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Abstract

Initial Stage of Transition Process by Modal-Spectral Element Method

Jeyatharsan Selvanayagam

The initial stage of transition phenomena is investigated by numerically solving the

complete Navier-Stokes equations for incompressible temporally evolving boundary

layer flows on a flat plate. To force transition, the present investigation uses sufficiently

small amplitude periodic perturbations at the inflow boundary and asymptotically

decaying perturbation velocities and never-ending open boundary conditions at the far-

field and outflow boundaries respectively. An initial steady state solution of the Navier-

Stokes equation is assumed throughout the computational domain followed by the

introduction of disturbances into the flow field. The reaction of this flow to such

disturbances is studied by directly solving the Navier-Stokes equations using a highly

accurate modal spectral element scheme developed by Niewiadomski [36]. The

numerical scheme is recast to simulate our problem by incorporating various numerical

algorithms. Furthermore, the computational results are discussed for a test case and

several other simulation cases are considered to justify the initial stage of transition

process. Finally, a demonstration of the suitability of the three dimensional aspect of the

numerical method for the investigation of the temporal development of the two

dimensional perturbations in the downstream locations is presented where the results are

in fairly close agreement with the known numerical results of Fasel [05].
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0.1 Nomenclature

Symbol: Description
u,v,w(u) velocity components (vector)

t time

/ body force
P pressure
p total stress tensor
/ identity tensor
t extra stress tensor

P fluid density
/A ? dynamic and kinematic viscosities
Re Reynolds number
? basis functionsY pqr

û . vector of coefficients
? trial function

??,?2, ?3 collapsed coordinates
?],?2, ?3 reference coordinates

x> y> z physical Cartesian coordinates
h . Lagrange polynomial
P expansion order
M mass matrix
A stiffness matrix
D derivative matrix
C convection operator
R. rotational matrix
Ux free-stream velocity

?(?,?,?) stream function
A° inflow amplitude factor

u'A , v'A amplitude distributions from LST
u ', V, W disturbance velocity components
U, V, W mean flow velocity components

a disturbance wave number
? wave length
ß disturbance frequency {ß - ßr + ?'/?,· )
ß oscillation frequency
ß. amplification coefficient
c wave velocity

S* boundary layer displacement thickness at inflow
Re* Reynolds number based on displacement thickness

VIl



Chapter 1

Introduction

The main driving force of my research is the simulation of entire process of laminar-to-

turbulent transition in a shear layer capturing transitional behavior accurately which is a

basic scientific problem in modern fluid mechanics and has been the subject of study for

over a century. The transition to turbulent flow has been simulated extensively with

spectral and high order finite difference methods which provide higher accuracy

solutions. However, the available standard CFD codes suffer from the inability to address

this problem due to the requirements of higher order discretization and boundary and

initial conditions. At the same time these methods are unable to handle complex

geometries accurately. In order to model these complex geometries and to better suits for

adaptability, higher order spectral element methods are employed which combines the

geometric flexibility of finite element methods with the higher accuracy of spectral

methods via tetrahedral elements. This spectral/hp element method was originally

developed by Sherwin and Karniadakis [25], [50], where we can simultaneously increase

the number of sub-domains (h-type refinement) and increase the interpolation order

within the sub-domain (p-type refinement) either uniformly throughout the domain or

selectively depending on the resolution requirements. Briefly, the spectral element

method is summarized as, firstly decomposes the computational domain into sub-

domains then obtains velocity and pressure representation through a summation of basis

functions and corresponding coefficients, followed by the evaluation of mathematical
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Operations on the elemental level, which are then assembled to form global continuous

expansion basis functions through a global assembly procedure.

The code, we used as a design tool to capture the geometry as well as the flow

characteristics, was developed by Niewiadomski [36] in his PhD thesis. Herein this code

was extended by incorporating new algorithms to simulate our problem. Through its

increased accuracy as well as the use of GAMBIT generated structured or unstructured

meshes, this code meets the requirements to simulate our problem in hand. Moreover,

increased accuracy leads to more efficient use of computational resources and the higher

order method requires less degree of freedom than the lower order methods to obtain the

same accuracy.

1.1 Review of transitional flow

A computer program is used to study the initial stage of transition process in the

boundary layer flow based on the spectral element scheme. A natural application for this

analysis is the boundary layer behavior over an aero-plane wing. The boundary layer is

the thin region of shear between the wing surface where the flow velocity vanishes due to

adherence, and the free-stream where the flow can be considered as uniform, at the speed

of the aero-plane. We have taken in the present analysis, a very thin wing without angle

of attack, a flat plate.

The objective of the research is to implement incompressible Navier-Stokes equations by

spectral element discretization to capture the initial stage of laminar-to-turbulent

transition along a flat plate by applying appropriate boundary and initial conditions.
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For the past century, numerous investigations have been conducted in an attempt to

predict the transition process from laminar to turbulent flow in boundary layers which is a

stability problem changing over time and space based on the idea that laminar flow is

acted on by some small disturbances, this is still a challenging and fully unsolved

problem. The transition process can be considered as six successive stages distinctly

observable in physical experiments as shown by Stuart [54] in a review paper. According

to Narasimha [34], natural transition is a multi-stage process involving linear evolution,

secondary instability, break down and transition to turbulence. Following the stable

laminar flow, the transition process starts out with the unstable two-dimensional

Tollmien-Schlichting (T-S) waves and their amplification in the downstream direction is

well described by primary (linear) stability theory. As these primary unstable waves

exceed a critical threshold value, three dimensional waves and vortex structures evolve

with alternating peaks and valleys result in a ? -shaped vortical structure which is well

treated by secondary stability theory. At the later stage, these three-dimensional vortex

structure decays and form turbulent spots. Finally the sequences of these stages become

fully turbulent flow. In other words, we can say that these are the preliminary stages to

fully turbulent boundary layer flows [03].

Most of this effort stems from the early theoretical accomplishments of Orr [41], [42] and

Sommerfeld [51]. Their achievement, based on linearized disturbance equations, is a

successful example of classical hydrodynamic stability theory and is referred to as the

Orr-Sommerfeld equation. As a first application, Tollmien [56], [57] investigated the

stability of the boundary layer on a flat plate by solving the Orr-Sommerfeld equation,

and this solution led to the calculation of a critical Reynolds number for the onset of
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instability. This was convincingly demonstrated in the landmark experiments by

Schubauer and Skramstad [47], who used a vibrating ribbon to trigger a disturbance into

the boundary layer and phase velocity of the disturbance waves for comparing

experimental measurements with theory. Gaster [10] has shown that, the use of the phase

velocity for relating the temporal development of the theory with spatial development of

the experiments was approximately correct. It was clearly shown that the disturbance

development was in the downstream location, with amplitudes of the disturbances

growing or decaying with increasing distance from the leading edge [47], [48]. This was

repeated in a somewhat more refined manner by Ross et al [44]. As suggested by Gaster

[1 1], in the linear stability theory a reformulation of the Orr-Sommerfeld equation for the

case of space amplified disturbances and numerical solutions have enabled direct

comparison of the results with theory and experimental measurements [20], [60]. With

these and others contributions theory and experiments now agreed approximately on the

initial growth of disturbances. From this Orr-Sommerfeld equation, much is now

understood concerning boundary layer disturbances, more commonly referred to as the

Tollmien-Schlichting waves. Since its origination, stability theory has gained wide

acceptance and is now a well-established tool in research and engineering community.

Nevertheless, qualitative and quantitative differences between the theory and experiments

remained. The differences were attributed to the non-parallel effects which were excluded

in the standard parallel theory [20] where it was argued that due to the slow growth of the

boundary layer as the square root of the spatial distance ? from the leading edge, the

assumptions of a parallel base flow and of a disturbance amplitude distribution that was

only dependent on the normal coordinate y (and not on the downstream coordinate ? )
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would be acceptable. Because of these assumptions the parallel theory did not fully agree

with the experimental measurements in particular with respect to the growth rates and the

critical Reynolds number. As a result, non-parallel effects resulting from the boundary

layer growth in the downstream direction are considered which means that no restriction

on the form of equation since the ensuring development of the perturbations is described

by the complete Navier-Stokes equations and no linearization is necessary anywhere [07].

It is well demonstrated that the three dimensional disturbance environment is needed to

observe the whole stages of transitional flow by many authors [27]. This three

dimensional disturbance helps to keep the flow disturbance in growth and go to transition

and turbulence for high Reynolds number. If there is only a two dimensional disturbance

in the environment, then all we observe is the linear growth of the T-S waves in a certain

range of Reynolds number, then the two dimensional disturbance dies down.

Following experimental and theoretical results, we can categorize transitions into two

types for superimposed periodic oscillations: the harmonic K-type after Klebanoff [27]

and the sub-harmonic ?-type (H for Herbert [16], [17]) corresponding to the chosen

amplitude of the initial disturbances. If the inflow perturbation is relatively high, K-type

transition is expected which shows an aligned pattern. Contrast to the K-type transition,

?-type needs low inflow perturbation which results staggered pattern in the transition

region [03],[46].

In the present study we addressed the initial stage of transition process, namely the

development of two dimensional Tollmien-Schlichting waves. These waves on a flat

plate boundary layer are initiated in a disturbance environment with very small

amplitudes. The development during this first stage, the so called T-S waves is well
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described by the linear stability theory which predicts conditions whether the flow is

stable or unstable to periodic disturbances. Therefore, the established boundary layer

flow in the current work uses periodic disturbances of small amplitudes from the linear

stability theory for inflow forcing which are constantly introduced into the flow field. The

reaction of this flow (i.e. the temporal development of the perturbations) is then directly

determined by the Navier-Stokes equations for incompressible flow which are solved

using an accurate numerical procedure such as a spectral element method in a specified

computational domain. The present work requires the calculation of the unsteady flow

field that arises from the time-dependent perturbations. Therefore, the critical task is the

application of initial and boundary conditions in the modal spectral element method that

would yield a realistic resolution of the time dependent transitional flow character.

1.2 Thesis contribution

Important contributions are made toward the application of boundary and initial

conditions in the modal spectral element method. At the inlet boundary, time periodic

perturbation functions superimposed to the Blasius profiles are employed to impose

disturbances into the flow field. The upper boundary condition is selected to overcome

the erroneous due to the asymptotically decaying perturbation velocities in the far-field.

Both of these inlet and far-field boundary conditions are chosen from Fasel [05].

Concerning the outflow boundary, many conditions can be applied such as linearized

convective equation or Navier-Stokes equation without pressure gradient term [09] or

stream-wise periodicity [52] or open boundary conditions [12] or buffer-domain

technique [22], [31] etc. From these conditions, buffer domain technique has been used

for the numerical simulation of flow transition by many researchers. This technique was
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introduced by Streett [53] to treat the non-reflecting outflow boundary. Thus, a small

portion of the downstream computational domain was appended to the end of the original

outflow boundary to eliminate all possible convective wave reflections or upstream

propagation of information which means that the waves exit the outflow boundary

without wave reflection. The problem was, in general, that the conventional buffer

domain was too long (usually four to eight T-S wavelengths) which greatly increases

computational cost. Recently, this buffer domain length was brought up to a single T-S

wavelength but still there exists undesirable cost [31], [22]. However, in this numerical

study we used a passive open boundary condition (never-ending one) which works better

than any other alternatives demonstrated by Gresho [12]. This condition is naturally

included in the weak formulation of the Navier-Stokes equation in spectral element

method. At the same time, this condition properly captures the flow physics. For the flat

plate and both side walls in the span-wise directions, no-slip and arbitrarily slip boundary

conditions are imposed respectively with no-penetration. Finally, due to the investigation

of very small disturbances and by that the unwanted initial distortions of transient

behaviors are eliminated by applying steady state solution of the Navier-Stokes equation

rather than employing the Blasius solution as initial condition [05]. These employed

boundary and initial conditions, allow us to observe temporal development of the

perturbations in the downstream direction of the boundary layer.

1.3 Structure of the thesis

The thesis is organized as follows: The first chapter presents a brief introduction of the

relevant studies of transitional process and the contribution in this dissertation. Chapter 2

introduces governing equations and reviews the spectral element method code developed
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by Niewiadomski [36]. Chapter 3 focuses on the application of boundary and initial

conditions in the spectral element method. This is followed by a validation procedure of

the numerical method with Blasius solution for the suitability of the code to solve flat

plate boundary layer flows. In Chapter 4, initial stage of transition phenomena is

investigated by choosing appropriate boundary and initial conditions. To study this

transitional behavior, small amplitude periodic disturbances are introduced into the flow

field from the linear stability theory. Validation is performed by comparing the temporal

development of the two dimensional disturbances at the down stream locations with the

known results from Fasel [05]. Finally, Chapter 5 gives concluding remarks with

suggestions of future work as well as suggestions for improvements to the code.
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Chapter 2

Spectral Element Method

2.1 Governing Equations

Scalar differential equation for the mass balance is given by:

^ + V.(pw) = 0 (2-1)

which holds at every point in a flowing fluid. This equation is known as the continuity

equation, and it expresses the physical law that mass is conserved.

Conservation of linear momentum in a flowing fluid is given by the following equation of

motion:

^^ = -V.(pmm) - V.;r + pf (2-2)dt — —

This equation is valid for compressible and incompressible fluids of all types of

Newtonian and non- Newtonian fluids. After simplifying the above equation of motion

by continuity equation, we arrive at the following equation of motion for general fluids:

P
du p^ + u.Vu
dt - - = -?.p + ?/ (2-3)

In the above equation, nature of the molecular forces is described by the total stress

tensor 7G. There are two major contributions to the total stress tensor ;r: the

thermodynamic pressure ? and the deformation of the fluid t called extra stress tensor.

Thus, we can relate the total stress tensor as:
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p = t + ?? (2-4)

An equation that specifies rfor a fluid is called stress constitutive equation which

expresses the molecular stresses generated in the flow in terms of kinetic variables such

as velocities and derivatives of velocities.

In this thesis, we considered the simplest constitutive equation for a Newtonian fluid.

There are two versions for the Newtonian constitutive equation, one for compressible and

a second for incompressible fluids. The Newtonian constitutive equation for compressible

fluids is given by:

r = -//[vw + (Vw)r]+(^//-Â;)(V.w)/ (2-5)
where µ is the Newtonian shear viscosity and k is the bulk viscosity. The shear viscosity

is the coefficient that describes the resistance of a fluid to sliding motion, and this is the

primary material parameter which will be concerned in this thesis. For a fluid of constant

density, that is, ? is not a function of space or time, the equation of conservation of mass

becomes as:

V.w = 0 (2-6)

The above equation simplifies the compressible Newtonian constitutive equation to an

incompressible Newtonian constitutive equation as:

t = -µ?^? + (Vm)7J (2-7)
The equation of motion has a term - V.p , which contains the unknown linear vector

functions, the total stress tensor. Examining this term with the constitutive equation, we

obtain:
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- V.(t + p¿) = -V/7 + //V.[vw + (Vw)r J (2-8)
The term //V.(V«)r simplified to //V(V.m) . The continuity equation is used to reduce this

term to zero (V.u = 0)for incompressible fluids. Finally the equation of motion can be
written as:

P
^ du _ ^
^ + u.Vu

Kdt - -j
= -Vp + ßV2u + pf (2-9)

This is the well known Navier- Stokes equation for an incompressible Newtonian fluid

[33]. Derived conservation of mass (the continuity equation) and the conservation of

momentum (the equation of motion) equations are non-dimensionalized by two scaling

variables such as a characteristic length L and a characteristic velocity U . All variables in

equations (2-6) and (2-9) are dimensional and are related to their dimensionless counter

parts, denoted by bars, as follows:

- ? — y - ?- u- ? — w
? = — , y = — ,? = — , u= — ,? = — , w = —

LL L UU U

U2 L pU2 µ

(2-10)

Thus, the dimensionless momentum equation becomes:

^l + w.VÜ = -V^+ XC V2w + 7 (2-11)dt /Ke-

The above non-dimensionalized momentum equation is solved along with the continuity

equation and boundary conditions to compare differently scaled velocity field and other

flow variables. From this point onward in our thesis, bars will not be indicated in all non

dimensionalized equations.
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2.2 Galerkin Method

To solve partial differential equations, there existed an approximation technique called

the method of weighted residuals which replaces the infinite expansion of the exact

solution by a finite expansion with an error term. In the spectral element method, an

approximate solution is defined by the summation of all the bases over all elements with

their respective coefficients:

u* =S%>,. (2-12)
?=1

where C1, «,are the basis functions and their respective coefficients correspondingly.

Similarly, a trial function ? is also formed. A weak formulation of the Navier-Stokes

equation can be obtained by multiplying a trial function ? with the Navier-Stokes

equation (E(u) = 0) and integrating over the entire computational domain:

(v, E(u)) = ^vE(u)dQ = 0 (2-13)
By substituting the approximate solution into the Navier-Stokes equation, it results in a

non-zero residual E(us ) = R(us )* 0 , which in the inner product

becomes (v,E(us))= (y,R(us)). Unknown coefficients w(and the residual R{us jmake the
set of algebraic equations unsolvable. To solve the above set of equations, the inner

product of the residual (v,R(us)) is forced to zero by decreasing the element size or
increasing the expansion order; thus, the solution approaches the exact solution. In the

present work, we have considered the Galerkin method because the spectral element
method is based on the Galerkin method where trial functions equal to the basis

functions.
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The Navier-Stokes equation ensures a divergence-free flow. Thus two different function

spaces have to be defined, one for the velocity u and another for the pressure ? . The

function space for the velocity is defined as:

Hl(O) = {v 6 ?\O) I ? = 0 on dO\ (2-14)
where //'requires that its members ? as well as the gradients of the members Vv are

square integrable.

The function space for pressure is defined as:

4(Q) = ^eL2CQ)I £<??O = ?} (2-15)
where L20 requires that its members are square integrable and its integral over the domain

is zero. Thus the weak formulation of the Navier-Stokes equations for u e \h\ (Q)J and

? e [Li (O)] are given by:

\,^) + (v,u.Vu) = -{v,Vp)+y (v,V2u)+(v,f) Vve[//¿(Q)f (2-16)y dt J / RC

Further simplification is performed through integration by parts, thus reducing the second

derivative to a first derivative:

(v,V2u)= [vV4n -(Vv, Vu) (2-17)
where [] denotes the evaluation at the boundary of the domain 9O . Note that the

Neumann boundary condition is already set into the weak formulation as:

\,^) + {v,u.Vu)+y (Vv,Vu) = -{v,Vp)+{v,f) \/ve[Hl(Q)] (2-18)y ot j ' *^c
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(V-K^) = O Vge[z20(Q)] (2-19)
where the brackets indicate an integral of the internal product over the domain. u,p,f

are the velocity, pressure and forcing vectors while ? and q are the test functions used for

the velocity and pressure approximations.

2.3 Consistent Splitting Method

In order to design a highly accurate numerical scheme and to optimize any pressure

errors, a consistent splitting scheme was introduced by Guermond [13]. The key idea

behind this scheme is to evaluate the pressure by testing the momentum equation against

gradients with extrapolation of pressure for the velocity calculation. By taking the L2

inner product of the momentum equation in (2-16) with V^, and noticing

that (ut , Vq) = -(V.ut , q) = 0 , we obtain:

J1VpV^dQ= £ (f-u.Vu + y^e V2u)vqdQ \/qeH](Q) (2-20)
(Vp,Vq)=(f -{u.VuJ + j^eV2u,Vq) (2-21)

We need two consecutive steps to find the velocity and pressure. First, we compute the

velocity by making explicit the pressure in the weak formulation of momentum equation

then we update the pressure by making use of (2-21). The accuracy of the above scheme

can be improved by replacing the term V2« in (2-21) with the

identity V2M = VV.m- Vx Vxm . Due to the incompressibility constraint, VV.u is zero,

therefore the Laplacian term V2W is only reduced to a rotational term- Vx V xh.

Advantage of this formulation is that spurious pressure modes do not appear in the

solution. The resulting fully discretized formulations are given by:
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( Duk+Ì^
v At J + yRe (Vv, Vu *+1 ) = -(v, Vp^ )+ (v, f(tk+1 ))- (v, (M.VM)**+I ) (2-22)

(V+1, Vf)=(^+1 -(M.VM)^+1 -)/eVxVXMw,V9) (2-23)
where Duk+l = %w*+1 -2m* + K"*-1 is an implicit approximation and

/?*+1 =2p* -?*"1 and (u.VuJMi = %(u.Vu)k -^(«.Vw)*'1 +^{u.Vu)k~2 are explicit
approximations for the pressure and convection operator respectively.

2.4 Hierarchical Bases

In the spectral element method three coordinate systems are used. They are physical,

reference and collapsed coordinate systems. The reference coordinate system is the

barycentric coordinate system, defined in terms of volumes and the collapsed coordinate

system is the transformation of a reference hexahedron onto a reference tetrahedron by

the following three steps. Firstly, the hexahedron is reduced onto a prism by collapsing

the top face of the hexahedron onto an edge. Secondly the prism is reduced to a square

based pyramid by collapsing the top edge onto a vertex. Finally, the pyramid is reduced

to a tetrahedron through the collapse of an edge on the base of the pyramid onto a vertex.

The above three step transformation procedure is summarized by a single step

transformation, which collapses a hexahedron onto a tetrahedron. The transformation

from collapsed to reference coordinates is given by:

(I + T71)(I -T72)(I -T73)

(2-24)
(I + T72)(I-T73)
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£ =73

where (??, ?2, ?3) and (771 , ?2,?3) are the reference and collapsed coordinate systems
respectively. Inverse transformation of a tetrahedron onto a hexahedron is given by:

„,= 4(1 + ^ -1
(W2)(W3)

= 2(l + <f2) 1 (2-25)
(W3)

In the inverse operation, it is seen that this mapping is singular at the points ?2=\

and ?3 = 1 , which are the vertices C and D respectively, although the coordinate values

are not defined at these singularities. To prevent this problem different quadrature rules

are used which do not include the values at these singularities. This will be discussed

under the subsection of elemental operations.

Due to its orthogonality and rotational symmetry, the collapsed coordinate system is used

to form the basis function in the spectral element method. The main criteria for designing

basis functions are to ensure orthogonality of the Legendre inner product over each

elemental region. The current three dimensional basis functions were developed by

Sherwin and Karniadakis through mapping hexahedral bases onto a tetrahedron [50], [25].

Unstructured meshes lack the rotational symmetry therefore basis functions are formed

by the application of a warped tensor product. Thus an unstructured expansion is written

as:

<Ppqr (7, ^2,?3) = ?a? (7, )?"„ {?2 W;qr (?3 ) (2-26)
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where ?a?{??\??,???{?2) and ?€????3) are one, two and three dimensional tensors
respectively, such that these functions are called orthogonal principal functions which are

made of Jacobi polynomials. The orthogonality of the basis functions in the Legendre

inner product is assured with these Jacobi polynomials, which can be found through a

recursive relation. The characteristic of this basis function is, the lower order expansion

set P are subsets of the higher order expansion set P + Ì which are also called

hierarchical modal bases. Another important property of this basis function is an interior/

boundary decomposition. Interior mode is defined only in the interior of an element and

is zero on the boundaries while boundary modes have non-zero contributions on the

boundaries. Further boundary modes are decomposed into vertex, edge and face modes

such that a vertex mode is a linear function defined as being one at its vertex and zero at

all the other vertices, an edge mode is defined as functions ranging from quadratic to

order P ,which are defined on its edge and are zero on the other edges and vertices, a face

mode is defined as a function ranging from quadratic to order P - 1 which is defined at its

face and zero on the other faces, edges and vertices. This decomposition as well as the

properties of hierarchical expansions lead to efficient conformity enforcement between

elements.

2.5 Elemental Operations

An approximate solution is given by summing the basis functions with their respective

coefficients over all elements:

NclemNmades

k i
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To evaluate integrals, method of weighted residuals can be used. Integration can be

approximated using Gaussian quadrature on an interval [-1, I]:

\?{?)?? = ¿ *,.!<(£. ) + *(«) (2-28)
.1 I=O

where ^, are the respective quadrature points and virare the corresponding weights.

Residual term R(u) becomes zero when sufficient numbers of quadrature points are used.

By dropping the reference coordinate system altogether in the spectral element method,

all of the elemental operations performed purely in the collapsed coordinate system and

afterward mapped onto the physical coordinate system. A simple linear element in the

physical coordinate system can be mapped from the collapsed coordinate system as:

x(V\,V2>Vi) = Xa<Pa +xb<Pb +Xc<Pc+Xd<Pd (2-29)

where ? denotes the coordinates of the respective vertices. The integration in the physical

coordinate system is given by:

1 1 1

^u(x,y,z)dQ= \\\?d{??,?2,?^)
-1-1-1

d(x,y,z) ?????2??3 (2-30)

G / -w-» X-1 X-1 V1 St 0,0 0,0 0,0 \ t 0,0 0,0 0,0 //-. -? ? ?^u(x,y,z)da= SSS? foi/ '?? >VÚ y^nwi W/ wk (2-31)
ßi-ie2-iß3-i

SSS<
i=0 j=0 k=0

where Q1, Q2, Q3 are the number of quadrature points required in each collapsed

coordinate direction. Furthermore it is seen that the Jacobian between the physical and

collapsed coordinate systems and weights are evaluated at the quadrature points. To

avoid the singular points, different integration rules are used in different coordinate

direction. In the ?? direction, Gauss-Labatto-Jacobi quadrature rule is used where no

constraint exist due to singular points (i.e. vertices A and B). The quadrature points in
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this direction are defined by 77°.° and the points are the roots of the Jacobi polynomial. In

?2 and ?^ directions, a Gauss-Radau-Jacobi quadrature rule is used, where a constraint

exists at vertices C and D (i.e.: ?2, ?3 =1) due to singularity. Therefore this rule includes

only the end point -1 and does not include the other end point 1 to avoid evaluation at the

singular vertices. The quadrature points ?°·? and ?^'° are the roots of the respective

Jacobi polynomials.

The next main elemental operation is the differentiation. It is needed in the numerical

evaluation of the derivatives of the basis functions which are approximated by the

collocation differentiation approach applied to the physical space. Approximate solution

can be represented by Lagrange polynomials:

yylllOdt'.V ^j(JUU(I

u5 {?,) = £*>,(& )«, = XV&VGf;) (2-32)
/=0 7=0

where A.(£t)is the Lagrange polynomial defined at a given quadrature point ?} and

evaluated at the quadrature point ??? and us (?¡) is the approximate solution which is pre
calculated at the given quadrature point. Differentiation of the approximate solution in

the physical space can be represented as:

dus(¿ ) e' & & dh.(¿ )^^= SSS^2^,(^)^(^)^(^) (2-33)??\ 1=0 7=0 *=o OC1

We can simplify the derivative evaluation by a Lagrange polynomial, which is defined at

only one point and zero everywhere else:
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-e \b\piblq>bir) Zjpír°b\ i=o s9?

du5 Ql dh-
~ t- \b\p ' b Iq ' bir i_2j a e

US(b"u>b*2a,L·)
Zp

*'&,&,£») (2-34)
6,

5w¿
\b\pib2qibìr) ¿—i

^dK "'(#!„ >&,»&*)ô£—— tí5í31w

Quadrature points (^1,- , ^27- , £,* ) are chosen to be the same as those for integration, that is,
the Gauss-Labatto-Jacobi distribution for 77, direction, while in ?2 and ?3 directions, the

Gauss-Radau-Jacobi distribution are used. In this approach also, derivatives are not

defined at singularities similar to integration.

To reduce the operation count significantly, differentiation is simplified greatly through

derivatives in the collapsed coordinate system where the derivatives of the modal basis

functions are pre-calculated and then changed through the chain rule to the physical

coordinate system such that:

du , \ sr- d<Ppir 1 \
d? pgr Pqr d 7,

(2-35)
du _ du d?] du d?2 du d?J
dx d?? dx d?2 dx d?3 dx

Depending on efficiency, we can choose the method for derivative calculation; i.e., if the

solution and its derivatives are needed (such as a convection operator), the collocation

method performs this operation more efficiently.
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2.6 Elemental Matrices

In order to assemble a system of algebraic equations, we need to construct different

elemental matrices.

Mass matrix M is an important operational matrix, which appears in the weak

formulation as an inner product of two basis functions:

M = Ic1CjOQ (2-36)
Another frequently encountered matrix is the stiffness matrix A which appears in the

weak formulation as an inner product of the derivative of basis functions:

Derivative matrix Dn represents in the weak formulation as an inner product of the trial

function with a derivative of the pressure basis functions:

Dn=l<PÏ-p-dQ ,? = 1,2,3 (2-38)dxn

Convection operator C{u) appears in the weak formulation as the inner product of the trial

function with the velocity field and the derivative of the velocity field:

C, (iî) = Sf,f?(?a)? ^{uß)k ß = 1,2,3 (2-39)
This convection operator is discretized by using explicit third order multi-step schemes

defined by Cardenas [02] such that:

cß(u"+i)=y3cß(u")-y3cß(un-i)+y3cß(u"-2) o^
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where superscripts «represent the time step. In the code, at each time step only the

integration of the convection operator is performed on the velocity values from the

previous time step, while the two other terms are retrieved from memory.

The rotational matrix Rn is an inner product of rotational term VxVxuwifh the

derivative of a pressure basis functions. The resulting three rotational matrices are:

RxU = I 2„ a„ S2„ ?~?d2f 02f\df d2f df d2f df
d? d?d? d? d?d? d? d?2 d?' J

?O-u

?, ? -? 2„ a„ ?2„ *„(#f d2f?df d2f df d f df
d? d?d? d? d?d? d? d?2 d?'

5O·? (2-41)

R3V=L 2„ a„ a2„ ?~(#f d2ç\df d2f df d2f df
d? d?d? d? d?d? d? d?2 d?1

\dO-\?

where the first derivative — is evaluated by employing the derivative of the basis
dx¡

functions and the second derivative —is obtained by employing collocation

differentiation and the derivatives of the basis functions.

Once all of these matrices and operators are built, the resulting equations are given by:

A 3M
— +
Re 2àt r1 =/"+' -D(2p" -?"-?-f",??-\??-2)- — (2?? -/2?"-? (2-42)

¿P =/ -C(M1- ,M1- ,U1 )- Y- [R1U1 J (2-43)

where trial functions of /and Care pressure derivative basis functions in equation

(2-43). Then equation (2-42) is solved to obtain the vector of velocity coefficients and the

equation (2-43) is solved to obtain the pressure coefficients at each time step.
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2.7 Transformation

In the modal basis functions, coefficients of the basis functions do not represent the

physical nodal point value, thus transformations between the coefficient and physical

spaces are introduced. They are backward transformation which means mapping the

modal basis functions onto the physical space and forward transformation where

conversely mapping a physical space onto the modal space.

The backward transformation represents the physical approximate solution by the

summation of all modal basis functions with their respective coefficients. This is given

by:

Nd°r

uS {??,?2,?,)=?4??f?{??,?2,??) (2-44)
1=1

where û is the vector of coefficients and <p¡ are the basis functions evaluated at specified

points. While we evaluate approximate solution at discrete or nodal points in the physical

space, the number of discrete points should be less than or equal to the number of modes.

As long as the coefficient space solution is known, physical space solution can be found

in the post processing functions by considering the number of nodes is equal to the

number of modes.

More over the forward transformation projects the physical values onto the coefficient

space. These coefficients can be represented by the following equation:

S fa* > ?m )*V = fa* ' /) (2-45)
pqr

where / is the physical space representation of a function evaluated at the quadratic

points. The above coefficients of the modes û can be calculated via the inversion of the
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mass matrix onto the inner product of the forcing function / with the basis functions.

This forward transformation will be used in the subsection of Dirichlet boundary

condition.

2.8 Global Assembly

Global assembly is a mapping from local domain to the global domain to form global

continuous expansion bases. The boundary/interior decomposition of basis functions

ensure that only the boundary modes are defined at the elemental boundary, while the

interior basis functions are zero at the boundaries. The global-local mapping needs only

to be performed at the boundaries as only those modes share a neighbor. Interior modes

are automatically global modes as they do not have any boundary interaction. The

decomposition of the domain through the mesh ensures that global data is spread between

the neighboring elements. Local and global degrees of freedom are denoted by the

vectors ûe and û respectively. A mapping vector map\ is formed to return the global

degree of freedom for a mode number i and an element number k . The numbering of the

global degrees of freedom is arranged such that vertex modes are labeled first, followed

by edges, faces and interior modes.

A scatter operation is defined as the mapping from global modes to the local modes:

u¡ =ug[map¡] (2-46)
An opposite operation called the global assembly is defined to be the mapping from the

local modes to the global modes becomes:
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2.9 Continuity enforcement

When assembling local modes to form continuous global expansion functions, continuity

should be enforced due to the lack of rotational symmetry of the bases in the second order

partial differential equations. To enforce continuity, two constraints need to be satisfied:

the general orientation of the local coordinate system has to align and the directions of

the coordinate systems have to match. In an element, the vertices A, B, C and D are

defined at the collapsed coordinates (-1,-1,-1), (1,-1,-1), (-1,1,-1) and (-1,-1,1)

respectively. This procedure first starts with the orientation constraint which is satisfied

through local renumbering operation on vertex modes. Assign the lowest global number

in an element to vertex D and then the second lowest global number to vertex C. Thus

both the ?2 and ?3 directions are matched but leave the orientation of the ?? coordinate

system (edge AB) as a final degree of freedom. Thus the orientation of this collapsed

coordinate system can be flipped by reversing the global numbering of the vertices A and

B. It means that while edges are checked for continuity with their neighbors, vertices A

and B numbering is flipped if non-matching coordinates are found. Altogether this

implementation enforces the continuity as a pre-processing step and does not require any

modifications to the global assembly operation through assigning the above local

coordinate systems correctly.
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2.10 Compressed Row Storage

The sparseness is important to the choice of solution algorithm and the storage

requirement of each matrix. The sparseness of a matrix is increasing with the expansion

order increase. Storing the full matrices and performing operations on these full matrices

are computationally expensive therefore all the matrices used in this code are stored by

compressed row storage. This method keeps only the non zero entries of a matrix and

uses three vectors; V, C and R. Vector V stores the non-zero matrix values as doubles,

vector C stores the corresponding column position of the non-zero matrix value as

integers, finally vector R stores the ranges of indices of the V vector indicating values in

a given row as integers. The following algorithm is used to calculate matrix-vector

product efficiently.

for i = \:n

for j = R[i]:R[i + I]-I

a[i] = V[J]Xb[C[J]]

The above algorithm performs operations only on non-zero values compared to the

original matrix which uses all values of the matrix.

2.11 Schur Complement Method

Equations (2-42) and (2-43) are modified to the following form:

HU = J (2-48)

Ap = g (2-49)
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where / = f"+l -d(2P" -p"-')-C(ûn,û"-\û"-2)- — (2ûn -/2?"-?
g f^-ciû^ûr^ryy^ûrj and h= í A 3M

-------1
Re 2At

Here H and A are

Helmholtz and Stiffness matrices respectively. In the velocity and pressure field

calculations, we need to take the inverses of Helmholz and Stiffness matrices. This

operation is done by using Schur complement method where interior solutions can be

decoupled from the boundary solutions naturally. In Schur complement method, a matrix

can be represented as:

H = Hb Hc
Hl H1 (2-50)

where Hb,Hc, H¡ are boundary-boundary, boundary-interior, interior-interior interaction

matrices respectively. Therefore equation (2-48) can be written as:

Hb Hc
Hl ?, Jl.

(2-51)

where the subscripts b,i denote boundary and interior modes respectively. By performing

a Guass elimination step, the above system can be solved in three steps:

U1 = HTj1

(?,-?€?7???)?,=/,-?&
U1 = U1-HT1HIu1,

(2-52)

(2-53)

(2-54)

In the first step a local interior solution is obtained by the local elemental inverse of

interior matrix through Cholesky decomposition. In the second step, global Schur matrix
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[Hb - HCH¡ 1Hc) is inverted to obtain the boundary solution. Finally, the previous local
interior solution is corrected to obtain interior solution.

Numerical solution of Navier-Stokes equations is computationally expensive. This is

overcome by parallelization of the code by separating the problem into smaller portions.

This means all the processors need to communicate with the sub-solution to obtain a

global solution. This is done by domain decomposition METIS library developed by

G.Karypis [24] which breaks up a computational domain into non-overlapping sub-

domains by assigning specific elements to a given processor. This domain decomposition

algorithm is demonstrated on two processors to solve equation (2-53):

[S]u=f (2-55)

where S and f are global Schur matrix and modified forcing vector respectively.

Global Schur system in two processors is:

'ss "15

'li °11

>2*

J2i

0

0 S22

Us

U1
W,

fs
A
fl

(2-56)

where S1 , , S22 are local components and Su , S2s are shared components of the global

Schur matrix. Similarly forcing and solution vectors also have local and shared

contribution. By performing two Gauss elimination steps, the above system can be solved

in three steps:

«1 = SuA and "2 = snfi

[Sss ~ S\¡Si 1 S\s - ^2s^22 $25 \Us = fs~ $\sUl ~ $2sU2

(2-57)

(2-58)
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u , = u , - 5?, "S15M5 and u2 =u2 - S22 S2sus (2-59)

The first step solves for all intermediate local solutions, performed locally on each

processor. Then the second step is solved through a global conjugate gradient method to

obtain shared solution. The final step updates the local solution based on the shared

solution.

Schur complement method is again used to equation (2-57) to find local inverse, which is

composed of vertex, edge and face contributions such that:

ve vf

ve ee "ef
LT Lirf ^f/ 1Xf

Jiv

Ae
If

(2-60)

This local system is solved to obtain vertex, edge and face solution by Gauss elimination

steps and Cholesky decomposition. The required computational resources are optimized

by employing Schur complement method at the pre-processing step and storing sparse

matrices by compressed row storage method.

2.12 Preconditioning

In order to achieve higher computational efficiency, a study was done to determine which

calculation consumes the most computational time. It showed that velocity as well as

pressure solve steps require the largest proportion of time in each time step calculation.

The shared global conjugate gradient solves, requires most time and thus requires most

iteration count. The significant factor to determine the number of required iterations to

solve a system is called the condition number:
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N¡lento* x [condition number/2 (2-61)

Therefore a preconditioning is performed to the given system to reduce the condition

number. This is achieved by multiplying the matrix system Hu = / with a

preconditioning matrix K~l which is the inverse of the diagonal component of the

original matrix, such that the new system becomes:

K-1HU = K-1J (2-62)

This method is called Jacobi preconditioning and scales the original matrix by this

preconditioning matrix to reduce the condition number. This method improved the

efficiency of the code by reducing the solve time for velocity and pressure steps

remarkably.

2.13 Equal ordered P/P formulation

Navier-Stokes equation is solved by an equal order P/P formulation for velocity and

pressure which shows higher accuracy in both solutions because this method do not

exhibit spurious pressure modes in the rotational formulation. If we use the lesser order

for the pressure than the velocity, convergence rate will be lower for the pressure than the

velocity. Through this method instability of Reynolds number is reduced. This means

allows for solving high Reynolds number flows on a given mesh. However, in this thesis

we used this formulation only for some validation procedures.

2.14 Time-step size for temporal discretization

Temporal discretization of explicit scheme of the convection operator is stable, if the

following condition is satisfied such that:
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At < Atcrí = min — * 0.723 (2-63)\u' J

where h' = \x,-x I and u' = ' , ^. Here a and bare minimum over all modes and
\Xb Xa I

minimum over neighbor modes respectively. To determine the adequate time-step

sizeAi, the ratio ?/,) should be a minimum value. Therefore we need to find the

minimum length h' and the maximum velocity u ' in the entire computational domain.

Thus, the minimum length is approximately given by:

HL. « -
1 / Il « ? 1 I U ? Iw I ? W II \/3f|fe-rf)-è-^)x(£-dì (2-64)

where a,b,canda\ are coordinates represented as vectors at the vertices of the smallest

tetrahedron in the geometry of interest and P is the order of the Jacobi polynomials. To

allow for numerical errors, evaluated time step could be multiplied with a safety factor.

Euler backward implicit scheme is used to discretize the unsteady term in the Navier-

Stokes equation which is unconditionally stable therefore At is set only by convection

operator.

2.15 Post-processing

In order to post process the high order spectral element data, available lower order

visualization software packages are used such as Tecplot and Opendx. To capture the

higher accuracy of the elements, a method is developed which fills the higher order

element with linear elements. For example, expansions order P=3 have 20 modes which

are distributed at equal distances in the tetrahedron. These modal points are linked to

form 26 tetrahedrons. Although the above mentioned procedure allows for visualizations,
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further post processing subroutines are needed to capture the high accuracy data. These

operations usually require respective collapsed coordinates from a given physical point

distribution. To find this corresponding collapsed coordinates, a non-linear Newton

method is employed. Then the obtained collapsed coordinates can be used in the

backward transformation to determine the physical solution at the given point. Further

complexities arise in the derivative calculations where singularities exist at the vertices C

and D and the edge CD. In this case, the non linear Newton method cannot be used, and

these vertices C and D are checked separately to avoid this problem. At the same time on

the edge CD, a one dimensional root finding algorithm is used in the ?3 direction.
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Chapter 3

Boundary and Initial Conditions for Validation of the Code

3.1 Boundary Conditions

The boundary condition issue for the Navier-Stokes equation is quite delicate and can

significantly affect the solution. The simplest and most common boundary condition is

'no penetration and no-slip' at a solid wall (or an object). Here the normal and tangential

velocity components must agree with those at the wall (or object). Another important

boundary condition is arbitrary slip which does not permit penetration. Due to the

incompressibility constraint, flow must be parallel to the boundary for the slip condition.

For numerical implementation, Dirichlet boundary conditions which fit known values of

the flow components are used to specify velocities such as no-slip at the wall or inlet

profiles (i.e. parabolic profile for the channel flows, Blasius profile for the boundary layer

flows). Concerning the outflow and far-field boundary, many different approaches exist.

The implementation of these boundary conditions in spectral element method is an

important operation which will be described in the following sub sections.

3.1.1 Dirichlet Boundary Condition

This boundary condition (gD) is imposed on a partial differential equation which

specifies the values a solution needs to take at the boundary of the domain. This is

implemented in the spectral element method by decomposing the domain into a

homogenous part ( u H ) where the solution has to be found and a non-homogenous part
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(uD) where the known values have to be enforced. Hence, known values (uD) are
condensed out from the left hand side of the system and subtracted from the right hand

side to solve foTu" . A consistent local method is used to project a Dirichlet boundary

condition on the coefficient space by ensuring continuity. As we know, boundary is

decomposed into vertex, edge and face modes which are projected locally in every

element to get the required contributions of gD in three steps. Firstly, the coefficient of

the vertex mode is set by the given physical value boundary condition because a vertex is

unity at its respective vertex and zero at all the other vertices. This is called vertex

projection. Secondly, only edge contributions are projected onto edge modes locally. As

we stated earlier, edge modes have a value at its own edge and are zero on all the other

edges and vertices. However, to ensure only edge contributions are projected, the vertices

which are on the end points of the edge are subtracted from the projected boundary

condition gDto ensure continuity. It is shown below for an edge AB:

u¿ = ?^'aß?aß =Sd -ûeA(pA -??ß (3-1)
(pqr)AB

A weak formulation is formed to solve the edge modes at the coefficient space:

<Pioo y S "/ooP/oo = \<Pi » Sd ~ "ooo^ooo ~ ??????? ) (3-2)V i=l J

Inversion of a local one dimensional mass matrix is constructed to solve for edge mode

coefficients. Here in order to do integration, the Gauss-Jacobi quadrature rule is used

only at edge modes.

34



Finally, only face contributions are projected locally onto face modes where vertex and

edge modes are condensed out, i.e. subtracted from the gD boundary condition to ensure

continuity. This is shown below for a face ABC:

u = / VabcVabc ~
(pqr)ABC

gD-ûeA9>A-ûl<PB-ûcÇ>c- S???f??- YJìBc9bc
(pqr)AB (pqr)BC

- YJ^acVac
\ ( PQr)AC

(3-3)

Again, a weak formulation is found to solve for face modes at the coefficient space:

F-I Ô-1

^ÍIá>,PlO
V P=] <H

1PiJO' S D ~ ?000^000 ~UP00'PP00 ~ 11OPO1PoPO
P-I Q-I Q-I

U ????'??? ~ /^UPqoVpqO ~ / ??a???a?
V P=1 </=' 1=? J

(3-4)

Another inversion of local two dimensional mass matrix is formed to solve for face

modes. Gauss-Jacobi quadrature rule is again used to perform integration locally just on

the face modes.

3.1.2 Outflow Boundary Condition

Concerning the outflow boundary, many conditions can be applied such as linearized

convective equation or Navier-Stokes equation without pressure gradient term [09] or

open boundary condition [12] or stream-wise periodicity [52] or buffer-domain

technique [22], [31] etc. However, in this numerical study, we use an open boundary

condition which can be written as a passive open boundary condition. This approach

works better than any other alternative form demonstrated by Gresho [12]. This is given

by:
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^ = O (3-5)on

Thus, we could use both —- = 0 and —- = 0 as boundary conditions at the outlet.dn on

3.1.3 Free surface Boundary Condition

An interface between two fluids (e.g., gas and liquid) is often referred to as a free surface.

The reason for the "free" designation arises from the large difference in the densities of

both fluids. Generally the inertia of the lower density fluid can be ignored compared to

the larger density fluid. In this sense the higher density fluid moves independently or

freely with respect to the lower density fluid. This boundary surface is not constrained, in

other words, the flow at this boundary is not adversely affected by environment thus the

flow passes through this boundary without any refraction.

Flows typically dealing with these free surfaces, force (per unit area) balance boundary

condition is used, also referred as specified traction on or at the boundary. This is

obtained from the true momentum balance equation (2-3) in the stress-divergence form.

This stress divergence term leads to a natural boundary condition which represents true

physical force, and they are on the planar boundaries stated as:

F = -?.p = -p.? = µ Vw + (Vu) j.n-Pn
(3-6)

F = u — + Vun -Pn
\?? J

where un = n.u is the normal velocity.

For simplicity this boundary condition is expressed in two dimensional forms at a planar

boundary as:
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Fn = n.F = 2µ^- -P (3-7)on

FT = r.F = //
dur du„-^- + (3-8)
d? dt ,

where equations (3-7) and (3-8) are written in the normal and tangential directions

respectively.

The above boundary condition causes problems because the proper values are usually not

du
known for Fn and Fx , the pressure appears in the normal direction and a term —- appearsdt

d?? / \tin the tangential direction. This term —- can be removed by omitting the term (Vu) by
dt

considering the simpler momentum balance equation (2-9) where we deal with the

incompressible flows. Therefore, a natural boundary condition associated with the

simpler Navier-Stokes equation becomes:

L=M^-P (3-9)d?

fr= M^- (3-10)d?

where /„and /rare new traction force components. From the recent mathematical

analysis, these boundary conditions are useful from a point of view of stability [35], [14].

The above stated boundary conditions are not completely natural in our discretized weak

formulation of the Navier-Stokes equation (2-18). Further strengthening this argument

that the pressure gradient should be integrated by parts but the present work considered

weak form of pressure gradient without integrating by parts. Therefore according to our

weak formulation (2-18), pressure term in the normal direction is excluded in equation
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(3-9) such that the latest traction force components can be written in the non-

dimensionalized form as:

/. 1/ du „
Re dn

/,== 1/ du.
Re 5«

(3-11)

(3-12)

The above latest traction force components are used in a situation where free surfaces are

encountered in the problems of interest.

3.1.4 Methodology to construct Surface Matrices in the SEM

Implementing the above cited boundary conditions in sections 3.1.2 and 3.1.3 and non-

Dirichlet boundary conditions in spectral element method is a trivial operation because

boundaries in three dimensions are represented on the faces of the tetrahedron. Therefore

we have to construct surface matrices at these boundaries

W ï **ï '

Figure 3-1. Elements are chosen in the domain where only one face of the tetrahedron lies on the outlet
boundary
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Note that our geometry of interest consist of planar (straight) surfaces at each boundary

where one face of a tetrahedron lies on this planar surface and the balance resides inside

the computational domain as shown in Figure 3-1. Finding these faces and constructing

two dimensional expansion bases at these faces are nevertheless challenging operations.

These two dimensional bases are found at the quadrature points on the face of the

tetrahedron to perform integration. As we stated in the previous chapter, in a tetrahedron,

quadrature point distribution was given by [?'u,tj2j ¦>rizk) and different quadrature rules

are used in the different collapsed coordinate direction. But a face is represented only by

two collapsed coordinate directions where third coordinate direction is parameterized at

the face as:

face ABC = {???,?2^,-\)
face ABD &fou,-lrf3J)
face BCD = (?,?2!,??)
face ACD = (-\,?2?,??)

In order to perform integration on a face, Gauss-Labatto-Jacobi quadrature rule is used in

the ?? direction and Gauss-Radau-Jacobi quadrature rule is used in the ?2 and ?^

directions. This means that both GLJ and GRJ quadrature rules are needed to perform

integration on faces ABC and ABD but only GRJ rule is enough to perform integration at

faces BCD and ACD.

The created face matrix values are stored in the corresponding locations on the elemental

matrices, which correspond to the boundary. These elemental matrices are used to

enforce boundary conditions such as outflow and free surfaces.
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The Greens theorem is used to validate the constructed face matrices. By performing

integration by parts on the weak pressure derivative term - (v, Vp) in the weak form of

the Navier-Stokes equation (2-18), we obtain a term -[?/w]^ at the boundaries. As we

mentioned in Chapter 2, space of trial function ? is zero at the Dirichlet boundaries

where the term- [vpn \O reduces to zero at these boundaries. However, this term- [VjOw]5n
is not zero at outflow or free surfaces or other boundaries.

-(v,V/?) = -[vp4n+(p,Vv)
- (<P¡d » ?'/d )p = -{<pId » ??? )p + [<P?d » <p'L· )p (3_ 14)
- D3Dp = -M2Dp + D3Dp

Case I Case II

The flow through a simple channel is chosen to carryout the validation. At the inlet,

parabolic profile is applied in the stream-wise direction and other velocity components

are set to zero, 'no-slip and no-penetration' conditions are used in the upper and lower

walls. Both side walls in the span-wise direction are set to 'slip and no-penetration'

condition. At the downstream boundary, passive open boundary condition (3-5) is

applied. Zero initial condition is assumed throughout the flow domain.

In the first case, governing equations (2-42 and 2-43) are solved to simulate the parabolic

flow through the channel without any changes in the weak pressure derivative term as

shown in the left hand side of the equation (3-14). Velocity profiles at the down stream

locations and the time (or total number of iterations) needed to reach the steady state

solution are reported. These results will be utilized to validate the subsequent case.

In the second case, same governing equations (2-42 and 2-43) are solved but the weak

pressure derivative term is replaced with [p, Vv) and -[vpn J3n as shown in the right hand
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side of the equation (3-14) to carryout the validation on the constructed surface matrix.

As we stated earlier, the term -[vpn J5n reduces to zero only at the Dirichlet boundaries.
Therefore, we enforced this condition at the side walls and outlet. This is implemented by

constructing two dimensional surface mass matrices at these boundaries. Then the forcing

term is formed via multiplying the two dimensional surface mass matrix with the

corresponding previous time step pressure solutions. At last the forcing term is subtracted

from the right hand side of the Navier-Stokes equation (2-42). Again the velocity profiles

and the time required to reach the steady state solution are reported. Continuity and the

time required to attain the steady state are same for both cases. Simulation results for both

cases justified that the methodology used herein to construct the surface mass matrix can

be used to create other types of surface matrices such as derivative and stiffness matrices.

These matrices will be needed to implement free surface and outflow boundary

conditions in the succeeding sections.

3.2 Initial condition

Att = 0, a known flow field is assumed throughout the computational domain. In the

spectral element method physical values are projected onto the coefficient space to

implement this initial condition.

The residual error can be written as the difference between approximate and exact

solution such that:

us -u = R(u) (3-15)

Then the weak formulation is formed as the inner product such that:
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(v,us -u)=(v,R(u)) = 0 (3-16)
The above weak formulation can be solved through the method of weighted residuals.

Thus, the problem reduces to the minimization of the inner product of the residual such

that it becomes zero. The coefficient space values are solved from the following equation:

fc.^-K-=fe»") (3-17)
Above system of equation (3-17) is represented in the matrix form as:

Mu = f (3-18)

Before inverting the mass matrix, Dirichlet portion of the boundary condition need to be

incorporated in the equation (3-18). This means that the Dirichlet boundary values are

condensed out from the above system. Thereafter, the coefficients can be found through

inverting the mass matrix via multilevel Schur complement method as described in the

previous chapter:

û=M~lf (3-19)

3.3 Validation

The computer program use here-in was developed by Niewiadomski to simulate the three

dimensional flows with tetrahedral elements [36]. Our primary objective is to verify that

the program function properly for our problem of interest. First the boundary conditions

of our problem of interest were implemented. Secondly, flow developing along a flat

plate is considered for validation. Comparison is carried out with the Blasius solution by

applying appropriate boundary and initial conditions in the modal spectral element

method.
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At the inlet, a small distance away from the leading edge, Blasius profiles are assumed in

both the stream wise and wall normal directions rather than considering free stream

velocity which creates singularity at the zero incidence of the plate.

u(0,y,z,t) = uB(xo,y)
v(0,y,z,t) = vB(xo,y) (3-20)
w(0,y,z,t) = 0

At the flat plate, the velocity components are zero. Therefore 'no-slip and no-penetration'

condition is employed.

u(x,0,z,t) = 0
v(x,0,z,t) = 0 (3-21)
w(x,0,z,t) = 0

Both side walls in the span-wise directions, 'arbitrary slip and no-penetration' boundary

conditions are applied where span-wise velocity component is specified at the boundary

through Dirichlet condition.

w(x,y,0,t) = 0
w(x,y, Zj) = O

At the outlet, passive open boundary condition is employed which is naturally included in

the weak formulation (2-18).

^ = O
f (3-23)^ = O
dn

In the Navier-Stokes weak formulation (2-16), Laplacian term could be replaced with

[v, Vu.n]dn and (Vv,Vm) by integrating by parts. In addition, recall that the space of trial
functions ? in the Galerkin expansion is zero on the Dirichlet boundary. Therefore at the
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Dirichlet boundary, weak Laplacian term vV2w only reduces to(Vv,Vw). In our problem

of interest, the term [v,Vn.«]an is not zero at the outlet. As we explained in the previous
section, passive open boundary condition (3-5) is chosen at the outlet boundary where the

outflow is considered as never ending one. It means that the boundary term [v,Vw.«]5n
vanishes at the outlet.

At the upper boundary, specified traction force components are applied which is

incorporated naturally in the Navier-Stokes equation.

7-1/ du~
Re dn

(3-24)

Re dn

This becomes in the weak formulation as:

The above equation (3-25) is represented in the matrix form as:

f = /ReD2Dû (3-26)
where D1D is a two dimensional derivative matrix. This matrix is constructed at the

upper boundary analogous to the two dimensional mass matrix in the previous section to

enforce the specified traction boundary condition. This means that the traction force

(3-26) is added in the right hand side of the Navier-Stokes equation (2-42) at the upper

surface of the domain.

Finally, initial conditions are applied at t = 0 where Blasius solution at the inlet is

assumed in the entire flow field.
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u(x,y,z,0) = uB(x0,y)
v(x,y,z,0) = vB(x0,y)
w(x,y,z,0) = 0

(3-27)

In the case of a flat plate viscous boundary layer flow, a pressure gradient does not exist

in the flow direction [32]. Also no externally applied pressure gradient is specified, so

— = 0 but apparently for a flat plate boundary layer— = 0 . Therefore in our numerical
dx dy

simulation, we dropped the pressure gradient term altogether.

The validation cases ran with the chosen parameters listed in Table 3-1 . This procedure is

carried out with the following residual stopping criteria.

Error= Nw" — u" JdQ. <2xl(T13 (3-28)

where superscripts "' n" represent the current and previous time steps respectively.
Case

Re*
P (polynomial order)

??

ày
??

At

No. of time steps to reach
stopping criteria

500

0.250

0.423

0.250

0.010

2149

II

550

0.1000

0.2589

0.1000

0.0010

15783

Table 3 -!.Validation cases parameters

The numerical simulation for the flow developing along a flat plate based on the free

stream velocity Un and the inlet displacement boundary layer thickness S* is compared

with the Blasius known solutions for case-I and case-II in the Figure 3-2 through Figure

3-5. Three dimensional computational domain is used to simulate the boundary layer
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flow therefore mid plane in the span-wise direction is chosen to carryout the comparison

where the span-wise slip wall boundary effects are minimum. Following the comparison,

maximum differences between the spectral element results and Blasius solutions at each

down stream locations are tabulated in Table 3-2 and Table 3-3 at both side slip walls and

the mid plane for both velocity components.

Blasius solution

0 0.2 0.4 0.6 0.8 1

Blasius solution
x=1.5

0 0.2 0.4 0.6 0.8 1

Blasius solution
o x=1 .0

0 0.2 0.4 0.6 0.8 1

5

4

3

2

1

— Blasius solution
? x=2.0

J
,JT"

JT^

.xr*r
0 0.2 0.4 0.6 0.8 1

u/U

Figure 3-2 Similarity profiles of the stream-wise velocity component at the downstream locations for case-I
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Blasius solution
+ x=0.5

/̂
i,-+'

,-?

?
v/U

Blasius solution
x=1.5

? 10

Blasius solution

Blasius solution

v/U ? 10 v/U ? 10

Figure 3-3 Similarity profiles of the wall-normal velocity component at downstream locations for case - 1

Location

Velocity components (Maximum error)
Slip wall 1 (Z=O) Mid plane (Z=0.5) Slip wall 2 (Z=I)

0.5 0.001326 0.000014 0.001151 0.000020 0.001251 0.000014

1.0 0.002390 0.000023 0.001802 0.000027 0.002025 0.000021

1.5 0.003516 0.000033 0.002279 0.000051 0.002652 0.000030

2.0 0.004084 0.000039 0.004811 0.000037 0.004637 0.000037

Table 3-2. Maximum differences between the obtained numerical results and known Blasius solution in the

downstream locations for case - 1
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Blasius solution

0.2 0.4 0.6 0.8 1

Blasius solution
x=1.5

Blasius solution
x=1.0

7

6

5

. o*
=*· 3
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1

Blasius solution
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¿ÇiSf? J

0 0.2 0.4 0.6 0.8
u/U

??"' · . 1 . . >-
0 0.2 0.4 0.6 0.8 1
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Figure 3-4 Similarity profiles of the stream-wise velocity component at downstream locations for case - II

Blasius solution
x=0.5

Blasius solution
x=1.5

----- Blasius solution
O x=1 .0

v/U ? 10

Blasius solution
x=2.0

Figure 3-5 Similarity profiles of the wall-normal velocity component at downstream locations for case - II
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Location

Velocity components (Maximum error)
Slip wall 1 (Z=O) Mid plane (Z=0.5) Slip wall 2 (Z=I)

0.5 0.002167 0.000012 0.001559 0.000012 0.002335 0.000012

1.0 0.002859 0.000020 0.000465 0.000020 0.002912 0.000019

1.5 0.003042 0.000026 0.001854 0.000021 0.003076 0.000026

2.0 0.005711 0.000031 0.005519 0.000032 0.005739 0.000032

Table 3-3. Maximum differences between the obtained numerical results and known Blasius solution in the

downstream locations for case - II

As shown in the Figure 3-2 through Figure 3-5, our numerical data coincide well with the

Blasius profiles at the downstream locations for both velocity components. At the same

time, illustrated Table 3-2 and Table 3-3 also show that the maximum error between the

known and the numerical results are comparably small at the chosen mid plane. Again,

the tabulated values in the table at both side wall boundaries show that the enforced slip

boundary conditions not refracted the flow significantly. This validation procedure shows

the consistency of using these boundary and initial conditions in the spectral element

method for the simulation of flat plate boundary layer.
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Chapter 4

Initial Stage of Transition Process

The selection of appropriate boundary and initial conditions for the spectral element

method is critical to simulate the initial stage of transition. The difficulties arise from the

complicated nature of the non-linear system of partial differential equations. While

selecting these boundary and initial conditions, care was taken that the stable method is

not adversely affected. Therefore some boundary (i.e.: inflow and far-field) and initial

conditions adopted in our numerical simulations are obtained from Fasel [05] which gives

physically meaningful results with a relatively small integration domain to ensure that

computational costs are kept within acceptable limits.

4.1 Boundary and Initial conditions of disturbances

Nowadays there are various analytical and numerical techniques available to introduce a

disturbance into the boundary layer. An alternative form of disturbance forcing is to

introduce a prescribed time-periodic function at the inflow or at the free stream boundary.

For the present study the disturbance forcing is imposed at the inflow boundary. The

emphasis of this study is to verify that the numerical techniques (i.e. spectral element

method) used in the simulation is well suited to simulate the first stage of transition

process via applying right boundary and initial conditions.

The inflow condition uin is given by the time-periodic perturbation functions (up,vp),

which are only dependent on y and t , superimposed onto the Blasius profiles such that:
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uin(0,y,t) = uB(o,y) + up(y,t) (4- 1 )

v,„ (O, y, t) = vB (o, y) + vp (y, t) (4-2)

w,, (0,;M) = 0 (4-3)

where the perturbation functions up andvp are sinusoidal in time (periodic) and written as:

up(y,t) = A°u'A(y)cos(ß) (4-4)

2?, CM) = ^V4 (>0 cos ^- + ßtV 2 J
(4-5)

The common amplitude factor ,4° allows experimentation with various perturbation

amplitudes which are real and constant in time. For the present calculations, Ä is chosen

so that the absolute maximum value of wpis 0.05% of the free stream velocity [05]. The

so-called amplitude distributions u'A(y) and v'A(y)are taken from the numerical solutions

of the Orr-Sommerfeld equation for time amplification which will be described in the

following section 4.2. With these perturbation enforcement and other conditions, realistic

Tollmien-Schlichting type disturbances are generated which propagate downstream and

are amplified or damped in the downstream direction depending on the Reynolds number.

This inflow condition is introduced in the code with the aid of Dirichlet boundary

condition as explained in the previous Chapter 3.

At the upper boundary, perturbation velocity components decay asymptotically when

approaching the far-field. If the far-field boundary is an insufficient distance from the flat

plate, an erroneous disturbance arises throughout the computational domain. This

erroneous disturbance occurs as a result of enforcing the far-field boundary conditions

too close to the wall. This problem was overcome by the following conditions [05]:
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du'(x,y,t) ., s ^r—\^- = -au'(?, y,t) , at y = Y (4-6)dy

dv'(x,y,t) ·, s ^r—^11-1 = -av'(x, y,t) , at y = Y (4-7)dy

where a is the wave number of the resulting perturbation flow (values for a can be

obtained from corresponding linear stability theory calculations in section 4.2) and

assumed that a is constant, although numerical results, as well as linear stability theory

indicate that avaries with x. The prime denotes that the flow variables of the

perturbation flow; they are defined as the difference between the total flow variables

µ, ? and the corresponding variables of the undisturbed flowt/, V :

u'(x,y,t) = u(x,y,t)-U(x,y) (4-8)

v'(x,y,t) = v(x,y,t)-V(x,y) (4-9)

As stated in the equations (4-6) and (4-7), perturbation velocity components decay slowly

in the y direction. This allows a relatively small integration domain in the y direction

and thus considerable savings in computer memory and computer time since it is not

necessary to assume that u'andv' vanish on upper boundary. The boundary conditions

(4-6) and (4-7) were derived by assuming neutral periodic behavior of the perturbation

flow near this boundary. However, the use of this condition does not force strictly

periodic behavior upon the flow. Damping or amplification of the disturbances was

possible even on this boundary itself verified by Fasel [05].

Boundary conditions (4-6) and (4-7) are written in the weak formulation by multiplying a

trial function ? to employ in the spectral element method.
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du ,?— = -avu' (4-10)

d?'
?— --OCVV (4-11)

dy

The above weak formulation is represented in the matrix form and perturbation velocities

are written according to equations (4-8) and (4-9):

Dy(u-U) = -aM(u-U)
(Dy+aM)u = (Dy+aAi)u
(Dy + aM )v = [py + aM)v (4-13)

where D and M are surface derivative and mass matrices respectively. Right hand side

terms of equations (4-12) and (4-13) are constructed as a forcing term and added in the

right hand side of the Navier Stokes equation (2-42) at the upper boundary. As we know,

the above boundary conditions are implicit therefore we need to solve for the total

velocity «,vat the boundary itself. This lead us to add the surface matrix \Dy+aM)

from the equations (4-12) and (4-13) with the volume Helmholtz matrix r% + ^/iKt)
in equation (2-42).

At the flatplate y = 0 , the velocity components are zero.

u(x,o,t) = 0
v(x,0,t) = 0 (4-14)
w(x,0,t) = 0

In the span-wise boundaries, 'arbitrary slip and no-penetration' boundary conditions are

used where the span wise velocity components are zero at ? = 0 and ? -Z which are

enforced through Dirichlet boundary condition. However, many other authors employed
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periodicity conditions for the span wise boundaries at ? = 0andz = Z [31], [22], [06].

Thus, for all variables and their derivatives,

u(x,y,Q,t) = u(x,y,Z,t)
du du (4-15)

x,y,Z,t\x,y,0,t

In our spectral element scheme, difficulty of implementing periodicity condition in the

span wise direction forced us to go for 'arbitrary slip and no-penetration' condition.

At the outflow boundary ? = X , many conditions can be applied. These conditions have

been the focus of study for the numerical simulation of flow transition by many

researchers. In the present investigation, passive open boundary condition is applied as an

outflow boundary condition:

^ = O
dn
d?
— = 0 (4-16)
on

^ = O
dn

This becomes in the weak formulation as:

vfUo (4-17,on

This condition naturally exists in the weak formulation of the Navier-Stokes equation

(2-18) as explained in the previous Chapter 3.

For the calculation of the unsteady disturbed flow field an initial condition is also

required. Therefore initially aU = 0, undisturbed flow field U, V is assumed throughout

the computational domain and then the disturbances are introduced ( / > 0 ) during the
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unsteady cycle of the computation. To obtain undisturbed flow field in spectral element

method, we cannot get rid of unsteady terms in the Navier-Stokes equation as in other

numerical schemes such as finite difference method because convection operator needs

the previous time step solution as it was written in the explicit form [02]. Therefore we

allow the complete Navier-Stokes equation to reach steady state with the boundary and

initial conditions as stated in section 3.3 for validation procedure. Then we used this

steady solution as initial condition to our problem of interest.

Now one may have a contradiction that instead of using the above steady state solutions,

Blasius solution could be used in the entire flow field as initial condition. Indeed, the

steady state solutions closely agree with the Blasius solution as shown in the Figure 3-2,

so that plotted profiles coincide in each down stream locations. In our present work, the

reactions of the flow to very small disturbances are investigated. Therefore the use of the

Blasius solution could initially makes disturbances and thus distorts the transient

behavior of the flow field. This led to use steady state solution where the unwanted initial

distortion in the transient flow can be eliminated [05].

4.2 Linear stability

The remarkable process of transition is investigated theoretically based on the assumption

that laminar flows are affected by certain small disturbances. In the case of a boundary

layer on a solid body placed in a stream these disturbances may originate in the inlet or

due to the wall roughness or to irregularities in the external flow. The theory attempts to

follow up in time the behavior of such disturbances when they are superimposed on the

main flow. The behavior of these disturbances can increase or die out with time. If the
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disturbances decay with time, the main flow is considered stable. On the other hand, if

the disturbances increase with time the flow is considered unstable, and there exists the

possibility of transition to a turbulent flow.

The theory of stability of laminar flows decomposes the motion into a basic flow and a

disturbance superimposed on it. An assumption is made that the quantities related to the

disturbances are very small compared with the corresponding quantities of the main flow.

The investigation of the stability of such a disturbed flow can be carried out with the aid

of the equations of motion and analyzes the manner in which they develop in the flow.

We restrict our attention to the case of two-dimensional, incompressible, viscous,

Newtonian basic flow and an equally two-dimensional small disturbance. Parallel flow is

assumed as a basic flow in the boundary layer, and then the stream-wise mean velocity

U depends only on y coordinate. As far as the main flow is concerned, it is obviously

necessary to assume the pressure. Thus we assume a basic flow with

U(y),V = 0,P(x,y) (4-18)

Then the basic flow is superimposed with a two-dimensional disturbance and the

resultant motion is described by:

u =U(y) + u'(x,y,t)
v = v'(x,y,t) (4-19)
p = P(x,y) + p'(x,y,t)

where u' and V are the components of disturbance velocity. Substituting equations (4-19)

into the two dimensional incompressible Navier-Stokes equation, and neglecting

quadratic terms with respect to the linear terms, and considered that the basic flow itself

satisfies the Navier-Stokes equations, we obtain the linearized version of the Navier-
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Stokes equation in which the only contributions from the basic flow is associated with

Uanddu/d suchthat:

du' rTdu' , dU ? / dp'— + U — + v + ? -^- -?dt dx dy / P dx
fd2u' 52«?

¦ + -

dx1 dy2

¿V
dt P dydx

rd2v' d2??
· + -

dx1 dy1

du' dv' A— + — = 0
dx dy

(4-20)

(4-21)

(4-22)

The above equations are the fundamental hydrodynamic equations for small disturbances.

From the above basic equations (4-20) and (4-21), the pressure terms are eliminated by

differentiating equations (4-20) and (4-21) with respect to y and ? correspondingly, and

subtracting the second from the first. The resulting equation is a linear and homogeneous

inu'andv' :

2 _./dlu
+u

d2u' dU du d2U dv' dU dW UdW52..'

· + ¦ - + u- · + -

dydt dxdy dy dx dy dy dy dxdt dx
d3u' d\'( d3u'

O
ô3v' ?

dx2dy dy3 dx3 dy2dx

(4-23)

As it has already been assumed that the perturbation is two-dimensional, it is possible to

introduce a stream function i//(x,y,t)by integrating the equation of continuity (4-22). The

stream function, which has the exponential structure, allows the solution to oscillate and

grow/decay in space and time, depending on the real and imaginary parts ofor and ß :

r(x,y,t) = <p(y)e«a-,»=<p(y)éia(x-cí) (4-24)

57



where f(?) represents the initial amplitude of the stream function, the stream wise wave

number of the disturbance is given by a = ^y, here ? is the wave length, and t is the
time. Since /?and hence care generally complex quantities, equations (4-24) may be

written as:

?(?, y,t) = (p{y)ei{ax-{ß'+ißi),) = <p(y)eia{x-(c'+iCi),) (4-25)

where ßr , the real part of ß ,is the circular frequency of the partial oscillation; ßi , the

imaginary part of ß, is the coefficient of amplification or damping, depending on

whether it is positive or negative; and cr = ^y is the velocity of propagation of the wave
in the ? direction (phase velocity) and C1 again determines the degree of amplification or

damping. The amplitude function^ of the fluctuation is assumed to depend only on y

coordinate because the mean flow depends only on y . It is possible to obtain perturbation

velocity components from equation (4-24) which has the wave like solution:

u' =^ = <p'(y)e^ (4-26)dy

V' = -^L = -ia(p{y)ei(ax~pt) (4-27)
dx

Introducing these w' and v' into the equation (4-23) we obtain the following fourth order

ordinary differential equation for the amplitude function <p(y) :

(U - c%p" - a2f)- ?"f = —(f"" - 2a2f" + a4f) (4-28)ex Re

where the primes represent differentiation with respect to dimensionless y coordinate.

This is the linear stability equation commonly referred as the Orr-Sommerfeld equation.
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A parallel, undisturbed mean laminar flow that solves the Navier-Stokes equations can

become unstable if certain conditions on the flow are satisfied, and this Orr-Sommerfeld

equation determines precisely what these conditions are [58]. The above equation (4-28)

is written in the non-dimensional form by measuring velocities according to a scale set by

the free stream velocity of the basic flow, and by measuring lengths according to the

boundary layer displacement thickness, and Re denotes the Reynolds number based on

the displacement thickness.

Now we are in a position to specify boundary conditions. For the boundary layer flow,

relevant boundary conditions are 'no-slip and no-penetration' at the solid wall. According

to the linear stability theory, the perturbation velocities vanish far out in the main stream,

so we assume velocity components are zero at far-field. Thus:

y = 0:u' = v' = 0,<p = 0,<p' = 0;
(4-29)y -> oo : u = V ->· O, f -> 0, f' -> 0;

The Orr-Sommerfeld equation (4-28) can be written in the matrix form as:

{U-cÌD2-a2}p-U"(p = — (D4-2a2D2+a4)p (4-30)ûfRe

where D is a derivative matrix using Chebychev collocation method [59]. The computer

program is sufficiently general to allow a variety of velocity profiles to be studied. It is

well known that the solution of equation (4-30) with the boundary conditions (4-29)

poses an eigen value problem such that:

Y^J[D4 -Ia2D2 +a4)+iaU"-iaU(D2 -a2)\<p = c[-ia(p2 -a2)}<p
' ' ß (4-31)
?f-??f
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In the spatial analysis we would get a non-linear (quadratic) eigen value problem, here it

is assumed thatt/,/? and Reare real and given, and the problem is that of finding a

complex eigen value a with a corresponding eigen vector^, one assumes that the

solution only oscillates in time at a given spatial position, but is allowed to grow/decay

and oscillate in space. In the temporal analysis, the corresponding problem is that of

finding a complex eigenvalue c = cr + ic¡ for given real values of U , Re and a where

the solution grows/decay and oscillates in time but only oscillate in space. In particular

present method is concerned by verifying Gaster's equations [10]; it is convenient to

adopt his notation to distinguish between the cases of time amplification (T) and space

amplification (S). Thus:

Case (T); time dependent, a¡ (T) = 0

a = ar(T),ß = ßr(T) + ißi(T) (4-32)

Case (S); spatially dependent, ßXS) = 0

a = ar(S) + iai(S),ß = ßr(S) (4-33)

Therefore the relation between space and time amplification can be represented by

Gaster's equations:

aXT) = ar{S) , ßr(T)=ßr(S) (4-34)

This relationship was again proofed by Jordinson [21] in his PhD thesis. This was used to

verify our results with other authors.

In the present work, we considered the temporal setting where the problem formulation

can be cast into the linear form ?f = ??f that is the classical eigenvalue problem to seek
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complex eigenvalues ofc = cr + ic¡ . We take into account only the least stable eigen

mode from the spectrum of eigen values. Here cr represents the phase velocity of the

prescribed disturbance whereas the sign of ci determines whether the wave is amplified

(c,- > 0) or damped (c(. < 0) . Therefore we have stability for the corresponding flow

(U, Re) if all c¡ < 0 , main flow has instability and the small perturbation introduced to the

system is amplified in time for the given value ofa if there exist a c¡ > 0 and the neutral

stability if at least one c¡ - 0 , the remaining ci having vanishing or negative imaginary

parts. All these calculations are performed by using the standard eigen value software

MATLAB [59].

Generally the stability analysis of the flow field in a boundary layer is more difficult than

the other problem of interests. This is due to the fact that one of the boundary condition

for boundary layer flow is at infinity. Secondly, the velocity profile U(y) of the main

flow in a boundary layer is not an exact solution of the Navier-Stokes equation. Finally

the Orr-Sommerfeld equation itself was derived on the assumption that the main flow

U(y) does not change in the direction of the main stream. These assumptions are really

not satisfied in the boundary layer flow. All these situations make the stability analysis of

a boundary layer flow more difficult than other flows.

In the present work, the flow in the boundary layer is assumed to be given by the Blasius

solution. This solution can be expressed in dimensional form as:

U = UJXv)

y=M^-f) (4"35)
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where ? is defined by the relation ? = yJ yC · Thus, the mean flow is evidently non-

parallel. However, the ratio V/Cj is given by:

V/ _//? = s?7>1-Vf]- "A*s (4-36)ZU' i /2Uxxy' /GG /Re*

where Re* is the Reynolds number based on displacement thickness. Hence, y¡j and

dU/C are approximately given byOl y ,). Therefore the mean flow in the boundary

layer may be treated as parallel [21].

To solve the generalized eigenvalue problem, we need to know the mean flow U and its

second derivative" ^y, 2 · This mean flow and its derivatives are obtained by using/ dy

Newton's divided difference interpolating polynomials which are used to interpolate the

Blasius profile [30]. Here four data points are connected with a third order polynomial

such that:

f3(x) = b0 + O1(X - X0) + b2(x - x0)(x - Xx) + b3(x - x0)(x - X1)(X - X2) (4-37)

where the coefficients are given by b0 = f(x0 ) , bx - f[x¡ , x0 ] , b2 = f[x2 , X1 , x0 ] and

¿3 = /[x3 ,X2, X1, X0]. Here the bracket [] function evaluations are finite divided

differences which are given by the nth finite divided difference:

/[?,,?,.,,.-,??] = ^"'""^1"^-"····^1 (4-38)
Xn X0

The interpolated velocity profiles are shown in Figure 4-1. The profiles at different

stations along the flat plate are similar which means that they can be made to coincide
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when they are plotted against -^A1, . Here d" denotes the boundary layer displacement/ ?

thickness which has been shown byc>* = 1.7208Jv:/jt

12

10

6l·

-0.4 -0.2

Figure 4-1 Velocity distribution and its derivatives in the boundary layer
The results of the numerical investigations obviously depend on the value of the step size

used in the calculations. The number of points (n) used in the collocation method is

related to the step length h which is given by h = y . Here the numerator of the

fraction Y is chosen as an integral multiple of the displacement thickness £*, and where

y = Y is the point in the mainstream at which the outer boundary condition is applied.

Changing the number of points (n), affect the results remarkably shown by Jordinson in

his PhD thesis [21]. In our calculations, we have taken n=80 to compare our results with

other authors [43], [28],[21].
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The above prescribed boundary layer flow U(y)can be represented graphically in a

a* -Re* diagram. Each point of this diagram corresponds to a pair of values (cr , C1) . In

particular, the locus C1 = 0 separates the region of stable from that of unstable

disturbances. This locus is called the curve of neutral stability.

Obtained stability curves are shown in Figure 4-2. The region inside the neutral curve

( C1¦ = 0 ) is unstable and that outside the curve is stable, while the curves themselves

represent neutral disturbance waves. One sees that at low Reynolds number, all waves are

stable.

0.5

0.45

0.4

0.35

0.3

* a 0.25

0.2

0.15

0.1

0.05

500 1000 1500 2000 2500 3000
Re"

Figure 4-2 Thumb curves of constant C1 for the two dimensional flat plate boundary layer.
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The point on this curve, at which the first appearance of an unstable wave, is called the

critical Reynolds number with respect to the type of laminar flow under consideration.

This instability is known as the Tollmien-Schlichting instability and is given by:

Rem., =^- = 519.4 (4-39)
?

The corresponding value of wave number or is 0.303. Analogous values for the critical

Reynolds number based on analytical methods are 425 (Shen), 475 (Schlichting) and 330

(Timman and Zaat) [49], [45], [46], [55]. This can be partly demonstrated by considering

the critical Reynolds numbers of numerical solutions are - 530 (Kurtz), 515 (Kaplan),

520 (Osborne) and 522 (Craven) [28],[29],[23],[43]. Figure 4-2 is compared with the

neutral stability curve of Hoepffner [18] where also the same collocation method is used.

The two curves appear to be identical, and have approximately the same critical Reynolds

number. In view of this consistency it seems reasonable to regard our results with some

confidence. This is the point of instability for the boundary layer on a flat plate where

exists the smallest unstable wave length. Just as a lower limit exists for a Reynolds

number, there is an upper limit for the characteristic magnitudes of the disturbances

beyond which no further instabilities occur. If there is a small amount of free-stream

disturbance in the flow upstream of the flat plate, all the perturbations introduced in the

boundary layer close to the plate would decay in amplitude, until they reach the

downstream location of the critical Reynolds number. At this point onward, the

perturbations corresponding to the unstable waves will grow exponentially.
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Test case

0.05 h

500 635 3000

Figure 4-3. A test case on the stability diagram of linear stability theory.

In Figure 4-3, dimensionless disturbance wave number a* =ad* versus Reynolds

number Re* = °° / are plotted. An assumption is made that the dimensional

disturbance wave number a or a dimensionless wave number parameter W = a/L . is

constant on rays through origin. The conditions of the perturbation flow for various

downstream locations are obtained from the corresponding points on the ray moving

away from the origin. For example at a constant wave number parameter

( W * 104 = 3.62) , the disturbance begins to grow at Re* « 635 on the lower branch of the

stability loop.

The above test case is compared with the benchmark results of Fasel [05]. The spectrum

of eigenvalues of the Orr-Sommerfeld equation for boundary layer flow is addressed in

66



Figure 4-4 for the test case Re = 635 anda = 0.230 . This case lies at the neutral stability

curve and the eigen value corresponding to this mode is given bycr = 0.366820, c¡ =0

which agreed well with the results of Jordinson [20]. In general, the spectrum of the

equation is continuous and discrete for unbounded flows such as boundary-layer flow

[19] . We restricted the display to those eigen values withe,- > -1, since the disturbances

corresponding to eigen values with large negative imaginary parts are of little interest.

(0.366820, 0)

Figure 4-4 The Spectrum of the Orr-Sommerfeld equation for flat plate boundary layer flow.
Perturbation velocities from equations (4-26) and (4-27) are rearranged to obtain

perturbation profiles which are required in the above section 4.1 :

u' = <p'(y)[cos(ax - ßt) + i sin(ca: - ßt)\ (4-40)
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?' = -ia<p(y)[cos(ax - ßt) + i sin(<xc - ßt)]
= aç{y)\sm{ca - ßt) - i cos(ax - ßt)] (4-41)

Real terms are considered to obtain u' and ?' such that:

K = <P'(y) cos(ca - ßt) = u'A (y) cos(ax - ßt)

Sr = a<p(y) sin(ax - ßt) = v'A (y) cos[ax + y~ + ßt)

(4-42)

(4-43)

Here u'A(y),v'A(y) are amplitude distributions or perturbation profiles which are obtained

from the numerical solutions of the Orr-Sommerfeld equation by using collocation

method as explained above [59]. The perturbation profiles used in the above test case are

shown in Figure 4-5, which are normalized by setting max|w 'A (y)\ = 1 .

-- 1(W.

Figure 4-5 Perturbation profiles (amplitude distributions) for W — 3.62,Re* = 635 .
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4.3 Computational Results

To get better insight into the flow physics of the initial stage of transition and a better

understanding of the numerical scheme, results from the spectral element methods are

compared with theory, experiments and related studies from other authors. Figure 4-6

shows a generic flow sequence of settings in the modal-SEM model to analyze our

problem of interest.

Construction of
geometry by GAMBIT
(create gambit mesh file)

Refine
mesh

Discretization of continuous
governing equations by
modal-SEM

Setting boundary conditions
Re- define

1BC

S etting flo w ? arameters
(Re, time step size)

Change flow
parameters

Solving with Schur
complement method
via CG solver

Checking
convergence

Yes

Outputting steady-
state solution

No

Post-processing
(Tecplot)

Analyzing initial
stage of transition

process

Re- initializing with
previous undisturbed
steady-state solution

Introducing disturbances at the
inflow with the aid of LST

Sending to flow solver

Evolution of
temporal 2 -D
periodic waves

7

Figure 4-6.Flow chart to analyze the initial stage of transition process
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To study the initial stage of transition over a flat plate, this thesis presents a test case and

several other simulation cases for Gambit generated tetrahedral elements. The flow

domain is displayed in Figure 4-7. Computations are carried out with different grid sizes.

? c„

u~

Figure 4-7. Integration domain.

The flow parameters used throughout this work are listed in the Table 4-1. The reference

values for Reynolds number are based on the inlet displacement thickness and the free-

stream velocity.

U„

µ

30m/ s

I kg I m

1.5 XlQ-* m2 /s

Table 4-1 . Flow parameters

70



------------------1 1 t 1 1 G

Stability region /

------------------- V^ Test Instability region/iXcase

/ ? Neutralstabiliì

"? 500 635 1000 1500 2000 2500 3000
Re'

Figure 4-8. A test case on the stability diagram of linear stability theory obtained from numerical solution
of the Orr-Sommerfeld equation for the case of temporal amplification.

To demonstrate the suitability of the numerical method for the investigation of the initial

stage of transition, primarily a test case ran as shown in Figure 4-8 where a ray has been

drawn through the origin. The perturbation conditions are applied at the inlet which

corresponds to the point (635, 0.22985) on the lower branch of the neutral stability curve.

Downstream locations of the disturbed flow correspond to points on the ray away from

the origin. As explained in the previous section, disturbances should be amplified at

downstream locations corresponding to points inside the instability region and damped at

locations corresponding to points in the stability region. When proceeding in the

downstream direction for our test case, instability region is entered therefore disturbances

0.45

0.4

0.35

0.3

"a 0.25
0.229985

0.2

0.15

0.1

0.05
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should grow at downstream locations. The parameters used in the test case calculations

are listed in Table 4-2.

Re*

a (wave number)

ß* (frequency)

Ax

Ay

Az

At

635

0.229985

0.084363

0.250

0.423

0.250

P = 2

P = 3

0.020

0.010

Table 4-2.test case parameters

Temporal evolutions of the velocity components are plotted at different downstream

locations in Figure 4-11 to Figure 4-14 for the same mesh size with different polynomial

orders 2 and 3 and observed the flow behavior with the Figure 4-9 and Figure 4-10

obtained from Fasel [05].

a) 8 02295
0-2290

8 0-2175

0-2170«-

tfAt

Figure 4-9. Test case results of velocity component U obtained from Fasel [05] for two different
downstream locations where the top figure-'a' is near to upstream boundary.
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0 02 L

b) 00?

0-02
40 80 J 20

?/??
Figure 4-10. Test case results for velocity component V obtained from Fasel [05] for two different

downstream locations where the top figure-'a' is near to upstream boundary.

a)

b)

c)

d)

e)

0.2415
0.241

3 0.2405

0.2395

0.229

=> 0.228

0.227

50 100 150 200 250 300 350 400 450

0.2415

=> 0.2405

0.2395

200 250 300 350 400 450

400 450

0.2415

z> 0.2405

0.2395

150 200 250 300

0.2415
0.241

=> 0.2405
0.24

0.2395

450

450

Figure 4-11. Temporal developments of U for the disturbed flow test case at y=0.423 and various

downstream locations, reading from top to bottom ? = 0, 1, 1 .5, 2, 2 1 .5 as shown in Figure 4-7.
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a)

b)

e)

d)

e)

0.2415
0.241

z¡ 0.2405
0.24

0.2395

0.2415
0.241

=> 0.2405
0.24

0.2395

0.229

a 0.228

0.227

10 20 30 40 50 60

P=2
P=3

70

P=2
P=3

0.2415

=. 0.2405

0.2395

0.2415
0.241

0.2405
0.24

0.2395

Figure 4-12. Zoomed view of Figure 4-11.

a)

b)

c)

d)

e)

0.0002

0.0001

P=2
P=3

0.0002

0.0001

0.0002

0.0001

0.0002

0.0001

0.00028
0.00026
0.00024
0.00022

450

450

450

450

450

Figure 4-13. Temporal developments of V for the test case at y=0.423 and various downstream locations,
reading from top to bottom ? = 0,1,1.5,2,21.5 as shown in Figure 4-7.
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a)

b)

e)

d)

e)

0.0002

0.0001

P=2
P=3

0.0002

0.0001

0.0002 F

0.0001

0.0002

0.0001

10 20 30 40 50 60 70

0.00028 -
0.00026 -
0.00024
0.00022

P=3 [

10 20 30 40
t

50 60 70

Figure 4-14. Zoomed view of Figure 4-13.
Fasel used the Navier-Stokes equation in vorticity-transport form to simulate the flow by

finite-difference scheme. To ensure same order of magnitude of both coordinates and

both velocity components in the numerical operations, he stretched the y -coordinate and

the wall normal velocity component- ? by a factor ? Re . At the same time, the parameters

he used to write the variables in non-dimensional form are different from ours. The

visualization of the Figure 4-11 and Figure 4-13 are comparably similar to Fasel results

and the behavior of the flow clearly shows the temporal development of the disturbed

flow in the downstream direction and the propagation of the time-wise sinusoidal

disturbances which are introduced at the upstream boundary. Different downstream

locations are considered as shown in the Figure 4-7 including inlet boundary to plot each

flow variables u, ? against time at a constant distance y normal to the flat plate. Both

polynomial orders 2 and 3 gives similar results as seen in the Figure 4-11 and Figure
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4-13. The Figure 4-1 le and Figure 4-13e are plotted at identical downstream location as

Fasel and the behavior of the flow fairly agreed with the Figure 4-9a and Figure 4- 10b

where minor deviations occurred due to the used scheme and the neglected terms in the

governing equations. From the observation we can say that after some time has left the

flow behavior is apparently of a periodic nature which is first reached near the upstream

boundary and last near the downstream boundary. In the downstream locations, the

amplitudes of the waves are tabulated in Table 4-3 for polynomial orders 2 and 3.

Location u velocity amplitude ? velocity amplitude

Polynomial order P=2 P=3 Fasel results P=2 P=3 Fasel results

b, x=01.0 0.0006686 0.0006511 0.00003105 0.00003316

c, X=Ol. 5 0.0007380 0.0007448 0.00004003 0.00003941

d, x=02.0 0.0007691 0.0007633 0.00004316 0.00004257

e,x=21.5 0.0008984 * 0.0008823 0.00002770 i 0.0000502

Table 4-3.Wave amplitudes in the downstream locations for the order 2 and 3

As illustrated in Table 4-3, when the flow moves into the unstable region b, c, d and e

(location-a is not taking into consideration where the amplitude value is supplied at the

inlet through Dirichlet boundary condition), amplification of the waves are noted which

justify the argument that the beginning of transition takes place through wave

amplification in the downstream direction. The wave amplitudes obtained at downstream

location-e complies with the Fasel results for velocity component- u but the wall normal

component- ? shows big difference. However, the variation of resultant velocity wave

amplitude is less than 2%. A further increase in the size of amplified waves can be

observed by taking a location very far from the upstream boundary if longer domain is

used. The domain used herein is small to save computational cost. A longer domain will
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be too expensive because of longer processing time to achieve statistically stationary

results and huge memory requirement.

According to the linear stability theory, flow variables u and ? can be written as:

u = UB ( v) + u'(y, t) = UB+ ç/(yWl~m
? = VB Cv) + v'(y, f) = Va- iouplyW™

where f and f' are complex variables. At the same time a and ß are also complex

numbers depends on the setting (temporal or spatial) of the linear stability theory.

In temporal setting-
u = UB+eß-'(<p'r+i<p;)ei(ax-ßAR-rc; lu/, -r ??, ?.

(4-45)

In spatial setting-

? = V8 -ie-'fa+iafo, +?f,?«"-»
The results from the temporal development of the disturbed flow are not capable to

compare with the analytical results of the linear stability theory because as seen in the

equation (4.45), both velocity components amplitude varies with time. However the

spatial development of the disturbed flow can be compared with the spatial setting of

linear stability theory results obtain from equation (4.46) but in the current study our

interest is limited to the analysis of temporal development.

For a more quantitative comparison with linear stability theory, enormous amount of

simulation cases can be analyzed with the aid of the stability diagram. In the present

investigation, we considered few more simulation cases by varying Reynolds number,

wave number and frequency of the wave for different grid sizes.
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Three simulation cases are chosen to discuss here in more detail. They are shown in

Figure 4-15 which is a stability diagram of linear stability theory obtained from the

numerical solution of the Orr-Sommerfeld equation for the case of temporal disturbance

amplification. For case-1 and case-3, locations of the upstream boundary correspond to

points on the lower branch of the neutral stability curve but for case 2 calculation starts

at Re* = 670 , a point within the instability region, a short distance from the lower branch

of the neutral stability curve. In all three cases, flow travels into the unstable region

therefore disturbances should become amplified at the downstream locations according to

linear stability theory in section 4.2. The parameters used in all three simulation cases are

listed in Table 4-4.

Case

Re* 900 670 635

a 0.179250 0.229985 0.229985

ß' 0.059984 0.083770 0.084363

Ax 0.250 0.250 0.500

Av 0.423 0.423 0.600

Az 0.250 0.250 0.2500

At 0.010 0.010 0.020

Table 4-4. Case 1, 2 and 3 parameters
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Stability region

Neutral stability curve

Instability region

case-1

3000

Case

Figure 4-15. Cases 1, 2 and 3 on stability diagram of linear stability theory.

450

0.242

0.242

300 350 400 450
0.242

0.241

300 350 400 450

Figure 4-16. Temporal evolution plotted against u and t for case 1.
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Case 2

0.00015

0.0001

5e-005

50 100 150 200 250 300 350 400 450

0.00015

0.0001

5e-005

100 150 200 250 300 350 400 450

0.00015

0.0001

5e-005

50 100 150 200 250 300 350 400 450

0.00015

0.0001

5e-005

Figure 4-17. Temporal evolution plotted against ? and t for case 1.

0.242

0.241

50 100 150 200 250 300 350 400 450

0.241

Figure 4-18. Temporal evolution plotted against u and t for case 2.
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0.00015

0.0001

5e-005

450

0.0002

0.00015

0.0001

5e-005

200 250

0.0002

0.00015

0.0001

5e-005

200 250 300 350 400 450

Case 3

Figure 4-19. Temporal evolution plotted against ? and t for case 2.
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Figure 4-20. Temporal evolution plotted against« and t for case 3.
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Figure 4-21. Temporal evolution plotted against ? and t for case 3.

The Figure 4-16 through Figure 4-21 obtained for different Reynolds numbers again

show that the temporal development of the flow and the propagation of the sinusoidal

waves in the downstream direction as a result of the disturbances introduced at the inlet.

From the observation of velocity distribution we can say that the time to reach periodic

character increases proportionally as the flow travels in the downstream direction. At the

downstream locations b, c and d, the amplitudes of the waves are tabulated in Table 4-5.

Location
Wave amplitudes

Case-1 Case - 2 Case -3

Velocity ux 10" vx 10"' ux 10" vx 10"' ux 10" ? ? 10

0.7697 0.3961 0.7852 0.5328 0.8743 0.5777

0.8609 0.4482 0.9016 0.6228 0.8799 0.5921

Outlet-d 0.8916 0.4768 0.9274 0.6568 0.8870 0.5937

Table 4-5.Wave amplitudes in the downstream locations for the cases 1, 2 and 3
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In all three cases, amplitudes of the periodic oscillations continued to grow in the

downstream direction as expected because the flow travels completely inside the unstable

region. This fact justifies the statement that "the transition process is usually initiated by

the amplification of unstable two dimensional waves through receptivity to the

environmental disturbances [03]".

From the numerical results of case- 1 and case-2, we noticed that the amplitudes of the

waves are increasing with the increment of disturbance frequencies or wave number.

After a certain disturbance frequency level, we cannot expect amplification in the

downstream direction where the ray through the origin may not traverse the neutral

stability curve. It means that the flow is in the fully stable region therefore transition

behavior is hardly noticeable at all.

The case-3 ran with the similar disturbance parameters as the test case to check the

reliability of the numerical results by varying grid parameters. The case-3 downstream

locations are far from the locations considered for the test case. In both simulations,

results show growth in wave amplitudes at downstream locations. This fact confirms the

consistency of spectral element results for other grid sizes as well to investigate the initial

stage of transition.

A remarkable observation all through the numerical experiments is the non-reflected

velocity component waves at the outlet boundary. These results confirmed that the

selected passive open boundary condition for the downstream boundary works better than

any other alternative outflow boundary conditions in spectral element method.
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Chapter 5

Conclusions and Future Work

An implicit time-marching, modal-spectral element discretization on a Gambit generated

tetrahedral mesh was used due to its significant efficiency advantages over the other

methods and provided a viable alternative to simulate our problem of interest with a

relatively coarse grid. The ability of the code to run boundary layer problems was

verified along the flat plate. This validation reproduced successfully the laminar Blasius

solution over the full computational domain.

In the present analysis, the results of the numerical calculations demonstrated that the

presented modal spectral element method for the solution of the complete Navier-Stokes

equations was well suited for the investigation of initial stage of transition phenomena of

incompressible boundary layer flows on a flat plate. For this prediction of pre-onset

transition where integral quantities were of importance such as appropriate boundary and

initial conditions and the linear stability theory is also likely to be a useful tool.

The more accurate treatment of boundary and initial conditions in the spectral element

method led to observe the temporal evolution in the transitional region. The established

boundary layer flow used periodic perturbation functions of small amplitudes from the

linear stability theory to impress disturbances at the inflow. At the far-field,

asymptotically decaying perturbation velocity boundary conditions were imposed to

avoid erroneous disturbance arising due to the insufficient distance from the flat plate

thus reducing the computational domain in the wall normal direction. Concerning the

outflow boundary, passive open boundary condition was employed which allowed the
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flow to leave the boundary without wave reflection. Due to the investigation of very

small disturbances, a steady state solution of the Navier-Stokes equation was used as

initial condition to eliminate the early distortions. These boundary and initial conditions

predicted well the temporal development of the perturbations in the downstream

direction. Finally this was compared with the test case calculations where the results gave

in fairly close agreement with Fasel [05].

The conjecture is that this numerical method can now be applied with some confidence

toward the investigation of some of the many still open questions concerning the growth

of disturbances or larger disturbance amplitude interactions leading to laminar-turbulent

transitional flows for which the linear stability theory is no longer valid to predict

conditions. The present study is concerned with unbounded flow transition, although the

related problems of bounded flows such as pipe and channel flows also may be solved in

a similar manner.

The validated spectral element code would allow for future studies of more complex

geometry and flow problems of interest efficiently such as the effects of surface

roughness on laminar-turbulent transition process in shear layers by analyzing the

stability of wavy-wall bounded shear flows [01] and the flows along an aero-foil with an

angle of attack by considering curvilinear higher order tetrahedral elements on the non-

linear boundaries with the priori knowledge of the preceding numerical effects. Further

more, we could simulate the whole process of flow transition in three dimensional

boundary layers including 2-D T-S waves, 3-D T-S waves, ? shaped vortical structures,

breakdown, turbulent spot formation and finally to fully turbulent flow with the help of

three-dimensional disturbance environment.
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The code could be extended further to perform large eddy simulation (LES) by

incorporating a turbulence model such as dynamic Smagorinsky model, thus allowing us

to solve for small scale phenomena within the available computational resources needed

to obtain DNS solutions. Moreover, we can take the advantage of spectral element

method on microfluidic systems to perform the fluid mixing, flow rectification and

microscale cooling which are increasingly employing complex geometries.
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