronize with the corresponding element in the graphical 

editor area and vice versa. Combining the graphical visualization with the tree 

structure, it provides users with an overview and detail approach of visualization. The 

properties view (Figure 3-27) provides detailed information about the selected 

element in either the graphical editor area or outline view. The properties view 

provides therefore a details-on-demand functionality to our SMPM. 

69 



Chapter 4 Implementation 

In the previous chapter, we introduced the theoretical and design aspects of our 

software maintenance process modeller (SMPM). In this chapter we discuss 

implementation details of the actual tool. 

We will first describe the general requirements for implementing this tool 

(Section 4.1), followed by a description of the overall structure of the system (Section 

4.2). And finally we will provide details on the system implementation (Section 4.3). 

4.1 System Requirements 

Based on the discussion in Chapter 3, we can now derive implementation 

requirements for our SMPM. 

• Requirement #1: Software maintenance process meta-model — One of the 

major contributions of this research is to create a meta-model to describe the 

software maintenance process model proposed in Section 3.1. This will be 

discussed in detail in Section 4.3.1. 

• Requirement #2: Graphical notations — Graphical representation of process 

model is considered as another major contribution of this research. Process 

model elements need to be graphically represented in order to visualize them in 

our SMPM. This will be further described in Section 4.3.2. 

• Requirement #3: Mapping process model elements to their graphical notations 

70 



- Basically, in our SMPM, process model elements have one on one 

relationship with their visual counterparts. It will be further discussed in 

Section 4.3.3. 

4.2 System Overview 

In order to enable our process model to provide maintainers with guidance while 

performing maintenance tasks, we have developed this SMPM tool. Actually, SMPM 

is not a single program; it is a collection of Eclipse plug-ins1 and application 

programs, as shown in Figure 4-1. 

Among these Eclipse plug-ins, process modeller plug-in is the most important 

one and it is built on top of the Eclipse Graphical Editing Framework (GEF11). The 

process modeller plug-in allows for the visual manipulation of the user defined 

process models. Another Eclipse plug-in called navigation tree plug-in is also 

developed to illustrate the process models in a tree structure view instead of a 

graphical view. The reason we need this navigation tree plug-in is because it can be 

conveniently embedded into other developing workbench, such as Java development 

perspective, in order to provide support without losing the context when switching 

between perspectives. Both the process modeller plug-in and navigation tree plug-in 

are created based on the same process meta-model. 

10 Eclipse http://www.eclipse.org 

" GEF Http://www.eclipse.org/gef 

71 

http://www.eclipse.org
Http://www.eclipse.org/gef


Eclipse IDE 

| GUI 
IGEF Framework 

Process 
Mo^ltep Plugin 

I Process Metamodel 

Bridge Plugin 

Plain text fi!e 

JENA 

Monitor 

- Query Engine 
i , . 

!• 

Knowledge Base 

Figure 4-1 System Overview 

As shown in Figure 4-1, at the bottom of the figure, there is a KB which is a 

12 

repository tor storing information and knowledge. On top of this KB there is JENA , 

a Java based ontology API toolkit. It allows maintainers to access the KB using Java. 

At the time we were developing this SMPM, JENA did not support Eclipse Plug-in 

Development Environment (PDE) so we are not able to directly utilize the JENA 

toolkit within an Eclipse plug-in. In order to apply JENA to our SMPM tool, a bridge 

plug-in is created to communicate between Eclipse plug-ins and the JENA toolkit. 

This bridge plug-in is a proxy application of JENA in Eclipse PDE. Therefore, if 

'" JENA http://jena.sourceforge.net/ontology 

Navigation Tree 
Plugin 

72 

http://jena.sourceforge.net/ontology


SMPM needs to communicate with JENA, it will directly send the requests to the 

bridge plug-in and then get the result from it. On the other end there is a monitor 

which is a daemon application responsible for executing commands according to the 

requests received from bridge plug-in and then sending the results back to the bridge 

plug-in. Actually this monitor is a wrapper program. It executes commands by calling 

the real JENA API. Plain text files are used to exchange information between bridge 

plug-in and monitor daemon program. 

4.3 System Implementation 

The Figure 4-2 shows the architectural structure of the SMPM. From the figure 

we can see that the entire system is actually designed using a MVC 

(Model-View-Controller) design pattern. 

• Model: The process meta-model acts as the "Model" part in the MVC. It is 

responsible for describing the maintenance process model elements and 

their relationships. 

• View: The graphical representation (notation) is the "View" part in the MVC. 

The "View" is the graphical and textual elements that are used to visualize 

the maintenance process model elements. 

• Controller: The controller is responsible for mapping "Models" to their 

visual counterparts ("Views"). In the GEF framework, the controller is 

called EditPart. We will use this term in the rest of the section. 

73 



Event Handlers 
fsvEdilPaflij 

Qdnffoll^r 
I—— r \ ToolS-i / 11 **"<yE**»< ) f SKpEdilPart 1 

, rrasXEdilPaitYoueiyEdilPartj 

Figure 4-2 System Architectural Structure 

4.3.1 Process Meta-model 

Software maintenance process model elements are modeled as a set of Java 

classes. Each of these Java classes contains attributes to describe the properties of 

process model elements and their relationships. The class diagram (Figure 4-3) 

illustrates how our maintenance process meta-model is represented using Java classes. 

Figure 4-3 shows that the ModelEIement class (abstract), which is an atomic 

constituent of the model, is the top super-class in the design hierarchy. It not only 

provides persistence support to process model elements so that the process models can 

be saved to a hard disk and reloaded later, but also a notification mechanism used to 

listen to property change of process model elements and then send notifications to 

objects which are concerned. 

74 



ModelElement 

A 

I 
Diagram 

ProcessE foment 

EmJPoint 

••N 

StartPoint ) Activity 

i st*. i 

t 
"1 

+— 
1 1..* 

Task 

• 
1 

i 

Step 

A*> 

1 

Query 

Figure 4-3 Maintenance Process Meta-model Class Diagram 

NodeElement class (abstract) is the base class that all process model elements (e.g. 

basic model elements, execution model element and connecting element) should 

inherit. It contains some common attributes that all process model elements share 

(such as, size, location etc.). Actually, all process model elements are either direct or 

indirect subclasses of NodeElement. 

Process Element class is the super-class of all process model elements. It further 

describes common properties that all process model elements have (such as element id, 

name, predecessor and successor elements). All of the process model element classes: 

Activity, Task, Step and Query directly inherit it. 

Activity class is the super class of all the activity process model element classes. 

An Activity class can have Task class instances as its containment elements. An 

75 



Activity can have association relations with itself, StartPoint and/or EndPoint process 

model elements. 

Task class models the task process model elements. It contains attributes to 

describe a task (such as description, containing step elements, ranking level, feedback, 

etc.). A Task class may take Step class instances as its containment elements. 

Step class is the parent class of all the task-step process model elements. It 

contains attributes to depict a task-step (for example its selected queries, available 

queries, context level, execution type etc.). A Step class has association relationships 

to itself and/or the Activity in which it is contained. 

Query class models the query process model elements. This class has attributes 

necessary to describe a query, such as query condition, results, query status etc. 

StartPoint and EndPoint classes represent the StartPoint and EndPoint process 

model elements respectively. 

Diagram class represents the diagram process model element which consists of a 

collection of process model elements and their relationships. 

Figure 4-4 illustrates the connection class diagram. Process flow is represented 

using Connection which is a Java class with two attributes: source element and target 

element. These attributes represent the source where the process flow starts from, and 

target where the process flow goes. 

76 



ModelElement 

Q-

0..1 
NodeElement 

0.1 

Connection 

1 -target 

Figure 4-4 Connection Class Diagram 

4.3.2 Graphical Notations 

The graphical notations are implemented using the Java Draw2D Framework, 

which is an integrated part of GEF. 

As shown in Figure 4-5, the root of the class diagram is the Figure class, which is 

a lightweight graphical component in the Draw2D. This class provides paint events 

handling the refresh of the diagrams when the appearance or size of a diagram 

element has been changed. 

NodeFigure class extends Figure class. It serves as the superclass of all the 

visible notations in our SMPM (i.e., Activity Figure, TaskFigure, StepFigure, 

Query-Figure, StartPointFigure, EndPointFigure, etc.). 

ActivityFigure, TaskFigure, StepFigure, QuenFigure, StartPointFigure and 

EndPointFigure classes are visible notations used to graphically represent Activity, 

Task, Step, Query-, StartPoint and EndPoint classes respectively in the process 

77 



meta-model. 

The notation class diagram is designed using a simple factory design pattern. The 

FigureFactory class is the creator class responsible for creating notation instances 

according to their corresponding process model elements. 

FigureFactory 

Activity Figurej TaskFigure StepFigure QueryFigure StartPointFigure EndPointFigure 

Figure 

NodeFigure 

7 T 

Figure 4-5 Graphical Notation Class Diagram 

4.3.3 Model - Notations Mapping 

Once the process meta-model and the graphical notations are ready, the next step 

is to associate the process model with the graphical notations. This is one of the duties 

that EditParts should perform. The EditPart is a term defined in GEF which refers to 

the controller in the MVC design pattern. As shown in Figure 4-6, the mapping is 

basically a one-on-one mapping between process model elements and notations, 

meaning that the process model elements, graphical notations and the Editparts share 

the same hierarchical structure. For example, a process model consists of a Diagram 

78 



(process root) which contains process model elements as its children. There is a 

corresponding DiagramEditPart which contains child EditParts with the same 

parent-child relationship as its model counterpart. This parent-child relationship of 

EditParts carries over into their graphical notations. 

Diagram 

... 

•+ 

Activity Task 

DiagramEditPart 

ActivityEditPart TaskEditPart 

DiagramFigiire 

••--• • b 
uD 1 

... 0n 
an ActivityRgure TaskFigure 

Figure 4-6 Process Model to Graphical Notations Mapping 

There are two different types of EditParts implemented in our SMPM. One set of 

EditParts are implemented for rendering process models in graphical mode, while the 

other set of EditParts display process models in a tree structure view. 

Figure 4-7 illustrates the graphical EditPart class diagram. This diagram is 

designed using a factory design pattern. SVEditPartFactory is the creator class 

responsible for creating graphical EditParts according to its underlying process model 

elements. Basically, each of process model elements has its counterpart EditPart 

classes. 

Figure 4-8 shows the tree EditPart diagram. This diagram is also designed as a 

factory design pattern. SVTreeEditPartFactory is the creator class responsible for 

79 



creating tree EditParts according to its underlying process model elements. Unlike the 

graphical EditPart class diagram, we use only one concrete tree EditPart 

{ShapeTreeEditPart) to represent all of the process model elements because of they 

are of the same shape in the tree structure view. 

EditPartFactory 

SVEdltPartFactory 

ActivityEditPart TaskEditPart StepEditPart QueryEditPart 

AbstractGraphicalEditPart <r 

4V 

1 
J 

DiagramEditPart 

SVEditPart 

A 

<h 

ConnectlonEditPart 

StartPointEdltPart 

EndPoiMEditPart 

Figure 4-7 Graphical EditPart Class Diagram 

EditPartFactory 

~7V 

SVTree Ed itPartFactory 

AbstractTreeEditPart 

S 
ShapeTreeEditPart OiagramTreeEditPart 1 

I 
I 

Figure 4-8 Tree EditPart Class Diagram 

80 



Chapter 5 Application 

In this chapter, we present a set of examples to illustrate the applicability of our 

SMPM environment in guiding and managing software maintenance processes. The 

software under study, Debrief1 , is an open source Java application used by navies and 

companies around the world to analyze and report maritime exercises. 

5.1 Process Design 

To demonstrate these examples, we design a process of perfective maintenance 

for Debrief project. It is a generic maintenance process for Debrief consisting of 

activities of problem and modification analysis, and modification implementation. 

This process supports a maintenance cycle inolving tasks of Modification 

Request/Problem Report (MR/PR) analysis, problem reproduction, modification 

identification, and modification implementation. 

In the rest of this section, we will describe the design of the process for 

maintaining perfective tasks in the Debrief project. Since all the tasks and task-steps 

used in the process have been fully described in the original IEEE standard, we named 

all these process model elements with their corresponding section numbers in the 

IEEE standard so that users can easily refer to the IEEE standard for the detail 

information. For example, a task-step with name of "Step 5.2.2.1 a" means that this 

''" http://www.debrief.info/index.php 

81 

http://www.debrief.info/index.php


task-step is derived from Section 5.2.2.1 a in the IEEE standard. In addition, there are 

too many queries existed in the process model, we only list those important ones and 

omit others. The following describes the tasks, task-steps and queries included in the 

maintenance process. 

Problem Report (PR) analysis: The goal of this task is to ensure the feasibility 

of resolving the requested problems. The task-steps and queries, as described in Table 

5-1, are included to determine if it is possible to solve the requested problems. 

Step 5.2.2.1 a: deterrhine if the maintairier is adequately staffed to implement the 

proposed modification 

Qi 

Q2 

Q3 

Q4 

05 

List all programmers/maintainers working on Debrief component substitution 

List all programmers who have previous experience with Eclipse plug-in 

List all programmers who have previous experience with source code 

List all programmers who have previous experience with reverse engineering 

List all maintainers assigned to projects, by name of projects and programmers 

respectively 

Step 5.2.2.1 c: determine if sufficient resources are available and whether this 

modification will affect ongoing or projected projects 

01 

Q2 

List all tools that support software visualization 

List all artefacts available for Debrief 

Step 5.2.2.1 i: identify ripple effects 



Qi Show the classes that students modified in Debrief component/bug case study 

Q2 Show classes potentially affected by a change of class 

"Debrief.Tools.Operations.SavePlotAsXML" 

Table 5-1 Task-steps and Queries for Task 5.2.2.1 

Verification: It is a task to reproduce the problems/errors as described in the 

problem report. It includes the task-steps as listing in Table 5-2. 

Step 5.2.2.2 c: install affected version 

Step 5.2.2.2 d: run test to verify problem 

Step 5.2.2.2 e: document test results 

Table 5-2 Task-steps for Task 5.2.2.2 

Analysis: This task is performed in order to determine which documentation, 

software units, and version thereof will need to be modified. The task-steps and 

queries that need to be executed to complete the task are listed in Table 5-3. 

Step 5.3.2.1 a: identify the elements to be modified in the existing system 

01 

Q2 

03 

Q4 

0 5 

List all artefacts available for Debrief 

List all tools that support 5.3.2. La IEEE Step 

List all techniques that support the IEEE task-step 5.3.2.La 

List all tools and components that support reverse engineering of Java code 

List all tools that support software visualization 

83 



Step 5.1.2.1 b: Identify the interface elements affected by the modification 

Qi 

Q2 

Q3 

List all tools that support 5.3.2.l.b IEEE Step 

List all techniques that support the IEEE task-step 5.3.2.1 .b 

List all artefacts available for Debrief 

Step 5.3.2.1 c: Identify the documentation to beupdated 

Ql List all artefacts available for Debrief 

Step 5.3.2.1 d: Update the software documentation 

Ql 

Q2 

List all artefacts available for Debrief 

List all tools supporting updating documentation 

Table 5-3 Task-steps and Queries for Task 5.3.2.1 

Development Process: During this task, the maintainer develops and tests the 

modification of the software product. It has to be noted that we are currently only 

focusing on maintenance relevant tasks and do not provide guidance on tasks related 

to forward engineering. 

5.2 Process Template Creation 

After we have the process design in place, we will demonstrate how to create this 



process and graphically represent it as a process template in our SMPM tool 

environment in this section. 

In order to graphically enact the maintenance processes using our SMPM 

environment, a process design perspective (Figure 5-1) has been developed to aid 

process designers to create maintenance process templates. 

Example One: In order to create a process template, process designers have to 

first switch to the process design perspective, then right click on "templates" folder in 

the resources view and select "create a template" item from the popup menu, this can 

create an empty process template. A template editor will be invoked and show up in 

the graphical editor area for editing by clicking on the newly created process 

template in the resource view. Process designers design the process template by 

dragging and dropping process model elements from the palette to the template editor 

and linking them together using the connection element. Figure 5-2 shows a process 

template that has fully modeled the maintenance process designed in Section 5.1. 

85 



^••tiiiii|is!liP|: I f 

lift*""" 9 it 5 «i 

I i t i i i i i a< E 

ft PI 

I If Iff 

Figure 5-1 The Process Design Perspective in SMPM 

86 



5 '—• 
s 
* as 

5.3 2 1a 1 »• 5 3 2 1 b 1 r - J 5.3.2. l.C 

1E1HBHBS! S3HBQ • • 

^ HHBSStii l 
6 

* 
i 

5.3.2.1.d 1 

i i l 

r i 

""' ' * -, 

5.3.2.2 1 

o | * - ^ ~—~——.1 . I. 3 • . 

M 
Figure 5-2 The Completed Process Template Graph 

Example one confirms that our maintenance process meta-model can be applied 

to describe software maintenance processes. This example also indicates that the 

notations can graphically represent the process model elements. It further indicates 

that our layout strategy can be applied to eliminate the edge (connection) crossings in 

the process template graph. 

S7 



5.3 Process Customization 

The process template created in section 5.2 is just a general solution for 

perfective software maintenance of Debrief project. It can be further customized to 

meet a specific maintenance context. This is the responsibility of domain experts. In 

this section, we will demonstrate how domain experts can customize a 

domain-specific model. 

Example Two: When a process template is created, the values of the execution 

type of all the queries are set by default to be mandatory. However, often it might not 

be compulsory to perform all the queries in order to complete a maintenance process. 

In this case, the queries to be executed as part of the maintenance process might 

depend on a domain expert's experience and the specific maintenance task context. 

Therefore, we allow the value of the query's execution type property to be modified 

from mandatory to optional. 

Example Three: When a process template is created, the values of context level 

of all the process model elements are set by default to be Level 0, meaning there is no 

constraint being applied to the process model elements, and therefore all the resources 

and knowledge in the KB are available to them. However, in some cases, for example, 

there are too many resources and knowledge available for a process model element. 

We may want to restrict the scope of the availability of resources and knowledge to 

some process model elements during the information retrieval. We can achieve this by 

88 



changing the context level of those process model elements to a more restrictive level, 

for example, context level 1, context level 2 or context level 3. 

Example Four: When a process template is created, all of the pre-defined 

queries are selected and available to their corresponding task-steps. However, not all 

of these pre-defined queries are necessary or suitable to any maintenance task in any 

case. Domain experts should be responsible for selecting queries and making them 

available to the process model elements based on their experience and the specific 

maintenance task context. 

In order to further customize a process template, domain experts must switch to 

the domain expert perspective. The domain expert perspective provides necessary 

supports for domain experts to accomplish their work. For example, it allows domain 

experts to change attributes values of process model elements through the properties 

view. 

Before a domain expert can customize a process, there is a need to first create a 

domain-specific model from a process template. In order to create a new 

domain-specific model, the domain expert selects and right clicks a process template 

from the "templates" folder, and then chooses "create a domain" from the popup 

menu. The newly created domain-specific model will be displayed in the "domains" 

folder in the resources view after the domain expert explicitly assigns it a name. By 

double clicking on this domain-specific model, a domain graph editor will be invoked 

89 



to allow process customization. Selecting the process model elements needed to be 

customized in this domain graph editor or in the outline view allows the domain 

expert to change the attribute values of selected elements. 

To complete the example two, a domain expert selects queries for each of the 

task-steps. Details about the query attributes are displayed in the properties view. 

Selecting the properties tab in the properties view, the domain expert can change the 

execution type of a query from mandatory to optional. Figure 5-3 snapshots the 

moment the domain expert changing the value of execution type of a query in the 

domain expert perspective. 

Pun Window Help 

«*Oorom&aphEdtor . 

E? © Doman Ex... 

• ~e 5.2 

2 0811100 
X 

I • S22.1.C I • 5.2.2.1.1 I 

B B S S — 

I 5.22.2c I J 

; _J Properties T. 

: -' Query 

; fofo ' Query: OMandatory 6'iOptional 

I CorxStions 

. properties 

Figure 5-3 Customization of the Execution Type 

To complete the example three, a domain expert selects a task-step with its 

attributes and their details being displayed in the properties view. Selecting the 

90 



context tab in the properties view, the domain expert can change the context level 

value to this task-step. Figure 5-4 shows the GUI in the SMPM to allow 

accomplishment of this customization task. 

:t 6u> Jghcbw feieb 

11 * Process Ey 

: "^ Frcpera?; $ Lf^jgng 

O Step5221c 
' j - iBB. 0- - ConsKten- si ressuro* ana k n # * t o g e avalablg witHn tfw KB 

'r,,c' • <. :• L E V E L 1 -- Refines LEVEL O by restntorq g-«? KB to a specific user a i d as crg&tzason 
context r;. LEVEL 2 - ReJnes i£'»B. i by«f#*mginW-tref,rter-aft}&s sreJtaj* depaxterffles 
QL>=rse5 <..' LEVEL 3 •- PrcA'»3esan iiSttonalrefanernerif to the e-ortext LEVEL 2Srtx^idata mUTQofhtetoficdcWaccteced5 
Pfc)>3(t»s 

Figure 5-4 Customization of the Context Level 

To complete the example four, a domain expert selects a task-step. Its associated 

attribute details will be displayed in the properties view. Selecting the query tab in the 

properties view, there are Available Queries List and Selected Queries List as shown 

in Figure 5-5. Available Queries List lists all of the candidate queries, which are 

potential queries to the selected task-step, but they are not selected and therefore 

invisible to end users. On the other hand. Selected Queries List displays the queries 

which have been selected and made available (display) to end users. The domain 

expert can customize the pre-defined queries by registering new queries to the 

91 



Available Queries List, deleting pre-defined queries from the Available Queries List, 

and moving the pre-defined queries back and forth between the Available Queries List 

and the Selected Queries List. Figure 5-5 displays a GUI interface that allows domain 

experts to accomplish these customization operations. 

ct 6w» i»5ratow a#p 

* tDon)4n<9cph Evter 

i J 9 Process Ex 

f 

. N5.3>'-, 

; : 2 i t >• 5 3 2 ! 0 

i iESBBBSil l SB 
BdJHilBBB 

® S i i B 

I "?2 I 

i S t e p 5 3 2 i b 

context 
* « r i e s 

Pfopertses 

EE_14764_06_Q_5_3_2_l_3_T«h 
. , EEE_ H764_Ce_Q_E_3_2_ l_d_Pd:«Rf«J SfjetS 
< - ! EEE_ 1476-1 iJ«S_<}JF._5_3_2_l_<l 

fej b>s 

Figure 5-5 Customization of the Pre-defined Queries 

In the previous examples we have shown that the domain-specific models can be 

customized, and the SMPM tool environment provides enough support for doing 

process customization. 

5.4 Process Application 

A process instance can be applied to guide maintainers while performing a 

specific maintenance task. A software maintainer perspective, which is equipped with 

92 



abilities to allow queries being executed and feedback collection, has been developed 

in order to provide supports for completing process application. 

5.4.1 Process Instantiation 

Before one can apply a process instance to guide users through a maintenance 

task, it must be instantiated based on a domain-specific model. In order to instantiate a 

process-specific model, a maintainer switches his/her workbench to the software 

maintainer perspective. In the next step a domain-specific model to be instantiated is 

selected in the "domains" folder found in the resource view. Finally, the maintainer 

has to right click this domain-specific model and select "create a new maintainer view" 

item from the popup menu. The newly created process instance will be displayed in 

the "maintainer view" folder after the maintainer has assigned a name to it. Double 

clicking the newly created process instance will invoke the comprehension graph 

editor to display the process instance graphically. Additionally, the hierarchical 

structure of the process instance will be displayed in the outline view and the process 

instance is ready to be navigated and applied. 

5.4.2 Process Navigation 

To navigate a process instance, a software maintainer should first open the 

process instance in the comprehension graph editor. As illustrated in Figure 5-6, 

maintainers can now navigate the process instance using the outline view or 

93 



comprehension graph editor. In our SMPM, there are three different ways to help 

navigate process instances. 

The first approach to navigate process instances is to use outline view. When we 

select an interested process model element in the outline view, its corresponding 

graphical notation will be centralized and focused in the comprehension graph editor 

as shown in Figure 5-6. A marker will also be added to the interested graphical 

notation in the comprehension graph editor to help oriented it in the graph. 

The second approach to navigate process instances is achieved by using 

horizontal and vertical scroll bars as indicated in Figure 5-6. By moving these scroll 

bars, software maintainers can easily navigate the entire process instance in the 

comprehension graph editor. 

The third approach to navigate process instances is achieved by dragging the 

mouse on the comprehension graph editor. This is approach is actually the 

implementation of panning visualization technique as discussed in Section 2.4.1. 

5.4.3 Process Application 

Except process navigation, software maintainers can also apply a process instance 

to help complete their maintenance tasks. 

94 



""" se g? ci> s? rj~ 

3 * 1 
3 «f g- 6t 

S a l * 
I 

h 

i f < 

1 5 

E l ® - . x . 
Ell El 
S B 

Scroll Bar 

to 

e l 

Figure 5-6 The Software Maintainer Perspective in SMPM 

95 



Example Five: The first task-step of the maintenance process is Step 5.2.2.La: 

determine if the maintainer is adequately staffed to implement the proposed 

modification. This task-step is supported by five pre-defined queries. Selecting any of 

these queries will result in it being executed and the results will be displayed in the 

results tab under the properties view. Figure 5-7 shows the results of the query: 

IEEE_14764_06_Q_2_2_l_c_Programmer_Eclipse_Plugins: List all maintainers 

who have previous experience with Eclipse Plug-ins. From the results, maintainers 

know that there are four maintainers/programmers who have experience on Eclipse 

plug-in development. By reviewing background information of these 

maintainers/programmers, maintainers can determine if they have enough qualified 

maintainers/programmers for Eclipse plug-ins development in their organization. 

tEJ. Properties J S>.„. = --': 

I -• Queiy 

f Info Results: 

f Conditions ;" " 
f •- Y " • l x I 
t Result _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
I feedback : I pc :MaridanaOmidbakhsh | 
f I pc :HanyNasr | 
) \ J pc:NinusKhamis | 
! \ j pc:PhilippShugerl | 

Figure 5-7 Display of Query Results 

Table 5-4 lists the results of all of the queries attached to Step5.2.2.1 a. By 

analyzing these results, maintainers can answer the question that arises from Step 

96 



5.2.2.1 a. Similarly, maintainers can execute Step 5.2.2.l.c which is the next to the 

first task-step. Step by step, they go through the entire maintenance process. 

Step 5.2.2.1 a: determine if the maintainer is adequately staffed to 

implement the proposed modification 

Ql 

Q2 

Q3 

Q4 

Q5 

List all programmers/maintainers working on Debrief component 

substitution 

List all programmers who have previous experience with Eclipse 

plug-in 

List all programmers who have previous experience with source 

code 

List all programmers who have previous experience with reverse 

engineering 

List all maintainers assigned to projects, by name of projects and 

programmers respectively 

Results 

4 

maintainers 

4 

maintainers 

4 

maintainers 

4 

maintainers 

4 

maintainers 

Table 5-4: Results of all Queries of Step 5.2.2.1.a 

Example five illustrated that our SMPM can support the visual linking of process 

model elements with their relevant resources and knowledge through the use of query 

elements. This example also demonstrates our SMPM supported the queries execution. 

By analyzing the results of these queries, maintainers received guidance to help 

complete their maintenance tasks. 

97 



5.4.4 Feedback Collection 

During the example five, maintainers might give their feedback and comments in 

the properties view's feedback tab (Figure 5-8) which is along with the process model 

elements. 

__ , — _ _ 
• Properties U -••#Logging. 

i - * 
i '•*' Query 
P 

Irjfo j 
Condbons Opoor Qfair Ogood ©excellent 

Result ' 

l feedback -phis Query has major contribution to the Task-step 

Figure 5-8: Feedback Collection View 

Example Six: Again, we take query: 

IEEE 14764J)6_Q 2 2_]_c Programmer Eclipse_Plugins: List all maintainers 

who have previous experience with Eclipse Plug-ins as example. By reviewing the 

result of this query, maintainers may rank the contribution of this query to the 

containing task-step. In this case, the results returned by query: 

IEEE_14764 06Q2 2 1 _c_Programmer_Eclipse_Plugins had significant 

contribution to answer the question raised in Step 5.2.2. La. Therefore, it has been 

ranked "Excellent". 

Example six demonstrates that our SMPM tool provides a GUI interface to 

collect maintainers" experience and feedback. 

98 



5.5 Discussion and Limitation 

The presented examples demonstrated that our SMPM tool environment can be 

used to enact tailored software maintenance processes as described in Section 3.1, 

which adopted from the IEEE standard. 

The examples show clearly that the proposed process meta-model can be used to 

describe maintenance processes. Graphical notations are simple and can represent 

process model elements in a clear and neat manner. Furthermore, these notations are 

familiar with users because most of them adopted from existing process standards 

such as BPMN and UML. In addition, overview and detail visualization approach has 

been implemented in the SMPM. 

Section 5.4.2 shows that the panning visualization technique has also been 

implemented in the SMPM tool environment. But the zooming visualization has not 

been addressed. The lack of the zooming visualization limits the SMPM to provide 

level of abstraction of maintenance processes in graphical model to its users. It also 

limits the ability of graphically navigating in very large and complicate maintenance 

processes. 

The examples also show that the proposed meta-model does not have fork and 

join constructs, which are popular in some other famous modeling languages such as 

99 



BPEL and UML. According to UML, fork and join constructs are usually used to 

represent parallel processing activities. Specific to our case, the IEEE standard does 

not mention any parallel executing activities in the specification. Therefore, our 

meta-model does not model this kind of behavior. 

From the demonstration of examples, we noticed that our SMPM does not 

support loop construct in the meta-model as many other modeling languages such as 

UML and BPEL do. According to the IEEE standard, activities of problem and 

modification analysis, modification implementation and maintenance 

review/acceptance may be called iteratively if necessary, this actually form a loop 

construct. The lack of the loop construct limits our SMPM tool environment to 

describe these repeatedly occurred activities. 

The presented examples also show that the SMPM does not provide support for 

managing the resources knowledge, for example, managing the information of various 

tools, artefacts and maintainers. This information must be inputted into the KB prior 

to the SMPM running. Finally, the collected feedback and historical data cannot be 

stored into the KB. The lack of this feature limits the context-sensitive support of the 

SMPM. This is due to the fact that the team responsible for developing the KB did not 

deliver APIs to allow "write" operation to the KB. Once the "write" APIs are 

available, this information will eventually be stored into the KB. 

100 



Chapter 6 Related Work 

With regard to process modeling language and meta-model domain, BPEL [21] is 

a process modeling language specific for modeling business processes. But it does not 

provide graphical notations to be able to visualize business processes. BPMN [23] is 

considered as visual process modeling language for modeling business processes. 

Both BPEL and BPMN are executable languages and can be used to model behavior 

aspect of processes. UML [24] is a standardized general-purpose visual modeling 

language in the field of software engineering. Its activity diagram is suitable for 

describing the business and operational processes. However, it can only describe the 

structure and flow of processes, thus it is not an executable language. SPEM [28] is a 

meta-model for modeling processes in software engineering domain. It is a standard 

closely related to the UML, therefore it is also considered as visual language without 

execution ability. 

The meta-model developed in the presented research differs from above modeling 

languages and meta-model in the purpose. It is a meta-model for describing processes 

in software maintenance domain. To be more specific, it is a meta-model describing 

ISO/IEC 14764 [9] software maintenance process. The meta-model comes with a set 

of notations, so it is a visual process modeling language. The meta-model contains an 

execution model element called query which can be executed to extract information 

from the underlying ontology. More importantly, the classification of task-steps into 

101 



mandatory and optional achieves the similar goal of the pick activity in BPEL 

meanwhile keeps the process layout simple and neat. 

Spemmet [66] and APSEE [16] are tool environments for modeling software 

processes. Spemmt has been built on top of the existing SPEM meta-model. In 

contrast, APSEE created its own meta-model and visual notations. Both of tools focus 

on describing the structure aspect instead of behavior aspect of process models. Our 

approach differs from them in 1) it is a meta-model used to describe not only the 

structure but also the behavior aspects of process models; 2) it is a process 

meta-model used to describe software maintenance processes; and 3) the graphical 

notations of our approach adopt from well known modeling languages such as BPMN 

and UML that ordinary users are fimiliar with. 

The Eclipse Process Framework (EPF14) Composer and IBM Rational Method 

Composer (RMC1 ) are two process management tools closely related to the presented 

research. EPF supports various process frameworks, such as OpenUP/Basic, extreme 

programming and Scrum. It can also be used to create new process framework from 

scratch. But RMC is shipped with the RUP process framework. Both of them are built 

on top.of Eclipse platform with the GEF as the foundation for their graphical 

notations. Our SMPM tool environment has also been developed based on the same 

Eclipse platform and took GEF as its graphical infrastructure. But our SMPM differs 

EPF http://www.eclipse.org/epf 
l? RMC http://www.ibm.com/software/awdtools/rmc 

102 

http://www.eclipse.org/epf
http://www.ibm.com/software/awdtools/rmc


from them in that it supports only the ISO/IEC-14764 software maintenance process 

rather than software development processes. Furthermore, RMC constructs reusable 

building blocks as capability patterns which can be used to assemble processes to 

meet specific needs of a given project. Our approach represents reusable processes as 

process templates which can be further customized by domain experts. In addition, 

EPF represents information and knowledge as method contents, while RMC stores 

knowledge using a process content library. Our SMPM stores knowledge using 

ontologies. 

Compared with the IBM Rational Process Advisor [75] (RPA), an application 

developed by IBM Rational for tool integration, our approach differs in its motivation. 

RPA implements the RUP process and attempt to integrate a selected set of software 

development tools within the RUP. Instead of tightly integrating the tools with the 

process model, our approach however focuses on knowledge integration, meaning to 

integrate the knowledge of resources with process model by creating links between 

the process model elements and relevant resources. Therefore, our approach is not 

limited by a set of specific tools. 

103 



Chapter 7 Conclusion and Future Works 

This thesis presented the design a tool environment for enacting software 

mainteannce process models. As discussed throughout the thesis, we have created a 

software mainenance process model by extending the IEEE maintenance process 

model. We have also designed a process meta-model to describe the software 

maintenance process model. And then a set of notations have been created to allow 

graphically represent the maintenance process model elements. Finally, the process 

meta-model and notations have been implemented into a tool environment called 

Software Mainteannce Process Modeller (SMPM). 

A series of examples have been performed to illustrate how the SMPM manages a 

software maintenance process, and how a typical maintenance process can be applied 

to provide guidance for maintainers on performing their maintenance tasks. In 

particular, we also demonstrated the procedures of using our SMPM to create process 

templates, customize the domain-specific model to meet the specific needs of a 

particular domain, and finally apply the process instance to provide guidance for its 

users' maintenance tasks. These examples verified that our SMPM can be used to 

enact maintenance processes. These examples also illustrated that our SMPM can 

support the visuall linking of process model with their relevant resources and 

knowledge through the use of query element. By analyzing the result of the queries, 

maintainers can get guidance to complete their maintenance tasks. 

10-4 



As part of future work, zooming visualization would be implemented to the SMPM 

to provide level of abstraction while graphically display maitnenance processes. 

Another issue for future work is the need to implement the loop construct of the 

meta-model so that it can be used to describe repeatedly occurred activities. 

If the "write" APIs are available as discussed in Section 5.5, the feedback and 

historical data should be stored into the KB instead of storing them in the local 

storage. 

Finally, managing knowledge of various resources such as tools, artefacts and 

maintainers in the SMPM would be desirable. 

105 



Bibliography 

[1] M.-A. D. Storey, "Theories, Methods and Tools in Program Comprehension: Past, Present, 

and Future," in the 13th International Workshop on Program Comprehension (IWPC 2005), 

2005, pp. 181-191. 

[2] Margaret-Anne D Storey, Susan Elliott Sim, and Kenny Wong, "A collaborative 

demonstration of reverse engineering tools," in ACM S/GAPP Applied Computing Review, 

Vol. 10, Issue 1,2002, pp. 18-25. 

[3] A. Von Mayrhauser and A.M. Vans, "Program comprehension during software maintenance 

and evolution," IEEE Computer, pp. 44-55, 1995. 

[4] Juergen Rilling, Wen Jun Meng, Fuzhi Chen, and Philippe Charland, "Software Visualization 

— A Process Perspective ," in 4th IEEE International Workshop on Visualizing Software for 

Understanding and Analysis(VISSOFT), Banff Centre, Alberta, Canada, 2007, pp. 10-17. 

[5] Juergen Rilling, Wen Jun Meng, Rene Witte, and Philippe Charland, "Story Driven Approach 

to Software Evolution," IETSoftware, vol. 2, p. 304-320, August 2008. 

[6] Victor Basili, "Viewing Maintenance as Reuse Oriented Software Development," vol. 7, pp. 

19-25, 1990. 

[7] M. M. Lehman and L. A. Belady, Program evolution: processes of software change. San 

Diego, CA: Academic Press Professional, 1985. 

[8] CMM1 Product Team, CMMI® for Development, Version 1.2. Pittsburgh, PA, USA: Carnegie 

Mellon, Software Engineering Institute. 2006. 

[9] IEEE Std 14764-2006, ISO/IEC 14764 IEEE Std 14764-2006 Software Engineering, Software 

Life Cycle Processes, Maintenance, ISBN: 0-7381-4961-6.: IEEE, 2006. 

[10] Gerardo Canfora and Aniello Cimitile, "Software maintenance," Handbook of Software Eng. 

and Knowledge Eng., 2002. 

[11] H. A. M'uller and K. Klashinsky, "Rigi — A system for programming-in-the-large," in the 

10th International Conference on Software Engineering, 1988, p. 80-86. 

[12] Susan Elliott Sim, Richard C. Holt, and Steve Easterbrook, "On Using a Benchmark to 

Evaluate C++ Extractors," in the Tenth International Workshop on Program Comprehension, 

2002, pp. 114-123. 

[13] M. Lanza and S. Ducasse, "CodeCrawler - An Extensible and Language Independent 2D and 

3D Software Visualization Tool," Tools for Software Maintenance and Reengineering, pp. 74 

- 94, 2005. 

[14] R. Lintern. J. Michaud, M.-A. Storey, and X. Wu, "Plugging-in Visualization: Experiences 

Integrating a Visualization Tool with Eclipse," in ACM Symp. on Software Visualization, 

(Softvis), San Diego, 2003. 

[15] Stephen G. Eick, Joseph L. Steffen. and Jr., Eric E. Sumner, "Seesoft-A Tool for Visualizing 

Line Oriented Software Statistics." in IEEE Transactions on Software Engineering, 1992 , pp. 

106 



957 - 968. 

[16] Carla A. Lima Reis, Rodrigo Quites Reis, Marcelo Abreu, Heribert Schlebbe, and Daltro J. 

Nunes, "Flexible Software Process Enactment Support in the APSEE Model," in the IEEE 

2002 Symposia on Human Centric Computing Languages and Environments (HCC'02), 2002, 

p. 112. 

[17] S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and G. P. Picco, "Modeling and improving an 

industrial software process," in IEEE Transactions on Software, 1995, p. 440-454. 

[18] V. Ambriola, P. Ciancarini, and C. Montangero, "Software process enactment in Oikos," A CM 

SIGSOFT Software Engineering Notes, vol. 15, no. 6, pp. 183 - 192, 1990. 

[19] S.-C. Chou and J.-Y.J. Chen, "Process evolution support in concurrent software process 

language environment," Information and Software Technology, p. 507-524, 1999. 

[20] X. Cr'egut and B. Coulette, "PBOOL : an objectoriented language for definition and reuse of 

enactable processes," Software Concepts & Tools, vol. 18, no. 2, 1997. 

[21] OASIS, Web Services Business Process Execution Language Version 2.0:. OASIS, 2007. 

[22] (2009, June) wikipedia bpel. [Online]. 

http://en.wikipedia.org/wiki/Business Process Execution Language 

[23] OMG, Business Process Modeling Notation Specification.: OMG, 2006. 

[24] OMG, OMG Unified Modeling LanguageTM (OMG UML), Superstructure, 22nd ed.: OMG, 

2009. 

[25] (2009, June) wikipedia UML. [Online]. 
http://en.wikipedia.org/wiki/Unified Modeling Language 

[26] Changyun Li, Jin Gou, Huifeng Wu, and Gansheng Li, "A process meta-model supporting 

domain reuse," 2005 International Software Process Workshop, pp. 459-461, 2005. 

[27] David Hollingsworth, Workflow Management Coalition - The Workflow Reference Model. 

Hampshire, UK: Workflow Management Coalition, 1995. 

[28] OMG, Software & Systems Process Engineering Meta-Model Specification Version 2.0:. 

OMG, 2008. 

[29] Inava Rasovska, Brigitte Chebel-Morello, and Noureddine Zerhouni, "A conceptual model of 

maintenance process in unified modeling language," in the 11th 1FAC Symposium on 

Information Control Problems in Manufacturing (INCOM 2004), Salvador, Brazil, 2004, pp. 

43-48. 

[30] Thomas M Pigoski, Practical Software Maintenance - Best Practices for Managing Your 

Sojhvare Investment. New York, NY: John Wiley & Sons, 1997. 

[31] N. F. Schneidewind, "The State of Software Maintenance," in IEEE Transactions on Software 

Engineering , Piscataway, NJ, USA , 1987, pp. 303-310. 

[32] IEEE Std. 1219, Standard for Sojhvare Maintenance:. IEEE Computer Society Press, 1993. 

[33] B. P. Lientz and E. B. Swanson, Software Maintenance Management: Addison Wesley, 1980. 

[34] Burton Swanson. "The dimensions of maintenance," in the 2nd international conference on 

Software engineering, 1976, pp. 492-497. 

107 

http://en.wikipedia.org/wiki/Business
http://en.wikipedia.org/wiki/Unified


[35] A. A. Takang and P.A. Grubb, Software Maintenance Concepts and Practic. London, UK: 

Thompson Computer Press, 1996. 

[36] H. VAN Vliet, Software Engineering:Principles and Practices, 2nd ed. West Sussex, 

England: John Wiley & Sons, 2000. 

[37] N. Chapin and A. Cimitile, "Announcement," Software Maintenance and Evolution : 

Research and Practice, vol. 13, no. 1, 2001. 

[38] R. Seacord, D. Plakosh, and G. Lewis, Modernizing Legacy Systems: Software Technologies, 

Engineering Processes, and Business Practices.: Addison-Wesley, 2003. 

[39] IEEE Std 1074-1997, IEEE Std 1074-1997 IEEE Standard for Developing Software Life 

Cycle Processes.: IEEE, 1997. 

[40] Filippo Lanubile and Giuseppe Visaggio, "Iterative Reengineering to compensate for 

Quick-Fix Maintenance," ICSM 1995, pp. 140-146, 1995. 

[41] Kagan Erdil et al., Software Maintenance As Part of the Software Life Cycle.: Department of 

Computer Science, Tufts University, 2003. 

[42] Cesar Gonzalez-Perez and Brian Henderson-Sellers, "Modelling software development 

methodologies:A conceptual foundation," Systems and Software, vol. 80, no. 11, pp. 

1778-1796,2007. 

[43] Peter Hofferer, "Achieving Business Process Model Interoperability Using Metamodels and 

Ontologies," in the 15th European Conference on Information Systems (ECJS2007), 2007, pp. 

1620-1631. 

[44] Jean-Marie Favre, "Foundations of Meta-Pyramids: Languages vs. Metamodels - Episode II: 

Story of Thotus the Baboon," in Language Engineering for Model-Driven Software 

Development, 2005. 

[45] Jan Kunstar and Iveta Adamuscinova, "The use of development models for improvement of 

software maintenance," Sapientiae, Informatica, vol. 1, no. 1, pp. 45-52, 2009. 

[46] Peter E. Clark, David Morley, Vinay K. Chaudhri, and Karen L. Myers, "A Portable Process 

Language," in Proc ICAPS Workshop on the Role of Ontologies in Al Planning and 

Scheduling, 2005. 

[47] Benoit Combemale, Xavier Cr'egut, Alain Caplain, and Bernard Coulette, "Towards a 

Rigorous Process Modeling with SPEM," in ICEIS (3) 2006, 2006, pp. 530-533. 

[48] (2009) UML 2 Activity Diagramming Guidelines. [Online]. 

http://www.agilemodeling.com/style/activityDiagram.htm 

[49] Y.K. Leung and M.D. Apperley, "A review and taxonomy of distortion-oriented presentation 

techniques," in ACM Transactions on Computer-Human Interaction (TOCHI), 1994, pp. 126 

- 160. 

[50] M. Eichberg, M. Haupt, M. Mezini, and T. Schafer, "Comprehensive software understanding 

with SEXTANT," in the 21st IEEE International Conference on Software Maintenance 

(ICSM'05). 2005, pp. 315- 324. 

[51] Patrick Baudisch. Nathaniel Good. Victoria Bellotti. and Pamela Schraedley, "Keeping things 

108 

http://www.agilemodeling.com/style/activityDiagram.htm


in context: a comparative evaluation of focus plus context screens, overviews, and zooming," 

in Proceedings of the SIGCHI conference on Human factors in computing systems: Changing 

our world, changing ourselves , 2002, pp. 259 - 266. 

[52] George W. Furnas and Benjamin B. Bederson, "Space-scale diagrams: understanding 

multiscale interfaces," in the SIGCHI conference on Human factors in computing systems, 

Denver, Colorado, 1995, pp. 234 - 241. 

[53] Chris Olston and Allison Woodruff, "Getting Portals to Behave," in the IEEE Symposium on 

Information Vizualization 2000, 2000, pp. 15 - 25. 

[54] M. C. Stone, K. Fishkin, and E. A. Bier, "The movable filter as a user interface tool," in the 
ACM SIGCHI Conference on Human Factors in Computing Systems, Boston, Massachusetts, 

1994, p. 306-312. 

[55] K. Perlin and D. Fox, "Pad: An alternative approach to the computer interface," in the 20th 

International Conference on Computer Graphics and Interactive Techniques, Anaheim, 

California, 1993, p. 57-64. 

[56] Michelle Q. Wang Baldonado, Allison Woodruff, and Allan Kuchinsky, "Guidelines for using 

multiple views in information visualization," in the working conference on Advanced visual 

interfaces, Palermo, Italy, 2000, pp. 110 - 119. 

[57] C. Plaisant, D. Carr, and B. Shneiderman, "Image-Browser Taxonomy and Guidelines for 

Designers," in IEEE Software, 1995, p. 21-32. 

[58] K. Hornbaek and E. Frokjaer, "Reading of electronic documents: the usability of linear, 

fisheye, and overview+detail interfaces," in the SIGCHI conference on Human factors in 

computing systems, Seattle, Washington, 2001, pp. 293 - 300. 

[59] F. M. Monk, P. Walsh, and A. J. Dix, "A comparison of Hypertext, scrolling and folding as 

mechanisms for program browsing," in the Fourth Conference of the British Computer 

Society on People and computers Vol. 4, 1988, pp. 421-435. 

[60] D. V. Beard and J. Q. Walker, "Navigational techniques to improve display of large 

two-dimensional spaces," Behaviour & Information Technology, Volume 9, p. 451 - 466, 

1990. 

[61] Patrick Baudisch, Nathaniel Good, and Paul Stewart, "Focus plus context screens: combining 

display technology with visualization techniques," in the 14th annual ACM symposium on 

User interface software and technology, 2001, pp. 31 - 40. 

[62] T. Schafer and M. Mezini, "Towards More Flexibility in Software Visualization Tools," in 3rd 

IEEE International Workshop on Visualizing Software for Understanding and Analysis 

(VISSOFT'05), 2005, pp. 1 - 6. 

[63] M. F. Kleyn and P. C. Gingrich, "Graphtrace - understanding object-oriented systems using 

concurrently animated views," in Proc. ofOOPSLA, 1988, pp. 191-205. 

[64] B. Shneiderman, "The Eyes Have It: A Task by Data Type Taxonomy for Information 

Visualizations," in IEEE Visual Languages, 1996, pp. 336-343. 

[65] Peter Hautner. (2007, Apil) www.eclipse.org/epf. [Online]. 

http://www.eclipse.org/epf/general/gettinR start ed-php 

109 

http://www.eclipse.org/epf
http://www.eclipse.org/epf/general/gettinR


[66] Tuomas Makila and Antero Jarvi, "Spemmet - A Tool for Modeling Software Processes with 

SPEM," in the 9th International Conference on Information Systems Implementation and 

Modelling, ISIM '06, 2006, pp. 87-94. 

[67] Rodrigo Quites Reis, Daltro Jose Nunes, and Carla Alessandra Gomes de Lima, "Dynamic 

Software Process Manager for the PROSOFT Software Engineering Environment," in 

Symposim on Software Technology (SoST98), 1998, pp. 197-202. 

[68] R. Marshak, "Software to Support BPR - The value of Capturing Process Definitions," 

Workgroup Computing Report, Patricia Seybold Group, Vol. 17, No. 7, 1994. 

[69] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. P.-Schneider, 77?e Description 

Logic Handbook.: Cambridge University Press, 2003. 

[70] V. Haarslev and R. Moller, "RACER System Description," in In Proc. of Int. Joint 

Conference on Automated Reasoning, IJCAR'2001, 2001, pp. 701-705. 

[71] C. Knight and M. Munro, "Mediating Diverse Visualisations for Comprehension," Ninth 

International Workshop on Program Comprehension (IWPC'01), Toronto, Canada, pp. 18-25, 

2001. 

[72] M.-A. D. Storey, C. Best, and J. Michaud, "SHriMP Views: An Interactive Environment for 

Exploring Java Programs," Ninth International Workshop on Program Comprehension 

(IWPC'01), Toronto, Ontario, Canada, pp. 111-112, May 2001. 

[73] Jarke J. van Wijk and Huub Van de Wetering, "Cushion Treemaps: Visualization of 

Hierarchical Information," the IEEE Symposium on Information Visualization(lnfo Vis 

apos;99), pp. 73-78, 1999. 

[74] Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson, "SpaceTree: Supporting 

Exploration in Large Node Link Tree," the IEEE Symposium on Information Visualization 

(lnfoVis'02), pp. 57-64, 2002. 

[75] Jeff Smith, Dan Popescu, and Alfredo Bencomo. (2009, June) IBM Rational Process Advisor. 

[Online]. 

http://www.ibm.com/developerworks/rational/library/06/1212 smith-popescu-bencomo/ 

110 

http://www.ibm.com/developerworks/rational/library/06/1212

