Formal and Quantitative Approach to Non-Functional Requirements Modeling

and Assessment in Software Engineering

Mohamad Kassab

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
at Concordia University
Montreal, Quebec, Canada

September 2009

©Mohamad Kassab, 2009

i+l

Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque et
Archives Canada

Direction du
Patrimoine de 'édition

395, rue Wellington
Ottawa ON K1A ON4

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

Canada
Your file Votre référence
ISBN: 978-0-494-63384-7
Our file Notre référence
ISBN: 978-0-494-63384-7
AVIS:

L’auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d’auteur
et des droits moraux qui protége cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thése.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

ABSTRACT

Formal and Quantitative Approach to Non-Functional Requirements Modeling

and Assessment in Software Engineering
- Mohamad Kassab, Ph.D.
Concordia University, 2009
In the software market place, in which functionally equivalent products compete
for the same customer, Non Functional Requirements (NFRs) become more
important in distinguishing between the competing products. However, in
practice, NFRs receive little attention relative to Functional Requirements (FRs).
This is mainly because of the nature of these requirements which poses a
challenge when taking the choice of treating them earlier in the software
development. NFRs are subjective, relative and they become scattered among
multiple modules when they are mapped from the requirements domain to the
solution space. Furthermore, NFRs can often interact, in the sense that attempts
to achieve one NFR can help or hinder the achievement of other NFRs at
particular software functionality. Such an interaction creates an extensive
network of interdependencies and tradeoffs among NFRs which is not easy to
trace or estimate. |
This thesis contributes towards achieving the goal of managing the attainable
scope and the changes of NFRs. The thesis proposes and empirically evaluates a
formal and quantitative aﬁproach to modeling and assessing NFRs. Central to

such an approach is the implementation of the proposed NFRs Ontology for

in

capturing and structuring the knowledge on the software requirements (FRs and
NFRs), their refinements, and their interdependeﬁcies.

In this thesis, we also propose a change management mechanism for tracing the
impact of NFRs on the other constructs in the ontology and vice-versa. We
provide a traceability mechanism using Datalog expressions to implement
queries on the relational model-based representation for the ontology. An
alternative implementation view using XML and XQuery is provided as well.

In addition, we propose a novel approach for the early requirements-based effort
estimation, based on NFRs Ontology. The effort estimation approach
complémentarily uses one standard functional size measurement model, namely

COSMIC, and a linear regression technique.

CONCORDIA UNIVERSITY

School of Graduate Studies
This is to certify that the thesis prepared
By: Mohamad Kassab
Entitled: Formal and Quantitative Approach to Non-Functional Requirement
Modeling and Assessment in Software Engineering
and submitted in ‘partia] fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science and Software Engineering)

complies with the regulations of the University and meets the accepted standards
with respect to originality and quality.
Signed by the final examining committee:

Chair

External Examiner

Dr. Hakim Lounis

Examiner
Dr. Peter Grogono

Examiner
Dr. Anjali Agarwal

Examiner

Dr. Rene Witte

Thesis Supervisor

Dr. Olga Ormandjieva

Thesis Supervisor

Dr. Maya Daneva

Approved by

Chair of Department or Graduate Program Director

20

Dean of Faculty of Engineering and Computer Science

Acknowledgments

I would like to thank my two supervisors for theii' astute, invaluable support,
insightful comments, positive criticism, and friendship: Dr. Olga Ormandjieva
from the department of Computer Science at Concordia University in Montreal
and Dr. Maya Daneva from the department of Information Systems at University

6f Twente in Enschede, The Netheﬂands’.

I would like to thank all my colleagues in the Computer Science and Software
Engineering department at Concordia University, as well as the staff of the

department for their commitment to further education.

On a personal note, I acknowledge that it is impossible for me to express in words
alone the full extent of my appreciation and gratitude owed to my family for their

unconditional love and support.

Table of Contents

List of Figures x
List of Tables xiii
CHAPTER I: INTRODUCTION. ... ceeerrceniirentsesensssssssssesscnsnssssssssrsssesssssessnas 1
1.1 Motivation 1
1.2 Problem Statement _ 5
1.3 Research Goals 8
1.4 Research Outline 8
1.5 Major Contributions 12
1.6 Outline of the Dissertation 13

CHAPTER II: RELATED WORK ON EARLY TREATMENT METHODS

OF NFRS IN SOFTWARE ENGINEERING........cceterreeemsirimrecennsssarssnemsnsenens 14
2.1 Introduction 14
2.2 NFR Framework 15
2.3 Inéorporating NFRs with UML Models 19
2.4 Treating NFRs with Aspect Orientation _ 24
2.5 Discussion 33
CHAPTER III: RESEARCH METHODOLOGYccccoitimeeeeteeenrceeceeenninereene 36
3.1 Introduction 36
3.2 Methodology 36
3.2.1 Phase 1: Building a Formal Model for NFRs and their Relations..........cccocoeeverieecerereereceence. 38
3.2.2 Phase 2: Changes Management Mechanism for Tracing Impact of NFRs on Other
-Constructs in the Ontology and VICE VEISa..........c.ocvvmeveiveeeiieceeeeeeeececte e eee et eaeae s 39
3.2.3 Phase 3: NFRs Effort ESHIMAHONccooveviieeeiieiieeteecceccecee et ennes 40
3.3 Case Studies 41
3.3.1 NOKIA Mobile Email Application Systemccooveveerrinecnnns e e eeeranseses et s s en s nnes 4]
3.3.2 IEEE MODIEEA WEDSTLE ... et eeee e ee st en st e e eee s 42
3233 SAP PIOJECE. ...ttt ettt ettt e en et e et eneae b snaeat e eates s enenebenen 43
3.4 Applicability : 44

vi

CHAPTER IV: AN ONTOLOGY BASED APPROACH TO NON-

FUNCTIONAL REQUIREMENTS CONCEPTUALIZATION 45
4.1 Introduction 45
4.2 Background 48
4.2.1 Ontologies in SOftware ENGINEETING.......ccooiuvrveeeeeeccirecnirice e cemstcssasstsessessssesssanessesons 48
B.2.2 OWLioee et et ettt ettt et et e eR bRt s s s 49
4.3 Development Process of a Common Foundation 52
4.3.1 NFRS Ontology REGUITEIMENLS «...........oveecrreirecereesseensesseseseassesseseessessasassaesssseassssacsesesssessssens 53
4-3.2 NFRS ONtOlOZY DESIZN ...ttt ssacsenenenssssassssssasseus s nens 55
4.3.3 Deductive Approach............cccooennnn..n.. teaceesreesesessnssarenteseteassesans S eeereeaeieteesetenennna s nees 57
4.3.4 NFRs Ontology Implementation............cocccveeeeueecresincnnrrreseessessesenssscsssssrsssensassssscssssses 30
4.4 Development of Common NFRs Terminology _ 58
4.4 1 INTHALEEIIMSottt e sa e e sttt s sttt tt b e s e mens 59
4.5 NFRs Cohceptual Model 64
4-5.1 Intermodel DePendency VIEWcoveeoieiceeccresecnt e esssesssssssassasssisessssssssssssees 67
4.5.1.1 Association to FR (or derived elements)................cccccoererrenriecvnrcreneeeresensenes 69
4.5.1.2 ASSOCIAION 10 PIOCESSooriiirciicirrnricectnece e e s ssene s st s 71
4.5-1.3 ASSOCIAHION 10 ProduUCE ...t 71
4.5.1.4 ASSOCIAHION 1O TESOUTCEocoirive ettt esnesessessenssesetsesssnane 71
4.5.2 Intramodel dependency VIEW...........c.c.curuccireeeiereencertesecis e cesiesessess s ssnsssssssesssnsssasess 72
4.5.2.1 NFRstype.........c.............. eeteeresteetestereiretesestestabeatebaas e sees e aee e s Rasas s nstesereeasan e e ansetenn 72
4.5-2.1.1 QUality RequUIrementsrnneeeeceirieceeeereesstnsassecsesssaens 74
4.5-2.1.2 Design Implementation Constrainteeeevereeesiecmcnnes 79
4.5:2.1.3 Economic CONSIPAINL......................uoooeeeeeeeeeeereeeeeeeeeeseestsasesnssessasansesene 80
 4.5.2.1.4 0peraling CONSITAINL ... eeeeerrreeeenettecseirirsssesesssssssssssessessens 80
4.5.2.1.5 Political / Culbural Constraintceveeeeereeeeeeeserrevreseesnsnreeene 80
4:5:2.2 DECOMPOSIHON ..ottt et eas st es 80
4.5.2.3 OperationaliZation ...t 82
4:5-2.4 INEETACKIVILY ...ttt s et s et tsess et et 84
4.5.3 NFRS MEASUTEMENE VIEW......ccooviieeieicrenirieieiireeeaereresetesess e esessesesessstsoemssensasasesesesnssusssnsssnes 88
4.6 Evaluation 91
4.7 Related Work 99
CHAPTER V: A TRACEABILITY MECHANISM FOR CHANGE
MANAGEMENT OF NON-FUNCTIONAL REQUIREMENTS................ 106
5.1 Introduction 106
5.2 Related work 109
5.3 Relational data model for tracing requirements 111
5.3.1 Impact of Changes to Functional Models on NFRS........ccoiccrriicenminencenicniceeernecanas 114
5.3.2 Impact of Changes to Nonfunctional Models on Functional Models...........cccccocoerene. 115
5.3.3 Impact of Changes to NFRs on Lower-/Higher-Level NFRs........cc.cccccoocmmnnncccccne 116
5.3.4 Impact of Changes on Interacting AsSOCIAtIONSccoceeemimemecercmeceieeeeececcs et 117

vii

5.4 Alternative Implementation: XML-Based representation and XQuery

implementation 117
5.5 Traceability Mechanism 121
5.6 Evaluation and Demonstration of the Improvements due to Traceability Queries
122
5.7 Conclusion ' ‘ 127
CHAPTER VI: SOFTWARE EFFORT ESTIMATION BASED ON
FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS................ 128
6.1 Introduction 128
6.2 Software Size Estimation) 131
6.2.1 ASPECLS OF SIZEeoveiee et et as sttt s st et et e e 131
6.2.0. 3 LeNGUN .ottt st s et be e a e ns s b st st ene et 132
6.21.1. 1 LenGUR OfCOde.....................nnoeeeeeeeeeeeeeeeeereveeseeestesesesnssssasesnssssnssaneanes 133
6.2.1.1.2 Length of Specifications and Design. wvesrerssessrensesarresesaresenras ... 133
6.2.1.2 COMPLEXALY ..ottt eee e ees e eaeessses e s st bbbt ee s snsssasessansionsns 133
6.2.1.2.1 Problem Complexity.................oorneeriecnenene reeessneat b s s s e n et arens 133
'6.2.1.2.2 Algorithmic Complexity ... eeeoeeeeeeereeceeeece e seneraeessenees 134
6.2.1.3 FUNCHONALILYcooeiioeeeeeeree e s s s s s s s esssrssses e s e sensssssnen 135
6.2.2 The COSMIC METhOdooooieiceeeceeeeeee et r e sass s sae s s s e 137
6.3 The Relationship between Functional Size and Effort 140
6.3.1 Study by Maxwell and FOrSelUscoovovieiiuirereeeeeeeeeee et sens s ss e neene 141
6.3.2 Study by Angelis, Stamelos and MOTISIOcc.ovrumieeieice ettt eeene e eeseeeens 142
6.3.3 Study by Liebchen and Shepperd..............oocoiioeoiee ettt 143
6.3.4 Summary Of Other STAIES..........co.ooiovieeieeeeeeeeeeeetet ettt s e ss e en s e e re s enen 144
6.3.5 Factors in the Use Case Points estimation method (UCP)........ccooveeoeeiceecccceeeeceeen 145
6.3.6 Cost Drivers It COCOMO 81c..ouocviiiieiiceneceneevceesseeess e sssessessesesssesssna e sesssesassessases 146
6.3.7 Cost drivers in COCOMOILooo oottt cee et e e essese s sseans s e anebaeesaesenssensees 148
6.3.8 DISCUSSIONcveeieteeeeetee et eeeeae e tsee et e eseesesessseseneesbesessebeasessassasessessssessansransessasnnrss 149
6.4 Non-Functional Requirements Size Measurement Method (NFSM) with COSMIC
: 151
6.5 Measuring the effort of NFRs 159
6.5.1 Estimation Models: Background ..ot r et ere s 161
6.5.2 The solution proposal: Effort estimationmodelcoocooiiiiieeeeeeece e 166
6.6 The Case Study 172
6.6 Conclusion 179
CHAPTER VII: CONCLUSION AND FUTUREWORKcccneurenirreneee 181
~.1 Conclusion ; 181
7.2 Future Work on Characterizing NFRs 188
=.3 Future Work on NFRs Traceability : 195

viii

References 197

APPENDIX Acecesesiectsnsiiiersnnssss e s s s s nsscostasssssssasssssnnsesnssssasssssssnnnse 215

List of Figures

Figure 1-1: Basili et al. Frameworkcccccovimniiiinice 9

Figure 2-1: Softgoal Interdependency Graph for Performance and Security in A

Credit Card SYSEeIMoooiiiiiieiie ettt s st 17
Figure 2-2: NFR Association Points in a Use-Case Diagram . s e 21
Figure 2-3: Summary to Approaches Incorporating NFRs“ into UML. 24
Figure 2-4: Conceptual Design Model With One Architecture.c........... 31
Figure 2-5: Proposed Model to Integrate NFRs Early in The Software

DeVElOPIMENT PTOCESS. ...cev. evieeeieeicrieeeiie et ee ettt e e n e 33
Figure 3-1: Thesie MethodolOgycovvieiiieeiee e 37
Figure 3-2: Mobile Email Soltionccccooiiiiiiicie e 42
Figure 4-1: A Snapshot of The NFRs Ontology in Protégé.cccceveriencn. 52
Figure 4-2: Relation Between Taxonomy and Glossary...........cccecevviniiiniinnnn. 56
Figure 4-3: Common Terminelegy Derived from bifferent Perspeetives. 59
Figure: 4-4: NFRS TaXONOMY......ceiviiriiieriiiieceeieeie et 66
Figure 4-5: NFRs Intermodel Dependency VieW.. ..o i 68
Figure 4-6: NFRs Intramodel Dependency View..........cccocoonvivinoininniicinnencnes, 73
Figure: 4-7 Quality in The Software Life Cycle.c..ccoeeeveeiicreeien, rreeee 75
Figure: 4-8 Quality Requirements Taxonomy. ... 77
Figure: 4-9 (A): Asserted Model for Accuracy Quality........ccooveeeiiienrcinniiinnnne 78
Figure: 4-9 (B): Inferred Model for Accuracy Qualitycccoccovveeiniiicnicnneen. 78

Figure 4-10: Design/Implementation Taxonomy........c..cccoeeerrerecrmrcmnneninnnnee. 79
Figure: 4-11: Implicit Relations Among NFRs and Association Points. 82
Figure: 4-12: Inferred Taxonomy for Operationalizations.c.cccceveeeniieennnen. 83

Figure 4-13: Implicit Relations Ambng NFRs, Operationalizations and

ASSOCIAIONPOINES.eoviiiiieiieer et e 83
Figure: 4-14: Conflicts Between Two NFRS voeooeeoeeoeoeeoeeeeoeeeeeoe oo w......88
Figure: 4-15: NFR Measurement VIEWcccoiiiriiiniinn et 90
Figure 4-16: Instantiated NFRs Ontology Against IEEE Montreal Website Case

] 1§ L | PRSP 94
Figure 4-17: Steps Towards Instantiating' NFRs Ontology........ccceveeurreecreennennene 96

Figure 4-18: Snapshot from The NFRs Onto]ogy-Individuals Tab- (Screen 1). ..97
Figure 4-19: Snapshot from The NFRs Ontology-Individuals Tab- (Screen 2)...98
Figure 4-20: Snapshot from The NFRs Ontology-lhdividuals Tab- (Screen 3)...98

Figure 5-1: Schematic Representation Of Some Concepts and Relations Presented
in Figures 4-5 and 4-6.cooooumiiiiiiiiieeece et 113

Figure 5-2: Illustration Of FR and NFR Relations Through The Email System. 114

Figure 5- 3: DTD Structure Representation for NFRSs.ccocovevinnveirnccnnne. 118
. Figure 5-4: DTD Structure Representation for FR. e, 118
Figure 5-5: DTD Structure Representation fc;r NFR Decomposition................. 119
Figure 5-6: NFR-Tracing ActiVIties.ccccooemriireiciiiiiieee et 121

Figure 5-7: Number of Executed Test Cases: Dynamically Generated Test Cases
vs. Fixed Set of Sanityoooiinii e e 126

Figure 5-8: Number of Defects: Dynamically Generated Test Cases vs. Fixed Set
OF SANTEY ... oo 126

xi

Figure 6-1: The Cone Of Uncertainty Based on Common Project Milestones. ... 129

Figure 6-2: Generic Flow of Data Attributes Through Software from A Functional

PeISPECHIVE. ...ttt e 139
Figure 6-3: General Procedure for Measuring Software Size With The COSMIC
Method — ISO 19761oeeieeiiiieie ettt eeeeeeeeee e et e e e e e e ebese e e e e s rnnesessemeseenens 140
Figure 6-4: A View of The NFRs Ontology Instantiated in The Context Of The
COSMIC Method.........ccccomnriinen. e s s 153
Figure 6-5: llustration of FR and NFR Relations Through The Mobile Email
System Case StUAY.ccceeerrerveriene ettt e e 154
Figure 6-6: Production Model With Fixed Cost and Variable Costs. 162
Figure 6-7: Production Model With No Fixed Cost.cccoceniiiiiiinninnnnn. 164

Figure 6-8: Visual Identification Of Projects With a Smaller and Higher Unit
0T OO OTRTRS — 166

Figure 6-9: Mapping of the NFRs Concepts to the Steps of Measuring the

Figure 6-10: A Regression Model for Functional Requirements from Previously
Completed Projects: Requirement Level. ..o 175

Figure 6-11: A Regression Model for Previously Completed Projects: Project Level

... U I & £
Figure 7-1: Conflict Resolution Through Added Dimensions.ccccceeveeneeee. 190
Figure 7-2: Conflict Situation in The Problem Space View Model. 191
Figure 7-3: An Example Of Cost Conflict Resolution Thro;Jgh an Added

DIMENSION. «.eeiiiiiiiiiiiiiiie ettt s s e e s caare e na193

it

List of Tables

Table 4-1: Approaches to Ontology Design..........ccccccereiiiciivicciniicne e, 57
Table 4-2: Definitions Of The Term ‘Non-Functional Requirement(S)'. 61
Table 4-3: NFR Operationalizations and Candidate Minor Contradictions......... 87
Table 4-4: Summary Of Numbers Of Individuals Instantiated Of NFRs

OnEOOZY ..o ee et e e 9
3 _

Table 4-5: Comparison Between Several Broad Quality Taxonomies.............. 105

Table 5-1: Collected Results from Test Executions Of Nokia Mobile Email

F2N 7o) 1107 Ua (o) W OO SRR 124
Table 6-1: Concepts, FSM Methods and Description...........cccovevieiiinniiennnns 136
Table 6-2: Factors Affecting Prod;lctivity By Pekka Forselius.cccocoerennen. 142
Table 6-3: Factors Affecting. Productivity By L. Angelis. e 143
Table 6-4: Factors Affécting Productivity By Martin Sheppérd. 143
Table 6-5: Factors Affecting.Phase Distribution for Software Development Eff(;IZ.5
Table 6-6: Technical Comﬁlexity Factors in UCP................. e 146
Table 6-7: Environméntai Complexity Factors in UCP.......ccccoecviiiniiininnen . 146
Table 6-8: Cost Drivers in COCOMO 81.......cccooiieicirinie e 147
| Table 6-9: Cost Drivefs in COCOMO 1I Early Design Model.ccccee 148
Table 6-10: Cost Drivers in COCOMO II Post Archifecture Model. 149
Table 6-11: General System Characteristics in IFPUG.cccooeeiiiiieee e, 150

xiii

Table 6-12: The ISO FSM Standards. veretsssesessssraessaressrranaseessaissenerassssneassansane 151

Table 6-13: Client Component (“Send A Message” Functionality)..................... 155
Table 6-14: Gateway Component (“Send A Message” Functionality). 156
Table 6-15: Client Component (“Read A Message” Functionality). 156
Table 6-16: Gateway Component (“Read A Message”vFunctionality). 157
Table 6-17: NFRs from IEEE-Montréal Project........ccovveevueereriieriereeee e 173
Table 6-18: Operationalizations for NFR; (IEEE-Montreal Project). 174
Table 7-1: Linking Research Questions to their Corresponding Answers......... 182
Table 7-2: Applicability of Approaches Resulting frqm This Thesis................ 186

Table A-1:Quality Requirements Hierarchy...................cocooiviiiiiin . 215

Xiv

Chapter I: Introduction

“When I'm working on a problem, I never think about beauty. I think only how
to solve the problem. But when I have ﬁmshed zf the solution is not beaunﬁll I
know it is wrong.”
R. Buckminster Fuller (1895 — 1983).

1.1 Motivation

In the early phases of software development, user requirements are established

based on an analysis of business goals and of the application domain.

Subsequently, architectures of the desired systems are designed and

implemented. During this development process, requirements are usually
exposed to many changes, as the avaﬁlabi]ity of knowledge on the system under

development increases [Jaco7].

Software systems are characterized both by their functional behavior (what the

system does) and by their nonfunctional behavior (how the system behaves with

respect to some observable attributes like reliability, reusability, maintainability,

etc.). In the software market place, in which functionally equivalent products.
compete for the same customer, Non Functional Requirements (NFRs) become.
more important in distinguishing between the competing products. However, in.
practice, NFRs receive little attention relative to Functional Requirements (FRs)

[WWo3]. This is mainly because of the nature of these requirements which poses

a challenge whén takihg the choice of treating theﬂl at an early stage of the

development process. NFRs are subjective, relative and they tend to become

scattered among multiple modules when they are mapped from the requirements

domain to the solution space. Furthermore, NFRs can often interact, in the sense
that attempts to achieve one NFR can help or hinder the achievement of other
NFRs at particular software functionality. Such an interaction creates an
extensive network of interdependencies and tradeoffs among NFRs which is not
easy to trace or estimate [CNYMoo]. Nevertheless, reports consistently indicate
that neglecting NFRs can Ieéd to catastrophic. project failures, or, at the very
least, to considerable delays and consequently to significant increases in the final
cost. The following list provides valid examples:

e London Arﬁbulance System (LAS) [FD96]: In 1992, The London Ambulance
Service introduced a new computer-aided dispatch system which was intended to
automate the system that dispatched ambulances in résponse to calls from the
public and the emergency services. This new system was extremely inefficient
and ambulance response times increased markedly. Shortly after its introduction,
it failed completely and LAS reverted to the previous manual system. The failure
of the system was mainly due to a failure to conéider “human and organizational
factors” in the design of the system.

. Mérs Climate Orbiter [BLF99]: This was one of two NASA spacecrafts in the
Mars Surveyor '98 program. The mission failed because of software
“interoperability” issue. The craft drifted off course during its voyage and entered
a much lower orbit than planned, and was destroyed by atmospheric friction. The
metric/imperial mix-up which destroyed the craft was caused by a software error
back on Earth. The thrusters on the spacecraft which were intended to control its
rate of rotation were controlled by a computer which underestimated the effect of

the thrusters by a factor of 4.45. This is the ratio between a pound force - the

standard unit of force in the imperial system - and a Newton, the standard unit in
the metric system. The software on Earth was working in pounds force, while the

spacecraft expected figures in Newton.

e Therac 25: The Medical Linear accelerator [LT93]): This was a radiation
therapy machine. It was involved with at least six accidents between 1985 and
1987, in which patients were given massive overdoses of radiation, approximately
100 times the intended dose. Three of the six patients died as a direct
consequence. These accidents highlighted the dangers of software control of
“safety”-critical systems, and they have become a standard case study in health

informatics.

o Siemens: Possible Hearing Damage in Some Cell Phones [SIEMENS04]: In
2004, Siemens issued a “safety” warning that some of its cell phones may have a
software problem that could cause them to emit a loud noise, possibly causing
hearing loss for the phone user. The malfunction happens only if, while the phone
is in use, the battery runs down to the point that the phone automatically
disconnects the call and begins to shut down.

e The New Jersey Department of Motor Vehicles’ licensing system [Bab8s]:
This system was written in the fourth-generation programming language, ideal to
save development time. When implemented, the system was so slow that at one
point more than million New Jersey vehicles roamed the streets with
unprocessed license renewals. The project aimed at satisfying “affordability” and

“timeliness” objectives, but failed due to “performance scalability” problems.

:o The initial design of the ARPANet Interface Message Process software [BI96]:
This project focused on “performance” at the expense of “evolvability” by
designing an extremely tight inner loop.

e The National Library of Medicine MEDLARS II system [BIg6]: The project
was initially developed with many layers of abstraction to support a wide range of
future publication systems. The initial focus of the system was towards improving
“portability” and “evolvability” qualities. The system was scrapped after two
expensive hardware upgrades due to “performance” problems.

Despite this obvious importance and relevance of NFRs, they are almost always
left to be verified after the implementation is finished, which means NFRs are not
mapped directly and explicitly from requirements engineering to implementation
[SURVEY1]. This is mainly due to the enormous pressure towards deploying
software as fast as possible. This leaves software development with potential
exacerbation of the age-old problem of requirements errors that are not detected
until very late in the process. The authors of [NLCoo0] enumerate some of the
well-known problems of the software development due of the NFRs omission: (i)
Cost and schedule overruns, (ii) Software systems discontinuation and (iii)
Dissatisfaction of software systems users. For all that, it is important to affirm
that NFR should affect all levels of software life cycle and shall be identified as

soon as possible and their elicitation must be accurate and complete.

1.2 Problem Statement

Once a software system has been deployed, it is typically straightforward to
observe whether or not a certain FR has been met, as the areas of success or
failure in their context can be rigidly defined. However, the same is not true for
NFRs as these can refer to concepts that can be interdependent and difficult to
measure.

The problem of lacking ahy early NFR integration within the specified system is
likely to cause an increase in the effort and maintenance overhead [SDMo5]. The
importance of software compliance with the imposed NFRs requires management
of their scope, which brings up the importance of clearly defining, tracing and
effoﬁ estimating the complex and frequently ill-defined NFRs and their
interrelations in increasingly complex large-scale software system.

This thesis identifies three major areas to investigate:

1- NFRs Conceptualization: In general, and because of their diverse nature,
NFRs have been (at best) specified in loose, fuzzy terms that are open to wide
ranging and subjective interpretation. As such, they provide little guidance to
architects and engineers as they make the already tough trade-offs necessary to
meet schedule pressures and functionality goals. For instance, most software
engineering approaches [IEEE98], [JBR99], [Grag2] and industrial practices
specify NFRs separately from FRs of a system. This is mainly because the early
integration of NFRs is difficult to achieve and usually accomplished at the later
phases of the software development process. However, since the integration is

not supported from the requirements phase to the implementation phase, some

of the software engineering principles such as abstraction, localization,
modularization, uniformity and reusability, can be compromised. Furthermore,
~ the resulting system is more difficult to maintain and evolve.

Instead, NFRs need to be made precise and clear right from the requirements
phase. But in order to be able to specify the NFRs in precise terms, there must be
a general understanding to what the term NFR stands for, and what are the
relations that the NFR may be exposed to during the lifecycle of the project. In
fact, although the term “non-functional requirement” has been in use for more
than 20 years, there is still no consensus in the requirements engineering
community what NFRs aré and what are relations that an individual NFR may
participate in.

2- NFRs Traceability: According to recent publications [KICo5], [Danos],
[BKWo3] and [FE0O] in requirements engineering, there is a multifaceted gap
between requirements and the developed solution. Traditional software
development approaches do not address this gap. For example, architectural
design methods that link architecture to requirements make architecture a
central concern. These methods use requirements as input only or as a standard
for evaluation [BCKo3] and [CKKo1] and disregard current requirements
engineering processes. Frequent.ly, existing approaches fail to convey change,
rationale, options, and organizational implications of requirements or of solution
designs [TAo5]. The gap between requirements engineering and solution design

seems to be essentially a problem of traceability.

Traceability has so far been tackled mainly qualitatively, identifying related
elements in requirements engineering and solution to visualize those elements of
solution impacted by changing requirements and vice versa.

Tracing NFRs from requirements‘ engineering to solution design poses further
challengés as these requirements tend to scatter among multiple modules when
they are mapped from the requirements domain to the solution space. Another
challenge arises as the existing approaches to model NFRs lack an adequate
speciﬁcétion of the semantics of NFRs, which leads to inconsistent
interpretational uses of these requirements.

3- Effort Estimation of building NFRs: Estimating the effort is an important
task in software project management [EDBSO4]. A realistic effort estimation
right from the start in a project gives the project manager confidence about any
future course of action, sincé many of the decisions made during development
depend on, or are influenced by, the initial effort estimations. NFRs are very
challenging when estimating the effort and the time it would take to implement
them [CNYMoo]. This is mainly because of the unique nature of these
requirements: NFRs are subjective, relative, interacting and -crosscutting.
However, it is crucial to be able to make decisions about the scope of software by
given resources and budget based on a proper estimatic;n of building both FRs

and NFRs.

1.3 Research Goals

Drawing on the discussion in the previous sectioﬁ, the goal of this research
contributes to a formal, integrated and quantitative approach to modeling and
assessing NFRs. The research aims af: building a systematic and formal approach
to NFRs modeling, tracing, impact detection and effort estimation from the ea_rly
stages of the software development process. Central to such an approach is the
definition of the NFRs Ontology for capturing and structuring the knowledge on
the software requirements (FRs and NFRs), their refinements, and their
interdependencies.

This research contributes towards achieving the overall goal of managing the
attainable scope and the changes of NFRs.

The key research questions that will drive us towards achieving the research goals

are discussed in the methodology section (Chapter 3, Section 3.2).

1.4 Research Outline

In order to facilitate the introduction of the body of work completed in this thesis,
we have used the Basili et al. framework [BSH86] and [Bas96] to help in
outlining the thesis work process, as well as to provide classification scheme for
understanding and evaluating the thesis. A schematic representation of this

framework is presented in Figure 1-1.

Mbﬁvatldn ' ObJect |

Purpose

e

| Preparatlon

Figure 1-1: Basili et al. Framework [BSH86]

The framework consists of four categories corresponding- to phases of: 1)
Definition, 2) Planning, 3) Operation and 4) Interpretation.-

During the definition phase, an intuitive understanding of a high-levél problem is
developed into a precise specification that could contribute to its solution.

The study definition phase contains six parts: 1) Motivation, 2) Object, 3)
Purpose, 4) Perspective, 5) Domain and 6) Scope.

The Motivation component identifies the high-level problem to be tackled and it
was presented in Section 1.1 of this chapter.

The Object component defines the principal enfity being studied which
corresponds to the NFR in the software developmenf process.

The Purpose is the explicit problem to be resolved which; as described in Section
1.2 of this chapter, corresponds to (i) characterize the concept of NFR and its

relations with other concepts in the requirements engineering discipline, (ii)

improve the NFRs traceability practice and (iii) predict the effort of building the
software project taking the NFRs into consideration.

The Perspective specifies from what point of view the explicit problem will be
addressed. In our study, this corresponds to the researchers in the requirements
engineering field and the participators in software industry.

This thesis represents: (i) an observational study, where there are no controlled
variables and (ii) an experimental study [BSH86], [WRHRWoo0], [JMo1] and
[Bas96]; where at least one treatment or controlled variable exists.

Usually, an experiment in software engineering has two domains [BSH86] and
[Basg6]: Team and project. Teams (comprising one or more members) work on
software projects that attempt to resolve an issue, in terms of a software
deliverable (manual, progrém and specifications). A general classification of the
scope of experiments can be obtained by examining the sizes of the two domains
considered. Four combinations of domains are possible: Q}lg team working on
one project (single project), many teams working on one project (replicated
project), one team working on many projects (multiple-project variation) and a
combination of many teams and projects (blocked subject-project).

On the other hand, the observational study has two domains: Number of sites
included and whether or not a set of study variables are determined a priori.
Whether or not a set of study variables are predetermined by the researcher
separates the pure qualitative study, (no a priori variables isolated by the
observer), from the mix of qualitative and quantitative analysis, where the
observer has identified, a priori, a set of variables for observation. The four

possible combinations of the domains which form the possible scope for an

observational study are: One site where a priori has been identified (case study),
one site where a priori has not been identified (case qualitative study), more than
one site where a priori has been identified (field study), more than one site where
a priori has not been identified (field qualitative study).

There are several attributes which characterize this thesis study depending on the
identified purpose:

1- Characterizing NFRs: this is an observational study in which the evaluation is
performed through field study with both students not experienced in the study of
domain (novice) and people with experience in the study of domain (experts).
The evaluation has been conducted in the field under normal conditions (vivo).

2- NFRs traceability: This is an observational study which has been discussed
through a context of a case study and which has been evaluated by multi-project
variation experiment. The evaluation has been conducted with experts from the
NOKIA team in Montréal and has been conducted under normal working
conditions (vivo).

3- NFRs Effort Estimation: This is an observational study which has been
evaluated by case study. The evaluation has been‘ conducted by students which
are not experienced in the domain of the research study (novice) and has been
run in the field under normal conditions (vivo).

Our thesis work was planned in detail in the second phase of the framework.
During the design step, the case studies were selected (see Chapter 3, Section
3.3). The direct and indirect criteria or factors that are related to the thesis’
purpose were identified. Then, the measures designed to quantify these direct

and indirect criteria were determined.

11

The thesis work itself is actually carried out during the third phase of the
framework: Training was given when it is required for the team that will be
taking the measurements. Data are collected, analyzed and evaluated during the
execution of the case studies. These data are then analyzed using suitable

techniques chosen during the design step as would be explained in this thesis.

1.5 Major Contributions

The major contributions of this thesis have been published (or accepted for
publishing) in the following book [KOD10], journal [SOKH09], conference
proceedings and workshops [KODogb], [KODooga], [KODo08c], [KODo8b],
[KODo8a}, [KODo7b], [KODo7a], [KDOo7a], [DKPWOo07], [KO06], [KDOo07b]
and [KDOo9g].

While this research work blends the disciplines of software measurement,
requirements engineering, and software architectural design in a cohesive
fashion, the novelty of our approach lies in the following aspects:

1- It proposes a formal model for NFRs and their relations. The model is captured
through a Common Foundation for NFRs, i.e. the shared meaning of terms and
concepts in the.domain of NFRs. The Common Foundation will be realized by
developing a-problem domain ontology for NFRs aﬁd related domain knowledge.
This NFRs Ontology is adequate for projects taking into consideration the NFRs

and their relations earlier in the software development and throughout the life

cycle.

2- It provides a mechanism for NFRs conflicts identiﬁcation based on the
constructed ontology.

3- It proposes a change management mechanism for tracing the impact of NFRs
on the other constructs in the ontology and vice versa, and provides a traceability
mechanism using Datalog expressions to implement queries on the relational
model-based representation for the ontology. An alternative implementation view
'using XML and XQuery is provided as well. |

4- It provideé a flexible, yet systematic approach to the eair]y requirements-based
effort estimation, based on NFRs Ontology. It complementarily uses one

standard functional size measurement model and a linear regression technique.

1.6 Outline of the Dissertation

The rest of this thesis is organized as follows: Chapter 2 presents related work on
existing approaches of treatments for NFRs in software engineering; Chapter 3
presents our research methodology. Chapter 4 presents the NFRs Ontology work.
Chapter 5 proposes a traceability mechanism for change management of NFRs.
Chapter 6 proposes a software effort estimation approach based on both FRs and

NFRs. Chapter 7 concludes the thesis and discusses future research extensions.

13

Chapter II: Related Work on Early
Treatment Methods of NFRs in
Software Engineering

“Your true value depends entirely on what you are compared with.”
Bob Wells (1966-)

2.1 Introduction

Most of the early work on NFRs focused on measuring how much a software
system is in accordance with the set of NFRs that it should satisfy, using some
form of quantitative analysis [Boe78], [FPg97], [KKP9o] and [Lyug6] offering
predefined metrics to assess the degree to which a given software object meets a
particular NFR. Those approaches that are concerned with measuring how much
software complies with NFRs are called prodﬁct—oriented approaches. On the
contrary, process-oriented approaches focus on the software development
process. It aims to help software engineers searching for alternatives to
sufficiently meet NFRs while developing the software.

Our major contribution presented in this thesis (see Chapter 1, Section 1.5)
explores the NFRs under the umbrel]a of the process-oriented approaches.
Instead of evaluating the final software product, the emphasis here is on trying to
rationalize the development process itself in terms of NFRs for the purpose of
characterizing them, improving their traceability and predict their effort at an

early stage of the development process.

In this chapter, we will introduce three categories of related work of interest to
treat NFRs earlier during the development process; namely: (i) NF R Framework,
(ii) incorporating NFRs into UML models and (iii) Aspect-Orientation. These
three categories are presented in sections 2.2, 2.3 and 2.4 of this chapter. We also
present in Section 2.5 a comprehensive critique to the three major approaches.
We make the note that the scope of the related work included in this chapter is
generic and it includes approaches to incorporate NFRs into the earlier models of
the software development process. The related work focused on the topics of
NFRs conceptualization, NFRs traceability and NFRs effort estimation is

provided separately in chapters 4, 5 and 6, correspondingly.

2.2 NFR Framework

The NFR framework [CNYMoo] is a process-oriented and goal-oriented
approach that is aimed at making NFRs explicit and putting them in the forefront
in the stakeholder’s mind. It requires the following interleaved tasks, which are
iterative: |

Task 1. Acquiring knowledge about the system’s domain, FRs and the particular
kinds of NFRs for a particular system;

Task 2. Identifying NFRs as NFR softgoals and decomposing them into a finer
Ievél;

Task 3. Identifying the possible design alternatives for meeting NFRs in the

target system as operationalizing softgoals;

15

Task 4. Dealing with ambiguities, tradeoffs, priorities énd interdependencies
among NFRs and operationalizations;

Task 5. Selecting operationalizations;

Task 6. Supporting decisions with a design rationale;

Task 7. Evaluating the impact of operationalization selection decisions on NFR
| .satisfaction.

A cornerstone of this framework is the concépt of the “sbftgoal”, which is uéed to
represent the NFR. A softgoal is a goal that has no-clear cut definition or criteria
to determine whether or not it has been satisﬁed; In fact, the framework speaks
of softgoals being “satisficed” rather than satisfied, to underscore their ad hoc
nature, both with respect to their definition and to their satisfaction. The term
“satisfice” was coined by Herbert Simon [Sim81]. Satisﬁcing isa decision-making
strétegy that attempts to meet criteria for adequacy, rather than to identify an
optimal solution. |

The operation of the framework can be visualized in terms of the incremental and
interactive construction, elaboration, analysis and revision of a softgoal
intérdependency graph (SIG). Figure 2-1 presents an example of a SIG with NFR
softgoals representing requirements for performance and security of customer
accounts in a credit card system. In the SIG, all softgoals are given Type/’ Topié1,
Topicz,...] nomenclature. For the NFR softgoal, Type indicates the NFR concern
and Topic indicates the NFR context.

NFRs softgoals are depicted by a cloud in the SIG. Architects further refine the
NFRs into a suitable set of NFR softgoals. In doing so, they aim to find solutions

in the target system that will satisfice the NFR softgoals. These solutions are

called operationalizations, and are depicted by clouds with a thick border. High-
level softgoals are refined into more specific subgoals or operationalizations. In
each refinement, the offspring can contribute fully or partially, and positively or
negatively, towards satisficing the parent. In Figure 2-1, both space and response
time should be satisficed for the performance to be satisficed. The AND

contribution is represented by a single arc, and the OR by double arcs.

Performance[Account] SecurityfAccount]

esponseTime Integri

[Account] (Ac Availability

Space[Account] iAc "
count

Authorize access to
account information

Authenticate
userAccess

Use Uncompressed Use Indexing
Format + S~

Audit
Account

Identify users
AccountAccess

Require

Use P.LN. Compare additional ID
signature

Figure 2-1: Softgoal Interdependency Graph for Performance and Security in a
Credit Card System [CNYMoo].

Other types of contributions are: MAKE (++), HELP (+), HURT (-) and BREAK
(--). While making choices in pursuit of a particular softgoal, it is very likely that
other softgoals may be affected in this decision-making process. This is shown

with interdependencies among the softgoals (the dashed lines in the figure). For

example, UseUncompressedFormat has a negative contribution with respect to
Space.

During the evaluation step, which was labeled Task 7, the NFR framework applies
propagation rules to determine to what extent the models satisfice the NFR
softgoals. Some detailed propagation rules are given in [CNYMoo]; however, the
following simplified propagation rules (labeled R1 to R6) summarize Task 7.

R1. If most of the contributions received by a leaf NFR softgoal are positive
(MAKE or HELP), then that leaf NFR softgoal is considered to be satisficed.

R2. If most of the contributions received by a leaf NFR softgoal are negative
(BREAK or HURT), then that leaf NFR softgoal is considered to be denied or not
satisficed.

R3. In the case of priority softgoals, or when there is a tie between positive and
negative contﬁbutions, the system architect or the developer can make the design
decision based on / or a variation of R1 and R2.

R4. In the case of the AND contribution, if all the child’s softgoals are satisficed
then the parent NFR softgoal is satisficed; otherwise, the parent’s softgoal is
denied.

R5. In the case of the OR contribution, if at least one child softgoal is satisficed,
then the parent NFR softgoal is satisficed; otherWise, the parent softgoal is
denied.

R6. In the case of a refinement (only one child), the parent is satisficed if the

child is satisficed; and the parent is denied if the child is denied.

18

2.3 Incorporating NFRs with UML Models

In [MABoz2], [PKL04], [AMBRo02] and many others; early integration of NFRs is
accomplished by extending UML models to integrate NFRs to the functional
behavior.

Supakkul et al. propose a use case and goal-driven approach to integrate FRs and
NFRs in [SC04]. They use the UML use case model to capture functionality of the
system and they also use the NFR Framework [CNYMoo] to represent NFRs.
They propose to associate the NFRs with four dse case model elements: actor, use
case, actor-use case association and the system boundary. They name these
associations “Actor Association Point”, “Use Case Association Point”, “Actor-Use
Case Association (AU-A) Point”, and “System Boundary Association Point”
respectively. Having such an extension to the UML use case model, NFRs can be
integrated at the requirements analysis level with FRs and can provide better
understanding of the requirements modél. Figure 2-2 shows the proposed NFR
association points in the UML use case model. In Figure 2-2, cloud “A” represents
the NFRs related to an actor of a use case model. These NFRs are related to actor
by “Actor Association Point”. For example, associating scalability NFR to
Customer actor would indicate that the system must handle potentially large
number of users accessing system functionality represented by use cases available
to the actor. Cloud “B” represents the NFRs related to use case of use case model.
These NFRs are related to use case by “Use Case Association Point”. For example,

associating fast response time NFR to Withdraw Fund use case of an Automated

Teller Machine (ATM) system would indicate that the system must complete the

19

functionality described by the Withdraw Fund use case within an acceptable
duration. Cloud “C” represents the NFRs related to actor-use case association of
the use case model. These NFRs are related to this association by “Actor-Use Case
Association (AU-A) Point”. For example, associating security NFR to an AU-A
between Customer and Withdraw Fund use case would indicate that withdraw
fund must be secured, which also precisely implies that user interface to other
AU-A not required to be secured. Finally, cloud “D” represents the NFRs related
to system boundary of use case fnodel. These NFRs are related to this boundary
by “System Boundary Association Point”. For example, associating portability
‘NFR to the system boundary would intuitively specify that the NFR is global and
that the system must be operational in multiple platforms, which globally affects
every part of the system. These four NFRs association points are the authors’
proposed extensions to the UML use case model.

Moreira et al. [MABo2] and [AMBRo2] propose three main activities for
integrating crosscutting quality attributes with FRs: identify, specify and
integrate requirements, so that separation of concerns at the requirements level
can be achieved. Firstly, identify all the requirements of a system and select from
those the quality attributes relevant to the application domain and stakeholders.
Secondly, specify FRs, using a use case based approach, and describe quality
attributes using special templates including fields of: description, focus, source,
decomposition, priority, obligation, and influence. Finally, those quality
attributes are integrated with FRs using standard UML diagrammatic
representations (e.g. use case diagram, interacﬁon diagrams) extended with some

special notations.

20

System

- (e
C: Access, @

o

Actor1

communication B: Functional
or exchange info Requirements
related NFRs Related NFRs
A: External entity
related NFRs N
D: System

development or
software process
related NFRs

Figure 2-2: NFR Association Points in a Use-Case Diagram [SCo04].

Cysneiros et al. [CLNo1], [CLo1] and [NLCoo] propose a new strategy that brings
NFRs to object-oriented modeling called OONFR (Object-Oriented Non
Functional Requirement). They use the Language Extended Lexicon (LEL) driven
approach to describe the application domain in LEL to provide context for both
FRs and NFRs. This policy assures that a common and controlled vocabuiary will
be used in both functional and nonfunctional representations. Later the authors
analyze those domains separately and build the functional view of the system
using UML diagrams. Then they build the non-functional view of the system

using NFR framework (see Section 2.2 of this chapter). They extend the NFR

21

framework to adopt their notations. Finally, they integrate the NFRs with the
functional representation of the system by proposing some extensions to UML
models (use case diagram, class diagram, sequence diagram and communication
diagram).

Dimitrov et al. [DSDo2] analyze three UML-based approaches to performance
modeling: 1) Directly representing performance aspects with UML and
transferring efféctive model diagrams into corresponding performance models,
2) Expanding UML (use case diagram and state machine diagram) to deal with
performance aspects and 3) Combining UML with formal description techniques
such as Specification and Description Logic (SDL) and Message Sequence Charts
(MSCs).

Berenbach et al. [BG06] from Siemens Corporation suggest from the experience
with outsourcing and off shoring that use of graphical languages significantly
reduces cultural and communication problems when teams (e.g. analysis and
design) are at different locations. They propose an extension of UML use case
model with ne\;v notations: i) as a starting point for an unified n;odeling
approach, ii) to support the integration of hazard and requirement analysis and
the binding of the resultant exposed requirements to their respective use cases, as
well as iii) the binding of use cases to the high level features of a developed
feature model.

In [ZGo7], the authors propose a UML profile for modeling design decisions and
an associated UML profile for modeling NFRs in a generic way. The two UML

profiles consider design decisions and NFRs as first class elements. This

22

relationship between design decisions and NFRs is modeled using specialized
dependency notations in UML.

In [Jurb2], the éuthor proposes UMLsec which is an extension of UML notation.
UMLsec allows expressing security relevant information within the diagrams in a
system specification. UMLsec is defined in form of a UML profile using the
standard UML exfension mechanisms. In particular, the associated constraints
give criteria to evaluate the secuﬁty aspects of a system design, by referring to a
formal semantics of asimplified fragment of UML.

In [LBDo2], the authors present a modeling language, based on UML, called
SecureUML. It shows how UML can be used to specify information related to
access control in the overall design of an application and how this information
can be used to automatically generate complete access control infrastructures.
The work in [LBDo2] adapts use cases to capture and analyze security
requirements. This adaptation is called an Abuse Case Model. An abuse case is
defined as a specification of a type of complete interaction between a system and
one or more actors, where the results of the interaction are harmful to the system,
one of the actors, or one of the stakeholders of the system.

Figure 2-3 summarizes the related work presented in this section to incorporate

NFRs against all types of UML 2.0 diagrams.

23

Diagram

[maBoz, N\
l AMBR0Z), }
[SCo4) ‘
: {CLNO1],
e {DSDO2], l

[CLO1),
[NLC24},
(LBDOZ)

— [BGOG],

=57 [DsDoz, AN

. L : e [" [Juro2) {
Dla'gram P Timing. .] | f.__.__A__i
il
)

f . ‘| - Diagram
[__T_ P .
' . — H
P : !
[maBoZ, N\ L | Luro2) |
JAMBROZ T TN u |
| [CLNOY), o 0 !
oo, | [NLCOO]

£ [NLCOD},
Hduroz)

Figure 2-3: Summary to Approaches Incorporating NFRs into UML.

2.4 Treating NFRs with Aspect Orientation

A software system is the realization of a set 6f concerns which are the primary
motivation for organizing and decomposing software into manageable and
compreherisible parts. Concerns come from a variety of sources, for example . |
clients, developers, managers, administrators, firmware or hardware portions of
a system and business context. Different viewpoints can have the same concerns,
but the associated requirements may differ. For example, in a banking

application, the teller and loan officer may be concerned about access control.

24

For a teller, the requirement maybé “teller should not access loan information”.
For loan officer fhe requirement maybe “loan officer should not manipulate loan
amount”. Even though both view poihts have access control concern, the
requirements are different.

When Object-Oriented Programming (OOP) entered the mainstream of software
development, it had a great impact on how software was devéloped as developers
tackle larger systems with less time by modeling their concerns as groups of
interacting objects and classes, which are generally derived from the entities in
the requirements specification and use-cases. However, OOP is essentially static
as a change in requirements can have én implication on development timelines.
As discussed in the previous chapter, some requirements like NFRs need to be
.addressed in multiple modules of the system or they may need to be addressed in
the system as a whole. Consequently, the code to handle these requirements may |
| be mixed in with the core logic of a huge number of modules, resulting in bad
implications on the software quality.

Despite the success of object-orientation in the effort to achieve separation of
concerns, current OOP techniques support one dimensional decomposition of the
problem focusing on the notion of a class. Such decomposition is not a good
candidate to handlé. complex interaction of components as it leaves certain
properties without being localized in single modular units and as a result their
implementation cuts across the decomposition of the system. This is the
phenomenon of crosscutting.

Aspect-Oriented Programming (AOP) is a new programming paradigm that

allows programmers to separate concerns and thus allows them to dynamically

25

modify the static behavior of the object-oriented model. Just as objects in the real
world can change their sfates during their lifecycles, an application can adopt
new characteristics as it develops. AOP provides a solution for abstracting
~ crosscutting code that spans object hierarchies without functional relevance to
the code it spans. Instead of embedding crosscutting code in classes, AOP allows
to abstract the crosscutting code into a separate module (known as an aspect).
Then, AOP provides special rules of composition between components and
aspects. For the necessary background on AOP, we advise the reader to visit the
background chapter (Chapter 2) in our earlier Work [Kaso6].

While AOP supports separatibn of concerns at the code level, Aspect-Oriented
Software Development (AOSD) has extended AOP to provide a systematic
support for the identiﬁcation,. separation, representation (through proper
modeling and documentation), and composition of crosscutting concerns as well
as mechanism that make them tfaceable throughout software development.
Although, initially the focus was merely on aspects at the programming level,
recently a considerable amount of research has been focusing to identify and
model aspects in the early phases of software development. Because of the
crosscﬁtting nature of NFRs, these requirements are good candidates to be
treated with aspect-orientation. » |

However, current aspect-oriented approaches either concentrate on serving as a
general purpose architecture modeling language within a particular domain, br
support the analysis of one specific NFR of a system (e.g.,, performance or
security) in a way that is not necessarily applicable to other NFRs and with

ignorance to possible existence of crosscutting FRs. In addition, these approaches

26

do not fully support a smooth transition among the réquirements, analysis and
the design phases.

-In [RMAo03] and [RSMA02] the authors propose an approach for modularizing
and composing crosscutting concerns. The approach involves identifying
requirements using stakeholder’ viewpoints, use-cases/scenarios, goals or
problem frames. The approach basically uses a set of matrices consisting of
viewpoints and concerns represented in XML. Even though the authors show that
some NFRs can crosscut viewpoint specifications, it is not clear how NFRs arise.
The identification of the dimension of a candidate aspect (its influence on certain
aspects of the system) is not performed in a systematic way in this work.
Scenarios tend to be treated as single modules (or black boxes) that have to be
composed with crosscutting concerns. However, simple composition rules
between scenarios and ci'osscutting requirements cannot be always applicable as
relationships between them are normally not clean-cut, this approach does not
show the propagation of a scenario into a potentially large set of components
inside analysis and design and the (normally complex) rules of composition
between individual corhponents and aspects. In fact, the influence of a singlé
aspect policy on different sets of components that collectively implement the
same sgenario may be different. Similarly, the same aspect. may influence the

same set of components in a number of aifferent ways. In addition, in this

approach, resolving conflicts among concerns is recommended through
negotiation with stakeholders, which may not always be applicable as; with the

exception of developers, stakeholders are not interested in system concerns and

27

they may not have the necessary expertise to be involved in these matters. They
would merely want their requirements implemented.

In [BMo4], the authors propose an approach to idehtify and compose
crosscutting concerns. The approach consists of four defined steps: identify
concerns, specify concerns, identify crosscutting concerns and compose concerns.
The composition of concerns is defined using the formal method LOTOS. The
approach focuses on the requirements analysis phase, and contains no
traceability support to other phases of the software development life cycle. It is
not clear how we can map the LOTOS specification to the design and the
implementation components. Resolving conflicts among concerns is
recommended through negotiation with stakeholders, which may not always be
applicable as we discussed earlier. The approach recommends defining a
dominant concern amohg thé crosscuﬁing concerns at certain joinpoint. The
notion of a dominant concern cannot always be applicable. In complex systems
(such .as concurrent systems) two or more aspects may affect the same joinpoints
with changing priorities to the execution of the behavior of some component (e.g.
method body), so assigning a hard-coded prioritization will not follow the correct
semantics.

In [CDDDo3], the authors provide an approach to support one NFR, naﬁely
performance, under the umbrella of AOSD using the UML and the formal
architectural description language Rapide. Although the authors describe how
they plan to extend their approach to support two or more NFRs, it is an open

issue how to consider crosscutting FRs within their solution.

28

In [TBBo4], the authors adopt model analysis. to detect semantic conflicts
between aspects. The authors introduce two levels of conflicts among aspects:

1. Direct conflict: two or more aspects sharing the same joihpoint or an aspect is
having a joinpoint in another aspect.

2. Indirect conflict: the aspects don not share a common joinpoiht but one aspect
can have an impact on the behavior of the second. This approach is dedicated to
serve the detection of direct conflicts only. Resolving cqnﬂicts is' recommended
through a process of correction and refinement of the model, which is not clearly
investigatéd.

In [BB99] -and [MRG+04] the obliviousness property was adopted to model
orthogonal aspects independently from each other and from the FRs. The
deployment of formal methods in these approaéhes (e.g. GAMMA, LOTOS, Time
Temporal Logic) to specify the functional behavior and the associated aspects
helps to enable formal validation and facilitates a specification-driven design. On
the other hand, the weaving process is not presented in a precise systematic way
and it is limited to a specific type of requirements that could not necessary be
applicable for others. In addition, it is not clear where and how the formalism is
to be placed within the AOSD framework or how to integrate it with the
traditional iterative development process. |
In '[NAB04], the authors reason about the semantics of the composition
mechanisms of the programming language through an approach that is based on
a single meta-model: Composition Graphs meta-model. While these graphs may
provide a sufficient homogeneous comprehension for the semantics among

different programming languages that make them easier to compare and to be

29

transformed, the process to construct such graphs without existing tools can be
tedious. In addition, the graphs are generated from an existing implementation
that we don not usually have when we initially develop the application.

Park et al. [PKLo4] propose a simulation based design phase analysis method |
based on aspect oriented programming. In his method, quality aspects remain
separate from functionality aspect in the design model. The functionality concern
and the performance concern are weaved by the AspectJ compiler. For the
purpose of presenting the method, the authors show a sequeﬁce diagram overlaid
with AspectJ elements. Lines of Code for performance analysis are inserted
before or after appropriate pointcuts in the diagram.

Xu et al. [XZRLos] propose a conéeptual architectural design model, where
traditional architecture model of a software program represents one layer and the
NFRs are presented as aspectual components in another layer. Figure 2-4 shows
their conceptual design model to add NFRs. They propose to use the aspectual
components to represent the semantics of the operationalized NFRs. These
components correspond to advice tasks in the aspect-oriented world. The
connectors between the software architecture layer and the NFR layer describe
binding rules, thus corresponding to the pointcut from the aspectual component
to the normal components. They also define a connector, namely XML Bindef, to
bind the NFRs to the target model. They propose to use the same XML Binders in
" the Aspect Markup Language (AML). Their XML Binder's- are therefore XML-
based binding specifications that provide weaving instructions to determine how
aspectual components and the traditional software architecture are tb be

composed together.

30

5 o o 8 o e e S8 B e e e e e m h o
: v !
¥ .
i o ————— . e e i - e s ,{,(
. l_-{r"" Agpr'ﬂ%) N ’z‘;’" .-\spui;;l’: T e Aspectaal BN S
S Component 7 [‘-~ Compoment /"% Compoment /)
A 2 f NFR?) ‘i NFR2
;
- : o | . I i
A b SRLswe [[|
; i i
XAML Bioder 1 XML Binder 2 XML Binder 3
"\‘ -
Y
PR
4
o
| Architectare Layer

Figure 2-4: Conceptual Design Model with One Architecture.

In order to fill the missing gaps in the above discussed AOSD approaches, we
presented in [KCOo05], [KO06] and [Kas06] a systematic and precisely gleﬁned
‘aspect-oriented model towards an early consideration of specifying and
separating crosscutting FRs and NFRs. Our proposed model is depicted in Figure
2-5. The model is composed of five phases: Requirements Elicitation, Analysis
.and Crosscutting Realization, Composing Requirements, Design and
Implementation. We use the term phase to describe a group of one or more
activities within the model. The phase is a mean to categorize activates based on
the general target they tend to achieve. These phases contribute towards the
target solution to establish a mechanism for integrating NFRs during
requirements engineering and architectural design. Requirements traceability is
provided throughout the modél to influence the consistency and change
management of the requirements of a system. This is achieved in our model by

using two hierarchy graphs to keep track of the required behavior of the system

31

using static and dynamic views of objects starting from requirements elicitation
till the implementation; We referred to the graphs by the static and the dynamic
hierarchies._The hierarchies are introduced and updated at certain breakpoints
within the development process as follows:

1. End of Requirements Elicitation phase: The dynamic hierarchy is introdliced.
At this phase, we are supposed to have successfully specified the use-cases
through scenarios that constitute as the origin for the dynamic behavior of the
system.

2. End of Analysis and Crosscutting Realization phase: The static hierarchy is
introduced. At this phase, we are supposed to have defined the conceptual classes
(through the domain model) that constitute the origin of the static behavior of
the system. The dynamic hierarchy is updated to show the efféct of crosscutting
realization among use-cases.

3. End of Composing Requirements phase: The static hierarchy is updated to
show the effect of integrating NFRs with the conceptual classes.

4. End of Design Phase: Both hierarchies are updated to show the extension to
the design level through the static artifacts (e.g. class diagram) and dynamic
artifacts (e.g. communication diagram).

In [OKCos5] and [KOCos], we proposed sets of quality measurements to be
associated with activities of the AOSD model. The intended goal of the
measurements is to assist stakeholders wifh quantitative evidences to better map
or iterate system modules at different activities in the development process and

to better set the design decisions for the analyzed requirements.

32

i Requirements Elicitation

Identifying NFRs

Identifying FRs

Specifying NFRs

Y] L l Analysis and Crosscutting Realization

0O Analysis Crosscutting Realization

M

[Composing Requirements

- Defining Conflicts

Integration

Resolving Conflicts =
1

Output : Executable
Code

| : M
Design { Implementation :> /X/\C
|
NN
Trac;ng bynamic Tracing Static
Behavior Behavior

Figure 2-5: Proposed Model to integrate NFRs early in the software development
process [Kaso6] and [KO06].

2.5 Discussion
The tendency to treat NFRs as softgoals in the NFR framework can often add
ambiguity to the requirements specifications. For example, the response time in a

user interface is typically soft, whereas response time requirements in real-time

33

systems can be hard. This situation calls for extending the taxonomy of the NFR
framework so that it can identify those NFRs that need to be stated in terms of
crisp indicators and their acceptable values.

Another major drawback in the NFR framework is the lack of a formal definition
towards how NFRs are associated with other entities of the system throughout
the development process. This drawback makes the NFRs framework not a
reasonable vehicle towards discussing NFRs traceability and effort estimation. In
addition, NFRs framework offers only a qualitative not quantitative treatment of
NFRs.

In addition, there is no numerical evaluation on the usage of the NFRs
framework. The authors demonstrate the applicability of the proposed tasks
through a case study. Our critique discussion on the limitation of the NFR
framework was published in [KDOo7a].

While the AOSD approaches (including our previous work [KCOo5], [KO06],
[Kas06]) aim at addressing the crosscutting nature of NFRs, current AOSD
approaches come short when addressing the other elements that characterize the
nature of NFRs (e.g. subjectivity and interactivity). In addition, AOSD
approaches map the crosscutting concern towards the aspect element in the
implemented code space. This is in fact not a sufficient solution for every type of
NFR as some of these requirements may be mapped to an architectural decision
and not to an implemented code. Most AOSD approaches rely on case studies to
demonstrate the applicability of their work.

In [MABoz2], [PKLo4], [AMBRoO2] and many others; early integration of NFRs is

accomplished by extending UML models to integrate NFRs to the functional

34

behavior. Although the composition process must be considered at the meta-
level, these approaches only model certain NFRs (e.g. response time, security) in
a way that is not necessarily applicable for other requirements. There is no single
existing formal method available that is well suited for defining and analyzing
numerous NFRs for a system. Evaluation of approaches under this category is
either missing or relying on a case study to demonstrate the applicability.

Based on the pervious review, we are motivated to fill the gap raised from the
previously open problems. In order to be able to represent and reason about
NFRs, we need to access a formal representation that is capable to accommodate
the wide range of these requirements. In the next chapter, we will describe our

research methodology and its demonstrated applicability.

35

Chapter III: Research
Methodology

“If the only tool you have is a hammer, you tend to see every problem as a nail.”
Abraham Maslow (1908 - 1970).

3.1 Introduction

The research approach used in this thesis includes three major phases. These are
described in Section 3.2 of this chapter. We refer to phase as a group of one or
more activities. The phase is a mean to categorize' research activities based on the
general target they tend to achieve. The practical applicability of the approach has
been investigated and demonstrated in this thesis by using three case studies and
one controlled experiment. The case studies are described in Section 3.3. Section

3.4 refers the reader to the applicability of the outcomes of this thesis.

3.2 Methodology

Figure 3-1 summarizes the complete research methodology, which consists of

three major phases:

1. Building a formal model for NFRs and their relations (Chapter 4).
2. Implementing changes management mechanism for tracing impact of

NFRs on other constructs in the ontology and vice versa (Chapter 5).

36

3. Proposing a novel approach to the early requirements-based effort
estimation, based on NFRs Ontology (Chapter 6).

Three evaluation phases are included in our methodology to demonstrate the

validity and applicability of each of the above major phases. In each of the

evaluétion phases, the common research question that is addressed is: “How does

our proposed method improve existing practice? What are the implications of

our method for practitioners in requirements engineering?”

The outcome of each evaluation phase serves as input towards improvement of

the outcome of the precedent phase. The three major phases are described next.

Inputs

Phases
Literature Studies | '

——— .
Industrial Experience |
—_—

Evaluation Criteri

Case Studies |

L

Literature Studies

Feedback and Improvement

Industrial Experience
—— P

.

Industrial Data

Y

{ Improvement

Y

o Nové} Effort Es;iﬁi;;ﬁon Mdde!‘

Literature Studies | L Feedback and
Case Studies Improvement

Figure 3-1: Thesis Methodology

37

3.2.1 Phase 1: Building a Formal Model for NFRs and their Relations

This phase started with the exploratory activities of the project to investigate the
nature of the NFRs and previous research on the areas defined in the probllem.
statement section (Chapter 1, Section 1.2). During this phase we also collected
evidence about practices in industry which refers to the integration of 'NFRs into
the software engineering process and practices that architects use in
transforming NFRs into architecture. '_I’he research activities in this phase formed
three steps: the first step was to shape the problem domain by understanding the
context around it. The second step was to collect know]edge on what practical
solutions architects currently are using to confront the issues in the problem
domain. The third step was to assess in which respects the current solutions come
short and how big existing requirement_s engineering and architectural design
gap is in respect to NFRs. Throughout this process, we built experiences in how
to improve the current practices of transformation from requirements to
architecture with respect to NFRs.

In this phase, we used literafure studies, surveys, and experiences gained at
industrial sites, to' answer five exploratory and correlational [ESSD07] research
questions:

Q1- What is a NFR?

Q2-What are the types of NFRs? How can they be categorized?

Q3- How does NFR interact with FRs and their refinements during. the software
development process?

Q4- How does one NFR interact with other NFRs?

38

Qs5- Whaf are the concepts and relationships which characterize the interactions
referred to in Q3 and Q4?

The process of finding the answers to these questions represents an observational
and descriptive study for the nature of NFRs. The unit of analysis at this research
phase is, therefore, the NFR from the perspective of process-oriented approaches.
The answers to these questions resulted in a clearer understanding of the nature
of NFRs, including more precise definitions of the related theoretical terms. In
this thesis, we turned the findings from answering the above questions into a
formal model for NFRs and their relations. The model was captured though a
Common Foundation for NFRs which is realized by developing the NFRs
Ontology. The ontology represents the outcome of this phase. The applicability of
the proposed ontoiogy was evaluated through the three case studies presented in
Section 3.3 of this ‘chapter and which were performed with both students and
professionals (experts) in the_domain of our study.

Our work in this phase has been published in [KDOo7a], [KODo7b],
[DKPWOO07], [KODogb], [SOKHo09] and [KOD10].

3.2.2 Phase 2: Changes Management Mechanism for Tracing Impact
of NFRs on Other Constructs in the Ontology and vice versa

This phase represents our first usage of the NFRs Ontolog&- as a vehicle towards
supporting those requirements engineering acﬁvities that pertain to NFRs. The
“Descriptive Process” [ESSDo7] research questions we address here are:

Q6: What traceability mechanisms are used in theory and practice to support

requirements engineering and architectural design decisions for NFRs? What

39

complexity aspects of NFRs are accounted for ih current requirements
engineering and architectural design decision-making processes?

Q7: What are the critical areas requiring traceability attention when dealing with
change management of NFRs? How are these areas mapped to the concepts and
relationships defined in the NFRs Ontology?

The research in this phase represents an observational and correlational study.
The outcome of this phase is a formal implementation of the answers derived
from Q7. The applicability of the implementation was evaluated by a mulﬁ-
project variation experiment [BSH86] and [Basg6] that was conducted with
experts from NOKIA — Montreal under normal work conditions (vivo).

Our work in this phase has been published in [KO06], [KODo8a], [KODo9a} and
[KOD10].

3.2.3 Phasé 3: NFRs Effort Estimation

This phase uses a view of the NFRs Ontology and deploys it for the aim of
establishing an approéch towards an early effort estimation of development of
the software project taking into account both FRs and NFRs. The research
questions we address in this phase are:

Q8: Whét is the impact of NFRs on the total effort for building and maintaining
the software project? .

Qo9: In which ways are NFRs treated in current theoretical and practical effort
estimation models? |

Q10: How to improve the existing practice of early estimation for the effort taking

into account the impact of NFRs?

40

The outcome of this phase is a novel effort estimation model that aims at better
prediction of the effort for building the prbject from the given set of FRs and
NFRs.

We followed the case study approach as an investigatibn technique to evaluate
the work of this phase (see Section 3.3.2 of this chapter). We make the hote that
for the purpose of evaluation, we considered the option of carrying out a formal
experiment, however this choice (as an alternative to the case study approach)
was eliminated because there is not much theory in the field, and what theory
there is, is mostly qualitative; and also because there are so many state variables
that influence the evaluation results and that it can not be replicated easily.

Our work in this phase has been published in [KDOo7], [KODo7al, [KODo8b],

[KODo8c], [KDO09] and [KOD10].

3.3 Case Studies

The selection of cases is a crucial step in case study research. The aim is to select
cases that are most relevant to the study proposition. Multiple case studies design
usually offer greater validity [ESSDo07]. We have selected three case studies that
will help to (i) illustrate the discussion and (ii) provide the necessary evaluation.

3.3.1 NOKIA Mobile Email Application System

The Mobile Email application, which provides the context for our discussion,
consists of the NOKIA Mobile Email Gateway and the NOKIA Mobile Email
Client. The high-level context diagram of the application is presented in Figufe 3-

2. The NOKIA Mobile Email Client provides the user interface. Using

41

recognizable and branded email portals (e.g. Yahoo, MSN, etc.), the mobile email
experience mirrors the familiar ‘look and feel’ of the PC, generating instant

consumer adoption and virtually eliminating the learning curve.

Email
client

Gateway

Figure 3-2: Mobile Email Solution

The Mobile Email Gateway provides mobile operators with the necessary
protocol adaptations, billing, reporting, and customer care interfaces they require
to effectively deliver branded portal email services to their subscribers. As a
result, mobile operators can increase their average revenue per user and directly
impact their bottom line with a variety of flexible billing options. Communication
between the client and the gateway is established through a SYNCML protocol,
which is an XML-based standard for data synchronization.

The settings from this case study were used to provide the illustration for the
three major phases of this research. In addition, these settings have been used for
the evaluation purposes of phases 1 and 2.

3.3.2 IEEE Montreal Website

The second case study has been conducted with the teams of the undergraduate
students in their third year of studies enrolled in the 2009 “Software

Measurement” and “Software Project” undergraduate SOEN courses at Concordia

42

University, Montreal, Canada. The project required all groups of students to
develop a new website for the IEEE-Montreal chapter. The IEEE System software
is custom designed and built to meet the needs of one specific customer — the
Montreal section of the IEEE. All significant aspects of the system that users may
access or manipulate have been specified by the customer, as well as some
aspects of the system’s architecture, performance and security. The system has a
client-server design. Users access the system from a remote terminal that is
connected to the main computer via an internet link. The system can function as
an independent unit but has the option of connecting to other systems and
services provided by the IEEE.

The IEEE System software is both an administrative support system and an
information system. It is accessed through a simple GUT hosted in a web browser.
Any internet-enabled computer with a web browser can access the system and
multiple concurrent users are supported.

A primary goal of the system is to provide an easy to navigate interface for both
casual and administrative users. The Ul is available in both English and French.
News and informati(?n about IEEE events are prominently displayed. The
administrative parté of the site are protected against un-authorized access.

The settings from this study were used to provide an additional evaluation for
phase 1 and the core evaluation for phase 3.

3.3.3 SAP Project .

The third case study has been conducted with an expert in a leading Enterprise

Resource Planning (ERP) software producer, SAP. Currenﬂy, the need for the

SAP project management is still requesting more efficient methodologies and

43

techniques to assist the project manager during the project estimation. SAP
implementation is one of the large markets that still have challenge to have a
close quantification of different project parameters regarding the réai need of
implementation projects. In this case study, the SAP expert instantiated the NFRs
Ontology using a set of requirements from one of their major SAP projects. The
purpose of the project is to replace the old version of SAP and other legacy
systems in order to integrate all the business processes within the same ERP.

The settings of this case study were used to provide an additional evaluation for

phase 1 of this research.
3.4 Applicability

The applicability of the approaches resulting from this research has been
demonstrated by (i) improving the NFRs specification (see Chapter 4, Section
4.7), (i1) improving the testing practices for NFR on deployed software using the
proposed tracéébility mechanism (see Chapter 5, Section 5.6) and (iii) better
predicting the effort for building the software project taking the impact of NFRs

into consideration (see Chapter 6, Section 6.6).

Chapter IV: An Ontology Based
approach to Non-Functional
Requirements Conceptualization

“The first step towards wisdom is calling things by their right names.”
Chinese Proverb

4.1 Introduction

The growing interest in ontology-based applications as opposed to systems based
on information models have resulted in an increasing interest in the definition of
conceptual fnodels for any kind of domain. Software engineering is one of those
domains that have received high attention in that respect [MAo4], [SCo5] and
[WADDo3]. Current research studies by Knowledge Engineering scholars on
requirement acquisition, for example, use domain ontology to support software
requirements description [HMo06], [Jinoo] and [KSo5]. These studies leverage
the existing knowledge of the relationship between‘ the software requirements
and the information in the related domain. According to this relationship, the
domain knowledge influences the result of requirements acquisition [JKCWo08].
International Software Engiheering -standards such as IEEE [IEEE6101290]
provide a foundation for the development of ontology for software engineering in
terms of common vocabulary and concepts. Nonetheless, the process of analysis
of the standards to come up with a logical coherent ontology is by no means a

simple process [SCo5]. Moreover, the NFRs have received little or no attention

45

from the ontology research groups due to inherent challenges imposed by the
semantic imprecision of NFRs conceptual schemas tSCos].

Existing NFRs elicitation methods adopt memo of interview transcripts to collect
initial NFRs and then construct systems with the NFRs integrated according to
the experience and intuition of the designers [JKCW08]. However, empirical
- reports [BLF99], [FD96] and [LT93] indicated a number of drawbacks when not
dealing with NFRs using systematic and well-defined methods. For example, a
significant portion of NFRs may be neglected as it is difficult to ask users to
provide their NFRs explicitly because they are always related to other concepts in
the domain and affected by context. Furthermore, NFRs can often interact, in the
sense that attempts to achieve one NFR can help or hinder the achievement of
other NFRs at certain functionality. Such an interaction creates an extensive
network of interdependenciés and trade-offs between.NFRs which is not easy to
describe [CNYMool].

The grovving ‘awareness of these issues among the requirements engineering
community in the last few years led to a heightened interest in NFRs description
and modeling and, in turn, to the emergence of several models intended to
capture and structure the more relevant concepté deﬁning the NFRs and their
relations. Such models are generic ones and must be instantiated to be usable for
specific dbmains or applications. Yet, the instantiation process is not easy to
perform since the generic models usually do not contain sufﬁcient information

about NFRs interdependencies [SBMB06]. Some standards have been proposed

in order to unify the definition of subsets of NFRs; e.g., software quality concepts

46

[ISO912601]. However, till now there is no clear and coherent generic
representation of the NFRs concepts.

Building on the above discussion, a knowledge-based representation is necessary
to support the description of NFRs within a system and to provide practitioners
and researchers with a valuable alternative to current requirements engineering
techniques. The aim of our research reported in this chapter is to systematically
develop an ontology which provides the definition of the general concepts
relevant to NFRs without reference to any particular application domain. Thé
general concepts can then act as a common foundation for describing particular
non-functional attributes as well as providing a conceptual model for NFRs
(including e.g. entity definitions, relations, etc.). The ontology also contains rules
which define the semantics of the defined concepts.

The rest of this chapter is organized as follows: Section 4.2 provides the necessary
background on ontologies in software engineering and the Web Ontology
Language (OWL). Section 4.3 describes the common foundation development
process. Section 4.4 discusses the development of the terminological level of the
NFRs Ontology, while Section 4.5 discusses the conceptual level. Section 4.6
discusses the evaluation phase of the NFRs Ontology. Section 4.7 presents related

work. Section 4.8 concludes the chapter.

47

4.2 Background

4.2.1 Ontologies in Software Engineering

Ontology can be defined as “a specification of a conceptualization” [Grugsz].
More precisely, ontology is an explicit formal specification of how to represent
the objects, concepts, and other entities that exist in some area of interest and the
relationships that hold amohg them. In general, for ontology to be useful, it must
represent a shared, agreed upon conceptualization. The use of ontologies in
computing has gained popularity in recent years for two main reasons: i) they
facilitate interoperability and ii) they facilitate machine reasoning.

In its simplest form, ontology is taxonomy of -domain terms. However,
taxonomies by themselves are of little use in machine reasoning. The term
ontology also implies the modeling of domain rules. It is these rules, which
provide an extra level of machine “understanding”.

Ontologies are already used to aid research in a number of fields [SOKHo09] and
[GKMo08]. They are often used in the development of thesauri which need to
model the relationships between nodes. One example is the National Cancer
Institute Thesaurus [NCIo3], which contains over 500,000 nodes covering
information ranging from disease diagnosis to the drugs, techniques and
treatments used in cancer research. .

Recently, the software engineering community has recognized ontologies as a
~ promising way to address current software engineering problems [CFMo06] and
[HS06]. Researchers have so far proposed many different synergies between

software engineering and Ontologies. For example, ontologies are proposed to be

48

used in requirements engineering [LGO5], software modeling [Knuo4], model
transformations [KKK+06], software maintenance [KBTo7], software
comprehension [WZRo7], software methodologies [CH06], and software
community of practice [ASHKWo06].

The constructs used to create ontologies vary between ontology languages. One
class of ontology languages is those which are based upon description logics
[BHS03]. OWL is one such language. OWL is discussed in the following section
as an illustration of how ontology may be created.

4.2.2 OWL
OWL [OWL] is the Web Ontology Language, an XML-based language for

publishing and sharing ontologies via the web. OWL originated from DAML+OIL
both of which are based on RDF (Resource Description Framework) triples.
* There are three ‘species’ of OWL — but the most useful for reasoning - OWL-DL —
corresponds to a description logic.

OWL ontology consists of Classes; also referred to as éoncepts, and their
Properties; also referred to by relations. The Class definition specifies the
conditions for individuals to be members._of a Class. A Class can therefore be
‘viewed as a set. The set .membership conditions are usually expressed as
restrictions on the I;roperties of a Class. For instance the allValuesFrom and
someValuesFrom property restrictions commonly occur in Class definitions.
| These correspond to the universal quantifier (V) and existential quantifier (3) of
predicate logic. More precisely, in OWL such restrictions form anonymous

Classes of all individuals matching the corresponding predicate.

49

Classes may be constructed from other Classes using the intersectionOf, unionOf
and complementOf constructs which correspond to their namesakes from set
'theory. Another way to define a Class is to specify all individuals of which it
consists explicitly using the one of construct. A key feature of OWL and other
description logics is that classification (and subsumption relationships) can be
automatif:a]ly computed by a reasoner which is a piece of software able to infer
logicél consequences from a set of asserted facts or axioms. For the purpose of
the NFRs Ontology, we will use a semantic web reasoning system and
information repository: Renamed Abox and Concept Expression Reasoner
(RACER) [RACER]. An ‘open world’ assumption is made. This means that no
“assumptions are made about anything which is not asserted explicitly. One
outcome of this is that a Class definition does not act as a template for individuals
‘as it might in a closed world. For instance, aﬁ individual may héve extra
Properties about which nothing is asserted in its Class definition. An individual
may also be a member of many Classes. Because classifications can be inferred,
the creator of an individual does not need to be aware of all possible Classes into
which the individual may fall at the time of creation. Instead, all Classes of which
it is a member can be inferred by a reasoner. This is of a particulér help for
hierarchies of quality requirements which }.1ave been identified in the literature
with more than one parent quality requirement (see Section 4.5.2.1.1).
The following snippet from our ontology gives a flavor of OWL. It defines a Class
MeasurableNonFunctionalRequirement, stating that it is exactly equivalent to
the NonFunctionalRequirement Class intersected with the set of all individuals

which have a Property “hasIndicator”, with at least one value which is an

50

“Indicator”; Finally it states that the class
MeasurableNonFunctionalRequirement and

NonMeasurableNonFunctionalRequirement are disjoint.

<?xml version="1.0" encoding="UTF-8"?>
<owl:Class rdf:about="#MeasurableNonFunctionalRequirement">
<owl:equivalentClass> ‘
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
- <owl:Restriction>
<owl:someValuesFrom rdf:resource="#Indicator"/>
<owl:onProperty> :
<owl:InverseFunctionalProperty rdf:about="#hasIndicator"/>
</owl:onProperty>
</owl:Restriction>
<owl:Class rdf:about="#NonFunctionalRequirement"/>
</owl:intersectionOf> '
</owl:Class>
</owl:equivalentClass>
<owl:disjointWith>
<owl:Class rdf:ID="NonMeasurableNonFunctionalRequirement" />
</owl:disjointWith>
</owl:Class>

Clearly, this is not particularly human-readable, especially because the Classes
and Properties referenced (Indicator, hasIndicator,
NonMeasurabléNonFunctionalRequirement) could be defined anywhere in the
file. Editing OWL manually can be equally difficult for the very same reason. We
used Protégé 3.3 [PROTEGE] and its OWL plug-in for NFRs Ontology
development. Figure 4-1 shows a snapshot from the NFRs Ontology built using
the Protégé tool. Protégé is a free, open-source platform that provides a growing
user community with a suite of tools to construct domain models and knowledge-
based applications with ontologies. At its core, Protégé implements a rich set of

knowledge-modeling structures and actions that support the creation,

51

visualization, and manipulation of ontologies in various representation formats.
Protégé can be customized to provide domain-friendly support for creating

knowledge models and entering data.

Functionality is defined by the ISO9126 as a sef of aitribules thel beor
ot 8 et 0f unclions and their specified properties. The funclions are those that satisty

il wore

£5 NonMessurableNorFunctionsiRequire. 5 cRenurementOn sere GoRl

U sk

Figure 4-1: A Snapshot of the NFRs Ontology in Protégé.

4.3 Development Process of a Common Foundation

We need a disciplined process for the development of the NFRs common
foundation; which will be realized by the NFRs Ontology. In the development of
the Common Foundation we distinguish the following phases in the ontology
development process: requirements for the ontology, design of the ontology,

implementation of the ontology and evaluation of the ontology. There are

52

supposed to be several iterations over these phases. In this section, we
summarize the approach for the development of the NFRs Common Foundation.
We describe the distinction between glossary and taxonomy. Furthermore, we
introduce the deductive approach used in this process.

4.3.1 NFRs Ontology Requirements

In this section we list a number of requirements for the NFRs Common
Foundation. The most important requirements are:

Req 1. The Common Foundation shall comprehensively represent commoﬁ
terminology and concepts used in NFRs (descriptive standard). This requirement
states the main characteristic of the Common Foundation as a descriptive
standard. The Common Foundation is not meant to be a prescriptive and
normative standard.

These three types of standards can be described as follows [Skuo2}:

- Descriptive: give definitions of facts.

- Normative: provide guidelines to be used as a basis for "measurement,
comparison or decision.

- Prescriptive: define a particular way of doing something.

Req 2. The Common Foundation shall be generally acceptable in order to
facilitate communication between the partners and (re)use of terminology.

- Generally accepted means that the knowledge and practices described are
applicable to most projects most of the time, and that there is widespread
consensus about their value and usefulness. Generally accepted does not mean

that the knowledge and practices described are or should be applied uniformly on

53

all projects (adapted from Project Management Body of Knowledge
[PMBOKoo]).

Other captured requirements are:

Req 3. The Common Foundation shall be accurate, complete, conflict-free, and
non-redundant. The characteristics of Req 3 are described by Shanks et al.
[STWo3] for validating conceptual models.

- Accuracy. The model should accurately represent the semantics of the domain
as perceived by the focal stakeholder(s);

- Completeness. The model should completely represent the semantiés df the
domain as perceived by the focal stakeholder(s);

- Conflict-free. The semantics represented in different parts of the model should
not contradict one another (also called consistency).

- No redundancy. To reduce the likelihood of conflicts arising if and when the
model is subsequently updated the model should not contain redundant
semantics (related to conciseness).

Req 4. The Common Foundation shall be unambiguous, verifiable, and
traceable. The characteristics of Req 4 are also used for software requirements
specifications [IEEE83008]:

- Unambiguous. The definition should only allow a single interpretation.

- Verifiable. The information can be checked for correctness.

- Traceable. The origin of the definition can be determined.

Req 5. The Common Foundation shall be usable: understandable, learnable,

concise, and accessible.

54

Req 6. The Common Foundation shall be maintainable: analyzable, changeable
(versions), testable and stable.

The characteristics of Req 5 and Req 6 are described in ISO/IEC 9126
[1SO912601], as software product quaIity (sub)characteristics. Usability and
maintainability should be checked in the validation and deployment phases.

- Maintainability. The capability of the product to be modified.

- Usability. The capability of the product to be understood, learned, used and
liked by the user, when used under specified conditions.

4.3.2 NFRs Ontology Design

In Noy et al. [NMoo], several guidelines are given for ontology development. We
will apply ontology engineering as used in the development of the Common
Warehouse Metamodel (CWM) [CWMoz2]. The metamoael is described in the
Unified Modeling Language (UML). In the CWM Business Nomenclature (see
UML Class Diagram in Figure 4-2) two levels are distinguished:

- A taxonomy with concepts at semantic level (conceptual model or domain
model),

- A glossary with terms at representation level (terminology).

A concept can be related to other concepts. The re]atibn between concepts in a
taxonomy can be generalization/specialization, aggregation and composition,
association and dependency, whc;re needed enriched with navigation direction,
labels and multiplicities.

A concept is identified by a number of terms. A term can be related to other terms

and can be used in the description of concepts. A term is described in its

definition. There are many types of definitions such as denotative definitions,

55

connotative definitions and operational definitions. In the NFRs Ontology, we
will use denotative definitions. Those definitions rely on techniques that identify
extension(s) of the general term being defined with the structure:

<Concept> is <more general concept> with <specific conditions>

Copi and Cohen [CC98] provide some guidelines for this type of definitions:

- Focus on esséntial properties

- Avoid circularity

- Capture correct properties (not too broad, not too narrow)

- Avoid ambiguous and figurative language; be factual, not persuasive.

- Be affirmative rather than negative

Domain
dsrelatedto _**
1 Hsdescribedin
' Concept -is defined by
‘ . | Taxomomy | |
o -consists of
 conceptual modef (semantics) { .
B 1
Term
1 N Glossary N
. = -consists of
+ terminology (representation) 7 s related fo
e e e e — 1 -

Figure 4-2: Relation Between Taxonomy and Glossary.

56

4.3.3 Deductive Approach

Holsapple [HJ02] describes a number of approaches to ontology design:
inspiration, induction, deduction, synthesis and collaboration (See Table 4-1). We

chose to follow the deductive approach.

Table 4-1: Approaches to Ontology Design.

Approach Basis for Design
Inspiration Individual viewpoint about the
domain.
Induction ‘ Specific case within the domain.
Deduction General principles about the
domain.
Synthesis - Set of existiﬁg models, each of

which provides a partial

characterization of the domain.

Collaboration Multiple individuals' viewpoints
about the domain, possibly
coupled with an initial ontology

as an anchor.

The deductive approach to ontology design is concerned with adopting some
general principles and adaptively applying them to construct an ontology geared
toward a specific case. This involves filtering and distilling the general notions so

they are customized to a particular domain subset. It can also involve filling in

57

details, effectively yielding an ontology that is an instantiation of the general
notions.

For the purpose of developing the NFRs Ontology, we considered reusing existing
ontologies; however, we could not find a relevant ontologies already existing so
we started developing our ontology from scratch.

Most of the terms and concepts in use for describing NFRs have been loosely
defined, and often there is no commonly accepted term for a general concept
[Glio7]. As indicated in the Introduction (Section 4.1), Common Foundation is
required to enable effective communication and to enable integration of activities
within the RE community. This Common Foundation is realized by developing an
ontology, i.e. the shared meaning of terms and concepts in the domain of NFRs.
In Section 4.4, we discuss the terminological level of the NFRs Ontology, while in
Section 4.5, we discuss the conceptual aspect of the NFRs Ontology.

4.3.4 NFRs Ontology Implementation
We used Protégé 3.3 [PROTEGE] and its OWL plug-in in NFRs Ontology

development.
4.4 Development of Common NFRs Terminology

There are many resources for setting up a glossary for NFRs. In addition, there
are many different perspectives (see Figure 4-3) from where NFR terms are
defined, (e.g. NFRs in product-oriented perspective vs. process-oriented

perspective). There are few attempts to set up a common terminology for NFRs.

58

Perspective A Concept []

: Perspective C

Perspective B

Figure 4-3: Common Terminology Derived from Different Perspectives.

In this thesis, the NFRs glossary is developed based on commonality analysis and
generalization from the previous publications in the requirements engineering
and software engineering communities. The link to the sources of the definition
will be provided each time a term is defined.

Commonality analysis is a well;known technique in domain engineering (e.g.
Czarnecki et al. 2000 [CE00]). A common glossary collects common terms and
generalizes the definition such that the general definition could be used in the
specific context.

- 4.4.1 Initial terms

We selected an initial set of core terms for the common NFR glossary. In order to
improve the readability of this chapter, we chose to define other terms while

describing the conceptual model. The initial set of core terms is the following:

59

- Requirement:

Although there have been many definitions used through the years, we have
found the definition provided by requirements engineering authors Thayer and
Dorfman [TD90] to be quite workable:

- A software capability needed by the user to solve a problem that will achieve an
objective, or

- A software capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification or other formally
imposed documentation.

- Functional Requirement (FR):

FR is defined in [IEEE83098] as the requirement which defines the fundamental
actions that must take placé between the software and the environment in
accepting and processing the inputs from the environment and in processing and
generating the outputs to the environment. These are generally listed as shall
statements starting with “The system shall...”

- Primary Functional Requirement (PFR):

PFRs are FRs which represent the principal functionalities of the system. Those
are demands that require functions which directly contribute to the goal of the
system, or);ield direct value to its users. The identification of primary
requirements (which ones to select) is similar to determining which processes in

an organization are primary processes.

- Secondary Functional Requirement (SFR) :

SFRs are FRs which require functionality that is secondary to the goal of the
system. Examples are functions needed to manage the system or its data, logging
or tracing functions, or functions that implement some legal requirement.

- Non-Fuhctional Requirement (NFR):

Probably the greatest challenge when it comes to deal with NFRs is that there is
no agreement in the literature on how to identify the term NFR in the first place.
Table 4-2 gives an overview of selected definitions from the literature or the web
which are répresentative of the definitions that exist. We provided our own
definition in the last row of the table derived from experience and knowledge of

the existing definitions.

Table 4-2: Definitions of the Term ‘Non-Functional Requirement(s)’.

Source Definition

Antén [Ant97] Requirements which describe the non
behavioral aspects of a system, capturing the
properties and constraints under which a

system must operate.

Davis [Dav93] ' Requirements which represent the required
overall attributes of the system, including
portability, reliability, efficiency, human
engineering, testability, understandability,

and modifiability.

61

IEEE 610.12 [IEEE6101290]

Term 1is not defined The standard
distinguishes design requirements,
implementation requirements, interface
requirements, performance requirements,

and physical requirements.

IEEE 830-1998 [IEEE83098]

Term is not defined. The standard defines
the categories functionality, external
interfaces, | performance, attributes
(portability, security, etc.), and design
constraints. Project requirements

(Such as schedule, cost, or development

requirements) are explicitly excluded.

Jacobson, Booch and

Rumbaugh [JBR99]

A requirement that specifies system
properties,, such as environmental and
implementation constraints, performance,
platform dependencies, maintainability,
extensibility, and reliability. A requirement
that specifies physical constraints on a

functional requirement.

Kotonya and Sommerville

[KS9o8]

Requirements which are not specifically
concerned with the functionality of a system.
They place restrictions on the product being

developed and the development process, and

62

they specify external constraints that the

product must meet.

Mylopoulos, Chung and

Nixon [MCNg2]

“... global requirements on its development
or operational cost, performance, reliability,
maintainability, portability, robustness, and
the like. (...) There is not a formal definition
or a complete list of nonfunctional

requirements.”

Ncube [Ncuoo]

The behavioral properties that the specified
functions must have, such as performance,

usability.

Robertson and Robertson

[RR99]

A property, or quality, that the product must
have, such as an appearance, or a speed or

accuracy property.

SCREEN Glossary [SCREENQ9]

A requirement on a service that does not
have a bearing on its functionality, but
describes attributes, constraints,
performance considerations, design, quality
of service, environmental considerations,

failure and recovery.

Wiegers [Wie03]

A description of a property or characteristic
that a software system must exhibit or a

constraint that it must respect, other than an

63

observable system behavior.

Wikipedia: Non-Functional Requirements which specify criteria that can

Requirements [WIKIPEDIA- | be used to judge the operation of a syStem,

NFR] - | rather than specific behaviors.

Wikipedia: Requirements - Requirements which imposé constraints on

Analysis [WIKIPEDIA—R_A] - the design or irﬁplementation (such as
performance requirerﬁents, ~ quality

standards, or design constréints).

Our definition Umbrella term to cover all those
requirements which are not explicitly

defined as functional.

4.5 NFRs Conceptual -Model

The NFRs Ontology will define the (shared) meaning of a sét of concepts for the
NFRs domain. As said earlier, this can be used to improve communication and
interaction among people, or even among systems. .The ontology has an
irriportant core about NFRs model, but also addresses areas such as
requirements, software architectures, etc. |

The NFRs Ontology contains many concepts. The high-leve] taxonomy with the
concepts is shown in Figure 4-4. In order to cope with the complexity of the
model we use views of the model. A view is a model which is completely derived

from another model (the base model). A view cannot be modified separately from

the model from which it is derived. Changes to the base model cause

64

corresponding changes to the view [LDSo05]. Three views of the NFRs Ontology
are identified: The first view concerns the NFRs relation with the other entities of
the software system being developed (iﬁtermodel dependency). The second view
contains the classes and properties intended to structure NFRs in terms of
mutually dependent entities on other NFRs and refinements (intramodel
dependency). The third view represents the measurement process and contains

the concepts used to produce measures to measurable NFRs.

65

— O i
W,,{udue{rh @:Ta*))
i e __’_,,,.--'*"" it
M,,_«{.',;_;; s i UselTiﬂ! 2
_,—w—""“""”‘_w pCI \»-__ fore
L --‘\ et T
T io Altematwe Scenanof
i W—Mmz:-“*"’“” e,
ing >
o~
e .-""" . s it SR T b
. o S S e, \\
e {ﬁociatinnPnintToneess} g OverLapping
(i o i, - a “"w.._____,,..w/
.-d""-’.‘ U .
T T i P s
{%:o_cminnPoi;%%-——\’AsociatloanmTaFunchonalE!emem /,(Pohbeall':ulturamonshmﬁ/x
i i . . e i o N e et
“““‘M""— A —————s. / o e
I R, e e T
e, { MBEIEYIOHPﬂIntTOPIU]ecf-L) ¢ W-i EconmicConstraint
. i i {0 e T
\\‘ - LI
i e i T e
¢ AssociationPointToR e i InfluenceiNfr
“‘-MMW__W__MM"} ¢ e '&\\ﬁ o
M" rrpomanrona
Op!lahngCuns‘hamt 3
e
QuahiyRequnement "
it ""“ e et e
easurableNunFunctwnalequuemz;nL)
"’”"‘-"--...,,. ,""’“""'“ T,
L 7 tnfluence dNfi :3
o es«gnlmplementahnn}
T — T
Reguirement “‘/Atomlcm:
Mg " \"‘-\« /
” . — S
”‘_\ “‘j»mw-“‘ - T .,
_\\\ (. onMeasmableNunFuncnonalRequuemEnt,,J
\\bx_m—-—-w. (F;nmaxyFunchnnaIRequueme‘n.t’/
@cﬂonamtquuemt;;w _,: m&
.M_.w_,@:f’“%*—w.ﬂ S i
.) h\% \Secondan/}'unchonalRequuement‘}
h&\“w"‘“"—«_ s g
- /4-«——«»%._\"
‘(FunctionOp
s e ww"/
-—-—’“'Ml -
) s _ g . ,M\\
o o AlchneptulebesignbecismnOp :ﬂ———-———(b " gn n .
Operatwnahznwn g ”M—_:_‘ —.-.m_.::.,. T . '
o ""”"Wﬁ"‘“«--\“._ I DataOp
m.—m”"*-». eyt
».."“'—-\N____ A
"""" OpuatmnOp P
i R --’
Figure: 4-4: High-Level NFRs Taxonomy

66

4.5.1 Intermodel Dependency View

Figure 4-5 illustrates the structure of the NFRs intermodel dependency view by
means of a simplified UML class diagram. The core of this structure relies on the
fact that NFRs are not stand-alone goals, as their existence is always dependent
on other concepts in the project context. If a requirement is a member of the class
NonFunctionalRequirement, it is necessary for it to be a member of the class
requirement and it is necessary for it to be a member of the anonymous class of
things that are linked to at least one member of the class AssociationPoint
through the hasAssociationPoint property. On the other hand,
isAssociatingNfrTo links the AssociationPoint to a range of:
FunctionalRequirement union Element union Process union Product union
Resource. The elements of this range are described in sections 4.5.1.1, 4.5.1.2,
4.5.1.3 and 4.5.1.4.

The AssociationPoint can be thought of as an interface from the perspective of
the association to the individuals from the above range. Thus, an individual of
AssociationPoint class will always associate one or more NFRs to the same one

individual from the above range. More specifically:

If an individual is a member of the AssociationPoint Class, it is necessary for it to
be linked to one and only one individual from: the (FunctionalRequirement class
through the isAssociatingNfrTo property) OR (Element through
isAssociatingNfrTo property) OR (Process through isAssociatingNfrTo property)
OR (Product through isAssociatingNfrTo property) OR (Resource though the

isAssociatingNfrTo property).

67

An individual from AssociationPoint class can be linked to many individuals from

the NonFunctionalRequirement class through hasAssociationPoint property.

vV

Requirement

SecondaryFunctionalRequirement Process Product

-sAssociatingNfiTo

PrimaryFunctionalRequirement

NonFunctionalRequirement

AV

[> FuntionalRequirement
' “hasAssocialionPoint

L

-isAssociatingNiiTo

-FrisMapedinto _l
AssociationPoint | |

[} -isAssociatingNfiTo

-isAssociatingNfiTo / §
IsRefinedlnto Model

Element 1

| —

HisAssociatingNfiTo Resource

-belongsToDevelopmentPhase

Phase

Wrappi Overidil Overlappin
Antifact . pping ng pping

Figure: 4-5: NFRs Intermodel Dependency View.

68

4.5.1.1 Association to FR (or derived elements)

Functionality-related NFRs refer to the individuals instantiated from the
NonFunctionalRequirement class and participate in hasAssociationPoint
property to an individual from the AssociationPoint class which in its turn
participates in isAssociatingNfrTo property to individual from the
FunctionalRequirement class (see Figure 4-5). In fact, a subset of NFRs, namely
functionality quality requirements (see section 4.5.2.1.1), is defined with an
existential restriction to have at least one association point with FR as it
represents a set of attributes that bear on the existence of a set of functions and
their properties specified according to the ISO 9126 definition to the functionality
quality [ISO912601]. Valid example of functionality-related NFRs is: “the
interaction between the user and the software system while reading email
messages must be secured”.

The FunctionalRequirement class is further specialized into
PrimaryFunctionalRequirement and SecondaryFunctionalRequirement (see
Figure 4-5). A NFR can be associated to either type of FRs.

FR is further realized through the various phases of development by many
functional models (e.g. in the object-oriented field, a use-case model is used in
the requirements analysis and specification phase, a design class model is used in
the software design phase, etc.). Each model is an aggregation of one or more
artifacts (e.g. a use-case diagram and a use-case for the use-case model, a
domain model diagram and a system sequence diagram for the analysis model, a
class diagram and a communication diagfam for the design model). The artifact

by itself is an aggregation of elements (e.g. a class, an association, an inheritance,

69

etc. for the class diagram). Modeling artifacts and their elements in this way gives
us the option of decoupling the task of tracing NFRs from a specific development
practice or paradigm.

If an NFR is associated with functionality, then some or all the offspring elements
that refine this functionality will inherit this association. More specifically:
((NFR; isAssociatedTo AssociationPoint;)) A (AssociationPoint;
isAssociatingNfrTo FunctionalRequirementy)) ==> 3 Element, ((NFR;
isAssociatedTo AssociationPoint,,) A (AssociationPointy,
1sAssociatingNfrTo Element,,) A (FunctionalRequirementx
FrisMappedInto Elementy))

When hasAssociationPoint property links an individual NFR to an individual
- AssociationPoint which is further linked to an individual Functz'onalRequirement
or Element through isAsscoatingNfrTo property, then the AssociationPoint can
be further specified through one of three subclasses. These subclasses specify the
type of association between an individual from the NonFunctionalRequirement
class and an individual from the FunctionalRequirement and Element classes.
We adopt the concepts of overlapping, overriding and wrapping, commonly
used in various separations of concerns approaches [RMA03] and [MABoz2], to
define these three subcIasSes: |

 QOverlapping: the NFR requirements modify the FRs they transverse. In this |
case, the NFR may be required before the functional ones, or it may be required
after them. For example, the implementation of security requirement (e.g. user’s
authorization) needs to be executed before the user can access “réad email

messages” functionality.

70

 Querriding: the NFR superposes the FRs they transverse. In this case, the
behavior described by the NFRs substitutes the FRs behavior.

« Wrapping: NFR “encapsulates” the FRs they transverse. In this case, the
behavior described by the FRs is wrapped by the behavior described by the NFRs.

4.5.1.2 Association to process

A software development process is a structure imposed on the development of a
software product. Synonyms include software life cycle and software process.
There are several models for such processes, each describing approaches to a
variety of tasks or activities that take place during the process.

From the above definition to the software process, process-related NFRs specify
concerns relative to the scope of the development process. Examples of such
NFRs are “The project will follow the Rational Unified Process (RUP)” and
“Activities X, Y, Z will be skipped for this project”.

4.5.1.3 Association to product |
Product-related NFRs refer to those NFRs which have a global impact on the
system as whole. Example of such NFRs are: “The system should be easy to
maintain”.

4.5.1.4 Association to resource

Resources serve as input to the processes used on a project. They include people,
tools, materials, methods, time, money, and skills [Whig7]. An example of an
NFR associated with a resource is illustrated through a requirement like “The
software maintainers should have at least 2 years of experience in Oracle
database.” This is an operating constraint that is associated with candidates for

the maintenance position for the system (another type of resources).

n

4.5.2 Intramodel dependency view

The intramodel dependency view is concerned with the refinement of NFRs into
one or more offspring; through either decomposition or operationalization, and
the correlation among the concepts of the NFRs model. The view is depicted in
the UML class diagram in Figure 4-6 and it is discussed through the concepts and
properties referring to: NFRs type, NFRs decomposition, NFRs

operationalization and NFRs interactivity.

4.5.2.1 NFRs type
Specifying NFR into types is a particular kind of refinement for NFRs [CNYMoo].

This allows for the refinement of a parent on its type on terms of offspring, each
with a subtype of the parent type. Each subtype can be viewed as representing
special cases for the NFR. Five subclasses are identified as a candidate for the
root node for an NFR type refinement hierarchy; namely, QualityRequirement,
DesignImplementation, EconomicConstraint, OperatingConstraint and

PoliticalCulturalConstraint.

72

—

LogicalError

Constructivelnteraction fisDecomposedTo
NonFunctionalRequirement
L
-isinteractingWith
-hasOperationalization
MinorConflict Operationalization
-OpDecomposedTo

-

Designimplementation

EconmicConstraint

OperatingConstraint

PoliticalCulturalConstraint

QualityRequirement

OperationOp ArchitectureDesignDecisionOp

DataOp

FunctionOp

Figure 4-6: NFRs Intramodel Dependency View.

73

4.5.2.1.1 Quality Requirements

Quality is the totality of characteristics of an entity that bear on its ability to
satisfy stated and implied needs [ISO912601]. Software Quality is an essential
and distinguishing attribute of the final product. AEvaluation of software products
in order to satisfy software quality needs is one of the processes in the software
development lifecycle. Software product quality can be evaluated by measuring
internal attributes (typically static measures of intermediate products which
| specify internal quality from the internal view of the product), or by measuring
external attributes (typically by measuring the behavior of the code when
executed to specify the required level of (iuality frorﬁ the external view), or by
measuring quality rin use attributes (which represents the user’s view of the
quality of the software product when it is used in a specific environment and a
“specific context of use). Figure 4-7 presents the three views of the product quality
at different stages in the software life cycle.

Many approaches [BBL76], [CNYMoo] and [1SO912601] classify software quality
in a structured set of characteristics which are further decomposed into
subcharacteristics. We built quality taxonomy out of many inputted approaches
starting from the ISO 9126-1 (see Section 4.7) to define the root nodes for the
quality taxonomy (External Quality, Interﬁal Quality and Quality in Use). Figure
4-8 shows the graphi(;al representation of the quality taxonomy, and Table A-1
(Appendix A) lists each quality with its definition against its parent quality

according to the listed reference(s).

74

Use and
User quality needs |«— —2890aCk 1 oty in use
Contribute to indicates
specifying '
External quality validation ' .
requirement — e e e External quality
Contribute to S
specifying indicates
Intemal quality — -veriﬁ Cimin— —p Internal qualit
requirement Qualty

Figure: 4-7 Quality in the Software Life Cycle [ISO912601].

In the NFRs Ontology, we let the reasoner help computing condensed quality
taxonomy out of the inputted proposals. Being able to use a reasoner to
automatically compute the class hierarchy is one of the major benefits of building
an ontology using OWL-DL sub-language. When constructing large ontologies
the use of a reasoner to conipute subclass-superclass relationships between
classes become almost vital. Without a reasoner it is very difficult to keep largei
ontologies in a maintainable and logically correct state.

Figure 4-9 shows the difference between the asserted model for accuracy; the
model before the reasoner impact, and the inferred model for accuracy; the

model after the reasoner impact.

75

For example, in the asserted model, Accuracy is defined to be a subclass of
Integrity according to [CNYMoo], a subclass of Reliability according to [BBL76],
a subclass of FunctionalityQualityRequirement according to [180912601] and a
subclass of Correctness according to [Firo3]. On the other hand, in the inferred
model, the reasoner has removed FunctionalityQualityRequirement and
Reliability as a direct parent classes for accéuracy. That is because Integrity is
defined itself as sublass of Security according to [CNYMoo] which is by itself a
subclass of FunctionalityQualityRequirement. In addition, Integrity is defined as
a subclass of Reliability according to [BBL76]. Thus, being a subclass of Integrity
implies being a subclass of both FunctionalityQualityRequirement and Reliability
classes. The reasoner simplifies the taxonomy by removing these two redundant
explicit links. Similarly; for Completeness and Consistency it removed Reliability
as a direct parent class; for Accessibility and Operability it removed Utility as a
direct parent class; for Availability it removed Dependability as a direct parent
class; in addition, for Space and TimeBehavior, it removed Efficiency as a direct

parent class.

76

i,

Figure: 4-8 Quality Requirements Taxonomy.

77

S ———

Inlem:lConsxsten:;\\
? % e i
- it . . e et »ﬂ"*""""—""""’-m
. s R g . Emmalconsmncy
M,,ww-”*""’w Rehablhiy \"‘MM e)
/«-”’” / g . TimeAccuracy)
[— *‘K-w—w Dependab)lltv}:}-‘—f s“u"f,] _‘lht!gl_.ity\s\l y
{Extemil and_intemnal_Quality . ‘
mwmwﬂ'\\ &w—t Functnonamy s

T e
i £ Coneciness

Figure: 4-9 (a): Asserted Model for Accuracy Quality

—

G,

”W ——*"M—N
§Cnrrentnes b

e

e,

- >_ st '
) . QSneTnOneAceura::;‘)

st

Figure: 4-9 (b): Inferred Model for Accuracy Quality

78

4.5.2.1.2 Design Implementation Constraint

Constraints are not subject of negotiations and, unlike qualities, are off-limits
during design trade-offs. Constraints are defined in [LWo03] as restrictions on
the design of the system, or the process by which a system is developed, that do
not affect the external behavior of the system but that must be fulfilled to meet
technical, business, or contractual obligations. A key property of a constraint is
that a penalty or loss of some kind applies if the constraint is not respected.
According to [TEMPLATEO09], the constraints on design and the implementation

are being decomposed as shown in the taxonomy of Figure 4-10.

" ova: Thing P—r;

Figure 4-10: Design/Implementation Taxonomy.

79

4.5.2.1.3 Economic Constraint

These are constraints which include the immediate and/or long-term
development cost.

4.5.2.1.4 Operating Constraint

These are constraints which include physical constraints, personnel availability,
skill-level considerations, system accessibility for maintenance, etc.

4.5.2.1.5 Political / Cultural Constraint

These are constraints which include policy and legal issues (e.g. what laws and
standards apply to the product).

4.5.2.2 Decomposition

This refers to the NfrIsDecomposedTo property that decomposes a high-level
NFR into more specific sub-NFRs. In each decomposition, the offspring NFRs
can contribute partially or fully towards satisficing the parent.
NfrIsDecomposedTo is a transitive property. The decomposition can be carried
either across the type dimension (section 4.5.2.1) or the association point
dimension. For example, let us consider the requirement “read an email message
with high security”. The security requirement constitutes quite a broad topic
[CNYMoo]. To deal effectively with such a requirement, the NFR may need to be
broken down into smaller components using the knowledge of the NFR type;
discussed in Section 4.5.2.1.1, so that an effective solution can be found. Thus, the
requirement stated as “read an email wifh a bhigh security” can be decomposed
into “read an email with high integrity”, “read an email with high confidentiality”,
and “read an email with high availability”. An example of decomposition across

bo 14

the Association Point is: “read inbox folder messages with high security”, “read

80

system-created folder messages with high security”. The decomposition can be
“ANed” (all NFR offspring are required to achieve the parent NFR goal) or
“ORed” (it is sufficient that one of the offspring be achieved instead, the choice of
offspring being guided by the stakeholders) [CNYMoo].

In the case of “ANed”, as in the security example, all the sub-NFRs are also
associated with the Association Point with which the parent NFR is associated.
For example, the set of individuals of AssociationPoint class which participates in
hasAssociationPoint property with security is a subset of the set of individuals of
AssociationPoint class which participate in hasAssociationPoint property with
conﬁdentiality, integrity, or availability. In the case of “ORed”, then only the
sub-NFRs that are selected by stakeholders will be associated with the FRs with
which the parent NFR is associated. Figures 4-11-a and 4-11-b illustrate the two
situations. The question mark notation “?” in (3-11-b) indicates that a further
contribution from the stakeholders is required to determine the existence of the

relation.

81

N MasAssociatonPoint AssodiatonPont NFR flasAssociationPoint AssociationPoint
Ty —

isDecomposedTo isDecomposedTo
AND) o (OR) hasAgsdCiationPoint
ociationPoint 0
NFR1, NFR2
NFRY, NFRQ A B

Figure: 4-11: Implicit Relations among NFRs and Association Points.

NFRs which cannot be further decomposed into sub-NFRs are referred to as
Atomic NFRs. Thét is if an individual is a member of class AtomicNfr, then it
cannot participate in NfrIsDecomposedTo relation as a domain element.

4.5.2.3 Operationalization |

This refers to the hasOperationalization property that refines the NFR into
solutions in the target system that will satisfice the NFR [CNYMoo]. The inferred
taxonomy of the operationalization is presented in Figure‘ 4-12 and it shows that
operationalization corresponds to solutions that provide operations, functions
(FunctionOp), data representations and architecture design decisions (e.g. design
pattern) in the target system to meet the needs stated in the NFRs. Similar to
decomposition, operationalization can be ANed or ORed.

In the inferred model, the reasoner classifies FunctionOp based on the imposed
assertions as a subclass for FunctionalRequirement. This classification is
conSist_ént with many arguments in the requirements engineering community on
the tight link between the FRsv and NFRs [PDKVo2]. The ontology brings

formalism and a concrete understanding to this link.

82

(~§ecnndaryFunnmnalRequnpmeM,,
e i "
_..,.—‘""— - et
B B i
Q\F:nctionamequnement A] anfunnmnalRequnement
’ S ,,____,,..u-»mv_w__ s, e
b_h_i&. S =
oo
"---”’M S——
L w...oﬁ
el e ——4 Data0p)
. owl:Thing . Opemwnahzahon }:} .
Co SRR e - e - —
;\.,\ Archltectuvebesignbecmonop x:]-————{l;gslpnPaﬁemj
\\‘“‘v-\.._. s e R S
...“‘“_'%M P
iy OpeuhonO‘E/

Figure: 4-12: Inferred Taxonomy for Operationalizations.

We note, that the existence of an association between a NFR and an association
point (e.g. security and association point for send email) implies that an
association exists between those operationalizations which are derived from the
NFR and that association point (e.g. the use of additional ID and association

point for send email). Figure 4-13 illustrates this relationship.

hasAssocoationFoint

NFR >~ o .
Assoc;atnoannq

hasOperationalization
%;oaﬁon}’oint

Operationalization

Figure 4-13: Implicit Relations among NFRs, Operationalizations and
AssociationPoints.

83

4.5.2.4 Interactivity

An individual NFR may participate in isInteracting With property which links it
to another NFR. This refers to the fact that the achievement of one NFR;
InfluencerNfr, at a certain association point can hinder (throﬁgh
isNegativelyInteractingWith property) or help (through
isPositivelyInteractingWith property) the achievement of other NFR;
IﬁﬂuencedNﬁ‘, at the same association point, e.g. security and performance at
read an email message functionality. isInteractingWith is not a symmetric
property.

If NFR, participates in the relation isNegativelyInteractingWith with NFR., then
we say that there is a conflict between NFR, and NFR,. A conflict among two or
more NFRs occurs when the achievement of one NFR obstructs the achievement
of another.

The negative interaction is further specialized through the two sub-properties,
which help classifying the negative interaction into: hasLogicalErrorWith and
hasMinorContradictionWith. We chose to focus on these two sources of conflict
because they are general enough to identify the most critical conflicts (logical
errors) with which the developers have to deal first, and to allow a flexible
quantification of the level of criticality of the remaining conflicts for further -
consideration (Contradiction).

Logical Error: This is a fundamental conflict which must be resolved
immediately. It occurs when the achievement of NFR, will prevent the

achievement of NFR.. This is expressed by means of the propositioh LogicalError

84

(NFR;, NFR:) <& NFR; > NOT NFR.. Logical Error demonstrates a direct
contradiction between two requirements. For example, NFR, is stated as
“Security has to be high at read email functionality”; while NFR; is stated as
“There should be no security constraints at read email functionality™!

Minor Contradiction: This is one of the best-known cases of conflict
[CNYMoo]. Here, we emphasize that NFRs by themselves do not interact, as they
represent static goals to be achieved. However, their associations with association
points could interact, in that attempts to achieve one NFR at a certain association
point can hinder (negative interaction) or help (positive interaction) the
achievement of other NFRs at the same association point. Associating a win
condition with an NFR (say NFR;) triggers a search of the operationalization that
has positive and/or negative effects on NFR,. For example, the Portability NFR,
the vﬁn condition of which is “portable to Windows”, has positive effects on the
portability layers and separation of data generation and on the presentation, but
~has negative effects on the use of fast platform-dependent user interface
functionalities that would be affected with the_ layering strategy. The
operationalizations that are found to have negative effects on other NFRs sharing
the éame association points with their parents NFRs are used to identify potential

conflicts. Below is a generalized algorithm for NFR conflict identification:

Algorithm: Quality_Conflict _Identification(ASSOCIATION _POINTx)

// Find an NFR which links to the same association point. And Initialize
CONFLICT.

Find NFRx such that return_ associated NFR(ASSOCIATION_ POINTX)

CONFLICT ¢ @

85

// Get Positive OPerationalizations (POP) and negative OPerationalizations
(NOP) ’

For each NFRx in return_éssociated*NFR(ASSOCIATION_POINTx)
begin

POP & {OPi | positively-influences (OPi, NFRx) AND parent_NFR(OPi)
return_associated_NFR(ASSOCIATION_POINTX)}

m

NOP €« {OPi | negatively-influences (OPi, NFRx) AND }parent_NFR(OkPi)
return_associated_ NFR(ASSOCIATION_POINTx)}

m

// Identify conflicts using positive-negative or negative-positive relationships.

For each OPi in POP

CONFLICT ¢ CONFLICT u 7

{(ASSx, ASSy) | negatively-influences (OPi, NFRy) AND (NFRy
return_associated__ NFR(ASSOCIATION POINTx))}

m

For each OPi in NOP

CONFLICT €< CONFLICT u

{(ASSx, ASSy) | positively-influences (OPi,” NFRy) AND (NFRy e«
return_associated_ NFR(ASSOCIATION_POINTx))}

End for;

Table 4-3 shows a summary of what we collected through our observations of
industry and the literature of some NFRs, including some of their popular
operationalizations, and other top-NFRs which are candidates for establishing a .
conflict involving a rﬁinor—contradiction. We make the note, however, that Table
4-3 does not preténd to be complete. Indeed, it can not be complete as new
experiences by the authors aﬁd also by other researchers on NFRs can add new

insights into understanding the minor contradictions among NFRs.

86

Table 4-3: NFR operationalizations and Candidate Minor Contradictions.

PRIMARY OPERATIONALIZATIONS | OTHER NFR CONFLICTS
NFR
Usability Error-reducing user | Effort
input/output Performance
Input acceptability checking | Effort
Performance
Reusability Domain architecture-driven | Effort
Performance
Layering Effort
Performance
Security Authorization Availability
Multi-Access
Effort
Performance
Request additional ID Usability
Effort
Performance
Space Use compressed format Response time
Effort
Response time | Use indexing Effort
Interoperability | Input acceptability checking | Effort
Performance
Layering Effort
Performance
Dependability | Backup/ recovery Evolvability
_ Effort
Performance
Monitoring & Control Effort
Availability
Performance
Multi-access
Evolvability Layering Effort
Performance

Figure 4-14 depicts the two types of conflict that may arise between two NFRs.

87

e :

K Ass_qu_a_tion .
. Point

FA

Logical Error Conflict

Minor Contradicton

Figure: 4-14: Conflicts Between Two NFRs

4.5.3 NFRs Measurement View

This view refers to the classes and properties which represent measurement
model concepts associated with the class
MeasurableNonFunctionalRequirement. Figure 4-15 shows the relationships
- among the key components of the measurement model:
MeasurableNonFuncftionalRequirefnent, Indicator, BaseMeasures and
DerivedMeasures by means of a simplified UML class diagraﬁ.

For an individual to be a member of MeasurableNonFunctionalRequirement
class, it has to be a member of NonFunctionalRequirement class and it is
necessary for it to be a member of the anonymous class of things that are linked

to at least one member of the class QualityIndicator through the hasIndicator

88

property. A measurement planner defines measurement indicators that link the
NFRs to a specified information need.

The measurement model linked to a MeasurableNonFunctionalRequirement
captures the process of quantifying and interpreting the measurement data
needed for decision making. An indicator is a measure that provides an estimate
or evaluation of specified attributes derived from the analysis of the
measurement data (values) with respect to defined decision criteria, which serves
as basis for decision-making by the measurement users. For example, acceptable
range of software reliability values is [75%, 100%]; and values below 75% would
require more testing of the product until an aéceptable level is reached. Indicator

class is linked to the class Measure through hasMeasure property.

89

MeasurableNonFunctionalRequirement

NonFunctionalRequirement

]

-hasindicator Quahty Indicator
-hasDecisionCriteria
l -hasMeasure
DecisionMakingCriteria
DerivedMeasure Measure

NonMeasureableNonFunctionalRequirement

-

BaseMeasure

-hasMeasurqnentFuncﬁon hasVaue -hasEntityAtirbute
-hasMeasurgmentMethod
—
MeasurementFunction Value Entity-Attribute || MeasurementMethod

Figure: 4-15: NFR Measurement View

A measure is a variable to which a value is assigned. It can be a base measure or

derived measure. A base measure is defined in terms of an Entity-Attribute and a

MeasurementMethod which is a logical sequence of operations with the purpose

of quantifying an attribute of software entity. An example of such base measures

are: lines of code (LOC), or Kemerer and Chidamber suite [CK94] that have been

defined for the object oriented programming. A derived measure is a measure

that is defined as a function of two or more base measures. It is quantified by a

MeasurementFunction - an algorithm or calculation performed to combine two

90

or more base measures. For instance one can decide that the measure of
maintainability is obtained by a formula like: aAnalysability + fChangeability +
yStability + 8Testability, where the weights a, B, v, 8 are obtained by a statistical
analysis process [1S0912601].

The NFRs measurement view is compatible with the ISO/IEC standard 15939
[1SO1593907] and the described there measurement information model which is
defined as a structure linking measurement information needs to the relevant

entities and attributes of concern.

4.6 Evaluation

This chapter described, through an ontology, glossaries and taxonomies for
NFRs. We used these glossaries for generalization to the common NFRs concepts.
The ontology is a first version meant to evolve. This thesis does not claim that
NFRs Ontology is a complete ontology. The thesis aims to consolidate core and
support knowledge about NFRs into a practical, wofkable and, most importantly,
extensible NFRs Ontology.

These factors make NFRs Ontology useful in its current forrh, as well as
adaptab]e to other new applications ar concerns, even if NFRs Ontology is not
complete.

The evaluation criterion for the discussed ontblogy is that the Common
Foundation for NFRs should be (i) generally acceptable for stakeholders in

requirements engineering community, (ii) consistent and (iii) accurate.

91

‘Generally accepted’ means that the knowledge and practices described are
appiicable to most projects most of the time, and that there is widespread
consensus about their value and usefulness. ‘Generally accepted’ does not mean
that the knowledge and practices described are or should be applied uniformly on
all projects [PMBOKo0].

Clearly, the evaluation of the acceptance and the accuracy of the ontology as such
ultimately relies upon its application in different contexts. For the purpose of this
evéluation, we have instantiated the NFRs Ontology against the set of
requirements from the settings of the NOKIA Mobile Email Application System
(Chapter 3, Section 3.3.1) and the IEEE Montreal Website (Chapter 3, Section
3.3.2). Further, we worked closely with an expert from SAP-Montreal to use the
NFRs Ontology as a repository for the requirements of one of the projects which
are under development (Chapter 3, Section 3.3.3).

Figure 4-16, shows a snapshot for the instantiated NFRs Ontology against thé set
of requirements from the IEEE Montreal website project. For this visualization,
we used TGVizTab plug-in. Table 4-4 summarizes the total number of individuéls

per project instantiated from some of the core classes in the NFRs Ontology.

92

Table 4-4: Summary of Numbers of Individuals Instantiated of NFRs Ontology.

NOKIA IEEE SAP Project

| Mobile Montreal

Email Website

Application

FunctionalRequirement 45 39 104
Element 189 223 421
NonFunctionalRequirement 18 13 21
QualityRequirement 13 8 15
DesignlmplementationConstraint | 2 2 3
OperatingConstraint 1 1 1
PoliticalCulturalConstraint 1 2 1
EconomicConstraint 1 o] 1
Resource N/A 7 6
AssociationPoint 17 39 27
Operationalization 134 13 24
ArchitectureDesignOp 15 6 2
DataOp 2 1 o
FunctionOp 15 6 17
OperationOp 2 0 5

93

EErva ONTOLOGYCODE P rotége 3.3.1 (fdes Ci\Personal, Arndrnhf RS urmio-w uwmwmomfum.m{m ym ;m;

S e

‘-i'éiprot.égé.

i

Get_Privileged Rccess M.

TRe Primme Ak ima
TR, -ﬂ"t,, m,
The_Create_Role_service ¢
~

(aun»u-my o A X '_
¥ FuncionaiRecuw ement :.g

Taytine_5n Manege scrs t 1

e e v m s"m“nnmuthn-:un

System_d splays a_CORTATN Asmocs.

RES0Cat1onPOIRt TR unct 1o
Get_Privileged Access

Create Role
1 The_DeresThe_ Sylte- activates tn

Release Privileged Access

2B System u-pun connml
| Rmytine in mamage Userz s Lo
ste

Funct ionalRegai rement ~

The_Prinay hctor_asks_| wo

AssociationPointTalunctio ile

System displays confirmat
The_System_ gy ey ® =

¥
JAnytame in ln* Users | &
Masign Vser Rules Kain Sc

At ToPwAct) The Actor selects the Rel™ =
System displays_a_confinms

Resign User RolesRelranse _Privi The_System releases acces

Retvieve User] lnlnlnlinn
B AssociatioaPosntToFuact o
—

»
/ Operattonalization oo
Contidentinlity
e Update Role
Frbexnadfontodant iality ‘\

user_Woles_ser

Gperationdy

5.

InternsiConfedentiality

211 Secwrity

:Mj:; v Retrieve Role, hton-uoh-
Retrieve_Evert
: E J”::‘"" Update Role Maiw Scemario lllnv:i.tionhn:l‘ld‘-;\in.

Rvaktability ﬂr _System ; aeumn |u

Anytime in llanp Moers_t'bervice s
e h)n’z‘l actot s

BRG Lt 0w

Figure 4-16: Instantiated NFRs Ontology Against IEEE Montreal Website Case

Study.

From the experiences and the participants’ feedback developed from

instantiating the NFRs Ontology against the three real-life projects (the Nokia

project, the IEEE Montreal website project and the SAP project), the ontology has

proven to be easy to instantiate and links the concepts efficiently. Each individual

captured NFR was instantiated from its corresponding concept in the Ontology.

We make the note here that we did not meet the case in which an individual NFR

was not instantiated from a corresponding concept.

In order to facilitate the adoption of the NFRs Ontology in the requirements

specification phase, we further built a recommended process of

instantiating the NFRs Ontology (Figure 4-17).

steps towards

94

+ Instantiation of the InterModel Dependency View:

- Instantiate classes: Resource, Process, Product.

- Instantiate class FunctionalRequirement.

- Instantiate classes representing the functional refinements: Model, Phase,
Artifact, Element.

- Instantiate class NonFunctionalRequirement.

- Instantiate class AssociationPoint.

- Link individuals from AssociationPoint class to individuals from classes:
FunctionalRequirement, Element, Resource, Process and Product.

- Link individuals from NonFunctionalRequirement class to the individuals
from AssociationPoint class.

+ Instantiation of the Intramodel Dependency View:

- Link individuals from NonFunctionalRequirement class to other individuals
from NonFunctionalRequirement class through isDecomposedTo property.

- Instantiate class Operationalization.

- Link individuals from NonFunctionalRequirement class to individuals from
Operationalizations through hasOperationalization property.

- Link individuals from Operationalization class to individuals from
AssociationPoint class.

- Link individuals from NonFunctionalRequirement class to other individuals
from NonFunctionalRequirement class through isInteractingWith property.

+ Instantiation of Measurement View:

- Instantiate classes: MeasurableNonFuncionalRequirement, Indicator,

DecisionMakingCriteria, Measure and Value.

95

- Link individuals from MeasurableNonFunctionalRequirement class to
individuals from Qualitylndicaor class. |

- Link individuals from QualityIndicator class to individuals from
DecisionMakingCriteria class. |

- Link individuals from QualityIndicator ‘cléss to indivifuals from Measure
class.

— Link individuals from Measure class to individuals from Value class.

Figure 4-17: Steps Towards Instantiating NFRs Ontology.

The snapshots in Figures 4-18 and 4-19 are taken while instantiating some NFRs
of the IEEE Montreal Website Project. The properties widgets in the individual
editor on the right half of the screen helps to link an individual to other cbncepts

through its allowed relations.

| Further, The NFRs Ontology has demonstrated its usefulness on checking of the
completeness of the requirements. For example, there is an asserted condition on
the Operationalization concept that it has to be linked to the
NonFunctionalRequirement concept through isOperationalizationOf
relationship (inverse of hasOperationalization relationship). If an instance of the
Operationalization class is created without being linked to its‘ NFR, then the
widget corresponding to isOperationalizationOf relation will be _highlighted in
red to attract the attention towards this missing link (See Figure 4-20). With such
a feature, NFRs can be checked for their completeneés against the asserted

conditions discussed in this chapter.

96

Consistency has been demonstrated through the usage of a semantic web

reasoning system and information repository: Renamed Abox and Concept

Expression Reasoner (RACER) [RACER].

e

’{‘x pr.olégé

Requring_tor_o_Third_Porty_irteraction_or_Costs_for_Upcates - (natonce
R N TN 5 egyies

et o €% iy A e € W R

1 TR R SR YRR PN

VI T e & Abiky fo_Mantsin_the Website

B A e st O % i # % 8

Value 0 Type U E .

fé

o i

VRV I SR SErancmpe sy I8 S N g ¥ oe ’
® Aszocieborpor X e Sorier o Fe homepoges shood | il

Figure 4-18: Snapshot from the NFRs Ontology-Individuals Tab- (Screen 1).

97

Fig teoict: W FINALONTOLOGYCO!: FI- indrsititet. 4p sThe_cortent_of_the_homepeges_snould_be_easy_to_modty
; . G s :
s i asehy F 3 * 1:‘2{' i >
Y Fonrinde i Property: iLang |
Gow 1 3 vets:comment -
> Mevic
& Modes
> :°"'"‘""’"""‘ i ® B B sicnenistos
i Project :x ne
'y § Requrement =
il 727 ¢ee
B Avors R Ak v Type
» { Desgringlementation
EconmicConzy aint
& : . t
& wnchon: Bissksis_Yakw. P A 2 swwes o gt BB it ; oo
1B NoneasurableMonFund, {1 ' Veke i | Type i - ;
8 OperatingConstrant 715 VeY High string Hicon ® O V7 Gnsinevomimseion © B € 1
1 PoRGCoICultur siConstr i
v £ CuotyRequremert ;
¥ 4B Externe_snd btern 7T T " S o e
> @Ethcency T psmited Mo S5 8P 3R mnced .ol s e)
» @ Funcoonay 1T P Type : :
8 P y fuisocrt: @ B & bignimanmars: € 9 €
e @ The Cortert.of_the. homepages. shoukd
»

S -
<~{%;pmlégé

ey O O R

@‘Mml&c i rotige.exe ﬁ:z‘)ivd"!_,"'aiacuﬁc‘ . 33

Figure 4-20: Snapshot from The NFRs Ontology-Individuals Tab- (Screen 3).

98

In [HMo6], the authors propose a new requirements elicitation method ORE
(Ontology based Requirements Elicitation), where a domain ontology can be used
as domain knowledge. In their method, a domain ontology plays a role on
semantic domain which gives meanings to requirements statements by using a
semantic function. By using inference rules on the ontology and a quality metrics
on the semantic function, an analyst can benavigated which requirements should
be added for improving completeness of the current version of the requirements
and/or which requirements should be deleted from the current version for
keeping consistency. The method starts when an analyst maps the requirements
items (statements) in a requirement document into atomic concepts of the
ontology. By using this approach, it is possible to estimate the quality of
requirements through four defined quality éharacteristics: Correctness,
Completeness, Consistency and Ambiguity. Requirements engineers éan benefit
from the NFRs Ontology proposed in this chapter combined with the proposed
method in [HMo06] to evaluate the set of requirements against these four quality

characteristics.

4.7 Related Work

Even though there is no formal definition of the term ‘NFR’, there has been
considerable work on'characterizing and classifying NFRs. In a report published
by the Rome Air Development Center (RADC) [BWT85], NFRs (“software quality
attributes” in their terminology) are classified into consumer-oriented (or
software quality factors) and technically-oriented (or software quality criteria).

The former class of software attributes refers to software qualities observable by

99

the consumer, such as efficiency, correctness and interoperability. The latter class
addresses system-oriented requirements such as anomaly management,
completeness and functional scope.

Earlier work by Boehm et al. [BBL76] structured quality characteristics of
software within a quality characteristics tree of 25 nodes, noting that merely
increasing designer awareness would improve the quality of the final product. On
a different track, Hauser et al. [HC88] provide a methodology for reflecting
customer attributes in different phases of automobile design.

Dobson et al [DLSo5] describe an approach to specifying the Quality of Service
(QoS) requirements of service-centric systems using an ontology for Quality of
Service. The above approaches address only a subset of NFRs; namely quality
requirements, and sometimes within a specific context; (e.g. service computing in
[DLS05]). On contrast, our work aims at providing a more generic solution to all
types of NFRs with independence from any context.

Al Balushi and Dabhi [ASDLo7] used an ontology-based approach to build NFR
quality models with the objective to gather reusable requirements durihg NFR
specification. We agree with these authors on the usefulness of ontology,
however, the research objectives of their research efforts and ours differ, which in
turn, leads to essential difference in the research outcomes; While the conceptual
model in [ASDLo7] is geared towards solving requirements reuse problems, our
ontology covers a broader spectrum of NFR issues. This is achieved by using
multiple Qi'ews, which explicate requirements phenomena by complementing the

strengths of multiple conceptualizations of NFRs.

Lee et al. [LMGYAo06] apply the so-called “method for developing a problem
domain ontology” from natural language security requirements from various
sources. The objective of the research by these authors was fo provide support to
a common understanding of security requirements and to facilitate analysis at
various decision points by making the required information readily available with
appropriate context and format. While this approach is focused on security
requirements, ours is meant to help analysing any NFR.

On the other hand, some standards have been proposed in order to unify the
definition of subsets of NFRs; e.g. software quality concepts [1SO912601].
However, till now there is no clear and coherent generic representation of the
NFRs concepts. The most important of these standards is the ISO 9126
[ISO912601]. ISO 9126 is an international standard for the evaluation of software
quality. The fundamental objective of this standard is to address some of the well
known human biases that can adversely affect the delivery and perception of a
software developmént project. These biases include changihg priorities after the
start of a project' or not haﬁng any clear deﬁxﬁtions of "success". By clarifying,
then agreeing on the project priorities and subsequently con\.'erﬁng abstract
priorities (compliance) to measurable values (output data can be validated
against schema X with zero intervéntion)‘,l ISO 9126 tries to develop a. conimon

understanding of the project’s o_bje‘étives and goals.

The standard is divided into four parts:
e quality model

e external metrics

103

« internal metrics

e Quality in use metrics.

In [ACKo5], the authors reported on nine problems with ISO/IEC 9126 for design
quality as follows:

» Some concept definitions are ambiguous, e.g. functional compliance.

« Some concept definitions overlap, e.g. functional implementation completeness
and functional implementation coverage.

» Overlapping definition of concepts can lead to multiple counting when metrics
are constructed.

« The standard recognizes reliability and maintainability as quality characteristics
but does not refer to them when considering design products although most
software engineers would agree that both characteristics need to be designed into
products.

 The standard ignores other characteristics that might be important in design
products such as validity and modularity.

- Simple Counts are insufficient to evaluate the quality of design.

» Some measures require information that is not available to the designers, such
as functional understandability.

» Some measures require counting items that are not available from design
documents, such as computational accuracy and data exchange.

 No guidelines or procedures are defined for accumulating the metrics into an

overall evaluation.

102

In the light of its ambiguities and omissions, the authors of [ACKo5] conclude
that ISO/IEC 9126 in its present format fails to achieve any of its stated
objectives.

In 2005, the ISO/IEC 25000:2005 [ISO25000] has been introduced as a
guidance for the use of the new series of International Standards named Software
product Quality Requirements and Evaluation (SQuaRE).

S‘QuaRE replaces the current ISO/TEC 9126 [ISO912601] series and the 14598
series. SQuaRE consists of the following five divisions:

« ISO/1EC 2500n - Quality Management Diviéion,

« ISO/IEC 2501n - Quality Model Division,

« ISO/IEC 2502n - Quality Measurement Division,

« ISO/IEC 2503n - Quality Requirements Division, and

« ISO/IEC 2504n - Quality Evaluation Division,

ISO/IEC 25050 to ISO/IEC 25099 are reserved to be used for SQuaRE extension
International Standards and/or Technical Reports. SQuaRE provides:

« Terms and definitions,

» Reference models,

« General guide,

« Individual division guides, and

 International Standards for requirements specification, planning and
management, measurement and evaluation purposes.

SQuaRE includes International Standards on quality model and‘ measures, as

well as on quality requirements and evaluation.

103

In Table 4-5, we compare different broad quality taxonomies, including our
constructed quality taxonomy presented in Section 4.5.2.1.1, with respect to (i)
number of qualities included, (ii) consideration to association, (iii) consideration
to operationalization, (iv) consideration to interactivity among qﬁalities and (v)

consideration to qualities measure.

S04

6£6ST

prepuels DA1/0SI
91} 0} SULIOJUOD
ma1a 9y, €Sy uonoag

1'G'¥ uonoeg

u1 pajussald [[am st u1 pajussaid
sanyenb jo a3uel 1spm Veot €eav [[om st sjutod
9Y} sejepowIuIodde Uuoneg ul uo109g uI pajussaid uoreIoosse
1eYIMaIlA | pajuesald [[om [1om st faredoad [enuazod aAly Awouoxe],
JUAWAINSBAW peoIq Y | SI AJAORIIU] uonjezijeuonerod(| YIm UONIRIDOSSY L8| ArendnQ
[¥] 9216 O8I
pue [€] 9216 OS] 2]
9216 OS] Ul paIapisuoy V/N V/N V/N L8 | [10931608I]
V/N V/N V/N V/N 0z [92144]
V/N V/N V/N V/N er [S81M4]
V/N V/N V/N V/N ct [€0o1IMm]
V/N V/N V/N V/N I [L4MEIN]
sonen) sjuduwrdanbaax | jesodoad
jusurdambaa fyijenb - Suowre A1enb Awouoxe)
JO JUIWRINSBINI Aanoesau] | uonezijeuonerddp UONBIOSSY Jo _dquInN LA1end

‘serwrouoxe], Ajifeng) peoiq [eiessg usamiag uostredwo)) :S-t a[qe,

Chapter V: A Traceability
Mechanism for Change
Management of Non-Functional
Requirements

“Testing by itself does not improve software quality. Test results are an
indicator of quality, but in and of themselves, they don't improve it. Trying to
improve software quality by increasing the amount of testing is like try to lose
weight by weighing yourself more often. What you eat before you step onto the
~ scale determines how much you will weigh, and the software development

techniques you use determine how many errors testing will find. If you want to
lose weight, don't buy a new scale; change your diet. If you want to improve
your software, don't test more; develop better.” '

Stéve McConnell

5.1 Introduction

In the early phases of software development, user requirements are established
based on an analysis of business goals and the application domain. Subsequently,
architectures of the desired systems are designed and implemented. As indicated
already in the Introduction, during this development process, requirements are
usually exposed to many changes as the availability of knowledge on the system
being developed increases [Jaco7]. Traceability, defined as “the ability to describe
" and follow the life of a requirement in both a forwards and backwards direction”
from inception throughout the entire system’s life cycle, provides useful support
mechanisms for managing requirement changes during the ongoing change

process [Gotgs] and [GF94]. Moreover, the extent to which traceability is

106

exploited is viewed as an indicator of system quality and process maturity, and is
mandated by many standards [ANRS06].
In practice, many organizations either focus their. traceability efforts on FRs
[WWo3] or else fail entirely to implement an effective traceability process
[BSA07] and [Cleos]. NFRs such as security, safety, performance, and reliability
are treated in a rather ad hoc 'fashion and are rarely traced. Furthermore, the
tendency for NFRs to have a global impact upon the software system necessitates
the need to create and maintain an overwhelming number of traceability links.
On the other hand, the appropriate support for NFRs traceability can return
significant benefits to an organization through helping analysts understand the
impact of a proposed change upon critical system qualities and enabling them to
maintain these qualities throughout the lifetime of a software system.
In chapter 4, we proposed a conceptualization of NFRs which provides explicit
links to concepts and relations of NFRs and thus serves as a foundation for
validating the semantic precision of conceptual schemas and for mapping NFR
conceptual knowledge to modern Web-enabled ontology languages such as OWL
[OWL]. A knowledge-based representation; such as the one we presented in
Chapter 4, is necéssary to support the traceability of NFRs within a system and to
provide practitioners and researchers with a valuable alternative to current
_requirements engineering techniques.
In this chapter, we identify four critical areas in which NFRs require traceability
support:

e Impact of changes to FRs on NFRs (inter-model traceability).

e Impact of changes to NFRs on FRs (inter-model traceability).

107

¢ Impact of changes to NFRs on sub-NFRs and parent NFRs (intra-model
traceability).
e Impact of changes to NFRs on othér interacting NFRs (intra-model
traceability).

Tracing NFRs against these areas is crucial to the long-term maintenance of
critical system qualities such as safety, security, reliability, usability, and
performance.
In this chapter we provide a traceability mechanism using Datalog expressions
[UWo02] to implement queries on the relational model-based representation for
the ontology. Datalog (a subset of Prolog) is a language of facts and rules, as well
as a logic-based query language for the relational model. Query evaluation with
Datalog is sound and éomplete. In addition, Datalog supports Recursive Closure
Operations which makes it possible to trace through multiple levels of
refinements within the software development process. Furthermore, Semantic
Web Rule Language (SWRL) which is a proposal for a Semantic Web rules-
language is combining sublanguages of the OWL Web Ontology Language (OWL
DL and Lite) with those of the Rule Markup Language (Unary/Binary Datalog).
 SWRL allows users to write rules that can be expressed in terms of OWL concepts
to prévide more pqwerful deductive reasoning capabilities than OWL alone
[SWRL]. Semantically, SWRL is built on the same description logic foundation as
OWL and provides similar strong formal guarantees when performing inference.
This brings a feasible future work towards using our Datalog implementation
proposed in this chapter to extend our OWL implementation for NFRs Ontology

through the definition of SWRL rules.

108

In addition to Datalog implementation, we provide an alternative
implementation using the eXtensible Markup Language (XML)-based
representation. We then use XQuery [XQUERY] to implement queries to
represent requirements tracing information. XQuery, which is a technology
under development by the W3C, provides the means to extract and manipulate
data from XML documents or any data source that can be captured in XML, such
as relational databases or office documents. XQuery uses XPath expression
syntax to address specific parts of an XML document.

The remainder of this chapter is organized as fo]lows: Section 5.2 provides a brief
overview of related work. Section 5.3 presents the relational model and
implementation of tracing queries using Datalog expressions. Section 5.4
presents an alternative implementation using XML and XQuery expressions.
Section 5.5 proposes a traceability mechanism using the NFRs Ontology and the
relational model. Section 5.6 provides a discussion and evaluation and Section 5.7

concludes the chapter.
5.2 Related work

Aithough prior work on tracing NFRs has been rather limited, a number of
traceability approaches have in fact been de;_feloped to support related activities
while incorporating NFRs in software engineering processes.

In [CNY95], the authors adopt the NFR Framework [CNYMoo] to show how a
historical record of the treatment of NFRs during the development process can

also serve to systematically support evolution of the software system. The authors

109

treat changes in terms of (i) adding or modifying NFRs, or changing their relative
importance, and (ii) changing design decisions or design rationale. While this
study has provided some support for extensions to the NFR Framework,
particularly in representing changes to goal achievement strengths, the impact of
changes to functional models on non-functional models, and vice-versa, has yet
to be discussed.

In [Cleos] and [CSBBCo5], the authors propose an approach named Goal Centric
Traceability, a holistic traceability environment which provides systems analysts
with the means to manage the impact of functional change on NFRs.
Nevertheless, the impact of changes to an NFR on other NFRs and the functional
model is not solved with this solution.

Many other initial approaches have been introduced by researchers active in the
requirements engineering, product line engineering, and Aspect oriented
Software Engineering communities to address the traceability of NFRs [EG04],
[FEoo], [Samo6], [RJo1], [HNSo5], [Jaco7], [BCAMRT06], [NIo7], [ANRS06],
[GFo4], [Leto2] and [WSZAo06]. These approaches have three important
limitations. First, tracing is either tackled within a phase or it does not cover the
entire life cycle. Second, the traceability model that is applied is usually focused
on specific programming paradigm elements. Third, these approaches use
coarse-grained entities for tracing purposes, which is risky from the point of view
of the precision of change impact analysis, which in turn results in imprecise
estimates of the cost and time involved in implementing a requirement change.
The specific challenges faced in state-of-the art traceability practice are described

in more detail in [ANRS06].

110

This chapter offers a solution to the open research problems discussed in this
section. The proposed ontology in Chapter 4 is well suited for defining and
analyzing numerous NFRs, the impact of changes in a NFR upon other NFRs,

NFRs impact on the FRs and vice versa traceable over the entire life cycle.

5.3 Relational data model for tracing requirements

While the metamodels presented to describe the ontology in Chapter 4, Figures
4-5, 4-6 and 4-15 are useful ways to understand the abstract structure of the
NFRs-related concepts, they are not considered a suitable basis for retrieving
data on the objects that are instantiated from this model. Thus, the model has to
be transformed into another model which facilitates querying the information.
The relational model is extremely useful as a mapping vehicle, because it is based
on a single data modeling concept, namely the relation. For the purposes of this
work, we decided to use Datalog expressions [UWo02] to operate on one or more
relations to yield another relation which would present the desired results. Figure
5-1 presenfsthe schemas for the relations cor’respohding to the subset of concepts
shown in Figures 4-5 and 4-6. The relations are infended to hold information
collected by stakeholders at different stages of the ’development cycle.

To illustrate the traceability model, we will limit the discussion to two pieces of
functionality of NOKIA Mobile Email api)lication (see Chapter 3, Section 3.1): (1)
the user asks to read an email message; and (2) the user composes and sends a
new email. Figure 5-2 presents these two main pieces of functionality

decomposed into elements of use cases, scenarios, events, and methods. The

111

decomposition of FRs into these elements is for illustrative purposes. Our
traceability approach would also support mapping FRs into other refinement
elements (e.g. elements of the static view of the system such as classes and
relations).

Three NFRs are also presented: security, performance, and scalability.

//Schema refers to NonFunctionalRequirement concept

NFR (ID, NAME, DESCRIPTION, SATISFACTION, TYPE),

//Schema refers to FunctionalRequirement concept

FR (ID, NAME, DESCRIPTION);

//Schema refers to operationalization concept

OP (OP_ID, NAME, DESCRIPTION);

//Scheme refers to nfrlsDecomposedTo relation

NFR_DECOMPOSITION (DEC_ID, PARENT_NFR_ID, SUB_NFR_ID,
TYPE_OF_DECOMPOSITION);

//scheme refers to hasbperal‘ionalization relation (from the NFR to the design solutions)
NFR_OP (NFR_ID, OP_ID);

//Schema reférs to OpDecomposedTo relation

OP_DECOMPOSITION (OP_DEC_ID, PARENT_OP_ID, SUB_OP_ID,
TYPE_OF_DECOMPOSITION);

//Schema refers to isInteracting With relation

NFR_INTERACTION (INTERACTION_ID, INTERACTING_ASSOCIATION_ID,
AFFECI’ED__ASSOCIATION_ID, TYPE_OF_INTERACTION);

//Schema refer§ to hasAssociationPoint relation

NFR_'_ASSOCIATION (ASSOCIATION_ID, NFR_ID, ASSOCIATION_POINT_ID, Type);
//Schema refers to FRisMappedInto relation

FR_ELEMENT (FR_ID, ELEMENT_ID);

//Schema refers to elementIsDecomposedInto relation

112

ELEMENT_DECOMPOSITION (PARENT_ELEMENT_ID, CHILD_ELEMENT_ID);

Figure 5-1: Schematic representation of some concepts and relations presented in
Figures 4-5 and 4-6.

While populating the relations, it is hard to ensure the completeness of the
information, as the majority of the instances of the relations are not directly
stated by stakeholders, but they hold as valid relations by induction. For example,
security could be known as being participating in hasAssociationPoint relation
with individual from AssociationPoint class which in its turn participates in
isAssociatingNfrTo relation with the individual “read an email message”
instantiated from FunctionalRequirement class. Confidentiality, which is derived
from security by “ANed” decomposition (through NfrIsDecomposedTo relation),
also participates in hasAssociationPoint relation with the same individual from
AssociationPoint class which participates in its turn in isAssociatingNfrTo
relation with “read aﬁ email message” according to Figure 4-11. This information
on confidentiality association could be missed when populating the
NFR_ASSOCIATION relation, yet this relation has to be traced on possible
related requested changes in requirements. Our tracing mechanism considers
this situation, and is implemented so that it provides the suitable solution.

We identify four critical areas in which NFRs require traceability support. These

areas are discussed in the following subsections.

113

Main ‘Alternate
Scenario Scenario
1 1

Scenario
2

Mo e v o —— - — o — — —

Select a message P
”~

Compose a message

Open a message

Send the composed
message

| Method: m3 Authorize

Method: m1 method

Method: m2 | Method: m4

Figure 5-2: Illustration of FR and NFR Relations through the Email System.

5.3.1 Impact of Changes to Functional Models on NFRs
When a change is initiated in an FR, the set of NFRs potentially affected needs to be identified

and retrieved. This is accomplished by first retrieving all the directly associated NFRs from the
relation NFR_ASSOCIATION. In order to ensure the completeness of the trace and the
consistency among requirements, it is important that all NFRs associated with all elements
derived from the affected FR against the requested change be analyzed as well. This should be
done in a recursive manner to cover all possible derived elements. The following Datalog

expressions implement this query:

114

// R_TEMP refers to a temporary relation.

/* FR_CHANGED and NFR_CHANGED refer to the ID of the FR and the NFR,
the ‘request changes’ from which the need for traceability was triggered. */

/* RESULT refers to the desired relation that holds the data result. */
Ri_TEMP(Y) € FR_ELEMENT(X,Y), X = “FR_CHANGED”

R2_TEMP (Q, W) €« ELEMENT_DECOMPOSITION (Q, W), Ri_TEMP (Y), Q =
Y

R2_TEMP (Q, W) €< ELEMENT_DECOMPOSITION (Q, Z) , R2_TEMP (Z, W)
RESULT (B) € NFR_ASSOCIATION (A, B, C, D), C = “FR_CHANGED”
RESULT(B) € NFR_ASSOCIATION (A, B, C, D), R2_ TEMP (Q, W), C=Q
RESULT(B) < NFR_ASSOCIATION (A, B, C, D), R2_TEMP (Q, W), C=W

It is important to note that the decomposition of NFRs will never have a circular
dependency. This is a necessary condition for the termination of R2_TEMP. In
the case study of the mobile email system (see Figure 5-2), if a change is
requested to the read an email message functionality, then the above query
expressions will retrieve security, performance, and scalability as potentially

~ impacted NFRs.

5.3.2 Impact of Changes to Nonfunctional Models on Functional
Models

To ensure a complete inter-model traceability, we should consider the impact of
changes to NFRs on the functional model to complement the query in Section
5.3.1 which considered the impact of changes of functional models to NFRs.

When a change is initiated in an NFR, then the set of all association points of the

115

FR type or of the element type should be retrieved and analyzed against the
potential change. The following Datalog expressions implement this query:
RESULT(B) < NFR_ASSOCIATION (A, B, C, D), D = “FR”, B =
“NFR_CHANGED”.

RESULT(B) € NFR_ASSOCIATION (A, B, C, D), D = “ELEMENT”, B =
“NFR_CHANGED”.

In the mobile email system (see Figure 5-2), if a chaﬁge is requested to a security
requirement, then the above query expression will retrieve the read an email
message functionality, all derived main and alternative scenarios, and the events
select a message and open the selected message, as well as the methods m3 and
m4.

5.3.3 Impact of Changes to NFRs on Lower-/Higher-Level NFRs

The change to one NFR can migrate down to offspring NFRs or up to parent
NFRs in a recursive manner through the decomposition links. This type of
traceability enables the analyst to under_stand the impact of lower-level change on
high-level goals, and vice versa. The following Datalog expression implements
this query:

TEMP_1 (B,C) < NFR_DECOMPOSITION (A, B, C, D), B= (NFR_CHANGED)
TEMP_1 (B,C) € NFR_DECOMPOSITION (A, B, C, D), C = (NFR_CHANGED)
TEMP_1(B,C) € NFR__DEbOMPOSITION (A, B,C,D), TEMP_1(X, B)
RESULT (X) = TEMP_1(X,Y), X <> (NFR_*CHANG\ED.)

RESULT(Y) = TEMP_1(X,Y), Y <> (NFR_CHANGED)

116

In the mobile email system (see Figure 5-2), if a change is requested to a space
requirement, then the above query expression will retrieve the primary space,
secondary space, and performance requirements.

5.3.4 Impact of Changes on Interacting Associations

To complete intra-model traceability, it is necessary to establish traces between
interacting NFRs at certain association points (interacting associations). The
following Datalog expression implements this query:

RESULT(Y) € NFR_INTERACTION (X,Y,Z,W), Z = “CHANGED_NFR”.
RESULT(Z) € NFR_INTERACTION (X,Y,Z,W), Y= “CHANGED_NFR”.

In the mobile email system (see Figure 5-2), if a change is requested to a space
requirement at read email message functionality, then the above query

expression will retrieve the security requirement at that functionality.

5.4 Alternative Implementation: XML-Based representation and
XQuery implementation

In this section, we provide an alternative implementation for the NFRs tracing
queries and we use the XML models to instantiate the proposed metamodel and
represent tracing information. We instantiate the metamodel by defining the
XML-document structure according to the metamodel in the Document Type
Definition (DTD) shown in Figures 5-3 to 5-5.

<!ELEMENT NFRs (NFR+)>

<IATTLIST NFRs

name CDATA #REQUIRED

>

<!ELEMENT NFR (NFRname, interaction?, association?,
operationalization?)>

n7

<!ATTLIST NFR

NFRid ID #REQUIRED

type CDATA #REQUIRED

>

<!ELEMENT NFRname (#PCDATA)>
<!ELEMENT association (functionalelement | FR,
associationcontract)*>

<!ELEMENT functionalelement (#PCDATA)>
<!ELEMENT FR (#PCDATA)>

<!ELEMENT associationcontract (#PCDATA)>
<!ELEMENT interaction (interactingwith)>
<JATTLIST interaction

associationpint CDATA #REQUIRED

>

<!ELEMENT interactingwith (# PCDATA)>
<!ELEMENT operationalization (op)>
<!ELEMENT op (#PCDATA)>

Figure 5- 3: DTD structure representation for NFRs.

<!ELEMENT FRs (FR+)>

<IATTLIST FRs

name CDATA #REQUIRED

>

<!ELEMENT FR (FRname, realization)>
<IATTLIST FR

FRid ID #REQUIRED

>

<!ELEMENT FRname (#PCDATA)>
<!ELEMENT realization (realizingelement+)>
<!ELEMENT realizingelement (realizingelement*)>
<!ATTLIST realizingelement
realizingelementid ID # REQUIRED

>

Figure 5-4: DTD structure represéntation for FR.

<!ELEMENT NFRDecomposition (RootNFR+)>
<!ATTLIST NFRDecomposition '
name CDATA #REQUIRED

>

<!ELEMENT RootNFR (decomposition)>
<!ATTLIST RootNFR

NFRid ID #REQUIRED

118

>
<!ELEMENT decomposition (subnfr+)>
<!ELEMENT subnfr (subnfr*,)>
<!ATTLIST subnfr

subnfrid ID #REQUIRED

type CDATA #REQUIRED

Figure 5-5: DTD structure representation for NFR decomposition.

As an alternative to Datalég queries, we use XQuery [XQUERY] to operate on the
data to yieid ;che desired results of tracing information. XQuery is a full-blown
functional programming language with strong typing. The evaluation of the query
- expression reads a sequence of XML fragments or atomic values and returns a
- sequence of XML fragments or atomic values that are the query result.
The following XQuery expressions implement the tracing query for the impact of
changes to functional models on NFRs:

//FR_CHANGED refers to ID of the changed functionality.
<result>

{

for $x in doc("NFRs.xml")/NFRs/NFR

where $x/association/FR = "FR_CHANGED"

return data($x/@NFRid)

< /result>

<result>

{

for $cin ()

for $x in doc("FRs.xml")/FRs/FR

where $x/@FRid = "FR_CHANGED"

return data($x/realization/realizingelement/descendant-orself::
realizingelement/ @realizingelementid))

for $b in doc("NFRs.xml")/NFRs/NFR

where $b/association/functionalelement = $c
return data($b/@NFRid)

¥

</result>

119

The following XQuery expression implements the tracing query for impact of
changes to non-functional models on functional models:

<result>

{for $x in doc("NFRs.xml")/NFRs/NFR
where $x/@NFRid ="NFR_CHANGED"
return data($x/association/FR union
$x/association/functionalelement)

}

</result>

The following XQuery expression implements the tracing query for the impact of
changes to NFRs on lower/ higher-level NFRs:

//NFR_CHANGED refers to ID of the changed NFR.
<result>

{

for $x in doc("NFRs.xml")/NFRDecomposition/RootNFR
where $x/@NFRid = "NFR_CHANGED"

or $x/decomposition/subnfr/@subnfrid =
"NFR_CHANGED"

return $x

}

</result>

The following XQuery expression implements the tracing query for the impact of
changes on interacting associations:

<result>

{for $x in doc("NFRs.xml")/NFRs/NFR
where $x/@NFRid ="NFR_CHANGED"-
return data($x/interaction/interactingwith)
h

>

{

for $xin .
doc("NFRs.xml")/NFRs/NFR/interaction/interactingwith
where $x = "NFR_CHANGED"

return data($x)

}

</result>

120

5.5 Traceability Mechanism

NFR tracing occurs through three distinct activities: requirement development,
impact detection, and evaluation/decision-making. Each activity ensures that FR
and NFRs are treated jointly and in an integrated fashion. These activities are

depicted in Figure 5-6.

Requirements Realization

. Data Generation
E '
Capturing implicit relations
Requirements Development \ /\ /]

Determine Traceability
Areas

Figure 5-6: NFR-Tracing Activities.

Information Retrieval

Impact Detection

Impact detection is dependent on the effectiveness of the traceability mechanism
in establishing correct links between functional and non-functional models and

within their corresponding hierarchical models.

12}

Triggered by a change request, the potentially impacted area has to be identified
of the requirements along with their specifications and refinements have to be
identified, and then the corresponding query should be executed. Once the
retrieval algorithm has returned a set Qf potentially impacted
requirements/elements, the evaluation phase can commence. To analysts, this
means they can now filter the retrieved requirementS/elements to remove any
non-relevant ones. A decision on any accepted change in any of the retrieved data
should be recorded in the corresponding relations.

It is important to note that one change request can establish a chain of other
requests. For example, the need to change one FR may generate the need to
accept changes to other NFRs. In response to the NFR changes, the analysts may

well see a need to change further sub-NFRs or interacting NFRs.

5.6 Evaluation and Demonstration of the Improvements due to
Traceability Queries

For the purpose of the evaluafion of the traceability approach, we used the
settings from the NOKIA Mobile Email Application System (see Chapter 3,
Section 3.3.1) to run a multi project variation experimeht. The NOKIA mobile
email application is deployed on hundreds of branded cell phones. Changé.
requests are received from thé email providers, operators or upon a defect
discovery. As a testing practice in NOKIA, upon triggered changes in the
‘requirements, the fix procedure starts and it involves a sanity testing activity.

Sanity test is a brief run-through of the functionality of the software system to

122

assure that the system works as expected. The activity is carried on by an
execution of a fixed set of sanity test cases (25 test-cases out of more than 10,000
implemented test-cases) to validate that the implemented changes didn’t break
other features. Of course, the small number of test-cases is due to limitation of
time and available human-resources. The objective of the experiment was to
evaluate the hypothesis we built to evaluate our approach: “Applying the
traceability mechanism proposed in this chapter into the software testing phase
will improve the productivity of the testing team; that is for a less test-cases to be
executed within a given amount of time, a higher number of defects will be
detected”. For the purpose of evaluating our traceability approach, we first,
linked the requirements and the design solutions into their corresponding test-
cases. Second, upon a change request that falls into one of the identified critical
areas (see sections 5.3.1 to 5.3.4 of this chapter), the potentially affected
requirements, design solutions were retrieved by executing the recommended
queries. Third, the correspdndiné test-cases which are linked to the retrieved
requirements and design solutions weré selected from the test-cases database.
This is of course in addition to the test-cases which are directly linked to the
requirement which is referred to by the requested change. The sét of selected
test-cases was executed in addition and in isolation of the fixed set of sanity test-
cases. The results were then compared. This experiment was carried out by the
same team of client testers at NOKIA-Montreal office on multiple mobile email
projects for a period of nine months from July 2008 till March 2009. The
number of the dynamically generated test-cases to be executed varied in each run

depending on the triggered change.

123

To understand the improvements which the use of traceability queries brings to
the test-cases selection, we compare the number of test-cases being executed and
the number of failed test-cases (each failed test-case prompts the tester to create
a defect) between the testing practice using a fixed set of test-cases against using
dynamically generated test-cases with the help of our traceability qﬁeries. Table
5-1 shows the results which were collected out of 40 test-executions (this is the
total number of requests for sanity tests on branded devices at the NOKIA-
Montreal office between July 2009 and March 2009). As Table 5-1 indicates, the
average number of defects being discovered per sanity-test execution using the
dynamically generated test-cases method is 1.825, while it is 0.775 using the fixed
set of sanity test-cases. This is an increase of 235%. In addition, the average
number of dynamically generated test-cases is less by 33%. These results
demonstrate validated the stated hypothesis that the traceability queries were
useful in improving the productivity of the testing practice. Figures 5-7 and 5-8

provide visual presentation for the above results.

Table 5-1: Collected Results from Test Executions of NOKIA Mobile Email
Application.

124

125

30

25

20

15

10

—Dynamically
Generated Test
Cases

== Fixed Set of Sanity |

Figure 5-7: Number of Executed Test-Cases: Dynamically Generated Test-Cases

vs. Fixed Set of Sanity.

— FivedSet of Sanity Test

Cases ?

| — Dyrarvically Generated.

Test Cases

Figure 5-8: Number of Defects: Dynamically Generated Test-Cases vs. Fixed Set

of Sanity.

126

5.7 Conclusion

The tendency for NFRs to have a wide-ranging impact on a software system, and
the strong interdependencies and tradeoffs that exist between NFRs and the
software architecture, leave typical existing traceability methods incapable of
tracing them. In this chapter, we use the NFRs Ontology specification for
requirement relations in a real life industrial setting. We proposed and deployed
a traceability mechanism under the umbrella of the relational model and the
XML models to track the allocation of requirements to system components, and
control changes to the system.

One of the advantages of our approach is that it forces system analysts to think
about and capture the hierarchical relations within NFRs, the hierarchical
relations within FRs, and the relations between NFR and FR hierarchies. Our
approach helps systems analysts understand the relationships that exist within
and across NFRs in the various phases of development. The chapter proposes a
method for tracing a éhange applied to an NFR in the traceability model, which
results in a “slice” of the model containing all model entities immediately
reachable from that NFR within the hierarchy. The approach has been evaluated
and demonstrated its appl.icability through a multi project variation experiment

performed against the Mobile Email application in NOKIA-Montreal.

127

Chapter VI: Software Effort
Estimation based on Functional
and Non-Functional Requirements

“Managing resources is hard; managing them efficiently is even harder.”
M. Kircher and P. Jain, 2004

6.1 Introduction

Early in a project, specific details of the nature of the software to be built, details
of specific requirements, of the solution, of the staffing needs, and other project
variables, are unclear. The variability in these factors contributes to the
uncertainty of project effort estimates. As the sources of variability are further
investigated and pinned down, the variability in the project diminishes, and so
the variability in the project effort estimates can also diminish. This phenomenon
is known as the Cone of Uncertainty [Mcco6]. Figure 6-1 shows a sample Cone of
Uncertainty based on common pfoject milestones.

In practice, the software development industry, as a whole, has a disappointing
track record when it comes to completing a project on time and within budget.
The Standish Group published its well-known Chaos Report in 2009 in which it
was noted that only 32% of software projects are completed successfully within

the esﬁmated schedule and budget [STAN DISHOg].

128

4x
. %
Eé Lix
g ..
e 123
= 10x
Z o
3 G667
(.3
(2%
Requirements Time
Tninal Complete Softwars
Concapt Detailed Complats
Approwad Usar Intarfaca Dasizn
Definition Comple

Figure 6-1: The Cone of Uncertainty Based on Common Project Milestones
: [Mcco6].

Software developers are constantly under pressure to deliver on time and on
budget. As a result, many projects focus on delivering functionalities at the
expense of meeting NFRs such as reliability, security, maintainability, portability,
accuracy, operating constraints among others. As software complexity grows and
clients’ demands on software quality increase, NFRs can no longer be considered
of secondary importance. Many systems fail or fall into disuse precisely because
of inadequacies in NFRs [FD96], [BLF99], [LT93] and [MERCEDES97]. While
these requirements have always been a concern among software engineering
researchers, early work has tended to view NFRs as properties of the finished
software product to be evaluated and measured. The lack of effort estimation

approaches which take into account the effect of the NFRs on early effort

129

estimation contributes to the Cone of Uncertainty phenomenon. In fact,
experiences show that NFRs may represent more than 50% of the total effort to
produce services [IBM].

The goal of this chapter is to investigate requirements and project-level-tuned
early estimation of the software effort with the intent to reduce the effect of the
Cone of Uncertainty phenomenon.

As effort is a function of size [PWLo5], one way to respond to the need to deal
comprehensively and objectively with the effect of NFRs on the scope of a
software project is in terms of their corresponding functional size when
applicable. Yet, some NFRs cannot have their functional size directly measured.
This is mainly because either these NFRs cannot be operationalized in the first
place; or their derived operationalizations are in the form of “architectural
decisions”; for example. |

In this chapter, we draw around the proposed NFRs Ontology (see Chapter 4),
and discuss a proposed process for measuring the effort of building a software
project while harmonizing the need to develop both FRs and NFRs taking the
above limitations into consideration.

The remainder of this chapter is organized as follows: Section 6.2 provides the
necessary background on software size estimation, Section 6.3 discusses the
relations between the software size and the effort, Section 6.4 provides a
proposed approach towards measuring the functional size of NFRs when
applicable, Section 6.5 extends Section 6.4 by providing a proposed process
towards measuring the effort of a software project, Section 6.6 illustrates the

approach through a case study, and Section 6.7 concludes the chapter.

130

6.2 Software Size Estimation

Software size is a base measure that is used to calculate project effort, duration
and cost. One way to respond to the need to deal comprehensively and objectively
with the effect of NFRs on the scope of a software project is in terms of their
corresponding size.

Software size estimation is the process of predicting the size of a software
product. Accurate size estimation is critical to effectively managing the software
development process. The project planner‘ must understand the scope of the
software to be built and generate an estimate of its size before a project estimate
can be made [Preg7].

Software size can be described in terms of length, complexity and functionality.
These three aspects of size are described next.

6.2.1 Aspects of Size

Internal product attributes describe a software producf in a way that is
dependent only on the product itself [FP97]. One of the most useful attributes is
the size of a software product, which can be measured statically without
executing the system [FP97]. In the context of project planning, size refers to
quantifiable outco;ne of the software project [Preg7].

Since other physical objects are easily measurable, it might be assumed that
measuring the size of software products should be straightforward. In practice,
however, size measurement can be difficult [FP97]. Simple measures of size are

often rejected because they do not provide adequate information. Those who

131

reject a measure because it does not provide enough information may be
expecting too much of a simple measure [FP97].

For example, if a human size is measured as a single attribute such as weight,
then we can determine the number of people who can safely ride in an elevator at
one time. However we cannot determine whether passengers will bump their
head on the elevator door. If human size is measured in terms of two attributes
such as weight and height, then we can determine both the number of people who
can safely ride in an elevator at one time and whether passengers will bump their
head on the elevator door.

Similarly, if software size is measured in terms of the number of LOC, the fact
that it is not useful in measuring quality does not negate its value [FP97]. Rather
this might indicate a requirement for more information.

It is therefore often useful to define an external attribute such as size in terms of
more than one internal attribute. Applying measures to different goals does not
invalidate them for their original purpose [FP97]. Ideally, we want to define a set
of views for software size. Each view should capture a key aspect of software size.
Fenton suggests that software size can be descfibed with three views: length,
complexity, and functionality [FP97]. A summary on these three views is
provided below.

6.2.1.1 Length

Length is the physical size of the product. There are three major development
products whose size would be useful to know: the specification, the design and
the code. The length of the specification can indicate how long the design is likely

to be, which in turn is a predictor of code length [FPg7].

132

6.2.1.1.1 Length of Code

The most commonly used measure of source code'progrem‘ length is the number
of LOC [FPg7]. Many different approaches to counting LOC have been proposed.
The software engineering Institﬁte has developed a sef of guidelines to help in
deciding how to measure LOC [Par92]. This recommendation is flexible in that it
allows you to tailor the definition of LOC for your needs [FP97].

6.2.1.1.2 Length of Specifications and Design

Specification and design documents may use text, graphs, or mathematical
diagrams and symbols to express information. In measuring code length, an
atomic object must be identified to count (LOC, executable statements, source
instructions, operators and operands). Similarly, for speciﬁcation and design
doc_uments, one or more objects afe identified and counted [FP97].

In the case of dataflow diagrams, objects such as precesses (bubble nodes),
external entities (box nodes), data stores (line nodes), and data flows (arcs) are
counted [Pre97] In case of class diagram, objects such as classes are counted. It
is common in industry to use the number of pages to measure length for
documents containing text and graphs [FP97].

6.2.1.2 Complexity

Complexity can be interpreted in different ways. In the context of software size,
complexity refers to algorithmic complexity and problem complexity [FP97].

6.2.1.2.1 Problem Complexity

Problem complexity (also called Computational complexity) is branch of the
theory of computation in computer science that focuses on classifying problems

according to their inherent difficulty. Here, a problem is understood in the

133

narrow sense of a task that is in principle amenable to be solved by a computer.
Informally, a problem is regarded as inherently difficult if solving the problem
requires a large amount of resources, independ_ent of the algorithm used for
solving it. The theory formalizes this intuition, by introducing mathematical
models of computation and casting computational tasks mathematically as
decision problems. The degree of difficulty can be quantified in the amount of
resources needed to solve these problems, such as time and storage. In particular,
the theory seizes the practical limits on what computers can and cannot do.

6.2.1.2.2 Algorithmic Complexity

Algorithmic complexity reflects the complexity of the algorithm used to solve the
problem [FP97]. A key distinction between computational complexity theory and
analysis of algorithm is that the latter is devoted on analyzing the amount of
resources needed by a particular algorithm to solve a concrete problem, whereas
the former asks a more general question. Namely, it targets at classifying
problems that can, or cannot, be solved with appropriately restricted resources. A
mathematical notation called big-O notation is used to define an order relation
on functions. The big-O form of a function is derived by finding the dominating
term f{(n). Big-O notation captures the asymptotic behavior of the function. Using
this notation,- the efficiency of algorithm A is O(f(n)), where, for input size n,
algorithm A required at most O(f(n)) operations in the worst case [FP97].

For example, the function

SO =3n "2 + 2n +26
is big-O n”2 written as O(n”"2). The algorithm will therefore requires at most

O(n”2) operations.

134

The methods to measure the length and complexity aspects of the size have the
following limitations [1SO1414398]:

1. These methods cannot always be applied in the early phases of software
development life cycles.

2. These methods cannot always be understood by the user of the software.

To overcome above mentioned limitations, methods that are not based on length
or complexity have been proposed. Most of the methods that are used today to
measure the size of the software are based upon the “Functionality” of the
soﬁware [GDo08]. These methods measure the size of the software by measuring
the functionality that it provides to the customer.

6.2.1.3 Functionality

Functional Size Methods (FSMs) have shifted the focus from measuring the
technical characteristics of the software towards measuring the functionality of
the software that is required by the intended users of the software. It is important
_ to note that functional size is the only standardized way to measure the software
size [Foro4]. This method is independent of the development tools and the
programming languages. It is aléo independent of the technical requirements of
the software.

For the above reasons, we will be referring in this chapter to the “functionality”
aspect of size when we deal with the size of a requirement or a project.

The first method; named Function Points, which calculates the functionality of |
‘the software is designed in 1979 by Albrecht [Alb79]. Function Point Analysis

method (FPA) [GDo08] served as bases for the first FSM industrial method. Over

135

the years, different variations and varieties of FSM methods have emerged. A

preview evolution of FSM methods is presented in Table 6-1:

Table 6-1: Concepts, FSM Methods and Description (adapted from [1S01414398]

and [GDo8)).
Year Method Name Developer
1979 Albrecht [AG83] and [Alb84] /
FPA/IFPUG FPA International Function Point
Users Group (IFPUG) [IFPUG99]
. and [I1S02092603]
1982 DeMarco’s Bang DeMarco [Dem82]
' Metrics '
1986 Feature Points Jones [Jon87]
1988 MKII FPA Symons [Sym88], The United
Kingdom Software Metrics
Association (UKSMA)
[ISO2096802] and [MKIIg8]
1990 NESMA FPA The Netherlands Software Metrics
Users Association (NESMA)
[NESMAg7] and [I1SO2457005]..
1990 Asset-R Reifer [Reigo].
1992 3-D FP Whitmire [Whig2].
1994 Object Points Banker et al [BKWZ94].Kauffmn
and Kumar [KK97].
1994 FP by Matson, Matson et al. [MBMo4]
Barret and
Mellichamp
1997 | Full Function Points University of Quebec in
(FFP) cooperation with the Software
Engineering Lab. in Applied
Metrics [ASMDg8].
1997 | *Early FPA (EFPA) Meli [Melg7a] and [Melg7b],
' Conte et al. [CIMSo04]
1998 Object Oriented FP Caldiera et al. [CAFL98]
1999 Predictive OP Teologlou [Teo99]
1999 COSMIC FFP The Common Software
Measurement Consortium
(COSMIC) [Abrgg] and
[1ISO1976103].
2000 Early and Quick Meli et al [MAHOo00], Conte et al.
COSMIC FFP [CIMSo4]
2000 Kammelar’s Kammelar [Kamoo]
Component OP :
2001 Object Oriented Pastor et al. [PAMTo1]

136

Method FP
2004 FiSMA FSM The Finnish Software Metrics
Association (FiSMA) [Foro4]

For the purposes of this research, we have chosen to use the COSMIC FSM
method [ADOSS03] developed by the Common Software Measurement
International Consortium (COSMIC) and now adopted as an international
standard [ISO1976103]. We chose this method in particular because it conforms
to all ISO requirements [ISO1414389] for functional size measurement, and
addresses some of the major theoretical weaknesses of the earlier FPA techniques
like Albrecht’s FPs [AG83]. The COSMIC method is described in the next section.

6.2.2 The COSMIC Method
The FSM method developed by the Common Software Measurement

International Consortium (COSMIC) has now been adopted as an international
standard (ISO 19761 [1SO1976103]) and is referred to as the COSMIC method
[ADOSS03]). This measurement method has been designed to measure the
functional size of management information systems, real-time software and
multi-layer systems. Its design conforms to all ISO requirements (ISO 14143-1
[1SO1414398]) for FSM methods, and was developed to address some of the
major weaknesses of earlier methods, like FPA [AR94], the design of which dates
back almost 30 years, to a time when software was much smaller and much less
varied. COSMIC focuses on the “user view” of functional requirements and is
applicable throughout the development life cycle, right from the requirements
phase to the implementation and maintenance phases. Before starting to

measure using the COSMIC method, it is imperative to carefully define the

137

purpose, the scope and the measurement viewpoint. This may be considered as
the first step of the measurement process. The measurer defines why the
measurement is being undertaken, and/or what the result will be, as well as the
set of functionalities to be included in a specific FSM exercise. Measurements
taken using the COSMIC method with a different purpose and scope and a
different measurement viewpoint may therefore give quite a different size.

In the measurement of software functional size using the COSMIC method, the
software functional processes and their triggering events must be identified
[1SO1976103] and [ADOSS03]. In COSMIC, the unit of measurement is a data
movement, which is a base functional component that moves one or more data
attributes belonging to a single data group. Data movements can be of four types:
Entry, Exit, Read or Write. The functional process is an elementary component of |
a set of user requirements triggered by one or more triggering events either
direcﬂy or indirectly via an actor. It comprises at least two data movement types:
an Entry plus at least either an Exit or a Write The triggering event is an event
occurring outside the boundary of the measured software and initiates one or
more functional processes. The subprocesses of eachv functionél process are
sequences of events. An Entry moves a data group, which is a set of data
attributes, from a user across the boundary into the functional process, while an
Exit moves a data group from a functional process across the boundary to the
user requiring it. A Write moves a data group lying inside the functional process
to persistent storage, and a Read moves a data group ﬁom persistent storage to
the functional process. See Figure 6-2 for an illustration of the generic flow of

data attributes through software from a functional perspective.

138

USERS « Front « Back
end » end »
D

<RVPUZCOwW

Storage Hardware

. [voHar
ENTRIES
' T

SOFTWARE

ENTRIES >
EXITS WRITES >

Figure 6-2: Generic Flow of Data Attributes through Software from a Functional
Perspective [ADOSS03].

-

%

Engineered

Devices

A general procedure for measuring software functional size with the COSMIC
method is proposed in [AOA04], as in Figure 6-3. The measurement process is
performed in five steps.

First, the boundary of the software to be measured is identified by the measurer
based on the requirementé and the specifications of the interaction between the
hardware and the software. Second, the measurer identifies all possible
functional processes, triggering events and data groups from the requirements.

These are considered as candidate items at this stage. Third, the candidate items

(i.e. functional processes, triggering events and data groups) are mapped into the

139

COSMIC software context model (Figure 6-3) based on the COSMIC rules. In this
mapping, each functional process must be associated with a triggering event and
to the data group(s) manipulated by it. This mapping also allows the
identification of layers. Fourth, the COSMIC subprocesses (i.e. data movements -
of the following types: Entry, Exit, Read and Write) are identified within each
functional process. The COSMIC measurement function is applied to the
subprocesses identified to determine their réspective COSMIC size measure.
Finally, the measurer computes an aggregate of the measurement results to

obtain the total functional size of the software being measured.

Functional User
Requirements STEP 1
(FURs)
STEP 2
Data

Map candidate / STEP3

items into Model

Apply Measurement
CFP Aggregate Measuremen STEP5
Results

Figure 6-3: General Procedure for Measuring Software Size with the COSMIC
Method — ISO 19761 [AOA04].

6.3 The Relationship between Functional Size and Effort

Software cost and effort estimation plays a significant role in the successful

completion of any software. Resources are assigned according to the effort

140

required to complete the software. Accurate effort estimation leads the
completion of software project on the scheduled time. Many models and
approaches have been developed in the past 40 years to estimate the effort. Most
of the models take software size as a basic input to estimate the effort [GDo08].
We have already discussed that it is better to use functional size instead of length
of code to estimate effort. Effort is usually calculated by using functional size of
the software [FP97]. There is a strong relationship between functional size and
effort [PWLo5]. Valid measured functional size has the potential to improve
effort estimation and reduce the “cone of uncertainty” effect on the project
p]anning. It is critical to correctly establish a relationship between functional size
and effort so that we could be able to estimate effort accurately. There are many
project and product factors that affect positively or negatively this relationship.
Environmental factors, technical factors and operating constraints are some of
them [Geno8].

Many significant attempts have been taken to explore the relationship between
the size and effort and also to identify the subset of those NFRs which may affect
this relation. In the sections 6.3.1 to 6.3.8, we present an overview of research
studies, effort estimation models and functional size estimation methods which
consider NFRs as factors affecting the relationship between the software size and

effort:

6.3.1 Study by Maxwell and Forselius

A study carried out in Finnish companies [MFoo] to explore the factors that

affect productivity and effort estimation shows the following results (Table 6-2):

14)

Table 6-2: Factors Affecting Productivity by Pekka Forselius (adapted from

[MFoo]).
Data set Experience Database (206 business software
projects from 26 companies).
Variables Application Programming Language, Application
considered in | Type (MIS etc), Hardware Platform, User
Database Interface, Development Model, DBMS
Productivity | Architecture, DB Centralization, Software

Analysis Centralization, DBMS Tools, Case Cools, Operating
o System, Company where project was developed,
Business Sector (Banking, Insurance etc),
Customer Participation, Staff Availability,
Standard Use, Method Use, Tool Use, Software
Logical Complexity, Requirement Volatility,
Quality Requirement, Efficiency Requirement,
Installation Requirement, Staff's Analysis Skills,
Staff's Tools Skills, Staffs Team Skills, Staff’s
Application Knowledge
Base of Size | Experience 2.0 Function Point Method
Measurement

6.3.2 Study by Angelis, Stamelos and Morisio

L. Angelis and his colleagues have also made important contribution towards
finding the different factors that affect size and effort relationship. These authors
study the projects in the International Software Benchmarking Standards Group
(ISBSG). The ISBSG database contains data about recently developed projects
characterized mostly by attributes of categorical nature such as the project
. business area, organization type, application domain and usage of certain tools or
methods. The authors found 7 important factors that affect the relationship
between the éize, and effort. The result of this study is given in more detail below

(Table 6-3) [ASMo1]:

142

Table 6-3: Factors Affecting Productivity by L. Angelis [ASMo1].

Data set ISBSG release 6
Factors 1. Development Type

2. Development Platform

3. Language Type

4. Used Methodology

5. Organization Type

6. Business Area Type

7. Application Type

Base of Size | IFPUG Function Point
Measurement

The authors’ method is based on the characterization of the software to be
developed in terms of project and environment attributes and comparison with
some similar completed prbjects recovered from the ISBSG.

The authors also refer to that humaﬁ factoré are very important factors that are
not taken into account while performing aﬁy previous study. A recent study
shows that Psychometrics data should be collected to better perform the
empirical study [FTAS08].

6.3.3 Study by Liebchen and Shepperd
A study by Liebchen and Shepperd that aims at reporting on an ongoing

investigation into software productivity and its influencing factors brought the

following results (Table 6-4) [LS05]:

Table 6-4: Factors Affecting Productivity by Martin Shepperd [LSo5].

Data Set 25,000 closed projects of a large multinational company
Attributes 1. The Degree of Technical Innovation, Business Innovation,
Influencing Application Innovation,
Software 2. Team Complexity
Productivity 3. Client Complexity

4. Degree of Concurrency

143

5. Development Team Degree of Experience With Tools,
Information Technology, Hardware, or With Adopted
Methodology,

6. The Project Management Experience

Base of Size | Function Point
Measurement

This study confirms the intuitive notion that different industry sectors exhibit the
differences in the productivity. It is due to the fact that industry sectors also affect
the productivity [LSo5].

6.3.4 Summary of Other Studies

A study in the different Swedish companies shows that following factors affect
the effort estimation [MP08]: |
1. Requirement Volatility (Unclear and Changing Requirement).
2. Unavailability of Templates.
3. Lack of coordination between product developed and other parts of the project.
The following factors that are considered important from ISBSG data repository,
also affect the productivity [LWHSo01]:
1. Programming Language. |
2. Team Size. .
3. Organization Type.
4. Application Type.
Another recent study ﬁublished in the Second ACM-IEEE international
Symposium on Empirical Software Engineering and Measurement shows the

following results (Table 6-5) [YHLWB08]:

o144

Table 6-5: Factors Affecting Phase Distribution for Software Development Effort

[YHLWBo8].
Data Set China Software Benchmarking Standard Group
Factors 1. Development Life Cycle

2. Development Size
3. Software Size
4. Team Size

Base for
Measurement

Size

LOC

By analyzing the factors collected from the above studies, we find that all of them

are mapped to concepts under the root of the NonFunctionalRequirement

concept in our NFRs Ontology (Chapter 4). In s_ections 6.4, 6.5 and 6.6 of this

chapter, we discuss how to quantify the impact of these factors on the size —

effort relationship.

6.3.5 Factors in the Use Case Points estimation method (UCP)

UCP method is based on a work by Gustav Karner [Kaf93]. This method analyzes

the use case actors, scenarios, and various technical and environmental factors

and abstract them into an equation. Readers familiar with Allan Albrecht’s FPA

[Alb79], [AG83] and [Alb84] will recognize its influence on UCP; function point

analysis inspired UCP. The UCP equation is composed of three variables:

a. Unadjlis_ted Use Case Points (UUCP).

b. The Technical Complexity Factor (TCF). (Table 6-6)

c. The Environmental Complexity Factor (ECF). (Table 6-7)

145

Table 6-6: Technical Complexity Factors in UCP.

1. Distributed System

8. Portability

2. Performance

9. Easy to change

3. End User Efficiency

10. Concurrency

4. Complex Internal
Processing

11. Special security features

5. Reusability

12. Provides direct access to third parties

6. Easy to Install

13. Special user training facilities are required

7. Easy to Use

Table 6-7: Environmental Complexity Factors in UCP.

1. Familiar with UML

5. Object-Oriented Experience

2. Part-Time Workers

6. Motivation

3. Analyst Capability

7. Difficult Programming Language

4. Application Experience 8. Stable Requirements

According to the UCP method, TCF can reduce the UCP by 40 percent and

increase the UCP by 30 percent. On the other hand, the ECF can reduce the UCP

by 57.5 percent and increase the UCP y 40 percent.

A study by [ABHo5] which was based on the UCP method, suggests that this

method needs modificati

on to better handle effort related to the development

process and the quality of the code. -

6.3.6 Cost Drivers in COCOMO 81

COCOMO [Boe81]; developed by Barry Boehm, is a model for estimating effort

and calendar time required to develop a software system. At the most basic level

COCOMO is two equations:

Effort = f(x,y) and .

Time =g(effort),

146

where f() and g() are functions and x and y are attributes of the system. Original
COCOMO is a three level model: (i) Basic, (ii) Intermediate and (iii) Detailed
which calculates the effort per phase.

The development period covered by COCOMO begins after requirements and
continues through integration and testing.

Intermediate COCOMO computes software development effort as function of
progfam size and a set of "cost drivers” that include subjective assessment of
product, hardware, personnel and project attributes. Table 6-8 presents the 15

cost drivers that have linear effect on estimated effort:

Table 6-8: Cost Drivers in COCOMO 81.

L. Required Software Reliability

9. Applications Experience

2. Data Base Size

10. Programmer Capability

3- Software Complexity

11. Virtual Machine experience

4. Execution Time Constraint

12. Programming Language Experience

5. Main Storage Constraint

13. Use of Modern Programming
Practices

6. Virtual Machine Volatility

14. Use of Software Tools

7. Computer Turnaround Time

15. Schedule Constraints

8. Analyst Capability

Each of the 15 attributes receives a rating on a six-point scale that ranges from
"very low" to "extra high" (in importance or value). There are tables of values -
used to determine effort multipliers for each of these cost drivers in each rating.
For example, the programmer capability multiplier ranges from 1.42 (low skill) to
0.7 (high skill). These values will raise or lower the overall figures. The results of

the effort formulas above are multiplied by the effort multipliers to arrive at the

147

final result. The product of all effort multipliers results in an effort adjustment
factor (EAF). Typical values for EAF range from 0.9 to 1.4.

6.3.7 Cost drivers in COCOMO II

The original COCOMO model has been very successful, but it doesn't apply to
newer software development practices as well as it does to traditional practices.
COCOMO II [BAB+00] was updated for current deVelopment models (iterative
and incremental; i.e. non waterfall). COCOMO II incorporates an early
estimation equatiohs based on function points [IF?UG99] and [ISO2092603] or
object points. COCOMO 1I is adjustable for non-linear effects and includes
updates to effort-multipliers afld cost drivers. In addition, requirements volatility
is considered. In COCOMO II, phases or levels are in:

@) Early prototyping Level: Pre-requirefnents

(i) Early Design Level — Requirements and some design complete:

“This model is to be used for rough estimates of a project's 'coét and duration
before entire architecture is determined. .It uses a v_small set of new Cost Drivers,
and new estimating equations. It is based on Unadjusted Function Points or
KSLOC (1,000 Source Lines Of Code). COCOMO II defines 7 early désign cost

drivers shown in Table 6-9:

Table 6¥9: Cost Drivers in COCOMO H Early Design Model.

1. Product Reliability and Complexity | 5. Personnel Experience

2. Developed for Reusability - 6. Facilities

3. Platform Difficulty 7. Required Development Schedule
4. Personnel Capability and Mapping

Example

(iii) Post Architecture Level — System design and architecture established

148

This is the most detailed COCOMO II model. It is to be used after project's overall
architecture is developed. It has new cost drivers, new line counting rules, and
new equations. COCOMO 11 defines 17 post-architecture cost drivers shown in

Table 6-10:

Table 6-10: Cost Drivers in COCOMO 11 Post Architecture Model.

1. Product Reliability o 10. Programmer Capability
2. Database Size 11. Personnel Continuity
3. Product Complexity 12. Applications Experience
4. Developed for Reusability 13. Platform Experience

5. Documentation Match to Life-Cycle | 14. Language and tool Experience
Needs

6. Execution Time Constraints 15. Use of Software Tools
7. Main Storage Constraint 16. Multi-set Development
8. Platform Volatility 17. Required Development Schedule

9. Analyst Capability

6.3.8 Discussion

Existing FSM methods have been primarily focused on sizing the functionality of
a software system. Size measures are expressed as- single numbers (function
points (FP) [1S02092603], [I1SO2457005], [ASMD98] and [UKSMAo02]), or
multidimensional ‘arrays’ designed to reflect how many of certain types of items
there are in a system [Steo1]. The existing function-point-based FSM techniques
have so far addressed the topic of NFRs only with respect to the task of adjusting
the (unadjusted) FP counts to the project context or the environment in which
the system is supposed to work.

For example, the International Function Point Users Group (IFPUG) [IFPUG]
has been approaching the inclusion of NFRs in the final FP count by using
qualitative judgments about the system’s environment. The current version of the

IFPUG Function Point Analysis (FPA) manual [IFPUG99] speaks of a set of

149

General System Characteristics and Value Adjustment Factors (see Table 6-11) all

meant to address — though in different ways — the NFRs that a project may

include.

Table 6-11: General System Characteristics in IFPUG.

1. Reliable back-up and recovery

8. Online Update

2. Data communications

9. Complex Interface

3. Distributed functions

10. Complex Processing

4. Performance

11. Reusability

5. Heavily used configuration

12. Installation ease

6. Online data entry

13. Multiple Sites

7. Operational ease

14. Facilitate Change

Currently, there are five FSM m'ode]s' which are proposed by the COSMIC
consortium and IFPUG member associations (namely, NESMA [1S02457005],
UKSMA [UKSMAo2], COSMIC [Abrgg], FISMA [FISMA08] and IFPUG
[IFPUG99]) and which are recognized as ISO standards. We cdmpared and
contrasfed the ways in which NFRs are treated in these FSM standards. For each
standard, we looked at what NFR artifact is used as input to the FSM process,
how this artifact is evaluated (Table 6-12), and which FSM counting component
reflects the NFRs. We found that all five FSM standards provide, at best,
checklists which estimators can use to perform qualitative assessments of certain
factors of the system’s environment. However, these assessments reflect the
subjective view of the professionals who run the FSM process. The FSM
standards say nothing about what should be put in place to enable estimators to
ensure the reproducibility of their assessment results regarding the NFRs in a
project. The Mark II FPA manual [UKSMAo02] refers to recent statistical analysis

results and suggests that neither the Value Adjustment Factors from the IFPUG

method [1SO02092603] nor the Technical Complexity Adjustment (TCA) factors
from the Mark 11 FPA method [UKSMAo02] represent well the influence on size of
the various characteristics these two methods try to take into account. Indeed,
the Mark II FPA manual says that the TCA factors are included only because of
continuity with previous versions, and recommends that these factors be ignored
altogether (p. 63 in [1SO1414398]) when sizing applications within a single

technical environment (where the TCA is likely to be constant).

Table 6-12: The ISO FSM Standards.

Proposal Input NFR | Assessment | Counting
artifact Component
COSMIC [Abrgg] | Notincluded | Not None
applicable ‘

NESMA Textual NFR | Qualitative General System

[ISO2457005] Characteristics, .
Value Adjustment
Factors

MARK IT | Textual NFR | Qualitative Technical

[UKSMAo2] Complexity
Adjustment

FISMA Textual NFR Qualitative Technical

[FISMAO0S8] Complexity
Adjustment

IFPUG Textual NFR | Qualitative General System

[ISO2092603] Characteristics,
Value Adjustment
Factors

6.4 Non-Functional Requirements Size Measurement Method (NFSM)
with COSMIC

While the COSMIC method was originally proposed to measure user FRs, in this

section, we extend its use to measuring the functional size of the operationalized

151

NFRs. Figure 6-4 instantiates the NFRs Ontology in the context of the COSMIC
method. In the instantiated metamodel, the major functionalities, as well as the
functional operationalizations, are mapped to the COSMIC processes.

The process of measuring the functional size for a particular NFR is carried out in
three steps:

Step 1: The NFR is considered in isolation from its association relations. COSMIC
is used to measure the functional size for those operationalizations, which are
refined from the NFR and correspond to functions/operations. The size of the
NFR is the sum of the sizes of all the selected operationalizations.

Step 2: The NFR’s association relations with the FRs are clearly captured.

Step 3: The total size of the NFR within the system is then calculated by
measuring the total changes in the functional size of functionalities triggered by
introducing the associated NFR.

We completed our first appliéation of this procedure in a case study setting at a
company site (see Chapter 3, Section 3.3.1). To illustrate the measurement
procedure, we will limit the discussion to the same two pieces of functionality: (1)
the user asks to read én email message; and (2) the user composes and sends a
new email. The specification of these functionalities is illustrated in Figure 6-5.
The COSMIC models are generated for each component (here, Client and

‘Gateway), as outlined next:

152

FuntionalRequirement

]

V_V

Requirement

Process: Product

-isAssociatingNfrTo

L___{ NonFunctionalRequirement

-isAssociatingNfrTo

-hasAssocialionPoint

-FrisMappedinto i
AssociationPoint
-isAssociatingNfiTo
-isMappedinto isAssociatingNfrTo Resource
DataMovement -hasOperationalization
Operationalization
~ -isMappedinto

FunctionOp
Entry Write é} DataOp

OperationOp ArchitectureDesignDecision
Read Exit L]

Figure 6-4: A View of the NFRs Ontology Instantiated in the Context of the
COSMIC Method.

153

I 1
g i performance - T 7]
Request o Savea
send 3 message 1o
TESSa0e bufler
Sends, request »
‘ :)Vfans!a:e
o ——t — d
' Sends request
; . send a message
1 Pk “
| L S
|]Trans;ate |
| !
o ‘ :
| v
RN VU U SR S
Request i
tead 3
message
S
r wwwwwwwww ’m—' ———
W o ’
jransla:e E
Sendsroquest : read 2 message Bl
resporse !
_Reguesiad message ;
N A [S R I
] R Y N R)
Translate
‘-—.—_

Figure 6-5: llustration of FR and NFR Relations through the Mobile Email
System Case Study. :

154

The chosen FRs, read email and send email, each consists of two functional
processes, which are further refined into data movements (see Figure 6-5).
The data groups identified for these read and send FRs are: 1) read request
data group (includes data on the requested message); 2) read response data
group (includes the message requested to be read); 3) send request data group
(includes the composed message to be sent); and 4) send response data gfoup
(confirmative message).

The functional size for each FR corresponds to the addition of all identified
data movements. The initial calculated functional size for the Client
component is 11 CFP (see Tables 6-13 and 6-15) and 12 CFP for the Gateway
component (see Tables 6-14 and 6-15).

Table 6-13: Client Component (“Send a Message” Functionality).

ID Process Trigger Data Movement Data Data CF

descript ing Group movem P
ion event ent

FP1 Send Request Receive send request Send request
event
Save message in the Send request w 1
buffer
Send message to Send request X 1
gateway
Respons Receive confirmation Send E 1
e.event response
Translate message Send w 1
response
Display confirmation Send X 1
response
Total functional size of Send FUR for Client component in 6
CFP =

155

Table 6-14: Gateway Component (“Send a Message” Functionality).

ID Process Trigge DataMovement Data Data CFP

descript ring Group movem
ion event , ent =

FP Send Request Receive send request Send request E
1 event :
Translate messageto Send request W 1
IMAP/POP3
Send message to mail Send request X 1
. server
Respon Receive confirmation Send E 1
se event _ response
Translate messageto Send W 1
SYNCML response
Send confirmationto Send X 1
client response
Total functional size of Send for Gateway component in CFP = 6

Table 6—15: Client Component (“Read a Message” Functionality).

ID Process Trigge DataMovement = Data Group Data CFP
descripti ring movem
on event ent

. S _Type
Read Request Receive read request Read Request-

FP event ’

2 ,
Send message to Read Request X 1
gateway

Respon Receive user’s Read E 1
se event message Response
Translate message Read W 1
Response
Display message Read X 1
) Response
Total functional size of Read for Client component in CFP = 5

156

Table 6-16: Gateway Component (“Read a Message” Functionality).

Proce Trigge Data Movement Data Data CFP

ss ring Group movem
descr event ‘ . ent

ipton Sl __ Type .
Read Request Receive read request Read E 1
FP2 event Request
Translate request to Read W 1
IMAP/POP3 Request
Send request to mail Read X 1
server Request
Respon Receive user’s message Read E 1
se event Response
Translate message to Read w 1
SYNCML Response
Send requested Read X 1
message to client Response
Total functional size of Read for Gateway component in 6
CFP = '

In our case study setting, we observed that, in order to optimize the user
experience for devices with limitations (e.g. screen size, memory, processing
speed) and wireless networks with constrained bandwidth, some NFRs had to
‘be adapted in the requirements model of the project. To illustrate this point
here, we consider adaptation of the performance requirement. Performance is
defined as the amount of useful work accomplished by software compared to
the time and resources used. To deal effectively with such a requirement, a
good performance requirement may need to be broken down into smaller
components, so that an effe-ctive solution can be found. T hus, performance
can be glecomposed into short response time for the exchanged transactions
between the client and the gateway, and high throughput (rate of processing
work) for the network bandwidth.

After an extensive round of meetings and discussions, the software architects

at NOKIA decided to optimize response time and throughput of the Mobile

157

Email Application by means of the following two solutions: (1) a compression
algorithm, which compresses the requests and responses exchanged between
the device application and the gateway; and (2) breaking a message requested
to be read into smaller pages, each 1 Kb in size, after which only the first page
is sent to the client, with the option for the user to request the other pages
from the gateway in separate transactions.

The suggested operationalizations proved to reduce the response time as
perceived by the end-user in similar projects. They also reduced the amount of
wireless traffic. The performance requirement, along with its decomposition,
operationalization, and association relations, are depicted in Figure 6-5. The
SYNCML protocol compression algorithm reduces the size of the protocol
elements or XML markup, and not of the actual email data. The algorithm is
based on a static compression dictionary containing a list lof the most common
protocol fragments. During compression, the source XML message is split up
into dictionary and non-dictionary words (logic). A special dictionary is
searched (Read) and each fragment that maps to a dictionary word is replaced
with the corresponding index (Write). A fragment which does not map to a
dictionary word is replaced with its length in bytes using UTF-8 encoding plus
1000 followed by the fragment itself (Write). During decompression, these
subprocesses are revérsed. In total, the functional size for the compression
operatiohalization is obtained by summing up all the data movements
identified. The initial calculated functional sizeis 3 * 2 = 6 CFP.

The breaking down of a message by the gateway into smaller péges was
mapped into three subprocesses: The gateway recognizes that the message
size exceeds 1 Kb and decides to break it down into smaller pieces (Entry), the

gateway writes the first page of the message into a special buffer to be sent to

158

the client (Write) right away, and then the gateway stores the rest of the
message into a special memory (Write) for future requested transactions. The
functional size for breaking the meésage down into pagés is3 CFP.

To calculate the functional size of the performance NFR, we consider the
associétion of the performance requirement and the association of their
derived operationalizations, as presented in Figure 6-5. The compression
algorithm (including both the compression and the decompression) has to be
called once for each data group. This increases the total functional size for
both functionalities by (4 * 6 = 24 CFP). In the case of breaking down the
message, it is called on once for read message. Thus, the functional size of
read message is increased by 3 CFP. The calculated functional size for
performance is, there_fore, the sum of the two functional sizes: 24 + 3 =27
CFP. The updated total functional size for both functionalities (send a
message and read a message) after introducing the performancé requirement

is 27 + 11 + 12 = 50 CFP.

6.5 Measuring the effort of NFRs

Measuring the functional size of NFRs as presented in our approach falls
under the “Count, Compute, Judge” estimation technique [Mcco6], which
means, basically, that the first course of action consists of counting and
computing. If there is a way to directly count and compute some value to
provide the estimate, this should be the best option, since it usually provides
the most accurate result. If “count and compute” is not possible, then “judge”
is considered, but as a last resort only, as it introduces the greatest

opportunity for bias and error.

159

As illustrated in Section 6.4 of this chapter, The “NFSM” approach is
applicable to the NFRs associated with FRs and operationalized through
functions/processes which could be mapped to the COSMIC model.
Nevertheless, the goal-oriented RE community [Mylo6], [Glios] and [Wieoo]
considers that not all NFRs should be decomposed into functions/processes.
If NFRs serve as norms [Glios] or as criteria for making architectural design
choices, then they should not be decomposed into FRs. Examples are global_
NFRs like survivability, reporting, and customizability. In this section, we
discuss an approach towards measuring the effort estimation of the project
while dealing comprehensively with the impact of a particular NFR on the size
and effort of the FRs and consequently the size and the effoﬁ of software
project taking the above limitation into consideration. The proposed approach
will benefit from the NFSM method discussed in section 64 Specifically, we
address this need by: (1) measuring the functional size of the
operationalizations in isolation from their relations; (2) understanding and
specifying those relations of the NFRs with otfler system elements; (3)
adjusting the functional size of the captured functionalities and the total
project using the measurement from (1) and the specification of NFR’s
relations from (2); and finally (4) when the size of the operationalizations
cannot be measured OR the NFRs cannot be refined into design solutions
(unoperationalized NFRs), we then consider the impact of these
operationalizations and “unoperationalized NFRs” on the size of
functionalities and the effort of building the project through an estimation
models based on regression techniques.

NFRs and Operationalizations can be further categorized into 4 non-mutually

exclusive classes from the perspective of measuring the effort:

160

1) Class A: operationalizations which correspond to
functions/operations and associated to functional requirements
subprocesses;

(i) Class B: (Atomic NFRs which are not operationalized OR
operationalizations corresponding to architectural/design decisions
or data) AND associated to functional requirements subprocesses;

(iii) Class C: operationalizations correspond to functions/operations
and associated to the whole product, process or resource;

(iv) Class D: (Atomic NFRs which are not operationalized OR
operationalizations corresponding to architectural/design decisions

or data) AND associated to a whole product, a process or a resource.

Before we proceed in discussing the steps of the process in Section 6.5.2; we
will provide a background on the estimation models using regression

techniques in Section 6.5.1.

6.5.1 Estimation Models: Baékground

A model typically describes the relationship between a- dependent variable
(such as effort) with respect to one or more independent variables (such as
size, experience, project difficulty). -

When a relationship has bee.n well studied empirically,kthen the model of such
a relationship can be described mathematically with simple (or very complex)

mathematical formula. This is the case with many physical phenomena that

have been well studied (e.g. gravity, fluidity of liquids, expansion of gases).

161

One of the most common-in-use estimation techniques [Mcco6] is to build
estimations models based on characteristics of the productivity of past
projects. If the historical data from past projects is quantitative and
documented, then estimation models can be built.
A simple effort estimation model (Effort vs. Size) is illustrated in Figure 6-6
and typically represents the performance of past projects.

e The x axis represents the functional size of the software projects

completed;
o They axis represents the number of effort hours that it took to deliver a

software project.

Effort {in hours)

'y /

x
b
slze {(in Function Points)

Figure 6-6: Production Model with Fixed Cost and Variable Costs.

The points in the graph in Figure 6-6 repfesent the number of person-hours it
took to deliver the corresponding functional size of the projects completed.
The line in the graph is obtained through a linear regression model which
basically builds the line that best represents this set of points in terms of effort

 with respect to the corresponding size.

162

An effort estimation model is typically built with data from projects completed

in the past that is, when:

All the required information on a project is available.

There is no more uncertainty in both project inputs and the outputs: all
of the software features have been delivered, and

All of the work hours for the project have been accurately entered in a

time reporting system.

In a production process, there are typically two major types of costs:

Variable costs: The portion of the resources expanded (i.e. inputs) that
depends directly on the number of outputs produced. In Figure 6-6,
this corresponds to the slope of the model, that is: slope = a (in terms of
hours per function point) |

Fixed costs: The portion of resources expanded (e.g. inbuts) that do not
depend on the number of outputs. In Figuf_e 6-6, this corresponds to b,
the constant hours at the origin when the size is equal to zero. There
are a number of project management plans, procedures and controls to
set-up, as well as standards to be selected and used, independently of
the size of the project. In a typical production process, these would be

fixed costs of a production run.

A linear model of the relationship between effort and size is represented by

the following formula:

where

Effort in person-hours = a * Size + b

Size = number of Function Points (FP)

163

a = variable Cost and is the number of person-hours per Function Point
(person-hours/FP)

b = fixed cost in person-hours.

Figure 6-7 illustrates a production process where there is not a fixed cost: in
this situation, the production line goes straight through the origin where effort

y = o0 when size x = 0.

Effort {in hours)
£

slize {in Function Points)

Figure 6-7: Production Model with no Fixed Cost.

To build the estimation models, the linear regression technique is often
selected over more complex estimation techniques such as analogy—bas;ea é;hd
neural network techniques [Abrog] which have not yet been shown to better
explal;n the size-effort relationship in software projects on the types of data
sets available for such studies, including multi-organizational data sets.

A survey of the literature [Abrog] on estimation models based on real projects
suggests that there is rarely a significant deviation from the linear model in
the software effort function. For example in the experimental effort estimation
models, the exponent is often relatively close to 1.0. This deviation from 1.0
might be due to some non-linear function, but it might be caused as well by

some errors in the input parameters to the model. Consequently, the software

164

effort could be characterized as an increasing linear function of the size of the
projects, such as in Figures 6-6 and 6-7.

In Figure 6-6, it is clearly observed that a number of projects have an effort
cost lower than that predicted by the model, while there are also quite a few
projects with an effort cost higher than that predicted by the model. This
model is, of course, based on a single independent variable, namely, the
functional size; it cannot be realistically expected that this variaible would by
itself be sufficient to produce a perfect estimate without taking into
consideration the large number of other independent variables (e.g. associated
NFRs).

Of course, one might think of a number of other variables that can impact
project effort, each having its own specific impact. Thé combination of the
impact of these other independent variables will lead to an effort estimation
number (that is, a number of person/hours) which may be lower or higher
than the effort predicted by the regression line of a model with a single
independent variable.

This is illustrated next with a real data set [Maxo9] taken from PROMISE
DATA repository-(Maxwell) where the project data from one of the biggest
commercial banks in Finland was collected. In Figure 6-8, the circles point out
some projects that have a large functional size (measured in ISO 20926
[1SO2092603] units: FPA- Unadjusted Function Points) with very little
corresponding effort (measured in person-hours). In the same figure, the
squares point out some projects that have relatively small functional size with
high effort. This illustrates well that a number of other variables (NFRs in this
case), in addition to size, must be taken into account to explain individual

project effort.

165

In the next section, we discuss how we use the linear regression technique
within our proposed solution to estimate the effort of the project based on

both FRs and NFRs.

0 500 1000 1500 2000 2500 3000 3500 4000
Function Points

Figure 6-8: Visual Identification of Projects with a Smaller and Higher Unit
Cost [Max09].

6.5.'2 The solution proposal: Effort estimation model

The proposed process of measuring the effbrt of a project is carried out in 12
.steps described below. In this process, Steps 1 and 2 are preparatory, Steps 3
and 4 are to treat elements Qf class A, Steps 5, 6, 7, 8 and 9 are concerned
with class B elements, Step 10 treats class C, and Steps 11 and 12 treat class D.
Figure 6-9 maps the described classes to the participating concepts from the
NFRs Ontology. The steps of the proposed process are as follows:

Step 1 [FRs to COSMIC]: As suggested by the COSMIC method
[ISO1976103], each FR is further refined into a sequence of subprocesses
which are mapped to the COSMIC data movements: READ, WRITE, ENTRY
and EXIT.

Stép 2 [Ontology]: The proposed ontology view (Figure 6-4) is instantiated

using the set of (i) the captured FRs, (ii) their mapped elements (e.g. tasks),

166

and (iii) NFRs which are further refined through the decomposition and
operationalization relations. The NFR’s association relations with the
association points are clearly captured.

Step 3 [Unadjusted Functional Size per functional process]: As
proposed in the NFSM method in section 6.4, for each operationalization
refined in Step 2 AND which corresponds to functions/operations; the
rfunctional size is calculated using the COSMIC method. (That inéludes
mapping the operationalization into a sequence of COSMIC data movements).
For each functionality-derived subprocesses, if the subprocesses is
participating in isAssociatingNfrTo relation with an association point that
participates in a hasAssociationPoint with an operationalization which
correspond to a function/operation, then the functional size of the
subprocesses is recalculated to add the extra size of the associated
operationalization. It is important to notice that the functional size for an
operationalization corréspondjng to a function/operation is to be considered
more than once only if it operates on a different data gfoup through its
associations. This means, any duplicated pair of (operationalization , data

group) will be considered only once.

167

Non-Operationalizable NFRs 3

Ty %‘
Requirement| ™.
""""""""""" NonFunctionaiRequirement
FuntionalRequirement |-..] .
= " “ i | Process Product
TasAssoqalionPoik
-isAssociatingNfrTo
-isAssociatingNfrTo
AssogiationPoint |
-i::,Assoc;iaﬁnngrTo
isAgsociatiigNfi To Resource
e -hasOperationalization 5 .
[, . Operationalization
-}ha'éAssodationPoiﬁf'*:_ """"
FunctionOp |~ 4)
Y DataOp
OperationOp| / ArchitectureDesignDecision \

Figure 6-9: Mapping of the NFRs Concepts to the Steps of Measuring the Effort.
Step 4 [Unadjusted Functional Size per Requirement]: For each
functional requirement, the functional size values of all subprocesses
calculated in Step 3 are summed up. At this point, we generate the unadjusted
functional size of FRs.
Step 5 [Ranking associations of Class B NFRs/Operationalizations]:

For each identified association with elements of Class B NFRs /

168

operationalizations, the association has further to be ranked on a 3-values
scale [-, 0, +]. The first category, labeled with “-“, indicates basically that the
associated NFR / operationalization reduces the effort of building the
functionality. The second category, referred to as to “0”, indicates the absence
of the impact of the associated NFR / operationalization on the effort for
building the functionality. The third category, labeled with “+”, means that the
associated NFR / operationalization increases the effort of building the
functionality.

As a future work, standardized definitions of the proposed scale will be
required to improve repeatability of the classification for each category. This
would ensure that the classification would be repeatable and reproducible
across measures and across projects. |

Step 6 [Initial Requirements Effort Estimation Model]: In this step,
we build an initial “requirement” effort estimation model using a linear
regression technique as described in section 6.5.1. As practitioners
recommend [Mcco6], an estimation model is typically built with data from
previous projects’ FRs which have been delivered. From such a data set, an
estimation model can be obtained through a linear regression model which
basically builds the line that best represents the set of “requirements” in terms
of effort (in person-hours) with respect to cbrresponding requirement
functional size (in terms of CFP).

Step 7 [Unadjusted Effort per Requirement]: For each functionality, we
map its unadjusted functional size calculated at step 4 to an unadjusted effort
value on the regression line. At this point, we generate the unadjusted effort

for the FR.

169

Step 8 [Adjusted Effort per Requirement]: For each functionality, its
unadjusted effort value obtained at Step 7 is readjusted to take into account
the associations with NFRs / Operationalizations of Class B. In the dataset, all
requiiements which lie precisely on the regression line of the initial estimation
would correspond to requirements with all associated NFRs /
operationalizations from step 5 (class B NFRs / operationalizations) being

4

ranked as “0”. That is, the regression line is interpreted as the line
corresponding to the expected category with the dependent variable “effort”
depends only on the size of the functionality. In the dataset, all the
requirements with “increasing” effect on the effort, that is requirements with
the maximum effort above the regression line and along the functional size
axis, would correspond to requirements with all NFRs / operationalizations
from Step 5 being classified in the “+” in the 3-values scale. In the dataset, all
the requirements with “reduction” effect on the effort, that is requirements
with the minimum effort below the regression line and along the functional
size axis, would correspond to requirements with all NFRs /
operationalizations from Step 5 being in the “-” category in the 3-values séale.

A graphical analysis on the obtained regression model can be carried out to
identify both theb max and min values on the graph; from there we can select a
representative point along the vertical line at the corresponding functional
size of the FR based on the classification of the NFRs / operationalizations
done at Step 5. For example, if 50% of the NFRs / operationalizations have
been rated “+”, while the other 50% have been rated with “0” then we adjust
the unadjusted effort by selecting the midpoint between thé regression line
and the max value: (Model value + max value) /2. At this point, we have an

adjusted effort value for the FR.

170

We make a note here that this estimation approach does not attempt to model
the individual effort relationship for each one of the associated NFR.
However, it will use the information about these associated NFRs and the data
from a historical dataset to graphically position the requirement to be
estimated, in terms of required effort, somewhere between the minimum and
the maximum effort for specific functional size in a dataset as a function of the
set of NFRs.

Step 9 [Adjusted Functional Size per Requirement]: The adjusted
effort value from Step 8 is projected across the regression line (inverse
function) to get the adjusted functional size for the FR.

Step 10 [Unadjusted Functional Size per Project]: The total functional
size values for all FRs from Step 9 are summed up.

Operationalizations which correspond to functions/operations and are
associated to the whole product, process or resources, are to have their
functional size calculated using the COSMIC method and directly added to the
total calculated. Again, it is important to notice that the functional size for an
operationalization corresponding to a function/operation is to be considered
more than once only if it is operated on a different datagroup through its
associations. In other words, any duplicated pair of (operationalization,
datagroup) will be considered only once. At this step, we generate the
.unadjusted functional size of the whole project.)

Step 11 [Initial Project Effort Estimation Model]: Similarly to what we
did in Steps 6 and 7, Step 11 is about building an initial “project” effort
estimation model using the regression technique. This time, we build the

estimation effort model for the unadjusted functional size of the project, while

171

in Step 6 we were doing this for the FR level. We then map the value obtained
in step 10 across the regression line.

Step 12 [Adjusted Project Effort]: We adjust the total number obtained in
Step 11 (namely, the unadjusted effort of the whole project) to take into
account the associated NFRs/operationalizations from class D in a similar
way as we did in Step 8. At this point, we generate the- adjusted effort value for
'the project level.

The above described approach is illustrated next through a case study.

6.6 The Case Study

We have conducted an evaluation case study to illustrate our solution
proposal. The goal of our study was to analyze the proposed effort estimation
method with the purpose of evaluating its abﬂity to predict the effort in the
context of project of the undergraduate students in their third year of studies
enrolled in the 2009 “Software Measurement” and “Software Project”
software engineering courses at Concordia Univérsity, Montreal, Canada (see
Chapter 3, Section 3.3.2). The project was described within 39 FRs with total
initial measured functional size of 137 CFP (that is without considering the
impact of the NFRs). The described ontolqu has been instantiated using the
set of requirements extracted from the vision document and the use-case
specifications. Eight NFRs have been captured. Théy have been all listed with
their impact evaluations on their association points in Table 6-17. The listed
NFRs are of type quality with exception of NFR7 which is an operating

constraint.

172

Table 6-17: NFRs from IEEE-Montreal Project.

NFR/
OPERATIONALIZATION

DECOM-
POSED
FROM

ASSOC-
IATED
TO

IMP-
ACT

NFR,

The system should maintain
provided services with high

security when required.

System

NFR.

The system should Dbe

available most of the time.

Security

(NFR1)

System

NFR,

The system should provide its
functionalities with high
confidentiality when it is

required.

Security

(NFR1)

All FRs

but search

NFR,

The website should be easy to
maintain by non expert users
with no requiring for a third
party interaction or costs for

updates.

System

NFR;

All technologies must be
portable between Windows

Linux and Mac platforms.

System

NFRe¢

Better and Easier Usability for

the IEEE website.

System

NFR,

The system has a processing
and data storage element.
This part of the system will
reside on the main IEEE
computer and commbunicate

with other IEEE systems.

System

NFRg

The system should be easy to

modify (add new themes,

Maintaina

bility

Content

Managem

173

blocks, menus, taxonomies,
terms, columns, extend

functionality, etc.).

(NFR4)

ent

Functiona

lity

Because NFR, and NFR, are not atomic, then they are not considered directly

in the assessment of the effort. Among the specified NFRs in Table 6-17, only

NFR; has been operationalized through functions which allow the creation

and assignment of privileged access to the users. Basically, the new site must

recognize several privilege/responsibility types for users and allow new user

types to be added without re-coding,. Table 6-18 lists the functionalities which

operationalize NFR; along with their calculated functional size using the

COSMIC method. These operationalizations would always operate on the

same dataset regardless of the association points they are associated to. Thus,

the functional size would be calculated only once.

Table 6-18: Operationalizations for NFR; (IEEE-Montreal Project).

OPERATIONALIZATION FUNCTIONAL SIZE
(CFP)

Get_Privileged_ Access

Assign_User_Roles

| Create_Role

Update_Role

Delete_Role

ool oo

Release_ Privileged_ Access

operationalizations

Total size of the 6 36 CFP

The initial estimation model for requirements effort was based on the

functional size for the requirements, and was built using the linear regression

technique. For 59 developed requirements from 6 previous projects, the below

174

regression model based on functional size was obtained. The projects were
developed and completed by students in their third year of studies enrolled in
the “Software Project” undergraduate course at Concordia University in 2008.
Effort = 2.34 * (Functional Size) + 4.24
With Correlation Coefficient: r = 0.734
The line in Figure 6-10 presents the above equation. That is, for a requirement
with all associated NFRs having an average impact (c]aésiﬁed in the “0”
category”), the effort should be mapped to a point on this line. On the other
hand, for a requirement with most associated NFRs classified in the “+”
category, the effort should be maﬁped to a point above the regression line and
below the point representing the highest possible effort: 192.25 person-hours.
Similarly, for a requirement with most associated NFRs classified in the “-“
category, the effort should be mapped to a point below the regression line and

above the point representing the lowest possible effort: 4.5 person-hours

250

g8 8 8

Effort (hours)

w
(=]

0 10 20 30 40 50 60 70 80 ¢
Functional Size (CFP)

i

Figure 6-10: A Regression Model for Functional Requirements from
Previously Completed Projects: Requirement Level.

175

We make the note that while the content management functionality is
measured initially to have functional size of 30 CFP, NFRg is associated to
content management and NFRg is operationalized through some design and
. architectural decisions and thus measuring its functional size is not possible.
The impact of NFRg on its associated functionality is classified as ‘+’. Thus, the
functional size of content management has to be adjusted to somewhere
above the regression model estimate and below the point that corresponds to
the highest impact of NFRs (NFRs is impacting content management in a
moderate way not to bring the effort all the way to the highest effort). The best
option would be the midpoint between the regression line and the highest
effoirt.

The initial effort estimate for content management based on the above

regression model without the impact of the maintainability NFR is:

Unadjusted Effort (content management) = 2.34 * (30) + 4.24 =

74.44 person-hours

The effort corresponding to the highest impact of NFRs at a requirement with
a functional size of 30 CFP is: 192.25 person-hours

The midpoint between these two values is chosen to be the effort for the
content management, thus the effort of content management is readjusted to
be:

Adjusted Effoft (content management) = (74.44 + 192.25) [2 =

133.35 person-hours

176

With a new effort value for content management, its corresponding functional
size has been readjusted. We calculate the functional size for content
management based on the newly added effort:
133.35 = 2.34 * (Functional Size) + 4.24
Adjusted_Functional Size = (133.35 — 4.24) / 2.34 = 55.18 CFP.
The total functional size for all FRs is recalculated at this point: 137 + (55.18 —
30) + 36=198.18 CFP.
The same procedure is repeated on the project level. The regression model
obtained based on previously completed projects is the following one:

Effort = 1.24 * (Functional Size) + 382.6

With Correlation coefficient: 0.49

The line in Figure 6-11 presents the above formula. This line is bounded by
two points, the first of which corresponds to the minimal effort: 412 person-

hours and the second one corresponds to the max efforts: 783.75 person-

hours

Effort (person-hours)

0 50 100 150 200 250 300
Functional Size (CFP)

Figure 6-11: A Regression Model for Previously Completed Projects: Project
Level

177

Based on the calculated functional size for all requirements, the initial effort

for building the project is calculated as:

Unadjusied Effort (project) = 1.24 * (198.18) + 382.6= 628.394
person-hours.

Now, to adjust the effort, we should consider the effect of the remaining
NFRs; that is NFR,, NFR;, NFRe and NFR.

Because 3 out of these 4 NFRs associated to the projects presented in Table 5-
17, are deemed high impact NFRs, the total effort for the project should be
readjusted to fall on a higher point above the regression line. Based on
expert’s judgment, the best répfesentative' point on the functional size axis is
75% above the regression line and 25% below the max value.

Thus, the total effort of the software project with all associated NFRs is
calculated to be: (((628.34+ 783.75) / 2) + 783.75) /2= 744.9 person-hours.
In order to evaluate our approach in comparison with the traditional practice
of not considering the impact of NFRs in estimating the effort, we have
generated the Magnitude Relative Error (MRE) for_the captured actual effort
and calculated results from our approach. Then we have established a
comparison among the MREs value having our calculated effort value as an
input against having the value of the effort calculated without considering the

" impact of NFRs. The MRE is calculated through the below formula below:

MRE (Project) = ABS ((Actual Effort ~ Estimated Effort) / Actual Effort)

178

The actual reported effort for the IEEE-website project was: 820.75 person-
hours. The MRE for the captured actual effoﬁ and calculated results from our
approach is:
ABS ((820.75 — 744.9) / 820.75) = 9.24 %
If we would havé chosen not to follow our approach and, instead, to consider
only the impact of the FRs, then with 137 CFP as an initial functional size, the
estimated effort would have been:
Effort = 1.24 * (137) + 382.6 = 552.48 person-hours
The MRE for the captured actual effort and calculated results without
considering the impact of NFRs:
ABS ((820.75 — 552.48) / 820.75) = 32.59 %

This is a 23.35% improvement in the effort estimation.

6.6 Conclusion

The effort estimation approach presented in this chapter aims at improving
the predictive quality of the software industry’s effort estimation models. This
chapter demonstrated the feasibility of the proposed approach on a case
study. To the best of our knowledge, the software industry lacks quantitative
effort estimation methods for NFRs, and would certainly benefit from the
precise and objective size measurement and effort estimation approach
proposed in this chapter.

On the other hand, the proposed effort estimation model is expected to be
adopted relatively easier in those organiozations who have already made
experiences with quantitative mamangement of software projects. We

consider the following prerequisites instrumental to the adoption: (1)

179

experience with a FP-like approach, preferably COSMIC, (2) culture of
measurement-oriented thinking of software processes, (3) Access to a
historical dataset which is collected from completed projects and
implemented requirements; and it is sufficient to build the required
regression model for both the requirements and the project levels and (4)
Having both FRs and NFRs captured and well-documented.

Our approach has similarity with other regression-based estimation
approaches in that the analysts make a number of simplifying assumptions
when using this type of approaches. Such assumptions might pose threats to
various extents to the validity of the ﬁnal results [Reigo]. For example, an
analyst can base his/her choice of *-/0/+’ ratings on his/her own experience in
implementing specific NFRs in a project in an organization. While for some
NFRs, as reusability, it might be possible for the analyst to find some
published research on what levels of reuse are achievable in a specific type of
project and what is the effort associated with this, for othef NFRs the analyst
might set up the ratings in a way that - clearly, could be subjective. However,
it is our understanding that at this early stage of research on NFR-based effort
estimation, this design choice is the only possible way to go. We plan, in the
future, a deeper research on the topic of evaluating the validity of our solution
proposal in various settings, expecting that new knowledge will help refine our
approach.]

Further discussion on the future work is presented in the next chapter.

180

Chapter VII: Conclusion and
Future Work

“Not to be absolutely certain is, I think, one of the essential things in
rationality.”
Bertrand Russell (1872 - 1970)

7.1 Conclusion

The tendency for NFRs to have a wide-ranging impact on a software system,
the strong interdependencies among them, and the NFR tradeoffs; all
challenge current software modeling methods. As a result, how to integrate
NFRs and FRs into a coherent requirements engineering process is a problem
which has only been partially solved. However, the increasing trend to develop
complex software systems has highlighted the urgent need to consider NFRs
as an integral part of software system development.

In this thesis, we contribute towards achieving thé overall goal of managing
the attainable scope and the changes of NFRs. We achieve that through:

1. Building a formal metamodel for FRs, NFRs and their relations which was
implemented as the proposed NFRs ontology.
2. Implementjng change management mechanism for tracing the impact of
NFR on other constructs in the formal metamodel and the corresponding
NFRs Ontology and vice versa.
3. Proposing a novel approach to the NFRs scope management and early

requirements-based effort estimation based on the NFR formal metamodel

and the corresponding ontology.

181

One of the advantages of our approach is that it forces systems analysts to
understand the relationships that exist within and across NFRs in the various
phases of development right from the requirements inception phase till the
implementation and testing phases.

Benéﬁts which arise by blending our research results with existing industry
practice can further make an enhancement of their expertise about
requirements engineering and software architectures with respect to NFRs.
Oﬁr research will help to deliver ready-to-use methods that could be easily
applied in consulting interventions at clients’ sites. For example a validated
- traceability approach will allow the industry to improve the’synergies among
their requirements engineering, architectural design, implementation and
testing processes. To the best of our knowledge, the software iﬁdustry lacks
quantitative effort eétimﬁtion methods for NFRs, ahd would certainly benefit
from the precise and systematic proposed model presented in chapter 6.

Table 7-1 revisits the research questions we discussed in Chapter 3 and links
each question to the corresponding section in this thesis in which the question

is addressed.

Table 7-1: Linking Research Questions to their Corresponding Answers.

Research Question Link to the

Answer

Q1- What is a NFR? Sections

4.4.1 and

4.51

182

Q2-What are the types of NFRs? How can they be

categorized?

Section

4.5.2.1

Q3- How does NFR interact with FRs and their refinements

during the software development process?

Section 4.5.1

Q4- How does one NFR interact with other NFRs?

Sections

4.5.2.2,
4.5.2.3 and

4.5-2.4

Q5- What are the concepts and relationships which

characterize the interactions referred to in Q3 and Q4?

Section 4.5

Q6: What traceability mechanisms are used in theory and

practice to support requirements engineering and

architectural design decisions for NFRs? What complexity
aspects of NFRs are accounted for in current requirements
engineering and architectural

design decision-making

processes?

Section 5.2

QQ7: What are the critical areas requiring traceability attention
when dealing with change management of NFRs? How are
these areas mapped to the concepts and relationships defined

in the NFRs Ontology?

Sections 5.3

and 5.4

(Q8: What is the impact of NFRs on the total effort for

building and maintaining the software project?

Section 6.3

Qo: In which ways are NFRs treated in current theoretical

and practical effort estimation models?

Section 6.3

183

Q10: How to improve the existing practice of early estimation | Sections 6.4,

for the effort taking into account the impact of NFRs? 6.5and 6.6

Table 7-2 restates the applicability of the approaches resulting from this

research with steps towards deploying the approach in practice. In addition, it

provides the links to the corresponding sections of evaluation in which the

reader can refer to the demonstration on how to apply the proposed approach.

In this thesis, we presented the illustration and the evaluation through

settings from three case studies. Having different case studies design usually

offer greater validity for the work [ESSDo7]. The following items summarize

our findings from the interaction with the selected case studies:

1.

There is no consensus on how to specify NFRs. These requirements can
be listed under “Non-Functional Requirements”, “Usability
Requirements” or “Technical Requirements” as in the IEEE Montreal-
website case study, “Solution Requirements”as in Nokia Mobile Email
Application case study or even under “Configuration Requirements” as
in the SAP case study. In this thesis, we define NFR as an umbrella
term to cover all those requirements which are not explicitly defined as
functional.

The “perspective” of the requirement is a major dimension to consider
when dealing with NFRs. What can be listed as a FR from certain
perspective may be considered as NFR from another.

Type of the project has a major influence on the type of NFRs which are
most likely to be demanded. For example, in Nokia Mobile Email
application case study, in order to optimize the user experience for

devices with limitations (e.g. screen size, memory, processing speed)

184

and wireless networks with constrained bandwidth, performance is a
high-priority NFR. On othe other hand, for web applications that have
an informative objectives, usability is a high-priority NFR. The link
between the type of the project and the demanded NFRs is a subject of
future investigation.

4. We acknowledge that using the students for research studies poses
further challenge in terms of balancing different objectives when
conducting empirical or observational studies as part of an academic
course. In order to minimize the effect of the potential challenge, the
research’s objectives were clearly connected to educational goals.
Mandatory participation may affect the results, but optional
participation is not necessarily better. We prompted the invitation for
participation as an optional bonus assignment. The students weré then
given the necessary training to conduct the tasks of the assignment and
multuiple Q/A sessions were set to address the raised concerns.

This Ph.D. project is multidisciplinary in nature, which opened multiple
avenues of future work that we could effectively pursue. Our main interests
are discussed in the following sections categorized by the identified ‘purpose’

from Chapter 1.

185

981

‘suone[a1 Surpuodssiioo oY) Ul papIooal 9q
PINOYS Blep PaAdLIIdI 9] Jo Aue ur a3ueyo paydeooe Aue UO UOISINP Y -9
"S9UO JUBAS[OI-UOU AUB SAOWISI

0] SJURWIA[E/SjuaWdIINbal paAdLNal oY) 19} ‘Sjusws[d / sjusuwaambai

payoedur A[reniuajod jo 39S B pauInial sey WILIoS[e [eALIIaI 91} dduQ -

*A1onb Furpuodse1100 a3 oﬁ.&oxm -€

"SJUSWIdUIJa] pUe SUONeONJ109ds 1oy} UM -

“WISTUBYOIW

A1iqeaoery womomoa..oﬁ Zuisn

Buore seose pajoedur A[enuejod oyl Anuapr ‘ysenbar sSueyd e uodp) -z | aremyos pakojdep uo YAN 10§ [
9'G U019 ‘uonejuasardai paseq | seonoerd Sunss) oY) Sumoadw] | sseyq
[opowi-feuonjeral Surpuodsariod ojul £3o[o0yuQ SYAN Oy} uuIojsuelj, -1
'sso00ad uonesyads
L uonosg SYAN o,ﬁ Suwaoaduy I
*(L1-Y 21n81]) uonejueisu] SYJIN splemoy sdais o) moqjoq | aseyd
uonen[eayq sonoead ut Suikojdap spremo) sdars Arnqeorddy aseyd

'SIsay I, S1y} woay Sunnsay soyoeorddy jo Aniqeorddy :2-L s[qe],

99 UONOAG

"sanb1uyds) uoIssaial uo paseq S[EPOUI UOTIBUIIISD
ue y3noiyy 1sfoxd sy} Suip[ing jo 11055 9yl pue SIH[BUOTIOUNJ
jo oz1s oy uo SYAN pozijeuonerodoun, pue suonezijeuonerado
9so1} Jo joedwul Oy} JOPISUOD U} am ‘(SYIN Ppozijeuoneraddoun)
suonnjos u3sap ol paugel 3q jouued SYAN 9yl
YO painseswr aq jouued suornjezijeuonierado sy} Jo 9ZIs 9} US|

‘(2) woay suone[ax s Y AN Jo

uoneoyoads oy} pue (1) Wolj Juswainseaw 9y} Juisn joafoid (230}
oYy} pue sanieuonouny parmded aY} Jo SZIS [eUONOUN] 9N} ISn(Py
‘suorjeoyads pue suonepl SYJN Uo

uoneoyoads 1espd 91} 10] A80[01UQ SYIN PIIBIIULISUL S} 0} I9JoY
‘suoneyal 119y} Wodj

uorjeost u1 suonezijeuonierddo ay) Jo AZIS [EUONIOUNJ I} dINSBI

‘UOIIRISPISUOD
oyt SYAN Jo wedwr oy} Sunyey
19foad sxemyjos a1y Suipying jo

Mog3e 9y} 1o} uonoipaid 191199

aseyd

7.2 Future Work on Characterizing NFRs

Clearly, the evaluation of the acceptance and the accuracy of the NFRs
Ontology, as such, ultimately rely upon its application by the research
community. The author of this thesis and the scientific supervisors are hoping
to soon benefit from interaction with a number of interested parties in this
topic. In partiéular, we plan to explore the way in which NFRs Ontology could
be further leveraged in more complex requirements specification scenarios in
real-life settings. In order to ground the concept further, we plan to develop
tools to leverage the benefits of ontology for NFRs and evaluate our results
égainst scenarios designed to test the capabilities of the ontology (See Section
4.3.1). We are also planning to collaborate with industrial partners such as
NOKIA office in Montreal to deploy and instantiate the NFRs Ontology in
their upcoming projects.

We are also working closely with the Computational Linguistic research team
at Concordia University on a project that aims at automating the instantiation
process for theﬁ NFRs Ontology from sets of requirements specification
documents to be used as an input. The automation of the NFRs instantiation
process will contribute towards better acceptance for the proposed ontology in
the industrial firm.

In addition, we will investigate further to which degree having the NFRs
Ontology adopted in the requirements engineering activitjes guarantees the
compliance of the final product with the captured NFRs.

On other hand, we started working on extending the ontology to establish a
formal methodology to resolve the conflict between NFRs (Chapter 4, Section

4.5.2.4) with minimal contribution from stakeholders. The background

188

context for this work is provided by other authors’ previously published
research, namely [Leeg6] who developed a formal model for the WinWin
requirements engineering process called the “Problem Space View”. We have
deployed this process to evaluate its applicability in a context of a conflict
which may rise in case of a large size of demanded software vs. limited
available effort (limited human resources). This model was chosen for our
investigation because of its formal mathematical basis, which allows for
automation of the process and thus for objectively assessing NFR risk
management. The model defines a win condition as a constraint on the space
R of all requirement ‘speciﬁcations. R consists of a set of functional,
infrastructure, and qué]ity attribute specifications. In the model, a conflict is
defined as a set of win conditions, the win regions of which have an empty
intersection (the bottom space in Figure 7-1). Lee maintained that the conflict
could be resolved by expanding stakeholders’ win condition area (called
“satisfactory area”). In [In98], the author proposed a theory for resolving
conflicts by creating options through added dimensions. The conflict in the n
dimension space (the bottom space in Figure 7-1) can be resolved in the space
~ of the n+1st dimension (see the top space in Figure 7-1) by expanding
stakeholders’ win conditions due to the added dimension (called “option

strategy”).

189

Addn+1 ™ dimension Win-win region

/ created

W' d

No user, developer, customer
win regions

Space for n dimension

Figure 7-1: Conflict Resolution through Added Dimensions.

An example of a conflict situation in n-dimensional space is shown in Figure
7-2."The numbers in the example are for purposes of illustration. In this
example, the user’s win condition, W(U)1, consists of more than 15 functions,
but the customer’s win condition, W(C)1, is that the effort should be less than
28 person-months [pm]. The developer’s win condition, W(D)1, is a
reasonable expectation of work and reward (i.e. not too much work, but
enough income) as estimated by an effort estimation model such as COCOMO.
In the example, it is assumed for simplicity that each function has a function
size of 30 CFP and requires 2 [pm]. Figure 7-2 shows that there is no WinWin
area to satisfy all stakeholders’ constraints, because the total functional size
for a project implementing the 15 functions is estimated to be 450 CFP, and

thus the total effort is 30 [pm].

190

of Functions

Y wioy: <=28Pm] W(D)1: Effort

Estimation

\\\y/
N
e

15 W(U)1:>=15 fun

N
//

[
P

28[PM
[PM] Required Effort

Figure 7-2: Conflict Situation in the Problem Space View Model.

The following steps, which were used to solve the decision problem with
constraints, represent the effort conflict situation more specifically:
1. Define an objective:
+Find the WinWin region (i.e. the region that satisfies all constraint win
conditions) |
2. Define thé decision variables:
+x1: Effort
-x2: # of functions
3. Define the constraints according to each win condition:
+g1(x1, x2): x1 <= 28 {pm]

*g2(X1, X2): X2 >= 15

191

+g3(x1, x2): X1 <= 2[pm] * x2 (= our assumption for simplicity)
4. Identify the WinWin region (the satisfactory area for all stakeholders):

+No WinWin region (i.e. conflict)
5. Identify the WinWin point (the most satisfactory point for all stakeholders
within the WinWin region), if the WinWin region exists.
Figure 77-3 shows an example of resolution of the effort conflict situation
presented above. The effort conflict situation shown in Figure 7-2 can be
represented in the bottom space in Figure 7-3. The effort conflict can be
resolved by creating an option, namely, that of reusing existing software assets
which perform some of the 15 functions, which is generated by an added
dimension, “reuse of software assets (%)”. The reuée of software assets can
reduce the effort needed for the current phase without reducing the number of
functions the user wants to implement. This conflict resolution situation is
shown in the upper part of Figure 7-3. One of the assumptions, for simplicity,
is that complete reuse saves the total effort. Thus, reusing 3 functions (20% of

15 functions) saves 6 [pm] and reduces the total effort to 24 [pm].

192

of Functions

WinWin

Region
wicy
WD)
W(U)1
>/: v
4
//
3 functions (20%) 4 4
/,
7/
7
/,‘)
7/
i / -
18[FM) 28[PM) Effort
W(C)1: <=28{PM)
\/ W(D)1: Reasonable Effort Estimation
et
1% <); W(Uy1:>=15 func.
N 7
:7 /
No win region —) /
7
L,
Z
/
L. -
28[PM} 30[PM}

Figure 7-3: An Example of Cost Conflict Resolution through an Added

Dimension.

Using the steps to represent cost conflicts, the conflict resolution process by

option creation through an added dimension can also be represented more

specifically by means of the following steps:
1. Define an objective:
Find the WinWin region
2. Define the decision variables:
-x1: Effort
+x2: # of functions
3. Define constraints:

+g1(x1, x2): X1 <= 28 [pm]

193

+g2(x1, X2): X2 >= 15
+g3(x1, x2): X1 <= 2 [pm] * x2
4. If there is no WinWin area (i.e. conflict), add an additional dimension; for
example,
x3(= # functions covered By reuse of software assets):
| +g1(x1, X2, x3): X1 <= 28 [pm]} |

+g2(x1, X2, X3): X2 >= 15

+g3’(x1, X2, X3): X1 <= 2 [pm] * (x2 - x3)
5. Identify the WinWin region (the satisfactory area for all stakeholders):

+x1 <= 28 [pm]; x2 <= 15; 2 <= x3 <= 3 (the blank area in Figure 4)
6. Identify the WinWin value (the most éatisfac'tory point for Iall stakeholders
within the WinWin region), if the WinWin region exists. |
Clearly, the proposed dimensions depend on the type of conflicts. Typically,
there are proposéd dimensions for a specific type of conflict. For example,
reducing/deferring functionality, reducing/deferring quality, relaxing
schedule constraints, improving personnel capability, improving tools and
platform, reusing software assets, and increasing budget can all be viable
means of resolving cost conflicts. One remaining challenge here is conflicts
that may arise in the large requirement model which we are unable to identify
automatically; in other words, scalability _is yet to be determined through

larger cases studies from the real world.

7.3 Future Work on NFRs Traceability

Change management would require not only a mechanical tracing of the
effects of change, but also a reasoned approach to gauging the consistency of
the changes within the traceability model. Due to the complexity of the NFRs
relations in the traceability model, a change analysis mechanism is required to
ensure the consistency of the proposed changes before they are authorized.
Our future work includes the development of consistency rules based on the
formal presentation of the FR and NFR hierarchies and their relations, rules
which will be automatiéally checked before a change is authorized.

In addition, we plan to remedy further evaluation for the traceability
mechanism by extending its applicabﬂity beyor;d the testing activities (e.g.
requirements review activities, project’s extension.) This will be done by
applying empirical research methods, specifically case studies and
experiments.

We will also consider the mapping of the Datalog expressions into SPARQL
Protocol and RDF Language (SPARQL) which is an RDF query language.
SPARQL was standardized by the RDF Data Access Working Group (DAWG)
of the World Wide Web Consortium, and is considered a key semantic web
technology. SPARQL, which became an official W3C recommendation 'in
2008, allows for a query to consist of triple patterns, conjunctions, and
optional patterns. Implementing the traceability queries with SPARQL blends

phases 1 and 2 of this research in a more consistent fashion.

195

7.4 Future Work on Effort Estimation considering the impact of
NFRs

As the author of this thesis is working in a company interested in the effort
estimation approach, he and his supervisors plan to investigate further the
impact of interactivity relation on the effort estimation. The effect of
additional independent variables such as experience and project difficulty will
be combined then into in a multiplicative regression model, which may
improve significantly the quality of the project effort estimation model. In
addition, we plan on considering the automation for the effort estimation
process presented in chapter 6. We also plan on extending the effort
estimation model to the “cost” range (e.g. determine how the size of NFRs

impacts the total cost).

References

[ABHo5] Anda, B., Benestad, H.C., & Hove, S.E. (2005). A Multiple-Case
Study Of Effort Estimation Based On Use Case Points, In ISESE 2005 (Fourth
International Symposium On Empirical Software Engineering), 1EEE
Computer Society, Noosa, Australia, November 17-18, (pp. 407- 416).

[Abrog] Abran, A. (2009). Software Estimation Models: Can You Trust
Them. :

[Abrgg] Abran, A. (1999). COSMIC FFP 2.0: An Implementation of COSMIC
functional size measurement concepts. In Proceedings of the 2nd European
Software Measurement Conference (FESMA’99), (Oct. 7), Amsterdam.

[ACKos] Al-Kilidar, H., Cox, K., & Kitchenham, B. (2005). The use and
usefulness of the ISO/IEC 9126 quality standard, 2005 International
Symposium on Empirical Software Engineering, (pp. 126- 132).

[ADOSSo03] Abran, A., Desharnais, J. M., Oligny, S., St-Pierre, D., & Symons,
C. (2003). COSMIC FFP — Measurement Manual (COSMIC implementation
guide to ISO/IEC 19761:2003), Ecole de technologie supérieure — Université
du Québec, Montréal, Canada.

[AG83] Albrecht, A. J., & Gaffney J. E. (1983). Software function, source lines
of code, and development effort prediction: A software science validation,
IEEE Transactions Software Engineering, 9(6), (pp. 639—- 648).

[Alb79] Albrecht, A. J. (1979). Measuring application“'" development
productivity, In Proceedings of the IBM Applications Development
Symposium, Monterey, California, (pp. 83— 92).

[Alb84] Albrecht, A. J. (1984). AD/M Productivity Measurement and
Estimate Validation, 1BM Corporate Information Systems, IBM Corp.,
Purchase, NY.

[AMBRo2] Araujo, J., Moreira, A., Brito, 1., & Rashid, A. (2002). Aspect-
Oriented Requirements With UML, Workshop on Aspect-Oriented Modeling
with UML (held with UML 2002, Dresden, Germany.

[ANRSo06] Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., & Shaham-Gafni, Y.
(2006). Model Traceability, IBM System Journal, 45(3), (pp. 515- 526).

[Antg7] Antén, A. (1997). Goal Identification and Refinement in the

Specification of Information Systems, Ph.D. Thesis, Georgia Institute of
Technology.

[AOA04] Abran, A., Ormandjieva, O., & Abu Talib, M. (2004). Information
Theory-Based Functional Complexity Measures and Functional Size With

197

COSMIC-FFP, Proceedings Of The 14th International Workshop On Software
Measurement (Iwsm2004), Germany.

[AR94] Abran, A., & Robillard, P. N. (1994). Function Points: A Study Of Their
Measurement Processes And Scale Transformations, Journal Of Systems And
Software, 25(2), (pp. 171- 184).

[ASDLo7] Al Balushi, T. H., Sampaio, P. R., Dabhi, D., & Loulopoulos, P.
(2007). ElicitO: A Quality Ontology-Guided NFR Elicitation Tool, Proceeding
Of REFSQ 2007, Requirements Engineering: Foundations for Software
Quality, Trondheim, Norway, (pp. 306- 319).

[ASHKWo06] Ankolekar, A., Sycara, K., Herbsleb, J., Kraut, R., & Welty, C
(2006). Supporting Online Problem-solving Communities with the Semantic
Web. In Proceeding of the 15th International Conference on WWW, (pp. 575—

584).

[ASMo1] Angelis, L., Stamelos, 1., & Morisio, M. (2001). Building A Software
Cost Estimation Model Based On Categorical Data, In Proceedings of the 7th
international Symposium on Software Metrics, METRICS, IEEE Computer
Society, Washington, DC.

[ASMDg8] Abran, A., St-Pierre, D., Maya, M., & Desharnais, J. M. (1998). Full
function points for embedded and real-time software, In Proceedings of the
UKSMA Fall Conference, London, UK.

[BAB+00] Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E.,
Madachy, R., Reifer, D., & Steece, B. (2000). Software cost estimation with
COCOMO II (with CD-ROM), Englewood Cliffs, NJ:Prentice-Hall, ISBN 0-13-
026692-2.

[Basg6] Basili, V. R. (1996). The role of experimentation in software
engineering: past, current, and future, Proceedings of the 18th international
conference on Software engineering, Berlin, Germany, (pp. 442- 449).

[Bab85] Babcock, C. (1985). New Jersey Motorists in Software Jam,
Computerworld, September, 30, (pp. 1- 6).

[BB99] Blair, L., & Blair, G. (1999). A Tool Suite to Support Aspect—Oriented
Specification, In Aspect Oriented Programming Workshop in Conjunction
with the 13th European Conference on Ob]ect-Onented Programming,
Lisbon, Portugal (pp. 7—-10).

[BBL76] Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative
Evaluation of Software Quality, In proceeding of the 2nd International
Conference on Software Engineering, San Francisco, CA, Long Branch, CA:
IEEE Computer Society, (pp. 592- 605).

[BCAMRTo06] Baniassad, E., Clements, P.C., Araujo, J., Moreira, A., Rashid,
A., & Tekinerdogan, B. (2006). Discovering Early Aspects, IEEE Software,
23(1), (pp- 61- 70).

198

[BCKo3] Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture
in Practice, Addison-Wesley, NY.

[BGo6] Berenbach, B., & Gall, M. (2006). Toward a Unified Model for
Requirements Engineering, Proceedings of the IEEE international
conference on Global Software Engineering, (pp. 237 — 238).

[BHS03] Baader, F., Horrocks, 1., & Sattler, U. (2003). Description logics as
ontology languages for the semantic web, in Lecture Notes in Artificial
Intelligence, Springe,
http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/BaHS03.
pdf/

[BI96] Boehm, B., & In, H. (1996). Identifying Quality-Requirement Conflicts,
IEEE Software, IEEE Computer Society Press, (pp. 25- 35).

[BKWo3] Berry, D.M., Kazman, R., & Wieringa, R. (2003). Report on the
Second International Workshop on From Software Architectures to
Architectures (STRAW'03), 25th IEEE International Conference on Software
Engineering, IEEE Computer Science Press, (pp- 797- 798).

[BKWZo4] Banker, R., Kauffman, R. J., Wright, C., & Zweig, D. (1994).
Automating output size and reuse metrics in a repository based computer
aided software engineering (CASE) environment, IEEE Transactions
Software Engineering, 20 (3), (pp. 169— 187).

[BLF99] Breitinan, K. K., Leite J. C. S. P., & Finkelstein, A. (1999). The
World's Stage: A Survey on Requirements Engineering Using a Real-Life Case
Study, Journal of the Brazilian Computer Society, 1(6), (pp. 13- 37).

[BMo4] Brito, I., & Moreira, A. (2004). Integration the NFR Framework in a

RE Model, In Workshop on Early Aspects in Conjunction with 37
International Conference on Aspect Oriented - Software Development,
Lancaster, UK.

[Boe78] Boehm, B. (1978). Characteristics of Software Quality, North
Holland Press.

[Boe81] Boehm; B. (1981). Software engineering economics, Englewood
Cliffs, NJ:Prentice-Hall, ISBN 0-13-822122-7.

[BSAo7] Blaauboer, F.A., Sikkel, K., & Aydin, M.N. (2007). Deciding to Adopt
Requirements Traceability in Practice, In Proceeding Of 19th International
Conference on Advanced Information Systems Engineering (CAiSE'07),
Springer Lecture Notes in Computer Science 4495, Norway, (pp. 294-308).

[BSH86] Basili, V. R., Selby, R. W. & Hutchens, D. H. (1986).
Experimentation in Software Engineering, IEEE Transactions on Software

Engineering, 12(7), (pp. 733- 743)-

199

http://www.cs.man.ac.uk/~h0rr0cks/Publicati0ns/d0wnl0ad/2003/BaHS03

[BTVo6] Berota, M., Troya, J. M., Vallecillo, A. (2006). Measuring the
Usability of Software Components, Journals of Systems and Software, 79(3),

(Pp- 427 - 439).

[BWTS85] Bowen, T. P., Wigle, G. B., & Tsai, J. T. (1985). Specification of
Software Quality Attributes, Volume 2, Software Quality Specification
Guidebook.

[CAFL98] Caldiera, G., Antoniol, G., Fiutem, R., & Lokan, C. (1998).
Definition and experimental evaluation for object oriented systems, In
Proceedings of the sth International Symposium on Software Metrics
(METRICS 98), Nov. 20—-21, Bethesda MD, (pp. 167— 178).

[CC98] Copi, 1. M., & Cohen, C. (1998), Introduction to Logic, 10th edition,
Prentice Hall.

[CDDDo3] Cooper, K., Dai, L., Deng, Y., & Dong, J. (2003). Towards an
Aspect-Oriented Architectural Framework, In 2nd International Workshopon
Aspect-Oriented Requirements Engineering and Architecture Design (Early
Aspects), Boston, MA.

[CEoo0] Czarnecki, K., & Eisenecker, U.W. (2000). Generative Programming,
Addison-Wesley, Reading.

[CFMo06] Coral, C., Francisco, R., & Mario, P. (2006). Ontologies for Software
Engineering and Software Technology, Springer, Berlin, Heidelberg,.

[CHo6] Gonzalez-Perez, C., & Henderson-Sellers, B. (2006). An Ontology for
Software Development Methodologies and Endeavours, Ontologies for
Software Engineering and Software Technology, Springer, (pp.123— 151).

[CIMSo04] Conte, M., Iorio, T., Meli, R., & Santillo, L. (2004). E&Q: An early
and quick approach to functional size measurement methods, In Proceedings
of Software Measurement European Forum (SMEF), Rome, Italy.

[CKo4] Chidamber, S. R., & Kemerer, C. F. (1994). A Metrics Suite for Object
Oriented Design, IEEE Transactions on Software Engineering, 20(6), (pp.

476~ 493).

[CKKo1] Clements, P., Kazman, R., & Klein, M. (2001). Evaluating Software
Architectures: Methods and Case Studies, Addison-Wesley Professional, NY.

[CLo1] Cysneiros, L. M., & Leite, J.C.S.P. (2001). Using UML to reflect Non-
functional Requirements, Proceedings of the 2001 conference of the Centre
for Advanced Studies on Collaborative research, (pp. 2- 17).

[Cleos] Cleland-Huang, J. (2005). Toward Improved Traceability of Non-
Functional requirements, Proceedings of the 374 international workshop on

200

Traceability in emerging forms of softwareengineering, Long Beach,
- California, (pp. 14 — 19).

[CLNo1] Cysneiros, L.M., Leite, J.C.S.P., & Neto, J.S.M. (2001). A Framework
for Integrating Non-Functional Requirements into Conceptual Models,
Requirements Engineering Journal, 6(2), (pp. 97-115).

[CNY95] Chung, L., Nixon, B.A., & Yu, E. (1995). Using Non-Functional
Requirements to Systematically Support Change, Proceedings of the Second
IEEE International Symposium on Requirements Engineering, York, U.K.,

- (pp- 132 - 139).

[CNYMoo] Chung, L., Nixon, B.A., Yu, E., & Mylopoulos, J. (2000).
Nonfunctional Requirements in Software Engineering, Kluwer Academic
Publishing.

[CSo4] Constantinides, C., & Skotiniotis, T. (2004). Providing
multidimensional decomposition in object-oriented analysis and design, The
IASTED International Conference on Software Engineering (SE 2004),
. Innsbruck, Austria.

[CSBBCo5] Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E.,
& Christina, S. (2005). Goal Centric Traceability for Managing Non-
Functional Requirements, Proceedings of the 27th international conference
on Software engineering, (pp. 362 - 371).

[CWMo2] Common Warehouse Metamodel (CWM) Specification. (2002).
http://www.cwmforum.org

[Danos] Daneva, M. (2005). Architecture Maturity and Requirements
Process Maturity Do not Explain Each Other, Workshop on Software
Measurement, German-Canadian Society of Software Metrics, Shaker
Verlag, Aachen.

[Davg3] Davis, A. (1993). Software Requirements: Objects, Functions and
States, Prentice Hall.

[Dem82] Demarco, T. (1982). Controlling Software Projects, Yourdon press,
New York. : A

[DKPWOo7] Daneva, M., Kassab, M., Ponisio, M. L., & Wieringa R., &
Ormandjieva. O. (2007). Exploiting a Goal-Decomposition Technique to
Prioritize Non-functional Requirements. Proceedings of the 10t Workshop on
Requirements Engineering WER 2007, Toronto, Canada.

[DKVPo3] Dorr, J., Kerkow, D., Von Knethen, A., & Peach, B. (2003). Eliciting
Efficiency Requirements with Use Cases, In Proceedings of the International
Workshop on Requirements Engineering: Foundations of Software Quality
(REFSQ’2003).

201

http://www.cwmforum.org

[DLSos] Dobson, G., Lock, R., & Sommerville, 1. (2005). Quality of Service
Requirement Specification using an Ontology, Conference Proceedings 1ist
International Workshop on Service-Oriented Computing: Consequences for
Engineering Requirements (SOCCER'05), Paris, France.

[DSDo2] Dimitrov, E., Schmietendorf, A., & Dumke, R. (2002). UML-Based
Performance Engineering Possibilities and Techniques, IEEE Software, 19(1),

(pp- 74-83)-

[EDBS04] Ebert, C., Dumke, R., Bundschuh, M., & Schmietendorf, A. (2004).
Best Practices in Software Measurement: How to use metrics to improve
. project and process performance, Springer.

[EGo4] Egyed, A., & Grunbacher, P. (2004). Identifying Requirements
Conflicts and Cooperation: How Quality Attributes and Automated
Traceability Can Help, IEEE Software, 21(6), (pp. 50- 58).

[ESSDo7] Easterbrook, S. M., Singer, J., Storey, M, & Damian, D. (2007).
Selecting Empirical Methods for Software Engineering Research. In F. Shull
and J. Singer (eds) Guide to Advanced Empirical Software Engineering,
Springer.

[FD96] Finkelstein, A., & Dowell, J. (1996). A Comedy of Errors: The London
Ambulance Service Case Study, proceedings of the 8t International
Workshop Software Specifications and Design, (pp. 2- 5).

[FEoo] Finkelstein, A., & Emmerich, W. (2000). The Future of Requirements
Management Tools, In Information Systems in Public Administration and
Law, G. Quirchmayr, R. Wagner and M. Wimmer (Eds.): Oesterreichische
Computer Gesellschaft.

[Firog] Firesmith, D. G. (2003). Common concepts underlying safety,
security, and survivability engineering, Technical Note CMU/SEI-2003-TN-
033, Camegxe Mellon Software Engineering Institute.

[FISMA08] FISMA, FiSMA 1.1 Functlonal Size Measurement Method,
ISO/IEC 29881, http:/ /www fisma. fi/wp-
content/uploads/2008/07/fisma_fsmm_11_for_web.pdf

[Foro4] Forselius, P. (2004). Finnish Software Measurement Association
Functional Size, F innish Software Metrics Association, Finland.

[FP97] Fenton, N.E., & Pfleeger, S.L. (1997). Software Metrics: A rlgorous
and Pracncal Approach International Thomson Computer Press. -

[FTAS08] Feldt, R., Torkar, R., Angelis, L., & Samuelsson, M. (2008).
Towards individualized software engineering: empirical studies should collect
psychometrics, In Proceedings of the 2008 international Workshop on
Cooperative and Human Aspects of Software Engineering (Leipzig,
Germany, May 13 - 13, 2008), CHASE '08, ACM, New York, NY, (pp. 49-52).

202

http://www.fisma.fi/wp-

[GDo8] Gencel, C., & Demirors, O. (2008). Functional size measurement
revisited, ACM Transactions Software Engineering Methodol, 17(3), (pp. 1-

36).

[Geno8] Gencel, C. (2008). How to use COSMIC Functional Size in Effort
Estimation Models, In the Proceeding Of Mensura/IWSM/Metrikon 2008
conference, LNCS 2008.

[GF94] Gotel, O., & Finkelstein, A. (1994). An Analysis of the Requirements
Traceability Problem, Proceeding First International Conference
Requirements Engineering, Colorado, U.S.A, (pp. 94-101). :

[GGKHo3] Gardner, T., Griffin, C., Koehler, J., & Hauser, R. (2003). A review
of OMG MOF 2.0 Query/Views/Transformations submissions and
recommendations towards the final standard, In 15t International Workshop
on Metamodeling for MDA, York, UK.

[GKMo8] Gasevic, D., Kaviani, N., & Milanovic, M. (2008). Ontologies and
Software Engmeenng, In Staab S & Studer, R. (Eds) Handbook on
Ontologies, Springer.

[Glio5] Glinz, M. (2005). Rethinking the Notion of Non-Functional
Requirements, Proceeding of the 3rd World Congress for Software Quality,
Munich, Germany.

[Glio7] Glinz, M. (2007). On Non-Functional Requirements, 15! IEEE
International Requirements Engineering Conference (RE 2007), Delhi, India,

(pp-21-26).

[Gotgs] Gotel, O. (1995). Contribution Structures for Requirements
Traceability, London, England: Imperial College, Department of Computing.

[Grag2] Grady, R. B. (1992). Practical Software Metrics for Project
Management and Process Improvement, NJ: Prentice-Hall.

[Grug3] Gruber, T. R. (1993). A Translation Approach to Portable Ontology
Specifications, Knowledge Acquisition Archive, 5(2), (pp. 199- 220).

[HC88] Hauser, J. R., & Clausing, D. (1988). The House of Quality, Harvard
Business Review, May — June 1988, (pp. 63- 73).

[HJo2] Holsapple, C.W. & Joshi, K.D. (2002). A Collaborative Approach to
Ontology Design, Communication of the ACM, 45(2), (p.p- 42 - 47).

[HMo6] Haruhiko, K. & Motoshi, S. (2006). Using domain ontology as
domain knowledge for requirements elicitation, proceedings of the 14th IEEE
International Requirements Engineering Conference, Minneapolis, USA, (pp.
186- 195).

203

[HNSos5] Hofméister, C., Nord, R.L., & Soni, D. (2005). Global Analysis:
moving from software requirements specification to structural views of the
software architecture, IEEE Proceedings Software, 152(4), (pp-187- 197).

[HSo6] Happel, H., & Seedorf, S. (2006). Applications of Ontologies in
Software Engineering, In Proceeding of the Intl Workshop on Semantic Web
Enabled Software Engineering.

[IBM] IBM website: SAS Hub Non Functional Requirements (NFRs):
http://www.haifa.ibm.com/projects/software/nfr/index.html.

[IEEE6101290] Standard Glossary of Software Engineering Terminology.
(1990). IEEE Standard 610.12-1990.

[TEEE83098] IEEE Std. 830-1998. (1998). IEEE recommended practice for
software requirements specifications, IEEE Transactions on Software
Engineering.

[IFPUG] FP Users Group: www.ifpug.org

[IFPUG99] IFPUG. (1999). IFPUG Counting Practices Manual - Release. 4.1,
International Function Point Users Group, Westerville, OH.

[Ing8] In, H. (1998). Conflict Identification and Resolution for Software
Attribute Requirements, Ph.D. Dissertation, USC, CA. '

[1SO1414398] ISO 14143-1. (1998). International Standard ISO/IEC 14143-1,
Information Technology - Software Measurement — Functional Size
Measurement Part 1: Definition of Concepts.

[1SO1593907] International Standard ISO/IEC 15939 Second edition. (2007).
Systems and software engineering —Measurement process.

[ISO1976103] ISO/IEC 19761. (2003). Software Engineering: COSMIC-FFP -
A functional size measurement method, International Organization for
Standardization - ISO, Geneva.

[1802092603] I1SO 20926. (2003). ISO/IEC 20926: Software Engineering -
IFPUG 4.1 Unadjusted FSM Method -Counting Practices Manual.

[ISO2096802] ISO 20968. (2002). ISO/IEC 20968: Software Engineering -
MKII Function Point Analysis — Counting Practices Manual.

[ISO2457005] ISO 24570. (2005). ISO/IEC 24570: Software Engineering -
NESMA Functional Size Measurement Method v.2.1 - Definitions and
Counting Guidelines for the Application of Function Point Analysis.

[ISO25000] International Standard ISO/IEC 25000 Second edition. (2005).

Software Engineering -- Software product Quality Requirements and
Evaluation (SQuaRE) -- Guide to SQuaRE.

204

http://www.haifa.ibm.com/projects/software/nfr/index.html
http://www.ifpug.org

[ISO912601] International Standard ISO/IEC 9126-1. (2001). Software
engineering — Product quality — Part 1: Quality model. ISO/IEC 9126-1:2001,
200.

[Jaco7] Jacobs, D. (2007). Requirements Engineering so Things Don't Get
Ugly, Companion to the Proceeding of 29th International Conference on
Software Engineering, (pp. 159- 160).

[JBR99g] Jacobson, I, Booch, G., & Rumbaugh, J. (1999). The Unified
Software Development Process, Reading, Mass: Addison Wesley.

[Jinoo] Jin, Z. (2000). Ontology-based requirements elicitation
automatically, Chinese Journal Computers, 23(5), (pp. 486 — 492).

[JKCWo08] Jingbai, T., Keqing, H., Chong, W., & Wei, L. (2008). A Context
Awareness Non-functional Requirements Metamodel Based on Domain
Ontology, IEEE International Workshop on Semantic Computing and
Systems, Huangshan, China, (pp.1- 7).

[JMo1] Juristo, N., & Moreno, A.M. (2001). Basics of Software Engineering
Experimentation, Kluwer.

[Jon87] Jones, T. C. (1987). A Short History of Function Points and Feature
Points, Software Productivity Research Inc., USA.

[Juro2] Jurjens, J. (2002). UMLsec: Extending UML for Secure Systems
Development, In UML ’02: Proceedings of the sth International Conference
on The Unified Modeling Language, London, UK, (pp. 412—425).

[Kamoo] Kammelar, J. (2000). A sizing approach for OO-environments, In
Proceedings of the 4th International ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering.

[Karg3] Karner, G. (1993). Resource Estimation for Objectory Projects,
Objective Systems SF AB.

[Kaso6] Kassab, M. (2006). Towards an aspect-oriented software
development model with quality measurements, Thesis (M.Comp.Sc.)-
Concordia University, Montreal, Canada.

[KBTo7] Kiefer, C., Bernstein, A., & Tappolet, J. (2007). Analyzing Software
with iSPARQL. In Proceeding the 3rd ESWC International Workshop on
Semantic Web Enabled Software Engineering.

[KCOo05] Kassab, M., Constantinides, C., & Ormandjieva, O. (2005).
Specifying and Separating Concerns From Requirements to Design: a Case
Study, In The IASTED International Conference on Software Engineering
(ACIT-SE 2005), Novosibirsk, Russia, (pp. 18—27).

[KDOo7a] Kassab, M., Daneva, M., & Ormandjieva. O. (2007). Scope
Management of the Non-Functional Requirements, Proceedings of the 3371

205

Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), Liibeck, Germany, (pp. 409- 417).

[KDOo7b] Kassab, M., Daneva, M., & Ormandjieva, O. (2007). Early
Quantitative Assessment of Non-Functional Requirements, Technical Report
TR-CTIT-07-35 Centre for Telematics and Information Technology,
University of Twente, Enschede. ISSN 1381-3625.

[KDOo9] Kassab, M., Daneva, M., & Ormandjieva, O. (2009). Towards an
Early Software Effort Estimation based on Functional and Non-Functional
Requirements, Accepted at International Conference on Software
Measurement, Software Process and Product Measurement, Amsterdam,
Netherlands.

[KICos5] Kazman, R., In, H. P. & Chen, H.-M. (2005). From Requirements
Negotiation to Software Architecture Decisions, Journal of Information and

Software Technology, 47 (9), (pp- 511-520).

[KK97] Kauffman, R., & Kumar, R. (1997). Investigating object-based metrics
for representing software output size, In Proceedings of the Conference on
Information Systems and Technology (CIST), In the INFORMS 1997 Annual
Conference, San Diego. '

[KKK+06] Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T.,
Retschitzegger, W., Schwinger, W., & Wimmer, M. (2006). Lifting
Metamodels to Ontologies: A Step to the Semantic Integration of Modeling
Languages. In Proceeding of the ACM/IEEE oth International Conference on
Model Driven Engineering Languages and System, (pp. 528— 542).

[KKPgo] Keller, S.E., Kahn, L.G., & Panara, R.B. (1990). Specifying Software
Quality Requirements with Metrics. In Thayer, R.H.; Dorfman. M.: System
and Software Requirements Engineering, IEEE Computer Society Press,
Washington, (pp. 145- 163).

[Knuo4] Knublauch, H. (2004). Ontology-Driven Software Development in
the Context of the Semantic Web: An Example Scenario with Protege/OWL, In
Proceeding of 15t International Workshop on the Model-Driven Semantic
Web.

[KOo06] Kassab, M., & Ormandjieva, O. (2006). Towards an Aspect-Oriented
Software Development Model with Traceability Mechanism, In Proceedings of
the Early Aspects 2006: Traceability of Aspects in the Early Life Cycle
Workshop, Bonn, Germany.

[KOCo5] Kassab, M., Ormandjieva, O., Constantinides, C. (2005). Providing
Quality Measurement for Aspect-Oriented Software Development.
Proceedings of the 12th Asia-Pacific Software Engineering Conference,
Taipei, Taiwan, (pp. 769-7 75).

[KODo7a] Kassab, M., Ormandjieva, O., Daneva, M., & Abran. A. (2007). A.
Non-Functional Requirements: Size Measurement and Testing with COSMIC-

206

FFP, Proceedings of the International Conference on Software Process and
Product Measurement (IWSM-MENSURA 2007), Palma de Mallorca, Spain.

[KODo7b] Kassab, M., Ormandjieva, O., & Daneva. M. (2007). Towards a
Scope Management of Non-Functional Requirements in Requirements
Engineering, Proceedings of the MeRePo7: Workshop on Measuring
Requirements for Project and Product Success, Palma de Mallorca, Spain.

[KODo8a] Kassab, M., Ormandjieva, & O., Daneva, M. (2008). A Traceability
Metamodel for Change Management of Non-Functional Requirements,
Proceedings of the 6 international conference on Software Engineering
Research, Management and Applications, Prague, Czech Republic, (pp. 245-

254).

[KODo8b] Kassab, M., Ormandjieva, O., Daneva, M., & Abran, A. (2008). A
Non-Functional Requirements Size Measurement Method (NFSM) with
COSMIC-FFP, Lecture Notes in Computer Science (LNCS) 4895 — 0168,
Springer—Verlag Beriln Heidelberg, (pp. 168-182).

[KODo8c] Kassab, M., Ormandjieva, O., & Daneva, M. (2008). A Meta-model
for the Assessment of Non-Functional Requirements Size, Proceedings of the
34t EuroMicro SEAA Conference. 2008, Parma, Italy, (pp. 411-418).

[KODo9ga] Kassab, M., Ormandjieva, O., & Daneva, M. (2009). A Metamodel
for Tracing Non-Functional Requirements, Proceedings of the 2009 World
Congress on Computer Science and Informatton Engmeerzng (CSIE 2009),
Los Angeles, USA.

[KODogb] Kassab, M., Ormandjieva, O., & Daneva, M. (2009). An Ontology
Based Approach to Non-Functional Requirements Conceptualization,
Accepted at the the Fourth International Conference on Software
Engineering Advances, ICSEA 2009, Porto, Portugal.

[KOD10] Kassab, M., Ormandjieva, O., & Daneva, M. (2010). Managing the
Changes and the Attainable Scope of Non-Functional Requirements in
Software Engineering, Accepted as a book chapter to Methodologies for Non-
Functional Requirements in Service Oriented Architecture.

[KSos] Kaiya, H., & Saeki, M. (2005) Ontology based requirements analysis:
lightweight semantlc processing approach, proceedings of the s5th
International Conference on Quality Software (QSIC), Melbourne, Australia,

(pp. 223 — 230). -

[KS98] Kotonya, G., & Sommerville, 1. (1998). Requirements Engineering:
Processes and Techniques, John Wiley & Sons.

[KUgs] King, M., & Uschold, M. (1995). Towards a Methodology for Building

Ontologies, Workshop on Basic Ontological Issues in Knowledge Sharing
1JCAI, Montreal, Canada, (pp. 6.1-6.10).

207

[LBDo2] Lodderstedt, T., Basin, D. A., & Doser, J. (2002). SecureUML: A
UMLBased Modeling Language for Model-Driven Security, In UML ’o2:
Proceedings of the sth International Conference on The Unified Modeling
Language, London, UK, (pp. 426- 441).

[LDSos] Lock, R., Dobson, G., & Sommerville, I. (2005). Quality of Service
Requirement Specification using an Ontology, Conference Proceedings 1st
International Workshop on Service-Oriented Computing: Consequences for
Engineering Requirements (SOCCER'05), Paris, France.

[Lee9g6] Lee, M. (1996). Foundation of the WinWin Requirements Negotiation
System, Ph.D. Dissertation, USC, CA.

[Leto2] Letelier, P. (2002). A Framework for Requirements Traceability in
UML-Based Projects, Proceeding of the 1st International Workshop on
Traceability in Emerging Forms of Software Engineering, Edinburgh, (pp.
30—41).

[LGos] Lee, S.W., & Gandhi, R.A. (2005). Ontology-based Active
Requirements Engineering Framework, In Proceeding of the 12th Asia-Pacific
Software Engineering Conference, (pp. 481- 490).

[LMGYA06] Lee, S. W., Muthurajan, D., Gandhi, R.A., Yavagal, D., & Ahn, G.
(2006). Building Decision Support Problem Domain Ontology From Natural
Language Requirements for Software Assurance, International Journal of
Software Engineering and Knowledge Engineering, 16(6), (pp- 851-884).

[LSo5] Liebchen, G. A., & Shepperd, M. (2005). Software Productivity
Analysis of a Large Data Set and Issues of Confidentiality and Data Quality, In
Proceedings of the 11th IEEE international Software Metrics Symposium
(September 19 - 22, 2005), METRICS, IEEE Computer Society, Washington,
DC, 46.

[LTo3] Leveson, L., & Turner, C. S. (1993). An Investigation of the Therac-25
Accidents, IEEE Computer, 26(7), (pp. 18-41).

[LWo3] Leffingwell D., & Widrig, D. (2003). Managing Software
Requirements: A Unified Approach, The Addison-Wesley Object Technology
Series. '

[LWHSo01] Lokan, C., Wright, T., Hill, P. R., & Stringer, M. (2001).
Organizational Benchmarking Using the ISBSG Data Repository, IEEE
Software, 18(5), (pp- 26-32).

[Lyug6] Lyu, M.R. (1996). Handbook of Software Reliability Engineering,
McGraw-Hill.

[MAo04] Mendes, O., & Abran, A. (2004). Software Engineering Ontology: A
Development Methodology, 9, Metrics News, (pp. 68-76).

208

[MABo2] Moreira, A., Araujo, J., & Brito I. (2002). Crosscutting Quality
Attributes for Requirements Engineering, In 14th International Conference
on Software Engineering and Knowledge Engineering 2002, Ischia, Italy,

(pp- 167-174).

[MAHOoo0] Meli, R., Abran, A., Ho, V. T., & Oligny, S. (2000). On the
Applicability of COSMIC-FFP for Measuring Software Throughout its Life
Cycle, In Proceedings of the Escom-Scope.

[Maxog] Maxwell, K. (2009). The PROMISE Repository of Software
Engineering Databases, School of Information Technology and Engineering,
University of Ottawa, Canada, Available:
http://promise.site.uottawa.ca/SERepository.

[MBMog4] Matson, J. E., Barret, B. E., & Mellichamp, J. M. (1994). Software
development cost estimation using Function Points, IEEE Transactions

Software Engineering, 20(4), (pp- 275—-287).

[MRW77] McCall, J., Richards, P., Walters, G. (1977). Factors in Software
Quality, NTIS.

[Mcco6] McConnell, S. (2006). Software Estimation: Demystifying the Black
Art, Microsoft Press.

[MCNo92] Mylopoulos, J., Chung, L., & Nixon, B. (1992). Representing and
Using Nonfunctional Requirements: A process Oriented Approach, IEEE
Transactions in Software Engineering, 18(6), (pp. 483-497).

[Melg7a] Meli, R. (1997). Early and extended Function Point: A new method
for Function Points estimation, In Proceedings of the IFPUG-Fall Conference,
15—19 September, Scottsdale, Arizona.

[Melg7b] Meli, R. (1997). Early Function Points: A new estimation method for
software projects, In Proceedings of ESCOM 97, Berlin, Germany.

[MERCEDES97] Mercedes A-Class: Mercedes: Wie sicher ist die AKlasse?.
(1997). German news magazine: Der Spiegel, ISSN 0038- 7452, October 27,
1997, (p-p- 120); English translation:
http://www.geocities.com/MotorCity/downs/9323/aclacap.htm, last visited
on February 11, 200s5. _

[MFoo] Maxwell, K. D., & Forselius, P. (2000). Benchmarking Software-
Development Productivity, IEEE Software, 17(1), (pp. 80-88).

[MKII98] MKII. (1998). The United Kingdom Software Metrics Association:
MEKII Function Point Analysis Counting Practices Manual v. 1.3.1

[MP08] Magazinovic, A., & Pernstal, J. (2008). Any other cost estimation
inhibitors?, In Proceedings of the Second ACM-IEEE international
Symposium on FEmpirical Software Engineering and Measurement,
Kaiserslautern, Germany, ESEM '08. ACM, New York, NY, (pp. 233-242).

209

http://promise.site.uottawa.ca/SERepository
http://www.geocities.com/MotorCity/downs/9323/aclacap.htm

[MRG+04] Mousavi, M., Rusello, G., Ghaudron, M., Reniers, M., Basten, T.,
Corsaro, A., Shukla, S., Gupta, R., & Schmidt, D. (2004). ASpects + GAMMA =
AspectGAMMA: A Formal Framework for ASpect-Oriented Specification, In
Workshop on Aspect-Oriented Modeling with UML in Conjunction with 1st
International Conference on Aspect-Oriented Software Development,
Enshede, Netherlands.

[Mylo6] Mylopoulos, J., (2006). Goal-oriented Requirements Engineering,
Keynote speech at the 14th IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press.

[NABo4] Nagy, 1., Aksit, M., & Bergmans, L. (2004). Composition Graphs: A
Foundation for Reasoning About Aspect-Oriented Composition, In s5th
Aspect-Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon,
Portugal.

[NCIo3] National Cancer Institute (NCI) Thesaurus. (2003).
http://www.mindswap.org/2003/CancerOntology/

[Ncuoo] Ncube, C. (2000). A Requirements Engineering Method for COTS-
Based Systems Development, Ph.D. Thesis, City University London.

[NESMA97] NESMA. (1997). Definitions and Counting Guidelines for the
Application of Function Point Analysis, v.2.0.

[NIo7] Niemela, E., & Immonen, A. (2007). Capturing Quality Requirements
of Product Family Architecture, Information and Software Technology,
49(11- 12), (pp. 1107-1120). ‘

[NLCoo] Neto, D., Leite, J., Cysneiros, L. (2000). Non-Functional
Requirements for Object-Oriented Modeling. In third Workshop on
Requirements Engineering, Rio de Janeiro, Brazil, (pp.109—125).

[NMoo] Noy, N., & Mc Guinness, D. (2000). Ontology Development 101: A
Guide to Creating Your First Ontology, Technical Report KSL-01-05, Stanford
University.

[OKCo5] Ormandjieva, O., Kassab, M., Constantinides, C. (2005).
Measurement of Cohesion and Coupling in OO Analysis Model Based on
Crosscutting Concerns. Proceedings of the International Workshop on
Software Measurements, Montreal, Quebec, Canada.

[OWL] W3C, Web Ontology Language (OWL),
http://www.w3.org/2004/OWL.

[PAMTo1] Pastor, O., Abrahao, S. M., Molina, J. C., & Torres, 1. (2001). A
FPA-like measure for object oriented systems from conceptual models, In
Proceedings of the 11th International Workshop on Software Measurement
(IWSM’01), Montreal, Canada, Shaker Verlag, (pp. 51-69).

210

[Parg2] Park, R. (1992). Software Size Measurement: A Framework for
Counting Source Lines of Code, Software Engineering Institute Technical
Report.

[PDKVo2] Paech, B., Dutoit, A., Kerkow, D., & Von Knethen, A. (2002).
Functional requirements, non-functional requirements and architecture
specification cannot be separated - A position paper, 8t International
Workshop on Requirements Engineering: Foundation for Software Quality,
Essen, Germany.

[PKLo4] Park, D., Kang, S., & Lee, J. (2004). Design Phase Analysis of
Software Performance Using Aspect Oriented Programming, In 5th Aspect-
Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon,
Portugal.

[PMBOKoo] PMBOK. (2000). Project Management Body of Knowledge Guide
2000. See http://www.pmi.org/info/PP_PMBOKGuide2000Excerpts.pdf

[Preg7] Pressman, R.S. (1997). Software Engineering A Practitioner’s
Approach, McGraw-Hill.

[PROTEGE] Protégé, http://protege.stanford.edu/

[PWLos] Pfleeger, S. L., Wu, F., & Lewis, R. (2005). Software Cost
Estimation and Sizing Methods: Issues and Guidelines, RAND Corporation.

[RACER] Racer: Renamed Abox and Concept Expression Reasoner.
http://www.sts.tu-harburg.de/~r.f. moeller/racer/

[RCJo2] Rosa, N. S., Cunha, P. R. F., & Justo, G. R. R. (2002). Process NFL: A
language for Describing Non-Functional Properties, Proceeding 35th HICSS,
IEEE Press, (pp.3676-3685).

[Reigo] Reifer, D. J. (1990). Asset-R: A function point sizing tool for scientific
and real-time systems, Journal System Software, 11 (3), (pp. 159—-171).

[RJo1] Ramesh, B., & Jarke, M. (2001). Toward a Reference Model for
Requirements Traceability, IEEE Transactions on Software Engineering,

27(1), (pp. 58-93).

[RMAo03]} Rashid, A., Moreira A., & Araujo, J. (2003). Modularisation and
Composition of Aspectual Requirements, In 2"d International Conference on
Aspect-Oriented, Boston, MA, (pp. 11-20).

[RR99] Robertson, S., & Robertson, J. (1999). Mastering the Requirements
Process, Addison-Wesley Professional.

[RSMAo2] Rashid, A., Sawyer, P., Moreira, A., & Araujo. J. (2002). Early
Aspects: A model for Aspect Oriented Requirements Engineering, In IEEE
Joint International Conference on Requirements Engineering, 1EEE
Computer Press, (pp. 199—202).

211

http://www.pmi.org/info/PP_PMBOKGuide2000Excerpts.pdf
http://protege.stanford.edu/
http://www.sts.tu-harburg.de/-r.f.moeller/racer/

[Samo6] Salem, A. M. (2006). Improving Software Quality through
Requirements Traceability Models, Proceedings of International Conference
on Computer Systems and Applications, (pp. 1159- 1162).

[SBMBo06] Sack, P. M. O. O., Bouneffa, M., Maweed, Y., & Basson, H. (2006).
On Building an Integrated and Generic Platform for Software Quality
Evaluation, 2nd IEEE International Conference on Information and
Communication technologies: From Theory to Applications, Umayyad
Palace, Damascus, Syria, (pp. 2872-2877).

[SCo4] Supakkul, S., & Chung, L. (2004). Integrating FRs and NFRs: A use
case and goal driven approach, In Proceedings of the 2nd International
Conference on Software Engineering Research, Management and
Applications (SERA), Los Angeles, CA, (pp. 30-37).

[SCos] Sicilia, M.A., & Chadrado-Gallego, J.J. (2005). Linking Software
Engineering concepts to upper ontologies, Proceedings of the First Workshop
on Ontology, Conceptualizations and Epistemology for Software and
Systems Engineering, Alcala de Henares, Spain.

[SCREEN99] SCREEN. (1999). Glossary of EU SCREEN Project.
http://cordis.europa.eu/infowin/acts/rus/projects/screen/
glossary/glossary.htm (visited 2007-07 05)

[SDMo5] Seffah, A., Desmarais, M., & Metzger, M. (2005). Human-Centered
Software Engineering, Springer.

[SIEMENSo04] Siemens Warns of Possible Hearing Damage in Some Cell
Phones. (2004).
http://www.consumeraffairs.com/newso4/siemens_mobile.html, last visited
on Aug, 4th, 2009.

[Sim81] Simon, H. (1981). The sciences of the Artificial, Second Edition.
Cambridge, MA: The MIT Press.

[Skuo2] Skulmoski, G. (2002). Shifting Gears: the De Facto Global Standard
for Project Management. See http://www.pmi-
lakeshore.org/present_20020311_Shifting_Gears.ppt

[SOKHo9] Shaban-Nejad, A., Ormandjieva, O., Kassab, M., & Haarslev, V
(2009). Managing Requirement Volatility in an Ontology-Driven Clinical
Laboratory Information Management System (LIMS) Using Category Theory,
The International Journal of Telemedicine and Applications, Volume 2009.

[STANDISHo9] Standish Group. (2009). The CHAOS Report, April 23, 2009,
Boston.

[Steo1] Stensrud, E. (2001). Alternative Approaches to Effort Prediction of
ERP projects, Journal of Information and Software Technology, 43 (7), (pp.

413-423).

212

http://www.consumeraffairs.com/newso4/siemens__mobile.html

[STWo03] Shanks, G., Tansley, E., & Weber, R. (2003). Using Ontology to
Validate Conceptual Models, Communication of the ACM, 46(10), (p.p. 85 —

98).

[SURVEY1] A Survey of Non-Functional Requirements in Software
Development Process: http://lacl.univ-parisi2.fr/Rapports/TR/TR-LACL-
2008-7.pdf

[SWRL]: SWRL: A Semantic Web Rule Language Combining OWL and
RuleML, http://www.w3.org/Submission/SWRL/

[Sym88] Symons, C. (1988). Function Poinf analysis: Difficulties and
improvements, IEEE Transactions Software Engineering, 14(1), (pp. 2—-11).

[TAos] Tyree, J., & Akerman, A. (2005). Architecture Decisions: Demystlfymg
Architecture, IEEE Soﬁ‘ware, 22(2), (pp.19-27).

[TBBo4] Tessier, F., Badri, L., & Badri, M. (2004). Towards a Formal
Detection of Semantic Conflicts Between Aspects: A Model Based Approach.
In 5th ASpect-Oriented Modeling Workshop in Conjunction with UML 2004,
Lisbon, Portugal.

" [TD9o] Thayer, R.H., & Dorfman, M. (1990). Standards, Guidelines and
Examples on Systern and Software Requirements Engineering, IEEE
Computer Society (New York).

[TEMPLATEO9] Scenario Plus, Qualities and Constraints, or Non Functional
Requirements Template. (2009).
http://www.scenarioplus.org.uk/download_nfrs.html

[Teo9g] Teologlou, G. (1999). Measuring OO Software with Predictive Object
Points, Shaker Publications, ISBN 90-423-0075-2.

. [UKSMAo02] UKSMA. (2002). Estimating with Mark Il,v.1.3.1., ISO/IEC
20968:2002(E), www.uksma.co.uk

[UWo2] Ullman, J., & Widom, J. (2002). Database Systems: The Complete
Book, Prentice Hall.

[WADDo3] Wille, C., Abran, A., Desharnais, J.M., & Dumke, R.R. (2003). The
quality concepts and subconcepts in SWEBOK: An ontology challenge, In
proceeding Of the 2003 International Workshop on Software Measurement
(IWSM), (pp. 113-130).

[Whig2] Whitmire, S. (1992). 3D Function Points: Scientific and real-time
extensions to Function Points, In Proceedings of the Pacific Northwest
Software Quality Conference.

[Whig7] Whitmire, S. (1997). Object Oriented Design Measurement, John
Wiley & Sons.

213

http://lacl.univ-paris12.fr/Rapports/TR/TR-LACL-
http://www.scenarioplus.org.uk/download_nfrs.html
http://www.uksma.co.uk

[Wieoo] Wieringa, R. (2000). The Declarative Problem Frame: Designing
Systems that Create and Use Norms, Proceeding Of the 1oth IEEE
International Workshop on Software Specification and Design, IEEE
Computer Society Press, (pp- 75-85).

[Wieo3] Wiegers, K. (2003). Software Requirements, 2nd edition, Microsoft
Press.

[WIKIPEDIA-NFR] Wikipedia: Non-Functional Requirements:
http://en.wikipedia.org/wiki/Non-functional _requirements (visited 2007-07-
05). .

[WIKIPEDIA-RA] ‘Wikipedia: Requirements Analysis:
http://en.wikipedia.org /wiki/Requirements_ analysis (visited 2007-07-05)

[WRHRWoo0] Wohlin, C., Runeson, P., Host, M., Regnell, B., & Wesslén, A.
(2000). Experimentation in Software Engineering, Springer.

[WSZAo06] Winter, V., Siy, H., Zand, M., & Aryal, P. (2006). Early Aspects
Workshop at AOSD'06, Bonn, Germany.

[WWo3] Weber, M., & Wesbrot, J. (2003). Requirements Engineering in
Automotive Development: Experiences and Challenges, IEEE Software, 20(1),

(pp-16-24).

[WZRo7] Witte, R., Zhang, Y., & Rilling, J., (2007). Empowering Software
Maintainers with Semantic Web Technologies, In Proceeding of the 4th
European Semantic Web Conference, Springer, (pp. 37—52).

[XQUERY] W3C XML Query (XQuery): http://www.w3.org/XML/Query/

[XZRLos] Xu, L., Ziv, H., Richardson, D., & Liu, Z. (2005). Towards modeling
nonfunctional requirements in software architecture, In Proceedings of
Aspect-Oriented Software Design, Workshop on Aspect-Oriented
Requirements Engineering and Architecture Design, Chicago, Illinois.

[YHLWBo08] Yang, Y., He, M., Li, M., Wang, Q., & Boehm, B. (2008). Phase
distribution of software development effort, In Proceedings of the Second
ACM-IEEE international Symposium on Empirical Software Engineering
and Measurement (Kaiserslautern, Germany, October 09 - 10, 2008), ESEM
'08, ACM, New York, NY, (pp. 61-69).

[ZGo7] Zhu, L., & Gorton, 1., (2007). UML Profiles for Design Decisions and
Non-Functional Requirements, In 27d International Workshop on SHAring
and Reusing architectural Knowledge Rational and Design Intent, (pp. 8-

15).

214

http://en.wikipedia.org/wiki/Non-functional_requirements
http://en.wikipedia.org

Appendix A:

Table A-1: Quality Requirements Hierarchy.

Quality

Definition

Parent Quality

1 | Accessibility

The degree to which a
product is accessible by as

many people as possible.

Testability
[BBL76].
Efficiency [BBL76].
Utility [Firo3z].

Usability [RR99].

2 | Accountability

Obligation imposed by law,
or lawful order, or
regulation, on an entity for

storage of accurate property

data.

Testability
[BBL76].

Efficiency [BBL76].

3 | Accuracy

The capability of the
software product to provide
the right or agreed results or
effects with the needed

degree of precision.

Functionality
quality
[1SO912601].
Integrity
[CNYMool.
Reliability
[BBL76].
Correctness

[Firo3].

4 | Adaptability

The ease with which

Portability

215

conformance to standards

-1 can be checked.

[1ISO912601].

. Analyzability

The quality that
characterizes the ability to
identify the root cause of a

failure within the software.

Maintainability

[1ISO912601].

Attractiveness

The capability of the
software product to be

attractive to the user.

Usability [BTVo6].

Augmentability

Quality that indicates the
ability to make the software
greater, as in size or

quantity.

Structuredness

[BBL76].

Availability

Quality that refers to the
frequency of system outages
that lead to unavailability of
the system usage by the

users.

Security
[CNYMoo].
Dependability

[Firo3].

BootStartTime

The time for executing the
operations required for

restarting up the software.

Time behavior

[TEMPLATEO09].

10

Capacity

The maximum production

Behavior quality

216

possible. (e.g.: the amount
of information (in bytes)
that can be stored on a disk

drive.

[TEMPLATEo9].

11

Changeability

The that

quality
characterizes the amount of

effort to change a system.

Maintainability

[ISO912601].

12

Co-existence

The ability of an application
to share an environment
applications

with other

without experiencing or

causing negative effects.

Portability

[ISO912601].

13

Communicativeness

The trait of being

communicative.

Testability

[BBL76].

14

Completeness

The degree to which full
implementation of required

function has been achieved.

Integrity
[CNYMool.
Reliability

[BBL76].

15

Compliance

The degree to which the
software is complied with
certain specifications and

guidelines.

Functionality
quality
requirement

[I1SO912601].

16

Conciseness

The degree to which a

Understandability

217

software system or
component has no excessive

information present.

[BBL76].

17

Confidentiality

The quality that refers to the
access to the data. Only
authorized persons can get
an access to the data in a

system.

Security

[CNYMoo].

18

Configurability

In Communications or
computer systems, a
configuration is an

arrangement of functional

units according to their

'| nature, number, and chief.

Utility [Firo3].

19

Consistency

The use of uniform design
and documentation
techniques throughout the
development

software

project.

Accuracy
[CNYMoo].
Reliability
[BBL76].
Understandability
[BBL76].

20

Correct-ability

A developer-oriented quality
requirement specifying the
part of maintainability that

measures the ease with

Maintainability

[RR99].

218

which defects shall be able

to be fixed.

21 | Correctness The Adegree to which | Quality
software performs its | requirement
desired function. [Firo3].

22 | Currency The property of belonging to | Correctness
the present .time. [Fir63].

23 | Dependability The .ability to deliver service | Quality
that . can justifiably be | requirement
trﬁsted by users. [Firo3J.

24 | Device Efficiency The degree to which the | Efficiency quality
device is efficient. [BBL76].

25 | DeviceIndependence | The process of making the | Portability
software accessible by any | [BBL76].
device under any
circumstance and by all
pebple.

26 | Effectiveness The degree to which |Quality in wuse
program or system | [ISO912601].
objectives are being .
achieved.)

27 | Efficiency The amount of computing | External and
resources and code required | internal quality
by a program to perform its characteristic

219

function.

[ISO912601].

28

Environmental

Tolerance

The ability of a system to
work in a variety of

conditions and locales.

Robustness

[Firo3].

29

Error Tolerance

The ability of a system or
component to continue
normal operation despite

the presence of erroneous

inputs.

Robustness

[Firo3].

30

Extensibility

System design principle
where the implementation
consideration

takes into

future growth.

Maintainability

[RR99].

3

External

Confidentiality

This is a special case of
Confidentiality with focus
on the external aspect of the

product.

Confidentiality

[CNYMoo].

32

External Consistency

This is a special case of
Consistency with focus on
the external aspect of the

product.

Consistency

[CNYMoo].

33

Failure Tolerance

This is a special case of
Fault tolerance in which the

error cause the system to

Robustness

[Firo3s].

220

fail.

34

FaultTolerance

The property that enables a

system to continue
operating properly in the
event of the failure of (or
one or more faults within)

some of its components.

Reliability

[1SO912601].

35

Functionality

A set of attributes that bear
on the existence of a set of
functions and their specified

properties.

External
internal

[ISO912601].

and

~ quality

36

Installability

The that

quality
Characterizes the effort

required to install the

software.

Portability

[180912601].

Utility [Firo3].

37

Integrity

| withstand attacks to

The ability of a system to
its

security.

Security
[CNYMoo].

‘Reliability

tBBL76].

38

Internal

Confidentiality

This is a special case of
Confidentiality with focus
on the internal aspect of the

product.

Confidentiality

[CNYMool].

39

Internal Consistency

This is a special case of

Consistency

221

Consistency with focus on
the internal aspect of the

product.

[CNYMoo].

40

Internationalization

Internationalization and
localization are means of
adapting computer software

to different languages and

regional differences.

Utility [Firo3].

41

Interoperability

The ability of two or more
systems or components to
exchange information and
to use the information that

has been exchanged.

Functionality
quality
requirement

[ISO912601].

42

Learnability

The capability of a software
product to enable the user

to learn how to use it.

Usability

[1SO912601]

[RR99]

and

43

Legibility

The quality

of Dbeing
readable or distinguishable

‘by the eye.

Understandability

[TEMPLATEo09].

44

Main Memory

The quality that describes
the amount of usage of Main

Memory by the software.

Space
[CNYMoo].

quality

45

Maintainability

The ability to change the
system to deél with new

technology or to fix defects.

External
internal

[ISO912601].

and

quality

222

46

Maturity

This quality characteristic

concerns frequency of

failure of the software.

Reliability

[ISO912601].

47

OneToOneAccuracy

This is a special case of

Accuracy.

Accuracy

[CNYMoo].

48

Operability

The ease of operation of a

program.

Usability
[ISO912601].

Utility [Firo3].

49

Performance

The responsiveness of the

system—the time required

to respond to stimuli
(events) or the number of
events processed in some

interval of time.

Efficiency

[TEMPLATEO9].

50

Personalization

The quality refers to the
ability of the software to be
adapted to the needs of an

individual.

Utility [Firo3].

51

Portability

The ability of the system to

run under different

computing environments.

External
internal

[ISO912601].

and

quality

52

Precision

Precision of a numerical
quantity is a measure of the
detail in which the quantity

is expressed.

Correctness

[Firo3].

223

53

Productivity

The unit of product

produced per unit of input.

Quality

in use

[ISO912601].

| 54

PropertyAccuracy

This is a special case of

Accuracy.

Accuracy

[CNYMoo].

55

Recoverability

Ability to bring back a failed
system to full operation,
including data and network

connections.

Reliability

[ISO912601].

56

Reliability

The ability of a system or
component to perform its
required functions under
for a

stated conditions

specified period of time.

External

internal

and

quality

[1SO912601].

Dependability

[Firosz].

57

Replaceabﬂity

The capability of the
software product to be used
in place of another specified
software product fof the
same purpose in the same

environment.

Portability

[ISO912601].

58

ResourceBehavior

| characterizes

The quality which

resources
used, i.e.

memory, CPU,

disk and network usage.

Efﬂciency

behavior

[ISO912601].

59

ResponseTime

Reaction time: the time that

Time

behavior

224

elapses between a stimulus

and the response to it.

[TEMPLATEo09]

and [CNYMoo].

60

Robustness

The degree to which a
system or component can
function correctly in the
presence of invalid inputs or
environmentai

sfressful

conditions.

Dependability

[Firog].

61

Safety

No consensus in the
system's engineering about
what is meant by the term
"safety requirements”. The
informal definition: safety
requirements are the "shall
not" reqﬁirements which
exclude situations from the

possible solution of the

system.

Quality in
[ISO912601].

use

62

Satisfaction

Act of fulfilling a desire or

need or appetite; "the
satisfaction of their demand

for better services.

Quality in
[ISO912601].

use

63

Schedualability

Refers to the way processes
are assigned to run on the
This

available resources.

Performance

[Firo3].

225

assignment is carried out by
software known as a

scheduler.

64

Secondary Storage

The quality describes the
amount of usage of
secondary storage by the

software or component.

Space [CNYMoo].

65

Security

A measure of the system's
ability to resist
unauthorized attempts at
usage and denial of service
while still providing its

services to legitimate users.

Functionality
quality
[ISO912601].
Dependability

quality [Firo3].

66

SelfContainedness

The degree to which the

source code provides

meaningful documentation.

Reliability
[BBL76].
Portability

[BBL76].

67

SelfDescriptivness

An adjective meaning "It

describes itself”.

Testability

[BBL76].

68

Space

The quality describes the
amount of usage of space by

the software or component.

Efficiency
[TEMPLATEOQ].
Performance

[CNYMool.

69

Stability

The quality that

characterizes the sensitivity

Maintainability

[1SO912601].

to change of a given system
that is the negative impact

that may be caused by

system changes.

70 | Structuredness The degree to which a | Changeability
system or component | [BBL76].
possesses a definite pattern Undefstandability
of organization of its|[BBL76].

| interdependent parts

71 | Subset-ability The ability to support the | Utility [Firo3].
production of a subsetr of the
system.

72 | Suitability The appropriateness (to | Functionality
specification) of the | quality
functions of the software. [ISO912601].

73 | Survivability The degree' to which | Dependability
essential functions are still | [Firo3].
available even though some
part of the system is down.

74 Téstability The ability to discover faults | Maintainability
by well-defined test cases. [ISO912601].

75 | Throughput Output relative to input; the | Time behavior
amount passing through a | quality
System from input to output | [TEMPLATEo09].

(especially of a computer

227

program over a period of

time).

76

Time Accuracy

This is a special case of

Accuracy quality.

Accuracy to

[CNYMoo].

Time Behavior

The quality characterizes
response times for a given
throughput, i.e. transaction

rate.

Efficiency
[ISO912601].
Performance

[CNYMool.

78

Transportability

The ability of software and
courseware to be developed
on one computer, and then

used on another one.

Utility [Firo3].

79

Type and Position of

Device

The quality related to type
and position of device used
the

as a resource for

software.

Resource behavior

[TEMPLATEo09].

8o

Understandability

The ability to understand
the software readily, in

order to change/fix it.

Usability

[ISO912601].

81

Usability

The ease with which a user

can learn to

prepare inputs for, and

interpret outputs of a

system or component.

operate,

External and

internal quality
[1ISO912601].

Utility [Firos].

228

82

UsageTime

The time that is required for

using the software

functionality.

Time behavior

[TEMPLATEo09].

83

Value Accuracy

This is a special case of

Accuracy.

Accuracy

[CNYMoo].

84

Variability

The quality that refers to
how well the architecture
can be expanded or
modified to produce new
architectures that differ in

specific, preplanned ways.

Utility [Firo3].

85

Withdraw-ability

The quality that refers to the
ability to discontinue the
usage of the software.

The degree of ability | to

remove from consideration

Utility [Firo3].

or participation.
86 | Work Load | The quality of distribution | Resource behavior
Distribution of the quantity of processing | [TEMPLATEo09].
among available resources.
87 | Workload The quantity of processing | Time behavior
to include the machine | [TEMPLATEO9].

cycles and the disk I/0s.

229

