
NOTE TO USERS

Page(s) not included in the original manuscript are
unavailable from the author or university. The

manuscript was microfilmed as received

This reproduction is the best copy available.

UMI





Folate Metabolism and Curii Synthesis in Escherichia coli K-12

Mahsa Naghavi

A Thesis in the Department of Biology

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Science (Biology) at

Concordia University

Montreal, Quebec, Canada

December 2009

©Mahsa Naghavi, 2009



?F? Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre référence
ISBN: 978-0-494-67128-3
Our file Notre référence
ISBN: 978-0-494-67128-3

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada



ABSTRACT

Folate Metabolism and Curii Synthesis in Escherichia coli K-12

Mahsa Naghavi

The genes folA and thyA have a key role in cell growth, as they are involved in the

biosynthesis of folate cofactors directly and/or indirectly. The study of the relationship

between these two genes will improve our understanding of cell growth.

The effects offolA and thyA on the growth of Escherichia coli cells were studied

and the results showed that the absence of the folA gene affects the growth of cell.

Without folA cells are not able to grow or grow very poorly; however, folA has no effect

on phenotype of strains harboring thyA + or thy mutation. Also, different thyA alleles

(thyA~ and thy ls) do not affect the growth of'AfolA::Kan3 strains.

In addition, thin aggregative fimbriae (curii) protein by some of our E. coli K-12

lab strains resulted in improved growth in minimal medium compared to their parent. I

developed assay for the presence of the CsgA subunit of curii protein in these strains via

a rapid purification method (Collinson et al, 1992) and SDS-agarose gel electrophoresis

(Horsten, 2003; Bagriantsev et al. 2006). This is a very fast and affective method to

detect the presence of curii protein compared to other time consuming methods, such as

western blotting and SDS-PAGE, and protein binding assays. Using this "rapid curii

assay" I was able to detect the curii protein in the wells of SDS-agarose gels and identify

the CsgA protein band of the recovered materials from this gel in a SDS-PAGE gel.
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1. Introduction:

Folate, as a water-soluble B vitamin (B9), is important for normal growth of cells.

Dihydrofolate reductase (DHFR) converts dihydrofolate (DHF) to tetrahydrofolate

(THF), which is required for the synthesis of the other folate cofactors and therefore the

synthesis of RNA, DNA and protein (Figure 1). As shown in Figure 1, thymidylate

synthetase ((EC 2.1.1.45; TSase) (product of thyA gene), dihydrofolate reductase (EC

1.5.1.3; DHFR) (product offolA gene), and serine hydroxymethyltransferase (EC 2.1.2.1;

SHMT) (product of glyA gene) create a three-enzyme cycle in the folate pathway. The

folate cofactors in this three-enzyme cycle are representing major metabolic pathways

that are important for cell growth. In Escherichia coli DHF is made de novo from GTP; it

is then reduced to THF by dihydrofolate reductase (DHFR). One-carbon groups

(methylene, methyl, and formyl) can be added to THF to make some THF derivatives.

These conversions are applied by three different gene products: SHMT, FoID (methenyl

tetrahydrofolate cyclohydrolase) and MetF (methylene-THF reductase) (Figure 1). These

THF derivatives (cofactors) are necessary in the biosynthesis of purines, methionine,

fmet-tRNA, pantothenate, serine and glycine (Howell, Foster, and Foster, 1988;

Matthews, 1996; Green, Nichols, and Matthews, 1996).

1.1. Interconversions offolate cofactors

Methylene-THF is synthesized from THF by two routes. It is formed during the de

novo synthesis of glycine from serine in the reaction catalysed by SHMT (Figure 1).

When glycine is abundant it can be formed by glycine cleavage (GCV) (Green, Nichols,

and Matthews, 1996). Methylene-THF is used in four reactions. It is converted to
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methenyl-THF by methylene-THF dehydrogenase (FoID) and to methyl-THF by

methylene tetrahydrofolate reductase (MetF) (Matthews, 1 996).

In pantothenate synthesis, the synthesis of pantoic acid (pantothenate) needs the

transfer of the methylene group from methylene-THF to a-ketoisovaleric acid by a-

ketopantoate hydroxymethyltransferase (PanB) (Jackowski, 1996; Jones, Judith, and

Buck, 1993).

Methylenë-THF is also used in the synthesis of thymidylate. In this reaction,

catalyzed by thymidylate synthase, it both methylates and reduces the substrate dUMP

and thus is converted to DHF (Matthews, 1996).

Methyl-THF, which is synthesized from methylene-THF, converts to THF by

methylene-THF reductase (MetF) (Sheppard, 1999). In this reaction methionine is

produced from homocysteine (HC) by methionine synthase (MetE and MetH) (Matthews,

1996; Chirwa and Herrington, 2004). The enzymes MetE and MetH transfer the methyl

group from methyl-THF to homocysteine to form methionine; however, they have

different preferences for the number of glutamate residues on the cofactor, and MetH

requires vitamin B12 for activity. The enzymes are cobalamin-dependent methionine

synthase (MetH) and cobalamin-independent methionie synthase (MetE) (Greene, 1996)

(Green, Nichols, and Matthews, 1996; Greene, 1996; Matthews, 1996; Stauffer, 1996).
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Figure 1. Formation of folate cofactors. Enzymes are indicated as follows: FoIA,

dihydrofolate reductase; TS, thymidylate synthetase and SHMT, serin

hydroxymethyltransferase; MetF, methylene tetrahydrofolate reductase; TKase,

thymidine kinase; FoID, methenyl tetrahydrofolate cyclohydrolase; Met F, methylene-

THF reductase; MetE, cobalamin independent; MetH, cobalamin dependent; MetRS,

methionyl-tRNA synthetase; Formylase, Met-fRNA™6' formyltransferase; PurU, formyl-
THF hydrolase; GAR, glycineamid ribonucleotide transformylase; AICAR, 5-

aminoimidazole-4-carboxamid ribonucleotide transformylase; KPHMT, ketopantoate

hydroxylethyltransferase. The dashed arrows are indicating several steps in a conversion.

The abbreviations indicate THF (tetrahydrofolate), CH2-THF (methylene-THF), CH-

THF (methenyl-THF), CH3-THF (methyl-THF), CHO-THF (formyl-THF), TKase

(thymidine kinase), SAM (S-adenosyl-methionine), HS (homoserine), HC

(homocysteine), met (methionine), MetF (methylene THF reductase).
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F-Met-tRNA is formed by two enzymes. Methionyl-tRNA synthetase (MetRS)

enzyme adds methionine to tRNAfmet. Met-tRNAfmet is the substrate for methionyl-fRNA
transformylase (formylase) and formyl-THF is the cofactor (Matthews, 1996; Greene,

1996; Schmitt, Panvert, and Blanquet, 1998; Chirwa and Herrington, 2004).

Conversion of formyl-THF to THF involves de novo biosynthesis of purines

catalyzed by glycineamid ribonucleotide (GAR) transformylase and 5-aminoimidazole-4-

carboxamid ribonucleotide (AICAR) transformylase (Nixon, Warren, and Benkovic,

1997; Matthews, 1996). In the reaction of formyltetrahydrofolate deformylase (PurU),

formyl-THF converts to THF and formic acid (Nixon, Warren, and Benkovic, 1997).

1.2. Synthesis ofthymidylate

Thymidylate (dTMP) is an essential metabolite for DNA synthesis. E. coli can

grow quite happily with no thymidylate synthase activity at all, as long as cells are

provided with either thymine or thymidine. E. coli can either make thymidylate de novo

or can take up exogenous thymine or thymidine and convert them to dTMP (Krishnan,

and Berg, 1993; Kisliuk, 2006).

Thymine can be converted to thymidine by thymidine Phosphorylase (Neuhard

and Kelln, 1996). Also, dTMP can be recovered from thymidine by the intracellular

thymidine kinases activity (Figure 1). Thymidylate kinase is the product of the tdk gene

and the position of this gene is at 27.8min on the E. coli genome (Neuhard and Kelln,

1996).

The de novo synthesis of thymidylate from dUMP is catalized by thymidylate

synthetase (TS) the product of the thyA gene. In eukaryotes and many bacteria, de novo
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thymidylate synthesise utilize methylene-THF produced via the dTMP cycle (Figure 1),

which involves TSase (ThyA), dihydrofolate reductase (DHFR) (FoIA) and serine

hydroxymethyltransferase (SHMT) (GIyA), as shown below (Krishnan, and Berg, 1993;

Kisliuk, 2006). In this pathway methylene-THF has bi-functional action as a one-carbon

donor and also as a reductant:

Thymidylate synthase (ThyA):

dUMP + CH2-THF ? dTMP + DHF

•Dihydrofolate reductase (FoIA):

DHF + NADPH + H+ ? THF + NADP+

•Serine hydroxymethyltransferase (SHMT):

Serine + THF ? CH2-THF+ Glycine

The enzyme, DHFR, is also able to reduce folic acid to DHF very slowly in many

organisms including some strains of E. coli (Green, Nichols, and Matthews, 1996). But,

as transportation of folate cofactors is not done by E. coli strains, Green, Nichols, and

Matthews (1996) assumed this reaction does not occur in vivo. Actually, this enzyme in

E. coli is only required for the reduction of recently synthesized DHF to THF (Green,

Nichols, and Matthews, 1 996).

Another de novo pathway has recently been found in many bacteria, in which

thymidylate is formed from dUMP and methylene-THF by ThyX. ThyX is a novel fiavin-
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dependent TS that has no amino acid sequence homology with thyA coded TS. ThyX

produces THF instead of DHF because the methylene-THF serves only as the one carbon

donor and reduced flavin nucleotide serves as the reductant (KIsliuk, 2006).

1.3. The Igt-thyA operon and its expression

It has not been possible to delete the complete thyA gene from the E. coli

chromosome, because of the presence of an essential gene within or close to the thyA

gene (Chung and Greenberg, 1973). Later, Williams and his group (1989) discovered a

structural gene for an essential membrane protein (unidentified membrane protein,

umpA), which is located on a 1.5 Kbp DNA fragment immediately 5' to the thyA gene.

The product of this gene is a membrane-associated polypeptide and approximately 25

kilodaltons in size (Chung and Greenberg, 1973; Belfort, Maley and Maley, 1983;

Williams, Fortson, Dykastra, 1989; Gan, Sankaran, Williams, 1995).

The nucleotide sequence of the umpA gene and its amino acid sequence show

very high degrees of identity with the Igt gene of Salmonella typhimurium and its gene

product, respectively. Gan, Sankaran, and Williams (1995) showed that the umpA gene in

E. coli and Igt in S. typhimurium are homologous and that

phosphatidylglycerokprolipoprotein diacylglyceryl transferase is an essential enzyme in

enteric bacteria for the viability of the respective organisms. They sequenced the Igt and

thyA genes and reported the transcription start sites, promoters and ribosome binding sites

(RBS) for these two genes (Gan, Sankaran, and Williams, 1 995).

Williams, Fortson, and Dykastra (1989) believed that, however, the function of

UmpA protein was unknown, but it seemed to apply a direct or indirect effect upon cell
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division and the synthesis of TSase (Williams, Fortson, and Dykastra, 1989). Gan,

Sankaran, and Williams (1995) showed that in E. coli, where lgt and thyA form an

operon, TSase levels, which are very low in bacteria (250 molecules per cell in E. coli),

are regulated by transcription from the Igt promoter and by translational coupling (Gan,

Sankaran, and Williams, 1995).

The existence of a 2.0-kb thyA transcript that presumably also contained the 5'-

flanking Igt mRNA was observed (Belfort, Maley, and Pedersen-Lane, 1983; Gan,

Sankaran, and Williams, 1995). Gan, Sankaran, and Williams (1995) determined the

transcription start site of the Igt gene. They showed that there was a strong consensus -10

sequence (TATTAT) immediately upstream of the transcriptional start site but no

apparent -35 consensus site. It would thus appear that the majority of the thyA transcripts

arise from the Igt promoter, since the -10 sequence associated with the thyA promoter

(TACATC) was predicted to be very weak (Gan, Sankaran, and Williams, 1995).

Belfort, Maley and Pedersen-Lane (1983) determined the DNA sequence of the

thyA gene and found part of an open reading frame (ORF) that overlaps the thyA gene.

This ORF situates immediately 5' upstream oí thyA structural gene and its 3' translational

terminator (UGA) of this upstream structural gene overlaps the thyA Shine-Dalgarno

(SD) (GAGGA) sequence (Belfort, Maley and Pedersen-Lane, 1983; Williams, Fortson,

and Dykastra, 1989; Bell-Pedersen, Salvo and Belfort, 1991).

As, the Igt open reading frame (ORF) overlaps the ribosome-binding site of thyA,

the possibility of translational coupling between Lgt (25 kilodaltones) and ThyA (33

kilodaltones) proteins (Williams, Fortson, and Dykastra, 1989) was examined by Gan,

Sankaran, and Williams (1995). When the majority of the Lgt coding sequence, including
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its translation initiation codon and ribosome-binding site, was deleted but its promoter

was left intact, ThyA levels increased two- to three-fold. Thus it suggested that

translation of Lgt might serve to reduce the levels of ThyA by preventing ribosome

loading (Gan, Sankaran, and Williams, 1995).

The open reading frame of thyA sequence is 792 nucleotides, corresponding to the

enzyme of 264 amino acids, which initiates from the methionine start codon. The

molecular weight of the enzyme subunit based on the predicted protein sequence is

calculated to be 30,441 Da (Belfort, Maley and Maley, 1983).

A deletion at the 51 end of the umpA (Igt) gene reduces the level of TSase

synthesis (Williams, Fortson, and Dykastra, 1989). Williams, Fortson, and Dykastra

(1989) observed a 10- to 20-fold reduction in TSase synthesis when the Igt promoter and

the first 70 amino acids of the coding sequence were deleted. Since the lack of umpA

expression causes a decrease in the TSase expression (Bell-Pedersen, Salvo and Belfort,

1991), this can be another possibility in the regulation of thyA expression.

In a growing E. coli cell, the amount of enzyme TSaes is low at about 250

molecules (Bell-Pedersen, Salvo and Belfort, 1991). Both deficiency and excess of

thymidylate are mutagenic in bacteria and eukaryotic cells. The lack of thymidylate

causes insertion of the high amount of dUMP into DNA during replication of cells.

Thymidylate excess causes damage of DNA replication, since increasing thymine affects

the balance of the nucleotide pools at the replication fork. Hence, the precise regulation

of thyA expression is essential to keep a balance level of TMP (Bell-Pedersen, Salvo and

Belfort, 1991).
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The expression of the thyA gene in E. coli is affected by some characteristics of its

nucleotide sequence (Belfort, Maley and Maley, 1983; BeIl-Pedersen, Salvo and Belfort,

1991). The position of Shine-Dalgarno (SD) sequence (GAGGA) situates only 3

nucleotides (nt.) upstream of the start codon AUG. As the actual space of the SD

sequence is 6 to 8 nucleotides, this situation in the E. coli genome is rare and it could be

one possibility for proficiently controlling the translation of thyA mRNA (BeIl-Pedersen,

Salvo and Belfort, 1991).

1.4. Effects ofdeletingfolA gene on E.coli

DHFR activity is essential for the recycling of DHF produced during thymidylate

synthesis as well as for reducing newly synthesized DHF. This suggests that the gene

coding for DHFR (folA) would be essential for providing the THF that allows the cells to

grow (Howell, Foster, and Foster, 1998; Ahrweiler and Frieden, 1988; Hamm-Alvarez,

SancarYl, and Rajagopalan, 1990; Krishnan and Berg, 1993; Myllykallio, Ledu, and

Filee, 2003; Herrington and Chirwa, 1999).

DHFR has been successfully deleted from the E. coli chromosome (Howell, Foster,

and Foster, 1998; Ahrweiler and Frieden, 1988; Hamm-Alvarez, SancarYl, and

Rajagopalan, 1990; Krishnan and Berg, 1993; Myllykallio, Ledu, and Filee, 2003;

Herrington and Chirwa, 1999). The relationship between expression of DHFR and TS

activities was additionally investigated when Howell, Foster, and Foster (1988) found

their Afolr.kan mutation was not viable in a thyA+ background. They found that Fol cells

are not viable unless TS activity is, at the same time, eliminated. thyA is the structural

gene for TS. The mutants of thyA are blocked in the conversion of dUMP to dTMP,

10



which consumes methylene-THF (Green, Nichols, and Matthews, 1996; Krishnan and

Berg, 1992). However, Ahrweiler and Frieden (1988) showed that some of their fol

strains could reduce thy'A+ cells. Krishnan and Berg (1993) successfully deleted the folA

gene and they found that construction of haploid AfolA derivatives was easy and did not

need a prior inactivation of thyA gene or the introduction of other auxotrophic mutations.

Also, deletion oifolA was successfully done in wild type cells usng a AfolA::Kan3 allele

to transduced a thyA+ strains (Herrington and Chirwa, 1999; This study).

Reduced folates were found infolA "strains of E. coli and cells were able to grow

(Hamm-Alvarez, SanearYl, and Rajagopalan, 1990; Myllykallio, Ledu, and Filee, 2003).

Hamm-Alvarez, SanearYl, and Rajagopalan, (1990) found there were other THF

derivatives present in the strains with deletion of the folA gene. They confirmed that

production of some THF in E. coli does not need the DHFR activity coded byfolA, since

they could extract formyl-THF, THF, methyl-THF and traces of folic acid (derivatives of

THF) from their AfolA strains. Hence, folate pool reduction by TS in the absence of

DHFR could explain the lethal effects on folA" thyA+ cells (Hamm-Alvarez, SancarYl,

and Rajagopalan, 1990). Myllykallio, Ledu, and Filee (2003) reported those cells lacking

folA were still alive and it was suggested that they contained reduced folates for synthesis

of RNA and proteins. Shiman (1985) previously proposed that nonenzymatic oxidation of

THF produces a quinonoid-DHF cofactor that might be regenerated to THF by

dihydropteridine reductase (DHPTR). Hamm-Alvarez, SancarYl, and Rajagopalan (1990)

suggested that in the absence of TS, DHPTR activity could catalyze the stable reduction

of DHF to THF slowly. This enzyme also was identified in folA strains of E. coli, by

Green, Nichols, and Matthews (1996). The presence of this substitute for DHFR mfolA
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strains was proposed by Myllykallio, Ledu, and Filee (2003) and was originally explained

as a dihydropteridine reductase (DHPTR; accession # gi:78392) enzyme in E. coli, which

could reduce DHF to THF in vitro. Since DHPTR a known enzyme for reducing DHF in

vitro, could be responsible for synthesis of THF in the absence of DHFR, deletion offolA

in ?/???::?a? strains was not lethal and these strains could produce THF (Herrington and

Chirwa, 1999).

Cells lacking DHFR activity are able to grow on minimal medium as long as it is

supplemented with all or some of the following folate end product (FEP) combinations:

methionine, thymine, histidine, adenine, glycine, and pantothenate (Howell, Foster, and

Foster, 1988; Hamm-Alvarez, SancarYl, and Rajagopalan, 1990; Krishnan and Berg,

1993; Green, Nichols, and Matthews, 1996; Herrington and Chirwa, 1999). Strains with

the DHFR gene (folA) deleted grow slowly on rich or supplemented minimal medium

(Herrington and Chirwa, 1999). These kinds of mutated strains are auxotrophic for FEP

supplements. The auxotrophic strain is not able to produce sufficient reduced forms of

THF for one-carbon transfer reactions (Green, Nichols and Matthews, 1996). Depending

on the strain, the supplements are different, but most strains can grow on minimal

medium with thymine (MinA+Thy) or combination of folate end products (Herrington

and Chirwa, 1999).

1.5. CsgD is a multicopy suppressor ofAfolA growth defects

Chirwa and Herrington (2003) discovered that in strains lacking DHFR activity

(AfolA), the gene csgD serves as a multicopy suppressor of the glycine auxotrophy. Since

the protein coded by csgD gene resembles proteins of the FixJ/UhpA/LuxR family, it is
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suggested as a regulatory protein. Inactivation of csgD prevents the transcription of the

csgBA operon, which is required for the synthesis of curii (Hammar, Arnqvist, and Bian,

1995).

Chirwa and Herrington (2003) showed that plasmids containing csgD sequences

enabled faster growth of AfolAr.Kan mutants in the absence of glycine in a folate end

product (FEP) supplemented minimal medium. These results came from an increased

expression of glyA gene, encoding SHMT (EC 2. 1. 2. 1) (Chirwa and Herrington 2003).

They found CsgD protein could upregulate glyA gene expression in thesefolA mutants.

It was reported that up to 1 1.5% of the amino acid residues in total E. coli protein

are glycine (Chirwa and Herrington, 2003). Curlin, the major protein of curii (CsgA),

includes 1 .7 times as many glycine residues. As a hypothesis, in those cells that make a

lot of curii, the glycine requirement is particularly high and the producing of curii is more

facile. But it is not yet known (Chirwa and Herrington, 2003).

1.6. Curii biosynthesis

Curii are the fimbrial component of a complex extra-cellular matrix expressed by

E. coli on the cell surface. Similar structures expressed by S. enteritidis have thin

aggregative fimbriae. Fimbriae are thinner and generally shorter and more numerous than

flagella (100 to 1000 fimbriae per cell), also they are not involved in cellular motility

(Low, Braaten and Woude, 1996; Pawar, 2005).

Curii fibers are involved in adhesion to surfaces such as proteins, glass and

polystyrene. Also, binding of these fibers in cell aggregation is very important for biofilm

formation. Curii also mediates host cell adhesion and attack, and they are strong inducers
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of the host inflammatory response. Structurally and biochemically, curii belongs to a

growing class of fibers known as amyloids. Amyloid fiber formation is responsible for

several human diseases including Alzheimer's, Huntington's, and prion diseases, although

the process of in vivo amyloid formation is not well understood (Bian and Normark,

1997; Barnhart and Chapman, 2006).

In E. coli, synthesis of curii fibers involves expression of six genes, the csg {agfin

Salmonella enterica) group, that are organized in two divergently transcribed adjacent

opérons, csgBA and csgDEFG. The csgBA operon contains the gene for a nucleator

protein (csgB) and the gene for curlin (csgA), the major protein component of the curii

fibre (CsgA) in E. coli. The csgDEFG operon contains four genes that are involved in

curii synthesis and secretion (Hammar, Bian, and Normark, 1996; Low Braaten and

Woude, 1996; Bian and Normark, 1997; Chirwa and Herrington, 2003 and 2004). Since

the sequence of the CsgD (AgfD) protein reassembles the FixJ/UhpA/LuxR family, and

inactivation of csgD prevents the transcription of the csgBA operon, it is suggested that

the csgD gene serves as a regulatory protein (Hammar, Bian, and Normark, 1996; Chirwa

and Herrington, 2003).

1.7. Mutant suppressors o/AfolA growth defects

Mutant suppressors were isolated in two ways. A mutagenized AfolA strain was

plated on various minimal media. Colonies growing faster than the majority were

selected and further characterized. Some of these were curii proficient. As well, the

unmutagenized strain was plated on Congo red plates on which curii proficient cells form

red colonies. It was possible to select tiny red colonies in a white lawn of cells. These
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curii proficient strains grew faster on some supplemented minimal media (Chirwa, N.T.,

MacRae, T., Zambrana, C. and Herrington, M.B. unpublished results).

In this project the focus was on the suppressor mutants defective in thefolA gene.

Our AfolA strain is a derivative of a strain that has a temperature sensitive thyA mutation

and requires thymidine only at high temperatures. However, both the AfolA strain and its

faster growing derivatives are unable to grow on minimal medium lacking thymidine at

both high and low temperatures (Herrington and Chirwa, 1999; Chirwa, N.T., MacRae,

T., Zambrana, C. and Herrington, M.B. unpublished results). Surprisingly, when the

suppressor strains were made FoIA+ they required thymidine for growth at both low and

high temperatures, whereas when the parent strain was made FoIA+ it grew well without

thymidine at the low temperature (Metallic, T. and Herrington, M.B, unpublished; This

study).

It was therefor interesting to examine whether the thyA alleles affected the growth

of AfolA strains. I also compared the sequences of the thyA-lgt Operon in suppressor and

non-suppressor strains to determine if a change in sequence accounted for the Thy

phenotype.

Also, production of curii (thin aggregative fibers) protein was studied using a

novel technique, since some of the Fol derivatives expressed high levels of curii protein,

while their parents did not proficiently make curii fibers. The derivative FoIA strains

that made high levels of curii protein also produced red colonies on Congo-red plates and

showed faster growth on minimal medium compared to thefolA+ parent.
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2. Materials and Methods:

2. 1. Bacteria, Phage and Plasmids

All bacterial strains used in this study were derivatives of E. coli K- 12 and are listed

in Table 1 . Also, phages and plasmids used are listed in Table 1.

Liquid cultures were prepared from colonies raised in agar plates inoculated with

strains stored in 25% (v/v) glycerol at -800C.

2.2. Media and growth conditions

2.2.1. Luria-Bertani medium (LB or rich medium)

Generally, 25 g dehydrated LB from Fisher or Bioshop was dissolved in 1 liter of

distilled water. Occasionally, LB was prepared by dissolving ten grams of Bacto-

tryptone, 5 g of Bacto-yeast extract and 10 g of sodium chloride in 1 liter of distilled

water. After pH was adjusted for 7.0, the medium was sterilized by autoclaving, and then

stored at room temperature (Miller, 1992). To solidify the media, 15 g of agar was added

to the LB liquid medium before autoclaving.

2.2.2. LB+thymidine (LB+Thy) medium

The amount of 50 µg/ml thymidine was added to LB Broth prepared by Fisher or

Bioshop. Agar (15g/L) was used to solidify the media.
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Strains Description Source or

reference

MC4100 araD139 A(argF-lac)Ul 69 rpsL150 relAl flbB deoCptsF25
rbsR

(D

MHR204 araD139 A(argF-lac)U169 rpsL150 relAl flbB deoCptsF25

rbsR csgA2::Tnl05

(1)

MH428 thyA-722 metB rna (2)

MH429 thyA-723 metB rna (2)

MH430 thyA-724 metB rna (2)

MH431 thyA-725 (ts) metB rna (2)

MH432 thyA (ts) metB rna (3)

MH828 thyA (ts) argE3 rna (3)

MH829 thyA (ts) argE3 rna AfolA: :kan3 c+ (3)

MH840 thyA (ts) argE3 rna AfolA: :kan3 c+ (4) (a)

MH841 thyA (ts) argE3 rna AfolA: :kan3 c+ (4) (a)

MH842 thyA (ts) argE3 rna AfolA: :kan3 c+ (4) (a)

MH950 thyA (ts) argE3 rna AfolA: :kan3 fg (5)(b)

MH951 thyA (ts) argE3 rna AfolA ::kan3 fg (5)(b)

MH952 thyA (ts) argE3 rna AfolA: :kan3 fg (5) (b)

MH953 thyA (ts) argE3 rna AfolA: :kan3 fg (5)(b)

MH956 thyA (ts) argE3 thy (ts) ma (6) (c)

MH958 thyA (ts) argE3 thy (ts) ma (6) (c)

MH981 thyA (ts) argE3 rna This study (d)
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MH982 thyA (ts) argE3 ma This study (d)

MH983 thyA (ts) argE3 ma This study (d)

MH986 thyA (ts) argE3 ma This study (d)

MH984 thyA (ts) argE3 ma This study (e)

MH985 thyA (ts) argE3 ma This study (e)

MH989 thyA 722 metB ma AfolA::Kan3 This study (f)

MH990 thyA 723 metB ma AfolA::Kan3 This study (f)

MH991 thyA 724 metB ma AfolA::Kan3 This study (f)

MH992 thyA 725 (ts) metB ma AfolA::Kan3 This study (f)

MH993 thyA (ts) metB ma AfolA::Kan3 This study (f)

Hfr
strains
Plasmids

pUC18 Vector (7)

pMGSA5 Carrying thefolA gene, Amp (8)

pACBSR Carrying the l-Scell and ? Red genes, Cm (9)

Phages

Pl vir Generalized transducing Phage (10)
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Table 1. E. coli strains, plasmids and phages, (a) These strains were isolated as curii

proficient ( c+) derivatives of strain MH829; (b) These strains were isolated as faster

growing (fg) derivatives of strain MH829; (c) MH956 and MH958 are folA+ derivatives
of strains MH841 and MH950, respectively; (d) These strains are foIA+ derivatives of
strain MH950 by gene gorging; these strains are phenotypically Thy . (e) These strains

are folA+ derivatives of strain MH829 by gene gorging; these strains are phenotypically

Thy (Ts). (f) These strains are AfolA::Kan3 transduced derivatives of strains MH428 to

MH432, respectively. The source and references indicate: (1) Hammar, Arnqvist, and

Bian, MoI. Micro. 18:661 (1995); (2) Faraci, M and M.B. Herrington (unpublished); (3)

Herrington and Chirwa (1999); (4) Herrington M. B. and T. MacRae (unpublished); (5)

Herrington M. B., N. T. Chirwa and C. Zambrana (unpublished); (6) Herrington M. B.

and T. Metallic (unpublished); (7) CG. Cupples; Messing, (1983), Yanisch-Perron

(1985); (8) Herrington (2003); (9) Herring, Glasner, and Blattner (2003); (10) CG.

Cupples and Miller (1992).
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2.2.3. Minimal medium A (minA)

This medium contained 10.5 g OfK2HPO4, 4.5 g OfKH2PO4, 1 g of (NH4)2 SO4, 0.5

g of sodium citrate.2H20 dissolved in 1 liter distilled water. After sterilization by

autoclaving, 10 ml of 20% glucose and 1 ml of 20% Mg2SO4 were added to the medium.

Medium was solidified with 1 5 g per liter of agar.

In our experiments we made 5X minA and before sterilizing, IX minA was

prepared by diluting 200 ml of 5X in 800 ml of distilled water. After autoclaving, the

medium was stored in the volumes of 1 00 ml at room temperature.

2.2.4. Folate endproduct medium (FEP)

Glycine (50µg/ml), thymidine (50µg/ml), methionine (50µg/ml), histidine

(50µg/ml), adenine (30µg/ml) and pantothenic acid (^g/ml) were added to minA

medium to make FEP (folate end product) medium.

FEP-G medium had the same additions except that glycine was not added as one of

the supplements. Any other required media were supplied with one or a combination of

some of these nutrients.

As many strains were auxotroph for arginine, arginine (50µg/ml) was added to

these media.

2.2.5. Congo-Red and YESCA

The Congo-Red (CR) medium per liter contained Bacto-yeast extract (1 g), Bacto-

Casamino acids (10 g), agar (20 g), 50 µg/ml of Congo red and 25 µg/ml of Coommassie

Brilliant Blue G.
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The YESCA medium contained the same ingredients with Congo-red and

Coommassie Brilian blue omitted.

2.2.6. Antibiotics

Final concentrations used for antibiotics were kanamycin (30 µg/ml), ampicillin

(100 µg/ml), and chloramphenicol (25 µg/ml). These antibiotics were added to the

LB+Thy medium, when required for selecting antibiotic resistant strain(s). Stock

solutions of ampicillin and kanamycin in water were filter sterilized using 0.2 µp? filters.

Stock solutions of chloramphenicol was prepared in ethanol and methanol respectively.

AU antibiotics were added to autoclaved media.

2.2. 7. Stock solution ofIX minimal medium A (IX min A) used in gene gorging

The solution contained 1 ml of 20% MgS04, 10 ml of 20% glycerol, 10 ml of each

argenine (50µg/ml) and thymidine (50µ^???) and 10 ml of 0.5% Cassamino acids

dissolved in 1 liter distilled water.

2.2.8. Stock solutions used in SDS-Agarose method

- 4X Tris-Glycine contained 0.5 M Tris and 2 M glycine. The pH was adjusted to

1.8.

- 1 M Tris-HCl (pH 6.8)

- 10% SDS (sodium dodecyl sulfate)

- 10 N NaOH
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2.2.9. Lysis buffer used in SDS-Agarose method

The buffer was prepared of 0.25 volumes of 4X Tris-Glycine, 0.40 volumes of 10%

SDS, 0.20 volumes of 100% glycerol, and 0.15 volumes of distilled H2O.

2.2.10. Soft agar used in RNase assay

This medium contained 7 g of agar, 30 g of yeast RNA dissolved per liter of 0.1 M

of EDTA (pH 7.0) (Miller, 1992).

2.2.11. R-top agar used in Pl vir Transduction

This medium contained 10 g of tryptone, 1 g of yeast extract, 8 g of Difco agar, and

8 g of NaCl.

Sterile CaCl2 (IM) and Glucose (20% w/v) were added to the medium of the final

concentration of 2 mM and 0.1% separately after autoclaving (Miller, 1992).

2.2.12. Preparation ofcompetent cells

The cells were prepared using the CaCl2 method (Sambrook and Russell, 2001).

Briefly, the strains were streaked for single colonies on an LB+Thy plate and incubated

overnight at 370C. A single colony of this overnight culture was incubated in 25 ml of

LB+Thy and grow at 37°C until it was visibly turbid but not overgrown. Then cells were

centrifuged at 13,000 ? g for 10 minutes and the supernatants were discarded. The pellets

were suspended in 10 ml of ice cold 0.1 M CaCl2 and again centrifuged at 13,000 ? g for

10 minute. Finally the pellet was suspended in 1 ml of ice cold 0.1 M CaCl2 and stored in

the refridgerator.
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2.3. Strain construction

2.3.1. Transductions

To make the deletion offolA gene, the transduction method (Miller, 1972 and 1992)

was used to replace foIA+ allele with AfolA::kan3 allele in strains that had different

alleles of thyA gene.

Briefly, the AfolA::kan3 allele from strain MH829 was transduced into the

thymidine requiring strains ((MH428, MH429, MH430, MH431 and MH432) using a

Pl vir lysate prepared on strain MH829.

2.3.1.1. RNase assay to confirm the new transduced strains

As there was a mutation of ma in strains MH428, MH429, MH430, MH431, and

MH432, the RNase assay (Gesteland, 1966) was used to confirm that new derivatives

(MH989, MH990, MH991, MH992, and MH993) had the same phenotype of RNase

activity. Due to mutation, the RNase enzyme was inactive in desired strains. As this

nuclease catalyses the degradation of RNA into smaller components, I checked the

activity of this enzyme in desired derivative strains by this assay. IfRNA in used medium

was digested by RNase made from strain, the small pieces would exist around the colony.

The precipitated RNA by HCl caused light halo around the colony.

One single colony of desired strains (MH428, MH429, MH430, MH431, and

MH432) and controls, MC4100 as a positive (RNase+) and MH828 and MH829 as

negative (RNase-) were grown overnight in 1 ml of LB+Thy medium at 3 7 0C. 5 µ? of

each strain spotted on LB+Thy plate and incubated overnight at 37°C. The day after 2.5

ml of soft agar (contained 7 g of agar, 30 g of yeast RNA, and 0.1 M of EDTA (pH, 7.0)
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dissolved in 1 liter of distilled water) were poured on top of the grown strains. After 2-4

hours of incubation at 43 0C, IN HCl was added to precipitate RNA.

2.3.2. Gene gorging and Transformation

Gene gorging (Herring, Glasner, and Blattner, 2003) is a method for allele

replacement in which cells are transformed with a donor plasmid and the mutagenesis

Plasmid, pACBSR.

The mutagenesis plasmid, pACBSR, carries four genes, l-Scel and lambda Red

genes, which are necessary for mutagenesis in desired cells. The product of l-Scel

endonuclease gene cuts the l-Scel site on the donor plasmid that making the donor

plasmid linear. Lambda Red genes stimulate the recombination between homologous

sequences on the plasmid and chromosome. The \-Scel endonuclease gene and the

lambda Red genes are under inducible control of the arabinose promoter (Herring,

Glasner, and Blattner, 2003). The donor plasmid, in this study was pMGSA5 (A. Beyde

and M. B. Herrington, unpublished), which transports the gene of interest, folA, (Figure

2). The donor and mutagenesis plasmids are compatible replicons.
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Figure 2. Gene gorging diagram. The mutagenesis plasmid, pACBSR, contains

chloramphenicol resistance gene as marker. The donor plasmid, pMGSA5, carries the

folA gene on a 5.8 Kb inserts derived from the E. coli chromosome and the restriction

enzyme site of I-Scel. Also, it contains the marker gene of ampicilline resistance.
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2.3.2.1. Transformation

In order to transfer desired plasmids (donor and mutagenesis) into each MH829 and

MH950 strains individually, the transformation method (Sambrook, Fritch, and Maniatis,

1982) was employed. The 100 µ? of desired competent cells (MH829 and MH950) were

added to the required number of Eppendorf tubes chilled in ice. Then 2 µ? of DNA (final

concentration of 0.1µ§/µ1) were added. Cells without any DNA (plasmid) were used as

the negative control. The plasmid, pUC18, was used as positive control. Then tubes were

incubated on ice for 30 minutes. The procedure was followed with "heat shock"the

samples by placing them at 42° for exactly 90 sec, then were placed on ice for

approximately 2 minutes. Then 400 µ? of LB+Thy liquid was added and incubated at 37°

for 45 minutes. Then 200 µ? was plated on different LB+Thy plates containing desired

antibiotics; ampicillin and chloramphenicol.

There were single and double transformations. In order to check the capability of

cells for transformation, each cell of MH829 and MH950 strains received either pACBSR

or pMGSA5 plasmid in single transformation. In double transformation, each cell of

strains was introduced with plasmids 1 µ? of both plasmids pACBSR and pMGSA5, and

then was purified.

Plasmids were used tat the final concentration of O.^g/Vl to keep the efficiency of

transformation.
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2.3.2.2. Gene gorgingprocedure

The overnight grown colonies on AMP-CM plates were suspended in 1 ml of Ix

minA-stock solution. Immediately, appropriate dilutions were spotted at time zero (t=0)

on AMP, CM, AMP-CM and LB-Thy plates and then incubated at 370C.

Then 20 µ? of 20% L-arabinose was added to each of the undiluted samples and

incubated with shaking at 37°C for 6 hours. In this step, after 30-60 minutes, 20 µ? of L-

chloramphenicol (2.5 mg/ml) was added. After incubation was done, 5-10 µ? of

appropriate dilutions were spotted on AMP, CM, AMP-CM and LB-Thy plates and

incubated at 370C (Herring, Glasner, and Blattner, 2003 with modifications by S. Little

and M.B. Herrington).

2.3.3. Curii Preparation

Highly purified curii protein was prepared as described (Chapman, Robinson,

Pinkner, 2002; Collinson, Emody, and Müller, 1991). In experiments using SDS-agarose

gel analysis a crude preparation ofprotein was done as follows.

Overnight culture of desired strains in LB-Thy medium was diluted 100-fold in

lxminA. Then 100 µ? ofthat solution was plated on YESCA and incubated at 300C for 2

days. The cells were harvested by scraping using a glass rod with a rubber policeman,

and then cells were suspended in 3 ml of 10 mM Tris-HCl (pH 6.8). The OD was

measured by spectrophotometer to determine the concentration of cells and then added

tris to adjust all the samples to an OD of 10.

An equal volume of cell suspension was mixed with lysis buffer. Then samples

were incubated in a boiling water bath for 10 minutes, and cooled down in ice water.
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After mixing well, immediately 1 ml aliquots were transferred to microftige tubes. They

were centrifuged at 13,000xg for 10 minutes at room temperature. The pellet was re-

suspended in 1 ml water and washed once.

2.3.4. Quantification ofProtein

The BCA assay (Sorensen and Brodbeck, 1986) was used to determine the

concentration of protein. The glycine in the extraction buffer interferes with the assay;

hence the protein was precipitated with trichloroacetic acid (TCA) (Pierce protocol,

http://www.piercenet.com/files/TR0008-TCA-acetone-precip.pdf).

In order to eliminate the glycine interference these reagents were used:

- TCA reagent, 72% (w/v) trichloroacetic acid,

- Sodium deoxycholate reagents, 0. 1 5% (w/v) sodium deoxycholate,

- SDS reagent, 5% (w/v) SDS in 0.1 N of NaOH.

The mixture, for TCA precipitation, contained 100 µ? of crude extract, 450 µ? of

sterilized distilled water, 100 µ? of sodium deoxycholate reagent, and 100 µ? of the TCA

reagent in microcentrifuge tube. Then this mixture was incubated for 10 minutes at room

temperature (RT). After vortexing, it was spun down by centrifugation at maximum

speed in a microcentrifuge. After discarding the supernatant, 50-100 µ? of SDS reagent

was added to completely dissolve the protein pellet.
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2.3.5. BCA assay

Twenty-five µ? of protein standard (including blank) and washed samples were

pipetted into a 96 well microplate. Then 200 µ? of working reagent (WR) were added and

after 5 minutes shaking the plate was incubated at 37°C for 30 minutes. Finally, the

absorbance was measured at 562 nm with a Bio-TEK power wave HT microplate reader.

Protein standards (Bovine Serum Albumin (BSA)) were prepared according to the

BCA Protein Assay Reagent Kit (Product No. 23225). BCA working reagent (WR) was

prepared from mixing 50 parts of reagent A and 1 part of reagent B, according to the

instruction for the BCA Protein Assay Reagent Kit (Product No. 23225, 23227).

2.3.6. DNA extraction

A modified method of Sato and Miura (1963) was used to isolate DNA from E. coli.

Briefly, the overnight grown cells in 5ml of LB+Thy medium were spun down. The cells

pellet was lysed by suspending the cells in 15µ1 of lysozyme solution (freshly dissolved

at a concentration of 2 mg/ml in 0.15 M NaCl, 0.1 M EDTA, pH 8.0) and then incubation

at 37°C for 10-20 minutes. After lysis, cells were frozen in liquid nitrogen, 125µ1 of 1%

SDS, 0.1 M NaCl, 0.1 M Tris-HCl, pH 9.0 were added to the frozen cells and stirred as

the cells thawed. 150 µ? of phenol chloroform were added to the cells, centrifuged for 3

min, at 13 XlOOOg. Upper aqueous phase containing DNA was transferred to a clean tube

and, 300µ1 of 95% ethanol was added, mixed and stored at -200C for 30 min,

centri fugation was done for 5 min and DNA pellet was resuspended in 100µ1 of TE

buffer. After adding 3µ1 of RNase A (2 mg/ml) to the DNA and incubating for 30 min at

37°C, 100µ1 of phenol chloroform was added. This mixture was vortexed vigorously; and
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then was centrifugea (13,000 ? g) for 3 min. The aqueous layer was removed and

precipitated DNA with ethanol (Sambrook, Fritch, and Maniatis, 1982).

For a faster preparation of the DNA template, one colony from an overnight culture

was picked into 20µ1 of sterile ice cold water in an Eppendorf tube. The cells were

suspended by pipetting the sample up and down. Then 5µ1 of this suspension was used
for the PCR.

2.3. 7. Primer Design

In order to study the mutations in the region oí thyA and Igt genes, I used primers to

amplify and sequence the region of the E. coli chromosome containing the thyA and Igt

genes. All primers are listed in Table 2. I designed several primers that some of them

used in this study (thyAjregL, thyAregR, ptsrR, t_lgt_2, ppdArL) as listed in

Table 2. The desired primers were made for the region containing thyA and Igt genes

from complete genome of strain K-12 of Escherichia coli, sub-strain MGl 655

(ref|NC_000913.2|) using online software Primer3 (http://www.ncbi.nlm.nih.gov/). The

resultant primers were checked against the complete genome of E. coli

(ref|NC_000913.2|) by basic local alignment search tool (BLAST)

(http://www.ncbi.nlm.nih.gov/) in order to amplify and sequence only the required region

of the genome {thyA and Igt genes). Then a DNA manipulation program (pDRAW)

(http://www.acaclone.com/) helped to annotate desired sequences {thyA and Igt) and

locate the primer binding sites on these sequences.
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Primer Primer sequence

thyAPmRX GTGCTCGAGCAATGGGAGCTGTCTCAGG

thyA_reg_L AAAAAGACGAGGGCCAGTTT

thyAregR CTGATTCGCGGAGGGTTAT

RTthyAL GCCGTCTGCCACATAGAACT

RTjhyA R ATGTCACCATCTGGGACGAA

ptsrR TGCAATGTTACGAGCTCTGG

RTJgtRtest CCACTCATTCCGTTTGGTCT

ppdArL AGTCCACTTGCGCTTAGCAT

thyARt TAGTCGAAGATGGATTCGGG

t_lgt_2 GTCCCAGACACGGAACAGAT

folamnskpn TTTGGTCACTGGGTACCGCTGGAGG

folaplsnar CGTTGGTTGGCGCCGTTGTTAGGGC

Table 2. Primers used for amplification and sequencing of the Igt-thyA region and

sequence used to sequence folA gene from upstream and downstream of gene in strains

with eitherfolA or AfolA::Kan3 alleles.
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2. 3.8. Polymerase Chain Reaction (PCR)

Bioshop Taq polymerase was used for PCR. It was supplied with 1OX buffer

without MgCl2.

The PCR reaction was carried out in a total volume of 20 µ?. This consisted of 5 µ?

template and 15 µ? of master mix. The master mix contained 0.5 µ? concentration of

each primer, 2 µ? of 10X buffer, 0.6 µ? of 50 mM MgCl2, 0.4 µ? of dNTPs mixture, 0.05

µ? of Taq polymerase, and distilled water to get the total volume of 15 µ?. The reaction

was performed using the following program based on (Sambrook, Fritch, and Maniatis,

1982); 940C for 3 min., 35 cycles with 94°C for 30 sec, 65°C for 1 min., 72°C for 2 min

and 10 sec, and the final extension at 72°C for 10 min. Depending on the primers and the

length of desired region to be amplified; the annealing temperature and the extension

time in different PCR reactions were different.

GeneAmp, PCR system 9700 was used for amplification. After amplification, 5 µ?

of the products were analyzed on a 1% agarose gel.

2.3.9. Sequencing

The PCR reaction used for sequencing was carried out in a total volume of 50 µ?

containing 5 µ? of template and 45 µ? of master mix.

The PCR products and the appropriate primers (Table 2) were sent to the Genome

Québec Innovation Centre for sequencing at McGiIl University.
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2.3.10. DNA and Protein separations

PCR products were analyzed by agarose gel electrophoresis. Gels were stained with

ethidium bromide (Sambrook, Fritch, and Maniatis, 1982).

Depending on the fragment size, the percentages of gels were made different. The

chromosomal DNA samples were analyzed by a 1.2% (w/v) agarose gel dissolved in

lxTris-Acetate-EDTA (IxTAE) and ? Hind III as marker. A 1.6 % or 0.8% (w/v)

agarose gel dissolved in IxTAE was prepared for analyzing PCR products. 5µ1 of

samples or marker was mixed with 1 µ? of Bromophenol blue dye and then was loaded to

the wells of gel. Running was done at 72 volt for 1 hour. A ? HindIII, lambda marker and

Gene Ruler 100-bp DNA Ladder-Plus, were used as DNA markers.

SDS Polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli, 1970) and SDS-

agarose gel electrophoresis (Horsten, 2003; Luo, Wehr, and Levine, 2006) were used for

protein separation analysis. The SDS-PAGE was stained with Coomassie Brilliant Blue

R-250. The staining of SDS-agarose gels was done by EZ-blue buffer.

2.3.10.1. SDS-Agarose Gel electrophoresis

A final concentration of 1 .2% agarose was used. After melting the agarose in TAE

and cooling down to 5O0C, 250 µ? of 10% SDS was added slowly and stirred with a stir

bar.

Samples were suspended (10:20 µ?) in 3X sample buffer (3 ml 10X TAE, 12 ml

10% SDS, 3ml 100% glycerol, 15 mg bromophenol blue, and 2 ml H2O). Agarose gel

was run with the running buffer (20 ml 10X TAE, 2 ml 10% SDS, and 178 ml H2O) at

the voltage of 70 for 45 minutes. The gel was stained with EZ Blue ™ Gel Staining
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Reagent (Sigma), and after washing with water it was imaged on the Odyssey Infrared

imager.

2.3.10.2- SDS-PAGE

A final concentration of 12% separating and 8% stacking SDS-PAGE (Laemmli,

1 970) were prepared.

After recovering almost the total amount of materials from the wells of SDS-

agarose gel, they were washed once by suspending in distilled water and centrifuging at

13,000xg for 2 minutes. Then protein was quantified by BCA assay and a known amount

of samples were treated by 90% cold formic acid (1 µg protein /µ?) for 10 minutes, and

then was boiled with SDS-sample buffer in water bath for 10 minutes at 1000C. The gel

was run at 72 volt for 45 minutes. Staining for 1 5 minutes, washing with distilled water

and distaining (methanol, acetic acid) prepared gel for scanning.
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3. Results:

3.1. Construction and confirmation ofstrains

In order to study the relationship between thymidylate synthetase (TS, the product

of thyA gene) and dihydrofolate reductase (DHFR, the product offolA gene) in folate

pathway the folA deletion allele, AfolA: :Kan3 was transferred to some strains and the

folA+ allele was transferred to others.

3.1.1. Comparisons ofAfolA::Kan3 strains carryied different thyA alleles

To test whether the thyA allele present affects the growth of strains unable to make

dihydrofolate reductase, I constructed AfolA::Kan3 derivatives of five strains. These

strains (MH428, MH429, MH430, MH431 and MH432) were auxotrophic for methionine

and had different thyA alleles (Faraci, M and M.B. Herrington, unpublished; Herrington,

Kohli, and Faraci, 1986). Three strains required thymidine at the three temperatures

tested (30, 37 and 43°C) and two strains required it only at higher growth temperatures.

The new FoIA- strains resulted from transduction are listed in Table 1 and the

relationships between strains are shown in Figure 3.

Strains were constructed by transducing AfolA::Kan3 allele from strain MH829

using Pl vir. The resultant plaque forming units (pfu) of lysate showed successful lysis.

Then five host strains were infected by this phage. The infected recipients were plated on

LB+Thy+Kan plates to select for AfolA::Kan3 allele of the donor strain MH829. The

kanamycin resistant colonies were picked up as AfolA::Kan3 derivatives to use for the

rest of the experiments.

35



MB128
Met Th*' Lvs

*(a)

MH428 MH429 MH430 MH431 MH432
thvA 722 AvA 723 thyA 724 thy 725(Ts) thyA(Ts)

(w| III/
MH989 MH990 MH991 MH992 MH9Ü3

I I

Uc)

Met afoU:X.iati % " erthy(Ts) MH828
Arg %oy

I(b)
MH829

Arg Jß>L4zM.an3 thyfTs)

MH841 MH842MH840 MH950 ^13951 ?1?952 MH953
____ (g)

(f)
MH9S6

-i-

Arg FoIA thy

MH9S4 MH9SS ,„,„-„MH9S8

Arg - tkyfls) FoIA+ 4rg- Fo|A-f%,

I 1 1 1

MH981 MH982 MH983 MH98Ö

Arg ~ thy~ FoIA+

36



Figure 3. Strain relationships, (a) Thymine requiring derivatives of strain MH 128 were

constructed by PlCM transductions, using different donor strains and selecting for Lys+.

Transductants were then tested for the thymine requirement, (b) The AfolA::Kan3

mutation was transferred to strains MH428, MH429, MH430, MH431, and MH432 by

Pl vir transduction from strain MH953 (this study) and to strain MH828 by PlCM

transduction (Herrington and Chirwa, 1999). (c) The argE3 mutation was transferred

from strain KL719 to strain MH432 by PlCM transduction to produce the Met+ Arg-
strain MH828 (Herrington and Chirwa, 1999). (d) Approximately IO8 MH829 cells were
plated on Congo-red plates. A tiny red colony was observed in a lawn of white cells on

some plates. These colonies were isolated and tested for growth on supplemented

minimal medium. They grew better than strain MH829 under same conditions (M. B.

Herrington and T. MacRae, unpublished), (e) Strain MH829 was plated on supplemented

minimal medium. Colonies that grew faster than the majority were isolated and retested.

Strains MH950-953 grew better than the parent strain. As well, strains MH950-952 were

red on Congo red plates, (f) FoIA+ derivatives of strains MH841 and MH950 were

constructed by transforming the parent strains with a piasmid containing the folA gene,

and growing transformants without selection for the piasmid and screening for improved

growth in the absence of the piasmid (M. B. Herrington and T. Metallic, unpublished),

(g) FoIA+ derivatives were constructed by gene gorging (Herring, Glasner, and Blattner,

2003) using thefolA donor piasmid pMGSA5 (this study).
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Thy phenotype of parents (MH428, MH429, MH430, MH341 and MH432) was

checked before transduction. The related strains MH828 and MH829 were also tested

(Figure 3). As parent strains were auxotrophic for methionine and they had different thyA

alleles, the strains were tested on minimal medium containing methionine and thymine

(minA±Met±Thy) at room temperature (RT), 300C, and 43°C. For related strains,

arginine was added to the media, as well. Also, strains were tested on ArgFEP, ArgFEP-

gly, and LB+Thy media and plates were tested at three temperatures (30, 37 and 430C).

AU strains could grow on LB+Thy (37°C) after one day of incubation. On minimal

medium containing methionine and thymidine, parent strains (MH428, MH429, MH430,

MH431 and MH432) grew into colonies formation 1-2 days at 3O0C, and 43°C. On plates

without thymidine only strains MH431 and MH432 grew at 300C, but not at 43 0C. There

was therefore no observed growth of any of the strains on plates without added thymidine

at 43°C. There was no growth observed at any temperature, when methionine was

omitted. These results prove that parent strains were methionine auxotroph, as expected.

These data are not shown.

The related strains, MH828 and MH829, could grow on minimal medium with

arginine and thymidine in the absence of methionine. MH828 grew after one day at 30

and 43°C. The strain MH829 grew after 3 days at 30 0C and 5 days at 43°C (Table 3).

Both the parent strains and the related strain MH828 grew on minimal medium

supplemented with arginine and the folate end products (ArgFEP) after 1-2 day

incubation at 30, 37 and 43°C. In contrast, strain MH829, which is deleted forfolA, grew

after 3-4 days only at two temperatures (30 and 37°C) (Table 4).
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ArgFEP-Gly

30 37 43

ArgFEP

30 37 43

Arg+Thy

(-Met)

30 43

LB+

Thy

37

MH828

MH829

MH428

MH429

MH430

MH431

MH432

Table 3. Growth phenotype of strains carrying different thyA allele. Strains MH428,

MH429, MH430, MH431 and MH432 was tested by spotting 10µ1 aliquots of undiluted

and diluted culture on folate end product (FEP) medium with and without methionine and

glycine, as well on LB+Thy at different temperatures. Growth was monitored during 7

days. The first day that visible colonies were seen with the most dilute sample was noted.

* The colonies of strain were formed but where the growth of less dilute samples showed

abnormalities such as a thin lawn.
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ArgFEP-Gly

30 37 43

ArgFEP

30 37 43

Arg+Thy

(-Met)

30 43

LB+

Thy

37

MH828

MH829

MH989

MH990

MH991

MH992

MH993

Table 4. Phenotypic growth of AfolA::Kan3 derivatives of methionine auxotroph strains

carrying different thyA allele. From overnight culture of derivative strains resulted from

transduction and the parents, 10 µ? of 10"6 dilution was spotted on different media and

incubated at different temperatures (30, 37 and 43°C). Growth was noted during seven

days of incubation and the mentioned day is the first that visible colonies were observed.
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When glycine was omitted from ArgFEP medium (ArgFEP-Gly), all strains, except

strain MH829, were able to grow at two lower temperatures (30 and 37°C) during two

days of incubation, but did not grow at 43°C. Strain MH829 did not grow at any

temperature on ArgFEP-Gly (Table 3).

The results of ArgFEP plates show that parent strains display about the same

growth as related strain MH828. The strain MH828 is ThyA(Ts) and was able to grow on

this supplemented media at the three temperatures. But when glycine was omitted it was

not able to grow at higher temperature (45°C). The parent strains, which had different

thyA alleles, showed the same growth on these conditions and media at higher

temperature. But they grew slower than related strains (MH828 and MH829) at lower

temperatures (Table 4).

In supplemented minimal medium, when glycine was omitted (Arg+FEP-Gly),

their growth was slower compared to minimal medium Arg+FEP.

The RNase assay was used to verify that new (àfolA) strains (MH989, MH990,

MH991, MH992, and MH993) were correct derivatives of their parents (MH428,

MH429, MH430, MH431 and MH432). The RNase phenotype of new strains was

checked with control strains, such MH828 and MH829 as RNase~, and MC4100 as

RNase+ strains. After adding soft agar and incubating, the grown colonies were applied

with IN HCl to precipitate RNA. Only one strain showed bright halo around the colony,

which was MC4100 (RNase+). But, the related strains MH828and MH829 and all of the

new derivatives (MH989, MH990, MH991, MH992, and MH993) did not make halos

around their colonies that verified them as RNase derivatives.
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ThefolA allele in the new strains and their parents was amplified by "folamnskpn"

and "folaplsnar" primers. The sequences of primers are listed in Table 3. The PCR

products were analysed on a 1% agarose gel (Figure 4 (Gel B)). As expected, the size of

folA+ allele in strain MH828 was 1575-bp and of the AfolA::Kan3 allele in the strains

MH829 and MH950 was 2565-bp. The PCR products in the new FoF strains were about

2565 bp compare the PCR product produced for their parents was about 1575 bp. These

results confirm that the expectedfolA alleles are present in these strains.
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Figure 4. PCR amplification of the folA region in different strains; A. The FoIA+

derivatives resulted of gene gorging from the strain MH829 (MH985 and MH986) and

from the strain MH950 (MH981, MH982, MH983, and MH986). B. The AfolA

derivatives of MH989, MH990, MH991, MH992 and MH993 strains. The parents strains

(MH428, 429, 430, 431 and MH432) carry different thyA allele. Expected band size for

folA+ is 1575-bp and for AfolA: :Kan3 is 2565-bp (Herrington and Chirwa 1999). The

ladder was "Lambda DNA/Hind III Marker, 2" from "Fermentas".



Growth of MH989, MH990, MH991, MH992, and MH993 derivatives and their

related strains, MH828 and MH829 (Figure 3) was tested on minimal medium plates. As

the parental strains (MH428, MH429, MH430, MH431, and MH432) were methionine

requiring, the presence of methionine in medium was necessary for the growth of all

derivative strains, as well. To test the growth phenotype of derivatives, the following

supplemented minimal medium with folate end products (FEP) was applied: ArgFEP,

ArgFEP-Gly, ArgFEP-Gly-Met, and ArgFEP-Met plates incubated at three different used

temperatures. Growth was tested also on minimal medium supplemented only with

thymidine and arginine (Arg+Thy) at 3O0C and 43°C, and on LB+Thy medium at 37°C,

as well.

Strain MH828 on ArgFEP-Gly-Met, ArgFEP-Met media, grew after one day of

incubation at only 300C and 37°C. MH829 strain did not grow on media without glycine.

On Arg+Thy medium, MH828 showed growth after one day at testing temperatures

(300C and 43°C). The growth of MH829 strain on Arg+Thy medium was observed after

6 days of incubation at 300C, however growth was abnormal. This strain made colonies

but the growth was observed as thin lawn. On minimal medium containing arginine and

methionine and supplemented minimal medium without thymidine, MH828 grew only at

300C and at 370C it show abnormal growth. In these conditions with no thy added,

MH829 did not grew.

As all the derivative strains, MH989-MH993, were methionine requiring, none of

them grew on medium without added methionine. Therefore, I did not observe any

growth colony on minimal media containing ArgFEP-Gly-Met, ArgFEP-Met, and

Arg+Thy.
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The growth of derivatives was observed only on ArgFEP at all three testing

temperatures. In this medium all strains grew at 300C the same as on LB+Thy after one

day, wheares at the higher temperatures (37°C and 43°C) their growth was very late (6-7

days) compared to LB+Thy plate. The related strain MH828 grew after one day on

ArgFEP at all three temperatures and strain MH829 grew only at the two lower

temperatures (30 and 370C) after 3-5 days (Table 4).

These results show that the growth phenotype of these new AfolA::Kan3 derivatives

was influenced by the met mutation on minimal medium containing Arg+FEP and

Arg+FEP-Gly. The results also show the thyA allele did not affect the phenotype of the

folA mutation in these derivatives (MH989, MH990, MH991, MH992 and MH993),

because the folate phenotype of strains with the either thyA*5 or thyA alleles was he
same.

3.1.2. Construction ofFoIA+ strains

The strain MH829 is the parent strain of strain MH950 (Figure 3). Genotypically,

strain, MH829 has a thyA(Ts) allele but phenotypically it is Thy-. The suppressor strain,

MH950 was also phenotypically Thy-. Earlier experiments suggested that this strain

remained Thy- when it was made FolA+,whereas FoIA+ derivatives on MH829 were

Thy15. In order to check and determine if the earlier results were correct, I inserted folA

allele in MH950 and MH829 strains (Table 1) and I constructed FolA+ derivatives of

both MH829 and MH950 strains.

Strains were constructed by gene gorging, transformation of FolA cells to FolA+

using two plasmids. The plasmid pMGSA5 donated folA+ allele to the desired strains,
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MH829 and MH950, by company of the plasmid pACBSR that carried 1-Scel and ?-Red

genes. The competent of MH829 and MH950 strains were combined with pACBSR,

pMGSA5 and with a mixture of the two plasmids. 100 µ? of undiluted transformants were

plated on LB+Thy plates containing required antibiotics, chloramphenicol (CM) or

ampicillin (AMP). Single transformants were selected on CM and on AMP plate and

double transformants were selected on AMP+CM plates. On AMP plates, transformed

strain MH829 had 40 colonies and transformed strain MH950 had 34 colonies. On CM

plates, 41 colonies were observed from MH829 and 30 colonies from MH50 strain. The

double transformation was successful, since transformed strains MH829 and MH950 had

43 and 38 colonies, respectively, on AMP+CM plates. So these transformants were used

for the gene gorging.

I included both a negative control (no added DNA) and a positive control (pUC 1 8)

for each strain. Both strains produced resistant colonies with the positive control on Amp

plates. There were no colonies when no DNA was added.

In gene gorging, at t=0, 10 µ? of 10-, 100-, and 1000-fold dilutions of transformed

cells were spotted on AMP, CM, AMP+CM, and LB+Thy plates and incubated at 37°C.

The colonies after one day showed the same growth compare to LB+Thy plate on AMP,

CM, AMP+CM plates. These results showed that cells had maintained both plasmids.

After applying L-arabinose and chloramphenicol, and incubation, 100 µ? of 10

and 10"5 aliquots of MH829 and MH950 strains were spotted on LB+Thy, and LB+Thy

contain uig AMP, CM, Kan, AMP+CM, and AMP+CM+Kan plates at 37°C. Also, 100 µ?

of 10"' aliquots of MH829 and MH950 strains were plated on LB+Thy and Arg+Thy and

incuba, ed at 370C. As there were roughly the same number of colony (4-5) in different
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media compared to LB+Thy, hence transformation and gene gorging worked well. Many

of the cells were now AMP sensitive and CM sensitive indicating that the donor plasmid

was no longer present (as expected due to it became linearized by I-Scel) and the

mutagenesis plasmid was lost in many of the cells. Very low number of colonies (3-5) on

CM+AMP plate verified that the donor plasmid had been cut (Herring, Glasner, and

Blattner, 2003). These results showed that two plasmids were no longer present in many

of the cells. The difference between FoIA+ and FoIA colonies was very clear on

Arg+Thy plates (Figure 5).

So, from Arg+Thy plates, some of the largest colonies were selected as possible

FoIA+ derivatives were chosen (Figure 5). To confirm the recombination and

replacement of AfolA::Kan3 allele with folA+ allele in strains MH829 and MH950, cells

were again screened for kanamycin, ampicillin and chloramphenicol sensitivity (Kan

AMPS CMS) on LB+Thy plates containing these antibiotics. The Kans AMPS CMS
colonies were tested for Thy phenotype on minimal plate containing arginine (Arg) and

thymidine (Arg+Thy) at three temperatures (30, 37 and 43°C).

Finally, after screening and successfully purifying, two derivatives of MH829

(MH984. MH985) and four derivatives of MH950 (MH981, MH982, MH983, MH986)

were sei cted for further characterization. The new derivative strains resulted from gene

gorging !"'Ol+) are listed in Table 1 .
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... .. -.- . , Ci-' L.

(C) (D)

I

Figure 5. Screening of FoIA+ derivatives by Gene Gorging. Samples from gene gorging

were plated on LB+Thy and Arg+Thy media and were incubated at 37°C. (A, B) MH829

on Arg+Thy, (C, D) MH950 on Arg+Thy.
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The folA region of the E. coli choromosome of each putative FoIA+ strains were

PCR amplified and the PCR products were analysed (Figure 4, Gel A). All of the new

Fol+ strains had the expected size product.

Ten µ? of 10"6 dilutions of the Fol+ derivative strains (MH981, MH982, MH983,
MH984, MH985, and MH986) and their parents, MH829 and MH950, were spotted on

minimal medium containing Arg, Arg+Thy, Arg+FEP-Gly, and on LB+Thy plates. Then

plates were incubated at 37°C.

Strain MH829 was able to grow into obvious patches on minimal medium

containing arginine and thymidine (minA+Arg+Thy) at 30 0C by 3 days, but at 37 0C and

43°C patches were formed after 5 days. When thymidine was omitted from this medium,

strain MH829 grew abnormally at 30 0C and it was not able to grow at 37 0C and 43°C,

and strain MH950 did not grow at any of three testing temperatures (30, 37 and 43°C) and

it was known as thymine requirement {thy ).

The growth phenotype of Fol+ derivatives (MH981, MH982, MH983, MH984,

MH985, and MH986) and parents (MH829 and MH950) showed clear differences on the

Arg+Thy medium. On this medium the Fol+ derivatives grew quickly, as after one day at

37°C they had fairly large size colonies. In contrast the parent strains, MH829 and

MH950, grew slowly on both Arg+Thy and LB+Thy at 300C after 3 days.

On minimal medium containing arginine (minA+Arg) at 300C, 37°C and 43°C only

derivatives of MH829 (MH984 and MH985) had growth after 6 days only at 300C. There

was no growth of MH950 derivatives (MH981, MH982, MH983, and MH986) at any

three testing temperatures. The results suggested that MH984 and MH985 strains were

ThyA(Ts) and were not able to grow at higher temperature (43°C) without thymidine
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added. Also, it confirmed that other FoIA+ derivatives (MH981, MH982, MH983 and

MH986) were Thy".

The new Fol+ derivatives showed faster growth on Arg+FEP-Gly than their

parents, MH829 and MH950. During 1-2 days Fol+ derivatives were observed at 30 and

370C. Strain MH829 showed no growth on Arg+FEP-Gly and strain MH950 had growth

after 3-4 days. These results showed that Fol+ derivatives had the same growth as related

Fol+ strain MH828.

These results showed that thyA gene did not have influence on the growth

phenotype of Fol+ derivatives. This conclusion is based on the fast that the FoIA+

derivatives of MH950 (MH981, MH982, MH983, and MH986) behaved as Thy" and

Fol+ derivatives of wheares the MH829 derivatives (MH984 and MH985) were FoIA+

and Thyts.

3.2. The sequence of thyA and Igt genes

To determine what mutations, if any were present in the Igt-thyA operon of strain

MH829 and MH950, the region was sequenced. For each strain, five PCR products

spanning the Igt-thyA region were sequenced using the primers listed in Table 2. Figure 6

shows the region and the approximate sizes of the sequences obtained.

The BLAST analysis of all sequences showed high identities to sub-strain of

MGl 655 of strain E. coli K- 12 (Table 5).

After combination of sequenced regions shown in Figure 7, the 5' to 3' strand of

these two genes and their opérons were confirmed by BLAST analysis. The BLAST

analysis showed 1898/1899 identities to sub-strain of MG1655 of strain E. coli K-12.
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Table 5. Summary of BLAST analyses of sequences. Ten primers were used to sequence

thyA-lgt region and its operon in five strains. Two strains MH829 and MH950 were

sequenced with all ten primers, but three strains MH841, MH956, and MH958 were

sequenced with five primers that covered the desired region and its operon. The BLAST

hit positions given is the range with either 100% identity or a single mismatch. The

Location of mismatch in all five sequences is nucleotide 2963047 with the change of

T—»A on 5' to 3' direction of sequence. NM notifies when there was no mismatch in the

sequence and the identity was 100%.
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Thus, both strains contain a single base pair change in the thyA gene located at position

2963047.

The BLAST analysis of translated sequence (protein) showed complete (291/291)

identity to wild type Lgt (phosphatidylglycerol-prolipoprotein diacylglyceryl transferase

refjNP_4 17305.1 1) and a single amino acid change (263/264) when compared to wild type

ThyA (thymidylate synthetase ref|NP_4 17304.1 1).

The desired region (thyA and Igt) in strains MH829, MH841, MH950, MH956, and

MH958 was sequenced and the used primers and BLAST results shown in Table 5. When

strain MH829 was also sequenced, the assembled sequence spanned nucleotides

2964510-2962421 with a single mismatch (A to T) at position 2963047.

When strain MH950 was sequenced, the assembled sequenced spanned 2964510-

2962122 nucleotides with the same mismatch (A to T) at 2963047. The assembled

sequence of spanned nucleotides 2964510-2962122 of strains MH841, MH956, and

MH958 (Table 6) was contained the same mismatch (A to T) at nucleotide 2963047. This

mismatch was seen on only one spanned nucleotide sequenced by RTlgtRt primer.

These results indicate that both group of strains with different Thy phenotypes

(Thyts and Thy-) showed the same nucleotide change. These results demonstrated a

single AT->TA mutation in thyA suggesting that a second site mutation results in the

different Thy phenotype; Thy- in one strain and Thyts in another. These result

demonstrated a single AT->TA mutation in thyA located within the region where the

thyAts allele was mapped by Belfort, Maley and Pedersen-Lane (1983). Since all the

strains have the same mutation, the Thy phenotype must result from a mutation outside

of the thyA-lgt region.
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Figure 6. Assembled sequences for the thyA and Igt region. This region shown

corresponds to nucleotides 2962122-2964510 of E. coli K-12 strain MG1655. In the

diagram only the last four numbers are shown. The arrows show the approximate length

of sequence obtained with each primer, with the arrowhead indicating the 5' end. The

numbers correspond to the primers used: 1. thyA_reg_L, 2. thyA_reg_R, 3. RT_thyA_L,

4. RTthyAR, 5. thyA_Pm_R_X, 6. ppdArL, 7. Pts_r_R, 8. thyA_R_t, 9.

RT_lgt_R_t, and 10. t_lgt_2. The position of the only mutation found in the region is also

shown.
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2364240- CATSSSCGSG CTGaTTdSOS SAGSGTTATA GCGCSSAXCA TATiCATATC TTTTAiCSGT
-10 Igt tf>

29641B0 ATCCGGCAiC CAGCCAGGTC CCCXTGTSC}X ArTATfcCGCA CCTfTGGAGC GCCTGAAÄCC

2964120- TGCSGCGCSC ATTTCAATCS CTSTTOTCTT TCAGCGAAiT AACAAGAiCT TSTJSSÎG|jCi
»564060- sfillACCiGT ASCTATCTSC ÄXTTTCCGSÄ GTTTGATCOS GTCATIITT-CT CAATAGSiCC

2964000 CGTGSCGCTT CiCTGiGTACS SCCXSATGTi TtTESGBSGGT TTCiTTTTTG CÜTGTGGCT

2963940 SGCAiCACGA CSSGCGiATC GTCCGSGCiG CGSCTGSiCC AAiAATGAiG TTGAiAACTT
S 963
5 963-

BBO ACTCTiTSCG GSCTTCCTCG GCGTCTTCCT CGSSSGACGT ATTG-STTiTG TT€T>STTCTi
i20 CAiTTTCCCG CiGTTTATGG CCSATCCGCT STiTCTGTTC CGTSTCTGGG ACSSCGGCÄT

2963760 STCTTTCCAC GSCGSCCTSi TTSSCGTTiT CSTSSTSiTS ATTÄTCTTCG CCCSCCSTiC
2963700 TÄÄÄCSTTCC TTCTTCCiGG TCTCTGATTT TiTCGCiCCi CTCiTTCCGT TTGGTCTTGS
2962640 TSCCSSSCST CTGSSCAiCT TTATTAiCGS TSAATTSTSS SSCCGCSTTS ACCCGiiCTT
2963580 CCCSTTTSCC ATSCTSTTCC CTGGCTCCCG TACiGAAGAT ATTTTGCTSC TGCAiACCiA
2 9635-2 Q' CCCSCiSTGS CAiTCCATTT TCGiCACTTi CGSTGTGCTS CCGCGCCiCC CATCÄCAGCT
2963460 TTACGiGCTG CTSCTGSAiS GTGTGGTGCT GTTTiTTiTC CTCAiCCTGT ATiTTCSTAi
296340-0 iCCACGCCCA iTSSSASCTS TCTCiSSTTT STTCCTSiTT GSTTÄCSGCG CSTTTCGCiT

[-35} [-1Ql
2963340 CiTTGTTGAS TTTTTCCSCC ÄSCCCSACSC GCiGTTTiCC GSTSCCTGSG TGCiGTACiT

¦fcisyi (fï*
2963260 CÂSCATGSSS CÜATTCTTT CCÂTCCCGAT SATTSTCGCG SGTSTSiTCi TSiTGSTCTS

(End ef igr} S.D.
TATCGT CGCiSCCCAC ASCAiCACGT TTCC^|sgJä iCC^^AÜC ASTiTTTiGi£***£¦**.

s 963160 iCTG&TGCÄÄ AA&GTGCTCG ACSAiGSCAC ACiGAAAAiC SiCCGTACCG GAACCSSiAC
ItspAlZ

»96310-0 SCTTTCCÂTT TTTGGTCiTC iSATGCSTTT TiiCCTGCii GiTSSATTCC clcpbGTSAC
2963040 AiCTiAACGT TGCCACCTGC STTCCiTCiT CCATSAiCTG CTGTSSTTTC TGCAGGSCGA
2 962 9BQ 'CACTAiCATT GCTTiTCTiC ACSiAAACAA TSTCiCCiTC TGGGiCSiAT GGGCCGiXGA
2962920 AAiCGGCSAC CTCGSGCCiS TGTiTGSTAA ACiSTGSCGC GCCTGGCCAA CSCCASiTSS

lîxuAlI

2 962 ñ 60 TCGTCiTATT -GiCCiGATCA CTÄCGGTÄCT GAACCi¡fcTS iÄAüCSiCC CGSiTTCSCG
2962800 CCGCÄTTATT GTTTCiSCGT SGAiCGTAGS CSiACTGGiT AAÄATSSCGC TGSCiCCiSTS
2962740 CCATGCiTTC TTCCASTTCT ATGTSGCASi CGGCAAiCTC TCTTGCCÄSC TTTATCASCG
2962610 CTCCTGTGiC GTCTTCCTCG GCCTSCCSTT CÜCiTTGCC iSCTACGCGT TATTGSTSCi
2962620 TÄTGATSGCG CiGCiSTSCG iTCXGSAAST SGGTGiTTTT GTCTSGACCG GTGGCSiCAC
2 562 5 B Q- SCATCTGTÄC ASCiACCATi TSSATCAAiC TCATCTSCAi TTiASCCSCS iiCCGCSTCC
2962520 SCTSCCSAiG TTSATTATCÄ iACGTÜACC CGiATCCATC TTCGACTiCC GTTTCGiAGi

(End of bhjAì
29624B0 CTTTGASiTT GAiGGCTACS ATCCGCATCC SSSCATTiAA SCSCCSGTSG CTATCTäHI
2S6242Q ACGAAiCiTC CTSCCÂSAGC CGACGCCAST STSCGTCGGT TTTTTTiCCC TCCGTTiAAT
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Figure 7. The sequence of thyA and Igt genes in MH829 and MH950 strains ofE. coli ?-

? 2. The double boxed A is the only nucleotide difference between the wild type sequence

and thy's allele. This is located in the region where this allele was mapped by Belfort

Maley and Pedersen-Lane (1983).

The start codons of the two genes are shown in dark gray boxes, and the translation-stop

site of thyA and Igt genes are shown in very dark gray. The positions of Shine-Dalgarno

sequence (S.D.) of the ribosome binding site shown in dashed boxes placed 3 nucleotides

upstream of the start codon. The MspAII restriction enzyme sites are in dark gray in thyA

ORF.

The underlined is the part that Belfort and Pedersen-Lane (1984) reported for the ThyA

mutation they found. The double-boxed nucleotide shows the inverted nucleotide (A to

T) in thyA gene of the strains MH829, MH841, MH950, MH956 and MH958. The

mutated nucleotide in thyA gene is mentioned as nucleotide "Ja]", which is on the 5' to 3'
strand. The transcription start sites for Igt and thyA are indicated with arrows, the

promoters and ribosome binding sites of these two genes, also the translation start codon

of Igt and thyA, are specified (Gan, Sankaran, and Williams, 1995). The poly-T region,

which is shown in gray, represents the transcriptional termination of the thyA gene after a

G-C-rich region (Gan, Sankaran, and Williams, 1995).
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3.3. Detection ofCuriiprotein

I wanted to study the curii proficiency of strains, because some Fol derivatives

(MH950) (Figure 3) surprisingly made red colonies on Congo-red plates. As Congo-red

plates are variable I developed a new rapid method for detecting curii.

Crude curii preparations were made from the wild-type strain MC4100 and

MHR204 as well as Fol+ derivatives of MH829 (MH984 and MH985) and of MH950

(MH981, MH982, MH983, and MH986).

3.3. 1. Detecting curii by SDS-Agarose gels

SDS-Agarose gels have been used to analyze partially dissociated amyloid proteins

(Bagriantsev et al., 2006). Since curii are amyloid like, I examined their behavior during

SDS-agarose gel electrophoresis (Figure 8).

When the gel was stained with EZ-blue buffer and washed briefly, the only protein

visible was in the wells of the gel (Figure 9.A). Since this protein was present in the

samples from MC4100 and not from MHR204 it could be predominantly curii fibres.

Protein was also visible in SDS-agarose gel of samples from MH981, MH982,

MH983, and MH986. These strains are red on Congo-red plates suggesting they make

curii.

Protein was not visible in samples of MH984 and MH985. These strains are less

red on Congo-red suggesting they make few if any curii.

Similar results were observed when proteins were extracted from cells after three

days of incubation (Figure 9.A) and after one day (Figure 9.B).
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Figure 8. Protein analysis by SDS-PAGE. CsgA and CsgB were purified (Chapman et

al., 2002; Collinson, Emody, and Muller, 1991). Lanes 2- 6 contained 0.83µg of purified

CsgA (18 KDa (Chapman et al. 2002, Olsen, Arnqvist, and Hammar, 1993; Collinson,

Emody, and Trust, 1992)) and CsgB (15.3 KDa (Bian and Normark, 1997)) from

MC4100. Lanes 1 & 7 contains 10µg of protein markers.
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Figure 9. The SDS-Agarose gel and analysis of crude extracts. The known amount, 20-

30 µg, protein from washed samples were loaded on a 1.2% SDS-agarose gel. The

voltage of 72 was applied for 45 minutes. After staining the gel with the EZ Blue

Reagent and washing twice with water, the gel was observed with the Odyssey Infrared

imager. (A) Proteins extracted from cells after 3 days incubation of YESCA plates at

300C. Lanes represent, 1: Ladder, 2 & 3: MC4100, 4 & 5: MHR204, 6 & 7: MH829, 8 &

9: MH950, 10: empty, 11: Ladder. (B) Proteins extracted from cells after 1 day

incubation of YESCA plates at 300C. Loaded samples on the gel contained 20 µg

proteins. Lanes represent, 1: Ladder, 2 & 3: MC4100, 4 & 5: MHR204, 6 & 7: MH829, 8

& 9: MH950, 10: empty, 11: Ladder. (C) The protein samples including curii protein

from new Fol+ derivatives and their parents (MH829 and MH950). 30 µg of calculated

protein by BCA assay (Sorensen and Brodbeck, 1 986) from washed sample were loaded

in each well. Lanes 1 & 10 indicate protein marker (MWM), and 9 and 1 1 are empty; and

the rest of the lanes are: 2:MC4100; 3:MH984; 4:MH985; 5:MH981; 6:MH982;

7:MH983; 8:MH986.
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As Figure 9.A shows, the wells, containing 2C^g of quantified protein, of gel

belong to strains MHR204 and MH829 do not have protein in the wells in contrast to

strains MC4100 and MH950. As well, the first well from left that belongs to the protein

marker (Dalton Marker VII-L, molecular weight marker, from Sigma), which does not

have curii protein, showed the same results as MHR204. As it is seen in Figure 9.C, 30

µg of quantified protein from Fol+ derivatives of MH950 had clearly observed protein in

the wells compared to Fol+ derivatives of MH829. The image B of this figure showed

that if the strains would be incubated for one day on YESCA plate at 300C, they could

give similar results as three days incubation on same medium at 300C.

As shown in Figure 10, there were clear difference of existing curii protein in the

known curli-proficient and non-curli-proficient strains corresponding to MC4100 and

MHR204. The amount of 30µg of calculated protein from washed samples of the strains

MC4100 and MHR204 were loaded in wells of the SDS-Agarose gel. It was discovered

that overnight staining along with shaking produced a result that clearly distinguished

between curli-proficient and non-curli proficient strains.

In order to determine the curii proficiency of Fol+ derivatives, the protein of strains

MH981, MH982, MH983, MH984, MH985, and MH986 were purified (Collinson,

Emody, and Trust, 1992) and quantified by BCA assay (Sorensen and Brodbeck, 1986).

Then 30 µg of purified protein was loaded in the wells on SDS-agarose gel. After 45

minutes running and 1 5 minutes staining, the gel was twice washed with distilled water.

As shown in Figure 9.C, FoIA+ derivatives of MH950 had material in the related wells

compared to the MH829 FoIA+ derivatives. These results verified that Fol+ derivatives

of curii- proficient strain, MH950, were also curli-proficient.
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Figure 10. A longer staining time Allows Detection of Protein in the Gel. (A) After

protein purification, the different amounts of washed samples of the strains, MC4100 and

MHR204,

were loaded in SDS-Agarose gel. After 45 minutes running at 72 volt and staining, the

gel was scanned in Odyssey. From left, first well contains 20 µg of molecular weight

marker; the 2nd, 3rd and 4th wells contain 30 µg of washed sample of the curli-proficient
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strain MC4100. The 5 , 6 and 7 wells contain 30 µg of washed sample of the non-

curli-proficient strain MHR204. (B) The SDS-Agarose gel of image (A) was left over

night on EZ Blue Reagent and was washed twice.

3.4. The material in the well ispredominantly CsgA

Highly purified curii were prepared (Collinson, Emody, and Müller, 1991), treated

with formic acid and run on an SDS-PAGE gel (Figure 8). The predominant protein

migrated at 18 KD as reported for CsgA (Chapman et al. 2002, Olsen, Arnqvist, and

Hammar, 1993; Collinson, Emody, and Trust, 1992).

To find out if the protein in the well of an SDS-agarose gel was curii; I recovered

these materials from wells of those gels after 15 minutes staining. The recovered material

was washed extensively with water to remove the stain. After treating with 90% formic

acid and analyzing in a SDS-PAGE, results showed that wild-type strain MC4100 had a

protein with the same migration of CgsA (Figure 8). As shown in Figure 9.C, only FoIA+

strains MH981, MH982, MH983 and MH986 (derivatives of MH950) had materials in

the wells of SDS-agarose gel. In order to check these materials, SDS-PAGE analyses of

the materials in the well from these FoIA+ strains showed the presence of curii subunit

CgsA (Figure 11).
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Figure 11. Protein analysis by SDS-PAGE. The stocked materials in SDS-agarose of

FoIA+ strains derived from MH950 wells were recovered and 2µ§ of these materials

were loaded in 12% SDS-PAGE. Wells number 1 and 7 are Dalton Mark VII-L (Sigma),

and wells number 2 to 6 are MC4100, MH981, MH982, MH983, and MH986. The bands

of CsgA (18 KDa (Chapman (2002); Bian and Normark, 1997)) is shown.
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4. Discussion:

This study looks at the relationship between two folate pathway genes FoIA and

ThyA. Strains deleted forfolA gene grow poorly and their growth is improved slightly by

mutation in thyA gene that reduces or eliminates TS activity (Herrington and Chirwa,

1999). Our laboratory has isolated faster growing derivatives (MH840, MH841, MH842

and MH950, MH951, MH952, MH953) of a strain with the genotype of AfolA:Kan3

thyA(Ts) (Figure 3). All of these strains require thymidine both at low and high

temperature (Herrington and Chirwa, 1999; This study). Interestingly, when some of

these strains are made folA+ (MH956, MH958, MH991, MH992, MH993, MH994,

MH995 and MH996) (Figure 3), the strains became Thy phenotypically whereas the

parent strain MH829 is Thyts (Metallic, T. and Herrington, M.B, unpublished; This

study).

The hypothesis that came from FolA+ derivatives that showed Thy phenotype

rather than Thyts, was the presence of a second mutation in thyA-lgt operon that results in

auxotrophy for Thy even at the permission temperature 300C. Hence, it was thought that

cells are not able to grow related to the second site mutation carrying Thy phenotype.

So, the Igt-thyA region was sequenced in the both thy's and thy strains; MH829, MH841,
MH950, MH956 and MH958. This concluded that there was no additional mutation in

the thy derivatives.

Looking at the sequence of thyA and Igt genes in both the MH829 and MH950

strains verified the presence of only one single bp change (AT->TA mutation) at position
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of 2963047 in thyA gene of E. coli chromosome in both the Thyts and Thy strains

(Figure 6). It was expected to observe the change only in Thyts strains, while Belfort and

Pedersen-Lane (1984) mapped thyAts allele in strain N4316 to a 79 nucleotide segment of

thyA (Figure 7). The changed nucleotide we observe in strains (MH829, MH841, MH950,

MH956 and MH958) is located in this segment. This change results in a single amino

acid change (L->Q) in thymidylate synthase, which is related to converting of CUG

(Leu) to CAG (GIu) codon. This change in TS is presumably responsible for the reduced

activity of TS in strains with the thyAts allele, while its activity is 19% of wild-type in

cells grown at a lower temperature (Herrington and Chirwa, 1999).

There was no additional mutation either in thyA gene to influence the activity or

production of TS enzyme, or in Igt gene to affect the expression of TS enzyme. This

suggested the presence of a second mutation elsewhere in the chromosome responsible

for the Thy- phenotype of the FoIA+ strains. This second mutation can affect the activity

of thymidylate synthase (TS) protein by influencing either the expression of thyA gene or

blocking the enzyme activity. This second mutation might affect the Igt gene so that it

alters the expression of thyA gene. So, this effect on Igt gene might block the expression

of thyA gene and then the strains acquire Thy phenotype. Another possibility is that the

thyA gene is expressed and a second mutation affects its activity by either inhibiting or

eliminating the folding of thymidylate synthase (TS) protein, or blocking the activity of

assembled-folded subunits of TS protein. Another possibility is that the activity of this

second mutation might affect the posttranslational modification of TS amino acids. A

posttranslational modification that changes the range of protein functions by attaching
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other biochemical groups (acetate, phosphate, lipids and carbohydrates), therefore

changing the chemical nature of amino acid or protein structural changes.

Since both the Thyts FoIA+ and Thy- FoIA+ strains had the same mutation in the

Igt-thyA operon and it was expected that Thy- strains might have a mutation outside of

the region that affect their phenotype, I attempted to map this change by the high

frequency of recombination (Hfr) mapping technique (Miller, 1992), but the results were

not clear.

The FoIA+ derivatives of MH950 and MH841 were made first by Herrington and

Metallic (unpublished data), and then I made FoIA+ strains in this study by the gene

gorging method (Herring, Glasner, and Blattner, 2003) in the parent strain MH829 and its

faster growing derivative MH950. As expected the FoIA+ derivatives of MH829 were

Thyts and the FoIA+ derivatives of MH950 were Thy-. When the activity of DHFR (folA)

and TS (thyA) are absent (AfolA::Kan3 thyA^), the pool of methylene-THF is high. It,

however, cannot be converted to DHF, but it can be produced from THF by SHMT

(glyA) (Figure 1). When the pool of methylene-THF is high and TS is inactivated, its

conversion can be applied to THF through other ways (Figure 1). Also, the limit pool of

DHF converts to THF for a short time and the amount of THF can be enough to produce

methylene-THF. Therefore, FoIA+ Thyts derivatives compared to their parent MH829

(FoIA- Thyts) strains can manage their growth, because they have thefolA gene.

When the derivative MH950 {AfolA:Kan3 Thy ) shows improved growth

compared to parent strain MH829 {AfolA:Kan3 thyAts), it can be suggested that the

growth of FoIA- Thy- strains could be better when there is little or no TS activity present

rather than the low activity pressed from the strain with thy's allele. Thymidylate synthase
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(TS) is the only enzyme that uses a folate cofactor both for a one carbon unit and for

reducing power (Neuhard and Kelln, 1996), and thus is a source of DHF. It is possible

that in a AfolA::Kan3 background the presence of a partially active TS results in lower

amounts of THF than a completely inactive enzyme. So, as a result the growth would be

more limited.

It was at first surprising that strains lacking DHFR protein were viable (This study;

Herrington and Chirwa, 1999; Howell, Foster, and Foster, 1988; Giladi, Altman-Price,

and Levin, 2003), because folA deleted strains can make detectable amount of folate

cofactors (Hamm-Alvarez, SanearYl, and Rajagopalan, 1990). Hamm- Alvarez et al

(1990) suggested that in the absence of DHFR, dihydropteridine reductase (DHPR) could

be responsible for synthesis of THF and the five different one-carbon compound of

reduced folate pool found in E. coli (Figure 1). Also, the mixture of THF and five

different one-carbon compounds (Figure 1) can affect the rate of FEP production and

initiation of protein synthesis, since protein synthesis can only be initiated with frnet-

tRNAfmet and cannot be supplied exogenously (Baumstark et al. 1977). Hence,

AfolA::kan3 strains must generate enough CHO-THF to formylate met-tRNAfmet. But the
expression regulation of gene and enzyme activity is complex and not completely known

(Matthews 1996).

Since folA~ thyA~ strains derived from the folA~ thyAts strain MH829 grew better

than their parent MH829, we tested whether strains with different thyA alleles grew

differently. In this study when the folA+ strains carrying different thyA alleles (thyts and

thy~~) were made FoIA- (thyA~ AfolA and thyA(Ts) AfolA), they either were not able to

grow or grew very slowly on supplemented minimal medium with folate end products
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(FEP). There were no differences among the strains indicating that the type of thyA allele

did not affect the growth. In these strains carrying different thyA alleles, the FoIA activity

is absent and the conversion of DHF to THF is decreased or blocked. In these conditions

the pools of methylene-THF, DHF and THF are limited and the cells grow very slowly or

the growth is inhibited. Methylene-THF cannot be converted to DHF and the existence

pool of DHF is not able to be converted to THF, as thymidylate synthase is not active

(Thy-) or at lower temperature can be active (Thyts). The limited amount of methylene-

THF and THF can produce folate cofactors required for growth of cell for a while and

when the pool is very low, the cells do not grow. Also conversion of methylene-THF and

THF through the other processes by FoID, MetF, MetH and MetE (Figure 1) rather than

TS and DHFR cause the production of cofactors in longer time and the cells grow slower.

Therefore, methylene-THF pool is sharing for both DHF production, also for the

production of methenyl-THF and methyl-THF. The conversion of DHF to THF is

blocked, as well, because of the absence of DHFR enzyme {AfolA) and it is required for

de novo synthesis of THF and for recycling DHF (Herrington and Chirwa, 1999).

Accumulation of DHF could inhibit the DHFS activity of DHFS-FPGS (bifunctional

enzyme folylpolyglutamate synthetase-dihydrofolate synthetase (FPGS-DHFS) by folC

gene) (Herrington and Chirwa, 1 999).

In addition, Gilali et al (2003) found the thyA AfolA and thyA~ AfolA mutants are

viable and they grew in minimal medium supplemented only with thymidine. They

reported folM gene that is responsible for the reduction of DHF in E. coli. They reported

this enzyme in E. coli that carries out the de novo synthesis of THF from DHF. Although

the E. coli thyA~ AfolA mutant is viable and grows in minimal medium supplemented
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with thymidine alone, and its growth rate is significantly reduced unless folM is

overexpressed (Gilali et al., 2003). Hence, the low growth of our strains might also result

by folM activity that could reduce DHF pool in strains carrying different thyA alleles

(thy~, thy's).

Detection ofCurii

E. coli and Salmonella spp. produce extracellular, adhesive fibers that are thin and

highly aggregated, called curii. Curii encourages clumping of bacterial cells in culture

and binding to surfaces such as glass and polystyrene, making them important for biofilm

formation (Chapman et al., 2002; Collinson, Emody, and Trust, 1992; Collinson, Emody,

and Müller, 1991).

The goal is to have a rapid assay that will allow us to detect and quantities the

amount of curii made by strain. Some of the FoIA derivatives that grew better made

curii compared to their parent MH829. Curii proficiency was detected by Congo red

binding (Hammar, Arnqvist, and Bian, 1 995). The ability to bind the dye Congo-red is a

fast and easy way to determine expression of curii fiber (Hammar, Arnqvist, and Bian,

1995; Gophna, Barlev, and Seijffers, 2001). The simplest way of detection the presence

or absence of curii proficiency is by the color of the colony, while curli-proficient strains

make red colonies and non curii proficient colonies are white. Also, binding of curii to

Congo-red can be assayed in solution (Gophna, Barlev, and Seijffers, 2001; Chirwa and

Herrington, 2003). But in this study and in other work in our laboratory the Congo-red

assays did not work consistently.
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Curii is also able to bind to fibronectin with high affinity (Gophna, Oeschlaeger,

and Hacker, 2002; Collinson, Emody, and Müller, 1991). This assay depends on multiple

binding sites of fibronectin to extracellular matrix receptors and it was demonstrated that

binding to soluble fibronectin needs high expression levels of curii fibers to such an

amount that will promote their uptake (Gophna, Oeschlaeger, and Hacker, 2002). The

importance of curii expression levels for fibronectin binding limits the usefulsion of

assay. The more sensitive adherence assay is another fibronectin binding assay, which

was reported earlier (Flock, Heimdahl, and Schennings, 1996; Sorensen and Brodbek,

1986). This method does not need the high expression of curii (Flock, Heimdahl, and

Schennings, 1996), but the results of this assay did not show difference in adherence rate

between curli-proficient and non curli-proficient strains in this study.

The use of SDS-PAGE for detection of curii is not straightforward. To detect a

clear band of CsgA in a SDS-PAGE gel, the protein needs to be purified and prior to

electrophoresis, the sample should be treated in formic acid. The purification is very long

and time consuming (Collinson, Emody, and Müller, 1991; Chapman et al., 2002) and

using the unpurified sample needs Western-blotting after analyzing the sample in SDS-

PAGE gel. Also, the formic acid treatment of unpurified sample is not proper and the

depolymerizatoin and denaturation of protein in unpurified sample cannot occur correctly

and so detection of the major subunit (CsgA) of curii protein is not expected. Hence, I

used partially purified (washed) (Collinson, Emody, and Trust, 1992) samples and SDS-

agarose gel (Horsten, 2003) to detect the presence of curii protein in the samples. In this

study, I only treated the washed samples with formic acid and the CsgA band (18 KD) of
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curii fiber protein (Figure 8) identified by protein gel electrophoresis, SDS-PAGE. This is

highly accurate method, but time consuming. It also required highly purified curii.

It was of interest to find an easier, fast and sensitive way to detect and quantity the

presence of curii protein. We got idea from Horsten (2003) and Luo, Wehr, and Levine

(2006) and Bagriantsev, Kushnirov and Liebman (2006) studies and we used SDS-

agarose gel, which was stained with EZBlue™ buffer, for identifying and quantitating the
curii protein. Luo, Wehr, and Levine (2006) discovered that protein in gel or on blot

could be quantities with Coomassie Blue G-250. The Coomassie Brilliant Blue G-250

based protein stain of EZBlue reagent is used for ultrasensitive detection on

Polyacrylamide gels as low abundance proteins can be detected. Also, the background

staining is reduced and protein bands can be viewed directly during the staining process

and when the proteins are sufficiently stained the staining process can be stopped, so this

visualization of the bands saves time. Also, this staining does not need destaining process

as other Coomassie-based stains, while rinsing the gel with water after the staining step

will enhance the sensitivity (Laemmli, 1970).

It was shown by Horsten (2003) and Bagriantsev, Kushnirov and Liebman (2006)

that purified protein can be analyzed in a horizontal SDS-agarose gel. Horsten (2003)

reported a method that could quantify the proteins from SDS-agarose gel. Then the

suitability of SDS-agarose technique for the analysis of large proteins and SDS-stable

high molecular weight complexes was suggested (Bagriantsev, Kushnirov and Liebman,

2006). The SDS-agarose gel, however, is made easier and faster compared to SDS-

PAGE, this gel can be used in the horizontal apparatus for running, as well, and it is a fast

way to determine the existence of curii in strains. Therefore, I used combination of a fast
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protein purification (washed) method (Collinson, Emody, and Trust, 1992) and SDS-

agarose gel as a rapid assay for curii protein identification and quantitating. The positive

control (MC4100) was able to make curii and negative control (MHR204) did not have

this ability. With MC4100 extracts a significant amount of protein remained in the wells

of the SDS-agarose gel. In contrast, little or no protein was present in the wells

containing samples from MHR204.

The recovered materials of MC4100 from the well of a SDS-agarose gel was formic

acid treated and analyzed on a SDS-PAGE gel and the major subunit of curii, CsgA, was

observed. Since FoIA- strain (MH950) have proficiency of making curii protein, it was

interesting to check this ability in FoIA+ derivatives and their parent strains in this study.

As it was expected, MH950 and its FoIA+ derivatives had materials in the wells of SDS-

agarose gel, whereas MH829 and its FoIA+ derivatives did not have. The curii protein of

materials in the wells for MH950 and its FoIA+ derivatives was analyzed after formic

acid treatment in a SDS-PAGE (Figure 11). The materials in SDS-agarose wells contain

CsgA subunit (Bian and Normark, 1997) of curii and some other proteins. These proteins

other than CsgA might be either smaller proteins that were maintained with curii in the

wells of SDS-agarose gel, or the formic acid treatment digests curii protein as it has some

proteins with lower molecular weight compared to CsgA. It was thought that smaller

band might be CsgB (15.3 KDa) subunit, but CsgB might normally present in curii at low

amount, which was not detected and was covered under CsgA band after

depolymerization with formic acid (Bian and Normark, 1 997).

In conclusion, this assay is suitable to detect the presence of fimbriae (curii) of cell,

but needs some further work, such as quantitating the amount of loaded protein that give
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detectable amount of putative curii. First, it is needed to identify the adequate amount of

purified preparation to be detected in SDS-agarose gel. Then sufficient amount of

recovered materials from SDS-agarose well that can identify the presence of curii in

SDS-PAGE. It would be very interesting to determin the least amount of purified curii

protein and recovered material that can be detected, respectively, in SDS-agarose gel and

SDS-PAGE.

The problem in this method is that during staining, especially overnight, and

washing the gel, most of the materials in the wells is lost. It makes a problem in

quantification of material in the well, since it is needed to be recovered for identifying the

CsgA band in SDS-PAGE. I tried to solve this problem by filling the wells of SDS-

agarose gel with samples and melted agarose, before putting gel in running buffer (Figure

12). But this system needs more work to have enough concentrated protein in the almost

20 µ? of melted agarose to fill the wells with required detectable amount of protein.

Also the materials inside the gel of SDS-agarose after running needs further study

while differences between MC4100 (putative curii) and MHR204 (non-putative curii) are

clearly visible (Figure 10). Purified samples of MC4100 have staining material both in

the well and inside the gel of SDS-agarose whereas samples of MHR204 only have

material in the gel. It was expected that material inside the gel for MC4100 would be less

than of strain MHR204, since the same amount of sample was loaded. However,
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Figure 12. SDS-agarose gel of curli-proficient strain MC4100 loaded with melted agar in

the wells. The second and last wells contain 10µ§ ofmolecular weight marker, and 3r has

5C^g of crude sample and 4th, 5th and 6th wells have dilution of 1/5 (1(^g), 1/10 ^g) and
1/100 (0^g) of crude sample. These samples were loaded with melted agar in the wells

of SDS-agarose gel.
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MHR204 had less staining material in the gel. One explanation is that might be the

interference of BCA assays with purified protein, in which there is something in the

purified materials that BCA ingredients interfere with and affect the calculation of

protein. So, that interference can affect the measurement of protein concentration in

samples of each curli-making and non-curli-making strain. It is possible that curii protein

or other proteins interfere with BCA assay reagents and show an error between the real

amount of protein and calculated protein. Also, there might be interfering between

purified protein of non-curli proficient strains and the BCA assay ingredients. But, BCA

assay has most stable curve for protein assay. Therefore, this assay was found the most

accurate and standard for protein assay in this study.
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5. Conclusion

1- ThefolA gene does not affect the thyA gene.

2- The type of thyA allele {thyA(Ts), thyA~) does not affect the growth offolA strains on

supplemented minimal medium.

3- SDS-agarose gel is a rapid method to detect the presence of curii in the strains.

4- The materials in the well of SDS-agarose gel can be recovered and the band

corresponding to the major subunit of curii protein (CsgA) identified in SDS-PAGE gel.
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