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ABSTRACT 
Computerized Cancer Malignancy Grading 

of Fine Needle Aspirates 

Lukasz Jeleri, Ph.D. 

Concordia University, 2009 

According to the World Health Organization, breast cancer is a leading cause of death 

among middle-aged women. Precise diagnosis and correct treatment significantly reduces 

the high number of deaths caused by breast cancer. Being successful in the treatment 

strictly relies on the diagnosis. Specifically, the accuracy of the diagnosis and the stage 

at which a cancer was diagnosed. Precise and early diagnosis has a major impact on the 

survival rate, which indicates how many patients will live after the treatment. 

For many years researchers in medical and computer science fields have been working 

together to find the approach for precise diagnosis. For this thesis, precise diagnosis 

means finding a cancer at as early a stage as possible by developing new computer aided 

diagnostic tools. These tools differ depending on the type of cancer and the type of the 

examination that is used for diagnosis. This work concentrates on cytological images of 

breast cancer that are produced during fine needle aspiration biopsy examination. This 

kind of examination allows pathologists to estimate the malignancy of the cancer with 

very high accuracy. Malignancy estimation is very important when assessing a patient's 

survival rate and the type of treatment. 

To achieve precise malignancy estimation, a classification framework is presented. This 

framework is able to classify breast cancer malignancy into two malignancy classes and 

is based on features calculated according to the Bloom-Richardson grading scheme. This 

scheme is commonly used by pathologists when grading breast cancer tissue. In Bloom-

Richardson scheme two types of features are assessed depending on the magnification. Low 
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magnification images are used for examining the dispersion of the cells in the image while 

the high magnification images are used for precise analysis of the cells' nuclear features. 

In this thesis, different types of segmentation algorithms were compared to estimate the 

algorithm that allows for relatively fast and accurate nuclear segmentation. Based on that 

segmentation a set of 34 features was extracted for further malignancy classification. For 

classification purposes 6 different classifiers were compared. From all of the tests a set of 

the best preforming features were chosen. 

The presented system is able to classify images of fine needle aspiration biopsy slides with 

high accuracy. 
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Chapter 1 

Introduction 

Cancer treatment and diagnosis is an active field among researchers in various domain 

around the world. Detecting a cancer at an early stage greatly increases the probability of 

successful treatment. Breast cancer is the most often diagnosed cancer among middle-aged 

women. According to the World Health Organization there are 7.6 million deaths due to 

cancer each year out of which 502,000 are caused by breast cancer alone. According to the 

American Cancer Society 1.3 million women are diagnosed with breast cancer each year 

worldwide and about 178 thousand new cases of invasive breast cancer will be diagnosed 

in the United States itself [180]. In 2007 there were approximately 40,460 deaths caused 

by this cancer in the United States. Although the number of deaths caused by this cancer 

has reduced during last few years, it still remains the second most deadly cancer [8, 180]. 

This is illustrated by figure 1.1. 

To reduce the high death rate, accurate diagnosis is essential. For many years doctors have 

been trying to find the best ways to treat breast cancer. Being successful in the treatment 

is a key to reducing the high death rate. To successfully cure a patient with breast cancer 

we need to diagnose it as early as possible. Cancers in their early stages are vulnerable 

to treatment while cancers in their most advanced stages are usually almost impossible to 

treat. 

The most common diagnostic tools are a mammography, a histological examination and 

a fine needle aspiration biopsy (FNA). Mammography, which is a non-invasive method, 

is most often used for screening purposes rather than for precise diagnosis. It allows a 
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physician to find possible locations of microcalcifications and other indicators of breast 

cancer in the breast tissue. When a suspicious region is found, the patient is sent to a 

pathologist for a more precise diagnosis. This is when the FNA is taken. A fine needle 

aspiration biopsy is a minimally invasive method that allows the pathologist to describe 

the type of the cancer in detail. Using this method doctors can very adequately describe 

not only the type of the cancer but also its genealogy and malignancy by observing some 

of the preserved histological structures. They can also foresee the course of cancer devel­

opment by attributing to it a predictive factor. Based on that description, a patient can be 

assigned for surgery to remove the suspicious region. Apart from FNA and mammography 

examinations, a histological examination can be performed that also allows pathologists 

to describe the course of the cancer and based on that description they can apply an ap­

propriate treatment. During this examination a sample tissue of the suspicious region, 

found by FNA and mammography, is taken from the patient during operation and later 

processed in a histological laboratory to assign a prognostic factor, that describes patients' 

survival after undertaking treatment. 

The stage of the cancer depends on the malignancy factor that is assigned during an FNA 

examination. The determination of the malignancy is essential when predicting the pro­

gression of cancer. There are certain features in the cytological slides that are taken into 

account. These features are used to assign a malignancy grade to the diagnosed tissue. 

One of the most popular and widely used schemes for grading cytological tissue is the 

Bloom-Richardson grading scheme [19]. 

1.1 The problem 

The work presented and described in this thesis concentrates mainly on the malignancy 

grading of fine needle aspiration biopsy slides that are used by pathologists for diagnosis. 

Cancer malignancy grading is a very subjective procedure that depends on many different 

factors starting with experience of a pathologist through the number of similar cases seen 
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Rate Per 100,000 

Figure 1.1: Cancer death rates among women in the US, 1930-2004. Taken from [180] 

during the day and ending with his or her fatigue. There are many other factors, including 

the technical strength of the slide, staining and fixation method and quality, that can have 

a tremendous impact on the diagnosis. 

The main idea of this work was to help pathologists to make a more objective diagnosis 

especially when similar cases are seen during diagnosis. Systematic and repetitive diagnosis 

is very important and allows pathologists to suggest a proper treatment, especially when 

a malignancy grade is hard to assess. Misclassification can lead to the proposition of 

an inappropriate treatment. In this work, the problem of malignancy classification is 

addressed and the proposed approach is briefly described in the following section (§1.2). 

1.2 The approach 

Breast cancer malignancy grading is based on the grading scheme described by Bloom and 

Richardson in [19], which is a widely used grading scheme among pathologists around the 

world. In general, the malignancy is assigned one of the three grades: low, intermediate, 

or high. That assignment is based on three factors that take into consideration different 

nuclear features of the cancerous cell. Each of these factors is assessed on a point based 

scale and the final grade depends on the summation of all the awarded points. 

The Bloom-Richardson scheme can be generalized to a classification problem with three 
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classes. Each class will represent one of the three malignancy grades. The approach pre­

sented here is purely based on this generalization and malignancy grading is treated as 

a classification problem with some constraints that will be addressed in the subsequent 

chapters. 

In this thesis, a fully functional grading system is developed. The system takes a FNA 

slide as input and returns a malignancy grade to the pathologist as output. This grading 

framework uses some well-known image processing algorithms that are used with more 

advanced segmentation techniques which allowed for nuclei segmentation from input im­

ages and for further feature extraction. In this thesis four segmentation techniques are 

compared. These techniques include elliptical Hough transform, level sets, fuzzy c-means 

and gray-level quantization. Their ability to represent the nuclear boundary is tested. 

Based on the segmentation results 34 features are calculated. The extracted features are 

then used with some the well-known classification algorithms. Here, multilayer percep-

tron, self-organizing maps, principal component based neural networks and support vector 

machines are compared. To show the strength of the proposed features, their discrimina­

tory powers are presented. The algorithms taken into consideration are adequate for the 

characteristics of cytological images, i.e., nuclei extraction and features of the cancerous 

cell. 

The research shows promising results, with classification errors lower that 5% in some 

cases. The presented validation of the features used for malignancy classification show 

that the features chosen can discriminate between malignancy classes with high accuracy. 

It can also be noticed that the classification error depends on the segmentation technique 

used for nuclei separation. Here, four well-known segmentation algorithms were used to 

test which technique is able to separate the nuclei with the lowest loss of classification 

accuracy. It was shown that the combination of multilayer perceptron and level set seg­

mentation provided the best classification performance. From the segmentation results, it 

can also be noticed that level sets provide the best nuclear boundary representation out of 

the four compared techniques. 
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Results presented in this thesis show that such a system can not only be used during 

breast cancer diagnosis to help pathologists with their decisions, but also for analysis of 

nuclear shapes when a segmentation and feature extraction parts of the system are used. 

According to the expert pathologist, an introduction of such an automated grading system 

is essential to aid the breast cancer diagnosis process. The system proposed here is tested 

on the database that consists of the more difficult cases than these that are assessed every­

day in the pathological laboratory. Taking that into consideration, we can assume that 

the good performance of the described system on the collected database suggests a good 

performance on the real data, that shall be less difficult to grade than this described here. 

1.3 Main contributions 

In this thesis a scheme for breast cancer malignancy grading is proposed. This scheme 

involves three main stages: segmentation, feature extraction and classification. In this 

work, the following contributions can be outlined: 

• The introduction of three new features based on the cells' ability to form groups [86]. 

This features were extracted from low magnification images and provided a significant 

information during classification [88]. The introduction of the low magnification 

features allowed for the reduction of the classification error rate. 

• The proposition of a set of 31 features extracted from high magnification images 

to choose a set of the features with the highest discrimination power and ability to 

separate malignancy grades. 

• The reduction of the feature set based on correlation to propose a set of the most 

significant features for classification. 

• The proposition of a set of 5 polymorphic features to represent nuclear structures in 

FNA sides [84] in accordance to the Bloom-Richardson grading scheme. 
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• The comparison of four segmentation algorithms to propose the most efficient seg­

mentation method for the extraction nuclei from FNA slides [85, 87] 

• The comparison of 6 classifiers to test their classification ability to distinguish be­

tween malignancy cases and the proposition of the classifier for the automated cancer 

malignancy grading. 

All of the above contributions are described in the subsequent chapters of this thesis as 

mentioned in section 1.4 

1.4 Structure of the thesis 

This thesis consists of seven chapters preceded by a glossary of acronyms and variable 

names used within the text. 

Chapter 2 presents an overview of breast cancer from the medical point of view with some 

elementary biological information about cancer. Section 2.3 presents the medical approach 

to breast cancer diagnosis with a focus on cytological examination, which is of a concern 

of this thesis. This section also describes a literature review of computer aided cancer 

diagnosis and malignancy grading. The remaining sections of this chapter include a review 

of image processing and segmentation techniques used in this work. It also describes some 

fundamentals of microscopy. In chapter 3 a background information about digital images 

and a description of the basic image processing algorithms can be found. 

Chapter 4 is devoted to segmentation algorithms. It presents an overview of the algorithms 

used in this research and comparative results of their ability to represent nuclear bound­

aries. In Chapter 5 we can find description of extracted features as well as their definition 

and validation of their discriminatory power. Following features extraction and validation, 

a classification scheme is described in Chapter 6 with a presentation of the achieved er­

ror rates for each tested classifier. Last chapter of this thesis consists of conclusions and 

references to possible future work. 
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Chapter 2 

Breast Cancer and Its Diagnosis 

2.1 Introduction 

In this chapter we will describe a process in which a healthy cell undergoes mutation and 

becomes abnormal and therefore cancerous. We will also show how healthy and cancerous 

cells differ and how it is possible to discriminate between the two types of cells. In sec­

tion 2.3 medical and computer-aided approaches are described to show how computerized 

approaches can help during the diagnostic process. This section also includes a literature 

review on breast cancer diagnosis and malignancy grading. As we will see in this chapter, 

breast cancer diagnosis is a very active field of research while malignancy grading is less 

active. Assigning the malignancy grade is a crucial stage during cytological diagnosis be­

cause depending on that grade an appropriate treatment is suggested. Grading malignancy 

is more complicated and a more subjective procedure than pure diagnosis between benign 

and malignant cases. When grading malignancy, differences between malignancy grades 

are not as distinct as they are between benign and malignant cases. This is why grading is 

such a subjective procedure that depends on pathologist experience and a number of other 

factors. This makes the problem of malignancy grading a very interesting classification 

problem. 
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2.2 Cancer biology 

Cells are fundamental components of all living organisms. They are responsible for all 

functions necessary for an organism to live. Multicellular organisms consist of groups of 

specialized cells such as tissues and organs [23]. They are responsible for specific functions 

of the organism. While the structure of a cell differs depending on its function, all cells 

have the same basic organelles such as nucleus, Golgi apparatus, mitochondria, ribosomes 

and rough and smooth endoplasmic reticulum (Fig. 2.1 taken from [23]). 

In particular, for the purpose of our research we will concentrate on the most conspicuous 

Microtubules - i to - * *^ Lysosome 

Figure 2.1: Overview of an animal cell. Taken from [23]. 
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cell organelle, which is the nucleus. The cell nucleus is a characteristic of all organisms 

except for bacteria and archaea. Also, nuclear structures are the features that are taken 

into consideration when grading cancerous cells, as described in chapter 2.3.2. 

Fig. 2.2a shows a nucleus and its internal structures. The nucleus contains the most of 

the cell's DNA [23] and is essential for controlling the main processes of the cell. DNA 

contains information about the order of amino acids in all proteins that can be synthesized 

by the particular cell. RNA (ribonucleic acid), which is also a component of a nucleus, is 

responsible for the actual protein synthesis. 

We can distinguish the following nuclear structures: 

• Nuclear envelope - consists of two separate membranes that are joined together 

at the pores. 

• Pores - regulate the entry and exit of certain macromolecules and particles [23] 

• Nucleolus - here a ribosomal ribonucleic acid (rRNA) is synthesized and stored. 

• Chromatin - fibrous material created by fusing DNA double helix with histone 

molecules to form so called 'beads' as shown in Fig. 2.2b. 

Figure 2.2: Overview of a chromatin and nucleus. Taken from [23]. a) Nucleus, b) Chro­
matin. 
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The life of all organisms is based on certain stages that all cells have to go through. These 

stages are called the cell's life cycle. One of the most important stages of a cell cycle is 

cell division, which is closely regulated by different factors. During this process new cells 

are generated to replace dead or damaged ones as well as to guarantee the growth of the 

organism [23]. There are two types of cell division, one called mitosis and another called 

meiosis. Meiosis occurs only during the formation of gametes and reduces the number 

of chromosomes by half. This number is doubled during fertilization process. Mitosis is 

responsible for the growth of an organism. During a mitotic division two identical cells are 

formed. A cell that undergoes division is called a mitotic figure. 

Sometimes a healthy cell can undergo a genetic transformation that changes it to a cancer­

ous cell. In most cases, the body's immune system destroys such cells. If, for some reason, 

the cell resists destruction, it may start to divide in an uncontrollable manner forming 

a tumor, also called a cancer. Cancer is a clump of mutant cells within normal tissue. 

Fig. 2.3 illustrates such a process, where a single healthy cell grows to form a malignant 

cancer. When a cancer is formed it can stay in this stage for many years until one of its 

cells undergoes another mutation that modifies its properties allowing changes in shape, 

orientation and behavior, Fig. 2.3 b and c. Fig. 2.3 b shows an example of hyperplasia 

which is a focal growth of a breast tissue in the breast duct. Fig. 2.3 c illustrates the 

cellular abnormality that is contained within a breast tissue. This type of a cancer is also 

referred to as dysplasia. When no other mutations are present, the cancer is said to be 

in situ, which means that it is still contained within the same tissue. When other genetic 

mutations occur. Fig. 2.3 d, that let cancerous cells to invade neighboring tissues, the can­

cer becomes malignant. The grade of a cancer's malignancy describes its ability to spread 

within an organism. Such a transmission of cancerous cells from a primary growth else­

where in the organism is called metastasis. The mutations described above lead to changes 

in the shape of the original cell. These changes are taken into account during diagnosis 

and malignancy grading. Fig. 2.4 illustrates the significant variation between healthy and 

cancerous cell. The most important differences are: 
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Figure 2.3: Upgrowth of a Malignant Cancer within a tissue. Taken from [23]. a) Cell 
modified genetically, b) Hyperplasia, c) Dysplasia, d) Cancer in situ, e) Malignant Cancer. 

• Shape variations - the shape of a healthy cell is circular while a cancerous cell can 

assume arbitrary shapes 

• Nucleus size - cancerous cells also tend to have larger nucleus in comparison to 

healthy ones 

• Nucleolus - the nucleus of a mutated cell doesn't have to contain nucleolus but it 

also can have multiple nucleoli while regular cells nucleus has only one 

• Nucleolus size - if there are any nucleoli they are usually of an irregular shape and 

dominant in the nucleolus 

• Chromatin - in healthy cell it is equally distributed in the nucleus. In the genetically 

changed nucleus, chromatin is placed irregularly and sometimes in shape of irregular 

ring placed underneath a nuclear membrane 

These are the most important differences that are taken into account during a cancerous 

tissue examination. 
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Figure 2.4: Comparison of a healthy (left) and cancerous (right) cells. Taken from [23]. 

2.3 Breast cancer diagnosis 

Computers have been influencing our lives for many decades. Their applications are more 

and more advanced to solve every-day problems. Since their introduction to medicine, 

computers have been very helpful in assisting doctors with their diagnoses. As mentioned 

in chapters 1 and 2.2, cancers are very dangerous diseases and their early diagnoses can 

reduce the number of deaths they cause. For this purpose many computerized systems 

have been developed to assist doctors to make diagnoses that are more precise and more 

objective. In the literature we can find wide range of applications for variety of more or 

less deadly cancers [106, 145, 10. 74, 176]. Below, a literature review on computer-aided 

breast cancer diagnosis and grading is presented. 

2.3.1 Medical diagnosis of breast cancer 

The anatomy of a healthy woman breast contains lobules that are connected with a nipple 

by ducts. These structures are supported by fat tissue. Breast cancer is an abnormal 

growth of cells originating from ducts and lobules. 

Out of all cancers, breast cancer is not only one of the most often diagnosed cancer but 

also one of the most deadly cancer among middle-aged women. To reduce the high num­

ber of deaths it is crucial to perform screening examinations. Regular screening allows for 
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reducing the death rate significantly. Early detection and effective treatment can reduce 

the death rate by up to 30%. 

A screening examination consists of mammography, ultrasound and palpatic examination. 

The last one can be performed at home by the patient herself or by a doctor. During mam-

mographic examination, doctors can detect lesions that are very small and in a stage that 

cannot be distinguished during self-examination. This examination is usually performed 

for women with symptoms of breast cancer. During an ultrasound examination we can 

detect the same lesions as in mammography without the risk of excessive radiation. The 

ultrasonography does not use the x-ray radiation and therefore is safer for the patient, 

although it can not be used for regular screening due to the fact that the microcalcifica-

tions are not as clearly visible as in the mammography and can lead to misclassification of 

lesions [99]. 

Both methods described above are said to have about 25% of false-positive diagnosis. Also, 

their interpretation can vary depending on the radiologist [13]. 

To establish a precise diagnosis, a biopsy examination is required. There are different 

types of biopsies but for the purpose of this study we will concentrate only on Fine Needle 

Aspiration Biopsy (FNA). During cancer examination a part of an abnormal tissue is col­

lected. The collection is performed by syringe with a needle, with an outer diameter that 

is smaller that 1mm (typically 0.4 to 0.7mm). To locate a cancer within the breast tissue, 

ultrasound or mammography is used. The specimen obtained is then put on the glass slide 

and stained. The type of staining depends on the type of cell structures required to be 

visualized. Fig. 2.5 shows a stained breast tissue specimen. 

When the specimen is stained, the microscopic examination is performed, during which the 

type of cancer is recognized as well as its malignancy grade and prognostic and predictive 

factors [2, 3]. Prognostic factors allow pathologists to foresee the overall survival (OS) and 

disease—free survival (DFS) rates while predictive factors allow them to foresee the reaction 

to undertaken treatment. 
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Besides the diagnostic examinations described above, Intra-operative and Histopatholog-

ical examinations are also performed. Intra-operative examination allows quick diagnosis 

from a frozen sample during operation. Histopathological examination is the most accurate 

among all examination methods described here. It uses a paraffin preserved tissue sample. 

Unfortunately this method is the most time consuming due to the preservation process 

followed by a suitable staining. 

Figure 2.5: Fine Needle Aspirate of a breast recorded with different magnifications, a) 
lOOx, b) 400x. 

2.3.2 Bloom-Richardson Grading Scheme 

The Bloom-Richardson (BR) grading system is the most common malignancy grading scale 

used by pathologists. This system was originally introduced by Bloom and Richardson in 

1957 for grading histological pictures [19]. The same scale can easily be used to assess 

malignancy for cytological smears. According to this system there are three factors that 

are taken into account while grading cancerous tissue. Each of the three factors is evaluated 

on a three-point scale according to the following description: 

1. Degree of structural differentiation (SD) - In histopathological slides this is 

also described as tubule formation. Since in cytological smears tubules are not 

preserved, the scoring, given below, for this factor is based on the classification 

of cell groupings within a smear, Fig. 2.6. 

• One point - cells in the image are grouped regularly. 

• Two points - both grouped and single spread cells found within the image. 

14 



o Three points - cells spread Irregularly. 

Figure 2.6: Cell groupings, a) Spread cells, b) Grouped cells. 

2. Pleomorphism (P) - This factor takes into consideration differences in size, shape 

and staining of the nuclei. This scoring is fairly straightforward because with 

the growth of irregularity of the nuclei the prognosis becomes worse. 

• One point - nuclei with uniform size, shape and staining. 

• Two points - moderate variation is found. 

• Three points - very significant variations. 

Figure 2.7: Size of nuclei,shape and staining variations, a) G2 Ductal Carcinoma, b) G3 
Ductal Carcinoma 

In Fig. 2.7 one can notice that G2 Ductal Carcinoma has more uniform nuclei 

than G3 Carcinoma. It can also be seen that a high malignancy case shows 

more staining variations. The darker shade in the image represents chromatin 
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concentrations. In healthy cells, chromatin is uniformly distributed within a 

nucleus while in cancerous cells chromatin is clumped and is visible as dark 

spots inside the nucleus. Arrows in Fig. 2.7 indicate the variations between the 

two grades. 

3. Frequency of hyperchromatic and mitotic figures (HMF) - Fig. 2.8 shows 

an example of the mitosis. In the center part one can notice a thin border 

between two nuclei. A darker shade of staining can also be seen. The main 

objective of this factor is to assess the number of mitotic figures in the image. 

The more cases of mitosis one finds, the worse the prognosis is. 

• One point - occasional figures per field are found. 

• Two points - smears with two or three figures in most fields. 

• Three points - more than three figures per field are found 

Figure 2.8: Example of a mitosis. 

All three factors are initialized to zero. According to BR scheme, malignancy of the tumor 

is assigned a grade that depends on the quantitative values of the above factors and is 

determined by the following equation: 

G=SD + P + HMF, (2.1) 

As one can see, the final grade is obtained by the summation of all the awarded points for 

each described factor. Depending on the value of G, the tumor is assigned one of three 

grades: 
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• Grade I - Low malignancy 

• Grade II - Intermediate malignancy 

• Grade III - High malignancy 

These grades are determined according to the Fig. 2.9 (taken from [19]): 

Points 

Gradel Gradell Gradelll 

Figure 2.9: Grade distribution. 

There are many different grading schemes used for cancer malignancy grading depending 

on the type of a cancer. For example, the Gleason grading scheme is used for grading the 

malignancy of a prostatic cancer [83]. It uses 5 features that are summed for the estima­

tion of a final grade. For grading cervical cancer malignancy World Health Organization 

adopted the grading scheme proposed by Reagan in 1979 [43, 152]. In the case of gastric 

cancer the Goseki grading scheme is used as described in [53]. 

The basis of all malignancy grading methods is similar to that of the Bloom-Richardson 

scheme. They are all based on assessing the cells pleomorphism, tubules and mitosis. The 

variations consist of additional features that are taken into consideration. The most com­

mon variation of Bloom-Richardson scheme is the Nottingham-Bloom-Richardson scheme 

that additionally takes lymph node metastases into consideration [131]. Although, there 

are numerous variations of the grading scheme, in case of ductal breast carcinoma FNA, 

the Bloom-Richardson grading scheme in its original form is used. 

The evaluation of the malignancy of the tumor indicates the likelihood that the case can 

undergo metastasis at the time or after the treatment. It also has an impact on the pa­

tient's type of treatment. Therefore it not only has a prognostic but also a predictive 
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value. 

2.3.3 Computer-aided breast cancer diagnosis 

Breast cancer diagnosis is a very wide field of research studying only medical issues but 

also computer science issues. As discussed in chapter 2.3.1, breast cancer diagnosis is a 

multi-stage process that involves different diagnostic examinations. 

Pattern classification is a well-known problem in the field of Artificial Intelligence con­

cerned with the discrimination between classes of different objects [55]. We can use the 

same techniques in cancer diagnosis to assist doctors with their decisions. Cheng et al. [34] 

provided an extensive survey on automated approaches in mammograms classification and 

importance of computer assisted diagnosis. Since mammography is one of the preliminary 

tests performed to locate abnormalities in the breast tissue, it is used for screening purposes 

and has raised a lot of interest within the scientific community [21, 32, 34, 35, 49, 70. 208]. 

This study is concerned with another important diagnostic tool, which is biopsy examina­

tion. As already mentioned, a biopsy can provide a detailed description of a disease that 

is crucial for determination of its treatment. This field of breast cancer examination is 

also an interest to many scientists. I will concentrate on some of the techniques used for 

classification and detection of the cancerous nuclei since it is very closely related to the 

research presented in this thesis. 

To the best of our knowledge, the computerized breast cytology classification problem was 

first investigated by Wolberg et al. in 1990 [205]. The authors described an application of a 

multi-surface pattern separation method to cancer diagnosis. The proposed algorithm was 

able to distinguish between a 169 malignant and 201 benign cases with 6.5% and 4.1% error 

rates, respectively depending on the size of the training set. When 50% of samples were 

used for training, the method returned a larger error. Using 67% of sample images reduced 

the error to 4.1%. The same authors introduced a widely used data-base of pre-extracted 

features of breast cancer nuclei obtained from fine needle aspiration biopsy images [118]. 

Later, in 1993, Street et al. [184] used an active contour algorithm, called 'snake' for precise 
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nuclei shape representation. The authors also described 10 features of a nucleus used for 

classification. They achieved a 97.3% classification rate using multi-surface method for 

classification. 

The features described by the authors are mainly geometrical features of the nucleus. These 

features are: 

• Radius - defined as an average of the radial line segments lengths from the centroid 

of the nuclei to the snake points on the boundary. 

• Perimeter - is the length of the boundary of a polygon connecting snake points. 

• Area - is a number of pixels inside the closed snake curve. 

• Compactness = verZff 

• Smoothness of a nuclei contour - defined as an average difference between the length 

of a radial line and the mean length of the lines surrounding it as shown in Fig. 2.10. 

Figure 2.10: Radial lines used for smoothness computation. Taken from [184]. 

• Concavity - a measure of nucleus concavity. This is performed by drawing chords 

between non-adjacent snake points and measuring the extent to which the boundary 

of the nucleus lies on the inside of each chord, as seen in Fig. 2.11. The length of the 

chord that is outside of the nuclei is considered as a measure of the concavity. The 

concavity is larger when the length of the exterior chord increases. 
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Figure 2.11: Chords used for concavity calculations. Taken from [184]. 

• Concave points - measures number of concavities and not their magnitude. 

• Symmetry - Here, the major axis (longest chord through the center) is found. Next, 

length difference between lines perpendicular to major axis to nucleus boundary in 

both directions are measured. 

Figure 2.12: Segments used for the calculation of symmetry. Taken from [184]. 

• Fractal Dimension of a cell - this is approximated using a 'coastline approximation' 

method. Authors measure the perimeter of the nucleus using increasingly larger 

segments, see Fig. 2.13. Next, they plot the obtained values on a log scale and 

calculate the downward slope which gives an approximation to the fractal dimension. 

Higher values of the feature provide-higher probability of malignancy. 

Figure 2.13: Sequence of measurements of fractal dimension. Taken from [184]. 
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• Texture - authors define texture as an average gray scale intensity of the nucleus. 

Based on the above features. Street [182], in his PhD Thesis, introduced a system called 

XCyt, that was later improved and described in 2000 [183]. In 1999, Lee and Street [104] 

described an iterative approach for automated nuclei segmentation as an addition to the 

previously described framework. In 2003, they introduced flexible templates to their it­

erative Generalized Hough Transform approach for segmentation. They created a set of 

predefined templates of a nuclei and each iteration shuffles the templates in such a way 

that those that were used the most often during the previous iteration are visited first to 

save time. The authors were able to segment nuclei with 78.19% accuracy [105]. They 

also introduced a neural network approach for classification stage, achieving 96% accuracy. 

Classification was based on the features previously described by Street et al. [184]. 

All work presented above was based on the Wisconsin Breast Cancer Database (WBCD) 

introduced by Mangasarian et al. [118]. This data-base consists of pre-extracted nuclear 

features and is widely used among researchers. Features included in the data-base are the 

features proposed by Street et al. [184]. WBCD [118] and its variations [203, 204] are the 

only data sets publicly available. Therefore, the majoritjr of work in this field is performed 

on this data-base and involves research on different classification algorithms. 

In 1998, Walker et al. [197, 198] introduced Evolved Neural Networks for breast cancer 

classification and tested their algorithm on WBCD data-base achieving 96% correctness. 

Nezafat et al. [135] used WBCD to compare several classification algorithms such as k-

nearest neighbor classifier, radial-basis function, neural networks, multilayer perceptron 

and probabilistic neural networks. The authors showed that among these classifiers, mul­

tilayer perceptron with one hidden layer performed the most efficiently giving 2.1% error 

rate. Additionally they also compared and reported which of the features extracted by 

Wolberg et al. [205] were most significant for classification. 

In 2002, Estevez et al. [57] introduced a different approach for classification based on the 

Fuzzy Finite State Machine, but their system performed rather poorly giving 19.4% error 

for the testing set of images. To extract features, the authors first manually segment nuclei 
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from the image and then apply a low-pass filter and in the following step topological map 

of a nuclei is created. The extracted features are texture based. Motivation for them was 

that benign cell textures have bigger homogenous gray areas and more concentric contours 

than malignant cell textures. 

Bagui et al. [7] recently introduced a classification algorithm applied to WBCD. The au­

thors described a generalization of the rank nearest neighbor rule and obtained results that 

show a 97% recognition rate, which, according the authors, is better than that previously 

reported in the literature. From the above discussion we can deduct that majority of work 

in the field of breast cancer detection and classification was performed by Street et al. and 

Wolberg et al. We can find other approaches such as wavelet based approach of Weyn et 

al. [200]. Here the authors introduce a textural approach for chromatin description and 

claim that it has a 100% recognition rate. 

Another approach is one introduced by Schnorrenberg et al. [168] that uses receptive fields 

for nuclei localization as an integral part of a bigger system, called 'BASS. ' In 1996, they 

introduced a content-abased approach [169] and provided an extensive survey on existing 

histopathological systems [170]. The authors presented two types of color-based features, 

luminance-based local features and global features. Luminance features were obtained 

from image RGB values. Global features are the variance and average of luminance in 

the image. They also introduce one texture measure that is calculated according to the 

luminance variance and current nucleus luminance. Approaches presented by Schnorren­

berg et al. are mostly based on histological samples rather than cytological. In 2000, they 

presented a description of features used in their research [171] on classification of cr3'ostat 

samples during intra-operative examination based on feed-forward neural networks achiev­

ing the highest accuracy of 76% on their own database. 

In the literature we can also find some other approaches that involve segmentation of a 

breast, cancer nuclei rather than classification. In 1996, Belhomine et al. [14] proposed a 

watershed based algorithm for segmentation of breast cancer cytological and histological 

images.Their algorithm is a more general version of the method described by Adams and 
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Bischof [1]. The generalization involves the usage of numerous merging criteria. Authors 

use the segmentation principles described by Beucher in his PhD thesis [15]. This involves 

the decomposition of the segmentation procedure into two steps. In the first step, the im­

age is simplified based on a set of markers. The second stage involves region decomposition 

by the construction of the watershed lines [14]. The algorithm proposed by Belhomme et 

al. is the extension of the Beucher and Meyer [16] method by introduction of a general 

segmentation operator. 

In 1998, Olivier et al. [109] introduced another extension to the watershed algorithm in 

addition to that of Belhomme et at Their extension incorporates the color information in 

the image regardless of the color space. The authors compared their segmentation results 

against the segmentation performed by three experts and they reported the correctness of 

their method to be between 89.2% and 98.3% for the nuclei. 

Another approach to nuclear segmentation is based on fuzzy c-means clustering and mul­

tiple active contours models described by Schiipp et al. [172]. The authors describe a level 

set active contours method, where the initial level set is obtained by the fuzzy c-means 

algorithm. 

2.3.4 Computer—aided breast cancer malignancy grading 

In the previous section we described different approaches for breast cancer diagnosis. Most 

of those systems discriminate only benign and malignant cases. For good diagnosis it is 

crucial to evaluate the malignancy grade as already described in section 2.3.1. In [119] we 

can see attempts at prognostication along with nuclear classification. For their grading 

approach, the authors used only nuclear features of a cell, which correspond to the second 

factor in Bloom-Richardson grading scheme (see section 2.3.2). They were estimating the 

prognosis of the breast cancer according to these features. Further attempts for malignancy 

grading include VLSI approach introduced by Cheng et al. [33] in 1991 and applied in 1998 

to breast cancer diagnosis [36]. In this method, the authors propose a parallel approach to 

tubule grading for histological slides. The authors divided their algorithm into four stages. 
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The first stage consists of image enhancement for which purpose they use median filtering 

to remove artifacts. In stage two, the authors locate possible tubule formations by image 

thresholding with a threshold level known a priori. The next stage is a classification stage, 

where regions are classified as tubular formations. The features used in this study consists 

of brightness, bright homogeneity, circularity, size, and boundary colors. In the fourth 

stage, the authors count the number of tubular formations. The work presented by the 

authors not only deals with histology but also only mentions grading using only one factor 

on the Bloom-Richardson scale. The authors showed time improvement of the parallel 

algorithm that grades tubules to 0(n) time while previously reported run time complex­

ities were 0(n2), where n is the size of the input data. In 1991, MacAulay et al. [115] 

introduced a graphics package for Bloom-Richardson grading of histological tissue. Their 

application acts as a typical graphics program that allows user to pick the nuclei from 

the image and perform some basic calculations. This process is almost completely user 

dependent. The authors provide an extensive description of the interface of the package 

but no further information on computation grading was found. Another approach found 

in literature is an algorithm based on wavelet texture description of chromatin [200]. This 

work was also performed on histological slides. The features calculated by the authors are 

calculated according to wavelet parameters and are divided into three groups. The first 

group are co-occurrence parameters that describe the color intensity in the image. The 

second set of parameters are densitometric parameters that are based on intensity values 

of the nucleus. The third group consists morphometric parameters that describe the geom­

etry of the nucleus. Authors performed tests on their data-base of 83 histological slides 

and claim to have 100% classification rate. Such a high rate suggests a good separation 

between the classes. 

In 2004, Gurevich and Murashov [73] proposed a method for chromatin structure analysis 

based on scale—space approach of Florack and Kuijper [58]. The authors claim that chro­

matin distribution corresponds to the grade of malignancy. This statement is supported 

by additional studies of Rodenacker [156, 157, 158] and Weyn et al. [199]. The authors 
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also mention another approach to chromatin description. This method uses heterogeneity, 

dumpiness, rnargination and radius of particles and was introduced by Young et al. [207]. 

The algorithm of Guverich and Murashov uses topological properties of iso-intensity man­

ifolds in the spatial extrema neighborhoods [73]. Their algorithm is able to measure the 

number of chromatin particles in the input image. For testing purposes the authors trained 

several classifiers achieving a classification rate between 72% and 85.4%. In 2006, Gurevich 

et al. [72] described a system for automatic analysis of cytological slides for the lymphatic 

system tumors. The authors used a Gaussian filter for segmentation of a nuclei from the 

previously extracted blue channel of the image. The feature extraction part of the pro­

posed system is the same as in [73] plus an additional 47 features described by Churakova 

et al. [39]. These features include a well known and widely used morphological features 

such as the area of a nuclei, histogram features and features based on a Fourier spectrum 

of a nucleus [72]. In this paper, the same choice of classifiers was used as in [73] but the 

accuracy increased and is claimed by the authors to be above 90%. The authors did not 

provide an accurate error rate of their experiments and therefore it is difficult to assess the 

accuracy of the proposed system. 

To the best of our knowledge, currently there is no publicly available database and most 

of the approaches presented in the literature are tested on the databases created by the 

authors, which makes the comparison of the obtained classification results difficult. The 

only commonly used database that we came across during this study is the Wisconsin 

Breast Cancer Database, which was described earlier in this thesis. This database is freely 

available from the authors web page [205]. In this study, some of the proposed features 

are the same as in WBCD but the testing of the presented system on that database would 

be limited only to the classification stage due to the fact that WBCD is the database of 

pre-extracted features. 

The most recent development in this area is commercial system released in 2005 by Qine-

tiQ for automated histopathological tissue grading [147]. According to the specifications 

and discussion with a pathologist, the results obtained by this system seem to be difficult 
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to confirm. According to the authors, their system showed performance similar to the 

pathologists during clinical evaluation that was performed on 100 patients. 

2.4 Contributions 

This thesis is an attempt of making the breast cancer diagnosis more repeatable and 

objective task to assist a pathologist during the decision making process. Malignancy 

grading is a very difficult task and as can be noticed from the literature review there 

weren't many computerized approaches to breast cancer malignancy grading. A part of 

this thesis was also devoted to the collection of the database of fine needle aspiration 

biopsy images (see Appendix A). Unlike Cheng et al. [33] our approach uses cytological 

data rather than histopathological. In [73, 157, 200, 207] authors extract features that are 

based on chromatin description. In this thesis, we additionally extracted features based 

on nuclear polymorphy. We have also proposed a new set of 3 features that described 

the cell' ability to form groups. These features are calculated from the low magnification 

images. The use of this kind of images makes the presented system a bimodal system. 

Unlike any other presented and previously described system in this thesis we introduce 

a multimodal malignancy grading system. Also, in this study we have extracted several 

features that allowed for the discrimination between two malignancy classes. Most of the 

features are similar to these previously described in the literature [182, 183]. Here, we 

proposed two techniques that can be used for the evaluation of these features to choose 

the most representative set of features that can be used for classification purposes. In this 

thesis, unlikely to other approaches for malignancy grading, we have compared 6 classifiers 

to propose one that is able to classify breast cancer malignancy most precisely. 
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2.5 Chapter Summary 

This chapter was mainly devoted to defining breast cancer, starting from basic medical 

view on healthy cell trough the mutation process and cancerous cell formation to diagnosis 

procedures and problems related to that diagnosis. 

From the discussion in previous sections, one can notice that cancer is a very serious dis­

ease with a high death rate. In this thesis we focus exclusively on breast cancer which is 

the one of the most deadly cancer affecting middle—aged women. The key to reduce the 

high death rate is to find a very efficient diagnostic method that will allow for a diagnosis 

of a cancer in as early a stage as possible. This thesis is an attempt to solve this problem 

by making malignancy grading more objective and, what is probably more important, re-

peatable. Nowadays, pathologists struggle with the problem where the malignancy grade 

can depend on the pathologist that performs the grading. The computerized approach 

allows for the repeatable decision making diagnosis with the application of the classifier 

that makes the same decisions every time for the same features. As we will see in subse­

quent chapters, system presented in this thesis allows repeatable grading of breast cancer 

malignancy according to Bloom and Richardson Scheme (see section 2.3.2). The presented 

results support the proposition that the system presented here can be very useful in the 

pathological laboratory and can help pathologist with his/her diagnosis. 
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Chapter 3 

Microscopy, Image Representat ion 
and Image Analysis 

3.1 Introduction 

Analysis of the content of the image is a very important task in any image processing 

problem. There are many different algorithms that can be used for this kind of analysis. In 

this chapter we will present some fundamentals of light microscopy along with a description 

of some other imaging techniques. We will also review the basic image processing and 

analysis techniques such as image histograms, morphological operations, edge detection 

and connected components. The reader can also find a description of shape descriptors 

that can be used to represent and analyze the shapes in the input image. 

3.2 Fundamentals of Microscopy 

Cells are the fundamental structures of each organism. Being able to visualize and observe 

the cell is very crucial in most biological studies [153]. Microscopy allows for an observation 

of different biological strictures on different levels. Numerous types of microscopy and 

imaging techniques allow for visualization of these levels, from tissues to cells or even 

nuclei [122. 143]. Here, four types of microscopic techniques are presented to show the 

reader the differences between them. 
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3.2.1 Light Microscopy 

Light microscopy is the most popular and the easiest method for observation of small ob­

jects. It is the most used research tool in biology and medicine. It allows for noninvasive 

observation of cell shapes as well as their movement and some of their functions. 

Nowadays, there are many different types of microscopes from bright and dark field mi­

croscopes [27], through phase and contrast microscopes up to fluorescence and confocal 

microscopes, which are specialized for advanced research, clinical and industrial applica­

tions. 

The simplest and most well-used microscope is a bright field microscope. Elements of this 

kind of microscope are a base of construction for all other types of light-based microscopes. 

The main mechanical parts (Fig. 3.1a) of the microscope are: 

• frame - lies on the base of the microscope and constitutes a support for other me­

chanical and optical elements, 

• stage - is a small table on which the specimen is placed. It allows for movement of 

the specimen for better examination, 

• nosepiece objective turret - allows for changing objectives that are mounted on the 

bottom. It also allows for magnification changes of the observed specimen, 

• coarse and fine focus knobs - allow for coarse and fine focusing of the viewed image. 

Optical elements (Fig. 3.1b) are engaged to change the light beam to light a specimen on 

the stage and then pass through it to make a magnified image in the eyepiece [133]. Main 

and necessary optical elements are: 

• light source - its main task is to supply light to the microscope. The simplest light 

source can be a mirror that is adjusted to reflect a sunlight to the objective in the 

turret. More advanced light sources are built with a light bulb or even with LED 

diode. 
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• condenser - condenses a light from a light source on the specimen, 

• shutter - usually placed under the condenser to decrease or increase amount of light 

that falls on the specimen. 

• objective - mounted on the bottom of the turret, produces magnified, real and obverse 

image of the specimen, 

• eyepiece - mounted on top of the microscope and allows for observation of the image 

produced by objective. Objectives in the eyepiece also produce magnified and obverse 

image of the specimen but it is a virtual image. 

We can distinguish different kinds of objectives depending on the magnification. Small 

magnification objectives are called dry objectives and large magnification objectives are 

called wet because they require a use of immersion oil between the specimen and the 

objective. The oil has the same refraction coefficient as glass and therefore improves the 

quality of observed image. Between the objective and eyepiece one can also find additional 

optical elements such as different filters and mirrors. 

Head 
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Figure 3.1: Elements of a light microscope a) Mechanical parts, b) Optical parts. 
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3.2.2 Confocal Microscopy 

Confocal microscopy is usually used for visualization of 3D cellular structures and their 

dynamic processes. The scanning confocal microscope was invented in 1955 by Minsky 

[126] and nowadays is widely used around the world. 

In comparison with a light microscope, the confocal microscope consists of the confocal 

pinholes, that are responsible for the passage of only the light from the focus plane [153]. 

Only the light that passes through the pinhole can reach the detector. This setup is visu­

alized in Fig. 3.2 a. 

Images taken by the confocal microscope are high resolution images with a high clarity. 

They allow for a construction of the 3D representation of an observed sample or a cell 

in our case. This representation is constructed form a collection of slices recorded on a 

different levels of focus through the thickness of the object (see fig. 3.2 b) [153]. 

Wide Field Microscope $«nning Mlaosccpe 

Figure 3.2: Confocal microscope. Taken from [153]. a) An example of a confocal pinhole, 
b) Scanning of a sample. 
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Although the samples used for confocal microscopy are usually thicker than in the con­

ventional light microscopy, they both need special preparation to be able to visualize the 

contrasts between the areas of interest. The staining used with confocal microscopy is 

different than that for light microscopy, although it can be easily adapted. The limiting 

factor that needs to be taken into consideration is the thickness of the tissue because the 

diffusion of the stain is different for thicker and thinner samples. This is considered as 

a major limiting factor. Staining used with confocal microscopy requires stating that re­

flects, absorbs the light or is fluorescent [153]. Fig. 3.3 shows an example of the confocal 

microscopy images. 

Figure 3.3: Confocal microscopy images. Taken from [153, 190, 108] 

3.2.3 Fluorescence Microscopy 

Fluorescence microscopy in very similar to the conventional light microscopy. They both 

use a light source that illuminates the samples to produce the magnified image of the spec­

imen. The difference between these methods is that fluorescence microscopes use higher 

intensity light that causes fluorescent excitation in the sample. This phenomenon is used 

to produce the magnified image based on the emitted light by the sample. The emitted 
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light has a longer wavelength than the original light source that was used to illuminate the 

specimen (see fig. 3.4)[139]. 
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Figure 3.4: Schematic of a fluorescence microscope. Taken from [201] 

In this kind of microscopy, a special type of staining procedure is used. In this procedure, 

cells are stained with a fluorescent dye that allows for better light emission and therefore 

easier measurement of the fluorescence. This allows for visualization of single cells as well 

as certain parts of the cell [4]. 

Because the objective of the fluorescence microscope uses the same optics both for exci­

tation and emission, a dichroic mirror is used for the separation of these paths. Here, the 

excitation light is reflected from the mirror towards the objective while the emission is 

passed through to the detector for visualization of the specimen [139]. 

Fluorescence microscopy is widely used for visualization of biological structures [12, 46, 

47, 48, 63, 107, 128]. Most of these approaches involve the visualization of nucleic acids, 

such as DNA [12, 63, 128] or RNA [48]. There are also some other applications of this 

technique, such as cell population visualization [107]. All of these approaches prove that 

this is a powerful tool that allows for very reliable representation of cellular structures. 

Examples of the fluorescence images are presented on the fig. 3.5. 
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Figure 3.5: Examples of the fluorescence images. Taken from [201] a) Human lymphocyte 
nucleus, b) endothelial cells, c)Yeast cell membrane. 

3.2.4 Phase Contrast Microscopy 

The phase contrast microscope was invented in 1935 by Fritz Zernike. It uses a phenomena 

of phase shifting on the light that goes through the sample. These shifts are then converted 

into the contrast changes in the image [65, 202]. 

In general, this type of microscopy generates the coherent monochromatic light rays that 

passes through the condenser assuming a ringlike shape. Next, it is focused on the object 

plane in which some of the light is diffracted and some goes through the object. Both of the 

beams are then separated and directed toward the phase plate. This allows for changing 

the phase of one of the rays and then in the image plane the beams interfere to create an 

image [178]. Fig. 3.7 illustrates the principals of the phase contrast microscopy. 

This type of microscopy is widely used for cytological examination in gynecology [209, 124, 

125] for visualization of the cellular structures [163]. Apart form these, the phase contrast 

microscopy is found to be useful in urology and nephrology for examination of epithelial 

and intracellular structures [62, 130, 50, 159, 136, 149]. 
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Figure 3.6: Schematic of a phase contrast microscope. Taken from [129] 

Figure 3.7: Image from the phase contrast microscope. Taken from [123] 
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3o2o5 Architecture of the Proposed System 

In this study we make use of the bright field light microscope with an additional mirror 

mounted behind the objective. The role of the mirror is to split the image into to visible 

images. First image is visible through the eyepiece and the second image is projected to the 

camera and later recorded by the CCD camera and sent to the computer with MultiScan 

acquisition software. An example of a similar system is shown on the Fig. 3.8. 

Figure 3.8: Digital microscopy acquisition system. 
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Fig. 3.9 shows a diagram of the system proposed in this thesis. The following stages of the 

system can be distinguished: 

• Image acquisition - Here, the slide placed under the microscope is captured by a 

CCD camera and saved on the computer hard drive for further processing. At this 

stage, images with low (lOOx) and high (400x) magnification of the same tissue are 

taken. 

• Preprocessing - In this stage, the image recorded during the acquisition step is con­

verted from the RGB color base to gray level. This is performed by extraction of the 

image red channel. 

• Segmentation and features extraction - This is the most important stage of the 

system, since good segmentation and feature extraction have major impact on the 

classification results. Here, the images are divided depending on their magnification. 

Images with higher magnification require more sophisticated methods for segmenta­

tion than those recorded in lower magnification. When nuclei and nuclear groups are 

extracted, the features are extracted and passed to the next stage of the system. 

• Classification - During the classification stage, the features are classified based on 

the description of the Bloom-Richardson scheme. The classifier shall be able to 

distinguish between low (Gl), intermediate (G2) and high (G3) malignancy grades 

and outputs the assigned grade. Because the low malignancy cases are very rare, the 

training and testing sets were reduced only to two classes. 
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Figure 3.9: Breast cancer grading - system diagram. 
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3.3 Image Representation 

To be able to further investigate images obtained from microscopic examination, we first 

should define what the image representation is. This information allows us to define some 

standards about digital images. Here we take into consideration gray level, color and 

binary images. 

Definition 1. An image I of a size M by N pixels is a function that assigns each pixel 
(x.y) a value between 0 and 255 (Eq. 3.1). 

7 : [ l , M ] x [ l , i V ] - > [0,255] 

(x,y) *-+ I(x,y). 

Function I(x,y) is a gray level image where 0 represents black color and 255 denotes 

white [178]. Color images consist of three components which represent one of the three 

primary colors: red (7r), green (Ig) and blue (lb). This is the most often used color image 

representation, called RGB representation. Here the color of the pixel is determined as an 

combination of the three components: Ir, Ig and /&. 

Binary image representation is a little different from those previously presented. This 

kind of image can only assume two pixel values, 0 for black (false) and 1 for white (true) 

[178, 195]. In this thesis we assume that true pixels represent an object and false (black) 

pixels represent a background. If we denote the number of white pixels by n and X as: 

1= {Pi.i €{!,...,n}}, pi 

then we can define n as: 

Xj 

Vi 
(3-2) 

n=\l\. (3.3) 

When analyzing an image it is often necessary to process the information not only from 

a particular pixel, but also the values of the neighborhood of that pixel. There are two 

most common representations of the pixels neighborhood. Their definition depends on the 

number of neighboring pixels taken into consideration, and these are the four-connected 
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Figure 3.10: Neighborhoods of the pixel 

neighborhood N4(x,y) and the eight-connected neighborhood N8(x,y) [178]. 

Fig. 3.1 illustrates both of the neighborhoods. Fig. 3.1a represents the 4-connected neigh­

borhood, where neighboring pixels are refereed to as north, south, west and east. The 

8-connected neighborhood in addition to N4 pixels also includes diagonal pixels that are 

referred to as northwest, northeast, southwest and southeast. All of these directions describe 

the following pixels of the neighborhood of the pixel (x, y): 

WN=(x-l,y-l), N=(x,y-1), SN = (x + \,y - 1), 

W = (x-l,y), E=(x+l,y), 

SW={x-l,y+l), S={x,y+1), SE = (x + \,y + 1). 

3.4 Image Analysis Techniques 

3.4.1 Image Histograms 

The histogram of an image describes the occurrence frequency of intensity values in that 

image [196]. In the histogram the lowest value is 0 and its maximal value is 2" — 1 , 

where color is represented by n bits. In case of intensity images the maximal value of the 

histogram is 255 (8 bits). The height of a peak is equal to the number of corresponding 

intensity values on the x-axis. 

Histogram analysis is very helpful in image processing. It provides information about 

intensity ranges in the image. In reality, a histogram, in statistical terms, is a probability 

density function h{x). The area of the histogram, called a cumulative histogram, can be 

calculated from the equation 3.4. 

./o 
h(x)dx (3.4) 
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where h(x) is a histogram function. h(x)dx is the area of a histogram column [195]. 

For digital images, we calculate the histogram as the normalized sum of all pixels with a 

certain intensity value: 

h{x) = 2 M (3.5) 

where X](x) *s a number of all pixels with intensity value equal to x and N is a number of 

pixels in the image. 

Based on a calculated histogram we can apply basic enhancements based on its intensity. 

If the image is too dark and its intensity distribution is very narrow, then we can stretch 

the histogram to obtain a distribution covering all the values in the intensity range of 

the image. This process is called histogram stretching. Another enhancement is based on 

contrast and can be achieved by shifting the histogram by a certain value to the left or 

right [178]. 

Histograms also allow us to calculate additional parameters that describe different proper­

ties of the image and histogram itself. If a calculated histogram is P(g), where g is a pixel 

value, then we can defined the following parameters: 

1. Mean value 

g=0 row column 

where L is a number of possible intensity levels and M is the total number of pixels. 

2. Standard deviation 

\ 

L-\ 

Y.^-WP{9) (3-7) 

3. Histogram asymmetry 

1 L _ 1 

SKEW = -3 £ > - 9?P{9) (3.8) 
9=0 
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or: 

SKEW = 
g - max(g) 

(3.9) 

4. Histogram width 

5. Energy 

6. Entropy 

L - l 

s=o 

L - l 

(3.10) 

(3.11) 

L - l 

i / = - £ > ( < ? ) log2P(5) 
3=0 

(3.12) 

The parameters defined above are characteristic features of an image histogram and there­

fore can be then used to compare two or more images. 

3.4.2 Texture Analysis 

Texture is a very valuable source of information when analyzing structures in an image. 

Based on textural analysis both image segmentation [75] and classification [77] can be 

performed. Typically texture analysis is performed on gray level images [28, 29, 37, 38, 54, 

113,197] but it can also be used for color texture analysis [93, 100, 181, 188, 206]. Gray level 

textures are usually chosen due to the fact that they involve less computation complexity 

and providing accurate results at the same time. There are many different algorithms used 

for texture analysis like simple histogram calculations (see section 3.4.1). More advanced 

and more accurate algorithms use Markov Random Field theory [29, 54, 113, 198] and the 

Gray Level Co-occurrence Matrix [38, 40, 77, 197]. In [40] the authors proposed a new 

method for the determination of the Gray Level Co-occurrence Matrix. Their method is 

faster than previously known algorithms. 

42 



There are other methods for texture analysis that can be found in the literature. These 

methods include variograms [26, 116, 177] and segmentation based on region growing [31, 

189, 211] that includes the neighboring points to the area of interest by searching for 

textural similarities [30, 6]. 

Textural segmentation is a powerful tool in image analysis and was shown to be useful 

for segmentation and classification of the cellular structures in microscopic images [5, 121, 

178, 197, 198]. The textural segmentation of nuclei in fine needle aspiration biopsy images 

is discussed in more detail in section 4.2.5. 

3.4.3 Morphological Operations 

Morphological operations are a very useful tool in image processing allowing us to analyze 

shapes in an image. Some of the morphological techniques include erosion, dilatation, 

opening, closing, thinning and skeletonisation. 

- Erosion - We define the erosion of a figure A with structuring element B as a set 

of central points of all structuring elements, which are completely contained inside 

figure A. Fig. 3.11b illustrates this procedure. We can also write an erosion as: 

E{A,B) = Ae (-B) = npeB(A - 13) (3.13) 

- Dilation - The definition of dilation is formulated analogically to the definition of 

erosion. Therefore, dilation of figure A with structuring element B is a set of central 

points of all structuring elements for which at least one point overlays with the figure 

A. We can find an example of this operation in Fig. 3.11. Mathematical expression 

of dilation is described by equation 3.14 

D(A,B) = AeB = UfieB(A + P) (3.14) 
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Figure 3.11: Dilation (left) and Erosion (right) 

The application of erosion and dilation results in edge smoothing of the figure and therefore 

they are often used as simple morphological filters. The problem with these methods is that 

they interfere with the area of a figure. Erosion decreases the area while dilation enlarges 

it. Considering that fact we can notice that the order in which these two operations are 

used is significant. Opening (o) and closing (•) are two operations that combine erosion 

and dilation. 

- Opening - An application of erosion followed by dilation and can be written as: 

0{A,B) = AoB = D(E{A,B),B) (3.15) 

- Closing - this operation first applies dilation which is then followed by erosion. Its 

mathematical representation is as follows: 

C{A,B) = A»B = E{D(A,-B),-B) (3.16) 

The above operations are very useful in image processing. Opening allows for removing 

small and unnecessary objects and can also be used for separation of some combined 

shapes. Closing on the other hand fills small cavities and holes in the figure. What is most 

important that both of these operations don't change the shape of big objects with smooth 

edges. 
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Figure 3.12: Example of morphological operations. 

3.4.4 Connected Components Labelling 

Estimating connected components within an image allows for more precise analysis of the 

information provided in that image. It can be seen as the extraction and representation of 

a single nuclei from an input image. If we consider a binary image J(x, y) = v, where v = 1 

or v = 0, then we can say that (x, y) is a connected component to (x', y') with respect to 

vii(x,y) = {xo,yo),{xi>yi)!—Axn,yn) = {x,,j/) and X(xi,yi) = v for i = 0,1, ...,n, where 

(xi,yi) G iV8(xj_i,?/j_i). i > 0. A connected component of value v is a set of pixels in 

which every pair of pixels is connected and assumes a value v. Fig. 3.13 shows an example 

of the binary image and its labelled connected components. 

Definition 2. A connected components labelling of a binary image I is a labelled image 
CI in which the value of each pixel is the label of its connected component. 

If we consider a label to be a unique description of a component, the connected component 

labelling can be defined according to the definition 2, taken from [174]. 

Using this definition, the algorithm for computation of the labelled components can be 

described. Shapiro and Stockman [174] described a recursive algorithm for finding the 

component from a binary image X of a size (MaxRow +1) x (MaxCol +1). The algorithm 

first negates all the 1-pixels to assign them a value of — 1 in order to distinguish unprocessed 
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Figure 3.13: Illustration of a connected components, a) Binary image, b) Labelled image. 

pixels (—1) from those that belong to the label 1. The algorithm finds pixels with a value 

— 1 and assigns them with a new label. In the next step it calls a recursive searching 

procedure to find all their —1 neighbors. Another procedure used in this algorithm searches 

and returns a set of pixels that belong to the 4 or 8-connected neighborhood of the pixel 

(L,P). 

Fig. 3.14 shows an example of image labelling applied to the fine needle aspiration biopsy 

images. 

3.4.5 Edge Detection 

Edge detection allows us to identify localization of the objects in an image and therefore 

plays a key role in image processing. In general edge detection is a combination of three 

types of image operations: smoothing, convolution and thresholding [38, 45, 76, 120, 132, 

193]. An edge is defined as a change in the intensity. We can distinguish between the three 

types of edges. These types are the most often seen in images. The first type of edges 

(Fig. 3.15a) is the easiest to detect and is characterized by a sudden intensity change. The 

second type is a local intensity change (Fig. 3.15b) and the third is based on a texture 

change (Fig. 3.15c). Each edge type requires a different detection approach. One of the 
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Figure 3.14: Example of nuclei labelling. 
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a) b) c) 

Figure 3.15: Different types of edges. 

most popular and simplest approaches is based on the first and second derivatives. In real­

ity, it is difficult to calculate the derivative from the image but a very good approximation 

of the derivative can be used. That is a local gradient that for an image I(x, y) is defined 

as: 

Gx — 

Gy — 

dl{x, y) 
dx 

dl(x,y) 
dy 

(3.17) 

(3.18) 

In digital images, gradient can be calculated as a difference of two neighboring pixels 

intensities using the so-called Robert's operators in four different directions. Robert's 

operators are defined as: 

+1 
0 

0 
-1 

0 
-1 

+1 
0 

GT G„ 

Using values calculated according to the above description we can calculate the gradient's 

magnitude (Eq. 3.19) and direction (Eq. 3.20). 

IIV/H = y/&s + (Py 

4> = arctan —-
GT 

(3.19) 

(3.20) 

A Robert's operator is very sensitive to noise and therefore performs poorly on noisy 
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images. Better results can be obtained using Prewitt's and Sobel's operators that are 

defined as: 

-1 
-2 
-1 

0 
0 
0 

1 
2 
1 

1 
0 
-1 

2 
0 
-2 

1 
0 
-1 

-1 
-1 
-1 

0 
0 
0 

1 
1 
1 

1 
0 
-1 

1 
0 
-1 

1 
0 
-1 

0° 90° OF JMF 
Prewitt Sobel 

Another edge detection method is Laplacian. This method uses second derivatives and for 

image I(x, y) is defined as: 

„ 2 / , d2I(x.y) d2I(x,y) 

^x^ = -k^ + ~wa (3-21) 

or in discrete from: 

0 
1 
0 

1 
-4 
1 

0 
1 
0 

1 
1 
1 

1 
-8 
1 

1 
1 
1 

Directions: 
Two & Four 

This method is very sensitive to noise but when applied provides us with very thin edges. 

The usage of edge detection algorithms is a tradeoff between detection precision and noise 

reduction. 

The most accurate edge detection method was introduced in 1986 by Canny [25]. This 

method seeks for the zero-crossings of the second derivative of the image convolved with a 

filter in the gradient direction for which the magnitude is larger than a predefined threshold. 

The threshold value is estimated according to the image statistics. The zero-crossings 

relate to the derivative's maxima and minima in this direction, which are considered as 
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edges in the image. This can be described with equation 3.22. 

an1 on 

where n is the direction of the gradient in the smoothed image [24, 25] and * is convolution. 

In this method the Gaussian filter is used for smoothing the image and the static threshold 

value is exchanged for the hysteresis threshold which can be adopted depending on the 

content of the image. Canny edge detection uses double thresholding in which pixels 

above the high threshold value are considered as edges and these below that value can be 

classified as edges if they are greater than the low threshold value. The performance of 

the Canny method depends on the Gaussian filter and the chosen threshold values. The 

larger values of the standard deviation a for the filter allow for better edge detection in 

the noisy images and the detection of larger edges. Small values can introduce more faulty 

edges, although they allow for the detection of finer edges due to the smaller blurring of 

the original image. The quality of the Canny edge detection purely depends on the choice 

of these parameters which should be determined depending on the desired results and the 

amount of noise in the image. 

The application of an edge detection algorithm is usually considered as one of the first 

stages of image analysis systems. Edges extracted by these methods are usually thicker 

than one pixel and therefore there is a need for additional processing of such edges. The 

process of reducing the width of the edge in the image is called thinning. This procedure 

was first described by Sherman in [175] and found itself useful in numerous application 

nowadays [56, 161, 166, 179, 187]. We can find applications of thinning in such areas as 

examination of electronic circuits, chromosome shape analysis, fingerprint classification and 

letter recognition [137]. In this study the thinning algorithm was used for the detection of 

nuclear boundaries during initial level set extraction from original images. Fig. 3.16 shows 

an example of the described edge detection algorithms applied to the fine needle aspiration 

biopsy images. 
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Figure 3.16: Comparison of edge detection algorithms for nuclear boundary extraction. 

3.4.6 Moments 

A moment is defined by the following equation: 

x y 

where (p + q) is the order of the moment [195]. Now, if we redefine (x, y) as: 

x = sio and y=msi 
moo * ™oo 

(3.24) 

then the central moments, that are translation invariant, can be defined by: 

^ = E X > - w^y - y)qx^ y)- <3-25) 
x y 

Normalization of equation 3.25 will allow for the definition of momentum-based, R S T -

invariant features. The normalization of the central moment is performed with the following 

equation: 

ife,= ^ (3-26) 

where 

p + q 
1 + 1 for (p + q) = 2 ,3,4, 
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Apart from central invariant moments, we can also distinguish moments that are transla­

tion, rotation and scaling invariant. These moments are called affine moment invariants 

(AMI) [81]. In [185] the authors described a graph method for generating affine moment 

invariants and Rosin [162] showed that AMIs can be used for the identification of ellipses. 

If we use I\ defined by equation 3.27 we can determine if the figure in question is an ellipse. 

/1 = « ^ i (3.27) 

For an ellipse, the result of the equation 3.27 is I\ = j ^ . 

3.4.7 Shape Descriptors 

During the preprocessing and segmentation stages, an FNA image underwent a number of 

operations, including thresholding and extraction of contours. It can now be transformed 

to a binary representation for shape analysis. At this stage shape descriptors are calculated 

to obtain numerous representations of the shape in the image. It is not possible to recreate 

the shape in the image from this set of numbers, but it is possible to analyze the shape 

variation between given examples. Shape descriptors should efficiently differ for different 

shapes to allow good discrimination between them. 

In the literature we can find numerous examples of shape descriptors applications for better 

shape classification [41, 66, 67, 91, 102, 142]. There are many different shape descriptors. 

Some of them only depict well known parameters such as area, perimeter, circularity, etc. 

Other will describe more complex features such as circular or elliptical variance, convexity, 

or eccentricity. Here, we present some of the descriptors used in literature for different 

types of application, not only for nuclei representation. 

• Area (A) - the number of pixels inside the shape: 

A= Y s(x>y)- (3-28) 
(x ;y)€S 

• Perimeter (P) - the number of pixels on the contour (c) of the shape: 

(x,y)€C 
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Circularity (Cir) - describes how much the shape differs from the circle [195]: 

pi 
Cir=—. (3.30) 

Circularity of the circle will yield a value of 4TT while all other shapes will assume the 

value of circularity larger than 47r. 

Eccentricity (Ecc) - in general, eccentricity is defined as a ratio of the length of the 

longest chord of the shape to the longest chord perpendicular to it. In this study we 

use a modified definition for eccentricity. According to this definition, the eccentricity 

is defined as the ratio of the distance between the foci of an ellipse that has the same 

second-moments as the shape, and its major axis length. Values of this feature vary 

between 0 for a circle and 1 for a line segment. - to* 

• Elongation (El) - is defined as a ratio of the height (h) and width (w) of the smallest 

bounding box which encloses the shape. The bounding box shall be rotated in the 

same direction as a nucleus. 

E l = ^ (3.31) 
WBb(S) 

where Bb(s) is the smallest bounding box which encloses the extracted shape. 

• Rectangularity (Rec) - describes how rectangular the shape is: 

Values of this feature vary between 0 for a line and 1 for a rectangle. 

• Orientation - describes the direction of the shape in the image. A more detailed 

description of this feature can be found in section 5.2.2. 

Peura and Ilvarinen in [142] described a following group of shape descriptors called simple 

shape descriptors (SSD): 

• Convexity - ratio of the shape's convex hull to the length of its contour: 

Pel 
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where CH{S) is a convex hull of the shape S and \Sc\ is a contour length of S. In 

this study we use a modified definition of this feature, which is described in section 

5.2.2 in more detail. 

Ratio of the principal axes: 

yy *~ Cxx \ \Cyy "T Cxx) ^\yxxCyy ^Xy) 
PRAX = V (3.34) 

yy ' ^xx i A / \Cyy i cxx) Q\CxxCyy Cxy) 

Cxx Cxy 

cyx cyy 

where the image covariance matrix is 

Cav = 

and the image center of mass is 

" = PI 

| X | p e l 

ti = Tf\J2p- (3-36) 
pel 

Compactness - ratio of the circle with the same area as the area of the shape to the 

shape contour length: 

CO MP = ^ f . (3.37) 

Circular variance - mean squared fitting error of the shape to the circle: 

CV = -!-2J2(\\p-l4-lir)2, (3.38) 
^ P e J 

/*•=JEUP-^II- (3-39) 

where an average radius length is 

1 

p e l 

Elliptical variance - mean squared fitting error of the shape to the ellipse: 

EV = Y~2 Y.iViP-vVCov-^Pi-fi) - vc)\ (3.40) 
^c pel 

where an average radius length is 

^ = \ E ^p - »)TCov-l(Pi - M)- (3-41) 
p e l 
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Depicted descriptors are able to efficiently describe the shape in the image only when the 

contour image is available, therefore it should be preceded by the edge detection algo­

rithm. The strength in representing the shapes is dependent on the precision with which 

the background information was removed before conversion of the image into its binary 

representation. In section 5.2.2 of this thesis we propose the set of features for shape 

analysis of the breast cancer nuclei. The proposed descriptors are then used as features in 

the classification stage of the malignancy grading system. 

3.5 Conclusions 

In this chapter we have reviewed methods that can be used for the representation of the 

elements in the image. Here, we can also find a description of fundamental knowledge 

about the microscopy with the review of different areas where microscopes found to be 

very useful. The examples presented show the behavior of the depicted methods when 

applied to the images used in this thesis. Prom fig. 3.16 it can be noticed that the simple 

edge detection algorithms do not lead to a good nuclear boundary representation and it 

can be assumed that a more sophisticated method is needed for such a representation. 

The reviewed edge detection algorithms provide too much noisy information in form of 

additional boundaries that can be later lead to mistaken results. So, in chapter 4 more 

advanced methods are studied for precise nuclear boundary extraction and representation. 

The algorithms described in this chapter are very popular and are widely used in the 

scientific community. With the use of such techniques we are able to extract nuclei in 

the fine needle aspiration biopsy slides and then we can extract some valuable features 

not only based on the shape descriptors but also with the application of histograms and 

moments. In chapter 5 we will describe the features that were extracted from the FNA 

images to represent the breast cancer nuclei. This representation is then used in chapter 6 

for classification of cancer malignancy according to the Bloom-Richardson grading scheme. 
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Chapter 4 

Nuclear Segmentation 

4.1 Introduction 

Image segmentation is a process in which similar regions of an image are identified. Segmen­

tation is a crucial stage in any classification system because it improves feature extraction. 

Good features are the most important part of the classification process. In this section we 

will look into some segmentation techniques that can be used when estimating a cancer's 

malignancy. 

To properly segment images from the database (see Appendix A), the task needs to be di­

vided into two subproblems. The first problem deals with segmentation of images recorded 

at low magnification and the second problem is segmentation of high magnification images. 

There are two separate techniques used for segmentation in each problem domain. 

In this chapter the reader can find the review of the segmentation algorithms used for 

nuclear boundary representation followed by the segmentation results on FNA images. 

Results show a comparison of the boundary representation to illustrate the differences 

between all methods. 
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4.2 Image Segmentat ion Techniques 

4.2.1 Thresholding 

Thresholding is one of the fundamental segmentation methods. For this algorithm we need 

to specify a threshold value T (in the same color convention as the input image). Next, 

pixels are divided into two classes according to the equation 4.1. 

/ 1 i f / ( z , y ) > T 
g{x,y) — < (4.1) 

\ 0 i f / ( * , y ) < T 

where g{x,y) is the output image and f{x,y) is the input image. 

We can also introduce multiple threshold values (T = [Ti,T2, ...,TN\) which will lead to 

segmentation into N +1 regions. Eq. 4.2 describes thresholding into three different regions 

using two threshold levels (Ti and T2). 

Ay i f / ( x , y ) < T i 

9{x, y)={ A2 if T, < f(x, y)<T2 (4.2) 

A3 iif(x,y)>T2 

where Ai, A2 and A3 represent segmented regions. 

4.2.2 Hough Transform 

Hough Transform (HT) is a method that allows us to detect shapes in images. It performs 

well for noisy images and also when object edges are not fully preserved. HT was initially 

introduced to locate lines and analytical curves within images [80, 160]. In general, Hough 

Transform maps image points into Hough Space also called an accumulator. Mapping is 

based on an analytical description of the shape of interest. 

The concept of curve detection can be easily explained using a line as an example. If L 

passes through some point (x,y), Fig. 4.2.2a. We can then represent that line analytically 

with the equation 4.3: 

L :y = ax + b, (4.3) 
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where a is a slope and b is the intersection point on the y-axis. 

In such a representation x and y are free parameters. If we change the above representation 

in such a way that a and b become free parameters and x and y are fixed, then line L will 

be described by the following equation: 

Lab:b = y - ax, (4.4) 

where a; is a slope and y is the intercept on the b-axis. 

The linear Hough Transform is based on the above dual representation of a line and the 

fact that all points on the line L will generate a set of lines in ab space that intersect at 

point (a, b). 

With the above representation a problem arises for vertical lines for which a = b = oo. To 

overcome this problem a parametric representation was introduced: 

x cos a + y sin a = r, (4.5) 

where r is the length of a normal from the line to the origin and a is the orientation of r 

with respect to the x-axis, see Fig. 4.2.2. 

The process of detecting lines reduces to finding intersections in the Hough space. Typ-

y-ax**s 

b--ax#y 

rX 

Figure 4.1: Illustration of a Hough Transform, a) Line L, b) Dual representation of L, c) 
Parametric representation 

ically it is achieved by creating an accumulator array Ace. which size depends on the 

maximum values for a and b. In the next step, for each image point (x, y) the position in 

Ace, that satisfies equation 4.4, is incremented. Finding maxima in the accumulator array 
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is equivalent to locating that points in the ab space are on a line corresponding to a and b 

which index the maximum cell. 

We can now generalize the above discussion to other analytical curves by substituting 

equation 4.3 or 4.5 with an equation for the curve of interest. For example, for ellipse we 

would substitute the above equations with equation 4.6 or 4.7. 

az tr 

Xo = x — a cos a, yo = y — bsma (4-7) 

The main drawback of this procedure is that the more free parameters needed to describe 

the curve the larger the accumulator space becomes. To resolve this problem, Ballard 

[9] introduced the Generalized Hough Transform (GHT) to locate arbitrary shapes. This 

process is similar to the previous idea of mapping. Before the actual mapping to the 

Hough space, a representation of the shape to be detected is needed. This is achieved 

by the creation of a look-up table, called R-Table, using the directional information at 

the boundary points. This procedure allows us to eliminate the need of an analytical 

description of the shape, as was the case for lines, circles and ellipses. 

To construct an R-Table we choose a reference point XR = (xr,yr) inside the shape of 

interest. Next, for each boundary point XB = (x&, y&) we calculate the following: 

r=\XB-XR\. (4.8) 

We now store r in the R-Table as a function of <j>, r((f>). The second stage consists of 

mapping of an unknown shapes into a Hough space. For each boundary point XB, we 

calculate a gradient direction according to equation 3.20. We then look for r in the R-

Table and increment all the positions in accumulator array that correspond to XB + r. 

To be able to locate arbitrary shapes using the generalized version of HT, we need to include 

scaling and rotation factors in our calculations. This will guarantee the performance is 

resistant to size and orientation changes. Although the accuracy is improved, the size of an 

accumulator has to be increased. Including scaling and rotation will require an accumulator 
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of the form ACC(XB, S. </>), where XB = (xi,. y&). As we can see, a 4-dimensional accumulator 

is needed. 

4.2.3 Level sets 

Active contours, deformable models, or snakes, allow us to precisely reflect boundaries 

of objects in the input image. The algorithm takes as an input an initial guess for the 

contours of the boundaries that is then fitted to the actual boundaries of desired objects 

in the image. With active contours two types of energies are considered during the fitting 

process. The first type is internal energy (Ei) that is defined within the curve. It is 

responsible for maintaining the smoothness of the curve during deformation, or in other 

words it measures the degree of bending along the curve. External energy (EE). which is 

the second type of energy, is calculated from the image. Its main task is to measure the 

edginess of the region through which the initial contour passes. The boundary fitting is 

based on minimization of the energy which is a sum of the two associated energies (Eq. 4.9). 

E = Ei + EE (4.9) 

Internal energy is defined by equation 4.10 and external energy is defined by equation 4.11 

E, = YJa\\Xi ~Xj\\ + P\\Xi_.y - 2Xi + Xi+1\\, (4.10) 

i^J>xpH|V/(XOII) , (4-11) 

where Xi = [xfyt]
T is a snake point. Minimization of the first term returns snake points 

that are close together. If this is negative it means that snake shrunk to the single point 

and therefore minimized. If we minimize the second term we obtain a small bending of the 

curve. 

From the above we can see that snakes are described parametrically. The other type of 

representation are level set functions that describe the boundary curve implicitly. Accord­

ing to Suri et al. [186] level sets are designed to handle topological changes but are not 

robust to discontinuous boundaries. 

60 



For the purpose of this study the level set method proposed by Li et al. [110] was im­

plemented for nuclear segmentation. Level sets were first described in 1988 by Osher and 

Sethian [140] as a method for capturing moving fronts. In the level set formulation, the 

segmentation problem is equivalent to the computation of a surface T(t) that propagates 

in time along its normal direction. The T surface is also called a propagating front, which 

according to Osher and Sethian [140] is embedded as a zero level of a time-varying higher 

dimensional function <fi{x,i): 

T(t) = {x e K3\4>{x,t) = 0} (4.12) 

An evolution equation for an interface T, where T is a closed curve in R2, can be written 

in a general form [173] as: 

^ + F|V<£| = 0, (4.13) 

The function <f> describes a surface defined by (f>(x,t) = d, where d is a signed distance 

between x and the surface T. If x is inside (outside) of T then d is negative (positive). The 

function F is a scalar speed function that depends on the image data and the function <t>. 

The main drawback of this procedure is that during the evolution, <f> can assume sharp or 

flat shapes. To overcome this problem, 4> is initialized as a signed distance function before 

evolution. Later, during evolution, it is periodically reshaped to be a signed distance 

function [110]. 

In our framework, we make use of variational level sets, introduced by Li et al. [110], 

that are more robust than those originally proposed by Osher and Sethian because they 

incorporate shape and region information into the level set energy functions. 

In 2005, Li et al. [110] proposed a modification of traditional variational level sets to 

overcome the problem of re-initialization of function <f> to a sign distance function within 

the evolution cycle. They proposed an evolution equation of the form: 

°+ = -* (4.14) 
dt d<t> K ' 
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where If is a Gateaux derivative of the energy function £ and is represented by the equation 
d<t> 

4.15: 

90 -M A0 - div V0 - \5(J>) div ( 5 | | | ) - vgSM, (4.15) 

where A is the Laplacian operator, div is the divergence operator and // > 0 is a parameter 

controlling the effect of penalizing the deviation of (f> from a signed distance function. 

All level set methods start with an initial level set function. The closer the initial level set 

function is to the final segmentation, typically, the more likely the level set method will 

quickly converge to the segmentation. Therefore, to automate the segmentation process 

and start with a good initial level set function, we make use of the iterative clustering 

approach for automatic image thresholding described in section 4.2.6. 

4.2.4 Fuzzy c-means Segmentation 

Another segmentation method taken into consideration is a fuzzy approach of Klir and 

Yuan [94] that can be used to partition the image information to extract nuclei. In general, 

a set of data X = {x\, x2, •••, xn} is supposed to be divided into c clusters with assumption 

that P = {Ai, v4.2, •-., Ac] is a known pseudo-partition and Ai is a vector of all memberships 

of Xfc to cluster i. Now, using equation 4.16 the centers of the c clusters can be calculated 

[191]. 

(4.16) * = ^ * f r ) ] > . i = l,2,...,c 

where m > 1 is a weight that controls the fuzzy membership. The memberships are defined 

by equation 4.17 if \\xk — Vi\\2 > 0 for all i G {l,2,...,c} and if \\xk — Vi\\2 = 0 for some 

i G / C {l,2,...,c} the memberships are defined as a nonnegative real number satisfying 

equation 4.18 for i E I. 

Ai{xk) E 
.3 = 1 

iFfc - Vj 

\xk - Vj 

| 2 \ ^ n " 1 

^jAi{xk) = \ 

(4.17) 

(4.18) 
i€l 
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The clustering algorithm seeks a set P that minimizes the performance index Jm{P) which 

is defined by equation 4.19 and the optimal solution to this problem can be found in [17]. 

n c 

k=l i = l 

Compared to all the other segmentation techniques, fuzzy c-means algorithm (FCM) 

doesn't need any additional processing and was applied to segment the color informa­

tion in the image. In [172], Schiipp et al. presented an approach which is similar to the one 

used in this thesis, where the initial level set is obtained by the fuzzy c-means algorithm. 

Here, we use automatic thresholding for initial level set creation and a fuzzy c-means 

method is used as a segmentation method itself. From the segmentation results we can see 

that fuzzy c-means is a sufficient segmentation method when used by itself and the level 

set would only smooth the nuclear boundary. 

4.2.5 Textural Segmentation 

A third segmentation technique image textural description based on second order statistics 

was used to generate grey level co-occurrence texture features [77]. Here, for a spatial 

window inside the image the conditional joint probabilities Cy are calculated according 

to equation 4.20 for all pairwise combinations of grey levels assuming that the distance 

between the pixels is known. 

C« = v c 5 p, (42°) 

where Pij is the frequency of occurrence of two grey levels i and j and G is the num­

ber of quantized grey levels. The probabilities are stored as a gray level co-occurrence 

matrix, where the (i,j) element of the matrix represents the probability Cy. To identify 

textures within an image we derive four features from the dependency matrix. The four 

features consist of entropy, correlation, inertia (correlation) and energy. These properties 

are described by the following equations: 

Entropy = - ] T Ci5 InC l j; (4.21) 
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G - l 

Contrast = J ^ Cij{i - j)2., (4.22) 

Jnertf a = V (* " ^ ) ( j " " ^ ^ ' . (4.23) 

G-l 

Energy = ] T C?-, (4.24) 
i j ' = 0 

where a is the standard deviation and // is the mean. 

To be able to efficiently segment an image using this method, an image needs to be con­

verted to the gray level representation. 

4.2.6 Segmentation of Cells Groupings 

When segmenting groups from lOOx magnification images, there is no need for a sophis­

ticated segmentation algorithm such as the Hough transform or level sets. Here we are 

concerned only in a rough estimation of the size of the groups present in the image rather 

than in their precise description. In this study, areas of the image where cells grouping are 

visible have been segmented. 

For this purpose we make use of an iterative clustering approach for automatic image 

thresholding. This method was first proposed in 1978 by Riddler and Calvard [154]. In 

principle, their method seeks a threshold T, represented by a curve, within an image, 

tha t is restricted to have a bimodal histogram and the final threshold level is calculated 

according to the following equation: 

T = a + a , (4.25) 

where //i and ^ are the means of the components separated by T. 

It is necessary to mention tha t the image red channel provides best information. From 

Fig. 4.2 it can easily be noticed that red channel doesn't carry as much background in­

formation as the remaining green and blue channels. Due to this reasoning the image red 

channel is used for calculation of the threshold level and further segmentation of the image. 
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b)' M:^ 
Figure 4.2: Comparison of image RGB channels - lOOx magnification, a) Original image 
(RGB), b) Red channel (R), c) Green channel (G), d) Blue channel (B). 

4.2.7 Nuclei Segmentation 

Contrariwise to low magnification images, high magnification smears need a sophisticated 

and precise method of segmentation. These kinds of images are used for extraction of 

nuclear features and therefore as precise a nuclei representation as possible is required. 

As was previously mentioned there were numerous attempts for nuclear segmentation in 

literature. Out of these, level sets seem to be the best choice since they provide good 

segmentation results in a reasonable amount of time. 

In this work four well known segmentation algorithms were compared, to test their applica­

bility to breast cancer nuclei segmentation. The compared methods include the Hough 

transform, level sets, fuzzy c-means and texture based segmentation. Comparative results 

are presented in section 4.3. 

For high magnification images we also use the red channel because it provides best infor­

mation about nuclear structures. During the staining process nuclei stain with shades of 

purple and when the red channel is extracted all the nuclear features are preserved while 

the background information is removed (see Fig. 4.3). This observation leads us to extract 

and threshold the image red channel and then to use it for nuclear segmentation. 

.--V" 
-•% Xi 

safrV^ 
a> 

# • 

b) C>: , - - S I d) 

Figure 4.3: Comparison of image RGB channels - 400x magnification, a) Original image 
(RGB), b) Red channel (R), c) Green channel (G), d) Blue channel (B). 
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4.3 Segmentation Results 

In this section segmentation results on FN A biopsy images at lOOx and 400x magnification 

are presented. Due to the nature of the images taken into consideration, the segmentation 

task was divided into two subproblems. Images with low magnification that are used for 

group-based feature extraction do not require an implementation of complicated segmenta­

tion algorithms such as Hough transform or level sets. Simple thresholding is good enough 

for a rough estimation of the groups in the image [86]. Figs. 4.4 and 4.5 show an exam­

ple of the segmentation of lOOx magnification images. From the figures we can see that 

applying simple thresholding with automatic threshold level estimation is a good method 

for segmenting these kind of images. We can see that groups are well separated and the 

background information is removed. Application of morphological filters with small oval 

structuring element can eliminate small artifacts as can be seen on Fig. 4.6. 

Figure 4.4: Example of segmentation results for lOOx magnification image with intermedi­
ate malignancy grade, a)Original image, b) Thresholded image, c) Contour 

Figure 4.5: Example of segmentation results for lOOx magnification image with high ma­
lignancy grade, a)Original image, b) Thresholded image, c) Contour 
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Figure 4.6: Elimination of small artifacts by morphological filtering, a) Original image, b) 
Thresholded image, c) Eroded image 

The second type of images in the database (see Appendix A) consist of FNA smears 

recorded at 400x magnification. These images require more sophisticated methods of seg­

mentation than lOOx magnification images because they are used for extracting features 

related to cells nuclei. These features need a good estimation of nuclear boundaries for 

the calculation of shape-based features and the determination of the staining intensity of 

possibly all the nuclei in the image. For this purpose we compared different segmentation 

techniques to show which one performs best and works in a reasonable time. Here we 

compared well known methods such as the Hough transform and level sets. From these 

algorithms, the Hough transform (HT) is a well know technique for elliptical objects seg­

mentation and at first seems to be a very good choice for nuclei segmentation [87]. From 

the literature review we know that this is the most popular technique used for this kind of 

segmentation. The result of the application of HT to images in our database is presented 

on Fig. 4.7b. For comparison, Fig. 4.7c presents level set segmentation for the same image. 

From the figure we can see that the HT does not reflect the nuclear boundary as precisely 

as the level set. It is necessary to note that to obtain a final contour with HT an additional 

active contour algorithm for precise boundary estimation shall be applied, while with level 

set being an active contour algorithm itself, there is no need for additional methods. This 

observation allowed us not to use the HT with an additional technique. Introduction of 

an additional active contour algorithm would have an impact on the running time of the 

segmentation which is essential during medical diagnosis. Long running times will make 

such a system less interesting for pathologists since it will be faster for them to look and 
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diagnose the slide themselves. 

This observation led to the introduction of two additional segmentation algorithms for 

comparison purposes. Both methods proved to be powerful in medical imaging as men­

tioned in previous chapters. They are also faster than the Hough transform. Here, fuzzy 

c-means (FCM) and gray level quantization (GLQ) methods were used for nuclei segmen­

tation. Fig. 4.8 shows segmentations obtained with these two methods for single nuclei. 

From the figure we can see that FCM provides us with a better separation of nuclei than 

GLQ. 

It can be easily noticed that during the segmentation process sometimes it might be dif­

ficult to set a border between two nuclei which are close to each other. This can happen 

when the two nuclei overlap either completely or partially. In pathology, this problem is 

solved by taking into consideration only the visible parts of each nuclei. In this research, 

we also disregard these parts of nuclei that are hidden underneath other nuclei. The fea­

tures calculated in chapter 5 are averaged for each image, which allows us to minimize the 

impact of the overlapping cells or nuclei. 

Figure 4.7: Segmentation results for 400x magnification images, a) Original images, 
b)Hough transform segmentation, c) Level set segmentation. 
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Figure 4.8: Segmentation results for 400x magnification images, a) Original images, 
b)Fuzzy c-means, c) Gray level quantization. 

Segmentation 
algorithm 

HT 
FCM 
GLQ 
LS 

Case 
1 

3.02 
0.01 
0.01 
0.25 

2 
4.25 
0.01 
0.01 
0.26 

Table 4.1: Segmentation running times for images from Fig. 4.9 in minutes. 

4.4 Conclusions 

This chapter of the thesis was concerned with the segmentation of nuclei. The presented 

results show the behavior of four well known and widely used segmentation algorithms. 

From these results the following conclusions can drawn: 

1. Hough Transform 

• Precise method for nuclei localization. Out of the four compared methods, HT 

provides the best localization of nuclei in the image [87]. 

• The boundaries of nuclei are not well represented (see Fig. 4.7b). 

• To obtain a precise boundary representation, HT requires an additional active 

contour algorithm. 

• Introduction of an additional algorithm increases the running time of the seg­

mentation and therefore makes it less attractive for the pathologists. 
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Figure 4.9: Comparison of segmentation results for 400x magnification images, a) Hough 
transform, b)Fuzzy c-means, c) Gray level quantization, d) Level set. 
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• There is a possibility of multiple and confusing nuclei localization (see Fig. 4.9a). 

2. Level Sets 

• Precise method for boundary representation. 

• This method requires an initial level set - initial boundary. 

• Comparing to HT, the running time of level sets is much faster (see Table 

4.1). The initial boundary can be obtained with thresholding which reduces the 

computation load. 

• Provides a very good trade-off between the running time and boundary repre­

sentation precision. 

3. Fuzzy C-means 

• This method is based on color classification of the neighboring pixels. 

• Provides good representation of the boundaries. 

• The boundary representation is better than that obtained with HT and Gray 

level quantization but not as good as with level sets. 

• Fuzzy c-means does not require any initial boundary calculations. 

4. Gray Level Quantization 

• Segmentation is based on a textural description of the nuclei. 

• Similar to fuzzy c-means. gray level quantization does not require any initial 

contour calculations. 

• The boundary representation is better than with HT but not as precise as with 

either level sets or fuzzy c-means. 

In general, it can be noticed that level sets, fuzzy c-means and gray level quantization 

are a better choice for nuclei segmentation when compared to Hough transform alone. 

In the remaining parts of this thesis we will concentrate only on these three algorithms. 
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Fig. 4.9 shows a comparison of the segmentation methods and Fig. 4.9a-c illustrates the 

techniques chosen for breast cancer nuclei segmentation. From this figure it can be noticed 

that although FCM provides better nuclei segmentation then GLQ, the level sets represent 

the nuclear boundary the most precisely. It can easily be noticed that GLQ algorithm loses 

a lot of nuclear information during the segmentation. 

The presented results show that the proposed choice of segmentation techniques is adequate 

and should lead to a good feature extraction and class separation [85]. In the following 

section the proposed set of features is presented. 
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Chapter 5 

Feature Extraction 

5.1 Introduction 

This chapter describes different techniques used for the extraction of features from fine 

needle aspiration biopsy slides. In section 5.2 a reader can find a detailed definition of 

extracted features with discrimination between the BR factors followed by a description of 

the discriminatory power calculations and feature correlation. 

5.2 Nuclear Feature Extraction 

The features presented here were chosen to correspond to the indicators used for the Bloom-

Richardson scheme. In this thesis two kinds of images were taken into consideration when 

extracting features for breast cancer malignancy grading. The magnifications of images 

correspond to the magnifications used during a cytological examination of a breast tissue. 

For the calculation of the low magnification features, images recorded with lOOx magni­

fication are used and for the calculation of high magnification features, images obtained 

with 400x magnification are used. 

5.2.1 Low Magnification Features 

In this study we calculated three features based on the cells' ability to form groups. These 

features are defined based on the number of groups and their area. Single cells, that are 

present in the images with high malignancy, are also represented as a group that consists 

of only one cell. If we take into consideration the description of Bloom and Richardson [19] 
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of the dispersion measure and the nature of the images taken during the FNA examination 

(see Fig. 5.1) we can see that groups with larger area are less malignant that those with 

smaller areas. Analogically, we can say that images with a larger number of groups are 

more malignant that those that contain only one or few groups (see Fig. 5.1c and d). 

Taking that into consideration we propose the following three features as a measure of 

Figure 5.1: Illustration of cells groupings in low magnification images, a) and b) Interme­
diate malignancy, c) and d) High malignancy. 

cancer malignancy: 

• Average area (AWo) - is calculated as the average number of nuclei pixels. This 

feature represents the tendency of cells to form groups. If Aiw is large then 

there is one or a few large groups in the image. 

• Number of groups (NG) - To measure this feature we calculate the number of 

groups in the image that weren't removed during the segmentation process. 

Segmentation allows us to remove unwanted information in the image. In this 

case we remove the background information. 

If NG is large then there are numerous groups in the image, which suggests a 

high malignancy case. 

• Dispersion (D) - We define the dispersion as a variation of cluster areas (Ac) which 

is determined by the following equation: 

^ = ^ - r E ( ^ - ^ i o o ) 2 , (5.1) 
u n — 1 ^—' 

where n is a number of cell clusters in the image and AWQ is the average area. 
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Large values of this feature represent less dispersive cells and therefore a lower 

malignancy of the cancer. 

According to the above description, we calculated features for all of the 34 low magnifi­

cation images in the database. Calculated features were then used in conjunction with 

features extracted from images recorded with high magnification. In Table 5.1 some of 

the calculated low magnification features are collected. These features are illustrated on 

Fig. 5.2 and represent the most distinct cases from both malignancy classes. From the ta-

Feature 
Av. Area 

No. of Groups 
Dispersion 
BR Grade 

Case 1 
173.9 

30 
55.56 

G3 

Case 2 
122.5 

10 
62.5 
G3 

Case 3 
266.1 

48 
7.87 
G3 

Case 4 
149 

1 
0 

G2 

Case 5 
4038.9 

6 
0.009 

G2 

Case 6 
2216 
52 

0.031 
G2 

Table 5.1: Some of the calculated low magnification features along with pathologist grading. 

ble we can see that the average areas of the groups for high malignancy cases have smaller 

values than for those with intermediate malignancy. We can notice the same pattern for 

number of groups which typically have larger values for more malignant images. Taking 

only number of groups into consideration would introduce discrepancy into our classifi­

cation task because we can have more groups with large areas (i.e., Case 6) in case of 

intermediate malignancy. For this reason area and number of groups should be combined 

and used as a feature vector of two features. Here, we also introduced a third feature that 

should also be added to a feature vector thus improving our classification (see Table 6.2). 

From Table 5.1 we can see that dispersion values grow with increasing cancer malignancy. 
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Original Groups Grade 

Case 1 

Case 2 - ^ ^ i v Z^_t t_ l_ s y 1 _ 

Case 3 

Case 4 

Case 5 

?w n'-*ii"MM ir 

Case 6 

G3 

G3 

G3 

G2 

G2 

G2 

Figure 5.2: Cell groupings. 
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5.2.2 High Magnification Features 

To precisely estimate the necessary features, only the nuclear features, rather than cellular 

features, are taken into consideration because only these features are the most discriminant 

and these are the features graded by pathologists. There are numerous features that can 

be extracted for this purpose. In this section, a set of features is described and their 

discriminatory powers are tested. The described features can be divided into five categories 

[195, 196]. 

1. Binary features - features calculated based on the binary image ( J ) . A set of 

nuclei in the image, N = {Ni,N2, ...,Nn}, can be defined as a collection of all 

connected components and the nucleus Ni is a set of pixels that are contained 

in the extracted nuclei. Using this definition, the following features can be 

extracted from X: 

• A r e a (Ai) - calculated as the sum of all pixels (x, y) of the nucleus(A^) [117, 

183]: 

A= J^Iff^y). (5.2) 
(x,y)€X 

where 1 ^ is an indicator function of set iVj. 

• Per imeter (p^) - the length of the nuclear envelope. Calculated as length of 

the polygonal approximation of the boundary (-Bj)[182, 183]: 

Pi= Y, B*(x>y)- (5-3) 
(x,y)€Bj 

• Convexity ( Q ) - calculated as the ratio of nucleus area and its convex hull 

[212]. which is the area of the minimal convex polygon that contains the 
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nucleus(see Eq. 5.4). 
A 

Ci = Area(CH(Ni)Y (&"4) 

where CH(Ni) is a convex hull of the ith nucleus. 

Convex shapes will yield a value of 1. while concave shapes will have a value 

less than 1 (see Fig. 5.3). 

1.0000 0.9681 0.6651 0.7702 0.3258 

Figure 5.3: Graphic representation of convexity, taken from [212] 

• Eccentricity (EcC{) - allows us to track how much a segmented nucleus dif­

fers from a healthy nucleus [117]. Healthy nuclei will assume circular shapes 

while cancerous nuclei can assume arbitrary shapes. We calculate eccen­

tricity as the ratio of the distance between the foci of an ellipse fitted to the 

nucleus that has the same second-moments as the extracted nuclei, and its 

major axis length. Values of this feature vary between 0 and 1. These are 

degenerate cases because a shape whose eccentricity is 0 is actually a circle, 

while a shape whose eccentricity is 1 is a line segment (see Fig. 5.4). 

0Q 
L I a 

fee = 0 Ecc=0.5 Ecc = 0.9 

Figure 5.4: Graphic representation of eccentricity. 

• Centroid (Ctri) - finds a center point of a nucleus along each row (X) and 

column (Y). It is also often called a center of mass of the object. The 
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centroid ( X J , ^ ) can be calculated as [195]: 

X-1Y-1 X-1Y-1 

** = x E E JW*&*); a = x E EfcJv^fc)- <5-5) A A j = 0 fc=0 - ' j=0 fc=0 

Orientation (Or,) - this feature is also called an axis of least second moment 

and provides us with the information about the orientation of the nuclei. 

It is considered as an axis of least inertia. When the coordinate system is 

placed at (3̂ -,17,) then the orientation Ort can be defined as [195]: 

Ort = tan(29i) 

(5-6) 
inn Oft \ — o £ j = o £ * = o Jfc7V'(•?'*;) 

The angle 0* is measured counterclockwise from the x-axis (see Fig. 5.5). 

axis of least 
second moment 

Figure 5.5: Graphic representation of the orientation feature. 

Projection (Prji) - this feature is calculated as a sum of all pixels along rows 

and columns of the nucleus image [117, 195]. Summation of all the rows 

provides us with a horizontal projection hi(x) and summation of all the 
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columns determines the vertical projection Vi(y) (see Fig. 5.6): 

and 

y - i x-\ 

k=0 j=0 

Prji = {hi,Vi). 

(5.7) 

(5.8) 

Cy> • * 0 0 0 
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Figure 5.6: Illustration of the projection feature. 

2. Momentum based features - moments are generally used for the extraction of 

features that are rotation, scaling and translation (RST) invariant. Based on the 

normalized central moments, % , the following seven momentum-based features 
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are calculated [196]: 

V\ = rj2o + r]02 (5.9) 

<P2 = (?/20 - ?702) + 4 ^ (5-10) 

y?3 = (?730 — 37712)
2 + (3?72i — T703)

2 (5-11) 

V?4 = (f?30 + ?7l2)2 + (?721 + ??03)2 (5-12) 

V?5 = (»730- 37712)(?730 + ??12)[(?730 + »?12)2 -3(7721 +7703)2] 

+(37721 - 7703)(7721 + r703) [3(7730 + 7712)2 - (7721 + 7703)2] (5-13) 

<P6 = (mo - 77o2)[(?730 + r7i2)
2 - (1721 + ?7o3)2] 

+4/711(7730 + 7712) (7721 +»7o3) (5-14) 

</?7 = (37721 - 7703X773O + T7i2)[(?730 + ??12)2 - 3(?72l + 7703)2] 

-{Vao - 37712)C»/2i + ?7o3)[3(773o + r/is)2 - (7721 + ?7o3)2] (5.15) 

3. Histogram based features - the image histogram describes the occurrence fre­

quency of intensity values in the image (see §3.4.1). Features based on the 

histogram are considered to be statistical features and the histogram is consid­

ered to be a probability distribution function of grey level values in the image 

[195]. These features allow for the determination of the characteristics of that 

distribution for the nuclei image taken into consideration. The histogram P(g) 

can be defined as a probability function of the form: 

m = ^ . (5-16) 

where M = X * Y is the number of pixels in the image and N(g) is the number 

of pixels at gray level g. 

Based on this definition five histogram based features are calculated. These fea­

tures reflect the parameters of the histogram described in section 3.4.1. The five 

features are the mean, standard deviation, skew, energy and entropy. Fig. 5.7 

illustrates the behavior of these features. 
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Mean 
37 

Std. Dev. 
35 

Skew 
5.3 

Energy 
0.050 

Entropy 
4.94 

Mean 
75 

Std. Dev. 
56 

Skew 
1.7 

Energy 
0.051 

Entropy 
4.76 

Figure 5.7: Illustration of histogram based features, taken from [195]. 

4. Textural features - textural features are used to measure the texture information 

of the image [75. 188, 195]. Here, the texture of the nucleus is taken into 

consideration. To extract textural features, a co-occurrence matrix is calculated 

(see section 4.2.5), which provides us with information about the relation of pairs 

of pixels and their corresponding grey levels. If we assume that the distance 

between the pixels and the directions are given, then we can extract five GLCM 

based features. In section 4.2.5, energy (eq. 4.24), entropy (eq. 4.21) and inertia 

(eq. 4.23) are defined. Additionally to the textural features described in §4.2.5 
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we can extract the following two features: 

Inverse Difference = / ] / ] ,. 'J .,; / o r « ^ j , (517) 
* j 

Correlation — ^ / _ A * — Atx)(.7 — A^Cii (5.18) 

where 

axay 

A*x ~ / ,, * / j Ciji 

i j 

Vy = X^'X^' 

Ox = j X ^ 1 - ^ ) 2 ^ ^ ' 

a^ = JE^'^E^-
A sixth textural feature that can be introduced is calculated as an average grey 

level (eq. 5.19), as proposed by Street et al. [184]. 

k 

k 
ri = \Yjr~, (5.19) 

1=0 

where k is the number of nuclei in the image and r; is define by eq. 5.20 

7 7 = - Y " Iri{x,y) (5-20) 
71 * * n 

x,y£Ni 

5. Color based features - Color images consist of three components each represent­

ing a primary color. Each of these components can be treated as a separate 

intensity image. To calculate color features we can use any of the previously 

defined features and apply it to each color band. This requires three times as 

many calculations as for the grey level image. To overcome this problem, the 

spherical coordinate transform (SCT) can be applied to the RGB image which 

takes into consideration the relation between the RGB channels. More pre­

cisely, it transforms the image information of RGB channels into a 2-D color 
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space with brightness L (see Fig. 5.8). The transformation from RGB values 

into the SCT components is given by the following set of equations [195]: 

L 

LA 

VR2 + G2 + B2, 

cos - , 

= COS - 1 R 

L sin ZA 
(5.21) 

6REEN GREEK 

Angle B 

RED RED 

ure 5.8: Illustration of the spherical coordinate transform, taken from [195]. 
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The features defined in this section can also be divided into two categories depending on 

the type of the polymorphy that is being described. The first category describes nuclei 

changes in shape and size (see Fig. 5.9 a) and b)) and the second describes the changes 

in color or textures, which is equivalent to staining intensity changes (see Fig. 5.9 c)). To 

describe size changes the binary, momentum and spectral features can be used while for 

the description of staining changes the histogram, textural and color-based features are 

more suitable. 

Figure 5.9: Illustration of cells polymorphy. a) and b) Intermediate malignancy, c) and d) 
High malignancy. 

Tables 5.2 and 5.1 present some of the calculated features for both types of images and 

their pre-assigned grade given by an expert pathologist. From the tables we can notice that 

the features confirm the biological cells features that are characteristic for more and less 

cancerous cases. This can also be noticed from Fig. 5.10 which shows the cases presented 

in Table 5.2. 

Based on the literature review, in this study, we extracted 34 features describing the nuclei 

in the image. If we compare the results from Table 5.2 we can notice the correlation 

of some of these features with the malignancy of the cancer. Analogously to the l'OOx 

features, the tendency of some of feature values reflects the malignancy stages of the 

cancer. It can be easily noticed that the areas of nuclei in the images are larger for high 

malignancy that for low malignancy cases. Since perimeter is closely related to area, and 

for large areas perimeter will also be large, the same reasoning can be applied. Beside 

the shape-related features we also extracted features that represent nuclear circularity 

and we calculate textural features for gray levels statistics and for the image red channel 

alone. Cancerous nuclei assume shapes that are irregular and not necessarily circular. 
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Feature 
Area 

Perimeter 
Eccentricity 
Convexity 
x-centroid 
y-centroid 
Orientation 

ver. projection 
hor. projection 

¥>r 
<P2 

<P3 
</>4 

<Ps 
<A> 
<f7 

hist, mean 
hist. Std.Dev. 

hist, skew 
hist, energy 
hist, width 

text, energy 
text, inertia 

text, correlation 
text, homogeneity 

L hist, mean 
L hist. Std.Dev. 

L hist, skew 
L hist, energy 
L hist, width 

Avg. gray level 
BR Grade 

Case 1 
198 
51 

0.6510 
0.9534 
170.4 
133.7 
8.77 
10.29 
11.44 

0.7459 
0.3363 
0.1862 
0.4785 
0.0726 
0.2774 
0.0349 

5.54 
21.67 
3.79 

0.8773 
881783 
0.8566 
1608 

0.7926 
0.9753 
0.0311 

2.19 
73.4 

0.8773 
32252 
87.4 
G3 

Case 2 
429 
70 

0.7144 
0.9499 
197.3 
119.4 
5.42 
15.17 
15.87 
1.0655 
0.8824 
1.0395 
1.5412 
0.6433 
1.4460 
2.4644 

3.41 
20.42 
5.90 

0.9458 
1577365 
0.9395 

438 
0.8747 
0.9933 
0.0107 
•1.46 
138.3 

0.9458 
21847 
124.2 
G3 

Case 3 
414 
74 

0.6746 
0.9400 
175.4 
156.7 
0.62 
15.21 
15.21 

1.5626 
1.2264 
0.7429 
3.4390 
-0.2439 
3.8077 
4.1495 
10.35 
26.92 
2.39 

0.7462 
946988 
0.7298 
2309 

0.8495 
0.9646 
0.0557 

2.77 
52.8 

0.7459 
42563 
75.9 
G3 

Case 4 
429 
94 

0.7283 
0.8643 
161.6 
154.9 

-13.92 
12.85 
13.74 
1.3458 
1.0181 
0.7311 
2.6076 
0.2152 
2.6270 
2.1059 

5.61 
24.77 
4.38 

0.9006 
1971352 
0.8854 
1124 

0.8230 
0.9828 
0.0226 

1.87 
86.8 

0.9006 
23687 
110.0 
G2 

Case 5 
1177 
137 

0.5884 
0.9104 
181.2 
121.3 
1.55 

22.34 
26.57 
1.1824 
0.9855 
1.0234 
1.8912 
2.0803 
1.8762 

-0.0126 
15.90 
38.59 
2.12 

0.7213 
3200727 
0.7163 
1703 

0.8986 
0.9739 
0.0505 

2.85 
58.6 

0.7210 
58257 
105.4 
G2 

Case 6 
256 
60 

0.6650 
0.9377 
190.4 
130.7 
-5.93 
11.41 
11.05 

0.9293 
0.6444 
0.6033 
1.0022 
0.1548 
0.8042 
0.9827 
16.05 
38.53 
2.07 

0.7187 
3029530 
0.6931 
3355 

0.7999 
0.9486 
0.0627 

3.32 
54.1 

0.7185 
90321 
105.3 
G2 

Table 5.2: Some of the calculated high magnification features along with pathologist grad­
ing for selected cases. 
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More malignant cases usually assume cylindrical shapes while less malignant will be more 

circular. When comparing the obtained results in Table 5.2 it can be noticed that these 

tendencies are preserved. 

5.3 Feature Validation 

5.3.1 Kolmogorov-Smirnov statistics 

The features described in the previous section (§5.2) were used for training and testing 

classifiers (see §6). To estimate the classification performance and the power of extracted 

features their discriminatory powers were calculated according to the procedure shown in 

this section. For the purpose of this study two discriminatory power measures based on 

Kolmogorov-Smirnov statistics were used. 

Kolmogorov-Smirnov (KS) measure is a statistical measure where features are presented 

as a distribution related to a data [42]. Originally, Kolmogorov and Smirnov introduced a 

statistical procedure which uses the maximum vertical distance between two distributions 

to check how well the distributions match each other [42]. 

The idea of the Kolmogorov measure is to test the goodness of the fit of a random sample 

from an unknown distribution to check the hypothesis that this distribution is actually a 

specified function. Fig. 5.11 illustrates this algorithm. From the figure we can see that if 

the Kolmogorov test value is small then our data distribution can be assumed to represent 

accurately a specified distribution. This description of the Kolmogorov statistics, also 

called the one-sample Kolmogorov-Smirnov test, is a valuable test but it is assumed that 

the hypothesized distribution is fully specified. The original description of Kolmogorov 

goodness of fit has numerous modifications. These modifications allow the use of this test 

when distribution parameters are estimated from experimental data. 

Here, the Smirnov modification of the Kolmogorov measure is described. It is also called 

a two-sample Kolmogorov-Smirnov (KS) test due to the fact that it tests two samples 

from different data distributions [42]. The idea of the test is the same as the one-sample 

test. If we consider two independent samples, first of a size n, Xi,X2,-..,Xn, and the 
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Figure 5.10: Segmented nuclei and nuclear contours. 
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second of a size m, Y\,Y2, ...,Yn then we denote F{x) and G(x) respectively to be their 

unknown distributions. To perform the KS test we take into consideration the following 

Figure 5.11: Graphical representation of the Kolmogorov statistics, taken from [42]. 

assumptions: 

1. Data consists of random samples. 

2. Two samples are mutually independent. 

3. The measurement scale is at least ordinal. 

4. Variables are assumed to be continuous, 

and the following hypotheses are tested: 

HQ : F(x) = G(x) for all x from — oo to + oo 

Hi : F(x) ^ G(x) for at least one value of x 

If we now denote Si(x) and S^x) as empirical distributions based on the X and Y samples 

respectively then we can define the test statistics T as the greatest distance between Si (x) 
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and 52 (x), see eq. 5.22. We reject a hypothesis H0 at the level of significance a if T > 1 — a. 

If the hypothesis is rejected, the function returns 0 and 1 otherwise. 

T = sup|51(a:)-52(:r) (5.22) 

Fig. 5.12 shows a graphical representation of the KS test. From the figure we can see that 

if the distance between two empirical distributions is large then we can assume that the 

data point from these distributions are drawn from two different populations. 

1 

0.9 

0.8 

0.7 

0.6; 

105 

0.4 

" I 
0.1 

0! 

Empirical CDF 

-

j 

-
I 
I 

I 
-

-

-

Figure 5.12: Graphical representation of the Kolmogorov-Smirnov test. 

5.3.2 Feature discriminatory power 

For all of the features, the discriminatory powers were calculated to show which of the 

presented features are the most distinctive in terms of malignancy classification and the 

results are presented in Table 5.3. As mentioned in section 5.3.1 KS measure tests if 

the data comes from two different distributions. For this test we present our features as 

distributions. To check the discriminatory power of our features we calculate the maxi­

mum distance between distributions of high and intermediate malignancy classes. Fig. 5.13 
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presents plots of such distributions from which feature discriminatory powers were calcu­

lated, for comparison purposes three different variations of the Kolmogorov-Smirnov tests 

were performed. The first test shows if the samples are drawn from the same distribution. 

If the samples come from two different distributions then the KS Test returns a value 0. 

The remaining two variations show us how different the samples are. The assumption is 

that the farther the samples are from each other, the higher is the probability of coming 

from two different distributions is. This tendency is represented in the Table 5.3 by AKS 

and SKS Tests. 

From Fig. 5.13 and Table 5.3 we can see that lOOx features offer better separation between 

the malignancy classes than 400x features. Although structural features present better 

separation than shape features, the pleomorphic features provide better classification than 

lOOx features when only that subset of features is taken into consideration. This can be 

seen from the classification results presented in the next section. 

5.3.3 Feature Correlation 

With such a large number of features, questions may arise about the performance of the 

classifier. It can be assumed that some of the features are related to one another which 

causes the introduction of erroneous information to the training set. To minimize such a 

correlation, the degree of statistical dependence between features was calculated. Such a 

dependence is determined by calculation of the features' covariance. Covariance axy is a 

statistical measure of the deviation between variables x and y and it can be defined as: 

axy = e[{x - x)(y - y)) = J^ J2^x ~ W^y ~ ^ P ( x ' y ) ' ( 5 2 3 ) 
x€X yey 

where P(x, y) is a joint probability mass function. 

Analogically, we can define a covariance matrix S which contains covariances Ojj at ijth 

element of Xi and yj according to the following formula: 

<*ij = Oji = z[(xi ~ Xi){yj - Vj)] i,j = 1,2,..., n. (5.24) 
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Figure 5.13: Empirical distributions of the features. 
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Features 

Areaioo 
No. of Groups 
Dispersion 
Area 
Perimeter 
Eccentricity 
Convexity 
x-centroid 
y-centroid 
Orientation 
ver. projection 
hor. projection 

<Pi 
¥>2 

<f3 
ip4 

V>5 
¥6 
lfi7 

hist, mean 
hist. Std.Dev. 
hist, skew 
hist, energy 
hist, width 
text, energy 
text, inertia 
text, correlation 
text, homogeneity 
L hist, mean 
L hist. Std. Dev. 
L hist, skew 
L hist, energy 
L hist, width 
Avg. Gray level 

KS Test 
FCM GLQ 

0 
0 
0 

LS 
0 
1 
0 

0 
0 
0 

0 
1 

AKS Test 
FCM 

20.356 
8.432 

22.409 
4.324 
7.326 
9.891 
7.321 
6.635 
8.426 
8.212 

12.468 
10.959 
6.556 
5.915 
5.438 
4.247 
5.485 
5.359 
1.935 
5.274 
4.853 
4.065 
4.315 
4.200 
4.009 
4.788 
3.138 
4.788 
5.732 
5.421 
5.532 
4.315 
4.597 
2.715 

GLQ 
20.356 
8.432 

22.409 
8.671 

• 7.074 
3.618 
6.003 
3.962 
6.312 
7.118 
9.291 
8.476 
4.394 
4.471 
3.965 
3.926 
4.071 
3.768 
2.974 
5.365 
5.147 
4.403 
4.426 
6.153 
4.859 
8.291 
9.165 
8.406 
5.585 
6.053 
4.406 
4.426 
4.635 
4.903 

LS 
20.356 
8.432 

22.409 
9.032 
7.841 
5.065 
4.915 
3.376 
2.679 
6.376 
3.206 
4.062 
7.053 
7.465 
7.462 
6.241 
8.338 
6.321 
3.606 

11.912 
11.276 
10.659 
10.006 
8.424 
9.529 
6.750 
7.024 
6.750 
8.418 
9.688 
7.544 

10.006 
9.041 
5.971 

SKS Test 
FCM 
0.429 
0.084 
0.494 
0.009 
0.069 
0.114 
0.078 
0.055 
0.091 
0.086 
0.151 
0.129 
0.046 
0.040 
0.030 
0.030 
0.035 
0.032 
0.004 
0.031 
0.032 
0.021 
0.018 
0.023 
0.019 
0.029 
0.009 
0.029 
0.044 
0.040 
0.035 
0.018 
0.038 
0.008 

GLQ 
0.429 
0.084 
0.494 
0.076 
0.063 
0.016 
0.049 
0.022 
0.044 
0.063 
0.089 
0.077 
0.017 
0.018 
0.013 
0.010 
0.005 
0.010 
0.005 
0.039 
0.034 
0.028 
0.028 
0.046 
0.039 
0.095 
0.096 
0.097 
0.033 
0.042 
0.020 
0.028 
0.023 
0.027 

LS 
0.429 
0.084 
0.494 
0.088 
0.076 
0.016 
0.032 
0.011 
0.011 
0.038 
0.009 
0.021 
0.057 
0.060 
0.066 
0.046 
0.074 
0.043 
0.010 
0.152 
0.137 
0.122 
0.098 
0.076 
0.080 
0.054 
0.058 
0.054 
0.079 
0.095 
0.060 
0.098 
0.099 
0.034 

Table 5.3: Features discriminatory powers for a = 0.05. 
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The covariance matrix is a square, symmetric matrix where diagonal elements represent the 

variance of x and off-diagonal elements are the covariance values. The following equation 

illustrates the E matrix: 

E = 

e[{xi - xj)(xi - xj)] e[(xi - xl){x2 - x2)) 

e[{x2 - x2){xi - xi)] e\{x2 - x2){x2 - x2)] 

e[{xi - xx){xn - xn)] 

e[(x2 -x2)(xn -xn)) 

e\{xn - xn){xi - x{)] e[{xn - xn)(x2 - x2)} ••• e[(xn - xn)(xn - xn)] 

On 

0 2 1 

Od\ 

ai2 .. 

022 • • 

OdT -•• 

- Old 

• • Old 

• • Odd 

on o\ 

0\d 

02d 

°l 

(5.25) 

Od\ Od2 . 

The values obtained by the determination of the covariance tell us if x and y are closely 

related or not. Covariance will assume large values if they are similar and small for those 

not closely related. 

Here, the correlation coefficients where calculated to visualize dependencies between ex­

tracted features. Correlation coefficient is a normalized covariance defined as: 

P = 
'xy 

0XOy 
(5.26) 

The coefficient values must be between —1 and +1 meaning maximal negative and positive 

correlation respectively. 

Fig. 5.14 visualizes the correlation between features. In the figure white represents high 

correlation with a coefficient value equal to 1. Correlation coefficient assumes a value of 

— 1 for not correlated features which are represented as black in Fig. 5.14. 

In the figure, two areas of the least correlation can be noticed. These areas include textural 

and luminescence features, which are the least correlated amongst all features described 

here. The shape based features show some correlation to other features. In the figure 

we can also notice that the highest correlation was recorded for the same type of features 

such as momentum features which have the highest correlation of all. Similar behavior 

can be noticed for shape based features. If we take the lOOx magnification features into 
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consideration, we can see that these features show moderate correlation both to the 400x 

features and between themselves. 

5.4 Conclusions 

In this chapter a set of extracted features were presented. There are 34 features calculated 

based on the segmentation results from chapter 3. From this chapter we can notice that 

there are two types of features that have to be calculated. The type of the feature depends 

in the image magnification. It can easily be noticed that low magnification and high mag­

nification features will be able to discriminate between malignancy cases by themselves but 

the combination of both should provide best results. When compared against classification 

results by a pathologist, one can see that this is true. 

The results presented in this chapter also show that the collection of features proposed 

for this study have good discriminatory powers. The correlation map shows interactions 

between features and allows for elimination of those features that closely correlated with 

other features. We can then replace these features with only one. This procedure allows 

for reduction of a size of the feature vector that should reduce the complexity of the clas­

sification algorithms. This reasoning was taken into consideration in section 6.11 were the 

results on the smaller data sets are presented. 
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Chapter 6 

Malignancy Classification 

6.1 Introduction 

This chapter describes the malignancy classification process and gives a description of the 

classifiers tested during this research. Pattern classification deals with the discrimination 

between classes of patterns. The process of discrimination is not guaranteed to work for all 

patterns. Each classification method is expected to misclassify some of the input patterns. 

This property leads to for the definition of an error rate that is a measure of each known 

classification algorithm. The lower the error the better classification performance of our 

system. Analogically we can define a classification rate that will tell us how well the system 

classifies the unknown patterns. Ideally this rate should be 100%, therefore the closer we 

get to that ideal rate the better that classification performed by the system. To classify 

an FNA cytological tissue we use classifiers that take a feature vector as an input and 

respond with a two element output vector (1,0)T for intermediate malignancy and (0,1)T 

for high malignancy. In this chapter, the classification methods will be presented that will 

be studied for~their ability to classify malignancies. 

In this chapter, the reader can find detailed information about classifiers used for breast 

cancer malignancy grading. A description of training and testing sets used in this study 

is also provided. Section 6.5 introduces neural networks in general and is followed by a 

detailed presentation of multilayer perceptron and principal component based neural net­

works. The description provides a reader with additional information on the limitations 
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and initial conditions of the classifiers used. The remaining sections of this chapter present 

the other classifiers used in this study for comparison purposes. We tested support vector 

machines, self-organizing maps, fc-nearest neighbor rule and tree classifiers. In this chap­

ter, a reader can also find a description of the cross-validation technique that was applied 

in this thesis as well as a description of the collected database. At the end of this chapter, 

a summary of the presented results, and some conclusive insights about their impact and 

usefulness for breast cancer malignancy grading is presented. 

6.2 Naive Bayes Classifier 

Pattern classification deals with the problem of assigning a certain class to the pattern 

in question. There are numerous techniques that can be applied for data classification. 

The most popular and fundamental algorithm is a classifier based on the Bayesian decision 

theory [55, 82,141]. This is a statistical approach that takes into consideration a probability 

and costs that are associated with the classification of the data to the certain class. This 

rule can be applied under the assumption that all of the relevant probabilities have to be 

known and attributes of a feature vector x = [x\, x2,.., XDf]
T are statistically independent 

[55, 90] and therefore the posterior probability for consecutive attributes can be described 

with the following equation [178]: 

p(X = x\u> = i) = TTppf,- = Xj\u — i), (6.1) 
i=i 

where X and to are the random variables. 

The classification problem for c number of classes is based on defining a set of discrimination 

boundaries gi(x), % = 1,..., c and classifying x to class Wj if 

gi(x)>gj(x) for all j 7^* (6-2) 

It can be noticed that Bayes classifier needs to calculate c discriminant functions and the 

selected pattern corresponds to the largest discriminant [52, 55, 78, 155, 192]. 

If we take into consideration a continuous univariate normal or Gaussian distribution 
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(Eq. 6.3), then we can have a family of distributions for all attributes and classes. 

rtXj-XiV-i) = ̂ L-exp (-{Xj~JMi)2)t (6.3) 

where i is the class number, j is the feature vector attribute, the expected value (mean) of 

x can be described as: 

keSi 

and the variance (expected squared deviation) is: 

"' N, 

4 = ^E^f-"«)2- (6-5> 
1 k€S, 

It can be noticed that the Gaussian normal density is fully specified by the mean //y- and 

variance oij. This fact can be then used for classifier training purposes which relies on 

the estimation of the unknown mean and variance according to the Eqs. 6.4 and 6.5 with 

the constraint that, for i — th class, the summation is performed only on the training set 

elements that belong to the decision region of the class. Now, it is possible to rewrite the 

i — th decision boundary <fc(x), which will yield Eq. 6.6 after elimination of the constant 

parameters. 

<*(*) = * J ] - exp ( - ( 3 % ~ ^ ) 2 ) (6.6) 

The Bayes rule for classification is a popular method used in different aspects of pattern 

recognition. We can find some approaches to image segmentation based on Bayes classifier 

[210] as well as in medical applications [151]. 
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6.3 K-Nearest Neighbor Rule 

K-nearest neighbor (KNN) is one of the simplest classification algorithms. It is based on 

the distance calculation between the pattern in question and its k neighbors. The decision 

is made based on the closest association between the pattern and the neighbors. The 

pattern is classified to the closest class in terms of a distance amongst its k neighbors. 

The training procedure is very simple and is based on recording the entire training set. 

Testing usually uses a Euclidean distance for calculation of distances between training 

samples and the tested sample. The class assigned to the sample is the one for which the 

distance is smallest. To be able to calculate the Euclidean norm it is usually necessary to 

normalize the data to avoid any data inconsistency. 

The literature review showed that the KNN rule is a popular method for classification 

[69, 71, 111, 178]. We can find different application areas such as text and character 

recognition [11, 71] and numerous medical applications [20, 69, 111, 114]. 

6.4 Decision Trees 

Decision trees belong to the group of more complicated classification methods than the 

rest of the algorithms presented in this study [22, 60, 95]. Most of the traditional pattern 

recognition algorithms are based on the feature vectors that are real-valued and some kind 

of metric can be applied to them [55]. Tree classifiers on the other hand are able to solve 

classification problems that involve nominal data such as a list of attributes like fruit colors 

and sizes. 

Decision trees are constructed in a way where the classes are held in the leaves of the 

tree and the decision rules are kept in the interior nodes including the root [18, 165, 178]. 

Fig. 6.1 shows an example of a typical decision tree. 
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- - - depth 0 

- - • depth 1 

depth (m-1) 

terminals 
(class labels) 

Figure 6.1: Example of a general decision tree, where C(t) is a subset of classes accessible 
from node t. F(t) is a feature subset used at node t and D(t) is a decision rule used at 
node t. Taken from [165]. 

The path from the root to the correct leaf is called a decision path. The construction of the 

tree is a complicated process that will not only reflect the training set but it also should 

generalize the knowledge about the problem [59. 68, 146, 148]. In this study we make 

use of the CART (Classification And Regression Trees) method described by Breiman et 

al. [22] that provides a general framework for decision tree construction. In general, the 

tree-growing process declares the node to be a leaf or finds another property that can be 

used to split the data represented at the node into subsets creating new nodes. This is 

process is run recursively until all the data is represented by the constructed tree. 

Tree classifiers are found in many different applications, such as networking [112] or medi­

cine [79, 144] for example. In [79] Hothorn and Lausen showed good performance of tree 

classifiers for glaucoma classification and in [144] Polat and Giines show that decision trees 

were able to classify dermatological lymphographic data with 96.71% and 87.95% accu­

racy respectively. The good behavior of the decision trees presented in literature were a 

motivation to test their performance for breast cancer malignancy classification. 
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6.5 Neural Networks 

The idea of neural networks is based on the real interactions of human nerve system. The 

basic element of the neural network is the neuron, or sometimes also called a perceptron. 

It is a mathematical model of a biological neuron [150, 194]. In Fig. 6.2 we can see the 

basic schematic of a neuron. Combining a few neurons together in such a way that the 

neurons can interact with one another make a neural network that is able to process input 

data and provide us with a certain decision. 

We can distinguish three types of networks depending on their architecture. If there is only 

one layer of neurons then it is called a single-layer neural network. A multilayer network 

has at least two separate layers and the output signal depends on information received from 

the previous layer, Fig. 6.3. The third kind of a neural network is called a recurrence 

F(s) |—*y> 

Figure 6.2: Example of a neuron in a neural network 

neural network because the output signal depends not only on the inputs but also on the 

output through the loop-back. 

Each neuron accepts an input signal of the form X = [x-i:x2, ••-,£„] and each of the sub-

signals are assigned a weight. F{si) is called an activation function of the neuron and 

depending on the type of the neuron activates its output. For a perceptron, which is the 

simplest neuron model, the activation function is of the form: 

. 1 if Si > 0 , x 

y « * = < f 6.7 
0 if Si < 0 
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Figure 6.3: Neural Networks, a) single layer, b) multilayer 

where Si is an output signal calculated from equation 6.8, 

N 

Si = ^2 wvxi (6-8) 

i=o 

Another type of neuron is called a sigmoidal and it is characterized by an activation function 

of the form: 

Before we can use our neural network it is necessary to train it such that it will be able 

to recognize patterns. Training of a neural network is based on adjustments of weights 

depending on the output value. Training is performed on known patterns for which the 

output is known. Such a set of known patterns is called a training set. Analogously a set 

of unknown pattern is called a testing set. 

6.5.1 Multilayer Perceptron (MLP) 

MLPs are simple and one of the most widely used neural networks trained with a back-

propagation method in a supervised manner [55]. These networks are powerful and are 

able to approximate arbitrary functions [101]. The backpropagation learning allows for 

error propagation through the network and adaptation of the weights of the hidden neu­

rons. This error correction training assumes that the desired network response is known a 
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priori which is usually the case in pattern recognition. 

Here, an improved backpropagation training algorithm is used, called momentum learning. 

It was introduced by Rumelhart et al. [164] to make the training procedure faster and for 

better convergence. This improved learning technique uses equation 6.10 for updating the 

weights in hidden layers in which the step size is denoted by rj and the local error by Si 

which is determined with equation 6.11 for the output layer and with equation 6.12 for the 

hidden layer [78]. 

Wij(n + 1) = Wij(n) + T)8i(n)xj(n) + a(wij(n) — Wij (n — 1)) (6.10) 

where a G [0.1,0.9] is the momentum term and n is the iteration. 

Si{n) = ei(n)(f/i(vi(n)) (6.11) 

where ej(ra) is the error signal for that neuron and <^(t>j(n)) is a derivative of the activation 

function. 

&i(n) = $(vi(n)) 5^$fc(n)iyw(n) (6.12) 
k 

where 8k{n) is a local gradient at neurons in the kth layer that are connected to the hidden 

neuron j . 

To follow the progression of learning, the evolution of the mean squared error is checked 

and represented as a learning curve. From the curve we are able to control the learning pa­

rameters. The difficulty of the classification task is also visible. Analyzing the smoothness 

of the curve, the step size can be estimated. When the curve oscillates, the step should 

be decreased and if the curve is smooth then we can increase the step size to make the 

training faster. Further analysis of the curve can lead to decisions on the network topology. 

For example, the curve stabilization after a few iterations with unsatisfactory error rate 

suggests additional hidden neurons or layers, or even a completely different architecture. 

6.5.2 Principal Component Analysis (PCA) Neural Networks 

PCA networks are a combination of supervised and unsupervised trained neural networks. 

PCA analysis finds a solution in an unsupervised manner from input data and then a 
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supervised MLP is used for classification of the components [138]. 

Typically, PCA analytically finds the projections into an orthogonal set of directions within 

the input space, called eigenvectors. The projection corresponds to the eigenvalues. Ac­

cording to Sanger [167] and Oja [138] this approach can be accomplished with a single layer 

neural network that uses the Hebbian rule for training. Fig. 6.4 shows a typical neural 

network that is used to solve the PCA problem. This network takes p components as input 

and yields m outputs as described by equation 6.13. The number of outputs has to smaller 

than the number of input components, and weights are adjusted according to the Hebbian 

rule described by equation 6.14. 

> yo 

* yi 

** ym- i 

Figure 6.4: PCA neural network, taken from [134] 

p - i 

yi{n) = ^2wij{n)xi(n) forj = 0 ,1 , . . . , m - 1 (6.13) 

3 j _ Q ] O — 1 
Awij{n) = r)[yj(n) - y^n) ^ u>ki{n)yk{n)] ' '""' (6.14) 

fc=o 3 = 0 , l , . . . , m - 1 

As previously mentioned, PCA networks find eigenvectors without calculation of the cor­

relation function and the weights are related to the principal components. This leads to 

finding corresponding eigenvalues on the output of the network and these can be further 

used as an input to another neural network. 

Here, a feature vector is presented as the input of the PCA network and the estimated 

principal components are then used as the input to a MLP neural network for malignancy 

classification. The size of the eigenvector is equal to the size of the feature vector. The 
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advantage of this method is that it reduces the number of inputs for the MLP, which posi­

tively affects a required number of training pattern of our network. This results in shorter 

training times. 

The main disadvantage of this method is poor classification when data points are poorly 

separated. In this case the estimation of eigenvectors is distorted resulting in poor estima­

tion of the principal components. 

6.6 Support Vector Machines (SVM) 

Support Vector Machines are used to separate two or more classes of patterns or data points 

by constructing a boundary between them, see Fig. 6.5. An unknown point will be classified 

according to its orientation with respect to the boundary. To estimate the boundary 

Figure 6.5: Illustration of class' separation, a) straight line, b) curve 

between classes we use boundary points from each class. These points are called support 

vectors. This procedure is an iterative approach that minimizes some error function, e.g., 

1 N 

-wTw + Cy2£i (6.15) 

with the following restrictions: 

yi(wT<f>(xi) + b) > 1 — Si and £* > 0, i=l,...,N (6.16) 

where C and b are constants, w is the weight vector, £* is a bias value that deals with 

overlapping cases and ^ is a kernel function that transforms input data into the feature 
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space. The constant C has a major influence on the error rate and has to be carefully 

estimated during the training process. 

Depending on the error function we can distinguish between different SVMs and also there 

are different kernels used out of which the most common is the Radial Base Function 

(RBF) kernel. Kernels can be represented as follows: 

Xi * yi linear 

("fXiXj + const.)po1 polynomial 
<t>={ (6.17) 

e x p ( - 7 | x i - x i |
2 ) RBF 

tanh(7XiXj + const.) sigmoidal 

The SVMs used in this study use the idea of large margin classifiers for training, that 

provide a good generalization of the problem. Large margin classifiers use a kernel-based 

method for data separation. 

The learning process uses the Adatron algorithm [61] which guarantees the convergence to 

the solution assuming that the solution exists. According to the authors this method is able 

to learn nonlinear decision boundaries. This algorithm can be extended by substitution of 

the inner product of patterns in the input space by the kernel function (see eq. 6.18) which 

allows for maximization of the following function 
N N N 

J(a) — ̂ Q i - -^ y^^y^^azajdidjG2a2(xi - Xj) (6.18) 
i=\ i = l j=l 

with the following constraints: 
N 

JZ diOCi = °' Gi - 0' V* G lj -N-
i=l 

where feature vectors. <2,, dj € {2,3} are malignancy grades, a, are multipliers 

and G is a Gaussian kernel with variance a. 
N 

g(x) = di(Y^djajG2a2{x-Xj) + b) (6.19) 

where g is a decision boundary. 

Qi(n + 1) = oti(n) + Aa,(n), if ct,(n) + Actj > 0 

oti(n + 1) = oti{ri) if ai(n) + Aa{ < 0 
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M = mmg(x) (6.21) 
i 

where Qj is nonzero if and only if Xj is a support vector. 

Training starts with a starting multiplier cv, = 0.1 and a terminating threshold t = 0.01. 

We calculate Ac*j = 77(1 — M] and perform an update according to equation 6.20 as long 

as M > t, 77 is a predefined learning rate. 

6.7 Self-organizing Maps (SOM) 

In addition to the methods that use a supervised techniques for training we also tested 

Self-organizing maps as a representative of the unsupervised methods. SOMs networks 

reduce the input space into representative features according to self-organizing process 

and are trained in an unsupervised manner [98]. These networks consist of only one layer 

with a linear transfer function for its neurons. It uses a comprehensive learning algorithm 

for weights estimation. This procedure updates the weight of only one, winning neuron for 

each input pattern. According to Kohonen [98] the introduction of an additional weight 

change of the neighboring neurons with smaller step size results in better correspondence 

to the features of the input data. 

To train the SOM network we start with initialization of weights with small random values 

and for each input data a winning neuron is found according to equation 6.22. Neighboring 

weights are then calculated according to equation 6.23. 

i (x) — argmin ||~a?(n) — Wj\\ (6.22) 
3 

Wj(n + 1) = Wj(n) + r](n)[x(n) — Wj(n)} (6.23) 

According to Kohonen, the neighborhood taken into consideration should be Gaussian and 

he suggests the neighborhood description according to equation 6.24. 

where j° is the winning neuron and \rj — TJO\ is a distance between the winning node and 

the j — th node. From this we can notice that this is an adaptive procedure, because 
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the neighborhood and learning rate depend on the current iteration. Due to this fact our 

neighborhood should be as large as the output space at the start and should be decreasing 

during the iterations according to the equation 6.25. We can take the same reasoning for 

the step size, which should be big at the beginning and progressively decrease according 

to equation 6.26 until it reaches zero. 

'<"> = S ^ M (6'26) 

where a,,, b^, ca and d„ are constants. 

When stabilization of the SOM is reached, the output of the map is presented as an 

input to another classifier for further classification. Here, we use the MLP architecture for 

neighborhoods classification to assign them one of the malignancy grades. This procedure 

make MLP learning easier and faster by reduction of the dimensionality of the input space. 

6.8 Set Partitioning - Cross—validation 

Cross-validation is a statistical method of partitioning of the data into subsets for further 

analysis. This method is also called a rotation estimation [51, 96]. In principal, one subset 

is used for testing while the remaining subsets are used for training the classifiers. Fig. 6.6 

illustrates the partitioning of the data into four subsets. In general, this is called a K-fold 

cross-validation for K = 4. The idea behind K-fold cross-validation is that the data is 

partitioned into K subsets from which one is retained for testing and the remaining K-l 

subsets are used for training. This process is repeated K times and each time a different 

fold is used for testing. 

Leave-one-out cross-validation involves a degenerate case of K-fold cross-validation, where 

K is equal to the number of all samples in the data set. Here only one sample is used for 

validation purposes and requires K-l repetitions (see Fig. 6.7). For large data sets this is a 

very time consuming method. The most commonly used K for cross-validation is K — 10 

which provides good estimation of the error rate. The overall error is usually calculated as 
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Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 

Total number of examples 

Test examples 

Figure 6.6: 4-fold cross-validation, taken from [44]. 

an average error of all the runs and can be calculated as: 

Err = — 2_\ Erri (6 
i = l 

Experiment 1 

Experiment 2 

Experiments 

Experiment N 

Total number of examples 

/ 

Single test example 

Figure 6.7: Leave-one-out cross-validation, taken from [44]. 
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6.9 Classification Algori thm Evaluation 

To be able to say how the proposed classifiers behave and to be able to evaluate their 

performance there is a need for introduction of quantitative criteria. The most popular 

and reliable evaluation method is based on the confusion matrix that contains information 

about the actual and predicted classifications [97]. The fields of the matrix are filled 

depending on the classification result of the tested samples. Fig. 6.8 shows an example of 

a general confusion matrix for the two class problem. 

Actual 
Positive 
Negative 

Predicted 
Positive 

TP 
FP 

Negative 
FN 
TN 

Figure 6.8: Two class problem confusion matrix. 

The TP, TN, FP and TN entries are assigned during classification and they have the 

following meaning: 

• TP - True Positives - the number of Positive classifications correctly classified as 

Positive. 

• TN - True Negatives - the number of Negative classifications correctly classified as 

Negative. 

• FP - False Positives - the number of Negative classifications incorrectly classified as 

Positive. 

• FN - False Negatives - the number of Positive classifications incorrectly classified as 

Negative. 

Based on these values we can now define sensitivity and specificity of our system. The 

system sensitivity is a measure of the system's ability to make true positive classifications 
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and can be defined as: 
TP 

Sens = — —-. (6.28) 
TP + FN v ' 

The specificity is an ability of true negative classifications and its definition is: 

Sensitivity and specificity define the behavior of the proposed classification system and the 

closer Sens and Spec values are to 1 the better is the performance of such a system. In 

oncological related classification it is very important to keep both of these values as high 

as possible. Here we can introduce another measure to evaluate the overall quality of the 

recognition as: 

Q= Sens + Spec ( 6 3 Q ) 

6.10 Database of Fine Needle Aspirates 

The database used in this study is a collection of images recorded during cytological exam­

inations of the breast. The images were collected at the Department of Pathology, Medical 

University of Wroclaw, Poland by prof. Michal Jeleri. The database consists of 101 FN A 

biopsy images (see Appendix A)that were graded by an expert pathologist. During this 

study we assumed the pathological gradings to be our 'gold standard.' 

All the collected biopsies were recorded with two different magnifications using the setup 

described in section 3.2.1 and stored as bitmap files of the size 764x572 pixels. The first 

subset of 47 FNA aspirates consists of images with lOOx magnification. Images from this 

subset are used to calculate features related to the first factor of the Bloom-Richardson 

grading scheme. They allow us to extract features based on the cells' tendency to form 

groups. Healthy and low malignant cases (see Fig. 6.9a) tend to form one or two large 

groups in the image, while those cases with large malignancy are loosely spread and groups 

usually consist of only a few cells. Based on that information three features are proposed: 

average area of groups, number of groups and cells dispersion measure. These features were 

described in more details in section 5.2 and their discriminatory powers were presented in 
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section 5.3. 

The second subset of images in the database consists of 54 FNA aspirates recorded with 

400x magnification. These images were used for calculation of all the features describing 

nucleus pleomorphism and they include binary histogram, momentum, textural and color 

based features. These shape-based features provide us with valuable information about 

cells nuclei. Here we make use of the differences between healthy and cancerous cells as 

described in section 2.2. Essentially, low malignancy cases have uniform size and staining 

while in more malignant cases this tendency is disturbed and nuclei in the image will as­

sume nonuniform sizes and will have stronger staining variations (see Fig. 6.9). A detailed 

description of these features can be found in section 5.2. It can be noticed that there are 

6 instances where 2 images with 400x magnification were taken for one lOOx magnification 

image and one instance were 3 high magnification images were taken for one low magnifi­

cation image. This is due to the fact that there were two or more suspicious regions in the 

lOOx image. These cases are treated as separate cases and no prior knowledge about that 

fact is taken into consideration during testing. All of the images in the database were 

II G2 G2 G3 G3 

Figure 6.9: Example of images from the database. 

stained with the Haematoxylin and Eosin technique (HE) which yielded purple and black 
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stain for nuclei, shades of pink for cytoplasm and orange/red for red blood cells. All the 

images were obtained by an Olympus BX 50 microscope with mounted CCD-IRIS camera 

connected to a PC computer with MultiScan Base 08.98 software. 

6.11 Classification Results 

To check the behavior of the presented features, several tests have been performed. We 

tested the performances of different classifiers on different testing sets. The first set train­

ing and testing sets is presented in Table 6.1. These sets were chosen randomly and they 

consist of different number of samples used for training the classifiers [84, 88]. Tests on a 

different sets were also performed with cross validation method and will be described later 

in this section. Additionally, tests on different features were also performed. 

To be able to fully test the classifiers performance there is a need to calculate the error 

rates of the training process. This will allow for the evaluation of the training procedure 

and further enhancement of the feature set to be more distinctive. Here, low and high 

set # 1 
set # 2 
set # 3 
set # 4 
set # 5 
set # 6 

G2 
Training [%] 

50 
50 
50 
50 
30 
70 

Testing [%] 
50 
50 
50 
50 
70 
30 

G3 
Training [%] 

30 
50 
70 
90 
50 
50 

Testing [%] 
70 
50 
30 
10 
50 
50 

Table 6.1: Training and testing sets used for classification. 

magnification features were tested separately to check for their ability to classify breast 

cancer malignancy when only structural or pleomorphic features are taken into considera­

tion [88]. Table 6.2 presents classification results obtained for lOOx magnification images. 

From that table we can notice that KNN for k = 9 has the highest average error rate of 

48.3% for all performed tests, and its overall performance for all k;s taken into considera­

tion is worse than for any other classifier. The tree classifiers performed better that KNN 
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achieving 40.9% error which is still significantly higher than other compared algorithms. 

The best performance for these type of images was recorded for the SOMs network with an 

average error rate of 10.56% and best for test set # 6, where the most G3 cases were taken 

for testing. The best recorded error rate in this case was 7.8%. Such a large difference 

of the classification rate can be caused by the fact that KNN and tree classifiers are a 

non-parametric methods and they require a large data set to achieve good classification 

performance. From this discussion we can conclude that although structural features pro­

vide good separation between malignancy classes, as proved by the KS measure, they do 

not provide good classification and therefore are not very good for malignancy classifica­

tion when used by themselves. Hence we can conclude that additional features are needed 

to support the classification. 

To test the performance of high magnification images, we used the same set structure as 

Classifier 
SOM 
MLP 
SVM 
PCA 

TREE 

KNN 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Avg. 

S e t # l 
9.33% 
11.99% 
11.96% 
16.61% 

20% 
30% 
30% 
30% 
30% 
30% 
30% 
40% 
30% 
30% 
30% 
31% 

Set # 2 
16.21% 
10.9% 
15.4% 

10.65% 
80% 
70% 
70% 
70% 
70% 
70% 
80% 
70% 
80% 
80% 
80% 
74% 

Set # 3 
11.42% 
12.36% 
14.29% 
11.51% 

20% 
20% 
10% 
20% 
20% 
30% 
20% 
20% 
10% 
20% 
20% 
19% 

Set # 4 
9.96% 
10.21% 
13.23% 
12.28% 

20% 
30% 
20% 
30% 
20% 
40% 
30% 
30% 
20% 
30% 
30% 
28% 

Set # 5 
8.67% 
9.79% 
17.16% 
8.96% 
80% 
70% 
80% 
80% 
80% 
80% 
70% 
80% 
80% 
80% 
80% 
78% 

Set # 6 
7.8% 
8.75% 
8.67% 
7.79% 
20% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 

Avg. Performance 
10.56% 
10.67% 
13.44% 
11.3% 
40.9% 
42.9% 
42.9% 
43.8% 
43.1% 
46.6% 
44.8% 
46.5% 
43.2% 
48.3% 
46.1% 

44.82% 

Table 6.2: Error rates of tested classifiers for lOOx magnification images. 

for lOOx magnification images (see Table 6.1) and the summary of classification rates is 

presented in Table 6.3. Here, it can be can noticed that SVMs have the lowest error rate 

of all the classifiers for set #5 , which consists of only 30% of G2 cases. Such a low error 

rate tells us that the cases used for in this set were the most distinct for both classes and 
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that G2 cases in this set are the most characteristic and the highest class separation was 

found. This can also be proved by the distribution plot on Fig. 5.13 for this set. Other test 

sets didn't provide such a good classification giving average error rates even higher than 

for lOOx images. Out of all the tested classifiers MLP performed best achieving an average 

error rate of 17.3% with the lowest error for set # 5 , 6.73%. The worst average performers 

was again recorded for KNN classifier with k = 1 achieving 52.4% error. Here, the same 

observation as for lOOx images can made that the KNN performance is significantly worse 

than for all of the remaining algorithms. We can also notice that the tree classifier achieved 

better classification accuracy than KNN with an error of 39.2%, which is still rather high 

in comparison to the remaining classifiers. 

Having in mind the classification rates for lOOx and 400x magnifications, additional tests 

Classifier 
SOM 
MLP 
SVM 
PCA 

TREE 

KNN 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Avg. 

S e t # l 
23.28% 
23.18% 
21.55% 
22.84% 

40% 
50% 
40% 
40% 
40% 
40% 
40% 
40% 
40% 
40% 
40% 
41% 

Set # 2 
21.91% 
16.47% 
20.25% 
16.32% 

40% 
50% 
40% 
50% 
30% 
40% 
40% 
40% 
30% 
30% 
30% 
38% 

Set # 3 
19.49% 
22.76% 
20.91% 
20.88% 

30% 
60% 
50% 
60% 
30% 
50% 
30% 
40% 
30% 
30% 
30% 
41% 

Set # 4 
22.43% 
12.44% 
23.15% 
22.01% 

50% 
60% 
50% 
60% 
60% 
70% 
60% 
70% 
40% 
70% 
40% 
58% 

Set # 5 
6.32% 
6.73% 
5.76% 
7.22% 
40% 
50% 
40% 
50% 
40% 
50% 
30% 
60% 
50% 
50% 
50% 
47% 

Set # 6 
23.75% 
24.71% 
24.71% 
23.66% 

30% 
40% 
40% 
40% 
40% 
40% 
40% 
40% 
40% 
40% 
40% 
40% 

Avg. Performance 
19.53% 
17.30% 
19.39% 
18.82% 
39.20% 
52.40% 
42.50% 
51.70% 
42.00% 
48.90% 
41.60% 
48.60% 
41.20% 
45.60% 
40.20% 
45.47% 

Table 6.3: Error rates of tested classifiers for 400x magnification images. 

on a subset of features were performed. For this purpose, classifiers were fed a feature 

vector that consists of all the lOOx features and five 400x features. For this test areas (Ai00 

and Ai), number of groups, dispersion, perimeter, eccentricity, convexity and average gray 

level were used as a feature vector. As can be seen in Table 6.3 test set # 5 provided the 

best learning with the most distinct cases for 400x images. If we look at the performance 
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Classifier 
SOM 
MLP 
SVM 
PCA 

TREE 

KNN 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Avg. 

Set # 5 
5.22% 
3.30% 
6.76% 
8.16% 
40% 
20% 
20% 
20% 
20% 
20% 
20% 
20% 
20% 
30% 
20% 
21% 

Best 
5.22% 
3.30% 
6.76% 
7.65% 
10% 
20% 
20% 
20% 
20% 
20% 
20% 
20% 
20% 
30% 
20% 
21% 

Worst 
17.27% 
15.77% 
16.73% 
10.01% 

40% 
30% 
40% 
40% 
40% 
40% 
40% 
40% 
40% 
50% 
40% 
40% 

Average 
11.53% 
9.81% 
13.30% 
10.92% 
18.1% 
25.2% 
28.8% 
30.0% 
29.4% 
32.8% 
32.0% 
32.9% 
32.7% 
35.7% 
32.7% 

31.22% 

Table 6.4: Error rates of tested classifiers for lOOx and 400x features. 

of that set for the lOOx images we can see that the recorded error rates were reasonable, 

except for SVMs. Although it was the best performing classifier for high magnification 

images we can still say that set # 5 would be the best choice for training our classifier with 

all the extracted features. This reasoning can be proved with the results obtained from 

the tests and summarized in Table 6.4. Here, the tests were performed only on set # 5 

since it was the best performing and as we can see from the table the results confirm our 

reasoning. Taking this into consideration we can say that the use of the most distinct cases 

for training purposes is essential. This reasoning could be applied not only the problem of 

breast cancer grading but also for other cancerous data. 

As we can see the classifiers performed best when both lOOx and 400x features together 

were used. In addition to these results, a comparison of the classification behavior on 

differently segmented nuclei was also performed. Additional 400x features were added to 

the feature vector and their influence on the classification results was studied. To perform 

these tests a cross-validation method was used for data partitioning into training and test­

ing sets. For the purpose of this study, the most common and well known variation of 

k-fold cross-validation was used, for k — 10. All four classifiers were trained according to 

the principals of cross-validation and their errors were recorded. Table 6.5 summarizes all 

of the recorded error rates for all used classifiers and segmentation algorithms. 
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From the table we can notice that the best average performance was recorded for multilayer 

perceptron when the level set method was used for nuclei segmentation. MLP achieved 

an average error of 12.31% while for the remaining two segmentation algorithms their 

recognition error increased and were 12.69% and 13.59% for textural and fuzzy c-means; 

respectively. The rest of the tested classifiers performed significantly worst than MLP 

achieving the highest error of 20% for SVMs with level set and fuzzy c-means segmen­

tations. These results are visualized in Fig. 6.10. From the figure we can easily notice 

the better MLP recognition rate, which was as good as 98.92% for set # 7 using fuzzy 

c-means segmentation with 77.2% sensitivity and 60.04% classification quality (see Table 

6.6). Table 6.6 shows the calculated sensitivity, specificity and quality values for all of the 

tested classifiers. From this table one can see that the MLP has the best quality measures 

for all of the compared segmentation algorithms. Only SOMs seem t a have higher quality 

for level set segmentation. The worst classification quality can be noticed for KNN(A; = 1) 

with textural segmentation. 

In chapter 5 feature validation results were presented. Based on the results of the KS 

measure and features correlation we can choose smaller sets of features that will decrease 

the size of the feature vector while keeping approximately the same error rate. According 

to this reasoning, different features sets were chosen and their performance was tested. 

Two tests were performed depending on the validation technique. First, the correlation 

results were used to reduce the number of features by taking into consideration only one 

or two features from the most correlated features. After this reduction, the classifiers were 

trained and their performance was tested with a 15-element feature vector. The features 

that were taken into use are: areayoo, number of groups, dispersion, perimeter, convexity, 

x-centroid, orientation, vertical projection, </>3, histogram mean, histogram energy, textural 

homogeneity, red channel histogram mean, red channel histogram skew and red channel 

histogram width. The classification results are collected in Table 6.7 and the sensitivity 

and quality measures are summarized in Table 6.8. From these tables it can be noticed 

that feature vector reduction did not significantly increase the classification error rate. 
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a) 

b) 

Figure 6.10: Error rates bar charts. a)Level set, b) Gray level quantization, c) Fuzzy 
c-means. 
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Classifier 

SOM 

MLP 

SVM 

PCA 

TREE 

KNN 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

LS 
FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 

Sensitivity 
84.20% 
76.00% 
72.00% 
77.30% 
77.20% 
73.30% 
84.00% 
65.00% 
84.70% 
60.00% 
61.30% 
83.30% 
82.20% 
83.20% 
84.70% 
70.20% 
62.80% 
45.50% 
85.30% 
90.00% 
88.00% 
76.80% 
66.30% 
69.50% 
86.70% 
84.20% 
87.50% 
74.70% 
66.50% 
82.20% 
78.00% 
88.70% 
90.00% 
66.20% 
83.70% 
85.50% 
82.20% 
90.70% 
94.00% 
70.20% 
83.30% 
86.70% 
86.70% 
92.70% 
92.70% 

Specificity 
45.80% 
15.40% 
23.30% 
48.90% 
42.90% 
25.80% 
36.70% 
40.00% 
25.00% 
36.30% 
27.50% 
31.30% 
28.30% 
41.30% 
39.20% 
19.20% 
13.30% 
22.50% 
11.70% 
0.00% 
6.70% 

31.70% 
11.70% 
13.80% 
29.20% 
8.30% 
0.00% 

30.40% 
13.30% 
0.00% 
19.20% 
0.00% 
0.00% 

25.40% 
5.00% 
0.00% 
15.40% 
0.00% 
0.00% 

25.40% 
0.00% 
0.00% 
21.70% 
0.00% 
0.00% 

Quality 
65.00% 
45.71% 
47.67% 
63.11% 
60.04% 
49.58% 
60.33% 
52.50% 
54.83% 
48.13% 
44.42% 
57.29% 
55.25% 
62.21% 
61.92% 
44.67% 
38.08% 
34.00% 
48.50% 
45.00% 
47.33% 
54.25% 
39.00% 
41.63% 
57.92% 
46.25% 
43.75% 
52.54% 
39.92% 
41.08% 
48.58% 
44.33% 
45.00% 
45.79% 
44.33% 
42.75% 
48.79% 
45.33% 
47.00% 
47.79% 
41.67% 
43.33% 
54.17% 
46.33% 
46.33% 

Table 6.6: Sensitivity, specificity and quality measures, as defined in Eqs. (6.28-6.30) 
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When we take MLP into discussion, which performed best on all features, we can notice 

that only for level set segmentation the error rate increased significantly from 12.31% to 

16.76% while for the remaining two segmentation methods the error change was at most 

0.5%. From Table 6.8 it can be noticed that the feature vector reduction allowed for the 

better classification quality, achieving 66.33% from 60.04% with MLP using fuzzy c-means 

segmentation. 

The second test performed on the reduced feature vector involved the use of the KS mea­

sure. Table A.l summarizes the recorded error rates for all the segmentation methods. 

There were different sets chosen for each segmentation algorithm depending on the KS 

measure. The choice of features is presented in Table 6.10. Only those features were cho­

sen that allowed for clear separation between malignancy classes. For this test only the 

MLP classifier was trained due to its previous best performance. From the table we can 

see that the best performance was recorded for fuzzy c-means segmentation with an error 

rate of 10.59%. In this test, level set segmentation gave the worst classification results 

with 19.85% error. 

Figure 6.11: Classification results for lOOx images.a) Correctly classified image, b) Inter­
mediate malignancy misclassified as high, c) High malignancy correctly classified. 

To visualize the classification task, some of the correctly and incorrectly classified images 

are presented on Fig. 6.11, 6.12 and 6.13. Fig. 6.11a presents a correctly classified image 

while Fig. 6.11b and Fig. 6.11c show misclassified cases of intermediate malignancy clas­

sified as high and high malignancy misclassified as intermediate. Respectively for 400x 
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Classifier 

SOM 

MLP 

SVM 

PCA 

TREE 

KNN 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

LS 
FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 
LS 

FCM 
GLQ 

Sensitivity 
83.20% 
81.20% 
81.20% 
63.30% 
87.70% 
92.00% 
80.70% 
65.00% 
92.00% 
64.70% 
59.80% 
75.70% 
72.20% 
88.20% 
94.70% 
64.50% 
59.80% 
77.70% 
86.30% 
92.00% 
94.00% 
67.80% 
71.80% 
72.70% 
81.50% 
84.30% 
83.70% 
79.50% 
75.00% 
81.70% 
84.00% 
79.00% 
92.70% 
82.00% 
77.00% 
65.50% 
87.30% 
84.00% 
76.00% 
80.00% 
80.00% 
70.00% 
82.00% 
84.00% 
72.00% 

Specificity 
30.80% 
38.80% 
38.80% 
42.90% 
45.00% 
39.20% 
26.70% 
40.00% 
21.70% 
26.30% 
37.50% 
30.00% 
32.50% 
38.30% 
23.80% 
35.00% 
23.30% 
29.20% 
27.50% 
0.00% 
17.10% 
30.00% 
9.60% 
25.80% 
18.80% 
3.30% 
15.80% 
27.50% 
10.80% 
15.80% 
8.80% 
8.30% 
18.80% 
33.80% 
20.80% 
28.80% 
12.50% 
7.50% 

25.00% 
23.80% 
7.50% 

30.00% 
22.50% 
5.00% 

30.00% 

Quality 
57.00% 
59.96% 
59.96% 
53.13% 
66.33% 
65.58% 
53.67% 
52.50% 
56.83% 
45.46% 
48.67% 
52.83% 
52.33% 
63.25% 
59.21% 
49.75% 
41.58% 
53.42% 
56.92% 
46.00% 
55.54% 
48.92% 
40.71% 
49.25% 
50.13% 
43.83% 
49.75% 
53.50% 
42.92% 
48.75% 
46.38% 
43.67% 
55.71% 
57.88% 
48.92% 
47.13% 
49.92% 
45.75% 
50.50% 
51.88% 
43.75% 
50.00% 
52.25% 
44.50% 
51.00% 

Table 6.8: Sensitivity, specificity and quality measures for reduced feature vector. 
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sets 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Avg. 

LS 
3.65 
32.47 
30.32 
11.86 
19.19 
37.53 
2.53 
3.08 
29.24 
28.63 
19.85 

GLQ 
2.73 
17.43 
4.45 
11.46 
22.95 
25.97 
2.6 
2.7 
5.33 
16.69 
11.23 

FCM 
10.41 
12.11 
13.42 
12.73 
11.15 
11.27 
8.25 
2.09 
13.94 
10.5 
10.59 

Table 6.9: Error rates recorded for various feature vectors that provided best malignancy 
separation using MLP. 

LS 
>lioo 

dispersion 
histogram mean 
histogram skew 

red histogram width 

GLQ 

^ 1 0 0 

dispersion 
eccentricity 
convexity 

vertical projection 
horizontal projection 

FCM 
^ 1 0 0 

dispersion 
textural inertia 

textural correlation 
textural homogeneity 

Table 6.10: Features chosen for classification according to the KS Test. 

magnification images Fig. 6.12a shows a correctly classified case of 400x magnification im­

age, while Fig. 6.12b and Fig. 6.12c present misclassified cases. Similar results for all of 

the images are summarized in Fig. 6.13, where Fig. 6.13a presents a correct classification 

and Fig. 6.13b and Fig. 6.13c incorrect classifications. These images can help to visualize 

the task of malignancy classification showing the most difficult cases that were typically 

misclassified. These cases are difficult to asses because the high polymorphy in the image 

suggests the high malignancy case but the high concentration of the nuclei shows inter­

mediate malignancy. This cases could also be misclassified by a pathologist [89] and they 

most probably are the border cases. 

6.12 Conclusions 

In this chapter, the classification results obtained with various classifiers were presented. 

From the results it can be seen that the task of breast cancer malignancy classification is 
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Figure 6.12: Classification results for 400x images, a) Correctly classified image, b) Inter­
mediate malignancy misclassified as high, c) High malignancy correctly classified. 

Figure 6.13: Classification results for all images, a) Correctly classified image, b) Interme­
diate malignancy misclassified as high, c) High malignancy correctly classified. 

a complex and difficult problem. Feature extraction is a very important stage and the col­

lection of relevant features is crucial. The features presented in this study show relevance 

to the malignancy stages of the cancer, which is supported by the obtained classification 

results. Some of the classification rates could be improved if more data would be available. 

As already mentioned, it is very difficult to collect medical data due to legal regulations. 

The results presented in this section also show which segmentation algorithm is most 

suitable for nuclei extraction. It also important to notice that introduction of structural 

features extracted from low magnification images improves the classification rate. These 

novel features were introduced to represent the most important factors taken into consider­

ation by a pathologist during a FNA examination. From the results obtained from the KS 

measure we can see that these features provide very good separation between malignancy 

classes. This can also be proved by the classification rates, that for set # 5 are above 90% 

which is rather high, especially for tasks where the separation between classes isn't very 

obvious. When we combine the two types of features we can see that the recognition rate is 

high and is above 96%, which is a very good result for this type of the problem [88, 84, 86]. 

As a comparison, the accuracy of the pathological diagnosis for breast cancer is between 
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80-98% [89, 64]. 

It can be noticed that FNA images are difficult to analyze and some of the extracted fea­

tures need sophisticated segmentation methods such as level sets or the Hough transform. 

In this thesis different segmentation approaches as well as classification methods were com­

pared to show their usefulness in automated malignancy grading. Also, numerous features 

were extracted for that purpose. They were compared and their discriminatory powers 

were calculated. Feature discriminatory power tells us about their ability to represent a 

particular malignancy class. The process of grading the malignancy is fully automated and 

no user interaction is necessary, except for choosing an input image to be classified. 

From the results presented here, we can estimate which of the extracted features are the 

most powerful and also, which classifier is the most suitable for computerized breast cancer 

malignancy classification. It is necessary to note that FNA images are relatively unique, 

and some of the techniques presented in this thesis may not be suitable when different 

staining standards are used. Gathering medical data for research studies is extremely 

difficult nowadays and no public database of images exists for comparison. To the best 

of our knowledge, there is only one public database described by Mangasarian et al. in 

[118] which consists of only pre-extracted features. In the absence of a proper accessible 

database of images, we had to construct our own database of FNA images, leading to a 

relatively small database since this kind of images are difficult to obtain. If we compare 

the results obtained by Street et al. and Mangasarian et al. [183, 118] with these pre­

sented in this thesis we can see that the obtained classification rates are promising and the 

malignancy grading system performs well on the FNA data. 
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Chapter 7 

Conclusions 

7.1 Open Problems and Future Research 

The research presented in this thesis is concerned with the computerized breast cancer 

malignancy grading. To be able to efficiently classify between the malignancy grades several 

image processing and machine learning algorithms were used. It was shown that the choice 

of the technique is sufficient but can be further exploited to make the classification task 

better. 

Up to date, there are a few open point that can be outlined here: 

• Data set enlargement - for better training there is a need for a larger number of 

images and cases in the database. 

• Feature set enlargement - it would be worth while to extract more features to test 

their discriminatory powers. 

• Clinical tests - to be able to precisely correlate the results obtained with cross vali­

dation it is necessary to compare the performance of the proposed system with the 

pathological grading. This can be performed during the clinical tests. 

• Single cell classification - using single cells for classification shall provide better 

classification. 

• Occlusion handling - separation of the occluded cells shall allow for more reliable 

classification. 
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• Introduction of the low malignancy grade - to be able to classify the malignancy 

more precisely there is a need of low malignancy data collection to train the classifier 

and allow it to choose a malignancy grade other than intermediate or high. 

• Implementation of the convolutional neural networks for automatic feature extrac­

tion. 

• Tests on a different set of cancer data - to test if the system is applicable to other 

cancers it would be interesting to test on different cancers where biopsy can be taken 

(e.g., cervical, prostate, or kidney). 

• Combination with other modalities - the system presented here depends on the stain­

ing technique and in the future it test the feature extraction on different staining 

techniques. 

The open problems listed above can be an entry point for further research in this area. 

The clinical tests shall be provided to validate the system accuracy in comparison to the 

pathologist. There can also be additional research performed on all stages of the described 

system. Additional algorithms on nuclei segmentation level would need to reviewed to 

allow for the separation of occluded nuclei. The occlusion handling will allow for the 

classification of single nuclei to make the decision making process even more objective. 

After the segmentation, the feature extraction can be performed automatically, for example 

with the use of convolutional neural networks [103, 92, 127]. 

7.2 Summary 

Computerized malignancy grading, presented here, is performed according to the Bloom-

Richardson grading scheme, which is the most popular grading scheme used by pathologists 

around the world for this type of cancer. According to this scheme, malignancy is classified 

into three classes of low, intermediate and high malignancy. The discrimination between 

the classes is done by estimation of certain features of the fine needle aspiration biopsy 
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slides. The variations between these features allow for malignancy discrimination. There 

are two types of features taken into consideration. The first group of features describes cells 

ability to form groups or to spread around the image. Lower malignancy cases will have 

one or a few large groups of cells while the high malignancy will have cells loosely spread 

around the image. In this thesis a set of three features was proposed. These features take 

into consideration area of the segmented groups, their number and the dispersion ratio 

of cells. Classification and validation results show that these features provide very good 

separation between malignancy classes and when combined with shape—based features the 

classification rate increased significantly from 82.7% for 400x features to 90.19% for all 

features taken into consideration [84, 86, 88]. Classification results based only on the 

proposed features also show good performance achieving an error of 10.67%, which isn't 

significantly larger then that obtained for all of the features. Additional performed tests 

show the comparison of numerous shape-based features. These features describe shape 

and staining variations of the nuclei in the image. We also compared four different seg­

mentation methods such as the Hough transform, level sets, fuzzy c-means and textural 

(gray level quantization) segmentation. From the results it can easily be noticed that the 

most obvious choice for segmentation of elliptical shapes, which is the Hough transform, 

didn't provide good segmentations when used without any additional supporting active 

contour algorithm. Out of the four compared methods, level sets provided the best nuclear 

boundary representations which led to better classification performance when compared to 

FCM and GLQ. From the presented results it can also be noticed that feature extraction 

also plays a very important role during malignancy classification. The proper estimation 

of features can have a very big impact on classification, which was shown by the results 

obtained with features chosen according to the KS measure. From these results we can see 

that the classification error for features extracted from level sets segmentations are largest 

out of the three segmentation methods. 
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From the medical point of view, the application of a system for computerized cancer malig­

nancy grading is very important and would assist doctors with their diagnosis. Computer­

ized malignancy grading will allow for repeatability in the decision making process, which 

is of a big concern among the pathological community [89]. The computerized scheme de­

scribed in this thesis complies with this requirement and the obtained classification results 

are very good. 
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Appendix A 

Database of Fine Needle Aspirates 

This section provides a set of images that were used in this research. The database was 

divided into two subsets depending on the magnification of the slides. The first subset 

consists of the image that were recorded with lOOx magnification. The second subset 

contains of 400x magnification images. 

A.l lOOx Magnification Images 
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A.3 Cases with mult iple 400x images taken for one 
lOOx image 
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Table A.l: lOOx cases for which multiple 400x images were taken. 
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Glossary 

(x,y) 

(x, y) 
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CV 
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Cov 

ctn 
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E(A,B) 

EV 

EE 

Et 

E, 

Ecc 

EcCi 

El 

Image centroid, 50 

Integers that act as indexing for the pixels of the image, 

38 

Area, 52 

Area of the ith nucleus, 77 

Average nuclei area at lOOx magnification, 74 

Convexity, 53 

Convex hull of the shape S, 53 

Compactness, 54 

Circular variance. 54 

Convexity of the ith nucleus. 78 

Gray level conditional joint probabilities, 63 

Circularity, 52 

Covariance matrix, 53 

Centroid of the iih nucleus, 78 

Dispersion, 75 

Dilation of a figure A with a structuring element B, 43 

Histogram energy, 42 

Erosion of a figure A with a structuring element B, 43 

Elliptical variance, 54 

External energy, 60 

Cluster area, 75 

Internal energy, 60 

Eccentricity, 52 

Eccentricity of the ith nucleus, 78 

Elongation, 53 
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Speed function, 61 

x gradient of an image I(x, y), 47 

y gradient of an image I(x, y), 47 

Histogram entropy, 42 

Histogram width, 41 

A graylevel image, 39 

Image blue component, 39 

Image green component, 39 

Image red component, 39 

Performance index, 63 

A line, 57 

Set of nuclei in the image, 77 

Number of Groups, 74 

Four-connected neighborhood, 39 

Eight-connected neighborhood, 39 

Orientation of the ith nucleus, 79 

Perimeter. 52 

Ratio of the principal axes, 53 

Projection of the ith nucleus, 80 

Rectangularity, 53 

Histogram asymmetry, 41 

Threshold value, 57 

Laplacian operator, 62 

Surface propagating in time, 61 

A binary image, 39 

Normalization of the central moment, 50 

Central moment, 50 

Gradient of the image I(x,y), 48 

Second derivative for the image I(x,y), 48 

Histogram mean value, 41 

Direction of the gradient, 48 

Standard deviation, 41 

Momentum based features, 81 
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h(x) 

Tflpq 

Pi 

C(A,B) 

0(A,B) 

CI 

Signed distance between x and T, 61 

Thresholded image, 57 

Histogram function, 40 

Moment with the order of (p+q) of the image I(x, y), 

50 

Perimeter of the iih nucleus, 77 

Closing of a figure A with a structuring element B. 44 

Opening of a figure A with a structuring element B, 43 

Labelled image in which the value of each pixel is the 

label of a connected component, 45 

Ace 

AMI 

Accumulator, 58 

Affme moment invariants, 51 

BASS 

BR 

Biopsy Analysis Support System introduced by F. 

Schnorrenberg, 23 

Bloom-Richardson grading scheme, 14 

CART 

CCD 

Classification and regression trees, 102 

Charge Coupled Device, 34 

DFS 

D N A 

Disease—Free Survival rate, 13 

Deoxyribonucleic Acid, 9 

FCM 

FNA 

Fuzzy c-means algorithm, 63 

Fine Needle Aspiration biopsy, 2 

G 

G l 

G2 

G3 

GHT 

GLCM 

Grade, 17 

Low malignancy grade, 35 

Intermediate malignancy grade, 35 

High malignancy grade, 35 

Generalized Hough Transform, 59 

Gray Level Co-occurrence Matrix, 82 
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GLQ Gray level quantization, 68 

HE 

HMF 

HT 

Haematoxylin and Eosin staining technique. 114 

Frequency of Hyperchromatic and Mitotic Figures, 16 

Hough transform, 57 

KNN 

KS 

K-nearest neighbor, 101 

Kolmogorov-Smirnov test, 89 

LED Light-Emitting Diode, 28 

MLP Multilayer perceptron, 104 

OS Overall Survival rate, 13 

P 

PCA 

Pleomorphism, 15 

Principal component analysis, 105 

QinetiQ Commercial automated histopathological tissue grad­

ing system, 26 

R-Table 

RBF 

RGB 

RNA 

rRNA 

A look-up table used by GHT, 59 

Radial base function, 108 

Red, Green, Blue color space of the image, 23 

Ribonucleic Acid, 32 

Ribosomal Ribonucleic Acid. 9 

RST—invariant Rotation, scale and translation invariant , 50 

SCT 

SD 

SOM 

SVM 

A spherical coordinate transform, 84 

Degree of Structural Differentiation, 14 

Self-organizing maps, 109 

Support vector machines, 107 
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VLSI Very Large Scale Integration, 24 

WBCD Wisconsin Breast Cancer Database, 21 

WHO World Health Organization, 1 

XCyt Breast Cancer Classification System introduced by Dr. 

Nick Street in his PhD thesis. 21 
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