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ABSTRACT

Online Adaptive and Intelligent Control Strategies
for Multizone VAYV Systems
Guang Qu, Ph.D.

Concordia University, 2009

Nearly one half of the total energy used in buildings is consumed by HVAC
systems. With escalating cost of energy, several energy efficiency strategies have been
implemented in buildings. Among these, the use of VAV systems, and improved method

of controlling such systems have received greater attention.

This thesis is devoted to design and development of online adaptive control
strategies which will be augmented with optimal and intelligent control algorithms. The
considered VAV system consists of zone air temperature control, discharge air
temperature cbﬁtrol, water temperature control and air pressure control loops. Online

adaptive control strategies are developed for these control loops.

In order to design reliable online controls a robust RLS identification algorithm
for estimating the parameters of the modeled processes is developed. It is shown that this
algorithm avoids wrong estimation and Vrequires fewer variables compared with classical
RLS techniques. Three different online control strategies were designed. These are: a
robust opiimal céntro] algorithm (ROCA), a simplified optimal adaptive control (SOAC)
for FOPDT systems, and a two-loop adaptive control strategy which improves both
temperature and airflow regulations in VAV systems. ROCA is an on-line optimal

proportional-integral plus feedforward controller tuning algorithm for SISO thermal
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processes in HVAC systems. It was optimized by combining the H, based PI tuning
It is shown that the two-loop adaptive control strategy has both stronger robustness to
time-varying thermal loads and lower sensitivity to airflow rate changes into other zones.
The developed control strategies were tested by simulation and experiments in a VAV
laboratory test facility which uses existing enefgy management control systems used in

commercial buildings.

Also, an adaptive neural network controller is developed. The proposed controller
was constructed by augmenting the PID control structure with a neural network control
algorithm and an adaptive balance parameter. Simulation results show that the proposed
controller has stronger robustness, improved regulation and tracking functions for
FOPDT type plants compared to classical PID controllers. Experiments were -conducted
to verify the characteristics of the developed controller on the DAS in a two-zone VAV

test facility.

Applications of the developed control strategies to different control loops in VAV
system were demonstrated by conducting several experimental tests under realistic

operating conditions.



ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor Professor

Mohammed Zaheer-uddin for his guidance and assistance during this research work.

My thanks also go to the members of staff in Concordia University for their help
whenever I needed it. Special thanks go to Mr. S. Drolet, Mr. L. Demers, Mr. J. Hrib and

Mr. J. Payer for their helpful maintenance work.

T would like to dedicate this thesis to my friends and my family especially to my
wife, Zuojian Tang, for their patience, understanding and support during my whole

studies.



TABLE OF CONTENTS

"TABLE OF CONTENTS ---rcnvememmesemmsmmeenmemmmemmeemeeme vi
LIST OF FIGURES -csccseacmmaamercncc e oo eem oo xi
LIST OF TABLES ---cnenmeemmceeeee e emce e mme e e eee o= XV
LIST OF SYMBOLS ---a-omecmemmmeee oo eeeen xviii

Introduction -=---=smsmemmeemmem e e e e 1
1.1 HVAC Systems----------m=-mmmmemmmmmo e — —1
1.2 VAV and VAV-VT Systems ----------==nmmmmmrmmmmmmmmo oo 3
1.3  Zone Temperature Controls----------=--=eecmec-- mmmmemmm e 3
1.4 Supervisory Control in HVAC Systems ------- e 4
L5 MOUVAtOR---=mmmm=m ool 5
1.6 Scope and Objectives --—------- S — 5
1.7 Thesis OULHNE —=-=m-mmm oo 6

B L 8
2.1 INTOQUCHON == m oo oo 8
2.2  Modeling and_Simulaﬁon of HVAC Systems ----------===mmmmmmmmmmc 8
2.3 - Design of Controliers for HVAC Systems----+-------mmmmmmeoeeeeee 13
2.4 PID Controls in HVAC SyStems ------------=rsmz=mmmmmmmmmmmmmmmmmmeeoe 18
2.5  Optimal Controls in HVAC SyStems --------------m-mmommmmemeeeee 23

vi



2.6

2.7

2.8

2.9

3.1

3.2

33

34

3.5

3.6

4.1

4.2

Intelligent Controls in HVAC Systems

--25

2.6.1 Adaptive Controls in HVAC Systems 25
2.62 Fuzzy Logic Controls in HVAC Systems ---28
2.6.3 Neural Networks in HVAC Systems 30
EMCS in HVAC&R Systems ------------mommmmmmmmcmmm oo 35
Experimental Research in HVAC Controls---------------- -------38
Summary and Discussion ------------ o e 40
Modified RLS Identification Algorithm for FOPDT
SYStemS -==mr-=mmommmm oo e e oo e e 43
RLS Algorithm for Online Identification of FOPDT Systems ----;-43
Issues in Using the RLS Algorithm for Online Identification------- 47
Matrix-Reset TeChNIqUE -—---mmmm e 49
Simulation Studies for the Modified RLS Algorithm ---------------- 54
Experimental Tests with the Modified RLS Algorithm -------------- 61
Summary -------------------- N S — 63
An Adaptive Control Strategy with a Robust Optimal
Control Algorithm for FOPDT Systems ~--------=-==-cuu--- 64
Introduction ------------- U S — 64
The DAS Model - 66
42.1 Physical Mode] ------------------------------------------------------------------- 66

vil



4.3

4.4

45

4.6

4.7

4.8

67

4.2.2 Temperature Control

4.2.3 The First-order-plus-dead-time (FOPDT) Model 68
4.2.4 The Closed-Loop DAS Model 70
Optimization --- e 71
Tuning Algorithm —------mm oo e 75
4.4.1 Optimal Tuning Algorithm 75
442 Guideline for Choosing the Control /Input Weighting Parameter Q, ----- 77
Simulation Studies in an Adaptive Control System ------------------ 78
4.5.1 Control Input Energy &0
4.5.2 Index Comparison with Other Methods 82
4.5.3 Robustness Studies 84
4.5.4 Disturbance Rejection 86
Simplified Optimal Control Algorithm----------- e 88
Application to a Heating Coil System ----------=--eormmmmmmmmem o 89
4.7.1 The Problem in the Original Heating Coil Control System--------------——- 90

~4.7.2  Online Adaptive PI Control Strategy for the Heating Coil Control System

—-91

91

4.7.3 Variables in the Heating Coil Control System

4.7.4 Identification of the Plant

—-92

—-93

4.7.5 Algorithm for the Heating Coil Control System

4.7.6 Experimental Results of SOAC for the Heating Coil Control System ----95

Application to the DAS e

Viil



4.9
3.

5.1
5.2
53
54
5.5

5.6

6.1

6.2

6.3

6.4
6.5
6.6

6.7

Summary ---------=--mmmmmemo oo oo 102
Adaptive Neural Network Strategy for DAS-----=------- 103
Introduction ------------------------—- -- ------------ 103
Adaptive Neural Network Control System ----------------mmmmeeee- 104
Neural Network Learning Algorithm----------==cmmmmccmemcm oo 106
Simulation Results e 114
Experimental Studies e o 128
Summary -- -- e 144
Online Adaptive Two-loop PI Control Strategy--------- 146
Introduction -- T 146
Typical Airflow Regulation--------- s 147
6.2.1 Pressure Independent Zone Temperature Control System --------------- 147
6.2.2 Pressure Dependent Zone Temperatﬁre Control System---~-------------- 151
Adaptive Two-Loop PI Control Strategy --—----------—-—-v ——————————— 154
6.3.1 Equal Consideration of the Interior Loop fér the Exterior Loop--------- | 155
6.3.2 Simulation Results for the Adaptive Two-Loop Control System -------- 157
Selection of the Factor F -———----cccccemmmmeeeeee oo 160
Load Following Property of the TWo—Loop Control -----------——-- 162 |
Implementation in a VAV Test Facility---—--—-----------—---—---;-—— 165
SUMMATY —----m o m o e oo 173

1X



7. Conclusions and Recommendations -----======ceccemuuana-- 174

7.1  Conclusions - e -—--- 174
7.2  Contributions of This Study -- e 179
7.3  Recommendations---------=-==mmmmmmmm oo e 180
Reference ---=-==-e-mmmemmmrem oo ---- 181
Appendix----------------------------------------------------Q ---------- 192



Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
' Figure 3.5
Figure 3.6
Figure 3.7
Fi.gure 3.8
Figure 3.9
Figure 3. 10
Figure 3.11
Figure 3.12
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

Figure 4.9

LIST OF FIGURES

Block diagram showing the generation of output prediction error----------- 43

Simulation scheme for on-line adaptive control 54
Identiﬁc}ation simulation results for process 3.1 under Cases 3.1, 3.2, 3.6 -56
Identification simulation results for process 3.2 under Cases 3.1, 3.2, 3.6 -56
Identification simulation results for process 3.3 under Cases 3.1, 3.2, 3.6 -57
Identification simulation results fof process 3.1 under Cases 3.3, 3.4, 3.6 -58
Identiﬁéation simulation results for process 3.2 under Cases 3.3, 3.4, 3.6 -58

Identification simulation results for process 3.3 under Cases 3.3, 3.4, 3.6 -59

Identification result comparison for Cases 3.7, 3.8, 3.6 -- 60
Identification results of the experimental tests 61
System PI parameters of the experimental tests ~mmmmemeeseseeooo oo 62
Step responses of the experimental tests : --62
Schematic diagram of DAT system | 66
Block diagram of DAS system 68
First-order plus dead-time model 69
Closed-loop diagrams of DAS with a PI controller K4(z) ----------=---==----- 70

Closed-loop diagram of the optimal PI controller with feedforward action 74

Simulation structure for OTA and OTA-VP - 80
Responses with the optimal tuning algorithm (Process 4.1; Case 4.1) ------ 81
Index with respect to reduction factor and Q2-down 83

Response comparisons between OTA-VP, OTA, Ho tuﬁing rules and Z-N

method e . 83

X1



Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28
Figure 4.29
Figure 5.1

Figure 5.2

Figure 5.3

Robustness comparisons in the CPs 4.1 to 4.4 with Case 4.1

Robustness comparisons in CPs 4.1 and 4.3 with Cases 4.2 and 4.3

Response with disturbance effect for OTA-VP control

87

89

Robustness comparisons for different controls

Original heating coil PI control system

Bad performance of the original heating coil PI control system

Adaptive PI control system for the heating coil system

Open-loop tests for determination of the heating coil system delay

90

------------- 90

91

--------- 93

95

Flowchart of the SOAC for the heating coil control

Comparison between the original PI and the adaptive PI controls

E— 96

Experimental result of SOAC with Q> =1

Experimental result of SOAC with Q; =0.5

96

97

97

Experimental result of SOAC with 0, = 0.6993

Step response of the original PI control

Step response for SOAC with Q; = 1

98

—--99

99

Identification result in SOAC with @, =1

PI parameter evolution of SOAC with Q; =1

Step responses of SOAC with 0, = 1.3889 and 1.6667

100

101

101

PI gains of SOAC with @, = 1.3889 and 1.6667

Identification in SOAC with Q, = 1.3889 and 1.6667

Adaptive NN control system

101

104

105

The adaptive neural network controller

Selected normal neural network controller--------—----—-ooo oo

X1i



Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figﬁre 5.8

Figure 5.9
Figure 5.10
Figure 5.11

Figure 5.12

Figure 5.13
Figure 5.14

Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figuré 5.21
Figure 5.22

Figure 5.23

Index and IndexSet consideration 112

113

Flow chart of the adaptive tuning algorithm

114

Flow chart of the adaptive neural network algorithm
Adaptive neural network control system implementation in Simulink---- 116
Adaptive neural network controller implementation in Simulink ----------

Comparison for the adaptive neural network control with a, =0 and a, # 0

118

Comparison of step responses of CCM-PID and Adaptive NN control for

120

plant sets 21 to 29

Comparison of CCM-PID and Adaptive NN control Index for plant sets 21

to 29 121
Effect of w;; and AO for Plant Set 26 122
Effect of wos and IndexTarget for Set 23, 123
Step responses and Index0 on effect of 7, for Set 23 124
Step responses and Indexes with poor parameter selection for Set 23 ---- 125
Step responses with was(0) = 0.1 and ¢4 = 0.5 for Set 15 126
Step responses with was(0) = 0.38 and ¢4 = 0.1 for Set 15 —-----m-cemeee v 127
Schematic diagram of the VAV-HVAC system and its’ controls---------- 128
Discharge air temperature control system implementation ----------------- 129
Open-loop tests for chilled water flow rate to its controls -----------=-==- 130

Step responses of the proposed controller under normal load conditions- 131

Index evolution during step response -- 131

--133

Step responses under high load conditions

X1



Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
| Figure 5.29
~Figure 5.30
Figure 5.31
Figure 5232
Figure 5.33
Figure 5.34

Figure 5.35

Figure 536

Figure 5.37
Figure 5.38

Figure 5.39

Figure 6.1
Figure 6.2
Figure 6.3

Figure 6.4

133

Index evolutions under high load conditions

Step responses in training process 1 134
Indexes in training process 1 134
Sample weighting parameters in training process 1 135
Step response comparisons for changing 7o and wy 136
Index comparisons for changing 70 and w;; 136
wy; for changing 7o and wy; 137
Step respbnses in training process 2 and for different values of FAN----- 137
Indexes in training process 2 and for different values of FAN ------------- 138
Air flow change for training process 2 138
Step response of ANNC to increased heat to zone 2 139
Step response of ANNC to decreased heat to zone 2 140

Comparison of response to dumper control changes for a, = 0 and a,, = 1

) - 141

142

Indexes for response comparison under a,, = 0 and 1
Dumper control changes for response comparison under a,, = 0 and 1 --- 142

Response comparison of ANNC and PID control to dumper control changes

- 143
A classical pressure independent control for zones 148
Simulation structure for independent pressure control 149
Sensibility to parameter changes in the independ}ent pressure control ---- 149

Airflow rate disturbance effect reductions in the independent pressure

150

control system

Xiv



Figure 6.5
Figure 6.6
Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11
Figure 6.12

Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17

Figure 6.18

Figure 6.19

Figure 6.20

A classical pressure dependent control for zones 151
Simulation structure in Simulink for the pressure dependent control ----- 152
Sensibility to parameter changes in the pressure dependent control------- 153
Airflow rate disturbance effect reductions in the pressure dependent control

154

Adaptive two-loop control structure for zone temperature controls ------- 155

Bode plots of G,(z), G (2) and the interior closed loop transfer function

156

Simulation structure for the adaptive two-loop control system ------------ 158
Sensibility to parameter changes in the adaptive two-loop control system 158

Airflow rate disturbance rejections in the adaptive two-loop control system

159
Zone temperature response for different F 161
Damper opening for different F e - 161

Response to the pafaméter change (load change) in the adaptive two-loop

control system 163
Response to parameter change in the pressure independent control system

- 164

Adaptive two-loop control and pressure dependent control responses to the

parameter change (load change) 165
Zone temperature response and velocity pressure setpoint for zone 1 ---- 167

Zone temperature response and velocity pressure requirement for zone 2 and

T Tt eTe) s |1 ) U —— 168

XV



Figure 6.21
Figure 6.22

Figure 6.23

Figure 6.24

Figure 6.25

Figure 6.26

Velocity pressure response and airflow rate for zone 1 169

Velocity pressure response and airflow rate for zone 2 170
Zone temperature response 2 and velocity pressure requirement for zone 1

171

Velocity pressure response 2 and airflow rate for zone 1 172
Zone temperature response 2 and velocity pressure requirement for zone 2

172

Velocity pressure response 2 and airflow rate for zone 2 173

XV1



Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 5.1
Table 5.2
Table 5.3
Table 5.4

Table 5.5

Table 5.6
Table 5.7
Table 5.8
Table 5.9
Table 5.10

Table A.1

LIST OF TABLES

Plant parameter changes for considered processes 79
Effect of O, on energy efficiency 81
Index comparisons between methods for CPs with Case 4.1 ----------------- 85

Index comparisons between methods for CPs 4.1 and 4.3 with Case 4.2 ---86
Index comparisons between methods for CPs 4.1 and 4.3 with Case 4.3 ---86

Index comparisons under disturbances and Case 4.1 between methods ----87

Sets 1 to 9 of the plant parémeter changes \ 115
Sets 11 to 19 of the plant parameter changes : 115
Sets 21 to 29 of the plant parameter changes . 115
Legends for different plant sets (j =0, 1, 2) - 119

Initial value selection of w;(0) and wgs(0) for fast learning for different

plants ---- 125
Experimental conditions and parameter set ] 132
Experimental conditions and parameter set 2 for high load ---------------- 133
Performance results of ANNC to increased heat to zone 2 ------------—---- 139
Performance results of ANNC to decreased heat to zone 2----------------- 140
Comparisons between ANNC and PID control 143
Specifications and accuracy of the sensors used 192

X Vil



max * “‘min

AHU
ANFIS
ANN

ANNC

AR

ARMA
ATAEC3GLCBS

A0

LIST OF SYMBOLS

system pole of FOPDT model in discrete-time domain
elements of 8

variables for computed values of a and b

bounded values of a

the estimated value of the parameter a in the
identification process
matrices of state equation for PI controlled closed-

loop FOPDT system

~ air handling unit

adaptive neuro-fuzzy inference system
.artiﬁcia] neural network

adaptive neural networks control
autoregressive

autoregressive moving average
heating coil control system setpoint

a small positive parameter for calculating Index0

~ system gain of the FOPDT model in discrete-time

domain

bounded values of b

the estimated value of the parameter & in the

identification process

XViil



C4,C5

€40, €50

C

CBCGLC470BS

cC

CCITS

CCM

CCOTS

CCU

CF

a constant for computing fan speed control (FAN)

a coefficient for calculating input x3 of the normal

neural network controller

a constant for calculating input x; of the normal

neural network controller

a coefficient for calculating normal neural network

controller output u,,

a constant for calculating normal neural network

controller output u,,

a parameter to compute K,

coefficients for calculating normal neural network
controller inputs

constants for célcu]atihg normal neural network
controller inputs

discharge air temperature controller

the input (0 to 100%) of the hot water control valve
for the heating coil control system

cooling coil

the entering air temperature of the cooling coil
Cohen Coon Method

discharge air temperature v O
cooling coil unit

fan speed controller

X1X



CFM
cov
CP

CSB-SQP

(Y
CWFRG
CWRTS
CWSTS
C1,C2
DAMPI
DAMP2
DAS

DAT

DDC

DMI1 ,DM2
DP

DPS
DPS001
DPS002
D1SP

D2SP

cubic feet per minute

coefficient of variation

combined process

complete simulation-based sequential quadratic
programming

constant volume

chilled water flow rate

chilled water return temperature

chilled water subply témperature

damper controllers

control input (V) of the damper in the duct to zone 1
control input (V) of the damper in the duct to zone 2
discharge air system

discharge a1r temperature

direct digital control

damper motors

differential pressure

total duct. supply air pressure

duct supply air pressure to room 1

duct supply air pressure to room 2

velocity pressure setpoint to room |

velocity pressure setpoint to room 2

the difference between T,; and T, thatis T, -T

a

(GPM)
O
O

(CFM)
MA)
(MA)
(MA)

(MA)

XX



e(k;8)
EMC
EMCS
EP

ESP-r

Er

FAN
FCH

FCU

FFPI
FLCs
FOPDT
FSC
FVS

gpm, GPM

811>812-821-8»

GA

the difference between y(k) and y(k)

energy management control

energy management control system

~evol utionary programming

an integrated modelling tool for the simulation of the
thermal, visual and acoustic performance of buildings
and the assessment of the energy use and gaseous
emissions associated with the environmental control
systems and constructional materials

performance index

an adjustable factor of the adaptive PI&PI controller
the control input of the fan

fan-coil heating

fan coil unit

feedforward

feedforward proportional-integral

fuzzy logic controllers

first order plus dead time

fuzzy satisfactory clustering

actuator for fan motor

gallons per minute

mid-parameters for OTA and OTA-VP

genetic algorithms

V)

XX1



GPM
GRNN

G(2)
G,(2)

G,(2)

sty By
., _
HEATI
HEAT2
HVAC

HVAC&R

HVACSIM+
H,

IAE

INDEX
INDEXabs
IndexNoAbs

IndexP

IndexT

gain and phase margin method
general regression neural networks

transfer function

transfer function of airflow damper’s dynamics

~ transfer function of zone temperature dynamics

ith hidden unit of neural network

mid-parameters for OTA and OTA-VP

hidden vector

heat generated by heater in room}

heat generated by heater in r09m2
heating, ventilating, and air-conditioning
heating, ventilating, air conditioning, and
refn gerélion

HVAC SIMulation PLUS other systems
Hankel norm used to measure control system
properties

integrated absolute error

integral square-error

integrated absolute error

integrated error

index of the ith process

total index

XX1i



Index0Q, IndexSet  indexes for calculating adaptive weight factor @,
IndexTarget a reference index to Index0 for updating adaptive

weight factor @,

Inf infinity

ISE integral square-error criterion

J performaﬁce criterion

k time in samples

kq a coefficient for computing fan speed control FAN
k, adjustable scale coefficient for suitable input values

of the normal neural network controller

kp,k,. , ky PID gains

ko, Kk, start time and end time in samples

k, ' a scale factor to adjust the iearning rate 7),
K a column matrix of gains X, and K,

K. system gain of FOPDT system in continuous domain
» K, (2) z transform of a controller in discrete system
Ker feedforward gain of PI-FF controller

K, integral gain of PI controller

K, integral gain of K,(z)

K, proportional gain of PI controller

K, proportional gain of K, (z)

XX111



LEE
LowValue
LPVOP
LQG
LQR
LVP
L,L,

m;

m;

My s g 11y, M,y
MIMO

MMPC
MTAEC3GLCB
N

NN

OA

OTA

a row matrix of gains of K,(z)

dead-time in samples for FOPDT model

a 2x1 matrix

least enthalpy estimator

the lower bound of P,

the largest positive non-zero value of the processor
linear quadratic Gaussian

liﬁear quadratic regulatof

linear varying parameter

elements of L

the number of inputs of the normal neural network
controller

the number of the hidden nodes of the normal neural
network controller

mid-parameters for OTA and OTA-VP
Mutltiple-Input Multiple-Output

multiple model predictive control

discharge warm air temperature from heating coil
sampling size for rrlinjnlizatiqn

neural network |

output node of neural network

outside air

Optimal Tuning Algorithm

XX1V



OTA-VP

PD
PDC

Pl

PID

PI-FF
PI&PI
PLY,, PLY,
PMAC
PMV

PNN

PPCL

PRAC
P,

PS1,PS2

Py, P2, Py, Py
gy

Qm'm 4 Qmax

Optimal Tuning Algorithm with Variable Parameter
proportional

a 2x2 matrix

proportional derivative

parallel distribution compensation

proportional integral

proportional integral derivative
proportional-integral plus feedforward

two-loop PI control strategy |

scalar parameters for computing Py and Py,
pulse modulation adaptive controller

predicted mean vote

predictive neural network

Powers Process Control Language

a programming language used to write field panel
control programs for building control and energy
management functions

pattern recognition adaptive controller

the sum of the square values of elements in matrix P

velocity pressure sensors in supply air ducts
elements of P

an element of matrix Q,

bounded values of airflow rate

(m3/s or CFM)



0. desired airflow rate (m*/s or CFM)

0, state weighting matrix

o, control weighting factor

Q2-down the value of (; in step-down process for OTA-VP

RLS recursive least squares

ROCA _ robust optimal control algorithm

RTS001 zone temperature of room 1 (°C or °F)

RTS002 zone temperature of room 2 | : (°C or °F)

SFP specific fan power

SISO single-input-single-output

SOAC simplified optifnal adaptive control

SPVOP the smallest positive non-zero value of the processor

T, discharge air temperature as system oﬁtput : (°Cor °f)

Tao *entering air temperature ) e IOT °F)

T, time constant for FOPDT model

| T, sampling time

T;e, desired discharge air temperature (°C or °F)

T, supply chilled water temperature (°Cor °F)

T, zone temperature (°C or °F)
et desired zone temperature (°C or °F)

T zone temperature with no cooling (°C or °F)

T, discharge warm air temperature of heating coil (°C or °F)

XXVI



s

uq
max ? u min

ut

vn

vp

ub

UpValue

U(2)
v
ValKi
ValKp

ValSP

desired discharge warm air temperature of heating

coil ! (°C or °F)
controller output

control output of controller C,_(z)

bounded values of controller output u

control output of controller C,(z)

control output of controller

for the heating coil system (0 to 100%)
for the adaptive neural network control (0 to 10V)

neural network control value of the adaptive neural

network controller’s output

PID control value of the adaptivé neural network
controller’s output

a unitary upper triangular matrix (U) and diagonal
matrix (D)

the upper bound of P,

the z transform of u

water flow control valve
integral gain of PI of DAS
proportional gain of PI of DAS

desired discharge air temperature of DAS

XXV



VALVE

VAV

VAV-VT

Wo

x

X1, X2

X1, X2,X3, X4, X5
X

y

y

Yrmax
YTAEC3GLCBS
Y(N)

Y(2)

ZTAEC3GLCBS

controller output to the chilled water flow rate control
valve "2
variable air volume

variable air volume variable temperature

~ element of W;

element of Wy
weighting function

weighting function matrix

~weight matrix for a hidden unit

weight matrix for the output unit
a column matrix of state variables
state variables

input units of neural network
input vector

the difference between T, and T,
estimated output of plant

the maximum value of y
proportional gain of PI for the heating coil control
a (N —[)x1 matrix

the z transform of y

integral gain of PI for the heating coil control

XX VI



ZTS001
ZTS002
ZT1,7ZT12

Z-N

B

zone temperature setpoint of room 1
zone temperature setpoint of room 2 for experiment
zone temperature Sensors

Ziegler-Nichols

a parameter of weighting function for system .

parameter identifications

weighting factors for computing IndexP,-

weighting factors for compqting Er

a boolean variable to avoid over training

an adaptive weight factor to avoid slow response

a weight parameter for filtering input data x,

a weight paraméter for filtering input data x;

a constant number used as initial value for diagonal
elements of P

a coefficient for computing &,

adjustable parameter of weighting function for system
parameter identifications

a selectable small positive value to avoid dividing by
zero

a (N —[)x1 matrix

(°C or °F)

(°C or °F)

XX1X



n,n learning rates

7, time-varying learning rate for Aw,

7, time-varying learning rate for Aw;

o a selected constant learning rate

o predictive parameter value of plant

6 estimated parameter value of plant

6° true parameter value of plant

A a Lagrange multiplier vector

y7, a scalar parameter for computing L, and L,
o a scalar parameter for computing 4 and b
s a scalar parameter to avoid dividing by zero
T dead-time of FOPDT system : - (s)
v a 2>;] measurand matrix

2 a scalar parameter for analysis of P,

v a 2x(N —[) matrix

XXX



1. Introduction

Efficient control strategies in heating, ventilating, and air-conditioning (HVAC)
systems have become more important recently in the world because of the increasing
energy requirements and diminishing energy sources. Incorporating several optimizing
functions in energy-management ;ontro] (EMC) systems and performing real-time
adjustments to HVAC procésses can improve the. energy efficiency of H.VAC‘ systems
(Zheng, 1997). Global optimization of an entire HVAC system is a powerful strategy for
the improvement of énergy efficiency of HVAC systems, but vit must be executed by
f;fﬁcient local controls for every loop in the controlled HVAC system. Variable air
volume (VAV) is the most popular operating mode in HAVC systems, because it has the

potential to save energy.

This thesis deals with the development of online adaptive control strategies for
-local loops in VAV-HVAC systems. Emphasis is placed on the application of modern
control theories combined with classical PID control to develop implementable and

improved controllers for VAV systems.

1.1 HVAC Systems

HVAC systems play a significant role in reducing the environmental impact on
occupied spaces. The primary function of an HVAC system is to provide and maintain a
healthy and comfortable indoor environment. The goal of HVAC control system design is
to provide effective control strategies to maintain comfort with adequate air quality for

the occupants of an occupied space under variable load conditions with minimal use of



energy. Reducing energy consumption and relevant practical techniques are therefore the
most important aspects in HVAC control system design in view of the fact, that “Among
building services, the growth in HVAC systems energy use is particularly significant
(50% of building consumption and 20% of total consumption in the USA).” (Pérez-

Lombard, Ortiz, & Pout, 2008, p. 394).

Typical all-air HVAC systems provide energy transfer via heating/cooling coils,
airflow regulation to maintain air pressure or temperature via fan speed regulation or/and
damper position changes, and central water sﬁpply servicing heating/cooling coils or
multiple units. All-air HVAC systems are generally operated in two modes: constaﬁt
volume (CV) and variable air volume (VAV). In CV mode of operation, air-supply
temperature is varied in response to zone loads while maintaining the airflow rate
constant. This concept is usually uséd for single duct constant volume systems. One
drawback of the CV systems is that the fan energy consumption remains the same
irrespective of zone loads. Another drawback is that the single duct CV system cannot
supply conditioned air at different temperatures to meet the needs of individual zones. To
overcome this problem, reheat systems are needed. For a cooling case, the supply air
temperature is cooled to satisfy the zone with maximum load and then reheated to meet
the needs of zones experiencing lower loads. The réheat system used in CV systems
contributes to energy waste. In contrast, VAV systems enjéy a significant advantage over
CV systems in terms of the economy of operation (Zaheer-uddin & Zheng, 2001), and

result in the lower energy consumption (Arguel]o—Serrano & Velez-Reyes, 1999).



1.2 VAV and VAV-VT Systems

In the VAV mode, air-supply temperature is held at some constant setpoint while
airflow rate is varied to satisfy zone load, in contrast to the CV mode of operation, where
air-supply temperature is varied in response to zone loads while holding the airflow rate
constant. Duﬁng low load periods, réduced airflow rates can be achieved in a VAV
system, and this can lead to significant reduction in fan energy consumption because of
the fact that “fan energy consumption is proportional to cubic power of airflow rate”
(McQuistion, Parker, & Spitler, 2000). Zaheer-uddin et al. (2001) have further shown that
the variable air volume mode of operation in which both airflow rate and air-supply
temperature are continuously modulated is a more energy efficient strategy. This mode is

identified as the variable air volume variable temperature (VAV-VT) mode.

1.3 Zone Temperature Controls

In all-air HVAC systems, zone temperature is controlled by airflow regulation of
supply air. Typical airflow regulation in zone temperature controls of HVAC. systems
includes pressure independent control and pressure dependent temperature control. In
pressure independent control, it will be easier to get a stable response but zone
temperature set-poiht may not be satisfied because of plant uncertainty. In contrast, in
pressure dependent temperature control zone temperature set-poiﬁl can be reached but the
control action responding to pressure disturbance effect of airflow rate may not be faster.
In addition, for a mu]ti;zone system opefating in VAV or VAV-VT mode, damper
position change or fan speed change for a new airflow requirement of a zone wilyl affect

other zones’ airflow because of the coupied nature of airflow system. These limitations of



typical airflow regulation in zone temperature controls will be further illustrated in

chapter 6.

1.4 Supervisory Control in HVAC Systems

In most buildings the VAV systems provide air at constant temperature year
round. This practice is not necessarily the most economical, because of this practice that
numerous problems occur during part load operation of VAV systems, such as, poor air
distribution, inadequate ventilation, and high humidity within the controlled space
“because of too low airflow rate. Therefore, it is recognized that the basic principle of a
VAV system should be to control both the airflow rate and the temperature of supply air
into the controlled space for heating, ventilation, and ‘air—conditioni.ng, In addition,
building HVAC controls should be operated io minimize energy consumption and/or

operating cost.

To achieve this objective, a supervisory control system should have the
capabilities to provide the desired time-of-day optimal setpoint profiles under dynamic
outside conditions and indoor loads for local controllers. The local controllers track the
optimal setpoint profiles so that the HVAC system runs optimally from the current state
to the new state at the provid§d setpoints. The control strategy with the supervisory
control will improve the performance of a VAV system in terms of providing good
temperature and humidity control as well as in reducing the energy costs significantly.
The typical local controls in VAV systems are zone temperature control, discharge air
temperature control, airflow rate control, variable speed fan control, reheat control,

outdoor ventilation flow control, chilled water temperature control (or heat exchanger



water temperature control), water flow rate control, etc. These local controls will affect

the performance of supervisory control.

1.5 Motivation

Providing enérgy efficient, healthy and comfortable indoor environment in
buildings is the main goal of the modern HVAC controls. However, to achieve this goal
many practical problems must be considered such as different operating conditions,
varying environmental conditions, and real-time implementation considerations. These
will affect the performance of control strategies. To guarantee optimal operation of VAV
systems, several adaptive‘, intél]igem, optimal control strategies for local controls will be

éxp]ored in this thesis.

1.6 Scope and Objectives

In the context of background and motivation cited above this thesis presents
several practical adaptive, intelligent, optimal online control strategies for VAV and

VAV-VT local loop controls for HVAC systems. The specific objectives include:

1. To augment the existing RLS online identification algorithm for FOPDT systems

to improve its online reliability.

2. To develop an optimal control strategy with improved ability in rejecting the

effects of disturbances acting on FOPDT sysiems.

3. To design an online intelligent control strategy with learning property that can be

implemented in existing HVAC control systems.



4, To develop an online adaptive control strategy to reduce the effects of airflow

interaction and system uncertainty in zone temperature control in VAV systems.

5. To test the developed control strategies in a VAV laboratory HVAC system using

an existing energy management control system platform.
1.7 Thesis Outline

This thesis is divided into seven chapters. In Chapter 1, an introduction to the
VAV control systems and the objectives of this thesis are given. The motivation for
studying online adaptive and intelligent control strategies for multi-zone VAV systems is

also discussed.

Chapter 2 consists of literature survey related to modeling and different controls

in HVAC systems. The review further supports the objecﬁves of this thesis.

In Chapter 3, a robust online identification technique is developed by adopting a
matrix-reset technique. It is an improved RLS identification algorithm for FOPDT model

from an earlier study (Qu, 2002).

Chapter 4 presents an on-line optimal proportional-integral plus feedforward (PI-
FF) controller with HW tuning rules for FOPDT model systems with impr(—)ved
A new index is introduced to evaluate the cbntrol performance. Simulation studies in an
adaptive control configuration showed the added improvement of the proposed control
algorithm. In addition, a simplified obtima] control algorithm is developed. Its

applications to a heating coil control loop in the Concordia University’s HVAC system



and the DAS in the HVAC Test Facility are studied and improvement in robustness is

illustrated through experimental results.

In Chapter 5, an implementable neural network control is developed. It is derived
by integrating adaptive control, neural network control and PID control. Simulation and

experimental studies for a local control of HVAC systems are also presented.

In Chapter 6, an online adaptive control strategy to reduce the effects of airflow
interaction and system uncertainty on zone temperature control in VAV systems is
proposed. This control strategy is derived by adopting a two loop control structure. The
limitations of classical typical aifﬂow regulation in zone temperature controls (pressure
independent control and pressure dependent temperature control) are also discusséd in
this chapter. Comparisons between the proposed control strategy and the classical airflow
regulation controls are presented. The improvements in performance of the proposed

control are illustrated.

Finally, conclusions, main contributions of this thesis and recommendations for

future research are given in Chapter 7.



2. Literature Review

Extensive research on various aspects of HVAC controls and building systems
have been motivated by the growing concerns about indoor environments and energy

efﬁciéncy. The related aspects of HVAC controls will be surveyed in this Chapter.

2.1 Introduction

Many aspects related to HVAC controls, such as modeling, design of controllers,
" PID controls, intelligent (fuzzy, neural networks, ad‘aptive) controls, experimental
controls and energy management conirol system (EMCS), have been studied by several
researchers in recent years. In the following sections, the relevant papers will be reviewed

and summarized.

2.2 Modeling and Simulation of HVAC Systems

In‘recent years, there has been a growing interest in the mathematical modeling of
HVA‘C systems and its components (Tashtoush, Molhim, & Al-Rousan, 2005). Many
researchers have studied HVAC dynamic models using either theoretical or experimental
approach. The studies related to modeling done by several researchers will be

summarized below.

Tashtoush et al. (2005) described a procedure for deriving a dynamic model of an
HVAC system that consists of a zone, heating, cooling and dehumidifying coil,
humidifier, ductwork, fan, and mixing box. They investigated the tuning technique using

the Ziegler-Nichols rule from a practical viewpoint, and gave simulation results showing



the open loop and the closed loop responses of indoor temperature and humidity ratio.
The results show that the system is capable of controlling the disturbances efficiently
within a small period of time and with less error. They concluded that the dynamic model
can be especially useful for control strategies that require knowledge of the dynamic

characteristics of HVAC systems.

'Zheng and Zaheer-uddin (1996) developed dynamic models of HVAC system
components for optimizing the therm-al processeé in a variable air volume (VAYV) heating,
ventilating and air | conditioning (HVAC) system. The constrained optimal control
_problem was formulated and solved. Typical daily optimal operating trajectories for the
system were presented. Results showed that to achieve thermal comfort, both zone
temperature and humidity ratio should be controlled, and the optimization of outdoor air

economy cycle results in significant energy savings.

Mei and Levermore (2002) presented the results of modeling and simulating a
laboratory variable air volume (VAV) test rig. They developed models for each
component, such as fan, duct and VAV terminal box, with control systems, in the test rig.
They also performed the simulations via the logical connection of the component models
by means of an HVACSIM+ platform (Clark, 1985). They used a polynomial curve
fitting method and a ten neuron sigmoid artificial neural network (ANN) model to model
the non-linear characteristic of the fan. The ANN based model is shown to give better
results. A non-linear characteristic terminal box model based on the experimental

modeling was developed. The ANN fan model and the> terminal box model were included



in HYACSIM+ program as new component subroutines. The simulation results for the

VAV test rig via HVACSIM+ were validated by real system operation performance.

Huang, Zaheeruddin and Cho (2006) used detailed system dynamic models to
evaluate energy management control (EMC) functions such as outside air (OA)
economizer cycle, programmed start and stop lead time, load reset and occupied time
adz_lptive control strategy. They also presented a real _time system embedded with the
above EMC functions. The simulation results manifest that energy savings of 17% can be
achieved when the system is operated with the EMC functions and optimal set points
compared with the system without such functions. These results do point out that the
optimal set point strategy is very useful in achieving energy efficient operation of HVAC

systems.

Wang, Lee, Fung, Bi, and Zhang (1999) developed dynamic models to simulate
the thermal, hydraulic, environmental and mechanical characteristics and energy
performance of a building and VAV air-conditioning system under the control of Energy
Management and Control Systems (EMCS). Wang et al. (1999) also developed three on-
line supervisory strategies and programs based on integrated EMCS stations to optimize
the VAV static pressure set-point, AHU outlet air temperature set-point and outdoor
: Veniilation air flow set-point. The strategies and programs were commissioned and

evaluated under the simulated ‘real-life’ environment.

Wang and Jin (2000) proposed a system approach for optimizing multi-zone
building systems, based on predicting the responses of overall system environment and

energy performance to the changes in control settings of VAV air-conditioning systems.
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Incremental dynamic models with “self-tuning' of the VAV system were developed and
used. A genetic algorithm was used to solve the on-line optimization problem of multiple
parameters. The strategy was tested and evaluated in a simulated “living' environment

under various weather conditions.

Maxwell, Shapiro and Westra (1989) developed an empirical model of chilled
water coil and used it to predict the system response to inputs with P, PI and PID control
algorithms. The empirical model is not suitable for online control as the model needs to

be updated.

Kasahara et al. (2000) described a procedure for deriving a dynamic model of an
air-conditioned space by applying physical laws, such as energy and mass balance

principles. These models are useful in energy efficiency simulation studies.

Kasahara et al. (2001) have presented a stability limit analysis and a new tuning
method for PID controllers in bilinear sjstems with time-delayed feedback. The bilinear
systems they considered are variable air volume (VAV) systems, which are defined as
air-handling units that use variable airflow rate to satisfy the heating, ventilating, and air-
conditioning (HVAC) operation requirements — such as indoor temperature (thermal
comfort.) In this reference, they have developed a normalized bilinear model of VAV
systems by identifying the energy flow to and from the environmental space and
presented a generalized parameter analysis of the stability limits by simulation. The
results of the analysis reveal that controller parameters can be determined by assuming
that the plant is linear. The proposed tuning method of PID controller requires a gain

reduction factor for practical applications. The main limitation of the online application
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of the tuning method is that it requires extensive computations to find the gain reduction
factor. The methodology in this study relies on bilinear models which are not suitable for

systems with time delay.

Wang et al. (2004) presented a technique for developing a simple and accurate
cooling coil unit (CCU) model. The modeling technique is based on energy balance and
heat transfer principles. They used commissioning information to estimate, at most, three
model parameters by either a linear or nonlinear least squares method. They have done
experiments to shoW that the method is robust and gives a better match to real

performance over the entire operating range compared to other methods.

Kulkarni and Hong (2004) explored the prob]ebm of using a single-zone, two-
position control system and presentéd a proportional control system for the residential
building by setting up the dynamic simulation for the bhilding and the control system.
They used state-space method to model the building system' and .implemented the
simulation code on MATLAB. They also implemented optimization of the controller
using this model. The thermal comfort and energy efficiency were compared under
different schemes. They found that proportional control is advantageous to the two-
position control for thermal comfort while there is not much difference in energy
consumption between two control schemes. However, in their work the furnace was

operated without any minimum run time with continuous data sampling.

From the above modeling and simulation studies it is noted that the major focus of
the model development has been for energy simulation and thermal comfort evaluation.

These models are either static or dynamic from less rigorous to detailed. Because of
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higher computational and memory requirements, these models are not suitable for

implementation on existing building control systems.

2.3 Design of Controllers for HVAC Systems

An HVAC systerh includes many local control loops. They are required for
regulation of temperature, airflow rate etc in many processes in HVAC systems. Many
researchers have worked on design of local controllers for HVAC systems. The popular
techniques are PID control, optimal control, intelligent (fuzzy, neural networks, adaptive)
control, H, control, pattern recognition control, predictive control and nonlinear control.
Since many studies have been done on PID control, optimal control, and intelligent
control, the literature review for them will be shown in later sections. Here, the summary
includes literature related to H. control (Al-Assadi, Patel, Zaheer-ruddin, Verma, &
Breitinger, 2004; Qu et a].,_ 2004), preview control (Zaheer-uddin, Al-Assadi, & Patel,
1994; Kasahara et él., 1993), pattern recognition control (Seem, 1997), predictive control
(Dexter & Haves, 1989), decoupled control (Rentel-Gémez & Vélez-Reyes, 2001;
Semsar, Yazdanpanah, & Lucaé, 2003), and nonlinear control (Argiiello-Serrano et al.,

1999).

Al-Assadi et al. (2004) presented the results of a study on the use of He
constraints in an optimization technique for the design of robust decentralized output
feedback control of a heating, ventilation and air‘ conditioning (HVAC) system. They
used robust stability and performance specifications to achiev-e temperature control in
multi-zone HVAC system in the presénce of disturbances and model uncertainties and

under constraints on control input energy. The resulting fixed-gain decentralized output
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feedback controller, which is based on a linear model, was implemented via simulation
on a full bilinear model of the HVAC system. Superior performance of the H, -based
design was shown via comparison of these results with those based on *‘constrained”’
linear-quadratic optimal regulator design. The design methodology is too complex for

online implementation.

First—brder—plus-dead—time (FOPDT) models are easier to implement in a real
system. Tan, Liu and Tam (1998) developed PID tuning rules based on loop-shaping H
control for the FOPDT processes. The application of H,, based adaptive PI controller in
HVAC systems is demonstrated by Qu et al. (2004). The approach of tuning singlé-loop
éontrollers in HVAC systems using the H,, loop-shaping tuning rules was applied to a
discharge air temperature (DAT) control system. The recursive least squares method was
used for identification of the HVAC process as a FOPDT model. The output respohses of
the adaptive PI controller were compared with a LQR optimal adaptive controller..
Simulation results showed that the adaptively tuned PI controller is able to track setpoint
changes very well in the presence of changes in plant parameters, disturbances and

external noise acting on the system.

A decentralized preview controller was designed for temperature control of multi-
zone indoor environmental spaces by Zaheer-uddin et al. (1994). A two;zc;ne space
heating system considered consisted of a boiler, heat pumps, distribution network and
two environmental zones. The decentralized preview controller was designed by using a
parameter optimization method under the assumption that the outdoor temperature

variations are "previewable”. They compared the output responses of the resulting
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decentralized closed-loop bilinear system acted upon by single and multiple disturbances
with and without preview action, and gave results showing the robustness property of the
controller, and the 24-hour building operation with unoccupied and occupied setpoint
tracking using preview control. However, experimental validation is necessary to

evaluate the effectiveness of the preview control.

Kasahara et al. (1998) presented a multivariable autoregressive (AR) model which
is a three input/two output model obtained by using observed data for an HVAC system.
They used a combination of the model and the preview control that is a linear quadratic
Gaussian (LQG) optimal control with feedforward compensation to control process
variables such as indoor temperature and indoor humidity. The comparison of measured
data and simulation results shows that the plant model is adequately formulated. Also,
experimental results on a commercial-sized test plant with LQG control system and
preview control system are presented. They showed that the optimal control system based
on statistical modeling with the multivariable AR model is quite useful for the control of
interactive HVAC systems, and the preview control system produces excellent control
under normal operating conditions compared to LQG control system. The limitations of
the optimal coﬁtrol system based on statistical modeling with the multivariable AR model
are that the modeling and the control design are very difficult to implement online, and
the model obtained off-line may not match the model dynamics undergoing variable

operating conditions.

Seem (1997) presented a method for implementing a new pattern recognition

adaptive controller (PRAC) developed through optimization, for automatically adjusting
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the parameters of PI controllers while under closed loop control. Depending on patterns
of the closed loop response, PRAC will determine the parameters of the digital PI
controller used in an HVAC system. Simulation results subject to random noise and load
disturbance modeled by either one or zero are presented. Some field test results are also
given. The results showed that PRAC is robust, easy to use and has low computational
and memory requirements. From the results presented, it can be noted that PRAC
responses are either sluggish or oscillatory. It takes a long time to reach stable state. The
limitation of this study is that PRAC was developed for systems that can be characterized
by a first-order plus dead-time model with the ratio of dead time to time constant between
0.25 and 1, and the ratio of sampling time to time constant is between 0.1 and 1 for “good

" control.”

Dexter et al. (1989) developed a robust self-tuning predictive controller based on
the Generalized Predictive Control algorithm (Clarke, Mohtadi, & Tuffs, 1987) for
HVAC applications. The controllgr uses default values for most of its parameters and
requires selection of only ohe commissioning parameter: the control-sampling interval. In
the controller, a parameter estimator for the HVAC plant, which is based on the UD filter
forﬁ of the recursive least-squares algorithm, using a simple form of variable exponential
forgetting (Dexter, 1983), is used. To implement a set of expert rules, which supervise the
operation of the on-line parametér estimator and the calculation of control action, Dexter
et al. (1989) developed special jacketing software. Also, they have used a component-
based computer simulation package (HVACSIM+) to examine the behavior of the
controller in both the zone and supply air temperature control loops. The robust behavior

of the self-tuning controller is demonstrated and its superior performance to that of a
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manually tuned PI controller is suggested by the results. Application of the self-tuning
controller in a cascaded control configuration is also discussed and they concluded that
the use of two self-tuning controllers within a cascaded control scheme worked well
when care was taken to deal with the interactions that occurred between the inner and
outer loops during the tuning period. The controller is too complex for implementation on
‘existing building control hardware. Also the accuracy of the estimator over extended

period of operation is not proven in the simulation.

Rentel-Gémez et al. (2001) developed a nonlinear noninteracting control system
for temperature and relative humidity in a thermal-space conditioned by a variable-air-
volume (VAV) heating, ventilating, and‘air conditioning (HVAC) system. They showed
the impoﬁance of decoupling techniques in controlling temperature and relative humidity
independently and accurately fbr some industrial processes. They demonstrated how
decoupled control of temperature and relative humidity is possible using a multivariable
cascade control with two loops. The inner-loop used the non-interacting control law for
decoupling, and the outer-loop is a PD contfol]er used for stabilization and control. This

is a simulation based study and requires experimental validation.

Semsar et al. (2003) introduced a Back-Stepping controller for a nonlinear,
MIMO HVAC System. They used feedback linearization method with introduction of a
feedbaék of states and ‘disturbances for the purposes of disturbance decoupling and
nonlinear model linearization. They also applied the Back-Stepping controller to the
linearized model of the system. It has been shown that using this method, heat and

moisture loads can be compensated, considering them as measurable disturbances.
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Finally they provided the simulation results to show the ability of the method with high
disturbance decoupling and good tracking properties. The methodology is suitable for

simulation study and is too complex for implementation in real systems.

Argiiello-Serrano et al. (1999) presented a non-linear disturbance rejection state
feedback controller for an HVAC. system. The controller was designed by using
Lyappnov stability theory and consists of .a regulator and a disturbance rejection
component. To reducé the effect of thermal loads otherv than design loads on the system,
they also proposed a thermal load gstimator tinat allows the controller to obtain on-line
estimates of the thermél loads affecting the thermal spaée. In addition,' they have shown
simulation results for a variable air volume (VAV) HVAC system. The results
demonstrated the potential for the controller to keep comfort leveis and save energy in a
variable air volume HVAC system operating in the cooling mode. The main limitation of

the design for the controller is its complexity for online implementation.

2.4 PID Controls in HVAC Systems

In this section a survey of the published literature on the applications of PID
techniques for HVAC systems will be given. Studies by Seem (1997), Qu et al. (2004),
and Kasahara et al. (2001) summarized in the previous sections have also used PID

control technique.

Kasahara et al. (1999) have developed a design and tuning method in which the
gains of a robust PID controller for HVAC systems are obtained by solving a two-disk
type of mixed sensitivity problem. The PID gains obtained by the conventional Ziegler-

Nichols rule were modified by applying this technique. To illustrate the method, the
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temperature control of a single-zone environmental space and the HVAC plant which was
approximated by a first-order lag plus dead-time system was considered. The numerical
simulation and the experiments on a commercial-size test plant for air conditioning were
presented. The study showed that the robust PID gains could be expressed as simple
linear functions of the ratio of the dead-time to the time constant. However, for every
plant, the use of this method requires the determination of six parameters off-line to

compute the three gain reduction factors. '

Krakow (1998) has proposed the relationship between the sambling interval and
digital PI control éystem performance. by using _experimental and simulated response
characteristics for a PI-controlled mixing valve air heating system. The PI tuning rules
were specified based on the analytical and experimental study by Krakow, Lin and Zeng
(1995a and 1995b), Krakow and Lin (1995), and Hussein (1996), for the first-order
system (without storage) and second-order system (with storage.) The study showed that,
long sampling intervals may yield more satisfactory response characteristics, than short
sampling intervals if the system is tuned appropriately. Appropriate tuning implies using
PI coefficients based on (non-conventional) theory developed specifically for long
sampling intervals. A long sampling interval implies a comp]ete response of the
controlled variable to the change in the control signal. The limitation of the paper is that

the results obtained are specific to a system and cannot be generalized.

Nesler (1986a) has reported the implementation of three automated controller-
tuning methods, which include a computer-assisted controller tuning program, an

automatic tuning controller, and a self-tuning controller for HVAC processes. A
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computer-assisted controller-tuning program allows novice users to tune DDC controllers
reliably and quickly. An automatic tuning controller fully automates the open-loop step-
test tuning procedure and has self-monitoring capability that leads the automatic tuning
routine, once initiated, can operate without supervision. Nesler (1986a) concluded that
automated controller tuning addresses two fundamental problems in HVAC control
applications: ihe time-consuming initial tuning of the controller and the requirement for
periodic controller retuning as system loads change. A sélf-tuning control system adjusts
PI control parameters in real-time using closed loop control data. Experimental results
from applying the self-tuning controller to a discharge air temperature control loop are
given. It is noted that unmodeled load disturbances, drifting parameters and actuator

nonlinearity are limitations of self-tuning controllers.

Nesler (1986b) has presented the implementation of a self-tuning controller to
control typical HVAC processes- (the model can be considered as a first-order plus dead-
time). The self-tuning controller consists of five independent software blocks. The five
blocks include an automatic tuning routine used to establish initial parameter estimates, a
recursive least-squares estimator for making parameter estimates on-line, a controller
design block, which computes the ga'ins of PI controller depending on the new parameter .
estimates, a PI controller, and a performance‘monitor‘, which supervises the self-tuning
contrq]ler operation. The open-loop step test method is used for the automatic tuning
routine. The PI gains are computed by minimizing the integrated absolute error (IAE). In
addition, the performance monitor is introduced to determine when retuning is required.

The use of the performance monitor can also increase system flexibility and robustness.

The main limitation of RLS (Recursive Least Squares) estimation is that self-tuners can
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| occasionally fail to produce useful estimates under certain conditions such as self-tuning

control loops subjected to large and unmodeled load disturbances which occur in HVAC

Processes.

Huang and Lam (1997) presented an adaptive learning strategy based on genetic
algorithm‘s (GA) for automatic tﬁning of PID controllers in HVAC systems to achieve
optimal performance. They used genetic algorithms, since they have been proved to be
robust and efficient in finding near-optimal solutions in complex problem spaces. They
also modified the modular dynamic simulation software package HVACSIM+ and
incorporated the genetic algorithm-based optimization program to provide a complete
simulation environment for detailed study of controller performance. In addition they
considered three performénce indicators (overshoot, settling time, and mean squared
error) in the objective fﬁnction of the optimization procedure for evaluation of controlier
performance. The simulation results showed that the genetic algorithm-based
optimization procedures as implemented in the research study are useful for automatic
tuning of PID controllers for HVAC systems, yielding minimum overshoot and minimum

settling time. This is a simulation study and not implemented on real systems.

Wang, Shi and Cai (2001) developed a simple and efficient PID autotuner and
presented its application to HVAC systefns. A second order plus dead time model is
identified by the autotuner based on two continuous relay feedback experiments. The PID
controller was designed on the basis of gain- and phasé-margin speciﬁcations. The
methodology requires more computation and memory as such is not suitable for online

application.
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Zaheer-uddin and Tudoroiu (2004) explored the problem of improving the
performance of a discharge air temperature (DAT) system using a PID controller and
augmenting it with neural network based tuning and tracking functions. They modeled
the DAT system as a SISO (single input single output) system, and presented the
architecture of the real time neuro-PID controller and simulation results obtained under
realistic operating conditions. The simulation results show that‘ the network assisted PID
controller is able to track both constant and variable set point trajectoriés efficiently in the

presence of disturbances acting on the DAT system.

Kotaki, Yamakawa, Yamazaki, Kamimura and Kurosu (2005) described tuning
PID controllers using optimization, subject to constraints on derivatives of control input,
and considering model uncertainty caused by changes in system dynamics. To obtain
optimal PID parameters, they presented graphs as functions of a normalized dead-time
and a perturbation of system parameters. In addition, the control performance in
disturbance suppression and reference tracking properties was presented and the
comparisons with the partial model matching method and the H, compensator designed
for the same system were shown. Moreover, to avoid making the control system sensitive
to measurement noise, a PI controller with a relaxation filter was developed. It was
shown that there is very little difference in control performance between the PI controlier
and the H, compensator. Like most previous studies, this is also a simulation based study

and has not been experimentally validated.
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2.5 Optimal Controls in HVAC Systems

A survey of the published literature about optimal controls in HVAC systems is
presented in this section. The studies of Al-Assadi et al. (2004), Wang et al. (2000),
Zaheer-uddin et al. (1994), Kasahara et al. 1998, Huang et al. (1997), Kulkarni et al.
(2004), and Kotaki et al. (2005) discussed in the previous section also deal with optimal

control issues in HVAC systems.

Zaheer-uddin et al. (2001) explored the applicatioﬁ of a multistage optimization
technique to determine optimal operating strategies for HVAC systems. Simulation
results are shown for a single-zone space heating system consisting of a heat pump, a
storage tank, a heating coil, é fan, and ductwork. The optimization problem was solved
using a typical building operation schedule, consisting of off-normal, start-up, and normal
occupied periods, assuming time-of-day rates. Results are presented, for the two most
widely used operating strategies, namely, constant-volume (CV) and variable-air-volume
(VAYV) system. It is shown that the _variab]e—air—volume mode of operation in which both
air-supply temperature and ﬂow rate are continuously modulated is the most eﬁergy
efficient strategy. The limitations of the study are that the optimal result depends on exact
dynamic models, and in real systems, to track the setpoints exaétly may be extremely

difficult.

Singh, Zaheer-uddin and Patel (2000) studied the application of adaptive control
for a class of multivariable processes in heating, ventilating and air conditioning (HVAC)
systems. They simulated the thermal dynamics of a two zone fan-coil heating. (FCH)

system and environmental zones by a nonlinear model, and designed a multivariable
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adaptive controller based on Linear Quadratic Regulator (LQR) theory. Simulation
results showing the closed loop response of the system to changes in operating points,
external disturbances, changes in system parameters and unmodeled dynamics were
presented. They showed that the adaptive controller is able to adapt to a wide range of
operating conditions and is able to maintain the zone temperatures and the boiler
temperature close to their respective setpoints. Like most optimal control solutions, this

one is computationally extensive and therefore suitable in off-line studies.

Lu, Cai, Soh, Xie and Li (2004) presented a modél—based optimization strategy
for the condenser water loop of centralized heating, ventilation and air conditioning
(HVAC) systems. They analyzed each component characteristics and interactions within
and between cooling towers and chillers, and formulated the optimization problem as that
of minimizing the tdta] operating cost of all energy consuming devices with mechanical |
limitations, component interactions, outdoor environment and indoor cooling load
demands as constraints. They also proposed a modified genetic algorithm for this
particular problem to obtain the optimal set points of the process. Simulations and
experimental results on a centralized HVAC pilot plant were shown and it was concluded
that the operating cost of the condenser water loop can be substantially reduced compared

with conventional operation strategies.

Sun and Reddy (2005) presented a general and systematic methodology, termed
complete simulation-based sequential quadratic programnﬁng (CSB-SQP), for
determining the optimal control of building HVAC&R systems. This approach allows the

coupling of a detailed simulation program with an efficient optimization method, namely
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the sequential quadratic programming (SQP) algorithm. This approach allows the use of
accurate component models of the system as against empirical models as currently used,
while providing efficient optimal solutions to be determined. Sun et al. (2005) developed
the mathematical basis of the methodology and applied it to a simple cooling plant
system to illustrate the accuracy, efficiency and robustness of this method. Experiments
were not conducted but they discussed the issue of implementing such an optimization

under real-time control.

Zaheer-uddin (1993) explored the application of modern control theory to design
control systems for buildings. Example problems dealing with HVAC systems and indoor
environment control are considered. He used pole-placement technique, optimal regulator
theory and adaptive control to design controllers. The responses of the systems subject to
disturbaﬁces were investigated. The simulation results illustrated the advantage of one

-method over the other and emphasized the importance of the use of improved methods to

design control systems for intelligent buildings.

2.6 Intelligent Controls in HYAC Systems

The most popular intelligent controls applied in HVYAC systems are fuzzy logic
control, neural networks control and adaptive control. In this section, a review of

literature in these areas will be given.

.2.6.1 Adaptive Controls in HVAC Systems

From the literature (Zaheer-uddin 1993), it is known that adaptive control has

advantage over the pole-placement technique and optimal regulator theory in design of
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control systems for intelligent buildings. In addition to the work on adaptive controls by
Singh et al. (2000), Seem (1997), Nesler (1986b), Zaheer-uddin (1993), and Qu et al.
(2004), the following additional survey on adaptive controls in HVAC systems is

presented.

Bai and Zhang (2007) have presented an adaptive PI controller for use in HVAC
_systems. They used recursive least squares (RLS) with exponential forgetting combined
with model matching of a zero frequency method to estimate the model’s parameters
while the system remained in closed loop. Bai et al. (2007) developed a tuning formuia
for a PI controller with robustness based on the estimated parameters to adjust the
controller’s parameters automatically while under closed loop. The simulation results
show that the new adaptive PI controller has improved performance. However, the

controller was not experimentally validated.

Astrom, 'Hﬁgg]und and Wallenborg (1993) have presented a tuning method based
on the relay feedback for a general digital controller. The method was developed for
tuning digital control laws and the control design method used is based on pole
placement. There is an interesting feature in the tuning method that the sampling period
and the desired closed loop poles are determined from an experiment with relay feedback.
The conclusion from extensive simulations stated that the method works very well for
low-order systems with time delay. Two test results applied to HVAC plants are
presented. A limitation noted by Astrém et al. (1993) is that the direct approach does not

work well for systems with large pole in continuous time models.
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Chen, Lee and Wepfer (May 1990) have presented an adaptive robust control
scheme applied to a single-zone HVAC system. A single-zone HVAC system with
modeling uncertainty (which includes thermal storage effect, heat and moisture
generation, and outside temperature and humidity variation) is established for a single
zone HVAC system in a generic room. It is a nonlinear system, and the uncertainty is
assumed bounded but the bound is unknown. Then, a class of adaptive robust controls
whjch was originally designed by Corless and Leitmann (1984) is used to achieve the
control objective to drive the room’s state (which is related to its temperature énd
humidity) into a comfort region. A comparison between the use of on-off control and the
use of the adaptive robust control from simulation results is given. Chen et al. (May
1990) conclude that simulation results depict a satisfactory transient performance in the
sense of maintaining small overshoot under a significant deviation of the initial state from
the comfort region. A drawback noted by Chen et al. (May 1990) is that the steédy state

performance has certain oscillations.

Calvino, Gennusa, Rizzo and Scaccianoce (2004) presented the problems of
predicted mean vote (PMV) index in mohitoring and controlling HVAC equipment and
described a fuzzy control for HVAC system to overcoming these problems. They
represented a simple approach, focused on the application of an adaptive fuzzy controller
that avoids the modeling of indoor and outdoor environments. They also presented some

simulation results which are not validated experimentally.

Salsbury (2002) has proposed a new switching control law (pulse modulation

adaptive controller, PMAC) that implements pulse-width-pulse-frequency modulation.
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Pulse durations are determined to maintain the amplitude of variation in the controlled
variable at or below a user-defined level. In addition to providing quantifiable control
performance, PMAC can reduce component wear by issuing fewer switches than
conventional control schemes. The control law is developed around a first-order system
characterization but incorporates an adaptive loop, which allows application to a wide
range of non-first-order and also time-variant systems. The author presenfed test results
from applying PMAC to both simulated and real HVAC systems. Application of such

methods on available HVAC control platforms requires significant resources.

2.6.2 Fuzzy Logic Controls in HVAC Systems

Fuzzy logic control is one of the pbpular intelligent controls in HVAC systems. A
survey of the published literature about fuzzy logic controls in HVAC systems is

presented in this section.

Alcal4, Casillas, Cord6n, Gonz‘é]ez and Herrera (2005) proposed the use of
weighted linguistic fuzzy rules in combination with a rule selection process to develop
fuzzy logic controllers (FLCs) dedicated to the intelligent control of HVAC systems
concerning energy performance and indoor comfort requirements. They developed a
© genetic optimization process considering an efficient approach to perform rule weight
derivation and rule selection for FLCs and tested the proposed technique considering a
physical modelization of a real test site. The conclusion was that the proposed technique
yielded much better results than the classical on-off controller showing good performance
on these kinds of complex problems. The application of fuzzy logic for online

applications is not studied.
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Chu, Jong and Huang (2005) proposed a least enthalpy estimator (LEE) that
combines the definition of thermal comfort level and the theory of enthalpy into a load
predicting way to provide timely suitable settings for a fan coil unit (FCU) fuzzy
controller used in HVAC. The fuzzy controller can make decisions and adjust the output
of the FCU system depending on the settings, including temperature and relative
humidity. Some actual experiments were done to show the application of the LEE-based
FCU fuzzy controller in evaluating thermal comfort, energy efficiency and reliability.
The methodology needs to be tested in real building systems to evaluate their

performance.

He, Cai and Li (2005) presented a multiple model predictive control (MMPC)
strategy based on Takagi-Sugeno (T-S) fuzzy models for temperature control of air-
handling unit (AHU) in HVAC systems. They constructed the control system in two
levels that the higher level is a fuzzy partition based on AHU operating range to schedule
the fuzzy weights of local models in lower level, and the lower level is composed of a set
of T-S models based on the relation of manipulated inputs and system outputs. In
addition, they divided the complex nonlinear AHU system into a set of T-S models
through a fuzzy satisfactory clustering (FSC) methodology and selected a fuzzy
integrated linear varying parameter (LVP) model for the global system. Then, they
developed the hierarchical MMPC strategy using parallel distribution compensation
(PDC) method, in which different predictive controllers are designed for different T-S
fuzzy rules and the global controller output is integrated by the local controller outputs

through their fuzzy weights. Finally, they presented simulation and real process testing
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results to show that the proposed MMPC approach is effective in HVAC system control

applications.

2.6.3 Neural Networks in HVAC Systems

Because of the difficulty in modeling HVAC systems for controls, vthe neural
networks controls have become more popular in recent years. Several researchers (Wang,
Jing, & An, 2006; Mei et al., 2002 (reviewed in Section 2.2); Zaheer-uddin et al., 2004
(reviewed in Section 2.4); Abbassi & Bahar, 2005; Massie, Kreider, & Curtiss, 2004a, &
2004b; Ben-Nakhi & Mahmoud, 2004; Yang, Yeo, & Kim, 2003; Ahmed, Mitchell, &
Klein, 1998a, 1998b, & 1998c; Jeannette, Assawamartbunlue, Curtiss, & Kreiser, 1998;
Atthajariyakul & Leephakpreeda, 2005) have applied neural network (NN) methods to

HVAC systems.

Wang et al. (2006) have studied a neuron adaptive PID control which is applied in
a single-zone HVAC system for adaptively adjusting the PID parameters. The simulation
results they presented illustrate that neuron PID controller has the capability of self-

“adapting.

Abbassi et al. (2005) used artificial neural network (ANN) to do the
thermodynamic modeling of an evaporative condenser under steady state and transient
conditions for establishing control of thermal capacity. The authors used predictive neural
network, capable of understanding dynamic behavior and predicting the preset output to
train the system under dynamic condition. The principle operation of such neural
networks is based on the reduction of gradients of errors existing between the predicted

output and the actual output of the system. They used neural controller based on training
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to control the system thermal capacity. The conclusion made is that artificial neural
network controller is suitable substitute for PID controllers for thermal systems.
ANN controllers are complex and require carful training to be effective in real building

HVAC systems.

Massie et al. (2004a) described the construction and measured performance of a
neural network-based optimal controller for an ice thermal storage system. The controller
was constructed with four Vneural networks, three of which map equipment behavior and
one that acts as a global controller. The controller self-learns equipment responsés to the
environment and then determines the control settings that should be used. The
optimization was conducted by addressing cost function under a selected planning
window to determine the sequence of control actions. Massie et al. (2004b) reported the
verification of the results using computer simulation and with the operation in a full-scale

HVAC laboratory.

Massie et al. (2004b) described the validation and performance of an optimal
neural network-based controller for an ice thermal storage system. The controller learns
equipment responses and determines the control settings. As such, there is minimal need
to calibrate the controller to installed equipment. Massie et al. (2004b) verified the results

by conducting tests in a full-scale HVAC laboratory.

Ben-Nakhi et al. (2004) designed and trained general regression neural networks
(GRNN) to investigate the feasibility of using this technology to optimize HVAC thermal
energy storage in public buildings as well as office buildings. They used state of the art

building simulation software, ESP-r (Clarke, 2001), to generate a database covering the
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years 1997-2001 and to calculate hourly cooling loads for three office buildings using
climate records in Kuwait. They used the cooling load data for 1997-2000 for training
and testing the neural networks (NN), while robustness of the trained NN was tested by
applying them to a ‘‘production’’ data set (2001 data) that the networks have never
““seen’’ before. In addition, they determined optimumv GRNN design parameters that best
predict cooling load profiles for each building by performing parametric studies. They
assumed exiema] hour]y temperature readings for a 24 h period as network inputs, and
~ the hourly cooling load for the next day as the output. They also evaluated the
performance of the NN using a statistical indicator (the coefficient of multiple
determination) and by statistical analysis of the error patterns, including confidence
intervals of regression lines, as well as by examination of the error péttems. Finally, they
concluded that a properly designed NN is a powerful instrument for optimizing thermal
energy storage in buildings based only on external temperature rec;)rds. The application

is shown for load predication and does not address HVAC control.

Yang et al. (é003) presented an application of the ANN in a building control
system. The objective of this study is to develop an optimized ANN model to determine
the optimal start time for a heating system in a building. For this, programs for predicting
the room air temperature and the learning of the ANN model based on back propagation
learning were developed, and learning data for various building conditions were collected
through program simﬁlation for predicting the room air temperature using systems of
experimental design. Then, the optimized ANN model was used to determine the optimal

start time.
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Ahmed et al. (1998a) proposed a combined feedforward and feedback control
approach for a laboratory HVAC system. A general regression neural network (GRNN) is
utilized in the feedforward component for HVAC system identification and control, while
the feedback component provides a control signal to offset any steady-state error. A
typical variable-air-volume laboratory HVAC control system is considered by the
authors. They studied pressure control in this paper. They also show the simulation
results bbtained by using a laboratory simulator. The simulation results indicate that the
combined approach performs better than the feedback approach over widely varying
operating conditions and different damper characteristics. The main limitation of this
paper is that the simulation results were obtained for six cases of damper characteristics
sepérately, that is, the results do not include the dynamic situation of the damper

characteristics that exist in real systems.

| Ahmed et al. (1998b) pf_csented the second abp]ication of the combined
feedforward and feedbaék ‘control approach. ,Iﬁ thé application, the internal heat
generation in the laboratory space is considered as a disturbance. The implementation for
temperature control is studied by using two closed loops: a supply air flow rate control
loop and an exhaust air flow rate control loop so that the laboratory pressure constraint is
met. In the control s'eqlrxence the supply flow rate is increased by ﬁ.rst opening the general
exhaust damper to increase the total laboratory exhaust flow rate. They show that the
FFPI control loop works well under a wide range of operating conditions. But in the
cooling témpérature control system, the controlled variable is not the room temperature,
so that some offset of the room temperature may appear in steady state if the model is not

exactly correct.
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-Ahmed et al. (1998c) presented the third application of the combined feedforward
and feedback control approach. In thié application, two separate disturbance sequences
are considered for heating, and then the implementation for temperature control has been
studied by using two closed loops, a temperature control loop and a supply airflow rate
control loop. In addition, they also provided a summary and recommendations for the
three systems, pressure control system, temperature control system for cooling and
temperature contré] system for heating. Théy concluded that the FF part requires only a
single smoothing parameter to be estimated, which can be held constant for most of the
HVAC processés. The proposed FFPI controller may not need to be retuned. The main
limitation in the three application papers (Ahmed et al., 1998a, 1998b, & 1998c) is that

the identification results of GRNN were kept constant in the simulations.

Jeannette et al. (1998) have presented experimental results of a predictive neural
network (PNN) controller applied to an unstable hot water system in an air-handling unit.
The PNN controller works with a PID controller. The neural network learns the system
while it is operating under the PID controllér, and depending on the predictions, the NN
used is “good” or not, the NN will or will not take control from ‘the PID algorithm to
control the processes. The term “good” means that the average of the past ten COVs,
where COV is the coefficient of variation defined by Kreider and Haberl (1994) goes
below 0.45. When the NN is active and the average COV rises above (.55, then the NN
model needs to be updated with new data and the controller reverts to PID control. Actual
laboratory testing of the PNN and PID controllers shows favourable results for the PNN
controller. The main limitation of the method is that the NN needs the PID controller’s

support for training and works only under specified range of operating conditions.
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Atthajariyakul et al. (2005) presented a practical approach to determine human
thermal comfort quantitatively via neural computing. The neural network model, as an
explicit function of the relation of the predicted mean vote (PMV) index to accessible
variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity,
clothing insulation and human ‘activity, allows real time defermination of the thermal
comfort index. The authors used experimental results for an air conditioned office room
to demonstrate the effectiveness of the proposed method()]ogy and show good agreement
between the thermal comfort index calculated from the neural network model in real time

and those calculated from the conventional PMV model.

2.7 EMCS in HVAC&R Systems

To reduce energy consumption of HVAC systems, EMCS (energy management
control systémé) play a key part in building control. How to implement EMCS is still a
challenging research area. The survey of few studies on EMCS will be shown in this
section. In addition to the papers by Wang et al. (1999), Zheng et al. (1996), Wang et al.
(2000), Huang et al. (2006) reviewed in the previous sections, in the following several

papers related to EMCS will be reviewed.

Foﬁg, Hanby and Chow (2006) proposed a simulation-optimization approach for
the effective energy management of HVAC system, and developed a metaheuristic
simulation—EP (evolutionaryrprogramming) coupling approach using evolutionary
programming, which can effectively handle the discrete, non-linear and highly
constrained optimization problems, such as those related to HVAC systems. They also

demonstrated the effectiveness of this simulation-EP coupling suite through the
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establishment of a monthly optimum reset scheme for both the chilled water and supply
air temperatures of the HVAC system in a local subway station. This reset scheme is
shown to have a saving potential of about 7% as compared to the existing operational

settings, without any extra cost.

Engdahl and Johansson (2004) presented the theory for an optimal supply air
temperature in a variable air volume (VAV)Asystem to minimize the system energy use..
The optimal supply air temperature can be set dependent on the load, specific fan power
(SFP), chiller coefficient of performance, outdoor temperature and the outdoor relative
humidity. They also calculated the heating, ventilation and air-conditioning (HVAC)
energy use depending on supply air temperature control strategy, average U-value of the
building envelope. After analysis of energy use, they concluded- that céntrolling the
supply air temperature optimally results in a significantly lower HVAC energy use than

with a constant supply air temperature.

Jin, Ren and Xiao (2005) developed an optimal strategy for outdoor air control
using a system approach based on prediction to minimize energy consumption. They used
ARMA (autoregressive moving average) model to predict the energy performance
expressed by an energy-increment equation. The energy-increment equation was formed
" to involve the real-time variations of AHU (air handling unit) load and energy use of
reheaters of VAV terminals. By minimizing the energy-increment equation using genetic
algorithm, the optimal settings of outdoor air ratio of AHU and reheating were obtained.
The Slrategy was tested and evaluated in a simulated environment under various outdoor

and indoor conditions.
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Lu, Cai, Soh and Xie (2005a) presented the global optimization technique for
overall heating, ventilating and air conditioning (HVAC) systems. They formulated the
objectivé function of global optimization and constraints based on mathematical models
of the major components. All these models are associated with power consumption
components and heat exchangers for transferring cooling load. They introduced the
characteristics of all the major components, then transformed and simpliﬁed the
complicated original optimization problem for overall HVAC systems into a compact

form ready for optimization according to the characteristics of the operating components.

Lu, Cai, Soh and Xie (2005b) présented the solution for the global optimization
problem for overall heating, ventilating and air conditioning (HVAC) systems using a
modified genetic algorithm. They showed the implementation procedure of the proposed
optimal method. They concluded that the proposed method indeed improves the system
performance significantly compared with traditional control strategies through simulation
studies for a pilot scale centralized HVAC plant controlled by the optimal method (Lu et

al., 2005a).

Lu, Cai, Soh, Li and Xie (2005) presented a-practical method to optimize in-
building section of centralized HVAC systems which consist of indoor air loops and
chilled water loops. First, they established mathematical models associated with energy
consuming devices. Then, they adopted adapﬁve neuro-fuzzy inference system (ANFIS)
to model duct and pipe networks and obtain optimal differential pressure (DP) set points
based on limited sensor information to adapt variation of cooling load of each end user.

In addition, they formulated a mixed-integer nonlinear constraint optimization problem of
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system energy and used a modified genetic algorithm to solve it. The optimization
obtained by using a systematic approach in optimizing the overall system energy
consumption. They made comparisons between the proposed optimization method and
traditional ones for a typical centralized HVAC system. They provided the results and

showed that the proposed method improves the system performance.

2.8 Experimental Research in HVAC Controls

Experimental work on control methods in HVAC systems has been investigatéd
by several researchers. Kasahara et al. (1999) presented experimental results for PID
tuning methods in HVAC systems (reviewed in Section 2.4). Krakow (1998) (reviewed in
Sectioﬁ 2.4) used ‘experiméntal responsés for a Pl-controlled mixing valve air heva‘ting
system to show ihe relationship between sampling interval and digital PI control system
performance. Application of adaptive PID control methods to HVAC systems were
studied by Seem (1997) (reviewed in Section 2.3) and. Nesler (1986av and 1986b)
(reviewed in Section 2.5). A tuning method based on relay feedback, to a HVAC system

was presented by Astrom et al. (1993) (reviewed in Section 2.6.1).

Wang, Lee, Fung, Bi and Zhang (1999) proposed a i’ID controller design method
that achieves high performance for a wide range of linear self-regulating processes. The
PID tuning rules were developed using a second-order plus dead-time modeling
technique and a closed loop pole allocation strategy. The technique was applied to
processes with various dynamics, including those with low- and high-order, small and
large dead-time, and monotonic and oscillatory responses. Simulation examples and

comparisons with Ho’s gain and phase margin method (GPM) (Ho, Hang, & Cao, 1995)
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were presented and the results showed that improved performance can be obtained. Also,
real-time experiments were carried out both in the laboratory and in the industry. The tést
in the laboratory was conducted on a Dual Process Simulator KI 100 manufactured by
KentRidge Instruments, and the results from using both the proposed tuning method and
Ho’s method for one oscillatory process were presented. The industrial test was
performed on an HVAC digital control system called Enflex, for a supply air pressure
loop and a zone air temperature loop, in the Supersymmetry Services PTC LTD,
Singapore. The process responses for both the proposed tuning method and Astrom’s
modified Ziegler and Nichols method (Astrom & Higglund, 1984) were presented. The
experimental results showed that improved performance is achieved by using the PID
tuning method they developed. The main limitation of the tuning method is that
robustness to uncertainties in the models is not considered and uncertainties in the models
certainly exist and have an effeét on performance since an exact cancellation method is

used in their analysis.

Wallonborg (1991) proposed a control algorithm for a self-tuning controller. The
control algorithm depends on discrete-time process transfer function parameters, and the
parameters based on the wave form of a periodic oscillation obtained with a relay
feedback tuning experiment. The self-tuning controller is a general linear discrete-time
controller and was designed by using pole placement based on input-output models. In
addition, the self-tuning controller also has a feature that the sampling period and the
desired closed loop poles is determined automatically with respect to the process
dynamics and the desired closed loop performance can be easily modified by the

The experimental results for applying the control algorithm to a supply air temperature
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control and an air duct pressure control are shown. Wallonborg concluded that the
algorithm has worked well in many different HVAC applications, and a substantial
reduction in commissioning can be achieved compared with manual tuning of
conventional controllers. The main drawback of the algorithm is that in some cases it

may be difficult to obtain the necessary steady-state conditions for a tuning experiment.

J. Wang, Y. Wang, and Shao (2005) noted that variable air volume (VAV) air
conditioning control system has the feature of multi-control loops, so while all the control
loops are working togetﬁer, they interfere and influence each other. Therefore, they
designed the decoupling unit in VAV air conditioning system using the method of
diagonal métrix decoupling, and addpted Lonworks technology into VAV air
conditioning decoupling control system so that data could be exchanged among multi-
loops. Experimental results demonstrate that the combination of the diagonal matrix
decoupling and Lonworks technology (decoupling compensation coefficients among
multi-loops are handled as network variables of Lonworks technology) can improve the

performance of the VAV air conditioning control system.

2.9 Summary and Discussion

In this chapter, the literature related to HVAC systems was reviewed. The
literature reviewed includes modeling, design of controllers, intelligent controls,

experimental controls and energy management control system (EMCS).

The modeling of HVAC systems is one of the most important aspects in system
design. The modeling effort has been focused at two levels. One is for simulation and the

other is for control design. The models for simulation of HVAC performance have been
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developed by many researchers such as Tashtoush et al. (2005), Mei et al. (2002), Huang
et al. (2006), and Wang et al. (1999). The models for control design, especially for auto
tuning and adaptive controls, have received little attention. A frequently used model for
local loop control is based FOPDT modeling approach. This is considered adequate if it

is used as a part of robust identification for parameter update.

From the literature review presented in this chapter, it is noted that while there
have been several studies on the design éf controllers for HVAC systems most can be
grouped iﬁto simulation based energy efﬁciency analysis studies and control studies
which use eithér computer control or industrial controls. Such developed algorithms can
hardly be implemented on building control platforms currently available. Therefore, the
focus of this research has been to develop PI control tuning methods which can be
implemented on existing building control systems. Both online adaptétion, robustness
issues have been addressed and the feasibility of NN control for HAVC systems has been

demonstrated.

PID controller is still the most popular controller in HVAC field today. However,
there is a need to augment the PID controller with energy optimal and robustness
properties. Although some studies on the combination of intelligent .comrol and PID
control have been done by some researchers such as Seem (1997), Nesler (1986b), and
Qu et al. (2004), the developed control strategies have to be implemented in existing
building control hardware platform. This aspect is lacking in many of the studies done in

the literature.
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The interaction in HVAC systems makes control difficult. To solve this kind of
problem some researchers such as Wang et al. (2005), Rentel-Gémez et al. (2001), and
Semsar et él. (2003) have used decoupling control. For zone temperature controls in
multi-zone systems the ‘interaction of airflow into zones could be solved by adopting
innovative two loop control structure. Such a control strategy will be studied in this

research.

EMCS in HVAC systems plays key part in implementing supervisory control
strategies to achieve energy savings. To achieve the energ)} saving goal, the local controls
in HVAC systems must be efficient and robust. The emphasis of this thesis is to develop
suitable and simple control strategies for local contfols of HVAC systems that can be
implemented in real systems with EMCS. The detailed proposed control strategies will be

presented in the following chapters.
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3. Modified RLS Identification Algorithm for FOPDT

Systems

In order to develop improved adaptive control strategies a robust online
identification technique needs to be developed. Therefore, the objective here is the

development of a modified RLS algorithm that is suitable for online implementation.

An RLS identiﬁcation algorithm for FOPDT model that uses a 2X2 matrix P
was developed in an earlier study (Qu, 2002). To improve the.robusmess éroperty of the
RLS algorithm deve]ope‘d earlier, a matrix-reset technique is designed. Simulation results
show that with this technique a more robust online identification of plant parameters was

achieved.

3.1 RLS Algorithm for Online Identification of FOPDT Systems

The recursive least squares (RLS) method is an effective approach in online
identification because a new estimate can be obtained easily. In order to implement the
RLS algorithm for online identification of a system, consider the following diagram

(Franklin, Powell, & Workman, 1997).

u(k) Plant y(k)
6° -
+
% e(k;0).
L Prediction y(k)
- 6
Figure 3.1 Block diagram showing the generation of output prediction error
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Considering the system as a FOPDT model (3.1), it is noted that, if [ is fixed, the

system identification reduces to the estimation of parameters a and b of the system.

11
Gp=J& _ 2 3.1)

Ui 1- az™

Using measured or computed values.of y(k) and u(k) for some k , we have

y(k)—ay(k—1)—bu(k—-1-1)=e(k; ) 3.2)
Let

o=la bT , (3.3)
and |

w(k)=[y(k—1) u(e~1-DF | (3.4)

then, through analysis, we can write the error equaﬁon as

Y(N)=Y(N)8+&(N;6) : (3.5)
where

YV =ly+D pa+2) - yf

eN;) =[e(l+1;0) - eN;Of

YN =[ya+n - yWf
Assume that we observe a set of inputs and outputs

(@), u (), u(), y(0), y(1),-+, y(N)}

and that we need to estimate the parameter @° of the system and the prediction is 6. The
least-squares method can be expressed as

méin J (&) (3.6)

N
where J(0) = Zw(k)ez(k; 0)=¢&"We and the weighting function w(k) is positive.

k=141
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A

- : k
For w(k) =a}’N_k , @ =[Z]is the minimum of J(@), the vector L(k) =liLI( )

and the
o

E\(k)  R,(k)

2%2 matrix P(k)=[P2](k) B, (k)

], the scalar form of RLS algoritbm for FOPDT

- model described in the previous study (Qu, 2002) can be summarized as follows:
Step 1: Select N (> 2x1)
Step 2: Select @,
Comment: @ =¥ =1 is ordinary least squares; @ =1~y and 0<y <1 is
exponentially weighted least squares

"Step 3: Select initial values for P(N) and O(N). One possibility is that set

[0 g 0 : o
O(N)= ol P(N)= 0 B , where [ is a large scalar. This requires less

memory and matrix inversion is not needed, and the computations can be reducéd
to calculate P(N) and §(N)
Step 4: Collect y(N) and u(N ~I) and form ¢ (N+1)=[y(N) u(N—-D)]

StepS:Let k<~ N

Step 6: L(k+1) e—%k)y/(kﬂ)( +y (k+1) (7 )z//(k+1)) X can be done by
step 6-1:
pk+1) ] I
E+ (R;(k)yz(k)+(1’;2(k)+ P (k) y(kyu(k — 1)+ Py (kY (k —l))/ /4
(3.7)
Hik +1)

step 6-2: Li(k +1) (B, (k) y(k)+ By (Kyu(k 1)) (3.8)
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pk +1)

and step 6-3: L,(k +1) < (P, (k) y(k) + Py (k)u(k = 1)) (3.9)

Step 7: Collect y(k+1) and u(k—1+1)

Step 8: (k +1) « 6(k)+ Lk + Dy(k + 1)~y (k +1)8(k)) can be done by

step 8-1: o(k+1) e y(k+1)— (@) yto) + bk 1)) (3.10)
step 8-2: a(k +1) < a(k) + L(k + Dok +1) G.11)
and step 8-3: b(k +1) < b(k) + L, (k + o (k +1) 3.12)

Step 9: P(k +1) |1 = L(k + D™ (k +D]P(k) can be done by
y

step 9-1: PLY(k +1) « B, (k)L,(k +1) y(k) (3.13)

step 9-2: PLY,(k+1) < B,(k)L,(k +1)y(k) v (3.14)

step 9-3: P,,(k+1><—17[Pu(k>(1~a<k+1>y<k>)—fz.(k>4(k+1)u<k—l>] (3.15)
step 9-4: P,(k+1) (—%[P‘z(k)(l — Lk +1)y(k))- P (k)L (k + Duk-D]  (3.16)
step 9-5: P, (k +1) <—17[— PLY,(k +1)+ P, (k)(1- L, (k + Du(k — 1)} (3.17)

and step 9-6: P,(k +1)= % [ PLY,(k+ 1)+ B,(k)(1— Lk + Duk - D))] ~ (3.18)

Step 10: k « k+1
Step 11: Form y(k +1)

Step 12: Go to step 6.

Note that all equations of the algorithm are expressed in scalar form (no matrix

inversion is required), so they can be directly implemented on the existing EMCS. This
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algorithm uses less memory than the original RLS (Franklin et al., 1997) for higher value

of { (122 normally) and no matrix inversion is required.

3.2 Issues in Using the RLS Algorithm for Online Identification

Numerical instability in the RLS. algorithm may cause absolutely wrong
identification results. To avoid this situation, a robust RLS algorithm is developed. The

basis of the development strategy is described in the following.

First of all, in the RLS algorithm, we need to compute the elements of P(k +1) as

in step 9 of the algorithm, which uses the following equations.

P(k+1) =17[1 ~ Lk + Dy (k+D]PR) (3.19)

-1
where L(k +1) = P—(;Zw(k +1)[é+ v’ (k+ l)my/(k + 1)} and
/4

wky=[y(k—1 uk-I1-DJ.

The above equations do not guarantee that all elements in P(k+1) with their
absolute values do not go to infinity. For example, in the case of F,,(k)<0, IP” (k)l >M

(M is a large positive value which is close to the maximum operating value of the

system and 2M will be greater than the maximum operating value of the system) at a time

k,and |L,(k+1)|>2 at the timek +1, from equation (3.13) we can see that |PLY, (k +1)|
- will be greater than the maximum operating value for y(k)>1. From the step 6 and step
-9 of the program, we can see that if P,;(k) <0 and P,,(k) <0 atatime k then the result

|P, (k)| > M, |Py(k)|>M or one of |B, (k)| and |P,(k)|may tend to infinity for a
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symmetrical initial matrix P, 0<¥<1 and (k+1)>0 because the following equations
exist under the symmetrical initial matrix condition.
Fy(k+D)=F,k+D

P (k+1)= P“;") _HEED (b oy yik) + Po(kyu(k ~D) and

72

Pp(k) _pk+1)

72

In addition, 8(k +1) = 6(k) + L(k + D{y(k + )=y (k + DB(K)) shows that we need

Py(k+D)= (P,()y (k) + Py(k)u(k = D)

to avoid L(k+1)=0 over a long interval which causes incorrect identification result
because in this case, even ify(k+])¢wr(k+l)é(k),vthere still exists é(k+l)=é(k).
This observation can be drawn from P(k) =0 through some analysis for the FOPDT

system.

"As a result, we can say that P(k)=0 causes incorrect identification and also
significantly higher absolute values of P(k) cause incorrect identification (the infinity

problem). Resetting the matrix P(k) in such cases is one way to solve this problem.

In the equation (3.7) in step 6-1, a division operation is required. However, by

computing ¢(k) first as in Equation (3.20), we can verify whether ¢(k) goes to zero or
not. Therefore, we should guarantee that ¢(k)#0 for validly computing (k +1) by

modifying the online identification algorithm.

| v
g(k)= o (B, (k) y2 (k) + (By(k) + Poy () )y (Rt = 1) + Py (k)™ (k - DYy (320
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3.3 Matrix-Reset Technique

To avoid incorrect identification results or infinity problem, a matrix-reset
technique is developed. The basis for this is that we can set an upper bound on the sum of
the square values of elements in matrix P to solve the infinity problem and set a lower
bound on the sum of the square values of elements in matrix P to solve the incorrect
identification problem. That is, we should keep

LowValue< P, <UpValue (where P,=P}+B.+P.+P}) (321

and resetting to initial values for matrix P whenever the value of P, is out of the bounds.

To choose the lower bound ( LowValue ), we must avoid all elements of P which
are less than the smallest positive non-zero value of the processor (SPVOP) and at the
same time avoid L(k +1) =0 for k — . Also, to keep the algorithm running in a normal
way whichv guarantees that the identification is converging, frequent resetting should be
avoided. Therefore, based on the above

1> LowValue > SPVOP (3.22)

is an acceptable choice for the lower bound ( LowValue ).

Here we discuss how to choose the UpValue --- the upper bound. First the

computed' values in the algorithm must not lead to infinity. That can be ensured by

satisfying the following inequality

UpValue < YO LPVOP+1-1 (3.23)

ymax + umax
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Where, LPVOP is the largest positive non-zéro value of the processor. Y,is the

maximum value of y and u,, is the maximum value of u.

Second, we need to also ensure that the following inequality is satisfied.

B

0
P(k)= !:0 ,B:l ,then P_(k+1)<UpValue.

B 0
‘Therefore, for P(k)= 0 ,3 , we have

. . 2
R a+n=L|1- 1 By (k) (3.24)
y{;+ﬁy2(k>+ﬂu2(k—,z>)
Pok+D) =P k+1)=—2 1 Byuk=D (325
: 4 }{E+ﬂy2(k)+ﬁu2(k~l)J
2
Pzz(k'*']):_li' 1- pu k1) (3.26)

r(—;—+/3y2<k)'+ﬂu2(k—l))

] 2 2 _
Let X =—+ By*(k)+ fu’(k—1), then 0< ,B(y (k);u (k l))<1.Therefore,
a

&(km{ﬁ) (1-@2(")] +2ﬁ2y2(k2)u22(k—1)+(]_ guzuc__-z))
y z s ;»:

= (ﬁ)z P EON ﬂyz(k)(ﬁ(yz(k)Jruz(k —z))J
/ X 2> z

2B k=D | pul (k=) B> k) +u(k-D)
z 35 3
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<(£J {2—2—77%ﬂ(y2(k)+u2<k—l>)}

2 2 (3.27)
2[ﬁ) [1 +[1_—7) J 0<y<05
4 4

Therefore, we can choose

, 4
oy LPVOP +1-1 > UpValue > 2(2) for ¥>0.5, (3.28)
4 ,

ymax + umax

Y-

2 2
TR [ [H(l—q ) for 0<7<05.  (329)
4

ymax + umax

In the above algorithm, the value of a is between 0<a <1. From the RLS
a]gbrithm, we know that & and ¥ are related to weighting factors. For a fixed value of y,
choosing larger & means more weight is placed on the current méasurement. If. we let
¥=1 and a be infinity, the parameter & will have no effect on the algorithm. In the next

section, simulation result will show that this modification makes the estimation process
fast. However, this modification must be combined with a reset technique to have better

robustness in real time applications.

To avoid the infinity problem, we must avoid division by zero in computing

Mk +1)=1/¢g(k) (step 6-1). This can be ensured by considering the online identification

program to do reset to initial values for matrix P, when ¢(k)<0. Where, Jis a small

value (we can choose 6 > -;— >0 and & > SPVOP ).
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In addition, to avoid L(k +1) =0 for k — <, LowValue < PS; and inequality (3.27)
should be checked and reset the matrix P to the initial status if any inequality is not
satisfied. Where, LowValue is a selected small positive value. If we let the initial values
of B, =P, be zero and F,, = P,, be positive, then we have F,(k)=F, (k). In a real
application, to avoid wrong measurement effect the identified parameters must be

bounded. To this end, the modified RLS identification algorithm can be stated as follows.

Initialization: Initialize the model parameters a, b and / obtained by applying any
off-line system identification method using a set of open-loop experimental data,

b

max ?

select or compute a a and b_. by considering such as 75% changes

in T, and K_ shown in Figure 4.3

Step 1: Select N (> 2x1), LowValue and UpValue

Step 2: Select ¢, ¥
Comment: a=y=1 is ordinary least squares; @=1-y and O<y<l is
exponentially weighted least squares; ¥=1 and a =0 is recommended.

Step 3: Set'P,,(N)szz(N)z,B, B,(N)=0, a(N)=a, and b(N)=b, where [ isa
positive large scalar that satisfies the inequality (3.28) for 720.5, and satisfies
the inequality (3.29) for 0 <y <0.5.

Step 4: Collect y(N) and u(N —1)

StepS:Letk « N

Step 6: c(k+1) <1/ a+(B,(k)y* (k) + 2P, (k) y(kutk =) + B, (K (k= 1))/ y
| (3.30)

Step 7: If lg(k + ])| < ¢ then go to step 20 else go to step 8 (avoid dividing by zero)
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Step 8: L (k +1) « (B,(k)y(k) + B, (k)u(k ~D)/ gk +1)/ ¥ (3.31)
Step 9: L,(k +1) & (B, (k) y(k) + B, (kyu(k —D)/ gk +1)/ y (3.32)

Step 10: Collect y(k+1) and u(k—1+1)

Step 11: o(k +1) « y(k +1)—{ak) y(k) + b(kyu(k - 1)) (3.33)
Step 12: a_(k+1) « a(k)+ Li(k+1)o(k +1) (3.34)
Step 13: b_(k +1) < b(k) + L(k + D)o (k +1) , (3.35)
Step 14: PLY,(k +1) < PB,(k)L,(k + 1) y(k) (3.14)
Step 15: P, (k+1) « l}/[P,,(k)(l — L (k +1)y(k)) = P, (k) L, (k + Du(k — )] (3.36)
Step 16: R, (k+1) « ;[P,z(m(l = Lk +1)y(k))— Py (k)L (k + Du(k = 1) (3.16)
Step 17: P,(k+1)= ly[— PLY, (k+1)+ Py, (k)(1 = L, (k + Du(k - D)) (3.18)
Step 18: P_(k+1) < P2(k+1)+2P2(k+ 1)+ P (k+1) o (3.37)

Step 19: If LowValue < P;; < UpValue then go to step 21 else go to step 20

Step 20: Set P, (k+1)= P,(k+1)= B and F,(k+1)=0 (do reset)

Step21:If a_, <a(k+1)<a_, and b. <b(k+1)<b__ then go to step 22 else go
to step 23 (only computed value in the considered range will be updated)

Step 22: a(k +1) (—&c(k +1) and bk +1) « I;C(k +1) then go to step 24

Step 23: a(k +1) « a(k) and b(k +1) « b(k)

Step 24: k « k +1

Step 25: Go to step 6.
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3.4 Simulation Studies for the Modified RLS Algorithm

Real systems always have some delay and dynamics. The proposed modified RLS
identification algorithm will reduce the maximum delay and response time under realistic
operating conditions. Simulation results show that the proposed modified RLS
identification algorithmb-has smoother (sma]lér offset) response than the previous RLS
algorithm (Franklin, 1997, Qu, 2002). The simulation implementation in Simulink is

depicted in Figure 3.2.

in3
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Figure 3.2 Simulation scheme for on-line adaptive control

In Figure 3.2, the plant model is given by Equation (3.1) and the delay [ i1s known.
The identifier is implemented by using RLS algorithm with or without the matrix-reset
technique. The H., PI tuning algorithm is applied for the tuner in this section. Eight cases
are considered in the simulation study. The matrix-reset technique is not used in Case 3.1

(a=y=1), Case 3.3 (@=0.5 and y=0.5), Case 3.5 (2= and y=1) and Case 3.7

(@=0.05 and ¥y=0.95). In Case 3.2 (a=y=1), Case 3.4 (@=0.5 and y=0.5), Case
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36 (a=c0 and y=1) and Cése 3.8 (@¢=0.05 and ¥ =0.95), the matrix-reset technique

is applied with =¥/ 8, LowValue=0.85 and UpValue= 8x10'2 >2(B/ 7).
- The parameters of the simulated plant processes are as follows.

I =9 (plant process 3.1),

[ 098 <5000 be 0.1278 <5000
109866 £>5000 0.0427 125000’

B { 098 <5000 {0.1278 £ <5000

, ,  1=9 (plant process 3.2) and
0.9735 ¢ =>5000 0.2112 ¢=>5000

- { 098 <5000 {0.1278 £ <5000

, b= , 1=9 (plant process 3.3).
0.9604 t 25000 0.3796 :=5000

The parameter limits were setas @, =0.9885, a. = ().9224, b, =0.8681 and

' : 0
b,,, =0.0183. The simulation was made with T,, =78.0°F, N =25 P(0)= ['g ﬁji ,

[ =8x10and the sampling time 7; = 4s. The simulation results for different plant

processes and the cases are shown in Figures 3.3 to 3.8. Figures (c) and (d) are partially

enlarged views of Figures (a) and (b).

Figures 3.3 to 3.5 show that the identification of the plant Processes 3.1, 3.2 énd
3.3 under Case 3.1 (a = y = 1 without matrix reset technique) is incorrect. The dynamic
time of the identification (convergence to the real plant parameter values) for Processes
3.1, 3.2 and 3.3 under Case 3.2 (a = y = 1 with the matrix reset technique) are 32s, 220s
and 68s. The dynamic time of the identification (convergence to the real plant parameter

values) for plant Processes 3.1, 3.2 and 3.3 under Case 3.6 (a = © and y = 1 with the
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Figure 3.5 Identification simulation results for process 3.3 under Cases 3.1, 3.2, 3.6

matrix reset technique) are 12s, 12s and 60s. The results indicate that to have correct
identification it is necessary to use the matrix reset technique. In addition, the results
show that choosing a = o and y = 1 with the matrix reset technique (Case 3.6) resulted

improved identification of the system parameters.

The identification results for Case 3.3 (a = 0.5 and y = 0.5 without the matrix reset
technique) could not be shown in Figures 3.6 to 3.8, because simulation run was

interrupted due to ihfmity problem (IPLYZI = Inf ). The simulation runs for Processes 3.1

to 3.3 were tried for Case 3.5 (a = « and y = 1 without the matrix reset technique),

however, they were interrupted too due to infinity problem (|PLY,|= Inf ). Therefore, no

figures for Case 3.5 could be recorded.
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Figure 3.8 Identification simulation results for process 3.3 under Cases 3.3, 3.4, 3.6

As shown in Figures 3.6 and 3.‘7, the response times of the identification for plant
Processes 3.1 and 3.2 for Case 3.4 (a = 0.5 and y = 0.5 with the matrix reset technique)
and Case 3.6 (a = o and y = 1 with the matrix reset t'echnique)‘are the same (12s). But,
the inflection point for Case 3.6 is closer to the real value compared with the inflection
point for Case 3.4. From Figure 3.8, it is noted that the response ti;ne of the identification
for plant Process 3.3 for Case 3.6 (60s) is much émal]er than the response time of the

identification for plant Process 3.3 for Case 3.4 (124s).

It is clear that by using the matrix resét technique we can avoid the infinity
problem and better identification results can be obtained in most of the céses. But, in
some cases with the exponentially weighted least squares one can obtain better results
without the matrix reset technique. This is illustrated in Figure 3.9. The limit set in Figure
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3.9 refers to the plant parameter limits. The limit set 1 is same as chosen before, that is,

a,, =09885, a_, =0.9224, b, =0.8681 and b,;, =0.0183. The limit set 2 parameter
limits are a,,=09999, 4., =09224, b, =08681 and b, =0.0001. The

identification of plant Process 3.1 for Case 3.7 (without the matrix reset technique) with
Limit set 1 (16s) is faster than for Case 3.8 (with the matrix reset technique) with Limit
set 1 (more than 1000s to reach real plant parameter values). The main reason fqr the
long response time for plant Process 3.1 for Case 3.8 (with the matrix reset technique) is
plant parameter limit selection. Figure 3.9 shows that the identification for plant Process
3.1 for Case 3.8 with Limit set 2 (108s to reach real plant parameter values) has better
performance. Figure 3.9 also shows that Case 3.6 (12s to reach real plant parameter

values) still is the fastest choice for the identification.
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Figure 3.9 Identification result comparison for Cases 3.7, 3.8, 3.6
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In summary, the identification method with @=c and y=1 (with the matrix

reset technique) gives fast and smooth identification responses. In addition, there is no

trial required to select @ and ¥ values in this method. Therefore, it is recommended to
use &= and ¥ =1 with the matrix reset technique for the online identification of the

FOPDT plants.

3.5 Experimental Tests with the Modified RLS Algorithm

To test the modified RLS algorithm, we have applied the algorithm for online
identification and control of discharge air temperature in an HVAC test facility. The
results are plotted in Figures 3.10 — 3.12. The system was controlled by the simplified
optimal adaptive control (with modified RLS a]gorithm). Figure 3.10 shows the
identification of plant parameters. g, is the estimated value of the parameter a and b, is

the estimated value of the parameter b in the identification process.
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Figure 3.10  Identification results of the experimental tests
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Figure 3.11 shows evolution of controller gains and Figure 3.12 shows the

discharge air temperature responses. The experirhental results show that the simplified

optimal adaptive controller with modified RLS algorithm gives good setpoint tracking

Tesponses.
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3.6 Summary

In this chapter, a modified RLS identification algorithm with the matrix-reset
technique for online identification was developed. The modified RLS algorithm was
tested by using computer simulations and experiment. The results show that the modiﬁed
RLS identification algorithm is able to track changes in the system parameters rapidly.

The matrix-reset technique makes the identification algorithm more reliable and stable.
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4. An Adaptive Control Strategy with a Robust Optimal
Control Algorithm for FOPDT Systems

In this chapter an on-line optimal proportional-integral plus feedforward (PI-FF)
controller tuning algorithm for single-input-single-output (SISO) thermal processes in
HVAC systems is presented. A discharge air system (DAS) is considered. The DAS is
modeled as a FOPDT system in discrete time domain. An optimization problem is
formulated and solved to derive the optimal PI-FF tuning algorithm combined with He,
based PI tuning rules. The proposed tuning algorithm has a weighting factor @, that can
be a new freedom parameter to improve the ability in rejecting the effect of system
parameter changes. Simulation runs in an adaptive control structure are made under
various operating conditions. The results show that the on-line tﬁned optimal PI-FF
controller in the adaptive control system is able to track setpoint changes rapidly and
smoothly, and has improved ability in rejecting the effect of system parameter changes
under suitably selected values of Q, compared with other methods. Guidelines for
| choosing Q, in balancing different requirements are proposed. Finally, a specific case of

the optimal controller is proposed and experimentally tested and validated.

4.1 Introduction

Heating, ventilating and air conditioning (HVAC) systems in commercial
buildings account for more than half of commercial building’s energy consumption.
Therefore, reducing energy consumption of HVAC systems remains a challenging area of
research with significant potential for economic benefits. To this end, optimal control

strategies offer a practical method for energy efficient operation of HVAC systems. In
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addition, improving robustness to system parameter changes is an important part of the

ongoing research.

A Discharge Air System (DAS), which is one of the basic components of a
heating, ventilating and air-conditioning system, is considered. Several different
discharge air system configurations exist depending on heating or cooling applications.
Figure 4.1 shows the DAS for sensible cooling of air. The discharge air terﬁperature is
maintained close to a chosen setpoint by modulating the mass flow rate of chilled water
via Vélve control (). The control of DAS represents an important control problem of
practical interest in HVAC. Because of the importance several studies have been done.
See for example, Fhe work done on discharge air temperature system by McCullagh,
Greén and Chandraseker (1969), Gartner (1972), Hamilton, Leonard and Pearson (1974
and 1977), Stoecker, Rosario, Heidenreich and Phelan (1978), Shavit and Brandt (1982),
Nesler and Stoecker (1984). A discharge air temperature system model was developed by
Hamilton et al. (1977). Stoecker et al. (1978) have studied the stability of the air
temperature control-loop. The dynamic performance of a discharge air temperature
system with a PI controller is examined by Nesler et al. (1984). Note that in the above
studies only the classical proportional-integral (PI) control problem is addressed. Here we

explore online optimal control of DAS which is robust.

In real HVAC systems, loads and system conditions change without schedule.
This implies that system parameters in a fixed model for an HVAC system will change
without schedule. Some researchers have used H, technique to improve robustness to

parameter changes for HVAC systems (Qu et al., 2004; Al-Assadi et al. 2004). However,
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it is also important to design optimal controllers for DAS because good regulation of
discharge air temperature with strong robustness improves overall energy-use efficiency
of HVAC systems. Motivated by these considerations, we propose a methodology for on-
line optimal control of DAS applied in an adaptive control system and show results under
various operating conditions specially in improving the ability in rejecting the effect of

system parameter changes.

4.2 The DAS Model

In this section, we are going to derive state equations for closed loop DAS system

with a PI cbntroller.

4.2.1 Physical Model

Figure 4.1 shows a schematic diagram of a DAS system. Mixed air enters the

cooling coil at terriperature T, . It is cooled and dehumidified in the cooling coil by using

chilled water. The témpcrature of the air leaving the cooling coil T, is controlled by

modulating the chilled water flow rate in the coil as shown by the feedback control loop.

X—D*{:] controller

YU :
entering : J\ ! : disch'arge
air I v air
temperature : Cooli : temperature
ry —— 10l e,
! oil :
1 1

Figure 4.1 Schematic diagram of DAT system
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4.2.2 Temperature Control

In a typical HVAC system, several thermal processes are controlled
simultaneously to monitor and maintain temperature, pressure and flow rates at optimum
levels. Th]S is achieved by using feedback control systems. The number of feedback
confrol loops, often referred to local control loops, varies depending on the complexity of
an HVAC system. The discharge air temperature control, zone temperature control,
airflow control etc are the most important local control loops iﬁ HVAC systems. The
objective of this study is to develop an optimal control method that can be applied to
local control loops in HVAC systems. The methodology is described by considering a

discharge air temperature system.:

From a practical standpoint, the DAS controller should be: (1) simple for
implementation using available hardware, (2) adaptiVe to load changes and (3) stable, and
(4) giving near optimal temperature control. The major focus of this development will be

that the models should be suitable for on-line implementation and control.

In the following sections, a robust on-line optimal confro] combined with Hy
tuning rules for thermal processes in HVAC systems is developed. First, state eqﬁations
for the closed loop DAS system with a PI controller are derived (Sections 4.2.3 and
Secondly, the optimal control problem is. formulated as a standard constrained-minima
_ problém and solved using the method of Lagrange multipliers in Section 4.3. It is shown
that the optimal solution consists of PI control signal and feedforward control signal.
Then, an algorithm for tuning of PI-FF controller parameters is proposed in Section 4.4.

Simulation results in an adaptive control system showing the operation of the optimal PI-
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FF controller under several operating conditions are presented in Section 4.5. A
simplified optimal control algorithm is proposed in Section 4.6 and its applications and

experimental validations are presented in Sections 4.7 and 4.8.

4.2.3 The First-order-plds-dead-time (FOPDT) Model

Assuming sensible cooling of air, the input-output model can be represented by

Figure 4.2 where u, the chilled water flow rate, is the input and T, the discharge air

‘temperature (DAT), is the output. The entering air temperature T,, is considered as

disturbance on the system.

l TaO

u
— 1 DAS system —

Figure 4.2 Block diagram of DAS system

From the point of view of implementation, it is necessary to reduce the
computational effort required in the identification and control of the DAS system. To this

end, we model the DAS system as a first-order plus dead-time (FOPDT) system. The
model can be represented as Figure 4.3a. Where, T, is the output of the system when
u = 0; T, is the output of the system and u is the input.of the system. Assume that 7 is

the sampling time and

T
T,

5

= @a.1)

is an integer. Then, the discrete model can be expressed as Figure 4.3b.
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Figure 4.3 First-order plus dead-time model

Where, the parameters a and b have the relationship with the parameters 7, and K as in

Equations 4.2 and 4.3.
I
a=e . 4.2)
b=K,(1-a) 4.3)

From the discrete time FOPDT model of DAS shown in Figure 4.3b, the outputs
of the model can be described by Equations 4.4 and 4.5.

k4= Ov k<l 4.4)
PETVH oyt +butk -1y k=1 -

T,(k) =T~ (k) (4.5)

-In the above FOPDT model, the dead-time ! can be obtained by applying least
squares identification techniques to the output data obtained from open-loop experiments.
The pérameters a and b will be computed on-line by applying the modified RLS
identification algorithm with the matrix-reset technique. The details of the algorithm are

given in Chapter 3.
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4.2.4 The Closed-Loop DAS Model

The closed-loop control diagram of the DAS with a PI controller is shown in

Figure 4.4. A digital PI controller with feedback gains K, and K, as in Equation 4.6

Y 2 Z—] . + a0

Uu bZ -1-1 y T
1—az” =

» K,

Figure 4.4 Closed-loop diagrams of DAS with a PI controller K (z)

was used where T is the sampling time. The DAS model is described by Equations 4.4

and 4.5.
i i),
K ()=~ (4.6)
z~-1

Let K,, =[K,, K], then we have

u(k)=—K ,,x(k) : (4.7)
where

x,(k) ’
k)=
x(k) [xz(k)} | | (4.8)
x, (k) = e(k) 49)
T _
x, (k)= x,(k —1)+3‘(e(k)+e(k -1) (4.10)

By considering
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etk)=T,,-T,+ yk) (4.11)
we have
T -T 0<k<l
k — set a0 4]2
% (k) {(k)+Tm T, k>l (4.12)

KT (T, —T,) 0<k<l

— k-1
0 =1er —T0)+ﬂT+T:Zy(i) k>l

set
i=l+]

(4.13)

For k >1 where [ is the delay time, the model equations (Equations 4.12 and
4.13) of the closed-loop DAS can be expressed in terms of states and control input and

the'system parameters as shown in Equation 4.14.

[ Tser —‘TaO 1<k<l
(k+]y1' ( ser _TaO) -

x(k+1) = a 0
{B_T }c(k)«r[lﬂ" Ju(k l)+[ jl——(Tm‘ o) k=l

2 5
4.14)

4.3 Optimization

It is worth noting that the energy consumption of HVAC systems during the start-
up dynamics over a period of time equal to the length of tranéportation delay [ is much
less than the energy consumption over the time span to reach the target operating '
setpoint. By noting this fact, we have fonnu];ited and solved the optimization problem for
the case when k > 1. For the system given by

a 0 b 1-a
cx(k+1) = {MT: 1}r(k) + [?L}‘(k -1) +{(1 —a)T, }(Tm o)
2 2 2

= Ax)+ Bulk =)+ C(T,, ~T,). k>l (4.15)

set
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y(k)+T.wt—7:10
_ k-1
whete x()=| o 7 o +l-(-2QTJ +T, Y y()
i=l+1
- . 0
A: ]+aTI 1
[ b
B= bT:
| 2
[ 1-a
C: (l_a)T:
T2

we wish to select u(k—1) so that a cost function

J =%i[x7 (k)Qx(k) fur(k ~DQuk-1) (4.16)

k=1
is minimized. In Equation 4.16 O, is the symmetric weighting matrix and Q, (Q, #0)
is weighting on control energy. They are nonnegative definite. The above problem can be
considered a.s a standard constrained-minima problem that we wish to minimize J

subject to the constraint

— x(k +1)+ Ax(k) + Bu(k 1)+ C(T,, -T,;) =0, k=01,I+L-- N 4.17)

By using the method of Lagrange multipliers (Franklin et al. 1997), the cost

function is written as

J :%i[f ()Qx (k) +u" (k —DQuk ~1)
k=t '

+ AT (k4 )(=x(k +1) + Ax(k) + Bu(k - 1)+ C(T,, T, (4.18)

where A(k+1) is a Lagrange multiplier.vector.
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By minimizing J’ with respect to x(k), u(k—I), and A(k) an optimal control

solution for Q, =[

UM

0

u(k) =—Kpx(k) — Kep (T, —To)

where
1 0
K k=0
00 »
K (k):<K(A—BK)"1 0 1<k <l
A 0 I/k| ~
K(A-BK) k>1
0
K[ ] k=0
IT, ‘
k-1
Kp(k)=<K Z(A—-BK)')C 1<k <l
i=0 '
s 5 X
K(Z(A—BK)’)C k>1
i=0
with k=[K, K]
_ bq,,
g (1+a)Q,
_ 2bc,
" (1+a)Q,

0
:l was found. The optimal control has the following structure

4.19)

(4.20)

(4.21)

4.22)

(4.23)

(4.24)

From the above optimal results, we note that the control as in Equation 4.19 can

be implemented as a PI controller with a feedforward action as depicted in Figure 4.5.

From Equations 4.23 and 4.24, it is noted that the magnitudes of controller gains

K, and K, are functions of the parameters (g;,andc,) and the weighting factor (Q,).

The parameters g,, and ¢, can be chosen such that control response is fast and smooth.
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To this end, we have used the H_ tuning rules (Qu et al., 2004) developed by a loop-

shaping and robust stabilization technique (Tan et al., 1998). By assuming @, =1 it s
noted that the controller gain Equations 4.23 and 4.24 are the same as those obtained by

the H_ tuning rules. After some algebraic manipulations, we have

My 2
g, = (0-2657+0-2307)(1 a )(_ I, 5)5:3147+0951 425)
| b Ina 2-llna
265y +0.307)1 ~a’ na
S e )(— 1 +0'5) — (4.26)
b Ilna (IIna-2JT,
with 7=01974 forall 1 or y=—8=051 ¢ 2 oy 8922
: 5.314 Ina - Ina
. Ta
TaO N ‘47 g)——b
' A
Kpr
Txel b 4 e TS z+1 x,
g ' B K,
* + 2 z-1
N bz—l-l Yy
i-az”
’xl
Figure 4.5 Closed-loop diagram of the optimal PI controller with feedforward action

According to the above selection, g,, and ¢, dependent on the model parameters,
and the weighting factor Q, gives an additional degree of freedom to optimize the

performance of PI controller.
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4.4 Tuning Algorithm

In this section, we will present the developed optimal tuning algorithm, and

introduce a new index to evaluate the performance of the optimal PI-FF controller.

4.4.1 Optimal Tuning Algorithm

Here we give a set of tuning equations for the optimal PI controller derived in the

previous section. From the definitions of A, B, K, and by assuming

A_BK:[gn glzjizg.,
ga 82

(A-BK) = {h"@ e (’:)} = h(i), and
by (i) By, (1)

: C m () mu() .
A-BKY =" = .
Z;( ) [mzx(j) mzz(j):l ™)

the following discrete time tuning equations for the controller parameters K ,,, K;; and

K . were derived. These are:

K, k=0
K, (K)={K by (k) + Ky (k) 1<k < @.27)
K b+ Khy (1) k>l
0 k=0
K, (k)= é(l{phn(k) + Kl (k) 1<k<I (4.28)

K )+ Khy()  k>1

KIT k=0
K. (k)=4( —a)(Kpm”(k ~1)+ K,m, (k ~1)+—§-(Kpmlz<k ~1)+K,m,, (k —1))) 1<k <l

a —a)(Kpm,,(l—l) + K,.mzx(l—])+§(Kpm]2(l~l)+ K,mn(l—]))) k>l

(4.29)
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Equations (4.22 — 4.29) describe the optimal tuning equations for FOPDT
processes in discrete time domain. We refer to this algorithm as Optimal Tuning
Algorithm (OTA). The algorithm can be implemented by following the steps given below.

However, it requires more memory and computation than the H_, PI tuning rules.
Initialization: Initialize the model parametersa, b and [ obtained by applying any
off-line system identification method using a set of open.—loop experimental data
Step 1: Update the mode!l parameters a and b using a selected RLS identification
method at time k (>2xI+1) or keep the model parameters a and b as
initialized at time k (< 2x1+1)
Step 2: Update parameter ¢, and weighting parameter g,, (related to smooth

response)

Step 3: Choose weighting parameter 0, (related to energy and robustness to system
parameter changes)

Step 4: Calculate K, and K

Step 5: Update g, h(i), and m(i—1) with A, (0)=h,,(0)=1, h,(0)=h,(0)=0 and
my (=1) = my,(=1) = m,(~1) =m, (~1) =0 until i=k for 1<k < or i=1 for
k>1

Step 6: Calculate X ,, K, aﬁd K .. from Equations 4.27, 4.28 and 4.29

Step7: k<« k+1andgotoStep 1.

76



4.4.2 Guideline for Choosing the Control Input Weighting

Parameter Q,

In the discharge air temperature cooling control system, an increase in the
discharge air temperature setpoint (step-up) would require less mass flow rate of chilled
water which in turn decreases energy consumption. On the other hand, a decrease in
| setpoint' temperature (step-down) will have the opposite effect. Therefore, it can be
reasoned that when the setpoint temperaturé is increased it would require less energy and
as such a smaller value of 0, would be appropriate so that the control response is not
over damped. Likewise, a highér value of Q, would be needed when the setpoint is
decreased. To this end, we introduce tWo parameters Q2-down and a reduction factor.
The value of Q2-down indicates the value of Q- that the system adopts in step-down
process and the reduction factor is the multiplier used to compute the value of @ that the
system adopts in step-up process. The reduction factor is always positive and less than
one. That is, @, = Q2-down x reduction factor is the value of (; in the step-up process.
We refer to this technique as Optimal Tuning Algorithm with Variable Parameter (OTA-

VP).

To develop guidelines in the selection of Q2-down and reduction factor, the

following index is defined. Where, n is the number of the total considered processes and
IndexP, is index of the i th process.
1ndexT=lZIndex13 (4.30)
nig
By defining &, as the weighting factor for energy and @, the weighting factor

for dynamic response, and noting that weighting factors should satisfy @, +a, =1, the
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IndexF, is formulated as follows:

Kong kong
IndexP =q, ( Z% (k) +u(k - 1))@) /SumRU +a, ( zéqemn +|e(k —1) )L] /SumRE
k=ky k=k,
(4.31)
keng .
SumRU =(Z%(u(k)+u(k-1))n) . (4.32)
k=ky reference
kg
SumRE =( %(]e(k)| +|etk - 1)|)Ts} (4.33)
- k=ko reference

Note that the IndexP is normalized with a reference value which in this case is
based on H_ PI tuning rules. When the value of IndexT is less than one for selected @,
and @, , it means that the system has better performance than the reference system during

the time interval [ko kmd]. In addition to using the index for the purpose of comparison,

we can minimize IndexT with respect to Q2-down and reduction factor to select the

optimal values.

In the next section the impact of (J; on temperature regulation, energy
consumption of DAS, and robustness changes in system parameters will be investigated,
and further guidelines for choosing the control input weighting parameter (; in balancing

~ different requirements will be given.

4.5 Simulation Studies in an Adaptive Control System

The tuning algorithm should reduce control energy and be robust to changes in

system parameters. To test the developed algorithms, the DAS model parameters a and b
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were varied. To this end, seven different sets of models as shown on Table 4.1 were used.
We assumed 4s to be the sampling time (75), and refer to these models as processes 4.1,

4.2, 4.3, and combined processes 4.1, 4.2,4.3, 4.4.

Process Process | Process | Process | Combined | Combined Combined Combined
Parameters : 4.1 4.2 43 Process 4.1 | Process4.2 | Process4.3 | Process4.4
1<3000s - 0.9538 | 0.969 0.9097 0.9538 0.9538 0.9538 0.9538
a | 3000s<¢<5000s } 0.9538 | 0.969 0.9097 0.9538 0.969 0.9538 0.9097
5000s 0.9538 | 0.969 0.9097 0.969 0.969 0.9097. 0.9097
1<3000s 0.1329 | 0.0446 | 0.38%6 0.1329 0.1329 0.1329 0.1329
b | 3000s<¢<5000s | 0.1329 | 0.0446 | 0.3896 0.1329 0.0446 0.1329 0.3896
£25000s 0.1329 | 0.0446 0.3896 0.0446 0.0446 0.3896 0.3896
! 9 9 9 . 9 9 £l 9
Table 4.1 Plant parameter changes for considered processes

The simulation implementation in Matlab Simulink is depicted in Figure 4.6.
T,, = 66.0F is assumed. The identification process is omitted in the simulation study for

simplicity. The current plant parameter values of a and & are directly sent to the tuner.
According to a new set of the input parameters, the tuner generates a new set of the PID
controller paraméter values and sends to the PID controller. By sefting Q2-down equal to
Q> and reduction factor equal to one as the input values of the tuner in Figure 4.6 a
constant @, PI-FF control system can be simulated. This strategy with constant @, is

referred to here as Optimal Tuning Algorithm (OTA).

A time-scheduled operation of DAS involving change in setpoint temperature of
air leaving the coil was simulated. Three cases were considered. These are referred to as

Cases 4.1,4.2 and 4.3 respectively and shown below.

T, =461F 3000<t<5000,7T,, =

60F  1<3000 -
{61F 123000 60F <3000

60F t<3000 _{611? t>3000

60F t 25000
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Figure 4.6 Simulation structure for OTA and OTA-VP

4.5.1 Control Input Energy

Table 4.2 shows the simulation results for Processes 4.1, 4.2 and 4.3 with Case
4.1 using the optimal tuning algorithm (OTA) with six different sets of constant 0>
values. The integral of the mass flow rate was .computed in each case as a measure of
control input energy. This will enable comparison of different Q, values. A lower value
of the integral of u would signify lower energy consumption. Therefore, from the results
depicted in Table 4.2, it can be reasoned that in order to save enérgy one must choose a
higher Q, value when the setpoint is changed from higher to a lower value and a smaller
‘va]ue of O wﬁen the setpoint is changed from lower to a higher value. Figure 4.7

illustrates the response, using the optimal tuning algorithm (OTA).
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. 1250 1 1750 T
Magnitude Z = (u(k) +u(k - 1)) for step-up Z - (u(k) +ulk — 1)) for step-down
of 0, k=73 k=1251
Process 4.1 | Process 4.2 | Process4.3 | Process 4.1 Process 4.2 Process 4.3
0.25 3445.4 6860.4 2306.6 4203.5 8433.6 2793.0
0.5 3453.7 6877.2 2312.1 4195.0 8416.7 2787.4
0.75 3462.1 6893.6 2317.7 4186.5 8399.8 2781.7
1.0 3470.5 6910.4 23234 4178.0 8382.7 2775.9
1.25 3479.0 6927.3 2329.1 4169.4 8365.6 2770.2
1.5 3487.6 6944.3 23349 4160.7 8348.4 2764.4

Table 4.2 Effect of Q; on energy efficiency

The above results offer an important insight that it is important to choose the
magnitude of O, based on the direction of setpoint change. We refer to this technique as
Optimal Tuning Algorithm with Variable parameter (OTA-VP). The implementation

scheme of OTA-VP is depicted in Figure 4.6.

595 1 1 1 L i 1 i 1 1
2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
Q2 05 R K TSR 15

26 T T T T T T T T Y

b 1 i 1 i 1 1 1 1
2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
Time (s)

Figure 4.7 Responses with the optimal tuning algorithm (Process 4.1; Case 4.1)
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4.5.2 Index Comparison with Other Methods

Simulation studies were made to compare the performance of OTA and OTA-VP
algorithms with the H., and the Ziegler-Nichols (Z-N) tuning rules. The results using the

three processes namely Processes 4.1, 4.2 and 4.3 with Case 4.1, were evaluated with

2, =0.8 and @, = 0.2 over the time interval k, =751 to k,,, =1750. Figure 4.8 shows

how the index value changes as a function of Q2-down weighting for different reduction
factors. IndexHT in the figure refers to the index based on the comparison with the He
tuning rules and IndexZNT refers to the index with reference as the Ziegler-Nichols
tuning method. The results show that a minimum exists with respect to Q2-down and
reduction factor. The simu]atién results also show that the OTA (reduction factor = 1)
and the OTA-VP a]‘gorithms with good selection of Qz could give ‘better performance
compared to the H,, and the Ziegler-Nichols tuning rules. It is also noted that the OTA-
VP with a vgood choice of @, could yield better pérformance than the OTA because a
minimum IndexT for OTA-VP exists. It was found that a reduction factor = 0.85 and Q2-
down = 0.4 is close to the optimal result in minimizing the index. Likewise, Q2-down =
0.6 gives near optimal result for the OTA. Figure 4.9 shows the dynamic responses to
setpoint changes for the H. and the Ziegler-Nichols tuning rules and for the OTA and
OTA-VP with near optimal Q, values. The responses for Hy tuning rules, OTA and
OTA-VP algorithms are good. The dynamic responses of Z-N method are different for

different processes and show some oscillations.
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Figure 4.9 Response comparisons between OTA-VP, OTA, H.. tuning rules and Z-N method
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4.5.3 Robustness Studies

In order to test the robustness property of the optimal tuning algorithm, four
different DAS models referred to before namely, Combingd Processes 4.1, 4.2, 4.3, and
4.4 were used. These combined processes simulate load changes that typically occur in an
HVAC system. This coﬁld impact the system parameters of the FOPDT model and may
require discharge air temperature to be regulated in a VAV system. The performance of
optimal tuning algorithm (OTA) in compensating for parameter changes assumed as
combined processes 4.1 to 4.4 and regulating the discharge air temperature was studied.
he results depicted in Figures 4.10 and 4.11 show that the OTA and the OTA-VP with the

near optimal parameters have improved ability to reject the effect of changes in
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)
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Robustness comparisons in the CPs 4.1 to 4.4 with Case 4.1
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Figure 4.11 Robustness comparisons in CPs 4.1 and 4.3 with Cases 4.2 and 4.3

the system parameters (lower maximum shooting and fast convergence) compared with

H., tuning rules and Zeigler-Nichols method.

IndexP (@, =08 and a, =02)
Method . N IndexT
CP4.1 CP42 CP43 CP44
H__ tuning rules 1.0000 1.0000 1.0000 1.0000 1.0000
OTA-VP with
Q2-down=04 & 0.9256 0.9036 0.9233 0.9154 0.9170
reduction factor = 0.85

OTA with 0, =0.6 0.9480 1 - 0.9551 0.9663 0.9309 0.9501
Ziegler-Nichols 0.9159 1.0082. 0.9405 1.0235 0.9720

Table 4.3

Index comparisons between methods for CPs with Case 4.1

The results depicted in Tables 4.3, 4.4 and 4.5 indicate that the OTA and the

OTA-VP with the near optimal parameters have lower index values (IndexT) compared to
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H., tuning rules or Zeigler-Nichols method. The improvement achieved with the OTA-VP

is significant.

IndexP (@, =0.8 and a, =0.2)

Met,hOd CP 4.1 CP43 IndexT

H _ tuning rules 1.0000 1.0000 1.0000
OTA-VP with

Q2-down=04 & 0.9152 0.9104 0.9128

reduction factor = 0.85
OTA with 0, = 0.6 0.9505 0.9421 0.9463
Ziegler-Nichols 0.9107 1.0099 0.9603

Table 4.4 Index comparisoné between methods for CPs 4.1 and 4.3 with Case 4.2

IndexP (@, =0.8 and @, =0.2)
Method IndexT
CP4.1 CP4.3
H _ tuning rules 1.0000 1.0000 1.0000
OTA-VP with
Q2-down =04 & 0.9254 0.9182 0.9218
reduction factor = 0.85
OTA with 0, =0.6 0.9499 0.9429 0.9464
Ziegler-Nichols 0.9091 1.0152 0.9622
Table 4.5 Index comparisons between methods for CPs 4.1 and 4.3 with Case 4.3

4.5.4 Disturbance Rejection

From the above simulation results, it is clear that the OTA and the OTA-VP with

near optimal parameters have stronger robustness to changes in system parameters. In a
discharge air system, the disturbance effect such as those due to T, always exists and
the measurements from the sensors have some white noise. To this end, the temperature

changes in T,,, were assumed to follow a Sine function with frequency of
27/86400="7.27x10" rad / s . To simulate these scenarios, we assumed the changes in

T,, given by 3sin(0.0000727r) and with a noise power of 0.1 added to the discharge air

a
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temperature sensor readings. Table 4.6 shows the simulation results for the four control
methods and Figure 4.12 illustrates robustness to disturbance using OTA-VP control.
The results also indicate that the OTA and the OTA-VP with near optimal parameters

have a slightly improved performance compared with the Hy, tuning rules and the Ziegler-

Nichols method.
IndexP (@, =08 and «, =0.2)
. Method IndexT
Process 1 Process 2 Process 3
H_ tuning rules 1.0000 1.0000 1.0000 1.0000
OTA-VP with
Q2-down=04 & 0.9968 0.9981 0.9945 0.9965
reduction factor = 0.85
OTA with 0, =0.6 0.9949 0.9974 0.9905 0.9943
Ziegler-Nichols 0.9976 . 1.0073 0.9958 1.0002
Table 4.6 Index comparisons under disturbances and Case 4.1 between methods
62 T T T T T T T T T
615} I .
< 605} .
2 |
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Figure4.12  Response with disturbance effect for OTA-VP control
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4.6 Simplified Optimal Control Algorithm

Reliability of a control system in real applications sometimes relies on its
control’s simplicity because simple control algorithm will reduce human error and is easy
to implement. From the robust optimal tuning rules given in Equations (4.27), (4.28) and
(4.29), if we assume hy (D) = 1, hyi(D) = 0, ”hya(D) = 0, hya(D) = 1, and a = 1 we will have

N bg,, K. ~ 2bc,

= , K,; =——=— and Krr = 0 for k > . This simplified form is very eas
"a+ag, Y (+a)g, ” P T

to implement in an HVAC system similar to the H.. PI tuning rules (Qu et al. 2004). Also,
it is close to OTA control in robustness and has improved robustness compared to the H.,
PI tuning rules as shown in Figure 4.13. Note that O, = 0.6 was used in the simulation

study for the simplified control and OTA control. For O, =1, K, and K, shown above

are identical to the H., PI tuning rules.

The simplified optimal control algorithm is summarized as follows.

_ b%l
" (1+a)Q, *39
2bc
K, =—2_ )
T a0, (4.35)

The coefficients of g, and c; are defined by equations of 4.25 and 4.26 respectively. In
the next two sections, the experimental results for two applications of the simplified
optimal control algorithm will be presented. In the first application the heating coil
control identified as node 77 in the Concordia University’s HVAC system will be

considered. In the second application the discharge air temperature control in the VAV
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laboratory test facility will be studied. The weight parameter O, in the simplified optimal
control algorithm gives freedom to adjust the system performance to improve robustness
and step response. Experimental results show improvement in robustness and step

response perfonnance.

61.5 T T T T T T T Y T
——0OTA
—— Simplified Optimal Control
= -—--H-infinity P
61 4
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L 605t .

hJ

60} A

Combined Process 4.1 with Case 4.3

59.5 1 f 1 1 I 1 L ! 1
2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
Time(s)

Figure 4.13  Robustness comparisons for different controls

4.7 Application to a Heating Coil System

In this section, we first present the problem of the original Pl control system.
Then, the application of the modified H.. PI tuning rules to the heating coil control

system in an adaptive control structure is described. Finally, experimental results

showing comparisons between the two will be presented.
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4.7.1 The Problem in the Original Heating Coil Control System

The original control system was a PI control system. It is shown in Figure 4.14.
The problem in the original temperature control system was oscillations in warm air
temperature response by about 3 °C, when the outside weather was cold. The test results
of the original PI control heating coil system are shown in Figure 4.15. The red line
(MTAEC3GLCB) is the output air temperature from the heating coil system and the blue
line (ATAEC3GLCB) is the setpoint. The result shows the problem in the original heating
coil temperature control system that the response of the control system was oscillatory

and the maximum offset was great than 1.6 °C.

Tzs [k] elk]
+

u,lk]

Lik]

PI controller Plant

Figure 4.14 Original heating coil PI control system

3500 i S + - o ;
15:05:00 071272005 18:10:10 18:15:20 15:2030 152500 - 1520:50 15:38:00 15:41:10 15:4420 . |5!§7':39‘ Time i

Figure4.15  Bad performance of the original heating coil PI control system
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4.7.2 Online Adaptive Pl Control Strategy for the Heating Coil Control

System

To solve the problem mentioned in Section 4.7.1, we consider adopting the online
adaptive PI control stratégy with the simplified optimal control algorithm. The simplified
optimal control algorithm has improved robustness compared to the H, adaptive PI
tuning rules. The adaptive PI control structure is shown in Figure 4.16. To have the
adaptive ability, we add two new functiona] blocs to the original PI control system. These
are an identifier and a PI tuner. The identifier does the estimation of the system
parameters and the PI tuner does the PI parameters updating following the identified

system parameters online.

A

PI tuner Identifier

y

u, k] T, 1k]

Plant

PI controller

Figure 416  Adaptive PI control system for the heating coil system

4.7.3 Variables in the Heating Coil Control System

The heating coil air temperature is the controlled variable T, that is named as
MTAEC3GLCBS in PPCL program. The setpoint is Ty that is named as ATAEC3GLCBS.
The setpoint value is in the range of 26 to 43 °C. The control variable u, is the input of

the hot water valve flow rate in percentage and named as CBCGLC470BS (0 to 100%).
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The PI parameters of the heating coil control system are K,; and Kj; named as

YTAEC3GLCBS and ZTAEC3GLCBS in PPCL program. The inlet air temperature of the

heating coil system is T,,.

4.7.4 ldentification of the Plant

The plant (the heating coil) is modeled as a first order plus dead-time (FOPDT)

system. That is,

T,(2)-T, _ bz """ (4.36)
u,(z) 1-az™ .

and yk)=T,(k)-T,. (4.37)
The transportation time delay [ is considered as a constant that can be determined by an

open-loop test. The identifier program estimates the parameters of a and b online.

The open-loop test was made on December 14, 2005. The experimental result is
shown in Figure 4.17. The green line is the percentage of the valve opening and the red
line is the output air temperature of the heating coil. The percentage of the valve opening
was set as follows.

39% before 14:15:03
u,=149% after 14:15:03  before 14:24:02
39% after 14:24:02

From the open-loop response, the delay time in the step-up mode of operation was

42s and the delay time in the step-down case was 55s. If we choose T, =8s as the

sampling time, the model delay [ should be chosen as 7 because 7x8 = 565s. The online
identification algorithm proposed in Charter 3 was used for the identification of the

heating coil plant.
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Figure 4.17  Open-loop tests for determination of the heating coil system delay

4.7.5 Algorithm for the Heating Coil Control System

We keep the original PI control for the heating coil control system unchanged. In
order to have the adaptive PI control active, we add new functions that include both the
identifier and the PI tuner. The new algorithm does the identification of the system, and
then updates the Pl parameters according to the simplified optimal control algorithm
based on the new identification result. The adaptive PI control with the simplified optimal
céntrol algorithm is called simplified optimal adaptive control (SOAC). The new
algorithm is expressed in the followipg diagram. SECNDS is one of the system timers.

We use it to control the sampling time.

| starRT

SECND5=0

o ©
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Figure 4.18  Flowchart of the SOAC for the heating coil control

4.7.6 Experimental Results of SOAC for the Heating Coil Control

System

The experimental results shown in Figure 4.19 were compared. The blue line is
the setpoint, and the red and green lines are the output warm air temperature and the

percentage of the valve opening respectively.

The original PI control was active before 11:32:33. After that, the control was
changed to SOAC with 0, = 1. Because the internet communication was taking time and
the changes needed to be done one by one, this resulted in a big offset as shown in Figure
4.19. However, after few minutes the adaptive PI control (SOAC) made the system

converge and stay at the setpoint closely.

To show the advantage of the adaptive PI control, somewhat longer experimental

data was recorded. It is shown in Figure 4.20. The response is much closer to the setpoint

compared to Figure 4.15, but the offset is still greater than 0.8°C and the response is
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below the setpoint over a long time. This may imply that SOAC (becomes H_adaptive

PI control for 0> = 1) can be further improved to reduce the effect of load changes.

Figure 4.19  Comparison between the original PI and the adaptive PI controls

Figure 4.20 Experimentai result of SOAC with 0, =1

To improve the performance of SOAC, the weight factor Q2 < 1 is appropriate.

Figure 4.21 shows the response for SOAC withQ, =0.5. The response in Figure 4.21

seems to be closer to the setpoint compared to the response with Q, =1 shown in Figure
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4.20 and has balanced offset on both sides. The maximum offset in Figure 4.21 is less
than 0.6°C. It is clear that the response has been improved. The small oscillation in
Figure 4.21 shows the possibility that a further increase in Q, would be appropriate. The

experimental results in Figure 4.22 show the response of SOAC with 0, = 0.6993.

Figure4.21  Experimental result of SOAC with 0, =0.5
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Figure 422  Experimental result of SOAC with 0, = 0.6993
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It can be seen that the response in Figure 4.22 has been further improved, because the

maximum offset is less than 0.4°C and the offsets on both sides are balanced. It is
apparent from these results that by properly selecting the value of Q,, the system

response can be improved.

We have also made the tests of step responses with @, = 1 and the original PI
control. The step response test result for the original PI control is shown in Figure 4.23.
The original PI control started at 16:20:00 and ended at 17:24:00 on December 14, 2005.

The step changes are ATAEC3GLCBS = 38.79°C from 39.79°C at 16:49:00 and

' Temgcr;tur C) -

Figure4.23  Step response of the original PI control

ATAEC3GLCBS = 39.79°C from 38.79°C at 17:06:00. The overshoots are 66% for the
step-up setpoint change and 12% for the step-down setpoint change. The settling time for
the step-up setpoint change to within 0.22°C is 774s and the setiling time for the step-

down setpoint change to within 0.22°C is 571s.
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Figure 4.24 presents the step response test result for SOAC with O, = 1 and the
identification results and the system PI parameters (which are 1000 times of the tuned PI
parameters, that is, YTAEC3GLCBS = K,; and ZTAEC3GLCBS = K,4) are shown in
Figures 4.25 and 4.26 respectively. The step changes in Figure 4.24 are ATAEC3GLCBS
=40.49°C from 39.79°C at 12:50:35 and ATAEC3GLCBS = 39.49°C from 40.49°C at

13:10:19. The overshoot for the step-up setpoint change is 69% and there is no overshoot

Figure 4.24  Step response for SOAC with 0, = 1

e [ S TR S : ~poot

om0 e o - — 000
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Figure 4.25  Identification result in SOAC with 0, =1

99



for the step-down setpoint change. The settling time for the step-up setpoint change to
within 0.22°C is 610s and the settling time for the step-down setpoint change to within

0.22°C is 549s.

R
ITEIDY 1INAA00E 128230 -

Figure4.26  PI parameter evolution of SOAC with 0, =1

The above results indicate that SOAC with Q, = 1 is faster than the original PI
control system. It is also worth noting that if we increase the accuracy of the controlled
variable the identification will be more smooth which will lead to much better step

response for SOAC.

4.8 Application to the DAS

We have also done the experimental tests with the simplified optimal adaptive PI
control (SOAC) applied to the DAS in the laboratory HVAC test facility. The DAS
model remains the same as in Section 4.2.3. Figure 4.27 shows the step responses
controlled by SOAC with two different weighting factors Q, = 1.3889 and 0, = 1.6667

respectively. Figure 4.28 presents the system PI parameters tuned by the simplified
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optimal control algorithm and Figure 4.29 shows the identification results of the DAS

model parameters.
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Figure 4.27  Step responses of SOAC with Q; = 1.3889 and 1.6667
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Figure 4.28  PI gains of SOAC with Q, = 1.3889 and 1.6667
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Figure 4.29  Identification in SOAC with Q, = 1.3889 and 1.6667

ValKi

Chilled Water Flow Rate (GPM)

ValSP in Figure 4.27 is the setpoint of the discharge air temperature (CCOTS) and

CWEFRG is the chilled water flow rate in GPM. The PI parameters (ValKp and ValKi) in
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Figure 4.28 are 1000 times the tuned PI parameters to account for the scaling factor. In
Figure 4.29, a, is the estimated value of the parameter a and b, is the estimated value of

the parameter b responses obtained from the identification process.

The step responses in Figure 4.27 confirm that SOAC is able to give good step
response performance by changing the weighting factor Q.. The step response results also

show that increasing the weighting factor reduces overshoot and gives smooth step

response.

4.9 Summary

By describing the dynamics of a discharge air system V(DAS) using a FOPDT
model, an online optimal control algorithm combined with the H, tuning rules was
developed. The developed tuning rules were tested using computer simulations in an
adaptive control system. The results show that the proposed optimal tuning algorithm is
able to track changes in discharge air temperature setpoints efficiently and reduces the
effect of changes in system parameters significantly. Results also. showed that the control
input weighting factor of the controller in response to a demand for an increase in
setpoint should be lower than the corresponding weighting parameter in the case of a

decrease in setpoint.

In this Chapter, we have also designed an adaptive PI control with the simplified
optimal control algorithm (SOAC). Applications to the heating coil control system in a
real building control system of Concordia University and the DAS in the laboratory
HVAC test facility are illustrated. The experimental results indicate that SOAC with a

suitable weighting factor has improved robustness and better step response.
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5. Adaptive Neural Network Strategy for DAS

In this chapter, an adaptive neural network controller is developed. The proposed
controller is constructed by augmenting the PID control structure with a neural network
control algorithm. Simulation study showe that the proposed controller has strong
robustness, improved regulation and tracking functions for FOPDT type plants compared
to classical PID controllers. Experiments were also conducted to compare the developed

strategies with some of the existing control strategies used in HVAC systems.

5.1 Introduction

In Chapter 4, we have developed a robust optimal tuning algorithm which has
strong robustness property. However, it relies on plaht model and needs plant parameter
identification in the adaptive control application. Neural network control is a kind of
model-less control strategy. Therefore, it is of interest to explore realizable neural

network control algorithms for HVAC controls.

The Discharge Air System (DAS) is one of the basic components of a heating,
ventilating and air-conditioning system. It was chosen again as a controlled plant‘for the
proposed adaptive neural network controller, also due to the fact that the DAS model has
dead zone nonlinearity. In the experimental studies section we will show the dead zone
nonlinearity observed from open-loop responses. Figure 4.1 shows the DAS for sensible
cooling of air. The discharge air temperature is maintained close to a chosen setpoint by
modulating the mass flow rate of chilled water via valve control (x). In previous studies,

as mentioned in Chapter 4, only the classical proportional-integral (PI) control problem
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for the control of DAS is addressed. Here we explore on-line adaptive neural network

control (ANNC) of DAS which is useful for real-time implementation.

The methodology for on-line adaptive neural network control of DAS is presented in
sections 5.2 and 5.3. In section 5.2, the on-line adaptive NN control system configuration
is explained and the NN learning algorithm is described in section 5.3. Simulation studies

are conducted in section 5.4 and experimental studies are presented in section 5.5.

5.2 Adaptive Neural Network Control System

The adaptive neural network control of DAS is shown in Figure 5.1. The entering air
temperature T,9 and the supply chilled water temperature 7,,; are measurable; so we use

them as additional inputs of the neural network controller to improve its adaptive ability.

_| Adaptive Tuner
a‘U aW
Tag {' 4'
—>
T Neural Network | u, T,
LAY Plant >
T, +>? e Controller
Figure 5.1

Adaptive NN control system

In addition, the neural network controller has learning ability to changes in the dynamics

of the system. The adaptive tuner performs update function for 'adaptive parameters. The

adaptive tuner is designed to avoid over training and slow response.
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The adaptive neural network controller configuration is shown in Figure 5.2. In this
controller, we use PID structure to have three inputs x; to x3 for the normal neural
network controller based on only one input e. a, is an adaptive weight factor to avoid

slow response. a,, is a boolean variable to avoid over training.

T

T, X4 Normal Neural a,
Network l

Xy Controller 1-a, —»??——»
+

"ZT XsT
de

t
— | edtf | cq+
Ci 0 d dt
€ —————Pl ke} 1 T Jav
., PID Yor o
Controller
Figure 5.2 The adaptive neural network controller

For the normal neural network controller, we select a 5-5-1 two layer network
structure with hyperbolic tangent activation function as shown in Figure 5.3. The

controller output u,,, is proportional to the output 0, with a groportionality constant ¢, .

The hyperbolic tangent (ranh(1.5x)) is chosen as the activation function for both
hidden and output layers because it has several advantages of equalizing training over

layers (Kalman & Kwasny, 1992).
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Figure 5.3 Selected normal neural network controller

5.3 Neural Network Learning Algorithm

The adaptive controller design objective was defined as the minimization of

performance index

;=5 3. (0, ()7, 6)F s, 5 3o, (e )

k=1

Such that both set-point tracking error and energy consumption are minimized. We have
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min E(k)=imn[ae%(ne,(k)—n(k))z + a,,%(uv(_k))z] (5.2)

The network weights were updated along-vector gradient of error E (Gradient Descent
Method) such as

Al = —7711-5—@ | | (5.3)

Where 77 is learning rate parameter (>0); Aw! s weight vector from [—1"to [ 4 layer.

~ Following the chain rule, the above equation can be rewritten as:

o eEG) (9EM) o) 9E())du. (k) a0, (k)
anth =7 awl (aTa(k)auv(k)_+ au‘,(k)) do,{k) aw' G4
=], )TV -0 228 6.9

a, was approximated as follows,

&, =~(T,, ()~ T, (k-1 %,’:3 = (1, (1)~ T, ()] gzgg 56)
thus, we have
o =o{ 00 T 7, 001 00 Tl ) 2
1 )T S 7, - 0 b e, 2 67

The calculation of the partial derivative of the network output with respect to the

weight vector is calculated based on the network architecture, the only term cannot be
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analytically calculated is the partial derivative of the discharge air temperature (7;;) with

respect to the controller output (,) at each time step.

The actual value of 0T,/0u, is not important due to scaling of the term based on

the coefficient 77 (equation (5.3)), but the sign of the above mentioned term needs to be

determined. By performing a step change on the controller output (Aw,), a negative
proportional reaction of the discharge air temperature is obtained (AT,). Thus, the system
can be characterized as negative and monotone relevant to the command (uv)., since the
partial derivative of the system output (7,) relevant to the controller output (u,) is always
negative. The above assumption is correct only if the partial derivative exists for every

time step, which leads to continuous changes in the controller output. Equation (5.7) can

be written as

do, (k )

. 58)

A" = (T, (k)-T,(k e, + (T, (k)= T, (k) (k)

Considering the choice of the hyperbolic tangent (tanh(1.5x)) as the activation

function for both hidden and output layers and assuming

H=h h - h, 1 | (5.9)
X=[x x - x, IJ (5.10)
Wo=[wo, Wo = Wy  Woem ) (5.11)
W=[Wy Wo o W Wi ) (5.12)
0y, =WoH | (5.13)
i =W.X (5.14)
8. (k) =k, (T, (k)= T, (k e, + (T, () =T, (K Ju, (k) (5.15)
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where m; is the number of the hidden nodes and m; is the number of inputs, we have

1 - e-3olin (k) '

(k)= (5.16)
1 - e-3hiin (k )

i(k): 1+e_3him(k) (517)

Considering the fact that

[l_e-BxJ'z3e—3*(1+e3‘)+3e‘3’(1—e'3’)_ 6e ™ =r(5x) (5.18)

(1+e) fi+e}

=304,
Mg ()26 h (i=l 2, - m+1) (5.19)
k, (] 4 o730 )2

=l g ()£ (S H ), £ (1.5W, X )x,

=304 =3hy,
Ge be x (5.20)

TN A e

(i=1, 2, =, m+l, j=1, 2, -, m+1)

To achieve global convergence, we introduce two time-varying learning rates
instead of 7,/ k,. For Aw,,, we use

_ U
R 62D

y

and for Aw, , we use
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n. = T
x 2 2 2
I+x +x++x,

where, 7}, is a selected constant learning rate.

5.22)

The inputs and the output of the normal neuron network controller can be

expressed as follows.

x(k)=kelk)=k,(T,,(k)-T(k))

5y (k)= 3, (k= 1)+ 2L ek + el ~1))

To save computing time, we assume h_(k)= ™" then

and assuming oll(k):ehun(k)’

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

{5.30)

(5.31)

(5.32)

(5.33)

(5.34)
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- 0,,(k)—1 535
)= i) (3

Let
old(k)=M (5.36)

(0,,(k)+1)

we can update the weights and the output of the controller as follows.
wy(k +1) =, (k) =77, (k)g, (Ko, (k) (k) (5.37)

) ” Ohi(k) |
w, (k+1)=w,(k)-7,(k)g, (K)o, (k) OI(k)—(hH(k)H)z (k) (5.38)

u,(k)=c0,(k)+c,, (5.39)

From the equations (5.23) to (5.39), we note that to implement the controller we
need to determine the values of ¢,, ¢4, ¢, Cy, G5, €55 Gy €40 1, @, 5, @,, k,, k,
and 77,. The coefficients ¢, and c,, depend on the performance of the actuator for the
chilled water control valve. ¢, is the maximum input value of the actuator for zero water
flow, and ¢, can be computed by using equation (5.39) at o, (k)=1 when uv(k) is equal
to the maximum input of the actuator for maximum water flow rate. ¢, and ¢,, are
selected to obtain a suitable range for x,. The value of c¢,, should be less than the
minimum value of 7 in order to keep the controller monotone relevant to T, . The
selection of ¢, is related to the balance between x, and x,. ¢, is a filter parameter for x,
since T, is measured and contains noise. Similarly, ¢; and ¢, are selected to have a

suitable range for x,;. Again the value of ¢, should be less than the minimum value of
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T,, to keep the controller monotone relevant to T,,. a, is a filter parameter. T, is the
sampling time. ¢; and ¢, are control parameters. We can use Cohen Coon Method, or
Ziegler-Nichols Method or other tuning methods to determine ¢; and ¢, from a reference
plant. k, is a parameter that reduces the sudden impact of inputs on system responses. k,

is a scale factor to adjust the learning rate 77, .

To achieve smooth response, we need to stop training process of neural network
control at certain point. To this end, an absolute index is considered as defined in
equation (5.40). A small positive AO will yield small overshoot when Index0 is close to

IndexSet (equation (5.41)).

Y75 Em  ooes 9% 995 10 Bees 5% 9o 5w 997 X
Time (s} x 16° Time (s) x10°
Figure 5.4 Index and IndexSet consideration

In Figure 5.4, two kinds of responses with areas A1 and A2 are shown. From this
figure, we can define Index0 and IndexSet as shown below.

A1+A2“

Index0 = IndexAbs — A = AQ (5.40)

5
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IndexSet = AIC_ A2 (5.41)

5

Where C=abs(T,,,(k)~T,,,(k-1) (5.42)

To avoid slow response, we need to tune the adaptive parameter &, online. Figure

5.5 shows the flow chart of the algorithm.

The flow chart shown in Figure 5.6 summarizes the adaptive neural network
algorithm. First we need to compute and select several specific parameters (as shown in
the chart) by the rules explained above and to initialize the weights. Then, following the
data collection and analysis the weights are updated. The data collection, computing and

decision are repeated automatically as shown in the flow chart.

Gdaptive paramet@ l
update algorithm a,(n) = ay(n—1) (1 ~ B, %)
y
Comp. IndexO&IndexSet No @
a,(n) = qv(n -1 Yes

a,(n) = 0.0001

N
SetPointChanging? o |

Yes
No
@
v Yes
=1
A10 = Index0 + IndexSet o« A1 ay(n)

A20 = Index0 — IndexSet < A2 y
By >0; 1> a,(0)>0 ( End )
Figure 5:5 Flow chart of the adaptive tuning algorithm
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1 R
[ NN Algorithm | | Collect Teera, ow, a0 | | Compute 7, 7,
I I
l Compute c;, c,Ll v I . Compute e x; ] Compute Index0,
l l IndexSet & a,
| Sel. T,' ke' Mo, ae,AOJ | Compute h,',',,‘ h,',', h,] No
| 4
LSCI Ca, 5, 40,50, R4, 5 I ICompute Otin, O11, 0|l Yes
IKCCP Wo,*, W,] ((lw=0)|
mitialize Woi, Wi, avl I Compute u, I i
I
ISel. B IndexTargetJ I Compute 014, gw ] lCom. Woi, Wij(aw=])]
l L
Figure 5.6 Flow chart of the adaptive neural network algorithm

The following initial weights w;) = way = waz = -0.5, w1 = we2 = wgs = 0.6 and

others weights close to O resulted in faster training process.

5.4 Simulation Results

The adaptive neural network algorithm should be robust to changes in system
parameters. To test the developed algorithms, the DAS system was considered as FOPDT
model. Parameters in the model were varied. To this end, twenty-seven different sets of
- parameters were used. Comparison with the classical PID control was made. The result

demonstrated that the proposed adaptive neural network control has stronger robustness

and good learning speed.

The FOPDT model is described in equations (5.43) and (5.44). It is assumed that
the original plant has @ =0.98, »=0.1278 , and /=9 with the sampling time of T, = 4s.

We consider 50% changes in the parameters in continuous time domain. Twenty-seven
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sets of parameter changes in a, b and ! were used for simulation study and these are

shown in Tables 5.1 to 5.3.

T,(k)=T, — y(k) (5.43)
0 k<l
y(k)= (544)
aylk=1)+bulk —1-1) k>1I
Par.\Set 01 02 03 04 05 06 07 08 09
a 0.9604 | 0.9604 | 0.9604 | 0.9604 | 0.9604 | 0.9604 | 0.9604 | 0.9604 | 0.9604
b 0.1265 | 0.1265 | 0.1265 | 0.253 | 0.253 0.253 | 03796 | 0.3796 | 0.3796
! 4 9 14 4 9 14 4 9 14
Table 5.1 Sets 1 to 9 of the plant parameter changes
Par.\Set 1 12 13 14 15 16 17 18 19
a 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
b 0.0639 | 0.0639 | 0.0639 | 0.1278 | 0.1278 | 0.1278 | 0.1917 | 0.1917 | 0.1917
l 4 9 14 4 9 14 4 9 14
Table 5.2 Sets 11 to 19 of the plant parameter changes
Par.\Set 21 22 23 24 25 26 27 28 29
a 0.9866 | 0.9866 | 0.9866 | 0.9866 | 09866 | 0.9866- | 0.9866 | 0.9866 | 0.9866
b 0.0427 | 0.0427 | 0.0427 | 0.0855 | 0.0855 | 0.0855 | 0.1282 | 0.1282 | 0.1282
! 4 9 14 4 9 14 4 9 14
Table 5.3 Sets 21 to 29 of the plant parameter changes

The simulation runs were made using Simulink. Two main implementation blocks
in Simulink are shown in Figures 5.7 and 5.8. Because T, and 7, change very slowly
we chose Ty to simplify the implementation in the simulation study. This resulted in a

network with 4 inputs and 4 hidden nodes. T, was set to 11°C or 13°C in the following

simulations.
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Adaptive neural network controller implementation in Simulink
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Figure 5.9 shows a sample comparison of the step responses and the performance
index values for the proposed adaptive neural network controller without (&, = 0) and

with (a, # 0) adaptive tuning property. The step responses shown in Figure 5.9 (c¢) and the
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12.5 i ’ |
6 &
< i 1 @
o i
| ot ‘,ﬁ
] i
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10 1 i A1 1 1 1 1
11996 1.1997 1.1997 1.1998 11998 1.1999 1.1909 1.2 1.2
Time (s) x 10?
80 T ¥ T T T T T
70F 7 B o - - ) .
wﬁ(O) = 0.5 wm(O) =06i=123
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60} ! e
i~ - d - 7 )
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£ . . ] . ;
40+ .
30+ .
20' AR S | "’V_ i R S | I S
1.1896 11887 1.1987 1.1898 119898 1.1998 1.199%9 1.2 1.2
Time {s) x 10?
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Figure 5.9 Comparison for the adaptive neural network control with @, = 0 and a, # 0

performance indexes depicted in Figure 5.9 (d) with adaptive tuning are superior to those

without adaptive training shown in Figures 5.9 (a) and 5.9 (b). The controller without
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adaptive tuning property could not achieve fast response for all plants. However, the
controller with the adaptive tuning property did improve step responses even in the
presence of 50% change in plant parameters (Figure 5.9 (c)) with lower index values as

shown in Figure 5.9 (d).

In the above simulations the following parametric values were used: f; = a,(0) =
0.03, @, = 12.0, c; = 5.0, k&y = 0.018, c10= 5.0, as = 1.0, c4= 0.1, c40= 5.0, 77, = 0.000747,
ke=0.05, k, =-1.2, k; =-0.0143, ks =-15.4497, ¢; = k,/ki= 83.9161, ¢4 = ka'k, = 12.8748,
A0 = IndexTarget = 16.0 and T, = 27°C. kp, ki and ks were obtained by using Cohen-
Coon tuning rules for the original plant. The results for all simulated plants indicate that
the adaptive neural network controller has the ability to minimize performance index for
all plants close to or even less than the target index. Figure 5.9 (c) and Figure 5.9 (d)

partially illustrate the results. The legends used in Figure 5.9 are defined in Table 5.4.

Plant Set 1 | g2 ] B B s ] e i7 | 8 | i
Color Green Blue . Red

N N S R N B B B

Table 5.4 Legends for different plant sets (j = 0, 1, 2)

The responses from the classical CCM-PID éontro] and the proposed adaptive
neural network control were compared for Plant Sets 1-9, 11-19 and 21-29. It was
observed that almost half of the step responses of CCM-PID control were oscillatory
(Figure 5.10(a)). On the other hand, all step responses converged in the proposed
adaptive NN control (Figure 5.10(b)). As an example, the step responses for Plant Sets
21-29 are shown in Figure 5.10. The corresponding index values are shown in Figure

5.11.
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Figure 5.10  Comparison of step responses of CCM-PID and Adaptive NN control for

plant sets 21 to 29
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In the following the impact of the initial values of wy, wg;, and AQ on training and

convergence is illustrated. Consider plant set 26. With the previous values chosen in

Figure 5.10 the step response was not fast enough. To achieve faster step response and

shorter training process, it was observed that a smaller initial value of wy; is needed. From

Figure 5.12 (a), we can see that the step response for w;{0) = -2.0 is faster than the step

response for w;;(0) = -0.5, and has less overshoot than the step response for w;(0) = -3.5.

From Figure 5.12 (b), we note that the maximum index value for w;{0) = -2.0 is the

smallest of the three. In addition, a lower value of A0 combined with w;(0) = -2.0

resulted in improved step response and lower absolute index value. Figure 5.12 (c) and

(d) show the improved responses.
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Figure 5.13 illustrates the impact of training parameter wys(0) and index target on
step responses. As shown in Figure 5.13 (c) and (d) wos(0) = 0.5 gives better performance
than wos(0) = 0.25, 0.75 and 1.0. Figure 5.13 (a) and (b) show that wys(0) = 0.5 with
IndexTarget = 20 has very good performance and can reach the index target in the chosen
simulation time. Also wos(0) = 0.5 with IndexTarget = 16 has good performance too, but

the index target is too high and hard to reach.
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Figure 5,13  Effect of wys and IndexTarget for Set 23

In the following the impact of learning rate is explored. The learning rate cannot
be too high or too low. A too high learning rate will never reach the target solution and a

too low learning rate will take too long time to get to the target solution. Figure 5.14 (a)

and Figure 5.14 (b) show that the learning parameter 7, = 0.0022 is too large for Plant
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Set 23. The learning rate 73, = 0.0022 resulted in oscillatory step response and higher
Index0 than the target value. Figure 5.14 (b) shows that 77, = 0.0003735 is too small

because the target index hasn’t been reached. However, the learning rates between 7], =

0.000747 to 0.0015 are suitable for Plant Set 23 for training because the value of Index0

is equal to or less than the index target over the evaluation time. From Figure 5.14 (c) and
Figure 5.14 (d), we can see that 77, = 0.0011 is the best choice of the three because in a

short time Index0 has already reached the target index and has faster response.
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Figure 5.14  Step responses and Index0 on effect of 7), for Set 23

Figure 5.15 shows the effect of unsuitable initial set of wys(0) and 77, on responses

and training time of the adaptive NN controller. Figures 5.15(a) - (b) show responses with
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an unsuitable initial set. However, as the training time is increased the responses

improved progressively as shown in Figures 5.15 (c) — (d). Good initial values can be

obtained from a few trial and error simulation runs.
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Figure 5.15  Step responses and Indexes with poor parameter selection for Set 23
Set 1 2 3 4 5 6 7 8 9
wii(0) -1.2 -1.2 -1.2 -0.6 -0.6 -0.6 -0.5 -0.5 -0.5
wos(0) 0.38 0.38 0.38 0.0 0.0 0.0 0.0 0.0 0.0
Set 11 12 13 14 15 16 17 18 19
wi(0) -2.0 -2.0 -2.0 -1.3 -1.3 -1.3 -0.9 -0.9 -0.9
wos(0) 0.51 0.51 0.51 0.15 0.15 0.15 0.05 0.05 0.05
Set 21 22 23 24 25 26 27 28 29
w;(0) -3.0 -3.0 -3.0 -1.9 -1.9 -1.9 -1.6 -1.6 -1.6
wos(0) 0.53 0.53 0.53 0.18 0.18 0.18 0.05 0.05 0.05

Table 5.5 Initial value selection of w;(0) and ws(0) for fast learning for different plants
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Table 5.5 shows suitable initial values of w;; and wys for several plant sets. These

initial values resulted in fast learning and better responses and these were obtained by

observing the trends from the simulation results.

The entering air temperature 740 is an input of the NN model. To study the effect

of T,o, simulations were carried out by assuming an entering air temperature profile over

a day by a sine function such as T,o(f) = 3.Qsin(Q.OOOO72722t) + 27.0 °C. This requires

choosing proper weights associated with the input T,0. To this end we chose two sets

wge(0) = 0.1; ¢4 = 0.5 and was(0) = 0.38; c4 = 0.1. In each case ¢y = 22.0 was kept

constant. The responses in Figures 5.16 and 5.17 show that the adaptive neural network

controller has the ability to respond to the effect of sinusoidal changes in the entering air
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temperature. The values of ¢4 = 0.5 and w4(0) = 0.1 were used in Figure 5.16, and ¢4 =

0.1 and w(0) = 0.38 were used in Figures 5.17. Both the parameter selections resulted in

fast léarning processes and good responses.
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Figure 5.17  Step responses with w(0) = 0.38 and ¢, = 0.1 for Set 15

In the above section, we have discussed how to select initial, control (index
and learning parameters to achieve stable step responses for the proposed adaptive neural
network control to plant parameter changes. Results between the proposed adaptive
neural network control and the classical CCM-PID control were made. Also guidelines
for selecting proper initial parameters are given. The effect of entering air temperature
was studied. The results indicate that the proposed adaptive neural network controller has
strong potential to improve robustness and performance of HVAC system. In the next

section, experiments will be conducted to verify these findings.
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5.5 Experimental Studies

To test the proposed neural network control, experiments were conducted. . The

experimental control system schematic diagram of the two-zone VAV-HVAC Test

Facility is shown in Figure 5.18.
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Figure 5.18  Schematic diagram of the VAV-HVAC system and its’ controls

The test facility is located in the Thermal Environment Control Lab of Concordia
University. In the test facility, DM1 and DM2 are damper motors that adjust the damper
position to modulate required airflow rate to zone 1 and zone 2 respectively. The
controllers C1 and C2 modulate the dampers. Chilled water is supplied to the cooling coil
(CC) from a 2-ton water-cooled chiller and a storage tank unit. The comrbller Cisusedto
control the discharge air temperature (CCOTS) of the cooling coil through the actuator V
to modulate the water flow rate. CF is the controller to adjust total airflow rate in the
system by controlling the fan motor speed and FVS is the actuator for the fan motor. The
test facility cons‘ists of several local control loops including the discharge air control loop.
A list of sensors used and their accﬁracy is given in Appendix. Figure 5.19 shows the

discharge air system.
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Figure 5.19  Discharge air temperature control system implementation

The proposed neural network controller was tested in the discharge air
temperature control loop shown above. In the discharge air temperature control system as
shown in Figure 5.19, outdoor air (OA) and room return air (RA) are mixed and filtered
before entering the cooling coil. Air entering the cooling coil at temperature (CCITS) is
cooled to the discharge air temperature (CCOTS), which should track the desired
discharge air temperature (ValSP), by modulating the flow rate of chilled water
by a motorized three-way valve controlled by the controller output (VALVE in voltage).
The airflow rate in the system is measured by measuring the differential pressure (DPS),
which is converted to airflow rate in cubic feet per minute (CFM). The other variable
names used in the experimental system are defined as follows. DAMP1 is the control
input of the damper in the duct to zone 1. DAMP?2 is the control input of the damper in
the duct to zone 2. FAN is the control input of the fan. CWSTS is the chilled water

supply temperature. CWRTS is the water temperature leaving the cooling coil. The
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measured airflow rate to each zone is DPS001 to zone 1 and DPS002 to zone 2 in MA.
To simplify the entire system, the dampers and fan were set at constant position (open

loop control). The load changes for each zone were simulated by using individual electric

baseboard heaters.

An open-loop test for the discharge air temperature control loop was conducted on
March 25, 2008. Figure 5.20 shows the test result. From the open-loop test results, we
note that the control valve exhibits dead-zone nonlinearity identified in the figure. It is
important for the controller to mitigate the effect of dead zone on the output responses of

the system. This will be discussed later in this chapter.
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Figure 5.20  Open-loop tests for chilled water flow rate to its controls

Figures 5.21and 5.23 give two example results of step responses controlled by the
proposed adaptive neural network controller. Figures 5.22 and 5.24 present the related
indexes. The full 5-5-1 neural network structure was implemented in the experimental
study using the proposed adaptive neural network controller. That is, the number of

inputs of the normal neural network controller is m; = 5 and the number of the hidden
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Figure 5.21  Step responses of the proposed controller under normal load conditions
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Figure5.22  Index evolution during step response

nodes of 'the normal neural network controller is m; = 5. To evaluate the system
performance several indexes were used in this study. The integrated square error (ISE) is
labeled as INDEX and the integrated absolute value of the error (IAE) is labeled as

INDEXabs. IndexNoAbs is the integrated error and IndexSet depends on it.

The experimental results in Figures 5.21 and 5.22 correspond to the conditions

and parameters depicted in Table 5.6.
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. CCITS | CWSTS | DAMPI DAMP2 FAN HEATI HEAT?2
Conditions e T 62c | 54V 5.8V 5V | 500wats | 875 watts
o ky k; ky ke ki i
4] 0.0005 -1.2 -0.0143 -15.4497 0.068 0.0187 0.03
" § Cy Cio Ca Cao Cs Cso A,
b 5 4.5 55 0.068 5.0 0.068 22.0 12.0
@ © o Ca ay as AQ IndexTarget
g 85.71 13.02 0.5 0.5 8.0 25.0
cer Wi W W33 Was Wss ay
—g § -0.992 | -0.968 -0.96 -0.953 -0.937 0.001
£ g Wo Wo2 wos Wo4 Wos W6
0.994 0.96 1.002 0.982 05 0.795
Table 5.6 Experimental conditions and parameter set 1

The setpoint (ValSP) was changed as shown in Figures 5.21 and 5.22. The
proposed neural network controller is tracking the setpoint changes smoothly and fast as
shown in Figure 5.21. The settling times for setpoint step-down are 151s & 144s (to
‘within 0.18°C). The settling time for setpoint—up is 164s. The maximum overshoot is
8.9%. From Figure 5.22, we can see that Index0O < IndexSet and Index0 < IndexTarget.
This meaﬁs that the neural network training process has stopped during this period. The
values of INDEX and INDEXabs as shown in Figure 5.22 are 84.68 & 75.82 and 64.75 &
55.44 respectively for step-up, and 65.01 & 65.54 and 44.72 & 45.05 for setpoint-down

changes. These results correspond to normal load conditions depicted in Tavle 5.6.

Another set of experimental results under high load conditions and parameters

defined in Table 5.7 are presented in Figures 5.23 and 5.24.

The step responses shown in Figure 5.23 are as fast as those in Figure 5.21 even
though the zone load was higher. We note that the main reason for this is due to the fact

that lower values of w;; (i = 1, 2 and 3) were used to compensate for the high load.
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Conditions CCITS | CWSTS | DAMP1 | DAMP2 FAN HEAT1 HEAT2
24.8°C | 85°C 7.4V 5.8V 32V | 1500 watts | 1000 watts
o ky k; kq k. ky B
,,;’:_.’ 0.0005 -1.2 -0.0143 -15.4497 0.068 0.0187 0.03
" g 4! €10 C4 Ca0 Cs Cso a,
E ‘5 45 55 0.068 5.0 0.068 22.0 12.0
QE, © c Ca o as A0 IndexTarget
© 85.71 13.02 0.5 05 8.0 25.0
& wi W2 W33 Was Wss Ay
:tg § -1.282 | -1.268 -1.26 1.242 1.234 0.001
£ g Woi Woz Wo3 Wos Wos Wos
0.994 0.96 1.002 0.978 0.978 0.492

Table 5.7
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In Figures 5.25, 5.26 and 5.27 the evolution of the training process is presented.
We refer to this training as training process 1. The system was started with initial weight
parameters at 9:04:12 on March 27, 2008. From Figure 5.27, we can see that the weight
parameters are changing from the initial values after 9:04:12. The experimental results
show that the settling time is decreasing for the step-up and step-down setpoint changes

as the training in progressing (Figure 5.25). The settling times for step-up setpoint

§ 200 E
"HL - =1 25.00 §
200
STy 2300 3
9.1 09:1 4 2200 Ry
Uumé - 200
Rk B 2000 3
; woo )
D 2y =
E . Bo0 5
s Jpree 2
Bow 231600 W
. 1500 2
L o
L1300 o)
1200 o
f1100 £
LU )
Laoe O
L B0
L o700 ;’é
e
pso0 &
400 g
i 300
, 200 g i
] fo1e0 &
0o ; - . Ceee =
0P D5 1D Z7/37 0008 077 & ﬁPﬁOE 12mmm Tlme U

Figure 5.25  Step responses in training process 1
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Figure 5.26  Indexes in training process 1
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changes to within 0.18°C are 440s, 307s, 246s and 237s. The settling times for step-
down setpoint changes to within 0.18°C are 285s, 233s and 261s respectively. From

Figure 5.26, we note that INDEXabs has decreased from 122.54 to 84.84 at the fourth

setpoint change.
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Figure5.27  Sample weighting parameters in training process 1

From the simulation study in the previous section it was found that by increasing
w;; values the rise time can be decreased. The experimental results in Figures 5.28 and
5.29 verify this possibility. The step responses from 14:50:45 to 15:26:40 (settling time to
within 0.18°C: 279s for step-up, 164s for step-down) are much faster than the ste;p
responses from 14:04:01 to 14:32:00 (settling time to within 0.18°C: 330s for step-up,
351s for step-down cases). The values INDEXabs (Figure 5.29) have been reduced from
83.21 to 69.73 in step-up case and from 92.86 to 50.05 in step-down setpoint case. The
performance was improved because w; was decreased (w;* = wy — 0.5) at 14:32:00.

Figure 5.30 depicts the evolution of the parameter changes (wy;).
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Figure 5.28 also shows the impact of leaning rate on the step responses. The

learning rate was changed at 13:34:00 from 77, = 0.0006 to 0.0005 (Figure 5.28). From

the step response results, it is noted that lower learning rate gives lower overshoot, and

smooth but slow step response. To reduce the settling time with lower learning rate, we

need to decrease the values of w; for i = 1, 2 and 3. Figure 5.28 presents the improvement

by decreasing learning rate and wy;.
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Figures 5.25 and 5.28 also indicate that due to the nonlinearity of the valve, the
chilled water flow rate (CWFRG) remainS constant even though valve control input is
changing. This is attributed to the mechanical dead-zone in the valve actuator system.
Even under this type of nonlinearity the neural network controller still can work properly

as shown by good responses of the discharge air control system.
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Figure 5.31  Step responses in training process 2 and for different values of FAN
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The effects of disturbances on the system responses were studied. Figure 5.33
. shows the change in fan speed control input at 19:17:06. This change caused change in
airflow rate. As a result, overshoot increased as shown in Figure 5.31. Under those
conditions the training processes was continued (Figures 5.31 and 5.32) which results in
improved and fast response even though other disturbances such as the chilled water

supply temperature and the entering air temperature were also changing on the system.
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Figure 5.32  Indexes in training process 2 and for different values of FAN

°pe : . :
L — o | DAN
o0 - : PP . T
wop; DAMPY

B

e ET O BIDR IR L 19092 AL 19 26 40 L] 1G22 00 18T A o H 170D Time

Figure 5.33  Air flow change for training process 2
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The effect of load changes were studied by conducting experiments using the

proposed adaptive neural network control (ANNC). Figures 5.34 and 5.35 present the

results. HEAT2 to zone 2 was increased from 1000 watts to about 2000 watts at 14:35:10

March 29, 2008 and decreased to 0 watts at 15:40:30. The load changes affect the

temperature of the entering air and the supply chilled water temperature as shown in

Figures 5.34 and 5.35. The increased load mainly increased the entering air temperature

(CCITS) and the chilled water supply temperature (CWSTS) in Figure 5.34 and the

decreasing the load resulted in decreasing CCITS and CWSTS (Figure 5.35).

10.60

e 2000

e 600
s 400

2600
2500
2400
2300
-
2100

1900
1800
1700
1600
| 1500

BRI
1300
| 1200
- 1100
10 00
800
60O
i 700
4 600

T uno
200
R
060

CWFRG (GPM) & CCITS & CWSTS °C & VALVE (V)

14 25 (0 32 X08 "% 3‘3 10 % 4120 1440 20 163630 T]me
Figure 5.34  Step response of ANNC to increased heat to zone 2
Results| Setpoint-down Setpoint-up
Settling time Settling time
Overshoot{ INDEX INDEXabs Overshoot| INDEX [INDEXabs
Time 0.09°C{0.18°C 0.09°C|0.18°C
14:29:37 |239s| 96s | 8.87% | 454 | 49.27 \ N X
7 7 7
ws200 | 209s|asas| 2167% | 7154 | 660
= X \ X
15:09:51 |120s|112s| 4.43% | 51.99 | 42.57 N\\ N\ \\\\ Nah
.97. 777777777 '
152729 | lac0s|243s| 2167% | 6495 | 5216
Table 5.8 Performance results of ANNC to increased heat to zone 2
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The settling times, overshoot percentages and index values under increasing load

are summarized in Table 5.8.
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Figure 5.35 Step response of ANNC to decreased heat to zone 2

The settling times, overshoot percentages and index values under decreasing load

are summarized in Table 5.9.

Result Setpoint-down Setpoint-up

Settling time. Settling time
Overshoot] INDEX [INDEXabs Overshoot] INDEX INDEXabs
Time 0.09°c|0.18°C| 0.09°C|0.18°C

15:41:04 | 6465 | 609s | 8.87% | 6504 | 66.18
wse36 ... ¥
16:18'54 | 230s[114s | 887% | se61 | 4034 11\ |\ L\ L\
L2739 |7 55|35 3054% | 8378 | 7383 |
16:40:09 | 220s | 1125 | 8.87% MBI

Table 5.9 Performance results of ANNC to decreased heat to zone 2

]

From Figures 5.34 and 5.35, we note that the system recognizes change in loads
through its training mechanism. This can be observed by noting that increased entering

air temperature caused higher chilled water mass flow rate. And a decrease in entering air
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temperature due to decreasing load resulted in lower mass flow rate of chilled water

(compare Figures 5.34 and 5.35).

The chilled water temperature is decreasing in Figure 5.34 and increasing in
Figures 5.35. However, from the two figures we may say that decreased chilled water

temperature may increase overshoot for step responses.

The air flow rate effect on the responses was also studied. Figure 5.36 shows the
effect with training control parameter set to a,, = 0 (before 17:19:21) and a,, = 1 (after
17:19:21). The damper control input DAMP2 was changed from 5.8V to 7.8V at 16:36:00
and 17:32:00 with ValSP = 14.04 (Figure 5.38). As shown in Figure 5.36, the air flow

rate change does not affect the response so much and it converges very fast.
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Figure 5.36  Comparison of response to dumper control changes for a,, =0 and a, =1

With ValSP = 12.01, the changes to the damper control input were made from
7.8V to 3.8V (at 16:55:56 & 17:47:00) and 3.8V to 5.8V (at 17:10:00 & 17:57:00) as

shown in Figure 5.38. As shown in Figure 5.36, the ANNC is able to maintain the
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Figyre 5.38  Dumper control changes for response comparison under a, = 0 and 1

discharge air temperature near the setpoint with deviations ranging as high as 0.72°C.
From the results, we may say that the robustness of the proposed adaptive neural network
controller to the air flow changes for both a, = 0 and a,, = 1 is similar, however, the

robustness to the air flow changes for a,, = 1 maybe slightly better.

The responses from the proposed adaptive neural network control (ANNC) and

CCM-PID control were compared. Figure 5.39 presents the comparisons. The results
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illustrate that the ANNC has better performance in step response but shows weaker

performance in disturbance (airflow) rejection.
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Figure 5.39
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Response comparison of ANNC and PID control to dumper control changes

Figure 5.39 shows that the ANNC has lower overshoot to step response (8.87%

for step-up setpoint change and 0.00% for step-down setpoint change) compared with the

PID control’s performance (69.46% for step-up change and 30.05% for step-down

change). In addition, the step response controlled by ANNC is much faster than the step

response controlled by the PID control.

The settling time and index magnitude comparisons between the two controls are

summarized in Table 5.10.

Settling time

Setpoint . > INDEX INDEXabs
. . 0.09°C 0.18°C
direction

ANNC | PID | ANNC | PID | ANNC| PID | ANNC | PID
Step-up 305s | 543s | 174s | 407s | 75.82 | 92.35 | 55.44 | 76.35
Step-down 162s | 249s | 144s | 224s | 65.54 | 57.77 | 45.05 | 48.27

Table 5.10 Comparisons between ANNC and PID control
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The experimental results with airflow changes were compared between the
proposed ANNC and CCM-PID control. With ValSP = 12.01, damper settings were
changed from 5.4V to 7.4V (at 20:09:52 & 21:53:33) and 7.4V to 3.4V (at 20:31:4 &
22:01:14). As shown in Figure 5.39, the ANNC is able to maintain the discharge air
temperature near the setpoint with deviations ranging as high as 1.23°C. The values of
TAE were 40.67 (ANNC) & 12.34 (PID) when damper control changed from 5.4V to 7.4V
and 83.35 (ANNC) & 57.29 (PID) for the change from 7.4V to 3.4V. The PID control
gives a better performance to air flow changes than ANNC in this case, but resulted in
higher overshoot. As a result, if we need to improve the disturbance (airflow changes)
rejection ability of the ANNC, it may be necessary to add the airflow rate as a new input

to the ANNC.

In this section, we have presented the experimental performance results of the
proposed neural network controller. The potential abilities of the ANNC were illustrated.
The comparisons between the ANNC and PID control were made. It is clear that the
ANNC has better step response performance in most cases. The robustness to air flow
changes for the ANNC may be not better than PID control in some cases. Some
experimental results show that good weight selection will give better performance right

away.
5.6 Summary

In this chapter, a new adaptive neural network controller with implementable
learning rules is developed. Guidelines for initializing the weights are proposed. Through

simulation studies, the robustness of the proposéd ANNC to wide range of plant paramter
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changes are verified by comparing the results with the classical (CCM) PID controller.
The simulation studies also indicate that fast and smooth step response can be achieved
by ANNC. In addition, it is shown that if the selected weights are suitable the training
process could be shortened; but, if the initial weight values are not good enough the
training process could be very long. Experimental studies were conducted. The fastest
step responses controlled by the ANNC with no overshoot are shown in Figure 5.23 with
the settling time of 152s to reach within 0.18°C for step-down setpoint change, and the
119s for step-up setpoint change. The experimental results show that the stable step
responses controlled by the ANNC can be achieved in a wide range of. operating
conditions. Comparisons with PID control were made. The results bindicate that the
proposed ANNC has smooth, fast and less overshoot step résponses compared to the
CCM-PID control. The experimental also showed that the proposed ANNC was less
responsive than the CMM-PID control in the airflow disturbance rejection. This result
indicates that it is necessary to add airflow rate as an input for the ANNC. It was found
that with a suitable set of the weight values faster training and better control performance

can be achieved.
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6. Online Adaptive Two-loop Pl Control Strategy

In this chapter, the application of adaptive control strategy for zone temperature
control in HVAC systems will be described. An online adaptive two-loop control strategy

for VAV systems will be developed.

In modern HVAC systems, VAV control is more popular because of its energy
saving potential, however it also induces interaction between zones airflow rates and
contributes to uncertainty in plant parameters. Therefore, the airflow regulation in VAV
systems causes difficulty in maintaining zone temperature. To adapt and compensate for
the interaction and uncertainty in the VAV control system, an on-line adaptive PI&PI
controller (a_ two-loop PI control structure) for zone temperature control is proposed in
this chapter. The plant model consists of a two first-order plus dead-time (FOPDT) series
models and the interconnecting variable is the airflow rate (or velocity pressure) that is
measurable. The proposed controller is implemented by simulation and also on a real
VAV system. The system with the proposed controller has both stronger robustness to
parameter changes and good disturbance attenuation. At the same time, it makes VAV
control much simpler because the velocity pressure set-point or“the airflow rate request is

automatically updated following the load changes.

6.1 Introduction

Typical airflow regulation in zone temperature controls of HVAC systems
includes pressure independent control and pressure dependent temperature control. In the

pressure independent control, it is easier to get a stable airflow response but zone
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temperature set-point may not be satisfied because of plant uncertainty. In contrast, in the
pressure dependent temperature control zone temperature sei—point can be reached but
pressure disturbance effect remains for long time resulting in a slow response. In
in multi-zone systems operating in VAV or VAV-VT mode, a damper position change or
a fan speed change for a new airflow requirement of a zone will affect the other zones’
airflow as a result of pressure disturbance. These limitations of the typical airflow

regulation in zone temperature controls will be addressed in this chapter.

To have both stronger robustness to time-varying thermal loads (reflected in
parameter changes of the plant model) and lower sensitivity to airflow rate changes into

other zones (disturbance effect), an on-line adaptive PI&PI controller for a VAV-HVAC

‘system will be developed.

6.2 Typical Airflow Regulation

In this section, first the limitations of the typical airflow regulation in zone

temperature controls of HVAC systems will be described by examples.

6.2.1 Pressure Independent Zone Temperature Control System
An example of the classical pressure independent zone temperature control
system is shown in Figure 6.1. In the system, T}, is the zone temperature with zero

airflow rate to the zone and L is a constant that relates the temperature difference

between T, and zone temperature and the airflow rate in the supply duct. The functional
block Cq(z) is a PI controller. G,(z) 1s the transfer function between damper control
cutoff input for minimum airflow rate and difference between supply airflow rate output

147



and the minimum airflow rate. This relationship can be considered as first-order plus

dead-time model. Q,., is the minimum airflow rate to the zone and D is a disturbance to
the airflow rate in the supply duct. The function G,(z) is the transfer function between
airflow rate in the duct to the temperature difference between T, and zone temperature
T,. This process is also considered as a first-order plus dead-time model and its’ dead-
time will be longer than the dead-time of G,(z). The combination of G, (z) and G,(2)

constitutes a two FOPDT series model and the airflow rate is assumed to be measurable.

. D
sz’ Qse: ' — Tz
‘_P?—*' L TD(?—O Cq(Z) > Gq(:) + P GI(;) ——’?—*
to * - * Qmin T:O *
Figure 6.1 A classical pressure independent control for zones
The plant models are
0.012 o]
G, ()= 272, G.()= 27 6.1
! z—0.88 ‘ z-0.99

with sampling time of 4s. A maximum airflow rate of 0.0944 m’ /5 (200 cfm) to the zone

is assumed. Considering the minimum airflow rate as 40% of the maximum airflow rate,
we have Q. =0.0378 m’/5(80 cfim). From the steady state analysis, we have

Lx]irrllGZ(z)——‘l, that is L =0.01. Using the adaptive PI control strategy (Qu et al.,

for the interior control loop and the H_ PI tuning rules (Qu et al., 2004) for Cq (2), the

system was simulated in Simulink environment as shown in Figure 6.2. A saturator is

added to limit the control inputs from exceeding the capacity constraints. In the following

simulations, we consider that T,, =30 °C and T, =23 °C for t >5000s from 24 °C .
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Figure 6.2 Simulation structure for independent pressure control
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To show the limitation of the pressure independent control, we choose 0.101%
change in the G,(z) pole value. The simulation results show that for constant L the zone

temperature will shift from the original zone temperature response. The results are shown

in Figure 6.3. The plot 1 is the original zone temperature response; the plot 2 is the
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Figure 6.3 Sensibility to parameter changes in the independent pressure control
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response with 0.101% decrease in the G,(z) pole value and the plot 3 is the response
with 0.101% increase in the G,(z) pole value. Even though we can update the value of

L by using the information from the plant G,(z), we still cannot guarantee that the zone
temperature will follow the set-point in a real system because 0.101% or more error or

uncertainty in parameter estimation usually exists in real systems.

In spite of this, the pressure independent control has good airflow rate (or pressure)
response and shows good disturbance reduction. The simulation results in Figure 6.4
show this property of the pressure independent control. The plot 1 is the response without

disturbance. The plot 2 is the response with a negative disturbance (25% of maximum
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Figure 6.4 Airflow rate disturbance effect reductions in the independent pressure

control system
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airflow rate) that started at 7500s and the plot 3 is the response with a positive
disturbance (25% of maximum airflow rate) that started at 7500s. The good airflow rate
(or pressure) disturbance rejection comes from the control loop structure because the

controlled variable in the control loop is the airflow rate.

6.2.2 Pressure Dependent Zone Temperature Control System

As it is well known, the pressure dependent zone temperature control system is
different from the pressure independent control in terms of the choice of the controlled
variable. The controller in the pressure independent control system controls airflow rate
(or pressure) signal, in contrast the controller in the pressure dependent control system
directly controls the zone temperature. The system diagram for the pressure dependent

control is shown in Figure 6.5.

1y _ T,
" C.(2) » G(2) —
- +
L,
Figure 6.5 A classical pressure dependent control for zones

Considering the same plant as in Equation 6.1, the combination G,(z) and G (2)

results in a longer delay that equals to the sum of the both dead-times. Because the pole

value of G,(z) is very close to 1 than the pole value of G,(2), that is, the pole of G,(z)

is critical in the combination, we consider that the combination model is also FOPDT in
order to facilitate the use of the online adaptive PI control strategy. With this
consideration, the simulation structure for the pressure dependent control system in

Simulink is constructed as shown in Figure 6.6,

151



in1

ut I I :I
! - u; 1
n2 Outt y] ] l m
in3 -

Pl

Int Oull & D
Gz(2) Tz

Tlo .

. TzToWS
E I—-> =
uTo WS 5 2
In2 Outt
atand bt
n3 = Pint Outt

Identifier

{00

n2 ou2
Tuner
Digitai Clock tTo WS
Figure 6.6 Simulation structure in Simulink for the pressure dependent control

As in the previous section, to study the sensitivity to parameter variations, we
choose 0.101% changes in the G, (z) pole value. The simulation results show that the
pressure dependent control system is robust to changes in magnitude of G,(z) pole value
than the pressure independent control system. The reason is tﬁat G,(2) is in the inside
corﬁro] loop and the zone temperature is the controlled variable. Thé results are shown in
Figure 6.7. The plot 1 is the original response that is stable and shows fast and good
setpoint tracking. The plot 2 is the response with 0.101% decrease in the G,{z) pole
value and the plot 3 is the response with 0.101% increase in the G,(z) pole value. These

are almost the same as the plot 1.

However, the pressure dependent control system is not good in rejecting effect of
disturbances in the airflow rate (or pressure) as the pressure independent control system
does. In the simulation test, a 25% maximum airflow rate disturbance (increase or

decrease in airflow rate) is added to the airflow rate at 7500s, the responses are

152



% T ! ! i ;
: : ’ i ——— ! plot1
: o plot 2
: L mmeee plot 3
—~ 24 i
[$]
o
@
3
o
235 —
Q
£
@
-
]
o
O
N2
22 I il I i 1
4000 5000 6000 7000 8000 9000 10000
Time {Sec)

Figure 6.7 Sensibility to parameter changes in the pressure dependent control

converging. But, these are not converging fast enough. These results are shown in Figure
6.8. The plot 2 shows the response has 0.6 °C maximum offset when the airflow rate is
decreased, and the plot 3 shows the response has 0.55 °C maximum offset when the

airflow rate is increased.

As a result, both of the typical airflow regulation strategies currently used in zone
temperature controls in HVAC systems have limitation in terms of robustness to
parameter changes or airflow rate disturbance rejection. To improve this limitation a two
loop control strategy to improve robustness to parameter changes and the airflow rate
disturbance rejection is proposed. This is a new control structure for airflow regulation in
zone temperature controls of HVAC systems. The detail will be discussed in the next

section.
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Figure 6.8 Airflow rate disturbance effect reductions in the pressure dependent control

6.3 Adaptive Two-Loop PI Control Strategy

To achieve good zone temperature control, robustness to parameter changes and
good airflow rate disturbance rejection, an adaptive two-loop PI control structure is

proposed as shown in Figure 6.9.

In the proposed adaptive two-loop PI control system, there are two controlled

variables (airflow rate and zone temperature) and the sub-plant G,(2) or Gq(z) is in the
inside loop. Cq(z) is a PI controller of the interior loop that maintains airflow rate Q (or
pressure) to track the airflow rate setpoint Q,,,. The airflow rate setpoint is updated by

- C,(z) that is also a PI controller in the outer loop to maintain the zone temperature T,
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close to T, . In addition, the element F is a factor that can be used to adjust the

response speed of the outer control loop and give added flexibility to the zone
temperature control system in commissioning. In the control structure, Q-Identifier and

T-Identifier are the identifiers for the interior and exterior sub-plants respectively. The PI

parameters of C,_(z) and C,(z) are updated by Q-Tuner and T-Tuner respectively.
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Figure 6.9 Adaptive two-loop control structure for zone temperature controls

6.3.1 Equal Consideration of the Interior Loop for the Exterior Loop

In most zone temperature control systems, the G,(z) pole value is very close to 1
compared to G_(z) pole value. In addition, in most control -Ioops the closed loop
response will be faster than the open loop response, that is, the bandwidth for the closed
loop transfer function will be larger than the bandwidth for the open loop transfer
function. Therefore, the bandwidth of the interior closed loop transfer function is very
large compared to the bandwidth of the G,(z) transfer function. This means that the
interior closed loop transfer function may be considered as constant within the bandwidth

frequency of G, (z) for the adaptive two-loop control system. As a result, the PI controller
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C,(z) can be designed by considering FOPDT model for the plant as well as for the PI

controller C, (z).

Applying the above concept to the adaptive two-loop control system, and using
the H_ PI tuning rules (sampling time of 7 =4s), we obtain the interior PI controller

given by C, (z) =13.8041 +0.4491 gi}
Z~_.

Figure 6.10 shows the bode plots of the interior closed loop transfer function, the
transfer function G, (2) and the transfer function G_(z). It shows that within the

bandwidth of the transfer function G_(z) the interior loop transfer function becomes

Bode Diagram
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Figuré 6.10  Bode plots of G,(2), Gq(z) and the interior closed loop transfer function
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almost a constant one. Therefore, for F =1, we can say that the PI controller C,(z) can
be designed by considering a plant with FOPDT model as well as the PI controller C_(z) .
In other words, we can consider G,(z) as an FOPDT plant to design the PI controller
C,(z) by directly using the H_, PI tuning rules, likewise design the PI controller C,_(z)

by considering G, (z) as an FOPDT plant.

6.3.2 Simulation Results for the Adaptive Two-Loop Control System

From the above discussion, the inner closed control loop function with faster sub-
plant is constant within the bandwidth of the function for an outer slower sub-plant. This
means in the outer closed loop design the inner closed loop function can be considered as
a constam.’Therefore, the outer cloéed loop control structure becomes the same as the
inner closed loop control structure. From reference (Qu et al., 2004), the H_ PI tuning
rules and the adaptive PI control strategy can be applied to the FOPDT plant through a
closed PI control ]oép. To this end, the simulation in Simulink for the adaptive two-loop

control system for HVAC systems can be implemented as shown in Figure 6.11 and the

PI parameters of C,(z) and C,_(z} can be updated by the H_, adaptive P tuning rules.

In the simulation, two saturators are also considered to maintain system capacity
constraints. In order to show the improved performance compared with the typical

airflow regulation methods discussed before, simulation runs were made with F = 0.7.

Through analysis, it can be noted that FC/(z) updated by the H_ adaptive PI tuning

rules is the same as the simplified optimal control algorithm with 0,=1/F.
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Figure 6.11  Simulation structure for the adaptive two-loop control system

Figure 6.12 shows the simulation results for 0.101% changes in the G,(z) pole

value. The plot 1 is the original response that is stable and is following the setpoint faster.
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Figure 6.12  Sensibility to parameter changes in the adaptive two-loop control system
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The plot 2 is the response with 0.101% decrease in the G,(z) pole value and the plot 3 is

the response with 0.101% increase in the G,(z) pole value. These are almost the same as

the plot 1. Comparing these results with the results in Section 6.2.2, we note that the

adaptive two-loop control system has stronger robustness to parameter changes as the

pressure dependent control system does and more smooth responses than the pressure

dependent control system.

Figure 6.13 shows the airflow rate disturbance rejection for the adaptive two-loop

control system. The plot 1 is the response without airflow rate disturbance. The plot 2 is

the response with a negative disturbance starting at 7500s and the plot 3 is the response

with a positive disturbance. The disturbance is 25% of maximum airflow rate. The
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controller gives good airflow disturbance rejection similar to the pressure independent

control system.

The results depicted in Figures 6.12 and 6.13 show robustness to parameter
changes of the plant and good airflow disturbance rejection are obtained in the adaptive
two-loop- control system. Also the zone temperature is maintained close to the setpoint
because of the PI controller used in the zone temperature control loop. However, in ordef
to implement the two loop control one must choose F . In the next section, guidelines on

the selection of F are given.

6.4 Selection of the Factor F

As mentioned in section 6.3.1, the inner closed loop can be considered as unit
(linearity) within the bandwidth frequency of G,(z). But, the saturator in the inner loop
could violate this situation. However, by reducing the maximum input value to the inner
loop it may be possible to hold the linearity condition to be true most of the time. The
factor F achieves this function in reducing the maximum input value of the inner closed

loop by choosing a positive value less than one.

If we assume that the parameters of the controller C,(z) updated by the H_
adaptive PI control rules to the Sub—plant G, (2) are K, and K}, then we can write

K,=FK,, K,=FK, (6.2)

prl? irl

This is a new optimal result for the selected weighting value Q, =1/ F which can be
shown through analysis. Therefore, a smaller value of F will slow down optimal zone

temperature response. The adjustable value of F gives us an additional degree of
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freedom to satisfy the linearity condition for the inner closed loop. The simulation results

in Figures 6.14 and 6.15 show the effect of the factor F .

In the above two figures, the plot | is with F =1; the plot 2 is for F =0.7 and
the plot 3 is with F =0.5. As show in the figure, higher value of F displéys the longer
nonlinearity effect and causes a bigger overshoot. However, a smaller value of F has
smaller nonlinearity effect and gives a better response. Therefore,b in real systems, with
few trials we can get a suitable value of F to achieve good responses using the adaptive

two-loop PI control strategy.

6.5 Load Following Property of the Two-Loop Control

Parameter changes in the FOPDT model G,(z) reflect the load changes that
require corresponding changes in airflow rate in VAV system. That is, the load changes

require updating O, in the adaptive two-loop control system.

Online dynamic load changes are extremely difficult to predict. However, in the
adaptive two-loop control system the dynamic load changes will lead to O, changes
automatically through the temperature controllerC,(z). Therefore, we only need to

consider the maximum airflow rate and the minimum airflow rate for each path in the

adaptive two-loop control system design.

The simulation result in Figure 6.16 shows the load following property of the

adaptive two-loop control system. The plant model remains the same as given by

Equation 6.1 up to 7500s and at this point the G (z) pole value is changed to 0.991 as
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shown in the first plot in Figure 6.16. The new required airflow rate (,, changes

automatically following the parameter change. In the meantime, the zone temperature is

maintained to converge to the set-point.
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Figure 6.16  Response to the parameter change (load change) in the adaptive two-loop

control system

Now, we repeat the simulation with the above mentioned conditions for the

pressure independent control system. Figure 6.17 shows that the zone temperature with

the change in pole value cannot be maintained close to the setpoint, because O,

set

does not

follow the parameter change as the load changes in the pressure independent control
system. Comparing the adaptive two-loop control system and the pressure independent

control system, it is clear that the adaptive two-loop control system has the property of
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automatically adjusting Q,,, value according to the load. This property makes the VAV

implementation simple and effective.
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Figure 6.17  Response to parameter change in the pressure independent control system

As discussed before the pressure dependent control system has strong robustness

to parameter changes. Therefore, the zone temperature can be maintained to converge to

the set-point even though the load changes. However, the airflow rate change in the

pressure dependent control system is not smooth as compared to the adaptive two-loop

control system. The result is shown in Figure 6.18. The plot 1 is the responses for the

two-loop control system and the plot 2 is the responses for the pressure dependent control

system.
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6.6 Implementation in a VAV Test Facility

parameter change (load change)

The adaptive two-loop control strategy was tested in a two-zone VAV-HVAC

Test Facility shown in Figure 5.18. The test facility is located in the Thermal

Environment Control Lab of Concordia University. In the test facility, DM1 and DM2 are

damper motors that adjust the damper position to achieve airflow rate to zone 1 and zone

2 respectively. The controllers C1 and C2 modulate them individually. The output of the

controllers is updated by using the two-loop control strategy depending on the zone

temperature (ZT1 or ZT2) and the velocity pressure in the supply air duct (PS1 or PS2).

Here, the velocity pressure is considered to be the controlled variable directly. Chilled

water is supplied to the cooling coil (CC) from a 2-ton water-cooled chiller and a storage
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tank unit. The controller C is used to control the discharge air temperature of the cooling
coil (CCOT) through the actuator V to modulate the watér flow rate. An automatically
operated open-loop fan motor speed control is used to adjust total airflow rate in the
system. CF is the controller and FVS is the actuator for the fan motor. The output of the
controller CF is

FAN =k, 0, ()+c (6.3)
where, i is zone indicator and k is a coefficient that relates to the airflow rate requirement
in the VAV system. The coefficient k, can obtained by Equation (6.3) with ¢ = 0 and the
required airflow rate values for all zones supplied by FAN. The coefficient k, was
determined by letting the dampers in full open position for each zone (open-loop test). In
the two-zone VAV-HVAC Test Facility, i=lor 2. In addition, we obtained

k, =10.5944 V/(m’/5s) and selected ¢ = 0.4 V. The maximum control value of the fan

is FAN =2.8 V. The control strategy improves zone temperature regulation under a

wider range of the load changes.

Experiment was done on the two-zone VAV-HVAC Test Facility. The
experimental results are shown in Figures 6.19, 6.20, 6.21 and 6.22. The discharge air
temperature was maintained at 12 °C. The zone load was simulated by using two electric

heaters.

The plant models require an estimate of the dead times which were obtained by
conducting open-loop tests. The obtained dead time was about 3s for the dynamic
process from the damper actuator to the velocity pressure (the airflow rate measurement)

and the dead time was about 36s for the dynamic process from the velocity pressure to
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the zone temperature. Using these dead times, the RLS algorithm with a matrix-reset

technique developed in Chapter 3 was used to implement the online identifications of the

processes in each zone.

The implementation also requires an estimate of T,, for each zone which is

somewhat difficult, but the temperature of the air entering the cooling coil (CCITS) is the

closest one can select. Therefore, we use CCITS as substitute for T,, in computing the

dynamic output of the process G,(z) in the parameter estimation. During the experiment,

sampling times of 1s for the interior loop and 4s for the exterior loop were used.
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Figure 6.19

Zone temperature response and velocity pressure setpoint for zone 1

In Figure 6.19, ZTS001 is the zone temperature setpoint and RTS001 is the

measured value of the temperature for the zone 1. D1SP is the velocity pressure setpoint
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(related to zone temperature setpoint and zone load) in the duct connected to the zone 1.
The figure shows that the temperature setpoint changes the velocity pressure
consequently; the airflow rate changes steer the zone temperature to track the setpoint.

Zone 1 temperature shows good response with F(1) =0.6667even though the fan control

input is changing as shown in Figure 6.20.

Zoue 2 Temperature (°C)
Fan Input (V) / Zone 2 Velocity Pressure Setpoint (MA)

oo
+
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1720003192005 1729110 ST38:20 74730 125640 180556 121500 1828150 163326 184230 Time

= ZT3002 DEG.C * RTS002 DEG. C e FANV « D2SP MA

Figure 6.20  Zone temperature response and velocity pressure requirement for zone 2

and fan control

Zone 2 temperature responses are depicted in Figure 6.20. The airflow setpoint

Q,,, was calculated by the following equation.

0..() =1.29A,/0.1x(DisSP —4)/16 m’ /s (6.4)
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where, i =1 or 2 and A=0.03097m° the duct area.

In the experiments the factor F (2)=1 was used for the zone 2. The experimental

results in Figure 6.20 show that because of high cooling load in zone 2, the zone 2
temperature decreases slowly.
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Figure 6.21  Velocity pressure response and airflow rate for zone 1

From the experimental results in Figures 6.21 and 6.22, we note that the selection
of F for the both zones did cause saturation of the damper (10V actuator input for
dampers) and good tracking was achieved through velocity pressure control (or airflow
rate control) for both zones. However, the saturation time of damper opening was very
short, so we can say that the selected F values for both zones were acceptable. In Figure

6.21, DPS001CFM, DAMP1, DISP and DPS001 are the airflow rate, the control input of
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the damper, the velocity pressure setpoint, and the velocity pressure sensor measurement
respectively in the zone 1 duct. FAN is the fan control input. DPS002CFM, DAMP2,
D2SP and DPS002 in Figure 6.22 are the airflow rate, the control input of the damper, the

velocity pressure setpoint, and the velocity pressure in the zone 2 duct.
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Figure 6.22  Velocity pressure response and airflow rate for zone 2

The experimental results show that the interior loop is very fast compared the
exterior loop and the adaptive two-loop PI control strategy is well suited for VAV-HVAC

systems.

Keeping the airflow rate between the minimum and the maximum range is
essential in the VAV systems to maintain good air quality. By applying upper bound and

lower bound limits for the velocity pressure setpoint O, we can achieve this
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The following experimental results (Figures 6.23, 6.24, 6.25, 6.26) show the application
of the adaptive two loop control system in maintaining airflow rate within the chosen

high and low limits.
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Figure 6.23  Zone temperature i'esponse 2 and velocity pressure requirement for zone 1

From Figure 6.24 it is noted that the upper bound (210CFM) was reached for
certain times. The zone temperature responses to change in setpoints are shown in
Figures 6.23 and 6.25 together with corresponding airflow rates. Similarly, Figure 6.26

shows that the lower bound (80CFM) was reached over short intervals.
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Figure 6.24  Velocity pressure response 2 and airflow rate for zone 1
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Figure 6.25  Zone temperature response 2 and velocity pressure requirement for zone 2
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Figure 6.26  Velocity pressure response 2 and airflow rate for zone 2

6.7 Summary

This chapter has presented an online adaptive PI&PI controller for a VAV-HVAC
system. The system performance was evaluated through simulations and experiments.
The results show that the PI&PI controller gives good zone temperature setpoint tracking,
is able to reject pressure disturbances and is robust to load changes compared with -

classical airflow regulation controls in VAV systems. The controller parameters for both

interior and exterior loops can be directly updated by using the H_, PI tuning rules.
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7. Conclusions and Recommendations

7.1 Conclusions

The conclusions drawn from the four major contributions of this thesis, namely
’ development of, (a) a modified RLS algorithm, (b) on-line optimal control with He,
tuning rules, (c) an adaptive neural network strategy and (d) an online adaptive two-loop

PI control strategy are summarized below.
A. A modified RLS identification algorithm

A modified RLS identification algorithm with the matrix-reset technique for
online identification of the FOPDT system parameters is developed, which is a useful
tool for the adaptive controls developed in this thesis. The specific conclusions from this

contribution can be summarized as the follows.

1. Numerical instability in the previous RLS algorithm (Franklin, 1997; Qu, 2002)
may cause absolutely wrong identification results in some cases. Through analysis
it was shown that some equations in the RLS algorithm don’t guarantee that all

elements in P(k+1) with their absolute values don’t go to infinity (infinity
problem) and there still exists é(k+l) = é(k)if P(k) =0 for the FOPDT system
(incorrect identification problem) even for y(k +1) # 7 (k + l)é(k) .

2. To solve this problem it was proposed to keep LowValue< P, <UpValue (where
P, =P+ P,g +P;+ Pj3) and |g(k+1)|>& to do the identification for a FOPDT

system. This strategy was implemented by developing the matrix reset technique.
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3. Simulation results show that the identification algorithm (for ¥=1 and @ =)
with the matrix reset technique is able to track changes in the system plant
parameters rapidly and gives improved results compared to the ordinary least

squares (a = y = 1) and some exponentially weighted least squares (& =1~7% and
0 <y <1) techniques. The use of existing identification algorithms (without the
matrix reset technique) frequently lead to infinity problem (IPLY2| =Inf ),

consequently require interruption of online simulations. The matrix reset
technique avoids such interruptions and gives reliable results.

4. The experimental results show that the modified RLS identification algorithm
with the matrix reset technique can be implemenled' in building EMC systems and
is éimp]e (without the need of using an‘ matrix P), reliable and stable for

identification in an adaptive control system.
B. An on-line optimal control with H,, tuning rules

By describing the dynamics of a discharge air system (DAS) using a FOPDT
model, an online optimal control algorithm combined with the H. tuning rules was
developed. Some specific conclusions are summarized below. |

5. The optimal control problem for DAS was formulated and solved. It was shown
that the optimal control consists of PI-FF control structure, that is,

(k) =K x(k) = Ko (T, =T,y

6. In the discharge air temperature cooling control system, it was found that better

temperature responses were obtained with smaller weight value of Q, weighting
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factor during setpoint step-up mode of operation and somewhat higher @, values
were found to give better responses during the setpoint step-down mode.

7. For the considered plant, it was found that a reduction factor of 0.85 and Q2-down
= 0.4 for the OTA-VP gave results that were close to the optimal results.

8. The developed tuning rules were tested using computer simulations in an adaptive
control system. The simulation results show that the proposed OTA and OTA-VP
with the near optimal parameters is able to track changes in discharge air
temperature setpoints efficiently and to reduce the effect of changes in system
parameters significantly.

9. The simulation results show that OTA-VP and OTA have improved performance
in disturbance rejection compared with the H, tuning rules and the Ziegler-

Nichols method.

Reliability of a control system in real applications sometime relies on its control’s
simplicity because simple control algorithm will reduce human error. The developed
simplified optimal control algorithm is the simplest one. Some specific conclusions for

this contribution are summarized below.

10. It was shown that by setting 21 ,(I) = 1, hpy(D) = 0, hy2(1) =0, hpp() = 1,and a = 1

bg,, K ~ 2bc,

, Ky = and Krpr= 0.
1+a)Q,”  “ (+a)Q,

the online optimal tuning rules yield K , =

The simplified optimal control algorithm is simple and easy to implement. It was
also shown that for O, =1, the optimal tuning rules converge to H.. PI tuning rules.
11. The simplified optimal tuning rules were implemented on Concordia University’s

heating coil system. The results show that with O, = 0.6993 the adaptive PI
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control system had improved response (the maximum offset is less than 0.4°C and
the offsets on both sides of setpoint are balanced) compared with the original PI
control response (the maximum offset was great than 1.6°C and the offsets on
both sides were unbalanced).

12. The experimental results on the discharge air temperature control in the HVAC
test facility s}howed that by adjusting the weight parameter ( in the simplified

optimal control algorithm improved step responses were obtained.

C. Adaptive neural network control strategy

In contrast to the online optimal control algorithm which requires identification of
the model parameters, a new adaptive neural network controller with implementable
training rules is proposed, which is a model free method. The specific conclusions from

this contribution can be summarized as the follows.

13. An adaptive neural network controller (ANNC) is constructed by augmenting PID
control with a neural network control algorithm.

14. Simulation results show that with a suitable set of initial values the training
process could be very short for a fixed plant; but, if the initial weight values are
not good enough the training process could be very long. Also, decreasing the
initial values of w;;(0) decreases the rise time and increasing the initial value of
woe(0) can reduce overshoot.

15. The fastest step responses of the ANNC recorded were as follows: the settling
time of 152s to within 0.18°C for a 2°C step-down setpoint change, and the

settling time of 119s to within 0.18°C for a 2°C step-up setpoint change.
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16. The experimental results demonstrated that stable step responses by the ANNC
were achieved over a wide range of operating conditions.

17. The output responses from the PID and ANNC control were compared. The
results show that the proposed ANNC has very smooth, fast and less overshoot
step responses compared with the CCM-PID control.

18. The experiments showing the disturbance rejection to the airflow rate changes
were made. The results show that the proposed ANNC may be not as efficient as
the CMM-PID control in the disturbance rejection to the airflow rate changes.
This shows that it may be necessary to add airflow rate as input to the ANNC to

improve the disturbance rejection property.
D. Online adaptive two-loop PI control strategy

For zone temperature controls in a VAV-HVAC system, an on-line adaptive
PI&PI controller is proposed. The system performance of the proposed controller was
evaluated through simulations and real applications. Some specific conclusions for this

contribution are summarized as follows.

19. The limitations of the typical airflow regulation in zone temperature controls of
HVAC systems were illustrated with examples. The simulation results show that
the classical pressure independent control results in offset in tracking the zone
temperature setpoint, but has stronger robustness to airflow rate (or pressure)
disturbance effect. The classical pressure dependent control for zone temperature
control system is not good in rejecting the effects of airflow rate (or pressure)

disturbance, but has stronger robustness to the parameter changes.
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20. The simulation results show that the proposed two loop PI&PI controller has

21.

improved the zone temperature setpoint tracking property, better attenuates the
pressure disturbance effect and is robust to load changes compared to the classical
airflow regulation controls used in VAV systems.

The experirhenta] results showed that the proposed on-line adaptive PI&PI

controller is tracking airflow rate requirement very quickly and is robust; and the

zone temperature setpoints were reached while satisfying the minimum and

maximum airflow requirements.

7.2 Contributions of This Study

The main contributions of this thesis are summarized below.

A modified RLS identification algorithm with Matrix-Reset Technique for online
implementation is proposed. It guarantees that the identification works properly

under all possible operating conditions by adopting a matrix-reset technique.

A new optimal control for FOPDT system augmented with improved robustness
is developed.

Changes in FOPDT model parameters in HVAC systems require strong
robustness property in control design. To achieve this requirement a new optimal
control for FOPDT system combined with H_ tuning rules (Qu & Zaheeruddin,
2004) is developed. This control improves the ability in rejecting the effect of

changes in system parameters.
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3. To develop implementable, simple control algorithm with stronger robustness
properties, a simplified optimal control algorithm is proposed. The characteristics

of this algorithm are verified by two adaptive control applications.

4. An online intelligent control strategy with the integration of adaptive control,
neural network control and PID control is developed for local controls of HYAC
systems. Simulation and experimental results show that the proposed control
strategy has stronger robustness, improved regulation and tracking functions for

FOPDT type plants compared to classical PID controls.

5. An online adaptive two-loop PI control strategy (PI&PI) for multi-zone systems is
developed. It is combined with classical two-loop structure and H_ tuning rules
and achieves good zone temperature control, robustness to parameter changes and
good airflow rate disturbance effect reduction compared to classical multi-zone

controls.

7.3 Recommendations

The results described in this thesis are useful for real implementation of adaptive
local loop controllers in HVAC systems. In order to extend these methods to buildings

with a large numbers of control loops, the following recommendations are made.

1. Develop implementable supervisory control strategies for the entire HVAC
control system in which all control loops can be simultaneously tuned.
2. Conduct more real building experimental tests with the developed control

strategies.
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Appendix

Variable
Sensor type Sensor range Accurac Output signal
P measured & y P &
o +0.5F (+0.3°C)

RTD Temperature 55~95F (13~35°C) +0.12% Ohms (1k max)
RH Relative humidity 0~99% +2% 4~20 MA
Pressure Pressure 0~0.1" WG +1% 4~20 MA
transducer
Water fl Chilled fl

ater flow iled water flow 0.5~6 gpm +2% 420 MA
meter rate

Table A.1 Specifications and accuracy of the sensors used
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