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Abstract 

Privacy Protection on RFID Data Publishing 

Ming Cao 

Radio Frequency IDentification (RFID) is a technology of automatic object identifica­

tion. Retailers and manufacturers have created compelling business cases for deploying 

RFID in their supply chains. Yet, the uniquely identifiable objects pose a privacy threat 

to individuals. In this paper, we study the privacy threats caused by publishing RFID 

data. Even if the explicit identifying information, such as name and social security num­

ber, has been removed from the published RFID data, an adversary may identify a target 

victim's record or infer her sensitive value by matching a priori known visited locations 

and time. RFID data by its nature is high-dimensional and sparse, so applying traditional 

/.-anonymity to RFID data suffers from the curse of high-dimensionality, and results in 

poor information usefulness. We define a new privacy model and develop an anonymiza-

tion algorithm to accommodate special challenges on RFID data. Then, we evaluate its 

effectiveness on synthetic data sets. 
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Chapter 1 

Introduction 

1.1 RFID Data Publishing 

Radio Frequency IDentification (RFID) is a technology for automatic identification of sin­

gle or bulk objects from a distance, using radio signals. RFID was first introduced during 

World War II for distinguishing enemy planes from allied planes. Until recently the cost 

of building a RFID infrastructure was viewed as being too expensive for commercial and 

civil applications. RFID has wide applications in many areas including manufacturing, 

healthcare, and transportation. Figure 1 depicts an overview of a RFID information sys­

tem, typically consisting of a large number of tags and readers and an infrastructure for 

handling high volumes of RFID data. As depicted in the figure, a tag is a small device that 

can be attached to an object, such as a person or a manufactured item, for the purpose of 

unique identification. A reader is an electronic device positioned in a strategic location, 

such as a warehouse loading bay or a subway station entrance, that communicates with the 
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Data Collection Data Publishing 

Figure 1: Data Flow in RFID System 

RFID tag. A reader broadcasts a radio signal to the tag, which then transmits its information 

back to the reader [47]. Streams of RFID data records, in the format of (EPC, loc, t), are 

then stored in a RFID database, where EPC (Electronic Product Code) is a unique iden­

tifier of the tagged object, loc is the location of the reader, and t is the time of detection. 

A data recipient (or a data analysis module) can obtain the information on either specific 

tagged objects or general workflow patterns [24] by submitting data requests to the query 

engine. The query engine then responds to the requests by joining the RFID data with some 

object-specific data. 

Retailers and manufacturers have created compelling business cases for deploying RFID 

in their supply chains, from reducing out-of-stocks at Wal-Mart to up-selling consumers in 

Prada. Yet, the uniquely identifiable objects pose a privacy threat to individuals, such as 

tracing a person's movements, and profiling individuals become possible. Most previous 

work on privacy-preserving RFID technology [47] focused on the threats caused by the 

physical RFID tags. They proposed techniques like EPC re-encryption and killing tags [30] 
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to address the privacy issues in the data collection phase, but these techniques cannot ad­

dress the privacy threat in the data publishing phase, when a large volume of RFID data is 

released to a third party. 

In this thesis, we study the privacy threats in the data publishing phase and define a 

practical privacy model to accommodate the special challenges of RFID data. We propose 

an anonymization algorithm (the data anonymizer in Figure 1) to transform the underlying 

raw object-specific RFID data into a version that is immunized against privacy attacks. 

The term "publishing" has a broad sense here. It includes sharing the RFID data with 

specific recipients and releasing data for public download. The general assumption is that 

the recipient could be an attacker, who attempts to associate a target victim (or multiple 

victims) to some sensitive information from the published data. 

1.2 Privacy Threats in RFID Systems 

There are many real-life examples of RFID data publishing in healthcare [57]. Recently, 

some hospitals have adopted RFID sensor systems to track the positions of their patients, 

doctors, medical equipments, and devices inside a hospital, with the goals of minimiz­

ing medical errors and improving the management of patients and resources. Analyzing 

RFID data, however, is a non-trivial task. The hospital management often does not have 

the expertise to perform the analysis themselves but outsource this process and, therefore, 

requires granting a third party access to the RFID and patient data. The following example 

illustrates the privacy threats caused by publishing RFID data. 
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Table 1: Raw patient-specific path table T 
EPC 

1 
2 
3 
4 
5 
6 
7 
8 

Path 

<al -» d2 -> 63 -> e4 -> / 6 - • c7> 
(63 -» e4 -> / 6 -+ e8) 
(63 -> c7 - • e8) 
(d2 -* / 6 -» el -> e8) 
(d2 -> c5 -» / 6 - • c7) 
(c5 -» / 6 - • e9) 
(d2 - • c5 -* c7 -» e9) 
( /6 -> c7 ^ e9) 

Diagnosis 
HIV 
Flu 
Flu 

Allergy 
HIV 

Allergy 
Fever 
Fever 

... 

Example 1.2.1. A hospital wants to release the patient-specific path table, Table 1, to a third 

party for data analysis. Explicit identifiers, such as patient names and EPC, are removed. 

Each record contains a path and some patient-specific information, where a path contains 

a sequence of pairs (lociti) indicating the patient's visited location loci at timestamp tj. 

For example, EPC'#3 has a path (63 —> cl —> e8), meaning that the patient has visited 

locations b, c, and e at timestamps 3, 7, and 8, respectively. Without loss of generality, we 

assume that each data record contains only one sensitive attribute, namely diagnosis, in this 

example. 

One data recipient, who is an attacker, seeks to identify the record and/or sensitive value 

of a target victim from the published data. We focus on two types of privacy attacks: 

1. Record linking: if a path in the table is so specific that not many people match it, 

releasing the RFID data may lead to linking the victim's record, and therefore, her 

contracted diagnosis. Suppose that the attacker knows that the target victim, Alice, 

has visited e and c at timestamps 4 and 7, respectively. Alice's record, together with 

her sensitive value (HIV in this case), can be uniquely identified because EPC#l is 

the only record that contains e4 and cl. 



2. Attribute linking: if a sensitive value occurs frequently together with some combina­

tion of pairs, then the sensitive information can be inferred from such combination 

even though the exact record of the victim cannot be identified. Suppose the attacker 

knows that another target victim, Bob, has visited d2 and /6 . Since two out of the 

three records (E PC #1,4,5) containing d!2 and /6 have sensitive value HIV, the at­

tacker can infer that Bob has HIV with 2/3 = 67% confidence. 

Many privacy models, such as if-anonymity [7] [19] [20] [33] [45] [53], ^-diversity [38], 

confidence bounding [55] [56], and t-closeness [36] have been proposed to thwart privacy 

threats caused by record linking and attribute linking in the context of relational databases. 

All these works assume a given set of attributes called quasi-identifier {QID) that can 

identify an individual. Although these privacy models are effective for anonymization on 

relational databases, they are not applicable to RFID data due to two special challenges 

posed by RFID data: 

High-Dimensionality: RFID data by default is high-dimensional due to the large com­

binations of locations and timestamps. Consider a hospital having 50 rooms that operate 

12 hours per day. The RFID data table would have 50 x 12 — 600 dimensions. Each di­

mension could be a potential quasi-identifying (QID) attribute used for record or attribute 

linking. Traditional privacy model, say K-anonymity, would include all dimensions into a 

single QID and require every path to be shared by at least K records. Due to the curse of 

high-dimensionality [3], it is very likely that a lot of data has to be suppressed in order to 

satisfy K-anonymity. For example, to achieve 2-anonymity in Table 1, al, d2,63, e4, c7, e9 

have to be suppressed even if K is small. Such anonymous data becomes useless for data 
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Table 2: Anonymous table V for L=2, K=2, C=50% 
EPC 

1 
2 
3 
4 
5 
6 
7 
8 

Path 
(63 -> / 6 - c7> 
(63 -> / 6 - • e8> 
(63 -» c7 - • e8) 
(/6 -» c7 -» e8) 
(c5 - / 6 - c7) 
(c5 -> / 6 -> e9) 
(c5 - • c7 -+ e9) 
(/6 - c7 -+ e9) 

Diagnosis 
HIV 
Flu 
Flu 

Allergy 
HIV 

Allergy 
Fever 
Fever 

... 

analysis. 

Data Sparseness: RFID data is usually sparse. Consider patients in a hospital or pa­

tients in a public transit system. They usually visit only few locations compared to all 

available locations, so each RFID path is relatively short. Anonymizing these short paths 

in a high-dimensional space poses great challenge for traditional anonymization techniques 

because the paths have little overlap. Enforcing /^-anonymity on sparse data would render 

the data useless. 

A recent work [61] on transaction data anonymization also utilized a similar assumption 

that attacker know at most h items to bound the prior knowledge of an adversary, but their 

privacy models together with their methods are not applicable to anonymizing path data of 

moving objects. 

1.3 Objective and Motivation 

We motivate the problem with a real-life example of sharing person-specific RFID data. 

The Oyster Travelcard Transport for London (TfL), is a successful application of RFID 

technology in transit system. Passengers register their personal information when they first 

6 



purchase their RFID-tagged smart cards. Then, the appropriate fare amount is deducted 

from their cards every time they use the transport services. Passengers refill their smart 

card anytime as needed. The public transit companies utilize the personal journey data (the 

RFID data) to improve their services. Analyzing RFID data is a non-trivial task; transit 

companies often do not have the expertise to perform the analysis themselves but outsource 

this process and, therefore, require granting a third party access to the RFID data and 

passenger data (object data in Figure 1). The passengersS data may contain person-specific 

(sensitive) information, such as age, disability status, and (un)employment status. TfL does 

say that it does not associate journey data with named passengers, although they provide 

such data to government agencies on request [52]. Our goal is to answer the question: how 

can RFID data holders (e.g., the transit company) safeguard data privacy while keeping the 

released RFID data useful? 

Traditional K-anonymity and its extended privacy models assume that a QID con­

tains all attributes (dimensions) because the attacker could potentially use any or even all 

QID attributes as prior knowledge to perform record or attribute linking. However, in 

real-life privacy attacks, it is unlikely that an attacker could know all locations and times-

tamps that the target victim has visited because it requires non-trivial effort to gather each 

piece of prior knowledge from so many possible locations at different time. Thus, it is 

reasonable to assume that the attacker's prior knowledge is bounded by at most L pairs of 

locations and timestamps that the target victim has visited. A recent work [61] on transac­

tion data anonymization also utilized a similar assumption to bound the prior knowledge 

of an attacker, but their privacy models together with their methods are not applicable to 
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anonymizing path data of moving objects. 

Based on this assumption, we define a new privacy model called LKC-privacy for 

anonymizing high-dimensional, sparse RFID data. The general intuition is to ensure that 

every possible subsequence q with maximum length L in any path of a RFID data table T 

is shared by at least K records in T and the confidence of inferring any sensitive values S 

from q is not greater than C, where L and K are positive integer thresholds, 0 < C < 1 

is a real number threshold, and S is a set of sensitive values specified by the data holder. 

LKC-privacy bounds the probability of a successful record linking attack to be < l/K 

and bounds the probability of a successful attribute linking attack to be < C, provided 

that the attacker's prior knowledge on the target victim is not more than L pairs of lo­

cations and timestamps. Table 2 shows an example of anonymous table T" that satisfies 

(2,2, 50%)-privacy by suppressing a l , d2, e4 from Table 1. Every possible subsequence 

q with maximum length 2 is shared by at least 2 records and the confidence of inferring 

the sensitive value HIV from q is not greater than 50%. In contrast, to achieve traditional 

2-anonymity, we need to further suppress 63, c7, e9, resulting in much higher information 

loss. 

1.4 Research Contribution 

RFID mining technique has been introduced by [25]. As a result, research on RFID pro­

liferated quickly, but most work focuses on utilizing RFID [23] [24] and solutions for 

addressing its privacy issues are limited. A comprehensive privacy-preserving information 
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system must protect its data throughout its lifecycle, from data collection to data analysis, 

a majority of previous works on privacy-preserving RFID technology [47] focused on the 

threats caused by the physical RFID tags and proposed techniques like killing tags which 

permanently disable the RFID chip, sleeping tags which temporary disable the RFID chip, 

and EPC re-encryption [30]. They addressed the privacy and security issues at the com­

munication layer among tags and readers, but ignored the protection of the database layer, 

where a large amount of RFID data actually resides. This thesis provides a complement to 

the existing privacy-preserving RFID hardware technology. 

To the best of our knowledge, this is the first work on anonymizing high-dimensional, 

sparse RFID data. Our contributions in this thesis are summarized as follows: 

• We identify a new privacy problem in RFID data and generalize the requirement to 

formalize the RFID privacy protection model (Chapter 3). 

• We formally define a new privacy model, called LKC-privacy (Chapter 4), for anonymiz­

ing high-dimensional, sparse RFID data. 

• We propose an efficient anonymization algorithm to transform a table to satisfy a 

given LKC-privacy requirement without compromising the useful data for analysis. 

• We develope a RFID data generator to simulate real-life moving object data. 

• We implement the proposed model and evaluate the performance and method in 

terms of data quality, efficiency, and scalability. 
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1.5 Thesis Organization 

This thesis is organized as follows: we identify the related work in Chapter 2, formally 

define the privacy model in Chapter 3, present an anonymization algorithm in Chapter 4, 

experimentally evaluate our proposed method in Chapter 5, and conclude in Chapter 6. 
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Chapter 2 

Related Work 

In this chapter, we review the related literature in privacy-preserving data publishing cat­

egorized by types of data. Namely, these are relational data (Chapter 2.1), transaction 

data (Chapter 2.2), and moving object data (Chapter 2.3). We first illustrate the privacy 

threats caused by publishing different types of data. Then, we discuss the privacy models 

that thwart the identified privacy threats and the anonymization methods to achieve these 

privacy models. 

2.1 Privacy Models for Relational Data 

Relational data is the most common form of store structured data. A relational database 

consists of a collection of data tables. Each table consists of a set of attributes. Typically, a 

data table T has the form [16] [27]: 

T(EI,QID,SI,NSI), 

where the Explicit Identifier (EI) is a set of attributes, such as Social Insurance Number 

(SIN), name and driver license number, consisting of unique information that can identify 

a record owner. The Quasi-Identifier (QID) is a set of attributes that does not contain 
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explicit identifying information, but some combination of QID values, if specific enough, 

could potentially identify some record owners. The Sensitive Information (SI) is a set of 

attributes containing personal sensitive information, such as salary and health diagnosis of 

the record owners and the Non-Sensitive Information (NSI) is a set of attributes that does 

not belong to the above three categories, but is useful for the data publishing purpose. In 

this thesis, we assume that each record in T represents the information of one record owner, 

and each record owner has only one record in T. We also assume that SI is important for 

the purpose of data publishing; otherwise, SI should be removed first. 

We assume that an attacker has access to the published table T and has prior knowledge 

of some target victims' QID values. Privacy threats occur in a table T if an attacker can 

identify some target victims' records or their sensitive information. We also assume that 

the EI has been removed before publishing T, but Sweeney [48] showed that even though 

the EI is removed, it is still possible to identify some target victims' information with prior 

knowledge of QID. There are two typical types of linking attacks, namely record linking 

and attribute linking. One way to prevent identifying owners' records is to anonymize the 

QID so that the record is indistinguishable from others. The anonymized table has the 

form 

T(QID',SI,NSI), 

where QID' is the anonymized version of the QID from the original table T. Below, we 

use examples to illustrate the latest developments in privacy models and the anonymization 

methods for achieving the privacy models in relational data. 

2.1.1 Record Linking 

Let P(QID) be the prior knowledge of an attacker on a target victim. An attacker could use 

P(QID) to identify a group of records in T that may belong to the victim. The following 

example illustrates the privacy threat caused by record linking. 
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Example 2.1.1. A bank wants to release its corporate employees' payroll information, in 

Table 3, to a third party data mining company. The explicit information, such as name 

and phone number, can uniquely identify an owner's record and salary information. Thus, 

EI = {Name, Phone) is removed. Table 4 shows the employees' payroll information 

without EI. Given that an attacker knows that Smith is born in 1975 and works in the 

DPI01 department as prior knowledge, the attacker can uniquely identify the first record in 

Table 4 to be Smith's record because this is the only record matching the prior knowledge. • 

Name 
Smith 
Mac 
Hack 
Simpson 
Grandson 
Chanson 

Table 3: 
Birth Year 
1975 
1976 
1968 
1968 
1969 
1968 

Example of employ 
Phone 
568-9854 
589-9556 
658-9875 
449-9896 
589-8546 
984-3204 

Zip 
K5G 1Y4 
K5G 1Y4 
L9A2B1 
L9A2B1 
H3A2B1 
H3A2B1 

se payroll table E 
Gender 
M 
M 
F 
F 
M 
M 

Department 
DP101 
DP101 
DP102 
DP 102 
DP 103 
DP 103 

Salary 
50,000 
50,000 
230,000 
60,000 
70,000 
190,000 

Table 4: Example of employee payroll table E without EI 
Birth Year 
1975 
1976 
1968 
1968 
1969 
1968 

Zip 
K5G 1Y4 
K5G 1Y4 
L9A2B1 
L9A2B1 
H3A2B1 
H3A2B1 

Gender 
M 
M 
F 
F 
M 
M 

Department 
DP101 
DP101 
DP 102 
DP 102 
DP 103 
DP 103 

Salary 
50,000 
50,000 
230,000 
60,000 
70,000 
190,000 

Many data masking schema have been proposed to thwart the privacy threat caused by 

record linking. Perturbation is a widely used approach in statistical control for this purpose. 

The general idea is to add noise to numerical data [2] [9], such as age and salary, while 

preserving the statistical mean, correlation, or some properties in the data for the purpose 

of data mining [5] [15] [32] [6] [12] [14]. Kargupta et al. [31] showed that it is possible to 
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recover the real data from the perturbed data if the distribution of noise is known. Huang 

et al. [28] proposed an improved method to randomize the data to avoid this problem. 

Samarati and Sweeney [46] [45] proposed an alternative privacy model, called K-

anonymity, to thwart the privacy threat caused by record linking. The intuition is to require 

that, for each record in the data table T, there exists at least K-\ other records that share the 

same QID values in T. This privacy model guarantees that the probability of a successful 

record linking is < \/K. 

Generalization is a commonly used masking scheme for achieving /^-anonymity. A 

generalization replaces some specific data value with a less specific parent data value based 

on a user-defined attribute taxonomy tree, e.g., Figure 2. As the value is generalized to 

more abstract levels, it is more likely to be shared by more records, therefore reducing the 

chance of linking a record to a record owner. 

Example 2.1.2. Table 5 shows a 2-anonymous table on QID = (BirthYear, Zip, Gender, 

Department), meaning that every combination of values on QID in the table is shared by 

at least two data records. This 2-anonymity is achieved by generalizing 1968 and 1969 to 

1960s on the BirthYear in Table 4 based on the user-defined taxonomy tree in Figure 2. 

The user-defined taxonomy tree is defined for the purposes of capturing the user's domain 

knowledge and is required before the generalization is performed. 1960s is the parent value 

of 1968 and 1969, so the value 1960s covers more records in the data table, therefore, re­

ducing the chance of linking the victim's record. Given that the table is 2-anonymous, the 

maximum probability of a successful record linking is < 50%. • 

The database community has spent lots of effort on privacy-preserving data publishing, 

where the goal is to transform a relational data into an anonymous version for preventing 

record and attribute linkings. Traditional K-anonymity [7] [33] [45] and its extensions [19] 

[20] [36] [38] [42] [55] [56] [58] [59] are not applicable to anonymize RFID data due to 

the curse of high-dimensionality [3] and data sparseness discussed in Chapter 1. We tackle 
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Figure 2: Taxonomy Tree for BirthYear 

this challenge by exploiting the assumption that the attacker knows at most L pairs of 

previously visited locations and timestamps by a target victim. 

Table 5: Anonymous table E' employee payroll information without EI 

Birth Year 
1970s 
1970s 
1960s 
1960s 
1960s 
1960s 

Zip 
K5G 1Y4 
K5G 1Y4 
L9A2B1 
L9A2B1 
H3A2B1 
H3A2B1 

Gender 
M 
M 
F 
F 
M 
M 

Department 

DP101 
DP101 
DP 102 
DP 102 
DP 103 
DP 103 

Salary 

50,000 
50,000 
230,000 
60,000 
70,000 
190,000 

2.1.2 Attribute Linking 

In attribute linking, even though the attacker cannot identify the record of a target victim, 

the attacker may infer the victim's sensitive information based on the QID if some records 

in the same QID groups share the same sensitive information. This type of attribute linking 

is possible even though the table has been K-anonymized. A naive solution is to simply 
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remove the sensitive information. Yet, if the sensitive information is important for data 

publishing purposes, such a solution is not applicable. Wang et al. [54] [56] proposed a 

model to bound the confidence of inferring sensitive information. The following example 

illustrates the intuition. 

Example 2.1.3. Consider Table 5. Suppose the attacker knows that Smith's QID is (1970s, 

K5G 1Y4, M, DP101). Due to the first two matching records (record 1 and record 2) 

share the same QID value, the attacker can infer that (1970s, K5G 1YA, M, DP101) -»• 

$50, 000 with 100% confidence. • 

Wang et al. [54] [56] proposed a privacy model that bounds the confidence of inferring 

sensitive information from a QID. The privacy requirement is specified in a template, 

(QID —• s, C), where s is a user-specified sensitive value and C is a user-defined thresh­

old. Conf(QID —> s) denotes the maximum confidence to infer the sensitive value s 

from any QID values. Thus, a table satisfies (QID —> s, C) only if the confidence of 

inferring s from any QID value is below or equal to C. For example, assuming the privacy 

requirement for Table 5 is K — 2 and C = 50%, it still violates the privacy require­

ment even it satisfied K = 2 because the confidence of inferring Salary = $50,000 from 

(1970s, K5G 1Y4, M, DP101) is 100% which is > 50%. 

To prevent attribute linking, Machanavajjhala et al. [38] [39] proposed a privacy model 

called the ^-diversity, which requires every QID group to have at least £ distinct sensi­

tive information. Therefore, a larger £ implies less chances of inferring a particular sen­

sitive information in a QID group. Compared to confidence bounding, ^-diversity does 

not quantify the probability value. In addition, it is difficult to define different protection 

levels with different sensitive information groups. Machanavajjhala et al. [38] [39] pro­

posed two other models called positive disclosure-recursive (c,£)-diversity and negative/-

positive disclosure-recursive(c, £) diversity, which can better model the attacker's back­

ground knowledge. These notions serve similar purposes for the privacy template proposed 
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in [54] [56]. 

Wong et al. [58] presented an integrated model called (a, /O-anonymity. {a, K)-

anonymity requires that every qid group to contain at least K records and conf(qid —> s) 

< a for any sensitive value s, where K and a are user-defined thresholds. 

Zhang et al. [63] proposed the (k, e)-anonymity model focusing on eliminating attribute 

linking on numerical sensitive attributes such as salary, while previous models focused on 

the categorical sensitive attribute such as health diagnosis, (k, e)-anonymity requires that 

each QID group must have at least k sensitive information with a range of e. One limitation 

of (A;, e)-anonymity is that if some sensitive values occur frequently within a subrange of 

d, then the attacker could still confidently infer the subrange in a group. 

Recall that the ^-diversity privacy model requires every QID to have at least I distinct 

sensitive values. Li et al. [35] found that when the overall distribution of a sensitive attribute 

is skewed, ^-diversity does not prevent attribute linking attacks. Consider the payroll infor­

mation in Table 4 where only 20% of people have salary of $120,000. Suppose that there is 

a 2-diversity QID group where 50% of people have a salary of $50,000 and 50% of people 

have a salary of $120,000. This group presents a serious privacy threat because any record 

owner in the group could be inferred as having $120,000 with 50% confidence, compared 

to 20% in the overall table. Li et al. [35] proposed a privacy model, called t-closeness, 

to require the distribution of a sensitive attribute in any group on QID to be close in the 

overall table and the closeness is within t. Li et al. [34] further extended the work to apply 

to the numerical sensitive attribute. Applying t-closeness will greatly damage the data use­

fulness because it requires the sensitive distribution to be the same among the entire group. 

Domingo-Ferrer and Torra [11] adjusted the thresholds to increase the risk of skewness 

and thus reduce the data utility loss. In our thesis, we use confidence bounding to restrict 

the probability for attackers to infer the sensitive information and it is easy to adjust the 

trade-off between privacy protection and information utility. 
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Bu et al. [10] presented a privacy-preserving method for serial data publishing with 

permanent sensitive values and dynamic registration lists. The authors assumed that the at­

tacker had limited participation knowledge and bounded the probability of linking between 

any individual and any sensitive information with a threshold \/£ and mixed the sensitive 

information with NSI. 

Fung et al. [19] [20] presented a top-down specialization (TDS) method to general­

izes a table by specializing it from the general state to satisfy fc-anonymization. TDS is 

able to handle categorical attributes and numerical attributes. Fung et al. [17] [18] further 

extended the /c-anonymization algorithm to preserve the information for clustering anal­

ysis. They first partitioned the original data into clusters and then apply TDS to meet 

the /c-anonymization. Mohammed et al. [43] and Trojer et al. [53] extended the idea to 

distributed data mashup application. 

The focus of this thesis is to present a privacy-preserving data publishing method for 

high-dimensional, sequential data which is fundamentally different from the relational data 

discussed in this section. 

2.2 Privacy Model for Transaction Data 

Recent study has shown that publishing transaction data may also pose a privacy threat on 

sensitive information linking. A transaction database [27] is a table where each record con­

tains a set of items. Examples of transaction data are credit card transaction data, medical 

notes and e-mails. A transaction typically contains a transaction number and a set of asso­

ciated items. In real-life transaction database, the transaction table may be linked to other 

relational database, which contains more information describing the transaction. The in­

formation is usually rich and valuable to data mining. A full report of transaction data may 

describe full image of personal activities and potentially person's sensitive information. 

The following case study illustrates the privacy threat caused by publishing transaction 
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data. AOL released a search query database without record owners' name [37]. Afterwards, 

Record No. 4417749 was traced back to Ms. Thelma Arnold. Even the name and user's 

address have already been removed from the database, attackers can still identify the record 

owner by combining the published data query. 

Traditional privacy models /C-anonymity and ^-diversity aims at limiting the linking 

via the QID such as Birth Year, Zip, Gender and Department. In transaction data, each 

item may be considered as an attribute in the QID and transaction data is often high-

dimensional. For example, in a credit card data log, there may exist thousands to mil­

lions of distinct items. Each transaction contains only a very small fraction of items. 

Thus, transaction data is often high-dimensional and sparse. Due to the curse of high-

dimensionality [3], applying traditional privacy models often results in suppressing most 

of the items, making the published data useless. Aggarwal et al. [3] discussed the problem 

of the high-dimensionality on K-anonymity but did not provide a solution to the problem. 

In this thesis, we present a new privacy model for anonymizing high-dimensional data. 

Recently, there were some studies on anonymizing high-dimensional transaction data [22] 

[50] [61] [60]. Ghinita et al. [22] proposed a permutation method in which the general idea 

is to first group transactions with close proximity and then associate each group to a set 

of mixed sensitive values. In our model, the attacker's prior knowledge (a, b) is consid­

ered to be different from prior knowledge {b, a); therefore, the proposed privacy models 

and anonymization methods by [22] [50] [61] for anonymizing transaction data is not ap­

plicable to our problem. Terrovotis et al. [50] and Su et al. [61] extended the traditional 

/^-anonymity model by assuming that the attacker knows that at most m transaction items 

of the target victims. All these works [22] [50] [61] considered a transaction as a set of 

items. Terrovitis et al. [51] proposed a KM model to restrict the attacker's prior knowl­

edge to M items in a transaction record. Their works are different than our thesis. First, 

their transaction records have no time sequence. Second, their transaction database has no 
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sensitive attributes. Finally, they used generalization techniques to achieve if-anonymity. 

Aggarwal et al. [4] proposed a sketch based model by using perturbation schema in a way 

to retain the original data utility after anonymization. 

2.2.1 Record Linking 

Let P(QID) be the prior knowledge of an attacker on a target victim. The attacker may 

use P(QID) to identify the target victim's record. The following example illustrates this 

privacy threat of record linking in the context of transaction data. 

Example 2.2.1. Consider a credit card company that would like to release its customer 

transaction data at Table 6 for data mining purposes. TID stands for Transaction ID. 

A record owner has purchased items such as pencils, coffee, and medicine, denoted by 

{a, b, c, d}. Medical history is the victim's health diagnosis associated with each record. 

Assuming our pre-defined privacy requirement is K = 2, Table 6 violates the privacy re­

quirement. For example, if an attacker knows that the victim has purchased items {o, b}, 

among the entire records, only T2 contains {a, b}. Thus, the attacker can infer that T2 is 

the victim's record, together with her other purchased items and medical history. • 

Table 6: Credit card item transaction table C [61] 
TID 
Tl 
T2 
T3 
T4 
T5 

Purchased Items 
a, c, d, f, g 
a, b, c, f 
b, d, f, x 
b, c, g, y, z 
a, c, f, g 

Medical History 
Diabetes 
Hepatitis 
Hepatitis 
HIV 
HIV 
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2.2.2 Attribute Linking 

Due to the sparseness of transaction data, there are not many records sharing the same 

QID values; therefore, with the attacker's prior knowledge P(QID), the attacker can 

easily infer victim's sensitive information. For example, if an attacker knows that a victim 

has purchased {b, / } , record T2 and T5 satisfy our AT-anonymity requirements but attacker 

can still infer that the victims has Hepatitis. 

In chapter 2.1, we have discussed using generalization to achieve A'-anonymity. Here, 

we study another masking scheme called suppression. Suppression replaces some informa­

tion with null information. There are two schema of the suppression: global suppression 

and local suppression. Global suppression removes all the instances of a given value from 

the entire data set. Local suppression removes some of the instances of a given value from 

the data set with the goal of minimizing loss. 

Applying the traditional K-anonymity and confidence bounding [56] models on trans­

action data would result in suppressing lots of data, making the published data useless for 

data analysis. Xu et al. [61] assumed that attackers only have h pieces of prior knowledge 

in QID. This assumption can significantly reduce the information loss in the anonymous 

data. 

Example 2.2.2. Consider Table 6, to achieve the privacy requirements with K = 2, h = 2 

and C = 80%, we can globally suppress (x, y, z). Table 7 shows the resulting table that 

satisfies the privacy requirement. • 

2.3 Privacy Model for Moving Object Data 

Moving object data is a special type of transaction data. Compared to transaction data, 

the items in a moving object data are often time and location dependent. Location-based 
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Table 7: Anonymous credit card item transaction table C [61] 
TID 
Tl 
T2 
T3 
T4 
T5 

Purchase Item 
a, c, d, f, g 
a, b, c, f 
b,d,f 
b, c, g 
a, c, f, g 

Medical History 
Diabetes 
Hepatitis 
Hepatitis 
HIV 
HIV 

services (LBS) generate large amounts of moving object data based on their physical lo­

cation and time. Examples of the moving object data are mobile phone data, GPS Data, 

Web Query Data and RFID data. These data provide abundant data sources for mining re­

searchers to predict market trends, human purchase patterns and traffic patterns to improve 

current technology to better serve society. Even though the LBS data are valuable and use­

ful, research [13] has shown that 24% of users are concerned about their privacy caused by 

the location-based services data. Moving object data by nature are time dependent, location 

dependent, high-dimensional and sparse. It thus poses a challenge to protect the data in a 

way to that preserves the useful information. 

Various routing and messaging techniques have been proposed to protect the privacy 

of subscribers in a mobile network. The Mix Zones System [8] provided anonymous mes­

saging services by delaying and reordering messages from subscribers within mix zones 

to confuse an attacker. Other mechanisms, such as cloaking [26] and location-based K-

anonymity [21], concealed a subscriber within a group of K subscribers. A subscriber is 

considered fC-anonymous if she is indistinguishable from at least K — 1 other subscribers. 

This privacy requirement is achieved by generalizing the disclosed locations and times-

tamps of the messages, or by delaying the messages. Such anonymous messaging tech­

niques are not applicable to RFID data because RFID data, such as journey data, consists 

of sequences of locations with different timestamps, rather than simply the location of the 

sender and the receiver. Mix Zones is mainly designed for anonymizing dynamic messages 
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for location-based services (LBS). It is very different from releasing a large set of location-

based RFID data. Papadimitriou et al. [44] presented a privacy issue on publishing time 

series data and proposed a perturbation method to add some "similar information" to the 

original data with the goal of deviating the linking attacks. 

Currently, there are few works [1] [49] [62] on anonymizing moving object and extend 

the traditional i^-anonymity model to anonymize a set of moving objects. [1] proposed 

a method to ensure at least K moving object are within its radius, where the radius is a 

user-specified threshold. The privacy requirements can be achieved by space translation 

and adding noise to original paths. Our approach is different from [1] in two major aspects. 

First, their model does not consider the privacy threat caused by attribute linking between 

the path and the sensitive attribute. Second, they assume that all moving objects have 

continuous timestamps. This assumption may hold in mobile phone or LBS applications, 

where the user's location is continuously detected while the phone is turned on. However, 

this assumption does not hold for RFID because a RFID-tagged object (e.g., smart cards 

used in transportation) is unlikely to be continuously detected by a RFID reader. These 

differences imply different privacy threats and models. Terrovitis et al. [49] assumed a very 

different attack model on moving objects. They considered that the locations themselves 

are sensitive information and the attacker attempts to infer some sensitive locations visited 

by the target victims are unknown to the attacker. They did not specifically address the 

high-dimensionality problem in RFID data, which is the theme of this thesis. Malin et 

al. [40] also studied the privacy threats in location-based data conducted in hospitals. 
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Chapter 3 

Problem Definition 

In this chapter, we formally define the anonymization problem for RFID data. Section 

3.1 defines the format of an object-specific path table. Section 3.2 formally defines the 

privacy threats and the background knowledge of an attacker. Section 3.3 formally defines 

our proposed privacy model, namely LKC-Pxivacy, followed by a problem statement in 

Section 3.4. 

3.1 Object-Specific Path Table 

A typical RFID system generates a sequence of RFID data records of the form (EPC, loc, t), 

where each record indicates a RFID reader in location loc has detected an object having 

electronic product code (EPC) at time t. We assume that the RFID-tagged item is at­

tached to or carried by some moving object, for example, patients in a hospital or patients 

in a public transit system. 

A pair (/ocjtj) represents that the object has visited location loct at time U. The path 

of an object, denoted by {(loc\t{)... (locntn)), is a sequence of pairs that can be obtained 

by first grouping the RFID records by EPC and then sorting the records in each group 

by timestamps. A timestamp is the entry time to a location, so the object is assumed to 
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be staying in the same location until its new location is detected by another reader. An 

object may revisit the same locations at different timestamps, but consecutive pairs having 

the same location are duplicates and, therefore, are removed. For example, in (al —> 63 —> 

64 —• 66 —* cJ —• 68), 64 and 66 are removed but 68 is kept. At any time, an object can 

be at only one location, so al —» 61 is not a valid sequence. Timestamps in a path must 

increase monotonically. 

An object-specific path table T is a collection of records in the form 

({lociti) -> . . . ->• (locntn)) : si,..., sp : dx,..., dm, 

where ((lociti) —•...—> (locntn)) is a path, Sj G £* are sensitive attributes, and d, G A 

are quasi-identifying (QID) attributes associated with the object. In the rest of this thesis, 

the term "record" refers to the above form. The QID attributes are relational data and can 

be anonymized by existing methods [20] [36] [38] [45] [56] for relational data. This thesis 

focuses on the paths and sensitive attributes. Table 1 gives an example of object-specific 

path table. 

3.2 Privacy Threats 

Suppose a data holder wants to publish an object-specific path table T to some recipient(s) 

for data analysis. Explicit identifiers, e.g., name, SSN, and EPC, have been removed. The 

paths, together with the object-specific attributes, are assumed to be important for the task 

of data analysis; otherwise, they could be removed. One recipient, the attacker, seeks to 

identify the record or sensitive values of some target victim V in T. As explained in Chapter 

1, we assume that the attacker knows at most L pairs of location and timestamp that the 

victim V has previously visited. We use K = ((locitx) —»...—• (locztz)) to denote such 

prior knowledge, where z < L. Using the prior knowledge «, the attacker could identify 

a group of records in T, denoted by G(K), that "matches" K. A record matches K if K is a 
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disjoint subsequence of the path in the record. For example in Table 1, if « = (e4 —• c7), 

then EPC#1 [{al -»• d2 -> 63 -» e4 -» / 6 -+ c7) : # / V j matches K, but EPC#A 

{(d2 —>• / 6 —>• c7 —> e8) : Allergy] does not. 

The notion of matching is formally defined as following. 

Definition 3.2.1 (Matching). A pair (lociti) matches a pair (locjtj) if ZOCJ = Joe, and 

ti = tj. A path px covers a path py if, for every pair (locyty) in py, there exists a pair 

(locxtx) in px that matches (locyty). A record matches K if the path of the record covers 

K. • 

An attacker could utilize G(K) to perform two types of privacy attacks: 

1. Record linking: G(K) is a set of candidate records that contains the victim V s record. 

If the group size of G(K), denoted by \G(K) \, is small, then the attacker may identify 

V s record from G(K), and therefore, V s sensitive value. 

2. Attribute linking: Given G(K), the attacker may infer that V has sensitive value s with 

confidence Conf(s\G(K)) = \GM\ » w n e r e
 G(K[JS) denotes the set of records 

containing both K and s. Conf{s\G(n)) is the percentage of the records in G{K) 

containing s. The privacy of V is at risk if Conf{s\G{n)) is high. 

Example 1.2.1 illustrates these two types of attacks. 

3.3 Privacy Models 

The problem studied in this thesis is to transform the raw object-specific path table T to a 

version T" that is immunized against record and attribute linking. We define two separate 

privacy models LK-anonymity and LC-dilution to thwart record linking and attribute link­

ing, respectively, followed by a unified model. The attacker's prior knowledge K could be 

any subsequence q with a maximum length L of any path in T. 
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3.3.1 LK-Anonymity 

Definition 3.3.1 (LK-anonymity). An object-specific path table T satisfies LK-anonymity 

if and only if \G(q) \ > K for any subsequence q with \q\ < L of any path in T, where K is 

a positive anonymity threshold. • 

3.3.2 LC-Dilution 

Definition 3.3.2 (LC-dilution). Let S be a set of data holder-specified sensitive values 

from sensitive attributes Si,..., Sm. An object-specific path table T satisfies LC-dilution 

if and only if Conf(s\G(q)) < C for any s E S and for any subsequence q with \q\ < L of 

any path in T, where 0 < C < 1 is a confidence threshold. • 

3.3.3 LKC-Privacy 

Definition 3.3.3 (L/CC-privacy). An object-specific path table T satisfies LKC'-privacy 

if T satisfies both LK-anonymity and LC-dilution. • 

L/C-anonymity bounds the probability of a successful record linking to < 1/K. LC-

dilution bounds the probability of a successful attribute linking to < C. LKC-pvivacy 

bounds both. Note, not all values in sensitive attributes Si,..., Sm are sensitive. For 

example, HIV could be sensitive, but flu may not be. Our proposed privacy model is 

flexible to accommodate different privacy need by allowing the data holder to specify a set 

of sensitive values S in Definition 3.3.2. 

3.4 Problem Statement 

We can transform an object-specific path table T to satisfy LKC-privacy by performing a 

sequence of suppressions on selected pairs from T. In this thesis, we employ global sup­

pression, meaning that if a pair p is chosen to be suppressed, all instances of p in T are 
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suppressed. We use Sup to denote the set of suppressed pairs. Table 2 is the result of sup­

pressing a\, d2, and e4 from Table 1. This suppression scheme offers several advantages 

over generalization for anonymizing RFID data. First, it does not require a predefined tax­

onomy tree for generalization, which often is unavailable in real-life databases. Second, 

RFID data can be extremely sparse. Enforcing generalization on RFID data may result in 

generalizing many "neighbor" objects even though if there is only a small number of outlier 

pairs, such as a 1 in Table 1. In addition, generalization matching schema is computationly 

expensive. Furthermore, generalization requires user to define a taxonomy tree which may 

affect the accuracy of the data mining analysis. Suppression offers the flexibility of remov­

ing those outliers without affecting the rest of the data. 

Definition 3.4.1 (Anonymization for RFID). Given an object-specific path table T a L / C -

privacy requirement, and a set of sensitive values S, the problem of anonymization for 

RFID is to identify a transformed version V that satisfies the L/CC-privacy requirement 

by suppressing a minimal number of instances of pairs in T. • 

if-anonymity [45] is a special case of LKC-privacy with L = oo and C = 100%. 

Confidence bounding [56] is a special case LKC-privacy with L = oo and K — 1. Given 

that achieving optimal K-anonymity and optimal confidence bounding have been proven to 

be NP-hard [41] [56], achieving optimal LKC-privacy is also NP-hard. Thus, we propose 

a greedy algorithm to efficiently identify a sub-optimal solution. LKC-pvivacy has also 

been proposed by anonymizing relational healthcare data [42]. 
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Chapter 4 

Anonymization Method 

Given an object-specific path table T and a LKC-privacy requirement, our goal is to re­

move all "violations" from T, where a violation is a subsequence of a path in T that violates 

the L/CC-privacy requirement. We first present an efficient algorithm for identifying all 

violations in Chapter 4.1, followed by a greedy algorithm to remove all violations in Chap­

ter 4.2. 

4.1 Identifying Violations 

A subsequence q in T is a violation if its length is less than the maximum length threshold 

L and its group G(q) violates LX-anonymity, LC-dilution, or both. The adversary's prior 

knowledge K could be any of such subsequence q. Thus, removing all violations means 

eliminating all possible channels of record and attribute linking attacks. 

Definition 4.1.1 (Violation). Let q be a subsequence of a path in T with \q\ < L and 

\G(q)\ > 0. q is a violation with respect to a L/CC-privacy requirement if \G(q)\ < K or 

Conf{s\G{q)) > C. • 

Example 4.1.1. In Table 1, a sequence q\ = (e4 —> c7) is a violation if if = 2 because 
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\G(q1)\ = 1 < 2. A sequence q2 = {d2 -»• /6) is a violation if C = 50% and S = {HIV} 

because Conf(HIV\G(q2)) = 67% > 50%. • 

We note two properties in the notion of violation. (1) If q is a violation with |G(g)| < if, 

then any super sequence of q, denoted by q', is also a violation because |G(g')l < \G(q)\ < 

K. This property has two implications. First, it implies that the number of violations could 

be huge, so it is not feasible to first generate all violations and then remove them. Second, if 

L < L',a table T satisfying Z/K-anonymity must satisfy Lif-anonymity because \G(q) \ > 

\G(q')\ > K. (2) If q is a violation with Conf(s\G(q)) > C and \G(q)\ > K, its super 

sequence q' may or may not be a violation because Conf(s\G(q')) > Conf(s\G(q)) does 

not always hold. Thus, to achieve LC-dilution, it is insufficient to ensure any subsequence 

q with length L in T to satisfy Conf(s\G(q)) > C. Instead, we need to ensure any 

subsequence q with length less than or equal to L in T to satisfy Conf(s\G(q)) > C. 

Enumerating all possible violations is infeasible. Our insight is that among all the 

violations, there exists some minimal sequences called "critical violations". We show that 

a violation exists in table T if and only if a critical violation exists in T. 

4.1.1 Critical Violation Tree 

Definition 4.1.2 (Critical violation). A violation q is a critical violation if every proper 

subsequence of q is a non-violation. • 

Example 4.1.2. In Table 1, if K = 2, C - 50%, S = {HIV}, a sequence qx = (e4 - • c7) 

is a critical violation because |G(<7i)| = 1 < 2, and both (e4) and (c7) are non-violations. 

A sequence q2 = (d2 —> e4 —> cl) is a violation but it is a not a critical violation because 

its subsequence (e4 —> cl) is a violation. • 

Observation 4.1.1. A table V satisfies LifC-privacy if and only if V contains no critical 

violation because each violation contains a critical violation. Thus, if V contains no critical 

violations, then T" contains no violations. • 
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4.1.2 Efficient Tree Scan Algorithm 

Next, we propose an algorithm to efficiently identify all critical violations in T with respect 

to a Li^C-privacy requirement. Based on Definition 4.1.2, we generate all critical viola­

tions of size i + 1, denoted by V*+i, by incrementally extending non-violations of size i, 

denoted by Uu with an additional pair. 

Procedure 1 Generate Critical Violations (GenViolations) 
Input: Raw RFID path table T 
Input: Thresholds L, K, and C. 
Input: Sensitive values S. 
Output: Critical violations V. 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

let candidate set C\ be the set of all distinct pairs in T; 
i = l; 
repeat 

scan T once to obtain \G(q)\ and Conf(s\G(q)) for every sequence q G C{ and for every 
sensitive value s £ S; 
for all sequence q G C\ do 

if \G(q)\ >0then 
if \G(q)\ < K or Conf{s\G{q)) > C for any s € 5 then 

add q to VJ; 
else 

add qtoUf, 
end if 

end if 
end for 
++i; 
generate candidate set d by Ui-\ xi Ui-\\ 
for all sequence q G Cj do 

if g is a super sequence of -u for any v G V^_i then 
remove q from Cj; 

end if 
end for 

until i > L or Q = 0 

return V = ViU-- -UVi- i ; 

Procedure 1 summarizes the steps for generating critical violations. Line 1 initializes 

the candidate set C\ to be the set of all distinct pairs in any paths in the raw table T. Line 4 

scans the raw data once to obtain the support counts to compute \G(q)\ and Conf(s\G(q)) 

for every sequence q € Ci and for every sensitive value s e S. Lines 5-13 loops through 
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every candidate 5 G Q of \G(q)\ > 0, and puts q to the critical violation set Vi if it 

violates Lif-anonymity or LC-dilution; otherwise, puts q to the non-violation set [/j. Once 

a violation is found, we remove it from subsequent iterations because its super sequence 

must not be a critical violation. Line 15 generates a candidate set Q by self-joining Ui-\. 

Two sequences qx = ((loc*t*) —>...—>• (Jocf^f^)) and qy = ((loc\t\) —>...—• 

(Jocf_1£f_1)) in C/j_i can be joined only if the first z — 2 pairs of gx and q̂  are identical 

and £f_i < ^_ t . The joined sequence is ((Zocftf) —» .. . —> (/oc^Ljtf.!) —> ( / o c ^ ^ ) ) . 

Lines 16-20 removes a candidate g from C* if q is a super sequence of any sequence in Vi_i 

because all proper subsequences of a critical violation must be a non-violation. 

Example 4.1.3. Consider Table 1 with L = 2, # = 2, C = 50%, and 5 = {HIV}. 

First, we generate candidate set C\ = {al,d2, 63, e4, c5,/6,c7, e8, e9}, which is a set 

of distinct pairs in T. Then, we scan Table 1 to identify the critical violations from 

C\ and put them in V\ = {al}. The remaining sequences are non-violations U\ = 

{d2, 63, e4, c5, /6 , c7, e8, e9}. Next, we generate C2 = {d2b3, d2ei, d2c5, d2/6, d2c7, d2e8, 

c?2e9, 63e4,63c5, 63/6, 63c7,63e8,63e9, e4c5, e4/6, e4c7, e4e8, e4e9, c5/6, c5c7, c5e8, c5e9, 

/6c7, /6e8, /6e9, c7e8, c7e9, e8e9} and scan once Table 1 to determine critical violations 

V2 = {d2b3, d2e4, d2/6, d2e8, d2e9, e4c7, e4e8}. 

4.2 Removing Violations 

4.2.1 Selection Score Function 

We propose a greedy algorithm to transform raw table T to an anonymous table V with 

respect to a given LXC-privacy requirement by a sequence of suppressions. In each iter­

ation, the algorithm selects a suppression on value v based on a greedy selection function. 

In general, a suppression on a value v in T increases privacy because it removes critical 

violations, and decreases information utility because it suppresses pairs in T. Therefore, 
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we define the greedy function, Score(p), to select a suppression on a pair p that maximizes 

the number of critical violations removed and minimizes the number of pair instances sup­

pressed in T. Score(p) is formally defined as follows: 

PrivGainjp) 
Sc0rG{p) = InfoLoss(py 0 ) 

where PrivGain(p) is the number of critical violations containing pair p and InfoLoss(p) 

is the number of instances of pair p in T. Alternative greedy functions could be 

Score(p) = PrivGain(p), (2) 

which aims at eliminating all critical violations but ignores the information loss caused by 

the suppression, or 

Score(p) = p r , (3) 
InjoLoss{p) 

which aims at minimizing the number of suppressed instances in T but ignores how many 

critical violations can be removed by the suppression. In Chapter 5, we will evaluate the 

performance of these variations. 

4.2.2 Monotonicity Analysis 

For any subsequence p of path in T, G(p) monotonically increases with respect to a global 

suppression. K-Anonymity and ^-diversity [38] satisfy the monotonicity property. In our 

case, when T preserves the privacy, each suppression will also preserve privacy. The count 

for each pairs in the table would not decrease after suppression. The maximum probability 

to infer a sensitive information would not increase after suppression; therefore, our LKC-

privacy algorithm satisfies the monotonicity property. • 
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Algorithm 2 RFID Data Anonymizer 
Input: Raw RFID path table T 
Input: Thresholds L, K, and C. 
Input: Sensitive values S. 
Output: Anonymous V that satisfies LKC-privacy. 

1 
2: 
3: 
4: 
5: 
6 
7: 
8 
9 

10 
11 

V = Call Gen Violations^, L, K, C, S) in Procedure 1; 
build the Critical Violation Tree (CVT) with Score Table; 
while Score Table is not empty do 

select winner pair w that has the highest Score; 
delete all critical violations containing w in CVT; 
update Score of a candidate x if both w and x were contained in the same critical violation; 
remove w in Score Table; 
add w to Sup; 

end while 
for every w e Sup, suppress all instances of w from T; 
return the suppressed T as T"; 

4.2.3 Greedy Algorithm 

Algorithm 2 summarizes the RFID data anonymization algorithm. Lines 1-2 call Proce­

dure 1 to generate all critical violations and build a tree to represent them. At each iteration 

in Lines 3-9, the algorithm selects the winner pair w that has the highest Score(p) among 

all candidates for suppression, removes the critical violations containing w, and incremen­

tally updates the Score of the affected candidates due to the suppression on w. Sup denotes 

the set of all suppressed winner pairs. They are collectively suppressed in Line 10 in one 

scan of T. Finally, Algorithm 2 returns the anonymized T as V. The most expensive op­

erations are to identify the critical violations containing w and to update the Score of the 

affected candidates. Below, we propose a data structure called critical violation tree (CVT) 

to efficiently support these operations. 

Definition 4.2.1 (Critical Violation Tree (CVT)). CVT is a tree structure that represents 

each critical violation as a tree path from root-to-leaf. Each node keeps track of a count 

of critical violations sharing the same prefix. The count at the root is the total number 

of critical violations. CVT has a Score Table that maintains every candidate pair p for 

34 



P a i r d2 e8 b3 e9 f6 e4 c7 a l 
P r i v G a i n 5 2 1 1 1 3 1 1 
In foLoss 4 3 3 3 6 2 5 1 
Score 1. 3 0. 7 0. 3 0. 3 0. 2 1. 5 0. 2 1 

Figure 3: Initial Critical Violation Tree (CVT) 

suppression, together with its PrivGain(p), InfoLoss(p), and Score(p). Each candidate 

pair p in the Score Table has a link, denoted by Linkp, that links up all the nodes in CVT 

containing p. PrivGain(p) is the sum of the counts of critical violations on Linkp. • 

Figure 3 depicts the initial CVT generated from V\ and V2 in Example 4.1.3. The 

winner pair e4, which has the highest Score, is identified from the Score Table. Then, 

the algorithm traverses Linke4 to identify all critical violations containing e4 and deletes 

them from CVT accordingly. When a winner pair w is suppressed from CVT, the entire 

branch of w is trimmed. This provides an efficient method for removing critical violations. 

In Figures 3 and 4, when e4 is suppressed, all its descendants are removed as well. The 

count of critical violations of e4's ancestor nodes is decremented by the count of critical 

violations of the deleted e4 node. If a candidate pair p and the winner pair w are contained 

in some critical violation, then PrivGain(p), and therefore Score(p), has to be updated 

for adding up the counts on Linkp. For example, after e4 is suppressed, PrivGain(d2), 

PrivGain(c7), and PrivGain(e8) have to be updated. A pair p with PrivGain(p) = 0 

in Score Table is removed. 
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Pair d2 e8 b3 e9 f6 al 
PrivGain 4 1 1 1 1 1 
InfoLoss 4 3 3 3 6 1 
Score 1 0. 3 0. 3 0. 3 0. 2 1 

Figure 4: CVT after suppressing e4 

Level 0 

Level 1 

ANY LOCATION 

abcdefgh 

abed efgh 

ANY TIME 

12345678 

1234 5678 

Level 2 ab cd ef gh 12 34 56 78 

Level 3 a b c de f g h 1 2 3 45 67 8 

Figure 5: Taxonomy Trees for Locations and Times 
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EPC 
1 
2 
3 
4 
5 
6 
7 

Table 8: Patient-specific path table P 
Path 
(d4 - • / 7 - • /i8) 

(ol _» c2 -» d4 -> / 5 -» /i8> 
(d4 -> e5 - • / 7 - • /i8) 
(c2 -> d3 -> / 5 -> e7) 
<d4 -> e6 -> / 7 -» /i8) 
(d3 - • e5 -> /i8) 
<d3 - • e6 -» / 7 -> /i8) 

Diagnosis 
Diabetes 

HIV 
Flu 
HIV 

Diabetes 
Flu 
Flu 

... 

Table 9: Patient-specific path table P' 
EPC 

1 
2 
3 
4 
5 
6 
7 

Path 
<d(34) -+ (e/)7 - /i8> 
<d(34) - (e/)5 - /i8) 
(d(34) - (e/)5 - (e/)7 - hS) 
(d(34) - (e/)5 -> (e/)7> 
(d(34) - (e/)6 - (e/)7 - /i8) 
(d(34) - (e/)5 -> /i8) 
(d(34) - (e/)6 - (e/)7 - /i8> 

Diagnosis 
Diabetes 

HIV 
Flu 
HIV 

Diabetes 
Flu 
Flu 

... 

4.2.4 Extension to Global Generalization 

In this subsection, we briefly discuss the privacy threats caused by various types of prior 

knowledge of attackers, and present an LKC-privacy preserved solution achieved by a 

sequence of generalizations and suppressions. 

Example 4.2.1. A hospital would like to release the RFID card holders' moving path infor­

mation, with their sensitive attributes in Table 8, to a third party data analyst. Each record 

contains a path and some patient-specific information, where a path contains a sequence 

of pairs (lociU) indicating the patient's visited location lo^ at timestamp U. For example, 

EPC#3 has a path (di —» e5 —» / 7 —» h8), meaning that the patient has visited locations 

d, e / , and h at times 4, 5, 7, and 8, respectively. Without loss of generality, we assume that 

each data record contains only one sensitive value, namely HIV in Diagnosis. An attacker 

seeks to identify the record and/or sensitive value of a target victim from the published 

data. 

Consider the following three scenarios: 
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Scenario I (Known location Attack). Suppose that the attacker knows that the target 

victim, Bob, has visited c and d. In Table 8, there are only three records, namely with 

EPC#2 and 4, that match locations c and d. Since these 2 records share the same sen­

sitive diagnosis "HIV"; therefore, the attacker can infer that Bob has "HIV" with 100% 

confidence. 

Scenario II (Known Time Attack). Suppose that the attacker knows that the target 

victim, Alice, has visited some unknown locations at time 2 and time 5. In Table 8, there 

is only one record, namely with EPC#5, that matches time 2 and 5. Therefore, the attacker 

can uniquely identify Alice's visited locations and her sensitive information. 

Scenario III (Known location and Time Attack). Suppose that the attacker knows 

that the target victim, Kate, has visited location a at time 1. In Table 8, there is only one 

record, namely with EPC#2, that matches al. Therefore, the attacker can uniquely identify 

Kate's visited locations and her sensitive information. 

Figure 5 shows two user-defined taxonomy trees for generalizing locations and times. 

In this example, we use a full domain generalization scheme [19] [20] [18] [17] [29] [42]. 

In this scheme, if a child value v is generalized to its parent value, all instances of child 

values under the same parent value will be generalized to the parent value according to the 

user-defined taxonomy tree. For example, in Figure 5, if a is generalized to ab, then all 

instances of a and b are generalized to (ab), but c and d, which are the child values of (cd), 

remain unchanged. 

Table 9 shows an example of anonymous table V that satisfies (2, 2, 50%)-privacy. The 

pairs al and c2 are suppressed, time 3 and 4 are generalized to (34) and location e and / 

are generalized to (ef). Every possible subsequence q with maximum length 2 is shared 

by at least 2 records and the confidence of inferring the sensitive value "HIV" from q is not 

greater than 50%. • 
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Chapter 5 

Experimental Results 

The objective of the experiments presented in this chapter is to evaluate (1) the effective­

ness of our proposed privacy model and anonymization method on preserving information 

utility, (2) the efficiency, and the scalability of the proposed anonymization algorithm. The 

effectiveness in information preservation is measured by comparing the difference of in­

formation utility before and after the anonymization. The efficiency is evaluated by the 

runtime of the test cases. The scalability is evaluated by runtime on some extremely large 

synthetic data. All experiments are conducted on a PC with Intel Core2 Quad 2.4GHz with 

2GB of RAM. Unless otherwise specified, all experiments on our proposed method use 

Equation 1 as the Score function. 

5.1 RFID Data Generator 

We developed a RFID Data Generator (RDG) to generate an object-specific data table for 

the purpose of the experiment. RDG considers the following data characteristics: 

• RFID data must be placed in time sequence. 

• The RDG must be flexible to change numbers of location and time in each record. 
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• The RDG can generate high-dimensional, sparse data sets. 

• The RDG can generate different sensitive and insensitive diagnoses corresponding to each 

record. 

• RFID data size is large enough to test the scalability of the proposed algorithm. 

Based on the above characteristics, we develop a program that allows us to generate a 

high-dimensional and sparse data set that covers most of the RFID moving object patterns. 

Algorithm 3 RFID Data Generator 
Input: Length of the location L 
Input: Length of the time T 
Input: Size of the database S. 
Output: Subway RFID raw database T. 

1 
2 
3 
4 
5 
6 
7 
8 
9. 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22: 
23: 
24: 
25: 
26 

i = 0; 
3 = 0; 
for all i < 5 do 

Pathlength = Randomlength; 
for all j < S do 

time = Randomtime; 
while time is within the timearray do 

time = Randomtime; 
end while 
Add time to timearray; 

end for 
++i; 

end for 
Sort timearray; 
k = 0; 
for all k < Pathlength do 

Station = random Station; 
Time = timearray[k]; 
Node = ConstructNode(Station,Time); 
Append Node to the Path; 

end for 
Diagnosis = random Diagnosis; 
Career = random Career; 
Record = ConstructRecord(Path, Diagnosis, Career); 
Save Record to the database; 

Algorithm 3 summarizes the RFID Data Generator. Lines 1-2 define parameters. Lines 
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3-14 generate a fixed size for the RFID path database. Each path has a randomly generated 

path length. For each path, the algorithm generates a random time. Line 15 sorts the time 

for each path in ascending order. At each iteration in Lines 17-22, the algorithm constructs 

a node that consists of a random subway station appended with a chronological time. At 

the end, the algorithm constructs a record that combines the path, diagnosis and career and 

saves the record to the database. 

The employed data set is a simulation of the travel paths of 20,000 passengers over 

24 hours in a subway system with 26 stations. Each record in the object-specific path 

table represents one passenger's path. There are 26 x 24 possible pairs, forming 576 

dimensions. We simulate real-life travel patterns as follows. Most people travel to ap­

proximately 4 locations at different times during a day. For example, a student may leave 

home to go to school in the morning. After school, she/he goes to have lunch then goes 

home. A worker leaves home for work in the morning. He/she may go to the grocery 

store after work and then go home. Based on these types of patterns, we generate 16,000 

passengers with a maximum path length of 4 pairs and 3,500 passengers with a maxi­

mum path length of 6 pairs. Some people, such as sales representatives and insurance 

agents, have to travel a lot. Thus, we consider 500 passengers who have a maximum 

path length of 26 pairs. Each record contains a disease attribute which has 5 possible val­

ues (HIV, Flu, Headache, Diabetes, Handicap) . We considered one of them, namely 

HIV, to be the sensitive information in our experiments. The dataset characteristics are 

presented at Table 10. 

5.2 Quality of Anonymous Data 

Our first experiment is to measure the data quality of the LKC-privacy protected table 

V. We use distortion ratio to measure the information loss caused by suppression. Let 

N(T) and N(T') be the total number of pair instances in tables T and T", respectively. 
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Table 10: Dataset Characteristics 

Tl 
T2 

No. Path 
10,000 
20,000 

Max Path 24 
24 
24 

Max. Pairs 
624 
624 

Number of Location 
26 
26 

Number of Time 
24 
24 

Diagnosis 
5 
5 

Figure 6: Distortion ratio vs. K where C = 20% 

The distortion ratio, computed by jvm » measures the percentage of pair instances 

suppressed for achieving a given LKC-privacy requirement. Higher distortion ratio means 

lower data quality. We also compare our method with the traditional /f-anonymization 

method. 

Figure 6 depicts the distortion ratio of our method for maximum length 1 < L < 3 

for anonymity thresholds 10 < K < 50 at confidence threshold C = 20%, and compares 

the result with the traditional -ftT-anonymity. In general, the distortion ratio is insensitive to 

the increase of K and stays between 3% to 10% for 1 < L < 3 because this requirement 

only needs every sequence with a maximum length of 3 to be shared by at least 50 records 

out of 20,000 records. Comparing to traditional K-anonymity which consistently stays 
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Figure 7: Distortion ratio vs. K where C = 60% 
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Figure 8: Distortion ratio vs. K where C — 100% 
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Figure 9: Distortion ratio vs. C where L = 2 

above 40%, our anonymization method can effectively reduce information loss on high-

dimensional data. As L increases to 4, the distortion ratio increases significantly because 

the majority of records have a path length of 4 pairs. Therefore, setting L — 4 yields a 

similar result to traditional K-anonymity. It is also interesting to note that the distortion 

ratio is insensitive to the change in confidence threshold C, implying that the primary 

driving force for suppressions is L/C-anonymity, not LC-dilution. This fact is also reflected 

in Figure 7 and Figure 8 at C = 60% and C = 100%, which is equivalent to ignoring 

LC-dilution because out of the 5 diagnoses (HIV, Flu, Headache, Diabetes, Handicap) 

, only one diagnosis named HIV is considered sensitive and it is small percentage among 

the 20,000 records. 

Figure 9 and Figure 10 compare the distortion ratio of our method with traditional 

K-anonymity for anonymity thresholds 10 < K < 30 at confidence thresholds 20% < 

C < 100%. At L = 2, in general, the distortion ratio is insensitive to the increase of 
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Figure 10: Distortion ratio vs. C where L = infinity 

C and if and stays at around 3% because this requirement needs every sequence with a 

maximum length of 3 to be shared by at least 50 records out of 20,000 records. This figure 

illustrates two points. First, the distortion ratio is low, suggesting that the information is 

well-preserved even after achieving LKC-privacy. Second, setting K = 1 is equivalent to 

ignoring LK-anonymity and achieving only LC-dilution. This result once again confirms 

that LC-dilution has little affect on distortion ratio because the sensitive values are not 

particularly skewed in any particular group G(q). In other words, it costs very little, or even 

nothing, to remove the privacy threats caused by attribute linking. Figure 11 compares the 

distortion ratio of the three Score functions discussed in Chapter 4.2.1 for 10 < K < 50 

at C = 60%. Experimental results suggest that the Score function in Equation 1 yields the 

lowest distortion because it considers both privacy gain and information loss in its selection 

criteria. Figure 10 depicts the traditional K-anonymity when L — infinity. As seen, the 

distortion ratio is sensitive to the change in K but insensitive to C which consistently stays 
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Figure 11: Distortion ratio vs. C with different Score 

between 31% to 48%. As K increases to 30, the distortion rate reaches 48% and almost 

half of the data will be suppressed by the traditional Zf-anonymity method. It further proves 

that our LiCC-model significantly reduces the distortion ratio while preserving the privacy 

compared to the traditional if-anonymity method. 

Figure 12 shows the distortion ratio at length 1 < L < 4. At 1 < L < 3, the distortion 

is 3% but at L = 4, the distortion significantly increases to 42%. It further proves that our 

model significantly reduces the information loss for high-dimensional data. In addition, 

most of the records have a path length of 4 pairs. Therefore, L — 4 yields the similar result 

as traditional K-Anonymity. 
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Figure 12: Distortion ratio vs. L 

5.3 Efficiency and Scalability Analysis 

1 2 3 4 

Maximum Length L 

Next, we examine the efficiency and scalability of our proposed anonymization method. 

For all the test cases conducted in Chapter 4, our method takes less than 1 second to com­

plete. In an effort to further evaluate the scalability of our method, we conducted an exper­

iment on some extremely large synthetic RFID data sets. 

Figure 13 depicts the runtime in seconds from 200,000 records to 1 million records for 

L = 3, K = 30, C = 60%. The total runtime for anonymizing 1 million records is 76 

seconds, where 60 seconds are spent on identifying critical violations and 16 seconds are 

spent on reading the raw data file and writing the anonymous file. Thanks to the effective 

critical violation tree (CVT) data structure, the program takes less than 1 second to suppress 

all violations. 

47 



••-Reading & Writing "•-Identifying Violations 
•A-Suppression -M-Totai 

, _ 
(0 
C 
o 
o 
0) (/) 

o U
lj 

1-

80 

70 

60 

50 

40 

HO 

20 

10 

0 200 400 600 800 1000 
# of Records (in thousands) 

Figure 13: Scalability (L = 3, K = 30, C = 60%) 



Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

RFID is a promising technology applicable in many areas, but many of its privacy issues 

have not yet been addressed. In this thesis, we illustrate the privacy threats caused by 

publishing RFID data, formally define a privacy model, called Lii'C-privacy, for high-

dimensional, sparse RFID data, and propose an efficient anonymization algorithm to trans­

form a RFID data set to satisfy a given LKC-phvacy requirement. We demonstrate that 

applying traditional if-anonymity on high-dimensional RFID data would render the data 

useless due to the curse of high-dimensionality. Moreover, we generate a RFID data set to 

model the subway system RFID database. Experimental results suggest that our method 

can efficiently anonymize large RFID data sets with significantly better data quality than the 

traditional K-anonymity method and significantly reduce the information loss compared to 

the traditional if-anonymity. 
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6.2 Future Work 

The LKC-privacy model is a promising tool for preserving privacy and preventing infor­

mation loss in high-dimensional, sparse data, especially for sequential data. In fact, our 

privacy model is a powerful one, and can be implemented in different applications. Our 

future work can be summarized as follows 

• The LA'C-privacy model is applicable to anonymize transaction data and sequential 

data, such as credit card data, cell phone data, Global Position System (GPS) data, 

and healthcare data [42]. 

• In this thesis, we use suppression techniques to achieve the best scalability of large 

databases. In the future, we can consider a combination of generalization and sup­

pression techniques to preserve data relevancy. 

• We applied a greedy algorithm in this thesis to achieve efficiency in the entire pro­

gram. In the future, an optimal solution can be developed to achieve minimal infor­

mation loss. 

• In this thesis, we consider only the scenario of general publishing of RFID data. 

More specific data mining purposes, such as classification and clustering, can be 

considered to further reduce the information loss by applying Score functions. 
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