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ABSTRACT

DISTRIBUTED BIODYNAMIC CHARACTERISTICS OF THE HUMAN HAND-
ARM SYSTEM COUPLED WITH VIBRATING HANDLES AND

POWER TOOLS

Surajudeen Adedotun Adewusi, Ph.D
Concordia University, 2009

Clinical and epidemiological studies have shown that operators of hand-held

power tools are prone to develop peripheral, vascular, neurological and musculoskeletal

disorders collectively known as hand-arm vibration syndrome (HAVS). The reported

biodynamic responses of the human hand-arm to hand-transmitted vibration exhibit

considerable differences, which could be partly attributed to the complexity of the hand-

arm system. Furthermore, the vast majority of the hand-arm models offer limited

applicability to the tools since these lack consideration of the anthropometric, anatomical

and biological properties of the hand-arm system. Experimental and analytical methods

are used in this dissertation research to: (i) identify sources of discrepancies in the

reported hand-arm biodynamic responses to vibration; (ii) simultaneously characterize

localized vibration transmission to different segments of the human hand-arm and the

driving-point mechanical impedance (DPMI) response under different hand-arm postures,

hand forces, and excitation levels; (iii) develop biomechanical models corresponding to

bent- and extended-arm postures on the basis of both the DPMI and vibration

transmissibility responses; and (iv) characterize vibration power absorption (VPA)

distribution of different components of the hand-arm for .potential injury risks

assessments.
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The results show that the discrepancies in the reported biodynamic responses

above 500 Hz were due to acceleration measurement location, handle dynamics (handle

resonant frequency and deformation) and ineffectiveness of handle inertia correction. The

peaks and valleys in the DPMI magnitude correspond to resonant frequencies of the

tissues/muscles and the bones/structure, respectively. On the other hand, the peaks in

transmissibility magnitudes represent the resonant frequencies of both the tissues/muscles

and bones/structure. Furthermore, the DPMI seems to characterize the dynamic response

of the entire hand-arm system with emphasis around the driving-point, while the

transmissibility responses emphasize the dynamic response of the tissues/muscles of the

human hand-arm system. The VPA distributions in the forearm and upper-arm were

observed to be considerably higher than those of the hand components below 100 Hz,

while the VPA distribution in the fingers was greater above 100 Hz. The overall results

suggest the need for two frequency-weightings for assessing the potential risks due to

tools with low and high frequency vibrations.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 General

A number of epidemiological and clinical studies have established that operators

of hand-held vibrating power tools are prone to develop peripheral, vascular, neurological

or musculoskeletal disorder, collectively referred to as the hand-arm vibration syndrome

(HAVS). Occupational exposure to hand-transmitted vibration (HTV) can arise from

rotating and/or percussive hand-held power tools used in the manufacturing industry,

quarrying, mining, construction, forestry and agriculture, public utilities and other work

activities. Considerable efforts have been made to study the phenomenon of HAVS and to

reduce the potential health risks of HTV. These include epidemiological studies [1 - 9, 32

- 34, 36], measurement and assessment of vibration dosage and dose-response

relationship [10, 12 - 15, 18, 21, 23 - 31, 35, 37 and 41], hand-tool interactions [45, 66,

120 - 122], reduction and control of HTV [46 - 57, 87 - 91, 112, 113], and the human

hand-arm biodynamic responses to HTV [52 - 86, 92 - 105, 114 - 119]. The dose-

response relationship reported in ISO 5349-1 [31] relates the probability of HAVS among

exposed workers directly to the magnitude of vibration at the tool handle, daily and

cumulative exposure duration. Characterization and thorough understanding of the human

hand-arm response to HTV is considered to be vital for deriving reliable frequency-

weights for assessment of exposure, assessment of roles of various work and tool-related

design factors, and development of coupled hand-tool models for design and analyses of
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vibration attenuation mechanisms. A recent study has suggested that such responses may

be applied to determine distribution of energy within the hand-arm structure, which can

yield important insight into injury potential of HTV due to specific tools [128].

The human hand-arm responses to HTV, referred to as biodynamic responses,

have been investigated via laboratory measurements or through mechanical-equivalent

models. The biodynamic measures have been invariably expressed in the two forms: (i)

force-motion relationship at the hand-tool interface expressed as apparent mass (APMS),

driving-point mechanical impedance (DPMI) or dynamic compliance, and vibration

power absorption (VPA); (ii) through-the-hand-arm response describing the transmission

of vibration to different segments of the human hand-arm and the body such as the nail,

finger, wrist, elbow, shoulder and the head. The vast majority of the studies have

characterized biodynamic response in terms of the driving-point force-motion

relationship, generally the DPMI, due to its relative ease of measurement. Relatively

fewer studies have reported the responses in terms of vibration transmitted to the hand-

arm structure. This is attributed to the complexities associated with such measurements.

A number of linear mechanical-equivalent models of the hand-arm system have been

developed on the basis of measured force-motion relationships at the hand-handle

interface. The ranges of driving-point mechanical impedance of the hand-arm system

under vibration applied along the xh -, yh - and zh - direction independently have been

defined in the International Standard, ISO 10068 [86].

The biodynamic responses are strongly influenced by various factors related to

direction and nature of vibration, handle design, hand-handle coupling forces, hand-arm

posture and individual factors (gender and anthropometry) [66, 67, 71 - 75, 78, 82, 84].
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The measured responses, particularly through-the-hand-arm response, exhibit large

variability. Furthermore, the measured data are also affected by the dynamics of the

fixture due to requirements of relatively high frequency vibration (generally up to 1 000

Hz). These differences have been partly attributed to differences in experimental

conditions and measurement methods employed in the reported studies. The differences

in the vibration transmissibility data reported by different investigators are even larger.

Furthermore, a disagreement exists among investigators on the interpretation of the DPMI

responses with regards to the resonant frequencies of the hand-arm structure. Although

the DPMI and vibration transmissibility responses describe the dynamic responses of the

hand-arm structure, the correlations between the two measures in terms of resonant

frequencies have not been attempted. Owing to the extreme differences in the reported

data, the models derived on the basis of the measured response also exhibit considerable

differences. It has been suggested that the majority of the hand-arm mechanical-

equivalent models that were derived from DPMI or vibration transmissibility are

unsuitable for hand-tool coupled system simulation [65]. The force-motion relationship at

the hand-handle interface may not fully describe the contributions due to vibration modes

of the upper-arm and the whole body. The measures of vibration transmissibility of

different segments of the structure may help identify various modes of vibration. It is

hypothesized that the vibration transmissibility data together with the DPMI data could

yield development of more reliable models of the hand-arm structure exposed to HTV.

Such measures, however, are prone to errors and have been attempted only in few studies

[76, 77, 79, 93].

This dissertation research is aimed at characterization of transmission of handle
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vibration to different location of the hand-arm structure together with the DPMI for

development of an anthropometry-based biodynamic model of the hand-arm. The

influences of important contributing factors, such as hand-handle coupling forces, handle

dynamics, excitation levels and hand-arm posture on the biodynamic responses are

particularly explored. Both the DPMI and transmissibility response data are analyzed for

identifying the resonance frequencies of the hand-arm structure. The significance of the

two biodynamic response functions is systematically explored for identification of the

model parameters for two different hand-arm postures. The dissertation research further

explores the application of the hand-arm system to a percussion power tool for the

characterization of vibration power absorption of different segments of the human hand-

arm system.

1.2. Literature Review

1.2.1 The hand-arm vibration syndrome (HAVS)

The hand-arm vibration syndrome (HAVS) is the term used to describe the

collective symptoms and disorders associated with prolonged and repeated exposure to

vibration from hand-held power tools or other industrial activities in which the human

hands are exposed to vibration. The major symptoms that have been identified are the

vascular, neurological and musculoskeletal disorders.

Vascular disorders are the diseases associated with blood-carrying arteries and

veins in the hand-arm system. The peripheral vascular symptoms commonly known as

"white fingers" or vibration induced white fingers (VWF) are the most severe of the

vascular disorders and have attracted most attention [3, 22, 32 - 34]. Figure 1.1 is a

pictorial view of a worker's hand with evident VWF. Raynaud's phenomenon/syndrome
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is ill-defined condition characterized by spasm of arteries in the extremities (digits)

precipitated by low temperature or continued exposure to vibration leading to pain,

numbness, and in severe cases, gangrene. It has been suggested that there are synergistic

effects between vibration exposure and low temperature, noise, manual static work as

well as emotional stress, which may contribute to the disorders [5-8].
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Figure 1.1: Vibration induced white fingers (VWF)

Neurological disorders, such as decrease or loss of sense of touch, decreased

temperature sensitivity and neuropathy accompanied by cramp-like pains in the

extremities, have been observed in workers exposed to vibration [9 - 13].

Histopathological observations conducted by Takeuchi et al. [14] on finger biopsy have

shown that vibration exposure causes degeneration of sensory nerves and tactile organs.

Cannon et al. [15] and Rothfleisch and Sherman [16] attributed the incidence of carpal

tunnel syndrome (CTS) to the use of vibrating hand-held power tools and the position of

the hand and the wrist. CTS is a painful condition caused by repetitive flexing of the wrist

over a lengthy period of time, which is caused by pressure on the median nerve, and is
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found mostly in workers performing repetitive hand tasks coupled with awkward hand

postures.

Hassan [11] reported changes in the chemical composition of the blood in the

hand and arm exposed to vibration. Muscle atrophy or muscle degeneration, reduced grip

force and abnormal muscle fatigue have also been found among workers using hand-held

power tools [17]. Some studies [17 - 25] have also associated bone and joint disorders to

vibration exposure, while the study by Gemne and Saraste [23] suggested that bone and

joint disorders are not specific to vibration exposure alone.

Up to date, very little is known about the pathological basis of HAVS [26] or the

specific influences of vibration acceleration and frequency. However, the exposure-

prevalence relationship between the use of hand-held power tools and the occurrence of

HAVS has been established through several epidemiological studies [10, 12, 25 - 31].

Friden [27] discussed the clinical presentation of HAVS, its prognosis, length and

severity of vibration exposure and the Stockholm Workshop scale for various disorders

associated with HAVS. Miyashita et al. [32] reported that there is a latency period, with

symptoms not appearing until after 2000 hours of vibration exposure. However, after

8000 hours of exposure, HAVS symptoms appeared in more than 50% of the forestry

workers examined in the study. The period between initial exposure to vibration, the

onset of symptoms and the latency period varies considerably between individuals due to

differences in the type of exposure and individual susceptibility.

The International Standard Organization ISO 5349-1 [31] specifies general

methods for measuring and reporting hand-transmitted vibration exposure and it provides

guidance on assessment of hand-arm vibration based on frequency-weighting vibration

6



acceleration and dose-response relationship. The frequency-weighting tends to attenuate

the vibration levels above 12.5 Hz band. However, some investigations [33 - 35] have

presented results that are different from the dose-response relationship presented in ISO

5349-1. Furthermore, the validity of the frequency-weighting, particularly the attenuation

at higher frequencies has been widely questioned. Lundstrom [36] indicated that exposure

to high frequency vibration, above 1 kHz, could also have detrimental effect on the

operators of hand-held power tools. Some investigations have shown that the

impulsiveness of vibration is an additional factor in the development of HAVS [8, 37,

38], while the current weighting, which has maximum weighting factor at 12.5 Hz,

generally underestimates the risk of such vibration. NIOSH [29] concluded that the use of

unweighted-frequency acceleration is a better means of assessing the risk of exposure to

vibration. Some investigators [39 - 41] have argued that while acceleration is a useful and

convenient quantity to measure, the health risks to the human hand-arm is more likely to

depend on the power absorbed/dissipated in the hand-arm system than upon the

acceleration level alone. Despite the findings on the relationship between absorbed power

and HAVS, the current national and international standards for the assessment of hand-

arm injuries due to vibration are based on frequency-weighted acceleration.

1.2.2 Biodynamic response of the human hand-arm system

Considerable efforts have been made to quantify the responses of the human hand

and arm to vibration. Such studies are considered vital for enhancing an understanding of

the flow of vibration energy and to gain an insight to the potential injury mechanisms.

Furthermore, such responses could yield improved frequency-weighting for assessment of

potential health risks and essential basis for developing mechanical-equivalent models of
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the hand-arm system. Such models are important for developing effective vibration

reduction mechanism through analysis of the coupled hand-tool system. Dong et al. [64]

conducted a critical review of research works on hand-transmitted vibration and

concluded that although research works have contributed to advancement in

understanding of hand-arm vibration responses, more gaps remain regarding the

characterization of hand-transmitted vibration, injury mechanisms, tools designs and

dose-response relationship. The vast majority of the studies on the human hand-arm

responses to vibration have been conducted in the laboratory under controlled conditions,

where the hand-arm system is excited by an electro-dynamic vibration exciter through a

simulated tool handle. The exposure is mostly measured in terms of acceleration due to

handle vibration, which is believed to have good correlation with the physical damage

caused by HTV [29,31].

The human hand-arm responses to vibration have been mostly studied in terms of

force-motion relationship at the driving-point, namely the driving-point mechanical

impedance (DPMI). Such responses have been applied to derive mechanical-equivalent of

the human hand-arm system with an intent to formulate coupled hand-tool models for

design of effective vibration isolators. Only a few studies, however, have attempted the

modeling and analyses of hand-held power tools for identifying desirable design of the

coupled hand-tool system [45, 120, 121]. This in-part may be due to unavailability of a

reliable human hand-arm model. Rakheja et al. [65] evaluated the biodynamic response

characteristics of various biodynamic (mechanical-equivalent) models of the human

hand-arm system and concluded that the current models are not adequate for development

of a mechanical hand-arm simulator for assessing the dynamic behavior of the coupled
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Figure 1.2: Coordinate systems for the human hand-arm

hand-tool system.

The human hand-arm is composed of complex inertial and visco-elastic

properties. It exhibits six degrees-of-freedom (DOF) motions, three translational motions

along Xh-, yh-, z/¡-axis, and three rotational motions along the roll ( q>h ), pitch ( 6h ) and yaw

{?,,) axes, as shown in Figure 1.2. The studies thus far have been limited to vibration

along the three translational axes using two standardized coordinate systems, namely the

biodynamic or anatomical and basicentric (Figure 1.2). The origin of the biodynamic

coordinate system is the head of the third metacarpal, while the origin of the basicentric

coordinate system lies on the handle. Biodynamic response studies can be classified into

three general categories: (i) force-motion relationship at the hand-tool interface expressed

in terms of the apparent mass (APMS), driving-point mechanical impedance (DPMI) or

dynamic compliance and vibration power absorption, also referred to as 'to-the-hand'

responses; (ii) through-the-hand-arm response - describing the transmission of vibration
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to different segments of the body such as the nail, fingers, wrist, elbow, shoulder and the

head; and (iii) mechanical-equivalent analytical models.

'To-the-hand' biodynamic responses

To-the-hand biodynamic response relates the vibration in the vicinity of the hand

to the force at the driving point. This may be expressed as dynamic stiffness K(jco) (or its

reciprocal - dynamic compliance), the driving-point mechanical impedance (DPMI) or

apparent mass (APMS):

K(jco) = \ , , DPMI(JCu) = " , , APMS(J(O) = \ , (1.1)q(jco) v(j(o) a(joS)

where q , ? , a are displacement, velocity, and acceleration, respectively, measured at

the driving-point, and F (jco) is the dynamic force measured at the hand-handle interface

at the excitation angular frequency ? .

The majority of studies have reported 'to-the-hand' biodynamic response,

particularly the DPMI and the absorbed power, to characterize the human hand-arm

response to vibration [52 - 88, 99 - 105, 1 14 - 1 19]. The reported studies have considered

wide ranges of vibration types and levels, hand forces and handle sizes. Consequently, the

reported data exhibit extreme differences in the responses, which are evident from the

wide ranges of idealized impedance characteristics provided in ISO 10068 [86] that were

established from a synthesis of reported data. Such differences in the data have been

attributed to variations in intrinsic and extrinsic variables, test conditions and data

analysis methodologies. While the majority of the reported DPMI magnitudes increased

sharply at frequencies above 500 Hz [55, 57 - 60, 62, 68, 78 - 81, 83, 86, 99 - 105], a few

studies have shown either decreasing or relatively constant magnitudes of DPMI above
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500 Hz [67, 69, 70, 77, 82]. These differences at higher frequencies have been attributed

to differences in the experimental techniques, direction of vibration, grip and push forces,

vibration amplitude and individual characteristics [67 - 69, 73 - 83]. These factors are

also known to influence the human hand-arm impedance at frequencies below 500 Hz.

Hewitt [70], Mishoe and Suggs [72] and Reynolds et al. [76] suggested that the

differences at high frequencies might be due to the handle natural frequency and the

influence of the coupled hand-handle dynamics on the measurements.

Very little efforts, however, have been made to quantify the contribution of the

handle and handle fixture dynamics to the hand-arm DPMI. Dong et al. [91] evaluated the

potential measurement errors in vibration transmissibility of antivibration gloves

introduced by dynamics of a simulated handle and a palm-held adapter. The results

showed that variations in magnitude of vibration along the handle caused considerable

measurement errors. Considering such measurement errors and wide variations in the

reported high frequency DPMI responses, a thorough review of the fundamentals and

experimental procedures used in characterization of hand-arm vibration response would

be desirable for a better understanding of the influences of the handle dynamics on the

hand-arm DPMI response.

The influences of various intrinsic and extrinsic factors on the DPMI responses,

with the exception of the handle dynamics, have been investigated in many studies.

Aldien et al. [67] studied the influences of hand-arm posture, handle size, and vibration

levels on the DPMI and absorbed power responses under vibration along the ?/,-axis.

Burstrom [69] studied the effects of vibration direction, grip force, vibration level, hand-

arm posture, subject gender and anthropometric parameters on the DPMI responses.
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Cronjager and Hesse [81] studied the biodynamic response of the hand-arm to stochastic

excitations and compared the response with those obtained from a hand-held tool (a

percussion hammer). The results showed that the shaker experiments did not deviate

much from the actual field measurements. Marcotte et al. [82] studied the effects of

handle size and contact force on the DPMI responses to ?/,-axis vibration. It has been

established that an increase in the grip or push force yields higher DPMI magnitude and

higher frequency corresponding to the peak magnitude. The grip and push force effects,

however, are strongly related with those of the handle size and hand-arm posture.

The reported studies also suggest strong disagreements in interpretations of DPMI

data with regards to the natural frequencies of the hand-arm system. The hand-arm is a

continuous system which is expected to have several natural frequencies, but some of the

reported DPMI data exhibit very few valleys and peaks [68, 72, 81]. This has been

attributed to the effect of data smoothing and averaging [70]. While the majority of the

studies suggest that the natural frequencies of the hand-arm correspond to the frequencies

of the peak DPMI magnitude responses [67, 77, 78, 82], others relate it to the valleys in

the DPMI responses [68, 72, 81]. Some studies did not attempt to relate peak DPMI

responses to the natural frequencies of the hand-arm system [69, 70, 73, 80]. Further

fundamental analyses of the biodynamic response data are thus vital to obtain clear

interpretations of DPMI responses in view of the resonant frequencies of the hand-arm

system.

The majority of the reported studies have acknowledged considerable inter-subject

variations in the measured data. A standard deviation of the mean DPMI data magnitude

and the mean phase angle in the order of 150 Ns/m and of 35° have been reported by
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Burstrom [69]. Large inter-subject variations of the hand-arm impedance magnitudes

have been reported in many other studies [68, 70, 72, 82, 84], Furthermore, it has been

suggested that a larger hand-arm size yields higher impedance magnitude [69]. Despite

the large inter-subject variations, the mean data are invariably applied in order to quantify

the role of different intrinsic and extrinsic factors. The ISO 10068 standard [86] presents

the ranges of mean DPMI responses from different studies involving diverse subjects and

experimental conditions.

The 'to-the-hand' biodynamic response of the hand-arm system has also been

expressed in terms of the energy absorbed by the hand-arm per unit time [67, 70, 76, 77,

84]. The instantaneous total power is defined as:

P{t) = Fq{t)-q{t) (1.2)

where F it) and q(t)are respectively the instantaneous force and velocity at the driving-

point. In the frequency domain, the average vibration power absorption (VPA) is directly

related to the real part of the DPMI, such that:

P{tö)=Re[DPMl(jco)l\v(ja)f (1.3)
where 'Re' designates the real part of the DPMI response and |v(y¿y)| is the absolute
value of the rms velocity measured at the hand-handle interface. The power defined in

Eq. (1.3) describes the energy absorbed by the hand-arm, which is dissipated as heat due

to friction within the tissues. The imaginary component of the power relates to the

reactive energy stored/released within the hand-arm system [76].

From Eq. (1.3), it is evident that the VPA would also be influenced by the

magnitude, frequency and direction of vibration, grip and push forces, and posture, as in

the case of DPMI. Some investigators have suggested that power absorption in the hand-
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arm would serve as a better measure of potential vibration injury than the currently used

vibration acceleration measure [76, 130, 131]. While the reported DPMI responses do not

clearly show the effects of vibration magnitude, the absorbed power can directly relate to

the magnitude. The absorbed power can also be related to stress and strains in the

biological materials, where stress is dependent upon the vibration level and strain relates

to deformation in the tissue. It has been established that most of the vibration energy is

absorbed in the low frequency region, and that the absorbed power decreases with an

increase in the frequency and increases with an increase in the grip force and push force

[67, 76, 77, 84]. The data reported by Hewitt [70] for the pneumatic chipping hammer

and the electric grinder revealed maximum absorbed power in the bands corresponding to

the operating frequencies of 35 and 200 Hz, respectively. Kihlberg [77] also reported

similar results. The data reported by Aldien et al. [84] under white-noise handle vibration

showed about 12 % variations in the absorbed power due to inter-subject variations.

'Through-the-hand' biodynamic responses

The 'through-the-hand' biodynamic responses describe the transmission of

vibration to different segments of the hand and arm and the body, such as the nail, finger,

wrist, elbow, shoulder and the head. It is expressed as the ratio of motion magnitude at a

specific segment of the hand-arm to that at the handle-hand interface. This method has

been widely used in the assessment of vibration attenuation performance of protective

devices, such as anti-vibration gloves [87 - 91]. Only limited efforts, however, have been

made on the use of 'through-the-hand' method for characterizing human hand-arm system

responses to vibration. This is probably due to lack of appropriate sensors and difficulties
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associated with vibration measurements on the skin, and the fact that vibration

transmission magnitudes are very small above 200 Hz.

The vibration transmission characteristics of the human hand-arm have been

studied in the laboratory and in the field under controlled grip conditions, different

vibration excitation magnitudes and directions, and different hand-arm postures. Kihlberg

[77] measured the transmission of vibration along the z/¡-axis of an impact hammer and

electric grinder to the finger, wrist and elbow under different grip forces. The study

involved fifteen subjects with about 110° elbow angle posture. Cherian et al. [92] studied

the vibration transmissibility characteristics of the human hand-arm at the finger, wrist

and elbow under sinusoidal vibration in the 1 0 - 200 Hz frequency range using only one

subject and a constant grip force of 25 N. Reynolds and Angevine [93] measured the

vibration transmitted to the finger, wrist, elbow and the shoulder under different

magnitudes of palm-grip and finger-grip forces, under vibration along three independent

axes (??,, yh, zi). The study used subminiature piezo-resistive accelerometers that were

attached to the skin near the joints by means of adhesive tape. Pyykko et al. [94]

measured transmission of ?/,-axis handle vibration to the wrist, elbow and the upper-arm

in the 20 - 630 Hz frequency range under different magnitudes of grip force. Aatola [95]

studied vibration transmission to the wrist under different grip forces (0 - 40 N) and

vibration levels in the 10 - 300 Hz range. An accelerometer was fastened with a screw to

a small acrylic plate, which was fastened very tightly against the styloid process of the

ulna with the help of another piece of acrylic and a hose clamp. Measurements were

performed with five subjects in sitting position with elbow bone forming an angle of

about 45° upwards from the horizontal plane and with an elbow angle of about 1 50°.
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The above studies showed a rapid decrease in transmissibility magnitude with

increase in excitation frequency and the distance from the vibration source. It was

suggested that vibration attenuation occurs in the tissue adjacent to the bone, and only

little attenuation of vibration occurs across the joints although large relative motions

across the joints could be observed. Only less than 10% of vibration magnitude at

frequencies above 250 Hz is transmitted to the wrist and beyond; while the vibration at

frequencies below 100 Hz is transmitted to the forearm. Vibration at frequencies below

40 Hz can be transmitted to the forearm and the upper arm. An increase in the grip force

increased the resonant frequency. The reported studies invariably concluded that vibration

at frequencies above 200 Hz is confined to the hand and fingers. Aatola [95] proposed

linear relationships between the first three natural frequencies of the hand-arm and the

grip force as:

/,=0.7Fg +10, /2=2.6Fg +60, /3=2.77^ +120 (1.4)

where /¦ , / = 1, 2, 3, are the first, second and third natural frequencies of the hand-arm

system in Hertz, Fgis grip force in Newton (N). The proposed relationship, however,

could be considered valid only for the postural conditions considered in the study,

namely, gripping the handle with grip forces up to 40 N while sitting with an elbow angle

of 150°. The study also reported negligible effects of vibration magnitude on the vibration

transmissibility magnitude, which increased linearly with increasing hand-grip force. The

study also performed field measurements with five professional forest workers. The data

revealed a decrease in vibration transmissibility with increasing frequency, similar to the

trend observed in the laboratory measurements. While the second and third resonant

16



frequencies ( f2 and /3 ) were clearly observed, the first resonant frequency could not be

detected. An additional resonant frequency occurring between /2 and/3 , however, was

also observed.

Kattel and Fernandez [97] investigated the hand-transmitted vibration with ten

subjects, five females and five males, operating different rivet guns. The study reported

unweighted rms accelerations of transmitted vibration, while the subjects were standing

erect with an elbow angle of 90°, forearm parallel to the floor and mid-pronated with

three wrist postures (neutral, 1/3 maximum flexion and 1/3 maximum ulnar deviation)

and imparting two applied (push) forces of 8 and 12 lb. Tri-axial accelerometers were

attached to a palm-adapter held between the hand and rivet gun handle, and to the

bracelets that were fastened to the wrist and the forearm of the subjects. The study

concluded that the neutral wrist posture transmitted the highest vibration to the hand-arm

system. The low frequency handle vibration could also be transmitted to the whole-body.

Sakakibara et al. [98] measured vibration transmitted from the hand to the head under

different hand-arm postures of four male subjects, using an accelerometer mounted on a

bite-bar. The study showed that vibration transmitted to the head is highly dependent on

the elbow angle. A straight-arm posture, with 180° elbow angle, resulted in greater

vibration of the head than the bent-arm posture.

Biodynamic models of the hand-arm system

A number of mechanical-equivalent models of the hand-arm system have evolved

during the past three decades for characterizing the responses of the human hand and arm

to vibration. Such models are mostly developed on the basis of the measured DPMI

responses. The models can be effectively used to characterize the vibration amplitude and
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the power flow in the coupled hand, tool, and workpiece system; to analyze the potential

performance benefits of vibration-attenuation mechanisms; and to develop test-rigs and

hand-arm simulators to assess vibration transmission of different tools [45, 46, 65, 130].

The applicability of these models, however, necessitates the development of adequately

validated models over a range of representative operating conditions. Owing to the

excessive differences in the DPMI data reported by different investigators, the reported

biodynamic models also exhibit considerable differences in their responses. The reported

models include the lumped- and distributed-parameter models, although the majority is

lumped-parameter model derived on the basis of measured DPMI responses.

The reported lumped-parameter models of the hand-arm system can be divided

into 3 subgroups depending on the properties of the lumped elements. The first subgroup

consists of models with linear stiffness and damping elements. The effects of many

contributory factors, such as grip force, push force and vibration intensity on the visco-

elastic properties of the hand-arm system are thus ignored. This subgroup includes: the

single-.DOF models by Abram and Suggs [56] and Reynolds and Soedel [100]; 2-DOF

models by Miwa et al. [51] and Mishoe and Suggs [72]; 3-DOF models by Gurram et al.

[68], Mishoe and Suggs [72], ISO 10068 [86], Reynolds and Soedel [100] and Daikoku

and Ishikawa [102]; and 4-DOF models by Gurram et al. [68], Reynolds and Falkenberg

[79] and ISO 10068 [86]. The second subgroup comprises linear but grip force dependent

element properties reported by Mishoe and Suggs [72] and Gurram et al. [103]. The third

subgroup comprises 3- and 4-DOF nonlinear lumped-parameter models to characterize

the nonlinear biodynamic behavior of the hand-arm system proposed by Rakheja et al.

[104],
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A study of relative assessments of the lumped-parameter models has concluded

that the 3- and more DOF models yield impedance characteristics in the range of the

idealized mean values defined in ISO 10068 [86], but they exhibit excessive static

deflection even under a low-level push force [65]. These models are thus considered

inadequate for simulation of a coupled hand-tool system or for developing a mechanical

hand-arm simulator. Moreover, the lumped-parameters do not relate to the anatomical

structure of the hand-arm system. The vibration modes of the models, therefore, cannot

be related to vibration behavior of a particular substructure of the hand-arm system.

Furthermore, the lumped-parameter models that were derived from only the DPMI via

curve fitting are not unique since there are several sets of parameters that could yield

comparable model and measured DPMI responses. Alternatively, Cherian et al. [92]

proposed a 5-DOF biomechanical model of the human hand-arm system to study the

vibration transmission characteristics in the 10 - 200 Hz frequency range. The masses

and dimensions of the hand, forearm and the upper arm, were taken from the

anthropometric data, while the visco-elastic properties of the model were estimated from

the measured vibration transmissibility. Fritz [99] proposed a biomechanical model

comprising four masses connected by linear springs and dampers, and damped torsion

springs to represent muscle activity to study the strain in the hand-arm system during

vibration. The parameters of the model were determined on the basis of the dynamic

compliance reported by Reynolds and Falkenberg [79]. The vibration transmissibility

responses of the model were compared with those reported in [93, 94].

Conversely, a distributed-parameter model of the hand-arm system was proposed

by Wood et al. [105], which comprised homogeneous fiexural members with distributed
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mass and flexural stiffness, representing the radius, ulna and the humerus bones. The

viscous effect of the tissues surrounding the bones was characterized by linear damping

distributed along the bones. The beam members, representing the bones of the forearm,

were coupled with the driving point by two lumped masses through visco-elastic

properties of the tissue of the hand, modeled as a Kelvin visco-elastic model. The model,

consisting of the hand and the forearm, was analyzed to derive its impedance response

under vibration along yh -axis alone and its parameters were determined from the DPMI

data measured under 90° elbow angle and elbow supported on a molded rest. The study

also reported a model of the entire hand-arm system, whose responses revealed

considerable deviations from the experimental data. The models, however, would be valid

under supported elbow posture, which is not likely to represent a realistic work posture.

Furthermore, Rakheja et al. [65] reported some errors in the impedance formulations used

in the study.

Relative evaluations of reported biodynamic models

Rakheja et al. [65] evaluated the response characteristics of twelve different

biodynamic models of the human hand-arm system for applications to hand-held power

tools using three criteria namely: (i) the ability of the model to characterize the DPMI of

the human hand-arm system within the range of idealized values presented in ISO 10068

[86]; (ii) the magnitude of model deflection under a static feed force; and (iii) natural

frequencies and damping ratios of the models. It was concluded that the majority of the

models were not suitable for the development of a mechanical hand-arm simulator or for

the assessment of dynamic behavior of the coupled hand-tool system. While the 3- and 4-

DOF lumped mass models provided DPMI responses within the range of the idealized
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values, they revealed excessive static deflection of the masses under a static feed force.

On the other hand, the single-DOF lumped mass models [56, 100] and the distributed-

parameter models [105] resulted in lower static deflections but poor agreement in terms

of the DPMI characteristics of the hand-arm system. It has been suggested that an

anatomically analogous model of the human hand-arm is vital for enhancement of its

responses to vibration and to study the distribution of vibration energy for assessment of

exposure [64].

1.2.3 Mechanical properties and anthropometry of the human hand and arm

The development of an effective biodynamic model of the human hand-arm

necessitates knowledge of the ranges of the mechanical properties of the biological

system, although the measured responses could be applied to refine these properties

through curve-fitting algorithms. The reported relevant studies are briefly reviewed in an

attempt to gain insight into the ranges of anthropometric and mechanical properties of the

hand-arm structure.

The human hand-arm is a complex, non-homogeneous system with non-uniform

geometry that basically consists of bones, cartilage, muscles/tissues, tendon, ligament,

skin and joints. For simplicity, the bones and cartilage, muscles/tissues and skin could be

respectively grouped in order to characterize the human hand-arm into two components:

bones and muscles/tissues. Bone is a dynamically adaptable living calcified tissue whose

form is continually undergoing subtle remodeling in order to conform to its functions

[107]. The human hand-arm generally include the relatively hard and dense cortical bone

and the relatively light-weight and spongy trabecular or cancellous bone. Only 15-25 %

of the trabecular bone volume is calcified, while the rest is occupied by the blood vessels,
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Figure 1 .3: The human hand-arm system

connective tissues and bone marrows. The bones are covered with muscles, which is the

contractile tissue which produces motion and exerts forces, and the tendons connecting

the muscles to the bones. The biological structure also comprises synovial joints with no

tissue between articular surfaces, fibrous joint with tissue bridging the joint and

cartilaginous joint with cartilage bridging the joint [107]. A biomechanical model of the

human hand-arm system may separate the mass of bones and muscles as partly

demonstrated in [99, 128] instead of lumping them together as seen in most of the

models.

The vast efforts on the characterization of mechanical properties of bones and

muscles have invariably concluded that bones and muscles are composite materials

resulting in viscoelastic and anisotropic behaviors whose properties depend on age, sex

and race. Wirtz et al. [108] evaluated many reported bone properties derived from fresh

untreated human femurs to determine if they were sufficient to realize anisotropic finite

element model of the human femur. The bone properties were correlated with apparent

density (g/cm3) to reflect individual variables and age-dependent changes of the bone
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material properties. The study evolved into power relations between the femur bone

transverse and axial Young's modulus and the bone density. In a similar manner,

Maganaris and Paul [109] reported the Young's modulus and stiffness properties of the

human tibialis anterior (TA) tendon on the basis of in vivo measurements. Only limited

efforts, however, have been made in characterizing the mechanical properties of the hand-

arm system.

Roberts et al. [110] determined the mechanical properties of the hand-arm tissue,

skin and the ulna bone from the vibration responses of the tissue and skin. The study

employed a methodology referred to as the Mechanical Response Tissue Analysis

(MRTA). An analytical model was developed and validated by comparing the results

attained with clinical techniques, such as bone mineral density (BMD) and bone mineral

content (BMC), which are used to assess the integrity of bones. Table 1.1 summarizes the

results of the in vivo MRTA test and the model results for the skin and tissues of human

forearm. The material and geometric values for the Young's modulus and density of the

ulna bone, probe radius and tissue thickness were 4 MPa, 1000 kgm"3, 5 mm, and 1 mm,
respectively.

The weight, shape and dimensions of the human hand-arm are also known to

depend on age, sex and race. Anthropometric database suggest that the masses of the

hand, forearm and upper-arm are approximately 0.65 %, 1.9 % and 3.3 % of the total

body mass [107]. The descriptive dimensions of the humeri and the length of the radius

bones have also been reported on the basis of measurements performed on Australian

aboriginal males [111]. The study suggests the mean radius and ulna bone lengths of

252.7 mm (standard deviation =13.19 mm) and 269.9 mm (standard deviation = 12.47
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Table 1.1: Properties of the skin of human hand-arm from Robert et al. [HO].

Skin parameter Units Theoretical Experimental
Effective mass g 0.245 0.239
Effective damping Nsm"1 14.34 11.97
Effective stiffness kNm"1 314.2 322.5
Actual mass g 0.079 NA

mm). The mean maximum humerus length was reported as 323.9 mm with mid shaft

breadth ranging from 15.6 to 19.8 mm.

1.2.4 Hand-transmitted vibration and its control

The nature of hand-transmitted vibration from a wide range of power tools has

been characterized through field measurements. These studies have shown that the

magnitudes of tool vibration could exceed 2000 m/s2 and could occur at frequencies up to
2000 Hz [112, 116]. Wasserman et al. [114] measured the vibration emission using the

basicentric coordinate system and three-axis accelerometers of a group of pneumatic

hand-operated grinding tools. The measured vibrations were evaluated using ANSI S3.4

[118] and ACGIH [119] hand-arm vibration exposure guidelines. The results showed that

the old grinders resulted in higher vibration magnitudes in all directions than the new

grinders but none of them exceeds the limits defined in ANSI S3.4 and ACGIH. The

results suggested that wear and tear, and conditions of a tool influence the magnitudes of

transmitted vibration. Dandanell and Engstrom [115] measured and analyzed the

vibration of the percussion-type riveting hammers and bucking bar. Since the tools are

characterized by relatively lower levels of acceleration at low frequencies and high levels

of acceleration at higher frequencies, two different measuring systems (displacement
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pickups and piezoelectric accelerometer) were used to capture both the low and high

frequency responses of the tools. The results showed that percussion tools vibration

exhibit high energy level above 1000 Hz, which is not covered by the ISO 5349-1.

Reynolds et al. [116] performed measurements and analysis of vibration due to pneumatic

chisels, chipping hammer and grinding tools. The data analyses in 1/3 -octave band in the

6.3 - 1000 Hz frequency range revealed rais acceleration levels ranging from 2000 m/s

to 24,000 m/s2 for the chisels, and between 37 m/s2 and 350 m/s2 for the chipping
hammers. The hand grinder acceleration levels ranged from 6 m/s to 21 m/s . The study

concluded that greater amount of energy is transmitted to the hand from the handles of the

small chipping hammers than from the handles of the larger ones.

Owing to large magnitudes of HTV and its association with HAVS among the

exposed workers, considerable efforts have been made towards protecting operators of

hand-held power tools from HAVS. These include the efforts in assessment of potential

risks and those aimed at reducing the magnitudes of HTV exposure. Different national

and international standards [29, 31, 117-119] have evolved to provide guidelines on

vibration exposure limits, the duration of exposure, and methodologies for measurement

and assessment of HTV.

The efforts related to mitigation of HTV from the power tools have focused on: (i)

isolation of the tool handle from the vibrating source; (ii) isolation of the hand from the

handle; (iii) design of low vibration power tools; and (iv) avoidance of direct contact

between the human hand-arm and the power tools by the use of automated support or the

hand-arm simulator. Only limited efforts have been attempted in isolating the tool handle

from the vibrating source. This is mostly due to compact designs of hand-held power
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tools and extreme design complexities in implementing vibration isolation within the tool

[46]. The method of isolating the hand from the tool handle is most commonly used in

workplaces in the form of antivibration gloves [46 - 51]. The vibration isolation

effectiveness of such gloves has been widely investigated in the laboratory through

measurement of vibration transmitted to the palm of the hand, metacarpal bones and the

wrist [87 - 91]. The vast majority of these studies have employed the methodology

defined in ISO 10819 [117], which also defines the medium- and high-frequency

vibration spectra (referred to as 'M' and ?' spectra) for assessing the effectiveness of a

glove for medium and high frequency tools. The vibration excitation corresponding to Vi-

and ?-spectra dominate in the 16 - 400 Hz and 100 - 1600 Hz, respectively. Rakheja et

al. [88] compared the measured spectra of some of the hand-held power tools with the

standardized M- and H- spectra. The comparisons showed that the vibration due to the

pneumatic chipping hammer, nut runner and the random orbital sanders have

predominant frequencies within the M-spectrum, while the magnitudes are considerably

higher than that of the M-spectrum. Nut-runner and pneumatic chipping hammer

vibration reveal predominant frequency in the lower frequency range (12.5 - 31.5 Hz).

The rivet gun, pneumatic road breaker and chainsaw exhibit vibration within the range of

?-spectrum but with lower vibration magnitudes. Some studies have shown that the

gloves tend to amplify vibration in the low frequency region, and improved vibration

isolation could be achieved at the expense of dexterity loss.

Cherian et al. [92] proposed the concept of energy flow divider to reduce the

vibration transmitted to the human hand-arm. The energy divider, made-up of visco-

elastic elements, is attached between the hand and the elbow such that part of the energy
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can flow through the energy divider and be dissipated. The concept, however, showed

greater vibration at the operator elbow, while the hand vibration could be reduced

considerably. Golycheva et al. [122] proposed the use of a passive vibration protection

system that combined the principles of vibration isolation and dynamic absorption

between the hand and the handle of percussive tools. The results suggest that the system

significantly reduced the HTV without significant increase in the mass of the tool. The

dexterity problem introduced by the protection system was not studied or reported.

Analytical models of various tools have also been attempted for identifying

potential vibration isolation methods [45, 66, 120 - 122]. The designs of low vibration

emission chainsaws have been realized through such methods [50]. A few studies have

focused on rotary-percussion tools that are known to produce impulsive vibration, which

are believed to serve as an additional contributory factor in the development of HAVS [8,

37, 38]. The dynamic principle of a percussive- rotary hand-held tool (vibro-impact

mechanism) is similar to that of the new percussive-rotary drilling technique used in

petroleum exploration [125]. The complexity of the hand-held percussion tool dynamics,

however, has been the primary limiting factor in models development and analyses.

Rakheja et al. [45] derived an analytical model for an electro-pneumatic

percussive chipping hammer and coupled it with the 3 -DOF hand-arm model defined in

ISO 10068 [86] to study the hand-transmitted vibration characteristics of the tool. A

comparison of the model responses with the laboratory-measured data revealed

considerable disagreement, while the fundamental frequency of the model response

agreed reasonably well with the experimental results. The discrepancy was attributed to

the extreme softness of the standardized hand-arm model. Jahn and Hesse [66]
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investigated the interactions between the human hand-arm and the tool. A mechanical

model of an electro-pneumatic drilling hammer (BOSCH 11206) was derived and

coupled with the 3 -DOF hand-arm model. The model was also used to study the influence

of the grip cushioning.

Babitsky [120] presented a general formulation and analysis of hand-held

percussion machines by using methods of non-linear dynamics and optimal control.

Golycheva et al. [121] refined the model proposed by Babitsky [120] by adding flexible

elements to the exciting piston of the electro-pneumatic hammer to improve its excitation

performance, leading to an extension of acceleration time and a reduction in the intensity

of the impulses of impacts thereby relieving load on the operator. Addition of flexible

elements to the piston may, in reality, make the design and fabrication of compact hand-

held power tools more complicated. The reported analytical models, in general,

oversimplified the thermodynamic process of the air between the piston and the striker

such that it becomes redundant [45, 66, 120, 121]. Unlike the model of Rakheja et al.

[45], where attempts were made to validate the model response with experimental data,

the validity of models by Babitsky [120] and Golycheva et al. [121] has not been

demonstrated. Research efforts towards the development of a reliable

anatomical/biomechanical human hand-arm model coupled with hand-held power tool

models are thus highly desirable to better understand the HTV and its mitigation at the

vibration source. Efforts are also being made towards automation of various processes so

as to eliminate the human operator [66, 86, 123, 124].
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1.3 Scope and Objectives of the Dissertation

From the literature review, it is evident that vast majority of the studies have

focused on characterization of hand-transmitted vibration (HTV), measurement of

biodynamic responses and measurement of vibration attenuation performance of anti-

vibration gloves. The studies on characterization of HTV have provided a significant

database on the nature of vibration and for conducting exposure assessments. The efforts

on characterization of biodynamic responses in terms of both 'to-the-hand' and 'through-

the-hand' functions reveal extreme discrepancies among different datasets reported by

different investigators, particularly at higher frequencies. A few of these studies have also

investigated the contributions due to important intrinsic and extrinsic factors but only

little agreements exist on the role of such factors. The discrepancies among the reported

DPMI datasets have been observed to be excessive at frequencies above 500 Hz, and do

not permit for generalization of the human hand-arm response to HTV. The idealized

DPMI responses of the human hand-arm system in ISO 10068 [86] have thus been

limited to 500 Hz. Only minimal efforts have been made to identify the sources of such

discrepancies, although a few studies have attributed these to the measurement methods

and handle resonant frequency. The contributions of handle dynamics and measurement

location on the DPMI responses have not been quantified even though the disparities in

the reported DPMI magnitudes at high frequencies have been attributed to the resonant

frequencies of the handle.

Moreover, considerable disagreements exist on the identification of the natural

frequencies of the hand-arm system from the DPMI responses. While the majority of

studies considered natural frequencies as the frequencies corresponding to the peak DPMI
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magnitude, a few have considered these to correspond to valleys in the DPMI response

magnitude. Furthermore, a vast number of the reported DPMI responses do not reveal

distinct magnitude peaks; which has been attributed to the effect of averaging of DPMI

responses of diverse subjects. Fundamental and systematic efforts on the DPMI responses

are thus needed to derive generally applicable methodologies for the identification of

natural frequencies and high frequency responses of the hand-arm system.

While the DPMI measure describes the dynamic interactions of the hand at the

hand-handle interface, it is hypothesized that the vibration transmitted to different

segments of the hand-arm system could better describe the vibration modes. A relatively

fewer number of studies, however, have attempted to characterize the 'through-the-hand-

arm' biodynamic responses, most likely due to complexity of the measurement and low

vibration transmission magnitudes at frequencies above 200 Hz. Moreover, only minimal

efforts have been made to study the contributions due to important contributing factors,

such as the push force and hand-arm posture, to the transmitted vibration. It is further

hypothesized that characterization of both 'to-the-hand' and 'through-the-hand-arm'

responses could provide better understanding of the hand-arm responses to vibration.

Although a number of mechanical-equivalent models of the hand-arm system

have evolved, it has been suggested that none of the models are suited for applications in

the coupled hand-tool analyses. This is attributed to unrealistically high static deflections

of the model components, and excessive damping ratios of some modes. Moreover, the

majority of the models do not consider the anatomical structure and biomechanical

properties of the hand-arm system. The model parameters are merely selected to satisfy or

curve-fit the DPMI dataset, which may not be unique. It is believed that the uniqueness of
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the model could be enhanced by considering both 'to-the-hand' and 'through-the-hand-

arm' biodynamic response functions with appropriate considerations of the hand-arm

anthropometry and biomechanical properties. The model thus derived could provide the

nature of vibration transmitted to different segments of the hand-arm system.

Furthermore, the distribution of vibration power absorption within the hand-arm system

could be estimated under vibration spectra of specific tools to assess their potential injury

effects.

Development of a practically applicable hand-arm model is vital to study the

power flow within the coupled hand-tool system. The studies on dynamic analysis of

power tools have been severely limited due to design complexities of highly compact

tools. Thus far, only three studies could be found on the analytical modeling of the

coupled hand-tool system. Development of analytical models for the hand-held power

tools will facilitate a better understanding of the vibration generation and mitigation

phenomena in the power tools.

1.3.1 Objectives of the dissertation

The overall objective of this dissertation research is to develop biomechanical

models of the human hand-arm to obtain the distribution of vibration power absorption,

due to vibrating handles and power tools, in different substructures of the human hand-

arm system. The specific objectives of the dissertation research are as follows:

a) Perform systematic experimental and analytical investigations for identifying the

sources of deviations in the reported driving-point mechanical impedance

response of the human hand-arm system under ?/,-axis vibration at frequencies
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above 500 Hz, and identify the desirable dynamic properties of the simulated

handles;

b) Perform laboratory experiments to simultaneously characterize the driving-point

impedance and the vibration transmitted to different segments of the hand-arm

system under different excitation magnitudes, postures and hand forces;

c) Develop a biomechanical model of the human hand-arm and conduct parameter

identification using the measured biodynamic responses and corresponding

characteristic frequencies, and demonstrate the validity of the model;

d) Evaluate vibration power absorption distribution at different substructures of the

hand-arm model due to excitation from a percussion power tool and other types of

hand-held power tools for assessment of susceptibility of different segments of the

hand-arm system to potential injury.

1.3.2 Organization of the dissertation

The dissertation research is divided into six chapters. Investigations on the

discrepancies in the reported hand-arm DPMI at frequencies above 500 Hz are presented

in Chapter 2. The contribution due to handle natural frequency, measurement location,

handle deformation and the effectiveness of handle mass cancellation are systematically

explored through development and analysis of the handle model coupled with the 3-DOF

hand-arm model reported in ISO 10068.

Chapter 3 presents the methodology for simultaneous measurements of 'to-the-

hand' and 'through-the-hand-arm' responses together with the data analysis. The effects

of different hand forces, vibration level, measurement location and hand-arm posture on

hand-transmitted vibration are particularly discussed together with the identification of
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hand-arm resonance frequencies. Statistical analysis of variance (ANOVA) using SPSS

software was performed on the experimental data to investigate the significance of the

main factors on the DPMI and transmissibility responses.

In Chapter 4, the experimental data obtained in Chapter 3 were used to realize a

biomechanical/anatomical model of the human hand-arm system. The human hand-arm

anthropometric parameters, biodynamic responses and characteristic frequencies were

considered in deriving two models corresponding to the bent-arm and the extended arm

postures.

The vibration power absorption distribution at different substructures of the hand-

arm model due to vibration from a percussion tool and other hand-held power tools is

presented in Chapter 5 to investigate susceptibility of different segments of the hand-arm

to potential injury.

Finally, the highlights of the dissertation research, major conclusions drawn and

recommendations for future work are presented in Chapter 6.
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CHAPTER 2

ANALYSES OF DISCREPANCIES IN THE HAND-ARM
IMPEDANCE DATA

2.1 Introduction

Biodynamic response analysis of the hand-arm system exposed to hand-

transmitted vibration (HTV) is among the most fundamental aspects for understanding the

potential vibration-induced disorders. The biodynamic responses of the human hand-arm

have thus been widely characterized in terms of the driving-point mechanical impedance

(DPMI) [67 - 78, 80 - 83]. The responses reported by different investigators, however,

exhibit considerable discrepancies, particularly above 500 Hz, which have been attributed

to an array of factors involving differences in handle geometry and size, excitation

magnitude, hand-arm posture, hand-handle coupling forces, subjects employed, and

measurement system and methods.

While the majority of the studies show sharp increase in DPMI magnitude at

frequencies above 500 Hz [68, 78, 79, 81], a few studies have shown either decreasing or

relatively steady DPMI magnitudes above 500 Hz [67, 70, 77, 82]. Other studies have

shown that the hand forces, and hand-arm posture affect the human hand-arm impedance

at frequencies below 500 Hz [67, 69, 73, 82]. A few early investigators had suggested that

the differences in DPMI at higher frequencies may be caused by handle natural

frequency, while a quantitative analysis was not attempted [70, 72, 76]. Handles with

sufficiently high natural frequency are thus generally recommended for laboratory
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characterization of DPMI, which is a difficult task considering that the vibration due to

various tools may comprise components at frequencies up to 2000 Hz. A recent study

evaluated the contribution of handle dynamics to measurement errors in laboratory-based

performance assessment of anti-vibration gloves, and concluded that distribution of

vibration along the handle span due to handle bending, and palm-adapter misalignment

can cause considerable measurement errors [91].

The relatively large discrepancy in the reported data is also attributed to extremely

low apparent mass of the hand-arm system at higher frequencies. At frequencies near

1000 Hz, the apparent mass of the hand-arm system could approach as low as 25 g [67].

This small apparent mass in relation to relatively large mass of the handle and its

supporting fixture could yield considerable measurement errors, when mass cancellation

is performed. A handle design with low effective mass comprising force sensors in the

immediate vicinity of the driving-point has been proposed to reduce such errors [127].

Furthermore, this handle design allows for measurement of the biodynamic force either

from the fingers or from the palm side of the hand. The instrumented handle employed in

such studies [67, 127] requires the measurement of the total biodynamic force, apart from

the grip and push forces, which tends to increase the effective mass of the handle.

A systematic and thorough examination of the measurement and data analysis

techniques employed for characterizing biodynamic responses is vital for identifying

essential sources of errors and thus the discrepancies among the reported data,

particularly at higher frequencies. The influences of handle dynamics and measurement

locations on the measured responses could also be quantified. In this chapter, the reported

biodynamic responses are reviewed in an attempt to identify various sources of variability
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in the high frequency region. The influences of measurement location, handle and

supporting fixture resonant frequencies, type and geometry of handle, and mass

cancellation methods, are particularly investigated using experimental and analytical

techniques. The results are used to propose design guidelines for the instrumented

handles.

2.2 Comparison of the Reported Hand-arm Impedance Responses

The DPMI responses of the human hand-arm system exposed to HTV have been

mostly characterized in the laboratory using instrumented handles. The driving-point

responses have been measured at different locations of the handle and its supporting

structure, depending upon handle and fixture design and convenience of installation of the

sensor, assuming negligible contributions due to structure dynamics. Depending upon the

dynamic behavior of the handle and the measurement location, the measured force and

velocity actually describe the transfer impedance properties of the coupled handle-fixture-

hand-arm system. This can perhaps be illustrated through a review of the different handle

designs and measurement locations employed in various studies.

The reported studies [67, 68, 73, 79, 80, 82, 84] have employed handles supported

at the extreme ends and at the mid-span, and the column designs as shown in Figure 2.1.

The dynamic properties of these handles would differ depending upon the support

conditions. Furthermore, split handle designs are invariably employed for the

measurement of grip force using either strain gages or force sensors. The biodynamic

force developed by the hand-arm system is mostly measured by introducing force sensors

between the handle and its supports, as seen in Figure 2.1(a) and Figure 2.1(c), or

between the handle fixture and the exciter, as seen in Figures 2.1(d), 2.1(e), and 2.1(f)).
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Figure 2.1 : Schematics of different handles used for biodynamic studies: (a) Lundstrom
and Burstrom [80]; (b) Burstrom [73]; (e) Aldien et al. [67, 84] and Marcotte et al. [82];
(d) Reynolds and Falkenberg [79]; (e) Gurram et al. [68]; (f) Burstrom [73].
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The signal from these force sensors also provides a measure of the hand push force. An

accelerometer is installed either within the handle, or at the supporting fixture to measure

the motion. It is evident that the column (Figure 2.1(f)) and center-supported (Figure

2.1(d)) designs do not provide measures at the driving-point, while the end-supported

handles can yield measurements of force and acceleration very close to the driving-point.

The effective handle mass supported by the force sensors in all these cases, however,

tends to be relatively large.

Tables 2.1 and 2.2 summarize the conditions employed in a number of studies on

hand-arm biodynamics that are grouped on the basis of elbow angle used, close to 90° and

1 80°, respectively. The tables summarize the nature of excitation, hand-arm posture, hand

forces, and handle size and design, together with the location of force and acceleration

measurement systems. The force was measured either within the handle (designated by

'/*') or between the handle and its support (V) or between the handle support and the

exciter ('è')· The accelerometer, on the other hand, is mounted either in the handle ('/T)

or at its base near the exciter ('6'). Different dataset reported for each posture can be

grouped in two categories on the bases of measurement system location: (i) those with

force and acceleration measurements close to handle fixture base [68, 78, 79, 81]; and (ii)

those with acceleration measurement within the handle and total biodynamic force within

or near the handle support [67, 69, 70, 73, 77, 80].

Figures 2.2(a) and 2.2(b) compare the mean DPMI magnitude responses reported

in selected studies with elbow angles close to 90° and 180°, respectively, together with

the mean values reported in ISO 10068 [86]. Owing to the limited frequency range of
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Figure 2.2: (a) Comparisons of hand-arm impedance magnitudes reported in selected
studies involving: (a) elbow angle close to 90°; and (b) elbow angle close to 180°.
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standardized values, the three-DOF hand-arm model formulated on the basis of mean

DPMI values was used to determine DPMI response in the 10 - 1000 Hz frequency

range. The scatter among the dataseis tends to be greater at frequencies above 500 Hz,

irrespective of the hand-arm posture. While some of the datasets reveal increasing

magnitude at high frequencies, others show decreasing trend. A closer look at the

associated experimental designs suggests that the studies [68, 78, 79, 81] involving

acceleration measurements near the base of the handle support ('è') yield increasing

magnitudes at higher frequencies, with no exception. The force measurement in all these

studies was also taken at the base of the handle supports. The studies [67, 79, 83]

involving acceleration measurement within or close to the handle yield either a

decreasing or relatively steady magnitudes at higher frequencies, with the exception for

the data reported by Burstrom [69], and Lundstrom and Burstrom [80]. These two studies

employed an identical handle design comprising a strain-gage based force sensing

member within the handle, as shown in Figure 2.1(a). The increasing magnitude trend in

these studies is perhaps caused by the resonance of the force sensing member. The

authors claimed good agreements between their data and those reported by Mishoe and

Suggs [72], who used a center-supported handle with acceleration measurement near the

exciter. Another study by the same author of [69] employed handle-support mounted

force sensors, as shown in Figure 2.1(b), which resulted in significantly lower

magnitudes in the 200 - 600 Hz frequency range and increasing trend at higher

frequencies [73]. The results suggest that the measurement location could significantly

affect the DPMI magnitude response of the hand-arm system, particularly at higher

frequencies. The discrepancies observed below 500 Hz, however, have been attributed to
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a range of factors, namely hand forces, excitation magnitude, handle size and inter-

subject variability [67, 73, 82].

2.3 Methodology

2.3.1 Experimental method

Owing to the complex contributions of the handle dynamics and measurement

locations, as observed from the reported data, an experimental and analytical study is

undertaken to examine the effects of these parameters. The experiments involved four

adult male subjects and four different handle designs: two instrumented cylindrical

aluminum handles (40 and 50 mm diameters), shown in Figure 2.1(c); a tubular 40 mm

diameter aluminum handle with 7.5 mm wall thickness; and a 40 mm diameter solid

aluminum handle. All the handles were installed on an electro-dynamic vibration shaker

using the support fixture shown in Figure 2.1(c), which comprised two force sensors for

measurement of hand push and total dynamic force developed by the hand and handle

fixture. Each handle was oriented to generate vibration along the ?/,-axis of the hand-arm

system. The acceleration due to vibration of the 40 and 50 mm instrumented handles was

measured using a PCB SEN026 tri-axial accelerometer installed within the handle, while

the acceleration of the tubular handle was measured using a miniature Bruel & Kjaer

accelerometer (B&K 4393) fastened inside the handle at the mid-span. For the solid 40

mm handle, the same accelerometer was attached to the exterior surface at the mid-span

using wax.

The instrumented handles integrated two force sensors for the measurement of

grip force. The measured grip and push forces were low-pass filtered at a rate of 4

samples per second and displayed to the subject on a computer monitor. The subjects
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were advised to maintain the desired hand forces (30 N grip and 50 N push) within ± 2 N

by monitoring the displayed forces, while gripping the handle with an elbow angle of 90°.
For the tubular and solid handles, it was not possible to measure the grip force; subjects

were however advised to maintain a grip similar to that used for the instrumented

handles.

The handles were subject to broadband random vibration in the 2.5 to 3000 Hz

frequency range, with constant power spectral density (PSD) and frequency-weighted

overall rms acceleration of 5.25 m/s2. The flexural deformation of the 40 mm

instrumented handle was initially evaluated through measurement of acceleration along

half the span of the handle. The acceleration at the handle surface was measured at four

different locations, including the mid-position (Pos 1) and the support (Pos 4), as shown

in Fig, 2.3(a). The measured acceleration was normalized with respect to that measured at

B&K 4393 Ace.
Posi Pos2 Pos3 Pos4

I I

ImI-^sH

Force sensor I Accelerometer

(a)

rip force sensor

iodynamic/push
force sensor

U
£3 <7„

_r_
Ch

mb ? Y=Qf

(b)
Figure 2.3: (a) Experimental setup for measurement of handle vibration at various

locations; and (b) base-excited 2.DOF model of the handle.
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the inside center of the handle (ah). An additional single-axis accelerometer (ab) was

also installed at the base of the handle fixture as shown in Figure 2.3(a). The resonant

frequencies and the apparent mass of each handle were also derived from the measured

force and acceleration responses. For this purpose, the signals from the base-mounted

( ah ) and the handle-mounted ( ah ) accelerometers, and the fixture-mounted force sensors

were acquired in a multi-channel Pulse data analyzer. The data were analyzed to derive

acceleration transmissibility, the ratio of handle acceleration to the base acceleration, and

the apparent mass of each handle. The handle apparent mass characteristics were

computed using both the handle and base acceleration, such that:

SFo Xj?)APMSAj?)= °h

SFn (j co)APMS1(JCO)= Fa"
Sah(Jco)

where APMSb and APMSh are complex apparent mass responses of the handle derived

on the basis of base and handle acceleration, respectively. Sa (jco) and SFa¡ \jco) are the
auto-spectrum of acceleration measured at location i (i = b, h), and cross-spectrum of

force and acceleration corresponding to excitation angular frequency ? .

Subsequently, experiments were performed to measure the driving-point

impedance properties of the hand and arm of four adult male participants. Each

participant was advised to maintain the desired hand forces (30 N grip and 50 N push)

with an elbow angle of 90° and 0° shoulder abduction. Each measurement was performed

three times, and the measured force and acceleration data were analyzed to determine the

driving-point impedance of the coupled hand-handle system. The impedance magnitude

and phase responses of the hand-arm system were obtained by applying appropriate
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inertial correction for the handle effective mass. The results attained for the three trials

were averaged to determine mean responses based upon both handle and base

accelerations, as described in Eq. (2.1).

Relative analysis of the two apparent mass (APMS) responses could provide

considerable insight into the effects of handle deformations and measurement location.

The measured APMS responses of the handle were analyzed in an attempt to identify a

limiting frequency, fL , such that the APMS response can be considered reliable within

5% for f <fL. The percentage deviation in the APMS magnitude was computed with

reference to that measured at 1 0 Hz in order to determine the limiting frequency fL . The

reference value at 10 Hz was chosen since the flexural deformations are not expected to

occur at such a low frequency. The acceleration data acquired at different locations were

further analyzed to derive acceleration transmissibility and identify the natural

frequencies of each handle.

2.3.2 Analytical method

The contributions due to handle dynamics and acceleration measurement location

could also be estimated through the development and analysis of a simple model of the

handle. A coupled hand-handle system model could be further realized to study the

effects of handle dynamics and measurement location. The instrumented handle used in

this study, schematically shown in Figure 2.1(c), can be modeled as a base-excited two-

degree-of-freedom (DOF) dynamical system, as shown in Figure 2.3(b), assuming

negligible contribution due to the bending mode. The grip force sensing cap is

represented by a lumped mass mL , while the handle is represented by mass mu , which is

coupled to the fixture/base of mass mb through effective stiffness kh and damping ch
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properties of the handle and the push/biodynamic force sensors. Masses mL and mu are

also coupled through the effective stiffness and damping properties of the grip force

sensors and the sensing cap. The mass parameters of the 40 mm instrumented handle

were measured as m¿ = 1 .0 kg, mu = 0.52 kg and mL = 0.20 kg.

The equation of motion for the 2.DOF linear model of the handle can be written

as:

[MM + [F]+ [KJq] = [C0 }qb + {?0 }qb (2.2)
where [m], [c] and [?] are (2x2) mass, damping and stiffness matrices,

respectively, {C0 } and {?0} are (2xl) forcing damping and stiffness vectors, {q} is

(2 ? l) displacement vector andqb is the displacement of the fixture base.

The above equation is solved to compute the apparent mass of the handle and its

support fixture in the frequency domain on the basis of acceleration responses at the base

and in the vicinity of the hand, such that:

APMSfb(jco)-(kh+J<OC»i¦ß\j™>- 2
— CO

(2.3)

(2.4)

where Qtl{jco), QL{jco) and Qb(ja>) are the Fourier transforms of qu(t), qL{t) and

qb(t), respectively. The impedance of the handle and its support on the basis of base and

handle velocities can be expressed as:

Zß (ja) = J(O APMSj0 (2.5)
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2^(j?)= j? APMS ß (2.6)
Considering that the fundamental mode vibration is of primary concern, the damping ch

and stiffness kh properties of the structure and force sensors corresponding to the first

mode were identified. An eigenvalue problem was formulated and solved to determine

the fundamental natural frequency con and the corresponding damping ratio ? . The

equation of motion was then manipulated to express kh and ch as functions of masses,

Con and ? , in the following manner:

, 2mrmua>2nkh= L u ? (2/7)
(2mL + /wj- ^(2mL+muJ +4mLmu

ch=2(mL+mu)ú)nC (2.8)
Owing to the very light damping of the handle structure, the handle natural frequency

was taken as the frequency corresponding to the peak in the measured acceleration

transmissibility of the 40 mm instrumented handle (ah/ab ). The identified frequency was

subsequently applied in the above equations to estimate the values of c,,and kh

corresponding to the first mode. The damping ratio ? was selected to attain good

agreement between the peak impedance magnitude responses ( ?ß and Zfh ) of the model,

derived from Equations (2.5) and (2.6) and the peak measured impedance responses. A

damping ratio of 0.009 was found to yield reasonably good agreements between the

model and the measured impedance responses. The values of ch and kh are found to be

105.09 Ns/m and 52120 kN/m, respectively for handle natural frequency of 1305 Hz,

while the parameters of the 3-DOF hand-arm model reported in ISO 10068 [86] are: m,=
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2.9 kg, W2= 0.662 kg, m3= 0.03 kg, c, = 30.3 Ns/m, C2= 380.6 Ns/m, C3= 227.5 Ns/m,

£,= 2.495 kN/m, fc2 = 299.4 kN/m and ¿3 = 5.335 kN/m. The resulting model was then

applied to study the influence of handle resonance frequency on the dynamic

characteristics of the hand-arm system by varying the stiffness coefficient kh .

Subsequent to the development of a handle model, a 5-DOF model of the coupled

hand-arm-handle system is formulated by integrating the 3-DOF ?/,-axis hand-arm system

model, defined in ISO 10068 [86], with the 2-DOF handle model, as shown in Figure

2.4(a). The equation of motion for the coupled model in the matrix form can be expressed

by Eq. (2.2), which is solved to compute the impedance responses of the hand-arm model

on the basis of both the base and handle accelerations, represented by q\ and qL =q\,

respectively. The handle acceleration is taken as q\ rather than qu , since the relative

dynamic deflection across the grip sensors, when hand grip force is applied, is very small.

The total impedance of the coupled model is computed using the total dynamic force,

which is subsequently corrected for the impedance of the handle alone such that:

¿«?'®)= ZdÜ®)- zfi(jv) (2.9)
where ZM is the hand-arm impedance on the basis of acceleration measured at location i,

(i = h, b), Zcj is the impedance of the coupled hand-arm-handle system model (Figure

2.4(a)), which is derived as:

Z (Jy)-^+ JMa(QM-Qu(Ja))]
jO)QXj ?)

The impedance based on the handle acceleration, Zhh (jco) , can also be computed directly
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from the decoupled force-excited 3-DOF hand-arm system, shown in Figure 2.4(b) [68,

72]:

(2.11)

Equation (2.11) represents the impedance response of the uncoupled hand-arm system

that can be achieved only via analytical means. Such decoupling of the hand-arm from

the handle in experimental characterization is attained through inertia cancellation, which

may introduce errors in the impedance properties of the hand-arm system.
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Figure 2.4: Mechanical equivalent models of: (a) the coupled hand-arm-handle system;
and (b) the decoupled hand-arm and handle
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2.4 Effects of Handle Dynamics and Measurement Location on
Impedance Response

Figure 2.5(a) shows the measured acceleration transmissibility magnitude

responses ( ah /ab ) of the four handles considered in the study under broadband random

excitation in the 2.5 to 3000 Hz frequency range. The responses show large magnitude

peaks at frequencies considered to be the fundamental mode resonant frequency of the

handle, although some of the handles also show secondary peaks at higher frequencies.

The observed resonant frequencies of the handles are summarized in Table 2.3. The

results show that the tubular 40 mm handle yields the highest fundamental frequency of

1 769 Hz due to its lower mass and area moment of inertia. The fundamental frequency of

the solid handle with higher mass and area moment of inertia is lower than the tubular

handle while both the instrumented handles yield the lowest frequencies due to their split

design.

Table' 2.3: Natural frequencies of test handles, identified from the measured data

Handle type Diameter Primary frequency
Tubular 40 mm 1769Hz

Instrumented 40 mm 1305Hz
Instrumented 50 mm 1240Hz

Solid 40 mm 1534Hz

The measured impedance response magnitudes of all the handles, on the basis of

base and handle acceleration, are shown in Figure 2.5(b). The results show that the

impedance magnitudes based on the base motion exhibit sharp peaks occurring at the

identified resonant frequencies. The impedance magnitudes based on the handle motion,

does not show distinct peaks in the 2.5 - 3000 Hz frequency range, the magnitude tends

to either settle down or decrease at frequencies above 1000 Hz. The reported DPMI
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responses of the hand-arm system exhibit both the trends, increasing or

decreasing/settling, in the magnitude. These results thus confirm the earlier observation,

shown in Figure 2.2, that the data based on acceleration measurement at the base would

yield increasing magnitude at higher frequencies, while those based on the handle

acceleration would exhibit decreasing or settling magnitude at higher frequencies.

The measured impedance magnitude responses of the 40 mm instrumented handle

are further compared with those derived from the 2-DOF model in Figure 2.6.

Measurements based on the base and handle acceleration are identified with 'b' and (h',

respectively. The results show reasonably good agreements between the model and

experimental results, particularly for impedance based on base motion (see Fig. 2.6).

Good agreement between the model and experimental results are also observed in

impedance based on handle acceleration up to 1000 Hz. The observed discrepancies

I
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Mode-h
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O
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o
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Figure 2.6: Comparisons of measured impedance magnitude responses of the 40 mm
instrumented handle with the model results ('b'- base, 'h'- handle ).
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between the two results above 1000 Hz may be attributed to lack of consideration of the

handle flexural bending in the model. The results, however, suggest that the proposed 2-

DOF handle model can adequately simulate the handle dynamics.

Figure 2.7(a) shows the mean impedance responses of the hand and arm,

measured on the basis of base and handle accelerations ( Zhb and Zhh ), attained for the

four subjects grasping different handles. The measured mean responses were derived

upon inertial correction using Eq. (2.9). The figure also illustrates the impedance

response of the 3-DOF hand-arm model described in ISO 10068 [86]. The results show

that the frequencies corresponding to peak magnitudes observed in Zhb are quite close to

the respective natural frequencies of the handles identified from the measured

acceleration transmissibility (Table 2.3). Apart from the handle (with natural frequency

of 1305 Hz) considered for modeling, the influence of handle resonance frequency on the

impedance magnitudes are also obtained by varying the natural frequency of the 2-DOF

handle model from 900 to 4000 Hz. Figure 2.7(b) presents the impedance response

characteristics of the hand-arm model based upon the base and handle motions

(ZhbandZhh) obtained using Eqs. (2.9) - (2.11) together with the mean impedance data

and hand-arm model response reported in ISO 10068 standard. Simulation results also

reveal peak magnitudes in Zhb near the chosen natural frequencies. The appearance of

peaks that are close to the natural frequencies of the handles in Figure 2.7 suggests that

the mass cancellation did not completely remove the contributions due to handle

dynamics, particularly at higher frequencies.

The measured DPMI magnitude responses based upon handle acceleration ( Zhh )

invariably do not show peaks near the handle resonant frequencies. The magnitude
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Figure 2.7: Effects of handle natural frequency and measurement location on the hand-

arm impedance response: (a) mean measured; and (b) model results.
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responses, however, show valleys at frequencies greater than the natural frequencies of

the handles. These trends are similar to those observed in the reported DPMI presented in

Figure 2.2, and in the measured and computed handle responses presented in Figures

2.5(b) and 2.6. The results clearly show most significant effect of measurement location.

The magnitude responses obtained with the base acceleration, Zhb , clearly show rapidly

increasing magnitude at higher frequencies up to the handle resonant frequency, while the

Zhh magnitude exhibits either a settling or decreasing magnitude to form a valley at a

frequency greater than the handle resonant frequency for all the handles. Such a valley is

also evident in impedance response reported by Burstrom [73], as shown in Figure 2.2.

This suggests relatively lower natural frequency of the handle used in the study. From the

results, it can thus be deduced that the different trends and discrepancies in high

frequency impedance of the hand-arm system are in-part attributable to location of

measurement and the handle resonant frequency.

The results further show that the higher is the natural frequency of the handle, the

closer is the responses attained to the impedance response of the model reported in ISO

1 0068 at higher frequencies. It should be noted that the ISO hand-arm model was derived

from mean impedance data in the 10 - 500 Hz range; hence it is not expected to show

contributions due to handle resonance. From the results, it can be further deduced that the

model can predict the hand-arm system impedance responses below 10 Hz, although the

majority have reported data above 10 Hz. The DPMI magnitude response of the model

reveals a valley around 4 Hz, similar to that observed in the experimental data obtained in

this study, although the model was derived using the mean data in the 1 0 - 500 Hz range.

A closer examination of the mean measured impedance responses, presented in
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Figure 2.7(a), shows that the mean magnitudes obtained with all the handles are quite

comparable up to about 250 Hz, irrespective of the measurement location. This

observation can be attributed to negligible deformations of the handles at frequencies

below 250 Hz. Furthermore, the Zhh magnitude begins to deviate considerably from the

1.1
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¦«—1000 Hz

12 3 4
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Figure 2.8: Distribution of normalized acceleration magnitude along half-span of the 40
mm instrumented handle at different excitation frequencies.

ISO 10068 model response at frequencies close to or above 1000 Hz, while the deviation

of Zhb could be observed at frequencies above 300 Hz. The impedance response

measured on the basis of handle acceleration Zhh can thus be considered more reliable to

a relatively higher frequency than that based on the fixture or base acceleration Zhb .
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Figure 2.8 presents the variations in acceleration magnitudes measured along the

span of the 40 mm instrumented handle at four different excitation frequencies in the 1 00

- 1000 Hz range. The figure shows magnitudes of accelerations measured at the four

locations normalized with respect to that at the mid-span (Pos 1). The results clearly

show notable handle deformation at frequencies above 350 Hz. Such flexural bending of

the handle has also been reported by Dong et al. [91]. The handle used in this study,

however, revealed relatively lower natural frequency than that used in [91], which is

attributed to additional force sensors installed between the handle support and the fixture

for simultaneous measurement of grip, push and total biodynamic forces.

2.5 Measurement Reliability and Handle Design Guidelines

The results suggest that laboratory characterization of the human hand-arm

responses to vibration would necessitate: (i) design of high natural frequency handle and

the fixture; (ii) provisions for measurements of acceleration and force in close proximity

of the hand-handle interface, similar to those used in [67, 73, 84, 87, 91]. The

measurement errors attributed to handle dynamics could be estimated from deviations in

the apparent mass of the handle and its support fixture [70]. Figure 2.9(a) illustrates the

measured apparent masses based on base and handle acceleration, APMSb and APMS11 ,

of the four handles used in this study, while Figure 2.9(b) shows the corresponding

magnitudes ( APMSß and APMSß ) derived from the 2-DOF handle model. Similar to

the trend observed in Figures 2.5(b), 2.6 and 2.7, the APMS magnitude obtained on the

basis of base acceleration increases at frequencies above 400 Hz, while that based on

handle acceleration decreases above 500 Hz.

The limiting frequency fL of each handle is estimated as the frequency at which
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the percentage deviation in the handle APMS magnitude (Figure 2.9(a)) exceeds 5% of its

value at 10 Hz. An impedance measurement may thus be considered reliable for/ < fL .

Table 2.4 summarizes the limiting frequencies derived from the results attained with each

handle on the basis of both the handle as well as base acceleration together with the

handle natural frequencies. The ratio of natural frequency fn to the limiting frequency

fL varies from 4.43 for the 50 mm instrumented handle to 5.93 for the 40 mm solid

handle, when APMSb response is considered. This ratio ranges from 1.95 to 3.3 for the

measurements based on handle acceleration. The fnl /l ratio may be used as a guideline in

the design of instrumented handle for laboratory characterization of the human hand-arm

biodynamic responses. The mean results suggest that the handle natural frequency should

generally be 5.4 times the highest frequency of interest, when measurement is performed

using the base acceleration. This ratio reduces to 2.6, when measurement utilizes the

handle acceleration. These results suggest that an accurate measurement of the impedance

(error < 5%) of the hand-arm system up to 1000 Hz would require the handle natural

frequency in the order of 5400 Hz and 2600 Hz, for measurements based upon the base

and handle accelerations, respectively. This relationship between fn and fL appears to be

Table 2.4: Reliability of measurement from the measured APMS responses of the handles

Handle type and fn (Hz)diameter
40 mm Tube 1769

40 mm Instrumented 1305
40 mm Solid 1539

50 mm Instrumented 1240
________________Average

Frequency at which APMS deviation is within ± 5 %
Measurement at Base Measurement at Handle

? (Hz)
300
250
260
280

?//?
5.90
5.22
5.92
4.43
5.37

fi (Hz)
805
395
790
420

fn//?
2.19
3.30
1.95
2.95
2.60
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Figure 2.9: Apparent mass responses of different handles on the basis of base (b) and

handle (h) accelerations: (a) measured; and (b) model results.
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consistent with the measurements obtained with the handles in this study (Figure 2.7),

where Zhb and Zhh magnitudes tend to deviate from the 3-DOF ISO 10068 model

response at frequencies above 250 Hz and 400 Hz, respectively, depending on the handle.

The observed relationship between fn and fL was further explored using the

handle model with four different natural frequencies (900, 1305, 2000 and 4000 Hz). The

limiting frequencies, estimated from the model responses in terms of APMS fb and

APMSj1, , are presented in Figure 2.10 as a function of the handle natural frequency. The

results suggest a linear relationship between fn and/L , with fn ? 4.5fL and fn « \.9fL ,

when base and handle accelerations are applied, respectively. The differences between

fn and fL that were derived from the experimental and the model response data are most

likely attributed to lack of consideration of handle flexural deformations in the lumped-

mass model.

The measured acceleration transmissibility (ah/ab) of the 40 mm instrumented

handle, shown in Figure 2.5(a), is applied to APMSb response of the handle, shown in

Figure 2.9(a), to obtain an estimate of the APMSh (APMS1, = APMSb l(ajab)). The

estimated response is identical to the measured APMShas it is evident from the

comparison shown in Figure 2.11. The results could be used to explain the decreasing

trend in APMSh magnitude at higher frequencies. It can be seen that the magnitude of

acceleration transmissibility is nearly unity at frequencies up to about 250 Hz, which

would yield identical magnitudes of APMSh and APMSb. However, at frequencies

above 250 Hz, the acceleration transmissibility and APMSb magnitudes rapidly increase

to their peak values near the resonant frequency of 1305 Hz. The peak acceleration
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transmissibility is greater than the peak APMSb magnitude; the ratio of APMSb to

acceleration transmissibility ( APMSh) thus yields a value lower than the constant APMS

observed at frequencies below 250 Hz.

The validity of this limiting frequency for reliable measurement of DPMI

responses of the human hand-arm system, however, cannot be established due to coupling

between the hand and handle, and lack of reference impedance data. An analyses of error

in the hand-arm impedance magnitude corresponding to fL , however, is attempted using

the measured data for the four handles and the model simulation results with a range of

natural frequencies. The deviation between the impedance magnitude of the hand-arm

system measured with a particular handle at its fL from the mean value of all the dataseis

acquired with different handles at the same frequency is evaluated and summarized in

Table 2.5 for both measurement locations. The results suggest that impedance error

corresponding to fL of each handle ranges from 0.8 to 12.2 %. The 40 mm tubular

handle with the highest natural frequency yields the least deviation.

The deviations are also computed from the model simulation with respect to mean

value at each fL by considering different natural frequencies, and the results are

summarized in Table 2.6. The table shows that the handle model yields larger deviation

when its natural frequency is much larger than the baseline value of 1305 Hz. The

deviations and percentage error obtained from the model results are greater than those

from the experimental results. Despite the limitations of the linear models, it is interesting

to note that the mean impedance magnitudes derived for both locations are quite close.

The percentage deviations between the experimental and simulation results are in the

orders of 1.6 % and 2.5 %, respectively, for measurements at the base and the handle.
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Table 2.5: Hand-arm impedance magnitudes at the limiting frequency of different handles
from the measured data.

Handle type and
diameter

Impedance at Limiting/Reliable Frequency
Measurement at Base

f (Hz) Impedance %
(Ns/m) Error

Measurement at Handle

? (Hz) Impedance
(Ns/m)

%
Error

40 mm Tube
40 mm Instrumented

40 mm Solid
50 mm Instrumented

Mean
Standard deviation

300
250
260
280

280.3
308.0
256.5
267.4
278.1
22.2

0.8
10.
7.8
3.8

800
395
790
420

261.3
285.0
235.0
289.1
267.6
24.9

2.4
6.5

12.2
8.0

Table 2.6: Hand-arm impedance magnitude at the limiting frequency of handle models
Natural

Frequency of
handle model

Impedance at Limiting/Reliable Frequency (Ns/m)
Measurement at Base Measurement at Handle

fL (Hz) Impedance % fL (Hz) Impedance %(Ns/m) Error (Ns/m) Error

4000 Hz 875
2000 Hz 445
1305Hz 290
900 Hz 200
Mean

Standard deviation

328.5
277.4
259.0
228.5
273.4
41.9

20.2
1.5
5.2
16.4

2100
1045
685
475

375.0
250.2
218.0
200.6
261.0
78.8

43.7
4.1
16.5
23.1

This suggests that the handle model yields reasonably good prediction of impedance

magnitude around fL , and that the error in impedance response may be estimated from

deviation in the handle apparent mass as suggested in [70].

2.6 Mass Cancellation and Handle Dynamics

The magnitude of apparent mass of the hand-arm system approaches a very low

value at high frequencies compared to that of the handle and its support. The mass

cancellation of the measured impedance data at such frequencies could thus lead to some

errors. The measured impedance magnitudes of the handle alone and the coupled hand-

arm-handle system for the 40 mm instrumented handle, on the basis of both the handle
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Figure 2.12: Comparisons of impedance magnitude responses of the handle, hand-arm

and coupled handle-hand-arm systems obtained with the 40 mm instrumented handle:(a)
experimental measurements; and (b) simulation results.

65



and base accelerations, are presented in Figure 2.12(a). The figure also present the

impedance magnitudes attained after mass cancellation together with the ISO 10068

model results. Figure 2.12(b) illustrates the same responses obtained from the models,

which show trends identical to those of the measured data. In the figure, Zcb , Zß , Zhb are

the impedance magnitudes, on the basis of base acceleration, for coupled hand-arm-

handle, handle alone and hand-arm alone, respectively; while Zch , Zßl , Zhh represent

impedance magnitudes on the basis of handle acceleration. The impedance response of

the handle increases linearly with frequency, until the handle deformation and resonant

frequency distort its mass-like behavior, irrespective of the acceleration measurement

location. The impedance magnitudes of the coupled hand-arm-handle system and the

handle alone are nearly the same in the 75-500 Hz frequency range. The differences at

frequencies below 75 Hz are attributed to dynamics of the hand-arm system, while those

at frequencies above 500 Hz are partly due to the handle dynamics. The experimental and

analytical results suggest that the contributions due to handle dynamics at higher

frequencies are not entirely eliminated by mass cancellation. This can be attributed to

relatively small apparent mass of the human hand-arm in relation to that of the handle at

higher frequencies and the lack of knowledge of the handle dynamic properties in the

presence of coupling with the hand and arm. The contributions of the latter is also evident

from the measured data, which shows a slightly lower resonant frequency and lower peak

magnitude of the coupled hand-arm-handle system when compared to that of the handle

alone. Further efforts would be necessary to seek alternate methods for compensating for

the handle dynamics.
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2.6 Summary

Comparisons of the selected human hand-arm impedance dataseis in the z/,-

direction revealed extreme variabilities at frequencies above 500 Hz. From the systematic

analysis of the dynamic responses of the handle, hand-arm, the coupled handle-hand-arm

systems, it was concluded that discrepancies in the high frequency DPMI magnitudes are

attributable to measurement location, handle natural frequency and ineffectiveness of

handle mass cancellation. The impedance responses derived on the basis of

measurements at the fixture base revealed sharp increase in the impedance magnitude

near the handle resonance, while those based upon measurements close to the hand-

handle interface resulted in either decreasing or steady magnitude at higher frequencies,

and a valley at a frequency greater than the handle natural frequency. The results were

subsequently used to recommend handle design guidelines to ensure measurement errors

within ± 5%. The results suggest that an accurate measurement of the impedance of the

hand-arm system up to 1 000 Hz would require the handle natural frequency in the order

of 5400 Hz and 2600 Hz, for measurements based upon the base and handle

accelerations, respectively. Comparison of the measured response and the response of the

3-DOF hand-arm model, described in ISO 10068 (1998) on the basis of mean responses

in the 10 - 500 Hz range, showed that the model can reasonably predict impedance

responses below 1 0 Hz. It is suggested that researchers report the apparent mass response

of the handle used during laboratory measurements up to about 2000 Hz. This can help in

identifying the influence of handle dynamics on the reported impedance values and the

frequency at which the reported data could be considered reliable.
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CHAPTER 3

CHARACTERIZATION OF IMPEDANCE AND
TRANSMITTED VIBRATION RESPONSES

3.1 Introduction

The vast majority of studies on biodynamic responses of the human hand-arm

system to vibration employed 'to-the-hand' response in which the DPMI is widely

reported. Only limited efforts, however, have been made on the use of 'through-the-hand-

arm' method to characterize the human hand-arm system. This is mostly due to lack of

appropriate sensors, difficulties associated with vibration measurement on the skin, and

very small magnitudes of transmitted vibration above 200 Hz. Only a few studies on

'through-the-hand-arm' response could be found in the critical literature review on hand-

transmitted vibration [64], and only one study attempted simultaneous measurement of

DPMI and transmissibility responses of the hand-arm system subject to vibration from an

impact hammer and a grinder [77]. Moreover, very little agreement exists among the few

reported data on vibration transmission through the hand and arm, investigators also

differed on the methods for the identification of resonance frequencies of the hand-arm

from transmissibility magnitudes.

While the DPMI emphasizes the hand-arm interaction with the handle at the

driving-point, the characterization of the vibration transmitted to different segments of

the hand-arm system could provide considerable insight into the vibration modes of the

structure. It is expected, therefore, that mechanical-equivalent models derived from
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combined DPMI and transmissibility responses would yield a more reliable distribution

of vibration power absorption in the substructures of the hand-arm system than models

derived solely on either DPMI or transmissibility response. Vibration power absorption

(VPA) distribution within the hand-arm system is vital for the assessment of potential

injury risks of different segments of the hand-arm structure exposed to vibration.

Furthermore, simultaneous characterization of both the DPMI and transmitted vibration

could help identify important natural frequencies of the hand-arm system.

In this chapter, laboratory experiments were performed to simultaneously measure

the DPMI and vibration transmitted to the wrist, elbow and shoulder, when the hand-arm

is subjected to vibration along the ?/,-axis under different hand forces, excitation

magnitudes and two different postures. Natural frequencies of the hand-arm system are

determined from both biodynamic responses. The mean measured data were subsequently

analyzed to investigate the influence of main factors, namely the grip and push forces,

hand-arm posture and excitation magnitudes, on the DPMI and transmissibility responses,

using single- and multi- factor ANOVA.

3.2 A Discussion on the Reported Vibration Transmissibility
Characteristics

The few studies on characterization of the human hand-arm vibration

transmissibility have employed a wide range of experimental conditions, which are

summarized in Table 3.1. The studies also used different techniques to attach

accelerometer on the hand-arm, while the reference acceleration used to compute

transmissibility was either measured at the fixture base or close to hand-handle interface.
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The reported data exhibit considerable differences in the measured magnitudes, which are

evident from the comparisons shown in Figure 3.1(a) for the wrist and in Figure 3.1(b)

for the elbow. The studies reported by Kattel and Fernandez [97] and Sakakibara [98] are

not included in Figure 3.1 for comparison since this study [97] reported only the weighted

root-mean-square acceleration values and study [98] reported only transmissibility

response of the head. The reported transmissibility response magnitudes are presented in

both linear and logarithmic scales in order to clearly show the responses in the low as

well as high frequency regions. Furthermore, the comparisons are limited to magnitude

alone since the vast majority of the studied did not report the phase response.

12 l· .v/-< Pyyko et al. [94]
Aatola [95] \¥Cherian 92V^jV-t\K t0.8CO

Reynddss Angevine [93]^0.8 CC
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Figure 3.1: Comparisons of transmissibility magnitudes reported in selected studies:
(a) wrist; and (b) elbow.
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The comparisons show wide variations in the transmissibility magnitudes, which

could be mostly attributed to differences in the experimental conditions, human subjects,

measurement and analysis methods, and methods of fixing accelerometers to the hand

and arm. All of the reported data, however, consistently shows peaks and a rapid

attenuation in the transmissibility magnitudes with increase in frequency. Furthermore,

the studies have considered reference acceleration measured either directly at the handle

or the base of the handle fixture, which may also contribute to the differences that may

arise from the dynamic behavior of the handle and fixture. These have also resulted in

many contradictory conclusions. For example, a negligible effect of handle vibration

level on the transmitted vibration was reported in [95], while other studies have shown

higher transmitted vibration under higher levels of vibration [94, 98].

The studies also differ on the method of identification of resonant frequencies of

the hand-arm system from transmissibility magnitudes, although the majority did not

attempt to identify the resonance frequencies due to lack of conspicuous magnitude peaks

since transmissibility magnitudes were presented in logarithmic scale. In one study, the

frequencies corresponding to the valleys in the magnitude response were reported as the

resonant frequencies [94], while in another study, those corresponding to peaks in the

imaginary component of the transmissibility function were reported as resonant

frequency [95]. However, the conventional technique of identifying resonance

(characteristic) frequencies is the frequencies corresponding to the peaks in the frequency

response function or transmissibility magnitudes [130]. The data however exhibit peaks

in the magnitudes within comparable frequency bands. The characteristic frequencies of

the human hand-arm, identified from Figure 3.1, are summarized in Table 3.2, which can
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Table 3.2: Characteristic frequencies identified from reported transmissibility magnitudes
shown in Figure 3.1

Characteristic frequencies (Hz) Frequency
Investigator Wrist Elbow Shoulder range (Hz)
Kihlberg [77] 32, 50, 33, 51, 20 - 1000

74,105, 101,146,
______________________152 306
Cherian et al. [92] 16,40, 16,30,65 - 10-200
______________________80
Reynolds & Angevine 10,65, 7,138,484 12,200 5-1000
[93] 130,410
Pyykko et al. [94] 50,102, 50,102 - 20-630

200
Aatola [95]* 25, 50, - - 10-300

^ 96, 154
31, 138 and 201 Hz are obtained from the formulae in reference [95] for 30 N grip force

be grouped into five different bands: 7 - 16 Hz, 30 - 50 Hz, 65 - 80 Hz, 90-140 Hz,

1 50 - 200 Hz. Some of these characteristic frequency bands compare reasonably well

with those estimated from the impedance responses.

Furthermore, the likelihood of considerable errors existed in some of the earlier

studies where the data were directly plotted on the graph papers [93, 94]. Moreover, the

effect of push force on the transmitted vibration has not been investigated, which is

known to have notable effect on the low frequency DPMI responses [82]. The above

discrepancies suggest the need for further systematic measurements of the vibration

transmissibility responses of the hand-arm system under a range of important influencing

factors, namely the grip force, push force, posture and the vibration level. The resulting

data on the localized vibration responses could help derive more reliable models capable

of predicting distributed VPA and localized deformations for assessment of potential

exposure injury risks.
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3.3 Dynamic Characteristics of the Hand-arm Model reported in ISO
10068.

The driving-point mechanical impedance and transmissibility responses of the

idealized mechanical equivalent models of the human hand-arm system are critically

investigated in order to enhance understanding and interpretations of the experimental

data. The 3-DOF hand-arm model in the ?/,-axis reported in ISO 10068 [86] is considered

for the analysis, since it has been shown that the response of the 3-DOF models yield

good agreement with the measured DPMI [65]. The hand-arm model is coupled with the

2-DOF handle model developed in Chapter 2, as shown in Figure 2.4(a). The hand-arm

model may be excited by force f{t) or motion q(t), as shown in Figures 3.2(a), 3.2(b)

and 3.2(c). The dynamic characteristics of the model shown in Figure 3.2(c) is different

from those of Figure 3.2(a), it is used just to illustrate the influence of configuration and

excitation type on biodynamic responses. The motion excitation, however, reduces the

DOF of the hand-arm model shown in Figure 3.2(b) to two [126]. Although the model

masses do not relate to the anatomical structure of the hand-arm system, the vibration

transmissibility of individual masses ( mx , m2 and m3 ) are evaluated with respect to the

handle base motion qb{QjQb , Q2IQb -,QilQb )> anc* the motion in the vicinity of the

handle-hand interface ^3(QjQ3 ,Q2/Q3), as shown in Figures 3.3 and 3.4, to gain a

better understanding on transmissibility responses and identification of resonant

frequencies. The transmissibility responses of the 3-DOF force- and 2-DOF motion-

excited hand-arm system models are similar to those of the coupled handle-hand-arm

model with respect to qi but different from those of the 3-DOF motion-excited

transmissibility responses, as shown in Figure 3.4.
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Figure 3.4: Comparisons of transmissibility responses of models shown in Figure 3.2.

The responses with respect to qb could be related to experimental data based on the base

acceleration [92 and 93], while those computed with respect to qi could be related to data

derived on the basis of handle acceleration [77, 94, 95]. The responses with respect to the

base motion (QjQb , Q2 /Qb ^Qi /Qb ) exhibit peaks around 1265 and 3065 Hz, which are

close to the first two natural frequencies of the handle, in addition to peaks near 6.5 and

125 Hz. The responses with respect to ^3, however, show only lower frequency peaks,

which suggests that the transmissibility responses relative to the hand-handle interface

acceleration, ^3 , are insensitive to dynamics of the handle. The response magnitudes of

masses m] and m2 with respect to qb and q3 are quite similar if the peaks corresponding
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to the handle resonant frequencies are ignored. The transmissibility phase of the

responses of the masses mx and m2 , derived on the basis of base and handle motions, are

also comparable up to approximately 500 Hz. The phase responses, however, differ

considerably above 500 Hz, which is attributable to the influence of damping and

differences in the effective number of degree-of-freedom (DOF).

The modal parameters of the models presented in Figures 2.4(a) and 3.2 were

obtained through eigen-analysis and are summarized in Table 3.3 for comparison with the

characteristic frequencies obtained from transmissibility responses of the models. The

natural frequencies of the uncoupled masses (for example, ? = ^kx /m, ) in the
standardized 3-DOF model [86] were also determined as 4.7, 107 and 67 Hz

corresponding to masses mx , m2 and m} , respectively. The results show that the natural

frequencies associated with the hand-arm model masses (7.84 and 1 19.34 Hz) in the

Table 3.3: Natural frequencies of different configurations of the hand-arm model

Natural Damping Damped
Model Frequency Ratio Frequency

(Hz) (Hz)
7.84 0.77 4.81

119.34 0.67 87.32
1266.00 0.04 1264.10
3069.60 0?3 3065.70

3-DOF 4.19 0.16 4.14
force-excited 66.82 9.22

____________________119.66 047 102.83
2-DOF 7.84 0.77 4.81

motion-excited 119.34 (X67 87.32
3-DOF 5.21 0.37 4.84

motion-excited 67.04 9.05
119.07 0.52 100.95

5-DOF
coupled handle-

hand-arm
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coupled 5-DOF model are similar to those of the motion-excited 2-DOF model. These

natural frequencies, however, differ from those of 3-DOF force- and motion-excited

hand-arm vibration models, which are comparable. The differences may be due to the

exclusion of mass m3 from equations of motion of the 2-DOF motion-excited hand-arm

model.

Furthermore, the two characteristics frequencies (6.5 and 125 Hz) from the

transmissibility responses of the 5-DOF, 2-DOF and the 3-DOF force-excited models are

considerably greater than the corresponding damped frequencies (4.81 and 87.32 Hz) of

the 5-DOF and 2-DOF models, and (4.14 and 102.83 Hz) for the 3-DOF force-excited

model. However, the characteristic frequencies from transmissibility responses of the 3-

DOF motion-excited model are comparable with the damped frequencies obtained from

eigen-analysis. It has been shown that some of the peaks in outputs only transmissibility

responses, (e.g. QjQ3 from the coupled 5-DOF model) may not correspond to the mode

frequencies of a system, while peaks in frequency response function (FRF),

transmissibility based on output-input ratio, always yield the mode frequencies of a

system [130]. This reason coupled with the very high damping of the 66.82 Hz mode may

explain the observed differences.

Conversely, the two damped mode frequencies (4.14 and 102.83 Hz) from eigen-

analysis, however, correspond well with the two prominent valleys in the DPMI

responses of the models, as shown in Figure 3.5. The figure shows the prominent valleys

in the DPMI magnitude and phase responses of the models in Figure 3.2 together with the

ISO 10068 mean impedance data, similar results are obtained with APMS. The DPMI

and APMS responses of the 5-DOF, 2-DOF motion- excited and 3-DOF force-excited
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Figure 3.5: Comparison of the DPMI responses of the models shown in Figure 3.2.

models are identical and comparable with ISO mean values, while those of the 3-DOF

motion-excited model differ. The results show that the characteristic frequencies

corresponding to the valleys in the DPMI and APMS magnitudes of the models are

identical to the damped frequencies derived from eigen-analysis. The biodynamic

responses of the 5-DOF and 2-DOF motion-excited, and the 3-DOF force-excited models

are similar but their eigen-frequencies are different, while the eigen-frequencies of the 3-

DOF force- and motion-excited models are comparable but their biodynamic responses

are different. These observations suggest that the dynamic characteristics of a system are

affected by the system configuration and the type of excitation.

79



The relationship between resonant frequencies associated with the valleys and

peaks in the DPMI magnitude and the resonant frequencies derived from eigen-analysis is

further explored by considering two different idealized models of a mechanical system

with two masses: a motion-excited unrestrained model and a force-excited restrained

system with fixed upper mass, as shown in Figure 3.6. The models are selected based on

the established fundamental principles that a restrained system at the upper end is usually

excited with a force while an unrestrained system is usually excited at the base with a

motion since excitation with a force will yield a semi-definite system, in which one of the

natural frequencies will be zero [131]. The analogous electrical model of the force-

excited mechanical system [132] is also considered. All the models are essentially a

single-DOF system even though the mechanical models have two masses.

^1O10

....... Fixed-end mechanical model

—— Free-end mechanical model

o Electrical analogous

x2 = X2eJn'

Free-end mechanical model

£ 45

T

//////////

W/

s*ii
m? ü
T f = FBeJ

Electrical analogous Fixed-end mechanical model
10' 10'

Frequency (Hz)

Figure 3.6: DPMI response of simple mechanical and analogous electrical systems.
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The mechanical models yield considerably different impedance responses. The

natural frequency of the free-end model and the fixed-end mechanical and its electrical

analogous models correspond to the peak and valley, respectively. It should be noted that

the biodynamic models of the hand-arm system are mostly restrained, while those of the

seated body exposed to whole-body vibration are motion-excited free-end system models.

The whole-body vibration models consistently show good agreements in the

characteristic frequencies derived from either APMS/DPMI or transmissibility peaks with

those computed from the eigen-analysis [113]. Although the reported hand-arm vibration

models are mostly force-excited restrained models, with the exception of that reported by

Mishoe and Suggs [71], the resonant frequencies have been generally identified as those

corresponding to peaks in the measured DPMI responses [65, 67, 77, 82]. A few

investigators, however, have associated these to valleys in the DPMI magnitude [71,81],

The results attained from the analysis of biodynamic models of the hand-arm

system strongly suggest that the biodynamic responses depend on the model

configuration (free-free or fixed-free system) and the type of excitation, which greatly

affect the identification of characteristic frequencies from the responses. It seems that the

bones and tissue/muscle of the human hand-arm system form different equivalent-

mechanical systems when subjected to vibration. Therefore, it is hypothesized that the

peaks in the DPMI magnitude correspond to the resonant frequencies of the

tissues/muscles, while the valleys correspond to resonant frequencies of the

bones/structure of the human hand-arm system.
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3.4 Laboratory Measurements of Biodynamic Responses of the Hand-
arm System

3.4.1 Experimental set-up and methods

Laboratory experiments were performed to simultaneously measure the driving-

point mechanical impedance (DPMI) and vibration transmitted to the wrist, elbow and

shoulder of six male subjects while grasping a 40 mm diameter handle excited along the

?/,-axis. The experiments were performed using two hand-arm postures (Pl - bent-arm

with 90° elbow angle; and P2 - extended arm with 180° elbow angle), nine different

combinations of hand forces (10, 30 and 50 N grip and 25, 50, 75 N push forces), and two

levels of broad-band random excitation (frequency-weighted rms acceleration ahw~ 2.65

and 5.25 m/s2) in the 2.5 - 2500 Hz frequency range. Tables 3.4 and 3.5 summarize the

anthropometric parameters of the subjects and the test matrix, respectively. A 40 mm

diameter cylindrical aluminum handle with integrated two force sensors to measure the

grip force was used in the study. Additional two force sensors were mounted between the

Table 3.4: Anthropometric data of six subjects.

Parameters Range Mean Standard
deviation

Age (years) 26-53 36.50 11.33
Height (m) 1.71-1.80 1.74 0.02
Weight (kg) 61-86 72.17 9.87
BMI 20.4-28.7 23.82 3.13
Hand length (cm) 17-20.5 18.42 1.20
Hand breath at thumb (cm) 9.5-12.0 10.92 0.86
Hand breath at metacarpal (cm) 7.0-8.5 7.50 0.63
Hand thickness (cm) 2.0-3.7 2.87 0.55
Wrist diameter (cm) 16.0-18.5 17.25 1.04
Forearm diameter (cm) 25-32 28.00 2.53
Elbow diameter (cm) 24.4-30.5 26.42 2.22
Forearm length (cm) 24.0-28.5 26.00 1.58
Upper arm diameter (cm) 28-33 29.25 3.13
Upper arm length (cm) 18-24 20.50 2.35
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Table 3.5: Test matrix

Number of subj ects : 6 males
Excitation:
Type Broad-band random
Axis Zh
Magnitudes (Frequency-weighted) (alm ) 2.65 and 5.25 m/s
Frequency range: 2.5 - 2500 Hz
Hand Forces:
Grip(Fg) 10, 30, 50N
Push (Fp) 25, 50, 75N
Posture:
Pl Elbow angle of 90°
P2 Elbow angle of 180°

handle supports and the base fixture for measurement of the push and total dynamic

forces. The handle with its base was attached to an electro-dynamic exciter. The

measured grip and push forces were low-pass filtered and displayed to the subjects at a

rate of 4 samples/s to serve as a feedback to the subjects, who were advised to maintain

the desired hand forces within ± 2 N by monitoring the displayed forces on a flat screen

monitor. The handle acceleration was measured with a PCB SEN026 tri-axial

accelerometer installed inside the handle but acceleration in the ?/,-axis alone was

considered. This also served as the feedback control signal for the vibration exciter

controller. Figure 3.7(a) illustrates the schematic diagram of the experimental set-up.

Vibration transmitted to four different locations on the hand-arm was measured

using tri-axial PCB accelerometers attached on Velcro strips, which were tightly fastened

near the joints to minimize the contributions due to skin artifacts, while the correction for

the skin deformation was not attempted. The responses at the wrist and shoulder were

measured along the yu- and ?/,-axis, while those around the elbow were measured in the

three axes. Vibration transmission measurements near the elbow were performed on the
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forearm and upper-arm sides, referred to as "Elbow 1" and "Elbow 2", respectively, as

shown in Figure 3.7 (b) and (c). The measured data were analyzed to derive DPMI at the

hand-handle interface, which was subsequently corrected for the handle inertia effect.

The vibration transmissibility at the four different segments of the hand-arm system

relative to the ?/,-axis handle acceleration using the H¡ frequency response estimator was

obtained, such that:

TWl(ja>)= S™( \ ; i = y» z" (2U)

TsM=sy¡^ ; i = **.**. zh> y = i. 2 (3-2)

Ts\JO)) = c . \ ; l=yh> zh (3-3)Sa11KJO))

where Tw , TE , TE and Ts are the acceleration transmissibility responses measured at

the wrist, elbow 1, elbow 2 and the shoulder, respectively, along direction i

( i = xh , yh , ??, ). 5 is the auto-spectrum of the handle acceleration and Sqa¡¡ is the

cross-spectrum of a response acceleration q with the handle acceleration. The coherence

of the DPMI and transmissibility was also monitored during experiments to ensure

reliability of the data. Measurements were acquired and analyzed using Orchestra Ol dB

multi-channel data acquisition and analysis system.

The measurements of vibration at the skin surface are known to be sensitive to

relative motions of the skin. The Velcro strips containing the accelerometers were thus

fastened sufficiently tight to minimize the skin artifacts, while the subjects comfort was

also ensured. Repeatability of the measurements was also ensured by repeating each trial

85



three times. The reproducibility of the measurement method was also examined with two

subjects. For this purpose, repeated measurements were performed with the two subjects

gripping the handle with 30 N grip and 50 N push forces assuming Pl posture under 5.25

m/s2 excitation. The Velcro strips were removed and re-fastened between consecutive

measurements. The reproducibility of the data was evaluated in terms of peak standard

deviation of the mean data and the corresponding frequency at which it occurred.

The inter-subject variability in the measurements was analyzed from the mean

measured data of six subjects corresponding to the condition used for the reproducibility

test. The acceleration transmissibility magnitudes were evaluated in both linear and

logarithmic scales for a better understanding of responses in the low and high frequency

regions. The characteristic frequencies corresponding to peaks and valleys in the mean

impedance responses of subjects, and the peaks in the vibration transmissibility responses

were obtained and compared to identify resonant frequencies of the human hand-arm

system. Effects of all the main factors (grip and push forces, posture and excitation level)

on impedance and transmissibility responses were analyzed through observed trends in

the responses and through statistical analyses, as described in the following sub-section.

3.4.2 Statistical analysis of the data

The influences of different factors on the human hand-arm biodynamic responses

were often studied from the mean of measured responses of different subjects with

diverse anthropometry parameters. In such approach, the effect of inter-subject variations

may affect the results. Statistical analysis of variance (ANOVA) is now widely used to

study and quantify the influences of the main contributing factors on biodynamic

responses [67, 97, 128].
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In this study, the effects of main factors on the DPMI and transmissibility

magnitude responses are evaluated through ANOVA using the Statistical Product and

Service Solutions (SPSS) software. Two different study designs were used for the

analysis of data obtained with subjects who were available for all the experimental

conditions in order to attain balanced ANOVA designs. The purpose of the first design

was to study the effect of all the main factors on the responses. This involves a factorial

design of two levels of posture (P), two levels of excitation magnitudes (ö/,w), three levels

of grip force (Fg) and three levels of push force (Fp), as shown in Table 3.6(a). The

second design involved the effects of grip and push forces, and excitation magnitude on

the responses for each posture considered separately (Table 3.6(b)). The response

magnitudes were obtained at eleven different frequencies that were selected around the

characteristic frequencies obtained from both the DPMI and transmissibility responses.

Table 3.6: ANOVA designs for DPMI response: (a) 2x2x3x3 factorial design; and
(a) 2x3x3 factorial design for DPMI response magnitudes for each posture.

_______________________________(a)
Posture Excitation Grip Force Push Force DPMI

(P) (ahw) (Fe) (F0)
1=90° 1= high (5.25 m/s2) I = ION 1=25 N Subject 1

2 = 180° 2 = low (2.75 m/s2) 2 = 30 N 2 = 50 N Subject 2
3 = 50 N 3 = 75 N Subject 3Subject 4

(b)

Excitation Grip Force Push Force DPMI
(ahw) t (Fs) (Fj)

1 = high (5.25 m/sz) 1 = 10N 1 =25 N Subject 1
2 = low (2.75 m/s2) 2 = 30 N 2 = 50 N Subject 2

3 = 50 N 3 = 75 N Subject 3Subject 4
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The univariate General Linear Model (GLM) ANOVA in SPSS software was used to

analyze the two ANOVA designs for DPMI magnitudes. The transmissibility magnitudes

at the four measurement locations, wrist, elbow 1, elbow 2 and shoulder, were each

considered as dependent variables hence multivariate GLM was used for the analysis of

the two designs for transmissibility magnitudes. The measurement direction was

considered as an additional main factor in the first design for transmissibility responses,

while the second design was also analyzed in the z/¡- and _y/,-axis for each posture.

3.5 Repeatability and Reproducibility of Measurements

The repeatability and reproducibility of the measured data corresponding to 90°

elbow angle posture, 30 N grip and 50 N push hand forces and weighted acceleration

level of 5.25 m/s2 were analyzed. The selected hand forces are identical to those

recommended in ISO 10819 [117] for the assessment of anti-vibration gloves. Moreover,

this hand forces combination was judged as the most comfortable, easily controllable and

could be maintained for relatively long period of time by all the subjects. Comparisons of

the repeated measurements revealed reasonably good agreements for all subjects. As an

example: Figure 3.8 shows comparisons of measured responses over three trials with one

subject. The responses are presented in terms of impedance magnitude, impedance phase

and coherence. The measurements revealed peak standard deviation in DPMI magnitudes

of 48.8 Ns/m at 33.6 Hz, where the mean was in the order of 347.3 Ns/m. The coherence

of the force and velocity signals was also observed to be nearly unity throughout the

frequency range. Figures 3.9 and 3.10 further show comparisons of transmissibility

magnitudes, phase and the corresponding coherence measured at the wrist and the

shoulder in the z/,- and^-axis, respectively, over the three trials. The repeatability of
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Figure 3.8: Comparisons of impedance of one subject measured during the three trials
(Pl posture, Fg = 30 N, Fp = 50 N, ahw = 5.25 m/s2).

transmissibility is also reasonably good and it revealed peak standard deviation (SD) in

the ?/,-axis transmissibility magnitude at the wrist of 0.37 near 39 Hz, where the mean

value was in the order of 1.41. The coherence in the ?/,-axis measurements (Figure 3.9

(a)) was nearly unity at frequencies below 200 Hz but becomes considerably lower at

250, 300 and 400 Hz. The^-axis transmissibility data also revealed lower coherence at
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(b)
Figure 3.1 1 : Comparisons of acceleration transmissibility of one subject during the two

runs (Pl posture, Fg = 30 N, Fp = 50 N, a/,w = 5.25 m/s ): (a) wrist; and (b) shoulder.
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frequencies above 500 Hz. Similar degree of repeatability was observed in the data

acquired with most of the subjects under different conditions.

The reproducibility of the transmissibility measurements was evaluated through

analysis of data acquired with two subjects. The comparisons of means and SD of two

runs involving removal and installation of Velcro strips at different locations revealed

reasonably good agreement, irrespective of the measurement location. Figure 3.11

illustrates comparisons of the mean transmissibility response of one subject measured at

the wrist and the shoulder during the two runs. The peak SD of the mean z/,-axis

transmissibility magnitudes ranged from 0.26 to 0.37 and 0.24 to 0.26 in the 35 - 39 Hz

band for the two subjects. These values of standard deviations are quite comparable,

which suggest that the Velcro strap-mounted accelerometer could yield reproducible

measurements despite the possible variations in the tightness and orientation of the

accelerometers. Considering the extremely low transmissibility magnitudes above 500 Hz

and predominance of handle dynamics above 500 Hz, as illustrated in Chapter 2, the

subsequent analysis of data were limited to 2.5 - 500 Hz range.

3.6 Inter-subject Variability

The mean responses attained for six male subjects revealed considerable

variations. As examples, Figure 3.12 illustrates the mean DPMI response acquired with

Pl posture together with the SD, while Figures 3.13 - 3.15 show the mean

transmissibility responses at the wrist, elbow 2 and shoulder, respectively. These results

were obtained under Fg = 30 N, Fp = 50 N and a/,w = 5.25 m/s2. The DPMI and
transmissibility responses of the six subjects in the direction of excitation, z/,-axis,

generally revealed comparable trends but higher deviations were observed around the
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magnitude peaks. This may be associated with differences in biodynamic and

anthropometric properties of the subjects. The transmissibility responses in the y^-axis

revealed relatively larger variations and lower magnitudes. The dispersions in the ?/,-axis

transmissibility magnitudes around the elbow were observed to be very large, as shown in

Figure 3.16, while the magnitudes are comparable with those in the yh-axis. The phase

responses revealed larger deviations at frequencies above 200 Hz.

400

.350

¦g 250

-------- Mean

-------- Mean + SD
-—Mean -SD

E 200

E 150

oí 100

? 20

Frequency (Hz)

Figure 3.12: Mean and standard deviation (SD) of mean DPMI (Pl posture, Fg = 30 N, Fp
— 50 N and a/,w = 5.25 m/s2)

The observed variabilities in the magnitude and phase data acquired with six

subjects appear to be considerably lower than those reported in [95, 97]. These studies

reported substantial scatter in the subjects' transmissibility responses even though no
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(b)
Figure 3.13: Mean and standard deviation (SD) of mean vibration transmissibility

measured at the wrist (Pl posture, Fg = 30 N, Fp = 50 N and a¡,w = 5.25 m/s2): (a) z/,-axis;
(b) yh-axis.
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Figure 3.14: Mean and standard deviation (SD) of mean vibration transmissibility

measured at elbow 2 {PI posture, Fg = 30 N, Fp = 50 N and a/,w = 5.25 m/s2): (a) ?/,-axis;
(b) >7raxis.
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Figure 3.15: Mean and standard deviation (SD) of mean vibration transmissibility

measured at the shoulder (Pl posture, Fg = 30 N, Fp = 50 N and af,w = 5.25 m/s2): (a) z/,-
axis; (b)>v,-axis.
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Figure 3.16: Mean and standard deviation (SD) of mean ?/,-axis vibration transmissibility

(Pl posture, Fg = 30 N, F0 = 50 N and at,w = 5.25 m/s2) measured at: (a) elbow 1 ; (b)
elbow 2.
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analysis was performed to quantify the variations. The observed high inter-subject

variability was attributed to changes in the hand-grip force during the test [95]. The

factors responsible for inter-subject variability in this study include uneven tightness of

Velcro strips on the hand-arm, variations in grip and push forces, randomness of the

excitation, and difference in the biodynamic and anthropometric parameters of the

subjects. The peak inter-subject variability/deviation (SD) is thus expected to be greater

than the peak SD observed in reproducibility test, which in turn should be greater than

that of repeatability test. Table 3.7 summarizes the peak SD and the corresponding

frequencies in impedance and transmissibility data due to inter-subject variability. The

results show peak deviations in DPMI of 73.9 Ns/m and the ?/,-axis transmissibility

magnitude of 0.41 at elbow 2 and the shoulder occurring at 17.2 Hz, which are higher

than those obtained for the data acquired during repeatability and reproducibility tests.

The peak SD in the DPMI magnitude is far less than the 150 Ns/m reported in [69]. The

Table 3.7: Maximum standard deviation of the mean measured responses (Pl posture, Fg
= 30 N, Fp = 50 N and ahw = 5.25 m/s2).

Biodynamic Measurement Peak Corresponding
measure locationaxis standard Mean frequency (Hz)deviation

DPMI Driving-point 73.94 251.77 17.19
Wrist_yh 0.35 0.59 82.03
Wrist_zh 0.37 1.41 32.81
Elbowl_xh 0.13 0.23 47.66
Elbowl_yh 0.15 0.18 14.84

Transmi- Elbowl_zh 0.26 1.40 28.91
ssibility Elbow2_xh 0.21 0.20 10.94

Elbow2_yh 0.17 0.34 33.59
Elbow2_zh 0.41 1.20 17.19
Shoulder_yh 0.09 0.09 34.38
Shoulderzh 0.41 Q.J7 17.19
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observed maximum deviation in the transmissibility responses at elbow 2 may be

attributed to greater variations in the diameter of the upper arm of the subjects near elbow

2, as seen in Table 3.4.

3.7 Mean Measured Biodynamic Responses

3.7.1 Driving-point mechanical impedance (DPMI)

The mean measured impedance responses are compared with those attained in an

earlier study conducted in the same laboratory [67], and ranges of standardized data and

the standardized 3-DOF model responses reported in ISO 10068 [86]. Figure 3.17(a)

compares the DPMI responses for the Pl posture, while those for the Pl and P2 postures

are shown in Figure 3.17(b). The mean measured data falls within the limits defined in

ISO 10068 in the 10 - 500 Hz range. It should be noted that the standard defines the

mean and ranges of DPMI in the 10 - 500 Hz frequency range, and the corresponding

model can be considered valid only in that frequency range. Both the model and the mean

measured data, however, exhibit considerably lower magnitude and phase at frequencies

below 10 Hz. Furthermore, both responses exhibit a valley near 4 Hz. The mean

measured data are also comparable with those reported in [67], although some deviations

are evident at frequencies below 30 Hz. This may be attributed to differences in the

biological and anthropometric properties of the subjects employed in the two studies.

Although the reported data [67] was acquired in the same laboratory, it employed a

different data acquisition and analysis system (Pulse). The differences in the two sets of

response, particularly the phase below 10 Hz, may thus in-part be caused by the

differences in the two data analysis systems.

Figure 3.17(b) compares the mean measured DPMI responses obtained for the
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Figure 3.17: Comparison of the mean measured impedance with the reported and

standardized data (Fg = 30 N, Fp = 50 N and af,w = 5.25 m/s2): (a) Pl posture; (b) Pl and
P2 postures.
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two postures with the limits and those reported in [67]. The difference in the impedance

magnitudes due to posture effect is very significant below 25 Hz. The mean DPMI

magnitude corresponding to P2 is about 258 Ns/m at 2.5 Hz, while that for Pl is around

70 Ns/m. The difference in the DPMI magnitudes gradually decreases as frequency

increases up to 25 Hz, where the DPMI magnitude corresponding to Pl posture exceeds

that of the P2 posture up to around 100 Hz. The difference in the DPMI magnitudes of

the two postures, however, is relatively small above 100 Hz. Similar postural effect are

also evident in reported data [67], while the limits defined in ISO 10068 are applicable

only for the Pl posture.

The impedance responses of the handle alone obtained from the two data analyses

systems (Pulse and 01 dB) are compared in Figure 3.18. The results show comparable
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Figure 3.18: Comparisons of DPMI responses of the simulated handle obtained using the
Pulse and Ol dB data acquisition and analyses systems.
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magnitude response from the two systems but considerable deviation in the phase

response below 10 Hz. It was noted that the Pulse system directly provides the DPMI

response through integration of the handle acceleration signal, while the 01 dB does not

integrate the acceleration and yield only apparent mass. The DPMI response was thus

evaluated by multiplying the apparent mass by jœ. It was concluded that the signal

integration in the Pulse system can cause considerable error in the phase response at

lower frequencies.

3.7.2 Vibration transmissibility

The mean ?/,-axis transmissibility responses at the four measurement locations for

the bent-arm (Pl) posture are shown in Figure 3.19(a), while Figure 3.19(b) presents the

responses for the extended arm (P2) posture. The responses in the y^- and x/¡- axis for the

two postures are illustrated in Figures 3.20 and 3.21, respectively. The ?/,-axis

transmissibility magnitude for the Pl posture generally decreases from the wrist to the

shoulder, although the magnitude at the elbow 1 is higher than that of the wrist in the 2.5

- 20 Hz frequency range. The transmissibility data reported in [93] showed a similar

trend. The observed exception in the 2.5 - 20 Hz frequency range may be due to the high

concentration of muscles/tissues around the elbow on the forearm side. The highest

transmissibility magnitude occurred around 12.5 Hz in the responses of elbow 1 and 2

(Figure 3.19(a)). The frequency-weightings defined in ISO 5349-1 [31] also has the

highest weight near 12.5 Hz. In they^-axis above 30 Hz, the magnitudes of the response

at the wrist is higher than those measured at other locations. The trend above 30 Hz is

similar in both the ?/,-axis and >v,-axis, the response decreases from the wrist to the

shoulder.
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Unlike the bent-arm posture, the ?/,-axis transmissibility magnitude responses with

the extended arm posture generally remain above unity from the wrist to the shoulder at

frequencies below 20 Hz, with the response at elbow 2 having the highest magnitude

around 8.5 Hz. This is evident only in the linear scale presentation of the data, as shown

in Figure 3.19. Such differences, however, are not evident from the logarithmic scale

presentation of the responses, which has been widely used for the published research on

vibration transmissibility responses. In the jvaxis (Figure 3.20(b)), the response at the

shoulder has the largest magnitude in the low frequency region, while that at the wrist is

the lowest, suggesting greater amplification of low frequency vibration along the j^-axis.

Above 20 Hz, the magnitude decreases from the wrist to the shoulder, as observed for the

Pl posture, in both the ?/,-axis and^-axis above 30 Hz. The transmissibility responses in

the ?/,-axis for the P2 posture around the elbow are similar, while those for the Pl posture

differ in the entire frequency range, as seen in Figure 3.21. The Pl posture yields a

significant peak in the x/,-axis transmissibility at elbow 2 near 28 Hz.

The difference in the transmissibility magnitudes between the Pl and P2 postures

in the ?/,-axis in the low frequency region at the wrist is relatively small, but quite

considerable at the shoulder. The z/¡-axis wrist and elbow vibration magnitudes for the Pl

posture are generally greater than those for the P2 posture above 30 Hz. These trends are

evident in Figures 3.23 to 3.25. This trend is also evident in the shoulder response above

80 Hz. Transmissibility magnitudes in the y¡,-and Xh-axis are generally considerably lower

than those in the ?/,-axis, which is attributable to source vibration along the ?/,-axis. The

differences in the magnitudes, however, are strongly dependent on the posture. For the Pl
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posture, the j^-and ?/,-axis magnitudes are in the order of 25 % of the ?/,-axis magnitudes,

while those corresponding to P2 posture are in the order of 50 %, in the low frequency

region.

The transmissibility magnitude at the wrist in both >»/,-and ?/,-axis are almost the

same between 2.5 and 25 Hz for both postures but the magnitudes for the bent-arm

posture are greater than those for the extended arm posture above 25 Hz (see Figures

3.25(a) to 3.24(a)). The results therefore show that the human hand-arm system in an

extended arm posture amplifies vibration transmitted to the upper-arm below 25 Hz, but

it tends to attenuate vibration transmitted to the upper-arm more effectively than the bent-

arm posture above 25 Hz. Similar observations have also been reported in [94, 98]. The

deviation in the phase responses at all measurement locations also increases with increase

in frequency.

3.8 Identification of Resonant Frequencies

The vast majority of the reported studies have identified the human hand-arm

resonant frequencies as characteristic frequencies corresponding to peaks in the

impedance magnitude response [65, 67, 77, 82]. A few studies, however, refer these to

the valleys in the magnitude responses [71,81], while others have not attempted to relate

the peaks or valleys in the DPMI magnitude response to the resonance frequencies [69,

70, 73, 80]. Following the proposed hypothesis in section 3.3, the frequencies of the

peaks and valleys in the DPMI magnitude are considered to correspond to the resonant

frequencies of the tissues/muscles and bones/structure of the human hand-arm system,

respectively. The frequencies corresponding to the peaks and valleys in the mean

measured DPMI magnitudes are thus denoted as characteristic frequencies. These
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characteristics frequencies for the bent-arm and extended arm postures were identified

from the DPMI responses, presented in Figure 3.17(b) and summarized in Tables 3.8 and

3.9, respectively, in decreasing order of prominence. These frequencies are also

compared with those obtained from the peaks in the transmissibility magnitudes shown in

Figures 3.19 to 3.21. The characteristic frequencies identified from the mean

transmissibility responses that are close to those corresponding to the peaks in the mean

DPMI magnitudes are under scored in Tables 3.8 and 3.9, while those close to the valleys

are italicized. Other transmissibility characteristic frequencies that could not be related to

either the peak or the valley in the DPMI magnitudes are presented in the normal font.

The resonant frequencies identified from the mean measured transmissibility

responses compare reasonably well with those in the reported studies, as summarized in

Table 3.2. It is observed that some of the characteristic frequencies (peaks in the

transmissibility magnitudes) for the bent-arm posture are comparable to those

corresponding to the valleys (3.9 and 134.4 Hz) and the peaks (28.9, 56.3 and 15.6 Hz) in

the DPMI response magnitudes, while others (12.5, 25.0, 71.6 and 146.1 Hz) could not be

related to either the valleys or the peaks in the DPMI response. It should be noted that the

characteristic frequency in the DPMI valley (89.4 Hz), which is closest to one of the

damped frequencies of the 3-DOF hand-arm model reported in ISO 10068 [86], was not

observed in the ?/,-axis transmissibility magnitudes. However, a comparable frequency,

near 99.2 Hz in the y>h- and ?/,-axis transmissibility magnitudes at elbow 2 is observed.

Furthermore, the most prominent characteristic frequency (12.5 Hz) in the ?/,-axis

transmissibility magnitude at elbow 1 and 2 and the shoulder, and at elbow 1 and the

shoulder in the >7,-axis, is not found in the valleys or peaks of the DPMI magnitude. This
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suggests that the DPMI and transmissibility responses may characterize different

components of the hand-arm system. For example, it seems that transmissibility

responses characterize the dynamics of the tissues/muscles better than the DPMI.

Similarly, the impedance responses under the extended arm posture exhibit

characteristic frequencies corresponding to the valleys (75.8, 44.5, 10.9 and 134.4 Hz)

and the peaks (15.6, 7.8 and 110.9 Hz). These frequencies are also observed among the

frequencies corresponding to peaks in the transmissibility responses, while some of the

frequencies in the transmissibility responses (12.5, 8.6, 122.7, 357, 68.0 and 193.0 Hz)

could not be related to frequencies corresponding to either the valleys or the peaks in the

DPMI magnitude. However, some of the characteristic frequencies in the yh- and ?/,-axis

transmissibility magnitudes for both postures could be related to those observed from the

DPMI magnitudes.

The results thus further support the hypothesis that the resonant frequencies of the

muscles/tissues and the bones/structure of the human hand-arm system correspond,

respectively, to the peaks and the valleys in the DPMI magnitude. The results also

suggest that transmissibility response characterizes the dynamics of the muscles/tissues

better than the DPMI response, which seems to better characterize the dynamics of the

bones/structure of the hand-arm system.

3.9 Influences of Primary Contributing Factors

The effects of the main factors, namely the grip force, push force, hand-arm

posture and excitation level on the measured biodynamic responses are investigated

through analyses of important trends in the mean responses and Analysis of Variance

(ANOVA) using the Statistical Product and Service Solutions (SPSS).
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3.9.1 Hand forces and posture effects on biodynamic responses

Figure 3.22(a) illustrates the influence of variation in the grip force on the mean

impedance response for both postures, while the push force was kept constant around 50

N. In a similar manner, Figure 3.23(b) shows the effect of variation in push force under a

constant grip force of 30 N. The results show that an increase in the grip force tends to

shift the peaks in the DPMI magnitude for both postures to a higher frequency and a

higher magnitude, while a negligible effect is observed in the magnitudes and frequencies

of the valleys. On the other hand, an increase in the push force increases the characteristic

frequencies and magnitudes corresponding to both the peaks and the valleys. It should be

noted that an increase in the hand grip force stiffens the tissues/muscles of the hand-arm

system, particularly the muscles of the hand and the forearm, while an increase in the

push force stiffens both the tissues/muscles and bone joints. The effects of the grip force

on the DPMI magnitude are relatively small at frequencies above 200 Hz, for both

postures, while the effect of the push force is negligible above 400 Hz, irrespective of the

posture. For the bent-arm posture, the grip force has negligible effect below 20 Hz and

around the valleys near 4.5 and 90 Hz, but it shows significant effects at all other

frequencies below 200 Hz, particularly around the peaks. The push force, on the other

hand, yields negligible effect in the 5 - 25 Hz frequency range and above 200 Hz, but it

affects both the peaks and valleys in the DPMI magnitudes at frequencies below 200 Hz.

For the extended arm posture, the grip force has negligible effect below 7 Hz and around

the valley near 90 Hz, while the push force has significant effect in the 2.5 - 400 Hz

frequency range.

The changes in the characteristic frequencies and magnitudes of the DPMI
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Figure 3.22: Effects of hand forces and posture on the mean DPMI responses under a/,v

5.25 m/s2: (a) different Fg when Fp = 50 N; (b) different Fp when Fg =30 N.
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Table 3.10: Effects of hand forces on the DPMI characteristic frequencies and magnitude
(Pl posture; af,w = 5.25 m/s2)

Hand Forces

(N)

Peaks

Frequency Magnitude
(Hz) Ns/m

Valleys
Frequency Magnitude

(Hz) Ns/m
F„= 10, Fp =50

Fg = 30, Fp = 50

F„ = 50, Fp = 50

Maximum change
(Percentage)

26.6,52.3

29.7,563,
118.8,235.9

34.4, 60.2,
134.4,267.2

(29.30%)

277.7,248.1

322.4,279.6,
191.1,221.1

372.4,324.4
207.6, 260.5

94.7

(34.10%)

Fg=30, Fp =50

Fs=30, Fp =50

Fg=30, Fp =75

Maximum change
(Percentage)

25.7,52.3,
110.9,235.9

29. 7, 56.3
110.9,251.6

34.4, 60.2,
134.4,235.9

6.3

(22.40%)

295.9,218.9,
156.9,206.5

322.4, 279.6
187.5,221.3

347.6, 332.7,
224.8, 240.9

48.7
(16.30%)

3.91,57.5

3.91,57.5

4.7, 108.1

15.6

(17.80%)

51.0,739.7

54.6,772.9

58.5,209.5

69.6
(49.80%)

response due to increase in the hand forces are summarized in Table 3.10 for the bent-

arm posture. The values used in determining the percentage changes are shown in italics.

The results show that an increase in the grip force from 10 N to 50 N (400 %) yields an

increase of 7.8 Hz (29.3 %) in the most prominent characteristic frequency and 94.7 Ns/m

(34.1 %) in the most prominent peak magnitude, while no appreciable change was

observed around the valleys. Similarly, an increase from 25 N to 75 N in the push force

(200 %) yields an increase of 6.3 Hz (22.4 %) in the characteristic frequency

corresponding to the most prominent peak and 48.7 Ns/m (16.3 %) in the peak

magnitude. This further resulted in an increase in the frequency corresponding to the
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most prominent valley of 15.6 Hz (17.8 %) and 69.6 Ns/m (49.8 %) in the corresponding

valley. The observed trends in the effects of grip and push forces therefore support the

hypothesis that the resonant frequencies of the muscles/tissues and the bones/structure of

the human hand-arm system correspond, respectively, to the peaks and the valleys in the

DPMI magnitude.

Figures 3.23 - 3.25 show the influence of the grip force and posture on

transmitted vibration magnitudes in the z/,- and ^/,-axis at the wrist, elbow and shoulder.

The figures show that an increase in the grip force increases transmissibility magnitude

and characteristic frequencies for both postures. An increase in the grip force yields

negligible effect on the z/,- axis wrist transmissibility under the Pl posture in the 2.5 - 15

Hz frequency range, while it increases the magnitude and the characteristic frequencies

for both postures above 1 5 Hz. The increases in the response magnitudes for the bent-arm

posture are higher than those for the extended arm above 1 5 Hz, particularly along the z/,-

axis. This may be due to the partial stiffening of the muscles/tissues and the joints in the

extended arm posture, which tends to increase the damping effect of the hand-arm

system. In the y/,-axis (Figure 3.23(b)), the effect is more prominent in the 15 - 80 Hz

frequency range for both postures, while the response magnitudes are higher for the Pl

posture.

The effect of the grip force on the z/,- axis vibration transmitted to elbow 1

location is similar to those observed at the wrist, as shown in Figure 3.24(a). In the yu-

axis, however, the effect is prominent below 50 Hz for both postures (Figure 3.24(a)),

while the magnitudes are greater for the P2 posture compared to the Pl posture. The

effect of grip force is more prominent on the z¿- axis shoulder transmissibility under P2
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Figure 3.23: Effects of grip force and posture on the vibration transmissibility at the wrist

(Fp = 50 N, af,w = 5.25 m/s2): (a) ?/,-axis; (b) >>/,-axis.
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Figure 3.24: Effects of grip force and posture on the vibration transmissibility at elbow 1

(Fp = 50 N, ap» = 5.25 m/s2): (a) z^-axis; (b) >v,-axis.
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Figure 3.25: Effects of grip force and posture on the vibration transmissibility at the

shoulder (Fp = 50 N, aAw = 5.25 m/s2): (a) ?¡,-axis; (b) yh-axis.
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posture in the 5 - 80 Hz frequency range, while the effect in they/,- axis is small for both

postures. The changes in the prominent characteristic frequencies and z/,- axis

transmissibility magnitudes under different hand forces, for the Pl posture, are

determined and summarized in Table 3.11. The results suggest that an increase in the grip

force from 10 N to 50 N (400 %) yields an increase of 6.3 Hz (25.0 %) in the

characteristic frequency at the wrist, and 0.32 (26.4 %) in the transmissibility magnitude

at elbow 2.

Figures 3.26 - 3.28 illustrate the influence of the push force and posture on the z/,-

and j^-axis transmissibility responses at the wrist, elbow and shoulder, for a constant grip

force of 30 N. Similar to the effect of the grip force, an increase in the push force

generally yields higher transmissibility magnitudes and characteristic frequencies for both

postures. The influences of variations in the push force on the z/¡- and j^-axis transmitted

vibration at the wrist and elbow are similar to those observed under grip force variations.

However, unlike the grip force, the push force significantly affects the transmissibility

magnitude and characteristic frequencies at the shoulder in both axes for the P2 postures

(Figure 3.28). This could be attributed to a higher reaction force developed in the upper-

arm structure under a greater push force. The changes in characteristic frequencies and

peak magnitudes with push force variations are summarized in Table 3.11. The results

suggest that an increase in the push force from 25 N to 75 N (200 %) yields a maximum

increase of 3.9 Hz (33.3 %) in the characteristic frequencies at elbow 2 and 0.085 (31.86

%) in the transmissibility magnitude at elbow 1 .

The influence of the hand forces on the transmissibility show that the grip force

mostly affects the dynamic characteristics of the forearm, while the push force
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Figure 3.26: Effects of push force and posture on the vibration transmissibility at the

wrist (Fg = 30 N, Ohw = 5.25 m/s2): (a) ?/,-axis; (b) yh-axis.
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Figure 3.27: Effects of push force and posture on the vibration transmissibility at elbow 2

(Fg = 30 N, ahw = 5.25 m/s2): (a) ?/,-axis; (b) yh-axis.
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Figure 3.28: Effects of push force and posture on the vibration transmissibility at the

shoulder (Fg = 30 N, ai,w = 5.25 m/s2): (a) ?/,-axis; (b) >v,-axis.
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significantly affects the characteristics of the entire hand-arm system. This observation
corroborates with the results obtained from the effect of hand forces on the DPMI

responses.

3.9.2 Effects of excitation magnitude and posture

The influence of excitation magnitude on the DPMI response of the hand-arm in

the bent-arm (Pl) and extended arm (P2) postures is illustrated in Figure 3.29. The figure

shows that excitation level has negligible effect on the DPMI response except around 1 1 0

Hz for the Pl posture and around 12.5 Hz for the P2 posture. The peak standard deviation

of the DPMI magnitudes obtained under both excitations was found to be 26.24 Ns/m for

the Pl posture (Table 3.12), which is lower than the peak SDs observed from the data

acquired during the repeatability tests (31.28 Ns/m), and the reproducibility test (48.14

Ns/m), and inter-subject variability (67.50 Ns/m). Moreover, the peak SDs occurred in

the vicinity of peak responses. It may thus be deduced that other factors, such as

unsteadiness in the hand forces and variations in the hand-arm orientation contribute to

the observed influence of the excitation level on the DPMI responses. The effect of

excitation level on the DPMI phase is also very small, as seen in Figure 3.29. The effect

of excitation magnitude on the DPMI responses may thus be considered to be relatively

small to negligible. Some of the reported studies have also concluded that excitation

magnitude has negligible effect on the DPMI magnitude response [67, 70, 73, 78, 84].

Figures 3.30 to 3.32 present the influences of excitation magnitude on the Zf,- and

>7,-axis transmissibility responses for the two postures. The results show that excitation

level effects on the transmissibility magnitudes measured with the P2 posture are greater

than those observed for the Pl posture. Table 3.12 summarizes the peak standard

124



Ï200

-------- P1-high
Pi-low

—' P2-high
P2-I0W

Frequency (Hz)

Figure 3.29: Effects of excitation magnitude and posture on the mean DPMI response
(Fg = 30 N, Fp = 50 N).

Table 3.12: Maximum standard deviation due to different excitation levels
(Fg = 30 N, Fp = 50 N)

P1 posture P2 posture
Biodynamic
response Measurement

Location axis

Peak Corresponding
standard frequency
deviation (Hz)

Peak Corresponding
standard frequency
deviation (Hz)

DPMI Driving-point
Wrist_yh
Wrist_zh
Elbow 1 Xh
Elbowl_yh
Elbow 1 Zh
Elbow2_Xh
Elbow2_yh
Elbow2_Zh
Shoulder_yh
Shoulderzh

26.26 110.94 23.87 12.50

Transmis-
sibility

0.16
0.14
0.08
0.11
0.11
0.13
0.11
0.18
0.09
0.14

79.69
32.81
32.81
28.91
32.81
10.94
36.72
15.63
25.00
10.94

0.21
0.20
0.22
0.12
0.12
0.16
0.36
0.18
0.21
0.28

56.25
56.25
10.94
6.25
12.50
5.47

12.50
12.50
9.38
12.50
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deviations of transmissibility magnitudes measured under the two excitation levels at

each measurement location and the corresponding frequencies. The results suggest peak

standard deviation of 0.36 in the_y/,-axis transmissibility at elbow 2 under P2 posture, and

0.18 in the ?/,-axis transmissibility at elbow 2 under the Pl posture. The observed peak

SD for the Pl posture is lower than those obtained from the data acquired during

repeatability test (0.23) and reproducibility test (0.35), and the inter-subject variability

(0.38) for comparable hand forces. This suggests that the effect of excitation level on the

?/,-axis vibration transmissibility under the Pl posture is small. The effect, however, is

significant for the P2 posture. The effects of excitation magnitude on the^-axis vibration

transmissibility are also evident under both postures. These suggest nonlinearity of the

hand-arm system, which is not clearly evident from the responses measured at the

driving-point. These further suggest that localized vibration transmissibility responses

describe the dynamics of the hand-arm structure more accurately than the driving-point

measures.

Somewhat contradictory findings have been reported in the published studies on

effects of the excitation magnitudes. Some studies have reported that a 10 dB increase in

the excitation magnitude increases the transmissibility magnitude by 8 - 10 dB at all

frequencies [94, 98], while Aatola [95] reported negligible influence of excitation

magnitude on the wrist transmissibility. A careful examination of the results presented in

[95], however, revealed notable effect of excitation magnitude on the imaginary part of

the measured vibration transmissibility, particularly around characteristic frequencies.

These studies however considered different hand-arm postures involving elbow angle of

120°, 150° and 189°, which are closer to the P2 posture used in this study. Unlike the
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Figure 3.30: Effects of excitation level and postures on the vibration transmissibility at

the wrist (Fg = 30 N, Fp = 50 N ): (a) ?/,-axis; (b) yh-axis.
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Figure 3.31 : Effects of excitation level and posture on the vibration transmissibility at

elbow 1 (Fg = 30 N, Fp = 50 N ): (a) ?,,-axis, (b) ^-axis.
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Figure 3.32: Effects of excitation level and posture on the vibration transmissibility at the

shoulder (Fg = 30 N, Fp = 50 N ): (a) ?/,-axis; (b) yh-axis.
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results reported in [94] and [98], Aatola [95] investigated the effect of excitation level on

the transmitted vibration through analysis of only the imaginary part of the

transmissibility response, obtained for only one subject. The differences in the

methodology used in the reported studies account for the different observations in view of

excitation level effects. The results of the present study exhibit only partial agreements

with the findings reported in [94] and [98], that the variations in the excitation level affect

the transmissibility magnitudes, but disagree that the increase in transmissibility

magnitude is the same in the entire frequency range. The results presented in Figures 3.30

- 3.32 show pronounced effects in the vicinity of the characteristic frequencies, which

were also observed from the data reported in [95].

3.10 Statistical Analyses

3.10.1 Driving-point mechanical impedance

Analysis of Variance (ANOVA) with Statistical Product and Service Solutions

(SPSS) software was used to analyze the experimental data for the two experiment

designs that were discussed in section 3.4.2, using 95 % confidence intervals

corresponding to significance level (alpha) of 0.05. The analyses were performed on the

DPMI magnitudes at eleven selected frequencies in the vicinity of the identified

important resonant frequencies of the human hand-arm system, as discussed in section

3.8. The main factors included the posture, grip and push forces, and the excitation level.

The results illustrating the main factors effects and their 2-way interactions in terms of p-

values are presented in Table 3.13. The results obtained for the two different postures are

summarized in Table 3.14. The influence of a factor is considered to be significant if its

p-value is less or equal to 0.05, which are italicized in Tables 3.13 and 3.14.
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The influences of the main factors on the DPMI responses presented in Tables

3.13 and 3.14 generally agree very well with the trends observed in the mean DPMI

responses illustrated in Figures 3.22 and 3.29. The effect of the posture (P) on the DPMI

magnitude is most significant below 100 Hz, which is also evident in Figure 3.22. The

results show that the effects of grip and push forces are mostly significant in the 28.9 -

300 Hz and 14.8 - 300 Hz ranges, respectively, with a few exceptions, which also

conform with the trends of the mean data of Figure 3.22. It is interesting to note that the

effect of grip force near 4.7 and 100 Hz, the prominent valleys in the DPMI magnitude

response, are insignificant (p > 0.05). This further supports the observation that the effect

of grip force on the valleys in the DPMI magnitude is negligible. The valleys are believed

to be related to the resonant frequencies of the bones/structure of the hand-arm system.

The results attained across the two postures (Table 3.13) suggest that the effect of push

force (Fp) is significant in the 14.8 - 300 Hz frequency range. The results attained for

individual postures, however, show significant frequency ranges as 28.9 - 134.4 Hz for

the Pl posture and 7.8 - 134.4 Hz for the P2 posture (Table 3.14). These suggest that the

push force effect is insignificant at frequencies above 200 Hz when individual postures

are considered. The variations in the mean data, presented in Figures 3.22 (b), also

confirm the insignificant push force effect. The difference in the results above 200 Hz is

thus attributable to the influence of the posture. Considering the significant posture

effects, it is essential to consider the individual posture effect in the ANOVA

experimental design.

131



3
S)
cd

a.
Q
ö
o
05

?
O

C+H
Ö
'3
£
¦5
!+H
O
<D
O

O

CO

(?
¦?-»
C/3

(D

H

° ICN

co ±

°> N
E1

TT N
CO X

CO

CO N
r*:x

r>- ?
^X

¡2
o

··—¦
?
?

LL

tO(NHH»líiHJH(H
(NOOrHlOO)IlO^O)OO
OCSCSÖÖOOOOO

í o ^ ? o\
Tf CS CS G? C-;
öcs'csöoööööö

Tl- On TJ- On Tf
NO C^ On On ON

On d (S <?) ?
CN O (S (S CN
oo'o'o'oööööö

On I— OO Tf CN
t— C^ OO NO On

nOOCso^OONOCNtI-O
·—'WiCSTfCSOw-ju-iONt-;OOCSOOOOOOÖ

<S<SOOCNCSOt^TfW-)
CSCSOOn—hOoOOOOOn
CSOOOOCSOÖOÖ

CS O ? NO —' —,
O O O U-) TT CS
CS'CSCSOÖOÖOÖ

G"~ On On On
? ? On m

es <s o r- — o t~- —h o r-
CS<SOTfw-N.ONCNW->NqcN
o'ooöoooöoo

o CS
CS <S>
es c¿

O U~> OO O
O O no O
O O

no o o m
oo «s w-> c*->

ö <¿ ö <a o o

(SOONOOOCSCNOt—Tf
(SCSOTfCNCSW-jCSOOONCS'nSÖÖÖOOCSÖÖ

(S O
CS OO

W) CN
H NO

CS O O

t~- O CN -i Tf C~-
Tf Tf —; CS On On

O O Ö Ö CS O Ö

CSr-)CNOONW-)<-OU-)NONO
(SOnCNCNOOOOnCNOnOn
CSOÖÖOOOOOO

a, te, te,

« . « te, «te, t>°<? te, * te, * ^s * * ï * i
-« - - -s: » < r>°

+-*

O

•s
CCi
(D
Vh

(D

B
a
cd

Oh
Q
?-
?

O
Ch-H
tí

'c3

(D

C+H
O
(D
O

U
O

'tí

cd

''S
H-*
OO

^-
en
(D

H

o ,-
S Q-

CN
? a

O
O

CN
N 0.

CO T-
T- Q.

CN
N Q.

O
O

CN
N Q.
I
O)

0O T-

CN

N 0.
X
Tt
CD t-

0.

CN
N 0.

"* Q.

CN

°0 T-

CN
N Q.
X
CO
Tt ._
*" D.

CM
N ?-
?
CO
r^ t-

a.

CN
? ?-
?
?·»

"* S"

Q Nt - - ? Nt
Ci ? - a µ s\
<s ö ö ö ö ö

O Tf
ö ö ?

m w-j c<ì
On oo On

Ö

es
(S
<s> ö ö ö ö ö

<S O O O O O

¦S es — — O OO
(S CS CS OO OO On
CS CS' Ö Ö Ö Ö

'S O CS O O O

— es r>- no no m
CN 'S CN t-~ NO CN
Ö O Ö Ö Ö Ö

O es W-) m Tf f--
— <S <S t— ON ON
Ö CS (S Ö Ö Ö

CS O O O O

<S CS — t-. On no
(S (S CN On On OO
CS 'S Ö O Ö Ö

t* (S r- — Tf W-)
'S 1S OO m ON ON
CS 'S ö ö ö ö

'S 'S O O O O

c^ es no on m o
<S (S ON — ON ON
CS <S Ö O O ö

NO
C-I

ON -.
Tf 'S
O 'S

t— o ei
OO NO —

(S (S O O O O

S 'S er-, C^ on O
<s 's s W-) cN f~
es tí cá O O O

<S <N W-) OO CN
es 's m oo oo
CS 'S ö ö ö

On Tf OO On
O Ö Ö O

— Tf
OO Tf

On ON Tf
OO ON CO

O
O

ö — ö
ON
ON

CS 'S CO CN — ON
<S 'S — CN OO NO
CS (S ö ö ö ö

m o
OO O
ö —'¦

G-- ON W-) U-)
Tf O ON ON
Ö Ö Ö O

C-) NO O
ON ON O

Ö Ö Ö O O —'

O O O O O O

o< a
te, te,

te, te,
* * *

* * * s-s: -ç -s: rTaes ß ß te,

132



The influence of excitation magnitude is observed to be significant near 134.4 Hz

and only marginally significant near 28.9 Hz when the ANOVA design involved both

postures (Table 3.13). The analyses of the data attained for individual postures, however,

suggest that excitation magnitude effect near 1 34.4 Hz is significant (p < 0.05) only for

the Pl posture and near 28.9 Hz (p < 0.05) for the P2 posture only. These two

frequencies are the prominent characteristics frequencies for the respective postures, as

seen in Figure 3.29. The analysis based on the standard deviation of the mean, however,

suggested negligible effect of the excitation magnitude.

The results attained for the two individual posture further show insignificant two-

way interactions between the main factors over the entire frequency range. The results

attained from the data across the two postures, however, show interactions that involve

the posture at a few frequencies, notably below 100 Hz, as seen in Table 3.13.

3.10.2 Vibration transmissibility

The first ANOVA design was used to investigate the influence of all the main

factors (posture P, measurement direction Dh, grip force Fg, push force Fp, and excitation

level cihw) on the transmissibility magnitudes at the wrist, elbow 1, elbow 2 and the

shoulder. The results are summarized in Table 3.15. The second design was used to study

the effects of the three main factors (Fg, Fp, and a/¡w) on the ?/,-axis and yh-axis

transmissibility magnitudes for each posture, as shown in Tables 3.16 and 3.17,

respectively. The number of frequency points at which the main factors are significant

were determined for each posture, measurement direction, and measurement location.

The corresponding percentages, relative to the eleven selected frequencies points, were

calculated and summarized in Table 3.18.
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The results presented in Table 3.15 show significant effects of the hand-arm

posture, measurement direction and their interactions on the hand-arm vibration

transmissibility at nearly all the frequencies considered. The influences of the grip and

push forces are also significant between 14.8 and 300 Hz, as observed from the DPMI

data, while the effect of the excitation magnitude is significant only at very few

frequencies. These results agree with the trends observed in the mean transmissibility

magnitude data presented in section 3.9, except that the posture effect on the wrist

transmissibility was not evident near 7.8 Hz.

Tables 3.16 to 3.18 show that the effect of the grip force is significant on the

transmissibility magnitudes in both measurement directions and both postures at some of

the frequencies and insignificant at other frequencies in the vicinity of the valleys in the

DPMI responses. The statistical analysis results agree with the observations in the trends

in Figures 3.23 - 3.25. The results further reveal the most significant effect of grip force

on the forearm vibration for both postures, since the number of frequency points at which

the effect of the grip force (Fg) is significant are higher at the wrist and elbow 1 (Table

3.18). This agrees with the inference derived from the DPMI response magnitudes and

the observation of the subjects that the effect of grip force was mostly felt on the forearm.

However, the effect of Fg in the ?/,-axis direction is more prominent in the bent-arm

posture than the extended arm posture, while the effect is more prominent for the

extended arm posture in the ^/,-axis.

Unlike the grip force, the main effect of the push force in the ?/,-axis is

significant for all measurement locations for both postures and measurement directions,

as shown in Table 3.18. The effect of Fp is more prominent at the upper-arm in the^-axis
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Table 3.15 Statistical significance of the main factors on transmissibility magnitudes
4.7 7.8 14.8 28.9

Factors Locations Hz Hz Hz Hz
Wrist 0.09 0.00 0.16 0.00

Elbow 1 0.00 0.00 0.00 0.00

Elbow2 0.00 0.00 0.00 0.00

____________Shoulder 0.00 0.00 0.00 0.00
Wrist 0.00 0.00 0.00 0.00
Elbow 1 0.00 0.00 0.00 0.00

'' Elbow2 0.00 0.00 0.00 0.00
____________Shoulder 0.00 0.00 0.00 0.00

Wrist 0.69 0.08 0.12 0.15
Elbowl 0.37 0.28 0.43 0.44

g Elbow2 0.80 0.30 0.24 0.00
____________Shoulder 0.16 0.74 0.25 0.01

Wrist 0.49 0.32 0.57 0.01

Elbowl 0.58 0.92 0.00 0.00

p Elbow2 0.81 0.30 0.00 0.00
____________Shoulder 0.84 0.08 0.00 0.00

Wrist 0.92 0.52 0.86 0.10

Elbowl 0.12 0.19 0.00 0.00

ahw Elbow2 0.23 0.83 0.00 0.00
____________Shoulder 0.43 0.17 0.00 0.00

Wrist 0.00 0.04 0.00 0.00

Elbowl 0.00 0.00 0.00 0.00

h Elbow2 0.00 0.00 0.00 0.00
____________Shoulder 0.00 0.02 0.00 0.00

Wrist 0.96 0.59 0.36 0.51

Elbowl 0.76 0.09 0.00 0.00

g Elbow2 0.83 0.10 0.00 0.47
____________Shoulder 0.84 0.06 0.00 0.00

Wrist 0.75 0.60 0.08 0.08

Elbowl 0.95 0.04 0.00 0.01

" Elbow2 0.97 0.30 0.05 0.40
____________Shoulder 0.87 0.01 0.15 0.51

Wrist 0.04 0.51 0.00 0.00

Elbowl 0.63 0.34 0.01 0.00
Dh * F„

g Elbow2 0.40 0.30 0.00 0.08
____________Shoulder 0.34 0.64 0.74 0.01

Wrist 0.01 0.37 0.73 0.12

Elbowl 0.03 0.09 0.01 0.02

h P Elbow2 0.01 0.03 0.00 0.11
____________Shoulder 0.00 0.00 0.78 0.27

Wrist 0.87 0.99 0.65 0.16

Elbowl 0.98 0.85 0.00 0.00

s " Elbow2 0.86 0.99 0.00 0.81
Shoulder 0.95 0.89 0.97 0.94

48.4 64 78.9 100 134 200 300
Hz Hz Hz Hz Hz Hz Hz

0.00 0.00 0.00 0.00 0.05 0.13 0.01
0.00 0.00 0.00 0.04 0.45 0.00 0.00
0.22 0.01 0.00 0.00 0.00 0.00 0.00
0.11 0.88 0.96 0.02 0.00 0.00 0.49
0.00 0.05 0.00 0.00 0.17 0.00 0.00
0.00 0.00 0.00 0.37 0.01 0.22 0.00

0.24 0.00 0.00 0.01 0.12 0.00 0.00
0.00 0.00 0.01 0.44 0.00 0.00 0.00

0.10 0.00 0.00 0.00 0.05 0.49 0.02
0.41 0.00 0.00 0.00 0.04 0.00 0.00

0.06 0.16 0.66 0.71 0.27 0.52 0.00
0.23 0.13 0.19 0.01 0.00 0.11 0.84

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.00 0.00 0.00 0.00 0.00 0.14

0.00 0.03 0.02 0.03 0.00 0.00 0.10

0.00 0.00 0.00 0.00 0.00 0.03 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.23

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.20 0.03 0.42 0.28

0.00 0.00 0.00 0.00 0.00 0.08 0.14

0.05 0.41 0.06 0.36 0.91 0.13 0.05

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.29 0.04 0.27 0.53 0.82 0.88 0.68

0.67 0.53 0.42 0.34 0.66 0.62 0.33

0.92 0.55 0.03 0.17 0.06 0.00 0.50

0.31 0.50 0.83 0.85 0.92 0.44 0.35

0.63 0.09 0.20 0.20 0.96 0.98 0.86

0.08 0.05 0.07 0.21 0.50 0.58 0.74

0.92 0.43 0.19 0.04 0.19 0.02 0.03

0.03 0.19 0.30 0.40 0.37 0.99 0.97

0.05 0.01 0.58 0.04 0.36 0.11 0.10

0.02 0.48 0.14 0.29 0.55 0.82 0.95

0.84 0.47 0.54 0.54 0.83 0.24 0.63

0.32 0.72 0.67 0.90 0.48 0.00 0.24

0.52 0.78 0.69 0.48 0.02 0.52 0.97

0.01 0.01 0.02 0.16 0.82 0.72 0.06

0.19 0.02 0.01 0.55 0.47 0.52 0.19

0.01 0.01 0.02 0.90 0.35 0.32 0.45

0.23 0.85 0.98 0.99 0.79 0.89 0.94
0.96 0.82 0.49 1.00 0.69 0.84 0.08
0.29 0.11 0.19 0.41 0.91 0.69 0.23

0.91 1.00 0.91 0.99 0.89 0.84 0.33
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Table 3.18: Percentage of discrete frequencies illustrating significance of the main factors

Measurement ??-axis j/,-axis
Factors Location Pl P2 Pl P2

Wrist 63.6 45.5 27.3 45.5
Fg Elbowl 63.6 45.5 18.2 72.7

Elbow2 54.5 18.2 9.1 18.2
______________Shoulder 18.2 36.4 9.1 27.3

Wrist 63.6 72.7 54.5 0.0
Fp Elbowl 63.6 36.4 54.5 72.7

Elbow2 90.9 63.6 63.6 81.8
Shoulder 54.5 72.7 81.8 100

54.5 27.3 0.0 9.1
36.4 45.5 36.4 45.5
18.2 18.2 36.4 36.4
18.2 9.1 27.3 27.3

Wrist 0.0 9.1 0.0 0.0
ahw*Fg Elbowl 9.1 9.1 0.0 9.1

Elbow2 0.0 0.0 0.0 0.0
___________Shoulder 0.0 0.0 18.2 0.0

Wrist 0.0 0.0 0.0 0.0

ahw*Fp Elbowl 0.0 0.0 0.0 0.0
Elbow2 0.0 0.0 18.2 0.0

___________Shoulder 0.0 0.0 0.0 0.0
Wrist 0.0 9.1 0.0 0.0

Fg* Fp Elbowl 18.2 27.3 9.1 18.2
Elbow2 9.1 27.3 0.0 0.0
Shoulder 0.0 0.0 9.1 0.0

for both postures. The ANOVA results agree with the trends observed in the mean

measured transmissibility responses presented in Figures 3.27 to 3.29. The effect of the

interaction between the grip and push forces occurred in the ?/,-axis at elbow 1 and 2 for

the extended arm posture, although the effect of the interaction of the hand forces is small

compared with their main effect. In general, the main effect of the grip force is more

significant on the forearm in both directions and for both postures, while the significance

of the push force is prominent at nearly all the locations hence it affects the entire hand-

arm system. The effect of the excitation level is most significant at the wrist for the bent-
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arm posture in the ?/,-axis. Excitation level in the y^-axis is significant at elbow 1 and 2,

and the shoulder for both postures. The significance of the acceleration level (af,w) is the

least compared with the hand forces. The ANOVA results corroborate the trends shown

in Figures 3.30 to 3.32.

3.11 Summary

The results of the analyses of simultaneously measured driving-point mechanical

impedance (DPMI) and acceleration transmissibility responses of the human hand-arm

system suggest that the DPMI characterizes the dynamics of the entire hand-arm system

with emphasis around the driving-point and the bones/structure, while the acceleration

transmissibility emphasizes the dynamic responses of the tissues/muscles of the human

hand-arm system. Some of the characteristic frequencies obtained from the peaks in the

mean transmissibility magnitudes are comparable with characteristic frequencies

corresponding to valleys and peaks in the DPMI magnitudes, while some could not be

related to either the valley or the peak. The influences of the hand forces show that the

grip force mostly affects the peaks in the DPMI magnitude and transmissibility

magnitudes measured on the forearm, while the push force affect both the valleys and

peaks in the DPMI magnitude, and transmissibility magnitudes measured on the forearm

and the upper-arm. Therefore, the experimental results support the hypothesis that was

derived from the results of the analysis of dynamic characteristics of the 3-DOF hand-

arm model reported in ISO 10068 (1998), namely: the peaks and valleys in the DPMI

magnitude correspond to the resonant frequencies of the tissues/muscles and

bones/structure of the human hand-arm system, respectively.

The main factors (grip and push forces, posture and excitation magnitude)
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influence transmissibility responses in both the ?/,- and j^-axis directions and in the bent-

arm and the extended arm postures. However, the effect of excitation magnitude on the

DPMI magnitude is negligible, while other main factors have significant influence. The

mean measured transmissibility magnitudes show that the human hand-arm system in an

extended arm posture amplifies vibration transmitted to the upper-arm below 25 Hz, but

it tends to attenuate vibration transmitted to the upper-arm more effectively than the bent-

arm posture above 25 Hz, which limits greater vibration to the hand and the wrist.

The frequency weightings defined in ISO 5349-1 (2001) emphasize the

assessment of vascular and neurological components of the hand-arm vibration

syndrome, which are high frequency phenomenon since vibration at high frequencies

(above 200 Hz) is mostly confined to the hand, even though the frequency weightings in

ISO 5349-1 is maximum around 12.5 Hz. It has also been shown that the vibration of

some hand-held power tools are predominant in the low frequency range (12.5 - 31.5

Hz), which is lower than the low frequency band in the medium-spectrum defined in ISO

10819 (1996). Considering the significant differences in the response of the human hand-

arm to vibration in the bent-arm and extended arm postures at low frequencies, and the

fact that musculoskeletal disorders have been associated with low frequency vibration, it

may therefore be more appropriate to have two sets of standardized guidelines for

assessment of potential injury risks. The first guideline for high frequency power tools for

assessment of vascular and neurological disorder for high frequency hand-held power

tools. The second guideline for low frequency power tools and assessment of

musculoskeletal disorders.
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CHAPTER 4

THE HUMAN HAND-ARM MODELS

4.1 Introduction

The human hand-arm responses to vibration exhibit extensive variations in the

data and thus pose considerable complexities in interpretations. Apart from possible

contributions due to anthropometric differences, such variabilities are attributed to

variations in experimental conditions, as shown in chapter 3. The primary motivations for

developing mechanical-equivalent models of the human hand-arm system arise from

many potential applications. These include: (i) characterization of vibration amplitude

and power flow in a coupled hand-arm and tool system; (ii) analyses of potential

performance benefits of vibration-attenuation devices in an efficient manner; and (iii)

development of a hand-arm simulator for assessing vibration transmission characteristics

of different tools and vibration attenuation devices with minimal variability in the data. A

number of biodynamic models of the hand-arm system have been proposed, which have

been described in chapter one (section 1 .2.2). The vast majority of the reported models do

not consider the anatomical structure of the human hand-arm system. Furthermore, the

shoulder is invariably assumed fixed, although considerable vibration of the shoulder was

observed during the measurements. Moreover, considerable vibration of the shoulder and

the head has been reported under an extended arm posture [93, 98]. This raises a major

concern on the validity of the reported biodynamic models of the hand-arm system.

Only a few studies have proposed biomechanical models with consideration of the

masses and physical dimensions of different structures of the human hand-arm [92, 99].
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These models represented the hand by two masses representing the tissue/muscle/skin

and the bones of the fingers and the palm-wrist structure. In both studies, the masses of

the tissues/muscles and bones of the forearm and upper-arm were combined. Cherian et

al. [92] obtained the model parameters by using the measured transmissibility responses

on only one subject, while a poor agreement was observed between the model response

and the measured data. On the other hand, Fritz [99] used the compliance data measured

at the driving-point by Reynolds and Falkenberg [79] for model parameter identification,

and compared the transmissibility responses of the resulting model with those reported by

Reynolds and Angevine [93] and Pyykko et al. [94]. There was poor agreement between

the measured compliance and transmissibility data and the model responses.

A recent study has proposed a bi-directional model of the hand for simulating the

driving-point biodynamic responses distributed at the fingers and palm of the hand under

excitation in the ?/,-axis, using experimental DPMI data measured at the two driving-

points (fingers-handle and palm-wrist-handle interfaces) [128]. The hand was represented

by a clamp-like structure, in which the tissue/muscle/skin and bones of the fingers and

the palm-wrist-forearm were separated. Although anthropometric masses were

considered in the study, the dimensions of the forearm and the upper-arm were not

considered since rotational degree-of-freedom was neglected. The comparison of the

measured and model DPMI responses was satisfactory but combining palm, wrist and

forearm as a single lumped mass did not permit analyses of the localized vibration

properties of the hand-arm substructures.

In this dissertation research, a mechanical-equivalent model of the hand-arm

system is proposed on the basis of the simultaneously measured DPMI and vibration
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transmissibility responses, while anthropometric data are applied for constructing the

model. Furthermore, the shoulder constraint employed in all of the reported models is

relaxed by considering a lumped mass due to the trunk. The rationale for including the

trunk into the model evolved from the observation made during the experiments, which

clearly confirmed vibration of the upper body, particularly under the extended arm

posture. Owing to the significant posture effect observed in the experimental data, two

different models corresponding to the bent-arm and extended arm postures are proposed.

The parameters of the models are obtained by minimizing the errors between the

measured and the model DPMI and transmissibility responses. Sensitivity analyses were

performed to identify parameters that greatly affect the biodynamic responses of the

hand-arm system. In addition to matching the biodynamic responses of the models with

the measured data, attempts were made to obtain reasonable agreement between the

damped frequencies of the model and the characteristic frequencies obtained from the

measured responses.

4.2 Biomechanical Models of the Hand-arm System

The measured biodynamic responses of the hand-arm system exposed to ?/,-axis

vibration revealed most important influence of the hand-arm posture, particular at low

frequencies (below 25 Hz). It is thus essential to incorporate the postural variations as a

variable in the model formulation. The reported hand-arm models, however, did not

consider the effect of posture [51, 56, 68, 72, 79, 86, 100, 102, 103, 104]. Moreover, the

structure of these models does not permit variation in the posture. The biomechanical

model structures reported by Cherian et al. [92] and Fritz [99] could be applied to

consider the postural variation in terms of the elbow angle, although the parameters of
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these models were determined for fixed elbow angles of 90° and 120°, respectively. The

consideration of elbow angle variations in the model is quite complex, since it would

necessitate characterization of biodynamic responses and identification of biomechanical

properties as a function of the elbow angle.

Alternatively, different models may be defined for different fixed elbow angles

for which the target biodynamic responses are known. In this dissertation, two different

models of the hand-arm system are formulated, corresponding to the two postures used in

the experimental studies, namely: the bent-arm posture (elbow angle = 90°) and the

extended arm posture (elbow angle = 1 80°).

4.2.1 Hand-arm model with 90° elbow angle

Figure 4.1 illustrates the structure of the proposed hand-arm system model

corresponding to the bent-arm posture with 90° elbow angle. The hand is represented by a

clamp-like structure, representing the bones of the fingers mf and palm-wrist mp , as

proposed in [128]. The masses due to the tissues and skin covering the fingers and the

palm-wrist contacting the handle are represented by mtf and mtp , respectively. The visco-

elastic properties of the tissues are assumed to be linear and are designated by c, and

kx for the fingers, and c2 and k2 for the palm. The masses due to the fingers ( mf ) and the

palm-wrist ( mp ) are coupled through a visco-elastic element ( c3 and ^3 ), representing the

visco-elastic properties of the carpáis and metacarpals. The masses of the bones, tissues

and skin of the forearm are lumped as mfa and their linear visco-elastic properties are

lumped at the wrist (cwandkw) and elbow (cemdke). The masses due to the bone,

tissues and skin of the upper-arm are also lumped as mm , and the linear visco-elastic
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Figure 4.1 : The biomechanical model of the hand-arm system with 90° elbow angle
posture.

properties of the upper-arm structure are lumped at the elbow and shoulder (cs and ks ).

The rotation at the wrist is neglected, while the rotational visco-elastic properties at the

elbow and shoulder joints are represented by CeandKe, and C5 and K1, respectively.

The trunk is also represented by a lumped mass mb and with height h, coupling to the

shoulder joint. The visco-elastic properties of the entire trunk structure are lumped at the

pelvic joint and are represented by rotational stiffness Kb and viscous damping Cb .

In the model, zhh is the displacement of the handle andz,. represents the motion of

the masses of different substructures along the ?/,-axis, where / = /, p, fa, ua,
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corresponding to the masses of the fingers, palm-wrist, forearm and upper-arm,

respectively. The rotational degrees-of-freedom (DOF) of the upper-arm and the trunk are

represented by Oxm and 0b , respectively.

The equations of motion of the 6-DOF planar model of the hand-arm system are

derived assuming that the measured responses represent the combined responses of the

bone and muscle/tissue/skin of the human hand-arm structure. The hand and forearm

structures are assumed to move along the ?/,-axis, while the upper-arm structure

undergoes general plane motion. The angular motion of the forearm is thus considered

negligible when the hand exerts grip and push forces on the handle. The upper-arm,

however, undergoes an angular motion about its center of mass. The trunk motion is

assumed to be predominantly along the rotational direction, while the magnitudes of all

angular motions are assumed to be small. The generalized coordinates of the model are

chosen as the motions of the fingers mass mf along the axis of vibration (zf ), palm-wrist

mass mp along ?/,-axis ( zp ), forearm mass mfa along ?/,-axis ( zfa ), upper arm mass mua

along ?/,-axis (z,/fl) and rotation about its center of mass (??a), and the trunk mass mb

rotation about the pelvic joint ( 6b).

The equations describing the motions of the masses due to the fingers, palm-wrist

and forearm are formulated as:

m/zf + Cx (zf - zhh )+ C3 (zf - zp )+ kx (zf - zhh )+ k3 (zf - ?p) = O (4. 1)
^? +C2Í¿P -¿hh)+CÁ¿P -¿f)+CÁ¿p -¿fa)+k2^p -2Hh) +
kÁZp-Zf)+K{zp-Zja)=° (4'2)
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'¿fa+CÁ¿fa-¿p)+Ce{¿fa ~ Ka + KeKJ+ K {Zfa ~ Zp ) +
k(Zf -z + 1 ? )=0 (4'3)e X fa ua ue ua /

mfa

The equations describing the ?/,-axis and rotational motion of the upper-arm mass are

formulated as:

? +c [z -I ? -?,)+ c [? +1 ? -hèh)+ua e\ ua ue ua fa/ s\rua us ua b)mua

k(z -I ? -Zf)+k(z +1 ? -??? = 0e\ ua ue ua fa/ s\ ua us ua b/
(4.4)

Jjua + CAa + Cs{Òua - ?,)+ Kßua + ????a - ?,) +
lCe \¿ua - LÒua ~ ¿ fa)+ ke {Zua ~ Ke0Ua ~ Zfa )}ue + (4.5)
\c(z +?T -hÓh)+k(z +1 ? -??,)} =0L s \ ua us ua bj s X ua us ua b /jus

where Jm is the mass moment of inertia of the upper-arm about the center of mass , lua is

the upper-arm length, and lue and ltts define the distances from the upper-arm mass center

to the elbow and shoulder joints, respectively. The equation of motion describing the

rotational motion of the trunk is derived as:

JA + cA + cs{òb-òua)+Kbeb + Ks{eb-eua)-
[cs [Ka + LL -hèb)+ks (zua + imeua - heb)]h = o (4'6)
where Jb is the mass moment of inertia of the trunk about the pelvic joint. Two additional

equations of motion are also derived for the masses mlf and mtp in order to derive the

DPMI responses at the two interfaces:

m,f'¿M, + Cl (¿hi, '¿fi + K \Zhh -Z/)=ff
m,p'¿hH + C2 (¿?? - ZP ) + k2 [Zhh -Zp)=fp
where ff and / are the forces developed at the driving-points formed by the fingers-

handle and palm-handle interfaces.
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4.2 2 Hand-arm model with 180° elbow angle

The biomechanical model of the hand-arm system with an extended arm posture

is formulated in a similar manner by considering elbow angle of 1 80°, as shown in Figure

4.2. The measured jv/,-axis vibration responses at the elbow and shoulder of the hand-arm

with an extended arm posture were observed to be significantly higher than those with the

bent-arm posture, particularly up to 25 Hz. This suggested greater angular motion of the

forearm under the extended arm posture, which is partly caused by the upper body

serving as a constraint to the ?/,-axis motion. Unlike the bent-arm posture, the extended

arm model is thus formulated upon consideration of an additional degree-of-freedom

associated with angular motion of the forearm (&fa), as shown in Figure 4.2. The

equations of motion for the model are formulated using the assumptions outlined for the

bent-arm model. The generalized coordinates of the model are chosen as the ?/,-axis

motions of the fingers mass mf (zf ), palm-wrist mass mp (zp), forearm mass (zfa ),

m, m,

"II·

4¿
m„

y*

?fa

z = Z eJÚ}¡??\ ^ hit*'

tt
KjC, ce

kw,cy mfa

-H4
l> lfe

T..

7 ®
K.fC, c-,

m„

Kb,Cb> ^ b

mb
Trunk

±_fc
rj>y?*JJJJ

Figure 4.2: The biomechanical model of the hand-arm system with an extended arm
posture.
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upper arm mass mm ( zua ), and angular motions of the forearm ( 0fa ) and upper-arm ( ??a )

about their respective mass centers, and angular motion of the trunk (0b) about the pelvic

joint.

The stiffness of the hand-arm structure along the yh-axis is assumed to be very

large, although the rotation of the forearm and the upper-arm masses could yield their

motions along the yh - axis. The yh - and z/¡ - axis motions at the wrist joint ( yw , zw ) are

related to the forearm rotation 6fa through the following kinematic relations:

*w =*/„+'> (l- c°s 0>J
yw= 1^SmOj0

where I^ is the distance between the wrist joint and the forearm mass center. The yr,— and

Zh - axis motions at the elbow joint (ye,ze) are also related to the forearm rotation, such

that:

Ze=Zfa-tfe(l-COS0fa)
ye = -lfesin0fa

where lfe is the distance between the elbow joint and the forearm mass center. The

assumption of small magnitude rotation of the forearm yields:

Z =Z = Z r
w e ja

y, = Ifß* (4.7)
y =-/,0,s e je ja

The equations describing the motion of the fingers and palm-wrist masses are

identical to those derived for the bent-arm posture in Eqs. (4.1) and (4.2). The equations

describing the ?/,-axis and angular motions of the forearm are derived as:

WjdZja +c„(¿J» -zp)+ce(zfa - zm ) + kw (zfa - Zp ) + ke (zfa -Z110J=O (4.8)
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Jfaëfa+cJfa+ce{èfa-èua)+Kwefa +Ke(efa-0ua)+
VÁ¿fa -¿p)+kÁZfa -ZP)}fiVefa+[Ce{zfa-¿»a)+ke{zfa-Zua)}feefa=0
The second order terms involving products of small motions could be neglected

considering small motions. Equation (4.9) thus reduces to the following linear form:

Jjuh + cJfa + ce(ôfa -èua)+Kwefa +?e{?/a -O=o (4-9a)
Equations (4.8) and (4.9a) suggest that the ?/,-axis and rotational motions are uncoupled,

while the yh-axis motion at the wrist and elbow joints are related to the forearm rotation,

as seen in Eq. (4.7). The equations describing the upper-arm motions are obtained in a

similar manner assuming small magnitude rotation ??a and negligible contributions due to

second order terms, such that:

rnuAa+cXKa-¿ja)+ci¿ua-hOb)+ke{zua-z/a)+ks{zua--heb)=0 (4.10)
JuÂa+Ce{ôua-Ôfa)+Cs{ôua-àb)+Ke{0m-efa)+Ks(eua-0b) = O (4.11)
The^A-axis motion of the elbow joint on the upper-arm side ( y"a ) and the shoulder joint

(ys) are related to the upper arm rotation as:

y"a = / ?
y = -I ?Js us ua

The equation of motion for the trunk rotation is derived in a similar manner as:

JA + cs{òb - O+ cA + K,(0b - 0ua)+Kb9b
G /, ? . \ , /, n a ? (4-13)

+ [cs{hÒb-zua)+K{heb-zua% = 0
4.3 Analyses of Biodynamic Responses

The equations of motion derived for the two postures are analyzed to derive the
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biodynamic responses of the hand-arm system subject to ?/,-axis vibration. The responses

are obtained in terms of driving-point mechanical impedance (DPMI) and vibration

transmitted to different locations of the hand-arm model. The differential equations of

motion of the two models can be expressed in the matrix form in the following manner:

[M]{L}+[C]{L}+ Mfe.} = {Fj (4.14)
where [m], [c] and [?] are (? ? ri) inertial, damping and stiffness matrices,

respectively, [Fea] is {? ? 1) force vector and [?ea\ is (? ? 1) generalized displacement
coordinate vector of the model, where ? refers to the DOF of the model and ea designates

elbow angle (90° or 180°). The displacement vectors for the 6- and 7- DOF models

corresponding to the bent-arm and extended arm postures are defined as:

feo°}={z/ zp zfa zua ??a 0b } for the bent-arm model; and

feno·}=^/ zp zfi 0fi ?·>° ?™ ^ } for the extended arm model,
where '" designates the transpose. Assuming harmonic solutions zhh = ZhhejM and

?ßa — xeaeja* , the force vectors for the models are obtained as:

[F9J=[^+JOX1 k2+jcœ2 0 0 0 0}'??ß^
{F^}=[^+J^ K+JCOc1 0 0 0 0 0}'??ß^

Equation (4.14) is then solved to determine the transmitted vibration responses in the

frequency domain as:

fe« (/«)} = ?? -CO2M+ MC]]"' {Fea } (4. 1 5)
The ?/,-axis vibration transmissibility responses of different segments of the hand-arm

models are subsequently defined as:
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Z,AJC0)

ZiAJ ?)

TÁJco) =^\ (4.16c)
where prefers to vibration transmissibility of the wrist joint along the ?/,-axis, which is

considered to be identical to that of the wrist-palm mass, Tez refers to the vibration

transmissibility of the elbow joint on the forearm side, and Tsz , in a similar manner,

refers to the vibration transmissibility at the shoulder joint. It should be noted that the z/,-

axis motion of the shoulder joint (Zs), in the case of the extended arm posture, is

identical to Zua for small rotation of the upper-arm, in a similar manner that has been

demonstrated for the elbow joint on the forearm side in Eq. (4.7). The ?/,-axis response of

the shoulder, Zs , for the bent-arm posture, is defined as:

Zs{jco) = Zua{jco) + llisem{jco) (4.17)

The ^/,-axis responses at the joints for the extended arm posture are derived from the

angular motions of the fore- and upper-arm, together with the kinematic relations, such

that:

TJM=1-^^ (4.18a)
, x / ? (/Cu)-L ?, (ja>)

Tjjco)= "e "V/ ? (4-18b)

Z1Aj co)
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The DPMI responses distributed at the fingers and palm sides of the handle are

derived as:

, s fAi(O) -a>2Zi,,,m.f +(k, + jcxAZhh -Z f{j(o))DPMI (jo) = /V ' = ' tf —-^-^ ÛLJL (4. 1 9a)
JaZhi, JaZhh

1 \ ÍÁ ico) - û)2Z,,hmln + [L· + icoc0 )(Z, ,, - Zn ( i?))DPMI (jco)=JpKJ = /,;' ,p v 2 J—^-?? ¿z—iL (4.19b)' 7U^AA JœZhh

where the subscripts '/ and '/?' refer to the DPMI at the fingers- and palm-side interface,

respectively. The total DPMI of the hand-arm system for both the bent-arm and extended

arm models is derived as:

DPMI(j?) = DPMIf (ja>) + DPMIp {jœ) (4.20)
4.4 Identification of Model Parameters

The vast majority of the reported models of the human-arm have been derived on

the basis of DPMI response alone, by curve fitting the model response with the measured

DPMI data, where the anatomical structure and anthropometry were ignored [51, 56, 68,

72, 79, 86, 100, 102, 103, 104]. Thus, the resulting solution cannot be considered unique.

This is evident from the large differences in the reported model parameters [65]. The

biomechanical models reported in [92, 99] considered both the anthropometric masses

and dimensions of the human hand-arm system, while those in [128] considered only the

anthropometric masses. The model parameters were derived using "to-the-hand"

biodynamic response in [99 and 128], while "through-the-hand" responses were used in

[92]. Although a reasonably good agreement between the model and the measured DPMI

data was presented in [128], poor agreements in compliance [99] and transmitted

vibration [92] responses were obtained. The model prediction ability and uniqueness
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could be enhanced by considering the hand-arm anthropometry, together with the

measured DPMI and localized vibration responses, and the identified characteristic

frequencies. The ranges of the model parameters identified through the available

anthropometric data are described below, together with the model parameters to be

determined.

4.4.1 Inertia, geometric and visco-elastic parameters

The hand-arm biodynamic models corresponding to the bent-arm and extended

arm posture involve identification of 25 and 27 parameters, respectively. The parameter

vectors comprising inertia and visco-elastic parameters are given by:

\XW\=lmf m,f mp m<p mfa mua mb Cl C2 C3 CW Ce CS Ce Cs Cb
K K k, kw ke ks Ke K5 Kj

(X18<rHm/ "V mp mtp mfa mua mb C\ C2 C3 CW Ce Cs Cw Ce Cs Cb
(4.21b)

*, k2 k3 K K ks Kw Ke Ks KJ

The inertia and geometric parameters are estimated from the human anthropometry

defined in [107]. The mean body mass of the subjects was estimated as 72.2 kg, while the

mean lengths of the forearm and the upper-arm were 26.0 and 20.5 cm, respectively

(Table 3.4). The anthropometric masses of the hand Mh , forearm M fa , upper-arm Mua

and the trunk Mb have been estimated as 0.65 %, 1.9 %, 3.3 % and 45.5 %, respectively,

of the mean body mass [107]. Considering the mean body mass of 72.2 kg, masses and

dimensions of different segments of the hand-arm system and the trunk are evaluated and

summarized in Table 4.1. The table also shows the mass and dimensional model

parameters that are either related to or estimated from the nominal anthropometric

parameters. The stiffness and damping parameters of the models were identified through
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minimization of composite error function of the measured data and the model responses.

Table 4. 1 : Inertial and dimensional data for the hand-arm models

Substructure
description

Anthropometric
values

Model
parameters

Hand-arm mass Mha 4.224 kg mf + mtf + mp + m,p + mfa + mua = Mha
Hand mass M1, 0.469 kg mf+mtf+mp+mip =Mh
Forearm mass Mfa

Forearm length lfa
Forearm center of

mass to wrist I^
Forearm center of

mass to elbow lfe

1.372 kg
26.0 cm

14.8 cm

1 1 .2 cm

mfa

Jfa='
m ?¦fa1 fa

12

Upper-arm mass Mua 2.383 kg
Upper-arm length lm 20.5 cm
Upper-arm center of 8.94 cm
mass to elbow lue
Upper-arm center of 11 .56 cm
mass to shoulder /„„

m«a

m I2t ua ua

12

Trunk mass Mb
Trunk length h

33.2 kg
52.0 cm mb, Jb=-

mhh

4.4.2 Optimization formulation and solution methodology

The model parameters were determined by minimizing a composite squared error

function between the model and the measured biodynamic responses. The objective or

error function E(Xea) is formulated upon considerations of errors between the DPMI

and the localized transmitted vibration responses, such that:

£(*«,) = «.

a. Î\p2{DPMIm{œr) - DPMI(cor))2 + ?2(f?{?t) - <f>(cor))
(4.22a)
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£(*,„,)=«.
N 3

SS
r=\ ì=\ ßxy, (Tmyi {cor)-Ty¡{cor)J+ rìyi (f??? (cor ) - ^1. (?,))2

S^2(???/„?)-.???/?))2+72(^?)-^?)):

+

(4.22b)

where £,(Xra) is the composite error function corresponding to elbow angle "ea" (90°

and 180°) and [Xea] is the parameter vector. Each error function comprises two
components: a weighted error between the measured and model DPMI responses, and a

weighted error between the measured vibration transmissibility and model responses of

different segments.

In the above formulation, Tmi{œr) and f???(a>,.) refer to the measured zA-axis

vibration transmissibility magnitude and phase, respectively, at a location / (wrist, elbow

or shoulder). ????) and $(«,.) are the model ?/,-axis vibration transmissibility

magnitude and phase from the model. Similarly, Tmyi and 7\, are the measured and

model vibration transmissibility magnitudes along the j^-axis, and f ¡ and f?? are the

corresponding phase responses. In a similar manner, DPMI1n and DPMI , are the DPMI

magnitudes of the measured and model responses, and the f? and f are the

corresponding phase responses. The error functions are computed at 56 different discrete

frequencies in the 2.5 - 500 Hz range (r = 1,2, 3, ...N; N= 56 ). The coefficients«, and

a2 are weighting factors imposed on the transmissibility and the DPMI errors,

respectively, while ßj and ? . are the weighting factors imposed on the magnitude and

phase errors, respectively (/' = 1 for transmissibility, andy = 2 for DPMI).

The composite error functions are minimized subject to the following inequality

constraints:
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c¡ > O; A7 >0 (/ = 1,2,3, w,e,s)
Cv>0; Kv>0

/'v = e,s,b for the bent -arm and ^ (4.23)
v = w,e,s,b for the extended arm mode/,

Apart from the above, the minimization problem is solved subject to a number of limit

constraints. The segment masses and the hand-arm masses are permitted to vary about the

nominal masses, estimated from the anthropometric data (Table 4.1), by defining the

following limit constraints:

-rj)Mfa<mfa<{l + ^Mfa
-?)?,?<???a<(\ + ?)??a
-rìMb<mb<{\ + n)Mb (4.24)
- ?)?,, < mf + mtf +mp+ mlp < (l + ?)??
- ri)Mha < mf + mlf +mp+ mtp + mfa + mua < (l + ?)?,?a

where ? defines the permissible variation about the nominal anthropometric masses.

4.4.3 Solution of the minimization problem

The constrained optimization toolbox in MATLAB was used to solve the

minimization problem defined in Eqs. (4.22) to (4.24). The solutions were attained for

three different functions: (i) minimization of DPMI error by letting Qr1=O; (ii)

minimization of transmissibility error by letting a2 - 0 ; (iii) minimization of the

combined error functions. The solutions were attained for different values of the

weighting functions ßu , ?? , ß2 , ?2, ßlyj and /ly¡ for the first two cases, while the final

case further involved different values of «, and a2 . The weights were selected to

achieve minimum errors in the responses, while the solution were obtained for a wide

range of the starting vector, which generally converged to comparable solutions.

Furthermore, sensitivity analyses were performed to identify the parameters that
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greatly affect the biodynamic responses of the hand-arm models by: (1) observing the

effects of (±5, 10, 15 and 20 %) variations in each parameter on the DPMI and

transmissibility responses; and (2) logarithmic sensitivity analysis in the frequency

domain as proposed in [129], when each parameter was varied by 20 %. The logarithmic

sensitivity function is defined as:

S^ = Eh*¡L „ Rex- d In Xi

where 'Re' denotes the real part of the complex logarithmic sensitivity expression. Sxj

is the logarithmic sensitivity index of the responses of the model masses due to a change

in parameter k {Xkea) at frequency r. ??*aG is the change in the response vector

determined from Eq. (4. 1 5) at a frequency r due to a change in parameter k, ?[a is the

response vector at a frequency r corresponding to the nominal parameter vector. The

nominal parameter vector is taken as that obtained upon minimization of the DPMI and

transmissibility response errors, as defined in Eqs. (4.22a) or (4.22b). The results of the

sensitivity analysis were used to reduce the number of parameters to be identified through

solution of the minimization problems.

4.4.4 The target functions

The minimization problems are solved using the measured target response

function of DPMI and vibration transmissibility. The measured biodynamic responses of

the human hand-arm to vibration, however, revealed dependence on the hand-arm forces

and posture, while the effect of excitation magnitude was marginally significant on the

transmissibility responses and insignificant on the DPMI response. For the purposes of
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determining the model parameters, the mean measured DPMI and transmissibility

responses corresponding to 30 N grip force, 50 N push force and excitation level of 5.25

m/s2, presented in Figures 3.17(b), 3.19 and 3.20, are considered as the target functions

for the two different postures. The selected hand forces are identical to those

recommended in ISO 10819 [117] for the assessment of anti-vibration gloves. Moreover,

this hand forces combination was judged as the most comfortable and easily controllable

for relatively long periods by all the subjects. The sensitivity analysis was performed on

the target functions corresponding to the same experimental conditions. The responses

corresponding to other hand forces combinations (10 and 50 N grip, and 25 and 75 N

push forces) were also considered as target functions, in order to study the effect of hand

forces on the model parameters.

The identified characteristic frequencies from the mean measured biodynamic

responses presented in Tables 3.8 and 3.9 are also considered as target functions for the

modal parameters of the models. Therefore, attempts were made to match the responses

of the proposed models with the mean measured biodynamic responses and the identified

characteristic frequencies of the human hand-arm system.

4.5 Biodynamic Responses of the Models and Identified Parameters

4.5.1 Responses of the bent-arm model

Figures 4.3 and 4.4 present comparisons of the measured and the model DPMI

and transmissibility response magnitudes with those of the model, respectively, derived

upon minimization of the DPMI (a, =0) and transmissibility (a2 =0) errors. The

comparisons of the transmissibility responses are presented in linear as well as

logarithmic scales, in order to highlight the prediction abilities in the low and high

158



frequency ranges, respectively. The target responses are designated as "Measured" in the

figures. The model derived on the basis of the DPMI response error alone resulted in very

good agreement in the DPMI responses (Figure 4.3(a)) but considerable errors in all the

transmissibility responses (Figure 4.4(a)). The minimization of the transmissibility error

alone, on the other hand, resulted in reasonably good agreement between the mean

measured and the model transmissibility responses (Figure 4.4(b))), while the agreement

between the measured and the model DPMI responses was poor (Figure 4.3(b)). The

results suggest the models identified on the basis of either DPMI or transmissibility errors

would yield poor prediction of the biodynamic responses of the hand-arm system to z/,-

axis vibration. Moreover, a rapid convergence of the solution was attained when the

DPMI response alone was considered compared with the transmissibility error function.

The corresponding errors in the transmissibility responses were substantial in most of the

frequency range. Since the reported models are vastly based on measured DPMI response

alone, these models may not be considered applicable for predicting transmitted

vibration. Furthermore, all attempts to match the model transmissibility phase with the

measured data proved to be futile, hence the transmissibility phase responses are not

presented.

Figure 4.5 presents comparison of the responses of the measured data with the

biodynamic responses of the model derived upon minimization of composite error

function of the DPMI and transmissibility responses. The solutions represent a

compromise between the responses of the model obtained through minimization of

individual biodynamic response errors. The comparisons reveal relatively smaller errors

in the transmissibility responses, while the error in the DPMI response is larger.
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Figure 4.3: Comparison of the measured DPMI magnitude and phase responses with
those of the model derived through minimization of errors in: (a) DPMI only; (b)

transmissibility only.
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Figure 4.4: Comparison of the measured transmissibility magnitudes with those of the
model derived through minimization of errors in: (a) DPMI only; (b) transmissibility

only.
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Figure 4.5: Comparison of the measured responses with those of the model derived
through minimization of errors in DPMI and transmissibility responses: (a) DPMI; (b) z/,-

axis transmissibility.
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4.5.2 Sensitivity analyses results

The solutions of the minimization problems corresponding to different

combinations of weightings and starting vectors revealed negligible changes in some of

the model parameters, suggesting that the biodynamic responses was insensitive to

variations in some of the parameters. Consequently, sensitivity analyses were performed

to identify the parameters that have the most influence on the biodynamic responses

using the two techniques discussed in section 4.4.3. The results were applied to refine the

minimization problem with reduced parameters vector, which was achieved by fixing the

values of the parameters that have negligible influence on biodynamic responses. The

parameters vector, corresponding to Figure 4.5, identified through minimization of the

composite error function was used as the nominal parameters for the sensitivity analyses.

Figures 4.6 to 4.9 show the variations in logarithmic sensitivity indices due to 20

% change in the model parameters on the responses at the fingers, palm-wrist, forearm

and upper-arm in the entire frequency range. The results clearly suggest strong influences

of some of the model parameters on the biodynamic responses, while the effect of

changes in other parameters is small. This is evident from the summary of sensitivity

analyses presented in Table 4.2. The table presents the frequency regions in which the

changes in model parameters significantly affect the DPMI and transmissibility

responses, together with transmissibility response location. The results suggest that

mlf (finger skin mass), c3 (damping of the hand back), Ce (elbow angular damping),

Cs (shoulder angular damping), k3 (stiffness of the hand back) and Ks (shoulder angular

stiffness) parameters have negligible influence on both the DPMI and transmissibility

responses. These suggest that changes in the visco-elastic properties of the shoulder joint
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and the carpal and metacarpal joints do not influence either biodynamic response. The

results also show that model parameters cs , Ke and Kb have negligible influence on the

DPMI response, which suggest that angular stiffness of the elbow and the upper-body,

and the damping at the shoulder joint do not contribute to the biodynamic forces

developed at the driving-point. These parameters influence the localized vibration

responses of the hand-arm models. Variation in some of the model parameters in the

vicinity of the driving-point have negligible effect on transmissibility responses, namely

mf , mlp , c, , and kx .

On the basis of the results attained from the sensitivity analysis, six additional equality

constraints on the parameters m, , k3, c3 , K3, C5 and Ce , were defined in the solution of

the minimization problem in Eq. (4.22a). The resulting solutions were further evaluated

in terms of characteristic frequencies through eigen analysis of the model. A sensitivity

analysis of the damped eigen values of the model to changes in the model parameters

(Table 4.3) revealed that variations in above-mentioned parameters could slightly

influence the characteristic frequencies, although the effect on the biodynamic responses

is nearly negligible. The model parameters obtained through minimization of error

function of DPMI alone, transmissibility alone and combined DPMI and transmissibility,

are summarized in Table 4.4. A trial and error approach was subsequently adopted in

choosing the values of the parameters summarized in Table 4.3 to minimize the

deviations between the model damped frequencies and those identified from the mean

measured DPMI and transmissibility magnitudes (Table 3.8).

The final model responses attained from solution of the minimization problems

formulated after the findings of the sensitivity analyses are presented in Figure 4.10,
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Figure 4.6: Logarithmic sensitivity of fingers' response to 20 % change in: (a) mass; (b)

damping; and (c) stiffness parameters.
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Figure 4.7: Logarithmic sensitivity of palm-wrist response to 20 % change in: (a) mass;

(b) damping; and (c) stiffness parameters.
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Figure 4.8: Logarithmic sensitivity of forearm response to 20 % change in: (a) mass; (b)

damping; and (c) stiffness parameters.
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Figure 4.9: Logarithmic sensitivity of upper-arm response to 20 % change in: (a) mass;

(b) damping; and (c) stiffness parameters.
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Table 4.2: Summary of parameters that mostly influenced biodynamic responses of the
model

Parameters DPMI response Transmissibility responses
rrif
mtf
mtp
mp
rrifa
mua
mb
Cl
C2
Ci
Cw
Ce
Cs
Ce
Q
cb
k,
k2
k3
Kw
lie
ks
Ke
Ks
Kb

80 </< 250 Hz

100</<500Hz
10</<100Hz

3 </< 80 Hz
3 <f< 20 Hz
2.5 </< 6 Hz

100 </<500Hz
100 </<500Hz

20 <f< 60 Hz
2.5 </<100Hz

2.5 </<6Hz
150 </<400Hz
30 </<150Hz

10 </<40Hz
2.5 </<6Hz

2.5 </<20Hz

Tw(10</<500Hz)andTe
Tw; (Te and T8) (20 <f< 500 Hz)

Te ; (Ts) (10 </< 500 Hz)
Ts

Tw, T6 and T5

Tw, T6 and Ts
Tw, T6 and Ts

T5 (2.5 </< 20 Hz)

Ts

Tw, Te and Ts

Tw, T6 and T5 (30 <f< 150 Hz)
Ts

Te and Ts
T5 (2.5 </<15Hz

Ts (2.5 </< 5 Hz)

Table 4.3: Summary of parameters that mostly influenced characteristic frequencies of
the model

Characteristic frequency
mode

Parameters

V
¦aid

,rd

.th

-th

-th

/Cj , K-X1 , Kw , C^ , C-j , Cw
ke, K1, Ke, ce,Cs, Ce

/C| , K-X1 , Kw , C1 , Cj , Cw
kw ? cw

Kb, cb

169



while the corresponding parameters are summarized in Table 4.4. The table also lists the

model parameters obtained from solution of the minimization problems formulated prior

to and after the findings of the sensitivity analysis. The solutions based on minimization

of DPMI alone provided excellent agreement of the model DPMI response with the target

response, with considerably large error in transmissibility responses, as observed in

Figure 4.3. In a similar manner, minimization of the transmissibility error alone resulted

in good agreement in transmissibility with large error in the DPMI response. The solution

based on DPMI error alone generally converged to higher values of viscous damping and

mass parameters, since the DPMI response resembles that of a well-damped dynamic

system. The solutions based on the transmissibility error alone, however, converge

towards lower damping and mass parameter values in order to match the resonant peaks

in target data, while some the stiffness parameters are higher. The solution attained

through minimization of errors in both responses are considered to provide a better

compromise in both the responses (Figure 4.10) although considerable deviation in the

responses could be observed. The results also resulted in reasonably good agreements in

the damped characteristic frequencies of the model with those identified from the

measured data.

The comparisons (Figure 4.10(a)) show noticeable deviations between the DPMI

response magnitudes around the valley near 100 Hz. The comparison of the mean

measured and model transmissibility responses (Figure 4.10(b)) also show reasonably

good agreement except in the 10 to 40 Hz frequency range, where the wrist responses

show considerable deviations, and in the 10 to 20 Hz frequency range, where the

deviations in the shoulder responses are evident. These discrepancies are mostly
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Figure 4.10: Comparisons of the measured responses with those of the model derived

after sensitivity analyses through minimization of errors in both the biodynamic
responses functions: (a) DPMI; (b) Zh - axis transmissibility.
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attributed to well-damped character of the DPMI response, and lumped representation of

tissues/muscles and bones in the model formulation. The deviations in the transmissibility

responses, however, are noticeable only in the low frequency range, as evidenced in the

linear scale presentation of the transmissibility responses. The deviations at higher

frequencies are relatively small, as seen in the logarithmic scale.

4.5.3 The bent-arm model parameters

The bent-arm model parameters identified from solutions of different

minimization problems are also compared with those reported in previous studies [92, 99

and 128] in Table 4.4. It needs to be emphasized that the proposed model structure differs

significantly from the reported models. Consequently, only a few of the model

parameters could be compared. The model masses, particularly those derived from the

DPMI response, compare reasonably well with those reported by Cherian et al. [92] and

Fritz [99]. Some of the mass parameters differ from those reported in [128]. The masses

due to palm ( mp ) and upper-arm ( mua ) were found to be considerably smaller than those

reported in [128], where the mass due to palm-wrist-forearm are combined, while the

upper-arm comprised a portion of the trunk mass. There are significant differences in the

model parameters obtained when DPMI and transmissibility responses were separately

used for parameter identification. The mass and damping parameters that were derived

from transmissibility responses are generally lower than those derived from the DPMI

response, while the stiffness elements are generally higher. Considering that the

transmissibility measures described localized responses, the model parameters may be

considered to reflect the properties of tissues/muscles of individual segments. The DPMI,

on the other hand, emphasizes the global response of the hand-arm structure at the
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driving-point. This perhaps explains the rapid convergence of the solution when the

DPMI target function alone was considered. Therefore, separating the mass of the

Table 4.4: Comparisons of model parameters derived from minimization of error
functions of different biodynamic responses with those reported in previous studies

Posture:

Hand forces:
Response

Author:

Parameter

90° Elbow Angle (EA)

3ON grip (G) force and 5ON push (P) force
Transmi- DPMI &

DPMI ssibility Transmissibility

Before After
Sensitivity Sensitivity
Analysis Analysis

6O0EA 9O0EA

DPMI

Fritz
[99]

25NG
Transmi-
ssibility
Cherian
et al. [92]

9O0EA
50NG,
50NP
DPMI

Dong et
al [128]

IM/ (kg)
m,/ (kg)
mtp (kg)
mp (kg)
mfa (kg)
mm (kg)
mb (kg)
c¡ (Ns/m)
C2 (Ns/m)
C3 (Ns/m)
cw (Ns/m)
ce (Ns/m)
cs (Ns/m)
Ce (Nms/rad)
Cs (Nms/rad)
Cb (Nms/rad)
k, (Ns/m)
k2 (Him)
k3 (N/m)
kw (N/m)
ke (N/m)
ks (N/m)
Ke (Nm/rad)
Ks (Nm/rad)
Kb (Nm/rad)

0.11
0.02
0.03
0.31
1.19

1.92
32.98
118.22
69.53
20.07
354.34
241.36
37.41

24.86
8.06

31.52
100290.0
88354.0
5371.8
6727.8
2763.6
2369.3
1342.9
308.8
257.6

0.019
0.003
0.004
0.466
1.09

1.15

29.51
23.85
6.39
2.09

109.35
50.31
32.11

2.24
2.65
97.47
9216.0

41261.0
6478.0
13480.0
4123.3
4467.0
128.2

1210.5
2530.6

0.11

0.02
0.01
0.36
1.19

1.25
29.51
118.22
25.22
2.09

173.95
103.99
32.11
2.24
2.65

44.84
81650.0
56319.0
5371.8
13480.0
2763.6
3685.3
1262.9
308.8
603.6

0.11
0.02
0.03
0.47
1.09

1.73
29.51
103.14
33.68
2.09

147.86
103.99
28.90
2.24
2.52
53.49

94714.0
53750.0
6478.0

14155.0
2763.6

4467.0
537.1
605.3

1353.3

0.05

0.41
1.15

1.96

178.00
103.00
90.00
60.00
100.00

66500.0
14000.0
3500.0
3800.0

5300.0

0.45

1.15

1.90

202.80
500.00
164.60
6.14
4.90

23600.0
444600.0

415400.0
2.0
2.0

0.08
0.01
0.03

1.421

6.09

120.60
118.40

38.00

77.00
97.50

208489.0
57535.0
6347.0

5382.0

9425.0

T mass of palm-wrist-forearm structure
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tissues/muscles and the bones of the arms (as in the case of fingers and the palm) may

yield improved model responses as opposed to the combined lumped masses considered

in the present model.

The modal parameters of the model for different parameter identification

techniques are summarized in Table 4.5. The natural frequencies and frequencies of

damped oscillations, together with the damping ratios, were obtained through eigen

analysis of the models derived on the basis of DPMI, transmissibility, and combined

biodynamic responses. Similar to Table 4.4, Table 4.5 shows differences in the modal

parameters of the models derived using the three composite error functions. The table

also illustrates the modal properties prior to and after application of the results of the

sensitivity analyses. The results show that the model based on DPMI alone yields

relatively higher modal damping and greater number of over-damped modes compared to

those based on transmissibility alone. These support the inference derived from the model

parameters reported in Table 4.4 and that the DPMI tends to characterize the entire

human hand-arm system at the driving-point (the hand), while transmissibility measures

tend to characterize the localized tissues/muscles responses.

The normalized eigen vectors of the model derived on the basis of both the

biodynamic responses and the sensitivity analysis are also evaluated to study the

dominant modes of vibration. The results presented in Table 4.6 suggest that the higher

frequency of 153.9 Hz corresponds to the resonance of the fingers mass, while the lower

frequencies 4.2 Hz, 10.0 Hz and 18.4 Hz correspond to those of the trunk mass, upper-

arm and forearm, respectively. These further support the widely reported finding that

higher frequency vibrations are generally retained to the hand, while the low frequency
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vibrations are transmitted to the upper arm and the body.

A comparison of the damped frequencies of the model with the characteristic

frequencies identified from the measured biodynamic responses revealed reasonably

good agreements among some of the frequencies. For example, the damped frequency of

133.08 Hz (corresponding to the natural frequency of 153.9 Hz of the fingers) that was

derived from the model is close to 1 34.4 Hz, which is associated with the valley observed

in the measured DPMI magnitude and peaks in the measured transmissibility magnitudes

at the wrist and elbow 2 (Table 3.8). Furthermore, the mode corresponding to the damped

frequency of 57.65 Hz (the natural frequency of the palm-wrist, 63.6 Hz) derived from

Table 4.5: Modal parameters for the bent-arm model

DPMI
Modal Response

parameters

Transmissibility
Responses

DPMI & Transmissibility
responses

Before After
Sensitivity Sensitivity
Analysis Analysis

Natural
Frequencies

(Hz)

157.31
91.18
78.36
14.47
7.43
2.50

143.58
91.06
56.88
19.51
12.12
5.22

142.77
73.31
99.09
17.72
11.22
3.31

1 53.92
63.90
69.06
18.39
10.03
4.17

Damped
Frequencies

(Hz)

119.41
_t

33.38
_t

2.54
2.25

96.06
28.71
46.83
16.796
11.84
4.32

112.08
76.21
42.39

_t

11.04
2.94

133.08
57.65
47.66
10.14

J

3.82

Damping
Ratio

0.646
_t

0.733

0.931
0.520

0.740
0.951
0.439
0.571
0.292
0.566

0.619
0.718
0.697

t

0.444
0.480

0.502
0.674
0.529
0.358

_t

0.427
\)ver-damped
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Table 4.6: Eigen vectors and values showing predominant modes of the bent-arm model.
_______153.92Hz 63.90Hz 69.06 Hz 18.39 Hz 10.03 Hz 4.17 Hz
z/ -1.000 -0.077 0.000 0.014 -0.004 0.001
zp 0.018 -7.000 0.002 0.209 -0.060 0.014
zfa 0.000 0.089 -0.002 1.000 -0.305 0.073
z„a 0.000 -0.001 0.000 -0.172 -7.000 0.412

O1
0.000 0.177 -7.000 0.419 0.727 0.475

b 0.000 0.000 0.002 0.002 0.234 7.000

the model is close to the 56.3 Hz characteristic frequency, identified from the peaks in the

measured DPMI magnitude and peaks in transmissibility magnitude at the wrist, elbow 1

and elbow 2. The model damped frequency of 47.66 Hz (corresponding to 69.1 Hz, the

rotational mode natural frequency of the upper-arm) is close to the 48.4 Hz characteristic

frequency, identified as the valley in the measured DPMI response magnitude. The

damped frequency of 10.0 Hz (corresponding to 18.4 Hz, the natural frequency of the

forearm) of the model may be related to the peak in the measured transmissibility

magnitudes occurring near 12.5 Hz at the elbow. Finally, the damped frequency of 3.82

Hz (corresponding to 4. 1 7 Hz, the rotational mode natural frequency of the trunk) of the

model is close to 3.9 Hz obtained from the valley in the measured DPMI magnitude

response and peak in the measured transmissibility response at the shoulder near 5.5 Hz.

The resonant frequency of 28.9 Hz observed from the measured transmissibility

magnitudes at the wrist and elbow 1 and the peak in the measured DPMI response, which

has been widely reported as the resonant frequency of the human hand-arm system, could

not be identified from the model response when the parameters were derived on the basis

of both biodynamic responses. This is probably caused by the over-damped mode

associated with the wrist mass of the model, as evident in Figure 4.13. This frequency,
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however, was noted in the model response and modal parameters, when the model

parameters were derived on the basis of transmissibility responses alone (Table 4.5). This

further supports the hypothesis that the resonant frequencies related to the peaks in the

DPMI response are the resonant frequencies of the tissues/muscles of the human hand-

arm system. For the 3-DOF hand-arm model reported in ISO 10068 [86], it was shown

that the damped frequencies of 4.19 and 102.83 Hz correspond to the valleys in the

model's DPMI response (section 3.3). It is deduced that the model could yield better

agreements between the measured and model biodynamic responses when both the DPMI

and transmissibility responses are used for parameters identification, and when the bones

and muscles of the forearm and upper-arm are represented by different masses, as it is

done for the fingers and palm. Such a hand-arm model could combine the two simple

mechanical models (free-free and free-fixed supports), whose responses have been

presented in Figure 3.6.

4.5.4 Responses of the extended arm model

Figure 4.11 and 4.12 respectively illustrate comparisons of DPMI and ?/,-axis

transmissibility responses of the extended arm model with the mean measured data, when

the model parameters were separately derived on the basis of DPMI alone and on the

transmissibility responses alone. Figure 4.13 shows comparisons of the yh-axis

transmissibility responses of the model with the measured responses. The results suggest

trends similar to those observed for the bent-arm posture model for the three different

methods used for model parameter identification. However, unlike the ?/,-axis

transmissibility responses, which show reasonably good agreements with the measured

data, as seen in Figure 4.12(b), a poor agreement is observed in the j^-axis
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transmissibility responses (Figure 4.13). The extended arm model shows negligible

responses in the>7raxis, which can be attributed to two factors: (i) negligible compliances

in the yh-axis; and (ii) the assumption that the measured transmissibility responses are

those of the bones and tissues/muscles combined. While the latter assumption seems to be

reasonable for the ?/,-axis responses, thej^-axis responses of the model are perhaps better

predicted by considering the tissues/muscles to have independent motion in the ^/,-axis.

This may also explain the better results obtained when each biodynamic response was

separately used for parameter identification, compared to the case when both biodynamic

responses were combined. Moreover, the poor agreement in j^-axis responses of the

model may also in-part be attributable to simplification of equations of motion involving

nonlinear coupling terms, as seen in Eqs. (4.9) and (4.1 1).

Figures 4.14 and 4.15 show comparisons between the measured and model

responses, when the parameters were derived on the basis of both biodynamic responses.

The figures correspond to the responses obtained after the results of the sensitivity

analyses and the characteristic frequencies identified from the mean measured responses

were utilized in parameter identification. The DPMI response of the model agrees

reasonably well with mean data above 15 Hz, as seen in Figure 4.14(a). The ?/,-axis

transmissibility responses of the model also agree reasonably well with the mean

measured responses, although some deviations are evident at frequencies above 50 Hz.

The comparisons also suggest deviations between the mean measured and model

transmissibility responses at the elbow and the shoulder in the 10 - 20 Hz and 4.5 - 10

Hz frequency ranges, respectively, although these are not noticeable in the logarithmic

scale. The comparison of the >v,-axis responses revealed poor agreements between the

178



Measured

Model

Frequency (Hz)
(a)

-5 300

—200

Measured

Frequency (Hz)
(b)

Figure 4.1 1 : Comparisons of mean measured DPMI response with those of the extended
arm model derived using: (a) DPMI only; (b) transmissibility only.
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Figure 4.12: Comparisons of mean measured ?/,-axis transmissibility responses with those
of the extended arm model derived using: (a) DPMI only; (b) transmissibility only.
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Figure 4.13: Comparisons of mean measured j//¡-axis transmissibility responses with those
of the extended arm model derived using: (a) DPMI only; (b) transmissibility only
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Figure 4.14: Comparisons of the mean measured data with those of the responses of the
extended arm model derived using combined biodynamic responses: (a) DPMI; (b) z/¿-

axis transmissibility
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Figure 4.15: Comparisons of the mean measured >v,-axis transmissibility with those of the

responses of the extended arm model derived using combined biodynamic responses.

model and measured responses, as it was observed in Figure 4.13.

4.5.5 Extended arm model parameters

The parameters of the extended arm model corresponding to the three different

identification methods are summarized in Table 4.7. Unlike the bent-arm model

parameters, which showed significant differences in the parameters obtained on the basis

of DPMI and transmissibility responses, the differences in the masses of the extended

arm model are not very significant. Most of the mass parameters derived from the

transmissibility responses are only slightly smaller than those derived from the DPMI

response. The values of the angular stiffness parameters of the model are particularly

very small, when the parameters are identified using DPMI alone. The angular viscous

damping parameters, on the other hand, are generally small when the transmissibility
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function alone is employed in parameters identification. These suggest that the

biodynamic responses of the extended arm posture are most likely not very sensitive to

rotational joint properties.

Table 4.7: Summary of the extended arm model parameters derived from different
biodynamic responses

Parameters
DPMI

response
Transmissibility

response
DPMI & Transmissibilityresponses

mf(kg)
"V (kg)
m,p (kg)
mp (kg)
mfa (kg)
mtta (kg)
mb (kg)
Ci (Ns/m)
C2 (Ns/m)
Cs (Ns/m)
cw (Ns/m)
ce (Ns/m)
cs (Ns/m)
Cw (Nms/rad)
Ce (Nms/rad)
Cs (Nms/rad)
Cb (Nms/rad)
k, (Ns/m)
k2 (N/m)
k3 (N/m)
kw (N/m)
ke (N/m)
*, (N/m)
ATW (Nm/rad)
A8 (Nm/rad)
Ks (Nm/rad)
Kb (Nm/rad)

0.13

0.02

0.03

0.32

1.33

2.24

28.14

114.1

71.1

4.0

408.7

444.2

189.3

2.0

84.2

17.5

28.0

65097.0

79286.0

439.0

55337.0

68536.0

5183.1

827.8

4.4

1.2

1.2

0.09

0.02

0.02

0.34

1.27

2.03

28.14

212.0

13.9

4.0

288.4

199.1

63.3

2.0

6.0

28.2

2.1

1042.4

41390.0

2234.5

58157.0

8635.0

297.4

710.8

30.6

1.2

225.8

0.13

0.02

0.02

0.31

1.27

2.14

28.14

112.9

78.4

1.5

549.4

331.2

136.1

1.6

1.1

1.2

2.1

42376.0

54683.0

439.0

95627.0

25751.0

983.3

710.8

30.6

207.7

225.8
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Table 4.8: Modal parameters of the extended arm model derived from different
biodynamic responses

Modal DPMI
parameters response

Transmissibility
response

DPMI & Transmissibilityresponses

Natural

Frequencies
(Hz)

114.56

105.46

49.33

15.35

3.35

4.24

53.07

90.62

30.16

24.67

1.74

8.90

10.44

51.26

117.81

88.28

2.23

12.86

35.39

28.28

51.28

Damped
Frequencies

(Hz)

87.19

35.25

12.67
_t

2.64
t

_t
_t

12.49

9.42

1.71
t

53.52

2.05

16.77

7.60

13.02

37.39

Damping
Ratio

0.648

0.781

0.589
_t

0.766
t

_t
_t

0.974

0.554
J

0.397
t

_t

0.795

0.512

0.922

0.975

0.607

0.487

over-damped

Table 4.9: Eigen values and vectors showing predominant modes of the extended arm
model

117.8Hz 88.3Hz 2.23 Hz 12.9Hz 35.4 Hz 28.3 Hz 51.3 Hz

'fa

?fa

Zua

??a

0.056

-0.985

0.164

0.000

-0.004

0.000

0.000

7.000

0.020

-0.006

0.000

0.000

0.000

0.000

0.000

-0.007

-0.011

-0.027

-0.025

-0.661

-0. 750

-0.010

-0.272

-0.426

0.001

-0.862

0.030

0.027

0.023

0.554

0.792

0.000

-0.257

-0.002

0.001

0.000

0.000

0.000

0.059

0.000

0.998

-0.003

0.000

0.000

0.000

0.998

0.000

-0.057

0.000
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The modal parameters of the hand-arm model in the extended arm posture are

summarized in Table 4.8, while Table 4.9 presents the normalized eigen-vectors of the

model derived on the basis of both biodynamic responses. The predominant vibration

modes are italicized in Table 4.9. The results suggest that the higher frequency (88.3 and

117.8 Hz) modes are associated with the finger and palm masses, while the lower

frequency modes (2.2 and 12.9 Hz) are attributed to the upper arm and the trunk masses.

Similar to the results obtained for the bent-arm model, there are considerable differences

in the modal parameters when different biodynamic measures are employed in parameter

identification. The model parameters obtained when transmissibility measures alone were

used are generally smaller than those derived from the DPMI measure with a few

exceptions. The following damped frequencies of the extended arm model 13.0, 16.8, 7.6

and 2.02 Hz could be respectively related to the characteristic frequencies of 12.5, 15.6,

7.8 or 8.6 or 7.0, and 3.1 Hz, identified from the mean measured transmissibility and

DPMI response magnitudes and summarized in Table 3.9.

4.6 Effects of Hand Forces on the Model Parameters

The measured biodynamic responses of the hand-arm system exposed to ?/,-axis

vibration clearly revealed nonlinear effects of the hand grip and push forces. The model

parameters, presented in the previous section, are considered valid for hand grip and push

forces in the vicinity of 30 N and 50 N, respectively. The linear hand-arm vibration

models could be applied for alternate hand forces by considering the appropriate target

functions in parameter identification. The model parameters corresponding to different

combinations of hand forces are identified using the appropriate target functions in DPMI

and transmissibility responses. The model parameters derived on the basis of both
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biodynamic responses for 30 N grip and 50 N push forces were applied as the baseline

parameters in the parameter identifications. The mass inertia parameters of the models

were held at the baseline values, the remaining parameters were permitted to vary within

±50 % of the baseline values for different combinations of the hand forces.

Subsequently, the lower or/and upper bound values of sensitive parameters (Table 4.2)

were further relaxed when they converge to either the lower or upper bound. The

parameters of the resulting models corresponding to different combinations of hand

forces are presented in the following sub-sections, where superscripts "L" and "U" are

used to indicate the convergence of a particular parameter to the respective lower and

upper bound even after several relaxations. These parameters were considered insensitive

to hand forces and were not considered in the assessment of the effect of the hand forces.

4.6.1 Effects of hand forces on the bent-arm model parameters

Tables 4.10 to 4.12 illustrate the visco-elastic parameters of the model derived on

the basis of DPMI only, transmissibility responses only, and the combined measures,

respectively, corresponding to different hand forces combinations. The results show that

changes in the hand forces strongly influence the visco-elastic parameters of the model,

irrespective of the parameter identification method used. The effects of the hand forces

on the model parameters are, however, strongly nonlinear. While some of the parameters

increased with increase in the hand forces, others decreased or revealed

increasing/decreasing patterns. The same trend was also observed in the modal

parameters, which can be attributed to nonlinearity in the hand-arm system. From the

measured data, it was observed that an increase in the grip force and push force yields a

decrease in the transmissibility magnitudes in the low frequencies region (Figures 3.24
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and 3.27). Owing to the varied trends in the parameters due to changes in hand forces, the

percentage change in each parameter for successive increase in hand forces relative to the

baseline values were calculated in order to identify the substructure of the hand-arm

model that is most affected by changes in the grip and push forces.

The model parameters derived using the DPMI responses alone (Table 4. 1 0) show

that an increase in the grip force yields higher values of the parameters associated with

the hand substructure (c, , c2, £, , k2 cw) and the elbow stiffness ke . These parameters

directly contribute to the dynamic forces developed at the hand-tool interface. The

remaining parameters initially increased and then decreased or vice-versa. The damping

Table 4.10: Effects of hand forces on visco-elastic parameters of the bent-arm model
when DPMI response was used for parameter identification.

Parameters

50 N push force

grip force

30 N grip force
25 N push 50 N push 75 N push

force force force

C/ (Ns/m)
C2 (Ns/m)
C3 (Ns/m)
cw (Ns/m)
ce (Ns/m)
cs (Ns/m)
Ce (Nms/rad)
Cs (Nms/rad)
Cb (Nms/rad)
k, (Ns/m)
k2 (N/m)
k3 (N/m)
kw (N/m)
ke (N/m)
ks (N/m)
Ke (Nm/rad)
K1 (Nm/rad)
Kb (Nm/rad)

93.49

38.66

30.1 lu
272.90

141.49

56.11u
12.43L
4.03L
126.97

86608.0

78491.0

2685.9L
20512.0

301.6

3617.6

2014.3U
154.4L
135.0

118.22

69.53

20.07

354.34

241.36

37.41

24.86

8.06

31.52

100290.0

88354.0

5371.8

6727.8

2763.6

2369.3

1342.9

308.8

257.6

142.40

86.56

10.04L
386.94

128.82

43.50

37.29u
4.03L
37.74

117540.0

110940.0

2685.9L
29411.0

1463.3

2889.4

671.4L
154.4L
236.7

124.59

50.30

30.11u
334.75

120.68

48.23

37.29u
4.03L
81.48

111620.0

64164

2685.9L
21487.0

345.4L
2795.4

671.4L
395.11

203.02

118.22

69.53

20.07

354.34

241.36

37.41

24.86

8.06

31.52

100290.0

88354.0

5371.8

6727.8

2763.6

2369.3

1342.9

308.8

257.6

121.01

78.66

10.04L
354.21

198.76

40.07

8.08L
4.03L
57.59

104340.0

127150.0

2685.9L
16184.0

756.1

3554.0

671.4L
154.4L
128. 8L

L and U-indicate lower and upper bound value, respectively.
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parameters in decreasing order of the influence of grip force, based on percentage

change, was Cb, c2, cw and c] , while the order for the stiffness parameters was kw, ke,

ks, Kb, k2 and kl . On the other hand, an increase in the push force caused increase in

c2 and k2, while the damping and stiffness parameters in decreasing order of the

influence of the push force was Cb, ce, cw, cs , c2, cx and kw, ks, k2, kx, respectively.

The changes in the stiffness parameters of the model, that were derived from

transmissibility responses alone, are presented in Table 4.11. The table shows that an

increase in the grip force increased k2 but decreased cs , while other parameters initially

Table 4.1 1 : Effects of hand forces on visco-elastic parameters of the bent-arm model
when transmissibility responses were used for parameter identification.

Paramters

50 N push force

grip force

30 N grip force
25 N push 50 N push 75 N push

force force force

c¡ (Ns/m)
C2 (Ns/m)
C3 (Ns/m)
cw (Ns/m)
ce (Ns/m)
C1 (Ns/m)
Ce (Nms/rad)
Cs (Nms/rad)
Cb (Nms/rad)
ki (Ns/m)
k2 (N/m)
h (N/m)
K (N/m)
ke (N/m)
ks (N/m)
Ke (Nm/rad)
Ks (Nm/rad)
Kb (Nm/rad)

32.00

0.79L
1.04L

143.42

98.40

36.47

1.12L
1.33L
94.32

4608.0L
33328.0

8983.3

12645.0

5891.2

4946.3

32.0L
1146.6

2828.9

23.85

6.39

2.09

109.35

50.31

32.11

2.24

2.65

97.47

9216.0

41261.0

6478.0

13480.0

4123.3

4467.0

128.2

1210.5

2530.6

2.98L
0.79L
1.04L

128.07

75.46

22.34

1.12L
1.33L
74.84

4608.0L
49865.0

3239.0L
12983.0

5305.9

5183.4

32.0L
1161.4

3591.1

19.05

1.60L
1.04L

133.42

64.01

22.25

1.12L
1.33L
69.22

4608.0L
33302.0

5863.3

10480.0

3865.1

3975.2

32.05L
940.0

3202.5

23.85

6.39

2.09

109.35

50.31

32.11

2.24

2.65

97.47

9216.0

41261.0

6478.0

13480.0

4123.3

4467.0

128.2

1210.5

2530.6

20.63

1.60L
1.04L

129.63

86.24

44.32

1.12L
1.33L
95.34

4608L
51982

5319.6

18052

7926.1

6258.2

32.05L
1480.9

1530.3
L and U-indicate lower and upper bound value, respectively.
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increased but later decreased with further increase in the grip force or vice-versa. The

influence of the grip force on the percentage change in the damping parameters in

decreasing order is ce, cw, cs and Cb ; the order for stiffness parameters is ke, Kb, k2,

ks , kw and Ks . An increase in the push force affected the damping and elastic parameters

in the following decreasing order ce , cs, Cb, cw, c, ; and ke, ks, Kb, kw, k2, Ks,

respectively. Table 4.1 1 also shows that an increase in push force results in higher values

of cs, k2, kw, ke, ks and K1 .

The parameters attained when combined DPMI and transmissibility responses

were used for parameter identification (Table 4.12) suggest that an increase in the grip

force increased kx and kw, while other sensitive parameters initially increased then

decreased or vice-versa. The percentage change in the parameters relative to the baseline

values yields the following damping and stiffness parameters in decreasing order: c2 , cw,

c, , Cb; and Kb , kx, ks, k2, kw, respectively. The percentage change in the parameters

due to an increase in the push force in decreasing order are respectively: ce , cw, Cs, c2,

Cb, c, ; and Kb, ks, k2, k]; kw, while an increase in the push force increased kx , k2 and

kw , as evident in Table 4.12.

In general, the results suggest that an increase in the hand forces tends to increase

the parameters in the vicinity of the driving-point, regardless of the biodynamic measure

used for parameter identification. Furthermore, the ranking of the percentage changes in

the model parameters relative to the baseline parameters show that an increase in the grip

force has more pronounced effect on the damping and stiffness parameters in the vicinity

of the driving-point, when the trunk damping and stiffness parameters are ignored. On the
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Table 4.12: Effects of hand forces on visco-elastic parameters of the bent-arm model
when DPMI and transmissibility responses were used for parameter identification.

Parameters

50 N push force
10 N grip 3ON 5ON

force grip force grip force

30 N grip force
25 N push 50 N push 75 N push

force force force

Ci (Ns/m)
C2 (Ns/m)
C3 (Ns/m)
cw (Ns/m)
ce (Ns/m)
cs (Ns/m)
Ce (Nms/rad)
C (Nms/rad)
Cb (Nms/rad)
k, (Ns/m)
k2 (N/m)
k3 (N/m)
kw (N/m)
ke (N/m)
ks (N/m)
Ke (Nm/rad)
Ks (Nm/rad)
Kb (Nm/rad)

66.21

50.84

1.05L
216.22

194.98u
16.40

3.36u
1.80

69.07

43378.0

53969.0

3239.0L
13669.0

898. 17L
5893.8

1007.1U
846.1

2413.3

103.14

33.68

2.09

147.86

103.99

28.90

2.24

2.52

53.49

94714.0

53750.0

6478.0

14155.0

2763.6

4467.0

537.1

605.3

1353.3

134.91

33.80

1.05L
199.73

179.82

9.03L
1.23

3.78u
66.50

123020.0

76632.0

3239.0L
14775.0

863.6L
6380.8

1980.2

302.7L
3295.8

105.81

37.24

1.05L
211.94

154.93

9.03L
0.70L
3.47

60.09

71319.0

50723.0

3239.0L
11762.0

863.6

4925.4

1394.8

189.2L
2624.5

103.14

33.68

2.09

147.86

103.99

28.90

2.24

2.52

53.49

94714.0

53750.0

6478.0

14155.0

2763.6

4467.0

537.1

605.3

1353.3

109.10

50.48

1.05L
217.91

207.25

13.85

3.36u
2.52

74.59

96342.0

86729.0

3239.0L
18566.0

449. 1L
7804.4

1812.7U
828.7

3007.7
L and U-indicate lower and upper bound value, respectively.

other hand, an increase in the push force affected the forearm, upper-arm and the trunk

parameters more than the parameters of the hand (the driving-point). These observations

are similar to those obtained from the influences of hand forces on the mean measured

transmissibility responses. The results further show that an increase in the grip force

yields the highest percentage change in the stiffness of the trunk Kb , followed by that of

the fingers £, . The highest percentage change in the damping parameters due to

variations in the grip force occurred at the palm C1 , followed by the wrist cw . The push

force also resulted in the highest change in the stiffness of the trunk Kb followed by that
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at the shoulder ks . The highest effect of the push force on damping parameters occurred

at the elbow ce followed by that of the wrist cw. It is interesting to note that the hand

forces significantly affected visco-elastic parameters of the trunk at the pelvic. This

suggests a strong coupling between the hand-arm and whole-body. The results further

reveal the inadequacy of the reported models that assume the shoulder as a fixed support.

The strong influence of the grip force, on the elastic parameters of the hand-arm

model near the fixed support, has been illustrated in a single study [68]. The study

reported a grip force dependent 3 -DOF lumped-mass model of the hand-arm system in

the bent-arm posture, which showed the highest stiffness near the fixed support

representing the shoulder followed by the elastic element close to the driving-point for

different values of the grip force. The lumped-mass model also showed the highest

damping at the driving-point followed by that of the middle mass, while the damping

near the fixed support was the lowest.

4.6.2 Effects of hand forces on the extended arm model parameters

The effects of grip and push forces on the visco-elastic parameters of the extended

arm model, obtained using both the biodynamic responses are presented in Table 4.13.

The results show that an increase in the hand forces has negligible influence on the

rotational visco-elastic parameters. Furthermore, the rotational parameters are generally

small suggesting that the rotational motion of the forearm and the upper-arm in the

extended arm posture is negligible, and that the biodynamic responses are less sensitive

to such parameters. The damping and stiffness parameters in decreasing order, based on

the percentage change in the parameters due to an increase in the grip force are

respectively c, , c2 , cs, ce\ and kw , ki , U2 , ke . An increase in the grip force increase
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Table 4.13: Effect of variations in hand forces on the parameters of the extended arm
model

Parameters

50 N push force
10 N grip 30 N grip 50 N grip

force force force

30 N grip force
25 N push 50 N push 75 N push

force force force

Ci (Ns/m)
C2 (Ns/m)
C3 (Ns/m)
Cy, (Ns/m)
ce (Ns/m)
cs (Ns/m)
Cw (Nms/rad)
Ce (Nms/rad)
C (Nms/rad)
C6 (Nms/rad)
k, (Ns/m)
k2 (N/m)
k3 (N/m)
K (N/m)
ke (N/m)
ks (N/m)
Kw (Nm/rad)
Ke (Nm/rad)
K1 (Nm/rad)
Kb (Nm/rad)

34.5

102.9

1.7L
824.2U
321.9

165.0

0.8L
1.6U
0.6L
7.1U

14005.0

34172.0

219.5L
169780.0

23522.0

1846.9

7552.3U
15.3L

2207.2

112.9L

?

112.9

78.4

3.3

549.4

331.2

136.1

1.6

1.1

1.2

2.1

42376.0

54683.0

439.0

95627.0

25751.0

983.3

710.8

30.6

207.7

225.8

137.2

94.0

1.7L
u824.2

321.2

131.4

0.8L
0.5L
0.6L
1.1L

37992.0

62335.0

219.5L
201860.0

26098.0

491.6L
355.4L
15.3L
175.0

112.9L

?

107.1 112.9 68.4

70.6 78.4 130.7

1.7L 3.3 1.7L
484.8 549.4 824.2

230.1 331.2 314.1

121.4 136.1 131.4

0.8L 1.6 0.8L
0.5L 1.1 0.5L
0.6L 1.2 0.6L
1.1L 2.1 1.1L

22050.0 42376.0 17224.0

31106.0 54683.0 64815.0

219.5L 439.0 219.5L
106120.0 95627.0 183060.0

10789.0 25751.0 30085.0

887.2 983.3 122.9L
355.4L 710.8 355.4L
15. 3L 30.6 15.3L
222.6 207.7 137.6

112.9L 225.8 112.9L
L and U-indicate lower and upper bound value, respectively.

the values of C1 , k2, kw and ke , while all other parameters initially increased then

decreased or vise-versa, with successive increase in the grip force, as seen in Table 4.13.

An increase in the push force caused increase of parameters c2 , k2 and ke . The

damping and elastic parameters in decreasing orders, based on the percentage change in

the parameters due to an increase in the push force were c2, C1, ce , cs and kw , kx, ke,

k2, Ks, respectively. Unlike the bent-arm model, for the extended arm model, increase in

hand forces mostly affected the parameters of the hand and the forearm substructures.
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Since hand forces had significant effect on the elastic parameter of the bent-arm model

near the fixed support, it was expected that an increase in the push force would yield a

significant influence on the parameters of the extended arm model near the shoulder and

the fixed support, the pelvic joint. Table 4.13, however, shows significant decrease in

shoulder stiffness ks when hand forces were increased. This trend shown by ks may be

attributed to nonlinearity of the hand-arm system. Similar to the effect of higher grip

force on the bent-arm model parameters, an increase in the grip force resulted in increase

in the extended arm model parameters around the vicinity of the driving-point.

4.6.3 Effects of hand forces on biodynamic responses of the models

The influences of the hand forces on the model parameters are further examined

through analyses of the biodynamic responses of the bent-arm (Pl) and extended arm

(P2) models. Figure 4.16(a) illustrates the influence of grip force on the DPMI responses

of both the bent-arm and extended arm models. The figure shows that an increase in the

grip force generally increased the DPMI magnitude and phase responses above 10 Hz,

and the characteristic frequencies corresponding to peaks in the DPMI magnitude. The

effect of the grip force is more evident in the responses of the extended arm model. The

influence of grip force around valleys in the DPMI magnitude is very small, while it is

significant around the peaks. Figure 4.16(b) shows the influence of push force. An

increase in the push force increased the magnitude and characteristic frequencies around

the peaks and the valleys in the DPMI response. The observed trends in Figure 4.19 are

similar to those in the mean measured data presented in Figure 3.22.
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Figure 4.16: Effects of hand forces on the DPMI responses of the models: (a) constant
push force; (b) constant grip force.
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Figures 4.17 to 4.19 illustrate the effects of the grip and push forces on the ?/,-axis

transmissibility magnitudes of the bent-arm and extended arm models, at the wrist, elbow

and the shoulder, respectively. The effects are presented in both the linear and

logarithmic scales in order to emphasize responses in the low and high frequency regions.

The influences of variations in hand forces on the ?/,-axis transmissibility responses at the

wrist (Figure 4.17) show trends similar to those observed in the mean measured data

presented in Figures 3.23(a) and 3.26(a) for grip and push force, respectively.

Considerable differences in the measured and model responses due to different hand

forces, however, could be observed above 200 Hz. The transmissibility magnitude

responses of the extended arm model are greater than those of the bent-arm model above

200 Hz, whereas the mean measured responses showed larger responses of the bent-arm

posture at frequencies above 25 Hz.

The trends observed in the influences of hand forces on the ?/,-axis transmissibility

responses at the elbow and the shoulder (Figures 4.18 and 4.19) are generally similar to

those observed in the mean measured data. An increase in the hand forces increased the

transmissibility magnitudes and characteristic frequencies. The measured data showing

the effects of grip force on the elbow and shoulder responses were presented in Figures

3.24(a) and 3.25(a), respectively, while Figures 3.27(a) and 3.28(a) illustrated the effects

of the push force on the mean measured ?/,-axis transmissibility responses. The results,

however, suggest differences in the elbow and shoulder responses of the models and the

mean measured data under different hand forces. For example, the extended arm model

response magnitudes are higher than those of the measured responses in almost entire

frequency range, except between 40 and 60 Hz for the elbow responses, and 60 to 200 Hz
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Figure 4.17: Effects of hand forces on the ?/,-axis wrist transmissibility magnitude
responses of the models: (a) constant push force; (b) constant grip force.
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Figure 4. 1 8: Effects of hand forces on the z/¡-axis elbow transmissibility magnitude
responses of the models: (a) constant push force; (b) constant grip force.
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frequency range for the responses at the shoulder. Whereas the mean measured data

showed that the bent-arm transmissibility magnitudes are greater than those of the

extended arm above 25 Hz at the elbow, and above 80 Hz for the shoulder responses.

4.7 Summary

Biomechanical models of the human hand-arm in the bent-arm and extended arm

postures were developed. The parameters of the models were derived by minimizing the

errors between the model and measured driving-point mechanical impedance (DPMI) and

transmissibility responses, and characteristic frequencies coupled with the sensitivity

analyses. The effects of changes in the hand forces on the parameters and biodynamic

responses of the models were studied. The results showed that the parameters of the

models are strongly dependent on the type of target biodynamic measure. The parameters

derived on the basis of transmissibility responses alone were smaller in values than those

derived using the DPMI response and the combined biodynamic measures. This suggests

that transmissibility responses characterize the dynamics of the tissues/muscle of the

human hand-arm at different locations, while the DPMI characterizes the entire hand-arm

system with emphasis around the driving-point.

An increase in the grip force revealed the highest effect on the parameters of the

models around the driving-point (fingers, palm and wrist) and forearm, while the push

force affected the parameters of the entire system. Similar trends were observed in the

mean measured biodynamic responses. The majority of the rotational visco-elastic

parameters of the extended arm model appeared to be redundant; the responses were

observed to be relatively insensitive to changes in these parameters. Furthermore, the jv

axis responses of the models resulted in very low magnitude, which was attributed to lack
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of consideration of^-axis compliance of the joints and substructures, and linearization of

the models. The consideration of individual masses due to tissues/muscles and the bones

of the forearm and the upper-arm together with the visco-elastic properties may be more

appropriate. The proposed hand-arm vibration models are further applied to study the

distribution of absorbed power within the and-arm system in the subsequent chapter.
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CHAPTER 5

VIBRATION POWER DISTRIBUTION IN THE HAND-ARM
SYSTEM

5.1 Introduction

The severity of the hand-arm vibration exposure is most strongly related to the

intensity of vibration and exposure duration. The measured biodynamic responses,

particularly the DPMI, show only marginal influence of excitation magnitude, while

exposure duration is not considered. The biodynamic responses are mainly used to

characterize the dynamic properties of the hand-arm system, and thus cannot be used as

an exposure assessment tool. While the ISO-5349-1 weighted acceleration is mainly used

to assess vibration exposure, the overall vibration power absorption (VPA) of the hand-

arm system has been suggested as a better measure for assessing the health effects of

vibration exposure [133, 134]. Mathematically, the VPA is proportional to the real part of

DPMI and to the square of the vibration velocity. Furthermore, it has been shown that

VPA is also approximately proportional to the square of excitation acceleration

magnitude [84, 134]. Considering the direct relationship between the VPA and vibration

magnitude, a number of studies have focused on characterization of localized VPA

distribution in the human hand-arm exposed to vibration [128, 133]. Whereas the VPA

could provide important information on possible injury risks of different substructures of

the human hand-arm system, the measurement of distributed VPA is generally complex

since it requires the measurement of dynamic force. It is difficult to measure the dynamic

force of hand-held power tools in the field, even though it could easily be measured in the
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laboratory via instrumented simulated handles. Although the total VPA at the driving-

point could be obtained indirectly from DPMI response, the determination of distributed

VPA of different substructures of the hand-arm system requires the use of mechanical-

equivalent models, which exhibit large differences in their types and parameters [65].

Subsequently, there are large variations in the reported VPA distribution due to its

dependence on excitation type and hand-arm model, in addition to other factors like hand

forces, subject anthropometry and hand-arm posture. The localized response of different

substructures of the hand-arm can be obtained by vibration transmissibility measurement

at different segments of the human hand-arm system, as demonstrated in chapter 3.

Furthermore, VPA is vibration excitation-specific; it has also been shown that VPA

cannot be directly compared with frequency-weighted acceleration for assessment of

potential injury, but the square root of VPA showed good correlation with frequency-

weighted acceleration defined in ISO 5349-1 [134].

The knowledge of VPA distribution at different substructures of the human hand-

arm could yield significant insight into injury mechanism of different substructures. In

this chapter, the VPA distributions in the substructures of the two hand-arm models, that

were developed in chapter 4, are evaluated. Laboratory experiments were performed to

measure the acceleration of the handle of a chipping hammer under different working

conditions. The accelerations measured on different hand-held power tools were applied

to the bent-arm model to estimate the VPA distribution of the hand-arm system.
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5.2 Characterization of Hand-arm Responses to a Chipping Hammer
Vibration

The hand-transmitted vibration due to the operation of a chipping hammer was

measured when a subject operated the tool. The effects of hand forces and speed (blows

per minute) of the power tool on hand-transmitted vibration are investigated. The

measured acceleration on the tool's handle and those reported for other power tools are

used to estimate the VPA distributions in the bent-arm hand-arm model.

5.2.1 Experimental setup

A uni-axial accelerometer (B&K type 4393) was mounted on the handle of a chipping

hammer using a mechanical filter (B&K WA-0224). The tool was operated in a steel ball

energy dissipater, as in ISO 8662-2 [139], and the setup is shown in Figure 5.1(a). The

experiments were conducted using one subject. Figure 5.1(b) shows the posture of the

subject. The selected electric percussion chipping hammer (BOSCH 11313 EVS)

comprises a variable electric drive capable of delivering 1300 - 2600 blows per minute

(BPM) or revolution per minute (RPM) under no load. The amperage rating of the 1 1 5 V

AC drive is 8.8 A. Using the six speed control dial positions, the motor speed could be

varied in the 1300 - 2600 RPM speed range. A built-in internal electronic feedback

system maintains the pre-selected impact rate almost constant, irrespective of the load or

no-load operating conditions. The measurements were obtained for two speeds

corresponding to settings 3 and 6 of the speed dial, which were designated as "low speed"

and "high speed", respectively. The subject applied two push forces of 78 N and 118 N

while assuming 90° elbow angle and about 30° abduction angle as shown in Figure

5.1(b). The push force was measured using a force plate and digitally displayed to the

subject for maintaining the force at a desired level. The grip force imparted on the handle,
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however, was not measured. The hand-transmitted vibration was measured at four

locations on the subject's hand-arm using Velcro mounted tri-axial accelerometers (PCB

- ICP) in a manner similar to that described for the experiments in chapter 3. The posture

that was assumed by the subject did not permit a direct relationship between the direction

of the measured acceleration and the basicentric coordinate defined in ISO 5349-1 [31],

as used with the simulated handle experiments. The measured acceleration direction is

thus related to the axis of the accelerometers. Although the tool was guided in the energy

dissipater, multi-axis vibration at the handle was expected, unlike the simulated handle

vibration generated by the electro-dynamic shaker, whose excitation is predominantly

uni-axial. Three measurement trials were performed for each condition and the coherence

of the measurements was also considered to monitor the reliability of the measured data.

Accelerometer

Swith mechanical
m filter
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?
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Figure 5.1: Experimental setup for the measurement of the hand tool vibration: (a) Bosch
chipping hammer showing accelerometer location; (b) posture adopted by an operator.
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5.2.2 Acceleration spectrum of the chipping hammer

The mean acceleration spectra of the tool handle vibration along the dominant

axis (z-axis of accelerometer) for different experimental conditions together with the

constant power spectral density (PSD) acceleration used in the simulated handle

experiments, corresponding to 30 N grip and 50 N push forces («/,w = 5.25 m/s ), are

compared in Figure 5.2. The experimental conditions of the chipping hammer presented

in Figure 5.2 are low- and high-speed acceleration spectra corresponding to two different

push forces: 78 N and 118 N. The figure shows the operating frequencies of the tool

corresponding to low and high speeds, which are approximately 30.5 Hz and 43.75 Hz,

I I I I I 1-1T-I1 ? ¦"' ' ¦¦¦'¦¦ I I I I I " I "I" I
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Figure 5.2: Comparison of acceleration spectra of the chipping hammer under different
operating conditions with the constant PSD acceleration.
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respectively. The tool's acceleration spectra show sub-harmonics and harmonics of the

dominant operating frequencies. It is evident that the effect of the operating speed on the

hand tool vibration is more significant than that of the push force, whose effect is

marginal. There is considerable difference between the constant PSD acceleration used in

the simulated handle experiments and the chipping hammer tool acceleration spectra,

particularly in the low frequency region. The overall un-weighted ( arms ) and frequency-

weighted (ahw) rais acceleration values of the spectra presented in Figure 5.2 are

summarized in Table 5.1. The table shows that a higher operating speed yields higher

arms and ahw , while an increase in the push force yields lower acceleration magnitudes.

The observed decrease in acceleration magnitudes due to an increase in the push force

may be attributed to increased restriction on the contacting parts of the chipping hammer.

Table 5.1 : Un-weighted and frequency-weighted rms acceleration values of the chipping
hammer under different operation conditions

Excitation type arms (m/s2) ahw (m/s2)
Electro-dynamic exciter
Constant PSD, 30 N grip, 75 N push 3 1 .95 5.25
Chipping hammer
78 N push, low speed (30.5 Hz) 23.49 4.55
118 N push, low speed (30.5 Hz) 21.37 3.80
78 N push, high speed (43.75 Hz) 41 .33 8.84
1 18 N push, high speed (43.75 Hz) 37.69 6.53

5.2.3 Transmissibility responses due to chipping hammer vibration

The repeatability of the hand-arm transmissibility response measurements was

examined before the data were averaged. The repeatability of the measurements was

observed to be reasonably good, considering that the hand grip force and hand-arm

posture could not be precisely controlled. As an example, Figure 5.3 compares the z-axis
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Figure 5.3: Repeatability of measurements at elbow 1 along the z-axis (Fp = 78 N, speed
= 2600 rpm)

Table 5.2: Maximum standard deviation in transmissibility responses at different
measurement locations

Location and
direction

Peak Frequency of
standard Mean peak deviation
deviation (Hz)

Wrist, y-axis 2.25
Wrist, z-axis 0.64
Elbow 1, x-axis 1.81
Elbow 1, y-axis 1.60
Elbowl, z-axis 1.06
Elbow2, x-axis 1.39
Elbow2 , y-axi s 1.94
Elbow2, z-axis 1.15
Shoulders-axis 2.08
Shoulder, z-axis 0.91

2.42
1.54
2.99
1.10
2.38
2.61
1.86
2.29
2.11
1.99

22.66
21.88
3.13
2.34

21.88
3.13
2.34
13.28
2.34
14.06

vibration transmissibility measured at the elbow during the three trials. The figure also

shows the mean response corresponding to a push force of 78 N and tool speed of 2600
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rpm. The results suggest reasonably good repeatability of measurements in terms of the

transmissibility magnitude, while some differences are evident in the phase response. The

coherence of the measurements, however, was generally poor below 5 Hz and above 200

Hz, which was attributed to low signal to noise ratio due to dominance of tool's vibration

around its operating speed of 2600 rpm (43.75 Hz). The peak standard deviations (SDs)

in the transmissibility response magnitudes for all measurement locations and directions

are summarized in Table 5.2, together with the frequency at which the peak deviation

occurred and the corresponding mean value. The table shows that the highest deviation in

measurements occurred at the wrist along the y-axis, while a deviation of 1.15 (mean

value = 2.29) occurred at elbow 2 at 13.28 Hz in the z-axis. The deviations in the phase

responses were considerably greater than those in the transmissibility magnitudes. Such

variations were attributed to possible variations in the subject posture, which affected the

orientation of the accelerometers in a considerable manner. The measurements along the

dominant z-axis alone are thus considered for further analysis, since the peak deviations

in this direction were considerably lower than those in the x- and y-axis magnitudes.

The mean z-axis transmissibility response measured at the wrist, elbow and the

shoulder are presented in Figure 5.4. The transmissibility magnitudes are presented in

both the linear and logarithmic scales to emphasize responses at low and high frequency

regions, respectively. The responses can be divided into two frequency regions, namely:

(1) below 25 Hz, where the responses around the elbow and shoulder are higher than the

response at the wrist; and (2) above 25 Hz, where the transmissibility response magnitude

decreases from the wrist to the shoulder. The trend above 25 Hz is similar to that

observed in Figure 3.19 for the hand-arm posture with zero abduction angle exposed to
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Figure 5.4: Mean z-axis acceleration transmissibility responses measured at different
locations (Fp = 78 N, speed = 2600 rpm)

?/,-axis constant spectrum excitation. The results show that the wrist and elbow 1 response

magnitudes at low frequency («2.5 Hz) are well below 1.0, which was believed to be

caused by error in the orientation of the accelerometers due to somewhat awkward

posture assumed during the experiments. Furthermore, the low magnitude vibration of the

chipping hammer in the low-frequency region, as evident in Figure 5.2, may also be a

contributing factor. The results suggest that the prominent characteristic frequencies of

the z-axis vibration are in the vicinity of 10.2, 14.8, 21.9, 33.0, 71.9, 263.3 and 357 Hz.
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5.2.4 Effects of push force and tool speed on transmissibility responses

The influences of push force as well as the impact rate or the operating speed of

the power tool on vibration transmitted along the z-axis at the wrist, elbow 1 and the

shoulder are illustrated in Figures 5.5 through 5.7, respectively. The figures show that the

impact rate of the hand-held power tool has more pronounced effect on the wrist

transmissibility response of the human hand-arm than the push force. This is similar to

the trend observed in the hand tool un-weighted and frequency-weighted acceleration

values, as shown in Table 5.1. In general, an increase in the tool speed and push force

tend to increase transmissibility magnitude, particularly in the low frequency region.

The low frequency transmissibility magnitudes measured at the wrist for all

conditions were lower than 1 .0, as shown in Figure 5.5. The highest magnitude occurred

78N low speed
78N high speed
118N low speed
118N high speed

9** 5"»«iv StU

Frequency (Hz)

Figure 5.5: Effects of push force and tool speed on the mean z-axis transmissibility at the
wrist
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Figure 5.6: Effects of push force and tool speed on the mean z-axis transmissibility at
elbow 1
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Figure 5.7: Effects of push force and tool speed on the mean z-axis transmissibility at the
shoulder
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around 45.3 Hz in the wrist response, corresponding to 118 N push force and high tool

speed (43.8 Hz). The highest elbow 1 transmissibility magnitude occurred around 14.8

Hz, corresponding to 118 N push force and low tool speed. The shoulder response

corresponding to 118 N push force and low tool speed (30.5 Hz) revealed the highest

magnitude at 14.1 Hz.

5.2.5 Comparison of transmissibility magnitudes of the model with mean responses
due to simulated handle and power tool vibrations

The VPA of different substructures of the hand-arm system is highly dependent

on the type of excitation [128] and the response magnitudes across different substructures

of the hand-arm model. Considering that the vibration transmissibility is far less sensitive

to excitation magnitude, the transmissibility responses of the human hand-arm system are

compared with those of the model under different excitations. It should be noted that

neither the bent-arm nor extended arm postures would represent the hand-arm posture

assumed in experiments with the tool. This posture, however, was considered closer to

the bent-arm than the extended arm. The responses of the bent-arm model are thus

considered for comparisons. Figures 5.8 to 5.10 illustrate comparisons of the mean z/,-

axis transmissibility magnitudes of the bent-arm hand-arm model, derived in chapter 4

and the mean measured responses due to constant PSD excitation of the simulated handle

and the chipping hammer at the wrist, elbow 1 and the shoulder, respectively. The

excitation acceleration for the model and the measured responses correspond to 30 N grip

force, 75 N push force and weighted acceleration level (a/,w) of 5.25 m/s . The chipping

hammer responses correspond to a push force of 78 N, a frequency-weighted acceleration

Ohw of 4.55 m/s2, and an operating speed of 30.5 Hz or about 1830 blows per minute. It

was not possible to measure the grip force on the chipping hammer. Apart from the low
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Figure 5.8: Comparison of the mean z-axis wrist transmissibility magnitudes due to
model response and measured responses due to shaker and hand tool excitations.
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Figure 5.9: Comparison of the mean z-axis elbow 1 transmissibility magnitudes due to
model response and measured responses due to shaker and hand tool excitations.
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Figure 5.10: Comparison of the mean z-axis shoulder transmissibility magnitudes due to
model response and measured responses due to shaker and hand tool excitations.

transmissibility magnitudes, which could be attributed to low signal to noise ratio, at low

frequency region, at the wrist and elbow 1 for the responses due to hand tool excitation,

the trends in transmissibility responses of the human hand-arm are comparable for the

two excitations considered. In general, the trends of the transmissibility responses

obtained in the laboratory with excitation from an electro-dynamic exciter and the hand-

arm model are also similar to the responses obtained from the excitation from the impact

tool. Similar observations were also reported in [77] and [95].

5.3 Method of Analyses of Vibration Power Absorption

The VPA distribution in substructure k (k = 1, ...,7) Pk and the total VPA

distribution Plotal of the hand-arm system are estimated from energy dissipated per second

in the damping elements as follows [133]:
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P>(f) = Ckl*»k(f)!+ck[*nk(f)J (5.1)

P10Jf) =tPÁf) (5-2)
/t=l

where fis the frequency in Hz, Avk and AClk are relative translational and rotational rms

velocities across the damping element at joint k , respectively. The coefficients ck and

Ck are, respectively, the linear and rotational damping coefficients of the hand-arm

models components derived in chapter 4. The parameters Avk and AQk can be obtained

by re-writing Eq. (4. 1 5) as:

{*«(/*>)}= &}- "2M + Ja[C]Y {fea}Zhh (5.3)
Avk(f) = j2nf{Zk+l-Zk)
¿sClk{f) = jl7tf(eM-ek)

where [fea }ZMl = [Fea } . It should be noted that %ea is a vector containing translational

Z1. (/ = \,...,n) and angular O1 displacement coordinates, where ? is the number of DOF

of the model. The handle excitation ZAAin Eq. (5.3) represents the displacement of the

handle held by the hand-arm system. However, the handle excitation is usually measured

in terms of acceleration. The corresponding displacement spectra is derived from the

acceleration PSD Sx , as:

ZllKrms){f) = ^SÁfW (5-5)
where Af is the frequency resolution and B is the noise equivalent bandwidth constant

and its value depends on the type of window. For the harming window used in the data

analysis, B = 1.5.
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Furthermore, the total VPA distribution of the hand-arm system could also be

estimated from the measured DPMI response (Pmeasured) by using Eq. (1 .3). The total VPA

distribution obtained from Eqs. (5.2) and (1.3) are compared to validate the VPA

distribution derived from the hand-arm models. Finally, the overall VPA (P) is obtained

from VPA distributions in the frequency range of interest such that:

P = Yf1MfW (5-6)
where /j and /2 define the lower and upper limits of the frequency range of interest.

5.4 Vibration Power Absorption due to a Constant PSD Acceleration
and Model Validation

The distributed VPA properties of the two hand-arm models were determined

under constant power spectral density (PSD) acceleration excitation of the simulated

handle. Although VPA is excitation specific, excitation with a constant PSD has been

used to evaluate VPA [84, 135]. The VPA due to handle acceleration with constant PSD

would facilitate the validation of the total VPA distribution derived from the hand-arm

model (Eq. (5.2)) by comparing the total VPA distribution of the model with the VPA

distribution derived from the mean measured DPMI (Eq. (1 .3)).

The comparison of the total VPA distributions of the human hand-arm system in

the bent-arm and extended arm postures, that were obtained using different estimation

methods, are illustrated in Figure 5.1 1. The experimental conditions correspond to a grip

force (Fg) of 30 N, push force (Fp) of 50 N and random acceleration with constant PSD

(ahw - 5.25 m/s2). The model parameters that were derived from combined DPMI and

transmissibility responses are used. The VPA is presented in logarithmic scale. The

results show that the VPA decreases with increase in frequency, the same trend that has
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been observed in the transmissibility responses (see Figure 5.7, the logarithmic scale).

The figure shows that the VPA estimated from the two models, using Eq. (5.3), are

comparable with those obtained from the model and measured DPMI responses, using

Eq. (1.3).

For the bent-arm posture (Figure 5.11(a)), the VPA estimated from the model

DPMI is greater than those derived from the measured DPMI. In addition, the summation

of dissipated energy are slightly lower below 12.5 Hz and in the 12.5 - 70 Hz frequency

range. The VPA derived from the measured DPMI is quite comparable with that obtained

from the dissipated energy of the damping elements (Ptotai), except in the 70 - 160 Hz

frequency range, where the later is slightly lower. On the other hand, all the VPAs for the

extended arm posture (Figure 5.1(b)) show reasonably good comparison except in the

low frequency range. For example, the VPA derived from the measured DPMI ( Pmeasured )

is lower in the 2.5 - 10 Hz frequency range. Also, the VPA estimated from the damping

elements Ptotal is slightly higher in the 7 - 20 Hz range. The deviations in the VPA in the

low frequency range may be attributed to relatively high deviation between the measured

and the extended arm model DPMI responses, as seen in Figure 4.14(a). The DPMI

characterizes the hand-arm responses in the high frequency region better than the

transmissibility responses, which show better hand-arm characteristics in the low

frequency region. The hand-arm models were derived based on compromise between the

DPMI and transmissibility responses. Figure 5.11 shows that the total VPA (Ptotai)

estimated from the damping elements in the hand-arm model is comparable to that

obtained from the measured DPMI (Pmeasured)· The subsequent analyses of VPAs are thus

performed on the basis of dissipated energy using Eqs. (5.1) and (5.2).
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Figure 5.1 1 : Comparisons of VPA estimated using three different methods (Fg = 30 N, Fp

= 50 N and constant PSD excitation with a/,w of 5.25 m/s2): (a) bent-arm posture; (b)
extended arm posture.
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The effect of the method of parameter identification of the hand-arm model on the

VPA distribution of different substructures is further investigated by considering the

bent-arm model parameters derived from DPMI alone and those derived from

transmissibility responses alone. It should be noted that the parameters that were derived

from transmissibility responses are lower than those derived from the DPMI response;

hence the corresponding overall VPAs are also lower, as shown in Table 5.3. The

percentage error between the overall VPA obtained from the model and the measured

DPMI is in the order of 3 % for the case when the model parameters were derived from

DPMI response alone, and nearly 32 % when the parameters were derived from the

transmissibility responses. The results further show that about 3.2 % of the overall power

is absorbed in the hand (fingers, palm and hand back) for parameters derived from

transmissibility responses, compared with 10.7 % for the model derived from the DPMI

response. For both cases, maximum VPA occurred at the wrist and greater proportion of

the power is absorbed in the arms and the trunk of the body than the hand.

Table 5.3: Comparisons of distributed and total VPA of the bent-arm hand-arm model
derived from different biodynamic measures (a/,w = 5.25 m/s ; Fg = 30 N; Fp = 50 N).

DPMI response only Transmissibility responses
only

Location Overall Power Percentage Overall Power Percentage(mW) of power (mW) of power

Fingers 21.87
Palm 60.96
Hand back ( C3) 14.78
Wrist 388.89
Elbow 208.56
Shoulder 185.80
Trunk 33.18

2.39
6.67

1.62
42.55
22.82
20.33
3.63

6.81
10.80

1.66
257.83
143.33
123.54
61.93

1.12
1.78

0.27
42.55
23.66
20.39
10.22

total

measured

914.03

886.94

605.90

886.94
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The total VPA distributions that were obtained from the three different estimation

methods are also compared when the model parameters were derived from different

biodynamic measures. The VPA distributions that were obtained when the parameters

were derived from the DPMI response alone are similar to those illustrated in Figure

5.1 1(a), which correspond to the case when the model parameters were derived from both

the DPMI and the transmissibility responses.

Figure 5.12 shows the comparisons of the VPA estimated from DPMI and

dissipated energy of the model based on the transmissibility responses alone, and the

measured DPMI (Pmeasured)- The results show that the VPA estimated from the DPMI and

dissipated energy of the model are lower than that obtained from the measured DPMI

except in the 12.5 - 50 Hz frequency region, where the dissipated-based VPA is quite

comparable with that derived from the measured DPMI. This may also be attributed to

the observation deduced in chapter 4, that is, the hand-arm model based on

transmissibility responses alone tends to emphasize the dynamics of tissues/muscles,

while that based on DPMI response characterizes the entire hand-arm with emphasis on

the driving-point responses. The results suggest that the hand-arm models based on

vibration transmissibility responses alone under-estimate the VPA of the human hand-

arm system, while those on the basis of DPMI yield good estimate of VPA distribution,

particularly at the driving-point. It should however be noted that the DPMI response

alone cannot adequately characterize localized dynamics of different substructures of the

hand-arm system, while the total VPA evaluated from the DPMI gives a better

description of the dynamics of the entire hand-arm system. The results shown in Figure

5.11(a) show that the overall VPA estimated from the dissipated energy of the bent-arm
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hand-arm model is comparable with the VPA estimated from the measured DPMI

response. It may thus be deduced that the bent-arm model derived on the basis of both

biodynamic functions can provide good estimates of total as well as distributed VPA.

10' , Measured DPMI (P measured

------- Model DPMI(P „ ,)* model'

Sum of power of damping elements (P

o 10

e 10

Frequency (Hz)

Figure 5.12: Comparison of total VPA distributions estimated using three different
methods when the bent-arm model parameters are derived from transmissibility responses
(Fg = 30 N, Fp = 50 N and constant spectrum acceleration of a.hW = 5.25 m/s ).

The VPA distribution in different substructures of the hand-arm system are

computed for the bent-arm and extended arm postures and presented in Figure 5.13. The

figure shows that the VPA values in the vicinity of the driving-point (fingers, palm and

the back of the hand with carpal and metacarpals bones connected bye3 ) are lower than

those for the arms (wrist, elbow and shoulder) and the trunk below 25 Hz for both

postures. However, the VPA of the fingers is greater than those of other substructures
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Figure 5.13: Comparison of VPA distribution of different segments of the hand-arm

system (Fg = 30 N, Fp = 50 N and constant spectrum vibration with af,w of 5.25 m/s2): (a)
bent-arm posture; (b) extended arm posture.
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above 100 Hz. However, the magnitude of VPA at high frequencies is generally lower

than that observed in the low frequency region. The VPAs of the hand-arm substructures

initially increase with increase in frequency, but later decrease with increase in

frequency, for acceleration with a constant PSD at the driving-point. The observed trends

are similar to those reported in ref. [133], in which VPA of the hand-arm substructures

were obtained under vibration spectra of hand-held power tools coupled to lumped-mass

hand-arm model. The trends in Figure 5.13 buttress the conclusions and the results

obtained from the transmissibility responses in chapter 3, namely: high frequency

vibration is confined to the hand, while low frequency vibration is transmitted to the arms

and the trunk of operators of the hand-held power tools. The frequencies corresponding to

peaks in the total VPA distribution are similar to the characteristic frequencies observed

in the DPMI response. The results show peak VPA around 5 Hz, which is close to the

characteristic frequency of the whole-body represented by the trunk in the model. It was

reported that subjects exposed to vertical whole-body vibration showed greatest absorbed

power around 5 Hz [135].

The overall VPA of each substructure, obtained by summing the VPA distribution

in the 2.5 - 1000 Hz frequency range, and the percentage of the power that is absorbed in

each substructure relative to the overall total power are summarized in Table 5.4. The

results also compared reasonably well with the overall VPA obtained from the measured

DPMI (Pmeasured)- The results suggest that the posture has significant influence on the

VPA of different substructures of the human hand-arm system, and greater power is

absorbed in the hand-arm system in the extended arm posture than in the bent-arm

posture. Furthermore, the percentage of the total power absorbed in the hand (fingers,
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Table 5.4: Comparisons of distributed and total VPA of the hand-arm models in the 2.5
1000 Hz region under constant spectrum acceleration (a/,w = 5.25 m/s2; Fg = 30 N; Fp =

50N).

Location
Bent-arm Extended arm

Overall Percentage Overall Power Percentage
Power (mW) of power (mW) of power

Fingers 22.06
Palm 43.06
Hand back ( C3) 2.55
Wrist 301.83
Elbow 228.57
Shoulder 117.06
Trunk 83.42

2.76
5.39

0.32
37.80
28.62
14.66
10.45

29.61
140.69

5.78
155.66
375.32
1093.80

13.76

1.63
7.75

0.32
8.58

20.68
60.28
0.76

total

measured

798.56

886.94

1814.62

1051.95

back of the hand and the palm) is relatively small compared with that absorbed in the

arms. This may be attributed to the presence of more muscles/tissues and larger joints on

the arm structure, which account for damping.

It should be noted that the acceleration transmissibility magnitudes also show that

greater vibration is transmitted to the arms and shoulder in the extended arm posture,

particularly at low frequencies. The percentage errors between the overall VPA obtained

from the models and the measured DPMI are about 10 % and 72 % for the bent-arm and

extended arm postures, respectively. The high percentage error for the extended arm

posture can be attributed to high discrepancy between the VPA of the model and that

derived from the measured data below 20 Hz as shown in Figure 5.11(b). Subsequent

VPAs are evaluated using the bent-arm model, which is perhaps more representative of

the hand-arm posture adopted while operating the chipping hammer.
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5.5 VPA distribution due to Vibration from Hand-Held Power Tools

The VPA due to hand-transmitted vibration is strongly dependent on the

frequency contents and magnitude of handle vibration. Thus, the VPA responses attained

under control acceleration spectrum cannot be generalized for assessing the potential

injury risks arising from different tools, since it does not take into account the differences

in vibration levels encountered with real tools and the impulsiveness of their time signals

(i.e. high crest factor for impact tools). The vibration spectrum of different tools

considerably differs depending on the tool type, tool size, nature of task, hand forces, etc.

The VPA due to a particular tool vibration may be effectively evaluated from a proven

model and measured handle vibration. Considering the complexities associated with

measurement of forces with the hand-held power tools, the field studies are mostly

limited to tool vibration and hand-arm transmissibility responses measurement. A

validated mechanical-equivalent model of the human-arm system is thus needed for

evaluation of VPA distribution to different hand-arm substructures due to hand-held

power tool vibration.

5.5.1 VPA distribution due to chipping hammer vibration

The VPA distributions in different substructures of the bent-arm hand-arm model

under excitation from the percussion chipping hammer, when operated at 2600 rpm and

pushed with a force of 78 N, are presented in Figure 5.14. The results show trends that

are similar to those observed in Figure 5.13(a) for the constant spectrum excitation,

although the magnitudes of the VPA are considerably different due to differences in the

excitation. The responses consistently exhibit peak VPA value near the operating

frequency of the tool. Furthermore, the VPA values in Figure 5.14 are considerably
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smaller in the low frequency region compared with those observed under constant

acceleration spectrum. This is attributed to low intensity of tool's vibration in the low

frequency region, as seen in the Figure 5.2. The overall VPAs in the substructures and the

corresponding percentages relative to the total VPA are summarized in Table 5.5.

Fingers
Palm

— . Back of hand (c
Wrist
Elbow
Shoulder
Trunk
Total

5. 10

d 10

Frequency (Hz)

Figure 5.14: VPA distribution due to vibration from chipping hammer (78 N push force
and 2600 rpm speed, af,w = 8.84 m/s2).

Table 5.5: Overall VPA in the 2.5 - 1000 Hz region due to vibration from chipping
hammer (78 N push force and 2600 rpm speed, a/¡w = 8.84 m/s2)

Location Overall Power Percentage
(mW) of power

Fingers
Palm
Hand back ( ci )
Wrist
Elbow
Shoulder
Trunk

79.56
307.37

20.09
853.90
177.88
25.65
0.04

5.43
20.99

1.37
58.31
12.15
1.75
0.00

' total 1464.48
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Similar to the results presented in Table 5.4, the results show that greater power is

absorbed in the arms' components than in the components of the hand (fingers, palm and

C3). The wrist substructure tends to absorb the highest proportion of the total power (58

%) . It is expected that the overall VPA of the hand substructures (fingers, palm and hand

back) should be greater than those of other substructures since it is generally believed that

vibration white finger syndrome (VWF) is the most severe and common form the hand-

arm vibration syndrome (HAVS) disorders. However, the overall VPAs due to both the

constant PSD acceleration and chipping hammer vibration have shown that greater power

is absorbed in the arms than the hand. It may be speculated that the obstruction of blood

flow in the hand due to high localized contact pressure may be a contributing factor to the

development of VWF. Furthermore, the results raise question about the rationale behind

the use of the frequency-weightings defined in ISO 5349-1 [31] for assessment of VWF.

The weighting has maximum weight around 12.5 Hz, while several studies have shown

that high frequency (above 100 Hz) vibration are confined to the hand, while low

frequency (below 25 Hz) vibration are transmitted to the upper-arm and causes

musculoskeletal disorder.

The VPA distributions of the bent-arm hand-arm model corresponding to different

operating conditions of the percussion chipping hammer are compared with the VPA

corresponding to a constant acceleration spectrum excitation in Figure 5.15. The

acceleration spectra of the chipping hammer have been presented in Figure 5.2. The

overall VPA of the hand-arm substructures in the 2.5 - 1000 Hz frequency range and the

overall un-weighted and frequency-weighted rms values of the excitations are

summarized in Table 5.6. Similar to the results in Figure 5.2, the results in Figure 5.15
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Figure 5.15: Comparison of total VPA distributions due to the chipping hammer vibration
under different operating conditions.

Table 5.6: Overall VPA in the 2.5 - 1000 Hz region due to vibration from percussion tool
under different push forces and operating speeds.

Location
Fingers
Palm

Wrist
Elbow

Shoulder
Trunk

total

Excitation
magnitude

,(m/s<)
,(m/s2)

Overall VPA (mW)
Constant
spectrum
50 N push

22.06
43.06
2.55

301.83
228.57
117.06
83.42

798.56

5.25
31.95

Low speed (30.50 Hz) High speed (43.75 Hz)

78 N push 118 N push
31.21
61.58
4.61

184.27
52.79
7.10
0.02

27.02
40.24
2.95

135.03
39.33
5.29
0.01

341.56 249.87

4.55
23.49

3.80
21.27

78 N push 118 N push
79.56

307.37
20.09
853.90
177.88
25.65
0.04

1464.48

8.84
41.33

88.52
168.30
11.97

390.71
81.54
11.78
0.04

752.86

6.53
37.69
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and Table 5.6 show that the VPA is more strongly dependent on the operating speed of

the power tool than the applied push force. Figure 5.15 further shows that an increase in

the operating speed of the tool yields higher total VPA, while the VPA spectra exhibit a

conspicuous peak in the vicinity of the operating speed. Kihlberg [77] has also reported

that the maximum absorbed power occurs around the operating frequency of the power

tools. The figure also reveal that the VPA corresponding to low speed (30.5 Hz) tends to

slightly increase with an increase in the push force below 20 Hz, while an increase in the

push force did not show a discernable trend in the VPA distributions corresponding to

high tool speed (43.75 Hz). Table 5.6, however, shows that an increase in the push force

decreased the overall VPA, while an increase in the tool speed increased both the overall

VPA and acceleration rms values.

It should be noted that Figures 5.8 to 5.10 showing the transmissibility responses

of the hand-arm system subject to tool vibration and constant acceleration spectra do not

show the dominant frequency of the excitation. The characteristic frequencies in

transmissibility responses correspond to hand-arm resonant frequencies. The VPA of the

hand-arm system due to constant PSD excitation show characteristic frequencies believed

to be the resonant frequencies of the hand-arm system, while the VPA distributions due

to hand-tool vibration show prominent peak near the tool operating frequency, in addition

to resonant frequencies of the hand-arm system. This suggests the strong dependence of

VPA on the nature of excitation, unlike the DPMI and transmissibility responses.

Furthermore, the VPA of the hand-arm due to constant spectrum excitation is

concentrated in the forearm, upper-arm and the trunk substructures. While that due to the

chipping hammer is concentrated near the wrist and the palm of the hand for high
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operating speed of the tool, and near the wrist and elbow for the low tool speed, as seen

in Table 5.6.

5.5.2 VPA due to vibration of different power tools

The total and distributed VPA of the hand-arm substructures would differ

considerably for different tools due to wide variations in their vibration spectra. The

vibration spectra of different hand-held power tools (impact wrench, zip gun, sander, die

grinder and air rächet) that were measured during field operations by IRSST [137] are

applied to the bent-arm model to study the VPA of different substructures of the hand-

arm system coupled with different power tools. Although the exact operating conditions

of the tools are not reported, the overall frequency-weighted rms acceleration and the

operating speeds could be estimated from the reported vibration spectra of the tools.

Table 5.7 summarizes the estimated operating frequencies, un-weighted and frequency-

weighted rms acceleration and the total VPA of different segments of the hand-arm

system model.

The rms acceleration spectra of the tools are presented in Figure 5.16(a), which

varied greatly in magnitudes and spectral components. Unlike the acceleration spectra of

the chipping hammer (Figure 5.2), which revealed relatively low acceleration magnitudes

(0.004 - 0.03 m/s2) in the 2.5 - 10 Hz frequency range, the tools' spectra in Figure
5.16(a) exhibit relatively higher values (0.1-1 m/s2) in the same frequency range. The
observed differences in the hand-held power tools acceleration spectra at low frequencies

compared with those presented in Figure 5.1, despite the use of mechanical filter, may be

attributed to the very high measurement range (5000 g) of the accelerometer used. The

differences may also be partly due to the design of the tools, mode of vibration
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Table 5.7: Overall VPA of substructures of the hand-arm system in the 2.5 - 1000 Hz
frequency region due to vibration from different hand-held power tools

VPA (mW)
Impact Zip Die Air

Location Wrench Gun Sander Grinder Rächet
Fingers 49.83 48.71 10.21 35.54 8.37
Palm 76.58 262.05 7.62 11.14 22.24

C3 4.59 15.10 0.31 0.25 1.39
Wrist 184.08 1035.13 8.16 9.00 33.65
Elbow 116.24 233.98 24.28 79.60 21.86

Shoulder 35.05 36.97 4.89 15.70 7.79
Trunk 73.89 8.93 25.69 93.13 17.89

Ptotai 540.27 1640.88 81.16 244.34 113.20
Excitation
magnitude

ahw (m/s2) 471 868 ! 31 ! 85 2.19

arms ("1^2) 59.42 39.91 47.71 55.64 22.71
Operating
Frequency

(Hz) 43.75 78.13 68.16 264.80 72.16

generation, and operating conditions. While the majority of the acceleration spectra of

hand-held power tools reported in the literature are similar to those in Figure 5.2, a few

studies have reported tool spectra with high values in the low frequency region. For

examples, the reported spectrum of a road breaker revealed very high acceleration PSD of
9 9 9

3 (m/s ) /Hz at 10 Hz [88], and a rock drill was reported to have 2 m/s rms acceleration

at 10 Hz [133].

Figure 5.16(b) shows that the VPA generally decreases with increase in frequency

for all tools. The observed trends in the VPA distributions are similar to those obtained

under a constant acceleration spectrum excitation, with the exception of the presence of

the dominant tool operating frequencies. The overall frequency-weighted rms

acceleration and the total VPA of the zip gun are the highest (Table 5.7). The air rächet
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with ahw of 2.19 m/s2 (arms = 22.71 m/s2) yields an overall VPA of 0.1 13 Watts, while the

die grinder with a lower ahwof 1.85 m/s2 (armi= 55.64 m/s2) yields a relatively higher

VPA (0.224 Watts). The lower ahw and the higher VPA of the die grinder may be due to

the high operating frequency (about 265 Hz) since the frequency weighting defined in

ISO 5349-1 [31] exhibits the highest weight near 12.5 Hz and rapidly attenuates vibration

magnitude at higher frequencies. The weighting thus under-estimates the overall

weighted rms acceleration of tools with high operating frequency, as seen in the ahw of

the die grinder. Although it has been reported that VPA is approximately proportional to

the square of ahw [84], the observed results in the VPA, ahw and arms for the die grinder

and air rächet suggest VPA is also related to arms .

5.5.3 Relationship between VPA and acceleration magnitude

It has been reported that the overall VPA is approximately proportional to the

square of the overall frequency-weighted rms acceleration [84, 133, 135] and that it is

excitation specific [133]. Attempts are made to verify this assertion by finding a

relationship between the overall VPA and the overall frequency-weighted (ahw) and un-

weighted (arms) rms accelerations of the chipping hammer and different tools, as

illustrated in Figure 5.17.

The results presented in Figure 5.17(a) show that the overall VPA is indeed

approximately proportional to the square of ahw(VPA = 0.01 4a^2 ) since the correlation

coefficient is approximately unity, the correlation coefficient is about 0.94 with arms

(VPA = 0.0002a"?4) when un-weighted rms accelerations were used for the chipping

hammer. Figure 5.17(b) shows the relationship between VPA and the rms acceleration of
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different tools (impact wrench, zip gun, sander, die grinder, air rächet and the chipping

hammer). While there is a relationship between the VPA and frequency-weighted rms

acceleration (VPA = 0.057a'()f) with correlation coefficient around 0.93, no relationship

could be established between the VPA and the unweighted rms acceleration, as seen in

Figure 5.17(b). The results suggest that the relationship between the total VPA and rms

acceleration could be dependent on the tool type, tool size, nature of the task, nature of

tool's vibration generation and hand forces. While the current ISO 5349-1 [31]

frequency-weighting may be considered appropriate for low frequency power tools, it

grossly underestimates the weighted rms acceleration of tools with high operating

frequency, as seen in Table 5.7. Alternatively, two different frequency-weightings may

be defined for low and high frequency tools for assessing musculoskeletal and vibration

induced white finger disorders, respectively. It was also shown in [134] that the total

VPA is highly correlated with the ISO frequency-weighted rms acceleration for different

tools.

5.5.4 Comparisons of the total VPA with those in the reported studies

The segmental and total VPA of the chipping hammer with overall frequency-

weighted rms acceleration of 8.84 m/s2 are compared with those of a grinder with a
carborundum wheel having an overall frequency-weighted rms acceleration of 13.62

m/s2, reported in [133]. It is recognized that the VPA strongly depends on the
acceleration magnitudes and tool operating frequency. The comparisons are thus

discussed in light of differences in frequency-weighted acceleration of the tools. It should

also be noted that the localized VPA is also dependent on the type of hand-arm model

and model parameters in addition to the nature of excitation. The hand-arm model that is
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developed in this study is a biomechanical model, which considers anatomical structure

of the human hand-arm system and whose parameters were derived from both the DPMI

and the transmissibility responses. On the other hand, the model developed in [133] is a

lumped-mass model whose parameters were derived from the DPMI response alone. In

order to minimize the sources of possible differences in the two dataseis, the VPA

obtained from the bent-arm model parameters that were derived from DPMI response

alone are calculated and summarized in Table 5.8 for the purpose of comparison. The

substructure names in the parenthesis are for the hand-arm model developed in the

present study.

Table 5.8 shows that the overall VPA of the hand-arm substructures for the two

dataseis are different except for the shoulder substructure. Furthermore, the results in the

present study show that greater power is absorbed in the wrist, while the reported study

suggests that most of the power is absorbed in the palm-wrist substructure. However, if

the VPAs of the palm and wrist in the present study are added together, the results of the

two studies become comparable. Different studies reporting overall VPA have employed

different excitations, hand forces, ranges of vibration excitation and method of analysis,

as seen in Table 5.9.

The VPA reported by these studies thus differ considerably. The reported results

would suggest that the VPA does not depend only on the excitation type and magnitude

but also on the type of the hand-held power tool involved. For example, two different

tools, an impact hammer and a grinder, with the same overall frequency-weighted

acceleration of about 8.8 m/s2 yield overall VPA of 4.1 and 2.5 Watts, respectively, in a
similar frequency range and with similar hand forces and posture [77]. Similarly, a
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Table 5.8: Comparisons of total VPA of the chipping hammer in the 10 - 1000 Hz range
with that of grinder with a carborundum wheel [133].

Location
Fingers

Palm and wrist (Palm)
Hand back and metacarpo-

phalangeal joints (c3)
(Wrist)

Forearm and upper arm
(Elbow)

Shoulder, neck and head
(shoulder)

Trunk
?J total

Excitation values
„(m/sz)

a (m/sO

Chipping hammer
VPA Perce-
(W) ntage

0.084
0.426

0.115
0.993

0.351

0.019

0.000

1.988

4.20
21.44

5.82
49.93

17.67

0.95

0.00

8.84

41.33

Grinder
[133]

VPA Perce-
(W) ntage
0.53 14.32
2.06 55.68

0.50 13.51

0.60 16.22

0.01 0.27

3.70

13.62

straight grinder and a hammer yield the same total VPA but different weighted rms

acceleration values [138]. The overall VPA of the tools obtained in the present study are

lower than those reported with comparable weighted rms acceleration values. This may

be due to differences in the operating conditions and design of the tools involved. The

VPA values due to excitation with constant spectrum reported in [84] are comparable

with those obtained in the present study, as shown in Table 5.9. The VPA obtained in the

present study under a constant spectrum acceleration of 4.99 m/s from an electro-

dynamic exciter yields a VPA of 0.56 W in the 10 - 1000 Hz frequency range, while 5.0

m/s2 and 0.46 W in the 8 - 1000 Hz one-third octave frequency region were reported in

[84]. This further supports the developed hand-arm models, although further efforts are

desired to explore a relation between the VPA and the vibration of different power tools.
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5.6 Summary

The transmissibility responses of the hand-arm system, while operating a chipping

hammer were studied under different push forces and operating speeds. The excitation

with a constant power spectral density (PSD) from an electro-dynamic shaker and the

vibration of different hand-held power tools were applied to the biomechanical hand-arm

models to determine the vibration power absorption (VPA) distributions in different

substructures of the human hand-arm system. The results show that the trends in the

transmissibility responses due to vibration from the chipping hammer are similar to those

due to excitation with a constant PSD. The VPA distributions revealed that greater power

is absorbed in the arms at low frequencies than in the hand (fingers, palm and the back of

the hand), while the VPA of fingers is greater above 100 Hz although its value is small

compared to the VPA of the arms in the low frequency region. The VPA distribution of

the hand-arm system depends on the type of excitation. The total VPA distribution due to

a constant PSD excitation slightly increased in the low frequency region with increase in

the frequency, then rapidly decreased with increase in frequency in a manner similar to

the trend observed in the transmissibility response magnitudes.

The trends in the VPA distribution of the majority of the hand-held power tools

were similar to those observed under a constant PSD acceleration except for the chipping

hammer, which showed a relatively constant VPA in the low frequency region before

decreasing with increase in the frequency. Unlike the VPA distribution due to a constant

PSD excitation, the DPMI and transmissibility responses, in which there is absence of

excitation frequency, the operating frequencies of the power tools were prominent in the

VPA distributions based on the power tool excitations. The overall VPA in the 2.5 - 1000
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Hz frequency range showed that smaller amount of power was generally absorbed in the

hand (fingers, palm and hand back) compared with the wrist and the elbow. An increase

in the operating speed of the chipping hammer increased the overall VPA and the overall

frequency-weighted rms acceleration (û/,w) of the tool vibration, while an increase in the

push force decreased both af,w and overall VPA. The relationships between the VPA and

the rms accelerations for the chipping hammer were obtained as VPA = 0.0\44a2h¿ and

VPA = 0.0002a"/ , respectively, with correlation coefficients of nearly 1.00 for the

frequency-weighted acceleration (a/,w), and 0.94 for the un-weighted acceleration (arms).

The relationship for different power tools was VPA = 0.057a);™ with correlation

coefficient around 0.93 for the frequency-weighted acceleration, while no relationship

could be established between the VPA and un-weighted rms acceleration.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Major Highlights and Contributions of the Research Work

The overall contribution of this research dissertation was the development of

biomechanical models of the human hand-arm system based on measured impedance and

localized transmissibility responses, anatomical structure, anthropometric parameters and

characteristic frequencies. The models were used to estimate absorbed power in different

segments of the hand-arm system for injury risk assessment. The specific contributions

can be summarized as follows:

• Identification of sources of discrepancies in the reported human hand-arm DPMI

response at frequencies above 500 Hz;

• Relationships between resonant frequencies of the human hand-arm model (eigen-

analysis) and the characteristic frequencies observed from measured DPMI and

transmissibility magnitudes;

• Simultaneous characterization of DPMI and localized transmissibility responses at the

wrist, elbow (on both forearm and upper-arm sides) and the shoulder of the human

hand-arm system under different hand forces, postures and excitation levels;

• Biomechanical modeling of the hand-arm in the bent-arm and extended arm postures

on the basis of anthropometry and anatomical structure of the hand-arm system,

measured DPMI and localized transmissibility responses, and resonant frequencies of

the hand-arm system;
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• Identification of model parameters for different combinations of the hand force;

• Evaluation of localized vibration power absorption of different components of the

human hand-arm system subjected to constant spectrum excitation and vibration from

hand-held power tools for potential injury risk assessments.

6.2 Major Conclusions

The following major conclusions were drawn form the dissertation research:

• The discrepancies in the reported impedance responses above 500 Hz were found to

be attributable to acceleration measurement location, handle dynamics (handle

resonant frequency and flexural deformation) and ineffectiveness of handle inertia

correction technique at high frequencies. It is concluded that dynamic responses at the

hand-handle interface must be measured in the proximity of the hand, and alternate

inertial correction methods must be explored.

• An accurate measurement of the impedance (error < 5 %) of the hand-arm system up

to 1 000 Hz would require a handle design with natural frequency in the order of 5400

Hz and 2600 Hz, for measurements based upon the base and handle accelerations,

respectively.

• The DPMI seems to characterize the dynamic response of the entire hand-arm system

with emphasis around the driving-point, while the transmissibility responses

emphasize the dynamic responses of the tissues/muscles and joints of the human

hand-arm system.

• The peaks in the vibration transmissibility response magnitudes represent resonant

frequencies of the two main components of the human hand-arm system, namely the
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tissues/muscles and the bones/structure, the resonance frequencies of the

tissues/muscles, however, were more prominent.

• The peaks and valleys in the DPMI response magnitude correspond to the resonant

frequencies of the tissues/muscles and bone/structure of the human hand-arm system,

respectively.

• The grip forces mostly affects the properties of the tissues/muscles of the hand and

forearm (flexor and extensor muscles), while the push force affects the stiffness of the

entire human hand-arm system.

• The influence of an increase in excitation magnitude on DPMI response is negligible,

while it marginally increased transmissibility response magnitudes, particularly

around the prominent peaks.

• The influence of the hand-arm posture is most significant on the DPMI response

below 100 Hz, while it is most significant below 25 Hz on the transmissibility

responses.

• The human hand-arm system in the extended arm posture amplifies vibration

transmitted to the upper-arm and the body below 25 Hz but attenuates vibration to the

upper-arm more effectively than the bent-arm posture above 25 Hz.

• The results suggest the need for two frequency-weightings for the assessment of: (i)

vibration-induced white finger (VWF) since high-frequency (above 100 Hz)

vibrations are confined to the hand; and (ii) the musculoskeletal disorder risks, since

the low-frequency (below 25 Hz) vibrations are transmitted to the upper-arm and

whole-body. The current ISO 5349-1 (2001) frequency-weighting, commonly used

for assessment of VWF, has the highest weighting factor near 12.5 Hz.
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• The most prominent resonant frequencies at the wrist occurred around 28.9 and 56.3

Hz, while the prominent resonances at the elbow and shoulder were 12.5 and 25.0 Hz,

and 12.5 and 5.5 Hz, respectively, for the bent-arm posture. The corresponding values

for the extended arm posture were 12.5 Hz and 1 10.9 Hz at the wrist, 8.6 and 12.5 Hz

at the elbow, and 7.0 and 12.5 Hz at the shoulder.

• A hand-arm model derived on the basis of either the impedance or transmissibility

response cannot adequately characterize the entire dynamics of the human hand-arm

system. A model based on both the impedance and transmissibility responses would

be more reliable.

• The vibration power absorption (VPA) in the forearm and upper-arm is greater than

that of the hand below 1 00 Hz for all types of excitations, while the power absorbed

in the fingers and palm of the hand is larger at higher frequencies.

• An increase in the operating speed of the percussion chipping hammer increased the

overall VPA value and the overall un-weighted and frequency-weighted rms

acceleration of the percussion chipping hammer, while an increase in the push force

decreased both the VPA and acceleration rms values.

• A relationship between the overall VPA and the overall frequency-weighted rms

acceleration of the percussion chipping hammer was established as

VPA = 0.0 144a^12 Watts, while the relationship for other hand-held power tools was

attained as VPA = 0.057a]j Watts.

6.3 Recommendations for Future Work

The present study provides comprehensive information about biodynamic

responses, localized vibration transmissibility, localized and total vibration power
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absorption (VPA) distributions and biomechanical models of the human hand-arm system

in the bent-arm and extended arm postures. While the transmissibility response

magnitudes and the VPA distributions are very small above 500 Hz and not significantly

influenced by the instrumented handle dynamics, the driving-point mechanical

impedance (DPMI) is highly influenced by the dynamics of the handle above 500 Hz.

Consequently, the DPMI responses in this study are limited to 500 Hz in order to

minimize the influence of handle dynamics on the DPMI response. The dynamic

characteristics of the human hand-arm at higher frequencies are important and necessary

because some power tools, particularly the pneumatic percussion tools, can operate at

frequency above 500 Hz. The reported DPMI responses above 500 Hz may not be

reliable due to the effect of handle dynamics. Furthermore, vibration-induced white

finger syndrome is a high-frequency phenomena.

Consequently, the design of a better simulated handle with primary resonance

frequency around or above 2000 Hz is recommended in order to characterize DPMI of

the human hand-arm system in the high frequency range.

The hand-arm models proposed in this dissertation could not characterize the y>h-

axis transmissibility responses due to lack of consideration of yh-axis compliance and

linearization of the formulation. Furthermore, the mass of the tissues/muscles and bones

of the forearm and upper-arm were combined. Biomechanical models in which the

masses of the tissues/muscles and bones of the forearm and upper-arm are separated are

suggested for future work in order to characterize both the z/,- and >7,-axis transmissibility

responses.
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Furthermore, the following studies would enhance better understanding of the

biodynamic responses of the human hand-arm system to vibration and assessment of

injury:

• Three dimensional models of the hand-arm system;

• Multibody dynamic models of the hand-arm system;

• Finite element models of the hand-arm system with active tissues/muscles;

• Measurement of grip force on power tools using pressure sensors;

• More thorough study of VPA distribution of different power tools, and the

relationship between the VPA and un-weighted acceleration magnitudes of

different types of power tools;

• Identification of separate frequency-weights for assessment of vibration-induced

white finger and musculoskeletal disorders.
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