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ABSTRACT 

Photovoltaic Based Electric and Plug-in Hybrid Electric Vehicle Battery Charging 

Infrastructure using a Modified Z-Converter Topology 

Giampaolo Carli 

There currently exist numerous uncertainties about the future of energy 

consumption in the industrialized world. It is safe to claim with confidence that fossil fuel 

reserves are proving to be inadequate, highly difficult to extract and refine, and less 

attractive to the community, given their environmental and socio-political impact. More 

recently, this has lead to the natural conclusion that renewable energy technologies 

should be preferred over more traditional ones. Replacing carbon as an economic engine 

can be achieved in numerous ways. However, it is still not clear, as to which renewable 

options will be more successful. On the other hand, it is quite safe to expect that the trend 

towards distributed and local power generation, using wind and photovoltaic sources will 

continue. At the same time, the enormous transportation sector will rely more heavily on 

electricity and related infrastructure needed for storage and distribution. All the above 

issues point towards the realization of public and private facilities to generate electricity 

locally, to recharge electric and plug-in hybrid electric vehicles. 

In this thesis, a photovoltaic (PV) source is proposed for electric/plug-in hybrid 

electric vehicle battery charging, due to the fact that solar panels can be conveniently 

placed above the vehicle parking space and can double as a shade provider. In fact, such a 

feature is so desirable that indeed, several installations exist today, that use a carport PV 

array to generate power for purposes other than EV recharging. Determining the technical 
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goals for such facilities and discussing some relevant solutions is, broadly, the scope of 

this thesis. More particularly, the thesis aims at establishing application oriented technical 

differences between regular PV-grid-tied systems and PV systems that are specifically 

adapted to public or semi-public EV charging, noting that the former arrangement has 

enjoyed much attention in literature. This goal will be accomplished by presenting the 

design process for one such system, starting with the definition of technical specifications 

that take into account all the real constraints dictated by the state of the art in PV and 

battery technologies, grid interface requirements, safety standards, and market demands. 

The second part of this thesis focuses on the power converter topology, with strong 

emphasis on the analysis of the Z-loaded/sourced converter, as a fairly suitable and 

practical topology. At the same time, other possible topologies will also be considered for 

comparison purposes, especially with regards to reliability, efficiency, and cost. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

All-electric autonomy of batteries is a well-known issue for gaining consumer 

confidence in electric vehicle (EV) performance. The major concern is the present limit 

for Li-ion and Ni-MH batteries to a practical drive range of 300km (180mi) on a single 

charge. This is coupled with a pervasive shortage of charging stations that, even when 

available, cannot generate enough power for fast charging (less than 15 minutes). Even in 

the likely event that fast charging will be available soon, it is conceivable that the 

necessary high power availability will come with an additional price to the user. It 

appears, that EVs will continue to benefit from slower charging strategies. For instance, 

standard Level II (SAE J1772) charging, bounds the available power to less than 14.4kW 

so that a fully depleted 35kWh battery pack will require 2/4 hours to achieve full state-of-

charge (SOC). In realistic circumstances, this naturally implies that the charging station 

will also double as a parking facility, where the vehicle is expected to reside for relatively 

long time periods. For instance, a typical clientele of the carport could be urban office 

workers, who commute from their home to their workplace, and are expected to use the 

car only very lightly during their workday. In fact, the typical worker will park in the 

morning, with only a partially discharged battery, and leave at night, fully recharged. As 

the required level of charging power over an 8 hour-day period could be less than 1.5kW, 

it is then conceivable that some (or most) parking places be equipped with only Level I 

charging. 
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As will be shown through the research performed in this thesis, where 

photovoltaic generation is convenient, power levels compatible with both Level I and II 

are possible, making solar carports ideal for EV charging applications. 

1.2 GRID CONNECTION 

For practical purposes, connection of the carport to the grid is highly desirable, as 

such a connection would serve a number of useful purposes. The grid would primarily act 

as extended storage by collecting excess energy produced by the PV array. This will 

relieve the carport from the task of locally storing energy in batteries or flywheels. 

Secondly, the grid can supplement any deficiency in PV generation, during cloudy days 

or at night, for instance. Finally, storing energy during peak hours of grid utilization and 

the availability of connected batteries during the same period seems to be the optimal 

solution for the utility company for the many potential benefits described in [1], namely 

power factor improvement, back-up power during grid failures, and peak shaving. 

About the last point, it is well worth pausing on the realization that stand-alone 

installations, such as micro-grids, must allow locally generated power to be stored in 

battery banks, as well as being converted to AC, in order to drive neighboring loads. At 

the same time, power must also be allowed to flow from the batteries to the AC line at 

times when PV generation is lacking. It appears then, that at least three out of the four 

power flow paths described above also apply to stand-alone systems. The order of 

importance for the power paths is not the same; nevertheless, it is still conceivable that 

many findings within this thesis may be applicable to micro-grids as well. Keeping this 

fact in mind, this thesis will, henceforth, focus solely on PV grid-tied EV charging 

applications. 
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1.3 CONTRIBUTION OF THE THESIS 

This thesis is divided into two main parts. The first is devoted to determining the 

major technical features that can be attributed to a plausible PV public charging facility 

of the present and future. Chapter 2 discusses present conditions for the EV market, and 

attempts to determine the related prescriptions for PV charging, such as battery interface 

and communication with the on-board controller. Chapter 3 looks at the characteristics, 

requirements, and limitations of solar panel arrays and establishes the electrical and 

physical configurations that maximize performance. The results from these two chapters 

are subsequently used in Chapter 4, dealing with grid interface, in order to outline rough 

power demands and specifications for the overall system. 

Based on these findings, the second part of this thesis explicitly addresses the 

topic of power conversion, which is most definitely the central function of the PV 

charging infrastructure. Special attention is devoted to the Z-sourced/loaded inverter-

rectifier [2], because it offers the possibility of controlling grid power and battery power 

through a single stage of conversion. In fact this "3-way" power flow is the most 

significant difference between regular PV-grid-tied systems and PV-grid-tied systems for 

EV charging purposes, compelling the designer to give a fresh look to conversion 

topologies that might otherwise be ignored. With regards to the Z sourced/loaded 

converter, the main contribution of this thesis will be to demonstrate that stable and 

acceptable operation for all power flow paths is possible, even when using conventional 

SISO linear control methods. This is done by actually carrying out a sample design for 

the system, based on the requirements found in Chapter 4. It is important to note that this 

study is mainly concerned with the performance of the proposed topology, rather than the 
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control. Thus, the present choice of a linear control scheme, as compared to more 

sophisticated and effective methods, must be viewed as an expedient approach to 

obtaining a functioning power processor model for analysis and comparison. As such, the 

stability analysis presented in this thesis is neither general nor comprehensive. However, 

it successfully underlines the associated challenges posed by the Z-converter, including 

non-minimum phase behavior due to the presence of Z-circuit resonance. Having 

demonstrated the feasibility of the Z-converter system, its performance is also evaluated 

and compared to that of two other topologies, each representative of an alternate design 

philosophy, with special relevance granted to cost, efficiency, and reliability. 
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CHAPTER 2 

ELECTRIC VEHICLE CHARGING ISSUES 

2.1 BATTERY CHARGING STRATEGIES 

EV/PHEV batteries are typically charged by a DC power supply that is normally 

derived from an AC source. Many earlier EVs utilized off-board chargers for this 

purpose, in order to avoid adding weight to the vehicle. With technological advances in 

the field of power electronics and in consideration of the added convenience to the user, 

most electric vehicles today use an on-board rectifier. In fact, today's EV/PHEV 

manufacturers loosely follow SAE J1771 recommendations that require an AC electrical 

connection and power capacity not to exceed 14.4kW. Moreover, common wisdom may 

suggest that this strategy has the supplemental benefit of simplifying future public 

infrastructure. To this point, the California Air Resources Board (CARB), through their 

report "ZEV Infrastructure: A Report on Infrastructure for Zero Emission Vehicles," 

invokes economic factors to suggest that electric vehicles be minimally equipped with an 

on-board rectifier. Table 2-1 shows the standard charging levels and their significance. 

While levels I and II are in line with the above considerations, SAE J1772 also includes 

provision for so-called fast charging (level III), which allows for the transfer of much 

higher power levels to EV/PHEV batteries. 
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Table 2-1 Summary of Charging Levels for EVs/PHEVs 

Charging Levels 
Level 1 

Level 2 

Level 3 

"Level 1" EV charging employs cord & plug connected portable EV 
supply equipment (EVSE) that can be transported with an EV. This 
equipment is used specifically for EV charging and shall be rated at 120 
VAC and 15A, and shall be compatible with the most commonly 
available grounded electrical outlet (NEMA 5-15R). 
EV charging employs permanently wired EVSE that is operated at a 
fixed location. This equipment is used specifically for EV charging and is 
rated at less than or equal to 240 VAC, less than or equal to 60A, and less 
than or equal to 14.4 kW. 
EV charging employs permanently wired EVSE that is operated at a 
fixed location. This equipment is used specifically for EV charging and is 
rated at greater than 14.4 kW. 

Presently, fast charging is not commonly used, mainly because commercially 

available battery technologies do not allow for excessive charging currents. Furthermore, 

at this time such quick charging schemes can only be regarded as a marketing gimmick, 

because of the required massive power demand. To charge a 35-kWh battery in 10 

minutes requires 250 kilowatts of power—five times as much as the average office 

building consumes at its peak [3]. Notwithstanding these important impediments for the 

development of public level III infrastructure, the market drive for the possibility of quick 

refueling stops at charging stations (as is now done with gas stations) makes such 

development very likely in the future. This is especially true in view of continuing efforts 

to improve battery chemistry and ultra-capacitor specifications to allow higher currents.' 

The advent of fast charging will most certainly presuppose a return to off-board rectifiers, 

so that direct access to the battery pack will become a necessity. It is, thus, reasonable to 

predict that future EVs/PHEVs will have both AC and DC plugs for battery charging. 

Such an assumption is critical for the purpose of the study carried out in this thesis, as the 
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PV resource provides DC power, bypassing the on-board rectifier, in order to minimize 

energy losses. 

2.2 VOLTAGE LEVELS 

Battery technology for EVs/PHEVs is still being developed, and has not yet 

reached maturity, let alone any kind of standardization. Each manufacturer is free to 

choose different chemistries and system designs; hence, it is currently impossible to 

establish a common specification. For the purpose of this thesis, the most problematic 

parameter is the voltage level, given that in some cases a transformer and corresponding 

inverter must be added to allow for voltage flexibility. Even with addition of a 

transformer, it is impossible to correctly quantify the performance of the power 

processor, if the battery voltage is allowed to possess a very wide range. Therefore, in 

wishful expectation that such voltage be standardized at some point in the future, a 

reasonable assumption must be made in the short-term. 

Table 2-2 Nominal Battery Voltage Levels for Several Vehicle Models 

Chevy Volt 
GMEV1 
Phoenix Motorcars 
Tango 
Tzero 
Tesla Roadster 
Honda EV 
Toyota RAV4 EV 
Fisker Karma 
Toyota Prius 
American Electric 
Dynasty EV 

350V 
312V 
380V 
350V 
340V 
375V 
288V 
288V 
400V 
275V 
48V 
72V 

DC connection: no Fast charging (level 3 
DC connection: no Fast charging (level 3 
DC connection: yes Fast-charging (level 3 
DC connection: devel Fast-charging (level 3 
DC connection: no Fast charging (level 3 
DC connection: no Fast charging (level 3 
DC connection: no Fast charging (level 3 
DC connection: no Fast charging (level 3 
DC connection: no Fast charging (level 3 
DC connection: no Fast charging (level 3 
DC connection: no Fast charging (level 3 
DC connection: no Fast charging (level 3 

: no 
: no 

yes 
devel 

: no 
: yes 
: no 
: no 
: no 
: no 
: no 
: no 

Table 2-2 shows the nominal battery voltages for various EV/PHEV models, 

suggesting that a range between 275V to 400V represents a reasonable assumption, 
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although some neighborhood vehicles still use lead-acid batteries, and have much lower 

nominal voltages. 

2.3 SAFETY 

Vehicles are intrinsically non-stationary, and consequently, cannot be grounded 

through a permanent safety conductor. As the battery pack voltages are quite unsafe, they 

must be isolated from the chassis under operating conditions as described or assumed by 

many standards such as UL 2202, UL 2231, ISO 6469, J1772, and J1766. However, this 

clause is not strictly necessary during charging, because the charger's conductive 

coupling can be used to force both the chassis and the floated battery to safety ground. 

This could possibly relieve the charger power system from providing galvanic isolation to 

the battery, but also entails that the grounding conductor be oversized, while imposing 

strict safety regulation on all external wiring, connectors, and interlocks. Moreover, SAE 

J1772 calls for Ground Fault Detectors (or equivalent means) to ascertain the isolation 

integrity of the battery pack, making it impractical to assume that the battery pack could 

be anything else than fully floating at all times. The immediate consequence is that the 

charger must be designed to provide galvanic isolation from the AC line. 
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CHAPTER 3 

PHOTOVOLTAIC SOURCE FOR CHARGING 

3.1 POWER RATING WITH AVAILABLE OVERHEAD SPACE 

Determining the nominal power level that should be made available at a charging 

station is an important step. Under average meteorological conditions, it is reasonable to 

expect that the PV resource will provide all the power demand from a discharged vehicle. 

This demand is limited by three main factors: 

a) The maximum safe charging current level for a specific type of battery pack; 

b) The current limit levels imposed or suggested by regulatory bodies, such as the 

National Electric Vehicle Infrastructure Working Council (IWC) or the NEC; 

c) The size and conversion efficiency of the solar panels. 

The first criterion solely cannot be used as a deciding factor, given that battery 

packs are available in different sizes, capacities, and preferred charging algorithms. 

Although the third criterion deserves careful consideration, it is subjected to many 

variables relating to the design strategy for the charging station or carport. For instance, it 

will be demonstrated in this study (in section 3.2) that the solar resource for a given 

vehicle can double or triple, when neighboring stations become vacated and available. 

The analysis for the simplest configuration (a single PV string per station) is otherwise 

quite plain. It is expected that the PV string used for an average parking spot be of 

commensurate size to the parking spot itself, or about 15m2 in surface. For the purposes 

of a solar powered carport, however, it may be reasonable to presume that a larger 

surface would be available. For this study, a PV surface of 25m2 per vehicle is 
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considered. For mono-crystalline silicon, considering an optimistic cell efficiency of 

20%, the maximum available power from the panels can be calculated, using the best-

case insolation level of lkW/m2. 

Ppv=\kWlm2-25m2-20% = SkW (3-1) 

In view of this objectively modest contribution from the PV resource, it seems that the 

second criterion is the most significant. The IWC and SAE J1772 have set limits for 

Level I and II charging, making it reasonable to assume that the station should be 

minimally rated for Level II charging. In the event that a larger power is required than 

that available at a given parking spot, there exist two options: either the grid is invoked, 

to supplement the demand, or the power from PV panels, assigned to other vacated 

parking spots, is redirected, as described in 3.2. 

It is important to note that the value calculated for Ppv in (3-1) only represents a 

maximum or peak power output from the PV resource, obtainable only with 

advantageous meteorological conditions and during a fraction of the 24hr solar cycle. A 

more revealing number for this consideration is the average-day energy that can be 

converted by the panels. Although this quantity represents a power, it should be 

understood as the kWh energy delivered in a day period to a square meter surface. This 

value changes radically for different geographical locations, as illustrated in Fig. 3-1. The 

sample shown corresponds to various Canadian locations and is contrasted to data from 

the Virgin Islands, for the purpose of appreciating the sunlight deficit during the winter at 

higher latitudes. For instance, with a rather modest 3.89kWhr/m2 per day delivered in 

March, in Ottawa, the 20% efficient, 25m2 panel will deliver only 19.5kWh in an average 
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day. Thus, a 35kWh battery pack would actually require the full day (10.5hrs), in order to 

replenish from a 50% battery state of charge (SOC). 
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Fig. 3-1 Irradiation Data for Different Geographical Locations 

information taken from http://energy, caeds. ens, uml. edu/fpdb/irrdata. asp 

This result appears disappointing initially, raising doubts on the overall wisdom 

of this project, at least for higher latitude locations. Three aspects, however, must be kept 

in mind. Firstly, depending on the intended use, the carport may not be completely 

occupied. Therefore, several PV strings may be providing power to a single EV. 

Secondly, on an average, the battery SOCs of the vehicles will be presumably higher than 

50%. Finally, slow charging has its own advantages, as mentioned earlier, especially 

when the user is utilizing the carport for long-term parking. 
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3.2 ARCHITECTURE 

The configuration of the PV system is of critical importance, as it strongly affects 

material and maintenance cost, reliability, availability, efficiency, safety, and 

performance. Several studies have been conducted to describe various trends towards the 

optimal architecture [4]-[6]. In older systems, such as the one used for the PIER carport, 

in San Diego, CA (see Fig. 3-2), the panels are connected in series, in order to achieve 

higher powers, by means of an increased supply voltage. 
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Fig. 3-2 Block Schematic of the PIER carport, San Diego, CA. 

There exist several restrictions to this method, related to safety and semiconductor 

capability, limiting the maximum number of series-connected panels for each string. 

When larger amount of power is needed, the panels are usually connected through 

breakers or fuses, to a DC combiner box. Due to partial shading effects, some strings can 

deliver more power than others. However, the parallel connection of strings renders the 

maximum power point tracking (MPPT) control impossible for individual strings. 

Moreover, when one string produces more power than another, isolation diodes for each 
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string becomes necessary, further decreasing overall efficiency. Having all the power 

generated from a single source also suggests use of a large centralized inverter, for grid 

power generation. This is an added undesirable condition, because a single-failure results 

in a complete system shutdown. In addition, large-capacity power processors do not 

benefit from economies of scale and are often designed using naturally commutated 

devices at very low switching frequencies. The resulting power processor has high 

material and installation costs, low availability, and poor line-current quality; it should 

not be considered for modern installations. Fig 3-3 shows a general centralized carport 

application, such as the PIER carport. 
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The distributed architecture shown in Fig. 3-4 is more promising. The inverter 

stage is distributed and so is the PV resource. Both can benefit from economies of scale 

and no single point of failure exists. Furthermore, the inverter can be a single-phase HF 

type for high power quality flow to the line. The double conversion stage between battery 

and grid remains problematic. The options shown in Fig. 3-5 are similar to the previous 

architectures, except that they possess few additional possible advantages. 
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Fig. 3-5 Improved distributed architectures 

On the left of Fig. 3-5, the DC/DC MPPT stage need not be bi-directional. 

However, an extra conversion stage is now added in the critical power flow path PV-to-

grid. The configuration on the right shows an arrangement that allows the use of a 

transformer-less inverter topology. In either case, each PV string possesses its own MPPT 

converter that can feed data to a central computer, for the purpose of evaluating, which 

strings are underutilized. Thus, a fully distributed architecture can be exploited to 

optimize energy flow from the PV source to the battery; representing the most critical 

power flow path. A straightforward example of this concept is shown in Fig. 3-6, which 

takes the form of a simple contactor matrix that can connect any PV string to any other, 

using only two contactors per charging station. 
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The arrangement on the right, in Fig. 3-6, shows how vacated charging stations 1 

and 3 are connected to 4, while vacated stations 5 and 6 are connected to 8. Different 

contactor configurations are obviously possible; however, they are not addressed in this 

study. It is simply important to realize that the nominal assignment of a PV string to a 

single charging station does not necessarily entail a compromise on energy availability to 

the EV/PHEV. 

3.3 VOLTAGE 

Peak voltage from each string is limited by safety considerations to 600V, in order 

to stay clear of added costs for specialized cabling and other accessories. NEC 690 

specifies maximum voltage as the open-circuit voltage obtained at the lowest expected 

panel temperature. On the other hand, lower level of voltage range is determined by 

design considerations. The conversion systems shown in Figs. 3-4 and 3-5 can be studied 

individually for this purpose. When an isolation transformer is present in both the DC/DC 
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converter as well as the inverter, very little restriction is placed on the choice of nominal 

PV voltage. In fact, the chosen topology for the power inverter/rectifier can be buck, 

boost, or buck-boost, and therefore, the PV voltage can be chosen accordingly. This is not 

the case shown in Fig. 3-5 (right), which is complicated by the fact that the line is directly 

connected to the inverter. As voltage fed inverters are naturally of the "bucking" type, it 

appears that the minimum voltage output of the PV resource should be higher than the 

maximum expected grid peak voltage. For Level II charging, a 240VAC nominal line, 

with a maximum peak voltage of 360V, is assumed. The PV resource should then be 

disabled or unloaded, when its output voltage decreases below this level. 

Calculation of PV nominal voltage is straightforward. For varying MPP levels and 

temperature, the PV panel output voltage will be coarsely constant. The variations of the 

MPP, due to insolation and temperature, are considered as + 5% and + 12%, respectively 

(from -20 °C to 65 °C, using standard 0.28% per °C, for PV cells), for a total of ± 17%. 

Therefore, for a minimum voltage of 360V DC, nominal PV voltage is 430V DC, and the 

maximum is 500V DC. The open circuit voltage of the panel is typically considered as 

20% higher than the loaded voltage (600V). This voltage corresponds to an absolute 

maximum, at light load and minimum temperature, which is at the safety limit. Therefore, 

the PV will be optimally rated at -20 to +65 °C, with a nominal operating voltage of 

430V DC + 70V DC. 

3.4 SAFETY 

Safety issues related to PV grid-tied systems are extremely diverse and are dealt 

differently in different parts of the world, and even within the same country, depending 

on the standard followed. Furthermore, at least currently, the North American utility 
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companies seem to hold more influence on design decisions, contrary to the reports 

proposed by the NEC, UL, and ISO. The main contention is whether one of the PV panel 

string live conductor should be grounded or not. Traditionally, in North America, this 

practice was universally accepted and is still largely preferred. However, the NEC 

recently allowed panel conductors to be floating, as long as certain conditions are met. 

This affords the designer of the inverter the possibility of using transformer-less 

connections to grid, as is now widely done in Europe. Nevertheless, the lack of galvanic 

isolation also raises the possibility of DC current injection into the grid distribution and 

its associated issues. The main reason that PV live circuits were initially required to be 

grounded was because of the connection to the downstream inverter. In fact, an 

ungrounded panel could be driven with both 60Hz and high switching frequency 

components by the inverter's commutating action. Unfortunately, the surface of the panel 

itself is not completely isolated from the live panel conductor, and can in fact, exhibit 

several hundreds of pico-farads under dry conditions, and much more in wet conditions. 

Therefore, the leakage current from the panel surface can potentially generate a shock 

hazard. It is up to the designer to conceive an inverter topology that does not generate 

large common mode voltage at the PV power conductors. 

PV frame PV frame 

^ Panel .—1 . Grid tn 
flfffl 

-7 
Leakage 
Capacitance 
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Fig. 3-7 Grounded, galvanically isolated system (left). Ungrounded, transformer-less 

system (right) 
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In this thesis, it is assumed that the grounded system will continue being the 

accepted norm in North America, and all three topologies analyzed will reflect this 

choice, although one of the three will indeed still be transformer-less. 
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CHAPTER 4 

GRID CONNECTION ISSUES 

4.1 LINE STABILITY ISSUES 

As aforementioned in the introductory chapter, the grid could perform the 

function of "storing" excess energy produced by the PV resource of the carport, thus 

eliminating the need for local storage (batteries and flywheels). In fact, the scenario is 

somewhat more complicated than that. It is well known that intermittent generators, such 

as solar and wind installations, can potentially cause problems to the grid. In fact, should 

these generators become very widespread, or be connected to remote locations on the 

grid; the energy they produce may exceed the available load. Simple energy conservation 

theory dictates that such a condition is untenable and must be remedied either by storing 

the energy for later use or by decreasing power generation, thus underutilizing the 

generator's capacity. Even when produced energy is not in excess, the flow of current, 

back towards the power substation can cause the local point of common coupling to 

experience a voltage boost that can be severe when line impedance is significant. 

Furthermore, and especially in the case of PV sources, the instantaneous level of 

generated power can experience rapid variations (up to 15% per second, due to clouding) 

that cannot be compensated in real-time by the grid, thus causing voltage flicker. These 

serious issues concerning distributed generation are presently the object of intense study 

and mobilization by public and private parties and will not be addressed in this thesis. 

Nevertheless, it is important to consider the following points: 
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1) Present grid penetration levels of distributed systems, in general, and 

photovoltaics, in particular, are very low, less than 2-3% in North America. Several 

studies referenced in [7] have established that flicker and voltage boost are significant 

only when the penetration levels at the power sub-station are more than 5% and 15%, 

respectively, in most cases. 

2) In the case of a carport, the load is intrinsically a storage type; EV/PHEV 

batteries. In other words, especially for large carports, there is a statistically high 

probability that the storage and the load are one and the same. Scenarios involving an 

empty carport and overproduction occurring simultaneously can be deemed so rare that 

decreasing production in such instances would be fairly acceptable. In fact, grid-

connected EV/PHEV batteries could be beneficial to the utility company for the reasons 

mentioned in the introductory chapter. 

4.2 INVERTER DISTORTION AND DC CURRENT INJECTION 

As the PV resource generates DC voltage, an inverter is needed in order to 

connect to the line. Several regulatory agencies, such as UL and IEC, have imposed 

common specifications for inverter performance. Minimally, the inverter must produce 

low harmonic distortion currents (less than 5%) and near unity power factors 

(displacement PF compensation is not yet allowed in most cases). Furthermore, the 

inverter is not allowed to inject a DC current component into the grid, as this could cause 

distribution transformers to saturate. Commonly followed standards IEEE 929, IEC 

61727, and EN 61000 specify between 0.5% and 1% of rated output current as a 

maximum, while some national European standards add a 5mA absolute requirement in 

addition to this minimum percentage. 
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4.3 LOCAL DISTRIBUTION CONFIGURATION 

As a final note, the solutions considered in the previous sections assume the use 

of single phase connections. The main appeal of the 3-phase system is the enhanced 

power capacity, the fact that this power is delivered and absorbed without any line-

frequency components, and the elimination of 3rd harmonic currents in the distribution 

and grounding wiring. These features are quite attractive and include the advantage of 

potentially eliminating undesirable pulsating charging current to the EV battery. On the 

other hand, the single-phase configuration allows for less expensive and simpler 

distributed inverters. Especially considering the fact that PV can only provide 5kW of 

power to the inverter, and that intervening DC/DC converters need to be added to can 

eliminate any pulsating current, it appears that a single-phase system is much better 

adapted to this application and will be assumed throughout this study. 
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CHAPTER 5 

POWER ELECTRONIC INVERTER TOPOLOGIES 

5.1 INTRODUCTION 

When defining the technical goals for a distributed power converter system to be 

used in a PV-powered, grid-tied carport, suitable compromises must be made, in order to 

contain costs while providing acceptable performance. Essentially, the main design 

objective is dictated by the fact that the carport will be a public or semi-public structure. 

Hence, it is crucial that the system is robust, reliable, and offers high availability. It was 

already ascertained that both the PV resource and the power conversion system must be 

distributed, providing flexibility and redundancy, while choosing topologies that are 

characterized by low component count and stress levels, in order to ensure a high Mean 

Time Between Failures (MTBF). MTBF will broadly be referred to as "reliability" 

henceforth, in this thesis. 

Another important consideration is that renewable resources are not easily 

harnessed. This simple fact makes energy conservation through high conversion 

efficiency a priority. As mentioned above, the number of conversion stages should be 

minimized, at least for the most utilized power flow paths. In the case of a carport, the 

power will flow most frequently from the PV array to the EV battery and from the grid to 

the EV battery. Therefore, given a choice, the flow paths should be optimized in line with 

the following priorities: in decreasing order of importance, array to battery, grid to 

battery, array to grid, and battery to grid. A schematic, showing possible power flow 

paths is depicted in Fig. 5-1. 
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Finally, it is reasonable to expect that the initial cost penalty would be more than 

offset by a design that is intrinsically low-maintenance, considering the application. This 

goal can be achieved by avoiding or minimizing the use of short-life components, such as 

electrolytic capacitors, electromechanical devices (relays, fans, and power connectors), 

and fault detectors or suppressors (MOVs and GFID). In addition, the control scheme 

should be robust and rely as little as possible on critical sensing devices that have time 

stability limitations or require periodic calibration. These include thermistors, shunt 

resistors, hall-effect devices, and linear opto-electronics. 

Having established the general design philosophy, the detailed specifications for 

the power conversion system, as have emerged in the discussion earlier in this study, are 

summarized here: 

PV panel string peak power: 5kW 
PV panel voltage range*: 430VDC+70V on full temp, range and 10-100% insolation 
PV operating temperature: -20 degC to 65 degC 
PV grounding 
Grid nominal voltage: 
Grid nominal current: 
Current distortion: 
Power factor: 
Charger voltage range 
Charging Power 
Discharging Power 

required at either power conductors or as a center-tap 
Single-phase 220-240VAC 
25A 
< 5 % 
Unity 
275V to 400V (galvanically isolated) 
lOkWmax 
5kW 
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The specifications shown above indicate a desirable range, as they guarantees a 

higher than line peak voltage for a transformer-less topology. The specifications also 

indicate the highest practical voltage allowed by code; of course, a higher voltage implies 

less cabling loss and higher efficiency. 

5.2 PROPOSED POWER CONVERSION TOPOLOGIES 

From the foregoing discussion, it appears that the ideal power processor would 

only have a single conversion stage between all power ports (i.e. the PV, the inverter, and 

the EV battery). Furthermore, the power processor would also handle two DC levels 

simultaneously (EV battery and PV) and permit bucking and boosting to and from the 

grid. The Z-source/loaded converter (Z-converter) is known to possess all these attributes 

and will, therefore, attract most of the attention in this thesis; it will also be the first 

topology to be analyzed in detail. The Z-converter will be compared to another class of 

power processors that allows utilization of dedicated converters for the grid as well as the 

battery that can be isolated using small and highly efficient HF power transformers. 

Safety and current shaping issues are easily resolved. However, the higher 

component count of the circuit can affect reliability. Finally, a third type of power 

processor will also be considered for comparison purposes. This third circuit represents 

the transformer-less topology; it allows direct connection to the grid distribution 

transformer without intervening isolation. However, the transformer-less topology is still 

not popular in North America, despite its broad acceptance in Europe. The good safety 

record of the transformer-less option in Europe, coupled with the objective advantages in 

the areas of cost and efficiency, will more than likely ensure its adoption worldwide. 

These topologies are simpler and more efficient than the previously discussed topologies. 
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Nevertheless, they demand the use of sophisticated and precise control circuits, to avoid 

DC current injection onto the grid. In addition, safety requirements are more stringent for 

all the major components (panels, EV battery, and inverter). Although European 

standards do not require a ground on the PV string, the topology presented in this study 

has one, in order to satisfy the specifications. 

For all topological options, the switching frequency is considered as 25 kHz. This 

choice allows the use of a fast IGBT technology, which is demonstrably better suited for 

power levels in the required range. Furthermore, given that physical size is not a priority 

for this application; higher frequency operation could be needlessly wasteful. 

5.3 THE Z-CONVERTER 

5.3.1 Background 

The use of the Z-converter AC power absorption/injection, with simultaneously 

controlled battery charging, has been successfully demonstrated in literature [8]. The AC 

source/load could comprise of an EV electric machine, while the DC source could 

comprise of a fuel cell. The same concept can be extended to PV grid-tied systems. The 

grid-tied system, on the other hand has fewer degrees of freedom, because of two main 

reasons. Firstly, in the case of the fuel-cell-battery HEV described in [8], the battery pack 

is native to the system, and therefore, its characteristics are fully known. In the case of a 

PV grid-tied carport, the PV and grid resources are expected to function with widely 

different battery technologies and characteristics. Secondly, the electric machine, used in 

[8] can be managed by the vehicle controller, while the grid behavior is an external 

variable. On the other hand, in the case of the PV carport, the EV battery will need to be 
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isolated through a transformer, so that the turns-ratio can provide added flexibility. The 

schematic of the Z-converter system is shown in Fig. 5-2. 

JYYY\ 

\ \ 50/60Hz 
50/60Hz 

Fig. 5-2 Non-isolated grid-tied Z-converter (left); Grid-tied Z-converter with Isolated 

Charger (right) 

It is important to realize that the DC/DC converter was added to the original 

design, in order to solely provide galvanic isolation. In fact, the Z-converter possesses 

double modulation capability, and can shape the grid current while simultaneously 

regulating EV battery charging. This goal is achieved with a single conversion stage and 

can be considered as the main advantage of the Z-converter. An added advantage is the 

inherent buck-boost capability of this topology. However, given the presence of the 

isolation transformers to the grid and EV battery, this benefit is marginal in this 

application. Some of the drawbacks include: 

a) An outsized 60Hz transformer is required, because a large common mode voltage 

would otherwise exist at the PV modules, making it impossible to meet leakage current 

specifications. A central 60Hz transformer can possibly be used, to service all charging 

stations. Nevertheless, the single point of failure in this case would not be desirable. 

b) Single-phase power is delivered and absorbed in 120Hz sinusoidal pulses. 

Because of the single stage of conversion, this power ripple must be stored at some point 
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in the circuit. As the EV battery is by far the largest dynamic repository of energy in this 

circuit, it is likely to absorb most of this ripple. In fact, in the case of full PV production 

into the grid, the battery would not only experience AC current alone, but its amplitude 

would also be very large. As disturbing as this may appear, such an approach will be 

considered and even encouraged at times, because it allows the elimination of an 

additional large decoupling capacitor across the PV panels, improving cost and 

reliability. At the same time, the concern about the AC component can be rationalized in 

several ways. For instance, whenever PV production exceeds the demand of the battery, 

the local MPPT system can be bypassed, so that excess power is redirected to 

neighboring charging stations. This would not eliminate the ripple, but would at least 

avoid battery current reversal at line frequency. Otherwise, it could be assumed that 

future EVs will draw their energy from ultra-capacitor banks that are ripple-tolerant, 

rather than electro-chemical devices. In either case, it is practical, that by storing the 

ripple in the battery by control methods is more complicated than simply introducing a 

large decoupling capacitor across the PV source. This method will therefore be 

considered, by default, in this thesis. Later, it will also be demonstrated that the ripple can 

easily be redirected from the battery to an added decoupling capacitor, if the design 

demands this requirement. 

c) In order to address the ripple problem more clearly, an additional DC/DC 

converter can be utilized in conjunction with the EV battery, to regulate the 120Hz out of 

the charging current, with minimal decoupling. While this approach works in theory, it 

will require an added controller and the conversion efficiency may be reduced. In fact, 

the DC/DC converter would now have to be considered a second full conversion stage. 
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This defeats the stated main advantage of the Z-converter and will only be considered 

briefly in 6.1.6. Therefore, no attempt will be made to completely eliminate this problem; 

rather, the 120Hz ripple is accepted for this topology and will be managed using 

innovative techniques. These techniques involve modulation of the shoot-through duty 

cycle, D0, with the intended purpose of directing the ripple either into the EV battery (or 

Z-circuit capacitors, when the battery is not connected) or into an added decoupling 

capacitor across the PV source, depending on the design requirements. 

5.3.2 Static Design Equations and Control Scheme for the Z-Converter 

The analysis of the operation of the bi-directional Z-inverter has been presented in 

[2], [9], and will not be repeated here. The only new addition is the DC/DC isolated 

converter needed for safety, as shown in Fig. 5-3. 
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Fig. 5-3 Z-converter with added isolated DC/DC converter 

In order to maximize efficiency, this added bidirectional converter is normally 

operated at 100% duty cycle in open loop. Therefore, when in normal operation, the 

voltage VB is identical to voltage Vc, except for the static gain of the DC/DC converter. 

When no battery is present, and the PV feeds the grid with full available power, this 

28 



converter does not operate, and appears as an open circuit. The three main static 

equations are derived in [2], and are re-stated below: 

( D \ 
Vg(PK)=Vc-— (5-1) 

\\-Do) 

( V -V \ ( l-Do ^ 

Hk^i or V<-H^£) (5"2) 

''-d*'" (5"3> 

Here, D is the modulation index or active duty cycle; D0 is the shoot-through duty cycle. 

Eq. (5-2) is written in two ways. The first is more applicable when a battery is connected. 

In this case, the battery stiff voltage at Vc is independent of D0. Rather, D0 depends on 

Vc. When the battery is not present, the DC/DC converter is replaced by its input 

capacitor alone. In this case, the capacitor voltage Vc depends on D0, as shown in the 

second variation of (5-2). 

Unfortunately, the validity of these equations is subject to strict operational 

conditions. In the first place, the circuit variables must be static or slow-changing. 

However, contrary to 3-phase systems, in 1-phase systems, the power is delivered to the 

load in a sinusoidal fashion. This causes substantial 120 Hz ripple on the Z-circuit 

components, and hence, static behavior within a cycle cannot be claimed. Secondly, the 

switching pattern, topology, or the operating point must be such that several undesirable 

conversion modes are avoided or contained. These are described exhaustively in [10], 

[11]. This scenario can be briefly explained here, as modes that cause either the diode, D, 

to turn off prematurely, during the active state, or the inverting bridge to short at the 

beginning of the active state, thus adding an un-programmed shoot-though sub-period. 
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These modes, in conjunction with discontinuous conduction mode (DCM) conditions, at 

low AC loads, can cause the capacitor voltage to float much higher than that predicted by 

(5-2). However, the voltage rating of the capacitor must be kept as low as possible, in 

order to allow use of low-voltage semiconductors. A reasonable approach to this 

problem, as described in [11], proposes the use of a switch in place of diode D. The idea 

is to block conduction only during programmed shoot-through sub-periods, while 

allowing reverse current under all other conditions. The subsequent revised topology is 

shown in Fig. 5-4. 
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Fig. 5-4 Modified Z-converter topology to avoid undesired capacitor voltage boost 

It is worth noting here that the added diode would be needed anyway, in order to 

allow connections of adjacent PV panels. Furthermore, the added capacitor would also be 

needed, in order buffer high frequency current from the PV panel and decouple the 

converter locally; its size depends on whether it will also be used to decouple the grid AC 

power, as discussed earlier. 

Equations (5-1) and (5-2) show the two variables, D and D0, that control the grid 

and battery power flow, whereas the total power flow is controlled by the PV panel 

MPPT function. A simplified block diagram of the control system is depicted in Fig. 5-5. 

The PV MPPT will determine the appropriate current that should be drawn from the 
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panels and generate a reference signal. This reference is compared to the measured PV 

current, and an error is generated, that represents the reference to an internal current loop. 

The controlled current in this case is the grid line current, whereby the grid current 

request will change with the MPPT request. At the same time, the EV on-board charge 

controller sends a current level request, which is a reference for the average battery 

current. This signal will be a DC signal in steady-state. However, the actual battery 

charging current could have a sizeable AC component at line frequency. The error 

between requested and actual charge current produces the control signal D0. 
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Fig. 5-5 Control strategies: With no battery (top), With battery (bottom) 
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Fig. 5-5 also shows the control strategy in case there is no battery connected. The 

converter acts as a simple grid-tied inverter, and the modulating signal D0 is simply 

utilized as a means to regulate the capacitor voltage, at 550V. This voltage level allows 

the use of commercially available high efficiency IGBTs rated between 900V-1200V, for 

the inverting bridge. It must be noted that, although the specified PV voltage range does 

not allow the use of more efficient 600V devices, the Switch Utilization Ratio (SUR) for 

the Z-converter is still high compared to alternate topologies (see 7.1). 

5.3.3 Design of the Isolating Bi-directional DC/DC Converter 

Fig. 5-6 shows the evolution of the Z-converter, from having the battery 

connected directly, in lieu of one of the Z-circuit capacitors having an intervening 

isolating DC/DC converter. In both cases, the Z-circuit is no longer balanced and/or 

symmetrical. Although this scenario does not preclude acceptable operation, the presence 

of the converter allows the possibility of restoring symmetry. Fig. 5-6 demonstrates this 

design aspect. 
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Fig. 5-6 Evolution of Z-circuit: Non-isolated (left), asymmetrically isolated (center), 

proposed symmetrically isolated (right) 

This novel circuit topology adds a DC/DC converter with split primaries on the 

isolation transformer. However, a single secondary drives the EV battery, as depicted in 
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Fig. 5-6. Two sets of primary switches are required. The switches conduct half of the 

current and can be sized accordingly. Also, because the converter operates at full duty 

cycle in open loop mode, very high efficiencies are obtainable by the use of simple soft­

switching techniques, and various topologies, with similar costs and performance can be 

proposed to implement them. For the purpose of obtaining quantitative data, one such 

topology is proposed and analyzed without further justification, as long as it is made clear 

that other topologies can be substituted for this function. The chosen topology is shown 

in Fig. 5-7 and is based on using two half bridges, operating at a high frequency. 

Fig. 5-7 Evolution Complete detailed schematic for Z-converter including symmetrical 

DC-DC isolating converter 

The converter of Fig. 5-7 uses 8 switches, with very low current and voltage 

ratings. However, different versions could use only 6 switches (or even 4), rated for 

higher voltages. Furthermore, as compared to popular push-pull topologies, the half-

bridge topology does not suffer from transformer saturation, when operated in open-loop 

full duty cycle, and has inherent zero-voltage switching (ZVS). 
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Despite the high number of MOSFETs, a single gate drive transformer can drive 

all switches simultaneously. In addition, there is no need to add two separate half-bridge 

capacitors. In fact, because of the required CV product, the Z-circuit capacitors are of the 

electrolytic type, which are commonly available with a 450V maximum rating. Hence, 

two series capacitors must be used, given that the overall capacitor voltage can be 

expected to be higher than 600V. Therefore, besides the high number of switches, the 

DC/DC converter can be kept compact. The operation of the half-bridge topology is well 

known and will not be addressed here. Nevertheless, the transformer turns ratio needs to 

be calculated and the equivalent average model obtained. 

5.3.4 Calculation of the Turns Ratio 

It is critical that the transformer turns ratio be kept to a minimum, in order to 

maintain the reflected battery voltage as low as possible, allowing the use of efficient 

devices. However, when the battery has low voltage (VB(min) = 275V), the reflected 

voltage must still be higher than the maximum PV voltage (VpV(max) = 500V). Thus, the 

turns ratio from each primary to the secondary winding is calculated as, jy _ *WQ™Q _ 10 

where the factor of 2 is generated by the half-bridge operation. A ratio of unity will be 

adopted here for two main reasons: first, the half-bridge, operated in soft-switching 

mode, does not feature a perfect 100% voltage transfer, due to the presence of parasitics. 

Secondly, a 1:1 ratio is optimal, because it allows all three windings to be arranged in tri-

filar configuration 'in the transformer, reducing leakage inductance to a minimum. The 

maximum voltage on the Z-circuit capacitors can now be calculated with VB(max)= 400V 
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and N=l. Hence, Fc(nBX) =2N-VB{mx) = 800K. Thus, 900V MOSFETs must be used in 

the primary circuit, while 500V MOSFETs can be used in the secondary. 

5.3.5 Derivation of the Equivalent Average Circuit of the DC/DC Converter 

Each primary of the transformer can be simplified, as shown in Fig. 5-8. The 

average transformer current over one cycle can be considered zero, while the average 

current into the MOSFETs is !4 ILB (50%, due to the parallel primaries sharing current, 

and another 50%, due to the duty-cycle). The average rectified secondary voltage is 50% 

of Vc. Hence, the derived average model is straightforward, and is shown in Fig. 5-9. 

l / 2 l i l R forD = 50% 

ti ILB 
< > 

C HB 

t LAJjy T 

fe 
c HB 

1/2 I L B forD = 50% 

Fig. 5-8 Primary circuit for DC-DC section 
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Fig. 5-9 Derivation of the average model for the DC-DC converter 
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Thus, the DC/DC converter and battery load can simply be modeled as a parallel 

branch on the Z-circuit capacitors, as shown in Fig. 5-9. APPENDIX A provides a 

detailed derivation of the equivalent battery circuit model. 

5.3.6 Design of the Z-Circuit: Capacitor 

The Z circuit includes two capacitors and two inductors. The main function of the 

capacitors is to store and release reactive energy from and to the grid, when the EV 

battery is not connected. In this case, the PV cannot provide the sinusoidally pulsating 

power, leaving this task to the capacitors, since the inductors do not store appreciable 

energy. The voltage ripple at line frequency must be kept low, in order to reduce voltage 

stresses and allow proper operation of the inverter. A peak-peak ripple of 10% is 

common for electrolytic capacitors at line frequency and will be adopted for the design. 

In order to calculate the ripple, it is necessary to determine the maximum levels of power 

flow in and out of the grid. The PV resource will provide a maximum of 5kW. Thus, the 

inverter should be designed to allow this power to access the line. For optimal sizing of 

the inverter semiconductor devices, this should also be the amount of power that can be 

drawn from the line, so that a maximum of 10 kW can be used to charge the battery, if 

both the grid and the PV resource make their maximum contribution (see Fig. 5-1). From 

these considerations: 

p 
Pg(t) = Ppv[\ + sm(2ajtj] and Pc(0 = -ZLsin(2c*) where the factor of 2 is added 

given that there are two capacitors in the Z-circuit. 

Pc(t) = Vc(t) • ic (0 = Vc(t) • H™£L Q = &- sin( loot); hence: 
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^"shVc{t)dVc = ^ - f° sin( 2<ot)dt 

or 
\Vhigh 

x-vS 
2 Vlow 4C°> 

^cos(2cot) 2co = I (Vhigh - Vlow) • (Vhigh + Vlow) = •Ppv 

2 2C« 

(Vhigh-Vlow) is the peak-peak capacitor ripple voltage AVc, while Vi (Vhigh+Vlow) is 

the DC component of the capacitor voltage Vc. 

p 
Hence: AVc = —— (the worst case) occurs when the DC component Vc is 

2Vc • Ceo 

minimum. However, the capacitor voltage is regulated at 550V, and therefore, the target 

AVc is 55V. With PPV=5kW and co=377 rad/sec, a AVc of 55V necessitates a minimum 

capacitor C=220uF. Considering tolerances and margins, a nominal value of 470uF is 

reasonable. The capacitor current will be Ic = AVc-a>C, which computes to Ic = 4.54A 

peak. Note that the value for calculated Ic does not include switching frequency ripple 

from the inductors in the Z-circuit. Rather, this includes only the line frequency 

component. The voltage rating for the capacitor is determined by considering a connected 

EV battery, with maximum rated voltage of 400V. 

5.3.7 Design of the Z-Circuit: Inductor 

The high frequency ripple current is generated during the shoot-though switching 

interval, when the full capacitor voltage is impressed on the inductors. The maximum 

ripple current is thus obtained for the widest shoot-through duty cycle, D0, and maximum 

value of Vc. Maximum duty cycle, D0, is obtained for minimum Vpy = 360V. From (5-2): 

^°(MAX) 

Vc -V 

2Vc,„„ - V, I v ^ W ) -VpVfsATC)) UOVUK -J .OUK J 

/800F-360K 
U600F-360F 

= 0.355 
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The limit on the switching ripple current on inductor L represents a somewhat 

flexible design choice, as the ripple is absorbed within the Z-circuit, and only has a 

moderate effect on the output quantities. Furthermore, the issue of DCM avoidance is 

managed by the use of the bi-directional switch in place of the diode. Possible limits on 

the ripple are current capability of the Z-circuit capacitors, the saturation level of the 

magnetic material used for the inductors, and additional conduction loss in the 

semiconductor devices. However, a small L is preferable, in order to reduce the quality 

factor, Q, of the Z-circuit, for easier loop compensation (see 5.3.8.1). Therefore, an RMS 

current of 5A is a reasonable choice, based on typical performance of high-voltage 

electrolytic capacitors. This corresponds to AIL = 17.3A for triangular wave-shapes. 

The maximum ripple is: AIL = — — ^^- Hence: L = 650uH 

5.3.8 AC Analysis of the Z-converter 

The Z-converter must be well understood in its AC behavior, in order to justify 

the choice of the power components, especially the inductors and capacitors. Moreover, 

in this application, the converter will have different operating regimes, corresponding to 3 

distinct cases (PV to Grid with battery, PV to Grid no battery, and Grid to/from battery). 

As will be seen, the full control system consists of as many as 4 control loops: 

these are the input current control loop, the MPPT PV current control loop, the IB or Vc 

control loop (depending on the presence or absence of the battery), and, optionally, the 

current ripple reduction control loop. The analysis of all these loops is complicated by the 

fact that this is a MIMO system with two coupled control variables D and Do and two 

controlled outputs (grid current IIN and charge battery current IB or capacitor voltage Vc). 
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Reference [9] provides useful insights on how the dual-modulated Z-converter can be 

decoupled, using non-linear feedback schemes, that would likely require sophisticated 

application of DSP methods. Given that the objectives of this thesis are mainly geared 

towards an appreciation of the power topologies rather than the control mechanisms, a 

more traditional strategy, involving a number of iterations, is adopted. The small-signal 

model is studied and the first control loop is compensated, assuming single modulation of 

D, with D0 kept constant. The second loop is then compensated, with the first closed loop 

in place, and so on. With all compensated loops in place, coupled transfer functions can 

be optimized by iteration. Thus, in order to obtain a working model for simulation, 

analysis, and comparison, SISO techniques can still be employed rather than more 

involved methods, such as LQR or non-linear feedback de-coupling. 

As was mentioned in 5.3.1, the control scheme can be made to direct the ripple 

current into the EV battery (Scheme 1) or into the PV source (Scheme 2). The former is 

more complex, and hence, its derivation will be demonstrated in more detail below. 

However, the latter will also be designed and simulated for verification. 

5.3.8.1 Inverting Operation with no Battery: Plant behavior 

Fig. 5-10 shows the circuit to be averaged. Note that the ESRs of the power 

passive components are included. 

Fig. 5-10 Base circuit with no battery for average modeling 
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By assuming symmetric operation, with the Z-circuit capacitors and inductors 

pairs being identical, and also considering only the three normal switching states, the 

following average model can be derived. 

d_ 
dt 
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By setting the differentiated state vector on the left side to zero, the DC relationships can 

be readily derived. However, the presence of parasitic resistance terms makes this 

solution lengthy. Instead, it is more practical to approximate the solution by setting these 

resistances to zero and solve the undamped system; this will yield a fairly good idea of 

the bias point operation and will aid with the design of the main circuit components. The 

three solutions for the undamped system were already expressed in Eq. 5-1, Eq. 5-2, and 

Eq. 5-3. 

The small-signal model is derived from the average model, by perturbing all 

inputs (D, D0, Vpv, and VIN). 
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(5-5) 

Solving the above system yields the transfer functions, from any of the four inputs to any 

of the three state variables. Again, the explicit representation of this solution is not 

desirable and should be left to numeric analysis if desired and, once more, the simpler 
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undamped model is considered as a starting point. The characteristic equation of the 

undamped system is given by: 

(5-6) det[sI-A] = s 2 2D2 (\-2Dof 
s + -1- — CL„ LC 

Here, A represents the state matrix. There exist 12 transfer functions, in total, that can be 

derived from the small signal model. The most important ones, for inverting operation, 

relate the grid current (IIN) to the control signal 5 (small signal of D). This is shown in 

Eq. 5-7. 

2DI„ 
(2Vc-Vpr) 

8 

s2-
(2Vc-VPV)C 

tm j | ( l -2Z) Q ) 2 

LC 

sL„ 2 2D2 (l-2Dof 
s +- + - '— CL„ LC 

(5-7) 

As can be seen, Eq. 5-7 is characterized by two zeros and two poles, in addition to a pole 

at the origin, that are determined by the power components, defined in 5.3.6 and 5.3.7. 

The form of Eq. 5-7 suggests that another criterion exists for choosing the values for the 

Z-circuit components that was not envisaged in 5.3.6 and 5.3.7. It relates to the fact that 

the Z-circuit has a relatively high Q and has natural resonance that cannot be eliminated 

by control. It is thus important not to excite the system at this resonance point, which 

must therefore be separated from the 120 Hz driving function. It is desirable to choose the 

Z-resonance at a higher frequency, in order to keep component size small. However, 

achieving this goal can be difficult. In fact, as clearly shown in [12], and hinted by the 

denominator in (5-7), the resonant frequency changes with operating point of D and D0. 

Hence, a much higher frequency than 120 Hz must be chosen for nominal resonance. Of 

course, this implies small values for L and C, in direct contrast to the requirements for 

effective energy storage. These contrasting requirements are difficult to resolve, and 
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represent the biggest challenge for stable operation. In the present case, the values, as 

derived in 5.3.6 and 5.3.7, produce a nominal resonance that is comfortably higher than 

400 Hz. However, in the worst case, this frequency can be below 200 Hz, requiring 

careful compensation. 

A precise analysis of the transfer function of the Z-converter is outside the scope 

of this thesis; rather, the main results from [12] and [13] will be used. In those references, 

the authors point out the existence of a RHP zero in the transfer function (also visible in 

Eq. 5-7), and determine the root loci of the Z-network for varying parameters. References 

[12] and [13] also state that better dynamic behavior (due to increased damping) can be 

achieved with higher values of D0 and C, and lower values of L. While the higher limit of 

C and lower limit of L are determined by cost and ripple current at 25 kHz, D0 is set by 

requiring Vc to be at 550V (see Eq. 5-2). Furthermore, the ESRs for the Z-network 

components also increase damping, and should therefore be maximized, as far as 

efficiency considerations permit. Here, 30mQ is used for R^ and RL, and 120mQ for Re. 
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Fig. 5-11 Plant frequency response OWS) for extreme values of VIN, IIN, VpV. 

Fig. 5-11 shows the iiN/5 transfer function, including damping, obtained numerically 

using the SiMetrix software and (5-5). It is possible to see that there is no phase reversal 
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within the full range of operating conditions. As such, the plant can be compensated to 

obtain stable operation. Also, the resonance is closest to 120 Hz, when Vpy is lowest; 

however, there is no overlap. 

5.3.8.2 Inverting Operation: No Battery compensation for the input current loop 

The first loop to be compensated is the input current loop. This choice is not 

arbitrary; in fact, it is based on the fact that the input current loop is inherently weakly 

coupled to D0, thus providing an adequate starting point. The main requirement for 

controlling the input current is that it can produce an undistorted waveform. As a 

consequence, the gain of the compensator at 120 Hz must be of the order of 20dBs or 

higher, for an error of less than 5%. Crossover will be designed at approximately 10 kHz, 

below the Nyquist limit of 12.5 kHz, for a switching frequency of 25 kHz. 
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Fig. 5-12 Input current loop (left); Error amplifier design (gain: 21db at 120Hz) (right) 

Fig. 5-12 shows the compensation for the loop controlled by duty cycle D (while 

D0 is kept fixed, for inverting operation without the battery). It must be noted here that, 

throughout this thesis, no formal derivations of the compensators are performed. Rather, 

the specific implementations that are used in the simulations (Ch. 6) are shown for 

reference. The signal Iref is a sinusoidal waveform, in phase with the input voltage; its 
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amplitude is controlled by the MPPT section. The signal CS is the feedback signal from 

the line current sensor (refer to Fig. 5-5). With this compensation, consisting of two poles 

and two zeros, the open-loop response is shown in Fig. 5-13, for key operating 

conditions. 

Fig. 5-13 Input current open loop response with Do constant (extreme conditions) 

Note that the phase margin is greater than 70°, crossover at 10 kHz, as targeted in 

both extreme cases. It must be noted here that throughout this thesis, stability is analyzed 

using Bode plot techniques, despite the presence of an RHP zero in the undamped 

system. Stability evaluation then follows the guidelines presented in [14]. 

5.3.8.3 Inverting Operation: No Battery MPPT PV Current Loop (Scheme 1) 

The input current loop (discussed in 5.3.8.2) is an inner loop to the MPPT 

commanded loop, as shown in Fig. 5-14. In other words, the MPPT device programs the 

desired PV panel output current by commanding the appropriate current at the grid. In 

order to design the compensator, the closed loop transfer function of the input current 

loop (with D0 kept constant) is obtained from the model, and a provisional compensation 

is also obtained. 
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Fig. 5-14 MPPT Panel Current Loop 

Note that the overall response for this loop must be set much slower than line 

frequency, otherwise the commanded line current will be distorted by the error voltage. 

This can cause long time lags to steady-state upon an MPPT command or line voltage 

change. Such a scenario may or may not be acceptable, especially in the presence of an 

MPPT device with its own dynamic properties. Moreover, the ubiquitous Z-circuit 

resonance tends to push this loop to instability, if a larger bandwidth is targeted. To 

address this issue, a slightly quicker response can be designed, at the cost of adding a 

ripple elimination circuit, as part of the capacitor voltage regulation control. This 

increases the coupling between D and D0. This latter solution can be deemed the least of 

two problems, and is adopted, as will be discussed in 5.3.8.5. 
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Fig. 5-15 shows the compensation used and the frequency response of loop, 

without the added ripple elimination scheme, mentioned above. Note that the loop by 

itself, as aforementioned, is indeed unstable. 

5.3.8.4 Inverting Operation: No Battery Capacitor Voltage Control (Scheme 1) 

The voltage on the capacitors will be regulated at 550V, when the EV battery is 

not present. No attempt should be made to regulate the 120 Hz ripple out, because this 

would force the pulsating current into the PV source, which runs against the objectives of 

Scheme 1. Therefore the designed loop bandwidth should be small. 

K'Vin(t) 

MPPT Compensation 
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Iref 

CS 

K} 

PV current 

Compensation 
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grid line 
current 

No battery connected 

Z-convater 

vc^ »» - O Compensation 

Do! 

Fig. 5-16 Basic loop for Z-capacitor voltage compensation 

Although its purpose is clear, this loop may or may not fully set D0. In fact, an 

additional optional control of DQ can be added, to force most of the 120 Hz current ripple 

away from the PV source, and into the Z-capacitors (see 5.3.1). Without this addition, 

heavy filtering at the PV output becomes unavoidable, and Scheme 2 must be adopted. 

The full capacitor voltage regulation scheme is, therefore, dealt with in the following sub­

section. 
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5.3.8.5 Inverting Operation: No Battery Reduction of PV Ripple (Scheme 1) 

The optional additional control is shown in Fig. 5-17. This idea is related to that 

used in [9], where output ripple was successfully eliminated in a Z-loaded rectifier 

application. In [15], a similar concept using feed-forward was employed in a bi­

directional ASD system, to achieve the same purpose. 
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MPPT o +H >-*- Compensation o 
grid line 
current 

PV current 
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Z-convater 

470 
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-*b Compensation! 
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Fig. 5-17 Modified loop for capacitor voltage regulation (left); Compensation (right) 

Unfortunately, in this case, simulation studies show that the ripple cannot be 

eliminated completely, due to issues related to stability and dynamic range of control 

variable D0. However, these issues can be minimized to an acceptable level with or 

without further addition of a modest decoupling capacitor (see 6.1.4, for more in-depth 

discussion). The proposed action compares panel current, Ipv, to a DC reference (such as 

0V). The compensation that follows will ignore the DC component of the error, 

suggesting a derivative controller, with a zero at the origin. It will also deliver substantial 

operating gain at 120 Hz, thus reducing the ripple component on the sensed variable, the 

PV current. These characteristics are supplied by the compensation shown in Fig. 5-17. 

With this added feedback and the input as well as PV current control loops in place, the 
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open-loop transfer function from Vc to D0 can be modeled and compensated through the 

block labeled "Compensation 1" in the Fig. 5-17. The compensator and the overall loop, 

including Compensation 1 and Compensation 2, are shown in Fig. 5-18. 
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Fig. 5-18 Overall Vc control loop response and compensator (Compensation!) 

Fig. 5-19 Revised loop response for the PV panel current control loop 

Fig. 5-19 shows the revised Bode plot for the PV panel current control loop. 

Comparing this to Fig. 5-15, it is notable that the instability is successfully eliminated. 
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5.3.8.6 Operation with Battery: Plant Behavior 

The steps followed in sections 5.3.8.1 to 5.3.8.5 are repeated for a system with a 

connected battery. From the steps performed in 5.3.5 and APPENDIX A, the topology 

with battery and the DC/DC isolating converter in place can be redrawn in Fig. 5-20. The 

averaging method is used again, including the additional state space variable, z>. 
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Fig. 5-20 Equivalent model of Z-converter with battery. 
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The frequency response for the input current loop is obviously modified by the presence 

of the battery, and needs to be checked again for stability. Furthermore, a different loop, 

one that controls battery current instead of capacitor voltage, is now present, that needs to 

be characterized and compensated. Since the compensation for the other loops will 

tentatively be the same, whether or not batteries are connected, there will be no need to 
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evaluate the plant open-loop response, but each control loop will be assessed 

individually. 

5.3.8.7 Operation with Battery: Compensation for the Input Current Loop 

The response of the input current loop with the battery connection is shown in 

Fig. 5-21. It is evaluated by inserting an AC stimulus upon signal D, with the output of 

the MPPT compensation kept constant. Note that in this case, D0 is not kept constant as 

was followed previously; in fact, DQ is allowed to change, given that it is coupled to D. In 

keeping with the iterative design approach discussed in 5.3.8, this results in a more 

realistic description of the true open-loop response. 
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Fig. 5-21 Input current loop response (with compensation) for system with battery 

From Fig. 5-21, it is clear that the response is similar to that obtained without the 

battery connection and with D0 kept constant, with the obvious difference that the Z-

circuit resonance is removed. Note that Fig. 5-21 only depicts a small number of 

operating conditions for PV, input, and battery voltages and currents. All other relevant 

conditions were analyzed (not shown here); the compensation obtained in 5.3.8.2 is 

retained. 

50 



5.3.8.8 Operation with Battery: MPPT Panel Current Loop (Scheme 1) 

Fig. 5-22 shows the panel current control open-loop response. As can be noticed, 

the response is similar to that of Fig. 5-15, without the resonance, due to the presence of 

the battery. 
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Fig. 5-22 MPPT IPV loop response (with compensation) for system with battery 

It is worthwhile mentioning here that the tentative compensation used in 5.3.8.3 is 

retained. 

5.3.8.9 Operation with Battery: Battery Current Regulation (Scheme 1) 

The connected battery will be charged by the amount of current requested by the 

vehicle's on-board controller. This control loop replaces that used to regulate the 

capacitor voltage, when the battery is not present. Because its function is fundamentally 

different when a battery is connected, it is unlikely the same compensation used in 5.3.8.4 

can be retained. Rather, different control circuits must be selected depending on whether 

the battery is present or not. The plant open loop response is obtained by adding a 

stimulus upon D0, and is shown in Fig. 5-23. 
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Fig. 5-23 Plant frequency response for charge current loop 

This response shows a high gain, notably at 120 Hz. The required compensator 

will, therefore, attenuate markedly at this frequency; so that the 120 Hz will (suitably) not 

be transmitted to the error (this suppression at 120Hz is required; see 5.3.8.3). 

Compensation 1 and Compensation 2, as well as the overall charge current loop response, 

are shown in Fig. 5-24. Note that Compensation 2 is unchanged. 

From the discussion above, Compensation 1 will essentially offer a high gain only 

at DC or very low frequencies, exposing another major limitation of the proposed system. 

Naturally, if the rate of change of the IB request signal from the on-board vehicle 

controller exceeds approximately 1 Amp/sec, the loop can only retain control in the 

presence of unacceptably large real battery current, IB. 
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Fig. 5-24 Overall response for charge current loop (left); Compensators used (right) 

In actual circuits, the most likely scenario would include a particular control op-

amp in one of the loops saturating, so that the charge control loop opens, and the system 

runs uncontrolled. To avoid this occurrence, a restriction must be imposed on the IB 

request signal rate of change and additional protection circuits must be considered. This 

limitation, however, is only very significant in Scheme 1. 

5.3.8.10 Discussion on Compensation for Scheme 2 

When it is desired to alleviate the battery current ripple problem and instead opt 

for adding more decoupling at the PV terminals, Scheme 2 can be targeted. Obtaining 

Scheme 2 is a simple problem of eliminating the ripple elimination loop (Compensation 

2). The remaining Compensation 1 is then modified to have much higher gain at 120 Hz, 

in order to regulate out the ripple. 
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Fig. 5-25 Compensation changes for Scheme 2. Battery charge current and MPPT Ipv 

The MPPT Panel Current Loop compensation must also change, to eliminate the 

instability shown in Fig 5-15. In addition, its gain must be suppressed, in order to make 

the error irresponsive to the newly acquired 120 Hz ripple. The compensation 

modifications are shown in Fig. 5-25. 

5.3.9 Comments 

Having fully modeled the Z-converter for this application, its performance will be 

evaluated in the next chapter. Some comments of a more qualitative nature can be 

introduced here. 

5.3.9.1 Cost 

The Z-topology allows distributing PV power to the grid as well as to the EV 

battery with a single stage of conversion. One of the hopeful consequences of this 

premise is a reduction in cost. Table 5-1 is a list of cost factors that are relevant for the Z-

converter. 
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Table 5-1 Cost factors for Z-converter 

COST REDUCTION 
Light cabling from PV (due to high PV voltage 

supported) 
Relatively low power component count 

Simple drive method for DC/DC converter 

Simple 1:1 isolation transformer for DC/DC 
converter 

Open loop operation of DC/DC converter (no 
isolated sensors) 

COST ADDITION 

5kVA 60Hz isolation transformer 

High voltage power capacitors 
High voltage power 

semiconductors 

Large enclosure/sheet metal 

Added protection circuits (see 
5.3.8.9) 

It appears that the cost balance may or may not be a positive one. The presence of 

the line-frequency transformer and larger enclosure weighs heavily on the negative side. 

However, this transformer may be required because of other criteria. For instance, the 

transformer-less topology is far from being universally accepted by safety agencies 

around the world. Utility companies may also rather see a galvanic barrier, prior to the 

interface point, in order to ensure both isolation and guaranteed elimination of DC current 

injection into the grid. In these cases, the Z-converter is certainly cost competitive. 

5.3.9.2 Reliability 

Voltage levels on the IGBTs and Z-circuit capacitors are relatively high. 

However, when appropriate ratings are used, the reliability of this topology is 

intrinsically very good, due to low component count. The presence of the 60 Hz 

transformer does not affect it in an appreciable manner, and there exist only four 450V 

(standard availability) small value electrolytic capacitors, that are commercially available 

in various reliability and life ratings. This fact is possible due to the introduction of the 

added ripple attenuating control described above, for allowing a design with very little 

capacitance across the PV source (Scheme 1) - large capacitors being otherwise necessary 
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(Scheme 2) [16]. Worst-case voltage on the capacitors is 400 V (for maximum battery 

voltage of 400V), while that on the IGBT, is 1240 V, excluding any parasitic transients 

(with maximum VB at 400V and min VPV at 360V). Higher voltage devices are both more 

expensive as well as less performing than lower voltage ones; however, they do allow 

more design trade-offs. 

Note that Fig. 5-7 shows the presence of 13 switches. Although this number is 

high, it can be reduced down to 9 by employing alternate common topologies for the 

DC/DC converter. On the other hand, the chosen topology for the DC/DC converter 

portion can be realized using high reliability, low voltage/low current devices. Because 

the converter runs in open loop, the driver is simple, and the control is devoid of 

isolation/sensing devices. 

5.3.9.3 Dynamic Behavior, Interaction with PV Source, Interaction with Grid 

It is evident that the control of the Z-converter is extremely complicated, due to 

the unavoidable relationship between the two control variables, D and D0, and the fact 

that the energy storage components are present within the control equations. Also, the 

impossibility of effectively decoupling the power flow into the battery and the PV source 

from that of the Z-capacitor implies that the 120 Hz power ripple must be absorbed by 

either the battery or the PV source. For Scheme 1, this is achieved by decreasing the 

bandwidth of the charge current control system, with consequent slow response to 

external stimuli from the PV source and input line voltage. The PV source voltage itself 

changes rather slowly in response to irradiation level shifts and speed of the MPPT 

algorithm [17], thus causing only minor problems. A sudden change in the IB request 

signal, however, is problematic for Scheme 1, and must be avoided externally, as 
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mentioned in 5.3.8.9. As such, changes cannot be easily handled using linear control. 

Should this become a critical issue, Scheme 2 can always be implemented, as it supports 

much quicker dynamics. 

5.3.9.4 Design Flexibility 

Another obvious shortcoming, originating from the close coupling of the battery 

to Z-circuit, and the use of linear control (compared to robust techniques, such as Sliding 

Mode Control), is the fact that the charge limiting resistance, RB, becomes a non-

negotiable part of the control loop. It becomes impossible to optimize the loop response 

prior to knowing this resistance value. Unfortunately, different battery technologies and 

even different states of charge have different characteristic resistances that would require 

different optimal compensations. In addition, the nominal battery voltage is also limited 

by the absence of a fully regulated DC/DC converter. Therefore, connection to a severely 

discharged battery, for instance, is not supported by this topology. 

5.4 HIGH-FREQUENCY TRANSFORMER-ISOLATED TOPOLOGY 

5.4.1 Background 

In specific cases, where a large 5kVA, 60 Hz transformer is unacceptable, various 

topologies that retain galvanic isolation from grid to panels can be used. These are 

described in references [4] and [18]. A fair assessment, based on these references, is that 

there is no clear option among the competing topologies; rather, different approaches 

satisfy different design priorities. On the other hand, because the PV-powered charge 

infrastructure is not a straightforward grid-tied system, like those described in [4] and 

[18], which include an added DC/DC charger, many of the proposed circuits are not 
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easily exploitable. The otherwise attractive pseudo-DC-link topologies are an example, as 

are topologies using output current-fed inverters. Among those approaches that use a HF 

transformer for isolation, the benchmark is provided by the classic two-stage topology 

with DC-link, shown in Fig. 5-26. 
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Fig. 5-26 HF Transformer Isolated Topology 

For comparison purposes, this topology will be studied in the following chapters. 

The lengthy AC and dynamic response analysis for the inverter and DC/DC converter 

will not be included here, given that these are common topologies that have been treated 

at length in related literature. 

5.4.2 Isolation and DC-Link 

The main purpose of the isolation section shown in Fig. 5-26 is, of course, to offer 

isolation from the grid to the PV. Such an arrangement can also provide supplementary 

functions. For instance the half-bridge could be replaced by a regulated buck-boost 

converter stage. In this case, the DC-link voltage could be made to track the EV battery 

voltage and minimize switching losses in the DC/DC converter, while the buck-boost 

stage provides added flexibility, to deal with wider voltage ranges out of the PV panel. 

This can be implemented with few minor added costs, in terms of component stress and 
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overall efficiency, which might be offset by the need to satisfy design requirements. In 

the case of this thesis, the requirements have been set, and can be satisfied by the isolated 

buck topology of Fig. 5-26, running in open loop at full duty cycle for zero-voltage 

switching (ZVS) and maximum efficiency. Due to ZVS, a very high frequency can be 

selected when MOSFETs are used, so that the filter components in the DC link can be 

minimized in size and cost. 

5.4.3 Component Design 

5.4.3.1 Isolation Transformer Turns Ratio Calculation 

The steady state voltage gain from the output of the PV source to the input of the 

inverter bridge is simply Vi N, where N is the turns ratio of the transformer. Because the 

voltage-source inverter (VSI) bridge can only buck, the defining condition is with 

minimum Vpy = 360V and maximum VIN= 370Vpk. A turns ratio of 3/7 will provide a 

minimum DC link voltage of 420V, corresponding to an overhead of 14%, for dynamic 

control. The maximum DC link voltage will be 580V, allowing the use of efficient IGBT 

devices. 

5.4.3.2 DC-Link Filter 

The DC-link filter inductor can be considered a simple smoothing choke of very 

small value. This is due to the full duty cycle on the half-bridge. The capacitor, on the 

other hand, will be sized to handle the pulsating power from the grid, and will therefore 

be as large as the combined size of the Z-circuit capacitors discussed earlier. 
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5.4.3.3 Inverter Bridge and DC/DC Converter Power Devices 

As the DC bus voltage is limited to less than 600V, very fast and efficient IGBTs 

as well as diodes can be used for the inverter bridge and the DC/DC converter. The 

architecture of the DC/DC converter is shown in Fig. 5-27. The arrangement is similar to 

that of the Z-converter, with the DC-link capacitor split, in order to accommodate a half-

bridge converter. The main difference is that this converter has a full loop controlling 

duty cycle. Therefore, the smoothing choke will be relatively large and can be expected 

to detract from the efficiency number. A turns ratio for T2 of 1:2 will guarantee that a 

400V battery can be charged, when VPV is minimum, at 360V. The inductance LB is 

calculated so as to provide +10% ripple under worst-case; that is, when Vpv is maximum, 

at 500 V, and battery voltage is minimum, at 275 V. Calculation of the required inductance 

value is straightforward and yields 800u.H, at 50 kHz switching frequency. 
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Fig. 5-27 DC/DC converter 

This inductance can be less lossy than that of the Z-circuit, because it need not 

supply damping. An ESR of 0.03Q is chosen (or 50% that of the Z-circuit combination). 

5.4.4 Comments 

5.4.4.1 Cost 

Compared with the Z-converter, this topology replaces an expensive 60 Hz 

transformer with a small HF transformer. Considering that the primary winding is driven 
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in ZVS, the frequency in question could be extremely high, thus virtually eliminating the 

cost due to the isolating function. Additionally, the ensuing reduction in size should result 

in savings related to sheet metal. 

Although this topology only has one large choke, LB, in Fig. 5-27, it carries more 

current and has higher value than each of the Z-circuit inductors. Overall, the I2L value is 

similar (compared to two 15A, in 650uH, to a single 18.5A in 800uH). A similar 

conclusion can be made for the Z-circuit capacitors, when compared to the DC-link 

capacitors for this topology. In both cases, they must be sized to deal with the same 

pulsed power from the grid. 

Because of the double conversion stage and the AC/DC/AC/DC structure, this 

topology has high semiconductor content. Compared to the Z-converter, it includes an 

additional fast-diode full-bridge rectifier, and 5 IGBTs, accompanied by fast 

freewheeling diodes (note: all MOSFETs operating in ZVS are not considered here). 

Moreover, an extra control and drive circuit is needed for the additional conversion stage 

(see the comparison matrix below). 

Table 5-2 Cost comparison HT transformer vs. Z-converter topologies 

Component 

PV cabling 
Transformers 

Chokes 
Capacitors 

IGBTs 
Diodes 
Drivers 

Sheet metal 
OVERALL 

Z-converter (LF 
transformer isolated) 

GOOD 
GOOD 
GOOD 
GOOD 
GOOD 
GOOD 
GOOD 
GOOD 
GOOD 

HF transformer 
isolated 
GOOD 

BETTER 
GOOD 
GOOD 
POOR 
POOR 
POOR 

BETTER 
BETTER 
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Considering the absence of the power transformer and, to a lesser extent the 

lighter sheet metal, cost should be much reduced compared to the Z-converter topology. 

5.4.4.2 Reliability 

Although the semiconductor component count is problematic, their electrical 

stress can be managed well, as all currents and voltages are precisely defined. This is not 

the case for the Z-converter, where the voltage stress on the bridge components, for 

instance, is strongly dependent on the operating point. A simple way of describing this is 

that this topology is inherently less reliable than the Z-converter. However, it can be 

easily upgraded by choosing better performing components. Considering that the cost is 

expected to be relatively lower, this may be quite acceptable in most cases. 

5.4.4.3 Dynamic Behavior, Interaction with PV Source, Interaction with Grid 

Because the battery charge current is controlled independently from the line 

current, dynamic behavior for this topology can be expected to be better than that of the 

Z-converter. Specifically, the EV battery current command can change rapidly and be 

followed by a fast control. It is not clear how important this feature might be in practical 

terms, although it definitely provides an added degree of flexibility, when interfacing to 

the vehicle on-board controller. Moreover, the added conversion stage completely 

removes the AC component from the battery charge current. 

As is the case for the Z-converter, interaction with the line presents no major 

problems. However, since the isolation transformer is placed prior to the inverting bridge, 

this topology is capable of injecting a DC current component into the line. Given the 

strict IEC and IEEE requirements for DC-current injection, resolving this problem will 
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necessitate a more sophisticated current sensor and very high-accuracy and low-drift 

components and circuits [19], [20]. Periodic calibration may also be required, challenging 

one of the design goals established in 5.1. 

5.4.4.4 Design Flexibility 

This design comprises of two independently controlled power stages, including 

two isolation transformers that can be utilized to step-up or step-down critical voltages. 

As such, this configuration is extremely flexible, and can adapt itself to wide-range 

input/output requirements. 

5.5 TRANSFORMER-LESS TOPOLOGY 

5.5.1 Background 

The topologies described in the previous two sections use a power transformer to 

achieve two critical operational goals. The first is isolation and the second is to provide 

voltage amplification, in order to optimize power transfer and electrical stress levels; the 

former is a safety requirement, while the latter is a design requirement. However, it is 

practical to assume that the PV source, the grid, and the battery may all be available in 

voltage ranges that are already close-to-optimal, without the need for intervening 

amplification. Furthermore, if safety agencies allow the use of non-isolated inverters 

from PV source to grid, then the transformer-less topology becomes extremely attractive. 

The DC/AC/DC/AC configuration, described in section 5.4, can then be reduced to a 

mere DC/AC. 
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Safety regulations in Europe have historically been lenient compared to North 

American standards, whereby PV panels may not be grounded as long as the switching 

topology guarantees small common-mode voltages, thus reducing dangerous leakage 

currents. The additional problem of a safety hazard, following an insulation breakdown, 

is dealt with by using Ground Fault Interrupter devices. Many of the known transformer­

less topologies, however, also allow direct grounding of the panels. This is the case for 

the topology selected in this study. Consider the simple buck topology shown in Fig. 5-28 

(left). 

TH^Zb 

4-C^H 

Fig. 5-28 Transformer-less topology (left); Neutral Point Clamped topology (right) 

During the positive half of the cycle, Q2 is off and Q4 on at all times. Then Ql 

and Q3 switch complementarily, in a classic buck configuration. This topology has only 4 

devices and drives the grid current in a unipolar fashion, for low harmonic content and 

high efficiency. The only major drawback is that Ql and Q2 must be rated at twice the 

maximum PV voltage. Thus, while Q3 and Q4 can be high-efficiency, 600V IGBTs, Ql, 

Q2 must be 1200V devices. 

The Neutral Point Clamped (NPC) topology, shown in Fig. 5-28 (right), has 

increased conduction loss, because grid current is always driven through two series-

64 



connected semiconductor switches. In fact, during the positive half-cycle, Q2 is on and 

Q4 off at all times, while control is exercised by Ql and freewheeling diode, Dl. On the 

other hand, with the NPC, all devices can be rated at 600V. Thus, the choice between the 

topologies shown in Fig-5-28 is strongly affected by whether conduction or switching 

loss is dominant. Moreover, it is important to consider that both topologies may have to 

be modified, in order to allow bi-directional flow from the grid. In this respect, the NPC 

is at a disadvantage. 

Both topologies presented in Fig. 5-28 would benefit from the PV panels being 

completely floating, without the connection shown as a dashed line. This is because both 

strings would deliver at the same time, at all times. By introducing a connection, each 

string tends to deliver the peak power during only half of the cycle. This is remedied, not 

without difficulty, by adding the large decoupling capacitors shown. Note that should the 

panels be left floating, the common mode voltage would be very small, so that the 

configuration could, in theory, pass safety requirements for leakage current. 

Unfortunately, only 600V of ungrounded voltage is presently allowed, without incurring 

much higher costs, due to extra safety precautions. The ground connection, splitting the 

panels, is therefore non-negotiable. Because of its simplicity and lower conduction loss, 

the topology on the left, in Fig. 5-28, is adopted here, for comparative analysis. 

Because of the lack of an intervening transformer between the PV source and the 

grid, voltage amplification cannot be performed. This imposes considerable restrictions 

on the value of operational input and output voltage ranges. When Vpy is at its minimum, 

at 360V, the grid voltage cannot exceed 250V (RMS). Considering semiconductor 

voltage drops and allowing for 10% dynamic range for the controlling duty cycle, the 

65 



design is not feasible for the requirements expressed originally for this comparative 

study. Either the variability of the PV voltage is in some way narrowed, or the grid 

voltage must be nominally set to 220V AC, instead of 220V AC - 240V AC. The latter 

option is adopted here. 

5.5.2 Component Design 

The obvious presence of the split power source suggests the use, once again, of 

the half-bridge topology. In this case, however, high voltage IGBTs must be used on the 

primary side. The DC/DC converter structure would then be as shown in Fig. 5-29. 

Fig. 5-29 Transformer-less topology showing DC/DC converter 

A turns ratio for T2 of 4/5 will guarantee that a 400V battery can be charged when 

Vpv is minimum, at 360V. The inductance LB is calculated so as to provide +10% ripple 

under worst-case; that is, when Vpv is maximum, at 500V, and battery voltage is 

minimum, at 275V. Calculation of the required inductance value is straightforward and 

yields 1.7mH, at 25 kHz switching frequency. Note that a lower switching frequency has 

been selected here, compared to the previous topology, because the primary switching 

devices are less-efficient, high-voltage IGBTs. 
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5.5.3 Comments 

5.5.3.1 Cost 

The cost structure for this transformer-less topology proves to be extremely good. 

The absence of a 60Hz transformer as well as an isolation stage is the obvious strong 

point. These exists only a slightly offset due to the need for accurate sensing and 

processing of control variables, in order to maintain DC-current injection within 

acceptable limits, although some simple transformer-less topologies have been presented 

in [21] that deal with this problem topologically, rather than through control. Marginally 

higher costs may further need to be incurred due to the relatively large battery charge 

inductors (twice as large, compared to the previous topology). Finally, it must be noted 

that the split PV supply may require additional cost, for current sensing within the MPPT 

device. The expanded version of the cost matrix of Table 5-2 is depicted in the form of 

Table 5-3. 

Table 5-3 Cost comparison HT transformer vs. Transformer-less vs. Z-converter 

Component 

PV cabling 
Transformers 

Chokes 
Capacitors 

IGBTs 
Diodes 
Drivers 

Sheet metal 
OVERALL 

Z-converter (LF 
transformer isolated) 

GOOD 
GOOD 
GOOD 
GOOD 
GOOD 
GOOD 
GOOD 
GOOD 
GOOD 

HF transformer 
isolated 
GOOD 

BETTER 
GOOD 
GOOD 
POOR 
POOR 
POOR 

BETTER 
BETTER 

Transformer­
less 

GOOD 
BEST 
POOR 
GOOD 
GOOD 
GOOD 
POOR 

BETTER 
BEST 
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5.5.3.2 Reliability 

The transformer-less topology, like the Z-converter, has a low part count and, like 

the HF isolated topology, has well-controlled stress levels for all devices. Hence, due to 

these important advantages, the Z-converter depicts superior reliability. 

5.5.3.3 Dynamic Behavior, Interaction with PV Source, Interaction with Grid 

From the point of view of dynamic response and interaction with the grid, the 

transformer-less topology is undistinguishable from the HF-isolated topology, as 

discussed in 5.4.4.3. 

5.5.3.4 Design Flexibility 

Arguably the weakest point of the transformer-less topology is its inability to 

adapt itself to different input and output voltage specifications. In fact, for the design 

presented here, the original grid voltage specification had to be relaxed, in order to allow 

the use of the assigned PV voltage range. 
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CHAPTER 6 

SIMULATION TEST RESULTS 

The PSEVI software was used to validate the mathematical model and the overall 

operation under switch-mode regime. Steady state and transient behavior are verified and 

efficiency is calculated based on simulation results. It is important to mention that no 

attempts are made to model the MPPT/PV voltage-current characteristics in detail. 

Rather, the PV source is represented either as a voltage source, that remains constant 

under current changes at the MPPT power "knee," or as a diode string fed by a constant 

current source. One of the main results in [17] is that the MPPT has a fundamental effect 

on the overall system dynamic response. Therefore, although the simulations below 

confirm the fully controlled behavior of the converter, actual waveforms will vary in real 

life applications, depending on the type of MPPT strategy used. 

6.1 THE Z-CONVERTER 

In 5.3.9.3, the dynamic limitations of the Z-converter were discussed. These will 

be highlighted in simulations involving changes in PV current demand, battery current 

demand, and line voltage. However, it is important to appreciate that the SISO linear 

control methods used in this thesis are probably not the best in terms of dynamic 

performance. Rather, non-linear feedback and variable decoupling [9] or Sliding Mode 

Control [16] can improve response time and robustness. Nevertheless, it is demonstrated 

that more traditional techniques can produce an adequate behavior for this application. 
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In a system that includes the battery, there exist various combinations of line, PV, 

and battery voltages and currents that need to be considered. It is not convenient to 

present simulations for all these possibilities. Instead, typical combinations of critical 

variables will be used, while a given variable is swept from minimum to maximum level. 

Thus, in the course of this study, all significant extreme combinations have been 

simulated successfully using PSIM (electronic model) and SiMetrix (mathematical 

model), which were found to exhibit good matching. 

Note that a specific line-frequency isolation transformer turns ratio was used in 

the simulations. This ratio must be as high as possible, in order to maximize duty cycle D 

for improved power transfer. Simply contrasting the minimum input voltage to the 

inverter bridge (2Vc(min)-VPv(max) = 1100-500 V = 600V) to the maximum peak of the line 

voltage (375V), and adding 20% margin for dynamic control of the duty cycle D, 

immediately yields an optimal turns ratio of 4/3. This is, in fact, the ratio used in all 

simulations related to the Z-converter, unless otherwise specified. 

6.1.1 System without Battery (Scheme 1) 

Fig. 6.1 shows the simulated response to a 40% step in input voltage, with 2 

different PV voltages, at maximum power generation of 5kW. Note good regulation of 

Vc. The ripple current drawn from the PV source is approximately 15% of the DC level. 
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Fig. 6-1 System with no battery; Response to 40% step of input line voltage. 

VpV=430V 
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Fig. 6-2 System with no battery; Response to 100% step of MPP IPV command (100ms 

transition) 
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The ripple current can be further reduced by increasing the gain of the ripple 

cancellation amplifier, at the expense of low frequency harmonic distortion of the input 

current. Fig. 6-2 shows the response to a 100ms transition of the PV power output. The 

result is acceptable, considering that 100ms is reasonably fast for an MPPT, tracking 

changes in irradiation. 

6.1.2 System with Battery (Scheme 1) 

Fig. 6.3 shows the response of the input current, PV current, and battery charge 

current to a 100% variation in MPPT current demand, in 100ms. The battery demand is 

kept constant at 2.5kW, so that at the beginning of the transition, the grid delivers power 

to the battery, and at the end of the transition, it absorbs power from the PV. This is clear 

from the phase reversal of the input current. 

.Vm = 2I0VnM VB = J30V Vpy= 430V 

Line anient Lin? voltage (scaled by 0 1) 

MFPTIpv command Cuirentlpy 

m.i Battery cnirent lb ' Battexy cnrent request 

Fig. 6-3 System with battery; Response to 100% step of MPPT IPV command (100msec 

transition) 
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Note that the battery charge current is disturbed for approximately a mere 50ms. 

Fig. 6.4 shows the typical behavior, following a 40% step in input voltage. The fast 

response of the input current loop produces predictably good results. 

VB=330V VPV=430V 

Line current Lnie voltage (scaled bv 0,1) 
io.co i . . ——: :—.— 1 

MFPTIpv command Current Ipy 

02> 0,56 O S 0:66 0*4 130 

Fig. 6-4 System with battery. Response to 40% step of input line voltage 

Finally Fig. 6-5 shows the response to a 1 Amp/sec change in battery charge 

current demand. Again, in this case, the grid changes from absorbing to supplying power. 

Note that the battery current cannot follow the changing demand voltage during the 

transition, due to the suppressed gain of the error amplifier. However, the current is still 

maintained at a safe level. In addition, Fig. 6-5 also depicts the same simulation run on 

SiMetrix, which strictly represents the average (mathematical) model. The match 
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between the two simulations is a good indication that the derived mathematical models 

are fundamentally correct. This is indeed the case; the very minor differences in 

amplitude of the 120 Hz ripple and response can be attributed to the time step limitation 

of the PSIM engine as well as some simplifications used in modeling the state-space 

equations in SiMetrix. 
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Fig. 6-5 System with battery; Response to a ramp in IB demand; PSIM (left) and 

mathematical model set in SiMetrix (right) 

The last simulation presented here corresponds to the atypical case, where the grid 

is fed by both the PV source and the battery as it discharges. In this case, battery average 

current will be negative. Note that the power levels are more or less accurate: the battery 

discharge power is 3.3kW, and the PV power is 1.4kW, for a total of 4.7kW. 
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VB = 330V VpV= 430V 

Batteiy cmient lb Battery current request 
louo . '— . , 

0 J 0 C0C5 0-36 0.375 O.JO 

Fig. 6-6 System with battery; Battery discharges to provide grid power. 

From Fig. 6-6, the power absorbed by the grid is found to be approximately 

4.25kW, for a conversion efficiency of 91% (note that a factor of 1.33 must be used for 

the current waveform, due to action of the line transformer with its specific turns ratio). 

6.1.3 System with Battery (Scheme 2) 

If the design demands addition of a large capacitor at the PV terminals, in order to 

absorb the power ripple, the ripple cancellation circuit discussed in 5.3.8.5 could be 

eliminated. At the same time, the battery charge current control loop must be set to have 

appreciable gain at 120 Hz, in order to regulate out the ripple (5.3.8.5 and 5.3.8.9). This-

will redirect the ripple current from the battery to the PV; at the same time, the battery 

circuit becomes faster and more efficient. Using Scheme 2, Fig. 6-7 (left) becomes the 
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counterpart of Fig. 6-3. While the line current behavior is similar, it is evident that the 

ripple content has been successfully transported from the battery to the PV source. 

Vm = IlOVimj VB = 330V Vpv= 450 V 

Line current Line voltage (scaled by 0 1) 

MFPT Ipv f ommand Current I pv 

Battery current lb 

on? 

Battery curent request 

VB= J30V Vpv=430V 

Line cuiient Line voltage {srnled by 0.1) 

MPPT Ipv f omraaiwt Current I py 

Battery riuient lb Battery raiTent request 

Fig. 6-7 System with battery; Response to 100% step of MPPT Ipv command (200ms 

transition) (left); Response to a 20A/sec ramp in IB demand (right) 

The counterpart of Fig. 6-5 for Scheme 2 is Fig. 6-7 (right). Note that the battery 

current command can be made to change much faster than that of Scheme 1. 

6.1.4 IPV Ripple, PV Utilization Ratio, and MPPT 

From the simulation results discussed above, it is safe to state that the Z-converter 

fulfills all general requirements stipulated at the start of this study. However, three 

specific outcomes are definitely less than desirable. The slow response of the battery 

current loop as well as the high ripple in the battery has been mentioned. The third 

drawback is the rather large 120 Hz ripple drawn from the panels that cannot be 

completely eliminated, despite the added control mechanisms, which in turn is much 
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worse under Scheme 2. The presence of a ripple is not, in itself, a thoroughly 

objectionable occurrence. For instance, reference [22] draws on the switching ripple to 

perform the MPPT function. Reference [23] applies the same principle to the 120 Hz 

ripple for single-phase systems - this being more applicable to this present work. The 

problem lies in the extent of switching ripple present, especially at lower currents. 

Fig. 6-6, for example, shows a 30% peak ripple. The utilization ratio, Kpv, is 

defined as the ratio of actual average power drawn from a PV source to the ideal 

maximum power achievable in the absence of ripple. Utilizations of more than 98% are 

good. However, they can be achieved only with voltage ripples of less than about 8.5% 

[24], corresponding to yet lower current ripples. Even in Scheme 1, it is well worth 

considering adding a relatively small decoupling capacitor across the PV source. A 

100uF/600V capacitor, for instance, would only have 1/30th the CV product of the Z-

circuit capacitors, so that a film capacitor can be employed to maintain reliability, 

assuming size is not an issue. 

In order to study the performance of the PV with the addition of this power 

decoupling capacitor (using the same example of lOOuF), a set of simulations using 

SiMetrix is performed, and the utilization factor is plotted and compared for different 

operating regimes. For this purpose, an ideal MPPT scheme is assumed, and the 

simulated values for Ipv under worst-case conditions are applied. Earlier simulation work 

reveals that the worst case condition for Ipv ripple occurs during the atypical case of 

battery discharging to the grid, with maximum Vpv = 500V. These conditions produce 

approximately a 1A peak ripple for all values of Ipv. For the simulation, a bare-bone 

model of the PV panel, as shown in Fig. 6-8, is used, where the model diodes are general 
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purpose 20A/1000V silicon type. Note that the absence of any series resistance will 

maximize ripple, representing worst case. 

/t\ 
xl3 Isc (A) 

5mF 

approx. 1/50 th of 
entire PV stains: 

10 12 14 16 

Fig. 6-8 I-V Characteristics of simulated solar panel (1/50 of entire string) 
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Fig. 6-9 Effect of capacitive decoupling on PV utilization factor for Scheme 1 

From Fig. 6-9, it is clear that unless the PV is used only with high levels of 

irradiance, a relatively small decoupling capacitor is necessary; even in Scheme 1. This 

capacitor then, rather than being added, simply replaces the one already present that is 

needed for absorbing the HF switching current to the Z-circuit. 
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For Scheme 2, the ripple into the PV source is much higher than that discussed 

above. The worst case obviously occurs when the battery receives the full 5kW from the 

p 
grid, with a minimum PV voltage of 360V. T\ms,Ipv =—^-sm{2cot), where PG is the 

VPV 

grid power (5kW). The peak ripple is then found to be 13.9A. Simulations with SiMetrix, 

using this current and the same model shown in Fig. 6-8, indicate that a lmF capacitor is 

needed to keep the voltage ripple below approximately 5% peak, thus providing a 

utilization factor higher than 98%. This capacitor must be rated at 500V; the CV product 

is then higher than that of each of the Z-circuit capacitors. 

6.1.5 Power Loss (Efficiency) 

Power loss within the converter will be calculated using Scheme 1 for reference 

and by considering the following loss contributors: 

a) IGBTs (conduction and switching) 

b) IGBT body diodes 

c) Magnetics (conduction loss) 

The results from the simulations will be used to describe all relevant RMS 

currents for the magnetic conduction losses, average currents for diodes, and IGBT 

conduction losses, as well as instantaneous currents and voltages for switching losses. 

Core loss for the inductors can be set arbitrarily small, if size concerns are less important, 

especially if many turns are needed to achieve the ESRs for better damping of the Z-

circuit; they will not be considered here. For comparison purposes with other topologies, 

common commercially available semiconductor devices with equivalent chip-size will be 

chosen ad hoc for each topology. In the case of the Z-converter, the chosen IGBT will be 
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the IRG4PH50U. The relevant parameters from the datasheets are: IRG4PH50U: On-

state = 3V @20A, Eon = 160uJ @1200V, Eoff = 1.8mJ @1200V, 20A. 

As a first degree of approximation in the power loss calculations, the on-state 

voltages for the IGBTs and diodes will be kept constant at all currents. As such, PSIM 

can directly estimate all conduction losses. Unfortunately, this is not the case for 

switching losses. They will be calculated indirectly, by assuming that the switch-on loss 

energy, Eon, increases with the square of the switching voltage for IGBTs. Conversely, 

the switch-off energy for the IGBTs, E0ff, is assumed to increase linearly with switching 

voltage and current. With this postulation, PSM can calculate switching losses, starting 

with the instantaneous peak currents and voltages, by applying the formulae 6-1 and 6-2. 

P™0» = 2fGfZ^n$~°V{t)\kdt (6-1) 

'R 

PSWQFF = VcfswEoff p y ^ ^ ^ ^ ( 6 . 2 ) 

Here, V(t)Pk and I(t)Pk are the instantaneous switch voltage and current, fG is the grid 

frequency, fSw is the switching frequency, while VR and IR are the rated voltage and 

current. Eon is the switch-on loss, calculated at VR, and E0ff is the switch-off loss, 

calculated at VR and IR. 

Before continuing with the power loss estimation, it is worth highlighting the 

switching sequence in the inverter bridge. In fact, switching losses can be minimized 

when a proper sequence is chosen, even without resorting to more sophisticated circuitry 

[25]. This can be done with no compromise on the harmonic distortion, by keeping the 

active state centrally placed within the cycle [26]. Also, given that the shoot-through 
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states are responsible for the HF ripple on the Z-circuit inductors, they can be split evenly 

on either side of the active states, effectively doubling their frequency. Finally, as is 

usually preferable, only one of the four devices should need commutation, to obtain a 

state transition. The sequence shown in Fig. 6-10 possesses all the requirements, and is 

relatively simple to implement using analog carrier-based methods. 
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Fig. 6-10 Chosen switching sequence [27]. 

The most immediate result from Fig. 6-10 that affects power loss calculation is 

the fact that only one tum-on and one turn-off transition exists per switch and per 

switching period, even though these are "hard switching" transitions. The above 

statement is true for both line half-cycles. The manner in which the losses are estimated 

with PSEVI will be demonstrated below in detail, for the input bridge. This procedure will 

then be repeated for all other devices; only the final results will be reported hereafter. Fig. 
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6-11 shows the pertinent waveforms for one of the bridge IGBTs. The operation 

considers no battery, and 5kW generated power. 
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Fig. 6-11 Bridge IGBT power loss waveforms 

The second graph (from top) of Fig. 6-11 is simply the running average of the 

conduction loss. It will converge to the average value of 24W. The third graph (from top) 

is used to calculate the turn-on loss; its increase over a Vz cycle represents the definite 

integral in Eq. 6-1; in this case, it has a value of 6600 V2sec. Thus, the result of Eq. 6-1 

can simply be estimated as 2.20W. The same idea is used to compute turn-off losses, 
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using the fourth graph (from top) and Eq. 6-2. The red trace is used over the lA cycle 

when the IGBT current is positive and the blue trace over the Vz cycle when the anti-

parallel diode conducts. The result is a total turn-off loss of 27.1 W. The overall loss for a 

bridge IGBT is 53.3W. As there are 4 IGBTs, these losses already amount to about 4% in 

efficiency loss. 

Continuing with the loss evaluation, the DC blocking IGBT was found to 

dissipate a total of 17.1W, which is less than that for bridge IGBTs, because of zero-

current turn-off. The MOSFETs used for the DC/DC converter do not really need to be 

simulated in order to estimate their power dissipation. Those on the Z-circuit side operate 

in ZVS, while those on the battery side are not active during charging, due to the 

conduction of the body diodes. It will be shown here that their loss is rather small. For 

example, for the FCB20N60 MOSFETs: R^ON = 0.15Q, Eon = 80uJ, Eoff = 40uJ @ 

1000V. The RMS currents are calculated using Eq. 6-3 and 6-4. Fora battery current of 

15A, the total dissipation from all MOSFETs can be calculated at approximately 24W. 

However, in the case being discussed here, the system does not include the EV battery. 

Hence, the dissipation is obviously zero. 

(6-3) 

(6-4) 

Here, IbP>RMs is the RMS current in the Z-circuit side MOSFETs (0.15Q) and Ibs,AVG is the 

average current in the battery side MOSFET body diodes (0.9V on-state voltage, at 20A). 
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Next, it is important to record the dissipations in the chokes and capacitors. These 

components possess high ESRs through design, because of damping requirements; the 

dissipations are expected to be high. Again PSIM is invoked to calculate RMS currents. 

From Fig. 6-12, the RMS currents in L, LIN, and C can be estimated at 12.2A, 15.3A, and 

9.8A, respectively, corresponding to a total loss of 39.OW. 

The last critical component that needs to be considered is the 60 Hz isolation 

transformer. Again, if size and cost concerns are ignored, this component can be made 

arbitrarily efficient. Nevertheless, even when some compromises are made, due to real-

world constraints, an efficiency of 98% is reasonable for this part. 

The final estimate of all losses treated above, for operation without the EV 

battery, can finally be completed. The losses amount to approximately 370W of 

dissipation. Hence, the corresponding efficiency is estimated at 93.1%. 

Table 6-1 Sample power loss mapping for Z-converter 

Bridge 
IGBTs 
213.2W 

DC Block 
IGBT 
17.1W 

Z-inductors 

8.9W 

Z-capacitors 

23.0W 

Input 
Inductor 

7.0W 

Transformer 

100W 

Typical efficiency without battery: 93.1 % (Vm = 220V RMS; VPV = 430V) 
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Z-inductor current I I (A) 

Running rms of Z-inductor current 

Line Filter Inductor Current I j ^ (A) 

Running rms Line Filter Inductor Current 

Z-capacitor current (A) 

Running rms of Z-capacitor current 
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Fig. 6-12 RMS current estimation for inductors L, LIN, and capacitor C 

The same PSIM-aided procedure described above can be applied to other 

significant simulations; the results for typical and worst-case operations with battery are 

reported below. However, more detailed numbers relative to all 4 power flow paths can 

be found in APPENDIX C. Note that efficiency is defined as the ratio of the sum of the 

powers delivered to the grid as well as to the battery to the power generated by the PV 

panel. 
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Table 6-2 Sample power loss mapping for Z-converter 

Bridge 
IGBTs 
188.0W 

DC Block 
IGBT 
16.5W 

Z-inductors 

3.6W 

Z-capacitors 

19.5W 

Input 
Inductor 

1.8W 

Transformer 

50W 

Typical efficiency with battery: 94.7% (VB = 330V, VIN = 220V RMS, VPV = 430V, IB = 

7.5A). 

Table 6-3 Sample power loss mapping for Z-converter 

Bridge 
IGBTs 
308.0W 

DC Block 
IGBT 
19.3W 

Z-inductors 

12.4W 

Z-capacitors 

35.8 

Input 
Inductor 
10.1W 

Transformer 

100W 

Worst-case efficiency: 91.1% (VB = 400V, VIN= 180V RMS, VPV= 360V, IB = 0A). 

Note that worst case condition is low input line and panel voltage ,with power flow frorn 

panel to grid. 

6.1.6 Efficiency Results for Alternate Z-converter-based Topology 

In view of the efficiency results, a different configuration for the Z-converter 

could be proposed. In fact, in related literature, the Z-converter has been acclaimed as an 

excellent method for obtaining buck-boost performance, for dealing with variable sources 

such as PV and fuel cells. Buck-boost operation is controlled by D and D0 and can, thus, 

be optimized. Instead, in the Z-converter configuration that was analyzed in this thesis, 

D0 was used in a novel fashion, for control of the EV battery current, so that it cannot be 

utilized for other purposes. For instance, this leads to the need for high-voltage devices in 

the inverter bridge that tend to be less efficient than lower-voltage devices. Consider the 

configuration evolution shown in Fig. 6-13. D0 is adjusted using Eq. 5-1 and Eq. 5-2 to 

keep inverter input DC voltage below 600V; this voltage being the threshold level for 

86 



extremely efficient commercially available devices. On the other hand, the DC/DC 

converter in this new case is regulated, and thus, incurs higher losses, including switching 

loss and higher conduction losses, if MOSFETs are used. Moreover, a much larger 

smoothing inductor is needed, increasing the losses further. Thus, a popular controlled 

half-bridge, driven from a 430V source using IGBTs, amounts to a nominal efficiency of 

97%. 

5kVV 

\^7\ 
PV 

7?7 

5k\V Bidirectional 
Grid-tied 
Inverter 

lOkW 

5k\V 

5k\V Grid 

"37 
5kVV 

Batterv 

BBIIji|> 

l\7l 
PV 

5kW 

DC-DC 

10k\V 
* 

Bidirectional 
Grid-tied 
Inverter 5k\V Grill 

Ih 

I 
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— Batten-

Fig. 6-13 Original (left) and alternate configuration (right) for Z-converter 

Then, in the case where the full power from the PV is directed to the battery, 97% 

will obviously also be the total efficiency, constituting the best-case scenario. For 

comparison, two alternative operating regimes were simulated in PSEVI, and the losses 

were evaluated. Note that, in this case, the choice for the transformer turns ratio is 

dictated by the ranges of the PV and grid voltage, the requirement of IGBT rated at less 

than 600V, as well as the allowance for some dynamic range for control variable D. The 

new turns ratio is 1:0.94, compared to 1:1.333. The chosen devices are: IRG4PC40W: 

On-state = 2.5V @ 25A, Eon = 170uJ @600V, Eoff = 380uJ @600V, 25A; FCB20N60: 

Rds,oN = 0.15Q, Eon = 80uJ, Eoff = 40uJ @ 1000V; STTH15L06: On-state voltage = 

1.0V. 
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Table 6-4 Sample power loss mapping for alternate Z-converter topology 

Bridge 

66.2.0W 

DC 
IGBT 
6.4W 

Z-inductors 

4.3W 

Z-capacitors 

4.2W 

Input 
Inductor 

5.4W 

DC-DC 
Conv. 
87.0W 

Transformer 

50W 

Typical efficiency with battery: 95.7% (VB = 330V, V^ = 220V RMS, VPV = 430V, IB = 

6A). 

Table 6-5 Sample power loss mapping for alternate Z-converter topology 

Bridge 
IGBTs 
205.0W 

DC Block 
IGBT 
16.4W 

Z-inductors 

18.2W 

Z- capacitors 

22.1 

Input 
Inductor 
26.3W 

Transformer 

100W 

Worst-case efficiency: 92.8% (VB = 400V, VIN= 180V RMS, VPV= 360V, IB = 0A). 

As can be seen, the alternate configuration can deliver efficiencies that are 1% higher or 

more, at both nominal and worst-case operation. On the other hand, the use of 600V 

devices is marginal and may not be possible in real systems. This is because D0 must still 

be partly modulated, to attenuate PV ripple in Scheme 1; this dynamic requirement 

imposes a minimum DC value of 0.1 on D0, which pushes the minimum Z-capacitor 

voltage to nearly 560V and the corresponding IGBT voltage to about 620V. In addition, 

this topology cannot be considered "single-stage," and as such, requires additional 

control for EV battery charging as well as related driver circuits. Nevertheless, it was 

included briefly in this study, for comparison purposes. 

6.1.7 Conclusion 

Simulations confirm the mathematical model developed previously for the Z-

converter (see Fig. 6.5), especially the relatively sluggish behavior of the battery current 

regulation loop in Scheme 1. Apart from this drawback, the converter performs 
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satisfactorily, as expected. It was found that a mid-sized decoupling capacitor, in the 

order of lOOuE, is needed in Scheme 1, in order to eliminate the strong interaction with 

the PV I-V characteristics. However, this addition is rather small, and does not contradict 

the original cost and reliability premises. In Scheme 2, this capacitor must be much larger 

(about lmF), in order to achieve the same MPPT performance. Because this is very likely 

to be an electrolytic capacitor, reliability and cost are affected. 

The power losses were estimated directly (conduction losses) or indirectly 

(switching losses) through PSIM, following a simple method, and provide a fairly good 

idea of the overall efficiency, especially for comparison with other topologies. Even 

considering a worst-case number, and for a seldom used power flow path, the efficiency 

of about 91% is somewhat disappointing for a single-stage topology. This can be 

attributed to the unavoidable use of high-voltage devices, with their poorer performance 

in terms of conduction and switching loss, as well as the presence of the 60 Hz 

transformer. 

An alternate topology was briefly considered, to allow the use of more efficient, 

lower-voltage devices. Indeed the efficiency can be improved by 1% or so, but other 

technical difficulties arise. 

6.2 HIGH-FREQUENCY TRANSFORMER-ISOLATED TOPOLOGY 
WITH DC-LINK 

The topology, as described in 5.4, is rather uncomplicated. The dynamic behavior 

can be closely associated to that of the DC/DC buck converter, for the EV battery charger 

and voltage-fed inverter (another form of the buck converter), for the line conditioner. 

Because these are well known and loop compensation is straightforward, simulation 
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results relating to the dynamic response will not be shown here. In fact, comparable 

results will be shown in section 6.3, when discussing the transformer-less topology, 

which is also based on the buck design; similar performance can be expected for the HF 

transformer-isolated topology. 

The efficiency estimation for typical operation, based on the PSM simulations, 

are summarized in APPENDIX C and Fig. 7-1. Although Table 6-6 reports that the 

worst-case condition for this topology includes the grid to EV battery power flow path, 

the reverse flow (battery to grid) is actually worse, by approximately a percentage point. 

However, this scenario is not considered, because this path can be considered atypical, or 

nearly anomalous. However, the heat sinks and power devices must be sized accordingly. 

Table 6-6 Sample power loss mapping for HF transformer-isolated topology 

Bridge 
IGBTs 
145.6W 

DC-DC IGBT 

172.3W 

Diodes 

OW 

Chopper 
IGBTs 

OW 

Inductors 

57.9W 

HF 
Transformer 

50W 

Worst-case efficiency with battery: 92.1% (VB= 275 V, VIN= 180V RMS, VPV= 360V, IB 

= 18A). 

The grid to battery path, quantified in Table 6-6, is a more critical path than the 

one corresponding to the worst case for the Z-converter. Hence, the Z-converter is better 

optimized for this application. However, the efficiency number itself is higher for the HF-

isolated topology. 

6.3 TRANSFORMER-LESS TOPOLOGY 

As is the case for the HF transformer-isolated topology, no AC analysis is 

presented, due to the simple and thoroughly well-known transfer functions that can be 
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expected from the buck converter. It will be proven that the transformer-less topology, 

comprising of two power conversion stages, provides a superior dynamic performance. 

Again, modeling and simulation results are also used to estimate losses. Note that the 

same bare-bone model for the PV panel, used in section 6.1.4, is also used here. 

6.3.1 Dynamic Behavior 

Figs. 6-14 and 6-15 immediately confirm that the dynamic behavior is excellent, 

as expected. 

Vip| = 220Vmis VB=330V Vpy=430V 

Line current Line voltage (scaled by 0.1) 
Vm=3:0Vnns VB=J30V VPY=430V 

Line current Tine vohage (scaled by 0.1) 

o.io o.ir 

Fig. 6-14 System with battery; Response to 100% step of MPPT Ipy command (100ms 

transition) (left); Response to a ramp in IB demand (100msec transition) (right) 

I B = 0A \ T N = 180-256Vrms VB = 330V \ > v = 4 3 0 V 

Line current Line voltage (scaled by 0.1) 

Fig. 6-15 System with battery; Response to 40% change in grid voltage 
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Fast changes in commands (<0.1 sec) from the battery charger and the MPPT 

scheme, as well as the line voltage, are serviced cleanly and promptly by the control 

loops. As mentioned earlier, similar results can be expected for the HF transformer-

isolated converter. 

6.3.2 Efficiency 

Typical efficiencies for all modes of operation are found in Fig. 7-1 and 

APPENDIX C. The worst-case condition is again grid to EV battery. However, the 

results are significantly better than the proposed alternatives. 

Table 6-7 Sample power loss mapping for the transformer-less topology 

IGBTs 
89.9W 

DC-DC IGBT 
92.3W 

Diodes 
37.1W 

Transformer 
50W 

Inductors 
48.9W 

Worst-case efficiency with battery: 94.0% (VB= 275V, V ^ 180V RMS, VPV= 360V, IB 

= 18A). 
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CHAPTER 7 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

7.1 SUMMARY 

In the first part of this thesis, the basic physical and electrical requirements for a 

PV-powered, grid-connected, electric vehicle public charging facility were defined. This 

process was partly based on known "hard" facts, such as safety constraints, the state of 

the art in solar energy production, and present trends in electric and plug-in hybrid 

electric vehicle technology. However, the full set of specifications was complemented by 

requirements that will depend on future market and technological trends, government 

action, and regulatory agencies, that are far more ambiguous at present. For instance, PV 

efficiencies might rapidly improve to the point that higher charging powers may warrant 

3-phase connections. 

Other possible outcomes include the possibility that direct DC battery charging 

may never be broadly implemented on EVs, or the fact that utility companies and safety 

agencies come to fully accept transformer-less topologies as the norm. Because all of 

these prospects as well as future possibilities could markedly enhance the significance of 

the findings in this thesis, or possibly also render them obsolete, it is important to remark 

that some outcomes have independent merit. For example, the Z-converter was shown to 

be a credible topology for any AC-fed application, where bi-directionality and energy 

storage are involved. Apart from PV systems, this could include microgrids and electric 

and hybrid electric vehicle propulsion applications. 
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The second part of this thesis established that the Z-converter could provide 

controlled and stable power conditioning for all 4 power flow paths, utilizing a single 

stage of conversion. Moreover, it was also demonstrated that the power ripple generated 

at the single-phase grid connection could be managed and redirected to either the EV 

battery or a decoupling capacitor, based on the design alternative. The AC analysis 

confirmed that the presence of the Z-circuit resonance and the 2-variable control is a 

source of much complexity in the design process, as well as modest dynamic 

performance, when linear control is applied. 

Despite the single conversion stage, reliability, rather than efficiency or cost, is 

the strong point of the Z-topology. While the critical component count remains low, 

efficiency is strongly affected by the presence of the line-frequency isolation transformer, 

virtually eliminating the gains due to the single-stage topology. Fig. 7-1 shows a 

comparison of typical efficiencies for the three topologies, analyzed in all 4 operating 

modes (see APPENDIX C for data). The Z-converter is inefficient when operated directly 

as a grid-tied inverter. However, this mode of operation only ranks third in order of 

importance. In the critical PV to battery, and grid to battery modes, the Z-converter is 

quite competitive with the other topologies. However, the Z-convetrer does not have a 

comprehensible advantage. On the contrary, the transformer-less topology has low 

component count, for low cost and high reliability, and is very efficient in all modes of 

operation. 
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Efficiency vs power Z-converter Efficiency vs power HF-isolated topology Efficiency vs power Transformerless topology 

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 

Transferred power (W) 

Fig. 7-1 Efficiencies under different operating regimes from three topologies 

Unfortunately, the transformer-less topology is not very adaptable to wide input, 

output, and battery voltage ranges. If a transformer-less topology cannot be used, the HF-

isolated topology can be exploited instead, due to its inherent low cost. The efficiency 

plot for the HF isolated topology is shown in Fig. 7-1. While the overall efficiency can be 

improved by decreasing the switching frequency of the DC/DC converter, at the expense 

of size, the reliability will still remain a problem, mainly due to the higher component 

count. Again, this major drawback points towards the Z-converter proving to be a viable 

option, especially considering the fact, that its moderately poor PV and battery system 

dynamic responses are not critical for this application. 

Another way to compare the topologies is by means of the Switch Utilization 

Ratio (SUR). When operated at full battery load (5kW from the grid and an additional 

5kW from PV panels, with nominal PV, battery, and grid voltages), the Z-converter was 

found to exhibit the highest SUR of 0.139, compared to 0.134 and 0.119, for the 

transformer-less and HF-isolated topologies, respectively. This underlines the 

effectiveness of the Z-converter in this application. Thus, the only truly outstanding 

concern is the cost of the high efficiency 60 Hz isolating transformer, perhaps making the 
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Z-converter exploitable, only when such a transformer is imposed by other, less technical 

governing factors. 

7.2 FUTURE WORK 

Although the work presented in this thesis clearly demonstrated that the modified 

Z-converter can be controlled for PV based EV/PHEV battery charging applications, few 

details have been examined simply superficially. For example, the slow response of the 

MPPT/Ipy loop and an even slower response of the battery current loop for the Z-

converter are relatively inconvenient. This is due to the fact that these slower loop 

responses place major limits on the command signals. Furthermore, they also bring to 

light a critical need for protection circuits that intervene in lieu of the control loop, during 

common events such as start-up, inrush, shutdowns, and battery insertion. Since these 

auxiliary systems affect the overall cost, it is critical that they are investigated further. It 

must also be recalled that the dynamic performance obtained is borne out of non-optimal 

compensation techniques for MIMO systems; as a result, it can likely be improved. 

Therefore, future work might examine better suited methods, such as Linear-Quadratic 

control, Sliding Mode Control, and non-linear feedback de-coupling methods. 

Another issue that requires further in-depth analysis is the interaction of the 

panels and MPPT device with the control loops. In this thesis, the PV source was 

modeled somewhat rudimentarily, while the MPPT algorithm was replaced by a simple 

command signal. However, actual MPPT strategies are closed loop systems that share 

sensed variables, such as panel current, including the converter control system. As such, 

the MPPT and the converter controllers cannot be practically separated. 
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The EV/PHEV battery is another element in this present work that was modeled 

using a straightforward method. However, this trivial battery modeling supposition 

should not affect the results in a dramatic manner. However, having postulated that the 

large 120 Hz ripple could be sent to the EV battery, it would indeed be essential to 

explore whether such a ripple is acceptable and to what extent. This would invoke a study 

on future trends in EV/PHEV storage technology. 

Finally, additional work is needed in order to establish the behavior of the Z-

converter in need of light radiation. Indeed, the deployment of a switch (instead of a 

diode), as the DC blocking element, at the output of the PV source, allows for 

rectification to occur from the grid. However, such an operating scenario remains to be 

analyzed when the battery is also present in the system. 
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APPENDIX A 

AVERAGE MODEL FOR THE DC/DC CONVERTER 

Fig. 5-9 depicts a simple technique to derive the equivalent circuit of the DC/DC 

converter, as seen from the Z-circuit. Unfortunately, this derivation is oversimplified, as 

it does not consider some parasitic components. In order to get a more precise model, the 

schematic in Fig. A-l is redrawn, including all the ESRs. Also, only Vi of the circuit 

needs to be shown, as long as the secondary side is split into two parallel paths. 

— > L 

RL RHB 

•IN 

- > 

£ 
1/2 i B 

Sh 

•hmO 

"-HB T 
Fig. A-l Equivalent circuit for half of the DC/DC converter circuit 

Fig. A-2 shows the two topological configurations of the circuit, as the switches 

are on 50% of the time, in complementary fashion. 

I « IB •IT'IN 

1/2 i B 

Fig. A-2 Topological configurations 

It is easy to obtain average equation for the inductance 2LB and capacitors CHB-
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dVt HB 
'HB 4 

L» —- = VHB + (iL -i1N)RHB - — (RHB + 2RB)iB- VB 
dt " '" 4 ° ' dt L ' 2 

Now, consider the configuration shown in Fig. A-3 (left): 

Fig. A-3 Equivalent averaged circuits for the DC/DC converter 

The equations describing this circuit are: 

C u - c — lL 1]N lB LB —•/HB + \lL 1IN)^HB ^ , \ ^ H B + ^ ^ B ) 1 B * B •'HB 
dt dt 

These values match exactly those obtained earlier. Hence, this circuit, or the equivalent 

circuit of Fig. A-3 (right), accurately represents Vz of the DC/DC converter. 
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APPENDIX B 

SWITCHING PATTERN FOR Z-CONVERTER 

IGBT turn-off losses are calculated based on the instantaneous positive current. If 

the current is negative (through the anti-parallel diode), switching losses are considered 

negligible. Operation in inverting mode is different from operation in rectifying mode. 

The switching patterns are as shown below. 

Dn NEGATIVE Iin POSTVIIE 

mv 

V 

Iin-m. 4 Off , 4 0 n B„.2IL 

rrm 
Bn-2IL 3 on 

2IL 2 Off 

2n. 2 on 

Bn-2IL 3 off 

En - 2IL 4 On 

2IL l o f f 

2IL 1 on 

Uhhl 
| l | 3 | 

| l U | 3 | 

hUl 
hhhl 
MM 

hUhl 

3 Off Hn-2IL A 
2 on Nfl 

HECT 

2 Off Nfl 

3 On Bn 2IL 

4 Off En-2IL 

1 on Na 

1 Off Nfl 

> 

S 4 / 

+vel, 

S3 

/ S2 

On the left hand side, the sequence used for inversion is read from top to bottom, 

and is valid during the Vi cycle that the input current is negative. When the input current 

is positive, the switch numbers 1 and 2 are simply replaced with 3 and 4, respectively. 

The right hand side shows the sequence in rectifying mode, read from bottom to top, 

when the input current is positive. When the input current is negative, the switch numbers 

1 and 2 are simply replaced with 3 and 4, respectively. 

For the inverting mode, the switched current is shown on the left hand side, for 

each transition. Since the turn-off loss is of critical importance, the value for switch 1 will 
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be 2IL, for the negative Vi cycle, and IJN-2IL, for the positive Vi cycle. The switching 

losses for the DC blocking IGBT are low, because the anti-parallel diode conducts first at 

turn on and turns off last at turn off. 

For the rectifying mode, the switched current is shown on the right hand side, for 

each transition. The value for switch 1 will be IIN-2IL, for the negative V2 cycle, and very 

low, for the positive V2 cycle. The reason the losses are small during the positive V2 cycle 

is, because the DC blocking IGBT can be used to force a current reversal in the bridge 

IGBTs [28]. This implies, however, that the switching turn-on loss on the DC block 

IGBT will now be significant. 
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APPENDIX C 

DETAILED POWER LOSS MAPS 

Simulations were run on all three topologies discussed in this thesis, at three 

different power levels, and for all four power flow paths. Input voltage and PV voltage 

were set at nominal values. Below are the related detailed power mappings. 

Z-Converter (Scheme 1) 

PV-BAT 

GRID-BAT 

PV-GRID 

BAT-GRID 

Power 
W 

5000 

2500 

400 

5000 

2500 

400 

5000 

2500 

400 

5000 
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400 

IGBT 
Br ON 

44 

24.8 

16 

48.8 

26.2 

9.2 

97.8 

51.9 

2.75 

62.2 

25.4 

2.5 

IGBT- Br 
TURN 

ON 

18 

18 

17 

18.4 

18.5 

17.8 

18.6 

18.2 

17.2 

19.9 

18.7 

22.1 

IGBT Br 
TURN 
OFF 

53 

27.3 

3.8 

31.6 

19 

8.2 

93.2 

55.4 

9.7 

31.9 

16.2 

3.8 

IGBT5 
ON 

15.1 

8 

0.8 

3.2 

3.1 

2.9 

13.7 

5.5 

0.8 

3.2 

0.8 

0 

IGBT5 
TURN 

ON 

12 

9.2 

6.1 

2.2 

1 

0 

12 

8.8 

5.5 

8.4 

5.5 

3.3 

Z- Z- INPUT 
INDUCTORS CAPACITORS INDUCTOR XMER DIODES 

5.03 

1.38 

0.2 

1.2 

0.4 

0.2 

8.15 

2.3 

0.2 

1.2 

0.4 

0.2 

22.1 

7 

1.1 

11.9 

4.4 

1.2 

24 

6.7 

1 

5.05 

1.1 

0.5 

0 

0 

0 

8.36 

2.24 

0.22 

7.4 

1.8 

0 

7.2 

1.8 

0.3 

25 

25 

25 

100 

44 

25 

100 

44 

25 

100 

44 

25 

35 

18 

0 

33 

18 

0 

4 

2 

0 

24 

13 

4 

TOTAL 

229.23 

138.68 

70 

258.66 

136.84 

64.72 

378.85 

196.6 

62.15 

263.05 

126.9 

61.7 

EFFICIENCY 

0.95616372 

0.94744342 

0.85106383 

0.95081256 

0.94810455 

0.86073334 

0.92956673 

0.92709338 

0.86551985 

0.95001948 

0.95169211 

0.86636344 

HF Transformer-Isolated Topology with DC link 

Power 
W 

5000 

PV-BAT 2500 

400 

GRID-BAT 5000 

2500 

IGBT1-
IGBT4 

ON 

0 

0 

0 

65.8 

32.9 

IGBT1-
IGBT4 

SWON 

5.3 

5.7 

4.8 

5.1 

5.7 

IGBT1-
IGBT4 

SWOFF 

0.2 

0.3 

0 

15.9 

7.6 

IGBT9-
10 ON 

52 

26.1 

3.4 

52.1 

25.8 

IGBT9-
10 SW 

ON 

21.8 

22.1 

20.6 

21.8 

21.1 

IGBT9-
10 SW 
OFF 

53.7 

25 

3 

52.7 

25.3 

DIODES 

19.1 

9.2 

1.6 

0 

0 

IGBT11-
14 ON 

0 

0 

0 

0 

0 

IGBT11-
14 SW 

ON 

0 

0 

0 

0 

0 

IGBT11-
14 SW 
OFF 

0 

0 

0 

0 

0 

HF 
IND. 
AND 

XFOs CAPS 

100 

58 

50 

50 

29 

6.1 

2 

0.7 

28.4 

7 

TOTAL 

258.2 

148.4 

84.1 

291.8 

154.4 

EFFICIENCY 

0.950895744 

0.943966168 

0.826275563 

0.944858082 

0.941832429 
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400 

PV-GRID 5000 

2500 

400 

5000 

BAT-GRID 2500 

400 

5.5 

78.1 

38.3 

6.2 

80.1 

37.5 

6.6 

4.8 

5.7 

5.7 

4.4 

5.7 

5.6 

4.6 

2.1 

15.3 

7.4 

2.8 

15.1 

7.4 

2.5 

3.1 

0 

0 

0 

0 

0 

0 

20.9 

10.1 

9.4 

6.5 

0 

0 

0 

2.2 

0 

0 

0 

0 

0 

0 

0 

18.9 

9.5 

1.5 

0 

0 

0 

0 

0 

0 

0 

54.6 

27.2 

4.3 

0 

0 

0 

0 

20.7 

20.6 

18.6 

0 

0 

0 

0 

47 

23.5 

3.7 

25 

50 

29 

25 

100 

58 

50 

0.2 

17.5 

4.3 

0.1 

63.8 

195.6 

103.6 

46.5 

323.2 

179.8 

90.3 

0.862440707 

0.96235276 

0.960208941 

0.895856663 

0.939284641 

0.932905441 

0.815827045 

Transformer-less topology 

PV-BAT 

GRID-BAT 

PV-GRID 

BAT-GRID 

Power 
W 

5000 

2500 

400 

5000 

2500 

400 

5000 

2500 

400 

5000 

2500 

400 

IGBT1 
IGBT2 

ON 

0.8 

0.8 

0.4 

20 

11.2 

1.8 

40.2 

20 

3.4 

37.9 

19 

3.1 

IGBT3 
IGBT4 

ON 

1.6 

1.8 

0.5 

38 

18.9 

3.1 

28.8 

15.1 

2.4 

28.1 

14.5 

2.5 

IGBT5-
IGBT10 ON 

32 

14.8 

2.5 

31.6 

16.2 

2.6 

0 

0 

0 

85.2 

45.5 

2 

IGBT1/2 
TURNON 

2.6 

2.8 

2.2 

2.1 

2.1 

2.4 

2.3 

2 

2 

2 

2 

1.9 

IGBT1/2/3/4 IGBT5/10 
TURNOFF 

1 

1 

1 

8.4 

4.1 

1.8 

17.2 

8.7 

1.5 

17.1 

8.8 

1.5 

IGBT5/10 
TURNON TURNOFF 

2.2 

2.2 

2.2 

2.2 

2.2 

2.5 

2.2 

2.1 

2.4 

2 

2 

2 

30.2 

13.5 

2.1 

30 

16.9 

2.7 

0 

0 

0 

18.6 

9 

6 

INP. 
IND. 

0 

0 

0 

10.3 

2.6 

0.5 

10.2 

2.7 

0 

10.2 

2.9 

0.5 

XMER 

50 

32 

25 

50 

32 

25 

50 

32 

25 

50 

32 

25 

BAT 
IND. 

6.8 

1.7 

0 

6.8 

1.5 

0.2 

0 

0 

0 

6.8 

1.5 

0 

DIODES TOTAL 

30 

15 

2.5 

30 

15 

2.5 

0 

0 

0 

0 

0 

0 

157.2 

85.6 

38.4 

2294 

122.9 

45.1 

151.9 

82.4 

36.7 

257.9 

137.2 

44.5 

EFFICIENCY 

0.96951834 

0.96689356 

0.91240876 

0.95613263 

0.95314347 

0.89867446 

0.97051573 

0.9680917 

0.91596061 

0.95095 

0.94797513 

0.89988751 
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