
Formal and Quantitative Approach to Non-Functional Requirements Modeling

and Assessment in Software Engineering

Mohamad Kassab

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

at Concordia University
Montreal, Quebec, Canada

September 2009

©Mohamad Kassab, 2009

1 * 1
Library and Archives Bibliothgque et
Canada Archives Canada

Published Heritage Direction du
Branch Patrimoine de l'6dition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre r6f6rence
ISBN: 978-0-494-63384-7
Our file Notre r6f6rence
ISBN: 978-0-494-63384-7

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondares ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

ABSTRACT

Formal and Quantitative Approach to Non-Functional Requirements Modeling

and Assessment in Software Engineering

Mohamad Kassab, Ph.D.
Concordia University, 2009

In the software market place, in which functionally equivalent products compete

for the same customer, Non Functional Requirements (NFRs) become more

important in distinguishing between the competing products. However, in

practice, NFRs receive little attention relative to Functional Requirements (FRs).

This is mainly because of the nature of these requirements which poses a

challenge when taking the choice of treating them earlier in the software

development. NFRs are subjective, relative and they become scattered among

multiple modules when they are mapped from the requirements domain to the

solution space. Furthermore, NFRs can often interact, in the sense that attempts

to achieve one NFR can help or hinder the achievement of other NFRs at

particular software functionality. Such an interaction creates an extensive

network of interdependencies and tradeoffs among NFRs which is not easy to

trace or estimate.

This thesis contributes towards achieving the goal of managing the attainable

scope and the changes of NFRs. The thesis proposes and empirically evaluates a

formal and quantitative approach to modeling and assessing NFRs. Central to

such an approach is the implementation of the proposed NFRs Ontology for

in

capturing and structuring the knowledge on the software requirements (FRs and

NFRs), their refinements, and their interdependencies.

In this thesis, we also propose a change management mechanism for tracing the

impact of NFRs on the other constructs in the ontology and vice-versa. We

provide a traceability mechanism using Datalog expressions to implement

queries on the relational model-based representation for the ontology. An

alternative implementation view using XML and XQuery is provided as well.

In addition, we propose a novel approach for the early requirements-based effort

estimation, based on NFRs Ontology. The effort estimation approach

complementarily uses one standard functional size measurement model, namely

COSMIC, and a linear regression technique.

IV

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mohamad Kassab

Entitled: Formal and Quantitative Approach to Non-Functional Requirement

Modeling and Assessment in Software Engineering

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science and Software Engineering)

complies with the regulations of the University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee:

Chair

External Examiner
Dr. Hakim Lounis

Examiner
Dr. Peter Grogono

Examiner
Dr. Anjali Agarwal

Examiner
Dr. Rene Witte

Thesis Supervisor
Dr. Olga Ormandjieva

Thesis Supervisor
Dr. Maya Daneva

Approved by
Chair of Department or Graduate Program Director

20 .
Dean of Faculty of Engineering and Computer Science

u

Acknowledgments

I would like to thank my two supervisors for their astute, invaluable support,

insightful comments, positive criticism, and friendship: Dr. Olga Ormandjieva

from the department of Computer Science at Concordia University in Montreal

and Dr. Maya Daneva from the department of Information Systems at University

of Twente in Enschede, The Netherlands.

I would like to thank all my colleagues in the Computer Science and Software

Engineering department at Concordia University, as well as the staff of the

department for their commitment to further education.

On a personal note, I acknowledge that it is impossible for me to express in words

alone the full extent of my appreciation and gratitude owed to my family for their

unconditional love and support.

Table of Contents

List of Figures x

List of Tables xiii

CHAPTER I: INTRODUCTION 1

1.1 Motivation 1

1.2 Problem Statement 5

1.3 Research Goals 8

1.4 Research Outline 8

1.5 Major Contributions 12

1.6 Outline of the Dissertation 13

CHAPTER II: RELATED WORK ON EARLY TREATMENT METHODS
OF NFRS IN SOFTWARE ENGINEERING 14

2.1 Introduction 14

2.2 NFR Framework 15

2.3 Incorporating NFRs with UML Models 19

2.4 Treating NFRs with Aspect Orientation 24

2.5 Discussion 33

CHAPTER III: RESEARCH METHODOLOGY 36

3.1 Introduction 36

3.2 Methodology 36
3.2.1 Phase 1: Building a Formal Model for NFRs and their Relations..: 38
3.2.2 Phase 2: Changes Management Mechanism for Tracing Impact of NFRs on Other

-Constructs in the Ontology and vice versa 39
3.2.3 Phase 3: NFRs Effort Estimation 40

3.3 Case Studies 41
3.3.1 NOKIA Mobile Email Application System 41
3.3.2 IEEE Montreal Website 42
3.3.3 SAP Project 43

3.4 Applicability 44

vi

CHAPTER IV: AN ONTOLOGY BASED APPROACH TO NON-
FUNCTIONAL REQUIREMENTS CONCEPTUALIZATION 45

4 . 1 Introduction 45

4 . 2 Background 48
4.2.1 Ontologies in Software Engineering 48
4.2.2 OWL 49

4 . 3 Development Process of a Common Foundation 52
4.3.1 NFRs Ontology Requirements 53
4.3.2 NFRs Ontology Design 55
4.3.3 Deductive Approach 57
4.3.4 NFRs Ontology Implementation 58

4 . 4 Development of Common NFRs Terminology 58
4.4.1 Initial terms 59

4 . 5 NFRs Conceptual Model 64
4.5.1 Intermodel Dependency View 67

4 . 5 . 1 . 1 Association to FR (or derived e lements) 69
4 . 5 . 1 . 2 Association to process 71
4 . 5 . 1 . 3 Association to product 71
4 . 5 . 1 . 4 Association to resource 71

4.5.2 Intramodel dependency view 72
4 . 5 . 2 . 1 NFRs type 72

4.5.2.1.1 Quality Requirements 74
4.5.2.1.2 Design Implementation Constraint 79
4.5.2.1.3 Economic Constraint 80
4.5.2.1.4 Operating Constraint 80
4.5.2.1.5 Political / Cultural Constraint 80

4 . 5 . 2 . 2 Decomposit ion 80
4 . 5 . 2 . 3 Operationalization 82
4 . 5 . 2 . 4 Interactivity 84

4.5.3 NFRs Measurement View 88

4 . 6 Evaluation 91

4 . 7 Related Work 99

CHAPTER V: A TRACEABILITY MECHANISM FOR CHANGE
MANAGEMENT OF NON-FUNCTIONAL REQUIREMENTS 106

5 . 1 Introduction 106

5 . 2 Related work 109

5 . 3 Relational data model for tracing requirements I l l
5.3.1 Impact of Changes to Functional Models on NFRs 114
5.3.2 Impact of Changes to Nonfunctional Models on Functional Models 115
5.3.3 Impact of Changes to NFRs on Lower-/Higher-Level NFRs 116
5.3.4 Impact of Changes on Interacting Associations 117

vii

5-4 Alternative Implementation: XML-Based representation and XQuery
implementation 117

5 . 5 Traceability Mechanism . 121

5 . 6 Evaluation and Demonstration of the Improvements due to Traceability Queries
122

5 . 7 Conclusion 127

CHAPTER VI: SOFTWARE EFFORT ESTIMATION BASED ON
FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS 128

6 . 1 Introduction 128

6 . 2 Software Size Estimation 131
6.2.1 Aspects of Size 131

6 . 2 . 1 . 1 Length 132
6.2.1.1.1 Length of Code 133
6.2.1.1.2 Length of Specifications and Design 133

6 . 2 . 1 . 2 Complexity 133
6.2.1.2.1 Problem Complexity 133
6.2.1.2.2 Algorithmic Complexity 134

6 . 2 . 1 . 3 Functionality 135
6.2.2 The COSMIC Method 137

6 . 3 The Relationship between Functional Size and Effort 140
6.3.1 Study by Maxwell and Forselius 141
6.3.2 Study by Angelis, Stamelos and Morisio 142
6.3.3 Study by Liebchen and Shepperd 143
6.3.4 Summary of Other Studies 144
6.3.5 Factors in the Use Case Points estimation method (UCP) 145
6.3.6 Cost Drivers in COCOMO 81 146
6.3.7 Cost drivers in COCOMO II 148
6.3.8 Discussion 149

6 . 4 Non-Functional Requirements Size Measurement Method (NFSM) with COSMIC
151

6 . 5 Measuring the effort of NFRs 159
6.5.1 Estimation Models: Background 161
6.5.2 The solution proposal: Effort estimation model 166

6.6 The Case Study 172

6 .6 Conclusion 179

CHAPTER VII: CONCLUSION AND FUTURE WORK 181

7 . 1 Conclusion 181

7 . 2 Future Work on Characterizing NFRs 188

7 . 3 Future Work on NFRs Traceability 195

vm

7.4 Future Work on Effort Estimation considering the impact of NFRs 196

References 197

APPENDIX A: 215

ix

List of Figures

Figure l-i: Basili et al. Framework 9

Figure 2-1: Softgoal Interdependency Graph for Performance and Security in A
Credit Card System 17

Figure 2-2: NFR Association Points in a Use-Case Diagram 21

Figure 2-3: Summary to Approaches Incorporating NFRs into UML 24

Figure 2-4: Conceptual Design Model With One Architecture 31

Figure 2-5: Proposed Model to Integrate NFRs Early in The Software
Development Process 33

Figure 3-1: Thesis Methodology 37

Figure 3-2: Mobile Email Solution 42

Figure 4-1: A Snapshot of The NFRs Ontology in Protege 52

Figure 4-2: Relation Between Taxonomy and Glossaiy.. 56

Figure 4-3: Common Terminology Derived from Different Perspectives 59

Figure: 4-4: NFRs Taxonomy 66

Figure 4-5: NFRs Intermodel Dependency View 68

Figure 4-6: NFRs Intramodel Dependency View 73

Figure: 4-7 Quality in The Software Life Cycle 75

Figure: 4-8 Quality Requirements Taxonomy 77

Figure: 4-9 (A): Asserted Model for Accuracy Quality 78

Figure: 4-9 (B): Inferred Model for Accuracy Quality 78

Figure 4-10: Design/Implementation Taxonomy 79

Figure: 4-11: Implicit Relations Among NFRs and Association Points 82

Figure: 4-12: Inferred Taxonomy for Operationalizations 83

Figure 4-13: Implicit Relations Among NFRs, Operationalizations and
Associationpoints 83

Figure: 4-14: Conflicts Between Two NFRs . 88

Figure: 4-15: NFR Measurement View 90

Figure 4-16: Instantiated NFRs Ontology Against IEEE Montreal Website Case
Study 94

Figure 4-17: Steps Towards Instantiating NFRs Ontology 96

Figure 4-18: Snapshot from The NFRs Ontology-Individuals Tab- (Screen 1). ..97

Figure 4-19: Snapshot from The NFRs Ontology-Individuals Tab- (Screen 2). ..98

Figure 4-20: Snapshot from The NFRs Ontology-Individuals Tab- (Screen 3)...98

Figure 5-1: Schematic Representation Of Some Concepts and Relations Presented
in Figures 4-5 and 4-6 113

Figure 5-2: Illustration Of FR and NFR Relations Through The Email System. 114

Figure 5- 3: DTD Structure Representation for NFRs 118

Figure 5-4: DTD Structure Representation for FR 118

Figure 5-5: DTD Structure Representation for NFR Decomposition 119

Figure 5-6: NFR-Tracing Activities 121

Figure 5-7: Number of Executed Test Cases: Dynamically Generated Test Cases
vs. Fixed Set of Sanity 126

Figure 5-8: Number of Defects: Dynamically Generated Test Cases vs. Fixed Set
of Sanity 126

Figure 6-1: The Cone Of Uncertainty Based on Common Project Milestones.... 129

Figure 6-2: Generic Flow of Data Attributes Through Software from A Functional
Perspective 139

Figure 6-3: General Procedure for Measuring Software Size With The COSMIC
Method - Iso 19761 140

Figure 6-4: A View of The NFRs Ontology Instantiated in The Context Of The
COSMIC Method 153

Figure 6-5: Illustration of FR and NFR Relations Through The Mobile Email
System Case Study 154

Figure 6-6: Production Model With Fixed Cost and Variable Costs 162

Figure 6-7: Production Model With No Fixed Cost 164

Figure 6-8: Visual Identification Of Projects With a Smaller and Higher Unit
Cost 166

Figure 6-9: Mapping of the NFRs Concepts to the Steps of Measuring the
Effort 168

Figure 6-10: A Regression Model for Functional Requirements from Previously
Completed Projects: Requirement Level 1.75

Figure 6-11: A Regression Model for Previously Completed Projects: Project Level
177

Figure 7-1: Conflict Resolution Through Added Dimensions 190

Figure 7-2: Conflict Situation in The Problem Space View Model 191

Figure 7-3: An Example Of Cost Conflict Resolution Through an Added
Dimension 193

List of Tables

Table 4-1: Approaches to Ontology Design 57

Table 4-2: Definitions Of The Term 'Non-Functional Requirement(S)' 61

Table 4-3: NFR Operationalizations and Candidate Minor Contradictions 87

Table 4-4: Summary Of Numbers Of Individuals Instantiated Of NFRs
Ontology 9
3

Table 4-5: Comparison Between Several Broad Quality Taxonomies 105

Table 5-1: Collected Results from Test Executions Of Nokia Mobile Email
Application 124

Table 6-1: Concepts, FSM Methods and Description 136

Table 6-2: Factors Affecting Productivity By Pekka Forselius 142

Table 6-3: Factors Affecting Productivity By L. Angelis 143

Table 6-4: Factors Affecting Productivity By Martin Shepperd 143

Table 6-5: Factors Affecting Phase Distribution for Software Development Effort.
145

Table 6-6: Technical Complexity Factors in UCP 146

Table 6-7: Environmental Complexity Factors in UCP ...146

Table 6-8: Cost Drivers in COCOMO 81 147

Table 6-9: Cost Drivers in COCOMO II Early Design Model. 148

Table 6-10: Cost Drivers in COCOMO II Post Architecture Model 149

Table 6-11: General System Characteristics in IFPUG 150

xni

Table 6-12: The ISO FSM Standards 151

Table 6-13: Client Component ("Send A Message" Functionality) 155

Table 6-14: Gateway Component ("Send A Message" Functionality) 156

Table 6-15: Client Component ("Read A Message" Functionality) 156

Table 6-16: Gateway Component ("Read A Message" Functionality) 157

Table 6-17: NFRs from IEEE-Montreal Project 173

Table 6-18: Operationalizations for NFR3 (IEEE-Montreal Project) 174

Table 7-1: Linking Research Questions to their Corresponding Answers 182

Table 7-2: Applicability of Approaches Resulting from This Thesis 186

Table A-i:Quality Requirements Hierarchy 215

xiv

Chapter Is Introduction

"When I'm working on a problem, I never think about beauty. I think only how
to solve the problem. But when I have finished, if the solution is not beautiful, I

know it is wrong."
R. Buckminster Fuller (1895 - 1983).

1.1 Motivation

In the early phases of software development, user requirements are established

based on an analysis of business goals and of the application domain.

Subsequently, architectures of the desired systems are designed and

implemented. During this development process, requirements are usually

exposed to many changes, as the availability of knowledge on the system under

development increases [Jac07].

Software systems are characterized both by their functional behavior (what the

system does) and by their nonfunctional behavior (how the system behaves with

respect to some observable attributes like reliability, reusability, maintainability,

etc.). In the software market place, in which functionally equivalent products

compete for the same customer, Non Functional Requirements (NFRs) become

more important in distinguishing between the competing products. However, in

practice, NFRs receive little attention relative to Functional Requirements (FRs)

[WW03]. This is mainly because of the nature of these requirements which poses

a challenge when taking the choice of treating them at an early stage of the

development process. NFRs are subjective, relative and they tend to become

scattered among multiple modules when they are mapped from the requirements

domain to the solution space. Furthermore, NFRs can often interact, in the sense

that attempts to achieve one NFR can help or hinder the achievement of other

NFRs at particular software functionality. Such an interaction creates an

extensive network of interdependencies and tradeoffs among NFRs which is not

easy to trace or estimate [CNYMoo]. Nevertheless, reports consistently indicate

that neglecting NFRs can lead to catastrophic project failures, or, at the very

least, to considerable delays and consequently to significant increases in the final

cost. The following list provides valid examples:

• London Ambulance System (LAS) [FD96]: In 1992, The London Ambulance

Service introduced a new computer-aided dispatch system which was intended to

automate the system that dispatched ambulances in response to calls from the

public and the emergency services. This new system was extremely inefficient

and ambulance response times increased markedly. Shortly after its introduction,

it failed completely and LAS reverted to the previous manual system. The failure

of the system was mainly due to a failure to consider "human and organizational

factors" in the design of the system.

• Mars Climate Orbiter [BLF99]: This was one of two NASA spacecrafts in the

Mars Surveyor '98 program. The mission failed because of software

"interoperability" issue. The craft drifted off course during its voyage and entered

a much lower orbit than planned, and was destroyed by atmospheric friction. The

metric/imperial mix-up which destroyed the craft was caused by a software error

back on Earth. The thrusters on the spacecraft which were intended to control its

rate of rotation were controlled by a computer which underestimated the effect of

the thrusters by a factor of 4.45. This is the ratio between a pound force - the

2

standard unit of force in the imperial system - and a Newton, the standard unit in

the metric system. The software on Earth was working in pounds force, while the

spacecraft expected figures in Newton.

• Therac 25: The Medical Linear accelerator [LT93]: This was a radiation

therapy machine. It was involved with at least six accidents between 1985 and

1987, in which patients were given massive overdoses of radiation, approximately

100 times the intended dose. Three of the six patients died as a direct

consequence. These accidents highlighted the dangers of software control of

"sq/ety"-critical systems, and they have become a standard case study in health

informatics.

• Siemens: Possible Hearing Damage in Some Cell Phones [SIEMENS04]: In

2004, Siemens issued a "safety" warning that some of its cell phones may have a

software problem that could cause them to emit a loud noise, possibly causing

hearing loss for the phone user. The malfunction happens only if, while the phone

is in use, the battery runs down to the point that the phone automatically

disconnects the call and begins to shut down.

• The New Jersey Department of Motor Vehicles' licensing system [Bab8s]:

This system was written in the fourth-generation programming language, ideal to

save development time. When implemented, the system was so slow that at one

point more than million New Jersey vehicles roamed the streets with

unprocessed license renewals. The project aimed at satisfying "ajfordability" and

"timeliness" objectives, but failed due to"performance scalability" problems.

• The initial design of the ARPANet Interface Message Process software [BI96]:

This project focused on "performance" at the expense of "evolvability" by

designing an extremely tight inner loop.

• The National Library of Medicine MEDLARS II system [BI96]: The project

was initially developed with many layers of abstraction to support a wide range of

future publication systems. The initial focus of the system was towards improving

"portability" and "evolvability" qualities. The system was scrapped after two

expensive hardware upgrades due to "performance" problems.

Despite this obvious importance and relevance of NFRs, they are almost always

left to be verified after the implementation is finished, which means NFRs are not

mapped directly and explicitly from requirements engineering to implementation

[SURVEYi]. This is mainly due to the enormous pressure towards deploying

software as fast as possible. This leaves software development with potential

exacerbation of the age-old problem of requirements errors that are not detected

until very late in the process. The authors of [NLCoo] enumerate some of the

well-known problems of the software development due of the NFRs omission: (i)

Cost and schedule overruns, (ii) Software systems discontinuation and (iii)

Dissatisfaction of software systems users. For all that, it is important to affirm

that NFR should affect all levels of software life cycle and shall be identified as

soon as possible and their elicitation must be accurate and complete.

4

1.2 Problem Statement

Once a software system has been deployed, it is typically straightforward to

observe whether or not a certain FR has been met, as the areas of success or

failure in their context can be rigidly defined. However, the same is not true for

NFRs as these can refer to concepts that can be interdependent and difficult to

measure.

The problem of lacking any early NFR integration within the specified system is

likely to cause an increase in the effort and maintenance overhead [SDM05]. The

importance of software compliance with the imposed NFRs requires management

of their scope, which brings up the importance of clearly defining, tracing and

effort estimating the complex and frequently ill-defined NFRs and their

interrelations in increasingly complex large-scale software system.

This thesis identifies three major areas to investigate:

1- NFRs Conceptualization: In general, and because of their diverse nature,

NFRs have been (at best) specified in loose, fuzzy terms that are open to wide

ranging and subjective interpretation. As such, they provide little guidance to

architects and engineers as they make the already tough trade-offs necessary to

meet schedule pressures and functionality goals. For instance, most software

engineering approaches [IEEE98], [JBR99], [Gra92] and industrial practices

specify NFRs separately from FRs of a system. This is mainly because the early

integration of NFRs is difficult to achieve and usually accomplished at the later

phases of the software development process. However, since the integration is

not supported from the requirements phase to the implementation phase, some

of the software engineering principles such as abstraction, localization,

modularization, uniformity and reusability, can be compromised. Furthermore,

the resulting system is more difficult to maintain and evolve.

Instead, NFRs need to be made precise and clear right from the requirements

phase. But in order to be able to specify the NFRs in precise terms, there must be

a general understanding to what the term NFR stands for, and what are the

relations that the NFR may be exposed to during the lifecycle of the project. In

fact/although the term "non-functional requirement" has been in use for more

than 20 years, there is still no consensus in the requirements engineering

community what NFRs are and what are relations that an individual NFR may

participate in.

2- NFRs Traceability: According to recent publications [KIC05], [Danos],

[BKW03] and [FEoo] in requirements engineering, there is a multifaceted gap

between requirements and the developed solution. Traditional software

development approaches do not address this gap. For example, architectural

design methods that link architecture to requirements make architecture a

central concern. These methods use requirements as input only or as a standard

for evaluation [BCK03] and [CKK01] and disregard current requirements

engineering processes. Frequently, existing approaches fail to convey change,

rationale, options, and organizational implications of requirements or of solution

designs [TA05]. The gap between requirements engineering and solution design

seems to be essentially a problem of traceability.

6

Traceability has so far been tackled mainly qualitatively, identifying related

elements in requirements engineering and solution to visualize those elements of

solution impacted by changing requirements and vice versa.

Tracing NFRs from requirements engineering to solution design poses further

challenges as these requirements tend to scatter among multiple modules when

they are mapped from the requirements domain to the solution space. Another

challenge arises as the existing approaches to model NFRs lack an adequate

specification of the semantics of NFRs, which leads to inconsistent

interpretational uses of these requirements.

3- Effort Estimation of building NFRs: Estimating the effort is an important

task in software project management [EDBS04]. A realistic effort estimation

right from the start in a project gives the project manager confidence about any

future course of action, since many of the decisions made during development

depend on, or are influenced by, the initial effort estimations. NFRs are very

challenging when estimating the effort and the time it would take to implement

them [CNYMoo]. This is mainly because of the unique nature of these

requirements: NFRs are subjective, relative, interacting and crosscutting.

However, it is crucial to be able to make decisions about the scope of software by

given resources and budget based on a proper estimation of building both FRs

and NFRs.

7

1.3 Research Goals

Drawing on the discussion in the previous section, the goal of this research

contributes to a formal, integrated and quantitative approach to modeling and

assessing NFRs. The research aims at: building a systematic and formal approach

to NFRs modeling, tracing, impact detection and effort estimation from the early

stages of the software development process. Central to such an approach is the

definition of the NFRs Ontology for capturing and structuring the knowledge on

the software requirements (FRs and NFRs), their refinements, and their

interdependencies.

This research contributes towards achieving the overall goal of managing the

attainable scope and the changes of NFRs.

The key research questions that will drive us towards achieving the research goals

are discussed in the methodology section (Chapter 3, Section 3.2).

1.4 Research Outline

In order to facilitate the introduction of the body of work completed in this thesis,

we have used the Basili et al. framework [BSH86] and [Bas96] to help in

outlining the thesis work process, as well as to provide classification scheme for

understanding and evaluating the thesis. A schematic representation of this

framework is presented in Figure 1-1.

8

I Definition

Motivation Object Purpose Perspective Domain Scope

II Planning

Design Criteria Measurement

III Operation

Preparation Execution Data Analysis

IV Interpretation

Context of Interpretation Extrapolation

Figure 1-1: Basili et al. Framework [BSH86]

The framework consists of four categories corresponding to phases of: l)

Definition, 2) Planning, 3) Operation and 4) Interpretation.

During the definition phase, an intuitive understanding of a high-level problem is

developed into a precise specification that could contribute to its solution.

The study definition phase contains six parts: 1) Motivation, 2) Object, 3)

Purpose, 4) Perspective, 5) Domain and 6) Scope.

The Motivation component identifies the high-level problem to be tackled and it

was presented in Section 1.1 of this chapter.

The Object component defines the principal entity being studied which

corresponds to the NFR in the software development process.

The Purpose is the explicit problem to be resolved which; as described in Section

1.2 of this chapter, corresponds to (i) characterize the concept of NFR and its

relations with other concepts in the requirements engineering discipline, (ii)

9

improve the NFRs traceability practice and (iii) predict the effort of building the

software project taking the NFRs into consideration.

The Perspective specifies from what point of view the explicit problem will be

addressed. In our study, this corresponds to the researchers in the requirements

engineering field and the participators in software industry.

This thesis represents: (i) an observational study, where there are no controlled

variables and (ii) an experimental study [BSH86], [WRHRWoo], [JMoi] and

[Bas96]; where at least one treatment or controlled variable exists.

Usually, an experiment in software engineering has two domains [BSH86] and

[Bas96]: Team and project. Teams (comprising one or more members) work on

software projects that attempt to resolve an issue, in terms of a software

deliverable (manual, program and specifications). A general classification of the

scope of experiments can be obtained by examining the sizes of the two domains

considered. Four combinations of domains are possible: One team working on

one project (single project), many teams working on one project (replicated

project), one team working on many projects (multiple-project variation) and a

combination of many teams and projects (blocked subject-project).

On the other hand, the observational study has two domains: Number of sites

included and whether or not a set of study variables are determined a priori.

Whether or not a set of study variables are predetermined by the researcher

separates the pure qualitative study, (no a priori variables isolated by the

observer), from the mix of qualitative and quantitative analysis, where the

observer has identified, a priori, a set of variables for observation. The four

possible combinations of the domains which form the possible scope for an

10

observational study are: One site where a priori has been identified (case study),

one site where a priori has not been identified (case qualitative study), more than

one site where a priori has been identified (field study), more than one site where

a priori has not been identified (field qualitative study).

There are several attributes which characterize this thesis study depending on the

identified purpose:

1- Characterizing NFRs: this is an observational study in which the evaluation is

performed through field study with both students not experienced in the study of

domain (novice) and people with experience in the study of domain (experts).

The evaluation has been conducted in the field under normal conditions (vivo).

2- NFRs traceability: This is an observational study which has been discussed

through a context of a case study and which has been evaluated by multi-project

variation experiment. The evaluation has been conducted with experts from the

NOKIA team in Montreal and has been conducted under normal working

conditions (vivo).

3- NFRs Effort Estimation: This is an observational study which has been

evaluated by case study. The evaluation has been conducted by students which

are not experienced in the domain of the research study (novice) and has been

run in the field under normal conditions (vivo).

Our thesis work was planned in detail in the second phase of the framework.

During the design step, the case studies were selected (see Chapter 3, Section

3.3). The direct and indirect criteria or factors that are related to the thesis'

purpose were identified. Then, the measures designed to quantify these direct

and indirect criteria were determined.

n

The thesis work itself is actually carried out during the third phase of the

framework: Training was given when it is required for the team that will be

taking the measurements. Data are collected, analyzed and evaluated during the

execution of the case studies. These data are then analyzed using suitable

techniques chosen during the design step as would be explained in this thesis.

1.5 Major Contributions

The major contributions of this thesis have been published (or accepted for

publishing) in the following book [KOD10], journal [SOKH09], conference

proceedings and workshops [KODo9b], [KODo9a], [KODo8c], [KODo8b],

[KODo8a], [KOD07b], [KODoya], [KD007a], [DKPWO07], [KO06], [KDOo7b]

and [KDO09].

While this research work blends the disciplines of software measurement,

requirements engineering, and software architectural design in a cohesive

fashion, the novelty of our approach lies in the following aspects:

1- It proposes a formal model for NFRs and their relations. The model is captured

through a Common Foundation for NFRs, i.e. the shared meaning of terms and

concepts in the domain of NFRs. The Common Foundation will be realized by

developing a problem domain ontology for NFRs and related domain knowledge.

This NFRs Ontology is adequate for projects taking into consideration the NFRs

and their relations earlier in the software development and throughout the life

cycle.

12

2- It provides a mechanism for NFRs conflicts identification based on the

constructed ontology.

3- It proposes a change management mechanism for tracing the impact of NFRs

on the other constructs in the ontology and vice versa, and provides a traceability

mechanism using Datalog expressions to implement queries on the relational

model-based representation for the ontology. An alternative implementation view

using XML and XQuery is provided as well.

4- It provides a flexible, yet systematic approach to the early requirements-based

effort estimation, based on NFRs Ontology. It complementarily uses one

standard functional size measurement model and a linear regression technique.

1.6 Outline of the Dissertation

The rest of this thesis is organized as follows: Chapter 2 presents related work on

existing approaches of treatments for NFRs in software engineering; Chapter 3

presents our research methodology. Chapter 4 presents the NFRs Ontology work.

Chapter 5 proposes a traceability mechanism for change management of NFRs.

Chapter 6 proposes a software effort estimation approach based on both FRs and

NFRs. Chapter 7 concludes the thesis and discusses future research extensions.

13

Chapter II: Related Work on Early
Treatment Methods of NFRs in
Software Engineering

"Your true value depends entirely on what you are compared with."
Bob Wells (1966-)

2.1 Introduction

Most of the early work on NFRs focused on measuring how much a software

system is in accordance with the set of NFRs that it should satisfy, using some

form of quantitative analysis [Boe78], [FP97], [KKP90] and [Lyu96] offering

predefined metrics to assess the degree to which a given software object meets a

particular NFR. Those approaches that are concerned with measuring how much

software complies with NFRs are called product-oriented approaches. On the

contrary, process-oriented approaches focus on the software development

process. It aims to help software engineers searching for alternatives to

sufficiently meet NFRs while developing the software.

Our major contribution presented in this thesis (see Chapter 1, Section 1.5)

explores the NFRs under the umbrella of the process-oriented approaches.

Instead of evaluating the final software product, the emphasis here is on trying to

rationalize the development process itself in terms of NFRs for the purpose of

characterizing them, improving their traceability and predict their effort at an

early stage of the development process.

14

In this chapter, we will introduce three categories of related work of interest to

treat NFRs earlier during the development process; namely: (i) NFR Framework,

(ii) incorporating NFRs into UML models and (iii) Aspect-Orientation. These

three categories are presented in sections 2.2, 2.3 and 2.4 of this chapter. We also

present in Section 2.5 a comprehensive critique to the three major approaches.

We make the note that the scope of the related work included in this chapter is

generic and it includes approaches to incorporate NFRs into the earlier models of

the software development process. The related work focused on the topics of

NFRs conceptualization, NFRs traceability and NFRs effort estimation is

provided separately in chapters 4, 5 and 6, correspondingly.

2.2 NFR Framework

The NFR framework [CNYMoo] is a process-oriented and goal-oriented

approach that is aimed at making NFRs explicit and putting them in the forefront

in the stakeholder's mind. It requires the following interleaved tasks, which are

iterative:

Task 1. Acquiring knowledge about the system's domain, FRs and the particular

kinds of NFRs for a particular system;

Task 2. Identifying NFRs as NFR softgoals and decomposing them into a finer

level;

Task 3. Identifying the possible design alternatives for meeting NFRs in the

target system as operationalizing softgoals;

Task 4. Dealing with ambiguities, tradeoffs, priorities and interdependencies

among NFRs and operationalizations;

Task 5. Selecting operationalizations;

Task 6. Supporting decisions with a design rationale;

Task 7. Evaluating the impact of operationalization selection decisions on NFR

satisfaction.

A cornerstone of this framework is the concept of the "softgoal", which is used to

represent the NFR. A softgoal is a goal that has no-clear cut definition or criteria

to determine whether or not it has been satisfied. In fact, the framework speaks

of softgoals being "satisficed" rather than satisfied, to underscore their ad hoc

nature, both with respect to their definition and to their satisfaction. The term

"satisfice" was coined by Herbert Simon [Sim8i]. Satisficing is a decision-making

strategy that attempts to meet criteria for adequacy, rather than to identify an

optimal solution.

The operation of the framework can be visualized in terms of the incremental and

interactive construction, elaboration, analysis and revision of a softgoal

interdependency graph (SIG). Figure 2-1 presents an example of a SIG with NFR

softgoals representing requirements for performance and security of customer

accounts in a credit card system. In the SIG, all softgoals are given Type[Topici,

Topic2,...] nomenclature. For the NFR softgoal, Type indicates the NFR concern

and Topic indicates the NFR context.

NFRs softgoals are depicted by a cloud in the SIG. Architects further refine the

NFRs into a suitable set of NFR softgoals. In doing so, they aim to find solutions

in the target system that will satisfice the NFR softgoals. These solutions are

16

called operationalizations, and are depicted by clouds with a thick border. High-

level softgoals are refined into more specific subgoals or operationalizations. In

each refinement, the offspring can contribute fully or partially, and positively or

negatively, towards satisficing the parent. In Figure 2-1, both space and response

time should be satisficed for the performance to be satisficed. The AND

contribution is represented by a single arc, and the OR by double arcs.

Performance[Account] Security[Account]

signature

Figure 2-1: Softgoal Interdependency Graph for Performance and Security in a
Credit Card System [CNYMoo].

Other types of contributions are: MAKE (++), HELP (+), HURT (-) and BREAK

(—). While making choices in pursuit of a particular softgoal, it is very likely that

other softgoals may be affected in this decision-making process. This is shown

with interdependencies among the softgoals (the dashed lines in the figure). For

17

example, UseUncompressedFormat has a negative contribution with respect to

Space.

During the evaluation step, which was labeled Task 7, the NFR framework applies

propagation rules to determine to what extent the models satisfice the NFR

softgoals. Some detailed propagation rules are given in [CNYMoo]; however, the

following simplified propagation rules (labeled Ri to R6) summarize Task 7.

Ri. If most of the contributions received by a leaf NFR softgoal are positive

(MAKE or HELP), then that leaf NFR softgoal is considered to be satisficed.

R2. If most of the contributions received by a leaf NFR softgoal are negative

(BREAK or HURT), then that leaf NFR softgoal is considered to be denied or not

satisficed.

R3. In the case of priority softgoals, or when there is a tie between positive and

negative contributions, the system architect or the developer can make the design

decision based on / or a variation of Ri and R2.

R4. In the case of the AND contribution, if all the child's softgoals are satisficed

then the parent NFR softgoal is satisficed; otherwise, the parent's softgoal is

denied.

R5. In the case of the OR contribution, if at least one child softgoal is satisficed,

then the parent NFR softgoal is satisficed; otherwise, the parent softgoal is

denied.

R6. In the case of a refinement (only one child), the parent is satisficed if the

child is satisficed; and the parent is denied if the child is denied.

18

2.3 Incorporating NFRs with UML Models

In [MAB02], [PKL04], [AMBR02] and many others; early integration of NFRs is

accomplished by extending UML models to integrate NFRs to the functional

behavior.

Supakkul et al. propose a use case and goal-driven approach to integrate FRs and

NFRs in [SC04]. They use the UML use case model to capture functionality of the

system and they also use the NFR Framework [CNYMoo] to represent NFRs.

They propose to associate the NFRs with four use case model elements: actor, use

case, actor-use case association and the system boundary. They name these

associations "Actor Association Point", "Use Case Association Point", "Actor-Use

Case Association (AU-A) Point", and "System Boundary Association Point"

respectively. Having such an extension to the UML use case model, NFRs can be

integrated at the requirements analysis level with FRs and can provide better

understanding of the requirements model. Figure 2-2 shows the proposed NFR

association points in the UML use case model. In Figure 2-2, cloud "A" represents

the NFRs related to an actor of a use case model. These NFRs are related to actor

by "Actor Association Point". For example, associating scalability NFR to

Customer actor would indicate that the system must handle potentially large

number of users accessing system functionality represented by use cases available

to the actor. Cloud "B" represents the NFRs related to use case of use case model.

These NFRs are related to use case by "Use Case Association Point". For example,

associating fast response time NFR to Withdraw Fund use case of an Automated

Teller Machine (ATM) system would indicate that the system must complete the

19

functionality described by the Withdraw Fund use case within an acceptable

duration. Cloud "C" represents the NFRs related to actor-use case association of

the use case model. These NFRs are related to this association by "Actor-Use Case

Association (AU-A) Point". For example, associating security NFR to an AU-A

between Customer and Withdraw Fund use case would indicate that withdraw

fund must be secured, which also precisely implies that user interface to other

AU-A not required to be secured. Finally, cloud "D" represents the NFRs related

to system boundary of use case model. These NFRs are related to this boundary

by "System Boundary Association Point". For example, associating portability

NFR to the system boundary would intuitively specify that the NFR is global and

that the system must be operational in multiple platforms, which globally affects

every part of the system. These four NFRs association points are the authors'

proposed extensions to the UML use case model.

Moreira et al. [MAB02] and [AMBR02] propose three main activities for

integrating crosscutting quality attributes with FRs: identify, specify and

integrate requirements, so that separation of concerns at the requirements level

can be achieved. Firstly, identify all the requirements of a system and select from

those the quality attributes relevant to the application domain and stakeholders.

Secondly, specify FRs, using a use case based approach, and describe quality

attributes using special templates including fields of: description, focus, source,

decomposition, priority, obligation, and influence. Finally, those quality

attributes are integrated with FRs using standard UML diagrammatic

representations (e.g. use case diagram, interaction diagrams) extended with some

special notations.

2 0

development or
software process

related NFRs

Figure 2-2: NFR Association Points in a Use-Case Diagram [SC04].

Cysneiros et al. [CLN01], [CL01] and [NLCoo] propose a new strategy that brings

NFRs to object-oriented modeling called OONFR (Object-Oriented Non

Functional Requirement). They use the Language Extended Lexicon (LEL) driven

approach to describe the application domain in LEL to provide context for both

FRs and NFRs. This policy assures that a common and controlled vocabulary will

be used in both functional and nonfunctional representations. Later the authors

analyze those domains separately and build the functional view of the system

using UML diagrams. Then they build the non-functional view of the system

using NFR framework (see Section 2.2 of this chapter). They extend the NFR

21

framework to adopt their notations. Finally, they integrate the NFRs with the

functional representation of the system by proposing some extensions to UML

models (use case diagram, class diagram, sequence diagram and communication

diagram).

Dimitrov et al. [DSD02] analyze three UML-based approaches to performance

modeling: 1) Directly representing performance aspects with UML and

transferring effective model diagrams into corresponding performance models,

2) Expanding UML (use case diagram and state machine diagram) to deal with

performance aspects and 3) Combining UML with formal description techniques

such as Specification and Description Logic (SDL) and Message Sequence Charts

(MSCs).

Berenbach et al. [BG06] from Siemens Corporation suggest from the experience

with outsourcing and off shoring that use of graphical languages significantly

reduces cultural and communication problems when teams (e.g. analysis and

design) are at different locations. They propose an extension of UML use case

model with new notations: i) as a starting point for an unified modeling

approach, ii) to support the integration of hazard and requirement analysis and

the binding of the resultant exposed requirements to their respective use cases, as

well as iii) the binding of use cases to the high level features of a developed

feature model.

In [ZGo7], the authors propose a UML profile for modeling design decisions and

an associated UML profile for modeling NFRs in a generic way. The two UML

profiles consider design decisions and NFRs as first class elements. This

2 2

relationship between design decisions and NFRs is modeled using specialized

dependency notations in UML.

In [Jur02], the author proposes UMLsec which is an extension of UML notation.

UMLsec allows expressing security relevant information within the diagrams in a

system specification. UMLsec is defined in form of a UML profile using the

standard UML extension mechanisms. In particular, the associated constraints

give criteria to evaluate the security aspects of a system design, by referring to a

formal semantics of asimplified fragment of UML.

In [LBD02], the authors present a modeling language, based on UML, called

SecureUML. It shows how UML can be used to specify information related to

access control in the overall design of an application and how this information

can be used to automatically generate complete access control infrastructures.

The work in [LBD02] adapts use cases to capture and analyze security

requirements. This adaptation is called an Abuse Case Model. An abuse case is

defined as a specification of a type of complete interaction between a system and

one or more actors, where the results of the interaction are harmful to the system,

one of the actors, or one of the stakeholders of the system.

Figure 2-3 summarizes the related work presented in this section to incorporate

NFRs against all types of UML 2.0 diagrams.

23

Figure 2-3: Summary to Approaches Incorporating NFRs into UML.

2.4 Treating NFRs with Aspect Orientation

A software system is the realization of a set of concerns which are the primary

motivation for organizing and decomposing software into manageable and

comprehensible parts. Concerns come from a variety of sources, for example

clients, developers, managers, administrators, firmware or hardware portions of

a system and business context. Different viewpoints can have the same concerns,

but the associated requirements may differ. For example, in a banking

application, the teller and loan officer may be concerned about access control.

24

For a teller, the requirement maybe "teller should not access loan information".

For loan officer the requirement maybe "loan officer should not manipulate loan

amount". Even though both view points have access control concern, the

requirements are different.

When Object-Oriented Programming (OOP) entered the mainstream of software

development, it had a great impact on how software was developed as developers

tackle larger systems with less time by modeling their concerns as groups of

interacting objects and classes, which are generally derived from the entities in

the requirements specification and use-cases. However, OOP is essentially static

as a change in requirements can have an implication on development timelines.

As discussed in the previous chapter, some requirements like NFRs need to be

addressed in multiple modules of the system or they may need to be addressed in

the system as a whole. Consequently, the code to handle these requirements may

be mixed in with the core logic of a huge number of modules, resulting in bad

implications on the software quality.

Despite the success of object-orientation in the effort to achieve separation of

concerns, current OOP techniques support one dimensional decomposition of the

problem focusing on the notion of a class. Such decomposition is not a good

candidate to handle complex interaction of components as it leaves certain

properties without being localized in single modular units and as a result their

implementation cuts across the decomposition of the system. This is the

phenomenon of crosscutting.

Aspect-Oriented Programming (AOP) is a new programming paradigm that

allows programmers to separate concerns and thus allows them to dynamically

25

modify the static behavior of the object-oriented model. Just as objects in the real

world can change their states during their lifecycles, an application can adopt

new characteristics as it develops. AOP provides a solution for abstracting

crosscutting code that spans object hierarchies without functional relevance to

the code it spans. Instead of embedding crosscutting code in classes, AOP allows

to abstract the crosscutting code into a separate module (known as an aspect).

Then, AOP provides special rules of composition between components and

aspects. For the necessary background on AOP, we advise the reader to visit the

background chapter (Chapter 2) in our earlier work [Kaso6].

While AOP supports separation of concerns at the code level, Aspect-Oriented

Software Development (AOSD) has extended AOP to provide a systematic

support for the identification, separation, representation (through proper

modeling and documentation), and composition of crosscutting concerns as well

as mechanism that make them traceable throughout software development.

Although, initially the focus was merely on aspects at the programming level,

recently a considerable amount of research has been focusing to identify and

model aspects in the early phases of software development. Because of the

crosscutting nature of NFRs, these requirements are good candidates to be

treated with aspect-orientation.

However, current aspect-oriented approaches either concentrate on serving as a

general purpose architecture modeling language within a particular domain, or

support the analysis of one specific NFR of a system (e.g., performance or

security) in a way that is not necessarily applicable to other NFRs and with

ignorance to possible existence of crosscutting FRs. In addition, these approaches

26

do not fully support a smooth transition among the requirements, analysis and

the design phases.

In [RMA03] and [RSMA02] the authors propose an approach for modularizing

and composing crosscutting concerns. The approach involves identifying

requirements using stakeholder' viewpoints, use-cases/scenarios, goals or

problem frames. The approach basically uses a set of matrices consisting of

viewpoints and concerns represented in XML. Even though the authors show that

some NFRs can crosscut viewpoint specifications, it is not clear how NFRs arise.

The identification of the dimension of a candidate aspect (its influence on certain

aspects of the system) is not performed in a systematic way in this work.

Scenarios tend to be treated as single modules (or black boxes) that have to be

composed with crosscutting concerns. However, simple composition rules

between scenarios and crosscutting requirements cannot be always applicable as

relationships between them are normally not clean-cut, this approach does not

show the propagation of a scenario into a potentially large set of components

inside analysis and design and the (normally complex) rules of composition

between individual components and aspects. In fact, the influence of a single

aspect policy on different sets of components that collectively implement the

same scenario may be different. Similarly, the same aspect may influence the

same set of components in a number of different ways. In addition, in this

approach, resolving conflicts among concerns is recommended through

negotiation with stakeholders, which may not always be applicable as; with the

exception of developers, stakeholders are not interested in system concerns and

27

they may not have the necessary expertise to be involved in these matters. They

would merely want their requirements implemented.

In [BM04], the authors propose an approach to identify and compose

crosscutting concerns. The approach consists of four defined steps: identify

concerns, specify concerns, identify crosscutting concerns and compose concerns.

The composition of concerns is defined using the formal method LOTOS. The

approach focuses on the requirements analysis phase, and contains no

traceability support to other phases of the software development life cycle. It is

not clear how we can map the LOTOS specification to the design and the

implementation components. Resolving conflicts among concerns is

recommended through negotiation with stakeholders, which may not always be

applicable as we discussed earlier. The approach recommends defining a

dominant concern among the crosscutting concerns at certain joinpoint. The

notion of a dominant concern cannot always be applicable. In complex systems

(such as concurrent systems) two or more aspects may affect the same joinpoints

with changing priorities to the execution of the behavior of some component (e.g.

method body), so assigning a hard-coded prioritization will not follow the correct

semantics.

In [CDDD03], the authors provide an approach to support one NFR, namely

performance, under the umbrella of AOSD using the UML and the formal

architectural description language Rapide. Although the authors describe how

they plan to extend their approach to support two or more NFRs, it is an open

issue how to consider crosscutting FRs within their solution.

28

In [TBB04], the authors adopt model analysis to detect semantic conflicts

between aspects. The authors introduce two levels of conflicts among aspects:

1. Direct conflict: two or more aspects sharing the same joinpoint or an aspect is

having a joinpoint in another aspect.

2. Indirect conflict: the aspects don not share a common joinpoint but one aspect

can have an impact on the behavior of the second. This approach is dedicated to

serve the detection of direct conflicts only. Resolving conflicts is recommended

through a process of correction and refinement of the model, which is not clearly

investigated.

In [BB99] and [MRG+04] the obliviousness property was adopted to model

orthogonal aspects independently from each other and from the FRs. The

deployment of formal methods in these approaches (e.g. GAMMA, LOTOS, Time

Temporal Logic) to specify the functional behavior and the associated aspects

helps to enable formal validation and facilitates a specification-driven design. On

the other hand, the weaving process is not presented in a precise systematic way

and it is limited to a specific type of requirements that could not necessary be

applicable for others. In addition, it is not clear where and how the formalism is

to be placed within the AOSD framework or how to integrate it with the

traditional iterative development process.

In [NAB04], the authors reason about the semantics of the composition

mechanisms of the programming language through an approach that is based on

a single meta-model: Composition Graphs meta-model. While these graphs may

provide a sufficient homogeneous comprehension for the semantics among

different programming languages that make them easier to compare and to be

29

transformed, the process to construct such graphs without existing tools can be

tedious. In addition, the graphs are generated from an existing implementation

that we don not usually have when we initially develop the application.

Park et al. [PKL04] propose a simulation based design phase analysis method

based on aspect oriented programming. In his method, quality aspects remain

separate from functionality aspect in the design model. The functionality concern

and the performance concern are weaved by the AspectJ compiler. For the

purpose of presenting the method, the authors show a sequence diagram overlaid

with AspectJ elements. Lines of Code for performance analysis are inserted

before or after appropriate pointcuts in the diagram.

Xu et al. [XZRL05] propose a conceptual architectural design model, where

traditional architecture model of a software program represents one layer and the

NFRs are presented as aspectual components in another layer. Figure 2-4 shows

their conceptual design model to add NFRs. They propose to use the aspectual

components to represent the semantics of the operationalized NFRs. These

components correspond to advice tasks in the aspect-oriented world. The

connectors between the software architecture layer and the NFR layer describe

binding rules, thus corresponding to the pointcut from the aspectual component

to the normal components. They also define a connector, namely XML Binder, to

bind the NFRs to the target model. They propose to use the same XML Binders in

the Aspect Markup Language (AML). Their XML Binders are therefore XML-

based binding specifications that provide weaving instructions to determine how

aspectual components and the traditional software architecture are to be

composed together.

30

Figure 2-4: Conceptual Design Model with One Architecture.

In order to fill the missing gaps in the above discussed AOSD approaches, we

presented in [KCO05], [KO06] and [Kaso6] a systematic and precisely defined

aspect-oriented model towards an early consideration of specifying and

separating crosscutting FRs and NFRs. Our proposed model is depicted in Figure

2-5. The model is composed of five phases: Requirements Elicitation, Analysis

and Crosscutting Realization, Composing Requirements, Design and

Implementation. We use the term phase to describe a group of one or more

activities within the model. The phase is a mean to categorize activates based on

the general target they tend to achieve. These phases contribute towards the

target solution to establish a mechanism for integrating NFRs during

requirements engineering and architectural design. Requirements traceability is

provided throughout the model to influence the consistency and change

management of the requirements of a system. This is achieved in our model by

using two hierarchy graphs to keep track of the required behavior of the system

31

using static and dynamic views of objects starting from requirements elicitation

till the implementation. We referred to the graphs by the static and the dynamic

hierarchies. The hierarchies are introduced and updated at certain breakpoints

within the development process as follows:

1. End of Requirements Elicitation phase: The dynamic hierarchy is introduced.

At this phase, we are supposed to have successfully specified the use-cases

through scenarios that constitute as the origin for the dynamic behavior of the

system.

2. End of Analysis and Crosscutting Realization phase: The static hierarchy is

introduced. At this phase, we are supposed to have defined the conceptual classes

(through the domain model) that constitute the origin of the static behavior of

the system. The dynamic hierarchy is updated to show the effect of crosscutting

realization among use-cases.

3. End of Composing Requirements phase: The static hierarchy is updated to

show the effect of integrating NFRs with the conceptual classes.

4. End of Design Phase: Both hierarchies are updated to show the extension to

the design level through the static artifacts (e.g. class diagram) and dynamic

artifacts (e.g. communication diagram).

In [OKC05] and [KOC05], we proposed sets of quality measurements to be

associated with activities of the AOSD model. The intended goal of the

measurements is to assist stakeholders with quantitative evidences to better map

or iterate system modules at different activities in the development process and

to better set the design decisions for the analyzed requirements.

32

Requirements Elicitation

Identifying FRs Identifying NFRs

Specifying FRs

OO Analysis

Design

Specifying NFRs

Analysis and Crosscutting Realization

Crosscutting Realization

Composing Requirements

Defining Conflicts

Integration

Implementation

Input

Output: Executable
Code

Tracing Dynamic Tracing Static
Behavior Behavior

Figure 2-5: Proposed Model to integrate NFRs early in the software development
process [Kaso6] and [KO06].

2.5 Discussion

The tendency to treat NFRs as softgoals in the NFR framework can often add

ambiguity to the requirements specifications. For example, the response time in a

user interface is typically soft, whereas response time requirements in real-time

3 3

systems can be hard. This situation calls for extending the taxonomy of the NFR

framework so that it can identify those NFRs that need to be stated in terms of

crisp indicators and their acceptable values.

Another major drawback in the NFR framework is the lack of a formal definition

towards how NFRs are associated with other entities of the system throughout

the development process. This drawback makes the NFRs framework not a

reasonable vehicle towards discussing NFRs traceability and effort estimation. In

addition, NFRs framework offers only a qualitative not quantitative treatment of

NFRs.

In addition, there is no numerical evaluation on the usage of the NFRs

framework. The authors demonstrate the applicability of the proposed tasks

through a case study. Our critique discussion on the limitation of the NFR

framework was published in [KDOoya].

While the AOSD approaches (including our previous work [KCO05], [KO06],

[Kaso6]) aim at addressing the crosscutting nature of NFRs, current AOSD

approaches come short when addressing the other elements that characterize the

nature of NFRs (e.g. subjectivity and interactivity). In addition, AOSD

approaches map the crosscutting concern towards the aspect element in the

implemented code space. This is in fact not a sufficient solution for every type of

NFR as some of these requirements may be mapped to an architectural decision

and not to an implemented code. Most AOSD approaches rely on case studies to

demonstrate the applicability of their work.

In [MAB02], [PKL04], [AMBR02] and many others; early integration of NFRs is

accomplished by extending UML models to integrate NFRs to the functional

3 4

behavior. Although the composition process must be considered at the meta-

level, these approaches only model certain NFRs (e.g. response time, security) in

a way that is not necessarily applicable for other requirements. There is no single

existing formal method available that is well suited for defining and analyzing

numerous NFRs for a system. Evaluation of approaches under this category is

either missing or relying on a case study to demonstrate the applicability.

Based on the pervious review, we are motivated to fill the gap raised from the

previously open problems. In order to be able to represent and reason about

NFRs, we need to access a formal representation that is capable to accommodate

the wide range of these requirements. In the next chapter, we will describe our

research methodology and its demonstrated applicability.

35

Chapter III: Research
Methodology

"If the only tool you have is a hammer, you tend to see every problem as a nail."
Abraham Maslow (1908 - 1970).

3.1 Introduction

The research approach used in this thesis includes three major phases. These are

described in Section 3.2 of this chapter. We refer to phase as a group of one or

more activities. The phase is a mean to categorize research activities based on the

general target they tend to achieve. The practical applicability of the approach has

been investigated and demonstrated in this thesis by using three case studies and

one controlled experiment. The case studies are described in Section 3.3. Section

3.4 refers the reader to the applicability of the outcomes of this thesis.

3.2 Methodology

Figure 3-1 summarizes the complete research methodology, which consists of

three major phases:

1. Building a formal model for NFRs and their relations (Chapter 4).

2. Implementing changes management mechanism for tracing impact of

NFRs on other constructs in the ontology and vice versa (Chapter 5).

36

3- Proposing a novel approach to the early requirements-based effort

estimation, based on NFRs Ontology (Chapter 6).

Three evaluation phases are included in our methodology to demonstrate the

validity and applicability of each of the above major phases. In each of the

evaluation phases, the common research question that is addressed is: "How does

our proposed method improve existing practice? What are the implications of

our method for practitioners in requirements engineering?"

The outcome of each evaluation phase serves as input towards improvement of

the outcome of the precedent phase. The three major phases are described next.

Figure 3-1: Thesis Methodology

3 7

3.2.1 Phase l: Building a Formal Model for NFRs and their Relations

This phase started with the exploratory activities of the project to investigate the

nature of the NFRs and previous research on the areas defined in the problem

statement section (Chapter l, Section 1.2). During this phase we also collected

evidence about practices in industry which refers to the integration of NFRs into

the software engineering process and practices that architects use in

transforming NFRs into architecture. The research activities in this phase formed

three steps: the first step was to shape the problem domain by understanding the

context around it. The second step was to collect knowledge on what practical

solutions architects currently are using to confront the issues in the problem

domain. The third step was to assess in which respects the current solutions come

short and how big existing requirements engineering and architectural design

gap is in respect to NFRs. Throughout this process, we built experiences in how

to improve the current practices of transformation from requirements to

architecture with respect to NFRs.

In this phase, we used literature studies, surveys, and experiences gained at

industrial sites, to answer five exploratory and correlational [ESSD07] research

questions:

Qi- What is a NFR?

Q2-What are the types of NFRs? How can they be categorized?

Q3- How does NFR interact with FRs and their refinements during the software

development process?

Q4- How does one NFR interact with other NFRs?

Q5- What are the concepts and relationships which characterize the interactions

referred to in Q3 and Q4?

The process of finding the answers to these questions represents an observational

and descriptive study for the nature of NFRs. The unit of analysis at this research

phase is, therefore, the NFR from the perspective of process-oriented approaches.

The answers to these questions resulted in a clearer understanding of the nature

of NFRs, including more precise definitions of the related theoretical terms. In

this thesis, we turned the findings from answering the above questions into a

formal model for NFRs and their relations. The model was captured though a

Common Foundation for NFRs which is realized by developing the NFRs

Ontology. The ontology represents the outcome of this phase. The applicability of

the proposed ontology was evaluated through the three case studies presented in

Section 3.3 of this chapter and which were performed with both students and

professionals (experts) in the domain of our study.

Our work in this phase has been published in [KDOoya], [KODoyb],

[DKPWO07], [KOD09b], [SOKH09] and [KOD10].

3.2.2 Phase 2: Changes Management Mechanism for Tracing Impact
of NFRs on Other Constructs in the Ontology and vice versa

This phase represents our first usage of the NFRs Ontology as a vehicle towards

supporting those requirements engineering activities that pertain to NFRs. The

"Descriptive Process" [ESSD07] research questions we address here are:

Q6: What traceability mechanisms are used in theory and practice to support

requirements engineering and architectural design decisions for NFRs? What

3 9

complexity aspects of NFRs are accounted for in current requirements

engineering and architectural design decision-making processes?

Q7: What are the critical areas requiring traceability attention when dealing with

change management of NFRs? How are these areas mapped to the concepts and

relationships defined in the NFRs Ontology?

The research in this phase represents an observational and correlational study.

The outcome of this phase is a formal implementation of the answers derived

from Q7. The applicability of the implementation was evaluated by a multi-

project variation experiment [BSH86] and [Bas96] that was conducted with

experts from NOKIA - Montreal under normal work conditions (vivo).

Our work in this phase has been published in [KO06], [KODo8a], [KODo9a] and

[KOD10].

3.2.3 Phase 3: NFRs Effort Estimation

This phase uses a view of the NFRs Ontology and deploys it for the aim of

establishing an approach towards an early effort estimation of development of

the software project taking into account both FRs and NFRs. The research

questions we address in this phase are:

Q8: What is the impact of NFRs on the total effort for building and maintaining

the software project?

Q9: In which ways are NFRs treated in current theoretical and practical effort

estimation models?

Q10: How to improve the existing practice of early estimation for the effort taking

into account the impact of NFRs?

40

The outcome of this phase is a novel effort estimation model thiat aims at better

prediction of the effort for building the project from the given set of FRs and

NFRs.

We followed the case study approach as an investigation technique to evaluate

the work of this phase (see Section 3.3.2 of this chapter). We make the note that

for the purpose of evaluation, we considered the option of carrying out a formal

experiment, however this choice (as an alternative to the case study approach)

was eliminated because there is not much theory in the field, and what theory

there is, is mostly qualitative; and also because there are so many state variables

that influence the evaluation results and that it can not be replicated easily.

Our work in this phase has been published in [KDO07], [KODc>7a], [KODo8b],

[KODo8c], [KDO09] and [KOD10].

3.3 Case Studies

The selection of cases is a crucial step in case study research. The aim is to select

cases that are most relevant to the study proposition. Multiple case studies design

usually offer greater validity [ESSD07]. We have selected three case studies that

will help to (i) illustrate the discussion and (ii) provide the necessary evaluation.

3.3.1 NOKIA Mobile Email Application System

The Mobile Email application, which provides the context for our discussion,

consists of the NOKIA Mobile Email Gateway and the NOKIA Mobile Email

Client. The high-level context diagram of the application is presented in Figure 3-

2. The NOKIA Mobile Email Client provides the user interface. Using

41

recognizable and branded email portals (e.g. Yahoo, MSN, etc.), the mobile email

experience mirrors the familiar 'look and feel' of the PC, generating instant

consumer adoption and virtually eliminating the learning curve.

Figure 3-2: Mobile Email Solution

The Mobile Email Gateway provides mobile operators with the necessary

protocol adaptations, billing, reporting, and customer care interfaces they require

to effectively deliver branded portal email services to their subscribers. As a

result, mobile operators can increase their average revenue per user and directly

impact their bottom line with a variety of flexible billing options. Communication

between the client and the gateway is established through a SYNCML protocol,

which is an XML-based standard for data synchronization.

The settings from this case study were used to provide the illustration for the

three major phases of this research. In addition, these settings have been used for

the evaluation purposes of phases 1 and 2.

3.3.2 IEEE Montreal Website

The second case study has been conducted with the teams of the undergraduate

students in their third year of studies enrolled in the 2009 "Software

Measurement" and "Software Project" undergraduate SOEN courses at Concordia

42

University, Montreal, Canada. The project required all groups of students to

develop a new website for the IEEE-Montreal chapter. The IEEE System software

is custom designed and built to meet the needs of one specific customer - the

Montreal section of the IEEE. All significant aspects of the system that users may

access or manipulate have been specified by the customer, as well as some

aspects of the system's architecture, performance and security. The system has a

client-server design. Users access the system from a remote terminal that is

connected to the main computer via an internet link. The system can function as

an independent unit but has the option of connecting to other systems and

services provided by the IEEE.

The IEEE System software is both an administrative support system and an

information system. It is accessed through a simple GUI hosted in a web browser.

Any internet-enabled computer with a web browser can access the system and

multiple concurrent users are supported.

A primary goal of the system is to provide an easy to navigate interface for both

casual and administrative users. The UI is available in both English and French.

News and information about IEEE events are prominently displayed. The

administrative parts of the site are protected against un-authorized access.

The settings from this study were used to provide an additional evaluation for

phase 1 and the core evaluation for phase 3.

3.3.3 SAP Project

The third case study has been conducted with an expert in a leading Enterprise

Resource Planning (ERP) software producer, SAP. Currently, the need for the

SAP project management is still requesting more efficient methodologies and

43

techniques to assist the project manager during the project estimation. SAP

implementation is one of the large markets that still have challenge to have a

close quantification of different project parameters regarding the real need of

implementation projects. In this case study, the SAP expert instantiated the NFRs

Ontology using a set of requirements from one of their major SAP projects. The

purpose of the project is to replace the old version of SAP and other legacy

systems in order to integrate all the business processes within the same ERP.

The settings of this case study were used to provide an additional evaluation for

phase l of this research.

3.4 Applicability

The applicability of the approaches resulting from this research has been

demonstrated by (i) improving the NFRs specification (see Chapter 4, Section

4.7), (ii) improving the testing practices for NFR on deployed software using the

proposed traceability mechanism (see Chapter 5, Section 5.6) and (iii) better

predicting the effort for building the software project taking the impact of NFRs

into consideration (see Chapter 6, Section 6.6).

Chapter IV: An Ontology Based
approach to Non-Functional
Requirements Conceptualization

"The first step towards wisdom is calling things by their right names."
Chinese Proverb

4.1 Introduction

The growing interest in ontology-based applications as opposed to systems based

on information models have resulted in an increasing interest in the definition of

conceptual models for any kind of domain. Software engineering is one of those

domains that have received high attention in that respect [MA04], [SC05] and

[WADD03]. Current research studies by Knowledge Engineering scholars on

requirement acquisition, for example, use domain ontology to support software

requirements description [HM06], [Jinoo] and [KS05]. These studies leverage

the existing knowledge of the relationship between the software requirements

and the information in the related domain. According to this relationship, the

domain knowledge influences the result of requirements acquisition [JKCW08].

International Software Engineering-standards such as IEEE [IEEE6101290]

provide a foundation for the development of ontology for software engineering in

terms of common vocabulary and concepts. Nonetheless, the process of analysis

of the standards to come up with a logical coherent ontology is by no means a

simple process [SC05]. Moreover, the NFRs have received little or no attention

45

from the ontology research groups due to inherent challenges imposed by the

semantic imprecision of NFRs conceptual schemas [SC05].

Existing NFRs elicitation methods adopt memo of interview transcripts to collect

initial NFRs and then construct systems with the NFRs integrated according to

the experience and intuition of the designers [JKCW08]. However, empirical

reports [BLF99], [FD96] and [LT93] indicated a number of drawbacks when not

dealing with NFRs using systematic and well-defined methods. For example, a

significant portion of NFRs may be neglected as it is difficult to ask users to

provide their NFRs explicitly because they are always related to other concepts in

the domain and affected by context. Furthermore, NFRs can often interact, in the

sense that attempts to achieve one NFR can help or hinder the achievement of

other NFRs at certain functionality. Such an interaction creates an extensive

network of interdependencies and trade-offs between NFRs which is not easy to

describe [CNYMoo].

The growing awareness of these issues among the requirements engineering

community in the last few years led to a heightened interest in NFRs description

and modeling and, in turn, to the emergence of several models intended to

capture and structure the more relevant concepts defining the NFRs and their

relations. Such models are generic ones and must be instantiated to be usable for

specific domains or applications. Yet, the instantiation process is not easy to

perform since the generic models usually do not contain sufficient information

about NFRs interdependencies [SBMB06]. Some standards have been proposed

in order to unify the definition of subsets of NFRs; e.g., software quality concepts

46

[ISO912601]. However, till now there is no clear and coherent generic

representation of the NFRs concepts.

Building on the above discussion, a knowledge-based representation is necessary

to support the description of NFRs within a system and to provide practitioners

and researchers with a valuable alternative to current requirements engineering

techniques. The aim of our research reported in this chapter is to systematically

develop an ontology which provides the definition of the general concepts

relevant to NFRs without reference to any particular application domain. The

general concepts can then act as a common foundation for describing particular

non-functional attributes as well as providing a conceptual model for NFRs

(including e.g. entity definitions, relations, etc.). The ontology also contains rules

which define the semantics of the defined concepts.

The rest of this chapter is organized as follows: Section 4.2 provides the necessary

background on ontologies in software engineering and the Web Ontology

Language (OWL). Section 4.3 describes the common foundation development

process. Section 4.4 discusses the development of the terminological level of the

NFRs Ontology, while Section 4.5 discusses the conceptual level. Section 4.6

discusses the evaluation phase of the NFRs Ontology. Section 4.7 presents related

work. Section 4.8 concludes the chapter.

47

4-2 Background

4.2.1 Ontologies in Software Engineering

Ontology can be defined as "a specification of a conceptualization" [Gru93].

More precisely, ontology is an explicit formal specification of how to represent

the objects, concepts, and other entities that exist in some area of interest and the

relationships that hold among them. In general, for ontology to be useful, it must

represent a shared, agreed upon conceptualization. The use of ontologies in

computing has gained popularity in recent years for two main reasons: i) they

facilitate interoperability and ii) they facilitate machine reasoning.

In its simplest form, ontology is taxonomy of domain terms. However,

taxonomies by themselves are of little use in machine reasoning. The term

ontology also implies the modeling of domain rules. It is these rules, which

provide an extra level of machine "understanding".

Ontologies are already used to aid research in a number of fields [SOKH09] and

[GKM08]. They are often used in the development of thesauri which need to

model the relationships between nodes. One example is the National Cancer

Institute Thesaurus [NCI03], which contains over 500,000 nodes covering

information ranging from disease diagnosis to the drugs, techniques and

treatments used in cancer research.

Recently, the software engineering community has recognized ontologies as a

promising way to address current software engineering problems [CFM06] and

[HS06]. Researchers have so far proposed many different synergies between

software engineering and Ontologies. For example, ontologies are proposed to be

48

used in requirements engineering [LG05], software modeling [Knu04], model

transformations [KKK+06], software maintenance [KBT07], software

comprehension [WZR07], software methodologies [CH06], and software

community of practice [ASHKW06].

The constructs used to create ontologies vary between ontology languages. One

class of ontology languages is those which are based upon description logics

[BHS03]. OWL is one such language. OWL is discussed in the following section

as an illustration of how ontology may be created.

4.2.2 OWL

OWL [OWL] is the Web Ontology Language, an XML-based language for

publishing and sharing ontologies via the web. OWL originated from DAML+OIL

both of which are based on RDF (Resource Description Framework) triples.

There are three 'species' of OWL - but the most useful for reasoning - OWL-DL -

corresponds to a description logic.

OWL ontology consists of Classes; also referred to as concepts, and their

Properties; also referred to by relations. The Class definition specifies the

conditions for individuals to be members of a Class. A Class can therefore be

viewed as a set. The set membership conditions are usually expressed as

restrictions on the Properties of a Class. For instance the allValuesFrom and

someValuesFrom property restrictions commonly occur in Class definitions.

These correspond to the universal quantifier (V) and existential quantifier (3) of

predicate logic. More precisely, in OWL such restrictions form anonymous

Classes of all individuals matching the corresponding predicate.

49

Classes may be constructed from other Classes using the intersectionOf, unionOf

and complementOf constructs which correspond to their namesakes from set

theory. Another way to define a Class is to specify all individuals of which it

consists explicitly using the one of construct. A key feature of OWL and other

description logics is that classification (and subsumption relationships) can be

automatically computed by a reasoner which is a piece of software able to infer

logical consequences from a set of asserted facts or axioms. For the purpose of

the NFRs Ontology, we will use a semantic web reasoning system and

information repository: Renamed Abox and Concept Expression Reasoner

(RACER) [RACER]. An 'open world' assumption is made. This means that no

assumptions are made about anything which is not asserted explicitly. One

outcome of this is that a Class definition does not act as a template for individuals

as it might in a closed world. For instance, an individual may have extra

Properties about which nothing is asserted in its Class definition. An individual

may also be a member of many Classes. Because classifications can be inferred,

the creator of an individual does not need to be aware of all possible Classes into

which the individual may fall at the time of creation. Instead, all Classes of which

it is a member can be inferred by a reasoner. This is of a particular help for

hierarchies of quality requirements which have been identified in the literature

with more than one parent quality requirement (see Section 4.5.2.1.1).

The following snippet from our ontology gives a flavor of OWL. It defines a Class

MeasurableNonFimctionalRequirement, stating that it is exactly equivalent to

the NonFunctionalRequirement Class intersected with the set of all individuals

which have a Property "haslndicator", with at least one value which is an

50

"Indicator"; Finally it states that

MeasurableNonFunctionalRequirement

NonMeasurableNonFunctionalRequirement are disjoint.

the class

and

<?xml version="i.o" encoding="UTF-8"?>
<owl:Class rdf:about="#MeasurableNonFunctionalRequirement">

< owl: equivalentClass >
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
< owl: Restriction >

<owl:someValuesFrom rdf:resource="#Indicator"/>
<owl:onProperty>

<owl:InverseFunctionalProperty rdf:about="#hasIndicator"/>
</owl: onProperty >

</owl: Restriction >
<owl:Class rdf:about="#NonFunctionalRequirement'7 >

</owl:intersectionOf>
</owl: Class >

</owl:equivalentClass>
< owl: disjointWith >

<owl:Class rdf:ID="NonMeasurableNonFunctionalRequirement"/ >
< / owl: disjointWith >

</owl:Class>

Clearly, this is not particularly human-readable, especially because the Classes

and Properties referenced (Indicator, haslndicator,

NonMeasurableNonFunctionalRequirement) could be defined anywhere in the

file. Editing OWL manually can be equally difficult for the very same reason. We

used Protege 3.3 [PROTEGE] and its OWL plug-in for NFRs Ontology

development. Figure 4-1 shows a snapshot from the NFRs Ontology built using

the Protege tool. Protege is a free, open-source platform that provides a growing

user community with a suite of tools to construct domain models and knowledge-

based applications with ontologies. At its core, Protege implements a rich set of

knowledge-modeling structures and actions that support the creation,

51

visualization, and manipulation of ontologies in various representation formats.

Protege can be customized to provide domain-friendly support for creating

knowledge models and entering data.

;: £k S*' W i f l £ o d e
• u a * c r te •P i?B si Ok £

?ftt Pi'SfKtC # FNALONTCLOOYCCGE :: ' • tin*. % iFtncbcnaay
AmrtMltaMii* * % t

•G<* ; '[
• #Mdrie 1 II
• ® Operafienafeabon

$ Process ^
& Product

f $Req»eaer< ?
• # f tndtonrf?equrw«rt
T NonFuncMnaReqJreinert

• 0 Desgfct̂nefnertaUn j
% EcorrrncCcnstrert
#hftuenc«Mr
ft hfluoncertflr
0 Me«su'sbleNorftfKboreffe<Mremef' |
^ NpnMcaauraMeNorfuriclk*idBet|ur« j-
i|E OpwattyConsttaH •• y, i
PoKcatCiAnConstrairi • # CuettyRedivemert - *
• Cttccncy >.
• F̂uncOoMKy. • • . • ;

9> # Accuracy
^ Conflvct
#ne>operabtty

fr #Sacurty
#Sutat»y

• # MsrtanafcBy
• 0Port8Mty
» R̂efcabtty

—

r WMdowtOwl OWredNlew

tf %

£ Queftyfie<»»eneft
^ hesAssoceborfoirt *

f urcbcraBy is » quaily chaiactenshc accoifngto the S09I26.
furcbcraRy e defined by the 609128 « » 3d ct afcfaies tM bew on te enstance
of • set o» widens and their specified cropenw .n» iwcaons we vtontnasttsty

. .sttedj* Mfco.neectt „_
<& % «s

| ̂ QuaMyReq̂emert
pj hesAssociaforPori *tx»e Associ«eiOTPortTcFifictionoRequ»e»nert

" •£? tefiefjirementOt s&fnt:

£ •S iege View Propertes Wew
- » 1 3 :t | * » * o - «Lo0c View • 'ProueftesMcw

Figure 4-1: A Snapshot of the NFRs Ontology in Protege.

4.3 Development Process of a Common Foundation

We need a disciplined process for the development of the NFRs common

foundation; which will be realized by the NFRs Ontology. In the development of

the Common Foundation we distinguish the following phases in the ontology

development process: requirements for the ontology, design of the ontology,

implementation of the ontology and evaluation of the ontology. There are

52

supposed to be several iterations over these phases. In this section, we

summarize the approach for the development of the NFRs Common Foundation.

We describe the distinction between glossary and taxonomy. Furthermore, we

introduce the deductive approach used in this process.

4.3.1 NFRs Ontology Requirements

In this section we list a number of requirements for the NFRs Common

Foundation. The most important requirements are:

Req 1. The Common Foundation shall comprehensively represent common

terminology and concepts used in NFRs (descriptive standard). This requirement

states the main characteristic of the Common Foundation as a descriptive

standard. The Common Foundation is not meant to be a prescriptive and

normative standard.

These three types of standards can be described as follows [Sku02]:

- Descriptive: give definitions of facts.

- Normative: provide guidelines to be used as a basis for measurement,

comparison or decision.

- Prescriptive: define a particular way of doing something.

Req 2. The Common Foundation shall be generally acceptable in order to

facilitate communication between the partners and (re)use of terminology.

- Generally accepted means that the knowledge and practices described are

applicable to most projects most of the time, and that there is widespread

consensus about their value and usefulness. Generally accepted does not mean

that the knowledge and practices described are or should be applied uniformly on

53

all projects (adapted from Project Management Body of Knowledge

[PMBOKoo]).

Other captured requirements are:

Req 3. The Common Foundation shall be accurate, complete, conflict-free, and

non-redundant. The characteristics of Req 3 are described by Shanks et al.

[STW03] for validating conceptual models.

- Accuracy. The model should accurately represent the semantics of the domain

as perceived by the focal stakeholder(s);

- Completeness. The model should completely represent the semantics of the

domain as perceived by the focal stakeholder(s);

- Conflict-free. The semantics represented in different parts of the model should

not contradict one another (also called consistency).

- No redundancy. To reduce the likelihood of conflicts arising if and when the

model is subsequently updated the model should not contain redundant

semantics (related to conciseness).

Req 4. The Common Foundation shall be unambiguous, verifiable, and

traceable. The characteristics of Req 4 are also used for software requirements

specifications [IEEE83098]:

- Unambiguous. The definition should only allow a single interpretation.

- Verifiable. The information can be checked for correctness.

- Traceable. The origin of the definition can be determined.

Req 5. The Common Foundation shall be usable: understandable, learnable,

concise, and accessible.

54

Req 6. The Common Foundation shall be maintainable: analyzable, changeable

(versions), testable and stable.

The characteristics of Req 5 and Req 6 are described in ISO/IEC 9126

[ISO912601], as software product quality (sub)characteristics. Usability and

maintainability should be checked in the validation and deployment phases.

- Maintainability. The capability of the product to be modified.

- Usability. The capability of the product to be understood, learned, used and

liked by the user, when used under specified conditions.

4.3.2 NFRs Ontology Design

In Noy et al. [NMoo], several guidelines are given for ontology development. We

will apply ontology engineering as used in the development of the Common

Warehouse Metamodel (CWM) [CWM02]. The metamodel is described in the

Unified Modeling Language (UML). In the CWM Business Nomenclature (see

UML Class Diagram in Figure 4-2) two levels are distinguished:

- A taxonomy with concepts at semantic level (conceptual model or domain

model),

- A glossary with terms at representation level (terminology).

A concept can be related to other concepts. The relation between concepts in a

taxonomy can be generalization/specialization, aggregation and composition,

association and dependency, where needed enriched with navigation direction,

labels and multiplicities.

A concept is identified by a number of terms. A term can be related to other terms

and can be used in the description of concepts. A term is described in its

definition. There are many types of definitions such as denotative definitions,

55

connotative definitions and operational definitions. In the NFRs Ontology, we

will use denotative definitions. Those definitions rely on techniques that identify

extension(s) of the general term being defined with the structure:

<Concept> is <more general concept> with <specific conditions>

Copi and Cohen [CC98] provide some guidelines for this type of definitions:

- Focus on essential properties

- Avoid circularity

- Capture correct properties (not too broad, not too narrow)

- Avoid ambiguous and figurative language; be factual, not persuasive.

- Be affirmative rather than negative

Domain

1

conceptual model (semantics)

! terminology (representation)

Figure 4-2: Relation Between Taxonomy and Glossary.

-is described in

Taxonomy
-consists of

1

Glossary

-is related to "

Concept -is defined by

Term

-consists of -consists of
* * -i -is related to

56

4-3-3 Deductive Approach

Holsapple [HJ02] describes a number of approaches to ontology design:

inspiration, induction, deduction, synthesis and collaboration (See Table 4-1). We

chose to follow the deductive approach.

Table 4-1: Approaches to Ontology Design.

Approach Basis for Design

Inspiration Individual viewpoint about the

domain.

Induction Specific case within the domain.

Deduction General principles about the

domain.

Synthesis Set of existing models, each of

which provides a partial

characterization of the domain.

Collaboration Multiple individuals' viewpoints

about the domain, possibly

coupled with an initial ontology

as an anchor.

The deductive approach to ontology design is concerned with adopting some

general principles and adaptively applying them to construct an ontology geared

toward a specific case. This involves filtering and distilling the general notions so

they are customized to a particular domain subset. It can also involve filling in

57

details, effectively yielding an ontology that is an instantiation of the general

notions.

For the purpose of developing the NFRs Ontology, we considered reusing existing

ontologies; however, we could not find a relevant ontologies already existing so

we started developing our ontology from scratch.

Most of the terms and concepts in use for describing NFRs have been loosely

defined, and often there is no commonly accepted term for a general concept

[Gli07]. As indicated in the Introduction (Section 4.1), Common Foundation is

required to enable effective communication and to enable integration of activities

within the RE community. This Common Foundation is realized by developing an

ontology, i.e. the shared meaning of terms and concepts in the domain of NFRs.

In Section 4.4, we discuss the terminological level of the NFRs Ontology, while in

Section 4.5, we discuss the conceptual aspect of the NFRs Ontology.

4.3.4 NFRs Ontology Implementation

We used Protege 3.3 [PROTEGE] and its OWL plug-in in NFRs Ontology

development.

4.4 Development of Common NFRs Terminology

There are many resources for setting up a glossary for NFRs. In addition, there

are many different perspectives (see Figure 4-3) from where NFR terms are

defined, (e.g. NFRs in product-oriented perspective vs. process-oriented

perspective). There are few attempts to set up a common terminology for NFRs.

Pg|*C r \A^fn i a A
Concept Q

Perspective C

Perspective B

Figure 4-3: Common Terminology Derived from Different Perspectives.

In this thesis, the NFRs glossary is developed based on commonality analysis and

generalization from the previous publications in the requirements engineering

and software engineering communities. The link to the sources of the definition

will be provided each time a term is defined.

Commonality analysis is a well-known technique in domain engineering (e.g.

Czarnecki et al. 2000 [CEoo]). A common glossary collects common terms and

generalizes the definition such that the general definition could be used in the

specific context.

4.4.1 Initial terms

We selected an initial set of core terms for the common NFR glossary. In order to

improve the readability of this chapter, we chose to define other terms while

describing the conceptual model. The initial set of core terms is the following:

59

- Requirement:

Although there have been many definitions used through the years, we have

found the definition provided by requirements engineering authors Thayer and

Dorfman [TD90] to be quite workable:

- A software capability needed by the user to solve a problem that will achieve an

objective, or

- A software capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification or other formally

imposed documentation.

- Functional Requirement (FR):

FR is defined in [IEEE83098] as the requirement which defines the fundamental

actions that must take place between the software and the environment in

accepting and processing the inputs from the environment and in processing and

generating the outputs to the environment. These are generally listed as shall

statements starting with "The system shall..."

- Primary Functional Requirement (PFR):

PFRs are FRs which represent the principal functionalities of the system. Those

are demands that require functions which directly contribute to the goal of the

system, or yield direct value to its users. The identification of primary

requirements (which ones to select) is similar to determining which processes in

an organization are primary processes.

60

- Secondary Functional Requirement (SFR) :

SFRs are FRs which require functionality that is secondary to the goal of the

system. Examples are functions needed to manage the system or its data, logging

or tracing functions, or functions that implement some legal requirement.

- Non-Functional Requirement (NFR):

Probably the greatest challenge when it comes to deal with NFRs is that there is

no agreement in the literature on how to identify the term NFR in the first place.

Table 4-2 gives an overview of selected definitions from the literature or the web

which are representative of the definitions that exist. We provided our own

definition in the last row of the table derived from experience and knowledge of

the existing definitions.

Table 4-2: Definitions of the Term 'Non-Functional Requirement(s)'.

Source Definition

Anton [Ant97] Requirements which describe the non

behavioral aspects of a system, capturing the

properties and constraints under which a

system must operate.

Davis [Dav93] Requirements which represent the required

overall attributes of the system, including

portability, reliability, efficiency, human

engineering, testability, understandability,

and modifiability.

61

IEEE 610.12 [IEEE6101290] Term is not defined. The standard

distinguishes design requirements,

implementation requirements, interface

requirements, performance requirements,

and physical requirements.

IEEE 830-1998 [IEEE83098] Term is not defined. The standard defines

the categories functionality, external

interfaces, performance, attributes

(portability, security, etc.), and design

constraints. Project requirements

(Such as schedule, cost, or development

requirements) are explicitly excluded.

Jacobson, Booch and

Rumbaugh [JBR99]

A requirement that specifies system

properties, such as environmental and

implementation constraints, performance,

platform dependencies, maintainability,

extensibility, and reliability. A requirement

that specifies physical constraints on a

functional requirement.

Kotonya and Sommerville

[KS98]

Requirements which are not specifically

concerned with the functionality of a system.

They place restrictions on the product being

developed and the development process, and

62

they specify external constraints that the

product must meet.

Mylopoulos, Chung and

Nixon [MCN92]

"... global requirements on its development

or operational cost, performance, reliability,

maintainability, portability, robustness, and

the like. (...) There is not a formal definition

or a complete list of nonfunctional

requirements."

Ncube [Ncuoo] The behavioral properties that the specified

functions must have, such as performance,

usability.

Robertson and Robertson

[RR99]

A property, or quality, that the product must

have, such as an appearance, or a speed or

accuracy property.

SCREEN Glossary [SCREEN99] A requirement on a service that does not

have a bearing on its functionality, but

describes attributes, constraints,

performance considerations, design, quality

of service, environmental considerations,

failure and recovery.

Wiegers [Wie03] A description of a property or characteristic

that a software system must exhibit or a

constraint that it must respect, other than an

63

observable system behavior.

Wikipedia: Non-Functional

Requirements [WIKIPEDIA-

NFR]

Requirements which specify criteria that can

be used to judge the operation of a system,

rather than specific behaviors.

Wikipedia: Requirements

Analysis [WIKIPEDIA-RA]

Requirements which impose constraints on

the design or implementation (such as

performance requirements, quality

standards, or design constraints).

Our definition Umbrella term to cover all those

requirements which are not explicitly

defined as functional.

4-5 NFRs Conceptual Model

The NFRs Ontology will define the (shared) meaning of a set of concepts for the

NFRs domain. As said earlier, this can be used to improve communication and

interaction among people, or even among systems. The ontology has an

important core about NFRs model, but also addresses areas such as

requirements, software architectures, etc.

The NFRs Ontology contains many concepts. The high-level taxonomy with the

concepts is shown in Figure 4-4. In order to cope with the complexity of the

model we use views of the model. A view is a model which is completely derived

from another model (the base model). A view cannot be modified separately from

the model from which it is derived. Changes to the base model cause

64

corresponding changes to the view [LDS05]. Three views of the NFRs Ontology

are identified: The first view concerns the NFRs relation with the other entities of

the software system being developed (intermodel dependency). The second view

contains the classes and properties intended to structure NFRs in terms of

mutually dependent entities on other NFRs and refinements (intramodel

dependency). The third view represents the measurement process and contains

the concepts used to produce measures to measurable NFRs.

65

66

4.5*1 Intermodel Dependency View

Figure 4-5 illustrates the structure of the NFRs intermodel dependency view by

means of a simplified UML class diagram. The core of this structure relies on the

fact that NFRs are not stand-alone goals, as their existence is always dependent

on other concepts in the project context. If a requirement is a member of the class

NonFunctionalRequirement, it is necessary for it to be a member of the class

requirement and it is necessary for it to be a member of the anonymous class of

things that are linked to at least one member of the class AssociationPoint

through the hasAssociationPoint property. On the other hand,

isAssociatingNfrTo links the AssociationPoint to a range of:

FunctionalRequirement union Element union Process union Product union

Resource. The elements of this range are described in sections 4.5.1.1, 4.5.1.2,

4.5.1.3 and 4.5.1.4.

The AssociationPoint can be thought of as an interface from the perspective of

the association to the individuals from the above range. Thus, an individual of

AssociationPoint class will always associate one or more NFRs to the same one

individual from the above range. More specifically:

If an individual is a member of the AssociationPoint Class, it is necessary for it to

be linked to one and only one individual from: the (FunctionalRequirement class

through the isAssociatingNfrTo property) OR (Element through

isAssociatingNfrTo property) OR (Process through isAssociatingNfrTo property)

OR (Product through isAssociatingNfrTo property) OR (Resource though the

isAssociatingNfrTo property).

67

An individual from AssociationPoint class can be linked to many individuals from

the NonFunctionalRequirement class through hasAssociationPoint property.

SecondaryFunctionalRequirement

Prima ryFunctionalRequirement

SL

Requirement
Process Product

FuntionalRequirement

-FrlsMapf

-elementlsRefinedlnto

[

edlnto

Element

Artifact

NonFunctionalRequirement

-hasAssocia ionPoint

-isAssociatingNfrTo

Model

J

-isAssociatingNfrTo

AssociationPoint

-isAssociatingNfrTo

-belongsToDevelopmentPhase

Phase

-isAssociatingNfrTo

isAssociatingNfrTo Resource isAssociatingNfrTo

Wrapping Overriding Overtopping

Figure: 4-5: NFRs Intermodel Dependency View.

68

4-5-1-1 Association to FR (or derived elements)

Functionality-related NFRs refer to the individuals instantiated from the

NonFunctionalRequirement class and participate in hasAssociationPoint

property to an individual from the AssociationPoint class which in its turn

participates in isAssociatingNfrTo property to individual from the

FunctionalRequirement class (see Figure 4-5). In fact, a subset of NFRs, namely

functionality quality requirements (see section 4.5.2.1.1), is defined with an

existential restriction to have at least one association point with FR as it

represents a set of attributes that bear on the existence of a set of functions and

their properties specified according to the ISO 9126 definition to the functionality

quality [ISO912601]. Valid example of functionality-related NFRs is: "the

interaction between the user and the software system while reading email

messages must be secured".

The FunctionalRequirement class is further specialized into

PrimaryFunctionalRequirement and SecondaryFunctionalRequirement (see

Figure 4-5). A NFR can be associated to either type of FRs.

FR is further realized through the various phases of development by many

functional models (e.g. in the object-oriented field, a use-case model is used in

the requirements analysis and specification phase, a design class model is used in

the software design phase, etc.). Each model is an aggregation of one or more

artifacts (e.g. a use-case diagram and a use-case for the use-case model, a

domain model diagram and a system sequence diagram for the analysis model, a

class diagram and a communication diagram for the design model). The artifact

by itself is an aggregation of elements (e.g. a class, an association, an inheritance,

69

etc. for the class diagram). Modeling artifacts and their elements in this way gives

us the option of decoupling the task of tracing NFRs from a specific development

practice or paradigm.

If an NFR is associated with functionality, then some or all the offspring elements

that refine this functionality will inherit this association. More specifically:

((NFRi isAssociatedTo AssociationPointj) A (AssociationPointj

isAssociatingNfrTo FunctionalRequirementk)) ==> 3 Elementn ((NFRi

isAssociatedTo AssociationPointm) A (AssociationPointm

isAssociatingNfrTo Elementn) A (FunctionalRequirementk

FrlsMappedlnto Elementn))

When hasAssociationPoint property links an individual NFR to an individual

AssociationPoint which is further linked to an individual FunctionalRequirement

or Element through isAsscoatingNfrTo property, then the AssociationPoint can

be further specified through one of three subclasses. These subclasses specify the

type of association between an individual from the NonFunctionalRequirement

class and an individual from the FunctionalRequirement and Element classes.

We adopt the concepts of overlapping, overriding and wrapping, commonly

used in various separations of concerns approaches [RMA03] and [MAB02], to

define these three subclasses:

• Overlapping: the NFR requirements modify the FRs they transverse. In this

case, the NFR may be required before the functional ones, or it may be required

after them. For example, the implementation of security requirement (e.g. user's

authorization) needs to be executed before the user can access "read email

messages" functionality.

70

• Overriding: the NFR superposes the FRs they transverse. In this case, the

behavior described by the NFRs substitutes the FRs behavior.

• Wrapping: NFR "encapsulates" the FRs they transverse. In this case, the

behavior described by the FRs is wrapped by the behavior described by the NFRs.

4.5.1.2 Association to process

A software development process is a structure imposed on the development of a

software product. Synonyms include software life cycle and software process.

There are several models for such processes, each describing approaches to a

variety of tasks or activities that take place during the process.

From the above definition to the software process, process-related NFRs specify

concerns relative to the scope of the development process. Examples of such

NFRs are "The project will follow the Rational Unified Process (RUP)" and

"Activities X, Y, Z will be skipped for this project".

4.5.1.3 Association to product

Product-related NFRs refer to those NFRs which have a global impact on the

system as whole. Example of such NFRs are: "The system should be easy to

maintain".

4.5.1.4 Association to resource

Resources serve as input to the processes used on a project. They include people,

tools, materials, methods, time, money, and skills [Whi97]. An example of an

NFR associated with a resource is illustrated through a requirement like "The

software maintainers should have at least 2 years of experience in Oracle

database." This is an operating constraint that is associated with candidates for

the maintenance position for the system (another type of resources).

71

4.5*2 Intramodel dependency view

The intramodel dependency view is concerned with the refinement of NFRs into

one or more offspring; through either decomposition or operationalization, and

the correlation among the concepts of the NFRs model. The view is depicted in

the UML class diagram in Figure 4-6 and it is discussed through the concepts and

properties referring to: NFRs type, NFRs decomposition, NFRs

operationalization and NFRs interactivity.

4.5.2.1 NFRs type

Specifying NFR into types is a particular kind of refinement for NFRs [CNYMoo].

This allows for the refinement of a parent on its type on terms of offspring, each

with a subtype of the parent type. Each subtype can be viewed as representing

special cases for the NFR. Five subclasses are identified as a candidate for the

root node for an NFR type refinement hierarchy; namely, QualityRequirement,

Designlmplementation, EconomicConstraint, OperatingConstraint and

PoliticalCulturalConstraint.

Constructivelnteraction

LogicalError

Conflict

-fifrlsDecomposedTo

-islnteradingWith

NonFunctionalRequirement

<P

MinorConflict

-OpDecomposedTo

-hasOperationalizafio i

Operationalization

7

OperationOp ArchitectureDesignDecisionOp DataOp FunctionOp

Designlmplementation

EconmicConstraint

OperatingConstraint

PoliticalCulturalConstraint

QualityRequirement

Figure 4-6: NFRs Intramodel Dependency View.

73

4.5'2.J.J Quality Requirements

Quality is the totality of characteristics of an entity that bear on its ability to

satisfy stated and implied needs [ISO912601]. Software Quality is an essential

and distinguishing attribute of the final product. Evaluation of software products

in order to satisfy software quality needs is one of the processes in the software

development lifecycle. Software product quality can be evaluated by measuring

internal attributes (typically static measures of intermediate products which

specify internal quality from the internal view of the product), or by measuring

external attributes (typically by measuring the behavior of the code when

executed to specify the required level of quality from the external view), or by

measuring quality in use attributes (which represents the user's view of the

quality of the software product when it is used in a specific environment and a

specific context of use). Figure 4-7 presents the three views of the product quality

at different stages in the software life cycle.

Many approaches [BBL76], [CNYMoo] and [ISO912601] classify software quality

in a structured set of characteristics which are further decomposed into

subcharacteristics. We built quality taxonomy out of many inputted approaches

starting from the ISO 9126-1 (see Section 4.7) to define the root nodes for the

quality taxonomy (External Quality, Internal Quality and Quality in Use). Figure

4-8 shows the graphical representation of the quality taxonomy, and Table A-i

(Appendix A) lists each quality with its definition against its parent quality

according to the listed reference(s).

74

User quality needs
Use and

__feedback_ Quality In use

Contribute to
specifying

i 1
indicates

External quality
requirement

validation External quality

1

Contribute to
f specifying

i 1
indicates

Internal quality
requirement

verification
Internal quality

Figure: 4-7 Quality in the Software Life Cycle [ISO912601].

In the NFRs Ontology, we let the reasoner help computing condensed quality

taxonomy out of the inputted proposals. Being able to use a reasoner to

automatically compute the class hierarchy is one of the major benefits of building

an ontology using OWL-DL sub-language. When constructing large ontologies

the use of a reasoner to compute subclass-superclass relationships between

classes become almost vital. Without a reasoner it is very difficult to keep large

ontologies in a maintainable and logically correct state.

Figure 4-9 shows the difference between the asserted model for accuracy; the

model before the reasoner impact, and the inferred model for accuracy; the

model after the reasoner impact.

75

For example, in the asserted model, Accuracy is defined to be a subclass of

Integrity according to [CNYMoo], a subclass of Reliability according to [BBL76],

a subclass of FunctionalityQualityRequirement according to [ISO912601] and a

subclass of Correctness according to [Fir03]. On the other hand, in the inferred

model, the reasoner has removed FunctionalityQualityRequirement and

Reliability as a direct parent classes for accuracy. That is because Integrity is

defined itself as sublass of Security according to [CNYMoo] which is by itself a

subclass of FunctionalityQualityRequirement. In addition, Integrity is defined as

a subclass of Reliability according to [BBL76]. Thus, being a subclass of Integrity

implies being a subclass of both FunctionalityQuality Requirement and Reliability

classes. The reasoner simplifies the taxonomy by removing these two redundant

explicit links. Similarly; for Completeness and Consistency it removed Reliability

as a direct parent class; for Accessibility and Operability it removed Utility as a

direct parent class; for Availability it removed Dependability as a direct parent

class; in addition, for Space and TimeBehavior, it removed Efficiency as a direct

parent class.

76

' Thtesghpat N/

Figure: 4-8 Quality Requirements Taxonomy.

77

Figure: 4-9 (a): Asserted Model for Accuracy Quality

(PropertyAccuiacy ")
— „ . „

Figure: 4-9 (b): Inferred Model for Accuracy Quality

78

4-5-2-1'2 Design Implementation Constraint

Constraints are not subject of negotiations and, unlike qualities, are off-limits

during design trade-offs. Constraints are defined in [LW03] as restrictions on

the design of the system, or the process by which a system is developed, that do

not affect the external behavior of the system but that must be fulfilled to meet

technical, business, or contractual obligations. A key property of a constraint is

that a penalty or loss of some kind applies if the constraint is not respected.

According to [TEMPLATE09], the constraints on design and the implementation

are being decomposed as shown in the taxonomy of Figure 4-10.

.— j Ph-fiic.! 0 _
Siz*Aa4Cin>eioi»n ;

MtchantcalCciKVuGtion ,

: FintihCatoiiiAnilLab.lmJ — —Lab.liny ;

\ HumanFaetoB „

DeciMBcntMion ;

U»int»mafit* framing

. up«ut»rinte<f*ce -

«i:Thtnp ik'i i R*quir»m»rrt c' NonFuncticnjIPtquilt rt JkJ D«ngn1mpl*mentdtaori ><t C H»id»*3 i«S sfbw»t» D ni ghC o ntfiiiM
•s>- — ^

Ttmp»tiiitR«ig(,

> ^

i ErrviammtrrUI -'J-

HAccnabdrty >

•• ttfchariieaEmrfronmftiit y-

ShoekAnrfVibfS

. Oi>tAMl(.ontam*n3tien .

ElecbiE'tEwuvnmtnt ?<3

' T»nspoffat)eitAn4Pacfc»G>ne .

EmSuKtplibilrty ••

EmEmlmar* :

Figure 4-10: Design/Implementation Taxonomy.

79

4-5-2.1.3 Economic Constraint

These are constraints which include the immediate and/or long-term

development cost.

4.5.2.1.4 Operating Constraint

These are constraints which include physical constraints, personnel availability,

skill-level considerations, system accessibility for maintenance, etc.

4.5.2.1.5 Political / Cultural Constraint

These are constraints which include policy and legal issues (e.g. what laws and

standards apply to the product).

4.5.2.2 Decomposition

This refers to the NfrlsDecomposedTo property that decomposes a high-level

NFR into more specific sub-NFRs. In each decomposition, the offspring NFRs

can contribute partially or fully towards satisficing the parent.

NfrlsDecomposedTo is a transitive property. The decomposition can be carried

either across the type dimension (section 4.5.2.1) or the association point

dimension. For example, let us consider the requirement "read an email message

with high security". The security requirement constitutes quite a broad topic

[CNYMoo]. To deal effectively with such a requirement, the NFR may need to be

broken down into smaller components using the knowledge of the NFR type;

discussed in Section 4.5.2.1.1, so that an effective solution can be found. Thus, the

requirement stated as "read an email with a high security" can be decomposed

into "read an email with high integrity", "read an email with high confidentiality",

and "read an email with high availability". An example of decomposition across

the Association Point is: "read inbox folder messages with high security", "read

80

system-created folder messages with high security". The decomposition can be

"ANed" (all NFR offspring are required to achieve the parent NFR goal) or

"ORed" (it is sufficient that one of the offspring be achieved instead, the choice of

offspring being guided by the stakeholders) [CNYMoo].

In the case of "ANed", as in the security example, all the sub-NFRs are also

associated with the Association Point with which the parent NFR is associated.

For example, the set of individuals of AssociationPoint class which participates in

hasAssociationPoint property with security is a subset of the set of individuals of

AssociationPoint class which participate in hasAssociationPoint property with

confidentiality, integrity, or availability. In the case of "ORed", then only the

sub-NFRs that are selected by stakeholders will be associated with the FRs with

which the parent NFR is associated. Figures 4-11-a and 4-11-b illustrate the two

situations. The question mark notation "?" in (3-11-b) indicates that a further

contribution from the stakeholders is required to determine the existence of the

relation.

81

NFR hasAssociationPoint AssociationPoint npr
•

hasAssociationPoint AssociationPoint •

NFRf, NFR2

isDecmpose
'AND)

NFR1, NFR2
A B

Figure: 4-11: Implicit Relations among NFRs and Association Points.

NFRs which cannot be further decomposed into sub-NFRs are referred to as

Atomic NFRs. That is if an individual is a member of class AtomicNfr, then it

cannot participate in NfrlsDecomposedTo relation as a domain element.

4.5.2.3 Operationalization

This refers to the hasOperationalization property that refines the NFR into

solutions in the target system that will satisfice the NFR [CNYMoo]. The inferred

taxonomy of the operationalization is presented in Figure 4-12 and it shows that

operationalization corresponds to solutions that provide operations, functions

(FunctionOp), data representations and architecture design decisions (e.g. design

pattern) in the target system to meet the needs stated in the NFRs. Similar to

decomposition, operationalization can be ANed or ORed.

In the inferred model, the reasoner classifies FunctionOp based on the imposed

assertions as a subclass for FunctionalRequirement. This classification is

consistent with many arguments in the requirements engineering community on

the tight link between the FRs and NFRs [PDKV02]. The ontology brings

formalism and a concrete understanding to this link.

82

bj •—• , { SecondaryFunetionalRequiiement̂

J&. — - ——-<Jr
4 FunctionalRequirement a -MainFunDtionalRequiiement

s — • FunctionOp

(jOpeiationalization JJ
j, DataOp i

Ateh ite c tu r e D csi g n D e c isio n 0 p "<]—

, OpeiationOp)

i. DesignPattem)

Figure: 4-12: Inferred Taxonomy for Operationalizations.

We note, that the existence of an association between a NFR and an association

point (e.g. security and association point for send email) implies that an

association exists between those operationalizations which are derived from the

NFR and that association point (e.g. the use of additional ID and association

point for send email). Figure 4-13 illustrates this relationship.

hasAssocoationPoint

NFR —
basOperationalizaiion

AssociationPoint

r _^-^^"hasAssocoationPoint

Operationalization

Figure 4-13: Implicit Relations among NFRs, Operationalizations and
AssociationPoints.

83

4.5*2-4 Interactivity

An individual NFR may participate in islnteracting With property which links it

to another NFR. This refers to the fact that the achievement of one NFR;

InfluencerNfr, at a certain association point can hinder (through

isNegativelylnteractingWith property) or help (through

isPositivelylnteractingWith property) the achievement of other NFR;

InfluencedNfr, at the same association point, e.g. security and performance at

read an email message functionality. isInteractingWith is not a symmetric

property.

If NFRi participates in the relation isNegativelylnteractingWith with NFR2, then

we say that there is a conflict between NFRi and NFR2. A conflict among two or

more NFRs occurs when the achievement of one NFR obstructs the achievement

of another.

The negative interaction is further specialized through the two sub-properties,

which help classifying the negative interaction into: hasLogicalErrorWith and

hasMinorContradictionWith. We chose to focus on these two sources of conflict

because they are general enough to identify the most critical conflicts (logical

errors) with which the developers have to deal first, and to allow a flexible

quantification of the level of critieality of the remaining conflicts for further -

consideration (Contradiction).

Logical Error: This is a fundamental conflict which must be resolved

immediately. It occurs when the achievement of NFRi will prevent the

achievement of NFR2. This is expressed by means of the proposition LogicalError

84

(NFRi, NFR2) O NFRi -» NOT NFR2. Logical Error demonstrates a direct

contradiction between two requirements. For example, NFRi is stated as

"Security has to be high at read email functionality"; while NFR2 is stated as

"There should be no security constraints at read email functionality"!

Minor Contradiction: This is one of the best-known cases of conflict

[CNYMoo]. Here, we emphasize that NFRs by themselves do not interact, as they

represent static goals to be achieved. However, their associations with association

points could interact, in that attempts to achieve one NFR at a certain association

point can hinder (negative interaction) or help (positive interaction) the

achievement of other NFRs at the same association point. Associating a win

condition with an NFR (say NFRi) triggers a search of the operationalization that

has positive and/or negative effects on NFRi. For example, the Portability NFR,

the win condition of which is "portable to Windows", has positive effects on the

portability layers and separation of data generation and on the presentation, but

has negative effects on the use of fast platform-dependent user interface

functionalities that would be affected with the layering strategy. The

operationalizations that are found to have negative effects on other NFRs sharing

the same association points with their parents NFRs are used to identify potential

conflicts. Below is a generalized algorithm for NFR conflict identification:

Algorithm: Quality_Conflict_Identification(ASSOCIATION_POINTx)

// Find an NFR which links to the same association point. And Initialize
CONFLICT.

Find NFRx such that return_associated_NFR(ASSOCIATION_POINTx)
CONFLICT <r O

85

// Get Positive OPerationalizatiohs (POP) and negative OPerationalizations
(NOP)

For each NFRx in return_associated_NFR(ASSOCIATION_POINTx)

begin
POP <- {OPi | positively-influences (OPi, NFRx) AND parent_NFR(OPi) e
return_associated_NFR(ASSOCLATION_POINTx)}

NOP <r {OPi | negatively-influences (OPi, NFRx) AND parent_NFR(OPi) e
return_associated_NFR(ASSOCIATION_POINTx)}

I j Identify conflicts using positive-negative or negative-positive relationships.

For each OPi in POP
CONFLICT <r CONFLICT u
{(ASSx, ASSy) | negatively-influences (OPi, NFRy) AND (NFRy e
return_associated_NFR(ASSOCIATION_POINTx))}

For each OPi in NOP
CONFLICT <- CONFLICT u
{(ASSx, ASSy) | positively-influences (OPi, NFRy) AND (NFRy e
return_associated_NFR(ASSOCIATION_POINTx))}

End for;

Table 4-3 shows a summary of what we collected through our observations of

industry and the literature of some NFRs, including some of their popular

operationalizations, and other top-NFRs which are candidates for establishing a

conflict involving a minor-contradiction. We make the note, however, that Table

4-3 does not pretend to be complete. Indeed, it can not be complete as new

experiences by the authors and also by other researchers on NFRs can add new

insights into understanding the minor contradictions among NFRs.

Table 4-3: NFR operationalizations and Candidate Minor Contradictions.

PRIMARY
NFR

OPERATIONALIZATIONS OTHER NFR CONFLICTS

Usability Error-reducing user
input/output

Effort
Performance

Usability

Input acceptability checking Effort
Performance

Reusability Domain architecture-driven Effort
Performance

Reusability

Layering Effort
Performance

Security Authorization Availability
Multi-Access
Effort
Performance

Security

Request additional ID Usability
Effort
Performance

Space Use compressed format Response time
Effort

Response time Use indexing Effort
Interoperability Input acceptability checking Effort

Performance
Interoperability

Layering Effort
Performance

Dependability Backup/ recovery Evolvability
Effort
Performance

Dependability

Monitoring & Control Effort
Availability
Performance
Multi-access

Evolvability Layering Effort
Performance

Figure 4-14 depicts the two types of conflict that may arise between two NFRs.

87

4-5-3 NFRs Measurement View

This view refers to the classes and properties which represent measurement

model concepts associated with the class

MeasurableNonFunctionalRequirement. Figure 4-15 shows the relationships

among the key components of the measurement model:

MeasurableNonFunctionalRequirement, Indicator, BaseMeasures and

DerivedMeasures by means of a simplified UML class diagram.

For an individual to be a member of MeasurableNonFunctionalRequirement

class, it has to be a member of NonFunctionalRequirement class and it is

necessary for it to be a member of the anonymous class of things that are linked

to at least one member of the class Qualitylndicator through the haslndicator

property. A measurement planner defines measurement indicators that link the

NFRs to a specified information need.

The measurement model linked to a MeasurableNonFunctionalRequirement

captures the process of quantifying and interpreting the measurement data

needed for decision making. An indicator is a measure that provides an estimate

or evaluation of specified attributes derived from the analysis of the

measurement data (values) with respect to defined decision criteria, which serves

as basis for decision-making by the measurement users. For example, acceptable

range of software reliability values is [75%, 100%]; and values below 75% would

require more testing of the product until an acceptable level is reached. Indicator

class is linked to the class Measure through hasMeasure property.

89

MeasurableNonFunctionalRequirement -haslndicator Quality Indicator

-hasDecisionCriteria

NonFunctionalRequirement

7 Y

-hasM ;asure

DecisionMakingCriteria

NonMeasureableNonFunctionalRequirement
-hasMeasure nentFunction

DerivedMeasure Measure
/ I

BaseMeasure
/ I

1/ Nj 1/ Nj

-has\

MeasurementFunction

aue -hasEntityf\ttribute
-hasMeasurdmentMethod

Value Entity-Attribute MeasurementMethod

Figure: 4-15: NFR Measurement View

A measure is a variable to which a value is assigned. It can be a base measure or

derived measure. A base measure is defined in terms of an Entity-Attribute and a

MeasurementMethod which is a logical sequence of operations with the purpose

of quantifying an attribute of software entity. An example of such base measures

are: lines of code (LOC), or Kemerer and Chidamber suite [CK94] that have been

defined for the object oriented programming. A derived measure is a measure

that is defined as a function of two or more base measures. It is quantified by a

MeasurementFunction - an algorithm or calculation performed to combine two

90

or more base measures. For instance one can decide that the measure of

maintainability is obtained by a formula like: aAnalysability + ^Changeability +

yStability + 8Testability, where the weights a, (3, y, 8 are obtained by a statistical

analysis process [ISO912601].

The NFRs measurement view is compatible with the ISO/IEC standard 15939

[ISO1593907] and the described there measurement information model which is

defined as a structure linking measurement information needs to the relevant

entities and attributes of concern.

4.6 Evaluation

This chapter described, through an ontology, glossaries and taxonomies for

NFRs. We used these glossaries for generalization to the common NFRs concepts.

The ontology is a first version meant to evolve. This thesis does not claim that

NFRs Ontology is a complete ontology. The thesis aims to consolidate core and

support knowledge about NFRs into a practical, workable and, most importantly,

extensible NFRs Ontology.

These factors make NFRs Ontology useful in its current form, as well as

adaptable to other new applications or concerns, even if NFRs Ontology is not

complete.

The evaluation criterion for the discussed ontology is that the Common

Foundation for NFRs should be (i) generally acceptable for stakeholders in

requirements engineering community, (ii) consistent and (iii) accurate.

91

'Generally accepted' means that the knowledge and practices described are

applicable to most projects most of the time, and that there is widespread

consensus about their value and usefulness. 'Generally accepted' does not mean

that the knowledge and practices described are or should be applied uniformly on

all projects [PMBOKoo].

Clearly, the evaluation of the acceptance and the accuracy of the ontology as such

ultimately relies upon its application in different contexts. For the purpose of this

evaluation, we have instantiated the NFRs Ontology against the set of

requirements from the settings of the NOKIA Mobile Email Application System

(Chapter 3, Section 3.3.1) and the IEEE Montreal Website (Chapter 3, Section

3.3.2). Further, we worked closely with an expert from SAP-Montreal to use the

NFRs Ontology as a repository for the requirements of one of the projects which

are under development (Chapter 3, Section 3.3.3).

Figure 4-16, shows a snapshot for the instantiated NFRs Ontology against the set

of requirements from the IEEE Montreal website project. For this visualization,

we used TGVizTab plug-in. Table 4-4 summarizes the total number of individuals

per project instantiated from some of the core classes in the NFRs Ontology.

92

Table 4-4: Summary of Numbers of Individuals Instantiated of NFRs Ontology.

NOKIA

Mobile

Email

Application

IEEE

Montreal

Website

SAP Project

FunctionalRequirement 45 39 104

Element 189 223 421

NonFunctionalRequirement 18 13 21

QualityRequirement 13 8 15

DesignlmplementationConstraint 2 2 3

OperatingConstraint 1 1 1

PoliticalCultural Constraint 1 2 1

EconomicConstraint 1 0 1

Resource N/A 7 6

AssociationPoint 17 39 27

Operationalization 34 13 24

ArchitectureDesign Op 15 6 2

DataOp 2 1 O

FunctionOp 15 6

OperationOp 2 0 5

93

: ei»:grtjeet • g*L £ode joe* «Sr>dbw TGVbT«to gee |
J H - " iis ^ S I. < t <&j>rot£gt :

jt ^I^Ii^RW^ jg-owfccuKrw* • IK***** ja F«*» t

gsfrtf "̂ftxttô pM ŝfcappfc • | | n̂ hwwpnH «tec-Wcra j "PKftBgftB**>--<s^ll*^ flWW.ONTOtO£VCOOg Z . •€|.IC¥feTat'.*.MPp>aftint,>, f , •-Ty ̂ f f i 1 0 : 4 8 AM

Figure 4-16: Instantiated NFRs Ontology Against IEEE Montreal Website Case
Study.

From the experiences and the participants' feedback developed from

instantiating the NFRs Ontology against the three real-life projects (the Nokia

project, the IEEE Montreal website project and the SAP project), the ontology has

proven to be easy to instantiate and links the concepts efficiently. Each individual

captured NFR was instantiated from its corresponding concept in the Ontology.

We make the note here that we did not meet the case in which an individual NFR

was not instantiated from a corresponding concept.

In order to facilitate the adoption of the NFRs Ontology in the requirements

specification phase, we further built a recommended process of steps towards

instantiating the NFRs Ontology (Figure 4-17).

94

• Instantiation of the InterModel Dependency View:

- Instantiate classes: Resource, Process, Product.

- Instantiate class FunctionalRequirement.

- Instantiate classes representing the functional refinements: Model, Phase,

Artifact, Element.

- Instantiate class NonFunctionalRequirement.

- Instantiate class AssociationPoint.

- Link individuals from AssociationPoint class to individuals from classes:

FunctionalRequirement, Element, Resource, Process and Product.

- Link individuals from NonFunctionalRequirement class to the individuals

from AssociationPoint class.

• Instantiation of the Intramodel Dependency View:

- Link individuals from NonFunctionalRequirement class to other individuals

from NonFunctionalRequirement class through isDecomposedTo property.

- Instantiate class Operationalization.

Link individuals from NonFunctionalRequirement class to individuals from

Operationalizations through hasOperationalization property.

- Link individuals from Operationalization class to individuals from

AssociationPoint class.

- Link individuals from NonFunctionalRequirement class to other individuals

from NonFunctionalRequirement class through isInteractingWith property.

Instantiation of Measurement View:

- Instantiate classes: MeasurableNonFuncionalRequirement, Indicator,

DecisionMakingCriteria, Measure and Value.

95

- Link individuals from MeasurableNonFunctionalRequirement class to

individuals from Qualitylndicaor class.

- Link individuals from Qualitylndicator class to individuals from

DecisionMakingCriteria class.

- Link individuals from Qualitylndicator class to indivifuals from Measure

class.

- Link individuals from Measure class to individuals from Value class.

Figure 4-17: Steps Towards Instantiating NFRs Ontology.

The snapshots in Figures 4-18 and 4-19 are taken while instantiating some NFRs

of the IEEE Montreal Website Project. The properties widgets in the individual

editor on the right half of the screen helps to link an individual to other concepts

through its allowed relations.

Further, The NFRs Ontology has demonstrated its usefulness on checking of the

completeness of the requirements. For example, there is an asserted condition on

the Operationalization concept that it has to be linked to the

NonFunctionalRequirement concept through isOperationalizationOf

relationship (inverse of hasOperationalization relationship). If an instance of the

Operationalization class is created without being linked to its NFR, then the

widget corresponding to isOperationalizationOf relation will be highlighted in

red to attract the attention towards this missing link (See Figure 4-20). With such

a feature, NFRs can be checked for their completeness against the asserted

conditions discussed in this chapter.

Consistency has been demonstrated through the usage of a semantic web

reasoning system and information repository: Renamed Abox and Concept

Expression Reasoner (RACER) [RACER].

• 0c £di: graied QNL £ode loots fcfrxiow He*
) S i f c ' * & £ < >

• ,451*1
- f>. protige

• UrtadA P^M^-I # WPtt***•rdMduab

: # fWALONTOtOOYCOCt

: \ # Fcr*Ma
i •

$Mekc
I; # Model

H Opci«flmiialKn
$Pheae
Project •. J-.
flRequremert

|i 9 FindUrenequireaienl
;i< T $ NErfuncSonaRetMrcmert

1 J
|= # EconmicCons&art
ii # hfluenceiMr f:
'H $ MluencerNfr

f. # HcrttoswtWcHorf'uretMneKwMr̂
j: $ OpartfingCcnstrart :' • i
f; # PoSicalCUhralCGrtsftart h
j; * # QuaKyRequremert I.
l! • #ExtemH_and_nemef_OuNty !
| • # Efficiency r
3= $ FtnctwraKy

T ̂ HMrMneMh' Q- j
I: # AnefyrabMy

Change**? \
ŜaMty

$ TestaMty

jfwQsw: ̂
j: Asserted

< | As-i+esJess fntdat*ces

^ IHOtVIDUAt EDITOR
jfwr JnrtwSsst: •;..Expert.Users_vsth_N Reqwng (or • Tfwd Party.Heracbcn o rnffriM; o! Tiswfifcsw * i (instance ot MartonafaBy)

* » x « ,
+1 he_cortert_ofJhe _homepage*_*hoii(i_be_e*eyj: II

Type i

MM
Type

•
t AasocahcnPortTcFiodueM

%
Mainlar*8fcity

l Ah*y to Ma

*

n the

L-

^ « , < fjb*; The ccntert of̂B* homepages shoutd ;

f ̂ cywgwayfĉ l̂ jThesfeOraftdEC-̂ l̂ wpĝ fag-- I **** I ^ Widows tte Me*.-f ProteQB.<nte fj fWMtDWtOtOG- g| « x̂ dtS i } ?

Figure 4-18: Snapshot from the NFRs Ontology-Individuals Tab- (Screen 1).

97

: Fk Q«. £ode Jodb YMem ye*
) * * ~ ^ v [>• $ £ <3 >

£t<r # FNALONTOLOGYCa:*WSFS<C5},i«sfc • ; Ttw.c ortert_of_tf*,hcmepeges_sn(xicl_M_e»sy_to_«io<*r
CA*»»SU!?«e?y_' • ' ' » __ _ _

#fo»n*i» "..; ^ _ Property Value
• Go* «

• #Mefric
$Modtf

» # OperaMrMbetion
#Ph«e
#PreiMu;

T Requirement
Funetkvafteqwemert

j (kwtanceotMartainMy)
y AnnoSi&iifa;

J Lan® I

<J_Party_rter oction̂ŵCosts_forJJpdsfes I (nstanceef MaHaraMy)

M
-S- K t, * * ^ <*.

$$ AforvcNh I
EccnmeCcnskart :l j
$ MkiencecMrr =rI _
MkJencerNtr
MMUMUeNotftncbon' fo****«Qn»?*-
$ NuMeasuatteNonFunC: _ _

OperaiingConstnM ?T:; jv®VH9h
Pottca<GJ>j»«Coratran: •

T #OtwKyRet)Lvemaf«
S? ExJemaJ_anct_htem ™

• # Efficiency Jjtwt
• # Funetooally —. —, -• ftkHMAy < j ~

ArwIyzatW'

• # TestaMTy ^ ^ #

NypjT
**

=T"

t
prot£g£ >• ba 1

• * * t. AirtytoMnrtw,

: altttjl' ̂ ^ <rfrbs£»<S'>fr'pQS!rc;: o ^ ^ j
Theertjyt Jhe_homepage3_3hou>d i

•> » #

f H W t e ^ .)) -gittraftJU... | gj njomiHoc, [gVTafeTilSlklWnJpilM., Protege | -6 nmaacio.. {| ̂ §g ,» "'2t«W

Figure 4-19: Snapshot from the NFRs Ontology-Individuals Tab- (Screen 2).

l->»IJMIi!JH.!l.lMJ.i,

FJe &S ft<*ct grtt Code loob VMbh
l) ^ us; ds is v-7* L̂ i11̂ :

• F»Ul OMTOLCGVOXe

» f l *Kt«ectureQe3fcF«}ecistori0s> -

FuneBonOp m
® OpwatanOp

P̂haee

: Better _C*ganced_Menus
i : • Ciearty_Vis«e_MeaRS_Ot_Aecess>̂_Pnmery_SM
; : + Less Sc»eefi_C3uttef

RedesignLogo
• - + User.Frientfy.U

' •.iBettef.Oraanized.Merws

llA^Z ' ^ • x 1 ISS rc

fnstance of. ArcJiiectireOesignOeclslonOp)

FmttMReqwenert
#FunctionOp
% PrimaryFinclior>aPe<ji*emert .:

SecandaryFunctionaBetMr avert

T ̂ Norf mctionaKeqiaentart
#MoricNf> f

• # Desagnhiptementation \
0&xmk£tmslimr* <
InfluencedNfr i
InfbencerMft i
^ MeasurabieNonF ircSorefieouremer-
% NixMeasvKM̂uncltonaRequir̂
OpetelripCcostrart ; i
PoKcalCt*ur4C«n3trart

T ^ OiaByRequi>enie><

*

I "Sieridiyjjr"

mail::
; B:':. i]

| . .• • Jc AichiectureOesignOeascinOp

Figure 4-20: Snapshot from The NFRs Ontology-Individuals Tab- (Screen 3).

9 8

In [HM06], the authors propose a new requirements elicitation method ORE

(Ontology based Requirements Elicitation), where a domain ontology can be used

as domain knowledge. In their method, a domain ontology plays a role on

semantic domain which gives meanings to requirements statements by using a

semantic function. By using inference rules on the ontology and a quality metrics

on the semantic function, an analyst can be navigated which requirements should

be added for improving completeness of the current version of the requirements

and/or which requirements should be deleted from the current version for

keeping consistency. The method starts when an analyst maps the requirements

items (statements) in a requirement document into atomic concepts of the

ontology. By using this approach, it is possible to estimate the quality of

requirements through four defined quality characteristics: Correctness,

Completeness, Consistency and Ambiguity. Requirements engineers can benefit

from the NFRs Ontology proposed in this chapter combined with the proposed

method in [HM06] to evaluate the set of requirements against these four quality

characteristics.

4.7 Related Work

Even though there is no formal definition of the term 'NFR', there has been

considerable work on characterizing and classifying NFRs. In a report published

by the Rome Air Development Center (RADC) [BWT85], NFRs ("software quality

attributes" in their terminology) are classified into consumer-oriented (or

software quality factors) and technically-oriented (or software quality criteria).

The former class of software attributes refers to software qualities observable by

99

the consumer, such as efficiency, correctness and interoperability. The latter class

addresses system-oriented requirements such as anomaly management,

completeness and functional scope.

Earlier work by Boehm et al. [BBL76] structured quality characteristics of

software within a quality characteristics tree of 25 nodes, noting that merely

increasing designer awareness would improve the quality of the final product. On

a different track, Hauser et al. [HC88] provide a methodology for reflecting

customer attributes in different phases of automobile design.

Dobson et al [DLS05] describe an approach to specifying the Quality of Service

(QoS) requirements of service-centric systems using an ontology for Quality of

Service. The above approaches address only a subset of NFRs; namely quality

requirements, and sometimes within a specific context; (e.g. service computing in

[DLS05]). On contrast, our work aims at providing a more generic solution to all

types of NFRs with independence from any context.

Al Balushi and Dabhi [ASDL07] used an ontology-based approach to build NFR

quality models with the objective to gather reusable requirements during NFR

specification. We agree with these authors on the usefulness of ontology,

however, the research objectives of their research efforts and ours differ, which in

turn, leads to essential difference in the research outcomes. While the conceptual

model in [ASDL07] is geared towards solving requirements reuse problems, our

ontology covers a broader spectrum of NFR issues. This is achieved by using

multiple views, which explicate requirements phenomena by complementing the

strengths of multiple conceptualizations of NFRs.

100

Lee et al. [LMGYA06] apply the so-called "method for developing a problem

domain ontology" from natural language security requirements from various

sources. The objective of the research by these authors was to provide support to

a common understanding of security requirements and to facilitate analysis at

various decision points by making the required information readily available with

appropriate context and format. While this approach is focused on security

requirements, ours is meant to help analysing any NFR.

On the other hand, some standards have been proposed in order to unity the

definition of subsets of NFRs; e.g. software quality concepts [ISO912601].

However, till now there is no clear and coherent generic representation of the

NFRs concepts. The most important of these standards is the ISO 9126

[ISO912601]. ISO 9126 is an international standard for the evaluation of software

quality. The fundamental objective of this standard is to address some of the well

known human biases that can adversely affect the delivery and perception of a

software development project. These biases include changing priorities after the

start of a project or not having any clear definitions of "success". By clarifying,

then agreeing on the project priorities and subsequently converting abstract

priorities (compliance) to measurable values (output data can be validated

against schema X with zero intervention), ISO 9126 tries to develop a common

understanding of the project's objectives and goals.

The standard is divided into four parts:

• quality model

• external metrics

101

• internal metrics

• Quality in use metrics.

In [ACK05], the authors reported on nine problems with ISO/IEC 9126 for design

quality as follows:

• Some concept definitions are ambiguous, e.g.functional compliance.

• Some concept definitions overlap, e.g. functional implementation completeness

and functional implementation coverage.

• Overlapping definition of concepts can lead to multiple counting when metrics

are constructed.

• The standard recognizes reliability and maintainability as quality characteristics

but does not refer to them when considering design products although most

software engineers would agree that both characteristics need to be designed into

products.

• The standard ignores other characteristics that might be important in design

products such as validity and modularity.

• Simple Counts are insufficient to evaluate the quality of design.

• Some measures require information that is not available to the designers, such

as functional understandability.

• Some measures require counting items that are not available from design

documents, such as computational accuracy and data exchange.

• No guidelines or procedures are defined for accumulating the metrics into an

overall evaluation.

In the light of its ambiguities and omissions, the authors of [ACK05] conclude

that ISO/IEC 9126 in its present format fails to achieve any of its stated

objectives.

In 2005, the ISO/IEC 25000:2005 [ISO25000] has been introduced as a

guidance for the use of the new series of International Standards named Software

product Quality Requirements and Evaluation (SQuaRE).

SQuaRE replaces the current ISO/IEC 9126 [ISO912601] series and the 14598

series. SQuaRE consists of the following five divisions:

• ISO/IEC 2500n - Quality Management Division,

• ISO/IEC 250m - Quality Model Division,

• ISO/IEC 2502n - Quality Measurement Division,

• ISO/IEC 2503n - Quality Requirements Division, and

• ISO/IEC 2504n - Quality Evaluation Division,

ISO/IEC 25050 to ISO/IEC 25099 are reserved to be used for SQuaRE extension

International Standards and/or Technical Reports. SQuaRE provides:

• Terms and definitions,

• Reference models,

• General guide,

• Individual division guides, and

• International Standards for requirements specification, planning and

management, measurement and evaluation purposes.

SQuaRE includes International Standards on quality model and measures, as

well as on quality requirements and evaluation.

103

In Table 4-5, we compare different broad quality taxonomies, including our

constructed quality taxonomy presented in Section 4.5.2.1.1, with respect to (i)

number of qualities included, (ii) consideration to association, (iii) consideration

to operationalization, (iv) consideration to interactivity among qualities and (v)

consideration to qualities measure.

104

T
ab

le
 4

-5
:

C
om

pa
ri

so
n

 B
et

w
ee

n
 S

ev
er

al
 B

ro
ad

 Q
ua

lit
y

T
ax

on
om

ie
s.

Q
u

a
li

ty

ta
x

o
n

o
m

y
p

ro
p

o
sa

l

N
u

m
b

er
 o

f
q

u
a

li
ty

re

q
u

ir
e

m
e

n
ts

A
ss

o
ci

a
ti

o
n

O

p
er

a
ti

o
n

a
li

za
ti

o
n

In

te
ra

ct
iv

it
y

a
m

o
n

g

Q
u

a
li

ti
e

s

M
ea

su
re

m
en

t
o

f
q

u
a

li
ty

 r
eq

u
ir

em
en

t

[M
R

W
77

]
11

N

/A

N
/A

N

/A

N
/A

[\

Y
ie

0
3]

12

N

/A

N
/A

N

/A

N
/A

[B

W
T

8
5]

13

N

/A

N
/A

N

/A

N
/A

[B

B
T

76
]

20

N
/A

N

/A

N
/A

N

/A

[I
SO

91
26

0
1]

37

N

/A

N
/A

N

/A

C
on

si
de

re
d

 i
n

 I
SO

 9
12

6
[2

],
 I

SO
 9

12
6

[3
]

an
d

IS

O
 9

12
6

[4
]

O
ur

 Q
ua

lit
y

T
ax

on
om

y
87

A

ss
oc

ia
ti

on
 w

it
h

fi

ve
 p

ot
en

ti
al

as

so
ci

at
io

n

po
in

ts
 is

 w
el

l
pr

es
en

te
d

 in

Se
ct

io
n

 4
.5

.1

O
pe

ra
ti

on
al

iz
at

io
n

pr

op
er

ty
 i

s
w

el
l

pr
es

en
te

d
 i

n
 S

ec
ti

on

4-
5.

2.
3

In
te

ra
ct

iv
it

y
is

w

el
l

p
re

se
n

te
d

in

 S
ec

ti
on

4-

5-
2.

4

A
 b

ro
ad

 m
ea

su
re

m
en

t
vi

ew
 t

h
at

ac

co
m

m
od

at
es

 t
h

e
w

id
er

 r
an

ge
 o

f
qu

al
it

ie
s

is
 w

el
l

pr
es

en
te

d
 i

n

Se
ct

io
n

 4
.5

.3
. T

h
e

vi
ew

co

n
fo

rm
s

to
 t

h
e

IS
O

/I
E

C
 s

ta
n

d
ar

d

15
93

9

10
5

Chapter V: A Traceability
Mechanism for Change
Management of Non-Functional
Requirements

"Testing by itself does not improve software quality. Test results are an
indicator of quality, but in and of themselves, they don't improve it. Trying to
improve software quality by increasing the amount of testing is like try to lose
weight by weighing yourself more often. What you eat before you step onto the

scale determines how much you will weigh, and the software development
techniques you use determine how many errors testing will find. If you want to

lose weight, don't buy a new scale; change your diet. If you want to improve
your software, don't test more; develop better

Steve McConnell

5.1 Introduction

In the early phases of software development, user requirements are established

based on an analysis of business goals and the application domain. Subsequently,

architectures of the desired systems are designed and implemented. As indicated

already in the Introduction, during this development process, requirements are

usually exposed to many changes as the availability of knowledge on the system

being developed increases [Jacoy]. Traceability, defined as "the ability to describe

and follow the life of a requirement in both a forwards and backwards direction"

from inception throughout the entire system's life cycle, provides useful support

mechanisms for managing requirement changes during the ongoing change

process [Gotgs] and [GF94]. Moreover, the extent to which traceability is

106

exploited is viewed as an indicator of system quality and process maturity, and is

mandated by many standards [ANRS06].

In practice, many organizations either focus their traceability efforts on FRs

[WW03] or else fail entirely to implement an effective traceability process

[BSA07] and [Cleo5]. NFRs such as security, safety, performance, and reliability

are treated in a rather ad hoc fashion and are rarely traced. Furthermore, the

tendency for NFRs to have a global impact upon the software system necessitates

the need to create and maintain an overwhelming number of traceability links.

On the other hand, the appropriate support for NFRs traceability can return

significant benefits to an organization through helping analysts understand the

impact of a proposed change upon critical system qualities and enabling them to

maintain these qualities throughout the lifetime of a software system.

In chapter 4, we proposed a conceptualization of NFRs which provides explicit

links to concepts and relations of NFRs and thus serves as a foundation for

validating the semantic precision of conceptual schemas and for mapping NFR

conceptual knowledge to modern Web-enabled ontology languages such as OWL

[OWL]. A knowledge-based representation; such as the one we presented in

Chapter 4, is necessary to support the traceability of NFRs within a system and to

provide practitioners and researchers with a valuable alternative to current

requirements engineering techniques.

In this chapter, we identify four critical areas in which NFRs require traceability

support:

• Impact of changes to FRs on NFRs (inter-model traceability).

• Impact of changes to NFRs on FRs (inter-model traceability).

107

• Impact of changes to NFRs on sub-NFRs and parent NFRs (intra-model

traceability).

• Impact of changes to NFRs on other interacting NFRs (intra-model

traceability).

Tracing NFRs against these areas is crucial to the long-term maintenance of

critical system qualities such as safety, security, reliability, usability, and

performance.

In this chapter we provide a traceability mechanism using Datalog expressions

[UW02] to implement queries on the relational model-based representation for

the ontology. Datalog (a subset of Prolog) is a language of facts and rules, as well

as a logic-based query language for the relational model. Query evaluation with

Datalog is sound and complete. In addition, Datalog supports Recursive Closure

Operations which makes it possible to trace through multiple levels of

refinements within the software development process. Furthermore, Semantic

Web Rule Language (SWRL) which is a proposal for a Semantic Web rules-

language is combining sublanguages of the OWL Web Ontology Language (OWL

DL and Lite) with those of the Rule Markup Language (Unary/Binary Datalog).

SWRL allows users to write rules that can be expressed in terms of OWL concepts

to provide more powerful deductive reasoning capabilities than OWL alone

[SWRL]. Semantically, SWRL is built on the same description logic foundation as

OWL and provides similar strong formal guarantees when performing inference.

This brings a feasible future work towards using our Datalog implementation

proposed in this chapter to extend our OWL implementation for NFRs Ontology

through the definition of SWRL rules.

108

In addition to Datalog implementation, we provide an alternative

implementation using the extensible Markup Language (XML)-based

representation. We then use XQuery [XQUERY] to implement queries to

represent requirements tracing information. XQuery, which is a technology

under development by the W3C, provides the means to extract and manipulate

data from XML documents or any data source that can be captured in XML, such

as relational databases or office documents. XQuery uses XPath expression

syntax to address specific parts of an XML document.

The remainder of this chapter is organized as follows: Section 5.2 provides a brief

overview of related work. Section 5.3 presents the relational model and

implementation of tracing queries using Datalog expressions. Section 5.4

presents an alternative implementation using XML and XQuery expressions.

Section 5.5 proposes a traceability mechanism using the NFRs Ontology and the

relational model. Section 5.6 provides a discussion and evaluation and Section 5.7

concludes the chapter.

5.2 Related work

Although prior work on tracing NFRs has been rather limited, a number of

traceability approaches have in fact been developed to support related activities

while incorporating NFRs in software engineering processes.

In [CNY95], the authors adopt the NFR Framework [CNYMoo] to show how a

historical record of the treatment of NFRs during the development process can

also serve to systematically support evolution of the software system. The authors

109

treat changes in terms of (i) adding or modifying NFRs, or changing their relative

importance, and (ii) changing design decisions or design rationale. While this

study has provided some support for extensions to the NFR Framework,

particularly in representing changes to goal achievement strengths, the impact of

changes to functional models on non-functional models, and vice-versa, has yet

to be discussed.

In [Cleos] and [CSBBC05], the authors propose an approach named Goal Centric

Traceability, a holistic traceability environment which provides systems analysts

with the means to manage the impact of functional change on NFRs.

Nevertheless, the impact of changes to an NFR on other NFRs and the functional

model is not solved with this solution.

Many other initial approaches have been introduced by researchers active in the

requirements engineering, product line engineering, and Aspect oriented

Software Engineering communities to address the traceability of NFRs [EG04],

[FEoo], [Samo6], [RJ01], [HNS05], [Jac07], [BCAMRT06], [NI07], [ANRS06],

[GF94], [Let02] and [WSZA06]. These approaches have three important

limitations. First, tracing is either tackled within a phase or it does not cover the

entire life cycle. Second, the traceability model that is applied is usually focused

on specific programming paradigm elements. Third, these approaches use

coarse-grained entities for tracing purposes, which is risky from the point of view

of the precision of change impact analysis, which in turn results in imprecise

estimates of the cost and time involved in implementing a requirement change.

The specific challenges faced in state-of-the art traceability practice are described

in more detail in [ANRS06].

n o

This chapter offers a solution to the open research problems discussed in this

section. The proposed ontology in Chapter 4 is well suited for defining and

analyzing numerous NFRs, the impact of changes in a NFR upon other NFRs,

NFRs impact on the FRs and vice versa traceable over the entire life cycle.

5.3 Relational data model for tracing requirements

While the metamodels presented to describe the ontology in Chapter 4, Figures

4_5> 4-6 and 4-15 are useful ways to understand the abstract structure of the

NFRs-related concepts, they are not considered a suitable basis for retrieving

data on the objects that are instantiated from this model. Thus, the model has to

be transformed into another model which facilitates querying the information.

The relational model is extremely useful as a mapping vehicle, because it is based

on a single data modeling concept, namely the relation. For the purposes of this

work, we decided to use Datalog expressions [UW02] to operate on one or more

relations to yield another relation which would present the desired results. Figure

5-1 presents the schemas for the relations corresponding to the subset of concepts

shown in Figures 4-5 and 4-6. The relations are intended to hold information

collected by stakeholders at different stages of the development cycle.

To illustrate the traceability model, we will limit the discussion to two pieces of

functionality of NOKIA Mobile Email application (see Chapter 3, Section 3.1): (1)

the user asks to read an email message; and (2) the user composes and sends a

new email. Figure 5-2 presents these two main pieces of functionality

decomposed into elements of use cases, scenarios, events, and methods. The

111

decomposition of FRs into these elements is for illustrative purposes. Our

traceability approach would also support mapping FRs into other refinement

elements (e.g. elements of the static view of the system such as classes and

relations).

Three NFRs are also presented: security, performance, and scalability.

//Schema refers to NonFunctionalRequirement concept

NFR (ID, NAME, DESCRIPTION, SATISFACTION, TYPE);

//Schema refers to FunctionalRequirement concept

FR (ID, NAME, DESCRIPTION);

//Schema refers to operationalization concept

OP (OP_ID, NAME, DESCRIPTION);

//Scheme refers to nfrlsDecomposedTo relation

NFR_DECOMPOSITION (DEC_ID, PARENT_NFR_ID, SUB_NFR_ID,

TYPE_OF_DECOMPOSmON);

//scheme refers to hasOperationalization relation (from the NFR to the design solutions)

NFR_OP (NFR_ID, OP_ID);

//Schema refers to OpDecomposedTo relation

OPJDECOMPOSITION (OP_DEC_ID, PARENT_OP_ID, SUB_OP_ID,

TYPE_OF_DECOMPOSmON);

//Schema refers to isInteractingWith relation

NFR_INTERACTION (INTERACTION_ID, INTERACTING_ASSOCIATION_ID,

AFFECTED_ASSOCIATION_ID, TYPE_OF_INTERACTION);

//Schema refers to hasAssociationPoint relation

NFR_ASSOCIATION (ASSOCIATIONS, NFR_ID, ASSOCIATION_POINT_ID, Type);

//Schema refers to FRisMappedlnto relation

FRJELEMENT (FR_ID, ELEMENTJD);

//Schema refers to elementlsDecomposedlnto relation

112

ELEMENT_DECOMPOSITION (PARENT_ELEMENT_ID, CHILD_ELEMENT_ID);

Figure 5-1: Schematic representation of some concepts and relations presented in
Figures 4-5 and 4-6.

While populating the relations, it is hard to ensure the completeness of the

information, as the majority of the instances of the relations are not directly

stated by stakeholders, but they hold as valid relations by induction. For example,

security could be known as being participating in hasAssociationPoint relation

with individual from AssociationPoint class which in its turn participates in

isAssociatingNfrTo relation with the individual "read an email message"

instantiated from FunctionalRequirement class. Confidentiality, which is derived

from security by "ANed" decomposition (through NfrlsDecomposedTo relation),

also participates in hasAssociationPoint relation with the same individual from

AssociationPoint class which participates in its turn in isAssociatingNfrTo

relation with "read an email message" according to Figure 4-11. This information

on confidentiality association could be missed when populating the

NFR_ASSOCIATION relation, yet this relation has to be traced on possible

related requested changes in requirements. Our tracing mechanism considers

this situation, and is implemented so that it provides the suitable solution.

We identify four critical areas in which NFRs require traceability support. These

areas are discussed in the following subsections.

113

Figure 5-2: Illustration of FR and NFR Relations through the Email System.

5.3.1 Impact of Changes to Functional Models on NFRs

When a change is initiated in an FR, the set of NFRs potentially affected needs to be identified

and retrieved. This is accomplished by first retrieving all the directly associated NFRs from the

relation NFR_ASSOCIATION. In order to ensure the completeness of the trace and the

consistency among requirements, it is important that all NFRs associated with all elements

derived from the affected FR against the requested change be analyzed as well. This should be

done in a recursive manner to cover all possible derived elements. The following Datalog

expressions implement this query:

114

// R_TEMP refers to a temporary relation.

/* FR_ CHANGED and NFR_ CHANGED refer to the ID of the FR and the NFR,

the request changes'from which the need for traceability was triggered. */

/* RESULT refers to the desired relation that holds the data result. */

Ri_TEMP(Y) <- FR_ELEMENT(X,Y), X = "FR_CHANGED"

R2_TEMP (Q, W) <r ELEMENT_DECOMPOSITION (Q, W), Ri_TEMP (Y), Q =

Y

R2_TEMP (Q, W) ELEMENT_DECOMPOSITION (Q, Z), R2_TEMP (Z, W)

RESULT (B) NFR_ASSOCIATION (A, B, C, D), C = "FR_CHANGED"

RESULT(B) NFR_ASSOCIATION (A, B, C, D), R2_TEMP (Q, W), C= Q

RESULT(B) ^ NFR_ASSOCIATION (A, B, C, D), R2_TEMP (Q, W), C= W

It is important to note that the decomposition of NFRs will never have a circular

dependency. This is a necessary condition for the termination of R2_TEMP. In

the case study of the mobile email system (see Figure 5-2), if a change is

requested to the read an email message functionality, then the above query

expressions will retrieve security, performance, and scalability as potentially

impacted NFRs.

5.3.2 Impact of Changes to Nonfunctional Models on Functional
Models

To ensure a complete inter-model traceability, we should consider the impact of

changes to NFRs on the functional model to complement the query in Section

5.3.1 which considered the impact of changes of functional models to NFRs.

When a change is initiated in an NFR, then the set of all association points of the

115

FR type or of the element type should be retrieved and analyzed against the

potential change. The following Datalog expressions implement this query:

RESULT(B) NFR_ASSOCIATION (A, B, C, D), D = "FR", B =

"NFR_CHANGED".

RESULT(B) <r NFR_ASSOCIATION (A, B, C, D), D = "ELEMENT", B =

"NFR_CHANGED".

In the mobile email system (see Figure 5-2), if a change is requested to a security

requirement, then the above query expression will retrieve the read an email

message functionality, all derived main and alternative scenarios, and the events

select a message and open the selected message, as well as the methods m3 and

7724.

5.3.3 Impact of Changes to NFRs on Lower-/Higher-Level NFRs

The change to one NFR can migrate down to offspring NFRs or up to parent

NFRs in a recursive manner through the decomposition links. This type of

traceability enables the analyst to understand the impact of lower-level change on

high-level goals, and vice versa. The following Datalog expression implements

this query:

TEMP_1 (B,C) NFR_DECOMPOSITION (A, B, C, D), B = (NFR_CHANGED)

TEMP_i (B,C) <- NFR_DECOMPOSITION (A, B, C, D), C = (NFR_CHANGED)

TEMP_1 (B, C) <r NFR_DECOMPOSITION (A, B, C, D), TEMP_l (X, B)

RESULT (X) = TEMP_i(X, Y), X < > (NFR_CHANGED)

RESULT(Y) = TEMP_i(X,Y), Y 0 (NFR_CHANGED)

116

In the mobile email system (see Figure 5-2), if a change is requested to a space

requirement, then the above query expression will retrieve the primary space,

secondary space, and performance requirements.

5.3.4 Impact of Changes on Interacting Associations

To complete intra-model traceability, it is necessary to establish traces between

interacting NFRs at certain association points (interacting associations). The

following Datalog expression implements this query:

RESULT(Y) NFR_INTERACTION (X,Y,Z,W), Z = "CHANGED_NFR".

RESULT(Z) NFR_INTERACTION (X,Y,Z,W) , Y= "CHANGED_NFR".

In the mobile email system (see Figure 5-2), if a change is requested to a space

requirement at read email message functionality, then the above query

expression will retrieve the security requirement at that functionality.

5.4 Alternative Implementation: XML-Based representation and
XQuery implementation

In this section, we provide an alternative implementation for the NFRs tracing

queries and we use the XML models to instantiate the proposed metamodel and

represent tracing information. We instantiate the metamodel by defining the

XML-document structure according to the metamodel in the Document Type

Definition (DTD) shown in Figures 5-3 to 5-5.

<!ELEMENT NFRs (NFR+)>
<!ATTLIST NFRs
name CDATA # REQUIRED
>
<!ELEMENT NFR (NFRname, interaction?, association?,
operationalization?) >

117

<!ATTLISTNFR
NFRid ID # REQUIRED
type CDATA # REQUIRED
>
<! ELEMENT NFRname (#PCDATA)>
<! ELEMENT association (functionalelement | FR,
associationcontract)* >
<!ELEMENT functionalelement (#PCDATA)>
<!ELEMENT FR (#PCDATA)>
<!ELEMENT associationcontract (#PCDATA)>
<'.ELEMENT interaction (interactingwith)>
<!ATTLIST interaction
associationpint CDATA # REQUIRED
>
< [ELEMENT interactingwith (#PCDATA)>
< .'ELEMENT operationalization (op)>
<!ELEMENT op (#PCDATA)>

Figure 5- 3: DTD structure representation for NFRs.

< [ELEMENT FRs (FR+)>
< IATTLIST FRs
name CDATA # REQUIRED
>
< (ELEMENT FR (FRname, realization) >
<!ATTLISTFR
FRid ID #REQUIRED
>
<!ELEMENT FRname (#PCDATA)>
<!ELEMENT realization (realizingelement+)>
< [ELEMENT realizingelement (realizingelement*)>
< IATTLIST realizingelement
realizingelementid ID #REQUIRED
>

Figure 5-4: DTD structure representation for FR.

< [ELEMENT NFRDecomposition (RootNFR+)>
< IATTLIST NFRDecomposition
name CDATA #REQUIRED
>
< [ELEMENT RootNFR (decomposition) >
< IATTLIST RootNFR
NFRid ID #REQUIRED

118

>
<!ELEMENT decomposition (subnfr+)>
< [ELEMENT subnfr (subnfr*,) >
< 1ATTLIST subnfr
subnfrid ID #REQUIRED
type CDATA # REQUIRED

Figure 5-5: DTD structure representation for NFR decomposition.

As an alternative to Datalog queries, we use XQuery [XQUERY] to operate on the

data to yield the desired results of tracing information. XQuery is a full-blown

functional programming language with strong typing. The evaluation of the query

expression reads a sequence of XML fragments or atomic values and returns a

sequence of XML fragments or atomic values that are the query result.

The following XQuery expressions implement the tracing query for the impact of

changes to functional models on NFRs:

//FR_ CHANGED refers to ID of the changed functionality.
<result>
{

for $x in doc("NFRs.xml")/NFRs/NFR
where $x/association/FR = "FR_CHANGED"
return data($x/@NFRid)
}

</result>
<result>
{

for $c in (
for $x in doc("FRs.xml")/FRs/FR
where $x/@FRid = "FR_CHANGED"
return data($x/realization/realizingelement/descendant-orself::
realizingelement/@realizingelementid))
for $b in doc("NFRs.xml")/NFRs/NFR
where $b/association/functionalelement = $c
return data($b/@NFRid)
}

</result>

119

The following XQueiy expression implements the tracing query for impact of

changes to non-functional models on functional models:

<result>
{for $x in doc("NFRs.xml")/NFRs/NFR
where $x/@NFRid ="NFR_CHANGED"
return data($x/association/FR union
$x/association/functionalelement)
}

</result>

The following XQuery expression implements the tracing query for the impact of

changes to NFRs on lower/ higher-level NFRs:

//NFR_ CHANGED refers to ID of the changed NFR.
<result>
{

for $x in doc("NFRs.xml")/NFRDecomposition/RootNFR
where $x/@NFRid = "NFR_CHANGED"
or $x/decomposition/subnfr/@subnfrid =
"NFR_CHANGED"
return $x
}

</result>

The following XQuery expression implements the tracing query for the impact of

changes on interacting associations:

<result>
{for $x in doc("NFRs.xml")/NFRs/NFR
where $x/@NFRid ="NFR_CHANGED"
return data($x/interaction/interactingwith)
}

5
{

for $x in
doc("NFRs.xml")/NFRs/NFR/interaction/interactingwith
where $x = "NFR_CHANGED"
return data($x)
}

</result>

120

5.5 Traceability Mechanism

NFR tracing occurs through three distinct activities: requirement development,

impact detection, and evaluation/decision-making. Each activity ensures that FR

and NFRs are treated jointly and in an integrated fashion. These activities are

depicted in Figure 5-6.

Figure 5-6: NFR-Tracing Activities.

Impact detection is dependent on the effectiveness of the traceability mechanism

in establishing correct links between functional and non-functional models and

within their corresponding hierarchical models.

Triggered by a change request, the potentially impacted area has to be identified

of the requirements along with their specifications and refinements have to be

identified, and then the corresponding query should be executed. Once the

retrieval algorithm has returned a set of potentially impacted

requirements/elements, the evaluation phase can commence. To analysts, this

means they can now filter the retrieved requirements/elements to remove any

non-relevant ones. A decision on any accepted change in any of the retrieved data

should be recorded in the corresponding relations.

It is important to note that one change request can establish a chain of other

requests. For example, the need to change one FR may generate the need to

accept changes to other NFRs. In response to the NFR changes, the analysts may

well see a need to change further sub-NFRs or interacting NFRs.

5.6 Evaluation and Demonstration of the Improvements due to
Traceability Queries

For the purpose of the evaluation of the traceability approach, we used the

settings from the NOKIA Mobile Email Application System (see Chapter 3,

Section 3.3.1) to run a multi project variation experiment. The NOKIA mobile

email application is deployed on hundreds of branded cell phones. Change

requests are received from the email providers, operators or upon a defect

discovery. As a testing practice in NOKIA, upon triggered changes in the

requirements, the fix procedure starts and it involves a sanity testing activity.

Sanity test is a brief run-through of the functionality of the software system to

122

assure that the system works as expected. The activity is carried on by an

execution of a fixed set of sanity test cases (25 test-cases out of more than 10,000

implemented test-cases) to validate that the implemented changes didn't break

other features. Of course, the small number of test-cases is due to limitation of

time and available human-resources. The objective of the experiment was to

evaluate the hypothesis we built to evaluate our approach: "Applying the

traceability mechanism proposed in this chapter into the software testing phase

will improve the productivity of the testing team; that is for a less test-cases to be

executed within a given amount of time, a higher number of defects will be

detected". For the purpose of evaluating our traceability approach, we first,

linked the requirements and the design solutions into their corresponding test-

cases. Second, upon a change request that falls into one of the identified critical

areas (see sections 5.3.1 to 5.3.4 of this chapter), the potentially affected

requirements, design solutions were retrieved by executing the recommended

queries. Third, the corresponding test-cases which are linked to the retrieved

requirements and design solutions were selected from the test-cases database.

This is of course in addition to the test-cases which are directly linked to the

requirement which is referred to by the requested change. The set of selected

test-cases was executed in addition and in isolation of the fixed set of sanity test-

cases. The results were then compared. This experiment was carried out by the

same team of client testers at NOKIA-Montreal office on multiple mobile email

projects for a period of nine months from July 2008 till March 2009. The

number of the dynamically generated test-cases to be executed varied in each run

depending on the triggered change.

123

To understand the improvements which the use of traceability queries brings to

the test-cases selection, we compare the number of test-cases being executed and

the number of failed test-cases (each failed test-case prompts the tester to create

a defect) between the testing practice using a fixed set of test-cases against using

dynamically generated test-cases with the help of our traceability queries. Table

5-1 shows the results which were collected out of 40 test-executions (this is the

total number of requests for sanity tests on branded devices at the NOKIA-

Montreal office between July 2009 and March 2009). As Table 5-1 indicates, the

average number of defects being discovered per sanity-test execution using the

dynamically generated test-cases method is 1.825, while it is 0.775 using the fixed

set of sanity test-cases. This is an increase of 235%. In addition, the average

number of dynamically generated test-cases is less by 33%. These results

demonstrate validated the stated hypothesis that the traceability queries were

useful in improving the productivity of the testing practice. Figures 5-7 and 5-8

provide visual presentation for the above results.

Table 5-1: Collected Results from Test Executions of NOKIA Mobile Email
Application.

124

125

Dynamically
Generated Test
Cases

— Fixed Set of Sanity

Figure 5-7: Number of Executed Test-Cases: Dynamically Generated Test-Cases

vs. Fixed Set of Sanity.

Rxed Set of Sanity Test
Cases
Dynanically Generated
Test Cases

Figure 5-8: Number of Defects: Dynamically Generated Test-Cases vs. Fixed Set

of Sanity.

126

5-7 Conclusion

The tendency for NFRs to have a wide-ranging impact on a software system, and

the strong interdependencies and tradeoffs that exist between NFRs and the

software architecture, leave typical existing traceability methods incapable of

tracing them. In this chapter, we use the NFRs Ontology specification for

requirement relations in a real life industrial setting. We proposed and deployed

a traceability mechanism under the umbrella of the relational model and the

XML models to track the allocation of requirements to system components, and

control changes to the system.

One of the advantages of our approach is that it forces system analysts to think

about and capture the hierarchical relations within NFRs, the hierarchical

relations within FRs, and the relations between NFR and FR hierarchies. Our

approach helps systems analysts understand the relationships that exist within

and across NFRs in the various phases of development. The chapter proposes a

method for tracing a change applied to an NFR in the traceability model, which

results in a "slice" of the model containing all model entities immediately

reachable from that NFR within the hierarchy. The approach has been evaluated

and demonstrated its applicability through a multi project variation experiment

performed against the Mobile Email application in NOKIA-Montreal.

127

Chapter VI: Software Effort
Estimation based on Functional
and Non-Functional Requirements

"Managing resources is hard; managing them efficiently is even harder."

M. Kircher and P. Jain, 2004

6.1 Introduction

Early in a project, specific details of the nature of the software to be built, details

of specific requirements, of the solution, of the staffing needs, and other project

variables, are unclear. The variability in these factors contributes to the

uncertainty of project effort estimates. As the sources of variability are further

investigated and pinned down, the variability in the project diminishes, and so

the variability in the project effort estimates can also diminish. This phenomenon

is known as the Cone of Uncertainty [Mcco6]. Figure 6-1 shows a sample Cone of

Uncertainty based on common project milestones.

In practice, the software development industry, as a whole, has a disappointing

track record when it comes to completing a project on time and within budget.

The Standish Group published its well-known Chaos Report in 2009 in which it

was noted that only 32% of software projects are completed successfully within

the estimated schedule and budget [STANDISH09].

128

4 x

£ 2 *
5 i -

• w
> 1 2 5 s

5 J i . G s

£ O . S *

| 0 . 6 7 *

0 . 5 *

0 2 5 s

M
Ccti

4 x

£ 2 *
5 i -

• w
> 1 2 5 s

5 J i . G s

£ O . S *

| 0 . 6 7 *

0 . 5 *

0 2 5 s

M
Ccti

4 x

£ 2 *
5 i -

• w
> 1 2 5 s

5 J i . G s

£ O . S *

| 0 . 6 7 *

0 . 5 *

0 2 5 s

M
Ccti

4 x

£ 2 *
5 i -

• w
> 1 2 5 s

5 J i . G s

£ O . S *

| 0 . 6 7 *

0 . 5 *

0 2 5 s

M
Ccti

4 x

£ 2 *
5 i -

• w
> 1 2 5 s

5 J i . G s

£ O . S *

| 0 . 6 7 *

0 . 5 *

0 2 5 s

M
Ccti

4 x

£ 2 *
5 i -

• w
> 1 2 5 s

5 J i . G s

£ O . S *

| 0 . 6 7 *

0 . 5 *

0 2 5 s

M
Ccti

4 x

£ 2 *
5 i -

• w
> 1 2 5 s

5 J i . G s

£ O . S *

| 0 . 6 7 *

0 . 5 *

0 2 5 s

M
Ccti

4 x

£ 2 *
5 i -

• w
> 1 2 5 s

5 J i . G s

£ O . S *

| 0 . 6 7 *

0 . 5 *

0 2 5 s

M
Ccti

4 x

£ 2 *
5 i -

• w
> 1 2 5 s

5 J i . G s

£ O . S *

| 0 . 6 7 *

0 . 5 *

0 2 5 s

M
Ccti

4 x

£ 2 *
5 i -

• w
> 1 2 5 s

5 J i . G s

£ O . S *

| 0 . 6 7 *

0 . 5 *

0 2 5 s

M
Ccti

4 x

£ 2 *
5 i -

• w
> 1 2 5 s

5 J i . G s

£ O . S *

| 0 . 6 7 *

0 . 5 *

0 2 5 s

M
Ccti

i a l

A p p r
P r a

D e a n

K e q i i t r -
C o m

<7f3&
® c t
l i t i m

a n 2 n t s
f l a t s

U s a r S
D a

C a n

T i m e

afeaface q ,

^ f 1 C O E

Sort".
, C o r n

rilsd
s i g n
ijiefca

r a r s
p i e t e

Figure 6-1: The Cone of Uncertainty Based on Common Project Milestones
[Mcco6].

Software developers are constantly under pressure to deliver on time and on

budget. As a result, many projects focus on delivering functionalities at the

expense of meeting NFRs such as reliability, security, maintainability, portability,

accuracy, operating constraints among others. As software complexity grows and

clients' demands on software quality increase, NFRs can no longer be considered

of secondary importance. Many systems fail or fall into disuse precisely because

of inadequacies in NFRs [FD96], [BLF99], [LT93] and [MERCEDES97]. While

these requirements have always been a concern among software engineering

researchers, early work has tended to view NFRs as properties of the finished

software product to be evaluated and measured. The lack of effort estimation

approaches which take into account the effect of the NFRs on early effort

129

estimation contributes to the Cone of Uncertainty phenomenon. In fact,

experiences show that NFRs may represent more than 50% of the total effort to

produce services [IBM].

The goal of this chapter is to investigate requirements and project-level-tuned

early estimation of the software effort with the intent to reduce the effect of the

Cone of Uncertainty phenomenon.

As effort is a function of size [PWL05], one way to respond to the need to deal

comprehensively and objectively with the effect of NFRs on the scope of a

software project is in terms of their corresponding functional size when

applicable. Yet, some NFRs cannot have their functional size directly measured.

This is mainly because either these NFRs cannot be operationalized in the first

place; or their derived operationalizations are in the form of "architectural

decisions"; for example.

In this chapter, we draw around the proposed NFRs Ontology (see Chapter 4),

and discuss a proposed process for measuring the effort of building a software

project while harmonizing the need to develop both FRs and NFRs taking the

above limitations into consideration.

The remainder of this chapter is organized as follows: Section 6.2 provides the

necessary background on software size estimation, Section 6.3 discusses the

relations between the software size and the effort, Section 6.4 provides a

proposed approach towards measuring the functional size of NFRs when

applicable, Section 6.5 extends Section 6.4 by providing a proposed process

towards measuring the effort of a software project, Section 6.6 illustrates the

approach through a case study, and Section 6.7 concludes the chapter.

130

6.2 Software Size Estimation

Software size is a base measure that is used to calculate project effort, duration

and cost. One way to respond to the need to deal comprehensively and objectively

with the effect of NFRs on the scope of a software project is in terms of their

corresponding size.

Software size estimation is the process of predicting the size of a software

product. Accurate size estimation is critical to effectively managing the software

development process. The project planner must understand the scope of the

software to be built and generate an estimate of its size before a project estimate

can be made [Pre97].

Software size can be described in terms of length, complexity and functionality.

These three aspects of size are described next.

6.2.1 Aspects of Size

Internal product attributes describe a software product in a way that is

dependent only on the product itself [FP97]. One of the most useful attributes is

the size of a software product, which can be measured statically without

executing the system [FP97]. In the context of project planning, size refers to

quantifiable outcome of the software project [Pre97].

Since other physical objects are easily measurable, it might be assumed that

measuring the size of software products should be straightforward. In practice,

however, size measurement can be difficult [FP97]. Simple measures of size are

often rejected because they do not provide adequate information. Those who

146

reject a measure because it does not provide enough information may be

expecting too much of a simple measure [FP97].

For example, if a human size is measured as a single attribute such as weight,

then we can determine the number of people who can safely ride in an elevator at

one time. However we cannot determine whether passengers will bump their

head on the elevator door. If human size is measured in terms of two attributes

such as weight and height, then we can determine both the number of people who

can safely ride in an elevator at one time and whether passengers will bump their

head on the elevator door.

Similarly, if software size is measured in terms of the number of LOC, the fact

that it is not useful in measuring quality does not negate its value [FP97]. Rather

this might indicate a requirement for more information.

It is therefore often useful to define an external attribute such as size in terms of

more than one internal attribute. Applying measures to different goals does not

invalidate them for their original purpose [FP97]. Ideally, we want to define a set

of views for software size. Each view should capture a key aspect of software size.

Fenton suggests that software size can be described with three views: length,

complexity, and functionality [FP97]. A summary on these three views is

provided below.

6.2.1.1 Length

Length is the physical size of the product. There are three major development

products whose size would be useful to know: the specification, the design and

the code. The length of the specification can indicate how long the design is likely

to be, which in turn is a predictor of code length [FP97].

132

6.2.1.1.1 Length of Code

The most commonly used measure of source code program length is the number

of LOC [FP97]. Many different approaches to counting LOC have been proposed.

The software engineering Institute has developed a set of guidelines to help in

deciding how to measure LOC [Par92]. This recommendation is flexible in that it

allows you to tailor the definition of LOC for your needs [FP97].

6.2.1.1.2 Length of Specifications and Design

Specification and design documents may use text, graphs, or mathematical

diagrams and symbols to express information. In measuring code length, an

atomic object must be identified to count (LOC, executable statements, source

instructions, operators and operands). Similarly, for specification and design

documents, one or more objects are identified and counted [FP97].

In the case of dataflow diagrams, objects such as processes (bubble nodes),

external entities (box nodes), data stores (line nodes), and data flows (arcs) are

counted [Pre97]. In case of class diagram, objects such as classes are counted. It

is common in industry to use the number of pages to measure length for

documents containing text and graphs [FP97].

6.2.1.2 Complexity

Complexity can be interpreted in different ways. In the context of software size,

complexity refers to algorithmic complexity and problem complexity [FP97].

6.2.1.2.1 Problem Complexity

Problem complexity (also called Computational complexity) is branch of the

theory of computation in computer science that focuses on classifying problems

according to their inherent difficulty. Here, a problem is understood in the

133

narrow sense of a task that is in principle amenable to be solved by a computer.

Informally, a problem is regarded as inherently difficult if solving the problem

requires a large amount of resources, independent of the algorithm used for

solving it. The theoiy formalizes this intuition, by introducing mathematical

models of computation and casting computational tasks mathematically as

decision problems. The degree of difficulty can be quantified in the amount of

resources needed to solve these problems, such as time and storage. In particular,

the theory seizes the practical limits on what computers can and cannot do.

6.2.1.2.2 Algorithmic Complexity

Algorithmic complexity reflects the complexity of the algorithm used to solve the

problem [FP97]. A key distinction between computational complexity theory and

analysis of algorithm is that the latter is devoted on analyzing the amount of

resources needed by a particular algorithm to solve a concrete problem, whereas

the former asks a more general question. Namely, it targets at classifying

problems that can, or cannot, be solved with appropriately restricted resources. A

mathematical notation called big-O notation is used to define an order relation

on functions. The big-0 form of a function is derived by finding the dominating

term f(n). Big-0 notation captures the asymptotic behavior of the function. Using

this notation, the efficiency of algorithm A is 0(f(n)), where, for input size n,

algorithm A required at most 0(f(n)) operations in the worst case [FP97].

For example, the function

f(n) = 311 ^2 + 2n +26

is big-0 nA2 written as 0(n*2). The algorithm will therefore requires at most

0(n*2) operations.

134

The methods to measure the length and complexity aspects of the size have the

following limitations [ISO1414398]:

1. These methods cannot always be applied in the early phases of software

development life cycles.

2. These methods cannot always be understood by the user of the software.

To overcome above mentioned limitations, methods that are not based on length

or complexity have been proposed. Most of the methods that are used today to

measure the size of the software are based upon the "Functionality" of the

software [GD08]. These methods measure the size of the software by measuring

the functionality that it provides to the customer.

6.2.1.3 Functionality

Functional Size Methods (FSMs) have shifted the focus from measuring the

technical characteristics of the software towards measuring the functionality of

the software that is required by the intended users of the software. It is important

to note that functional size is the only standardized way to measure the software

size [Foro4]. This method is independent of the development tools and the

programming languages. It is also independent of the technical requirements of

the software.

For the above reasons, we will be referring in this chapter to the "functionality"

aspect of size when we deal with the size of a requirement or a project.

The first method; named Function Points, which calculates the functionality of

the software is designed in 1979 by Albrecht [Alb79]. Function Point Analysis

method (FPA) [GD08] served as bases for the first FSM industrial method. Over

the years, different variations and varieties of FSM methods have emerged. A

preview evolution of FSM methods is presented in Table 6-1:

Table 6-1: Concepts, FSM Methods and Description (adapted from [ISO1414398]
and [GD08]).

Year Method Name Developer
1979 Albrecht

FPA/IFPUG FPA
[AG83] and [Alb84] /

International Function Point
Users Group (IFPUG) [IFPUG99]

and [ISO2092603]
1982 DeMarco's Bang

Metrics
DeMarco [Dem82]

1986 Feature Points Jones [Jon87]
1988 MKII FPA Symons [Sym88], The United

Kingdom Software Metrics
Association (UKSMA)

[ISO2096802] and [MKII98]
1990 NESMAFPA The Netherlands Software Metrics

Users Association (NESMA)
[NESMA97] and [ISO2457005].

1990 Asset-R Reifer [Rei90].
1992 3-D FP Whitmire [Whi92].
1994 Object Points Banker et al [BKWZ94].Kauffmn

and Kumar [KK97].

1994 FP by Matson,
Barret and

Mellichamp

Matson et al. [MBM94]

1997 Full Function Points
(FFP)

University of Quebec in
cooperation with the Software
Engineering Lab. in Applied

Metrics [ASMD98].
1997 *Early FPA (EFPA) Meli [Mel97a] and [Mel97b],

Conte et al. [CIMS04]
1998 Object Oriented FP Caldiera et al. [CAFL98]
1999 Predictive OP Teologlou [Teo99]
1999 COSMIC FFP The Common Software

Measurement Consortium
(COSMIC) [Abr99] and

[ISO1976103].
2000 Early and Quick

COSMIC FFP
Meli et al [MAHO00], Conte et al.

[CIMS04]
2000 Kammelar's

Component OP
Kammelar [Kamoo]

2001 Object Oriented Pastor et al. [PAMT01]

136

Method FP
2004 FiSMA FSM The Finnish Software Metrics

Association (FiSMA) [For04]

For the purposes of this research, we have chosen to use the COSMIC FSM

method [ADOSS03] developed by the Common Software Measurement

International Consortium (COSMIC) and now adopted as an international

standard [ISO1976103]. We chose this method in particular because it conforms

to all ISO requirements [ISO1414389] for functional size measurement, and

addresses some of the major theoretical weaknesses of the earlier FPA techniques

like Albrecht's FPs [AG83]. The COSMIC method is described in the next section.

6.2.2 The COSMIC Method

The FSM method developed by the Common Software Measurement

International Consortium (COSMIC) has now been adopted as an international

standard (ISO 19761 [ISO1976103]) and is referred to as the COSMIC method

[ADOSS03]. This measurement method has been designed to measure the

functional size of management information systems, real-time software and

multi-layer systems. Its design conforms to all ISO requirements (ISO 14143-1

[ISO1414398]) for FSM methods, and was developed to address some of the

major weaknesses of earlier methods, like FPA [AR94], the design of which dates

back almost 30 years, to a time when software was much smaller and much less

varied. COSMIC focuses on the "user view" of functional requirements and is

applicable throughout the development life cycle, right from the requirements

phase to the implementation and maintenance phases. Before starting to

measure using the COSMIC method, it is imperative to carefully define the

137

purpose, the scope and the measurement viewpoint. This may be considered as

the first step of the measurement process. The measurer defines why the

measurement is being undertaken, and/or what the result will be, as well as the

set of functionalities to be included in a specific FSM exercise. Measurements

taken using the COSMIC method with a different purpose and scope and a

different measurement viewpoint may therefore give quite a different size.

In the measurement of software functional size using the COSMIC method, the

software functional processes and their triggering events must be identified

[ISO1976103] and [ADOSS03]. In COSMIC, the unit of measurement is a data

movement, which is a base functional component that moves one or more data

attributes belonging to a single data group. Data movements can be of four types:

Entry, Exit, Read or Write. The functional process is an elementary component of

a set of user requirements triggered by one or more triggering events either

directly or indirectly via an actor. It comprises at least two data movement types:

an Entry plus at least either an Exit or a Write The triggering event is an event

occurring outside the boundary of the measured software and initiates one or

more functional processes. The subprocesses of each functional process are

sequences of events. An Entry moves a data group, which is a set of data

attributes, from a user across the boundary into the functional process, while an

Exit moves a data group from a functional process across the boundary to the

user requiring it. A Write moves a data group lying inside the functional process

to persistent storage, and a Read moves a data group from persistent storage to

the functional process. See Figure 6-2 for an illustration of the generic flow of

data attributes through software from a functional perspective.

138

USERS

Engineered
Devices

B
O
U
N
D
A
R
Y

« Front

end »

ENTRIES
I/O Hafiiwarp

EXITS

SOFTWARE

ENTRIES

EXITS

« Back
end »

READS

WRITES

Storage Hardware

Figure 6-2: Generic Flow of Data Attributes through Software from a Functional
Perspective [ADOSS03].

A general procedure for measuring software functional size with the COSMIC

method is proposed in [AOA04], as in Figure 6-3. The measurement process is

performed in five steps.

First, the boundary of the software to be measured is identified by the measurer

based on the requirements and the specifications of the interaction between the

hardware and the software. Second, the measurer identifies all possible

functional processes, triggering events and data groups from the requirements.

These are considered as candidate items at this stage. Third, the candidate items

(i.e. functional processes, triggering events and data groups) are mapped into the

139

COSMIC software context model (Figure 6-3) based on the COSMIC rules. In this

mapping, each functional process must be associated with a triggering event and

to the data group(s) manipulated by it. This mapping also allows the

identification of layers. Fourth, the COSMIC subprocesses (i.e. data movements

of the following types: Entry, Exit, Read and Write) are identified within each

functional process. The COSMIC measurement function is applied to the

subprocesses identified to determine their respective COSMIC size measure.

Finally, the measurer computes an aggregate of the measurement results to

obtain the total functional size of the software being measured.

Figure 6-3: General Procedure for Measuring Software Size with the COSMIC
Method - ISO 19761 [AOA04].

6.3 The Relationship between Functional Size and Effort

Software cost and effort estimation plays a significant role in the successful

completion of any software. Resources are assigned according to the effort

140

required to complete the software. Accurate effort estimation leads the

completion of software project on the scheduled time. Many models and

approaches have been developed in the past 40 years to estimate the effort. Most

of the models take software size as a basic input to estimate the effort [GD08].

We have already discussed that it is better to use functional size instead of length

of code to estimate effort. Effort is usually calculated by using functional size of

the software [FP97]. There is a strong relationship between functional size and

effort [PWL05]. Valid measured functional size has the potential to improve

effort estimation and reduce the "cone of uncertainty" effect on the project

planning. It is critical to correctly establish a relationship between functional size

and effort so that we could be able to estimate effort accurately. There are many

project and product factors that affect positively or negatively this relationship.

Environmental factors, technical factors and operating constraints are some of

them [Geno8].

Many significant attempts have been taken to explore the relationship between

the size and effort and also to identify the subset of those NFRs which may affect

this relation. In the sections 6.3.1 to 6.3.8, we present an overview of research

studies, effort estimation models and functional size estimation methods which

consider NFRs as factors affecting the relationship between the software size and

effort:

6.3.1 Study by Maxwell and Forselius

A study carried out in Finnish companies [MFoo] to explore the factors that

affect productivity and effort estimation shows the following results (Table 6-2):

156

Table 6-2: Factors Affecting Productivity by Pekka Forselius (adapted from
[MFoo]).

Data set Experience Database (206 business software
projects from 26 companies).

Variables
considered in
Database
Productivity
Analysis

Application Programming Language, Application
Type (MIS etc), Hardware Platform, User
Interface, Development Model, DBMS
Architecture, DB Centralization, Software
Centralization, DBMS Tools, Case Cools, Operating
System, Company where project was developed,
Business Sector (Banking, Insurance etc),
Customer Participation, Staff Availability,
Standard Use, Method Use, Tool Use, Software
Logical Complexity, Requirement Volatility,
Quality Requirement, Efficiency Requirement,
Installation Requirement, Staffs Analysis Skills,
Staffs Tools Skills, Staffs Team Skills, Staffs
Application Knowledge

Base of Size
Measurement

Experience 2.0 Function Point Method

6.3.2 Study by Angelis, Stamelos and Morisio

L. Angelis and his colleagues have also made important contribution towards

finding the different factors that affect size and effort relationship. These authors

study the projects in the International Software Benchmarking Standards Group

(ISBSG). The ISBSG database contains data about recently developed projects

characterized mostly by attributes of categorical nature such as the project

. business area, organization type, application domain and usage of certain tools or

methods. The authors found 7 important factors that affect the relationship

between the size and effort. The result of this study is given in more detail below

(Table 6-3) [ASM01]:

142

Table 6-3: Factors Affecting Productivity by L. Angelis [ASM01].

Data set ISBSG release 6
Factors 1. Development Type

2. Development Platform
3. Language Type
4. Used Methodology
5. Organization Type
6. Business Area Type
7. Application Type

Base of Size
Measurement

IFPUG Function Point

The authors' method is based on the characterization of the software to be

developed in terms of project and environment attributes and comparison with

some similar completed projects recovered from the ISBSG.

The authors also refer to that human factors are very important factors that are

not taken into account while performing any previous study. A recent study

shows that Psychometrics data should be collected to better perform the

empirical study [FTAS08].

6.3.3 Study by Liebchen and Shepperd

A study by Liebchen and Shepperd that aims at reporting on an ongoing

investigation into software productivity and its influencing factors brought the

following results (Table 6-4) [LS05]:

Table 6-4: Factors Affecting Productivity by Martin Shepperd [LS05].

Data Set 25,000 closed projects of a large multinational company
Attributes
Influencing
Software
Productivity

1. The Degree of Technical Innovation, Business Innovation,
Application Innovation,
2. Team Complexity
3. Client Complexity
4. Degree of Concurrency

143

5. Development Team Degree of Experience With Tools,
Information Technology, Hardware, or With Adopted
Methodology,
6. The Project Management Experience

Base of Size
Measurement

Function Point

This study confirms the intuitive notion that different industiy sectors exhibit the

differences in the productivity. It is due to the fact that industry sectors also affect

the productivity [LS05].

6.3.4 Summary of Other Studies

A study in the different Swedish companies shows that following factors affect

the effort estimation [MP08]:

1. Requirement Volatility (Unclear and Changing Requirement).

2. Unavailability of Templates.

3. Lack of coordination between product developed and other parts of the project.

The following factors that are considered important from ISBSG data repository,

also affect the productivity [LWHS01]:

1. Programming Language.

2. Team Size.

3. Organization Type.

4. Application Type.

Another recent study published in the Second ACM-IEEE international

Symposium on Empirical Software Engineering and Measurement shows the

following results (Table 6-5) [YHLWB08]:

144

Table 6-5: Factors Affecting Phase Distribution for Software Development Effort
[YHLWB08].

Data Set China Software Benchmarking Standard Group
Factors 1. Development Life Cycle

2. Development Size
3. Software Size
4. Team Size

Base for Size
Measurement

LOC

By analyzing the factors collected from the above studies, we find that all of them

are mapped to concepts under the root of the NonFunctionalRequirement

concept in our NFRs Ontology (Chapter 4). In sections 6.4, 6.5 and 6.6 of this

chapter, we discuss how to quantify the impact of these factors on the size -

effort relationship.

6.3.5 Factors in the Use Case Points estimation method (UCP)

UCP method is based on a work by Gustav Karner [Kar93]. This method analyzes

the use case actors, scenarios, and various technical and environmental factors

and abstract them into an equation. Readers familiar with Allan Albrecht's FPA

[Alb79], [AG83] and [Alb84] will recognize its influence on UCP; function point

analysis inspired UCP. The UCP equation is composed of three variables:

a. Unadjusted Use Case Points (UUCP).

b. The Technical Complexity Factor (TCF). (Table 6-6)

c. The Environmental Complexity Factor (ECF). (Table 6-7)

145

Table 6-6: Technical Complexity Factors in UCP.

1. Distributed System 8. Portability
2. Performance 9. Easy to change
3. End User Efficiency 10. Concurrency
4. Complex Internal
Processing

11. Special security features

5. Reusability 12. Provides direct access to third parties
6. Easy to Install 13. Special user training facilities are required
7. Easy to Use

Table 6-7: Environmental Complexity Factors in UCP.

1. Familiar with UML 5. Object-Oriented Experience
2. Part-Time Workers 6. Motivation
3. Analyst Capability 7. Difficult Programming Language
4. Application Experience 8. Stable Requirements

According to the UCP method, TCF can reduce the UCP by 40 percent and

increase the UCP by 30 percent. On the other hand, the ECF can reduce the UCP

by 57.5 percent and increase the UCP y 40 percent.

A study by [ABH05] which was based on the UCP method, suggests that this

method needs modification to better handle effort related to the development

process and the quality of the code.

6.3.6 Cost Drivers in COC0MO 81

COCOMO [Boe8i]; developed by Barry Boehm, is a model for estimating effort

and calendar time required to develop a software system. At the most basic level

COCOMO is two equations:

Effort = f(x,y) and

Time =g(effort),

146

where f() and g() are functions and x and y are attributes of the system. Original

COCOMO is a three level model: (i) Basic, (ii) Intermediate and (iii) Detailed

which calculates the effort per phase.

The development period covered by COCOMO begins after requirements and

continues through integration and testing.

Intermediate COCOMO computes software development effort as function of

program size and a set of "cost drivers" that include subjective assessment of

product, hardware, personnel and project attributes. Table 6-8 presents the 15

cost drivers that have linear effect on estimated effort:

Table 6-8: Cost Drivers in COCOMO 81.

1. Required Software Reliability 9. Applications Experience
2. Data Base Size 10. Programmer Capability
3. Software Complexity 11. Virtual Machine experience
4. Execution Time Constraint 12. Programming Language Experience
5. Main Storage Constraint 13. Use of Modern Programming

Practices
6. Virtual Machine Volatility 14. Use of Software Tools
7. Computer Turnaround Time 15. Schedule Constraints
8. Analyst Capability

Each of the 15 attributes receives a rating on a six-point scale that ranges from

"very low" to "extra high" (in importance or value). There are tables of values

used to determine effort multipliers for each of these cost drivers in each rating.

For example, the programmer capability multiplier ranges from 1.42 (low skill) to

0.7 (high skill). These values will raise or lower the overall figures. The results of

the effort formulas above are multiplied by the effort multipliers to arrive at the

147

final result. The product of all effort multipliers results in an effort adjustment

factor (EAF). Typical values for EAF range from 0.9 to 1.4.

6.3.7 Cost drivers in COCOMO II

The original COCOMO model has been very successful, but it doesn't apply to

newer software development practices as well as it does to traditional practices.

COCOMO II [BAB+oo] was updated for current development models (iterative

and incremental; i.e. non waterfall). COCOMO II incorporates an early

estimation equations based on function points [IFPUG99] and [ISO2092603] or

object points. COCOMO II is adjustable for non-linear effects and includes

updates to effort-multipliers and cost drivers. In addition, requirements volatility

is considered. In COCOMO II, phases or levels are in:

(i) Early prototyping Level: Pre-requirements

(ii) Early Design Level - Requirements and some design complete:

This model is to be used for rough estimates of a project's cost and duration

before entire architecture is determined. It uses a small set of new Cost Drivers,

and new estimating equations. It is based on Unadjusted Function Points or

KSLOC (1,000 Source Lines Of Code). COCOMO II defines 7 early design cost

drivers shown in Table 6-9:

Table 6-9: Cost Drivers in COCOMO IJ Early Design Model.

1. Product Reliability and Complexity 5. Personnel Experience
2. Developed for Reusability 6. Facilities
3. Platform Difficulty 7. Required Development Schedule
4. Personnel Capability and Mapping
Example

(iii) Post Architecture Level - System design and architecture established

148

This is the most detailed COCOMO II model. It is to be used after project's overall

architecture is developed. It has new cost drivers, new line counting rules, and

new equations. COCOMO II defines 17 post-architecture cost drivers shown in

Table 6-10:

Table 6-10: Cost Drivers in COCOMO II Post Architecture Model.

1. Product Reliability 10. Programmer Capability
2. Database Size 11. Personnel Continuity
3. Product Complexity 12. Applications Experience
4. Developed for Reusability 13. Platform Experience
5. Documentation Match to Life-Cycle
Needs

14. Language and tool Experience

6. Execution Time Constraints 15. Use of Software Tools
7. Main Storage Constraint 16. Multi-set Development
8. Platform Volatility 17. Required Development Schedule
9. Analyst Capability

6.3.8 Discussion

Existing FSM methods have been primarily focused on sizing the functionality of

a software system. Size measures are expressed as single numbers (function

points (FP) [ISO2092603], [ISO2457005], [ASMD98] and [UKSMA02]), or

multidimensional 'arrays' designed to reflect how many of certain types of items

there are in a system [Steoi]. The existing function-point-based FSM techniques

have so far addressed the topic of NFRs only with respect to the task of adjusting

the (unadjusted) FP counts to the project context or the environment in which

the system is supposed to work.

For example, the International Function Point Users Group (IFPUG) [IFPUG]

has been approaching the inclusion of NFRs in the final FP count by using

qualitative judgments about the system's environment. The current version of the

IFPUG Function Point Analysis (FPA) manual [IFPUG99] speaks of a set of

149

General System Characteristics and Value Adjustment Factors (see Table 6-11) all

meant to address - though in different ways - the NFRs that a project may

include.

Table 6-11: General System Characteristics in IFPUG.

1. Reliable back-up and recovery 8. Online Update
2. Data communications 9. Complex Interface
3. Distributed functions 10. Complex Processing

4. Performance 11. Reusability
5. Heavily used configuration 12. Installation ease
6. Online data entry 13. Multiple Sites
7. Operational ease 14. Facilitate Change

Currently, there are five FSM models which are proposed by the COSMIC

consortium and IFPUG member associations (namely, NESMA [ISO2457005],

UKSMA [UKSMA02], COSMIC [Abr99], FISMA [FISMA08] and IFPUG

[IFPUG99]) and which are recognized as ISO standards. We compared and

contrasted the ways in which NFRs are treated in these FSM standards. For each

standard, we looked at what NFR artifact is used as input to the FSM process,

how this artifact is evaluated (Table 6-12), and which FSM counting component

reflects the NFRs. We found that all five FSM standards provide, at best,

checklists which estimators can use to perform qualitative assessments of certain

factors of the system's environment. However, these assessments reflect the

subjective view of the professionals who run the FSM process. The FSM

standards say nothing about what should be put in place to enable estimators to

ensure the reproducibility of their assessment results regarding the NFRs in a

project. The Mark II FPA manual [UKSMA02] refers to recent statistical analysis

results and suggests that neither the Value Adjustment Factors from the IFPUG

150

method [ISO2092603] nor the Technical Complexity Adjustment (TCA) factors

from the Mark II FPA method [UKSMA02] represent well the influence on size of

the various characteristics these two methods try to take into account. Indeed,

the Mark II FPA manual says that the TCA factors are included only because of

continuity with previous versions, and recommends that these factors be ignored

altogether (p. 63 in [ISO1414398]) when sizing applications within a single

technical environment (where the TCA is likely to be constant).

Table 6-12: The ISO FSM Standards.

Proposal Input NFR
artifact

Assessment Counting
Component

COSMIC [Abr99] Not included Not
applicable

None

NESMA
[ISO2457005]

Textual NFR Qualitative General System
Characteristics,
Value Adjustment
Factors

MARK II
[UKSMA02]

Textual NFR Qualitative Technical
Complexity
Adjustment

FISMA
[FISMA08]

Textual NFR Qualitative Technical
Complexity
Adjustment

IFPUG
[ISO2092603]

Textual NFR Qualitative General System
Characteristics,
Value Adjustment
Factors

6.4 Non-Functional Requirements Size Measurement Method (NFSM)
with COSMIC

While the COSMIC method was originally proposed to measure user FRs, in this

section, we extend its use to measuring the functional size of the operationalized

151

NFRs. Figure 6-4 instantiates the NFRs Ontology in the context of the COSMIC

method. In the instantiated metamodel, the major functionalities, as well as the

functional operationalizations, are mapped to the COSMIC processes.

The process of measuring the functional size for a particular NFR is carried out in

three steps:

Step 1: The NFR is considered in isolation from its association relations. COSMIC

is used to measure the functional size for those operationalizations, which are

refined from the NFR and correspond to functions/operations. The size of the

NFR is the sum of the sizes of all the selected operationalizations.

Step 2: The NFR's association relations with the FRs are clearly captured.

Step 3: The total size of the NFR within the system is then calculated by

measuring the total changes in the functional size of functionalities triggered by

introducing the associated NFR.

We completed our first application of this procedure in a case study setting at a

company site (see Chapter 3, Section 3.3.1). To illustrate the measurement

procedure, we will limit the discussion to the same two pieces of functionality: (1)

the user asks to read an email message; and (2) the user composes and sends a

new email. The specification of these functionalities is illustrated in Figure 6-5.

The COSMIC models are generated for each component (here, Client and

Gateway), as outlined next:

152

Entry

Read

FuntionalRequirement

-Frlsft lappedlnto

DataMovement
-isMappedlnto

-isMappedlnto

Write

Exit

^
Requirement

Process

NonFunctionalRequirement

-hasAssocia ionPoint

-isAssociatingNfrTo

AssociationPoint

Product

-isAssociatingNfrTo

-hasOperalionalizalion

FunctionOp

Operationalization

-isAssociatingNfrTo

•isAssociatingNfrTo Resource •isAssociatingNfrTo

OperationOp

DataOp

ArchitectureDesignDecision

Figure 6-4: A View of the NFRs Ontology Instantiated in the Context of the
COSMIC Method.

153

m
Rwjuestto Sawa

93; way P0P3SMTP

sends message to

performance - j f

Figure 6-5: Illustration of FR and NFR Relations through the Mobile Email
System Case Study.

The chosen FRs, read email and send email, each consists of two functional

processes, which are further refined into data movements (see Figure 6-5).

The data groups identified for these read and send FRs are: 1) read request

data group (includes data on the requested message); 2) read response data

group (includes the message requested to be read); 3) send request data group

(includes the composed message to be sent); and 4) send response data group

(confirmative message).

The functional size for each FR corresponds to the addition of all identified

data movements. The initial calculated functional size for the Client

component is 11 CFP (see Tables 6-13 and 6-15) and 12 CFP for the Gateway

component (see Tables 6-14 and 6-15).

Table 6-13: Client Component ("Send a Message" Functionality).

ID Process Trigger Data Movement Data Data CF
descript

ion
ing
event

Group movem
ent

Type

P

FPl Send Request
event

Receive send request Send request E

Save message in the
buffer

Send request W

Send message to
gateway

Send request X

Respons Receive confirmation Send E
e. event response

Translate message Send
response

W

Display confirmation Send
response

X

I Total functional size of Send FUR for Client component in 6
| CFP =

155

Table 6-14: Gateway Component ("Send a Message" Functionality).

ID Process
deseript

ion

Triggc
ring
event

Data Movement Data
Group

Data
movent

ent
Type

CFP

FP
1

Send Request
event

Receive send request Send request E 1

Translate message to
IMAP/POP3

Send request W 1

Send message to mail
server

Send request X 1

Respon
se event

Receive confirmation Send
response

E 1

Translate message to
SYNCML

Send
response

W 1

Send confirmation to
client

Send
response

X 1

Total functional size of Send for Gateway component in CFP = 6

Table 6-15: Client Component ("Read a Message" Functionality).

ID Process
descripti

on

Trigge
ring
event

Data Movement Data Group Data
movem

ent
Type

CFP

FP
2

Read Request
event

Receive read request Read Request E 1

Send message to
gateway

Read Request X 1

Respon
se event

Receive user's
message

Read
Response

E 1

Translate message Read
Response

W 1

Display message Read
Response

X 1

Total functional size of Read for Client component in CFP = 5

156

Table 6-16: Gateway Component ("Read a Message" Functionality).

ID Proce Trigge Data Movement Data Data CFP
ss

descr
ring
event

Group movent'
ent

iption T\pe
Read

FPn
Request
event

Receive read request Read
Request

E

Translate request to
IMAP/POP3

Read
Request

W

Send request to mail
server

Read
Request

X

Respon
se event

Receive user's message Read
Response

E

Translate message to
SYNCML

Read
Response

W

Send requested
message to client

Read
Response

X 1

Total functional size of Read for Gateway component
CFP =

in 6

In our case study setting, we observed that, in order to optimize the user

experience for devices with limitations (e.g. screen size, memory, processing

speed) and wireless networks with constrained bandwidth, some NFRs had to

be adapted in the requirements model of the project. To illustrate this point

here, we consider adaptation of the performance requirement. Performance is

defined as the amount of useful work accomplished by software compared to

the time and resources used. To deal effectively with such a requirement, a

good performance requirement may need to be broken down into smaller

components, so that an effective solution can be found. Thus, performance

can be decomposed into short response time for the exchanged transactions

between the client and the gateway, and high throughput (rate of processing

work) for the network bandwidth.

After an extensive round of meetings and discussions, the software architects

at NOKIA decided to optimize response time and throughput of the Mobile

157

Email Application by means of the following two solutions: (l) a compression

algorithm, which compresses the requests and responses exchanged between

the device application and the gateway; and (2) breaking a message requested

to be read into smaller pages, each 1 Kb in size, after which only the first page

is sent to the client, with the option for the user to request the other pages

from the gateway in separate transactions.

The suggested operationalizations proved to reduce the response time as

perceived by the end-user in similar projects. They also reduced the amount of

wireless traffic. The performance requirement, along with its decomposition,

operationalization, and association relations, are depicted in Figure 6-5. The

SYNCML protocol compression algorithm reduces the size of the protocol

elements or XML markup, and not of the actual email data. The algorithm is

based on a static compression dictionary containing a list of the most common

protocol fragments. During compression, the source XML message is split up

into dictionary and non-dictionary words (logic). A special dictionary is

searched (Read) and each fragment that maps to a dictionary word is replaced

with the corresponding index (Write). A fragment which does not map to a

dictionary word is replaced with its length in bytes using UTF-8 encoding plus

1000 followed by the fragment itself (Write). During decompression, these

subprocesses are reversed. In total, the functional size for the compression

operationalization is obtained by summing up all the data movements

identified. The initial calculated functional size is 3 * 2 = 6 CFP.

The breaking down of a message by the gateway into smaller pages was

mapped into three subprocesses: The gateway recognizes that the message

size exceeds 1 Kb and decides to break it down into smaller pieces (Entry), the

gateway writes the first page of the message into a special buffer to be sent to

158

the client (Write) right away, and then the gateway stores the rest of the

message into a special memory (Write) for future requested transactions. The

functional size for breaking the message down into pages is 3 CFP.

To calculate the functional size of the performance NFR, we consider the

association of the performance requirement and the association of their

derived operationalizations, as presented in Figure 6-5. The compression

algorithm (including both the compression and the decompression) has to be

called once for each data group. This increases the total functional size for

both functionalities by (4 * 6 = 24 CFP). In the case of breaking down the

message, it is called on once for read message. Thus, the functional size of

read message is increased by 3 CFP. The calculated functional size for

performance is, therefore, the sum of the two functional sizes: 24 + 3 = 27

CFP. The updated total functional size for both functionalities (send a

message and read a message) after introducing the performance requirement

is 27 +11 + 12 = 50 CFP.

6.5 Measuring the effort of NFRs

Measuring the functional size of NFRs as presented in our approach falls

under the "Count, Compute, Judge" estimation technique [Mcco6], which

means, basically, that the first course of action consists of counting and

computing. If there is a way to directly count and compute some value to

provide the estimate, this should be the best option, since it usually provides

the most accurate result. If "count and compute" is not possible, then "judge"

is considered, but as a last resort only, as it introduces the greatest

opportunity for bias and error.

159

As illustrated in Section 6.4 of this chapter, The "NFSM" approach is

applicable to the NFRs associated with FRs and operationalized through

functions/processes which could be mapped to the COSMIC model.

Nevertheless, the goal-oriented RE community [Mylo6], [Glios] and [Wieoo]

considers that not all NFRs should be decomposed into functions/processes.

If NFRs serve as norms [Glios] or as criteria for making architectural design

choices, then they should not be decomposed into FRs. Examples are global

NFRs like survivability, reporting, and customizability. In this section, we

discuss an approach towards measuring the effort estimation of the project

while dealing comprehensively with the impact of a particular NFR on the size

and effort of the FRs and consequently the size and the effort of software

project taking the above limitation into consideration. The proposed approach

will benefit from the NFSM method discussed in section 6.4. Specifically, we

address this need by: (1) measuring the functional size of the

operationalizations in isolation from their relations; (2) understanding and

specifying those relations of the NFRs with other system elements; (3)

adjusting the functional size of the captured functionalities and the total

project using the measurement from (1) and the specification of NFR's

relations from (2); and finally (4) when the size of the operationalizations

cannot be measured OR the NFRs cannot be refined into design solutions

(unoperationalized NFRs), we then consider the impact of these

operationalizations and "unoperationalized NFRs" on the size of

functionalities and the effort of building the project through an estimation

models based on regression techniques.

NFRs and Operationalizations can be further categorized into 4 non-mutually

exclusive classes from the perspective of measuring the effort:

160

(i) Class A: operationalizations which correspond to

functions/operations and associated to functional requirements

subprocesses;

(ii) Class B: (Atomic NFRs which are not operationalized OR

operationalizations corresponding to architectural/design decisions

or data) AND associated to functional requirements subprocesses;

(iii) Class C: operationalizations correspond to functions/operations

and associated to the whole product, process or resource;

(iv) Class D: (Atomic NFRs which are not operationalized OR

operationalizations corresponding to architectural/design decisions

or data) AND associated to a whole product, a process or a resource.

Before we proceed in discussing the steps of the process in Section 6.5.2; we

will provide a background on the estimation models using regression

techniques in Section 6.5.1.

6.5.1 Estimation Models: Background

A model typically describes the relationship between a dependent variable

(such as effort) with respect to one or more independent variables (such as

size, experience, project difficulty).

When a relationship has been well studied empirically, then the model of such

a relationship can be described mathematically with simple (or very complex)

mathematical formula. This is the case with many physical phenomena that

have been well studied (e.g. gravity, fluidity of liquids, expansion of gases).

161

One of the most common-in-use estimation techniques [Mcco6] is to build

estimations models based on characteristics of the productivity of past

projects. If the historical data from past projects is quantitative and

documented, then estimation models can be built.

A simple effort estimation model (Effort vs. Size) is illustrated in Figure 6-6

and typically represents the performance of past projects.

• The x axis represents the functional size of the software projects

completed;

• The y axis represents the number of effort hours that it took to deliver a

software project.

Effort (in hours)
A.

X

X X

X

X

X

a

} X

s i z e (in F u n c t i o n P o i n t s)

Figure 6-6: Production Model with Fixed Cost and Variable Costs.

The points in the graph in Figure 6-6 represent the number of person-hours it

took to deliver the corresponding functional size of the projects completed.

The line in the graph is obtained through a linear regression model which

basically builds the line that best represents this set of points in terms of effort

with respect to the corresponding size.

1 6 2

An effort estimation model is typically built with data from projects completed

in the past that is, when:

• All the required information on a project is available.

• There is no more uncertainty in both project inputs and the outputs: all

of the software features have been delivered, and

• All of the work hours for the project have been accurately entered in a

time reporting system.

In a production process, there are typically two major types of costs:

• Variable costs: The portion of the resources expanded (i.e. inputs) that

depends directly on the number of outputs produced. In Figure 6-6,

this corresponds to the slope of the model, that is: slope = a (in terms of

hours per function point)

• Fixed costs: The portion of resources expanded (e.g. inputs) that do not

depend on the number of outputs. In Figure 6-6, this corresponds to b,

the constant hours at the origin when the size is equal to zero. There

are a number of project management plans, procedures and controls to

set-up, as well as standards to be selected and used, independently of

the size of the project. In a typical production process, these would be

fixed costs of a production run.

A linear model of the relationship between effort and size is represented by

the following formula:

Effort in person-hours = a * Size + b

where

Size = number of Function Points (FP)

a = variable Cost and is the number of person-hours per Function Point

(person-hours/FP)

b = fixed cost in person-hours.

Figure 6-7 illustrates a production process where there is not a fixed cost: in

this situation, the production line goes straight through the origin where effort

y = o when size x = o.

E f f o r t (i n h o u r s)

Figure 6-7: Production Model with no Fixed Cost.

To build the estimation models, the linear regression technique is often

selected over more complex estimation techniques such as analogy-based and

neural network techniques [Abro9] which have not yet been shown to better

explain the size-effort relationship in software projects on the types of data

sets available for such studies, including multi-organizational data sets.

A survey of the literature [Abro9] on estimation models based on real projects

suggests that there is rarely a significant deviation from the linear model in

the software effort function. For example in the experimental effort estimation

models, the exponent is often relatively close to 1.0. This deviation from 1.0

might be due to some non-linear function, but it might be caused as well by

some errors in the input parameters to the model. Consequently, the software

164

effort could be characterized as an increasing linear function of the size of the

projects, such as in Figures 6-6 and 6-7.

In Figure 6-6, it is clearly observed that a number of projects have an effort

cost lower than that predicted by the model, while there are also quite a few

projects with an effort cost higher than that predicted by the model. This

model is, of course, based on a single independent variable, namely, the

functional size; it cannot be realistically expected that this variable would by

itself be sufficient to produce a perfect estimate without taking into

consideration the large number of other independent variables (e.g. associated

NFRs).

Of course, one might think of a number of other variables that can impact

project effort, each having its own specific impact. The combination of the

impact of these other independent variables will lead to an effort estimation

number (that is, a number of person/hours) which may be lower or higher

than the effort predicted by the regression line of a model with a single

independent variable.

This is illustrated next with a real data set [Maxog] taken from PROMISE

DATA repository-(Maxwell) where the project data from one of the biggest

commercial banks in Finland was collected. In Figure 6-8, the circles point out

some projects that have a large functional size (measured in ISO 20926

[ISO2092603] units: FPA- Unadjusted Function Points) with very little

corresponding effort (measured in person-hours). In the same figure, the

squares point out some projects that have relatively small functional size with

high effort. This illustrates well that a number of other variables (NFRs in this

case), in addition to size, must be taken into account to explain individual

project effort.

165

In the next section, we discuss how we use the linear regression technique

within our proposed solution to estimate the effort of the project based on

both FRs and NFRs.

70000

60000

50000

t 40000
i
"J 30000

20000

10000

0
0 500 1000 1500 2000 2500 3000 3500 4000

Function Points

Figure 6-8: Visual Identification of Projects with a Smaller and Higher Unit
Cost [Max09].

6.5.2 The solution proposal: Effort estimation model

The proposed process of measuring the effort of a project is carried out in 12

steps described below. In this process, Steps 1 and 2 are preparatory, Steps 3

and 4 are to treat elements of class A, Steps 5, 6, 7, 8 and 9 are concerned

with class B elements, Step 10 treats class C, and Steps 11 and 12 treat class D.

Figure 6-9 maps the described classes to the participating concepts from the

NFRs Ontology. The steps of the proposed process are as follows:

Step 1 [FRs to COSMIC]: As suggested by the COSMIC method

[ISO1976103], each FR is further refined into a sequence of subprocesses

which are mapped to the COSMIC data movements: READ, WRITE, ENTRY

and EXIT.

Step 2 [Ontology]: The proposed ontology view (Figure 6-4) is instantiated

using the set of (i) the captured FRs, (ii) their mapped elements (e.g. tasks),

166

and (iii) NFRs which are further refined through the decomposition and

operationalization relations. The NFR's association relations with the

association points are clearly captured.

Step 3 [Unadjusted Functional Size per functional process]: As

proposed in the NFSM method in section 6.4, for each operationalization

refined in Step 2 AND which corresponds to functions/operations; the

functional size is calculated using the COSMIC method. (That includes

mapping the operationalization into a sequence of COSMIC data movements).

For each functionality-derived subprocesses, if the subprocesses is

participating in isAssociatingNfrTo relation with an association point that

participates in a hasAssociationPoint with an operationalization which

correspond to a function/operation, then the functional size of the

subprocesses is recalculated to add the extra size of the associated

operationalization. It is important to notice that the functional size for an

operationalization corresponding to a function/operation is to be considered

more than once only if it operates on a different data group through its

associations. This means, any duplicated pair of (operationalization , data

group) will be considered only once.

167

^OassA^r '

FuntionalRequirement'

li
Non-OperationaRzabl© NFRs

Requirement

- .
NonFunctionalRftquirement

-hasAssodaf ionPoi f^ :

- isAssociat ingNfrTo

/ Process Product

AssociationPoint

-hasOperationalizatior

Operationalization

- isAssociat ingNfrTo

- isAssociat ingNfrTo

•isASsociatirigNfrTo Resource

FunctionOp
\ 4 / \ 4 / DataOp

OporationOp ArchitoctureDesignDecision

Figure 6-9: Mapping of the NFRs Concepts to the Steps of Measuring the Effort.

Step 4 [Unadjusted Functional Size per Requirement]: For each

functional requirement, the functional size values of all subprocesses

calculated in Step 3 are summed up. At this point, we generate the unadjusted

functional size of FRs.

Step 5 [Ranking associations of Class B NFRs/Operationalizations]:

For each identified association with elements of Class B NFRs /

168

operationalizations, the association has further to be ranked on a 3-values

scale [-, o, +]. The first category, labeled with "-", indicates basically that the

associated NFR / operationalization reduces the effort of building the

functionality. The second category, referred to as to "o", indicates the absence

of the impact of the associated NFR / operationalization on the effort for

building the functionality. The third category, labeled with "+", means that the

associated NFR / operationalization increases the effort of building the

functionality.

As a future work, standardized definitions of the proposed scale will be

required to improve repeatability of the classification for each category. This

would ensure that the classification would be repeatable and reproducible

across measures and across projects.

Step 6 [Initial Requirements Effort Estimation Model]: In this step,

we build an initial "requirement" effort estimation model using a linear

regression technique as described in section 6.5.1. As practitioners

recommend [Mceo6], an estimation model is typically built with data from

previous projects' FRs which have been delivered. From such a data set, an

estimation model can be obtained through a linear regression model which

basically builds the line that best represents the set of "requirements" in terms

of effort (in person-hours) with respect to corresponding requirement

functional size (in terms of CFP).

Step 7 [Unadjusted Effort per Requirement]: For each functionality, we

map its unadjusted functional size calculated at step 4 to an unadjusted effort

value on the regression line. At this point, we generate the unadjusted effort

for the FR.

169

Step 8 [Adjusted Effort per Requirement]: For each functionality, its

unadjusted effort value obtained at Step 7 is readjusted to take into account

the associations with NFRs / Operationalizations of Class B. In the dataset, all

requirements which lie precisely on the regression line of the initial estimation

would correspond to requirements with all associated NFRs /

operationalizations from step 5 (class B NFRs / operationalizations) being

ranked as "o". That is, the regression line is interpreted as the line

corresponding to the expected category with the dependent variable "effort"

depends only on the size of the functionality. In the dataset, all the

requirements with "increasing" effect on the effort, that is requirements with

the maximum effort above the regression line and along the functional size

axis, would correspond to requirements with all NFRs / operationalizations

from Step 5 being classified in the "+" in the 3-values scale. In the dataset, all

the requirements with "reduction" effect on the effort, that is requirements

with the minimum effort below the regression line and along the functional

size axis, would correspond to requirements with all NFRs /

operationalizations from Step 5 being in the "-" category in the 3-values scale.

A graphical analysis on the obtained regression model can be carried out to

identify both the max and min values on the graph; from there we can select a

representative point along the vertical line at the corresponding functional

size of the FR based on the classification of the NFRs / operationalizations

done at Step 5. For example, if 50% of the NFRs / operationalizations have

been rated "+", while the other 50% have been rated with "o" then we adjust

the unadjusted effort by selecting the midpoint between the regression line

and the max value: (Model value + max value) /2. At this point, we have an

adjusted effort value for the FR.

170

We make a note here that this estimation approach does not attempt to model

the individual effort relationship for each one of the associated NFR.

However, it will use the information about these associated NFRs and the data

from a historical dataset to graphically position the requirement to be

estimated, in terms of required effort, somewhere between the minimum and

the maximum effort for specific functional size in a dataset as a function of the

set of NFRs.

Step 9 [Adjusted Functional Size per Requirement]: The adjusted

effort value from Step 8 is projected across the regression line (inverse

function) to get the adjusted functional size for the FR.

Step 10 [Unadjusted Functional Size per Project]: The total functional

size values for all FRs from Step 9 are summed up.

Operationalizations which correspond to functions/operations and are

associated to the whole product, process or resources, are to have their

functional size calculated using the COSMIC method and directly added to the

total calculated. Again, it is important to notice that the functional size for an

operationalization corresponding to a function/operation is to be considered

more than once only if it is operated on a different datagroup through its

associations. In other words, any duplicated pair of (operationalization,

datagroup) will be considered only once. At this step, we generate the

unadjusted functional size of the whole project.

Step 11 [Initial Project Effort Estimation Model]: Similarly to what we

did in Steps 6 and 7, Step 11 is about building an initial "project" effort

estimation model using the regression technique. This time, we build the

estimation effort model for the unadjusted functional size of the project, while

in Step 6 we were doing this for the FR level. We then map the value obtained

in step 10 across the regression line.

Step 12 [Adjusted Project Effort]: We adjust the total number obtained in

Step 11 (namely, the unadjusted effort of the whole project) to take into

account the associated NFRs/operationalizations from class D in a similar

way as we did in Step 8. At this point, we generate the adjusted effort value for

the project level.

The above described approach is illustrated next through a case study.

6.6 The Case Study

We have conducted an evaluation case study to illustrate our solution

proposal. The goal of our study was to analyze the proposed effort estimation

method with the purpose of evaluating its ability to predict the effort in the

context of project of the undergraduate students in their third year of studies

enrolled in the 2009 "Software Measurement" and "Software Project"

software engineering courses at Concordia University, Montreal, Canada (see

Chapter 3, Section 3.3.2). The project was described within 39 FRs with total

initial measured functional size of 137 CFP (that is without considering the

impact of the NFRs). The described ontology has been instantiated using the

set of requirements extracted from the vision document and the use-case

specifications. Eight NFRs have been captured. They have been all listed with

their impact evaluations on their association points in Table 6-17. The listed

NFRs are of type quality with exception of NFR7 which is an operating

constraint.

Table 6-17: NFRs from IEEE-Montreal Project.

NFR/
OPERATIONALIZATION

DECOM-
POSED
FROM

ASSOC-
IATED
TO

IMP-
ACT

NFR, The system should maintain

provided services with high

security when required.

System +

NFR2 The system should be

available most of the time.

Security

(NFRI)

System +

NFR3 The system should provide its

functionalities with high

confidentiality when it is

required.

Security

(NFRI)

All FRs

but search

NFR4 The website should be easy to

maintain by non expert users

with no requiring for a third

party interaction or costs for

updates.

System +

NFR5 All technologies must be

portable between Windows

Linux and Mac platforms.

System 0

NFR6 Better and Easier Usability for

the IEEE website.

System +

NFR7 The system has a processing

and data storage element.

This part of the system will

reside on the main IEEE

computer and communicate

with other IEEE systems.

System +

NFR8 The system should be easy to

modify (add new themes,

Maintaina

bility

Content

Managem

+

173

blocks, menus, taxonomies, (NFR4) ent I

terms, columns, extend Functions

functionality, etc.). lity

Because NFRi and NFR4 are not atomic, then they are not considered directly

in the assessment of the effort. Among the specified NFRs in Table 6-17, only

NFR3 has been operationalized through functions which allow the creation

and assignment of privileged access to the users. Basically, the new site must

recognize several privilege/responsibility types for users and allow new user

types to be added without re-coding. Table 6-18 lists the functionalities which

operationalize NFR3 along with their calculated functional size using the

COSMIC method. These operationalizations would always operate on the

same dataset regardless of the association points they are associated to. Thus,

the functional size would be calculated only once.

Table 6-18: Operationalizations for NFR3 (IEEE-Montreal Project).

OPERATIONALIZATION FUNCTIONAL SIZE
(CFP)

Get_Privileged_Access 6
Assign_User__Roles 6
Create Role 6
Update_Role 6
Delete Role 6
Release_Privileged_Access 6
Total size of the 6 36 CFP
operationalizations

The initial estimation model for requirements effort was based on the

functional size for the requirements, and was built using the linear regression

technique. For 59 developed requirements from 6 previous projects, the below

174

regression model based on functional size was obtained. The projects were

developed and completed by students in their third year of studies enrolled in

the "Software Project" undergraduate course at Concordia University in 2008.

Effort = 2.34 * (Functional Size) + 4.24

With Correlation Coefficient: r = 0.734

The line in Figure 6-10 presents the above equation. That is, for a requirement

with all associated NFRs having an average impact (classified in the "o"

category"), the effort should be mapped to a point on this line. On the other

hand, for a requirement with most associated NFRs classified in the "+"

category, the effort should be mapped to a point above the regression line and

below the point representing the highest possible effort: 192.25 person-hours.

Similarly, for a requirement with most associated NFRs classified in the

category, the effort should be mapped to a point below the regression line and

above the point representing the lowest possible effort: 4.5 person-hours

0 10 20 30 40 50 60 70 80 I

Functional Size (CFP) ;

Figure 6-10: A Regression Model for Functional Requirements from
Previously Completed Projects: Requirement Level.

175

We make the note that while the content management functionality is

measured initially to have functional size of 30 CFP, NFRs is associated to

content management and NFRs is operationalized through some design and

architectural decisions and thus measuring its functional size is not possible.

The impact of NFRs on its associated functionality is classified as'+'. Thus, the

functional size of content management has to be adjusted to somewhere

above the regression model estimate and below the point that corresponds to

the highest impact of NFRs (NFRs is impacting content management in a

moderate way not to bring the effort all the way to the highest effort). The best

option would be the midpoint between the regression line and the highest

effort.

The initial effort estimate for content management based on the above

regression model without the impact of the maintainability NFR is:

Unadjusted Effort (content management) = 2.34 * (30) + 4.24 =

74.44 person-hours

The effort corresponding to the highest impact of NFRs at a requirement with

a functional size of 30 CFP is: 192.25 person-hours

The midpoint between these two values is chosen to be the effort for the

content management, thus the effort of content management is readjusted to

be:

Adjusted Effort (content management) = (74.44 + 192.25) / 2 =

133.35 person-hours

176

With a new effort value for content management, its corresponding functional

size has been readjusted. We calculate the functional size for content

management based on the newly added effort:

133-35 = 2-34 * (Functional Size) + 4.24

Adjusted_Functional Size = (133.35 ~ 4.24) / 2.34 = 55.18 CFP.

The total functional size for all FRs is recalculated at this point: 137 + (55.18 -

30) + 36= 198.18 CFP.

The same procedure is repeated on the project level. The regression model

obtained based on previously completed projects is the following one:

Effort = 1.24 * (Functional Size) + 382.6

With Correlation coefficient: 0.49

The line in Figure 6-11 presents the above formula. This line is bounded by

two points, the first of which corresponds to the minimal effort: 412 person-

hours and the second one corresponds to the max efforts: 783.75 person-

hours

900
800

2" 700 3
600

0 500
e g 400
a .

e 300
1 200

100

m m M aeaar--''-

HP*
m lili

M H

• • iisiiiiiiii

50 100 150 200

Functional Size (CFP)

250 300

Figure 6-11: A Regression Model for Previously Completed Projects: Project
Level

177

Based on the calculated functional size for all requirements, the initial effort

for building the project is calculated as:

Unadjusted Effort (project) = 1.24 * (198.18) + 382.6= 628.34

person-hours.

Now, to adjust the effort, we should consider the effect of the remaining

NFRs; that is NFR2, NFR5, NFRe and NFR7.

Because 3 out of these 4 NFRs associated to the projects presented in Table 5-

17, are deemed high impact NFRs, the total effort for the project should be

readjusted to fall on a higher point above the regression line. Based on

expert's judgment, the best representative point on the functional size axis is

75% above the regression line and 25% below the max value.

Thus, the total effort of the software project with all associated NFRs is

calculated to be: (((628.34+ 783.75) / 2) + 783.75) /2= 744.9 person-hours.

In order to evaluate our approach in comparison with the traditional practice

of not considering the impact of NFRs in estimating the effort, we have

generated the Magnitude Relative Error (MRE) for the captured actual effort

and calculated results from our approach. Then we have established a

comparison among the MREs value having our calculated effort value as an

input against having the value of the effort calculated without considering the

impact of NFRs. The MRE is calculated through the below formula below:

MRE (Project) = ABS ((Actual Effort - Estimated Effort) / Actual Effort)

178

The actual reported effort for the IEEE-website project was: 820.75 person-

hours. The MRE for the captured actual effort and calculated results from our

approach is:

ABS ((820.75 - 744-9) / 820.75) = 9-24 %

If we would have chosen not to follow our approach and, instead, to consider

only the impact of the FRs, then with 137 CFP as an initial functional size, the

estimated effort would have been:

Effort = 1.24 * (137) + 382.6 = 552.48 person-hours

The MRE for the captured actual effort and calculated results without

considering the impact of NFRs:

ABS ((820.75 - 552.48) / 820.75) = 32-59 %

This is a 23.35% improvement in the effort estimation.

6.6 Conclusion

The effort estimation approach presented in this chapter aims at improving

the predictive quality of the software industry's effort estimation models. This

chapter demonstrated the feasibility of the proposed approach on a case

study. To the best of our knowledge, the software industry lacks quantitative

effort estimation methods for NFRs, and would certainly benefit from the

precise and objective size measurement and effort estimation approach

proposed in this chapter.

On the other hand, the proposed effort estimation model is expected to be

adopted relatively easier in those organiozations who have already made

experiences with quantitative mamangement of software projects. We

consider the following prerequisites instrumental to the adoption: (1)

179

experience with a FP-like approach, preferably COSMIC, (2) culture of

measurement-oriented thinking of software processes, (3) Access to a

historical dataset which is collected from completed projects and

implemented requirements; and it is sufficient to build the required

regression model for both the requirements and the project levels and (4)

Having both FRs and NFRs captured and well-documented.

Our approach has similarity with other regression-based estimation

approaches in that the analysts make a number of simplifying assumptions

when using this type of approaches. Such assumptions might pose threats to

various extents to the validity of the final results [Rei9o]. For example, an

analyst can base his/her choice of'-/o/+' ratings on his/her own experience in

implementing specific NFRs in a project in an organization. While for some

NFRs, as reusability, it might be possible for the analyst to find some

published research on what levels of reuse are achievable in a specific type of

project and what is the effort associated with this, for other NFRs the analyst

might set up the ratings in a way that - clearly, could be subjective. However,

it is our understanding that at this early stage of research on NFR-based effort

estimation, this design choice is the only possible way to go. We plan, in the

future, a deeper research on the topic of evaluating the validity of our solution

proposal in various settings, expecting that new knowledge will help refine our

approach.

Further discussion on the future work is presented in the next chapter.

180

Chapter VII: Conclusion and
Future Work

"Not to be absolutely certain is, I think, one of the essential things in
rationality."

Bertrand Russell (1872 -1970)

7.1 Conclusion

The tendency for NFRs to have a wide-ranging impact on a software system,

the strong interdependencies among them, and the NFR tradeoffs; all

challenge current software modeling methods. As a result, how to integrate

NFRs and FRs into a coherent requirements engineering process is a problem

which has only been partially solved. However, the increasing trend to develop

complex software systems has highlighted the urgent need to consider NFRs

as an integral part of software system development.

In this thesis, we contribute towards achieving the overall goal of managing

the attainable scope and the changes of NFRs. We achieve that through:

1. Building a formal metamodel for FRs, NFRs and their relations which was

implemented as the proposed NFRs ontology.

2. Implementing change management mechanism for tracing the impact of

NFR on other constructs in the formal metamodel and the corresponding

NFRs Ontology and vice versa.

3. Proposing a novel approach to the NFRs scope management and early

requirements-based effort estimation based on the NFR formal metamodel

and the corresponding ontology.

181

One of the advantages of our approach is that it forces systems analysts to

understand the relationships that exist within and across NFRs in the various

phases of development right from the requirements inception phase till the

implementation and testing phases.

Benefits which arise by blending our research results with existing industry

practice can further make an enhancement of their expertise about

requirements engineering and software architectures with respect to NFRs.

Our research will help to deliver ready-to-use methods that could be easily

applied in consulting interventions at clients' sites. For example a validated

traceability approach will allow the industry to improve the synergies among

their requirements engineering, architectural design, implementation and

testing processes. To the best of our knowledge, the software industry lacks

quantitative effort estimation methods for NFRs, and would certainly benefit

from the precise and systematic proposed model presented in chapter 6.

Table 7-1 revisits the research questions we discussed in Chapter 3 and links

each question to the corresponding section in this thesis in which the question

is addressed.

Table 7-1: Linking Research Questions to their Corresponding Answers.

Research Question Link to the

Answer

Qi- What is a NFR? Sections

4.4.1 and

4-5-1

1 8 2

Q2-What are the types of NFRs? How can they be

categorized?

Section

4 - 5 - 2 - 1

Q3- HOW does NFR interact with FRs and their refinements

during the software development process?

Section 4.5.1

Q4- HOW does one NFR interact with other NFRs? Sections

4.5.2.2,

4.5.2.3 and

4 - 5 - 2 . 4

Q5- What are the concepts and relationships which

characterize the interactions referred to in Q3 and Q4?

Section 4.5

Q6: What traceability mechanisms are used in theory and

practice to support requirements engineering and

architectural design decisions for NFRs? What complexity

aspects of NFRs are accounted for in current requirements

engineering and architectural design decision-making

processes?

Section 5.2

Q7: What are the critical areas requiring traceability attention

when dealing with change management of NFRs? How are

these areas mapped to the concepts and relationships defined

in the NFRs Ontology?

Sections 5.3

and 5.4

Q8: What is the impact of NFRs on the total effort for

building and maintaining the software project?

Section 6.3

Q9: In which ways are NFRs treated in current theoretical

and practical effort estimation models?

Section 6.3

183

Qio: How to improve the existing practice of early estimation

for the effort taking into account the impact of NFRs?

Sections 6.4,

6.5 and 6.6

Table 7-2 restates the applicability of the approaches resulting from this

research with steps towards deploying the approach in practice. In addition, it

provides the links to the corresponding sections of evaluation in which the

reader can refer to the demonstration on how to apply the proposed approach.

In this thesis, we presented the illustration and the evaluation through

settings from three case studies. Having different case studies design usually

offer greater validity for the work [ESSD07]. The following items summarize

our findings from the interaction with the selected case studies:

1. There is no consensus on how to specify NFRs. These requirements can

be listed under "Non-Functional Requirements", "Usability

Requirements" or "Technical Requirements" as in the IEEE Montreal-

website case study, "Solution Requirements"as in Nokia Mobile Email

Application case study or even under "Configuration Requirements" as

in the SAP case study. In this thesis, we define NFR as an umbrella

term to cover all those requirements which are not explicitly defined as

functional.

2. The "perspective" of the requirement is a major dimension to consider

when dealing with NFRs. What can be listed as a FR from certain

perspective may be considered as NFR from another.

3. Type of the project has a major influence on the type of NFRs which are

most likely to be demanded. For example, in Nokia Mobile Email

application case study, in order to optimize the user experience for

devices with limitations (e.g. screen size, memory, processing speed)

184

and wireless networks with constrained bandwidth, performance is a

high-priority NFR. On othe other hand, for web applications that have

an informative objectives, usability is a high-priority NFR. The link

between the type of the project and the demanded NFRs is a subject of

future investigation.

4. We acknowledge that using the students for research studies poses

further challenge in terms of balancing different objectives when

conducting empirical or observational studies as part of an academic

course. In order to minimize the effect of the potential challenge, the

research's objectives were clearly connected to educational goals.

Mandatory participation may affect the results, but optional

participation is not necessarily better. We prompted the invitation for

participation as an optional bonus assignment. The students were then

given the necessary training to conduct the tasks of the assignment and

multuiple Q/A sessions were set to address the raised concerns.

This Ph.D. project is multidisciplinary in nature, which opened multiple

avenues of future work that we could effectively pursue. Our main interests

are discussed in the following sections categorized by the identified 'purpose'

from Chapter 1.

185

T
ab

le
 7

-2
:

A
pp

lic
ab

ili
ty

 o
f A

pp
ro

ac
he

s
R

es
ul

ti
ng

 fr
om

 th
is

 T
he

si
s.

P
h

as
e

A

p
p

li
ca

b
il

it
y

S
te

p
s

to
w

ar
d

s
d

ep
lo

yi
n

g
 i

n
 p

ra
ct

ic
e

E

va
lu

at
io

n

Ph
as

e

1
Im

pr
ov

in
g

th
e

N
FR

s
1

sp
ec

ifi
ca

ti
on

 p
ro

ce
ss

.

Fo
llo

w
 th

e
st

ep
s

to
w

ar
ds

 N
FR

s
In

st
an

ta
ti

on
 (

Fi
gu

re
 4

-1
7)

.

Se
ct

io
n

 4
.7

Ph
as

e

2

Im
pr

ov
in

g
th

e
te

st
in

g
pr

ac
ti

ce
s

fo
r

N
FR

 o
n

 d
ep

lo
ye

d
 s

of
tw

ar
e

us
in

g
th

e
pr

op
os

ed
 t

ra
ce

ab
ili

ty

m
ec

ha
ni

sm
.

1-
 T

ra
ns

fo
rm

 t
he

 N
FR

s
O

nt
ol

og
y

in
to

 c
or

re
sp

on
di

ng

re
la

ti
on

al
-m

od
el

ba
se

d
 r

ep
re

se
nt

at
io

n.

2-
 U

po
n

 a
 c

ha
ng

e
re

qu
es

t,
 i

de
n

ti
fy

 t
he

 p
ot

en
ti

al
ly

 i
m

pa
ct

ed
 a

re
as

 a
lo

ng

w
it

h
 th

ei
r

sp
ec

ifi
ca

ti
on

s
an

d
 r

ef
in

em
en

ts
.

3-
 E

xe
cu

te
 th

e
co

rr
es

po
nd

in
g

qu
er

y.

4-
 O

nc
e

th
e

re
tr

iv
al

 a
lg

or
it

hm
 h

as
 r

et
ur

ne
d

 a
 s

et
 o

f
po

te
nt

ia
lly

 i
m

pa
ct

ed

re
qu

ir
em

en
ts

 /
 e

le
m

en
ts

,
fi

lt
er

 t
he

 r
et

ri
ev

ed
 r

eq
ui

re
m

en
ts

/e
le

m
en

ts
 t

o

re
m

ov
e

an
y

no
n-

re
le

va
nt

 o
ne

s.

6-
 A

 d
ec

is
io

n
 o

n
 a

ny
 a

cc
ep

te
d

 c
ha

ng
e

in
 a

ny
 o

f
th

e
re

tr
ie

ve
d

 d
at

a
sh

ou
ld

be
 r

ec
or

de
d

 in
 th

e
co

rr
es

po
nd

in
g

re
la

ti
on

s.

Se
ct

io
n

 5
.6

 18
6

l-

M
ea

su
re

 t
he

 f
un

ct
io

na
l

si
ze

 o
f

th
e

op
er

at
io

na
liz

at
io

ns
 i

n
 i

so
la

ti
on

Ph
as

e
B

et
te

r
pr

ed
ic

ti
on

 f
or

 t
he

 e
ff

or
t

fr
om

 th
ei

r
re

la
ti

on
s;

Se

ct
io

n
 6

.6

3
of

 b
ui

ld
in

g
th

e
so

ft
w

ar
e

pr
oj

ec
t

2-

R
ef

er
 to

 th
e

in
st

an
ti

at
ed

 N
FR

s
O

nt
ol

og
y

fo
r

th
e

cl
ea

r
sp

ec
if

ic
at

io
n

ta
ki

ng
 t

he
 i

m
pa

ct
 o

f
N

FR
s

in
to

on

 N
FR

s
re

la
ti

on
s

an
d

 s
pe

ci
fi

ca
ti

on
s.

co
ns

id
er

at
io

n.

3-
 A

dj
us

t
th

e
fu

nc
ti

on
al

 s
iz

e
of

 t
he

 c
ap

tu
re

d
 f

un
ct

io
n

al
it

ie
s

an
d

 t
he

to
ta

l
pr

oj
ec

t
us

in
g

th
e

m
ea

su
re

m
en

t
fr

om
 (

l)
 a

nd
 t

he
 s

pe
ci

fi
ca

ti
on

of
 N

FR
's

 r
el

at
io

ns
 fr

om
 (2

).

r
4-

W

he
n

 t
he

 s
iz

e
of

 t
he

 o
pe

ra
ti

on
al

iz
at

io
ns

 c
an

no
t

be
 m

ea
su

re
d

 O
R

th
e

N
FR

s
ca

nn
ot

be

re

fi
ne

d

in
to

de

si
gn

so

lu
ti

on
s

(u
no

pe
ra

ti
on

al
iz

ed
 N

FR
s)

,
w

e
th

en
 c

on
si

de
r

th
e

im
pa

ct
 o

f
th

es
e

op
er

at
io

na
liz

at
io

ns
 a

nd
 "

un
op

er
at

io
na

liz
ed

 N
FR

s"
 o

n
 t

he
 s

iz
e

of

fu
nc

ti
on

al
it

ie
s

an
d

 t
he

 e
ff

or
t

of
 b

ui
ld

in
g

th
e

pr
oj

ec
t

th
ro

ug
h

 a
n

es
ti

m
at

io
n

 m
od

el
s

ba
se

d
 o

n
 r

eg
re

ss
io

n
 t

ec
hn

iq
ue

s.

18
7

7.2 Future Work on Characterizing NFRs

Clearly, the evaluation of the acceptance and the accuracy of the NFRs

Ontology, as such, ultimately rely upon its application by the research

community. The author of this thesis and the scientific supervisors are hoping

to soon benefit from interaction with a number of interested parties in this

topic. In particular, we plan to explore the way in which NFRs Ontology could

be further leveraged in more complex requirements specification scenarios in

real-life settings. In order to ground the concept further, we plan to develop

tools to leverage the benefits of ontology for NFRs and evaluate our results

against scenarios designed to test the capabilities of the ontology (See Section

4.3.1). We are also planning to collaborate with industrial partners such as

NOKIA office in Montreal to deploy and instantiate the NFRs Ontology in

their upcoming projects.

We are also working closely with the Computational Linguistic research team

at Concordia University on a project that aims at automating the instantiation

process for the NFRs Ontology from sets of requirements specification

documents to be used as an input. The automation of the NFRs instantiation

process will contribute towards better acceptance for the proposed ontology in

the industrial firm.

In addition, we will investigate further to which degree having the NFRs

Ontology adopted in the requirements engineering activities guarantees the

compliance of the final product with the captured NFRs.

On other hand, we started working on extending the ontology to establish a

formal methodology to resolve the conflict between NFRs (Chapter 4, Section

4.5.2.4) with minimal contribution from stakeholders. The background

188

context for this work is provided by other authors' previously published

research, namely [Lee96] who developed a formal model for the WinWin

requirements engineering process called the "Problem Space View". We have

deployed this process to evaluate its applicability in a context of a conflict

which may rise in case of a large size of demanded software vs. limited

available effort (limited human resources). This model was chosen for our

investigation because of its formal mathematical basis, which allows for

automation of the process and thus for objectively assessing NFR risk

management. The model defines a win condition as a constraint on the space

R of all requirement specifications. R consists of a set of functional,

infrastructure, and quality attribute specifications. In the model, a conflict is

defined as a set of win conditions, the win regions of which have an empty

intersection (the bottom space in Figure 7-1). Lee maintained that the conflict

could be resolved by expanding stakeholders' win condition area (called

"satisfactory area"). In [In98], the author proposed a theory for resolving

conflicts by creating options through added dimensions. The conflict in the n

dimension space (the bottom space in Figure 7-1) can be resolved in the space

of the n+ist dimension (see the top space in Figure 7-1) by expanding

stakeholders' win conditions due to the added dimension (called "option

strategy").

189

A d d n + 1 S' Win-win region
created

No user, developer, customer
win regions

W ' d

Figure 7-1: Conflict Resolution through Added Dimensions.

An example of a conflict situation in n-dimensional space is shown in Figure

7-2. The numbers in the example are for purposes of illustration. In this

example, the user's win condition, W(U)i, consists of more than 15 functions,

but the customer's win condition, W(C)i, is that the effort should be less than

28 person-months [pm]. The developer's win condition, W(D)i, is a

reasonable expectation of work and reward (i.e. not too much work, but

enough income) as estimated by an effort estimation model such as COCOMO.

In the example, it is assumed for simplicity that each function has a function

size of 30 CFP and requires 2 [pm]. Figure 7-2 shows that there is no Win Win

area to satisfy all stakeholders' constraints, because the total functional" size

for a project implementing the 15 functions is estimated to be 450 CFP, and

thus the total effort is 30 [pm].

190

Figure 7-2: Conflict Situation in the Problem Space View Model.

The following steps, which were used to solve the decision problem with

constraints, represent the effort conflict situation more specifically:

1. Define an objective:

•Find the Win Win region (i.e. the region that satisfies all constraint win

conditions)

2. Define the decision variables:

•xi: Effort

•x2: # of functions

3. Define the constraints according to each win condition:

•gi(xi, x2): xi <= 28 [pm]

•g2(xi, x2): x2 >= 15

191

•g3(xi, x2): xi <= 2[pm] * x2 (= our assumption for simplicity)

4. Identify the WinWin region (the satisfactory area for all stakeholders):

•No WinWin region (i.e. conflict)

5. Identify the WinWin point (the most satisfactory point for all stakeholders

within the WinWin region), if the WinWin region exists.

Figure 7-3 shows an example of resolution of the effort conflict situation

presented above. The effort conflict situation shown in Figure 7-2 can be

represented in the bottom space in Figure 7-3. The effort conflict can be

resolved by creating an option, namely, that of reusing existing software assets

which perform some of the 15 functions, which is generated by an added

dimension, "reuse of software assets (%)". The reuse of software assets can

reduce the effort needed for the current phase without reducing the number of

functions the user wants to implement. This conflict resolution situation is

shown in the upper part of Figure 7-3. One of the assumptions, for simplicity,

is that complete reuse saves the total effort. Thus, reusing 3 functions (20% of

15 functions) saves 6 [pm] and reduces the total effort to 24 [pm].

192

of Functions

Figure 7-3: An Example of Cost Conflict Resolution through an Added
Dimension.

Using the steps to represent cost conflicts, the conflict resolution process by

option creation through an added dimension can also be represented more

specifically by means of the following steps:

1. Define an objective:

•Find the Win Win region

2. Define the decision variables:

•xi: Effort

•x2: # of functions

3. Define constraints:

•gi(xi, X2): xi <= 28 [pm]

193

•g2(xl, X2): X2 > = 15

•g3(xi, x2): xi <= 2 [pm] * X2

4. If there is no WinWin area (i.e. conflict), add an additional dimension; for

example,

x3(= # functions covered by reuse of software assets):

•gi(xi, x2, X3): xi <= 28 [pm]

•g2(xi, X2, X3): X2 >= 15

•g3'(xi, X2, X3): xi <= 2 [pm] * (x2 - X3)

5. Identify the WinWin region (the satisfactory area for all stakeholders):

•xi < = 2 8 [pm]; x2 <= 15; 2 <= X3 <= 3 (the blank area in Figure 4)

6. Identify the WinWin value (the most satisfactory point for all stakeholders

within the WinWin region), if the WinWin region exists.

Clearly, the proposed dimensions depend on the type of conflicts. Typically,

there are proposed dimensions for a specific type of conflict. For example,

reducing/deferring functionality, reducing/deferring quality, relaxing

schedule constraints, improving personnel capability, improving tools and

platform, reusing software assets, and increasing budget can all be viable

means of resolving cost conflicts. One remaining challenge here is conflicts

that may arise in the large requirement model which we are unable to identify

automatically; in other words, scalability is yet to be determined through

larger cases studies from the real world.

194

7-3 Future Work on NFRs Traceability

Change management would require not only a mechanical tracing of the

effects of change, but also a reasoned approach to gauging the consistency of

the changes within the traceability model. Due to the complexity of the NFRs

relations in the traceability model, a change analysis mechanism is required to

ensure the consistency of the proposed changes before they are authorized.

Our future work includes the development of consistency rules based on the

formal presentation of the FR and NFR hierarchies and their relations, rules

which will be automatically checked before a change is authorized.

In addition, we plan to remedy further evaluation for the traceability

mechanism by extending its applicability beyond the testing activities (e.g.

requirements review activities, project's extension.) This will be done by

applying empirical research methods, specifically case studies and

experiments.

We will also consider the mapping of the Datalog expressions into SPARQL

Protocol and RDF Language (SPARQL) which is an RDF query language.

SPARQL was standardized by the RDF Data Access Working Group (DAWG)

of the World Wide Web Consortium, and is considered a key semantic web

technology. SPARQL, which became an official W3C recommendation in

2008, allows for a query to consist of triple patterns, conjunctions, and

optional patterns. Implementing the traceability queries with SPARQL blends

phases 1 and 2 of this research in a more consistent fashion.

195

7.4 Future Work on Effort Estimation considering the impact of
NFRs

As the author of this thesis is working in a company interested in the effort

estimation approach, he and his supervisors plan to investigate further the

impact of interactivity relation on the effort estimation. The effect of

additional independent variables such as experience and project difficulty will

be combined then into in a multiplicative regression model, which may

improve significantly the quality of the project effort estimation model. In

addition, we plan on considering the automation for the effort estimation

process presented in chapter 6. We also plan on extending the effort

estimation model to the "cost" range (e.g. determine how the size of NFRs

impacts the total cost).

196

References

[ABH05] Anda, B., Benestad, H.C., & Hove, S.E. (2005). A Multiple-Case
Study Of Effort Estimation Based On Use Case Points, In ISESE 2005 (Fourth
International Symposium On Empirical Software Engineering), IEEE
Computer Society, Noosa, Australia, November 17-18, (pp. 407- 416).

[Abrog] Abran, A. (2009). Software Estimation Models: Can You Trust
Them.

[Abr99] Abran, A. (1999)- COSMIC FFP 2.0: An Implementation of COSMIC
functional size measurement concepts. In Proceedings of the 2nd European
Software Measurement Conference (FESMA'99), (Oct. 7), Amsterdam.

[ACK05] Al-Kilidar, H., Cox, K., & Kitchenham, B. (2005). The use and
usefulness of the ISO/IEC 9126 quality standard, 2005 International
Symposium on Empirical Software Engineering, (pp. 126-132).

[ADOSS03] Abran, A., Desharnais, J. M., Oligny, S., St-Pierre, D., & Symons,
C. (2003). COSMIC FFP - Measurement Manual (COSMIC implementation
guide to ISO/IEC 19761:2003), Ecole de technologie superieure - Universite
du Quebec, Montreal, Canada.

[AG83] Albrecht, A. J., & Gaffney J. E. (1983). Software function, source lines
of code, and development effort prediction: A software science validation,
IEEE Transactions Software Engineering, 9(6), (pp. 639- 648).

[Alb79] Albrecht, A. J. (1979). Measuring applicationdevelopment
productivity, In Proceedings of the IBM Applications Development
Symposium, Monterey, California, (pp. 83- 92).

[Alb84] Albrecht, A. J. (1984). AD/M Productivity Measurement and
Estimate Validation, IBM Corporate Information Systems, IBM Corp.,
Purchase, NY.

[AMBR02] Araujo, J., Moreira, A., Brito, I., & Rashid, A. (2002). Aspect-
Oriented Requirements With UML, Workshop on Aspect-Oriented Modeling
with UML (held with UML 2002, Dresden, Germany.

[ANRS06] Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., & Shaham-Gafni, Y.
(2006). Model Traceability, IBM System Journal, 45(3), (pp. 515- 526).

[Ant97l Anton, A. (1997). Goal Identification and Refinement in the
Specification of Information Systems, Ph.D. Thesis, Georgia Institute of
Technology.

[AOA04] Abran, A., Ormandjieva, O., & Abu Talib, M. (2004). Information
Theory-Based Functional Complexity Measures and Functional Size With

197

COSMIC-FFP, Proceedings Of The 14th International Workshop On Software
Measurement (Iwsm2004), Germany.

[AR94] Abran, A., & Robillard, P. N. (1994). Function Points: A Study Of Their
Measurement Processes And Scale Transformations, Journal Of Systems And
Software, 25(2), (pp. 171- 184).

[ASDL07] Al Balushi, T. H., Sampaio, P. R., Dabhi, D., & Loulopoulos, P.
(2007). ElicitO: A Quality Ontology-Guided NFR Elicitation Tool, Proceeding
Of REFSQ 2007, Requirements Engineering: Foundations for Software
Quality, Trondheim, Norway, (pp. 306- 319).

[ASHKW06] Ankolekar, A., Sycara, K., Herbsleb, J., Kraut, R., & Welty, C.
(2006). Supporting Online Problem-solving Communities with the Semantic
Web. In Proceeding of the 15th International Conference on WWW, (pp. 575-
584).

[ASM01] Angelis, L., Stamelos, I., & Morisio, M. (2001). Building A Software
Cost Estimation Model Based On Categorical Data, In Proceedings of the 7th
international Symposium on Software Metrics, METRICS, IEEE Computer
Society, Washington, DC.

[ASMD98] Abran, A., St-Pierre, D., Maya, M., & Desharnais, J. M. (1998). Full
function points for embedded and real-time software, In Proceedings of the
UKSMA Fall Conference, London, UK.

[BAB+oo] Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E.,
Madachy, R., Reifer, D., & Steece, B. (2000). Software cost estimation with
COCOMO II (with CD-ROM), Englewood Cliffs, NJ:Prentice-Hall, ISBN 0-13-
026692-2.

[Bas96] Basili, V. R. (1996). The role of experimentation in software
engineering: past, current, and future, Proceedings of the 18th international
conference on Software engineering, Berlin, Germany, (pp. 442- 449).

[Bab85] Babcock, C. (1985). New Jersey Motorists in Software Jam,
Computerworld, September, 30, (pp. 1- 6).

[BB99] Blair, L., & Blair, G. (1999). A Tool Suite to Support Aspect-Oriented
Specification, In Aspect Oriented Programming Workshop in Conjunction
with the 13th European Conference on Object-Oriented Programming,
Lisbon, Portugal, (pp. 7- 10).

[BBL76] Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative
Evaluation of Software Quality, In proceeding of the 2nd International
Conference on Software Engineering, San Francisco, CA, Long Branch, CA:
IEEE Computer Society, (pp. 592- 605).

[BCAMRT06] Baniassad, E., Clements, P.C., Araujo, J., Moreira, A., Rashid,
A., & Tekinerdogan, B. (2006). Discovering Early Aspects, IEEE Software,
23(1), (PP- 61- 70).

198

[BCK03] Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture
in Practice, Addison-Wesley, NY.

[BG06] Berenbach, B., & Gall, M. (2006). Toward a Unified Model for
Requirements Engineering, Proceedings of the IEEE international
conference on Global Software Engineering, (pp. 237 - 238).

[BHS03] Baader, F., Horrocks, I., & Sattler, U. (2003). Description logics as
ontology languages for the semantic web, in Lecture Notes in Artificial
Intelligence, Springe,
http://www.cs.man.ac.uk/~h0rr0cks/Publicati0ns/d0wnl0ad/2003/BaHS03.
pdf/

[BI96] Boehm, B., & In, H. (1996). Identifying Quality-Requirement Conflicts,
IEEE Software, IEEE Computer Society Press, (pp. 25- 35).

[BKW03] Berry, D.M., Kazman, R., & Wieringa, R. (2003). Report on the
Second International Workshop on From Software Architectures to
Architectures (STRAW'03), 25th IEEE International Conference on Software
Engineering, IEEE Computer Science Press, (pp. 797- 798).

[BKWZ94] Banker, R., Kauffman, R. J., Wright, C., & Zweig, D. (1994).
Automating output size and reuse metrics in a repository based computer
aided software engineering (CASE) environment, IEEE Transactions
Software Engineering, 20 (3), (pp. 169- 187).

[BLF99] Breitman, K. K., Leite J. C. S. P., & Finkelstein, A. (1999). The
World's Stage: A Survey on Requirements Engineering Using a Real-Life Case
Study, Journal of the Brazilian Compu ter Society, 1(6), (pp. 13- 37).

[BM04] Brito, I., & Moreira, A. (2004). Integration the NFR Framework in a
RE Model, In Workshop on Early Aspects in Conjunction with 3rd

International Conference on Aspect Oriented Software Development,
Lancaster, UK.

[Boe78] Boehm, B. (1978). Characteristics of Software Quality, North
Holland Press.

[Boe8i] Boehm, B. (1981). Software engineering economics, Englewood
Cliffs, NJ:Prentice-Hall, ISBN 0:i3-822i22-7.

[BSA07] Blaauboer, F.A., Sikkel, K., & Aydin, M.N. (2007). Deciding to Adopt
Requirements Traceability in Practice, In Proceeding Of 19th International
Conference on Advanced Information Systems Engineering (CAiSE'07),
Springer Lecture Notes in Computer Science 4495, Norway, (pp. 294-308).

[BSH86] Basili, V. R., Selby, R. W. & Hutchens, D. H. (1986).
Experimentation in Software Engineering, IEEE Transactions on Software
Engineering, 12(7), (pp. 733- 743).

199

http://www.cs.man.ac.uk/~h0rr0cks/Publicati0ns/d0wnl0ad/2003/BaHS03

[BTVo6] Berota, M., Troya, J. M., Vallecillo, A. (2006). Measuring the
Usability of Software Components, Journals of Systems and Software, 79(3),
(pp. 427 - 439).

[BWT85] Bowen, T. P., Wigle, G. B., & Tsai, J. T. (1985). Specification of
Software Quality Attributes, Volume 2, Software Quality Specification
Guidebook.

[CAFL98] Caldiera, G., Antoniol, G., Fiutem, R., & Lokan, C. (1998).
Definition and experimental evaluation for object oriented systems, In
Proceedings of the 5th International Symposium on Software Metrics
(METRICS 98), Nov. 20-21, Bethesda MD, (pp. 167- 178).

[CC98I Copi, I. M., & Cohen, C. (1998), Introduction to Logic, 10th edition,
Prentice Hall.

[CDDD03] Cooper, K., Dai, L., Deng, Y., & Dong, J. (2003). Towards an
Aspect-Oriented Architectural Framework, In 2nd International Workshopon
Aspect-Oriented Requirements Engineering and Architecture Design (Early
Aspects), Boston, MA.

[CEoo] Czarnecki, K., & Eisenecker, U.W. (2000). Generative Programming,
Addison-Wesley, Reading.

[CFM06] Coral, C., Francisco, R., & Mario, P. (2006). Ontologies for Software
Engineering and Software Technology, Springer, Berlin, Heidelberg.

[CH06] Gonzalez-Perez, C., & Henderson-Sellers, B. (2006). An Ontology for
Software Development Methodologies and Endeavours, Ontologies for
Software Engineering and Software Technology, Springer, (pp.123- 151)-

[CIMS04] Conte, M., Iorio, T., Meli, R., & Santillo, L. (2004). E&Q: An early
and quick approach to functional size measurement methods, In Proceedings
of Software Measurement European Forum (SMEF), Rome, Italy.

[CK94] Chidamber, S. R., & Kemerer, C. F. (1994). A Metrics Suite for Object
Oriented Design, IEEE Transactions on Software Engineering, 20(6), (pp.
476- 493)-

[CKK01] Clements, P., Kazman, R., & Klein, M. (2001). Evaluating Software
Architectures: Methods and Case Studies, Addison-Wesley Professional, NY.

[CL01] Cysneiros, L. M., & Leite, J.C.S.P. (2001). Using UML to reflect Non-
functional Requirements, Proceedings of the 2001 conference of the Centre
for Advanced Studies on Collaborative research, (pp. 2- 17).

[Cleos] Cleland-Huang, J. (2005). Toward Improved Traceability of Non-
Functional requirements, Proceedings of the 3rd international workshop on

200

Traceability in emerging forms of softwareengineering, Long Beach,
California, (pp. 14 - 19).

[CLN01I Cysneiros, L.M., Leite, J.C.S.P., & Neto, J.S.M. (2001). A Framework
for Integrating Non-Functional Requirements into Conceptual Models,
Requirements Engineering Journal, 6(2), (pp. 97-115).

[CNY95] Chung, L., Nixon, B.A., & Yu, E. (1995). Using Non-Functional
Requirements to Systematically Support Change, Proceedings of the Second
IEEE International Symposium on Requirements Engineering, York, U.K.,
(pp. 132 -139)-

[CNYMoo] Chung, L., Nixon, B.A., Yu, E., & Mylopoulos, J. (2000).
Nonfunctional Requirements in Software Engineering, Kluwer Academic
Publishing.

[CS04] Constantinides, C., & Skotiniotis, T. (2004). Providing
multidimensional decomposition in object-oriented analysis and design, The
IASTED International Conference on Software Engineering (SE 2004),
Innsbruck, Austria.

[CSBBC05] Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E.,
& Christina, S. (2005). Goal Centric Traceability for Managing Non-
Functional Requirements, Proceedings of the 27th international conference
on Software engineering, (pp. 362 - 371).

[CWM02] Common Warehouse Metamodel (CWM) Specification. (2002).
http://www.cwmforum.org

[Danos] Daneva, M. (2005). Architecture Maturity and Requirements
Process Maturity Do not Explain Each Other, Workshop on Software
Measurement, German-Canadian Society of Software Metrics, Shaker
Verlag, Aachen.

[Dav93] Davis, A. (1993). Software Requirements: Objects, Functions and
States, Prentice Hall.

[Dem82] Demarco, T. (1982). Controlling Software Projects, Yourdon press,
New York.

[DKPWO07] Daneva, M., Kassab, M., Ponisio, M. L., & Wieringa R., &
Ormandjieva. O. (2007). Exploiting a Goal-Decomposition Technique to
Prioritize Non-functional Requirements. Proceedings of the 10th Workshop on
Requirements Engineering WER 2007, Toronto, Canada.

[DKVP03] Dorr, J., Kerkow, D., Von Knethen, A., & Peach, B. (2003). Eliciting
Efficiency Requirements with Use Cases, In Proceedings of the International
Workshop on Requirements Engineering: Foundations of Software Quality
(REFSQ'2003).

201

http://www.cwmforum.org

[DLS05] Dobson, G., Lock, R., & Sommerville, I. (2005). Quality of Service
Requirement Specification using an Ontology, Conference Proceedings 1st
International Workshop on Service-Oriented Computing: Consequences for
Engineering Requirements (SOCCER'05), Paris, France.

[DSD02] Dimitrov, E., Schmietendorf, A., & Dumke, R. (2002). UML-Based
Performance Engineering Possibilities and Techniques, IEEE Software, 19(1),
(pp. 74-83)-

[EDBS04] Ebert, C., Dumke, R., Bundschuh, M., & Schmietendorf, A. (2004).
Best Practices in Software Measurement: How to use metrics to improve
project and process performance, Springer.

[EG04] Egyed, A., & Grunbacher, P. (2004). Identifying Requirements
Conflicts and Cooperation: How Quality Attributes and Automated
Traceability Can Help, IEEE Software, 21(6), (pp. 50- 58).

[ESSD07] Easterbrook, S. M., Singer, J., Storey, M, & Damian, D. (2007).
Selecting Empirical Methods for Software Engineering Research. In F. Shull
and J. Singer (eds) Guide to Advanced Empirical Software Engineering,
Springer.

[FD96] Finkelstein, A., & Dowell, J. (1996). A Comedy of Errors: The London
Ambulance Service Case Study, proceedings of the 8th International
Workshop Software Specifications and Design, (pp. 2- 5).

[FEoo] Finkelstein, A., & Emmerich, W. (2000). The Future of Requirements
Management Tools, In Information Systems in Public Administration and
Law, G. Quirchmayr, R. Wagner and M. Wimmer (Eds.): Oesterreichische
Computer Gesellschaft.

[Firo3] Firesmith, D. G. (2003). Common concepts underlying safety,
security, and survivability engineering, Technical Note CMU/SEI-2003-TN-
033, Carnegie Mellon Software Engineering Institute.

[FISMA08] FISMA, FiSMA 1.1 Functional Size Measurement Method,
ISO/IEC 29881, http://www.fisma.fi/wp-
content/uploads/20o8/o7/fisma_fsmm_n_for_web.pdf

[Foro4] Forselius, P. (2004). Finnish Software Measurement Association
Functional Size, Finnish Software Metrics Association, Finland.

[FP97] Fenton, N.E., & Pfleeger, S.L. (1997). Software Metrics: A rigorous
and Practical Approach, International Thomson Computer Press.

[FTASo8] Feldt, R., Torkar, R., Angelis, L., & Samuelsson, M. (2008).
Towards individualized software engineering: empirical studies should collect
psychometrics, In Proceedings of the 2008 international Workshop on
Cooperative and Human Aspects of Software Engineering (Leipzig,
Germany, May 13 - 13, 2008), CHASE '08, ACM, New York, NY, (pp. 49-52).

202

http://www.fisma.fi/wp-

[GD08] Gencel, C., & Demirors, O. (2008). Functional size measurement
revisited, ACM Transactions Software Engineering Methodol, 17(3), (pp. 1-
36).

[Geno8] Gencel, C. (2008). How to use COSMIC Functional Size in Effort
Estimation Models, In the Proceeding Of Mensura/IWSM/Metrikon 2008
conference, LNCS 2008.

[GF94] Gotel, 0., & Finkelstein, A. (1994). An Analysis of the Requirements
Traceability Problem, Proceeding First International Conference
Requirements Engineering, Colorado, U.S.A, (pp. 94-101).

[GGKH03] Gardner, T., Griffin, C., Koehler, J., & Hauser, R. (2003). A review
of OMG MOF 2.0 Query/Views/Transformations submissions and
recommendations towards the final standard, In 1st International Workshop
on Metamodeling for MDA, York, UK.

[GKM08] Gasevic, D., Kaviani, N., & Milanovic, M. (2008). Ontologies and
Software Engineering, In Staab, S. & Studer, R. (Eds.) - Handbook on
Ontologies, Springer.

[Glios] Glinz, M. (2005). Rethinking the Notion of Non-Functional
Requirements, Proceeding of the 3rd World Congress for Software Quality,
Munich, Germany.

[GH07] Glinz, M. (2007). On Non-Functional Requirements, 15th IEEE
International Requirements Engineering Conference (RE 2007), Delhi, India,
(pp.21-26).

[Gotgs] Gotel, O. (1995). Contribution Structures for Requirements
Traceability, London, England: Imperial College, Department of Computing.

[Gra92] Grady, R. B. (1992). Practical Software Metrics for Project
Management and Process Improvement, NJ: Prentice-Hall.

[Gru93] Gruber, T. R. (1993). A Translation Approach to Portable Ontology
Specifications, Knowledge Acquisition Archive, 5(2), (pp. 199- 220).

[HC88] Hauser, J. R., & Clausing, D. (1988). The House of Quality, Harvard
Business Review, May - June 1988, (pp. 63- 73).

[HJ02] Holsapple, C.W. & Joshi, K.D. (2002). A Collaborative Approach to
Ontology Design, Communication of the ACM, 45(2), (p.p. 42 - 47).

[HM06] Haruhiko, K. & Motoshi, S. (2006). Using domain ontology as
domain knowledge for requirements elicitation, proceedings of the 14th IEEE
International Requirements Engineering Conference, Minneapolis, USA, (pp.
186- 195).

203

[HNS05] Hofmeister, C., Nord, R.L., & Soni, D. (2005). Global Analysis:
moving from software requirements specification to structural views of the
software architecture, IEEE Proceedings Software, 152(4), (pp.187-197).

[HS06] Happel, H., & Seedorf, S. (2006). Applications of Ontologies in
Software Engineering, In Proceeding of the Intl Workshop on Semantic Web
Enabled Software Engineering.

[IBM] IBM website: SAS Hub Non Functional Requirements (NFRs):
http://www.haifa.ibm.com/projects/software/nfr/index.html.

[IEEE6101290] Standard Glossary of Software Engineering Terminology.
(1990). IEEE Standard 610.12-1990.

[IEEE83098] IEEE Std. 830-1998. (1998). IEEE recommended practice for
software requirements specifications, IEEE Transactions on Software
Engineering.

[IFPUG] FP Users Group: www.ifpug.org

[IFPUG99] IFPUG. (1999). IFPUG Counting Practices Manual - Release. 4.1,
International Function Point Users Group, Westerville, OH.

[In98] In, H. (1998). Conflict Identification and Resolution for Software
Attribute Requirements, Ph.D. Dissertation, USC, CA.

[ISO1414398] ISO 14143-1. (1998). International Standard ISO/IEC 14143-1,
Information Technology - Software Measurement - Functional Size
Measurement Part 1: Definition of Concepts.

[ISO1593907] International Standard ISO/IEC 15939 Second edition. (2007).
Systems and software engineering —Measurement process.

[ISO1976103] ISO/IEC 19761. (2003). Software Engineering: COSMIC-FFP -
A functional size measurement method, International Organization for
Standardization - ISO, Geneva.

[ISO2092603] ISO 20926. (2003). ISO/IEC 20926: Software Engineering -
IFPUG 4.1 Unadjusted FSM Method -Counting Practices Manual.

[ISO2096802] ISO 20968. (2002). ISO/IEC 20968: Software Engineering -
Mkll Function Point Analysis - Counting Practices Manual.

[ISO2457005] ISO 24570. (2005). ISO/IEC 24570: Software Engineering -
NESMA Functional Size Measurement Method v.2.1 - Definitions and
Counting Guidelines for the Application of Function Point Analysis.

[ISO25000] International Standard ISO/IEC 25000 Second edition. (2005).
Software Engineering — Software product Quality Requirements and
Evaluation (SQuaRE) - Guide to SQuaRE.

204

http://www.haifa.ibm.com/projects/software/nfr/index.html
http://www.ifpug.org

[ISO912601] International Standard ISO/IEC 9126-1. (2001). Software
engineering - Product quality - Part 1: Quality model. ISO/IEC 9126-1:2001,
200.

[Jacoy] Jacobs, D. (2007). Requirements Engineering so Things Don't Get
Ugly, Companion to the Proceeding of 29th International Conference on
Software Engineering, (pp. 159-160).

[JBR99] Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified
Software Development Process, Reading, Mass: Addison Wesley.

[Jinoo] Jin, Z. (2000). Ontology-based requirements elicitation
automatically, Chinese Journal Computers, 23(5), (pp. 486 - 492).

[JKCW08] Jingbai, T., Keqing, H., Chong, W., & Wei, L. (2008). A Context
Awareness Non-functional Requirements Metamodel Based on Domain
Ontology, IEEE International Workshop on Semantic Computing and
Systems, Huangshan, China, (pp.i- 7).

[JM01] Juristo, N., & Moreno, A.M. (2001). Basics of Software Engineering
Experimentation, Kluwer.

[Jon87] Jones, T. C. (1987). A Short History of Function Points and Feature
Points, Software Productivity Research Inc., USA.

[Juro2] Jurjens, J. (2002). UMLsec: Extending UML for Secure Systems
Development, In UML '02: Proceedings of the 5th International Conference
on The Unified Modeling Language, London, UK, (pp. 412-425).

[Kamoo] Kammelar, J. (2000). A sizing approach for OO-environments, In
Proceedings of the 4th International ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering.

[Kar93] Karner, G. (1993J. Resource Estimation for Objectory Projects,
Objective Systems SF AB.

[Kaso6] Kassab, M. (2006). Towards an aspect-oriented software
development model with quality measurements, Thesis (M.Comp.Sc.)-
Concordia University, Montreal, Canada.

[KBT07] Kiefer, C., Bernstein, A., & Tappolet, J. (2007). Analyzing Software
with iSPARQL. In Proceeding the 3rd ESWC International Workshop on
Semantic Web Enabled Software Engineering.

[KCO05] Kassab, M., Constantinides, C., & Ormandjieva, O. (2005).
Specifying and Separating Concerns From Requirements to Design: a Case
Study, In The IASTED International Conference on Software Engineering
(ACIT-SE 2005), Novosibirsk, Russia, (pp. 18-27).

[KDOo7a] Kassab, M., Daneva, M., & Ormandjieva. O. (2007). Scope
Management of the Non-Functional Requirements, Proceedings of the 33rd

205

Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), Liibeck, Germany, (pp. 409- 417).

[KDOo7b] Kassab, M., Daneva, M., & Ormandjieva, O. (2007). Early
Quantitative Assessment of Non-Functional Requirements, Technical Report
TR-CriT-oy-35 Centre for Telematics and Information Technology,
University ofTwente, Enschede. ISSN 1381-3625.

[KDO09] Kassab, M., Daneva, M., & Ormandjieva, O. (2009). Towards an
Early Software Effort Estimation based on Functional and Non-Functional
Requirements, Accepted at International Conference on Software
Measurement, Software Process and Product Measurement, Amsterdam,
Netherlands.

[KIC05] Kazman, R., In, H. P. & Chen, H.-M. (2005). From Requirements
Negotiation to Software Architecture Decisions, Journal of Information and
Software Technology, 47 (9), (pp. 511-520).

[KK97] Kauffman, R., & Kumar, R. (1997). Investigating object-based metrics
for representing software output size, In Proceedings of the Conference on
Information Systems and Technology (CIST), In the INFORMS 1997 Annual
Conference, San Diego.

[KKK+06] Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T.,
Retschitzegger, W., Schwinger, W., & Wimmer, M. (2006). Lifting
Metamodels to Ontologies: A Step to the Semantic Integration of Modeling
Languages. In Proceeding of the ACM/IEEE gth International Conference on
Model Driven Engineering Languages and System, (pp. 528- 542).

[KKP90] Keller, S.E., Kahn, L.G., & Panara, R.B. (1990). Specifying Software
Quality Requirements with Metrics. In Thayer, RJI.; Dorfman. M.: System
and Software Requirements Engineering, IEEE Computer Society Press,
Washington, (pp. 145- 163).

[Knuo4] Knublauch, H. (2004). Ontology-Driven Software Development in
the Context of the Semantic Web: An Example Scenario with Protege/OWL, In
Proceeding of 1st International Workshop on the Model-Driven Semantic
Web.

[KO06] Kassab, M., & Ormandjieva, O. (2006). Towards an Aspect-Oriented
Software Development Model with Traceability Mechanism, In Proceedings of
the Early Aspects 2006: Traceability of Aspects in the Early Life Cycle
Workshop, Bonn, Germany.

[KOC05] Kassab, M., Ormandjieva, O., Constantinides, C. (2005). Providing
Quality Measurement for Aspect-Oriented Software Development.
Proceedings of the 12th Asia-Pacific Software Engineering Conference,
Taipei, Taiwan, (pp. 769-7 75).

[KODo7a] Kassab, M., Ormandjieva, O., Daneva, M., & Abran. A. (2007). A.
Non-Functional Requirements: Size Measurement and Testing with COSMIC-

206

FFP, Proceedings of the International Conference on Software Process and
Product Measurement (IWSM-MENSURA 2007), Palma de Mallorca, Spain.

[KODoyb] Kassab, M., Ormandjieva, O., & Daneva. M. (2007). Towards a
Scope Management of Non-Functional Requirements in Requirements
Engineering, Proceedings of the MeRePo7: Workshop on Measuring
Requirements for Project and Product Success, Palma de Mallorca, Spain.

[KODo8a] Kassab, M., Ormandjieva, & O., Daneva, M. (2008). A Traceability
Metamodel for Change Management of Non-Functional Requirements,
Proceedings of the 6th international conference on Software Engineering
Research, Management and Applications, Prague, Czech Republic, (pp. 245-
254)-

[KODo8b] Kassab, M., Ormandjieva, O., Daneva, M., & Abran, A. (2008). A
Non-Functional Requirements Size Measurement Method (NFSM) with
COSMIC-FFP, Lecture Notes in Computer Science (LNCS) 4895 - 0168,
Springer-Verlag Beriln Heidelberg, (pp. 168-182).

[KODo8c] Kassab, M., Ormandjieva, O., & Daneva, M. (2008). A Meta-model
for the Assessment of Non-Functional Requirements Size, Proceedings of the
34th EuroMicro SEAA Conference. 2008, Parma, Italy, (pp. 411-418).

[KODoga] Kassab, M., Ormandjieva, O., & Daneva, M. (2009). A Metamodel
for Tracing Non-Functional Requirements, Proceedings of the 2009 World
Congress on Computer Science and Information Engineering (CSIE 2009),
Los Angeles, USA.

[KODo9b] Kassab, M., Ormandjieva, O., & Daneva, M. (2009). An Ontology
Based Approach to Non-Functional Requirements Conceptualization,
Accepted at the the Fourth International Conference on Software
Engineering Advances, ICSEA 2009, Porto, Portugal.

[KOD10] Kassab, M., Ormandjieva, O., & Daneva, M. (2010). Managing the
Changes and the Attainable Scope of Non-Functional Requirements in
Software Engineering, Accepted as a book chapter to Methodologies for Non-
Functional Requirements in Service Oriented Architecture.

[KS05] Kaiya, H., & Saeki, M. (2005). Ontology based requirements analysis:
lightweight semantic processing approach, proceedings of the 5th
International Conference on Quality Software (QSIC), Melbourne, Australia,
(pp. 223 - 230).

[KS98] Kotonya, G., & Sommerville, I. (1998). Requirements Engineering:
Processes and Techniques, John Wiley & Sons.

[KU95] King, M., & Uschold, M. (1995). Towards a Methodology for Building
Ontologies, Workshop on Basic Ontological Issues in Knowledge Sharing
IJCAI, Montreal, Canada, (pp. 6.1-6.10).

207

[LBD02] Lodderstedt, T., Basin, D. A., & Doser, J. (2002). SecureUML: A
UMLBased Modeling Language for Model-Driven Security, In UML '02:
Proceedings of the 5th International Conference on The Unified Modeling
Language, London, UK, (pp. 426- 441).

[LDS05] Lock, R., Dobson, G., & Sommerville, I. (2005). Quality of Service
Requirement Specification using an Ontology, Conference Proceedings 1st
International Workshop on Service-Oriented Computing: Consequences for
Engineering Requirements (SOCCER'05), Paris, France.

[Lee96] Lee, M. (1996). Foundation of the WinWin Requirements Negotiation
System, Ph.D. Dissertation, USC, CA.

[Let02] Letelier, P. (2002). A Framework for Requirements Traceability in
UML-Based Projects, Proceeding of the 1st International Workshop on
Traceability in Emerging Forms of Software Engineering, Edinburgh, (pp.
30-41).

[LG05] Lee, S.W., & Gandhi, R.A. (2005). Ontology-based Active
Requirements Engineering Framework, In Proceeding of the 12th Asia-Pacific
Software Engineering Conference, (pp. 481- 490).

[LMGYA06] Lee, S. W., Muthurajan, D., Gandhi, R.A., Yavagal, D., & Ahn, G.
(2006). Building Decision Support Problem Domain Ontology From Natural
Language Requirements for Software Assurance, International Journal of
Software Engineering and Knowledge Engineering, 16(6), (pp. 851-884).

[LS05] Liebchen, G. A., & Shepperd, M. (2005). Software Productivity
Analysis of a Large Data Set and Issues of Confidentiality and Data Quality, In
Proceedings of the 11th IEEE international Software Metrics Symposium
(September 19 - 22, 2005), METRICS, IEEE Computer Society, Washington,
DC, 46.

[LT93] Leveson, L., & Turner, C. S. (1993). An Investigation of the Therac-25
Accidents, IEEE Computer, 26(7), (pp. 18-41).

[LW03] Leffingwell D., & Widrig, D. (2003). Managing Software
Requirements: A Unified Approach, The Addison-Wesley Object Technology
Series.

[LWHS01] Lokan, C., Wright, T., Hill, P. R., & Stringer, M. (2001).
Organizational Benchmarking Using the ISBSG Data Repository, IEEE
Software, 18(5), (pp. 26-32).

[Lyu96] Lyu, M.R. (1996). Handbook of Software Reliability Engineering,
McGraw-Hill.

[MA04] Mendes, O., & Abran, A. (2004). Software Engineering Ontology: A
Development Methodology, 9, Metrics News, (pp. 68-76).

208

[MAB02] Moreira, A., Araujo, J., & Brito I. (2002). Crosscutting Quality
Attributes for Requirements Engineering, In 14th International Conference
on Software Engineering and Knowledge Engineering 2002, Ischia, Italy,
(pp. 167-174)-

[MAHO00] Meli, R., Abran, A., Ho, V. T., & Oligny, S. (2000). On the
Applicability of COSMIC-FFP for Measuring Software Throughout its Life
Cycle, In Proceedings of the Escom-Scope.

[Maxog] Maxwell, K. (2009). The PROMISE Repository of Software
Engineering Databases, School of Information Technology and Engineering,
University of Ottawa, Canada, Available:
http://promise.site.uottawa.ca/SERepository.

[MBM94] Matson, J. E., Barret, B. E., & Mellichamp, J. M. (1994). Software
development cost estimation using Function Points, IEEE Transactions
Software Engineering, 20(4), (pp. 275-287).

[MRW77] McCall, J., Richards, P., Walters, G. (1977). Factors in Software
Quality, NTIS.

[Mcco6] McConnell, S. (2006). Software Estimation: Demystifying the Black
Art, Microsoft Press.

[MCN92] Mylopoulos, J., Chung, L., & Nixon, B. (1992). Representing and
Using Nonfunctional Requirements: A process Oriented Approach, IEEE
Transactions in Software Engineering, 18(6), (pp. 483-497).

[Mel97a] Meli, R. (1997). Early and extended Function Point: A new method
for Function Points estimation, In Proceedings of the IFPUG-Fall Conference,
15-19 September, Scottsdale, Arizona.

[Mel97b] Meli, R. (1997). Early Function Points: A new estimation method for
software projects, In Proceedings ofESCOM 97, Berlin, Germany.

[MERCEDES97] Mercedes A-Class: Mercedes: Wie sicher ist die AKlasse?.
(1997). German news magazine: Der Spiegel, ISSN 0038- 7452, October 27,
1997, (p.p. 120); English translation:
http://www.geocities.com/MotorCity/downs/9323/aclacap.htm, last visited
on February 11,2005.

[MFoo] Maxwell, K. D., & Forselius, P. (2000). Benchmarking Software-
Development Productivity, IEEE Software, 17(1), (pp. 80-88).

[MKII98] MKII. (1998). The United Kingdom Software Metrics Association:
Mkll Function Point Analysis Counting Practices Manual v. 1.3.1

[MP08] Magazinovic, A., & Pernstal, J. (2008). Any other cost estimation
inhibitors?, In Proceedings of the Second ACM-IEEE international
Symposium on Empirical Software Engineering and Measurement,
Kaiserslautern, Germany, ESEM '08. ACM, New York, NY, (pp. 233-242).

209

http://promise.site.uottawa.ca/SERepository
http://www.geocities.com/MotorCity/downs/9323/aclacap.htm

[MRG+04] Mousavi, M., Rusello, G., Ghaudron, M., Reniers, M., Basten, T.,
Corsaro, A., Shukla, S., Gupta, R., & Schmidt, D. (2004). ASpects + GAMMA =
AspectGAMMA: A Formal Framework for ASpect-Oriented Specification, In
Workshop on Aspect-Oriented Modeling with UML in Conjunction with 1st
International Conference on Aspect-Oriented Software Development,
Enshede, Netherlands.

[Mylo6] Mylopoulos, J., (2006). Goal-oriented Requirements Engineering,
Keynote speech at the 14th IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press.

[NAB04] Nagy, I., Aksit, M., & Bergmans, L. (2004). Composition Graphs: A
Foundation for Reasoning About Aspect-Oriented Composition, In 5th
Aspect-Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon,
Portugal.

[NCI03] National Cancer Institute (NCI) Thesaurus. (2003).
http://www.mindswap.0rg/2003/CancerOntology/

[Ncuoo] Ncube, C. (2000). A Requirements Engineering Method for COTS-
Based Systems Development, Ph.D. Thesis, City University London.

[NESMA97] NESMA. (1997). Definitions and Counting Guidelines for the
Application of Function Point Analysis, v.2.0.

[NI07] Niemela, E., & Immonen, A. (2007). Capturing Quality Requirements
of Product Family Architecture, Information and Software Technology,
49(11-12), (pp. 1107-1120).

[NLCoo] Neto, D., Leite, J., Cysneiros, L. (2000). Non-Functional
Requirements for Object-Oriented Modeling. In third Workshop on
Requirements Engineering, Rio de Janeiro, Brazil, (pp.109-125).

[NMoo] Noy, N., & Mc Guinness, D. (2000). Ontology Development 101: A
Guide to Creating Your First Ontology, Technical Report KSL-01-05, Stanford
University.

[OKC05] Ormandjieva, O., Kassab, M., Constantinides, C. (2005).
Measurement of Cohesion and Coupling in 00 Analysis Model Based on
Crosscutting Concerns. Proceedings of the International Workshop on
Software Measurements, Montreal, Quebec, Canada.

[OWL] W3C, Web Ontology Language (OWL),
http://www.w3.0rg/2004/OWL.

[PAMT01] Pastor, O., Abrahao, S. M., Molina, J. C., & Torres, I. (2001). A
FPA-like measure for object oriented systems from conceptual models, In
Proceedings of the nth International Workshop on Software Measurement
(IWSM'01), Montreal, Canada, Shaker Verlag, (pp. 51-69).

210

[Par92] Park, R. (1992). Software Size Measurement: A Framework for
Counting Source Lines of Code, Software Engineering Institute Technical
Report.

[PDKV02] Paech, B., Dutoit, A., Kerkow, D., & Von Knethen, A. (2002).
Functional requirements, non-functional requirements and architecture
specification cannot be separated - A position paper, 8th International
Workshop on Requirements Engineering: Foundation for Software Quality,
Essen, Germany.

[PKL04] Park, D., Kang, S., & Lee, J. (2004). Design Phase Analysis of
Software Performance Using Aspect Oriented Programming, In 5th Aspect-
Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon,
Portugal.

[PMBOK00] PMBOK. (2000). Project Management Body of Knowledge Guide
2000. See http://www.pmi.org/info/PP_PMBOKGuide2000Excerpts.pdf

[Pre97] Pressman, R.S. (1997). Software Engineering A Practitioner's
Approach, McGraw-Hill.

[PROTEGE] Protege, http://protege.stanford.edu/

[PWL05] Pfleeger, S. L., Wu, F., & Lewis, R. (2005). Software Cost
Estimation and Sizing Methods: Issues and Guidelines, RAND Corporation.

[RACER] Racer: Renamed Abox and Concept Expression Reasoner.
http: //www.sts.tu-harburg.de/-r.f.moeller/racer/

[RCJ02] Rosa, N. S., Cunha, P. R. F., & Justo, G. R. R. (2002). Process NFL: A
language for Describing Non-Functional Properties, Proceeding 35th HICSS,
IEEE Press, (pp.3676-3685).

[Reigo] Reifer, D. J. (1990). Asset-R: A function point sizing tool for scientific
and real-time systems, Journal System Software, 11 (3), (pp. 159-171).

[RJ01] Ramesh, B., & Jarke, M. (2001). Toward a Reference Model for
Requirements Traceability, IEEE Transactions on Software Engineering,
27(1), (pp. 58-93)-

[RMA03] Rashid, A., Moreira A., & Araujo, J. (2003). Modularisation and
Composition of Aspectual Requirements, In 2nd International Conference on
Aspect-Oriented, Boston, MA, (pp. 11-20).

[RR99] Robertson, S., & Robertson, J. (1999). Mastering the Requirements
Process, Addison-Wesley Professional.

[RSMA02] Rashid, A., Sawyer, P., Moreira, A., & Araujo. J. (2002). Early
Aspects: A model for Aspect Oriented Requirements Engineering, In IEEE
Joint International Conference on Requirements Engineering, IEEE
Computer Press, (pp. 199-202).

211

http://www.pmi.org/info/PP_PMBOKGuide2000Excerpts.pdf
http://protege.stanford.edu/
http://www.sts.tu-harburg.de/-r.f.moeller/racer/

[Samo6] Salem, A. M. (2006). Improving Software Quality through
Requirements Traceability Models, Proceedings of International Conference
on Computer Systems and Applications, (pp. 1159-1162).

[SBMB06] Sack, P. M. O. O., Bouneffa, M., Maweed, Y., & Basson, H. (2006).
On Building an Integrated and Generic Platform for Software Quality
Evaluation, 2nd IEEE International Conference on Information and
Communication technologies: From Theory to Applications, Umayyad
Palace, Damascus, Syria, (pp. 2872-2877).

[SC04] Supakkul, S., & Chung, L. (2004J. Integrating FRs and NFRs: A use
case and goal driven approach, In Proceedings of the 2nd International
Conference on Software Engineering Research, Management and
Applications (SERA), Los Angeles, CA, (pp. 30-37).

[SC05] Sicilia, MA., & Chadrado-Gallego, J.J. (2005). Linking Software
Engineering concepts to upper ontologies, Proceedings of the First Workshop
on Ontology, Conceptualizations and Epistemology for Software and
Systems Engineering, Alcala de Henares, Spain.

[SCREEN99] SCREEN. (1999). Glossary of EU SCREEN Project.
http: / / cordis.europa.eu/infowin/acts/ rus/projects/screen /
glossaiy/glossary.htm (visited 2007-07 05)

[SDM05] Seffah, A., Desmarais, M., & Metzger, M. (2005). Human-Centered
Software Engineering, Springer.

[SIEMENS04] Siemens Warns of Possible Hearing Damage in Some Cell
Phones. (2004).
http://www.consumeraffairs.com/newso4/siemens__mobile.html, last visited
on Aug, 4th, 2009.

[Sim8i] Simon, H. (1981). The sciences of the Artificial, Second Edition.
Cambridge, MA: The MIT Press.

[Skuo2] Skulmoski, G. (2002). Shifting Gears: the De Facto Global Standard
for Project Management. See http://www.pmi-
lakesh0re.0rg/present_20020311_Shifting_Gears.ppt

[SOKH09] Shaban-Nejad, A., Ormandjieva, O., Kassab, M., & Haarslev, V.
(2009). Managing Requirement Volatility in an Ontology-Driven Clinical
Laboratory Information Management System (LIMS) Using Category Theory,
The International Journal ofTelemedicine and Applications, Volume 2009.

[STANDISH09] Standish Group. (2009). The CHAOS Report, April 23, 2009,
Boston.

[Steoi] Stensrud, E. (2001). Alternative Approaches to Effort Prediction of
ERP projects, Journal of Information and Software Technology, 43 (7), (pp.
413-423)-

212

http://www.consumeraffairs.com/newso4/siemens__mobile.html

[STW03] Shanks, G., Tansley, E., & Weber, R. (2003). Using Ontology to
Validate Conceptual Models, Communication of the ACM, 46(10), (p.p. 85 -
98).

[SURVEYi] A Survey of Non-Functional Requirements in Software
Development Process: http://lacl.univ-paris12.fr/Rapports/TR/TR-LACL-
2008-7.pdf

[SWRL]: SWRL: A Semantic Web Rule Language Combining OWL and
RuleML, http://www.w3.0rg/Submissi0n/SWRL/

[Sym88] Symons, C. (1988). Function Point analysis: Difficulties and
improvements, IEEE Transactions Software Engineering, 14(1), (pp. 2-11).

[TA05] Tyree, J., & Akerman, A. (2005). Architecture Decisions: Demystifying
Architecture, IEEE Software, 22(2), (pp.19-27).

[TBB04] Tessier, F., Badri, L., & Badri, M. (2004). Towards a Formal
Detection of Semantic Conflicts Between Aspects: A Model Based Approach.
In 5th ASpect-Oriented Modeling Workshop in Conjunction with UML 2004,
Lisbon, Portugal.

[TD90] Thayer, R.H., & Dorfman, M. (1990). Standards, Guidelines and
Examples on System and Software Requirements Engineering, IEEE
Computer Society (New York).

[TEMPLATE09] Scenario Plus, Qualities and Constraints, or Non Functional
Requirements Template. (2009).
http://www.scenarioplus.org.uk/download_nfrs.html

[Teo99] Teologlou, G. (1999). Measuring 00 Software with Predictive Object
Points, Shaker Publications, ISBN 90-423-0075-2.

[UKSMA02] UKSMA. (2002). Estimating with Mark II,v.i.3.i., ISO/IEC
2096812002(E), www.uksma.co.uk

[UW02] Ullman, J., & Widom, J. (2002). Database Systems: The Complete
Book, Prentice Hall.

[WADD03] Wille, C., Abran, A., Desharnais, J.M., & Dumke, R.R. (2003). The
quality concepts and subconcepts in SWEBOK: An ontology challenge, In
proceeding Of the 2003 International Workshop on Software Measurement
(IWSM), (pp. 113-130).

[WM92] Whitmire, S. (1992). 3D Function Points: Scientific and real-time
extensions to Function Points, In Proceedings of the Pacific Northwest
Software Quality Conference.

[Whi97] Whitmire, S. (1997). Object Oriented Design Measurement, John
Wiley & Sons.

213

http://lacl.univ-paris12.fr/Rapports/TR/TR-LACL-
http://www.scenarioplus.org.uk/download_nfrs.html
http://www.uksma.co.uk

[Wieoo] Wieringa, R. (2000). The Declarative Problem Frame: Designing
Systems that Create and Use Norms, Proceeding Of the 10th IEEE
International Workshop on Software Specification and Design, IEEE
Computer Society Press, (pp. 75-85).

[Wie03] Wiegers, K. (2003). Software Requirements, 2nd edition, Microsoft
Press.

[WIKIPEDIA-NFR] Wikipedia: Non-Functional Requirements:
http://en.wikipedia.org/wiki/Non-functional_requirements (visited 2007-07-
05).

[WIKIPEDIA-RA] Wikipedia: Requirements Analysis:
http://en.wikipedia.org /wiki/Requirements_analysis (visited 2007-07-05)

[WRHRWoo] Wohlin, C., Runeson, P., Host, M., Regnell, B., & Wesslen, A.
(2000). Experimentation in Software Engineering, Springer.

[WSZA06] Winter, V., Siy, H., Zand, M., & Aryal, P. (2006). Early Aspects
Workshop at AOSD'06, Bonn, Germany.

[WW03] Weber, M., & Wesbrot, J. (2003). Requirements Engineering in
Automotive Development: Experiences and Challenges, IEEE Software, 20(1),
(pp.16-24).

[WZR07] Witte, R., Zhang, Y., & Rilling, J., (2007). Empowering Software
Maintainers with Semantic Web Technologies, In Proceeding of the 4th
European Semantic Web Conference, Springer, (pp. 37-52).

[XQUERY] W3C XML Query (XQuery): http://www.w3.0rg/XML/Query/

[XZRL05] Xu, L., Ziv, H., Richardson, D., & Liu, Z. (2005). Towards modeling
nonfunctional requirements in software architecture, In Proceedings of
Aspect-Oriented Software Design, Workshop on Aspect-Oriented
Requirements Engineering and Architecture Design, Chicago, Illinois.

[YHLWB08] Yang, Y., He, M., Li, M., Wang, Q., & Boehm, B. (2008). Phase
distribution of software development effort, In Proceedings of the Second
ACM-IEEE international Symposium on Empirical Software Engineering
and Measurement (Kaiserslautern, Germany, October 09 - 10, 2008), ESEM
'08, ACM, New York, NY, (pp. 61-69).

[ZG07] Zhu, L., & Gorton, I., (2007). UML Profiles for Design Decisions and
Non-Functional Requirements, In 2nd International Workshop on SHAring
and Reusing architectural Knowledge Rational and Design Intent, (pp. 8-
15)-

214

http://en.wikipedia.org/wiki/Non-functional_requirements
http://en.wikipedia.org

Appendix A:

Table A- l : Quality Requirements Hierarchy.

Quality Definition Parent Quality

1 Accessibility The degree to which a Testability

product is accessible by as [BBL76].

many people as possible. Efficiency [BBL76].

Utility [Firo3].

Usability [RR99].

2 Accountability Obligation imposed by law, Testability

or lawful order, or [BBL76].

regulation, on an entity for Efficiency [BBL76].

storage of accurate property

data.

3 Accuracy The capability of the Functionality

software product to provide quality

the right or agreed results or [ISO912601].

effects with the needed Integrity

degree of precision. [CNYMoo].

Reliability

[BBL76].

Correctness

[Firo3],

4 Adaptability The ease with which Portability

215

conformance to standards

can be checked.

[ISO912601].

5 Analyzability The quality that

characterizes the ability to

identify the root cause of a

failure within the software.

Maintainability

[ISO912601].

6 Attractiveness The capability of the

software product to be

attractive to the user.

Usability [BTV06].

7 Augmentability Quality that indicates the

ability to make the software

greater, as in size or

quantity.

Structuredness

[BBL76].

8 Availability Quality that refers to the

frequency of system outages

that lead to unavailability of

the system usage by the

users.

Security

[CNYMoo].

Dependability

[Fir03]-

9 BootStartTime The time for executing the

operations required for

restarting up the software.

Time behavior

[TEMPLATE09].

io Capacity The maximum production Behavior quality

216

possible, (e.g.: the amount

of information (in bytes)

that can be stored on a disk

drive.

[TEMPLATE09].

11 Changeability The quality that

characterizes the amount of

effort to change a system.

Maintainability

[ISO912601].

12 Co-existence The ability of an application

to share an environment

with other applications

without experiencing or

causing negative effects.

Portability

[ISO912601].

13 Communicativeness The trait of being

communicative.

Testability

[BBL76].

14 Completeness The degree to which full

implementation of required

function has been achieved.

Integrity

[CNYMoo].

Reliability

[BBL76].

15 Compliance The degree to which the

software is complied with

certain specifications and

guidelines.

Functionality

quality

requirement

[ISO912601].

i6 Conciseness The degree to which a Understandability

217

software system or

component has no excessive

information present.

[BBL76].

17 Confidentiality The quality that refers to the

access to the data. Only

authorized persons can get

an access to the data in a

system.

Security

[CNYMoo],

i8 Configurability In Communications or

computer systems, a

configuration is an

arrangement of functional

units according to their

nature, number, and chief.

Utility [Firo3].

19 Consistency The use of uniform design

and documentation

techniques throughout the

software development

project.

Accuracy

[CNYMoo].

Reliability

[BBL76].

Understandability

[BBL76].

20 Correct-ability A developer-oriented quality

requirement specifying the

part of maintainability that

measures the ease with

Maintainability

[RR99].

218

which defects shall be able

to be fixed.

21 Correctness The degree to which

software performs its

desired function.

Quality

requirement

[Firo3].

22 Currency The property of belonging to

the present time.

Correctness

[Fir03].

23 Dependability The ability to deliver service

that, can justifiably be

trusted by users.

Quality

requirement

[Firo3],

24 Device Efficiency The degree to which the

device is efficient.

Efficiency quality

[BBL76].

25 Devicelndependence The process of making the

software accessible by any

device under any

circumstance and by all

people.

Portability

[BBL76].

26 Effectiveness The degree to which

program or system

objectives are being

achieved.

Quality in use

[ISO912601].

27 Efficiency The amount of computing

resources and code required

by a program to perform its

External and

internal quality

characteristic

219

function. [ISO912601].

28 Environmental

Tolerance

The ability of a system to

work in a variety of

conditions and locales.

Robustness

[Firo3].

29 Error Tolerance The ability of a system or

component to continue

normal operation despite

the presence of erroneous

inputs.

Robustness

[Fir03l.

30 Extensibility System design principle

where the implementation

takes into consideration

future growth.

Maintainability

[RR99J.

31 External

Confidentiality

This is a special case of

Confidentiality with focus

on the external aspect of the

product.

Confidentiality

[CNYMoo].

32 External Consistency This is a special case of

Consistency with focus on

the external aspect of the

product.

Consistency

[CNYMoo].

33 Failure Tolerance This is a special case of

Fault tolerance in which the

error cause the system to

Robustness

[Firo3].

220

fail.

34 FaultTolerance The property that enables a

system to continue

operating properly in the

event of the failure of (or

one or more faults within)

some of its components.

Reliability

[ISO912601].

35 Functionality A set of attributes that bear

on the existence of a set of

functions and their specified

properties.

External and

internal quality

[ISO912601].

36 Installability The quality that

Characterizes the effort

required to install the

software.

Portability

[ISO912601].

Utility [Firo3].

37 Integrity The ability of a system to

withstand attacks to its

security.

Security

[CNYMoo],

Reliability

[BBL76].

38 Internal

Confidentiality

This is a special case of

Confidentiality with focus

on the internal aspect of the

product.

Confidentiality

[CNYMoo].

39 Internal Consistency This is a special case of Consistency

221

Consistency with focus on

the internal aspect of the

product.

[CNYMoo],

40 Internationalization Internationalization and

localization are means of

adapting computer software

to different languages and

regional differences.

Utility [Firo3].

41 Interoperability The ability of two or more

systems or components to

exchange information and

to use the information that

has been exchanged.

Functionality

quality

requirement

[ISO912601].

42 Learn ability The capability of a software

product to enable the user

to learn how to use it.

Usability

[ISO912601] and

[RR99]

43 Legibility The quality of being

readable or distinguishable

by the eye.

Understandability

[TEMPLATE09].

44 Main Memory The quality that describes

the amount of usage of Main

Memory by the software.

Space quality

[CNYMoo],

45 Maintainability The ability to change the

system to deal with new

technology or to fix defects.

External and

internal quality

[ISO912601].

222

46 Maturity This quality characteristic

concerns frequency of

failure of the software.

Reliability

[ISO912601].

47 OneToOneAccuracy This is a special case of

Accuracy.

Accuracy

[CNYMoo].

48 Operability The ease of operation of a

program.

Usability

[ISO912601].

Utility [Firo3].

49 Performance The responsiveness of the

system—the time required

to respond to stimuli

(events) or the number of

events processed in some

interval of time.

Efficiency

[TEMPLATE09].

50 Personalization The quality refers to the

ability of the software to be

adapted to the needs of an

individual.

Utility [Firo3].

51 Portability The ability of the system to

run under different

computing environments.

External and

internal quality

[ISO912601].

52 Precision Precision of a numerical

quantity is a measure of the

detail in which the quantity

is expressed.

Correctness

[Fir03].

223

53 Productivity The unit of product

produced per unit of input.

Quality in use

[ISO912601].

54 PropertyAccuracy This is a special case of

Accuracy.

Accuracy

[CNYMoo],

55 Recoverability Ability to bring back a failed

system to full operation,

including data and network

connections.

Reliability

[ISO912601].

56 Reliability The ability of a system or

component to perform its

required functions under

stated conditions for a

specified period of time.

External and

internal quality

[ISO912601].

Dependability

[Firo3l-

57 Replaceability The capability of the

software product to be used

in place of another specified

software product for the

same purpose in the same

environment.

Portability

[ISO912601].

58 ResourceBehavior The quality which

characterizes resources

used, i.e. memory, CPU,

disk and network usage.

Efficiency behavior

[ISO912601].

59 ResponseTime Reaction time: the time that Time behavior

224

elapses between a stimulus

and the response to it.

[TEMPLATE09]

and [CNYMoo].

6o Robustness The degree to which a

system or component can

function correctly in the

presence of invalid inputs or

stressful environmental

conditions.

Dependability

[Fir03],

61 Safety No consensus in the

system's engineering about

what is meant by the term

"safety requirements". The

informal definition: safety

requirements are the "shall

not" requirements which

exclude situations from the

possible solution of the

system.

Quality in use

[ISO912601].

62 Satisfaction Act of fulfilling a desire or

need or appetite; "the

satisfaction of their demand

for better services.

Quality in use

[ISO912601].

63 Schedualability Refers to the way processes

are assigned to run on the

available resources. This

Performance

[Firo3]-

225

assignment is carried out by

software known as a

scheduler.

6 4 Secondary Storage The quality describes the

amount of usage of

secondary storage by the

software or component.

Space [CNYMoo].

65 Security A measure of the system's

ability to resist

unauthorized attempts at

usage and denial of service

while still providing its

services to legitimate users.

Functionality

quality

[ISO912601].

Dependability

quality [Fir03].

66 SelfContainedness The degree to which the

source code provides

meaningful documentation.

Reliability

[BBL76].

Portability

[BBL76].

6 7 SelfDescriptivness An adjective meaning "It

describes itself.

Testability

[BBL76].

68 Space The quality describes the

amount of usage of space by

the software or component.

Efficiency

[TEMPLATE09].

Performance

[CNYMoo].

69 Stability The quality that

characterizes the sensitivity

Maintainability

[ISO912601].

226

to change of a given system

that is the negative impact

that may be caused by

system changes.

70 Structuredness The degree to which a

system or component

possesses a definite pattern

of organization of its

interdependent parts

Changeability

[BBL76].

Understandability

[BBL76].

71 Subset-ability The ability to support the

production of a subset of the

system.

Utility [Firo3].

72 Suitability The appropriateness (to

specification) of the

functions of the software.

Functionality

quality

[ISO912601].

73 Survivability The degree to which

essential functions are still

available even though some

part of the system is down.

Dependability

[Firo3].

74 Testability The ability to discover faults

by well-defined test cases.

Maintainability

[ISO912601].

75 Throughput Output relative to input; the

amount passing through a

system from input to output

(especially of a computer

Time behavior

quality

[TEMPLATE09].

227

program over a period of

time).

76 Time Accuracy This is a special case of

Accuracy quality.

Accuracy to

[CNYMoo],

77 Time Behavior The quality characterizes

response times for a given

throughput, i.e. transaction

rate.

Efficiency

[ISO912601].

Performance

[CNYMoo],

78 Transportability The ability of software and

courseware to be developed

on one computer, and then

used on another one.

Utility [Fir03],

79 Type and Position of

Device

The quality related to type

and position of device used

as a resource for the

software.

Resource behavior

[TEMPLATE09].

8o Understandability The ability to understand

the software readily, in

order to change/fix it.

Usability

[ISO912601].

8i Usability The ease with which a user

can learn to operate,

prepare inputs for, and

interpret outputs of a

system or component.

External and

internal quality

[ISO912601].

Utility [Fir03],

228

82 UsageTime The time that is required for

using the software

functionality.

Time behavior

[TEMPLATE09] •

83 Value Accuracy This is a special case of

Accuracy.

Accuracy

[CNYMoo].

8 4 Variability The quality that refers to

how well the architecture

can be expanded or

modified to produce new

architectures that differ in

specific, preplanned ways.

Utility [Firo3].

85 Withdraw-ability The quality that refers to the

ability to discontinue the

usage of the software.

The degree of ability to

remove from consideration

or participation.

Utility [Firo3].

86 Work Load

Distribution

The quality of distribution

of the quantity of processing

among available resources.

Resource behavior

[TEMPLATE09].

87 Workload The quantity of processing

to include the machine

cycles and the disk I/Os.

Time behavior

[TEMPLATE09].

229

