
AUTOMATIC DETECTION OF SAFETY AND SECURITY

VULNERABILITIES IN OPEN SOURCE SOFTWARE

SYRINE TLILI

A THESIS

IN

T H E DEPARTMENT

O F

ELECTRICAL AND COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

F O R THE D E G R E E OF D O C T O R OF PHILOSOPHY

CONCORDIA UNIVERSITY

MONTREAL, Q U E B E C , CANADA

AUGUST 2009

© SYRINE TLILI , 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63416-5
Our file Notre reference
ISBN: 978-0-494-63416-5

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

ABSTRACT

Automatic Detection of Safety and Security Vulnerabilities in Open

Source Software

Syrine Tlili, Ph.D.

Concordia University, 2009

Growing software quality requirements have raised the stakes on software safety and

security. Building secure software focuses on techniques and methodologies of design

and implementation in order to avoid exploitable vulnerabilities. Unfortunately, cod­

ing errors have become common with the inexorable growth tendency of software size

and complexity. According to the US National Institute of Standards and Technol­

ogy (NIST), these coding errors lead to vulnerabilities that cost the US economy $60

billion each year. Therefore, tracking security and safety errors is considered as a

fundamental cornerstone to deliver software that are free from severe vulnerabilities.

The main objective of this thesis is the elaboration of efficient, rigorous, and practical

techniques for the safety and security evaluation of source code. To tackle safety er­

rors related to the misuse of type and memory operations, we present a novel type and

111

effect discipline that extends the standard C type system with safety annotations and

static safety checks. We define an inter-procedural, flow-sensitive, and alias-sensitive

inference algorithm that automatically propagates type annotations and applies safety

checks to programs without programmers' interaction. Moreover, we present a dy­

namic semantics of our C core language that is compliant with the ANSI C standard.

We prove the consistency of the static semantics with respect to the dynamic se­

mantics. We show the soundness of our static analysis in detecting our targeted set

of safety errors. To tackle system-specific security properties, we present a security

verification framework that combines static analysis and model-checking. We base

our approach on the GCC compiler and its GIMPLE representation of source code

to extract model-checkable abstractions of programs. For the verification process, we

use an off-the-shelf pushdown system model-checker, and turn it into a fully-fledged

security verification framework. We also allow programmers to define a wide range of

security properties using an automata-based specification approach. To demonstrate

the efficiency and the scalability of our approach, we conduct extensive experiments

and case studies on large scale open-source software to verify their compliance with

a representative set of the CERT standard secure coding rules.

IV

Acknowledgments

I would like to express my gratitude to Almighty ALLAH, the most Beneficent and

the most Merciful, for granting me the ability and opportunity to complete this thesis.

I would like to thank to my supervisor, Dr. Mourad Debbabi, for his advices,

ideas and efforts to ensure a continuous supervision of this thesis. His insights and

encouragements have had a major impact on this work, which would not be possible

without his guidance and support. He deserves all my acknowledgements.

I would like to thank Dr. Ettore Merlo, Dr. Joey Paquet, Dr. Roch Glitho,

and Dr. Zhu Bo who honored me by being members of the examiner committee and

reviewing this thesis. Their time and effort are greatly appreciated.

I would also like to thank my colleagues Rachid Hadjidj and XiaoChun Yang for

their collaboration in designing and implementing the security verification toolkit.

I thank my friends Rabeb Mizouni, Lamia Ketari, Anis Ouali, Hadi Otrok, Azzam

Mourad, Yosr Jarraya, Nadia Belblidia, and Dima Alhadidi who shared with me the

precious years of my thesis. Also, a very special thank is due to all my TFOSS team

colleagues for all their collaboration in this research. Moreover, further thanks are

extended to all the members of the Computer Security Laboratory.

v

Last but by no means least, I am very grateful to my father, mother, brothers, and

family members for their love, permanent encouragement, belief in me, and endless

support. This work, and my life, would never have been the same without them.

V I

DEDICATION

To my parents who are my first and best teachers,

To my brothers, who are best friends to me,

To all my family, who permanently believe in me.

vn

Contents

List of Figures xv

List of Tables xvi

1 Introduction 1

1.1 Motivations and Problem Statement 3

1.1.1 Need for Automated Verification Tools 3

1.1.2 Heavy Annotation Burden on Programmers 5

1.1.3 Modular Security Property Specification 6

1.1.4 Efficient Synergy for Hybrid Approaches 7

1.1.5 Flexible Integration of Verification Techniques 8

1.2 Objectives 9

1.3 Contributions ; . 10

1.3.1 Type and Effect Discipline for C Safety 10

1.3.2 Static Detection of Runtime Errors 12

1.3.3 Verification of Secure Coding Rules 13

1.4 Thesis Outline . 14

viii

2 Survey of Security and Safety Analyses 16

2.1 Introduction 16

2.2 What Causes Safety/Security Vulnerabilities ? 17

2.2.1 Memory Management Vulnerabilities 17

2.2.2 String Manipulation Vulnerabilities 23

2.2.3 Race Conditions 26

2.2.4 File Management Vulnerabilities 27

2.2.5 Privilege Management Vulnerabilities 29

2.3 Vulnerability Detection Techniques 31

2.3.1 Static Analysis 31

2.3.2 Model-Checking 36

2.3.3 Dynamic Analysis 37

2.4 Comparative Study 38

2.4.1 Static Analysis vs. Dynamic Analysis 38

2.4.2 Static Analysis vs. Model-Checking 41

2.5 Conclusion 43

3 Survey of Security and Safety Tools 45

3.1 Annotation-Based Techniques 46

3.1.1 Lint Family 46

3.1.2 CQual 49

3.2 Automata-Based Techniques 52

ix

3.2.1 Meta-Compilation 52

3.2.2 MOPS 55

3.3 Hybrid Techniques 57

3.3.1 CCured 58

3.3.2 SafeC 60

3.4 Comparative Study 62

3.4.1 Flow-Sensitive vs. Flow-Insensitive 62

3.4.2 Interprocedural vs. Intraprocedural Analysis 64

3.4.3 Internal Checking vs. External Checking 65

3.5 Conclusion 66

4 Type and Effect Discipline for C Safety 69

4.1 Introduction 69

4.2 Safety Type Annotations 70

4.2.1 An Imperative Language 71

4.2.2 Type Annotations 72

4.2.3 Host Annotation for Type Conversions 77

4.3 Static Safety Checks 79

4.3.1 Safe Pointer Dereference 80

4.3.2 Safe Pointer Deallocation 81

4.3.3 Safe Pointer Assignment 82

4.3.4 Safe Type Cast . . . 83

x

4.4 Typing Rules 85

4.4.1 Typing Rules for Program Declarations 86

4.4.2 Typing Rules for Expressions 89

4.4.3 Typing Rules for Statements 91

4.5 Dealing with Aliasing 94

4.6 Type Annotations Inference 97

4.7 Conclusion 104

5 Static Detection of Runtime Errors 105

5.1 Introduction 105

5.2 Dynamic Semantics 106

5.3 Consistency of Static and Dynamic Semantics I l l

5.4 Soundness of Static Analysis 128

5.5 Guiding Code Instrumentation 132

5.5.1 Static Analysis Limitations. 132

5.5.2 Static Dunno Points 133

5.5.3 Locating Instrumentation Points 136

5.6 Extending GCC 138

5.7 Conclusion 141

6 Automatic Security Verification 142

6.1 Introduction 142

6.2 Approach Overview . 144

XI

6.2.1 Tree-SSA Framework 144

6.2.2 Moped Model-Checker 145

6.2.3 Architecture 146

6.3 Modeling Security Properties 150

6.3.1 Temporal Security Properties 150

6.3.2 Pattern-based Security Automata 151

6.3.3 From Security Automata to Remopla 152

6.3.4 Execution of Remopla Automata 155

6.4 Program Model Extraction 156

6.4.1 Variable Declarations and Function Definitions . 157

6.4.2 Function Calls and Returns 158

6.4.3 Flow Constructs, 159

6.4.4 Assignments 160

6.5 Dealing with Data Dependencies 160

6.5.1 Variable Declarations 161

6.5.2 Assignment Operations 163

6.5.3 Function Call with Parameters 165

6.5.4 Function Return 166

6.6 "Static Analysis to Improve Abstractions 167

6.6.1 Call-Graph Analysis 168

6.6.2 Alias Analysis 169

6.7 Conclusion 171

xn

7 Design, Implementation, and Experimental Results 173

7.1 Introduction 173

7.2 Design and Implementation 174

7.2.1 Why GIMPLE and Moped ? 175

7.2.2 Macro Handling 176

7.2.3 Temporary Variables 177

7.2.4 CERT Coding Rules 178

7.3 Experiments in Control-Flow Mode 180

7.3.1 Unchecked Return Values 180

7.3.2 Memory Leak Errors 182

7.3.3 Use of Deprecated Functions 184

7.3.4 Unsafe Environment Variables 188

7.3.5 Race Conditions 192

7.3.6 Unsafe Temporary File Creation 195

7.3.7 Unsafe Creation of enroot Jail 198

7.4 Experiments in Data-Driven Mode 200

7.4.1 Parameter Passing 201

7.4.2 Variable Aliasing 202

7.4.3 Reducing False Positives , 204

7.5 Comparison with existing tools . 205

7.6 Conclusion . 206

xm

8 Conclusion 208

8.1 Summary , 208

8.1.1 Type and Effect Discipline for C Safety 209

8.1.2 Automatic Verification of Security Properties 210

8.2 Future Work 211

Bibliography 214

Appendices 235

Appendix I: Static Analysis Utility Functions 235

Appendix II: Soundness of Inference Algorithm and Typing Rules 239

x i v

List of Figures

1 Automaton for the detection of bad chrootO usages 55

2 Examples to illustrate annotation update of aliased variables 98

3 Security verification framework 147

4 Null-checking of memory allocation functions 150

5 Global and local variable initializations 162

6 Assignment operations 163

7 Function call with parameters 165

8 Function return 166

9 Null check automaton 181

10 Memory leak automaton 183

11 Deprecated functions automaton 186

12 Environment function automaton . . . 189

13 Race condition automaton 192

14 Temporary file security automaton 195

15 Secure creation of chroot jail automaton 199

xv

List of Tables

1 Syntax of an imperative language that captures the essence of the C

language 71

2 Type and effect annotations for memory and type safety 73

3 From declared types to inferred types and vice versa 76

4 Static safety check for detecting unsafe dereference 80

5 Static safety check for detecting unsafe deallocation 81

6 Static safety check for detecting unsafe assignments 82

7 Static safety checks for type cast operations 83

8 Typing rules for programs, declarations, and call sites . 87

9 Typing rules for program expressions 89

10 Typing rules for program statements 92

11 Computable values , 107

12 Operational semantics for expressions 109

13 Operational semantics for statements . 110

14 Function T whose maximal fixed point defines the consistency relation 114

15 Dunno Points to guide code instrumentation 134

xvi

16 Operator © for combining dunno points 136

17 Experimental results illustrating the performance of our approach . . 139

18 Remopla language constructs 145

19 Expression and statement pattern matching 151

20 Remopla representation of program actions 154

21 Remopla representation of program 157

22 Model optimization by pruning security irrelevant functions 168

23 Model optimization by pruning security irrelevant variables 171

24 Return value checking 182

25 Resource leak errors 184

26 Usage of deprecated functions 186

27 Unsafe environment variables 190

28 File race condition TOCTTOU 193

29 Temporary file errors 196

30 Unsafe call to enroot 0 199

31 Results of the experiments in the data-driven mode 201

xvn

Chapter 1

Introduction

After more than two decades of Commercial-Off-The-Shelf (COTS) hegemony, the

software market witnesses an inexorable migration towards Free and Open Source

Software (FOSS). COTS software used to be considered more secure, stable and ma­

ture for corporations and organizations. However, the intrinsic limitations of COTS

software such as closed source code, expensive upgrades, and a lock-in effect have

emerged over time. Furthermore, FOSS has achieved a great level of maturity and

growth that makes it ready to compete with COTS. FOSS is developed either by

volunteers, academia, non-profit organizations, or by large firms who want to include

commodity software to give a competitive advantage to their hardware products. To

date, thousands of FOSS projects are carried out via Internet collaboration. Many

of these FOSS products are widely available and are considered to be as mature and

secure as their COTS equivalents, at a lower or no cost. FOSS is now perceived

1

as a viable long-term solution that deserves careful consideration because of the po­

tential for significant cost savings, improved reliability, and support advantages over

proprietary software.

The principle of open source software is that the user can freely use and modify the

source code. This raises a controversial debate regarding the security consequences

of this principle. Some security experts claim that open source software is more

secure because of the concept of peer review or multiple eyeballs where anyone can

potentially examine source code, identify security flaws, and propose security fixes.

Other security specialists claim the reverse arguing that malevolent parties could

also take advantage of the open source to identify software vulnerabilities with the

intention to exploit them. The two standpoints are defendable, however an empirical

comparison between FOSS and COTS [100] has shown that software defects and

vulnerabilities are detected and fixed more rapidly in open-source projects. As such,

it is necessary that security issues be addressed, in a scientific manner, for open source

software that tends to increase in size and complexity. Consequently, the safety and

security evaluation of source code is a very important step to build secure software.

The purpose of this research is the elaboration of practical, rigorous, and efficient

techniques for the security and safety evaluation of FOSS.

2

1.1 Motivations and Problem Statement

Most of the existent open source software is written in the C [75] and C++ [76] pro­

gramming languages which are considered as the defacto languages for system pro­

gramming [90]. Such software includes operating systems (Linux [74], PreeBSD [59]),

device drivers, and is complemented with Internet servers (Apache, Sendmail, Bind),

databases (MySQL), etc. C/C++ fulfill performance, flexibility, strong support, and

portability requirements [87]. However, security and safety features are either ab­

sent or badly supported in C/C++ programming. Lack of type safety and memory

management left at programmers' discretion are the source of many critical security

vulnerabilities such as buffer overflows, format string errors, and bad type conversions.

We refer to memory errors and type errors in source code as low-level safety errors.

Besides, the C/C++ libraries provide programmers with functions for privilege man­

agement, file management, network management, etc. These functions are designed

with the care to provide flexibility and performance features at the cost of neglecting

security concerns. A misuse of these functions can lead to privilege escalation, data

leaks, and denial-of-service attacks. We refer to the coding rules that should prevent

these kinds of errors as high-level security rules or security properties.

1.1.1 Need for Automated Verification Tools

Despite the availability of many books and documents that guide programmers writ­

ing safe and secure code [1,2,20,73,129], implementation errors that have severe

3

security consequences still exist in source code. This is because the C/C++ library

functions are inherently unsafe/unsecure and should be used with precaution. Even

skilled programmers tend to inadvertently commit errors that render their code vul­

nerable and potentially exploitable from a security standpoint. As the number of lines

grows, manual checking of security violations becomes cumbersome and error-prone

for programmers. Therefore, automated techniques for vulnerability detection are

very helpful for programmers in diagnosing security and safety errors for the purpose

of sanitizing their code. In the literature, there is a range of error detection approaches

that can be mainly classified into dynamic analysis and static analysis [8,11,12,32,94].

Dynamic analysis monitors program execution to spot errors as they occur. Precision

and accuracy are its key features. However, they come at the cost of a significant

performance overhead induced by the runtime monitoring. Moreover, dynamic ap­

proaches suffer from incomplete path coverage as they consider one execution path

at a time. The exploration of all execution paths requires the challenging definition

of a large number of test cases. On the other hand, static analysis operates on source

code without program execution to predict potential runtime errors. It offers the

cost-saving advantage of the early detection of software errors. As opposed to the dy­

namic counterpart, static analysis can perform an exhaustive path coverage and does

not introduce runtime overhead. In this thesis, "we consider the elaboration of static

analysis techniques for the security and safety evaluation of software. Our research

effort focuses, among other things, on the efficiency and the usability of the proposed

techniques.

4

1.1.2 Heavy Annotation Burden on Programmers

The evolution of static analysis in the arena of security and safety verification is re­

markable. It went from simplistic approaches based on syntactic pattern matching

to more sophisticated semantic analysis of programs. The pioneers in this field are

the Lint family of tools [54,80,84], that started by syntactically detecting unsafe

constructs in source code. Then, they moved a step forward by taking advantage

of coding comments to annotate programs with security and safety constraints in

order to tackle more coding errors. ITS4 [126] and RATS [118] perform a lexical

analysis that improves the Lint pattern matching by identifying the meaning of the

parsed elements (variables, function arguments, function calls, etc.). Unfortunately,

these tools generate a very high rate of spurious warnings. However, they have the

merit of being the forerunner in using static analysis for security purposes. Other

tools such as CQual [58] uses a type-based analysis to detect security violations

in source code. CQual annotates standard C types with user-defined qualifiers. It

mainly detects violations of secure information flow where data coming from an un­

trustworthy source is used in a trusted destination without being checked. Through

their program annotation-based techniques, the aforementioned tools specify security

properties that are intermingled with the source code. This tight relation between

properties and source code allows these techniques to have a deep insight into program

behaviours for the purpose of uncovering undesirable ones. Nevertheless, mixing the

source code with the security properties limits the expressiveness and the diversity of

security properties. The latter cannot be modularly denned and applied to different

5

programs. Besides, programmers are reluctant to use annotation-based techniques

since the manual annotation process is effort and time consuming. Therefore, our

goal is to define verification techniques that release programmers from this heavy

annotation burden in order to increase and facilitate their usability during software

development.

1.1.3 Modular Security Property Specification

The diversity of software system functionalities implies a diversity of their security re­

quirements. Therefore, programmers should have the ability to define and. customize

their own system-specific security rules. MOPS [31] and MC [11] are ahead of other

techniques in providing flexibility and customization features for specifying security

properties. Both tools provide an automata-based language to define temporal se­

curity properties related to the sequencing of program actions. The specification of

security properties is isolated from the targeted source code. Therefore, the specifi­

cation of a large range of security properties is worth the effort since these properties

can be uniformly reused and applied to any software. These techniques utilize sophis­

ticated compiler representations such as control-flow graphs and call graphs allowing

a semantic-based analysis. However, the availability of the aforementioned tools may

be an issue. The latest version 0.9.2 of MOPS has been released in 2003. In addition,

MC is now a commercial tool.

A major difference between MC and MOPS that should be highlighted is that

MOPS is based on model-checking, whereas MC is a static analysis tool. In fact,

6

new trends in software model-checking show great promise in detecting programming

errors and exploring the correctness of software [18,28,35,35,37]. It is also efficient for

the specification of a wide range of system-specific security properties. The model-

checking process is performed on a state transition system that captures program

behaviours. The model-checker exhaustively searches the state space to verify the

compliance of program behaviours with respect to the specified properties. The state

explosion problem is the main issue of software model-checking [38]. The number

of states grows exponentially with respect to the size of the analyzed program. This

problem limits the applicability and the usability of model-checking for large software

verification. Abstraction is a well-known and established technique to cope with the

state explosion problem by safely reducing the size of the program model. Thus,

the challenge is the generation of a concise and model-checkable abstraction of the

analyzed program. We believe static analysis can be used for the generation of suitable

and scalable program abstractions for model-checking approaches [42].

1.1.4 Efficient Synergy for Hybrid Approaches

The notorious position of static analysis in the arena of safety and security verification

of software is irrefutable. Nevertheless, the undecidability limitations of static analysis

is also a fact [82], especially with imperative programming languages. For instance

in C, pointer analysis such as aliasing is statically undecidable [106]. To remedy

this issue, recent research trends move towards the definition of hybrid tools that

establish a synergy between static and dynamic analyses to detect safety and security

7

violations [93]. Among these tools, we find CCured [94], SafeC [12], FailSafe [134],

and RTC [72]. Generally, their main idea consists in using type inference to insert

runtime checks in source code. The lightweight static analysis performed by these

tools results in many runtime checks that induce a performance overhead that range

from 30% to 150%. For instance, CCured performs a flow-insensitive type analysis

that does not take into account pointer aliasing that is considered as crucial for the

safety analysis of pointers. As a result, many superfluous runtime checks are inserted

to overcome the limitations of CCured type analysis. Moreover, most of these tools

only focus on spatial memory errors, i.e., out-of-bound accesses of pointers. Errors

related to the bad sequencing of memory operations such as using freed pointers and

double-free of pointers are not tackled. A more sophisticated type analysis is required

for these tools to prune runtime checks on operations that are statically guaranteed

to be safe. Besides, the type analysis should also consider temporal memory errors

that may result in undesirable system crashes.

1.1.5 Flexible Integration of Verification Techniques

Despite the increasing trends of automated source code checking, verification tools

are not regularly used throughout software development process. The main reason is

that most of these tools are not integrated into development tools and environments.

Programmers are often required to learn how to configure and use security and safety

verifiers. The steep learning curves of some tools discourage programmers from using

them. Therefore, we face the challenge of building automated and scalable techniques

8

that can be efficiently integrated into the software development process in order to

uncover a wide range of software vulnerabilities. More specifically, we target the

severe and insidious memory and type errors of the C language that we refer to as

safety errors. Additionally, we intent to provide programmers with the appealing

capability of specifying and verifying system-specific properties that we refer to as

high-level security properties.

1.2 Objectives

The ultimate goal of this work is to elaborate efficient, rigourous, and practical tech­

niques for the automated detection of safety and security vulnerabilities in source

code. More specifically, our objectives are as follows:

• Elaborate a taxonomy of coding errors that create severe vulnerabilities in

source code.

• Conduct a comprehensive and comparative study of existing techniques for

safety and security evaluation of source code. From this, we should identify

the advantages and the shortcomings of these techniques.

• Elaborate efficient and practical approaches based on static analysis and model-

checking techniques for the automatic detection of security and safety violations.

• Design and implement a safety and security verification toolkit that incorporates

these analyses.

9

• Demonstrate the efficiency and the usability of our techniques by conducting

case studies on large scale software.

1.3 Contributions

To pursue our objectives and solve the aforementioned related problems, we elabo­

rate and develop techniques for the security and safety verification of software. For

the verification of low-level safety properties related to type and memory errors, we

present a type and effect analysis that extends the standard C type system with safety

annotations. We enrich our type system with static safety checks to detect insidious

safety errors. For the verification of system-specific security properties, we present an

approach that combines static analysis and model-checking. The combination aims

at automating the construction of model-checkable abstractions and at allowing pro­

grammers to customize their desired security properties. In the sequel, we provide

more details of the aforementioned contributions.

1.3.1 Type and Effect Discipline for C Safety

In this thesis, we define a novel type and effect analysis for detecting memory and type

safety CTrors in C source code. Our formalism is based on an imperative language that

captures the essence of the C language. The related contributions are the following:

• Extending the standard C type system with effect, region, and host annotations

to collect safety information of the analyzed program. Effects capture memory

10

operations in the program such as memory allocation, memory deallocation,

pointer dereferencing, and pointer arithmetic. Region annotations are used to

abstract dynamically allocated memory locations and declared variable memory

locations. Regions also account for aliasing information, in a sense that pointer

expressions annotated with the same region are referring to the same mem­

ory location. Finally, host annotations are used to track the state (allocated,

dangling, wild, etc.) and the type of memory regions.

• Denning flow-sensitive type annotations for program expressions that are al­

lowed to change at each program point. The flow-sensitivity endows our type

analysis with capabilities to handle dynamic allocation and destructive updates

of imperative languages. We also give an algorithm that uses region annotations

to account for aliasing information and to propagate annotation updates of an

expression to all its aliases.

• Defining a set of static safety checks that rely on the defined annotations to

detect unsafe pointer usages and unsafe type conversions. Our static checks are

compliant with the ANSI C standard [75], however they are more restrictive in

order to detect coding errors that may result in runtime errors.

• Elaborating an annotation Inference algorithm that automatically propagates

type annotations through an intraprocedural phase and an interprocedural phase.

• Establishing the soundness proof of the inference algorithm to our type checking

rules in order to use it as a decision procedure for detecting safety errors.

11

1.3.2 Static Detection of Runtime Errors

The ANSI C standard under-specifies the semantics of certain operations to allow some

flexibility and portability in implementations. The under-specified behaviours of the

C language can be classified into three main categories: implementation-defined be­

haviours, unspecified behaviours, and undefined behaviours. Implementation-defined

behaviours represent details of the system that are left at implementation discretion

such as the representations of integers in memory. Unspecified behaviours character­

ize cases for which the standard has no restriction such as the evaluation order of

function arguments. Undefined behaviours that are of our interest occur when a pro­

gram performs an operation that is semantically invalid and leads to system crashes.

For instance, accessing uninitialized pointers, dereferencing null pointers, freeing un­

allocated pointers, etc. One intent of this work is to prove that our type and effect

analysis is able to catch all the occurrences of its targeted type and memory errors.

The related contributions are the following:

• Defining a dynamic semantics for the imperative language of our type and ef­

fect analysis. Our semantics is given in a structural operational style and is

compliant with the ANSI C standard [75]. We also define a set of rules that

capture runtime errors caused by our targeted set of unsafe type and memory

operations.

• Establishing the consistency proof between the static semantics and the dynamic

semantics. In other words, we prove that the values produced by evaluation of

12

expressions in the dynamic semantics are consistent with the types assigned to

them statically.

• Establishing the soundness proof of our static analysis for the detection of the

targeted type and memory errors. This proof is based on the established con­

sistency relation between the dynamic analysis and the static analysis.

• Defining an effect-based interface that is used to supplement our static analysis

with a dynamic counterpart. We use the collected effects to extract dunno points

that characterize program points and execution paths of memory operations

that are statically undecidable. These dunno points serve the purpose of guid­

ing code instrumentation for dynamic analysis.

1.3.3 Verification of Secure Coding Rules

To target high-level security properties, we define a security verification environment

that brings static analysis and model-checking into a synergy. The core idea is to uti­

lize static analysis to generate concise and scalable abstractions of programs. Besides,

programmers benefit from property expressiveness of model-checking techniques. As

a result, our approach can model-check large scale software against system-specific

security properties. The related contributions are the following:

• Defining a framework based on static analysis and model-checking for software

security verification. The main components of the framework are the GCC

compiler and the off-the-shelf model-checker Moped for pushdown systems [112].

13

We base our approach on the GIMPLB language-independent representation of

source code provided by the GCC compiler. The intent is to define a flexible

approach that can be extended to all languages that GCC supports.

• Elaborating a model generator algorithm that automatically serializes GIMPLE

representation of programs into model-checkable program abstractions. The

generated program abstractions prune program behaviours that are not relevant

to the considered security properties. Besides, the model generator algorithm

can be optionally flagged to compute data dependencies of program expressions

to enhance the verification precision.

• Realizing the proposed verification approach by implementing it and conducting

case studies on large scale and widely used C software. For the experiments,

we verified the compliance of 35 Linux packages to a set of the CERT secure

coding rules [2] that can be modeled as finite state automata.

1.4 Thesis Outline

The structure of this thesis is as follows. Chapter 2 gives a representative set of

common coding errors and the different analyses and techniques used to reveal their

presence in source code. Chapter 3 surveys the most prominent tools based on static

analysis for the verification of C programs. The chapter also presents a comparative

study of the techniques used by these tools while presenting their advantages and

their limitations. Chapter 4 is dedicated to our type and effect discipline for memory

14

and type safety of C programs. The soundness of our static analysis for detecting our

targeted type and runtime errors is established in Chapter 5. Chapter 6 describes

our security verification framework based on static analysis and model-checking. The

validation of our tool is done through the experiments detailed in Chapter 7. We

draw conclusions and discuss future work in Chapter 8.

15

Chapter 2

Survey of Security and Safety

Analyses

2.1 Introduction

In this chapter, we survey coding errors and the different analyses used for their de­

tection in source code. We focus on the C programming language [75] considered as

the defacto language for system programming [91]. The standard C library of func­

tions provide programmers with appealing capabilities over memory management,

file management, privilege management, etc. These functions are designed with weak

or inexistent security features. A secure usage of these functions is left to program­

mers' responsibility. Unfortunately, inadvertent programmers often commit coding

errors that may cause security vulnerabilities. Automated verification techniques are

required to assist programmers in detecting coding errors and building secure code.

16

The current survey chapter is organized as follows: In Section 2.2, we examine a

representative set of coding errors that lead to security vulnerabilities. Section 2.3

presents the prominent analyses used to uncover these errors in source code: static

analysis, dynamic analysis, and model-checking. A particular emphasis is put on

static analysis as it is the cornerstone of this thesis. In Section 2.4, we compare static

analysis with dynamic analysis and model-checking in order to establish their duality

and their synergy.

2.2 What Causes Safety/Security Vulnerabilities ?

This section gives a representative hence non exhaustive list of programming errors

that can lead to critical security flaws. We classify these errors into memory man­

agement errors, race condition errors, file management errors, string manipulation

errors, and privilege management errors.

2.2.1 Memory Management Vulnerabilities

Memory management left at programmers discretion is an enormous source of safety

and security problems for the C programming language. The programmer has com­

plete control over allocation and deallocation of dynamic memory spaces, the size

and the content of the allocated memory as well.. To this end, the standard C library

provides a set of functions for memory management. The inappropriate use of these

functions may allow an unauthorized access to data in any memory location or to

17

consume all the memory locations and cause a denial of service. We present in the

remainder of this section a list of common memory management errors.

Use of Uninitialized Memory

An uninitialized or wild pointer refers to a random memory location. The dereference

of a wild pointer has an undefined behavior that can lead to system crashes and

memory corruptions. When the random location of a wild pointer belongs to another

process, the use of that pointer results in an unauthorized memory access. To prevent

such undesirable behaviors, each declared pointer must be set to n u l l so as to refer

to no memory location. The usage of a nul l pointer results in a segmentation fault,

however it does not lead to unauthorized memory accesses. Listing 2.1 illustrates the

bad usage of a wild pointer p.

Listing 2.1: Use of uninitialized pointer error
char * p ;
c h a r *q = NULL;
s t r c p y (p , " H e l l o ") ;
s t r c p y (q , " G o o d b y e ") ;

If the random location of p is not write protected and belongs to another process,

the strcpy(p, "Hello") call will overwrite its content and corrupt the execution of that

process. On the other hand, nu l l pointer q does not refer to any memory location.

The call s t rcpy(q , "Goodbye") results in a segmentation fault.

Use after Free

Dynamically allocated memory that is not used anymore should be explicitly released

by calling the f r eeO function. This good practice optimizes resource consumption

18

that helps increase the system performance. We refer to pointers to freed memory

locations as dangling pointers. Their content may remain intact until the system

decides to assign these locations to other processes. Thus, using a dangling pointer

may lead to unauthorized memory access and system crashes. Listing 2.2 illustrates

an unsafe usage of dangling pointer buff.

Listing 2.2: Use after free error
buff

if (

}

/* .

= (ch
buff)
return

. */
free(buff)

/* -. */

ar

<
0

strncpy(buff

*) mall

argv [1]

oc(BUFSIZ);

, BUFSIZ -1);

Double Free

As detailed earlier, dynamic memory locations should be freed when no more used to

speed up running processes. Inadvertent programmers often free multiple times the

same memory location. The impact of these double-free errors is similar to the use of

freed memory. If the freed location is assigned to another process, freeing again that

location will corrupt the process execution.

Listing 2.3: Double free error
buff

if (

}

P =
/* .
free

/* .
free

= (char
ibuff)
return

buff;

.. »/
(P);
.. */
(buff)

0;

*) malloc (BUFSIZ);

Listing 2.3 shows an example of a double-free error. The aliasing between pointer

p and pointer buff renders this kind of errors even harder to detect. There are 55

19

entries in the CVE database related to double free errors. In some cases, such as

in MIT krb5 (CVE-2007-1216) and Mozilla Firefox (CVE-2009-0775), double free

errors lead to malicious code execution on vulnerable systems.

Free of Unallocated Memory

The f ree() function must be exclusively called on a dynamic memory location derived

from malloc, r ea l l oc , and cal loc functions. Pointers that are initialized with the

address-of operator & refers to static memory locations on the stack. Freeing stack

memory location is illegal and may lead to segmentation fault. Listing 2.4 shows

examples of illegal free operations.

Listing 2.4: Illegal free operations
chai
int

II
II

0.
0*

q =

free
free

*q
*p;
fcx;
(char

q +

(p)

<q>.

4
*) ma 11 oc (BUFS1Z);

Moreover, free operations cannot be performed on pointers that do not point to

the beginning of an allocated block. In C programming, pointer arithmetic operations

are used to access different elements of an array. All elements of an array have the

same type, the first element is placed at the beginning of the allocated memory, and

the remaining elements are placed at incremented offsets from the first one. A pointer

that refers to an element inside the array cannot be freed. In Listing 2.4, the illegal

free operations of pointers q and p have undefined behaviors that may result in a

segmentation fault.

20

Use of Unchecked Null Returns

This error often happen when programmers do not check the return value of malloc

functions before using it. When a malloc function fails, it returns a nu l l pointer. As

explained earlier, using a nu l l pointer can result in a segmentation fault. Therefore,

a programmer must always check the return value of all functions that yield newly

allocated pointers. In the example of Listing 2.5, pointer p returned by malloc () is

not checked before being used in function s t r c p y O . There are 187 entries in CVE

related to the dereference of nul l pointers that lead to denial of service attacks.

Listing 2.5: Unchecked null return error
char *p;

P =
/*

(char

..*/
strcpy(p

*) nal]

"Hello'

oc

);

(BUFSIZ);

Memory Leaks

A memory leak occurs when a process fails to release its assigned memory before

termination. Given that operating systems assign a limited amount of memory space

to each process, memory leaks degrade performance and can cause a program to run

out of memory.

Listing 2.6: Memory leak error
char *p;
p = (char *) malloc(BUFSIZ);
if (p) {

if (cH
/*...*/
return -1;

>
else •(

/*...*/
free(p);
return 0;

}
}

—

21

An example of memory leak is given in Listing 10. When condition c evaluates to

true the function returns without freeing the location of pointer p. Many memory leak

errors listed in the CVE database are found in Linux kernel such as CVE-2009-0031,

CVE-2008-2375, and CVE-2008-2136. These memory leaks consume all the kernel

assigned memory space and lead to system crashes.

Buffer Overflows

Buffer overflow errors arise from weak or non-existent bounds checking of input being

stored in memory buffers [73,133]. Attacks that exploit these errors are considered as

the worst security threats since they may provide attackers with a complete control

over the target host. The absence of bounds checking allows attackers to overflow

buffers with data that contains malicious code and overwrites the return address

pointer that controls the process execution. The malicious data redirects the exe­

cution to the attacker code that will execute with the privileges of the vulnerable

process. If the process is running with root privileges, the attacker will be granted

full control over the victim host.

Buffer overflow errors are present in legacy code that uses deprecated functions

that are readily exploitable such as g e t s O , s t r c p y O , and s t r c a t O . In Listing 2.7,

function g e t s () reads from the standard input and stores inte-str without performing

any bound checks.

Listing 2.7: Unsafe use of deprecated functions
int main () {

char *str =
gets (str);

}

(char *) malloc(BUFSIZ);

22

The standard C library provides safe replacement for these deprecated functions

such as s t rncpyO, s t r n c a t O and fge t s () . These functions accept a length value

as a parameter which should be no larger than the size of the destination buffer.

Nevertheless, a bad usage of these so-called safer functions can lead to buffer overflow

errors as well. A common error in the use of the safer memory copying functions

is related to wrong assumptions about the parameters. For example, s t rncpy(char

* s l , const char *s2, s ize_ t n) copies n bytes from s2 to pointer s i . When the

size n is not properly set, this can lead to buffer overflow even though a safer function

is used as shown in Listing 2.8.

Listing 2.8: Bad handling of bounds information
char
char

strl [15]
str2 [20]

strncpy(strl, str2 ,20);

To prevent this kind of security threats, deprecated functions that suffer buffer

overflow errors should never be used. Moreover, safer replacement of these functions

should be used with precaution since they do not systematically eliminate buffer

overflow risks. In the CVE database, there are not less that 4879 entries related to

buffer overflow errors. Their harmful impact range from system crashes to remote

code execution.

2.2.2 String Manipulation Vulnerabilities

String manipulation errors can lead to severe security breaches in programs. The

C library of functions provides a set of string functions that should be used with

23

precaution since they suffer security pitfalls. We present in this section some coding

errors related to string manipulations.

Format String Errors

Format string errors arise from the misuse of output formatting functions that take a

variable number of arguments. The C standard library contains many of these func­

tions such as p r in t f () , fpr in t fO, spr in t f () , snprintf() , vprintf() , vsprintf (),

and vsnprintf(). All these functions use a format string argument that enable pro­

grammers to specify how strings should be formatted for output. Since these func­

tions do not entail a specific number of arguments, the C compiler cannot check for the

presence of the format string argument. Besides, format strings arguments very often

come from a user input that may contain a value different from what programmers

expected [73]. Listing 2.9 illustrates a trivial sample of format string errors.

Listing 2.9: Unsafe format string
int
{

}

main(int argc, char*

ifCargc > 1)
printf(argv [1]);

return 0;

argv [])

In this sample, p r i n t f () interprets the first "%" character in the user defined

argument argv[l] as the format string. For instance, if the argument contains the

"%d" characters, the pr intf () function will use it as a format string to display a

decimal integer. The function fetches for this integer in its allocated memory space

called the stack, and then prints it out. This is quite dangerous since it gives attackers

the possibility to read information from various memory locations. These errors can

24

be even more dangerous, since they may be exploited to overwrite memory locations

using the *%n" format string. Generally, attackers take advantage of format string

errors to inject malicious code and execute it with the privilege of a vulnerable process.

Assumption of Null-Termination

For flexibility purposes, C programming does not entail any size limitation for strings.

The C compiler depends on the presence of the null character "\0" to signal the

end of strings. The idea is to keep on reading from or writing to a string until

reaching the null character, thus there is no need to know in advance the length of a

string. Nevertheless, if the string is not null-terminated, it can be accessed out of its

boundaries and lead to buffer overflow. Unfortunately, many C string functions make

the naive assumption that the last character in a string is the null character. This

assumption allows for adjacent memory buffer overflows [113,125].

Listing 2.10: Invalid null-termination assumption
int main () •{

char longStrC 3 = "This is a long string";
char shortstr [163;

strncpy(shortStr, longStr , 16);
printfC'The string is not null -terminated:

shortStr);
return (0);

}

•/.s\n",

In Listing 2.10, the so-called safe function strncpy () overwrites the null character

that marks the end of string shor tSt r . The subsequent p r in t f () call has an unde­

fined behavior since there is no null character that stops it from displaying output.

To prevent these insidious errors, strncpy call should immediately be followed by the

statement sho r tS t r [15] = ' \ 0 ' to mark the end of the shor tS t r string.

25

2.2.3 Race Conditions

As stated in [27], " A serialization flaw permits the asynchronous behavior of different

system components to be exploited to cause a security violation'. For instance, we

assume that a process A validates some conditions before performing a given set of

operations. In the meanwhile, a second process B exploits a timing interval, after

process A validates its conditions and before it performs the operations, to invalidate

these conditions. Thus, process A will execute the set of operations with the invalid

assumption that the conditions are still valid. The timing interval exploited by process

B is created by a serialization flaw known as a race condition. They often occur

in concurrent and asynchronous execution environments where multiple threads or

processes access the same resources without taking care of the execution order. The

Time-Of-Check-To-Time-Of-Use vulnerabilities (TOCTTOU) in file accesses [19] are

a classical form of race conditions. Listing 13 illustrates an example of TOCTTOU

flaw.

Listing 2.11: TOCTTOU error
if (access(pathname, W_0K) == 0)
fd = open(pathname, 0_WONLY);

Function access() checks the write permissions of file pathname. On success,

function openO is granted the write access to the file. It is important to notice

that the check operation and the access operation are not executed atomically. If

the file referred by pathname changes between the access() and the openO calls,

the executing process will access a file without checking its permissions. This is an

example of TOCTTOU error in which the binding of a file name can be changed

26

and lead to a security flaw. In order to understand TOCTTOU binding flaws, it is

important to notice the two different methods of naming objects in UNIX System [19]:

• File path name: it specifies the path through the file system to reach the target

object. The kernel enters each folder in the path starting from the root folder

until it reaches the target file. This naming method requires the kernel to

traverse at least one level of indirection before reaching the target file.

• File descriptor: it is a unique per-process non-negative integer used for accessing

open files. A file descriptor does not have any level of indirection, the kernel

uses it to directly access the target file.

The naming method based on file path name is vulnerable to TOCTTOU binding

flaws because of its multiple level of indirection. The kernel has to follow a long path

before reaching the target object, in the meanwhile another process can change the

binding to another object. The file descriptor naming method gives a direct access to

the target object, thus it is much more difficult to exploit a TOCTTOU flaw when

system calls use file descriptors.

2.2.4 File Management Vulnerabilities

The standard C library provides functions for creation, deletion, and manipulation of

files and directories. Improper usage of these functions can lead to different security

flaws such as sensitive data leaks, data corruptions, and privilege escalations. We

discuss a set of file management errors in the following paragraphs.

27

Improper File Permissions

In Unix systems, we refer to file creation permissions as file creation mask. The latter

is divided into three categories: permissions of the user that owns the file, permissions

of users that belong to the owner group, and permissions of all other users. When a

file is created it inherits the current process mask which may be inconvenient to the

system designer. The function umask0 provided by the C standard library is used

to explicitly set the desired access permissions of newly created files. Precaution is

required when setting a file mask, when the mask is too loose unauthorized users may

have access to the created files. While on the contrary, a too tight mask may deprive

users of file accesses intended by the system designer. In the sample code of Listing

2.12, file unsafe f i l e is created without setting a safe file umask. Unauthorized

users may have access to unsafe f i l e . For file pathname, the file creation mask "077"

prevents all users except the owner from read, write, and execution accesses.

Listing 2.12: Unsafe umask setting
int fd = fopen
umask(077)
int fP = fopen

(unsafefile

(pathname ,

» n w

"w")

');

In addition to setting adequate file masks, files should be created in secure folders

that have restricted access privileges. A good practice is to create files under folders

that are exclusively accessed by their owners and system administrators.

Unsafe Temporary Files

Temporary files are very often used by processes to store intermediate results or to

speed up their computation. By default, many programs store their temporary files

28

in the /tmp directory with default access permissions. Programs can also use other

directories for temporary files. In all cases, if the directory and file access permissions

are incorrectly set, it is possible for the temporary file to be used as an attack vector

for the system [129]. The temporary file can be accessed and sensitive data can be

leaked. An attacker can also tamper with the content of the file and create denial

of service attacks. Moreover, temporary files should be removed from the system

when they are no longer used. The information they contain is very valuable for the

creation of attack scenarios. Therefore, temporary encryption files, cookies, and other

internet temporary files should be deleted on a regular basis for security purposes.

2.2.5 Privilege Management Vulnerabilities

The least privilege principle entails that a running process should have privileges and

capabilities that allow it to access resources that are necessary for its execution [21,47].

All accesses that are not required to perform its tasks should not be granted. The

C library provide functions for privilege management. As for all C functions, misuses

of these functions can lead to critical security threats. We present some privilege

management errors of C programming in the following paragraphs.

Dropping Privileges

Setuid programs execute with the privileges of their owner, so ordinary users can

access files and devices even if they do not have the required permissions. For in­

stance, the /usr/bin/passwd program used to access the highly sensitive password file

29

/etc/passwd is owned by the privileged root user. Nevertheless, unprivileged users

are granted root privileges for executing /usr/bin/passwd and changing their own

password. Thus, it is mandatory to write secure setuid programs. A good security

practice is to follow the principle of least privilege. In other words, a program should

acquire the needed privileges to accomplish a task, then drop these privileges as soon

as they are not needed anymore. Listing 2.13 illustrates a sample code where the

acquired root privileges to execute /usr/bin/passwd are never dropped.

Listing 2.13: Unsafe setuid root code
seteuid(0);
execl("/usr/bin/passwd",
/*...*/
return 1;

"passwd", username, NULL);

Generally, unsafe setuid programs owned by root are triggered by many attackers

since they enable them to gain full control over a vulnerable system.

Chrooted Jail

As part of the least privilege principle, a process should be confined to a virtual file

system that contains exclusively the files required for its computation. This good

practice helps reducing the impact of an eventual attack that can gain control over

a vulnerable process. The C library provides the chrootO function to confine a

process into a virtual working directory and deny all accesses outside of it. As for

all C functions, the usage of enroot '() should meet some requirements to obtain the

expected security effect.

Function enroot O executes with root privileges. It is obvious that the root privi­

leges should be dropped after the enroot () call as mentioned previously. Nevertheless,

30

inadvertent programmers omit to do so and the process remains with root privileges

inside the chrooted jail. This inadvertence opens a breach inside the confined di­

rectory that can be exploited by attackers to acquire high privileges. Moreover, the

chrootO call creates the virtual directory but does not redirect processes to it. An

explicit call to chdirC'/") must be performed to confine processes into the chroot

jail, otherwise the latter is ineffective. Listing 2.14 provides a trivial example of a

bad chroot () function call.

Listing 2.14: Ineffective chroot jail
char path [] = "/usr/jail";
chroot(path);
/*...*/
/* program exists without performing chdir ("/")*/

2.3 Vulnerability Detection Techniques

The detection techniques outlined in this section are categorized into static analysis,

dynamic analysis, and model-checking. Existing tools and projects in each of these

categories are presented in Chapter 3.

2.3.1 Static Analysis

Static analysis operates at compile time for error detection in source code. It is

founded on program analysis theory for the safe prediction of program runtime be­

haviors [95]. Static analysis has so far been used for program optimization such as

dead code elimination, loop optimization, and inline expansion [7]. The last decades

31

witnessed an inexorable expansion of static analysis in the arena of software secu­

rity [13,14,16,40,52,61,116]. In this section, we give on overview of the main static

analysis approaches for security and safety verification.

Abs t rac t In te rpre ta t ion (AI)

Abstract Interpretation (AI) is a formal theory for constructing sound approximations

of the semantics of programs [40]. It maps a program and its operations to an ab­

stract domain and abstract semantic operations, respectively. The mapping is based

on mathematical concepts and structures that provide fine tuning of the abstraction

process. AI is mainly used for optimizing programs, verifying programs, and build­

ing static debugging tools. The underlying mathematical foundations guarantee the

soundness of Al-based analysis. Nevertheless, the precision of the analysis is condi­

tioned by the nature of the abstraction: (1) the abstraction might match exactly the

actual behavior of the program, (2) the approximation might include extra behaviors

as well as the actual behavior of the program, (3) the approximation might discard

some important information about the actual behavior of the program. Efficient pro­

gram abstraction techniques increase the analysis accuracy and precision. However,

they also increase the analysis complexity and may render it unscalable with large

software. In fact, Al-based analysis faces a trade-off between the efficiency of program

approximation and the precision of the analysis.

Since the mathematics involved can be cumbersome and expensive to apply, there

are few tool implementations supporting AI theory. PolySpace [104] and Abslnt [4]

32

are two commercial Al-based static analyzers that statically detect runtime errors.

There are also academic tools such as Blast [68] and Saturn [8] that use predicate

abstraction [15,37], which is a special form of abstract interpretation in which the

abstract domain is constructed using a given set of predicates.

Type Systems

High-level languages use type systems in order to associate types with variables and

expressions and to make the program more readable [26,101]. Types facilitate the

understanding of the program structure and the interpretation of the data it uses. A

type system consists of a set of typing rules and a set of type inference rules. The first

set of rules defines types and associates them to language objects and expressions.

Type inference rules deduce the type of an untyped expression in a given program.

To prevent runtime errors, type systems are augmented with type constraints that

enforce preconditions on inference rules [120]. If all type constraints of a program

are solved, the program is well-typed and is free of runtime errors. This feature is

summarized by Milner's famous slogan "well-typed programs cannot go wrong' [92].

The mechanism of type constraint generation and solving is now used for the

specification and the verification of security and safety constraints on programs, re­

spectively [69,79,131]. The main approach consists of extending the type system with

type qualifiers or annotations that hold security information. Then, security rules are

expressed as constraints on these annotations [58]. For instance, the type-based tool

33

CQual [79] decorates standard C types with the qualifiers user and kernel to distin­

guish user space data from kernel space data, respectively. These qualifiers facilitate

the specification of a security constraint stating that an untrustworthy user data

cannot be used in function call where kernel data is expected.

Type systems provide an elegant algebraic representation of an analysis in terms

of compositionality and formality that facilitates the specification of typing rules

and constraints. They provide an extensible analysis that can be easily integrated

into the compilation process rendering the analysis fast and scalable. Despite their

efficiency for detecting low-level property violations, type systems are not suitable for

the verification of high-level security properties related to program functionalities.

Flow Analysis

Flow analysis is mainly categorized into control-flow analysis and data-flow analysis

that are extensively applied for static program analysis [60].

Control-flow analysis computes a safe approximation of the order in which in­

structions of a program are executed. The control-flow graph is the most common

representation used to model the flow relationships among program instructions [95].

Each node in the graph, referred to as a basic block, represents a sequence of consecu­

tive instructions in which the flow of control enters at the beginning of the block and

leaves at the end of it without any branching or jump instructions. Directed edges

represent transfer of control between basic blocks. Each possible execution path of

the program has a corresponding path from the entry to the exit node of the graph.

34

Control-flow analysis is mainly used in code optimization for detecting dead code,

infinite loops, etc. In the domain of security analysis, control-flow is particularly

appropriate for the verification of temporal security properties that dictate the exe­

cution order of security-relevant operations. For instance, a temporal property may

state that A call to s t a t (f) must not be followed by a call to open(f).

On the other hand, data-flow analysis is a collection of techniques that approxi­

mate the values of expressions along all possible execution paths of a program. Data­

flow analysis algorithms are based on control-flow graphs extended with information

about variables and expressions at each node of the graphs. Analysing the flow of

data is more precise and leads to better code optimization than control-flow analy­

sis. For example, data-flow analysis handles the problem of reaching definitions that

determines for each use of a variable, the assignments that could have defined the

value being read. Solving the reaching definitions problem is useful for detecting

uses of undefined variables, performing constant propagation, and eliminating com­

mon subexpressions [95]. In addition, there are more sophisticated data-flow analyses

such as points-to analysis [10,119] and alias analysis [25] that focus on data memory

locations. Points-to analysis is a technique that finds out to which storage locations

a pointer can point during its life time. Alias analysis is a specific case of points-to

analysis that finds out which pointers in a program refer to the same memory loca­

tion. This information is significant for the detection of bad pointer usages in C/C++

programs.

35

To summarize, flow analysis has a proven efficiency in code optimization and cod­

ing error detection. The separation between the data and the control flow gives even

more flexibility in using this approach in program analysis. However, this approach

is still used in an ad-hoc way and has less theoretical results than some other formal

techniques such as type-based analysis and model-checking.

2.3.2 Model-Checking

Model-checking is an automatic verification technique that has successful results for

hardware verification [132]. Recently, many research groups work on model-checking

for software verification and demonstrate it has very promising results [35,127]. There

are two main approaches for software model-checking: temporal logic model-checking

and behavioral model-checking. For these two approaches, the program is translated

into a finite state model that can be given as input to a model-checker. The program

model is an abstraction that can be computed using flow analysis, abstract interpre­

tation, or type system frameworks. In the case of temporal logic model-checking, the

property to check is specified in temporal logic [36]. The property expression is also

given as input to the model checker. Then, the model checker performs an exhaustive

state exploration to check if the model of the program satisfies the property. On

the other hand, the behavioral model-checking approach compares the model of the

implemented program against a model of its specification [78]. The main challenge of

software model-checking is to define a precise model of the program and to deal with

state explosion [38].

36

2.3.3 Dynamic Analysis

Dynamic analysis verifies the security and safety properties of a program at run­

time [17]. In contrast to its static counterpart, dynamic analysis examines the actual

behavior of programs without performing any approximations. Hence, the results

derived from dynamic analysis are precise, though they only hold for the current ex­

ecution of the program and cannot be generalized to all possible program executions.

Testing is the most common technique for dynamic analysis. The effectiveness of

the testing process depends upon the test data over which the program is executed.

There is no guarantee that the selected test data would exercise all program execution

paths to uncover property violations. As such, representative test data generation is

for dynamic analysis what safe program approximation is for static analysis.

Dynamic analysis is done through code instrumentation to collect information on

programs and to perform property checks as they run. Code instrumentation can

either be performed on source code or on executable files. Both approaches have

their advantages and their drawbacks. Instrumenting source code utilizes compilers

to insert annotations at different locations of the program. This high-level source

code instrumentation yields a program annotated with the needed runtime checks.

On the other hand, when source code is not available, as for commercial software,

the code instrumentation is performed on executable files [86]. We can find in the

literature many tools based on dynamic analysis for security verification. Purify [66]

is a well-established commercial tool for the detection of memory leaks, double-free

errors, and out-of-bound accesses. Insure++ [99] is another commercial tool that

37

detects memory errors, type errors, and string manipulation errors. There are also

academic tools for the dynamic detection of memory errors such as Valgrind [115]

and DMalloc [128].

2.4 Comparative Study

Given the wide range of available approaches for analysing source code, choosing

the suitable one depends on a set of criteria that we use in the comparative study

presented in this section. First, we compare static analysis with dynamic in terms of

completeness, soundness, performance, and cost of the analysis. Then, we compare

static analysis with model-checking in terms of property expressiveness, soundness,

completeness, and scalability of the analysis.

Before we embark on the comparative study, we need to clarify the meaning of

soundness and completeness in the context of security and safety analysis. A program

analysis is sound when it does not suffer false negatives, i.e, it does not miss any

occurrence of the targeted errors. A program analysis is complete when it does not

suffer false positives, i.e, all the detected errors are actual errors.

2.4.1 Static Analysis vs. Dynamic Analysis

Static analysis and dynamic analysis are the two main protagonists that compete for

the safety and security verification of software. A comparative study of these two

analyses is of great interest to reveal their duality and their potential synergy [93].

38

• Soundness: Dynamic analysis operates on actual program executions exercised

by test data. The dynamic path coverage is restrained by the quality of test

data. Some execution paths triggered by unexpected input data may not be

considered during dynamic analysis. All property violations along these unex­

plored execution paths remain undiscovered. On the other hand, static analysis

does not rely on any input data and performs an exhaustive examination of

all predicted execution paths of programs. Static analysis strives for soundness

by adopting a conservative and pessimistic approach that assumes worst-case

scenarios for error detection.

• Completeness: By its conservative nature, static analysis is inherently impre­

cise and suffers from a high rate of false positives. Moreover, undecidability

is a fact in static analysis that we face very often, especially with imperative

programming language such as C, C++, and Java [82]. In other words, it is the­

oretically impossible to determine whether a given property holds for a program

or not. For instance, pointer analysis such as aliasing is statically undecidable,

it typically infers that two pointers may alias along an execution path [106].

On the other hand, completeness is the key feature of the dynamic counterpart.

All errors reported during runtime are undoubtedly actual errors.

• Performance and cost: Dynamic analysis typically injects instrumentation

code into analyzed programs. The execution of the instrumented code induces

39

significant time and resource overheads. Most of dynamic tools exhibited over­

head between 30% to 150% compared to the execution of the unmodified pro­

grams [12,61,66]. As a consequence, instrumented programs can be used for

testing and debugging purposes and are unsuitable in production environments

with stringent timing and resource requirements. On the other hand, static

analysis offers the cost-save advantage of early detection of software errors. A

research study showed that static analysis tools can provide a 17% to 23% cost

reduction for reported security errors [14].

From this comparison, we can deduce that static analysis and dynamic analysis

are rather complementary than competitive. Combining static and dynamic analysis

is a very appealing and promising approach that aim at enhancing the overall out­

come of both analyses [49]. The synergy shall define a fair balance between soundness

and completeness of the analysis. Recent research trends focus on combining static

analysis and dynamic analysis [6,12,61]. These hybrid analyses insert runtime checks

at program points where static analysis is undecidable. As a consequence, the number

of errors detected by the overall approach increases compared to an approach exclu­

sively based on static analysis. In addition, the number of runtime checks decreases

compared to an approach exclusively based on dynamic analysis. Our type and effect

analysis defined in Chapter 4 is designed with the capabilities to resort to dynamic

analysis for the purpose of overcoming static undecidability. It uses an effect based

approach defined in Chapter 5 to efficiently guide code instrumentation for runtime

checking.

40

2.4.2 Static Analysis vs. Model-Checking

In what follows, we outline a set of criteria for the comparison of model-checking and

static analysis. From this comparative study, we also deduce a duality between these

two approaches that is appealing for the security verification of software.

• Property expressiveness: When using static security analysis, the properties

to be checked should be embedded within the compiler itself. Otherwise, the

latter is not able to detect errors when it does not know them. This required

compiler awareness restricts the number and the customization of security and

safety properties to check. Model-checking does not suffer this limitation; it

allows programmers to define a wide range of system-specific properties to ver­

ify. The desired properties are expressed in temporal logic or as finite-state

automata. Moreover, model-checking is more suitable for detecting high-level

security properties than static analysis. The latter checks low-level properties

that can be directly mapped to source code, whereas model-checking can ver­

ify properties that are implied by the code without being explicitly present in

it [48].

• Soundness and completeness: Both static analysis and model-checking oper­

ate on program abstractions. Therefore, they both strive for soundness and can­

not achieve completeness due to their conservative nature. However, there is a

main difference between these two approaches in program modeling. Static anal­

ysis uses the compiler intermediate representations as program models, whereas

41

model-checking operates on a finite-state model of a program serialized into the

input language of the model-checker. The main challenge of model-checking is

the extraction of a finite-state model from the source code of programs. The

model should be precise enough in order not to over-estimate and not to under­

estimate program behaviors. In fact, the precision of the analysis relies on

the expressiveness of program abstractions. The effort and the time required

by programmers to build a model-checkable abstraction hampers the usability

and scalability of software model-checking. Recent research trends in software

model-checking use static analysis to automate the building of a finite-state

model of programs [23,41]. Compiler intermediate representations of source

code such as abstract syntax trees and control-flow graphs are structured in a

way that facilitates the automation of their translation to a given model-checker

input language.

• Scalability: Given the finite-state model of a program, the model-checking pro­

cess performs an exhaustive search of the state space to ensure the conformance

of the program behavior with the specified properties. State explosion problem

is the main issue of software model-checking [38]. The number of states grows

exponentially with respect to the size of the analyzed program. This problem

limits the scalability and the usability of model-checking for large software ver­

ification. Abstraction is a well-known and and established technique to cope

with the state explosion problem by safely reducing the size of the program state

space. During the program model construction, abstraction consists in retaining

42

program behaviors that are relevant for the desired properties and discarding

those behaviors that are irrelevant [71]. Besides, there are also techniques that

target the representation of states in memory to allow for an efficient and opti­

mized exploration of a state space. For instance, explicit state model-checking

technique stores states in hashtables and ensures that each state is explored at

most once. Symbolic model-checking stores state in sophisticated and compact

structures such as Binary-Decisions-Diagram (BDD) for the speed up of the

exploration process [24].

The comparative study of static analysis and model-checking shows that these

approaches can achieve better results when jointly performing the security and safety

verification of software. We present in Chapter 6 a security verification environment

that brings static analysis and model-checking into a synergy in order to leverage the

advantages and overcome the shortcomings of both techniques. The core idea is to

utilize static analysis for the automation of program abstraction processes. On the

other hand, programmers have the ability to define a wide range of security properties

using an automata-based specification approach. As a result, our approach can model-

check large scale software against system-specific security properties.

2.5 Conclusion

In this chapter, we presented the most common coding errors of C programs that

may lead to severe safety and security vulnerabilities. We also outlined the different

43

detection techniques used to automatically uncover coding errors. We mainly focused

on static analysis that is the cornerstone of the thesis. We compared static analysis

with dynamic analysis, then we compared static analysis with model-checking. The

objective of the comparative study is to establish the synergies and the dualities

between these approaches. In the following chapter, we present a list of existing tools

that are mainly based on static analysis and model-checking for error detection.

44

Chapter 3

Survey of Security and Safety Tools

This chapter presents a survey of the prominent static analysis tools for vulnerability

detection. The objective of this survey is to identify the techniques used by existing

tools and the different capabilities they provide. We establish a comparative study of

these tools based on the main characteristics of their approaches and their targeted

security and safety violations.

This chapter is organized as follows: Section 3.1 presents well-established annotation-

based tools. Automata-based tools are detailed in Section 3.2. Pioneer tools that

combine static and dynamic analyses are outlined in Section 3.3. The proposed clas­

sification focuses on the main characteristics that distinguish each approach of the

presented tools. We establish a comparative study of these tools in Section 3.4. We

draw conclusion of this chapter in Section 3.5.

45

3.1 Annotation-Based Techniques

Program annotations serve the purpose of specifying behavioral invariants that the

code must satisfy. There are two main kinds of program annotations: (1) State­

ment annotations that decorate elements such as condition statements, loop state­

ments, and switch statements. (2) Type annotations that decorate standard types

of programming languages. Both annotations can be used to enrich the semantics of

programs with additional information that is useful for the detection of safety and

security violations. We present hereafter prominent annotation-based tools that use

the aforementioned techniques for security and safety verification of C programs: we

detail their approach and their targeted vulnerabilities.

3.1.1 Lint Family

Statement annotation techniques utilize program comments to specify behavioral con­

straints and verify the conformance of the program to these constraints. To facilitate

the reading and the understanding of their programs, almost 30% of the source code of

Linux, PreeBSD, and OpenSolaris are comments [98]. Form this observation, ascrib­

ing semantics for program comments shows to be an appealing approach to specify

and verify security properties of source code.

Lint is considered as a pioneer tool that uses statement annotations for static ver­

ification of programs [80]. It performs a simple flow-sensitive type-checking analysis

46

that detects a basic set of programming errors: unused declarations, type inconsisten­

cies, unreachable code, use before definition, infinite loops, ignored return values, and

execution paths with no return. Annotations that Lint adds are also used to eliminate

false positives issued from its conservative analysis. For instance, the /*NOTREACHED*/

annotation is used to stop flagging unreachable code starting from a specific program

point. The /*FALLTHRU*/ annotations is used to stop complaining about the ab­

sence of break instruction after a case statement. An example of the usage of these

annotations is given in Listing 3.1.

Listing 3.1: Lint statement annotations
switch

case
(i) {
10:

i - 0;
case 12:

break;
case

i
18:

- 0;
/*FALLTHRU

case 20:
error("bad

»/

number");
/'NOTREACHED*/

case 22:
return;

>

There are also annotations for functions with variable number of arguments such

as p r in t f () functions and scanf () functions. These functions are used to display

output and to read input, respectively. They take a format string argument that

specifies the format in which a data stream should be displayed or read. The ab­

sence or the bad usage of format string arguments can lead to critical security flaws

know as format string vulnerabilities discussed in Chapter 2. The Lint annotations

/*PRINTFLIKEn*/ and /*SCANFLIKEn*/ indicate that the nth argument of functions

47

printf () and scanf () respectively should be considered as the format string argu­

ment. Most of the Lint error checks are now embedded into the GCC compiler

rendering the use of Lint obsolete. Nevertheless, Lint served as a starting point and

as a source of inspiration for many other static detection tools such as LCLint [53]

and Splint [84] that we briefly describe hereafter.

In addition to the Lint checks, the LCLint tool makes more sophisticated usage

of program comments to define behavioral constraints on the analyzed code. For

instance, LCLint adds the comment /*@modif i e s *a@*/ to disallow modification of

variables other than a. The sample code of Listing 3.2 should flag a warning when

checked with LCLint, since function f oo() modifies argument b without being allowed

to do so.

Listing 3.2: LCint statement annotations
static void foo(int *a.
<

*a = l, *b=2;
}
int main O
{

int p = 10, q=20;
foo(ftp, fcq);
return 0;

}

int *b> /*@modifies *a@*/

The Splint tool uses more expressive annotations that tackle more programming

errors than LCLint. Splint defines the clause requires to enforce function precondi­

tions and the clause ensures to state function postconditions. The preconditions and

the postconditions are added to C/C++ library functions to detect security violations

such as buffer overflows. Listing 3.3 shows the annotated version of the C function

s t r cpyO. The precondition states that the memory size of s i in lvalue position

referred to by maxSet(sl) should be equal to or greater than the memory size of s2

48

in rvalue position referred to by maxRead(s2). The postcondition states that pointers

s 1 and s2 should have the same size after the copy operation. Moreover, Splint sup­

ports user-defined annotations and the specification of syntactic constraints on their

usage.

Listing 3.3: Splint statement annotations
char *strcpy (char *sl
/*0requires maxSet(sl)
/*@ensvres maxRead(sl)
/\ result == sl@*/\

const char *s2)
>= maxRead(s2)@*/
== maxRead(s2)

•

The Lint family tools are very popular as they are among the oldest tools for

static verification of source code. Their lightweight analysis is able to detect common

programming errors in C source code. Nevertheless, they produce many false positives

and the manual annotation burden renders programmers reluctant to use these tools

on large scale software.

3.1.2 CQual

Another commonly used program annotation technique augments standard types with

qualifiers. The latter provide a natural and easy way for programmers to ensure

strong invariants of programs. In fact, types ascribe semantics to programs that

discipline their behaviors, e.g., arithmetic operations cannot be used on values of type

strings. Thus, extending types with qualifiers augments even more the semantics of

programs by expressing strong invariants. For instance, the const type qualifier of

the C language declares an object to be constant and disallows any modification of

its value. Type qualifiers can also be used to express security and safety invariants of

49

programs. The verification process of these invariants can easily be integrated with

the type-checking process performed by compilers.

CQual is a type inference and constraint solving tool that detects vulnerabilities

in C programs [58]. It provides a type qualifier framework that allows programmers to

annotate standard C types with user-defined type qualifiers. These annotations refine

on standard types by endowing them with security information. CQual expresses

security properties as a set of constraints on annotated types. CQual verification

process consists in inferring security type annotations to program expressions and

checking constraint satisfaction on these inferred annotations. For instance, CQual

has been used to detect user/kernel pointer errors where untrustworthy user space

pointers are dereferenced inside the kernel space without being checked. To prevent

these errors, CQual defines a security constraint based on two type qualifiers: user

for unsafe pointers that are under user control, and kernel for safe pointers that are

under kernel control. The security constraint entails that a user pointer can never

be used where a kernel pointer is expected. This constraint implies an ordering

relationship on qualifiers stating that user is a subordinate to kernel , and written

user < kernel . CQual extends ordering relationships on qualifiers to subtyping

relationships on qualified types according to the following built-in inference rules:

<?i < <?2
<7i i n t < <72 i n t

9i < <?2
9 iP t r (r) < <?2ptr(r)

In these rules, q\ and 72 stand for type qualifiers and p t r (r) represents a pointer to

a given type r .

50

Listing 3.4 illustrates the usage of type annotations to detect unsafe usage of user

pointers. The C function c o p y f r o m u s e r O copies data from user space to kernel

space. Pointer from is annotated with qualifier $user, whereas the annotation $user

* $kernel of pointer t o stands for a kernel pointer whose content is from user space.

In the considered sample code, variable m and c belong to the kernel space. The call

to c o p y f r o m u s e r O assigns a value copied from the untrustworthy user space to

the kernel memory location of pointer &;m. As such, CQual considers pointer m as

unsafe since its content is from user space. It flags an error when the field buf of

variable m is assigned to the kernel variable c.

Listing 3.4: CQual type annotations
unsigned long

struct msg m;
char c;
copy_froi.user
c = m.buf[0];

copy

(ftm,

.from

(voi

_user(void $user *
void *

d*)arg,

$user

sizeof

from ,

(m))

$kernel to
unsigned

;

f
long n);

CQual carries out a flow-sensitive inference algorithm that generates and solves

security constraints on these type qualifiers. If the inference algorithm ever fails

the constraint solving, a security vulnerability is reported. CQual performs a sound

analysis, but the conservative nature of its analysis may lead to false positives. Despite

the soundness of CQual, the required manual annotation effort hampers programmers

from porting their legacy code to annotated CQual code. Rigorous annotation effort

measurements shows that an annotation overhead of one annotation per 50 lines of

code comes at a cost of one programmer hour per thousand lines of code [56,65].

CQual has also been used to detect format string vulnerabilities [116] and to verify

the authorization hook placement in the Linux Security Modules [131].

51

3.2 Automata-Based Techniques

Automata-based tools are mainly based on flow analysis of source code. Their ap­

proach is based on the fact that many security properties are related to the execution

sequence of security relevant operations(e.g., X should always happen before Y, X

should never happen after Y). Such temporal security properties can be expressed as

finite state automata that specify which sequences of actions are allowed. This sec­

tion illustrates two prominent automata-based tools, namely MetaCompilation and

MOPS.

3.2.1 Meta-Compilation

The MetaCompilation (MC) approach [11,65] takes advantage of the compilation

process to check violations of security properties in source code. Each property is

expressed as a negation rule that specifies sequences of program statements that must

not be executed. Programmers use a high-level automata language called metal [29] to

express rule-checkers for security properties. MC rule-checker automata are classified

into two categories [65]:

• variable-specific checkers that express properties related to a specific program

variable such as 'a freed pointer cannot be dereferenced'.

• global checkers that express properties related to the whole program such as

"interrupts are disabled".

52

The nodes of variable-specific automata represent states of the tracked variables,

whereas the nodes of global checker represent global states of programs. The transi­

tions between states are labeled with patterns that match C code statements involved

in a security rule. For instance, the metal rule in Listing 3.5 detects bad usage of

freed pointers in C code.

Listing 3.5: Metal checker of bad usage of dangling pointers
state decl any_pointer v;

start: { kfree(v) } ==> v.freed

v.freed: { *v } ==> v.stop
{ errCusing %s after free*"

1 { kfree(v) } ==> v.stop,
{ err ("double free for */.s ! " ,

, mc_identifier(v))

BC_identifier(v));

}

}

The state s t a r t denotes the initial state of the checker. Pattern v matches any

freed pointer in the program. For each of these pointers, an automaton instance is

created to track its state and report errors in case of security violations. The pattern

kfree(v) triggers a transition from the initial state s t a r t to the state v . f reed,

where pattern v stands for a freed pointer. From the state v. freed, two transitions

are possible: (1) The first transition matches a pointer dereference pattern v and

flags a use-after-free error. (2) The second matches a pointer deallocation pattern

kfree(v) and flags a double-free error.

The MC approach operates in two phases, an intraprocedural phase and an inter-

procedural phase:

• The first intraprocedural pass applies the metal checkers to each basic block of

the program control-flow graph generated by the compiler. The traversal of the

graph uses a Depth-First Search (DFS) algorithm that goes along an execution

53

path until it ends. When the traversal reaches the end of a path it backtracks

to the last branch point then resumes the traversal. Hence, all the execution

paths of programs are explored.

• The second interprocedural pass handles function calls through a refine and

restore approach of the checkers states. When a function call is followed, the

objects that pass from the caller scope to the callee scope should retain their

state. When the call returns, the objects states are restored in the caller scope.

As the call site information is kept at each function call, this interprocedural

analysis is context-sensitive.

In order to reach high scalability, analysis summaries recording the states of metal

checkers are kept for each analyzed function. Summaries are checked at each function

call. If the recorded states of the checkers match their current states the call is not

followed. The existing summaries are used to reproduce the effect of analyzing the

function.

The MC approach has discovered many bugs in the Linux and BSD kernels [11]

and has also been developed into a commercial product [43]. However, the scalability

and the usability of MC come at the price of its analysis soundness. Many security

violations such as pointer errors can pass through the checkers without being detected.

These insidious errors are even more difficult to track in the presence of pointer

aliasing. In fact, MC performs a trivial alias that considers simple assignment of the

form x=y with no dereference operators for pointers. MC analysis also produces many

54

Figure 1 Automaton for the detection of bad chrootO usages

chrootO

chdirfV)

false positives alarms, therefore the credibility of the analysis results can be affected.

In order to reduce false positives, MC uses trivial data-flow analysis techniques to

prune non-executable paths. Ranking heuristics are also used to sort the analysis

results so that the most important security violations are displayed first in the final

report [65].

3.2.2 M O P S

MOPS [32] is a model-checker that detects violations of temporal security proper­

ties in C programs. MOPS defines a temporal security property as a finite state

automaton. Each transition in the automaton is labeled with a syntactic pattern

that describes a program statement. During model-checking, a transition is taken if

its label matches the current program statement. The final states of the automaton

are reached when the sequence of the executed statements violates the property. For

instance, the automaton shown in Figure 1 entails that the chrootO function call

must be immediately followed by a call to chdir (" /")-

The chrootO function creates an isolated virtual root directory (chrooted jail).

When immediately followed by the chd i r (" / ") function, the working directory is

55

confined to the chrooted jail. Otherwise, an attacker will still have access to files

outside the chrooted jail [30].

MOPS analysis performs a pushdown model-checking algorithm to detect safety

properties violations in programs [50]. MOPS model-checking algorithm operates in

two steps:

• First, MOPS parses the control-flow graph of the analyzed program to derive a

push-down automaton of the analyzed program [33]. Push-down automata are

efficient in capturing interprocedural behaviors of programs [114]. They allow

to perform an interprocedural and context-sensitive analysis since it matches

each function call and function return with their corresponding call sites. It

pushes the call site onto the stack at each function call and retrieves the call

site from the stack at each function return.

• Second, MOPS model-checker determines whether the considered property au­

tomata reach a risky state by computing the language intersection of the prop­

erty automata and the program push-down automaton. Since an automaton

represents the negation of a security property, the result of the intersection

should be the empty set to claim that the source code satisfies the considered

properties. __

MOPS has been used on the entire Red Hat Linux 9 distribution to detect file

system race conditions, file descriptor vulnerabilities, and unsafe usages of temporary

56

files [31, 111]. MOPS model-checking is sound under the assumptions that the ana­

lyzed C program is a portable, single-threaded program that has no function pointers,

signal handlers, and no runtime code generation. The pushdown-automaton model

of the program enables MOPS to be context-sensitive by keeping track of the return

address of each function call. On the other hand, MOPS is path-insensitive and may

generate false positives related to infeasible paths. Moreover, MOPS is data-flow

insensitive and does not handle aliasing neither parameter passing during program

verification. For instance, we consider a TOCTTOU error that may occur when a call

to s t a t O is followed by a call to open() on the same file name. Misled by aliasing

pitfalls, MOPS cannot detect error traces such as s t a t (x) ;y=x;open(y). Besides,

without considering parameter passing, MOPS misses the s t a t O call followed by a

subsequent call to open() in a different function scope as shown hereafter:

foo() in t bar (char * f i le)
{ {

int f = s t a t (f l) ; open (f i l e) ;
bar (f l) ; /* . . . * /
/ * . . . * / }

}

We show in Chapter 6 and Chapter 7 that our approach can handle variable

aliasing and parameter passing for revealing insidious error traces.

3.3 Hybrid Techniques

Recent research trends utilize hybrid approaches that combine static and dynamic

analyses for memory and type error detection [6,12.94]. The combination aims at

57

overcoming the lack of precision of static analysis by injecting runtime checks in the

analyzed code. The gain in analysis precision of hybrid approaches is appealing.

Nevertheless, these approaches still require an effective static analysis to reduce the

number of runtime checks and their induced overhead. We discuss in this section

CCured [61] and SafeC [12] considered as the pioneers of hybrid analysis tools.

3.3.1 CCured

CCured [61] is a hybrid tool that combines type analysis and runtime checking in

order to ensure safety of C programs. It takes as input a C code and outputs an anno­

tated CCured program instrumented with runtime checks for memory and type safety.

CCured type analysis decorates the standard C type system with pointer annotations

that distinguish between typed pointers and untyped pointers. The former pointers

refer to objects with known types, whereas the latter refer to objects for which we

cannot count on their static type due to cast operations. The annotations also de­

fine the required runtime checks to guarantee safe execution of memory operations.

CCured defines the following pointer annotations:

• The SAFE annotation is used for pointers to typed objects. Arithmetic opera­

tions are not allowed for SAFE pointers, thus runtime bounds checking is not

needed. The only required runtime check for SAFE pointers is the null-check

before dereferencing.

58

• The SEQ annotation is used for pointers to typed objects. Arithmetic opera­

tions are allowed for SEQ pointers, thus bounds checking on these pointers is

performed at runtime.

• The DYNQ annotation is used for pointers to untyped objects. The bounds and

type of DYNQ pointers must be dynamically checked before dereferencing.

To support runtime bounds and type checking, CCured defines fat pointers that

maintain information on their size and their type referred to as metadata. CCured

modifies the code of memory allocation operations in order to initialize the metadata

of a pointer when created.

CCured performs a sound analysis in the presence of runtime checks. It efficiently

captures all out-of-bounds accesses and null dereferences in C programs. Nevertheless,

CCured runtime checks increase drastically the performance overhead. An instru­

mented program may be three times slower than the original [88]. The flow-insensitive

analysis and the lack of aliasing information restrain CCured from reducing the num­

ber of runtime checks. Definitely, CCured cannot be used for performance-critical

software such as operating systems and drivers. Moreover, temporal memory errors

such as the dereference of freed pointers and the dereference of uninitialized pointers

are not detected by CCured as illustrated in Listing 3.6. The sample code memo-

ryEr ro r s . c is checked with CCured, the option -alwaysStopOnError generates an

executable that always stops on error. However, the invocation of memoryErrors. exe

shows that CCured does not detect nor prevent memory errors such as accessing freed

59

memory and use of uninitialized values.

Listing 3.6: Limitations of CCured safety analysis
int main(H
int * p;
int x;

p = fcx;
printf ("Uninit value of x :7.d\n" ,*p) ;
p=malloc(sizeof(int))
printf("Uninit memory
free(p);
*p = 5;

•/.d\n",*p);

printf ("Use after f ree : 7.d\n" ,*p) ;
return 0;

>

$./ccured —alwaysStopbnError
memoryErrors.c -o memoryErrors.exe
$./memoryErrors.exe
Uninit value of x:1628796619
Uninit memory :0
Use after free :5

3.3.2 SafeC

SafeC [12] is another hybrid tool that utilizes static type inference to detect errors

in source code and to insert necessary runtime checks. The main ideas of CCured

approach are used in SafeC as well. SafeC changes the representation of pointers in

memory in order to collect and maintain safety information such as memory bounds.

Additionally, it performs a source-to-source translation for the conversion of pointer

representations and the insertion of runtime checks. The augmented representation

of pointers of SafeC is different from the representation of CCured fat pointers. A

SafeC pointer is referred to as a safe pointer and it has the following representation:

• Field value refers to the address value referred to by the pointer.

• Fields base and s i ze refer to the base address and the offset of the memory

location, respectively.

60

• Field storageClass indicates the kind of the pointer memory region, it can be

Heap, Local, or GLobal.

• Field capab i l i t y assigns a unique identifier for dynamically allocated memory

blocks.

To populate the aforementioned fields, SafeC modifies the source code of memory

management functions such as the standard malloc functions and the f ree func­

tion. It also captures pointer creation through the addressof & operator and pointer

arithmetic operations.

At each pointer dereference, SafeC inserts a runtime check that refers to the base

and the s i ze pointer fields for the detection of out-of-bounds accesses. It also inserts

a runtime check that uses the storageClass and the capab i l i ty fields to verify that

the memory region has not been deallocated. SafeC maintains a capability store that

associates a unique identifier to each created pointer. When the pointer is freed, its

identifier is removed from the store capability, thus the dereference of freed pointers

can be detected. Unlike CCured, SafeC does not resort to garbage collection for the

handling of freed pointers.

The static analysis of SafeC is under-exploited. It serves the purpose of inserting

runtime checks and converting pointer representations. It is never used to discard

runtime checks related to pointer operations that are statically guaranteed to be safe.

At runtime, SafeC exhaustively checks the memory bounds and the memory state

(freed or allocated) for each pointer dereference. This heavy runtime checking induces

61

a high performance overhead that ranges from 130% to 540 % according to the authors

[12]. Moreover, the modification of the memory layout renders executables generated

by SafeC incompatible with other executables generated by standard compiler such

asGCC.

3.4 Comparative Study

Prom the study of existing verification tools, we distinguish a set of analysis char­

acteristics that have an effect on the soundness, precision, scalability, and usability

of these tools. We present below a listing of these characteristics in terms of their

advantages and shortcomings. We also present the trade-offs that arise when choosing

to design a verification tool with these listed characteristics.

3.4.1 Flow-Sensitive vs. Flow-Insensitive

Flow-sensitive analysis takes into account the execution order of program statements.

This kind of analysis is used by MOPS, MC, and BLAST for the verification of

temporal properties that entail a secure execution order of program actions. CQual

also uses a flow-sensitive inference of type qualifiers that allows to set new values for

qualifiers at each program point. On the other hand, flow-insensitive analysis does

not consider the sequencing of program statements. Therefore, the generated results

are related to the whole program and cannot be restricted to a specific program

point. Flow sensitivity endows the analysis with precise results but at the cost of less

62

scalability. On the other hand, flow-insensitive analysis scales to large programs but

do not provide accurate results. Trade-off between precision and scalability is a key

factor in the choice between flow-sensitive analysis and flow-insensitive analysis.

Pointer analysis raises the dilemma of flow-sensitive or flow-insensitive analysis

[70]. In order to efficiently detect memory errors, it is useful to perform a pointer

analysis to know the location referred to by a pointer and the set of aliased pointers

to that same location. A flow-insensitive pointer analysis is scalable but less precise

[10,119]. It can state that a given pointer p and pointer q may refer to the same

location on some program paths. On the contrary, flow-sensitive approach is more

precise and can derive more precise result such as pointer p and pointer q may refer

to the same location at a specific program point. Nevertheless, this precision comes

with the cost of less scalability [34,130].

For instance, CCured performs a lightweight flow-insensitive pointer analysis that

is not precise. To remedy the lack of precision, CCured annotates with runtime checks

all pointer operations that cannot be statically proved memory safe. Nevertheless,

the performance overhead introduced by the runtime checks is unacceptable and may

reach 150%. Other approaches similar to CCured, such as SafeC [12], Cyclone [63],

and Vault [55] have the same performance issue due to a heavy code instrumentation.

This performance issue leaves us enough room to define a memory and error detection

approach with a better balance between precision and effectiveness.

Yet, flow-sensitive analysis follows the control flow along the different execution

paths in programs. Nevertheless, all traversed execution paths are not always actual

63

feasible paths at runtime. In fact, static analysis tends to be conservative and perform

an exhaustive exploration of program paths without pruning infeasible ones. So, they

may generate false alarms related to these impracticable paths. In this context, path-

sensitivity is a desirable characteristic for increasing the precision of an analysis by

discarding infeasible paths. Nevertheless, a path-sensitive approach inevitably induces

sophisticated analyses that may affect its scalability to large software.

3.4.2 Interprocedural vs. Intraprocedural Analysis

Intraprocedural analysis considers a program function as a stand-alone entity. The

results of an intraprocedural analysis do not take into account the flow of data and

control at function calls, whereas interprocedural analysis does. During an inter­

procedural analysis, the information flows from the caller procedure to the callee

procedure and vice-versa. Therefore, the results of interprocedural analysis depend

on the caller-callee relation.

MC and MOPS perform an interprocedural and flow-sensitive analysis of pro­

grams. Nevertheless, the interprocedural analysis of MOPS is not efficient since it

does not consider parameter passing at function boundaries as shown previously in

this section. When moving from a caller function to a callee function, MOPS does

not match actual parameters with formal parameters of the callee function. This

prevents it from detecting errors that involve different function calls. On the other

hand, the MC approach takes into account parameter passing at function bound­

aries. The state of a variable in a caller scope is retained and transferred to the callee

64

scope. This renders the interprocedural analysis of MC more precise than MOPS. The

aforementionned type analysis of CCured is interprocedural but flow-insensitive. The

execution order of function statememts is not taken into account. The unsoundness

and imprecision of CCured analysis are rectified by resorting to runtime checks that

spot actual errors. A flow-sensitive analysis would help CCured reducing the number

of runtime checks for performance enhancement.

A summary-based approach is often used to optimize and speed up interproce­

dural analysis. The idea consists in analyzing a function based on specific context

and to store the analysis result in a concise summary. When the function is called

again, the current call context is compared to the context of the stored summary.

If they compare equal, the function is not analyzed and the stored analysis result is

used. The summaries help saving time and resource consumption by avoiding the

repetition of a previously performed analysis. For instance, the previously discussed

MC approach achieves scalability by computing a global summary for each analyzed

function that combines fine-grained summaries of each basic block of the function

control-flow graph.

3.4.3 Internal Checking vs. External Checking

In the review~of the security tools, we have seen two kinds of checking: internal check­

ing that uses annotations and external checking that has no annotations. Annotation-

based systems specify security properties that are highly coupled with the analyzed

code. Annotations are directly added to the code in order to enrich it with security

65

knowledge required for detecting errors. From the tight mixture between security

specification and the code, annotation-based systems are more capable of achieving

soundness than external checking tools. The latter provide a modular approach for

security specification. The analyzed code is kept unmodified. In general, security

properties are modeled by automata independently from the source code. These au­

tomata are executed during compilation or during a specific code traversal to verify

security properties. Hence, the modular nature of external checking systems reduces

the complexity of defining and managing security properties. However, the sepa­

ration from the source code makes external checking more prone to false positives.

For achieving soundness, we would state that annotated-based systems are better

candidates than external checking. Nevertheless, annotated-based systems present

some shortcomings that must be taken into account when designing a static checker:

(1) Programmers usually do not focus on security requirements and are reluctant to

specify security annotations while implementing. (2) The effort of manually adding

annotations to legacy code is sometimes very hard, especially for large programs [89].

3.5 Conclusion

In this chapter, we presented a representative set of error detection tools mainly based

on static analysis. We classified these tools into three categories that give an insight

on their modus operandi: annotation-based techniques, automata-based techniques,

and hybrid techniques. We discussed the advantages and the limitations of these

66

tools in detecting their targeted coding errors. From this thorough survey of error

detection tools, we were able to judiciously choose the techniques and approaches

that enable us to accomplish our objectives previously discussed in Chapter 1. We

give in the following paragraphs a global overview of the coming chapters in which we

detail our proposed methodologies for the automated security and safety verification

of source code.

We target low-level coding errors related to unsafe memory operations and type

conversions. The tool survey demonstrates that type-based analysis is the most suit­

able approach to tackle memory and types errors in C programming. As mentioned

in Chapter 2, these errors are implied by the permissiveness and the flexibility of the

standard C type system. Decorating the standard type system with safety annotations

provides a mean to enrich the semantics of memory management and type conversions

for the purpose of detecting unsafe program operations. We present in Chapter 4 our

type and effect discipline for memory and type safety. The main advantage of our

approach compared to the existing tools is the automated type annotation process

of program expressions. Programmers are relieved from this cumbersome and heavy

burden. The flow-sensitivity and alias-sensitivity features of our analysis renders it

more precise than the type analysis of CCured and SafeC.

For high-level security properties related to privilege management, file manage­

ment, and other system-specific properties, we advocate the usage of model-checking

techniques. In the comparative study of Chapter 2, we argue that model-checking is

the best candidate when it comes to property specification. It allows the definition

67

of customized properties tailored to specific system requirements and secure coding

rules. Our security verification framework presented in Chapter 6 combines static

analysis and model-checking to verify large scale C software against a set of system-

specific and user-defined security rules. As opposed to MOPS, our approach computes

and captures data dependencies to detect insidious errors that involve aliasing and

parameter passing. Moreover, our tool provides the appealing feature of GCC multi-

language support that facilitates its extension to all languages that GCC compiles

68

Chapter 4

Type and Effect Discipline for C

Safety

4.1 Introduction

This chapter presents our type and effect analysis for memory and type error detection

in C code. The core idea is to decorate the standard C type system with annotations

that hold, safety relevant information. We also extend the standard type system with

static checks that use the aforementioned annotations to detect safety violations. The

flow-sensitive nature of our approach allows type annotations to change at each pro­

gram statement in order to deal with the destructive updates of the imperative C

language, such as dynamic allocation and deallocation of memory. Furthermore, we

address the pitfalls of aliasing and indirect assignments by endowing our analysis with

69

flow-sensitive alias information. As such, annotation updates of a program expres­

sion are propagated to all its aliases. This chapter also details our inference algorithm

that propagates type annotations to program expressions without programmers' in­

tervention. The inference algorithm operates in two phases. The intraprocedural

phase propagates type annotations and verifies memory and type operations of each

function. The interprocedural phase instantiates the annotated polymorphic types of

declared functions according to their actual argument types.

This chapter is organized as follows: Section 4.2 presents our imperative language

that captures the essence of the C language. It also outlines the safety annotations

that we decorate the standard C type system with. Our defined static checks that

utilize the annotations for error detection are detailed in Section 4.3. Section 4.4

describes the typing rules for program declarations, program expressions, and program

statements. Section 4.5 presents our algorithms for handling direct assignments and

indirect assignments through aliasing. Section 4.6 is dedicated to our annotation

inference algorithm. We conclude this chapter in Section 4.7.

4.2 Safety Type Annotations

In this section, we present the imperative C core that we use to illustrate our type

system. We outline the annotation extensions we made to the standard C type system

to ensure memory and type safety.

70

Table 1 Syntax of an imperative language that captures the essence of the C language

Prog
Decl
VarDecl

FuncDecl

Exp
Lval

Rval

Stmnt

Fields
FuncID

3
3
3

3

3

3

3

3

3
3

•K

s
8V

5fn

e
ly

rv

s

<P
id

::= ds
::= 6V; 6fn

::= nil

::— nil
| K'id(nx) =

--— 'v \ Tv

::= x
| *lv

1 IvV
::= n

| *rv

1 rv.tp
I &^t>

1 («)c
| effie'
| malloc(e)

::= free(lv)
I /« = e
| caZZji : lv =
| r e t u r n e
1 si;s2

\ i f e t h e n s j
| while e do

Sidi "fn

id(e)

else S2
s

(P rogram)
(Declarat ions)

(Expressions)
(L-values)

(R-values)

(S ta tements)

(S t ruc tu re Fields)
(Funct ion Identifiers)

4.2.1 An Imperative Language

The imperative language defined in Table 1 captures the essence of the C language

[75]. A program ir contains variable declarations Sv and function declarations 5fn,

followed by program statements 5. Without loss of generality, a function id has

only one argument variable x and a body sy. Program expressions comprise 1-values

that refer to memory locations and r-values that refer to the content of memory

locations. L-values encompass variables x, 1-value dereferences *lv, and structure

71

fields lv.(p. R-values include integer scalars n, r-value dereferences *r„, the address

of an 1-value hlv, cast operations («)e, pointer arithmetics e © e' where © stands

for arithmetic operators, and memory allocations malloc(e). Statements s include

memory deallocation free(lv), assignments lv = e, function calls called : lv = id(e),

return statements return e, and control flow constructs (sequencing, conditionals,

and loops). Notice that we mark each call to function id with a label callu.

4.2.2 Type Annotations

We present in Table 2 the type algebra of our aforementioned imperative language. In

fact, our type system propagates lightweight region, effect, and host annotations that

are relevant for safety analysis of C programs. They are inserted at the outermost

constructor of types in order to facilitate the inference algorithm defined in Section 4.6.

We present in the following paragraphs the static domains of our safety annotations.

• The domain of regions abstracts dynamic memory locations allocated on the

heap and variables' memory locations assigned on the stack. The symbols p,

p' represent values drawn from this domain, a fresh symbol is derived at each

memory allocation. The symbol g stands for a region variable with a currently

unknown value. The memory location of a given variable x is given the symbolic

identifier rx where x corresponds to the unique identifier of the declared variable.

Note that we use alpha-renaming to prevent collisions [81]. The notation p.o

denotes an offset within a region p of a structure type. We assume that the

72

Table 2 Type and effect annotations for memory and type safety

Offset
Regions

Integer Host

Pointer Host

Declared Types

Inferred Types

Effects

Program Points

3
3

3

3

3

3

3

3

0

P ••

fi ::

n ::

K ::

r ::

a ::

£ ::--

= 0
Q

rx

p.o
pUp'

= 0
7
[wild]
[hint]
[krefp{K)n]

= V
[malloc]
[dangling]
[arith]
[hint^]
[Szstruct{_}]

= void
int
ref(K)
struct {{(pi,Ki)}i=ln

= void
intv

refp(K)v

struct {(Vi,Ti,o,)}i=1 n

r^r'
if(r,r')

= 0

alloc(p,£)
dealloc(p, £)
stack(p, £)
read(p,r,£)
assign(p, r, £)
arith(p, £)
a; a'
if (a, a')

= i | 0 | l | 2 | . . .

(uninitialized value)
(initialized integer)

(integer cast to pointer)

(allocated pointer)
(freed pointer)

(arithmetic pointer)
(pointer to integer)

(pointer to structure)

(memory allocation)
(memory deallocation)

(static referencing)
(memory read)

(memory write)
(pointer arithmetics)

(sequencing of effects)
(branching of effects)

73

first field is at offset 0 of the hosting location. The remaining fields are located

at different offsets from the first field. As we define a flow-sensitive analysis,

a pointer may refer to different regions depending on the followed branches.

Hence, we use the notation p U p' to represent the set of disjoint regions a

pointer may refer to at a given program point.

• The domain of declared types defines a representative subset of the C language

types. It includes the empty type void, the integer type int, the pointer type

ref(K), the structure type struct{(tpi, Ki)}i=i..n, and the function type K—>«;'.

• The domain of inferred types decorates the declared types with effect, region,

and host annotations. A pointer type is annotated with the memory location

p that it refers to. Pointer types and integer types are also annotated with

pointer host annotations and integer host annotations, respectively. These host

annotations capture relevant safety information related to pointer values and

integer values: allocated pointer, freed pointer, uninitialized pointer, uninitial­

ized integer, etc. Host annotations also indicate the type of values stored in

the memory region of a pointers and integer variables. For converted integer

and pointer types, host annotations are used to track their source type. For a

pointer type ref AK)^, a cast operation is captured when the host annotation

77 indicates a type that is different from its declared type K. For an integer

type m£M, the annotation p, distinguishes between an integer derived from a

converted pointer and a genuine not converted integer. More details on type

74

conversion are given later in this section. The term struct{(ipi,Ti,Oi)}i=i n is

the type of a structure of n elements. Each field ipt is decorated with an offset

Oi from the first field at offset 0 as indicated in the ANSI C standard [75]. The

function type T-^T' is annotated with a latent effect a that is generated when

the corresponding function expression is evaluated. The conditional type con­

struct if(r, T') denotes the type of a branching statement. Type r is inferred on

the true branch, whereas type r' is inferred on the false branch. The declared

types and the inferred types are related by the mean of two operators that are

defined in Table 3: The operator " ~ " initially decorates declared types with

host annotations set to [wild] and fresh region variables g for declared and yet

initialized pointers. On the other hand, the operator " ~ " suppresses the anno­

tations of inferred types and recovers their original declared types. Notice that

the types in an if(r, r ') construct are derived from one initial declared type. So,

clearing an if(r, T') construct from its annotations is equivalent to clearing the

annotations of one of its enclosed types: i/(r, T') = f = f

• The domain of effects captures memory operations and type conversions that

are encountered at each program statement [46,96]. We use 0 to denote the

absence of effects, and <̂ to denote an effect variable. Each effect records the

program point £ where it is produced. The terms alloc(p,£) and dealloc(p,£)

respectively denote memory allocation and memory deallocation. The effect

stack(p,£) is generated when a pointer is initialized to a stack memory location

p. The effect read(p, r, £) represents the dereference of a pointer to region p.

75

Table 3 From declared types to inferred types and vice versa

void

int[wiid]

refe(K)[uriid] where g fresh

struct{(vi,ki,Oi)}i..n

k-^-*k' where <; fresh

void
intrf

rc/pfr),
structjjip^T^Oi)}^

T >T'

The effect assign(p, r, I) represents the assignment of a value of type r to region

p. The effect arith(p,£) captures pointer arithmetic operations on region p.

Moreover, we define effects that capture control flow constructs of programs.

The term o\ a' denotes the sequencing of a and a'. The effect if (a, a') refers to a

branching statement where the effects a and o' are respectively produced at the

true branch and the false branch. Hence, the collected effects a provide a tree-

based model of the analyzed program that captures safety relevant operations.

The static safety checks defined in Section 4.3 refer to the generated effect model

in order to verify temporal properties related to the bad sequencing of memory

and type operations.

void =

int =

ref(n) =

struct{(fh Ki)} =
K—>K' =

= void
= int
= ref(K)

= struct^ip^fi)}!.^

= f^f

76

4.2.3 Host Annotation for Type Conversions

The flexibility of the C language allows arbitrary type conversions for pointer and

integer types without performing any safety checks. These explicit type casts are

misleading since programmers may do wrong assumptions on the actual type of a

memory location. To tackle insidious type casting errors, we refer to the host anno­

tations of pointer and integer types to derive their actual types. As defined in Table

4.2, a pointer host annotation can be of the following values: (1) the value [malloc]

indicates an allocated pointer, (2) the value [dangling] indicates a freed pointer, (3)

the element [wild] indicates an uninitialized pointer or uninitialized integer, (4) the

element [an'f/i] indicates pointer arithmetics, (5) the element [feint,,] represents a

pointer to an integer value, and (6) the element [festnxc<{_}] stands for a region that

stores a structure value. Notice that integer host annotations can refer to an integer

type [femi] or to a pointer type [fere//,(«;)r,], since conversion between integer and

pointer types is allowed. The empty set denotes the absence of host annotations and

the symbol 7 stands for a host annotation variable.

In Algorithm 1, we define two auxiliary functions that use host annotations in

order to deal with type conversions:

• Function castType(r, K) derives an annotated type r ' by converting r to and

inferred type based on K. AS defined later in Section 4.3, we enrich our type

system with static checks to uncover unsafe type conversions. For the latter,

we assume that the cast operations result in the initial source type.

77

Algorithm 1 Utility functions to deal with type conversions.

Function castType(r, K) = case (r, K) of
(refp(K%, int) => *n*[&re/p(K%]
(int[Urefp(K%},ref(K")) =» refP{K")V

(refp{void)\maUoc],ref{K")) => re/p («")[&&»]
(«/,(«/),,, re/^)) => »*/>")„
(if(Tr,r"),K) => 2/(castType(r',K;))castType(T", K))
else => r

end

Function strTypeOf(r) = case T of
if{T~',T") => i/(strTypeOf(r'),strTypeOf(r"))
re/p(K)[&r'] => T'
else => void

end

• Function strTypeOf (r) yields the type of the value stored in the region of pointer

type T.

We illustrate the use of these functions through the sample code of Listing 4.1.

Listing 4.1: Sample code to illustrate type casts with host annotations
1
2
3
4
5
6
7
8
9
1(

typedef struct { int x,y,c;
typedef struct { int x,y; }

Pnt pt, *p;
CPnt *cp;
mainO {
p = &pt;
cp = (CPnt*) p;
cp->c = BLUE;

): >

} CPnt;
Pnt;

Initially, we infer the following types for the declared variables:

pt H-> Pnt where Pnt = {(x,int[wiid\,0i),(y,int[wan,02)}-
P *-* refe(Pnt)[vriid]

cp H-> refe,{CPnt)iwU]

All host annotations are set to wild for uninitialized values, and region annotations

stand for unknown values. At line (7), our analysis infers for pointer p the type

TP = refr t{Pnt)Vp where r)p = \k.Pnt\. It indicates that pointer p refers to region rpt

78

of variable pt that holds a value of type Pnt. At line (8), pointer p is cast from type

TP to type ref(CPnt). Notice that the destination type of the conversion is defined by

the programmer, thus does not have any annotation. The cast operation yields type

Tcp = castType(Tp, ref(CPnt)) = refr t{CPnt)np. We assume that cast operations do

not change the content of memory locations, hence the host annotation of pointer

cp remains rjp = [SzPnt]. It indicates that pointer cp, initially declared to refer to a

CPnt value, is actually referring to a value of type Pnt. With the precision of the

host annotation, our analysis cannot be misled on the actual type referred to by a

given pointer. Hence, we can detect that the dereference of field c at line (9) is unsafe

since cp is not referring to a CPnt structure. Section 4.3 illustrates our safety checks

based on host annotations for detecting type conversion errors.

4.3 Static Safety Checks

This section outlines the static safety checks performed by our type system to detect

and prevent a set of memory and type errors that are listed in Annex J of the ANSI

C standard [75]. All safety-related operations are guarded by a corresponding static

check. From the conservative nature of our analysis, operations that pass the checks

never cause a runtime error during program execution. Those who fail may violate

memory or type safety during program execution.

79

Table 4 Static safety check for detecting unsafe dereference

drfChk(r) = (f = re/(«)) A (K / void)
A(hostOf (r) ^ {[u>z'M], [dangling], [arith]})

drfChk(z/(r,r')) = drfChk(r)A drfChk(r')

4.3.1 Safe Pointer Dereference

The memory check drf Chk(r) defined in Table 4 verifies that pointer of type r can be

safely dereferenced. It fails in the following cases:

• Dereference of void pointers: the C language disallows dereferencing void point­

ers since their size and their type are unknown.

• Dereference of uninitialized pointers: an uninitialized pointer with a [wild] an­

notation refers to an arbitrary location that can cause harmful effects when

accessed.

• Dereference of dangling pointers: a dangling pointer annotated with [dangling]

keeps referring to a memory location that has already been freed. By derefer­

encing a dangling pointer, the original program may access memory locations

that do not belong anymore to its address space, leading to undefined program

behaviors.

• Dereference of arithmetic pointers: these pointers may be problematic as they

may refer to out-of-bounds locations. Since we do not perform bounds checking

during our type analysis, we disallow dereferencing arithmetic pointers.

80

Table 5 Static safety check for detecting unsafe deallocation

freeChk(r, a) = (f = ref(K,)) A (K ^ void)
A(hostOf(r) = [&T']) A (stack(pj) £ a)

f reeChk(2/(r, r ') , a) = f reeChk(r, a) A f reeChk(r', a)

Notice that our static type analysis can be combined with a dynamic analysis

in order to perform dynamic bound checking as presented in our work [123]. More­

over, our lightweight type annotations can be extended to carry bounds information

generated by existing static bounds checking techniques [85,105,110].

4.3.2 Safe Pointer Deallocation

The static check freeChk(r, a) detailed in Table 5 verifies that a pointer of type r

can be safely deallocated given the collected effects a of the program. It fails in the

following cases:

• Deallocation of uninitialized pointers: these [wild] annotated pointers do not

have any assigned address, and thus any attempt to free such pointers can

cause undefined behaviors.

• Deallocation of dangling pointers: freeing one more time a [dangling] pointer

may corrupt the system memory and lead to system crashes.

• Deallocation of not dynamically allocated pointers: these pointers refer to

stack memory locations that have not been dynamically allocated with mal-

loc functions, and thus cannot be dynamically freed. Notice that a pointer type

81

Table 6 Static safety check for detecting unsafe assignments

asgnClik(T, int^) — [r\ ^ [ttntfd]) A (int = r)
asgnChk(r, re/p(/c)7,) = (if = [&T]) A (re/(«) = f)
asgnChk(r, if(r', r")) = asgnChk(r, T') A asgnChk(-r, r")

re/p(/c)[&Tj indicates that region p holds a value of type r . However, it does

not indicate that region p is dynamically allocated. For that reason, we need

to ensure that effect stack(p,£) is not present in the collected effects of the

program.

• Deallocation of arithmetic pointers: these [arith] pointers may refer to out-of-

bound locations, our conservative analysis disallows deallocating such pointers.

4.3.3 Safe Pointer Assignment

The memory check asgnChk(-r, r ') defined in Table 6 verifies that an 1-value of type

r can safely be assigned a right-hand-side value of type r' . It fails in the following

cases:

• Assigning uninitialized right-hand-side value: the host annotation for integer

values should be different from [un7rf]. For pointer values, the host annotation

should be equal to [&T] indicating an initialized pointer to a value of type r .

• Assigning mismatched declared types: the types of the right-hand-side and the

left-hand-side operators must explicitly match. As such, we avoid problematic

implicit cast operations that often mislead programmers.

82

Table 7 Static safety checks for type cast operations

castChk(r, n) = case (r, n) of
(Z/ (T ' ,T") ,K) => castChk(T',Ac) A castChk(T",/t)
{ref^n'^Tj^int) => sizeof (ref(K')) < sizeof (int)
(zni[&T/j, re/(/t')) => (f' = re/(/t")) A castChk(r', ref(ti'))
(refp(K'%ref(K')) =» «" « K'
{refp(K')v, ref(void)) =» irue
(re/p(voJd)[ma(/oc], re/(At')) => frue .
else =» /ake
end

fldChk(r,<^) = <p € f ldList(r)
f ldChk(i/(r, T ') , </?) = f ldChk(r, <p) A f ldChk(r', <p)

fldList(s<rwcf{(^i,Ti,oi)})i=1..n = [y>i,..., ¥?„]
fldList(r)T7£S(ruct{} = 0

4.3.4 Safe Type Cast

Explicit type casts are misleading since they make pointers refer to types that are

different from their declared type. These insidious type conversions are a common

source of system crashes. We use an approach to deal with type casts that is based

on data memory layout and physical subtyping as defined in [117]. In Table 7, we

define the static check castChk(r, K) that takes as input the source type r and the

destination un-annotated type K of a cast operation. Notice that the destination type

of a cast operation is defined by programmers and does not have any annotation. The

following paragraphs outline the type cast operations considered in our analysis.

83

Cast between pointers

Type conversions from a pointer type T = ref P{K)V to an un-annotated pointer type

re/(«') are allowed provided that K and K' are in a physical subtyping relationship

(K ^ K' or K' =̂ K) as defined in [117]. The physical subtyping takes into account the

layouts of objects in memory. A type K is considered as a physical subtype of type K',

denoted (K =^ «'), if memory layout of K is a prefix of K' memory layout. We use the

notation K m K' to express that K' is a subtype of K or vice versa. Since our approach

does not change data representation, r and K = T have the same memory layout.

Cast from void pointers

As stated in the ANSI C standard [75], any pointer can be cast to a void pointer.

A freshly allocated void pointer ref p(void)[mauoc] can always be cast to any pointer

type ref(K). The conversion derives the type re/p(K)[&£] as defined by the function

castTypeO in Algorithm 1. The converted pointer refp(K)^^ can be cast to any

pointer type ref(K?) provided that At « K'.

Cast between pointers and integers

Cast between pointers and integers is allowed provided that an integer type is large

enough to hold a pointer value. However, we entail that only integers derived from

pointers can be cast back to pointer type. An integer of type int\&rej (^ j indicates

an integer derived from pointer type r = refp(K)v. This integer can be converted to

pointer type ref{n) or to any pointer type re/(«') where K' RS K.

84

Safe Field Dereference

The static check f ldChk(T, y?) verifies that a field </? can be safely accessed through

a pointer type r. Due to cast operations, a pointer to a structure type K can be

actually referring to a structure type K' where According to the definition

given in [117], a structure type K is a physical subtype of structure type K'', denoted

as K =<; K', if the following conditions are met: (1) all the fields of K' are present

in K, and (2) the offset of each field in K' is the same in n. Hence, the physical

subtyping relation establishes a hierarchy for structure types. As such, a pointer of

type r = re/p(«;)[&T/] can only access the common fields between the declared type K

and type r' stored in its region p.

4.4 Typing Rules

This section outlines our typing rules that are inspired from the type system for im­

perative languages presented in [109]. We define a type environment £ that maps

each declared variable to an annotated type. Our type analysis infers initial anno­

tations for declared variables that can later be updated at each program statement

to capture imperative destructive updates. For declared functions, we do not enforce

any restrictions on the annotations of their argument types and return type. Thus,

declared functions are assigned annotation polymorphic types in environment 6.

Our analysis performs an intraprocedural pass and an interprocedural pass. The

intraprocedural pass defines a flow-sensitive analysis that evaluates each function

85

body and applies the static safety checks defined in Section 4.3. The interprocedural

pass instantiates the polymorphic types of callee functions by generating unification

constraints at each call site [108]. The unification constraints are defined to unify

pairs of region variables, host variables, program point variables, and effect variables

at functions' boundaries. At each function call, our interprocedural analysis entails

that the inferred function type should be equal to the declared function type, modulo

type annotations. To facilitate the understanding of our typing rules, we define the

following auxiliary functions:

• Function regionOf (r) returns the region annotations of pointer type T.

• Function addressOf (e, £) returns the memory location of an 1-value e. For a

given pointer e of type r , we have regionOf (T) = addressOf (*e,£).

• Function f ldType(r, <̂>) returns the type of field ip in structure type r.

The algorithms of these aforementioned functions are detailed in Appendix I. Through

this chapter, we will write £ \ £' to denote the overwriting of £ by £', i.e., the domain

of £ f £' is Dom(£) U Dom(£')> and we have (£] £'){x) = £'{x) if x € Dom(£') and

£{x) otherwise.

4.4.1 Typing Rules for Program Declarations

Table 8 illustrates the typing rules for programs, variable declarations, function decla­

rations, and call sites. The sequent £,£ h (5, s) indicates that the program containing

86

Table 8 Typing rules for programs, declarations, and call sites

£,£Y-8:£' .£',l\-s:r,S",a (Program)
£,£\-(8,s) p r o g r a m ;

£,£hnil:£ (Nil-decl)

£,£\-S:£' K = T
£,£)- KX\5 : £' Wx*-* T]

K2 id{K\x) = Sjd.C 5fn T\-^->T2 = f resh(annot(Ki—>K2))

T\ >T2 = K\ >K2 V\..n = f v f a - ^ T z)

£,£\- id : Vui..n.ri-5->r2

K2 id{K\x) = s,d C <fy„ £",̂ h id : Vvi..n.ri—>T2

T i - ^ r 2 = f resh(Ti-^->T2) £ f [x >-> T], £ h si(z : T', £', a
fl = ZY(rj, T) U Ufa, T') U fc' ^ a]

£,£ h caZ/jrf : T — > T ' , £'

(Var-decl)

(Func-decl)

(Call-site)

declarations £ and statements s is well-typed. We augment the initially empty en­

vironment £ from program declarations in 6. The deduction £, £ h S : £ ' evaluates

variable declarations and function declarations at program point £, then it yields a

new environment £' t h a t is used to type-check program statements s. The judgment

£',£\- s : T,£",a evaluates statement s, then yields a type r , an updated environment

£", and a side-effect cr of memory operations and type conversions in s ta tement s.

• The rule (Var-decl) maps a declared variable x of type K to the annotated type

k in £. The operator " ~ " sets host annotations to [wild] and region annotat ions

of pointers to unknown regions g as defined in Table 3. We assume tha t alpha-

conversion is used for renaming collision variables and avoid conflicts [81].

87

• The rule (Func-decl) assigns the most general type for functions in environment

£ using fresh annotation variables. We define type schemes of the form Vt>i..n.r

where Vi can be region, effect, host, and program point annotation variables.

The function f resh() takes the annotated type aimot(/c1—>K2) and replaces its

annotation variables with fresh variables. Finally, we extend environment £

with a mapping from the declared function id to a polymorphic type where all

free region, effect, host and program point variables in function type T\—>r?,

are quantified. Function f v(r) derives the set of free variables of a given type

r . Notice that the inferred function type should be equal to the declared type

modulo type annotations. We note K-I id(K\x) = s,d C 8fn to indicate that there

exist 6jn and 5'jn such that Sfn = 5jn; K,2 id(Kix) = s,,j; 5'jn

• The rule (Call-site) instantiates the type of a function id given an argument

type r . First, it generates fresh annotations for the callee function type. Then,

it unifies the argument type r with the generic argument type T\ which should

be equal modulo type annotations. The unification algorithm U is given in Al­

gorithm 4 of Section 4.6. Then, the (Call-site) rule evaluates the callee function

statements su and yields the following: (1) a return type r ' that should be unifi-

able with the generic return type T2, (2) a new type environment £' that captures

annotation updates at each statement, and (3) an effect a that records memory

operations of the callee function. Thus, judgment 5, £ h calla : r — • T ' , £' states

that when function id is invoked at program point £ with argument type r , it

should return a type r', generate an effect a, and derive a new environment £'.

88

4.4.2 Typing Rules for Expressions

The sequent £,£ h e : r , a defines the typing rules for program expressions presented

in Table 9. It s ta tes that under environment £ and at program point £, the evalu­

ation of expression e returns type r and effect a. Some of the expressions refer to

critical memory and type operations. In order to ensure type and memory safety, the

evaluation of these expressions is guarded by safety checks as detailed in Section 4.3.

Table 9 Typing rules for program expressions

£(x) = T (Var)
£,£\-X:T,®

£,£Y-n: int^int], 0

£,£\- lv : r, a p = addressOf (lv, £)
£,th Mv : refp(T)[&T],stack{p,e)

(Ref)

£,£\-e:T,a f ~ ref {J) drfChk(r)
p = regionOf(r) T1 = s t rTypeof(T)

£,£ h *e : T', {a; read{p, r\ £)) ^Ueret J

£,£\- e: T, <r £•, £ \- e': int^, a' r = re/(_)
p = regionOf (r) -r' = refp,(_)\arith] p'fresh

£, £ r- e © e' : T', (CT; </; arith(p, £))

£,£\- e : T, o castChk(T, /t) r = castType(r, K)

£,^I-K(e) :r', cr

£,£\- e:r,a f = struct {_} f ldChk(r, <p)
T ' = f ldType(r, </?) /? = addressOf {e.tp, £)

£,£\- e.if : T', a

(Arith)

(Cast)

(Field)

£ , l > - e : intlkint],a pfresh (Malloc)
£,£\~ malloc(e) : ref p{void\malioc], {a; alloc{p,£))

The rules (Var) and (Int) are standard rules that produce no effect. The host

89

annotation of a constant is set to [&in£] as it actually refers to an integer value.

• The rule (Ref) derives a pointer to the region that hosts the 1-value lv.

• The rule (Deref) dereferences a pointer expression e of type r and generates the

effect read(p, r'', £), where T' — strTypeOf(r) is the actual type referred to by

pointer e. Because of cast operations, type r ' may be different from the pointer

declared type. The safety of the dereference operation is guarded by the static

check drf Chk(r) detailed in Section 4.3.

• The rule (Arith) evaluates pointer arithmetic and generates the effect arith(p, £),

where p denotes the set of regions pointer e may refer to. We assume that a

pointer arithmetic results in a fresh region p' with a host annotation set to

[arith].

• The rule (Cast) performs type conversion from type T to type K'. Note that the

destination type K! as specified by the programmer does not have annotations.

In Algorithm 1, we define function castType(-r, K') that derives an annotated

type r ' from the conversion from type T to type K' such that f' = AC'. In order

to detect and prevent type cast errors, we define safety requirements in the static

check castChk(r, K') that should be met at each cast operation as specified in

Section 4.3.

• The rule (Field) returns the type of field y> of a structure expression e of type

r . The field access is guarded by the fldCrik(r, ip) safety check as defined in

Section 4.3.

90

• The rule (Malloc) returns a void pointer to a fresh region location p with a

host annotation set to [malloc]. The allocation generates the effect alloc(p,£).

Notice that annotation [malloc] is exclusively assigned to void pointers derived

from malloc functions. Once, the newly allocated pointer is cast to a given

declared pointer type ref(n), the host annotation is set to [&:&]. It indicates a

pointer to an uninitialized value of type K.

4.4.3 Typing Rules for Statements

Table 10 presents the typing rules for statements. The statement judgment is of the

form £,£)- s : T,£',a stating that under environment £ and at program point £, the

evaluation of statement s yields a type r , an environment £', and an effect a.

The flow-sensitivity of our analysis allows us to cope with destructive updates of

our imperative language by inferring new types for variables with new annotation

instantiations at each program statement. As in [77], the flow-sensitivity is restricted

to type annotations in order not to complicate the inference algorithm. Note that

region annotations carry aliasing information in a sense that aliased pointers should

have the same region annotations [121,122]. We utilize this aliasing information to

propagate annotation updates of an 1-value to all its aliases that refer to the same

updated region. We define in Section 4.5, function updEnv[£, s) that evaluates the

argument statement s under environment £ and yields an updated environment £'.

• The rule (Free) conservatively deallocates all memory locations in p of pointer lv

and generates the effect dealloc(p, £). The deallocation is guarded by the static

91

Table 10 Typing rules for program statements

£, £ h lv : T, a r — re/(_) f reeClik(T) CT)
p = regionOf (r) £' = updEnv(£,/ree(J„), T)

£, £ h free(lv) : voidy£\ (a; dealloc(p, £))

£,£\-lv:T,a £, £ h e : T', or' asgnChk(T, T')
^ = addressOf (Z„, £) £' = updEnv(£, lv = e, r ')

£, £ \- lv — e : T', £ , (a; a'; assign(p, r ' , £))

£,£VIV:T,O £,ty-callid:T
,-Z->T",E' £,£\- e : r',a'

p = addressof (lv, £) asgnChk(r, r")
£" = updEnv(£', lv = id(e), T")

£,£\-lv = id(e) : r", £", (a; cr'; <r"; assign{p, T", £))

£,£ h e : r, g
£, •£ I-return e : r, £, cr

£ , £ h s ' : / , £ > ' £',f\-s":T",£",a"
£,£\-s'-s":T";£",(a';a")

£, I h e : int^ a £,£' h s' : T', £', a ' £, I" h s" : T", £", a"
£,£ hif e t h e n s' else s" : if{j'y'),£' /&£", {a; if (a1, a"))

£, £ h e : m£M, CT £, £' h s : r', £', a'

£, £ Kwhile e do s : t/(r', void), £' /A £, if ((a; a'), cr)

(£/A£')(x) = <

(Free)

(Assign)

(Func-call)

(Func-return)

(Seq)

(Cond)

(Loop)

' f (i) i f x £ D o m (£ ') ,

£'(x) if x i Dom(£),

if(£(x),£'(x)) otherwise.

92

check freeChk(r, a) as specified in Section 4.3- The function updEnvQ yields a

new environment £' where host annotations of lv and of all its aliases are set to

[dangling].

• The rule (Assign) assigns a value of type T' to an 1-value lv of type T. The

assignment is guarded by the static check asgnChk(r, T ') . The function updEnv()

updates the type annotations of all variables that are directly or indirectly

involved in the assignment statement. The effect assign(p, r', £) is generated,

where p is the set of possible regions of the updated 1-value.

• The rule (Func-call) evaluates a function call given the instantiated type of its

corresponding call-site label. The return value is assigned to an 1-value provided

that the safety requirements of the check asgnChk() are met.

• The rule (Func-return) evaluates the return statement of the current callee

function and has no effect.

• The rule (Seq) defines the sequencing of statements where the generated effect

is the sequencing effect of s' and s".

• The rule (Cond) evaluates a branching condition. We define the merge opera­

tor "fA' that assigns the type if(£'(x), £"(x)) to a variable x at the merge point

of a branching condition. It indicates that variable x is of type £'{x) on the

true branch and of type £"{x) on the false branch. We use a similar effect con­

struct if {a', a") to denote the effect generated at the merge point of a branching

condition.

93

• The rule (Loop) evaluates a loop construct. The resulting environment is equal

to £ A\ £'; it denotes that the environment remains unchanged if the loop is not

entered. Otherwise, the environment £' refers to the type mappings generated

when the loop is entered at least one time.

4.5 Dealing wi th Aliasing

To increase the precision of our type annotation inference, we consider alias informa­

tion that enables us to propagate annotation updates of an 1-value to all its aliases.

Pointer alias analysis has been widely investigated in years [10,13, 25,34,62,70,83,

119,130]. It is possible for us to integrate one of these analysis techniques as a plug-

in into our type system in order to get aliasing information. Nevertheless, since the

region inference of our analysis carries flow-sensitive aliasing information, we advo­

cate to use it to account for pointer aliasing in programs. This section outlines our

algorithms in Algorithm 2 that handle direct and indirect assignments and update

the static environment E at each program point. All auxiliary functions used in these

algorithms are denned in Appendix I. We give a brief description of these functions

hereafter: (1) Function updHost(r, rf) sets all host annotations in type r to 77. (2) Func­

tion regHostOf (re/p(r)7)) returns the pair (p, rj) of region and host annotations of a

pointer type. For conditional type »/(__) the function returns a set of pairs where each

pair corresponds to one of the enclosed pointer types. (3) Function updRegHost(r, p, 77)

sets to 7] the host annotation of pointer type r that refers to region p. (4) Function

94

typeOf(e,£) returns the inferred type of expression e under environment £

• Function updEnv(£, S,T) in Algorithm 2 updates the current environment £

according to the argument statement s and the argument type r . It invokes

function directUpd(£, lv, r) defined in the following paragraph.

• Function directUpd(£; /„, r) takes as arguments the current environment £, the

1-value lv to be updated, and its new type r . After changing the annotations

of the argument 1-value lv, function aliasUpd() updates the annotations of all

aliases of lv. Notice that modifying the annotations of a structure field im­

plies updating the annotations of its enclosing structure type as well. Function

updFld() handles the annotation update of aggregate types as defined in Ap­

pendix I.

• Function aliasUpd(£, p, 77) takes as argument the current static environment,

the updated memory location p, and the host annotation 77 to set to all aliased

variables that refer to p. We illustrate in Figure 2 the different aliasing cases

that we consider in our approach:

— A variable x resides in the updated location p as illustrated in Sample (a)

of Figure 2. The invocation aliasUpd(£, rx, rj) updates the host annotation

of variable x in £.

— A pointer p refers to the updated location p with one level of indirection

(one dereference operator). The aliasing information is extracted from the

region annotation of pointer p, as illustrated in Sample (b) of Figure 2.

95

Algorithm 2 Function updEnv() updates the static type environment at each pro­
gram statement

Funct ion updEnv(£, s, r) =
begin

case s of
free(lv) => directUpd(£,£„,updHost(T, [dangling]))
calla : lv = e ==>• directUpd(£, IV,T)
lv = id(__) => directUpd(£, lv, T)

end
r e t u r n £

end

Func t ion directUpd(£. lv, T) —
begin

case /„ of
x => £ f [x H-> r]
x.<p =>• £ | [x H-> updFld(£(.x),<^, T)]

a l iasUpd(£, addressOf (x, ce), hostOf (£(#)))
*l'v.tp => T ' = updFld(typeOf {*l'v, £),(p,r)

al iasUpd(£, addressOf (*l'v, £),hostOf (T '))
end
al iasUpd(£, addressOf (lv, £) , hostOf (T))
r e t u r n £

end

Func t ion aliasUpd(£, p, r/) =
begin

for all y e Dom(£) do
if addressOf (y ,£) C p t h en £ f [y i-> updHost(£(y),»7)]
else £ f [y H-» indirectUpd(£(y),p,7j)]

e n d

Func t ion indirectUpd(r , /9,7?) =
beg in le t T ' = r in

for all (p',7?') 6 regHostof (r ') d o
if p' C p t h e n r ' = updRegHost(r' ,p', rj)
else

if 7?' = [& T " | t h e n T ' = indirectUpd(r",p,7?)
end

r e t u r n T '
end

e n d

96

The invocation indirectUpd(£(p),p, [&mf]) updates the conditional type

of pointer p. It sets the host annotation related to region p of pointer p to

[&m£] since it has been indirectly updated through its aliased pointer q.

— A pointer p refers to the updated location p with multiple levels of indi­

rection (more than one dereference operator). The aliasing information is

extracted from the host annotation of pointer p, as shown in Sample (c) of

Figure 2. The invocation indirectUpd(£(g), p\ \lkint}) All host annotations

enclosing a pointer type that refers to />' are updated.

4.6 Type Annotations Inference

This section is dedicated to the algorithm for inferring region, effect, and host annota­

tions for program expressions. The inference algorithm proceeds by case analysis on

the structure of expressions and statements. We divide the inference algorithm into

three different categories: (1) annotation inference for program declarations and call-

sites, (2) annotation inference for program expressions, and (3) annotation inference

for program statements.

The inference algorithm for program declarations is presented in Algorithm 3.

Variable declarations 6V and function declarations 6fn are considered separately. For

the former, the algorithm takes as input a 3-tuple made of an initial static type

environment £, a program point £, and program declarations 5V. It evaluates the

declared variables and outputs a new static environment £' that maps variables to

97

file:///lkint}

Figure 2 Examples to illustrate annotation update of aliased variables

Sample (a): Pointer p refers to the memory location of x.

l :q = &x;

2:*q = 5;

x:mt[mM]
q:refri{int)[kint[v.u]

x:in<[&<nl]
q : re / r Jmi) I &

Sample (b): After the branching, pointer p may alias variable x and pointer g.

l : q = (in t *) mal loc(sz) ;
2 : i f (c)
3: p = Six;
4 :e l se
5: p = q;

6:*q = 5;

-±J

±J
N H

malloc

A
wild

Np
Nzr

wild

x:mt[OT(rf]

q:re/p(mO[&m(M(1]i

re/p(mt)|&1-ntH.W]])

x: mf]„,W]
q:re/p(fnt)[&i,lt]

p:2/(7Te/ri(mt)[&I-relM<1,re/p(mi)[&m«])

Sample (c): The host annotations of pointer q and p indicate that *q and p are aliased

l : q = (in t *) mal loc(sz) ;
2:p = (in t **) mal loc(sz) ;

3:*q = p;

4:*p = 5;

A

p 1

A

p r

— * •

—>

— • •

—**

A

A
malloc

A

A
int

q: re/p(re/(mt))[&re/e(i„,)M,)]

p:re/p,(m{)[&i„ t [^ |]

q: re//,(re/(m«))|&I.e/p/(fnt)|tj„1_M]1]

q:re/p(re/(mt))[&,*//)/(int)|i:,„l)]
p:re/p ,(mt)[&ln(]

98

Algorithm 3 Annotation inference algorithm for program declarations and call-sites

Infer (£, I, 6V) -
case 5 of

nil =>
KX; 5'v =>

end

Infer (£,£,5/n,:
let n'id(Kx)

T \ - L * T 2 ••

V\..n = f1

in
VvL.n .Ti -^

end

£
let £' = Infer(£,

id) =
= Sid E &fn

— fresh(annot
V{T1-5->T2)

*T2

:(K—

*,K)i

->«'))

Infer {£, £, 6fn, callid) -
let Vt>i..n.Ti-̂ ->T2 =Infer (£, £, Sfn, id)

(T',£', a) =Infer (£ f [x >-> T],1, sid)
0 = U(TUT)UU(T2,T')UU(c;,a)

in
(r - ^ r ' . f)

end

annotated types with fresh region variables and host annotation set to wild. For

function declarations, the algorithm takes as input a type environment £, a program

point £, function declarations 8jn, a function identifier id. It assigns for the declared

function an annotation polymorphic type in £ with fresh annotation variables. For call

sites, the algorithm instantiates the type of the callee function by defining unification

constraints on type annotations. The unification algorithm U defined in Algorithm 4

uses a syntactic unification procedure a la Robinson [108]. The proofs of soundness

and completeness of U are standard and can be found in [39,108]. Notice that our

analysis generates fresh annotation variables for the argument and the return types

99

of each function call. As such, each unification constraint generated at function

boundaries is applied to fresh variables and does not override constraints related to

the previous function calls. In algorithm 14, we use the notation (rj„) to denote the

sequence of host annotations of a type r and (7„) to denote the sequence of fresh host

annotation variables. In Appendix I, we define function HostSeqOf (T) that yields

the host annotation sequence of the argument type T. Similarly, we write (pn) to

denote the sequence of region annotations of a type r , and (gn) denotes a sequence

of fresh region annotation variables. In Appendix I, we define function RegSeqOf (r)

that yields the region annotation sequence of the argument type r . As such, we have

zn*[»7ri] = T, if f = int and HostSeqOf (r) = \rf\n. We also have ref<pn](i^)[r)n] = T, if

f = ref(n) and HostSeqOf (T) = [r/n] and RegSeqOf (r) = [pn].

Algorithm 4 Syntactic unification procedure

W(r,7-/) = case {T,T') of
(intbn], int[r)n]) => 0 = \£=1 [7i i-» rtf

(r e / [e „] (K) [7 n) > r e / [p n] (K) h n]) => 0 = U ? = l [f t *~* Pi] U ? = l \li ^ Vi]

(struct{{tpi,Ti, Oi)}, struct{{<pi, T[, Oi)}),-=i„n =$, 0 = \J* U(ru r-)

(void, void) \ (bool, bool) => Id
else =$• fail

end

The inference algorithm for program expressions is presented in Algorithm 5. It

takes as input a 3-tuple made of a static environment £, a program point I, and an

expression e. It evaluates the input expression and decorates its type with effect,

region, and host annotations. When evaluating a safety-relevant expression such as

100

A l g o r i t h m 5 Annotation inference algorithm for program expressions

Infer {£,£, x) =
let r = £(x) in (T, 0) end

Infer (£,£,n) = (mi [&inl],0)

Infer (£,£,klv) =
let (r, < J) = Infer {£,£,lv)

p = addressOf (lv,£)
in

(refP(f)[Ur}, (CT; stack{p,£)))
end

Infer (£,£,{n)e) =
let

(r,cr)= Infer {£,£,e)
in

if (castChk(r, K.)) t h e n
let T' = castType(r, K)
in

else
fail: vmsafe cast

end

Infer (£, ̂, *e) =
let (T,CT) = Infer (£,£,e)
in
if (drf Chk(r)) then
let f = ne/(_)

r' = strTypeof (T)
p = regionOf (T)

in
(r', ((T; read(p, T',1)))

else
f a i l : unsafe deref

end

Infer (£, £, e.tp) —
let (T, CT) = Infer (£, £, e)

T — struct {_}
in

if f ldChk(r, tp) then
let T ' = f ldType(r, ip)

p = addressOf {e.tp, £)
in

else
fail: unsafe field access

end

Infer (£, £,e® e') =
let (T,<T)= Infer (£,£,e)

f = re/(_)
p = regionOf(r)
(intf^a') = Infer (£,£,e')
p' fresh

in
(re/>(_)[orit/«], (^; CT'; arith(p, £)))

end

Infer (5, £, malloc(e)) =
let (r, a)= Infer (£,*,e)

f — m£M

p fresh
T1 = refp(void)[malloc]

in
(r',(a;alloc(p,£)))

end

101

A l g o r i t h m 6 Annotation inference algorithm for program statements

Infer (£,£,free(lv)) =
let (T,cr) = Infer (£,£,lv)

f = re/(_)
in

if (f reeChk(r, a)) t h e n
let £' — updEnv(£,free(lv),r)

p = regionOf (T)
in

(void, £', (a; dealloc(p, £)))
else

f a i l : unsafe free
end

Infer (£,£,lv = e) =
let (r, a) = Infer (£, £, lv)

(T',<T') =Infer(£J,e)
in

if (asgnChk(r, T ')) t h e n
let £' = updEnv(£, lv — e, r ')

p = addressOf (lv, £)
in

(r', £', (cr; a'; assign{p, T', £)))
else

f a i l : unsafe ass ign
end

Infer (£, £, return e) =
let (r, a) = Infer (£,£,e)
in

(T,£,<X)

end

Infer (£,£,lv = id(e)) =

let Ti—>T2 = Infer (£, ^, calla)
(r, cr) = Infer (£, £, Zv)
(T / , f f /)=Infer(5, / ,e)
asgnChk(r, T2)
p = addressOf {lv,£)
£" = updEnv(£', lv = id(e),T2)

in
(r2, £", {a;a'; a"; assign(p, T2,£)))

end

Infer {£,£,s';s") =
let (T ' , £ > ') = I n f e r o s ')

(T",£",a") = Infer {£',£', s")
in

(r", £ " » "))
end

Infer {£,£, if e t h e n s' else s") =
let (mf^, cr) = Infer (£,£, e)

(r ' , £ V) = Infer (£,£', s')
(T" ,£" ,CT") = Infer {£,£",s")

in
(. / (T W ^ r ' , ^ ; . / ^ ; /)))

end

Infer (£, £, while e do s) =
let (iniM, a) = Infer (£, ,̂ e)

(T ' , £ V) = Infer (£ , 0)

in
{if {void, T) , £ /A £', £/(CT; (<T; cr')))

end

102

pointer dereferencing, type casts, and structure field accesses, the algorithm applies

the required safety checks defined in Section 4.3. When these checks fail, the inference

algorithm fails as well. The inference algorithm for program statements is presented

in Algorithm 6. It. takes as input a 3-tuple made of a static environment £, a program

point £, and a statement s. The algorithm fails when the safety checks related to the

considered statement fail. Otherwise, the algorithm terminates successfully producing

a 3-tuple enclosing an annotated type r , a new static environment £, and an effect a.

In order for the annotation inference algorithm to serve as a static detection system

for memory and type errors, it must be sound with respect to the typing rules defined

in Section 4.4. In other words, a typing judgment inferred by the type annotation

inference algorithm must be deducible by the typing rules as stated by the Inference

Algorithm Soundness 4.6.1.

Theorem 4.6.1 (Inference Soundness) Given a type environment £, a program

point £, variable declarations 5V, function declarations 6fn, a call site calla, an ex­

pression e, and a statement s, we have:

• / / Infer (£, £, Sv) = £', then £,£\~6:£'

• If Infer (£, £, 6fn, id) = Vvi..n.r, then £,£\- id : Vi»i..n.r

• //Infer (£,£, calUd) = (r,£'), then £,£V- calla : T,£'

• If Infer (£, £, e) = (r, a), then £, £ (- e : r, a

• / / Infer {£, £, s) = (r, £', a), then £, £ \~ s : r, £', a

103

Proof of Inference Soundness Theorem 4.6.1 In Appendix II, we establish this

desired error detection property by proving the Soundness Theorem. |

4.7 Conclusion

In this chapter, we presented a type and effect discipline for detecting memory and

type errors in C source code. Our type analysis propagates effect, region, and host

annotations that carry safety knowledge regarding the analyzed program. We endow

our type system with static safety checks that use the aforementioned annotations

to uncover memory and type errors. Our safety analysis performs in an intrapro-

cedural phase and an interprocedural phase: (1) The intraprocedural phase infers

type annotations taking into consideration control-flow and alias information, (2)

The interprocedural phase defines unification constraints and propagates them across

function boundaries.

104

Chapter 5

Static Detection of Runtime Errors

5.1 Introduction

The objective of the current chapter is to ensure that our static safety analysis defined

in the previous chapter is able to catch runtime errors caused by its targeted set of

unsafe memory operations. To this end, we define an operational semantics of our

imperative language defined in Section 4.2.1 that complies with the ANSI C standard.

Besides, the semantics evaluates standard undefined behaviours to runtime errors.

They encompass accessing uninitialized pointers, dereferencing null pointers, freeing

unallocated pointers, etc. Notice that we focus on undefined behaviours that can

statically be detected by our memory safety checks defined in Chapter 4.

In this chapter, we show that the dynamic semantics computes expression val­

ues that are consistent with the types assigned to them statically. We establish the

soundness of our type and effect analysis in detecting memory errors. Since we strive

105

for soundness, our analysis tends to generate false positives that affect its precision.

As a mean to enhance the latter, our analysis provides an effect-based interface for ex­

porting dunno points that pinpoint the location and the program traces of suspicious

operations that should be considered using dynamic analysis.

The chapter is organized as follows: Section 5.2 presents our ANSI C compliant

operational semantics. The static semantics and dynamic semantics are proved consis­

tent in Section 5.3. Based on the consistency results, Section 5.4 shows the soundness

of our static analysis for memory error detection. Section 5.4 is dedicated to the effect-

based interface for guiding dynamic analysis. To demonstrate the feasibility and the

efficiency of our safety evaluation approach, we present our implemented prototype

and experimental results in Section 5.6. We conclude this chapter in Section 5.7.

5.2 Dynamic Semantics

The dynamic semantics of our imperative language is specified by the means of a

big-step structural operational semantics [67,102,103] that complies with the ANSI

C standard [75]. We list in Table 11 the computable values that are derived from

the evaluation of program expressions by our dynamic semantics. We consider the

command value uni t , the undefined value undef that represents the value of unini­

tialized variables, the integer value in t , memory locations loc, and memory blocks

for a structure 1OC@(UJ)I n where each Vi corresponds to a member of the structure.

According to the standard, members of a structure are stored in the order they are

106

declared in their corresponding structure type. We also consider function closures

{id, x, Sid, E) in order to formally capture call-time environments. A closure is com­

posed of the function identifier id, the function argument x, the function statements

s^, and an environment E where it is defined. In fact, an environment E maps vari­

able identifiers to memory locations containing the values of these variables. We also

define a store C that maps memory locations of variables and dynamically allocated

locations to values. A trace / represents the side-effects of memory management

operations.

Table 11 Computable values

loc e Ref
v e Value

E G Env
C e Store
f e Trace

unit

undef

loc

int

loc@(ui,...,wn)
{id, x, sid, E)
Id -* Ref
Ref —> Value
0

alloc(loc)
dealloc(loc)
read(loc)
assign(loc)
arith(loc)
stack(loc)

The operational rules presented in Table 12 and Table 13 specify how to execute

a program in our source language. The rules are defined by the following judgments:

• C, E h e —> v, / , C' for expressions in r-value position.

107

• C, E \~iexpr e —* v,f, C for expressions in 1-value position.

• C,E h s —> v, f,C for statement, evaluation.

Given a store C and an environment E, each judgment associates a syntactic element

to the result v of its execution, the trace / of the side-effects generated during the

execution, as well as the updated memory state C. The execution of a statement

implicitly transfers the control to the next program point. Notice that we distinguish

between the execution of an expression in 1-value position and an expression in r-

value position. The former returns the memory location loc that holds the value of

the expression, whereas the latter results in the value v of the expression. Through

this chapter, we will write m t m! to denote the overwriting of any map m by m',

i.e., the domain of m t m' is Dom(m) U Dom(m'), and we have (m f m')(x) = m'(x)

if x 6 Dom(m') and m(x) otherwise. We will write mXl)l2i... to denote the map m

excluding the associations of the form x, i—> _ .

Our rules are inspired by existing operational semantics of the C programming

language [9]. We discuss some of the program expression rules of Table 12 in the

following paragraphs. The (Ref) rule evaluates the operand lv of & to its location

loc, and derives a pointer to that location. The (Cast) rule is trivial and does

not modify the value of the converted expression. The type destination K should

be an integer type int or a pointer type re/(_) as entailed by the standard. The

(Arith) rule evaluates pointer arithmetic in a pessimistic way stating that the result

of the evaluation is undefined. In the absence of dynamic bounds checking, there is

108

file:///~iexpr

Table 12 Operational semantics for expressions

Expressions

x 6 Dom(JS)
C,Ehx-^C{E{x)),9,C

C,E\-n-+ int,0,C

C, E hjeip ly ~» loc, f, C
C, E h &«„ -> loc, (/; sfacfc(loc)), C'

C , g h e - t loc , / ,C
C, £ h *e -» C'(loc), (/; read(loc)), C'

C,E\-e~>v,f,C' KQ{int,ref{_)}
C,Eh(K)e->v,f,C'

C,EY-e-*loc@{ui)i=i.M,f,C
C'(loc + of f set(^j)) = vt

C,£ I-e.^->«,*,/,C7

C,Eh e' -> loc , / ' ,C C'.gl- e" -> in t , /" ,C"
C , £ h e ' e e" — undef, (/'; /"; arith(loc)),C"

C,Ehe-+ in t , / ,C ' loc fresh f = / ; onoc(loc)
C, £ h ma/foc(e) -> loc, / ' , C f [loc H-> undef]

no guarantee that the resulting pointer will remain within its assigned boundaries.

Moreover, the C standard [75] states that the dereference of out-of-bounds pointers

generates undefined behaviours that we consider as runtime errors. By conservatively

setting the value of pointer arithmetic to undef, we are able to capture any potential

and undesirable out-of-bounds access. The (Malloc) rule returns a fresh location loc

that contains an undefined value as stated by the C standard [75].

The operational rules for program statements are listed in Table 13. The (Free)

rule deallocates the memory location of a pointer that is previously returned by a

dynamic allocation operation. The content of a freed location loc is undefined since

(Var)

(Int)

(Ref)

(Deref)

(cast)

(Field)

(Arith)

(Malloc)

109

Table 13 Operational semantics for statements

Statements

C, ff h e -> loc, / , C' (stack(loc) j f) Dom(C') = Dom(C")
C,E\- free{e) -» uni t , (/; dealloc{loc)),C"oc t [loc •-> undef]

(undef ifC'(loc') = loc,

^C'(loc') otherwise.

(Free)

C'(loc') = r

Co, E \-lexpr e -» loc , / , C C,Ehe' -+v, f, C
({v = i n t) V (v C .Re/)) / " = / ; / ' ; assign(loc)

Co, B H e = e' -» v, / " , C'loc t [loc — v]

Co, E \~lexpr e —* l o c , / , C\

C\,EV calla —> {id,x,su,E'),0,C%
C2,Ehe'^v',f',C3

C3 f \E'(x) -> v'}, E' r- sid -> v", f", C
C0,Ehe = id(e') -> v", (/; / ' ; / ") , C'loc f [loc ~ V"]

C, E h return e —» v,f,C

CQ,EY-S-+VJ,C C,E\-S' - > t / , / ' , C '
C0,EhS-s'^v',(f;f'),C

Co, £ I- e -+ v, / , C !<^0
C,E\-s' -*v',f',C'

Co, E I-if e then s' else s" -» t/, (/; / ') , C

Co, £ I- e -> v, / , C w = 0
C , E I - s " - W f",C"

Co, E h if c then s' else s" — v", (/; / ") , C"

C0,E\-e-^v,f,C v^O
C,Ebs; while (e) do s -> t/, / ' , C

C0, £ h while (e) do s -» v', (/; / ') , C

C , £ l - e - > t t , / , C ' i> = 0
C, £ h while (e) do s -> un i t , / , C'

(Assign)

(call)

(Return)

(Seq)

(If-T)

(If-F)

(While-T)

(While-F)

110

file:///~lexpr

loc may be assigned to another process. Besides, all locations that refer to the freed

location loc are mapped to an undefined value in the derived store C". The (Assign)

rule evaluates the left-hand-side operand to its location loc and updates the store

C with a mapping from loc to the value of the right-hand-side operand. The (call)

rule evaluates the label call^ corresponding to the call to function id, and yields

the function closure (id,x,si(i,E'). The location E'(x) of the formal argument x

is assigned the value v' of the actual argument e in order to evaluate the function

statements s,y.

5.3 Consistency of Static and Dynamic Semantics

In this section, we prove the consistency of our static and dynamic semantics. We

use the proof method that is introduced by Talpin and Jouvelot in [121] to show

that the static and the dynamic semantics are consistent with respect to a structural

relation between values and types defined as the maximal fixed point of a monotonic

property. The result of the consistency is then used to show that our defined static

checks report occurrences of all targeted errors and do not suffer false negatives.

We define below a store model S that relates a region p and a type r to their

corresponding reference value loc.

Definition 1 (Store Model) A store model S is a finite mapping from locations
loc to pairs (p,r) of regions p and types r as follows:

S G StoreModel — Ref —> Region x Type

We say that S' extends S, denoted by S C S', if and only i/V loc G Dom(<S), we
have S(loc)=S'(loc).

I l l

In what follows, we define the relations S (= / : a and C : «S (= v : T that we need

to establish a link between the static and the dynamic semantics.

Definition 2 (Effect Consistency) A dynamic trace of side-effects f G Trace is
consistent with the effect a G Effect for the model <S £ StoreModel, noted S \= f : o,
if and only if:

Va//oc(loc) £ / ,S (l oc) = {p,r) A alloc{p,£) G cr

V/ree(loc) G / , S (l o c) = (p,r) Afree{p,£) e a

Vrearf(loc) 6 /,<S(loc) = (p,r) A read(p,T,£) € cr

V assign(loc) € f,S(loc) = (p,r) A assign(p,r,£) £ a

V arith(loc) € / , <S(loc) = (p, r) A arith(p,£) G cr

VsfacA;(loc) G / , »S(loc) = (p, r) A stack(p,£) G a

The definition relates a dynamic effect on a location loc to a static effect on a

region p and a type r that correspond to loc through the store model <5. Note that

we also have the following:

• If S C S' and S \= f : a, then S'\= f :a.

• If S |= / : a and 5 |= / ' : a' then S \= / ; / ' : o; a'.

• If <S (= / : cr then Vcr', we have S (= / : zy(cr, cr') and <S (= / : i/(cr', <r).

We define typed stores as models for describing the relation between values and

types.

C : S G TypedStore = Store x StoreModel

Given a typed store C : 5, the following definition establishes the link between values

of expressions computed by the dynamic semantics to their types evaluated by the

static counterpart.

Definition 3 (Consistent Values and Types) Given a typed store C : S, the value
v is consistent with the type r, noted C : S \= v : T, if and only if v and r verify one
of the following properties:

112

C : S |= u n i t : unit

C : S \= i n t : int[^int]

C : S \= undef : r O f C {void, ref(void)} or hostOf (T) D {[w»7d], [dan<?h'n<?], [an'i/i]} ^ 0

C : «S |= l o c : T O 5 (l o c) = (regionOf (T) , strTypeOf (T))

and C :S\= C(loc) : strTypeOf (r)

C : S \= l o c : J'ni[&r] O f = r e / (_) and C : 5 (= l o c : T

C : 5 |= 1OC@(VJ)I. .„ : T O Vy>i e f l d L i s t (r) and loc,- = l o c + o f f se t (^ j) ,

C(loci) = Vi and C : S \= C(loCi) : f ldType(r, ipt)

C : S (= {id, x, sa,E) : r <& 3 £ such tha t C : S \= E : £ and S, I h co/Ja : r , £ '

The intuition behind this definition is that the static type of a given expression

is a conservative estimation of its corresponding value derived from the dynamic

semantics. In the dynamic semantics, the undef value stands for a program expression

that has an uninitialized value. In the static counterpart, that same expression can

either be assigned a void type, a void pointer type, a [wild] annotated type, a pointer

type with [dangling] annotation, or a pointer type with [on'i/i] annotation. A program

expression that is initialized to an integer value i n t should have an integer type

int[kint] where the host annotation [&mi] indicates an initialized value. A loc value

corresponds to a pointer type r such that its referred region regionOf (r) and type

strTypeOf (r) are related to loc in the store model S. Moreover, the value C(loc)

stored in loc corresponds to the type strTypeOf (r) referred to by pointer r . In our

static semantics, we allow casting from pointer type to integer type provided that the

latter is large enough to hold a pointer value. The host annotation of the derived

integer type keeps track of its original pointer type. An integer type inf[&T] where

f = re/(_) is actually a pointer type r in integer disguise. Therefore, a value loc is

consistent with m£[&T], if and only if loc is consistent with its hidden pointer type r .

113

Table 14 Function T whose maximal fixed point defines the consistency relation
f(Q) = {(C:S,v,r)\
ifv = unit then r = void
ifv = int thenr = int[&int]
ifv = undef t/ienhostOf (r) D {[ioiW], [dangling], [arith]} ̂ 0 or r G {void, ref(void)}
ifv = loc then 3 p, r' such that p = regionOf (T) and r' = strTypeOf (r)

and{C : S,C(v),r') G Q andS{loc) = {p,r')
ifv = loc@(wj)i..n thenr = struct{(tpi,Ti,Oi)}i..n and VloCj = loc + offset(y?j),

C(IOCJ) = vt and [Ji=hn{{C : 5 , ^ , ^) } 6 Q
if v = {id, x, sa, E) then 3 £ such that C : S \= E : £ and £,£\- callu : r, £'}

We note C : S f= E : £, if and only if Dom(jE') = Dom(£) and for every x G

Dom(£), we have C : S \= C{E{x)) : £{x). If C : S \= E : £ then for every

x G Dom(E), we have S(E(x)) = (addressOf(x),£(x)). We have also the following:

• if C : S \= v : r then C : S \= v: if far1) and C : S \= v: if{r', r) .

• If C : S \= E : £ then C : S \= E :£/&£' and C : S \= E :£' /A £

As discussed in [121,124], this structural property between values and types does

not uniquely define a consistency relation and must be regarded as a fixed point

equation on the domain 1Z = TypedStore x Value x Type of the relation. In Table 5.3,

we define function T, on the domain Vfin(7Z) —> Vfin{lZ), whose fixed points are the

relations on 1Z that verify the property defined above. To ensure the existence of the

greatest fixed point gfp{J-), function T must be monotonic.

Lemma 5.3.1 (Monotonicity of T) IfQQ Q' then F{Q) C ?(&).

Proof of Monotonicity Lemma 5.3.1 Let Q and Q' be two subsets of 1Z such
that Q C Q'. We assume that q G T{Q) and prove that q G J-'iQ')- Let q be
(C:S,v,r):

(i) if v G {unit, in t .undef} then q G ̂ (Q ') by definition.

(ii) if v = loc, there exist p and r ' such that ((p = regionOf (r) and r ' = strTypeOf (r))

or (T = mi[&itfp(_)i*T'jl)) a n d 5 (v) = (/9'T') a n d (C : < 5 ' C (v) ' r 0 G 2- S i n c e

Q C Q', we have q G J^(Q')

114

(iii) if v = loc@(vi)i..n, then T = struct{(<Pi,Ti,Oi)}i..n and for locj = loc +
offset((pi), we have C(loCi) = Vi and \Ji=i n(C : S,C(l°ci),Ti) 6 Q- Since
Q C Q', we have g <E T{Q!)

(iv) Finally, if v = (id, x, si(j, E) then there exists a type environment £ such that
C : S t= £ : €, so that g <E ^(Q')- |

Among the fixed points of T, we choose the greatest fixed point gfp(J-) as our

consistency relation [121,124]; gfp(T) is defined by:

S / ^) = U { Q C K | Q C f (Q) }

A set Q such that QQ T(Q) is called T-consistent. The relation between values

and types is thus defined by:

C:S\=V:T^(C: S,V,T) G gfp(T)

In order to use induction in the consistency proof, we need to check that the

relation between a type and a value, whenever correct for some typed store C : <S, is

preserved when the store is properly expanded. We note:

C :SCC' :S' OS CS' andCC C', and for all v and T, C : S \= v : r => C : S' (= v : r

Lemma 5.3.2 (Side Effects) Assume C : 5 (= w : r . If S(loc) = (p,r), then
C : S Q Cioc f {loc •-* v} : <Saoc t {loc i—» (p, r) } . Otherwise, for every region p,
C : S C C f {loc H-> u} : 5 f {loc •-> (p , r)} .

Proof of Side Effects Lemma 5.3.2 The proof is done by induction on the struc­
tures of typing and values. Let C — Cloc f [loc i—> v] -and S'loc = «Sloc f [loc i—> (p, r)] .
We have to prove that C : S Q C : S', i.e., C : S' \= v : r given that C : S \= v : r ,
C C C', and «S C 5 ' . Considering the typed store C : S and Q C K such that
Q = {(C :S',V,T)\C:S\=V:T}, we show that Q is ^-consistent, i.e., Q C .F(Q).
Let g = (C : «S', u, r) e Q:

(i) if v € {unit , in t ,undef} then g € ^F(Q)

115

(ii) if v = loc', by the definition of C : S j= v : T, there exist p' and r ' such
that ((p' = regionOf(r) and r ' = strTypeOf (r)) or (r = ln^&re/p,(_)|&T,,])) and
S(v) = (P',T') and C : «S f= C{v) : r ' . Since C C C and 5 C S'" then S » =
(p', r ') and C : 5 |= C » : r', so that (C : 5 ' , C'{v), T') G Q and q G J^(Q)

(iii) if v = loc@(uj)i..n, by definition of C : S \= v : T, we haver = struct {(<p%,Ti, o,)}.
Let loCj = loc + off set(<^j), we have C(loCi) = Vi and C : S \= Vi : T .̂ Since
C C C and 5 C 5 ' then C : 5 |= C'(loCi) : TU and U,=i..„(C : ^ ' (l o c ,) , - ^) G
Q and g G JF(Q)

(iv) Finally, if v = (id, x, Sjd, E) then there exists a type environment £ such that
C:S\=E:£. This means that C : S \= C(E{x)) : £{x) for every x G Dom(E).
Thus, we have (C : 5',C(£;(a:)),£:(x)) G Q, so that q <E F{Q). |

Lemma 5.3.2 covers the cases of creation of new references and of assigning a

value to an existing reference. In both cases, we make sure that the store expansion

preserves the consistency relation. Note that if C : S \= v : r and C : S \= E : £ then

Cf[loc t—> T] : S][p i—> (loc, r)] f= E : directUpd(£, IV,T) where addressOf (/„,£*) = p.

As defined in Chapter 4, function directUpd(£, lv, T) derives an updated environment

£' where the host annotations of all variables that directly or indirectly refer to p are

set to [&r].

We also need to check that the relation between a type T and a value v, whenever

correct for some typed store C : S, is preserved when the type is cast to another type

T' such that r ' = castType(r, K) for all declared type n. In the dynamic semantics,

we only consider type conversions applied on scalar types (integers and pointers).

Lemma 5.3.3 (Type Conversion) Given a typed store C : S and a value v that is
consistent with type T, then C : S |= v : r => C : S (= v : castType(r, K) for all K.

Proof of Type Conversion Lemma 5.3.3 The proof of this lemma is done by
covering all cases of function cast Type (r, K).

• Let v = loc, r = re/p(/t% and « = int. We have castType(r, int) = int[&Ty
Since C : S f= v : r and f = re/, we have from the \= relation C : S \= v :
castType(r, int).

116

• Let v = loc, r = ref p(void)\mauoc] and K — re/(/t'). We have castType(r, re/(«;')) =
T' with T' — re/p(«')[&K'J and strTypeOf (r) = strTypeOf (r') and regionOf (r) =
regionOf (T ') . From the |= relation, we conclude that C : S |= v : r => C : S j=
v : castType(r, re/(«;')).

• Let v = loc, r = refp{K,')n and K = re/(/c"). We have castType(r, ref(n")) = r'
with r ' = refp(K")v and strTypeOf (r) = strTypeOf (r') and regionOf (r) =
regionOf (r '). From the [= relation, we conclude that C : S (= v : r =» C : S \=
v : castType(r, re/(«;")).

• Let v = loc, r = m£[&rey ^^ and «; = re/(«"). We have castType(r, ref(n")) —
refp(K")v. Since C : S \= v : r, we have C : S \= v : refp(K")n and C : S \= v :
castType(r, ref(n"))

• Let v = int , r = m£[&intj. For all K, we have castType(r, «) = T and we conclude
that C :<S |= t ; :T=>C:«SJ= i ; : castType(r, K).

• Let v = undef, then r is either of the form int[wUd}, rejp{_)[dangling}, refp(_)[wiid],
ref p(__)[arith], r e / p (wi'd)[mafioc], or void For all K, we have castType(r, K) = r and
we conclude that C : S f= v : r => C : S \= v : castType(r, K). |

Lemma 5.3.3 covers the cases of type conversions. In our dynamic semantics, we

assume that a value v remains the same when converted to another type. Similarly,

the region and the host annotations of a pointer type are kept the same when con­

verted to another pointer type. In other words, the region of a pointer type and its

actual referred type are unchanged. As such, we can always establish a link between

a computable value and a type whether converted or not. The conversion between

integer and pointer types are already covered in Definition 3 of the consistency rela­

tion.

Now that we have defined the different relations between the static semantics and

the dynamic semantics, we can state the consistency Theorem 5.3.4

Theorem 5.3.4 (Consistency of dynamic and s tat ic semantics) Let E be an
environment and £ its type. Let C : S be a typed store such that C : S \= E : £

117

(i) Provided that £,£ \- e : r, a and C,E \- e —* v,f,C', there exists a store model
S' such that C.SQC'-.S' with:

S'\= f :a andC :S' \=V:T

(ii) Provided that £,£ h e : r, a and C,E r-jexpr
 e —* 1 ° C I / J C , there exists a store

model S' such that C : <S CC ' : S' with:

S' \= f : a and C : S' \= C'(loc) : r and <S'(loc) = (addressOf (e, £), r)

(Hi) Provided that £, £ h s : r, £', a and C, E \- s —> v, f, C', there exists a store model
S' such that C :SQC': S' with:

& \= f : a and? : & \= v: T andC : & \= E : 8'

Proof of Consistency Theorem 5.3.4 The proof is done by structural induction
on expressions:

• Case of (Var): By hypothesis, we have:

C:S \=E:E and C,E h x-+C(E(x)),V>,C and £,£ h x : T,0

We must have x G Dom(£) and x € Dom(£J). From C : S (= E : £ and by
taking S' = S, we conclude:

S \= 0 : 0 and C : S \= C{E{x)) : £{x)

• Case of (Int): By hypothesis, we have:

C : S \= E : £ and C,E\- n —» in t , 0, C and £, £ h n : znt[&,-nt], 0

By taking 5 ' = <S, we conclude:

S (= 0 : 0 and C : <S .[= i n t : z'n£[&,-n£]

• Case of (Malloc): By hypothesis, we have:

C : S (= E : £ and C, E h malloc{e) - • loc, (/; aHoc(loc)),C f [loc •-* undef]
and £, £ h malloc(e) : refp{void)\mauoc\, (o; alloc(p,£))

By definition of the dynamic and the static semantics, this requires that:

C,Eh e —> int , / , C and £, £ h e : mi[^int], a

118

By induction on e, there exists a store model <Si such that C : S C C' : Si
verifying:

Si h / : a and C : «Sa \= i n t : mi[&int]

By Definition 2 of Effect Consistency, we have {loc)-> (p, void)} \= alloc(loc) :
alloc(p,£) and C : <Si f= undef : void. Since loc ^ Dom(<S'), we define S' =
5 i f [loc »-> (p, void)]; we have:

CiSiQC] [loc H^ undef] : S'

By transitivity of C, we conclude that:

<S' |= / ; aHoc(loc) : a; alloc(p,£) and
C f {loc >-> undef} : S' \= loc : re/p(wicO[maHoc]

• Case of (Deref): By hypothesis, we have:

C : S \= E : £ and C, E h *e -* C'(loc), (/; reo<f(loc)), C
and £, £ h *e : r, (<x; read(p, r, £))

By definition of the static semantics and dynamic semantics, this requires that:

C,E \~ e —> loc, / , C' and 5, £ h e : r ' , a and f' = re/(_) and
p = regionOf (r') and r = strTypeOf (T') and drfChk(T')

By induction on e, there exists a store model S' such that C : S Q C : S'
verifying:

S' (= / : a and C : S' \= loc : r '

By definition, {loc i-> (p,r)} [= read(loc) : read(p,r,£). Since <S'(loc) =
{p,r), we conclude:

<S' |= / ; read(loc) : a; read(p, r, £) and C : S' [= C'(loc) : r

• Case of (Ref): By hypothesis, we have:

C : S \= E:S and C, E b ke -» loc, (/; stadfc(loc)),C and
£, £ h &e : re/p(f)[&rj, (a; stack(p, £))

By definition of the semantics, this requires that:

C, E blexpr e —> loc, f,C and £,£ h e : r, a and p = addressOf(e,£)

119

By induction on e, there exists a store model S' such that C : S C C' : S'
verifying:

S' \= f : a and C : S' (= C'(loc) : r and 5'(loc) = (P,T)

By taking r ' = re/p(f)[&Tj and by definition of \=, we have:

C' : S' \= loc : T' where p = regionOf (r') and r = strTypeOf (T')

Thus, we conclude:

S' \= / ; stack(loc) : a; stack(p,i) and C' : S' \= loc : Te/p(f)[&T]

• Case of (Cas t) : By hypothesis, we have:

C:S\=E:S aadC,E\- («)e-> v , / , C and £, € h («:)e:r ' ,a

By definition of the semantics, this requires that:

C, E h e -T* v, / , C and £,£ h e : T, a
and T' = castType(r, K) and castchk(r, «;)

By induction on e, there exists a store model <S' such that C : 5 C C' : 5 '
verifying:

5*1=7: a a n d C ' : 5 ' | = u : T

By the Type Conversion Lemma 5.3.3, we conclude that:

S'\= f : a and C : S' \= v: T'

• Case of (Arith): By hypothesis, we have:

C0 : S \= E : £ and C0, £ h e © e' -* undef, (/; onU(loc)) ,C and
£,£\- e®e' : re/ / /(_) [o r i (h], (a; an'tfi(p, ^))

By definition of the semantics, this requires that:

C0, £ h e -» loc , / , C and C, E h e' -» v, / ' , C
and 5 , l l - e : T , (7 and £,£ H e ' : mf^,<r' '

and f = re/(_) and p = regionOf (r) and p' fresh

By induction on e there exists a store model S\ such that Co : S C C : S\
verifying:

120

C : Si\= loc : r and S\\= f : a

We define T' = strTypeOf(r), by definition, we have {loc i—> (p, T ') } \= arith(loc) :
arith(p,£). Since [loc i—• (p,r')] C Si, we have:

Si j= arith(loc) : arith(p,£)

By induction on e', there exists store model S' such that C : Si C. C' : S'
verifying:

S'\=f':a'

By Definition 3 of Consistent Values and Types, we have: C : S' \= undef :

'"e///(_)[aritfc]

By transitivity of jZ, we have Co • S Q C : S', and we conclude:

S' f= / ; / ' ; ani/i(loc) : a; a'; arith(p,£) and C : S' \= undef : ref p, (_) [or«h]

• Case of (Field): By hypothesis, we have:

C : S (= £ : £ and C, £ 1- e.w - • Vj, / , C
and £,^ h e.</3j : Tj,cr

By definition of the semantics, this requires that:

C,E\- e-^> loc@(vi)i=i..n, / , C and C(loc + off set(y?;)) = Vi
and £, £ h e : T, CT and f = siraci{_} and TJ = f ldType(-r, <)̂ and f ldChk(r, <£>;)

By induction on e there exists store model S' such that C : S C.C : S' verifying:

S' |= / : a and C : 5 ' (= loc@(ui)i=1..„ : T

We define loc; = loc + offset((fi), by definition we have:

C : S' h C(locO : Ti

Thus, we conclude:

5 ' \= f :a and C : S' j= »,- : n

• Case of (Free): By hypothesis, we have:

C : S f= E : £ and C, £ h /ree(e) -> uni t , / ' , C"oc f [loc H^ undef]
and £, £ h /ree(e) : void, £', (<r; dealloc(p, £))

121

By definition of the operational semantics, this requires that:

C,E\~ e —> loc, f,C and / ' = / ; dealloc(loc)

C"hoc') = J u n d e f if C '(loc ') = l o c '
[C'(loc') otherwise.

By definition of the static semantics, this requires that:

£, I V e : r, a and f = re/(_) and p = regionOf (T)
and £' = directUpd(£, lv, updHost(r, [dangling]))

By induction one there exists store model Si such that C : S (= C : S\ verifying:

<5i (= / : a a n d C : 5 i |= loc : T

We define «S" with Dom(«S") = Dom(5i) such that:

,„ f (p',updHost(r, [dangling])) if C'(loc') = loc and <Si(loc') = {P',T),
S"(loc') = .

[Si (loc) otherwise.

By the Side Effects Lemma 5.3.2, we have: C : <Sj C C" : S"

Since «S"(loc) = (p, strTypeOf (r)), by the Side Effects Lemma 5.3.2 we have:
C" : S" C Cioc f [loc i-» undef] : S"oc f [loc i-> (p.t/ouf)]. By taking S' =
<S"0C f [loc H-» (p, uoid)] we have:

C : 5 C C"oc f [loc t-> undef] : S' and S' |= dea?/oc(loc) : dealloc(p, void)

By transitivity of C, and by the Side Effects Lemma 5.3.2:

C"oc t [loc i—*• undef] : S' f= E : directUpd(£,Zw,updHost(r, [dangling]))

We conclude:

• S' \= f; dealloc(loc) : a; dealloc(p, i) and
ci'oc t [loc •-* undef] : «S' |= un i t : void and C"oc t [loc i-> undef] : 5 ' f= £ : £ '

Case of (Free): By hypothesis, we have:

C : S |= E : £ and C, E h /ree(e) -» uni t , f',C'loc f [loc H^ undef]
and £,£ h free(e) : void, £', (a; dealloc(p, £))

By definition of the semantics, this requires that:

122

C, E h e - • loc, f,C' and / ' = / ; dealloc{loc)
£, I \~ e : T, a and f = ref(_) and p = regionOf (r)
and £' = directUpd(£, i„,updHost(T, [dangling]))

By induction on e there exists store model Si such that C : S \= C' : Si verifying:

Si \= f : a and C' : Si\= loc : r

By definition, {loc i—» (p, void)} |= deaHoc(loc) : dealloc(p,£). Since loc
G Dom(Si), we define «S' = >Si + [loc i—> (p, vofrf)]

C : <Si C C'loc f [loc i-» undef] : «S'

By transitivity of C, and by the Side Effects Lemma 5.3.2:

C'loc f [loc H-> undef] : Sf \= E : directUpd(£, ^,updHost(r, [dangling]))

We conclude:

«S' |= / ; dealloc(loc) : a; dealloc(p, £) and
C'loc f [loc i-» undef] : S' |= un i t : void and C'loc f [loc >-> undef] : S' \= E : £'

• Case of (Assign): By hypothesis, we have:

C:S\=E:£and
C, E \- e = e' -» v\ (/; / ' ; assignee)), C'{oc f [loc -> t/]

and £,£\- e = e': rf, £', (a; a'; assign(p, r', ^))

By definition of the semantics, this requires that:

C, E hexpr e -» loc, / , C and C, B h e ' - » t/, / ' , C"
and ^ f h e : T , (T and £,l\~ e' : T', a'

and p = addressOf (e, £) and £' = directUpd(£, £„, r ')

By induction on e there exists store model »Si such that C : S \= C : S\ verifying:

•Si |= / : a and C : Si f= C'(loc) : r and S i (loc) = (p,r)

By induction on e' there exists store model S' such that C' : Si Q C" : S'
verifying:

S'[= f : o' and C" : S'\= v': T'

By the Side Effects Lemma 5.3.2:

123

C" : S' C Clc f [loc -> i/] : S'loc t [loc -» (p, r')]

We have £' = directUpd(£, IV,T'), by the Side Effects Lemma 5.3.2, we have:

C c f [loc . - </] : S'loc t [loc - (p, r')] |= £ : 5 '

By taking <S" = S'loc f [loc i-> (p, r ')], we conclude that:

<5" |= / ; / ' ; assign{loc) : a; a'; assign(p, r ' , £)
and C ^ t [loc •-> v1} : S" \= v' : T' and C '^ t [loc .-> t/] : <S" |= £ : £ '

• Case of (Call): By hypothesis, we have:

C:S\=E:£
and C, E h e = t'd(e') -» u", (/0; assi#n(loc)),Cioc f [loc •-> v"]

and £, £ \- e = id(e') : T", £", (oo; assign(p, r", £))

By the definition of the (Call) rule, we have:

a"

£, £ h e : r, a and £, £ h e' : r ' , a' and £, ^ h ca/Ztrf : r '—>r", £ and
do = a; ar; a" and p = addressOf (e, £) and £" = directUpd(£', e, r")

By definition of the (Call) rule in the dynamic semantics, we have:

C, E hiexpr e —» loc, / ,Ci
and C\, E h ca//ld —» (id, x, sid,E'),®,C2

and C2, S h e ' - » t / , / ' , C 3

and C3 t [£'(*) -> t/], £ ' f- SM -> t/', /" , C
and /o = / ; / ' ; / "

By induction on e, there exists a store model S\ such that C : <S Q C\ : <Si
verifying:

S\ |= / : a and Ci : <Si \= Ci(loc) : r and <Si(loc) = {P,T)

By induction on calli(i, there exists a store model S2 such that C\ : Si C C2 : S2
verifying:

C2 : S2 \= (id, x, sid, E') :T'^UT" and C2 : S2 (= £ : 5 '

By induction on e', there exists a store £3 such that C2 : S2 Q C% : S3 verifying:

S3\= f : a' and C3 : S3 \= v' : T'

124

By the Side Effects Lemma 5.3.2, C3 : <S3 (= (id,x,sid,E') : T'-^T". By the
definition of (=, we have C3 : «S3 |= E' : £. We define rx = addressOf (x, £), by
the Side Effects Lemma 5.3.2, we have:

C3 f [E'(x) ^ v'} : «S3 f [E'(x) -> (rx, r')] h & : £] [x , - r']

By induction hypothesis on Sjd, there exists a store 5 ' such that C3 : S 3 C C : S'
which verifies the theorem. Thus,

S' \= f" : a" and C : S' \= v" : r"

From C2 • S2 \= E : £' and by transitivity of C, we have C' : S' \= E : £'. By
the Side Effects Lemma 5.3.2, we have:

C'loc t [loc - «"] : S'loc f [loc -> (p,r")l \= E :€'

We define S" = S'loc i [loc ^ (p,r")]. By the Side Effects Lemma 5.3.2 C'loc f
[loc •-» t/'] : 5 " =̂ £ : directUpd(£',e,T"). Thus, we conclude that:

•5" N f\ / ' ; / " ; ass^n(loc) : a; a': a"; assign(p, r", £)
and C'loe f [loc •-> v"} : 5 " |= v" : r" and Cioc | [loc ^ «"] : S" |= £7 : £"

• Case of (Re tu rn) : By hypothesis, we have:

C : S \= E : £ and C, E hreturn e —* v,f,C and £, £ hreturn e : T,£,a

By definition of the semantics, we have:

C,E \~ e —> v,f,C and £,£ r- e : r,CT

By taking iS' = <S, we conclude:

5 ^ = / : o - a n d C : 5 | = w : T a n d C : 5 | = £ ? : £

• Case of (Seq): By hypothesis, we have:

C :S [= E : £

andCo , J B^- 5 ; S ' - > V ^ (/ ; / ') ,C ,

and £,£h s;s': T',£',(O; a')

By the semantics, this requires:

C0,E\- s^v,f,C and C . E h s ' : t/, / ' , C
and <?, £ h s : r, £1, cr and £x,£\- s' : r', £', <J'

125

By induction on s, there exists a store *Si such that Co : S \= C : Si verifying:

Si \= f : a and C : Si {= v' : r ' and C : Si \= E : £x

By induction on s', there exists a store S' such that C : S\QC' : S' verifying:

S' (= / ' : a' and C : S'\= v' : T' and C : S' \= E : £'

Thus, we conclude:

S' \= / ; / ' : a; a' and C : S' \= v' : r ' and C : S' \= E : £'

• Case of (If-T): By hypothesis, we have:

Co : S \= E : £

and C0, £ hif e then s' else s" -* «', (/; / ') , C
and £, £ hif e then s' else s" : i/(r', r"), 5 ' A\ £", (a; if {a', a"))

By the semantics, this requires:

C 0 ,E h e -> v, / ,C and v ^ 0 and C , £ h s ' : t/, / ' , C
and £, £ h e : int^ a and £, £ h s' : T', £', a' and f, £ h s" : r", £", a"

By induction on e, there exists a store model <S] such that Co : S Q C : Si and
C:Si\=f:a.
By induction on s', there exists a store model 5 ' such that C : 5 j C C' : «S'

5 ' (= / ' : a' and C : S' \= v' : r ' and C : <S' \= E : £'

By definition, we have:

C : S' h / ' : if {a', a") and C : S'^= E : £'/A £"

Thus, we conclude:

C' :S'\= / ; / ' : a; if{a',a") and C : S' \= v' : r' and C : S'\= E : £' fa £"

• Case of (If-F): By hypothesis, we have:

C0:S\=E:£
and C0, E hif e then s' else s" -> v", (/; / ") , C"

and £, I hif e then s' else s" : z/(r', r") , £' ^ S", (ex; if (a', a"))

By the semantics, this requires:

126

C0,E\-e-* v,f,C and v = 0 and C , E h s" : v", f",C"
and £, I he: tniM, a and £,£\-s? : r ' , £', cr' and £, * H s" : r", £", a"

By induction on e, there exists a store model .Si such that Co : <S C C : «S]
verifying Si (= / : a.
By induction on s", there exists a store model S" such that C : Si C C" : S
verifying:

S" \= f" : a" and C" : 5 " |= v" : r " and C" : S" ^= E : £"

By definition, we have:

S" \= f" : if {a', a") and C" : S" \= E : £ ' /X\ £"

Thus, we conclude:

S" \= / ; / " : a; if {a', a") and C" : 5 " |= i/" : r" and C" : S" \= E : f' /A £"

• Case of (While-T): By hypothesis, we have:

Co : S \= E : £ and Co, E hwhile e do s —> v', / ' , C
and £, £ hwhile e do s : «/(r', void), £' A\ £, ?/((cr; cr'), a)

By the semantics, this requires:

C0,E\-e-*v,f,C*ndv^OaadC,E\-s:v',f',C'
and £, £ h e : m£M, cr and £, £ h s : r', 5', cr'

By induction on e, there exists a store c?i such that Co • S Q C : Si and

By induction on s, there exists a store model <S' such that C : Si Q C : S
verifying:

S' \= f : a' and C : S' \= v' : r ' and C : S' \= E : £'

By definition, we have:

S' \=f;f: cr; a' and S' \= f;f: if ({a; </), a) and C : S' \= E : £' /A £

Thus, we conclude:

S' h / ; / ' : <f((a;cr'),cr) and C : S'\= v' : r ' and C : S' \= E : £' A\ 5

• Case of (While-F): By hypothesis, we have:

127

C : S {= E : £ and C, E hwhile e do s -* uni t , / , C
and £, ^ hwhile e do s : if(r', void),£' A\ £, z/((a; a'), cr)

By the semantics, this requires:

C,E\-e-*-v,f,C' and w = 0
and £,£\- e : int^, a and £,£\~ s : r ' , £', a'

By induction on e, there exists a store model <S' such that C : S C. C : S'
verifying S' (= / : a. By transitivity of)=, Ave have C : S' \= E : £. By
definition, we have:

S'\= f: if {{a; a'), a) and C : S'\= E :£'ff\ £

Thus, we conclude:

«S' |= / : if {{a; a'), a) and C : S' |= un i t : z/(r', void) and C : S' \= E : £' N\ £.

I

5.4 Soundness of Static Analysis

We have shown in the previous section that our static semantics and dynamic se­

mantics are consistently related. In this section, we define the soundness property of

our static analysis. Then, based on the consistency results of our static and dynamic

semantics, we establish the soundness proof to demonstrate that our analysis does

not suffer false negatives. To this end, we enrich the operational semantics with er­

ror rules that capture the undefined behaviours of memory operations. These unsafe

behaviours result in dynamic errors that are predicted by our static checks as stated

in our Soundness Theorem 5.4.1. Notice that our operational semantics does not

consider modification to memory layouts during cast operations. Thus, it does not

capture runtime errors related to type conversions.

128

Theorem 5.4.1 (Static Analysis Soundness) Let E be an environment and £ its

type. Let C : S be a typed store such that C : S [= E : £. Let e be an expression such

that £,l\- e : T,cr and C,E f- e —» v, f,C' o,nd C : S \= v : r and C : S (= / : a:

• IfC, E h *e —> error then drfChk(TJ=false.

• IfC,Eh- free(e) —• e r ro r i/ien f reeChk(V, a)=false.

• IfC,E\~ e.ip —> error iften fldChk(V, <p)=false.

Proof of Static Analysis Soundness 5.4.1 To establish the soundness proof, we

define an error rule for each memory operation that has an undefined behaviour as

stated by the ANSI C standard [75].

• Unsafe pointer dereference: In the dynamic semantics a pointer dereferenc­

ing error is captured by the following rule:

C,E\-e-+v,f,C vj Ref
C , £ h * e - > e r ro r

In the static semantics, the (Deref) rule is as follows:

£, £ r- e : r, a f = ref (J) drf Chk(r)

p = regionOf (r) r' = strTypeOf (r)
£, £ h *e : r', (a; read(p, T', £))

The dereference of pointer type r is guarded by the following static check:

drfChk(r) = (f = rie/(«;))-A (K ^ void)
A(hostOf(r) ^ {[wild], [dangling], [arith]})

We consider the possible values of expression e that lead to a runtime error:

129

— If v £ Ref and v = undef, we have C : S \= undef : r , thus type r is such

that:

(f 6 {void, ref (void)}) V ((hostOf (r) C {[ura7d], [dangling], [arith]}))

Thus, we conclude that drfChk(r)=/aZse.

— If v £ Ref and v ^ undef, we have C~: S J= v : r and this implies f not of

the form ref(n). Thus, we conclude that drfChk(r)=/oke.

• Unsafe pointer deallocation: In the dynamic semantics a pointer dealloca­

tion error is captured by the following rule:

C, E \- e -» v,f, C ((v j Ref) V {stack(v) e /) V (freejv) e /))
C,E \~ free(e) —» er ror

In the static semantics, the (Free) rule is as follows:

£, I h e : r, a f = re/() f reeChk(r, a)
/> = regionOf (r) £' = updEnv(£,/ree(e), r)

E, £ h /ree(e) : void, £ , (a; dealloc(p, £))

The memory deallocation of pointer type r is guarded by the following static

check:

f reeChk(r, a) = (f = ref(n)) A (K ^ void)
A(hostOf(r) = [&r']) A [stack(p,£) <£ a)

By consistency hypothesis, we have C : S \= v : r and C : S \= f : a. We cover

the three cases that result in a runtime error:

— If v £ Ref and v = undef, by definition of the consistency relation C : S (=

v : r , we have:

130

(T G {void, ref(void)}) V ((hostOf (r) C {[wtlii], [dangling), [arith]}))

Thus, we conclude that f reeChk(r, a) = false.

— If v £ Ref and v ^ undef, by definition of the consistency relation C :

S \= v : T, we have f not of the form re/(«;). Thus, we conclude that

f reeChk(r, a) = false.

— If stack(v) € / , by consistency definition we have:

S(v) = (p, strTypeOf(r)) and stack(p,£) € a

Thus, we conclude that f reeChk(r, a) = false.

• Unsafe field access: In the dynamic semantics a field access error is captured

by the following rule:

C,E\-e-+v,f,C'
((v= loc@(^}i=i..n A C(loc + o f f s e t ^)) ^ Vi)V (f not of the formloc@(}))

C,E \~ e.ip —> e r r o r

In the static semantics, the (Field) rule is as follows:

£, i \- e : r, a f — struct {_} f lddik(r, ip)
T' = fldType(T, if) p = addressOf (e.(p, £)

£,l\- e.<p :T', a

The field dereference operation e.<p is guarded by the following static check:

fldChk(r, if) = ip € f ldList(r)

— if v — loc@(u,-)j=i..n, by definition of the consistency relation C : S (=

loc@(w,-);=1. „ : r , we have:

131

Vv?j G fldList(r) , C(loc + offset(<^)) = vt

Since C(loc + of f set(</?)) ^ i;, then v? ̂ f ldList(r) .

Thus, we conclude that f ldChk(r, (p) = false

— if v not of the form loc@(_), by definition of the consistency relation

C : <S f= v : T, we have f not of the form struct{}.

Thus, we conclude that f ldChk(r, ip) = false. |

5.5 Guiding Code Instrumentation

As for all static techniques, our conservative type analysis generates false positives

and has undecidability issues. In this section, we show that our static approach can

be supplemented with a dynamic counterpart to increase the overall precision.

5.5.1 Static Analysis Limitations

Our conservative type and effect analysis carries out an exhaustive coverage of pro­

grams' execution traces. Prom its path-insensitivity, it loses precision by assuming

that all paths are feasible, thus it tends to generate false positives. Supplementing

our static analysis with runtime checks presents the advantages of spotting feasible

paths and eliminating false positives. Nevertheless, runtime checks induce perfor­

mance overhead on the analyzed program. As such, we should reduce resorting to

runtime verification to a bare minimum. To this end, we classify the results of our

static checks into three categories:

132

• A static check is successful for a given memory operation when all execution

traces leading to that operation are safe.

• A static check is unsuccessful for a given memory operation when all execution

traces leading to that operation are unsafe.

• A static check is undecidable for a given memory operation when at least one

execution trace leading to that operation is unsafe. As this trace may be un­

feasible, we resort to dynamic analysis to spot the actual runtime error if any.

From this classification of static checks, we deduce that dynamic analysis is used

to handle statically undecidable program operations exclusively. We define an effect-

based approach to interface static analysis with a dynamic counterpart. The effects

collected during the type analysis provide a tree-based model of a program that

captures control-flow and alias information. We extract from this effect model what

we call a dunno point that characterizes a statically undecidable operation as detailed

in what follows.

5.5.2 Stat ic Dunno Points

In Table 5.5.2, we define a dunno point dunno as a three-tuple (chkTag, e,7r) where

chkTag is a tag that describes the needed runtime check, e is the expression to check,

and 7r represents a common signature of all execution traces that ends with the

suspicious operation.

' A program may have a large number of error traces, especially when it contains

133

Table 15 Dunno Points to guide code instrumentation

checkTag x Expression x pathSig
Wild
Dangling
Bounds
DblFree
StackFree
InitRhs
FldStr
0
M
(£, true) =» 7r

(£, false) =>• 7r

// G {alloc{p, £), dealloc(p, £), read(p, r, £), assign(p, r, £)}

loops. Extracting all these error traces is cumbersome and useless since many of

them are similar and lead to the same error. In order to reduce the number of

reported traces, we define the domain pathSig , ranged over by n, that gives a concise

characteristic of error traces. It identifies the specific branches and program points

that define the bad sequencing of memory operations. To prevent our analysis from

being trapped in an infinite loop, we set an arbitrary number of iterations for all loops

in the analyzed program.

The element (£, true) follows the true branch at the branching point £, whereas

(I, false) follows the false branch. The notation (£,true) => (£',_) denotes all paths

that reach program point £' through the true branch at location £. On the other

hand, (£, false) =» (£',_) represents all paths that reach location £' through the false

branch at program point £. The last element of a signature n is an effect element \x

134

dunnoPoint 3 dunno
checkTag 3 chkTag

pathSia B IT

that corresponds to the vulnerable operation. Expanding a path signature TT yields

all execution traces that lead to the same suspected error.

In addition to the error traces, a dunno point indicates the needed runtime check

by specifying a tag from the domain checkTag. As such, our analysis generates the

following set of dunno points when facing undecidability:

• (Wild, e, 7r =» read(_, £)); check if pointer e is null or uninitialized before deref­

erencing at program point £ for execution paths corresponding to signature n.

• (Dangling, e, •K =*• read(_, £)): check if pointer e is dangling before dereferencing

at program point £ for execution paths corresponding to signature IT.

• (Bounds,e,ir => read(__,£)): check if pointer e is out-of-bounds before derefer­

encing at program point £ for execution paths corresponding to signature n.

i

• (DblFree, e, ir =4> dealloc(_, £)): check if pointer e is not dangling before freeing

at program point £ for execution paths corresponding to signature -K.

• (StackFree,e,n => dealloc(,£)): check if pointer e refers to a dynamically

allocated memory before freeing at program point £ for execution paths corre­

sponding to signature •K.

• (InitRhs,e,TT => assign(_,£)}: check if the right-hand-side operand e of the

assignment at program point £ is initialized for execution paths corresponding

to signature ir.

135

Table 16 Operator © for combining dunno points

e
(0, dunno)
(V2, dunno)

(1,0)

(0, dunno')
(0, dunno U dunno')
(!/2, dunno U dunno')

(1/2, dunno')

(V2, dunno')
(i/2, dunno U dunno')
(V2, dunno U dunno')

(i/2, dunno')

(1,0)
(V2, dunno)
(1/2, dunno)

(1,0)

• (FldStr, e.ip, it => read(_, £)): check if structure e has a field <p before access at

program point £ for execution paths corresponding to signature 7r.

5.5.3 Locating Instrumentation Points

Now that we have defined dunno points, we revisit the output of our static checks in

order to generate more expressive results as defined hereafter:

• (1,0) when successful.

• (0, dunno) when failed, the element dunno is used to extract the execution trace

leading to an error.

• (l/2, dunno) when facing undecidability, the element dunno is used to extract

the execution traces that should be instrumented with runtime checks.

As specified previously, static undecidability occurs when traces leading to the

same operation on a given expression diverge on the safety of that operation. In

other words, the expression in question has different types enclosed in a type construct

*/(_, _) where some types pass the static check, while others fail. In Table 16, we

define the operator © that combines the results of a static check applied on an «/(_, __)

136

A l g o r i t h m 7 Revised static checks for dunno point generation

Function drf Chk(e, r, TT) =
case r of

tfiW,T") => drfChk(e, T', TT -> (^, true)) 0 drf Chk(e, T", IT -> (^, /aZse))
re/p(_)[dQnff(in9] =» (0, (Dangling, e, TT -> read(p, £)))
^/P(_)[«rf(<fl => (0. (WW, e, TT ~* read(p, ^)))
f ! / , (J [r t] => (0, (Bounds, e, IT-> read(pj)))
else =• (1,0)

end
Function freeChk(r,cr,7r) =

case r of
ifiir', T") => f reeChk(r, <r, £ -> 7r) © f reeChk(e, r ' , £ —> 7r)

refp(_) [dangling] =*• (0, (DblFree, e, IT))
refp{_)[wud] . =» (0,(UnallocFree,e,7r))
refp(_)[arith] => (0, (Bounds,e,ir))
else => if (stack(p, _) e cr) then

(0, (UnallocFree, e, n))
else

(1,0)
end
Function asgnChk(e, r, r ' , 7r) =

case r ' of
ife(Ti,T2) =» asgnChk(e,r, TI,^.—> 7r) © asgnChk(e, r,T2, £ ^ IT)
refp{—)ri I in^»? ^ if C7? ^ {dangling, wild, arith}) then

(0, (jTrntRv, e, 7r))
else

(1,0)
end
Function fldChk(e.yj,r,7r) =

case r of
ife(Ti>T2) => fldChk(e.(/p,TI,£-^ 7r) ©fldChk(e.</3,r2,^-» 7r)
T' =*> if (y? £ fldList(-r ')) t h e n

(0,(fldStr,e.tp,7r))
else

(1,0)
end

137

1

type. The combination returns a global result for the static check. For a given type

r = ?/(r ' ,r"), if the check result for r' is (1,0) and (0,dunno) for r ' (or vice-versa),

then the overall result for r is undecidable and equal to {x/z, dunno). Notice that

an undecidable output prevails over all other outputs. The operator © performs the

union of dunno points since each dunno point is related to a different execution trace

signature. The algorithms of the static checks defined in the previous chapter are

revised in Algorithm 7 in order to derive dunno points. Notice that we decorate the

ife{—,—) type with a program point annotation £ that captures the location of the

branching statement. The program point annotation is used to extract error traces

for durino points.

5.6 Extending GCC

We have chosen to implement our safety verification approach as an extension of the

GCC compiler. Our implementation is based on the GCC core distribution version

4.2.0. We made this choice for the following reasons:

• GCC is the defacto compiler of C programs, thus integrating our safety verifi­

cation within the GCC compiler increases its usability during software devel­

opment processes. Our safety verification is launched during the compilation

process by simply setting its corresponding flag when invoking GCC.

• Starting from version 4.0, the GCC compiler is based on the Tree-SSA frame­

work for the development of high-level code optimization techniques and static

138

Table 17 Experimental results illustrating the performance of our approach

File

openssh-5.0pl
openssl-0.9.8j

Filesystem Linux-2.6.26.6

LOC
(Ccode)
46.33K

187.101K
12.153K

Compile without
checks (sees)

118
358
90

Compile with
checks (sees)

611
1200
338

Slowdown
factor
5.17
3.35
3.75

analysis tools [97]. The Tree-SSA framework provides an easy access to control-

flow, data-flow, and type information, thus it facilitates the implementation

of our static analysis. We also took advantage of the GIMPLE intermediate

representation language provided by Tree-SSA. GIMPLE preserves source-level

information about the code but simplifies complex constructs (e.g., loops are

mapped to if and goto statements).

To enable our static analysis, we pass the -f ipa-annot- inf erence command-line

option to the extended GCC compiler. The normal compilation process of the com­

piler remains intact. When memory and type errors are detected, our type analysis

pass generates warnings. We analyzed a set of real software such as openssh-5.Op 1,

openss l -0 .9 .8 j , and a part of the Linux-2.6.26.6 filesystem in order to demon­

strate the scalability of our prototype. Table 17 gives the overhead on the compilation

time imposed by our safety analysis. The measurements were made on a 1GHz In­

tel, 1GB Linux machine, using the GCC-4.2.1 compiler with -0 optimization level.

During the experimentation, we activated some of our safety checks in order to de­

tect: free of dangling pointers, free of unallocated pointers, dereference of dangling

pointers, and bad cast from integer to pointer.

139

We detected a bad cast operation from integer to pointer in the Linux kernel

function vmspl ice_to_user () (f s / sp l ice .c) . It actually corresponds to the well

know vmsplice local root exploit (BID: 27704) that takes advantage of a pointer

copied from the user space by the kernel function get_user. According to the Linux

system call specifications, get_user is used to get an integer value from the user space

[22]. In the vmsplice_to_user() function, the usage of get_user is not conform to

its specification since it copies a pointer value from the user space instead of an integer

value. Moreover, the address referred to by the user space pointer is never validated

before being used.

Listing 5.1: Vulnerable Linux Function vmspIice_to_user()
error = get.user(base, &iov->iov_base);
/*...*/
if (unlikely(Ibase)) {
error « -EFAULT;
break;
}
/ » • • • * ' /

sd.u.userptr = base;
/*...*/
size « __splice_xrom_pipe(pipe, Ssd, p ipe_to_user) ;

Listing 5.2: GIMPLE Representation of vmsplice_to_userQ
long unsigned int __val_guj
/* ... */
void * base;
/* ... */
D.25866 = fciov->iov_base;
__asm__ __volatile__("call __get_user_4":"»a"__ret_gu ,"=d"__val_gu:"0" D.25866);
base » (void *) __val_gu;
D.25845 - ret.gu;
error » D.25845;

Listing 5.1 provides an extract of the vulnerable Linux code and a relevant snippet

of its GIMPLE representation in Listing 5.2. The latter replaces the call to get_user

with its inline assembly code where: get_user_4 is the invoked assembly function,

ret_gu is the return value of the call, val_gu is the integer value copied from the

user space, and D. 25866 is a temporary variable generated by GIMPLE corresponding

140

to the user space address to copy from. From the GIMPLE code, we can detect that

the integer value __val_gu is cast to void pointer and assigned to the void pointer

base. This cast operation fails our safety check castChk that entails that only integers

previously derived from pointers can be cast back to pointer type. We are not aware

of any static analysis tool that has discovered this error before being exploited. This

experimentation demonstrates the scalability of our prototype and its potential in

detecting real errors.

5.7 Conclusion

In this chapter, we defined an operational semantics of our imperative language that

complies with the ANSI C standard. We enriched our operational semantics with

error rules where undefined behaviours related to our targeted set of unsafe memory

operations are evaluated to runtime errors. We proved the consistency between our

static semantics and dynamic semantics. The consistency results were used to show

that our static safety checks conservatively detect all occurrences of their targeted

memory errors. Moreover, we defined an effect-based approach that allows our static

analysis to be supplemented with a dynamic counterpart in order to overcome the

inevitable static undecidability issues. We also prototyped our static analysis as an

extension of the GCC compiler. The experimental results presented in this chapter

demonstrates the scalability and the efficiency of our approach.

141

Chapter 6

Automatic Security Verification

6.1 Introduction

In this chapter, we define our automated approach that combines static analysis and

model-checking for the security verification of source code. As previously detailed in

Chapter 2, software model-checking [15,32,68] is more efficient than static analysis in

specifying and verifying system-specific security properties. Nevertheless, the state

explosion problem is the main issue of software model-checking. The state space to

explore grows exponentially with respect to the size of the analyzed program abstrac­

tions [38]. This problem limits the applicability and the usability of model-checking

for large software verification. Abstraction is a well-known and established technique

to cope with the state explosion problem. Thus, the model-checking challenge is the

generation of a scalable and concise abstraction of programs.

142

The core idea of our approach is to utilize static analysis for the automatic gen­

eration and optimization of model-checkable program abstractions. As a result, our

approach can model-check large software against customized system-specific security

properties. Since we target open source software, we base our approach on GCC the

defacto open source compiler to benefit from its language-independent and platform-

independent GIMPLE intermediate representation of source code. For the verifica­

tion process, we use the Moped model-checker for pushdown systems [107] that comes

with a procedural input language called Remopla. As such, we automatically extract,

from GIMPLE representations, program behaviours that are relevant to the consid­

ered security properties and serialize them into Remopla representations of Moped.

In addition, we enrich program abstractions with a Remopla constructs that compute

and capture data dependencies between program expressions. Hence, we are able to

detect insidious errors that involve variable aliasing and function parameter passing.

Security properties and program Remopla model are input to Moped in order to

detect security violations and provide witness paths leading to them.

The chapter is organized as follows: The software components and the overall

architecture of our approach are outlined in Section 6.2. Specification of security

properties as finite state automata is detailed in Section 6.3. The generation of

program Remopla models is presented in Section 6.4. Section 6.5 is dedicated to

our approach for handling data dependencies between program expressions. Our

static analysis based technique for safe and concise abstraction of program models is

presented in Section 6.6. We draw conclusion of this chapter in Section 6.7.

143

6.2 Approach Overview

In this section, we outline an overview of our security verification environment. First,

we give a short introduction of the software components that provide the basis for

our approach. Then, we describe the architecture depicted in Figure 3 that integrates

these components and the modus operandi of our approach.

6.2.1 Tree-SSA Framework

Our ultimate goal is to provide a security verification environment for open source

software. To achieve our objective, the GCC compiler fulfills our requirement for the

multi-language support. Since the last decades, the GCC compiler is considered as the

defacto compiler for open source. Moreover, starting from version 4.0, the GCC main­

line includes the Tree-SSA framework for code optimization and static analysis [97].

It provides the language and platform independent GIMPLE tree representation of

source code that facilitates the analysis of the compiler intermediate code. GIMPLE

simplifies complex structures such as flattening loops into i f \ then\e lse and goto

statements. It also converts expressions into a 3-address code of SSA form [44], using

temporary variables to hold intermediate values. Working with GIMPLE represen­

tation allows our analysis to'be focused more on data modifications and control flow

information instead of putting effort into analyzing complex language constructs.

144

6.2.2 Moped Model-Checker

Moped is a model-checking tool for pushdown-systems based on the algorithms defined

in [50]. The first version performs a combined linear temporal logic and reachability

model-checking. Since 2005, version 2 of Moped comes with a new modeling language

called Remopla, which is a C-like language and features explicit procedures [3]. The

key feature of the new version is its implementation of abstraction refinement using

Binary-Decision Diagrams (BDD) that enhances the performance of Moped [51]. For

now, Moped version 2 only performs reachability analysis.

Table 18 Remopla language constructs

Remopla Constructs
Data types
Statements
Conditional
Loop control
Special values
Others

bool , i n t , s t r u c t , enum, void
s k i p , break, goto , r e t u r n
i f , e l s e , f i
do, od
undef, t r u e , f a l s e , DEFAULT_INT_BITS
de f ine , i n i t , module

Listing 6.1: sample C code with Remopla Representation
in t f (i n t x)
{

i f (x < 5)
X = x + 1;

e l s e
x = x - 1;

return x;
}
void main ()
{

int i ;

i = f (i) ;

>

(a) Sample C Code

def ine DEFAULT.INT.BITS &
i n i t main ;

module f (i n t x)
{

i f
: : x < 5 -> LI : x = x + 1;

: e l s e -> L2: x = x - 1;
f i ;
return x;

}
module main ()
{

int i ;

i - f (i) ;

}

(b) Remopla Code

145

Our software verification environment is based on the second version of Moped

in order to benefit from the expressiveness of the Remopla language. A Remopla

model of a given program consists of a set of module definitions characterizing the

behaviour of the model. A Remopla module implements the concept of functions and

procedures with a body that comprises a sequence of Remopla statements. Table

18 summarizes the basic Remopla constructs. To build Remopla models of large

C software, we automatically serialize GIMPLE representation into Remopla code.

In Listing 6.1, we show a sample C code with its Remopla model. Each Remopla

statement can be assigned a label that is used for reachability analysis. To verify

whether a given label is reachable, Moped is invoked with the following command

line: Jjmoped <Remopla_file_name> <label>. In the given Remopla sample, label LI

is reached when x is less then 5, whereas label L2 is reached when x is greater then

5. The DEFAULT_INT_BITS set to 5 indicates that the value of variable x can range

from 0 to 25 - 1.

6.2.3 Architecture

Figure 3 depicts the architecture of our security verification environment. The security

verification of programs is carried out through different phases including security

property specification, program model extraction, and property model-checking. In

the following paragraphs, we informally describe the input, the output, and the tasks

of each of these phases.

146

Figure 3 Security verification framework

P h a s e l : Security P rope r ty Specification

Input: Security properties.

Output: Remopla automata of security properties.

The first step of our verification process requires the definition of security prop­

erties describing what not to do for the purpose of building secure code. We provide

programmers with a tool in order to graphically characterize the security rules that

a program should obey. Each property is specified as a finite state automaton where

the nodes represent program states and the transitions match program actions. Final

states of automata are risky states that should never be reached. To ease the property

147

specification, our tool supports syntactical pattern matching for program expressions

and program statements. The graphically defined properties are then serialized into

the Remopla language of Moped model-checker. Section 6.3 discusses the details of

the security property specification phase.

Phase2: Static Analysis for Pre-processing

• Input: Program GIMPLE representation and security properties.

• Output: Call-graph and alias information.

Given a program and set of security properties to verify, this pre-processing phase

conducts call-graph analysis and alias analysis of the program. By considering the

required properties, this phase identifies property-relevant behaviours of the analyzed

program and discard those that are irrelevant. Besides, we resort to alias analysis

in order to limit the number of tracked variables. We only consider variables that

are explicitly used in security-relevant operations together with their aliases. All

other variables are discarded from the verification process. More details on the static

analysis pre-processing phase are given in Section 6.6. The static pre-processing phase

helps generating concise models that reduce the size of state spaces to explore.

Phase3: Program Model Extraction

• Input: Program source code and specified security properties.

• Output: Control-flow driven Remopla model or data-driven Remopla model.

148

Both the program and the specified properties are translated into Remopla repre­

sentation and then combined together. The combination of program models and

security properties serves the purpose of synchronizing the program behaviours with

the security automaton transitions. In other words, transitions in security automata

are triggered when they match the current program statement. Our verification ap­

proach carries out program model extraction in two different modes: the control-flow

driven mode and the data-driven mode. The control-flow mode preserves in Remo­

pla models the flow of control of programs, but discards data dependencies between

program expressions. The resulting Remopla model is efficiently used to detect tem­

poral security rule violations and scales to large programs. On the other hand, our

data-driven model captures flow-sensitive data dependencies between program ex­

pressions. Hence, it enhances the precision of our analysis and reduces the number

of false positives. Our approach for integrating data dependencies within program

Remopla models is defined in Section 6.5.

Phase4: Property Model-Checking

• Input: Remopla model.

• Output: Detected error traces.

The model-checking is the ultimate step of our process. The generated Remopla model

is given as input to the Moped model-checker for security verification. An error is

reported when a security automaton specified in the model reaches a risky state. The

original version of Moped has a shortcoming in a sense that it stops processing at

149

Figure 4 Null-checking of memory allocation functions.

p = memAllocateO
use(p) /f^

—-•((error

COMPARER, "NULL")

memAllocate = {malloc(), realloc(), calloc(),...}

use = {strcat(), strncat(), memset(),...}

the first encountered error. We have done modification to Moped in order to be able

to detect more than one error in a run. Moreover, we have developed an error trace

generation functionality that maps error traces derived from the Remopla model to

actual traces derived from the source code.

6.3 Modeling Security Properties

In this section, we describe the modeling of temporal security properties in our frame­

work. We detail the steps from the specification of an automaton-based property to

its serialization into Remopla representation.

6.3.1 Temporal Security Properties

We target temporal security properties that dictate the execution order of security-

relevant operations. We express such properties as finite state automata where nodes

represent program states, and labeled transitions represent security-relevant program

operations. A sequence of operations that reaches the final state stands for a program

150

Table 19 Expression and statement pattern matching

U
se

r-
de

fi
ne

d
L

ab
el

B

u
il

ti
n

 L
ab

el

Trans i t ion Label P a t t e r n

f ()

f (" foo")

f (! " foo")

x - f 0

x = y

f (* , X i , *) i - i . . n

ACTION_PROGRAM_START

ACTION_PROGRAM_END

ACTION_FUNCTION_RETURN_f

COMPARE(x,y)

Matches

Invocation of functions matching pattern f () .

Invocation of functions in pattern f with argument

constant value equal to foo.

Invocation of functions in pattern f with argument

constant value different from foo.

Assignment where the rhs is a function call.

Assignment where the rhs is not a function call .

Invocation of functions in pattern f 0 where

the ith parameter is security-relevant.

(* indicates a sequence of irrelevant variables)

Entry point of programs.

Exit of programs.

Return from call to functions in pattern f.

Comparison between pattern X and pattern Y.

execution path that violates the security property of the automaton. As such, final

states are risky states that should never be reached. For instance, the automaton of

Figure 4 states that newly allocated pointers should be checked against NULL before

being used. Using a pointer without performing a NULL check leads to the automaton

error state.

6.3.2 Pattern-based Security Automata

To facilitate the specification of a wide range of properties, the transition labels of

security automata support syntactical pattern matching for program variables and

program statements. Table 19 summarizes the usage of patterns for automaton tran­

sition labels. There are two kinds of patterns:

151

• User-defined patterns for which the matching is explicitly defined by the user.

For instance, consider the labelp = memAllocateO in the property automa­

ton of Figure 4, the variable pattern p matches any pointer variable, and the

operation pattern memAllocateO matches malloc functions such as mallocO,

rea l locO, and cal locO. In a given automaton, a variable pattern that appears

in several transition labels must match the same variable at each occurrence. In

Figure 4, the value of pattern p in label p = memAllocateO is the same in label

COMPARE(p,"NULL"). Transition labels also support syntactic matching of con­

stants (i.e., strings and numbers) which are specified within double quotation

marks as defined in Table 19.

• Built-in patterns that are implicitly defined in our framework. The COMPARE()

built-in pattern tracks the presence of a specific check in the program such as

pointer null check or pointer bound check. The pattern takes as arguments the

two operands of a comparison expression. Notice that we do not consider the

boolean result of these checks. We only verify their required presence in the

source code. We also have built-in patterns that match program entry point

ACTION_PROGRAM_START, program exit ACTION_PROGRAM_END, and function return

statements ACTION_FUNCTION_RETURN_f.

6.3.3 From Security Automata to Remopla

The second step of property specification translates a specified security automaton

into a Remopla representation which we also refer to as a Remopla automaton. We

152

benefit from the expressiveness of the Remopla language to specify security automata

as Remopla modules. In fact, these modules implement the concepts of functions and

procedures in Remopla. The automaton module of Listing 6.2 illustrates the Remopla

translation of the security automaton in Figure 4.

Listing 6.2: Remopla representation of the automaton in Figure 4
enum
enum

int
int

states {start, statel, error};
actions{ACTION.FUNCTION.CALL.memAllocate, ACTION.COMPARISON ,

ACTION.FUNCTION.CALL.use};
current.state;
p;

INITIALIZATION: current.state » start;

move
<

if

: :

fi
>

state (int action)

current.state =•= start ->
if
:: action == ACTION.FUNCTION.CALL.memAllocate

-> current.state = statel;
p - ARG[RETURN.VALUE.INDEX];

: else -> break;
fi;
current.state " statel ->
if
:: action == ACTION.COMPARISON

&& ARG[0] == p fcft ARG[1] « NULL -> current.state "Start;
:: action »- ACTION.FUNCTION.CALL.use

&ft ARG [0] »- p -> current.state » error;
: else -> break;
fi;
current.state « error -> break;
else -> break;

The nodes and the transition labels of a security automaton are mapped to Re­

mopla constructs, as defined hereafter:

• Remopla Automaton Nodes: The automaton nodes are defined as elements

of a Remopla enumeration variable referred to by s ta tes . The first line of the

Remopla module of Listing 6.2 defines the states of the null check automaton.

Each enumerated state corresponds to a unique integer value. We define the

state values s t a r t and error to represent the automaton initial state and final

153

Table 20 Remopla representation of program actions.

Automaton Alphabet

ACTI0N_PR0GRAM_START

ACTI0N_PR0GRAM_END

f ()

f (V 0 , . . . , V n)

ACTI0N_FUNCTION_RETURN_f

COMPARE(V0,Vl)

V0 = VI

Remopla Representation

ACTI0N_PR0GRAM_START

ACTI0N_PR0GRAM_END

ACTI0N_FUNCTI0N_CALL_f

ARG [0]=V0;...;ARG[n]=Vn;

ACTION.FUNCTI0N_CALL_f

ACTION_FUNCTION_RETURN_f

ARG[0]=V0;ARG[1]=V1;

ACTI0N_C0MPARIS0N

ARG[0]=V0;ARG[1]=V1;

ACTI0N_VAR_M0DIFICATI0N

state, respectively. Since the security automaton actually defines the negation

of a security property, the final state is the risky state. The integer variable

current_state is used to track the current state of the security automaton.

The keyword INITIALIZATION sets the variable current_state to the automaton

initial state which is by default the value s ta r t .

• Remopla Automaton Transitions: The automaton transition labels are

defined as elements of a Remopla enumeration variable referred to by actions.

The second line of the Remopla module of Listing 6.2 defines the transitions

of the null check automaton. Each enumerated automaton label corresponds

to a unique Remopla integer constant. Table 20 shows the Remopla constructs

corresponding to the automaton transition labels defined in Table 19. In fact,

the mapping to Remopla constructs for program entries, program exit, function

154

calls without arguments, and function returns is straightforward. For program

actions that involve program variables, we define a global Remopla array ARG []

that stores the program variables in question and is inquired during the model-

checking process. The two operands of assignment operations and comparison

operations are put into the global array ARG []. The left-hand-side operand is

placed at index 0 of the array, and the right-hand-side operand is placed at

index 1. The parameters of function calls are placed in the array ARG[] with

respect to their position in the function argument list.

6.3.4 Execution of Remopla Automata

Now that we have defined the Remopla constructs for nodes and transition labels,

we are able to define a Remopla module for each security automaton. In our frame­

work, the Remopla module move_state() defines a property automaton. It takes as

argument the current program action, and has a body that consists of a sequence of

statements implementing the security automaton behaviour. The following paragraph

illustrates the execution of the move_state() module in Listing 6.2 corresponding to

the null-check property:

• Initialization: The variable current_state is set to s t a r t in order to initialize

the execution of the Remopla move_state() module.

• Action matching and s ta te transition: The move_state() module takes as

argument the current program action that is represented by a unique integer

i

155

value as defined in Section 6.3.3. Then, given the value of current_state, the

move_state() module checks if the action argument matches a transition label.

Considering Listing 6.3.3, let the cu r ren t_s t a t e be set to s t a r t , if the current

action matches the statement q = mal loc(sz) ; then pattern p is set to the

return pointer q stored in ARG[RETURN_VALUE_INDEX]. Besides, the c u r r e n t -

s t a t e is set to s t a t e l .

• Error Detection: The move_state() module detects an error when the exe­

cuted transition assigns the value error to current_state. Let c u r r e n t _ s t a t e

be equal to s t a t e l , when reaching the following statement memset (q, ' \ 0 ' , s z) ; .

the action matches ACTION_FUNCTION_CALL_use. In addition, the pointer pa­

rameter q matches the value of pattern p. Hence, the transition to state e r r o r

is triggered and a property violation is detected.

6.4 Program Model Extraction

The model extraction is the process that translates program source code to Remopla

representation. First, the GCC compiler serializes the source code into its GIM­

PLE intermediate representation. Then, we map the GIMPLE representation to a

Remopla model of the considered program. The GIMPLE representation preserves

substantial information of the source code, so a simplistic conversion of all available

information into program models would lead to the state space explosion problem

of model-checking [38]. Hence, we utilize an abstraction technique that we define

156

Table 21 Remopla representation of program.

Program Constructs

any_type v;

f () { . . . }

f O 0 , • • • , v n) ;

r e t u r n v;

vi=v2;

i f (v j op v 2){

}else{

}

Remopla Representation

i n t v;

module void f () {

move_state(ACTION_FUNCTION_CALL_f);

move_state(ACTION_FUNCTION_RETURN_f); >

ARG[0]=v0;...;ARG [n]=vn; f () ;

ARG[RETURN_VALUE_INDEX] = v

ARG[0]=V!; ARG[l]=v2; a ss ignment () ;

ARG[0]=V!;ARG[l]=v2;

move_state(ACTION_COMPARISON);

i f

: : t r u e -> . . . ;

: : t r u e -> . . . ;

f i ;

— ! : ••

in this section to reduce the size of Remopla models. The program facts we take

into account to construct program models are the following: variable declarations,

function definitions, function calls, function returns, and control-flow structures. The

handling of the aforementioned program facts is explained hereafter.

6.4.1 Variable Declarations and Function Definitions

Due to the limited data types provided by Remopla, we use Remopla integer type to

represent all declared variables in source code. Each function definition is represented

as a Remopla module with void return type and without formal parameters. The

157

translation of function statements follows the mapping denned in Table 21. Remo-

pla modules with empty body are created for library functions whose source code

are unavailable. A function module captures two important program actions: pat­

tern ACTION_FUNCTION_CALL_f indicates the entry point of function f () and pattern

ACTION_FUNCTION_RETURN_f indicates the return from function f 0 . These two actions

are expressed explicitly in the function module since they may be involved in a secu­

rity property and trigger a change to its corresponding automaton state. Upon each

function entry and return, the property automaton module move_state() is invoked

to check these actions against the automaton transitions and change the program

state accordingly.

6.4.2 Function Calls and Returns

We handle interprocedural parameter passing and return through the definition of a

global Remopla array called ARG []. A function call and a function return initialize

the ARG[] array as shown in Table 21. At each function call, the ARG[] array stores

the function parameters according to their position in the function formal argument

list. The first parameter is at index 0, the second at index 1, and so forth. A

function return statement stores the return value in the last entry of the ARG [] array

indexed by RETURN_VALUE_INDEX. By using this global array for parameter passing,

we provide the flexibility to preserve in the program model only security relevant

parameters. For example, if the second parameter of a function call f (x,y) is of our

interest, instead of translating it as ARG[0] = x; ARG[1] = y; f () ; we consider only

158

the second parameter and translate the call into ARG[1] = y; f () ; . As such, the

number of function parameters to track is reduced to the minimum.

6.4.3 Flow Constructs

Control-flow skeleton should be preserved in program models for temporal property

verification. At GIMPLE level, complex control structures such as for, do/while, and

switch) are flattened and represented using i f /e l se and goto statements. Compound

conditions are also split and represented with multiple if blocks. This simplified

GIMPLE representation eases our translation to Remopla. As shown in Table 21, an

i f /e l se GIMPLE construct has a corresponding Remopla if construct that preserves

its structure. The two operands involved in the condition are stored in the ARG[]. As

explained earlier in Section 6.3, we do not evaluate boolean values of conditions,

we are only concerned by their occurrence in source code. Notice that in Remopla

translation a guard condition set to true is attached to each branch. The model-

checker Moped would explore exhaustively all conditional branches. This implies

that the control flow skeleton in the model is path-insensitive in the sense that we

consider all paths in the source code without pruning infeasible paths. The reason

we sacrifice the analysis precision is to ensure the scalability of our framework.

159

6.4.4 Assignments

As presented in Section 6.2.3, our framework can perform in two modes: a control-

flow mode that discards all data facts, and a data-driven mode that establishes de­

pendencies between security-relevant variables. In the data-driven mode, assignment

operations are of great interest to deduce data dependencies. We define the built-in

Remopla module assignment () to capture assignment operations and to compute de­

pendencies between variables as detailed later in Section 6.5. Assignment statements

are translated into function calls to the module assignment (). The two operands of

an assignment are treated as call parameters and passed to the module assignment ()

using the global Remopla array ARG [].

6.5 Dealing with Data Dependencies

Relationships between variables are important to detect violations of data-driven

properties, so we need to preserve variable dependencies in Remopla models. Note

that we are interested in whether variables are related, but not the actual values

they are carrying.. To this end, we introduce an additional Remopla integer array

referred to by s tack [] , to represent data dependencies. Given the s tack [] array,

dependencies between program variables are tracked by simulating the effects caused

by the following program operations: variable declarations, assignment operations,

function calls, and function returns. The following paragraphs describe our approach

of modeling data dependencies using the stack [] array.

160

6.5.1 Variable Declarations

Each program variable is assigned an entry in the stack [] array. Variable identifiers

serve as indexes for the array. The new entries are appended at the top of the

stack array. We define the integer variable stack po in te r that refers to the first

empty array entry at the top of the stack. We also define the module assign_entry ()

that places a new entry in the stack array and increments the stack pointer by one.

Initially, each added entry contains the value of its index since no data dependencies

are captured yet. In fact, we model an aliasing relation between variables by assigning

the same values to their entries in the s tack [] array.

We distinguish between global variables and local variables. The former are per­

manently kept in the stack [] array, whereas the latter are stored in array s tack []

at function calls and removed from it at function returns. More details are given

hereafter:

• Global variables are gathered during the parsing of the GIMPLE representation

of programs. In the Remopla program model, each global variable is declared

in the global scope of the model. As shown in Figure 5, the global variable i in

source code of Figure 5(a) is defined as a global variable in Remopla model of

Figure 5(b). The module init_global_var() assigns an entry in the s t ack []

array to each global variable of the model. This module is called during the

initialization of the verification process marked by the keyword INITIALIZATIONS

as shown in Line 2 of the Remopla module of Figure 5(b). Figure 5(c) depicts

161

Figure 5 Global and local variable initializations.

i n t * i ;
void main(){

i n t *x,
i n t *y ,
i n t *z ,
i n t *p;

(a) C code

Stack _
Pointer"

(c) Line 8

x x

(d) Line 14

1 i n t i ;
2 INITIALIZATIONS:
3 init_global_var();
4 goto main;

6 module vo l d i n i t _ g l o b a l _ v a i
7 i = a s s i g n _ e n t r y O ;
8 }
0

10 module v o i d m a i n () {
u i n t x , y , z , p ;
12 i n t l o c a l _ v a r _ n u m b e r ;
13 x = a s s i g n _ e n t r y () ;
14 y = a s s i g n _ e n t r y () ;
15 z = a s s i g n _ e n t r y () ;
16 p = a s s i g n _ e n t r y () ;
17 l o c a l _ v a r _ n u m b e r = 4 ;
18 . . .
19 }

(b) Remopla model

X

y

X

y

z

—>

X

y
z

X

y

z

p

(H

X

y
z

p

(e) Line 15 (f) Line 16 (g) Line 17

the stack [] array after the declaration of the global variable i. This entry

remains permanently in the array during the verification process.

• Variables of local scope are assigned indexes of the array when entering a func­

tion. For instance, Figures 5(d) to 5(g) illustrate the stack array after the

declaration of variables x, y, z, and p, respectively. The number of increments

that are performed to the stack pointer within a function is stored in vari­

able local_var_number. The latter is used to decrement the stack pointer and

i

162

Figure 6 Assignment operations.

void raain(){

y
z
X

x ;
x ;

p ;

(a) C code

X X

y _y

z z

P ~p

(c) Linc2

1 module v o i d m a i n () {
2 . . .

ARG[0] = y ; ARG[1] = x ; a s s i g n m e n t () ;
ARG [0] = z ; ARG[1] = x ; a s s i g n m e n t () ;
ARG[0] = x ; ARG[1] = p ; a s s i g n m e n t () ;

3

4

5

6

7 }

(d) Line3

(b) Remopla model

(e) Line4 (f) Line5

removes local variable entries at function returns as detailed later in this sec­

tion. Notice that the stack management utilizes a scope-based approach. In

other words, our analysis does not consider anymore local variables that be­

come out-of-scope. This allows us to define a scalable approach to deal with

data dependencies.

6.5.2 Assignment Operations

We define the built-in module assignment() to derive data dependencies between

variables from assignment operations. Each assignment modifies the s tack [] array

tq create new aliasing relations, and eventually to kill previous aliasing relations. As

such, our analysis uses the array to account for aliasing information. In fact, the

module assignment 0 considers the operation vl = v2 as what follows:

163

• The array entry indexed by vl is assigned the value indexed by v2 to indicate

that vl and vl are aliased. For example, in Figures 6(d) and 6(e), the entries

of y and z are set to the value x. As such, the content of the s tack [] array

indicates that variables x, y, and z are aliased.

• The aliasing relations that are killed by the assignment are removed from the

stack [] array. Among all the variables that previously referred to vl, we select

the one with the least index value and set the value of its entry to the value

of its own index. All entries of other aliases of vl are set to the index value of

the selected variable. For example, in Figure 6(f), the entry of x is changed to

p to indicate the new aliasing relation with variable p created at line 5 of the

Remopla model. To kill the previous aliasing relation between x, y, and z, we

change the entry of y to its index value. Since y and z are still aliased, the entry

of z is set to y as well.

! Notice that we only consider simple assignment operations with no dereference

operator. This is due to the absence of pointer type in Moped. In fact, we represent

all pointers as integer variables. It is possible to extend the stack [] array with an

additional entry containing points-to information, however this will drastically affect

the performance and the scalability of Moped. We choose to sacrifice precision for

the sake of scalability.

164

Figure 7 Function call with parameters.

void main(M

y = f (x) ;

}
i n t * f (i n t *k){

}

(a) C code

1

2

3

4

5

6

7

8

!)

10

11

12

13

module void ma in (){

ARC [0] = x; f () ;

module void f () {
i n t b , k;

b = a s s i g n _ e n t r y () ;
k = a s s i g n _ e n t r y () ;
g e t _ p a r a m _ v a l u e (k , 0)

(b) Remopla model

_E
y _ y

z JL
p _ P

b b

k k

(c) LinetO

_ E
y _ y

z —L
p _ p

b _ b

k P

(d)
Line 11

6.5.3 Function Call with Parameters

In what follows, we detail our approach for handling parameter passing during func­

tion calls:

• Remopla actual parameters: as defined in Section 6.4.2, the arguments of func­

tion calls are stored in the global array ARG [] . For instance, in Line 3 of Remopla

representation of Figure 7(b), argument x of the call to function f () is put at

index 0 of ARG [].

• Remopla formal parameters: each formal parameter in a callee function is de­

clared as a local variable which is assigned the actual argument of the call. In

Figure 7(b), the argument k of function f (int *k) is declared as a local variable

of f () in its Remopla representation. As for all local variables, k is assigned an

entry in the s tack [] array as depicted in Figure 7(c).

• Matching formal parameters and actual parameters: We define the built-in

165

Figure 8 Function return.

void main (){

y = f(x);

! • • •
}

l

2

3
4

5

6

7

8

9

10

module void main(){

ARG[0] = x; f () ;
get_return_value(y)

}
module void f (){

local_var = 2;

i n t * f (i n t *k){ n ARG [0] = b ; ARC [1] = i ;
. . . 12 a s s i g n m e n t O ;
b = i ; 13 ARG[RETURN_VALUE_INDEX]=b;
. . . 14 r e s t o r e _ i n d e x (l o c a l _ v a r _ n u m b e r)
r e t u r n b ; 15 . . .

} . 16 >

(a) Source code (b) Remopla model segment

x p x _ p

y y y _J_

z y z z

P P P _ P

b I — >

k ~ p ~ _

(c) Linell (d) Line4

module get_param_valueO to perform parameter matching at function calls.

The first argument of get_param_value() refers to the callee function formal

parameter. The second argument indicates the parameter position in the func­

tion parameter list. The call get_param_value(k,0) in Figure 7(b) matches the

formal parameter k to the actual parameter at position 0 in the global array

ARG []. Since ARG [0] = x, formal parameter k is matched with the actual pa­

rameter x. The stack array of Figure 7(d) illustrates that the formal parameter

x is aliased with the actual parameter k.

6.5.4 Function Return

The return value of a function is also passed using the ARG[] global array. In the

Remopla model of the callee function, the return value is stored in the entry of array

166

ARG[] indexed by RETURN_VALUE_INDEX. On the caller side, the built-in module get_-

return_value() accesses the entry ARG[RETURN_VALUE_INDEX] to retrieve the callee

return value. In Figure 8(a), the source code of main sets variable y to the return

value of f (). In the Remopla translation of Figure 8(b), the module of f () sets

ARG[RETURN_VALUE_INDEX] to variable b. The Remopla module of mainQ invokes

get_retum_value(y) to retrieve the value in ARG [RETURN_VALUE_INDEX] and to assign

it to y. For the sake of performance, when a function returns, we remove all its

corresponding local variables from the s tack [] array. Given the number local_-

var_number, the module restore_index() decrements the s tack po in te r and reduces

the number of stored entries. Figures 8(c) and 8(d) illustrate the stack array when

entering module f 0 and when returning from module f (), respectively.

6.6 Static Analysis to Improve Abstractions

The model construction process described in the previous section produces Remopla

models with large number of program functions and variables. This may lead to the

state explosion problem of model-checking and render our approach unscalable to

large software. To improve the performance of the verification process, the program

model construction needs to be optimized. We achieve this goal by incorporating a

static analysis component into our framework. By taking into account the specified

properties, this component preprocesses the GIMPLE representation of source code

to identify property-relevant program actions and variables that need to be preserved

167

Table 22 Model optimization by pruning security irrelevant functions.

Package

openSSH-5.0pl
shadow-4.1.2.2
apache-1.3.41

freer adius-server-2.13
kstart-3.14

LOC

59K
22.7K
76K
77K
IK

Functions (CFG mode)
Total
1645
852
1559
2135
155

Relevant
968
103
163
397
27

Reduced
41.2%
87.9%
89.5%
81.4%
82.6%

in program models, excluding property-irrelevant information. The static analysis

in our framework involves a call-graph analysis and an alias analysis. This section

details how the static analysis pre-processing phase works in our framework.

6.6.1 Call-Graph Analysis

A call-graph is a directed graph that captures the interaction between functions.

Each graph node represents a function, and a directed edge connecting a callee node

to a caller node represents one or more invocations of the callee. Given a program

call-graph, we are able to reduce the size of its corresponding Remopla model by

performing the following steps:

• We extract from the call-graph the chains of successive calls in which security-

relevant operations are used. All functions that are present in these extracted

chains are translated into Rempola modules.

• Functions that are not invoked in security-relevant chains are not considered

during the extraction of Remopla models.

168

Table 22 illustrates the effect of applying the call-graph analysis to all programs in

the analyzed packages with respect to the null-check property of Figure 4. We ex­

tract call chains starting form the different entry points of the considered packages,

and identify the security relevant ones. Table 22 shows that the number of functions

that are considered is reduced by a significant amount ranging from 42% to almost

90%. Notice that the size of the generated Remopla model increases with the num­

ber of security relevant program actions listed in the transition labels of property

automata. A large property automata may result in a large Remopla model provided

that these actions are actually present in the source code. The complexity of the

Remopla model, in terms of the number of modules it includes, is linear to the num­

ber of program functions from the considered code that contains the security relevant

program actions.

6.6.2 Alias Analysis

In our verification framework, we resort to pointer analysis in order to reduce the

number of security relevant variables that need to be tracked by the model-checker.

The pointer analysis allows us to extract the following information:

• Variables that are explicitly used in security-relevant operations and that obvi­

ously need to be considered during the construction of program models.

• Aliases of these aforementioned variables that are indirectly related to security

operations. These aliases are also considered in program Remopla models.

i

169

• Variables that do not belong to the aforementioned set of variables are not

considered in program models.

The literature contains several pointer analysis algorithms that can be classified

into flow-sensitive alias analysis and flow-insensitive alias analysis. The former con­

siders the execution order of statements in the program oppositely to the latter one.

Flow-sensitivity increases the analysis precision at the cost of more complexity and

less scalability, whereas flow-insensitivity scales to large program but with lost of ac­

curacy and precision. Choosing either of these two types of analysis depends on the

usage purposes of their output. We advocate the usage the flow-insensitive pointer

analysis presented in [45] for the following reasons:

• Our verification approach is flow-sensitive and simulates execution traces of the

analyzed program. Moreover, it has the capability of extracting flow-sensitive

variable dependencies as detailed in Section 6.5. Thus, a flow-sensitive prepro­

cessing alias analysis is costly and produces information that can be deduced

by the model-checker itself.

• The alias analysis algorithm in [45] has a proven scalability feature [5].

From the results given in Table 23, we show that the pre-processing alias anal­

ysis helps reducing the number of tracked variables significantly. The average of

the reduction is around 96%, hence the data dependencies that are derived during

m'odel-checking are related to a limited number of variables. Notice that our data

170

Table 23 Model optimization by pruning security irrelevant variables.

Package

OpenSSH-5.0pl
shadow-4.1.2.2
apache-1.3.41

freer adius-server-2.13
kstart-3.14

LOC

59K
22.7K
76K
77K
IK

Variables (Data mode)
Total
57413
24943
50179
76811
2867

Relevant
7422
275
263
823
111

Reduced
87.1%
98.8%
99.4%
98.9%
96.1%

dependency algorithm does not deal with some program facts such as pointer deref­

erence and field dereference since these operations require a more sophisticated data

dependency construct to be integrated within the Remopla model of a given pro­

gram. In other words, we need at least to add a new entry to the s tack [] structure

to capture the level of indirection of pointers (number of dereference operators). By

increasing the size of the stack [] structure, we drastically affect the scalability of the

Moped model-checker. We choose to keep the data dependency to simple but widely

used constructs to achieve a better trade-off between precision and scalability of the

verification process.

6.7 Conclusion

In this chapter, we presented our software security verification framework that com­

bines static analysis and model-checking. The combination consists in utilizing static

analysis to automatically build model-checkable abstractions of programs. It also

171

takes advantage of the model-checking flexibility in verifying a wide range of system-

specific security properties. Our implementation is based on the TREE-SSA frame­

work of the GCC compiler and the Moped model-checker for pushdown systems. Our

tool performs security verification in two modes: (1) a control-flow mode that discards

data dependencies, and (2) a data-driven mode that captures and computes data de­

pendencies between program expressions. In the following chapter, we present the

conducted experiments that demonstrate the scalability and the efficiency of our tool

in detecting real errors in large C software.

172

Chapter 7

Design, Implementation, and

Experimental Results

7.1 Introduction

This chapter demonstrates the capability of our security verification framework in

detecting real errors in large scale C software packages. We show that our tool can be

efficiently used for uncovering undesirable vulnerabilities in source code. The CERT

secure coding website [2] is a valuable source of information to learn the best practices

of C, C++, and Java programming. It defines a standard that encompasses a set of

rules and recommendations for building secure code. Rules must be followed to pre­

vent security flaws that may be exploitable, whereas recommendations are guidelines

that help improve software security. The CERT standard also makes another differ­

ence between rules and recommendations stating that compliance of a code to rules

173

can be verified, whereas the compliance to recommendations is not always verifiable.

During our experimentation, we utilize our security verification framework to check

the compliance of software packages with the CERT secure coding rules. Notice that

we target CERT rules that can be formally specified as finite-state automata and given

as input to our framework. These automata-based rules represent a wide majority

of the CERT standard. The experiments presented in this chapter are conducted in

the two modes of our security verification tool: the control-flow mode that discards

data dependencies and the data-driven that establishes data dependencies between

program variables. The hardware platform used for the experiments is a Dell D810

with Pentium M 1.86GHz CPU and 1G memory that runs Fedora Core 8.

This chapter is organized as follows: We give an overview of our Section 7.2

gives an overview of our tool implementation and the CERT coding rules used in our

experiments. Our conducted experiments in the control-flow mode are detailed in

Section 7.3. The results of our experiments in the data-driven mode are presented in

Section 7.4. We draw conclusion in Section 7.6.

7.2 Design and Implementation

In this section, we motivate our choice of using GIMPLE representation of source code

and the conventional pushdown model-checker Moped. We also give an overview of

the CERT secure coding rules used to conduct our experiments.

174

7.2.1 Why GIMPLE and Moped ?

Our ultimate goal is to provide a security verification tool for open source software,

thus we base our approach on the GCC compiler considered as the defacto open source

compiler. The GCC mainline recently includes the Tree-SSA framework [97] that fa­

cilitates static analysis with its GIMPLE intermediate representation of source code.

In fact, GIMPLE linearizes all high-level control flow structures including nested func­

tions, exception handling, and loops. Working with GIMPLE representation allows

our analysis to be focused more on data modifications and control-flow information

instead of putting effort into analyzing complex language constructs. Besides, the

language- and platform-independent features of GIMPLE provide appealing flexibil­

ity features for our approach to be extended to all GCC supported languages.

For the verification process, we use the Moped model-checker for pushdown sys­

tems that are known to efficiently model programs' execution stack and interproce-

dural behaviours [50]. Moped has a C-like input language called Remopla to define

programs as pushdown systems. The procedural nature of Remopla facilitates the

translation of a GIMPLE representation to a Remopla model. As such, we benefit

from static analysis to automatically build model-checkable abstractions of large scale

programs. Automata-based security properties and program Remopla model.are in­

put to our security verification tool in order to detect security violations and provide

witness paths leading to them.

175

7.2.2 Macro Handling

The GIMPLE representation of programs is closely related to the environment under

which the program is compiled. This tight coupling between the underneath envi­

ronment and the considered code gives an appealing precision feature to our analysis

compared to other approaches directly based on source code. Consider the following

code snippet in Listing 7.1 taken from the b i n u t i l s - 2 . 1 9 . 1 package. For code porta­

bility purposes, the macro HAVE_MKSTEMP is checked in flif def to verify whether the

system supports function mkstempO for safe temporary file creation. If not, function

mktempO is used instead. A simplistic traversal of the source code would flag an error

for the occurrence of mktempO considered as an unsafe function for temporary file

creation. Being based on GIMPLE representation, our analysis does not suffer this

false alert. In fact, GIMPLE representation solves the conditional jjif def, and one of

the two temporary file functions will appear in the GIMPLE code with regard to the

compilation environment. In our case, the machine used to conduct the experiments

supports mkstempO which is present in the GIMPLE code of Listing 7.2

Listing 7.1: Sample C code from b i n u t i l s - 2 . 1 9 . 1 with macros
#ifdef HAVE.MKSTEMP

fd » mkstemp (tmpname);
#else

tmpname = mktemp (tmpname);
if (tmpname « NULL)

return HULL;
fd • open (tmpname, 0_RDWR

#endif
O.CREAT O.EXCL , 0600) ;

Listing 7.2: GIMPLE representation of code in Listing 7.1
D.
fd
if

8401
= D
(fd

=> mkstemp (tmpname);
8401;
-- -1)

{ D.8402 =

}
return D

0B;
8402;

176

This points out the important fact that the verification of software should be per­

formed on the same environment intended for their real usage. Besides, the verifica­

tion should be performed on hostile environments to predict as much worst execution

scenarios as possible.

7.2.3 Temporary Variables

The GIMPLE representation breaks down program expressions into SSA form in

which each variable is defined exactly once [97]. This form of representation involves

the definition of temporary variables that hold intermediate values. Consider the

call to mallocO function in Listing 7.3, its corresponding GIMPLE code in Listing

7.4 splits the mallocO call into two sub-expressions involving a temporary variable

D.1861.

Listing 7.3: Sample C with memory allocation
p =» malloc(BUFSIZ)
if (!p)

return -1;

free(p);
return 1;

Listing 7.4: GIMPLE representation of code in Listing 7.3
D
P
if

>

1860 - mall
= (char *)
(p « OB)
D.1861 -
return D.

free(p);
D 1861 = 1;
return D.1861

oc(5) j
D.1860;
<

-l;
1861;

•

The return value of mallocO is assigned to a temporary variable D. 1861. Then,

the latter is cast and assigned to pointer p. The usage of temporary variables presents

177

a challenge for pattern matching. In this example, variable D.1861 matches the

pattern for the return value of mal locO, whereas variable p matches the pattern

for the call to f r e e O argument. Without considering relations between temporary

variables, the verification process flags an erroneous warning for the deallocation of

an uninitialized pointer. The expressiveness of the GIMPLE representation helped us

to overcome this challenge. In fact, GIMPLE keeps track of the original definition of

temporary variables. In the given example, we are able to recognize that temporary

variable D.1861 is an intermediate representation of p and avoid spurious warnings.

7.2.4 CERT Coding Rules

To assist programmers in the verification of their code, we integrate in our tool a set

of secure coding rules defined in the CERT standard [2], The objective is to provide

programmers with a framework to evaluate the security of their code without the

need to have high security expertise. The CERT secure coding rules can be mainly

classified into the following categories:

• Deprecation rules: These rules are related to the deprecation of legacy functions

that are inherently vulnerable such as g e t s O for user input, tmpnamO for

temporary file creation, and randO for random value generation. The presence

of these functions in the code should be flagged as a vulnerability. For instance,

CERT rule MSC30-C states the following 'Do not use the randO function for

generating pseudorandom numbers "

178

• Temporal rules: These rules are related to the bad sequencing of program ac­

tions in source code. For instance, the rule MEM31-C from the CERT entails to

"Free dynamically allocated memory exactly once". Consecutive free operations

on a given memory location represent a security violation. Intuitively, these

kind of rules are modeled as finite state automata where state transitions cor­

respond to program actions. An unsafe sequence of operations should lead to

an error state in its corresponding automaton.

• Type-based rules: These rules are related to the typing information of program

expressions. For instance, the rule EXP39-C from the CERT states the following

"Do not access a variable through a pointer of an incompatible type'". A type-

based analysis can be used to track violations of these kind of rules.

• Structural rules: These rules are related to the structure of source code such as

variable declarations, function inlining, and macro invocations. For instance,

rule DCL32-C entails to "Guarantee that mutually visible identifiers are unique ".

As an application of this rule, the first characters in variable identifiers should

be different to prevent confusion and facilitates the code maintenance.

Our approach covers the two first categories of coding rules that we can formally

model as finite state automata. In fact, we cover 31 rules out of 97 rules in the

CERT standard. We also cover 21 recommendations that can be verified according

to CERT. Notice, that the security properties we handle are the most relevant for

building secure software since these 31 rules correspond to all rules of the C language

179

given by the BSI (Build Security In: Homeland Security) [1]. The latter is listed as

a related source of information in the CERT website [2].

7.3 Experiments in Control-Flow Mode

In this section, we detail our conducted experiments that consist in verifying a set

of well-known and widely used open-source software against a set of CERT secure

coding rules. We strive to cover different kinds of security coding errors that skilled

programmers may inadvertently produce in their code. In the sequel of this section, we

detail the results of the experimentation that we conducted on large scale C software.

The content of the tables that present the experimentation results is described in the

following paragraph. The three first columns define the package name, the size of the

package, and the program that contains coding errors. The number of reported error

traces is given in the fifth column (Reported Errors). After manual inspection of the

reported traces, we classify them into the three following columns: column (Err) for

potential errors, column (FP) for false positive alerts, and column (DN) for traces

that are undecidable with manual inspection. The checking time of programs is given

in the last column.

7.3.1 Unchecked Return Values

CERT Coding Rules:

• MEM32-C: Detect and handle memory allocation errors.

• EXP34-C: Ensure a null pointer is not dereferenced.

180

Figure 9 Null check automaton

if(x,"0")

_Malloc = {malloc, realloc, calloc}

Unfortunately, programmers very often omit to handle erroneous return values

from function calls. They make wrong assumptions on the successful termination

of callee functions. According to the Coverity scan report, the use of unchecked

return values represents 25% of programming errors [43]. Error handling omission

can lead to system crashes especially for memory allocation functions that return

null pointer on failure. Therefore, rule MEM32-C entails that the return value of

memory allocation functions should be checked before being used to prevent the

nasty dereference of null pointers. Besides, rule EXP34-C emphasizes that null pointers

should not be dereferenced. Table 24 illustrates the analysis results of the security

automaton depicted in Figure 9.

We reviewed the reported error traces and mark them all as real errors. They

contain a allocation operation that is never followed by a null check of the returned

pointer. We give in Listing 7.5 a code snippet from the apache-1.3.41 that uses the

return pointer of malloc() without null check.

Listing 7.5: Use with null-check in apache-1.3.41
con • malloc(concurrency * sizeof(struct connection));
memset(con , 0, concurrency * sizeof(struct connection));

181

!

Table 24 Return value checking.

Package

amanda-2.5.1p2
apache-1.3.41
bintuils-2.19.1
freeradius-2.1.3
httpd-2.2.8
openca-tools-1.1.0

shadow-4.1.2.2

zebra-0.95a

LOC

87K
75K

986K
77K

210K
59K

22.7K

142K

Program

chg-scsi
ab
ar

radeapclient
ab

openca-scep
groupmems

groups
usermod

id
useradd

vipw
ospf6test

Reported
Errors

<N

Checking
time (Sec)

28.87
0.4
0.74
1.06
0.5
2.6
3.08
2.81
2.82
2.80
2.81
3.05
15.13

7.3.2 Memory Leak Errors
CERT Coding Rules:

• MEM31-C: Free dynamically allocated memory exactly once.

Memory locations that are assigned to processes may contain sensitive data that

should not be disclosed to unauthorized users. A process must ensure that its memory

locations are released and cleaned up when no longer used. Failure to do so results in

resource leaks that reduce the performance and the availability of the running system.

In fact, operating systems limit the size of memory space a process can own to defend

against resource exhaustion. When the limit is reached, the process is not able to

execute and suffers a denial of service.

To prevent memory leaks, the CERT rule MEM31-C states that all dynamically

allocated memory locations should be freed before termination of a process. The

automaton given in Figure 10 is used to verify the absence of memory leaks in software

182

Figure 10 Memory leak automaton

x=_Malloc()

free(x)

.Malloc = {malloc, realloc, calloc}

packages listed in Table 25. Our tools reports an error for all paths that allocate

memory locations without freeing them prior to exit. We illustrate the different cases

through examples in the following paragraphs.

Sample code of Listing 7.6 illustrates a real memory leak error in shadow-4.1.2.2

where pointer buf is allocated but never freed.

Listing 7.6: Memory leak in shadow-4.1.2.2
char
buf
snpr

if (

>
else

• buf ;
= (char *)
intf (buf ,

"7.8 7.s

malloc
strlen

", edito

system (buf) ! •» 0)
fprintf (s

exit (1);

exit (0) ;

tderr , "

(strlen
(editor)
r, filee

{
7.s: 7.s:

(editor
+ strl

dit) ;

7.s\n" ,

) +
en

pro

strl en (fileedit)
(fileedit) + 2,

gname , editor ,
strerror (

+ 2);

errno));

Listing 7.7: False alert of memory leak in openssh-5.0pl
ac » ssh_get_authentication_connection () ;
if (ac »- NULL) {

fprintf(stderr,"Could not open a connection to your authentication agent.\n");
exit (2)j

}
AuthenticationConnect ion * ssh_get_authenticat ion.connection (voidH

auth • xmalloc(sizeof(*auth));

return auth;

}

The code in Listing 7.7 is extracted from the package openssh-5.0pl for which

our tool reports a false positive. In this code, function ssh_get_authent ica t ion_-

connectionO returns an allocated pointer ac. On allocation failure, the program

183

Table 25 Resource leak errors

Package

amanda-2.5.1p2

apache-1.3.41

at-3.1.10

bintuils-2.19.1

freeradius-2.1.3

httpd-2.2.8

inn-2.4.6
openca-tools-1.1.0

openSSH-5.0pl

shadow-4.1.2.2

LOC

87K

75K

2.5K

986K

77K

210K

89K
59K

58K

22.7K

Program

genversion
chg-scsi
amdd

amidxtaped
logresolve

httpd
ab
atd
at

gprof
readelf
rablib

radeapclient
ab

logresolve
dftables
ninpaths

openca-scep
ssh-add

ssh-keysign
ssh-keyscan
groupmems

groups
usermod
useradd

vipw

Reported
Errors

5
1
1
2
5
2
5
4
2
1
2
1
1
2
5
1
2
4
1
1
2
2
2
2
3
2

Err

0
0
1
0
0
1
1
0
1
0
0
0
0
1
0
1
0
0
0
1
0
0
1
1
1
1

FP

4
0
0
0
1
0
0
4
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1

DN

i—
l

1
0
2
4
1
4
0
1
1
1
1
1
1
4
0
2
4
0
0
2
2
1
1
2
0

Checking
time (Sec)

0.24
12.7
2.83
11.24
0.23
2.23
0.17
0.23
0.46
0.68
2.01
0.45
0.71
0.19
0.2

0.14
0.51
1.31
2.18
2.55
2.34
2.33
2.2

2.89
2.78
2.29

exits. Since our tool is path insensitive, it cannot determine that the function exits

when pointer ac is null and reports a false alarm for the memory leak of pointer ac.

7.3.3 Use of Deprecated Functions
CERT Coding Rules:

• FI033-C: Detect and handle input output errors resulting in undefined be­
haviour.

• P0S33-C: Do not use vforkQ.

184

• MSC30-C: Do not use the rand() function for generating pseudorandom numbers

Deprecated functions are quite abundant in the C library of functions. The CERT

coding rules forbid the usage of these functions as they are readily vulnerable to

attacks such buffer overflows, code injection, and privilege escalation. The usage of

safe alternatives is required as a preventive measure. We present hereafter the set of

CERT rules that our tool is able to verify:

• Rule MSC30-C for random number generation: The randO function produces

numbers that can easily be guessed by attackers and should never be used

especially for cryptographic purposes. The CERT recommends using function

random () instead.

• Rule P0S33-C for process management: The vf ork() function suffers race con­

ditions and denial of service vulnerabilities and should never be used. Program­

mers should consider the usage of forkO as a safe alternative.

• Rule FI033-C for string manipulation: The CERT deprecates the usage of func­

tion g e t s O , sp r in t f (), and vspr in t f () since they are extremely vulnerable

to buffer overflow attacks. Microsoft developed safe alternatives to C string func­

tions that are documented in the technical report ISO/IEC TR 24731-1 [57].

The CERT standard STR07-C recommends the usage of these functions for the

following reasons: (1) They discard the nasty "%n "format string that attackers

use to overwrite memory locations with their malicious code. (2) They take as

185

Figure 11 Deprecated functions automaton

argument a buffer size of type r s i z e _ t that should not be larger than RSIZE_-

MAX. The latter determines the maximum memory size a single object can have.

(3) They ensure that strings are null-terminated to avoid buffer overflows.

Table 26 Usage of deprecated functions

Package

apache-1.3.41
inetutils-1.6

krb5-1.6

zebra-0.95a

emacs-22.3

wget-1.11.4
chkconfig-1.3.30c

LOC

75 K
276 K

276 K

142 K

242 K

24.5 K
4.46 K

Program

htpasswd
rep
rep

kshd
ripd

update-game
-score
wget

ehkeonfig

Rule

MSC30-C
P0S33-C
P0S33-C
FI033-C
MSC30-C

MSC30-C

FI033-C
FI033-C

Reported
Erros

2
1
1

many
1

1

many
many

Err

2
1
1

many
0

0

many
many

Checking
time (Sec)

0.25
0.47
0.08
0.20
0.17

0.30

0.20
0.34

During our conducted experiments, we flag the occurrence of deprecated functions

in the analyzed packages as an error that should be fixed. The automaton for the

detection of deprecated functions is given in Figure 11. From the analysis results

in Table 26, we deduce that deprecated functions are still used in many software.

As illustrated in Listing 7.8, function randO is used in package apache-1.3.41 for

password generation.

186

Listing 7.8: Unsafe usage of randO for password generation in apache-1.3.41
/*
* Make a password record from the given information. A zero return
* indicates success; failure means that the output buffer contains an
* error message instead.
*/

static int mkrecord(char *user, char *record, size.t rlen, char *passwd , int alg){
char *pw;
char cpv [120];
char salt [9] ;
if (passwd != NULL) {

pw *» passwd;
}

switch (alg) i

case ALG.APHD5:
(void) srand((int) time((time.t *) NULL));
ap_to64(ftsalt [0] , rand(), 8);
salt [8] - '\0';

ap_MD5Encode((const unsigned char *)pw, (const unsigned char *)salt,
cpw, sizeof(cpw));

break;

I In the case of packages zebra-0.95a and emacs-22.3, rand() is used for time

synchronization purposes. Listing 7.9 shows the usage of randO in the routing

package zebra-0.95 to compute a time jitter. We do not know whether the timing

for these programs are security relevant and cannot claim that the use of randO is

an exploitable error.

Listing 7.9: Using randO to compute time jitter in zebra-0.95
rip_update_jitter (unsigned long
{

return ((rand () 7. (time + 1))
}
void
rip_event (enum rip event event,
{

int jitter » 0;

switch (event)
{
/*...*/
jitter • rip_update_jitter
rip->t_update »
/*...*/

}

time)

- (time / 2));

int sock)

(rip->update_time);

187

7.3.4 Unsafe Environment Variables
CERT Coding Rules:

• STR31-C: Guarantee that storage for strings has sufficient space for character
data and the null terminator.

• STR32-C: Null-terminate byte strings as required.

• ENV31-C: Do not rely on an environment pointer following an operation that
may invalidate it.

String manipulation in C programming is famous for spawning exploitable errors

in source code such as inappropriate format string, buffer overflows, string truncation,

and not null-terminated strings. For our experiments, we focus on the following CERT

rules:

• Rule STR31-C disciplines the usage of string copy functions to prevent buffer

overflows and truncation errors that arise from copying a string to a buffer that

is not large enough to hold it.

• Rule STR32-C stresses on the need of a null character to mark the end of a string.

For flexibility sake, the C language does not limit string sizes and depends on

the presence of a null character "\0 " to mark the end of a string. The absence

of this character results in buffer overflows and denial of service attacks.

• Rule ENV31-C targets the safe usage of environment functions to prevent bad

assumption resulting from inconsistent environment values.

The risk of string errors increases even more when using string pointers that refer to

the values of environment variables. In fact, programs' execution environment should

188

Figure 12 Environment function automaton

X = ttynameO jr\ s 1)-^

1 _STR(X)

(s2 rd
. , . STR(Y)
\ . lf(Y,"0") " ^

Y = getenvQ^'^-^ /"^ \ ^^-<!sfR(Y)

_STRQ = {slrlen, strcpy, strlcpy, strncpy. system)

never be trusted and should be considered as hostile to safe execution. From this

conservative assumption, all values requested from the environment should be checked

before usage: null pointer checks, bound checks, and null-termination checks. The

C library contains a set of environment functions that are widely used despite their

notorious reputation of being unsafe. Among these functions, we have ttynameO

and getenvC). These functions return a string with unknown size that may be not

null-terminated. On failure, these functions return a null pointer. Besides, these

functions are not reentrant. In other words, if multiple instances of the same function

are concurrently running, it may lead to inconsistent states. Attackers may take

advantage of this reentrant characteristic to invalidate the values of environment

variables. The CERT rule ENV31-C targets the safe usage of environment functions

to prevent bad assumption resulting from inconsistent environment values.

We define the automaton in Figure 7.18 to detect the unsafe usage of environment

functions. As explained earlier, we consider all string functions that are not part of

the TR 24731-1 [57] as unsafe functions! So, using a variable that is returned from

189

Table 27 Unsafe environment variables

Package

openssh-5.0pl

krb5-1.6

patchutils-0.1.5
kstart-3.14

inetutils-1.6

chkconfig-1.3.30c
freeradius-2.1.3

LOC

58K

276K

1.3K
4.4K

276 K

4.46 K
77 K

Program

sshd
kshd
kshd

interdiff
krenew

tftp
telnet

chkconfig
radiusd

Rule

STR31-C
ENV31-C
STR32-C
STR32-C
STR32-C
STR31-C
STR31-C
STR32-C
STR32-C

Reported
Errors

1
2
2
1
1
1
1
1
1

Err

0
2
2
1
1
1
1
1
1

Checking
time (Sec)

0.15.
0.33
0.33
0.06
0.06
0.54
0.52
0.52
0.52

environment functions as an argument of an unsafe string function is considered as a

vulnerability.

Table 27 illustrates the results of our experimentation for a given set of software.

The fifth column indicates the reported error traces. After inspecting the traces, we

distinguish false positives from what we believe to be a potential error in the sixth

column. We discuss in the following paragraphs some of the reported errors.

The code in Listing 7.10 is taken from program sshd of openssh-5. Opl. It triggers

a warning when analyzed with our tool. In fact, the return value name of ttynameO

is copied using the function s t r l c p y O . This function ensures the null-termination

of the destination buffer namebuf provided that namebuf len is properly set. In other

words, large enough to read all characters in name, though it should not overflow

namebuf. If the size of name is bigger than namebuf len, then there is a possible

string truncation error as mentioned in the programmers comments. From their

comments, we assume that programmers intentionally did not handle the possible

190

string truncation as they do not consider it as an exploitable error. We consider this

error trace as a false positive.

Listing 7.10: Unsafe usage of ttynameO in openssh-5• Opl (Rule STR31-C)
name •> ttyname(*ttyfd);
if (! name)

fatal("openpty returns device for
strlcpy(namebuf, name, namebuflen);
return 1;

which ttyname
/* possibl e

fails.");
truncot ion */

The code fragment of Listing 7.11 is taken from krb5-1.6. It is a good example

to show what not to do when using environment variables. It calls getenvQ to get

the value of environment variable KRB5CCNAME.

Listing 7.11: Unsafe usage of getenvQ in krb5-1.6 (Rules ENV31-C and STR32-C)
if Cgetenv("KRB5CCNAME")) <
int i;
char *buf2 =

if

}

(buf2) <

(char

sprintf (buf 2 , '

*)malloc (strlenCgetenv("KRB5CCNAME
+strlen("KRB5CCNAME=")

KRB5CCNAME = V/.s" , getenv (" KRB5CCNAME"

"))
+ 1);

));

In this code, getenv() is called three consecutive times. There is absolutely no

guarantee that these three calls return the same value. An attacker may take advan­

tage of the time race between each call to modify the value of variable KRB5CCNAME.

• Between the first and the second call, an attacker can remove variable KRB5CCNAME

from the environment and the second call to getenv () returns a null pointer. In

that case, function s t r l e n O would have a null argument and would generate

a segmentation fault.

• Besides, getenvO is used a third time as an argument to sp r in t f () which is

vulnerable to buffer overflow and should be avoided according to CERT rule

FI033-C. We assume that the allocation of buf2 is successful. Between the

191

second call and the third call to ge tenvO, an attacker may change the value of

KRB5CCNAME and set it to a larger string than the one considered for the memory

allocation. The call to s p r i n t f 0 is then prone to overflow the memory space

of buf 2.

We definitely consider this piece of code as unsafe since it makes bad assumptions

on nasty values of environment variables.

7.3.5 Race Conditions

CERT Coding Rules:

• P0S35-C Avoid race conditions while checking for the existence of a symbolic
link.

• FI001-C Be careful using functions that use file names for identification.

Figure 13 Race condition automaton

CHECK(X) _USE(X)

_CHECK = access, stat, statfs, statvfs, Istat, readlink, tempnam, tmpnam,
tmpnam_r

_USE = acct, au_to_path, basename, catopen, chdir, chmod, chown, chroot,
copylist, creat, dbjnitialize, dbm_open, dbminit, dirname, dlopen, execl,
execle, execlp, execv, execve, execvp, fattach. fdetach, fopen, freopen, ftok,
ftw, getattr, krb_recvauth, krb_set_tkt_string, kvm_open, Ichown, link, mkdir,
mkdirp, mknod, mount, nftw, nisjgetservlist, nis_mkdir, nis_plng, nis_rmdir,
nlist, open, opendir, pathconf, pathfind, realpath, remove, rename, rmdir,
rmdirp, scandir, symlink, system, t_open, truncate, umount, unlink, utime,
utimes, utmpname

The Time-Of-Check-To-Time-Of-Use vulnerabilities (TOCTTOU) in file accesses

[19] are a classical form of race conditions. In fact, there is a time gap between the file

permission check and the actual access to the file that can be maliciously exploited

192

to redirect the access operation to another file. Figure 13 illustrates the automaton

for race condition detection. It flags a check function followed by a subsequent use

function as a TOCTTOU error. The analysis results are given in Table 28.

Table 28 File race condition TQCTTOU

Package

amanda-2.5.1p2

at-3.1.10

bintuils-2.19.1

freeradius-2.1.3

hm-2.4.6

openSSH-5.0pl

shadow-4.1.2.2

zebra-0.95a

LOC

87K

2.5K

986K

77K

89K

58K

22.7K

142K

Program

chunker
chg-scsi
amfiush

amtrmidx
taper

amfetchdump
driver

sendsize
amindexd

atd
at

ranlib
strip-new

readelf
radwho
nnrpd
fastrm
archive
mews

ssh-agent
ssh

sshd
ssh-keygen

scp
usermod
useradd

vipw
newusers

ripd

Reported
Errors

1
3
1
1
3
4
1
3
1
4
4
1
2
1
1
1
1
1
1
2
•1
6
4
3
3
1
2
1
1

Err

0
2
0
1
2
1
0
3
1
3
3
1
0
1
1
1
1
0
1
0
0
3
4
2
1
1
2
1
1

FP

1
1
0
0
1
0
1
0
0
1
1
0
1
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0

DN

0
0
1
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
2
0
1
2
0
0
0
0

Checking
time (Sec)

71.6
119.99
72.97
70.21
84.603
122.95
103.16
22.67
92.03
1.16
1.12
2.89
5.49
0,23
1.29
4.11
0.37
0.95
0.57
22.46
100.6

486.02
87.28
87.95
9.79
11.45
10.32
9.2
0.46

Listing 7.12 illustrates a race condition error in package zebra-0.95a. The s t a t ()

function is called on file ful lpath_sav before being accessed by calling function

open(). Being based on pathname instead of file descriptor renders these functions

vulnerable to TOCTTOU attacks as detailed in Section 2.2 of Chapter 2.

Listing 7.12: File race condition in zebra-0.95a
if

}

sav

(stat (f
free (f
return

= open

whlle((c =

ullpath
ullpath
NULL;

(fullpa

read (

.sav ,

.sav);

th_sav

sav , b

fcbuf) ~ -1)

, O.RDONLY);

uf f er 512))

{

> 0)

Listing 7.13 contains a sample code that is extracted from package amanda-

2 .5 . Ip2. The mkholdingdir0 function is used inside a loop. Our tool goes through

the loop and considers that there is a path where s t a t (d i s k d i r , . . .) is a check

function and mkdir (d i skd i r , . . .) is a use function that corresponds to the pattern

of TOCTTOU errors. We actually consider this reported error as a false positive

since there are paths where the mkdir() call does not depend on the result of the

s t a t () check. Besides, the return value of the mkdir 0 is used to check the successful

creation of the directory.

Listing 7.13: False positive TOCTTOU in amanda-2.5. Ip2
vhile (db->split_size > (off_t)0

feft dumpsize >» db->split size)
<

mkholdingdir(tnp.filename);

>
mkholdingdir (char * diskdirH

struct stat stat.hdp;
int success =• 1;

else if (mkdir(diskdir, 0770) != 0 && errno !

else if (stat(diskdir, ftstat hdp) -» -1)
< ...

= EEXIST)

194

7.3.6 Unsafe Temporary File Creation

CERT Coding Rule:

• FI043-C: Do not create temporary files in shared directories.

Very often software applications create and maintain temporary files for differ­

ent purposes such as information sharing, temporary data storing, and computation

speeding up. Usually applications store temporary files in shared folders, then ter­

minate execution and leave these files behind. This bad management of temporary

i

files exposes private and sensitive data and offers to attackers the possibility to hijack

temporary files and tamper with their content. The impact of such attacks is very

high especially when these targeted files are set with high privileges. Therefore, pro­

grammers must properly create, protect, and delete temporary files. The standard C

library provides a set of functions for temporary file creation. However, most of these

functions are vulnerable to various forms of attacks and must be used with precau­

tion. We detail in the following paragraphs the temporary file discipline entailed by

the CERT rule FI043-C and modeled in the automaton of Figure 14. Table 29 gives

the verification results for a set of packages against the security rule FI043-C.

Figure 14 Temporary file security automaton

_TempO

'*il^)

umask(!077) umask(077) -USE(X)

© mkstemp(X)

_Temp = {tmpnam, tempnam, mktemp.tmpfile, mkstemp}

.195

Table 29 Temporary file errors

Package
!

openssh-5.0pl

apache-1.3.41

shadow-4.1.1

patchutils-0.1.5

krb5-1.6

kstart-3.14

chkconfig-1.3.30c

inn-2.4.6

binutils-2.19.1

emacs-22.3

LOC

58K

75K

22.7K

1.3K

276K

4.4K

4.46K

89K

986K

986K

Program

ssh-keygen
sshd

ssh-rand-helper
htpasswd
htdigest
useradd
interdiff
filterdiff
kprop

k4start
k5start
krenew

chkconfig
nntpget

shrinkfile
innxmit

makehistory
ranlib

update-game-
score

Reported
Errors

Checking
time (Sec)

9.21
50.6
7.52
0.13
0.09
2.75
0.17
0.11
0.11
0.14
0.15
0.11
0.11
0.32
0.27
0.52
0.37
1.9

0.19

CERT
Rule

FI043-C-2
FI043-C-3
FI043-C-3
FI043-C-1
FI043-C-1
FI043-C-2

FI043-C-[1,2>
FI043-C-1
FI043-C-1
FI043-C-2
FI043-C-2
FI043-C-2
FI043-C-1
FI043-C-2
FI043-C-2
FI043-C-2
FI043-C-2
FI043-C-2

FI043-C-3

• Temporary file creation: A temporary file must have a unique name to avoid

collisions with existing files. The C functions tmpnamO, tempnamO, tmpf i l e () ,

and mktempO generate a unique file name when invoked. However, these func­

tions suffer a race condition between the file name generation and the file cre­

ation that can be exploited by attackers. We refer to this error as FI043-C-1

in Table 29.

• Setting appropriate permissions: Since temporary files are usually created in

shared folders, it is highly required to set appropriate permissions to these files

to protect them against attackers. As such, a call to umask(077) must be done

196

before a call to mkstempO to limit the permissions of the resulting temporary

file to only the owner. We refer to this error as FI043-C-2 in Table 29.

• Race conditions: Functions that create temporary files are considered as check

functions, as defined in Section 7.3.5, that are subject to race condition errors

when their filename argument is used in a subsequent system call. We refer to

this error as FI043-C-3 in Table 29.

The sample code in Listing 7.14 is taken from make-3.81 package. The GIMPLE

representation of that code is given in Listing 7.15. This code is quite similar to the

code fragment in Listing 7.1.

Listing 7.14: Temporary file error in emacs-22.3
#ifdef

if
#else
ftendif

1 1
return

HAVE.MKSTEMP
(mkstemp (tempfile) <

if (mktemp (tempfile)

!(f = fopen (tempfile

-1;

0
a tempfile

'w")))

Both codes use the tfifdef macro to verify the system support of function mk­

stempO. Otherwise, the system uses mktemp(). Checking for system supports of safe

functions is a good practice for secure programming. However, this fragment is not

error free. Suppose that mkstempO is used, its file name argument should never ap­

pear in any subsequent system call according to the CERT rule FI043-C. Hence, the

call to fopen0 with the same file name presents a file race condition error detailed

in Section 7.3.5.

Listing 7.15: GIMPLE representation of source code in Listing 7.14
D.
if
/*
D.
f

4565 = mkstem
(D.4565
...*/

< 0)

4566 • fopen
- D.4566

p (tempf
{ goto

(tempf11

ile);
<D4563>

e , &" w"

; }

[0]);

197

In Listing 7.1, fopen is called only when mktempO is used for the temporary

file creation. The 0_EXCL flag provides an exclusive access to the file to prevent

unauthorized access. The error that we trigger for this code is related to non usage

of the umask(077) call to set the temporary file permissions.

7.3.7 Unsafe Creation of chroot Jail

CERT Recommendations:

• P0S02-C: Follow the principle of least privilege.

• FI016-C: Limit access to files by creating a jail.

CERT recommendations P0S02-C and FI016-C highly advise to follow the prin­

ciple of least privilege to secure processes execution. By the principle, a process

should have access only to the resources required for its execution. All other accesses

should be discarded. The main intent of this principle is to prevent privilege esca­

lation threats that may occur during a potential exploit of vulnerable processes. To

follow the least privilege principle, the C function provides the chroot (new_root)

function to create a virtual root directory for the owning process. After being re-

rooted, the process cannot access files outside the directory tree defined by the new

root directory. Unfortunately, the programmers often commit mistakes when using

the chroot () function as detailed in Section 2.2 of Chapter 2. The security automa­

ton related to the considered CERT recommendations is given in Figure 15. In Table

30, we give the results of verifying a set of software against the chroot 0 related

automaton.

198

Figure 15 Secure creation of chroot jail automaton

chdir(7")

seteuidfgetuidQT

chdir('0

Table 30 Unsafe call to chroot ()

Package

freeradius-2.1.3
shadow-4.1.2.2

LOC

77K
22.7K

Program

radiusd
all

Reported
Errors

1
1

Err

0
1

FP

1
0

Checking
time (Sec)

0.15
0.14

CERT
Rule

FI016-C
P0S02-C

We briefly recall the common errors when invoking chroot () and discuss the

reported errors hereafter:

• Failing to call c h d i r (" / ") after calling chroot(new_root) will prevent the

process from being redirected to the confined directory. The chroot jail is in­

effective and the process can still access files outside of it. In Listing 7.16, we

show a false positive warning issued by our tool when verifying f r e e r a d i u s -

2 .1 .3 . As mentioned in their comments, programmers intentionally do not call

chdi rO ' / ") to allow access to some configuration files. Though it is not, a. safe

programming style, we consider this error as a false positive.

! 199

Listing 7.16: False positive chrootQ error in f r e e r ad iu s -2 .1 .3
if

}
/*
*
*
*
*/

(chroot(chroot.dir) < 0) {
fprintf(stderr, "7,s: Failed to perform chroot '/,s: Xs",

progname , chroot.dir, strerror(errno));
return 0;

Note that we leave chdir alone. It may be OUTSIDE of the root.
This allows us to read the configuration from "-d,/etc/raddb",
with the chroot as "./chroot/" for example.

• Failing to drop root privileges required for invoking chroot () . After creating

the chroot-jail, the elevated privileges should be dropped in order to satisfy the

principle of least privilege. Listing 7.17 illustrates an error in shadow-4.1.2.2

where the root privileges are never dropped after the call to chroot () and

chd i r () .

Listing 7.17: Failure to drop root privileges after chrootQ in shadow-4.1.2.2
vo

>

id
/*
if
/*
if

}

subsystem (const
. . */
(pw->pw_dir[0]
. . */
(chdir (pv->pw_
printf (_("Can'

struct

dir) II

passvd

{ /*..

chroot

*pw)<

*/}

(pw->pw_
t change root directory

pv->pw_dir);
SYSLOG ((LOG.WARN, NO.SUBRD0T2

/*...*/
, pw->pw

dir))
to '

.dir ,

{
•/.s

pw

\n")

->pw. .name));

7.4 Experiments in Data-Driven Mode

Ii} the second step of the tool experimentation, we enabled the data dependency

analysis. Table 31 shows the analysis details of packages f r e e r a d i u s - s e r v e r - 2 . 1 . 3 ,

shadow-4.1.1, and ks t a r t -3 .14 . The verification time and the detected errors

are given for each executable in both control-flow mode analysis and data-driven

mode analysis. The Remopla data dependency handling naturally leads to longer

200

Table 31 Results of the experiments in the data-driven mode

Package

freeradhis-server 2.1.3

kstart-3.14

shadow-4.1.2.2

Property

Null Check

Unsafe Env

Unsafe Env

Program

radmin
radsniff

radconf2xml
radclient
radwho

radeapclient
radiusd
k5start
krenew
k4start

su
login

groupmems
useradd

Model Checking (Sec)
CFG

0.28
0.17
0.36
0.41
0.12
0.61
0.34
0.3
0.34
0.2
15.5
16.9
17.2
13.8

DFA

0.46
0.5
0.5
4.7
0.48

6
0.74
0.73
3.65
5.54
70

57.2
40.4
37.2

Slowdown

1.64
2.94
1.39
11.46

4
9.8
2.18
2.43
10.74
27.7
4.52
3.38
2.34
2.69

Finding
CFG

0
0
0
0
0
2
0
0
1
1
0
0
0
0

DFA

0
0
0
0
0
1
0
0
2
2
1
0
0
0

verification time. The slowdown factor given in the sixth column of Table 31 indicates

the performance overhead induced by the data dependency analysis. However, the

data dependency awareness of our approach renders it more precise and efficient than

r^OPS. In fact, MOPS does not handle aliasing neither parameter passing during

program verification as detailed in Chapter 3.

We show in the following paragraphs the errors that we detect in some software

packages when enabling the data dependency analysis.

7.4.1 Parameter Passing

The sample code in Listing 7.18 is taken from the k s t a r t - 3 . 1 4 package. Variable

aklog is assigned the unsafe return value from getenvQ. The content of aklog is

not validated before being passed to the security critical function system(). The

201

only check performed is a null checking of aklog. Note that our pattern matching

approach involves syntactic matching and scope matching of variables. Thus, the two

aklog variables involved in this error do not match since they are in two different

scopes.

Listing 7.18: Unsafe usage of environment variable in k s t a r t - 3 . 1 4
void command_run(const char
int status;
status = system(aklog);

/»...*/
}
/*...*/
int main (int argc , char *
/*...*/
aklog = getenv("AKLOG");
if (aklog « NULL)
aklog = getenvO'KINIT.PROG
ijf (aklog ~ NULL)
aklog - PATH.AKLOG;
/*...*/
/* If requested, run the a
if (do_aklog)
command.run(aklog, verbose
/*...*/
}

*aklog, int

argvGH

');

klog program

);

verbose) {

*/

The analysis performed in control-flow mode, without considering parameter pass­

ing, is not able to capture this error. When enabling data-driven analysis, the de­

pendency between the aklog variables is captured by handling the parameter passing

of function command_run(). As a result, the untrustworthy source of aklog used in

system() call is captured.

7.4.2 Variable Aliasing

Listing 7.19 illustrates an unsafe usage of environment variables in program su of

package shadow-4.1.1. This error cannot be detected by our analysis in control-flow

mode. It cannot neither be captured by MOPS since it does not handle aliasing

relations of variables.

202

Listing 7.19: Unsafe usage of environment variable in shadow-4.1.1
int main (int argc
{
char *cp;
const char *tty =

if (isatty (0) &&
/*...*/
tty » cp;

[
itifndef USE.PAH

is.console
#endif

}
int console (const
{

return is listed
}
static int
is_listed (const e

const
{

FILE *fp;
char buf [200] , *
/*...*/

, char **ar

Oj /* Name

(cp = ttyn

gv)

of

ame

" console (tty)

char *tty)

("CONSOLE"

har *cfgin ,
char *tty,

cons , *s ;

while ((s » strtok (cons, "
if (strcmp (s,

return 1j
/ * • . . . * /

}

tty) =- 0)

, tt

int

:"))

tty SU is run from*/

(0))) {

;

y, l);

def)

!- HULL) {

The error trace starts in the mainQ function when variable cp is assigned the

Unsafe return value of the environment function ttynameO. The analysis in data-

driven mode generates an aliasing relation out of the assignment operation t t y =

cp;. Besides, the handling of parameter passing allows our approach to track the

origin of the actual argument t t y passed to function console. Variable t t y is passed

again to function i s _ l i s t e d where it is used as a parameter to function strcmp() .

Since t t y is derived from function ttyname, it is not guaranteed to be null-terminated

and cannot be safely passed to s trcmp() . This error trace is tricky since it involves

two levels of function parameter passing and an aliasing relation between security-

relevant variables. Uncovering this error demonstrates the efficiency, the precision,

and the scalability features of our tool.

203

!

7.4.3 Reducing False Positives

Tracking data dependencies not only helps to detect data-driven defects, but also

contributes in eliminating false positives. For example, in Listing 7.20, the variable

buffer is a newly allocated pointer. Then, pointer buffer is passed to pointer hdr,

which is checked against NULL, preventing the use of a null pointer. The control-flow

mode analysis cannot locate the null check of buffer and hence reports a violation of

the null check property. On the other hand, the data-driven mode analysis captures

the dependency between pointers buffer and hdr and would not produce a false

alarm.

Listing 7.20: False positive of unchecked return value f r e e r a d i u s - s e r v e r - 2 . 1 . 3
int
map.ea

buff
hdr
if (
{
/*•

psim.basictypes

er • (unsigned
" (eap
!hdr)

..*/
return 0;

}
/*..
fr.h

/*. .
}

. */

_packet_t

mac.shal(buffer

.*/
vp->vp

(RADIUS
EAP.

char *)
•Obuff

, hmacl
.octets

.PACKET
PACKET

*r,

•ep){
malloc(hmaclen)
er ;

en ,
,vp->length,sha

;

ldi gest) ;

Our experimental results demonstrate that considering data dependencies brings

precision at a significant performance cost. Like all static verification tools, we face

a trade-off between scalability and precision of the analysis. Our security verifica­

tion tool keeps the choice between control-flow mode and data-driven mode at users

discretion to better fit their needs.

204

7.5 Comparison with existing tools

This section compares our security verification framework with existing tools. As

presented in Chapter 3 MOPS is a pushdown model-checking tool for C programs. It

has been successful in detecting programming errors in Linux kernel. The control-flow

mode of our tool is similar to MOPS: we can detect the same error MOPS detects in

almost the same time frame. Though the data dependency awareness of our approach

renders it more precise and efficient than MOPS. In fact, MOPS does not handle alias­

ing neither parameter passing during program verification. Beside, MOPS has been

designed and implemented for exclusively handling C language, our approach benefits

from the GIMPLE representation in order to be extended to all languages that GCC

compiles. MetaCompilation (MC) is a static analysis tool that uses a flow-based

analysis approach for detecting temporal security errors in C code [11]. With the

MC approach, programmers define their temporal security properties as automata

written in a high-level language called Metal [65] based on syntactic pattern match­

ing. In our approach, we benefit from the expressiveness of the procedural Remopla

language to achieve the same level of expressiveness of Metal. A key difference is that

metal patterns reference the source code directly, whereas our patterns are closer to

the compiler representation and reference GIMPLE constructs. Soundness is another

important difference between our approach and MC approach. Our analysis is sound

with respect to generated program model, whereas MC sacrifices soundness for the

sake of scalability. BLAST [68], SAT [37] and SLAM [16] are data-flow sensitive

205

model-checkers based on predicate abstraction. They use an iterative refinement pro­

cess to locate security violations in source code. Both are mainly used to verify small

software of device drivers. Despite the precision of their approach, their iterative

process introduces the risk of non-termination and does not scale to large software.

GMC2 [64] is a model-checker for the GCC compiler. As we do, GMC2 takes advan­

tage of the TREE-SSA framework and its GIMPLE intermediate representation to

tackle open source software. Nevertheless, GMC2 has not been used to verify large

scale C software as we did.

7.6 Conclusion

In this chapter, we have detailed the experiments on large scale C software conducted

with our security verification framework. First, we run our tool in the control-flow

mode. Then, we activated the data-driven mode to enhance the precision analysis.

We detected errors that other tools such MOPS cannot detect since they do not

take into account data dependencies. There are two main sources of false positives

generated with our tool:

• The verification process is path-insensitive and may report an error related to

an infeasible trace. This limitation applies to the control-flow mode and the

data-driven mode of our tool.

• For the control-flow mode, the false positive may be related to relevant data

information that is not taken into account. We showed in the experimentation

206

r

results how our data-driven mode can reduce these kinds of false positives.

• In addition, our tool does not consider runtime flow information that is not

captured in the compiler generated control-flow graph. As such, we do not

handle long jumps (setjmpO/longjmpO) indirect calls via function pointer,

multi-threading with signal handlers.

The experimentation results demonstrate the efficiency and the usability of our

tool in detecting real errors in real-software packages. The integration of the CERT

coding rules in our framework renders it a practical tool for assisting programmers in

building secure software compliant with the CERT secure coding standard.

207

Chapter 8

Conclusion

This chapter concludes our thesis. First, we give a summary of our contributions,

then we describe the research directions that can be performed in the future as an

extension to our work.

8.1 Summary

Growing assurance requirements for applications and systems have raised the stakes

on software safety and security. Software development process should take into ac­

count safety and security attributes at early stages. A special emphasis should be

put on the implementation phase, since the root cause of many security vulnerabil­

ities are programming errors that may yield readily exploitable code. As the size

and the complexity of software increase, manual code review becomes an expensive

and difficult challenge. Programmers need automated tools to assist them detecting

208

vulnerabilities in their code for the purpose of fixing them. In this thesis, we have

elaborated approaches and techniques for the automated detection of safety and secu­

rity violations in source code. We tackled safety properties to ensure that programs

are free from our targeted set of type and memory errors. We also considered the

violations of system-specific security properties that we refer to as high-level security

properties.

8.1.1 Type and Effect Discipline for C Safety

We described our type and effect discipline for the detection of memory and type

errors in C programs. We extended the standard C type system with safety annotations

and static checks to uncover unsafe memory and type operations. We described an

annotation inference algorithm that propagates annotations to program expressions

and applies static checks for safety error detection. Our type and effect analysis has

a number of appealing properties that we describe hereafter:

• Simplicity: the inference algorithm automatically propagates lightweight an­

notations and releases programmers from the cumbersome burden of manual

annotations.

• Effectiveness: the flow-sensitivity and alias-sensitivity of our analysis enhance

its efficiency for uncovering insidious errors.

• Flexibility: the type analysis can easily be combined with dynamic verification

techniques in order to increase the precision of the overall approach.

209

• Usability: the prototype of our safety analysis is designed and implemented as

an extension of the GCC compiler. The intent was to demonstrate that our

analysis can be integrated within the compilation process. The safety analysis

is triggered by simply flagging an option when invoking GCC.

In addition, we established that our static analysis captures all occurrences of our

targeted set of memory and type errors. To this end, we described an operational

semantics of our C-like language that complies with the ANSI C standard. Besides, the

semantics evaluates undefined behaviors of memory and type operations to runtime

errors. We proved the consistency of our static semantics and operational semantics.

Based on the consistency results, we established the soundness of our analysis in

detecting memory and type errors.

8.1.2 Automatic Verification of Security Properties

For the verification of system-specific security properties, we described our security

verification environment that combines static analysis and model-checking. The com­

bination of these two approaches consists in utilizing static analysis to automatically

build a model-checkable abstraction of programs. It also takes advantage of the

model-checking flexibility in verifying a wide range of system-specific security proper­

ties. The latter are modeled as finite state automata where nodes represent program

states and transitions syntactically match program actions and expressions. Our

implementation is based on the GIMPLE intermediate representation of the GCC

compiler and the off-the-shelf model-checker for pushdown systems, namely Moped.

210

Our tool performs security verification in two modes: a control-flow mode that dis­

cards data dependencies and a data-driven mode that computes data dependencies

between program expressions. The main features of our security verification tool are

described hereafter:

• Our conducted experiments showed that our approach can be applied to large

software projects. We used our tool to model-check a set of real world software.

We were also able to catch real errors in the analyzed packages.

• The data-driven mode allows our approach to cope with aliasing and parameter

passing that cannot be resolved using simplistic pattern matching approaches.

• The simplicity and the expressiveness of the GIMPLE representation enable us

to increase the precision of our analysis and to have access to valuable environ­

ment information generated by the compiler.

8.2 Future Work

The work presented in this thesis can be extended in different directions. We provide

hereafter the future extension plan of our work:

• Enlarge the set of coding errors that our type and effect discipline targets. By

defining additional safety annotations, our type analysis can be used to detect

a larger set of coding errors such as buffer overflows, format string errors, and

input validation errors.

211

• Augment the high-level security verification tool with additional languages that

GCC supports. For now, our approach focuses essentially on the C programming

language. Nevertheless, we based our verification framework on the language-

independent and platform-independent GIMPLE representation of the GCC

compiler. Thus, our approach has the appealing extension feature to support

all languages that GCC compiles.

• Interact with security hardening approaches to fix the detected coding errors.

Our framework can be extended to provide and end-to-end solution for pro­

grammers that takes as input a source code, detects its security and safety

violations, fix the detected errors, and outputs a security hardened source code.

List of Publications

Book Chapter

1. M-A. Laverdire, A. Mourad, S. Tlili and M. Debbabi. Middleware Security in

Wireless Applications. In the Encyclopedia of Wireless and Mobile Communi­

cations Book, CRC Press, 2008, Taylor & Francis Group

Journal Paper

1. S. Tlili and M. Debbabi. Interprocedural and flow-sensitive type analysis for

memory and type safety of C code. Journal of Automated Reasoning, 42(2-

4):265-300, 2009, Springer.

212

Conference Papers

1. R. Hadjidj, X. Yang, S. Tlili, M. Debbabi. Model-Checking for Software Vul­

nerabilities Detection with Multi-Language Support. Proceedings of the sixth

Annual Conference on Privacy, Security and Trust, PST 2008, Fredericton, New

Brunswick, Canada, IEEE.

2. S. Tlili, Z. Yang, H. Ling, M. Debbabi. A Hybrid Approach for Safe Mem­

ory Management in C. Proceedings of the 12th International Conference on

Algebraic Methodology and Software Technology, AMAST 2008, Urbana, IL,

Springer Press.

3. S. Tlili and M. Debbabi. Type and Effect Annotations for Safe Memory Access

in C. Proceedings of the 3rd International Conference on Availability, Reliability

and Security, ARES'2008, Barcelona, Spain, 2008, IEEE Press.

4. S. Tlili and M. Debbabi. Novel Flow-Sensitive Type and Effect Analysis for

Securing C code. Proceedings of the ACS/IEEE International Conference on

Computer Systems and Applications, AICCSA'08, Security and Information

Assurance Track, IEEE Press.

213

Bibliography

[1] Build Security In, April 2009. h t t p s : / / b u i l d s e c u r i t y i n . u s - c e r t . g o v /

da isy/bs i - ru les /home.html .

[2] CERT Secure Coding Standards, April 2009. http:/ /www.securecoding.

c e r t . o rg .

[3] Remopla introduction, April 2009. h t t p : / / w w w . f m i . u n i - s t u t t g a r t . d e / s z s /

tools/moped/remopla-intro.pdf.

[4] Abslnt. Abslnt: Advanced Compiler Technology for Embedded Systems, h t t p :

//www.absint.com/.

[5] Stephen Adams, Thomas Ball, Manuvir Das, Sorin Lerner, Sriram K. Rajamani,

Mark Seigle, and Westley Weimer. Speeding up dataflow analysis using flow-

insensitive pointer analysis. In SAS '02: Proceedings of the 9th International

Symposium on Static Analysis, pages 230-246, London, UK, 2002. Springer-

Verlag.

214

https://buildsecurityin.us-cert.gov/
http://www.securecoding
http://www.fmi.uni-stuttgart.de/szs/
http://www.absint.com/

[6] Ashish Aggarwal and Pankaj Jalote. Integrating Static and Dynamic Analy­

sis for Detecting Vulnerabilities. In COMPSAC '06: Proceedings of the 30th

Annual International Computer Software and Applications Conference,' pages

343-350, Washington, DC, USA, 2006. IEEE Computer Society.

[7] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1986.

[8] Alexander Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett,

and Peter Hawkins. An Overview of the Saturn Project. In PASTE '07: Pro­

ceedings of the 1th ACM SIGPLAN-SIGSOFT workshop on Program analysis

for software tools and engineering, pages 43-48, New York, NY,.USA, 2007.

ACM.

[9] L. O. Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, University of Copenhagen, 1994.

[10] Lars Ole Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

[11] Ken Ashcraft and Dawson Engler. Using Programmer-Written Compiler Ex­

tensions to Catch Security Holes. In JSP '02: Proceedings of the 2002 IEEE

Symposium on Security and Privacy, pages 143-159, Washington, DC, USA,

2002. IEEE Computer Society.

215

[12] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient Detection of

all Pointer and Array Access Errors. In PLDI '94: Proceedings of the ACM SIG­

PLAN 1994 conference on Programming Language Design and Implementation,

pages 290-301, New York, NY, USA, 1994. ACM.

[13] Dzintars Avots, Michael Dalton, V. Benjamin Livshits, and Monica S. Lam. Im­

proving Software Security with a C Pointer Analysis. In ICSE '05: Proceedings

of the 27th International Conference on Software Engineering, pages 332-341,

New York, NY, USA, 2005. ACM.

[14] Dejan Baca, Bengt Carlsson, and Lars Lundberg. Evaluating the cost reduction

of static code analysis for software security. In PL AS '08: Proceedings of the

third ACM SIGPLAN workshop on Programming languages and analysis for

security, pages 79-88, New York, NY, USA, 2008. ACM.

[15] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani.

Automatic Predicate Abstraction of C Programs. In PLDI '01: Proceedings

of the ACM SIGPLAN 2001 conference on Programming Language Design and

Implementation, pages 203-213, New York, NY, USA, 2001. ACM.

[16] Thomas Ball and Sriram K. Rajamani. The slam project: debugging system

software via static analysis. SIGPLAN Not, 37(1): 1-3, 2002.

[17] Thorns Bell. The Concept of Dynamic Analysis. In ESEC/FSE-7: Proceedings

of the 7th European software engineering conference held jointly with the 7th

216

ACM SIGSOFT international symposium on Foundations of software engineer­

ing, pages 216-234, London, UK, 1999. Springer-Verlag.

[18] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The

Software Model Checker Blast: Applications to Software Engineering. Int. J.

Softw. Tools Technol. Transf, 9(5):505-525, 2007.

[19] M. Bishop and M. Dilger. Checking for Race Conditions in File Accesses.

' Computing Systems, 2(2):131-152, 1996.

[20] Matt Bishop. How Attackers Break Programs, and How to Write More Secure

Programs.

[21] Matt Bishop. How to Write a Setuid Program. Technical Report Technical

Report 85.6, Research Institute for Advanced Computer Science, Moffett Field,

May 1985.

[22] Daniel Bovet and Marco Cesati. Understanding the Linux Kernel, Third Edi­

tion. O'Reilly Media, Inc., 3 edition, November 2005.

[23] Guillaume Brat and Willem Visser. Combining static analysis and model check­

ing for software analysis. In ASE '01: Proceedings of the 16th IEEE interna­

tional conference on Automated software engineering, page 262, Washington,

DC, USA, 2001. IEEE Computer Society.

[24] J. R. Burch, E. M. Clarke, K. L. Mcmillan, D. L. Dill, and L. J. Hwang. Symbolic

model checking: 10²⁰ states and beyond. In Logic in Computer

217

Science, 1990, LICS '90, Proceedings., Fifth Annual IEEE Symposium on e,

pages 428-439, 1990.

!

[25] Michael G. Burke, Paul R. Carini, Jong-Deok Choi, and Michael Hind. Flow-

Insensitive Interprocedural Alias Analysis in the Presence of Pointers. In LCPC

'94: Proceedings of the 7th International Workshop on Languages and Compilers

for Parallel Computing, pages 234-250, London, UK, 1995. Springer-Verlag.

[26] Luca Cardelli. Type Systems, chapter 103. CRC Press, Boca Raton, FL, 1997.

[27] John P. McDermott Carl E. Landwehr, Alan R. Bull and William S. Choi.

A Taxonomy of Computer Program Security Flaws. ACM Comput. Surv.,

26(3):211-254, 1994.

[28] Pankaj Chauhan, Edmund Clarke, James Kukula, Samir Sapra, Helmut Veith,

and Dong Wang. Automated abstraction refinement for model checking large

state spaces using sat based conflict analysis. In in Proceedings of FMCAD,

pages 33-51, 2002.

[29] Benjamin Chelf, Dawson Engler, and Seth Hallem. How to Write System-

Specific, Static Checkers in Metal. SIGSOFT Softw. Eng. Notes, 28(l):51-60,

2003.

[30] Hao Chen, Drew Dean, and David Wagner. Model Checking One Million Lines

of C Code. In NDSS, 2004.

218

!

[31] Hao Chen and David Wagner. MOPS: an Infrastructure for Examining Se­

curity Properties of Software. In Proceedings of the 9th ACM Conference on

Computer and Communications Security (CCS), pages 235-244, Washington,

DC, november 2002.

[32] Hao Chen and David A. Wagner. MOPS: an Infrastructure for Examining

Security Properties of Software. In CCS '02: Proceedings of the 9th ACM

Conference on Computer and Communications Security, pages 235-244, New

York, NY, USA, 2002. ACM.

[33] Hao Chen and David A. Wagner. MOPS: an Infrastructure for Examining

Security Properties of Software. Technical Report UCB/CSD-02-.1197, EECS

Department, University of California, Berkeley, 2002.

[34] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient Flow-Sensitive In-

terprocedural Computation of Pointer-Induced Aliases and Side Effects. In

POPL '93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on

Principles of Programming Languages, pages 232-245, New York, NY, USA,

1993. ACM.

[35] E. Clarke, 0 . Grumberg, and D. Long. Model checking. In Proceedings of the

NATO Advanced Study Institute on Deductive program design, pages 305-349,

Secaucus, NJ, USA, 1996. Springer-Verlag New York, Inc.

219

[36] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Trans. Pro­

gram. Lang. Syst, 8(2): 244-263, 1986.

[37] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Pred­

icate Abstraction of ANSI-C Programs Using SAT. Formal Methods in System

Design, 25(2-3): 105-127, 2004.

[38] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Progress on the state explosion problem in model checking. In Informatics -

10 Years Back. 10 Years Ahead., pages 176-194, London, UK, 2001. Springer-

Verlag.

[39] Jacques Corbin and Michel Bidoit. A Rehabilitation of Robinson's Unification

Algorithm. In IFIP Congress, pages 909-914, 1983.

[40] P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Pro­

grams. In Proceedings of the Second International Symposium on Programming,

pages 106-130. Dunod, Paris, France, 1976.

[41] P, Cousot and R. Cousot. Parallel combination of abstract interpretation and

model-based automatic analysis of software. In Proceedings of the First ACM

SIGPLAN Workshop on Automatic Analysis of Software, AAS'97, pages 91-98,

Paris, France, January 1997. ACM Press, New York, New York, United State's.

220

[42] Patrick Cousot and Radhia Cousot. Refining model checking by abstract inter­

pretation. Automated Software Engg., 6(1):69—95, 1999.

[43] Coverity. Coverity Prevent for C and C++, h t t p : //www. cover i ty . com/main.

html.

[44] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken­

neth Zadeck. Efficiently computing static single assignment form and the control

dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451-490, 1991.

[45] Manuvir Das. Unification-based pointer analysis with directional assignments.

SIGPLAN Not, 35(5):35-46, 2000.

[46] Mourad Debbabi, Zahia Aidoud, and Ali Faour. On the Inference of Structured

Recursive Effects with Subtyping. Journal of Functional and Logic Program­

ming, 1997(5), 1997.

[47] Takahiro Shinagawa Dept. Implementing A Secure Setuid Program.

[48] Dawson Engler. Static Analysis versus Model Checking for Bug Finding, pages

1-1, 2005.

[49] Michael D. Ernst. Static and Dynamic Analysis: Synergy and Duality, In

WO DA 2003: ICSE Workshop on Dynamic Analysis, pages 24-27, Portland,

OR, May 9, 2003.

[50] Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. Efficient

Algorithms for Model Checking Pushdown Systems. In E. Allen Emerson and

221

A. Prasad Sistla, editors, Proceedings of CAV 2000, volume 1855 of Lecture

Notes in Computer Science, pages 232-247. Springer, July 2000.

[51] Javier Esparza, Stefan Kiefer, and Stefan Schwoon. Abstraction refinement

with Craig interpolation and symbolic pushdown systems. Journal on Satisfi­

ability, Boolean Modeling and Computation, 5:27-56, June 2008. Special Issue

on Constraints to Formal Verification.

[52] David Evans. Static Detection of Dynamic Memory Errors. In PLDI '96:

Proceedings of the ACM SIGPLAN 1996 conference on Programming Language

Design and Implementation, pages 44-53, New York, NY, USA, 1996. ACM.

[53] David Evans, John Guttag, James Horning, and Yang Meng Tan. Lclint: a tool

for using specifications to check code. SIGSOFT Softw. Eng. Notes, 19(5):87-

96, 1994.

[54] David Evans, John V. Guttag, James J. Horning, and Yang Meng Tan. LCLint:

A Tool for Using Specifications to Check Code. In Symposium on the Founda­

tions of Software Engineering, December 1994.

[55] Manuel Fahndrich and Robert DeLine. Adoption and Focus: Practical Linear

, Types for Imperative Programming. In PLDI '02: Proceedings of the ACM

SIGPLAN 2002 Conference on Programming Language Design and Implemen­

tation, pages 13-24, New York, NY, USA, 2002. ACM.

222

[56] Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java.

SIGPLAN Not, 35(5):219-232, 2000.

[57] International Organization for Standardization (ISO) and International Elec-

trotechnical Commission. Information Technology U Programming lan-guages,

Their Environments and System Software Interfaces U Specification for Safer,

More Secure C Library Functions. Technical Report ISO/IEC TR 24731-1:2006,

International Organization for Standardization, 2006.

[58] Jeffrey S. Foster, Manuel Fahndrich, and Alexander Aiken. A Theory of Type

Qualifiers. In SIGPLAN conference on Programming Language Design and

Implementation, pages 192-203, 1999.

[59] The FreeBSD Foundation. Freebsd the power to serve. ht tp: / /www.freebsd.

org/ .

i '

[60] Frances E. Allen. Control Flow Analysis. In Proceedings of a symposium on

Compiler optimization, pages 1-19, 1970.

[61] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-Safe

Retrofitting of Legacy Code. In Symposium on Principles of Programming

Languages, pages 128-139, 2002.

[62] D. Goyal. An improved intra-procedural may-alias analysis algorithm. Technical

report, New York, NY, USA, 1999.

223

http://www.freebsd

[63] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and

James Cheney. Region-based Memory Management in Cyclone. In PLDI '02:

Proceedings of the ACM SIGPLAN 2002 conference on Programming Language

Design and Implementation, pages 282-293, New York, NY, USA, 2002. ACM.

[64] R. Grosu, X. Huang, S. Jain, and S. A. Smolka. Open source model checking.

In In Proceedings of the Workshop on Software Model Checking, Edinborough,

Scotland,July, pages 27-44. Elsevier, 2005.

[65] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A System

and Language for Building System-Specific, Static Analyses. In PLDI '02:

Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language

Design and Implementation, pages 69-82, New York, NY, USA, 2002. ACM.

[66] R. Hasting and B. Joyce. Purify: Fast Detection of Memory Leaks and Ac­

cess Errors. In Proceedings of the Winter USENIX Conference, pages 125-136,

January 2002.

[67] Matthew Hennessy. The semantics of programming languages: an elementary

introduction using structural operational semantics. John Wiley &; Sons, Inc.,

New York, NY, USA, 1990.

[68] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire

Sutre. Lazy Abstraction. In POPL '02: Proceedings of the 29th ACM

SIGPLAN-SIGACT symposium on Principles of Programming Languages,

pages 58-70, New York, NY, USA, 2002. ACM.

224

[69] Tomoyuki Higuchi and Atsushi Ohori. A Static Type System for JVM Access

Control. In ICFP, pages 227-237, 2003.

[70] Michael Hind and Anthony Pioli. Which pointer analysis should i use? In

, ISSTA '00: Proceedings of the 2000 ACM SIGSOFT international symposium

on Software testing and analysis, pages 113-123, New York, NY, USA, 2000.

ACM.

[71] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng.,

23(5):279-295, 1997.

[72] Susan Horwitz. Debugging via run-time type checking. SIGSOFT Softw. Eng.

Notes, 25(1):58, 2000.

[73] Michael Howard and David E. Leblanc. Writing Secure Code. Microsoft Press,

Redmond, WA, USA, 2002.

[74] Linux Online Inc. Linux Online! h t tp : / /www.l inux.org/ .

[75] ISO. The ansi c standard (c99). Technical Report WG14 N1124, ISO/IEC,

1999. http://www.open-std.org/JTCl/SC22/WG14/www/docs/nl124.pdf.

[76] ISO. ISO/IEC 14882:2003: Programming languages: C++. 2003.

h t tp : / /www.iso.org/ iso/en/CatalogueDetai lPage.Cata logueDetai l?

CSNUMBER=38110.

[77] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-Sensitive Type Qual­

ifiers. In PLDI '02: Proceedings of the ACM SIGPLAN 2002 conference on

225

http://www.linux.org/
http://www.open-std.org/JTCl/SC22/WG14/www/docs/nl124.pdf
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail

Programming Language Design and Implementation, pages 1-12, New York,

NY, USA, 2002. ACM.

[78] Pavel Jezek, Jan Kofron, and Frantisek Plasil. Model checking of component

behavior specification: A real life experience. Electr. Notes Theor. Comput.

Sci, 160:197-210, 2006.

[79] Rob Johnson and David Wagner. Finding User/Kernel Pointer Bugs With Type

Inference. In SSYM'04-' Proceedings of the 13th conference on USENIX Security

Symposium, pages 119-134, Berkeley, CA, USA, 2004. USENIX Association.

[80] Stephen Johnson. Lint, a C program checker. Technical report, Bell Laborato­

ries, Computer Science Technical Report 65, 1977.

[81] Assaf J. Kfoury, S. Ronchi della Rocca, Jerzy Tiuryn, and Pawel Urzyezyn.

Alpha-Conversion and Typability. Information and Computation, 150(1):1—21,

1999.

[82] William Landi. Undecidability of static analysis. ACM Lett. Program. Lang.

Syst., l(4):323-337, 1992.

[83] William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural modifi­

cation side effect analysis with pointer aliasing. SIGPLAN Not., 28(6):56-67,

1993.

226

[84] David Larochelle and David Evans. Statically Detecting Likely Buffer Overflow

Vulnerabilities. In 10th USENIX Security Symposium, pages 177-190. Uni­

versity of Virginia, Department of Computer Science, USENIX Association,

August 2001.

[85] David Larochelle and David Evans. Statically Detecting Likely Buffer Overflow

Vulnerabilities. In SSYM'01: Proceedings of the 10th conference on USENIX

Security Symposium, pages 14-14, Berkeley, CA, USA, 2001. USENIX Associ­

ation.

[86] James R. Larus and Thomas Ball. Rewriting Executable Files to Measure

Program Behavior. Softw. Pract. Exper., 24(2):197-218, 1994.

[87] Roger E. Lessman. Changes and Extensions in the C Family of Languages.

SIGCSE Bull, 21(2):34-39, 1989.

[88] Peng Li. Safe systems programming languages, 2004.

[89] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench: Benchmarks

for Evaluating Bug Detection Tools. In Work, on the Evaluation of Software

Defect Detection Tools, June 2005.

[90] Neil Matthew, Richard Stones, and Alan Cox. Beginning Linux Programming,

Third Edition. Wrox Press Ltd., Birmingham, UK, UK, 2003.

[91] Bertrand Meyer. Touch of Class: Learning to Program Well with Objects and

Contracts. Springer Publishing Company, Incorporated, 2009.

227

[92] Robin Milner. A Theory of Type Polymorphism in Programming. J. Comput.

Syst. Sci., 17(3):348-375, 1978.

[93] Michael Ernst Mit and Michael D. Ernst. Static and dynamic analysis: Synergy

and duality. In In WODA 2003: ICSE Workshop on Dynamic Analysis, pages

24-27, 2003.

[94] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley

Weimer. Ccured: Type-Safe Retrofitting of Legacy Software. ACM Trans.

Program. Lang. Syst., 27(3):477-526, 2005.

[95] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program

Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[96] Flemming Nielson and Hanne Riis Nielson. Type and Effect Systems. In Correct

System Design, Recent Insight and Advances, pages 114-136, London, UK, 1999.

Springer-Verlag.

[97] Diego Novillo. Tree-SSA: A New Optimization Infrastructure for GCC. In

Proceedings of the GCC Developers Summits, pages 181-193, Ottawa, Ontario,

Canada, 2003.

[98] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. Listening to program­

mers - Taxonomies and characteristics of comments in operating system code.

In Proceedings of the 31st International Conference on Software Engineering

(ICSE09), May 2009.

228

[99] Parasoft Insure++. We make software work, http:/ /www.parasoft .com/.

[100] James W. Paulson, Giancarlo Succi, and Armin Eberlein. An empirical study

of open-source and closed-source software products. IEEE Trans. Softw. Eng.,

30(4):246-256, 2004.

[101] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cam­

bridge, MA, USA, 2002.

[102] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical

Report DAIMI FN-19, University of Aarhus, 1981.

[103] Gordon D. Plotkin. A structural approach to operational semantics. J. Log.

Algebr. Program., 60-61:17-139, 2004.

[104] PolySpace. Automatic Detection of Run-Time Errors at Compile Time.

[105] Corneliu Popeea, Dana N. Xu, and Wei-Ngan Chin. A Practical and Precise

Inference and Specializer for Array Bound Checks Elimination. In PEPM '08:

Proceedings of the 2008 ACM SIGPLAN symposium on Partial Evaluation and

Program Manipulation, pages 177-187, New York, NY, USA, 2008. ACM.

[106] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang.

Syst, 16(5);1467-1471, 1994.

229

http://www.parasoft.com/

[107] Thomas Reps, Stefan Schwoon, Somesh Jha, and David Melski. Weighted push­

down systems and their application to interprocedural dataflow analysis. Sci­

ence of Computer Programming, 58(l-2):206-263, October 2005. Special Issue

on the Static Analysis Symposium 2003.

[108] John A. Robinson. A Machine-Oriented Logic Based on the Resolution Princi­

ple. Journal of the ACM, 12(1):23-41, 1965.

[109] Radu Rugina and Sigmund Cherem. Region Inference for Imperative Lan­

guages. Technical Report CS TR2003-1914, Computer Science Department,

Cornell University, 2003.

[110] Sriram Sankaranarayanan, Franjo Ivancic, and Aarti Gupta. Program Analysis

Using Symbolic Ranges. In SAS '07: Proceedings of the IJ^th International

Static Analysis Symposium, pages 366-383, Kongens Lyngby, Denmark, 2007.

Springer.

[Ill] Benjamin Schwarz, Hao Chen, David A. Wagner, Geoff Morrison, Jacob West,
!

Jeremy Lin, and Wei Tu. Model Checking an Entire Linux Distribution for

Security Violations. In Proceedings of the 2005 Annual Computer Security Ap­

plications Conference (ACSAC), 2005.

[112] Stefan Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische

Universitat Miinchen, 2002.

230

[113] Robert Seacord. Secure coding in c and C++: Of strings and integers. IEEE

Security and Privacy, 4(1):74, 2006.

[114] Helmut Seidl and Christian Fecht. Interprocedural analysis based on pdas.

Universitdt Trier, Mathem,atik/Informatik, Forschungsbericht, 97-06, 1997.

[115] Julian Seward and Nicholas Nethercote. Using Valgrind to Detect Undefined

Value Errors with Bit-Precision. In Proceedings of the USENIX'05 Annual

Technical Conference, pages 17-30, Anaheim, California, USA, April 2005.

[116] U. Shankar, K. Talwar, J. Foster, and D. Wagner. Detecting Format String Vul­

nerabilities with Type Qualifiers. In Proceedings of the 10th USENIX Security

' Symposium, 2001., pages 201-220, 2001.

[117] Michael Siff, Satish Chandra, Thomas Ball, Krishna Kunchithapadam, and

Thomas Reps. Coping with Type Casts in C. In ESEC/FSE-7: Proceedings of

the 7th European software engineering conference held jointly with the 7th ACM

SIGSOFT international symposium on Foundations of software engineering,

pages 180-198, London, UK, 1999. Springer-Verlag.

[118] Fortify Software. Rats - rough auditing tool for security, April 2009. h t t p :

/ /www.for t i fy .com/secur i ty - resources / ra t s . j sp.

[119] Bjarne Steensgaard. Points-to Analysis in Almost Linear Time. In POPL '96:

Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of

Programming Languages, pages 32-41, New York, NY, USA, 1996. ACM.

231

http://www.fortify.com/security-resources/rats.j

[120] Martin Franz Sulzmann. A general framework for hindley/milner type systems

with constraints. PhD thesis, New Haven, CT, USA, 2000. Director-Hudak,

Paul.

[121] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic Type, Region and Effect

Inference. Journal of Functional Programming, 2:245-271, 1992.

[122] Jean-Pierre Talpin and Pierre Jouvelot. The Type and Effect Discipline. In

Information and Computation, pages 162-173, 1992.

[123] Syrine Tlili, Zhenrong Yang, Hai Zhou Ling, and Mourad Debbabi. A Hybrid

Approach for Safe Memory Management in C. In AMAST'08: Proceedings

of the 12th international conference on Algebraic Methodology and Software

Technology, pages 377-391, Urbana, Illinois, USA, 2008. Springer-Verlag.

[124] Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD

thesis, University of Edinburgh, 1988.

[125] Twitch. Taking Advantage of Non-Terminated Adjacent Memory Spaces.

Phrack, 56, May 2000.

[126] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. ITS4: A Static Vulnerability

Scanner for C and C++ code. In ACS AC '00: Proceedings of the 16th Annual

Computer Security Applications Conference, page 257. IEEE Computer Society,

2000.

232

[127] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model

Checking Programs. In ASE '00: Proceedings of the 15th IEEE international

conference on Automated Software Engineering, pages 3-12, Washington, DC,

USA, 2000. IEEE Computer Society.

[128] Gray Watson. Debug Malloc Library, October 2004. h t tp : / /dmal loc .com/ .

[129] David A. Wheeler. Secure Programming for Linux and Unix HOWTO, 2003.

[130] Robert P. Wilson and Monica S. Lam. Efficient Context-Sensitive Pointer Anal­

ysis for C Programs. In PLDI '95: Proceedings of the ACM SIGPLAN 1995

conference on Programming Language Design and Implementation, pages 1-12,

New York, NY, USA, 1995. ACM.

[131] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using CQUAL for Static

Analysis of Authorization Hook Placement. In Proceedings of the 11th USENIX

Security Symposium, pages 33-48, Berkeley, CA, USA, 2002. USENIX Associ­

ation.

[132] Karen Yorav, editor. Hardware and Software: Verification and Testing, Third

International Haifa Verification Conference, HVC 2007, Haifa, Israel, October

23-25, 2007, Proceedings, volume 4899 of Lecture Notes in Computer Science.

Springer, 2008.

[133] Y. Younan, W. Joosen, and F. Piessens. Code Injection in C and C + + : A

Survey of Vulnerabilities and Survey of Vulnerabilities and Countermeasures.

233

http://dmalloc.com/

Technical Report CW386, Department of Computer Science, Katholieke Uni-

versiteit Leuven, July 2004.

[134] Oiwa Yutaka, Tatsurou Sekiguchi, Eijiro Sumii, and Akinori Yonezawa. Fail-

Safe ANSI-C Compiler: An Approach to Making C Programs Secure: Progress

Report. In ISSS'02: Proceedings of the International Symposium of Software

Security, pages 133-153. Springer-Verlag, 2002.

234

Appendices

Appendix I: Static Analysis Utility Functions

We define in the current appendix the auxiliary functions used in the algorithms of

Chapter 4.

• Function regionOf takes a pointer type and returns its region annotations.
regionOf : Inferred Types —* Regions

Function regionOf (r) = case r of

if(T,r') => regionOf (r) U regionOf (r')
else => 0

end

• Function rootOf takes as argument an lvalue and returns its related variable.
rootOf : Lval —> Lval

Function rootOf (lv) = case lv of
x => x
*l'v | l'v.<p => rootOf (/;)

end

• Function addressOf returns the memory location of an lvalue argument.
addressOf : Lval x Env —> Regions

235

Function addressOf (/v, S) =
let x = rootOf (lv)

T = £(X)

in
case (lv, r) of
(X,T) =» r s

(w . re /^JJ => p
(X.<P,T) =*• 7'x.offset(<p)
(*Z„,T) =» addressOf(Z„,£)
(*£„•¥>, r) => addressOf (lv.<p, £)

end

• Function f ldType(r, tpi) extracts the type of field <pi from a structure type r .
fldType: Inferred Types x Fields —• Inferred Types

Function f ldType(r, y?i) = case r of
if{r',T") =» i/(fldType(r',^),fldType(r",(p i))
struci{((/3j,ri,o,)}1„n => T}

end

• Function typeOf returns the annotated type of an lvalue argument.
typeOf : Lval x Env —> Inferred Types

Function typeOf (/,,,£) =
case Z„ of

x => £(x)
*lv => strTypeOf (typeOf (/„,£))
/„.</? => fldType(typeOf(J„, £),<£)

end

• Function hostOf takes a pointer type and returns its host annotations.
hostOf : Inferred Types —* Pointer Host

Function hostOf (r) = case r of
refp(K)r, | m ^ => 77
i/.(r,r') => hostOf (r) U hostOf (r')
e/se => 0

end

• Function updHost takes a type and host annotation and returns a type.
updHost: Inferred Types x Host Annotations —> Inferred Types

236

Function updHost(r,7j) = case r of
if{T',T") =» ijf(updHost(r',7?),updHost(r",77))
intni => intrj
rtfp{_)v' => refp{__)v

end

• Function updRegHost takes a type, a set of regions, and a host annotation, and
returns a type.
updRegHost: Inferred Types x Regions x Host Annotations —> Inferred Types

Function updRegHost (r, p, r?) =case r of
«/(r',r") =» t/(updRegHost(r',/7,77),updRegHost(r",/9,r/))
refP'(K)r,' => if (P n p' ^ 0) then

refp/{K)r,
else

T

end

• Function regHostOf takes a type and returns a set of region and host annotation
pairs.
regHostOf : Inferred Types —> V{Regions x #os£ Annotation)

Function regHostOf (T) = case r of
»7(T', T") => regHostOf (r') U regHostOf (r")
r^fP'{^)v' => {(/W)}
else =J> /az'Z

end

• Function updFld takes a type, a field label, and another type, and returns a
type.
updFld: Inferred Type x Field x Inferred Type —* Inferred Type

Function updFld(r, y>, r ') =case r of
if(Ti,T2) => z/(updFld(ri, <,o, r ') , updFld(r2, </?, r '))
sfructf^.i/Ji^i)}!.^ => sJruc^T/.vjj.o;)}!..,,

(T/ = r ' if & = ^
where <

IT/ = Tj otherwise.
end

• Function RegSeqOf takes a pointer type and returns its sequence of region an­
notations.
RegSeqOf ; Inferred Types —> Sequence of Regions

237

The symbol + denotes the concatenation operator.

Function RegSeqOf (r) = case r of

re/,(*)i? =*• \p\

if(T>T') => RegSeqOf (r) + RegSeqOf (T')
else => 0

end

• Function HostSeqOf takes a pointer type and returns its sequence of region
annotations.
HostSeqOf : Inferred Types —» Sequence of Host Annotations
The symbol + denotes the concatenation operator.

Function HostSeqOf (r) = case r of
refp(K)n =*• [»?]
m ^ = > • [77]
if(T,Tf) => HostSeqOf (r)@HostSeqOf(r')
e/se =*> 0

end

238

