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ABSTRACT

Online Adaptive and Intelligent Control Strategies
for Multizone VAV Systems

Guang Qu, Ph.D.

Concordia University, 2009

Nearly one half of the total energy used in buildings is consumed by HVAC

systems. With escalating cost of energy, several energy efficiency strategies have been

implemented in buildings. Among these, the use of VAV systems, and improved method

of controlling such systems have received greater attention.

This thesis is devoted to design and development of online adaptive control

strategies which will be augmented with optimal and intelligent "control algorithms. The

considered VAV system consists of zone air temperature control, discharge air

temperature control, water temperature control and air pressure control loops. Online

adaptive control strategies are developed for these control loops.

In order to design reliable online controls a robust RLS identification algorithm

for estimating the parameters of the modeled processes is developed. It is shown that this

algorithm avoids wrong estimation and requires fewer variables compared with classical

RLS techniques. Three different online control strategies were designed. These are: a

robust optimal control algorithm (ROCA), a simplified optimal adaptive control (SOAC)

for FOPDT systems, and a two-loop adaptive control strategy which improves both

temperature and airflow regulations in VAV systems. ROCA is an on-line optimal

proportional-integral plus feedforward controller tuning algorithm for SISO thermal

iii



processes in HVAC systems. It was optimized by combining the //«, based PI tuning

It is shown that the two-loop adaptive control strategy has both stronger robustness to

time-varying thermal loads and lower sensitivity to airflow rate changes into other zones.

The developed control strategies were tested by simulation and experiments in a VAV

laboratory test facility which uses existing energy management control systems used in

commercial buildings.

Also, an adaptive neural network controller is developed. The proposed controller

was constructed by augmenting the PID control structure with a neural network control

algorithm and an adaptive balance parameter. Simulation results show that the proposed

controller has stronger robustness, improved regulation and tracking functions for

FOPDT type plants compared to classical PID controllers. Experiments were conducted

to verify the characteristics of the developed controller on the DAS in a two-zone VAV

test facility.

Applications of the developed control strategies to different control loops in VAV

system were demonstrated by conducting several experimental tests under realistic

operating conditions.
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1. Introduction

Efficient control strategies in heating, ventilating, and air-conditioning (HVAC)

systems have become more important recently in the world because of the increasing

energy requirements and diminishing energy sources. Incorporating several optimizing

functions in energy-management control (EMC) systems and performing real-time

adjustments to HVAC processes can improve the energy efficiency of HVAC systems

(Zheng, 1997). Global optimization of an entire HVAC system is a powerful strategy for

the improvement of energy efficiency of HVAC systems, but it must be executed by

efficient local controls for every loop in the controlled HVAC system. Variable air

volume (VAV) is the most popular operating mode in HAVC systems, because it has the

potential to save energy.

This thesis deals with the development of online adaptive control strategies for

local loops in VAV-HVAC systems. Emphasis is placed on the application of modern

control theories combined with classical PID control to develop implementable and

improved controllers for VAV systems.

1.1 HVAC Systems

HVAC systems play a significant role in reducing the environmental impact on

occupied spaces. The primary function of an HVAC system is to provide and maintain a

healthy and comfortable indoor environment. The goal of HVAC control system design is

to provide effective control strategies to maintain comfort with adequate air quality for

the occupants of an occupied space under variable load conditions with minimal use of
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energy. Reducing energy consumption and relevant practical techniques are therefore the

most important aspects in HVAC control system design in view of the fact, that "Among

building services, the growth in HVAC systems energy use is particularly significant

(50% of building consumption and 20% of total consumption in the USA)." (Pérez-

Lombard, Ortiz, & Pout, 2008, p. 394).

Typical all-air HVAC systems provide energy transfer via heating/cooling coils,

airflow regulation to maintain air pressure or temperature via fan speed regulation or/and

damper position changes, and central water supply servicing heating/cooling coils or

multiple units. All-air HVAC systems are generally operated in two modes: constant

volume (CV) and variable air volume (VAV). In CV mode of operation, air-supply

temperature is varied in response to zone loads while maintaining the airflow rate

constant. This concept is usually used for single duct constant volume systems. One

drawback of the CV systems is that the fan energy consumption remains the same

irrespective of zone loads. Another drawback is that the single duct CV system cannot

supply conditioned air at different temperatures to meet the needs of individual zones. To

overcome this problem, reheat systems are needed. For a cooling case, the supply air

temperature is cooled to satisfy the zone with maximum load and then reheated to meet

the needs of zones experiencing lower loads. The reheat system used in CV systems

contributes to energy waste. In contrast, VAV systems enjoy a significant advantage over

CV systems in terms of the economy of operation (Zaheer-uddin & Zheng, 2001), and

result in the lower energy consumption (Arguello-Serrano & Velez-Reyes, 1999).
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1.2 VA V and VA V-VT Systems

In the VAV mode, air-supply temperature is held at some constant setpoint while

airflow rate is varied to satisfy zone load, in contrast to the CV mode of operation, where

air-supply temperature is varied in response to zone loads while holding the airflow rate

constant. During low load periods, reduced airflow rates can be achieved in a VAV

system, and this can lead to significant reduction in fan energy consumption because of

the fact that "fan energy consumption is proportional to cubic power of airflow rate"

(McQuistion, Parker, & Spitler, 2000). Zaheer-uddin et al. (2001) have further shown that

the variable air volume mode of operation in which both airflow rate and air-supply

temperature are continuously modulated is a more energy efficient strategy. This mode is

identified as the variable air volume variable temperature (VAV-VT) mode.

1.3 Zone Temperature Controls

In all-air HVAC systems, zone temperature is controlled by airflow regulation of

supply air. Typical airflow regulation in zone temperature controls of HVAC systems

includes pressure independent control and pressure dependent temperature control. In

pressure independent control, it will be easier to get a stable response but zone

temperature set-point may not be satisfied because of plant uncertainty. In contrast, in

pressure dependent temperature control zone temperature set-point can be reached but the

control action responding to pressure disturbance effect of airflow rate may not be faster.

In addition, for a multi-zone system operating in VAV or VAV-VT mode, damper

position change or fan speed change for a new airflow requirement of a zone will affect

other zones' airflow because of the coupled nature of airflow system. These limitations of
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typical airflow regulation in zone temperature controls will be further illustrated in

chapter 6.

1.4 Supervisory Control in HVAC Systems

In most buildings the VAV systems provide air at constant temperature year

round. This practice is not necessarily the most economical, because of this practice that

numerous problems occur during part load operation of VAV systems, such as, poor air

distribution, inadequate ventilation, and high humidity within the controlled space

because of too low airflow rate. Therefore, it is recognized that the basic principle of a

VAV system should be to control both the airflow rate and the temperature of supply air

into the controlled space for heating, ventilation, and air-conditioning. In addition,

building HVAC controls should be operated to minimize energy consumption and/or

operating cost.

To achieve this objective, a supervisory control system should have the

capabilities to provide the desired time-of-day optimal setpoint profiles under dynamic
outside conditions and indoor loads for local controllers. The local controllers track the

optimal setpoint profiles so that the HVAC system runs optimally from the current state

to the new state at the provided setpoints. The control strategy with the supervisory

control will improve the performance of a VAV system in terms of providing good

temperature and humidity control as well as in reducing the energy costs significantly.

The typical local controls in VAV systems are zone temperature control, discharge air

temperature control, airflow rate control, variable speed fan control, reheat control,

outdoor ventilation flow control, chilled water temperature control (or heat exchanger
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water temperature control), water flow rate control, etc. These local controls will affect

the performance of supervisory control.

1.5 Motivation

Providing energy efficient, healthy and comfortable indoor environment in

buildings is the main goal of the modem HVAC controls. However, to achieve this goal

many practical problems must be considered such as different operating conditions,

varying environmental conditions, and real-time implementation considerations. These

will affect the performance of control strategies. To guarantee optimal operation of VAV

systems, several adaptive, intelligent, optimal control strategies for local controls will be

explored in this thesis.

1.6 Scope and Objectives

In the context of background and motivation cited above this thesis presents

several practical adaptive, intelligent, optimal online control strategies for VAV and

VAV-VT local loop controls for HVAC systems. The specific objectives include:

1 . To augment the existing RLS online identification algorithm for FOPDT systems

to improve its online reliability.

2. To develop an optimal control strategy with improved ability in rejecting the

effects of disturbances acting on FOPDT systems.

3. To design an online intelligent control strategy with learning property that can be

implemented in existing HVAC control systems.
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4. To develop an online adaptive control strategy to reduce the effects of airflow

interaction and system uncertainty in zone temperature control in VAV systems.

5. To test the developed control strategies in a VAV laboratory HVAC system using

an existing energy management control system platform.

1.7 Thesis Outline

This thesis is divided into seven chapters. In Chapter 1, an introduction to the

VAV control systems and the objectives of this thesis are given. The motivation for

studying online adaptive and intelligent control strategies for multi-zone VAV systems is

also discussed.

Chapter 2 consists of literature survey related to modeling and different controls

in HVAC systems. The review further supports the objectives of this thesis.

In Chapter 3, a robust online identification technique is developed by adopting a

matrix-reset technique. It is an improved RLS identification algorithm for FOPDT model

from an earlier study (Qu, 2002).

Chapter 4 presents an on-line optimal proportional-integral plus feedforward (PI-

FF) controller with H00 tuning rules for FOPDT model systems with improved

A new index is introduced to evaluate the control performance. Simulation studies in an

adaptive control configuration showed the added improvement of the proposed control

algorithm. In addition, a simplified optimal control algorithm is developed. Its

applications to a heating coil control loop in the Concordia University's HVAC system
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and the DAS in the HVAC Test Facility are studied and improvement in robustness is

illustrated through experimental results.

In Chapter 5, an implementabile neural network control is developed. It is derived

by integrating adaptive control, neural network control and PID control. Simulation and
experimental studies for a local control of HVAC systems are also presented.

In Chapter 6, an online adaptive control strategy to reduce the effects of airflow

interaction and system uncertainty on zone temperature control in VAV systems is

proposed. This control strategy is derived by adopting a two loop control structure. The

limitations of classical typical airflow regulation in zone temperature controls (pressure

independent control and pressure dependent temperature control) are also discussed in

this chapter. Comparisons between the proposed control strategy and the classical airflow

regulation controls are presented. The improvements in performance of the proposed
control are illustrated.

Finally, conclusions, main contributions of this thesis and recommendations for

future research are given in Chapter 7.
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2. Literature Review

Extensive research on various aspects of HVAC controls and building systems

have been motivated by the growing concerns about indoor environments and energy

efficiency. The related aspects of HVAC controls will be surveyed in this Chapter.

2.1 Introduction

Many aspects related to HVAC controls, such as modeling, design of controllers,

PID controls, intelligent (fuzzy, neural networks, adaptive) controls, experimental

controls and energy management control system (EMCS), have been studied by several

researchers in recent years. In the following sections, the relevant papers will be reviewed

and summarized.

2.2 Modeling and Simulation of HVAC Systems

In recent years, there has been a growing interest in the mathematical modeling of

HVAC systems and its components (Tashtoush, Molhim, & Al-Rousan, 2005). Many

researchers have studied HVAC dynamic models using either theoretical or experimental

approach. The studies related to modeling done by several researchers will be

summarized below.

Tashtoush et al. (2005) described a procedure for deriving a dynamic model of an

HVAC system that consists of a zone, heating, cooling and dehumidifying coil,

humidifier, ductwork, fan, and mixing box. They investigated the tuning technique using

the Ziegler-Nichols rule from a practical viewpoint, and gave simulation results showing
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the open loop and the closed loop responses of indoor temperature and humidity ratio.

The results show that the system is capable of controlling the disturbances efficiently

within a small period of time and with less error. They concluded that the dynamic model

can be especially useful for control strategies that require knowledge of the dynamic

characteristics of HVAC systems.

Zheng and Zaheer-uddin (1996) developed dynamic models of HVAC system

components for optimizing the thermal processes in a variable air volume (VAV) heating,

ventilating and air conditioning (HVAC) system. The constrained optimal control

problem was formulated and solved. Typical daily optimal operating trajectories for the

system were presented. Results showed that to achieve thermal comfort, both zone

temperature and humidity ratio should be controlled, and the optimization of outdoor air

economy cycle results in significant energy savings.

Mei and Levermore (2002) presented the results of modeling and simulating a

laboratory variable air volume (VAV) test rig. They developed models for each

component, such as fan, duct and VAV terminal box, with control systems, in the test rig.

They also performed the simulations via the logical connection of the component models

by means of an HVACSIM+ platform (Clark, 1985). They used a polynomial curve

fitting method and a ten neuron sigmoid artificial neural network (ANN) model to model

the non-linear characteristic of the fan. The ANN based model is shown to give better

results. A non-linear characteristic terminal box model based on the experimental

modeling was developed. The ANN fan model and the terminal box model were included
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in HVACSIM+ program as new component subroutines. The simulation results for the
VAV test rig via HVACSIM+ were validated by real system operation performance.

Huang, Zaheeruddin and Cho (2006) used detailed system dynamic models to
evaluate energy management control (EMC) functions such as outside air (OA)
economizer cycle, programmed start and stop lead time, load reset and occupied time

adaptive control strategy. They also presented a real time system embedded with the
above EMC functions. The simulation results manifest that energy savings of 17% can be

achieved when the system is operated with the EMC functions and optimal set points

compared with the system without such functions. These results do point out that the

optimal set point strategy is very useful in achieving energy efficient operation of HVAC

systems.

Wang, Lee, Fung, Bi, and Zhang (1999) developed dynamic models to simulate

the thermal, hydraulic, environmental and mechanical characteristics and energy

performance of a building and VAV air-conditioning system under the control of Energy

Management and Control Systems (EMCS). Wang et al. (1999) also developed three on-

line supervisory strategies and programs based on integrated EMCS stations to optimize

the VAV static pressure set-point, AHU outlet air temperature set-point and outdoor

ventilation air flow set-point. The strategies and programs were commissioned and

evaluated under the simulated 'real-life' environment.

Wang and Jin (2000) proposed a system approach for optimizing multi-zone

building systems, based on predicting the responses of overall system environment and

energy performance to the changes in control settings of VAV air-conditioning systems.
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Incremental dynamic models with x self-tuning' of the VAV system were developed and

used. A genetic algorithm was used to solve the on-line optimization problem of multiple

parameters. The strategy was tested and evaluated in a simulated 'living' environment
under various weather conditions.

Maxwell, Shapiro and Westra (1989) developed an empirical model of chilled

water coil and used it to predict the system response to inputs with P, PI and PID control

algorithms. The empirical model is not suitable for online control as the model needs to

be updated.

Kasahara et al. (2000) described a procedure for deriving a dynamic model of an

air-conditioned space by applying physical laws, such as energy and mass balance

principles. These models are useful in energy efficiency simulation studies.

Kasahara et al. (2001) have presented a stability limit analysis and a new tuning

method for PID controllers in bilinear systems with time-delayed feedback. The bilinear

systems they considered are variable air volume (VAV) systems, which are defined as

air-handling units that use variable airflow rate to satisfy the heating, ventilating, and air-

conditioning (HVAC) operation requirements - such as indoor temperature (thermal

comfort.) In this reference, they have developed a normalized bilinear model of VAV

systems by identifying the energy flow to and from the environmental space and

presented a generalized parameter analysis of the stability limits by simulation. The

results of the analysis reveal that controller parameters can be determined by assuming

that the plant is linear. The proposed tuning method of PID controller requires a gain

reduction factor for practical applications. The main limitation of the online application
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of the tuning method is that it requires extensive computations to find the gain reduction

factor. The methodology in this study relies on bilinear models which are not suitable for

systems with time delay.

Wang et al. (2004) presented a technique for developing a simple and accurate

cooling coil unit (CCU) model. The modeling technique is based on energy balance and

heat transfer principles. They used commissioning information to estimate, at most, three

model parameters by either a linear or nonlinear least squares method. They have done

experiments to show that the method is robust and gives a better match to real

performance over the entire operating range compared to other methods.

Kulkarni and Hong (2004) explored the problem of using a single-zone, two-

position control system and presented a proportional control system for the residential

building by setting up the dynamic simulation for the building and the control system.

They used state-space method to model the building system and implemented the

simulation code on MATLAB. They also implemented optimization of the controller

using this model. The thermal comfort and energy efficiency were compared under

different schemes. They found that proportional control is advantageous to the two-

position control for thermal comfort while there is not much difference in energy

consumption between two control schemes. However, in their work the furnace was

operated without any minimum run time with continuous data sampling.

From the above modeling and simulation studies it is noted that the major focus of

the model development has been for energy simulation and thermal comfort evaluation.

These models are either static or dynamic from less rigorous to detailed. Because of
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higher computational and memory requirements, these models are not suitable for

implementation on existing building control systems.

2.3 Design of Controllers for HVAC Systems

An HVAC system includes many local control loops. They are required for

regulation of temperature, airflow rate etc in many processes in HVAC systems. Many

researchers have worked on design of local controllers for HVAC systems. The popular

techniques are PID control, optimal control, intelligent (fuzzy, neural networks, adaptive)

control, Hx control, pattern recognition control, predictive control and nonlinear control.

Since many studies have been done on PID control, optimal control, and intelligent

control, the literature review for them will be shown in later sections. Here, the summary

includes literature related to Hx control (Al-Assadi, Patel, Zaheer-ruddin, Verma, &

Breitinger, 2004; Qu et al., 2004), preview control (Zaheer-uddin, Al-Assadi, & Patel,

1994; Kasahara et al., 1998), pattern recognition control (Seem, 1997), predictive control

(Dexter & Haves, 1989), decoupled control (Rentel-Gómez & Vélez-Reyes, 2001;

Semsar, Yazdanpanah, & Lucas, 2003), and nonlinear control (Argüello-Serrano et al.,

1999).

Al-Assadi et al. (2004) presented the results of a study on the use of Hx

constraints in an optimization technique for the design of robust decentralized output

feedback control of a heating, ventilation and air conditioning (HVAC) system. They

used robust stability and performance specifications to achieve temperature control in

multi-zone HVAC system in the presence of disturbances and model uncertainties and

under constraints on control input energy. The resulting fixed-gain decentralized output
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feedback controller, which is based on a linear model, was implemented via simulation

on a full bilinear model of the HVAC system. Superior performance of the Hx -based

design was shown via comparison of these results with those based on "constrained"

linear-quadratic optimal regulator design. The design methodology is too complex for

online implementation.

First-order-plus-dead-time (FOPDT) models are easier to implement in a real

system. Tan, Liu and Tarn (1998) developed PID tuning rules based on loop-shaping Hx

control for the FOPDT processes. The application of H1x based adaptive PI controller in

HVAC systems is demonstrated by Qu et al. (2004). The approach of tuning single-loop

controllers in HVAC systems using the Hx loop-shaping tuning rules was applied to a

discharge air temperature (DAT) control system. The recursive least squares method was

used for identification of the HVAC process as a FOPDT model. The output responses of

the adaptive PI controller were compared with a LQR optimal adaptive controller.

Simulation results showed that the adaptively tuned PI controller is able to track setpoint

changes very well in the presence of changes in plant parameters, disturbances and

external noise acting on the system.

A decentralized preview controller was designed for temperature control of multi-

zone indoor environmental spaces by Zaheer-uddin et al. (1994). A two-zone space

heating system considered consisted of a boiler, heat pumps, distribution network and

two environmental zones. The decentralized preview controller was designed by using a

parameter optimization method under the assumption that the outdoor temperature

variations are "previewable". They compared the output responses of the resulting
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decentralized closed-loop bilinear system acted upon by single and multiple disturbances
with and without preview action, and gave results showing the robustness property of the
controller, and the 24-hour building operation with unoccupied and occupied setpoint

tracking using preview control. However, experimental validation is necessary to

evaluate the effectiveness of the preview control.

Kasahara et al. (1998) presented a multivariable autoregressive (AR) model which

is a three input/two output model obtained by using observed data for an HVAC system.

They used a combination of the model and the preview control that is a linear quadratic
Gaussian (LQG) optimal control with feedforward compensation to control process

variables such as indoor temperature and indoor humidity. The comparison of measured

data and simulation results shows that the plant model is adequately formulated. Also,

experimental results on a commercial-sized test plant with LQG control system and

preview control system are presented. They showed that the optimal control system based

on statistical modeling with the multivariable AR model is quite useful for the control of

interactive HVAC systems, and the preview control system produces excellent control

under normal operating conditions compared to LQG control system. The limitations of

the optimal control system based on statistical modeling with the multivariable AR model

are that the modeling and the control design are very difficult to implement online, and

the model obtained off-line may not match the model dynamics undergoing variable

operating conditions.

Seem (1997) presented a method for implementing a new pattern recognition

adaptive controller (PRAC) developed through optimization, for automatically adjusting
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the parameters of PI controllers while under closed loop control. Depending on patterns
of the closed loop response, PRAC will determine the parameters of the digital PI
controller used in an HVAC system. Simulation results subject to random noise and load

disturbance modeled by either one or zero are presented. Some field test results are also

given. The results showed that PRAC is robust, easy to use and has low computational
and memory requirements. From the results presented, it can be noted that PRAC

responses are either sluggish or oscillatory. It takes a long time to reach stable state. The
limitation of this study is that PRAC was developed for systems that can be characterized

by a first-order plus dead-time model with the ratio of dead time to time constant between
0.25 and 1 , and the ratio of sampling time to time constant is between 0. 1 and 1 for "good

control."

Dexter et al. (1989) developed a robust self-tuning predictive controller based on

the Generalized Predictive Control algorithm (Clarke, Mohtadi, & Tuffs, 1987) for

HVAC applications. The controller uses default values for most of its parameters and

requires selection of only one commissioning parameter: the control-sampling interval. In
the controller, a parameter estimator for the HVAC plant, which is based on the UD filter

form of the recursive least-squares algorithm, using a simple form of variable exponential

forgetting (Dexter, 1983), is used. To implement a set of expert rules, which supervise the

operation of the on-line parameter estimator and the calculation of control action, Dexter

et al. (1989) developed special jacketing software. Also, they have used a component-

based computer simulation package (HVACSIM+) to examine the behavior of the

controller in both the zone and supply air temperature control loops. The robust behavior

of the self-tuning controller is demonstrated and its superior performance to that of a
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manually tuned PI controller is suggested by the results. Application of the self-tuning

controller in a cascaded control configuration is also discussed and they concluded that

the use of two self-tuning controllers within a cascaded control scheme worked well

when care was taken to deal with the interactions that occurred between the inner and

outer loops during the tuning period. The controller is too complex for implementation on

existing building control hardware. Also the accuracy of the estimator over extended

period of operation is not proven in the simulation.

Rentel-Gómez et al. (2001) developed a nonlinear noninteracting control system

for temperature and relative humidity in a thermal-space conditioned by a variable-air-

volume (VAV) heating, ventilating, and air conditioning (HVAC) system. They showed

the importance of decoupling techniques in controlling temperature and relative humidity

independently and accurately for some industrial processes. They demonstrated how

decoupled control of temperature and relative humidity is possible using a multivariable

cascade control with two loops. The inner-loop used the non-interacting control law for

decoupling, and the outer-loop is a PD controller used for stabilization and control. This

is a simulation based study and requires experimental validation.

Semsar et al. (2003) introduced a Back-Stepping controller for a nonlinear,

MIMO HVAC System. They used feedback linearization method with introduction of a

feedback of states and disturbances for the purposes of disturbance decoupling and

nonlinear model linearization. They also applied the Back-Stepping controller to the

linearized model of the system. It has been shown that using this method, heat and

moisture loads can be compensated, considering them as measurable disturbances.
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Finally they provided the simulation results to show the ability of the method with high

disturbance decoupling and good tracking properties. The methodology is suitable for

simulation study and is too complex for implementation in real systems.

Argüello-Serrano et al. (1999) presented a non-linear disturbance rejection state

feedback controller for an HVAC system. The controller was designed by using

Lyapunov stability theory and consists of a regulator and a disturbance rejection

component. To reduce the effect of thermal loads other than design loads on the system,

they also proposed a thermal load estimator that allows the controller to obtain on-line

estimates of the thermal loads affecting the thermal space. In addition, they have shown

simulation results for a variable air volume (VAV) HVAC system. The results

demonstrated the potential for the controller to keep comfort levels and save energy in a

variable air volume HVAC system operating in the cooling mode. The main limitation of

the design for the controller is its complexity for online implementation.

2.4 PID Controls in HVAC Systems

In this section a survey of the published literature on the applications of PID

techniques for HVAC systems will be given. Studies by Seem (1997), Qu et al. (2004),

and Kasahara et al. (2001) summarized in the previous sections have also used PID

control technique.

Kasahara et al. (1999) have developed a design and tuning method in which the

gains of a robust PID controller for HVAC systems are obtained by solving a two-disk

type of mixed sensitivity problem. The PID gains obtained by the conventional Ziegler-

Nichols rule were modified by applying this technique. To illustrate the method, the
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temperature control of a single-zone environmental space and the HVAC plant which was
approximated by a first-order lag plus dead-time system was considered. The numerical
simulation and the experiments on a commercial-size test plant for air conditioning were

presented. The study showed that the robust PID gains could be expressed as simple
linear functions of the ratio of the dead-time to the time constant. However, for every

plant, the use of this method requires the determination of six parameters off-line to

compute the three gain reduction factors.

Krakow (1998) has proposed the relationship between the sampling interval and

digital PI control system performance by using experimental and simulated response

characteristics for a Pi-controlled mixing valve air heating system. The PI tuning rules

were specified based on the analytical and experimental study by Krakow, Lin and Zeng

(1995a and 1995b), Krakow and Lin (1995), and Hussein (1996), for the first-order

system (without storage) and second-order system (with storage.) The study showed that,

long sampling intervals may yield more satisfactory response characteristics, than short

sampling intervals if the system is tuned appropriately. Appropriate tuning implies using

PI coefficients based on (non-conventional) theory developed specifically for long

sampling intervals. A long sampling interval implies a complete response of the

controlled variable to the change in the control signal. The limitation of the paper is that

the results obtained are specific to a system and cannot be generalized.

Nesler (1986a) has reported the implementation of three automated controller-

tuning methods, which include a computer-assisted controller tuning program, an

automatic tuning controller, and a self-tuning controller for HVAC processes. A
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computer-assisted controller-tuning program allows novice users to tune DDC controllers

reliably and quickly. An automatic tuning controller fully automates the open-loop step-

test tuning procedure and has self-monitoring capability that leads the automatic tuning

routine, once initiated, can operate without supervision. Nesler (1986a) concluded that

automated controller tuning addresses two fundamental problems in HVAC control

applications: the time-consuming initial tuning of the controller and the requirement for

periodic controller retuning as system loads change. A sélf-tuning control system adjusts

PI control parameters in real-time using closed loop control data. Experimental results

from applying the self-tuning controller to a discharge air temperature control loop are

given. It is noted that unmodeled load disturbances, drifting parameters and actuator

nonlinearity are limitations of self-tuning controllers.

Nesler (1986b) has presented the implementation of a self-tuning controller to

control typical HVAC processes (the model can be considered as a first-order plus dead-

time). The self-tuning controller consists of five independent software blocks. The five

blocks include an automatic tuning routine used to establish initial parameter estimates, a

recursive least-squares estimator for making parameter estimates on-line, a controller

design block, which computes the gains of PI controller depending on the new parameter

estimates, a PI controller, and a performance monitor, which supervises the self-tuning

controller operation. The open-loop step test method is used for the automatic tuning

routine. The PI gains are computed by minimizing the integrated absolute error (IAE). In

addition, the performance monitor is introduced to determine when retuning is required.

The use of the performance monitor can also increase system flexibility and robustness.

The main limitation of RLS (Recursive Least Squares) estimation is that self-tuners can
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occasionally fail to produce useful estimates under certain conditions such as self-tuning

control loops subjected to large and unmodeled load disturbances which occur in HVAC

processes.

Huang and Lam (1997) presented an adaptive learning strategy based on genetic

algorithms (GA) for automatic tuning of PID controllers in HVAC systems to achieve

optimal performance. They used genetic algorithms, since they have been proved to be

robust and efficient in finding near-optimal solutions in complex problem spaces. They

also modified the modular dynamic simulation software package HVACSIM+ and

incorporated the genetic algorithm-based optimization program to provide a complete

simulation environment for detailed study of controller performance. In addition they

considered three performance indicators (overshoot, settling time, and mean squared

error) in the objective function of the optimization procedure for evaluation of controller

performance. The simulation results showed that the genetic algorithm-based

optimization procedures as implemented in the research study are useful for automatic

tuning of PID controllers for HVAC systems, yielding minimum overshoot and minimum

settling time. This is a simulation study and not implemented on real systems.

Wang, Shi and Cai (2001) developed a simple and efficient PID autotuner and

presented its application to HVAC systems. A second order plus dead time model is

identified by the autotuner based on two continuous relay feedback experiments. The PID

controller was designed on the basis of gain- and phase-margin specifications. The

methodology requires more computation and memory as such is not suitable for online

application.
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Zaheer-uddin and Tudoroiu (2004) explored the problem of improving the

performance of a discharge air temperature (DAT) system using a PID controller and

augmenting it with neural network based tuning and tracking functions. They modeled
the DAT system as a SISO (single input single output) system, and presented the
architecture of the real time neuro-PID controller and simulation results obtained under

realistic operating conditions. The simulation results show that the network assisted PID

controller is able to track both constant and variable set point trajectories efficiently in the

presence of disturbances acting on the DAT system.

Kotaki, Yamakawa, Yamazaki, Kamimura and Kurosu (2005) described tuning

PID controllers using optimization, subject to constraints on derivatives of control input,

and considering model uncertainty caused by changes in system dynamics. To obtain

optimal PID parameters, they presented graphs as functions of a normalized dead-time

and a perturbation of system parameters. In addition, the control performance in

disturbance suppression and reference tracking properties was presented and the

comparisons with the partial model matching method and the H00 compensator designed

for the same system were shown. Moreover, to avoid making the control system sensitive

to measurement noise, a PI controller with a relaxation filter was developed. It was

shown that there is very little difference in control performance between the PI controller

and the Hx compensator. Like most previous studies, this is also a simulation based study

and has not been experimentally validated.
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2.5 Optimal Controls in HVAC Systems

A survey of the published literature about optimal controls in HVAC systems is

presented in this section. The studies of Al-Assadi et al. (2004), Wang et al. (2000),
Zaheer-uddin et al. (1994), Kasahara et al. 1998, Huang et al. (1997), Kulkarni et al.

(2004), and Kotaki et al. (2005) discussed in the previous section also deal with optimal

control issues in HVAC systems.

Zaheer-uddin et al. (2001) explored the application of a multistage optimization

technique to determine optimal operating strategies for HVAC systems. Simulation

results are shown for a single-zone space heating system consisting of a heat pump, a

storage tank, a heating coil, a fan, and ductwork. The optimization problem was solved

using a typical building operation schedule, consisting of off-normal, start-up, and normal

occupied periods, assuming time-of-day rates. Results are presented, for the two most

widely used operating strategies, namely, constant-volume (CV) and variable-air-volume

(VAV) system. It is shown that the variable-air-volume mode of operation in which both

air-supply temperature and flow rate are continuously modulated is the most energy

efficient strategy. The limitations of the study are that the optimal result depends on exact

dynamic models, and in real systems, to track the setpoints exactly may be extremely
difficult.

Singh, Zaheer-uddin and Patel (2000) studied the application of adaptive control

for a class of multivariable processes in heating, ventilating and air conditioning (HVAC)

systems. They simulated the thermal dynamics of a two zone fan-coil heating (FCH)

system and environmental zones by a nonlinear model, and designed a multivariable
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adaptive controller based on Linear Quadratic Regulator (LQR) theory. Simulation
results showing the closed loop response of the system to changes in operating points,
external disturbances, changes in system parameters and unmodeled dynamics were

presented. They showed that the adaptive controller is able to adapt to a wide range of
operating conditions and is able to maintain the zone temperatures and the boiler
temperature close to their respective setpoints. Like most optimal control solutions, this
one is computationally extensive and therefore suitable in off-line studies.

Lu, Cai, Soh, Xie and Li (2004) presented a model-based optimization strategy

for the condenser water loop of centralized heating, ventilation and air conditioning

(HVAC) systems. They analyzed each component characteristics and interactions within

and between cooling towers and chillers, and formulated the optimization problem as that

of minimizing the total operating cost of all energy consuming devices with mechanical

limitations, component interactions, outdoor environment and indoor cooling load

demands as constraints. They also proposed a modified genetic algorithm for this

particular problem to obtain the optimal set points of the process. Simulations and

experimental results on a centralized HVAC pilot plant were shown and it was concluded

that the operating cost of the condenser water loop can be substantially reduced compared

with conventional operation strategies.

Sun and Reddy (2005) presented a general and systematic methodology, termed

complete simulation-based sequential quadratic programming (CSB-SQP), for

determining the optimal control of building HVAC&R systems. This approach allows the

coupling of a detailed simulation program with an efficient optimization method, namely
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the sequential quadratic programming (SQP) algorithm. This approach allows the use of
accurate component models of the system as against empirical models as currently used,

while providing efficient optimal solutions to be determined. Sun et al. (2005) developed
the mathematical basis of the methodology and applied it to a simple cooling plant

system to illustrate the accuracy, efficiency and robustness of this method. Experiments
were not conducted but they discussed the issue of implementing such an optimization

under real-time control.

Zaheer-uddin (1993) explored the application of modern control theory to design

control systems for buildings. Example problems dealing with HVAC systems and indoor
environment control are considered. He used pole-placement technique, optimal regulator

theory and adaptive control to design controllers. The responses of the systems subject to
disturbances were investigated. The simulation results illustrated the advantage of one

method over the other and emphasized the importance of the use of improved methods to

design control systems for intelligent buildings.

2.6 Intelligent Controls in HVAC Systems

The most popular intelligent controls applied in HVAC systems are fuzzy logic

control, neural networks control and adaptive control. In this section, a review of

literature in these areas will be given.

2.6.1 Adaptive Controls ¡n HVAC Systems

From the literature (Zaheer-uddin 1993), it is known that adaptive control has

advantage over the pole-placement technique and optimal regulator theory in design of
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control systems for intelligent buildings. In addition to the work on adaptive controls by

Singh et al. (2000), Seem (1997), Nesler (1986b), Zaheer-uddin (1993), and Qu et al.

(2004), the following additional survey on adaptive controls in HVAC systems is

presented.

Bai and Zhang (2007) have presented an adaptive PI controller for use in HVAC

systems. They used recursive least squares (RLS) with exponential forgetting combined

with model matching of a zero frequency method to estimate the model's parameters

while the system remained in closed loop. Bai et al. (2007) developed a tuning formula

for a PI controller with robustness based on the estimated parameters to adjust the

controller's parameters automatically while under closed loop. The simulation results

show that the new adaptive PI controller has improved performance. However, the

controller was not experimentally validated.

Aström, Hägglund and Wallenborg (1993) have presented a tuning method based
on the relay feedback for a general digital controller. The method was developed for

tuning digital control laws and the control design method used is based on pole

placement. There is an interesting feature in the tuning method that the sampling period

and the desired closed loop poles are determined from an experiment with relay feedback.

The conclusion from extensive simulations stated that the method works very well for

low-order systems with time delay. Two test results applied to HVAC plants are

presented. A limitation noted by Aström et al. (1993) is that the direct approach does not
work well for systems with large pole in continuous time models.
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Chen, Lee and Wepfer (May 1990) have presented an adaptive robust control

scheme applied to a single-zone HVAC system. A single-zone HVAC system with
modeling uncertainty (which includes thermal storage effect, heat and moisture

generation, and outside temperature and humidity variation) is established for a single
zone HVAC system in a generic room. It is a nonlinear system, and the uncertainty is

assumed bounded but the bound is unknown. Then, a class of adaptive robust controls

which was originally designed by Corless and Leitmann (1984) is used to achieve the

control objective to drive the room's state (which is related to its temperature and

humidity) into a comfort region. A comparison between the use of on-off control and the

use of the adaptive robust control from simulation results is given. Chen et al. (May

1990) conclude that simulation results depict a satisfactory transient performance in the

sense of maintaining small overshoot under a significant deviation of the initial state from

the comfort region. A drawback noted by Chen et al. (May 1990) is that the steady state

performance has certain oscillations.

Calvino, Gennusa, Rizzo and Scaccianoce (2004) presented the problems of

predicted mean vote (PMV) index in monitoring and controlling HVAC equipment and

described a fuzzy control for HVAC system to overcoming these problems. They

represented a simple approach, focused on the application of an adaptive fuzzy controller

that avoids the modeling of indoor and outdoor environments. They also presented some

simulation results which are not validated experimentally.

Salsbury (2002) has proposed a new switching control law (pulse modulation

adaptive controller, PMAC) that implements pulse-width-pulse-frequency modulation.
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Pulse durations are determined to maintain the amplitude of variation in the controlled

variable at or below a user-defined level. In addition to providing quantifiable control

performance, PMAC can reduce component wear by issuing fewer switches than
conventional control schemes. The control law is developed around a first-order system

characterization but incorporates an adaptive loop, which allows application to a wide

range of non-first-order and also time-variant systems. The author presented test results

from applying PMAC to both simulated and real HVAC systems. Application of such

methods on available HVAC control platforms requires significant resources.

2.6.2 Fuzzy Logic Controls in HVAC Systems

Fuzzy logic control is one of the popular intelligent controls in HVAC systems. A

survey of the published literature about fuzzy logic controls in HVAC systems is

presented in this section.

Alcalá, Casillas, Cordón, González and Herrera (2005) proposed the use of

weighted linguistic fuzzy rules in combination with a rule selection process to develop

fuzzy logic controllers (FLCs) dedicated to the intelligent control of HVAC systems

concerning energy performance and indoor comfort requirements. They developed a

genetic optimization process considering an efficient approach to perform rule weight

derivation and rule selection for FLCs and tested the proposed technique considering a

physical modelization of a real test site. The conclusion was that the proposed technique

yielded much better results than the classical on-off controller showing good performance

on these kinds of complex problems. The application of fuzzy logic for online

applications is not studied.
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Chu, Jong and Huang (2005) proposed a least enthalpy estimator (LEE) that
combines the definition of thermal comfort level and the theory of enthalpy into a load

predicting way to provide timely suitable settings for a fan coil unit (FCU) fuzzy
controller used in HVAC. The fuzzy controller can make decisions and adjust the output

of the FCU system depending on the settings, including temperature and relative
humidity. Some actual experiments were done to show the application of the LEE-based

FCU fuzzy controller in evaluating thermal comfort, energy efficiency and reliability.
The methodology needs to be tested in real building systems to evaluate their
performance.

He, Cai and Li (2005) presented a multiple model predictive control (MMPC)

strategy based on Takagi-Sugeno (T-S) fuzzy models for temperature control of air-
handling unit (AHU) in HVAC systems. They constructed the control system in two
levels that the higher level is a fuzzy partition based on AHU operating range to schedule

the fuzzy weights of local models in lower level, and the lower level is composed of a set

of T-S models based on the relation of manipulated inputs and system outputs. In

addition, they divided the complex nonlinear AHU system into a set of T-S models

through a fuzzy satisfactory clustering (FSC) methodology and selected a fuzzy

integrated linear varying parameter (LVP) model for the global system. Then, they

developed the hierarchical MMPC strategy using parallel distribution compensation
(PDC) method, in which different predictive controllers are designed for different T-S

fuzzy rules and the global controller output is integrated by the local controller outputs

through their fuzzy weights. Finally, they presented simulation and real process testing
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results to show that the proposed MMPC approach is effective in HVAC system control

applications.

2.6.3 Neural Networks in HVAC Systems

Because of the difficulty in modeling HVAC systems for controls, the neural

networks controls have become more popular in recent years. Several researchers (Wang,

Jing, & An, 2006; Mei et al., 2002 (reviewed in Section 2.2); Zaheer-uddin et al., 2004

(reviewed in Section 2.4); Abbassi & Bahar, 2005; Massie, Kreider, & Curtiss, 2004a, &

2004b; Ben-Nakhi & Mahmoud, 2004; Yang, Yeo, & Kim, 2003; Ahmed, Mitchell, &

Klein, 1998a, 1998b, & 1998c; Jeannette, Assawamartbunlue, Curtiss, & Kreiser, 1998;

Atthajariyakul & Leephakpreeda, 2005) have applied neural network (NN) methods to

HVAC systems.

Wang et al. (2006) have studied a neuron adaptive PlD control which is applied in

a single-zone HVAC system for adaptively adjusting the PID parameters. The simulation

results they presented illustrate that neuron PID controller has the capability of self-

adapting.

Abbassi et al. (2005) used artificial neural network (ANN) to do the

thermodynamic modeling of an evaporative condenser under steady state and transient

conditions for establishing control of thermal capacity. The authors used predictive neural

network, capable of understanding dynamic behavior and predicting the preset output to

train the system under dynamic condition. The principle operation of such neural

networks is based on the reduction of gradients of errors existing between the predicted

output and the actual output of the system. They used neural controller based on training
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to control the system thermal capacity. The conclusion made is that artificial neural
network controller is suitable substitute for PID controllers for thermal systems.

ANN controllers are complex and require earful training to be effective in real building

HVAC systems.

Massie et al. (2004a) described the construction and measured performance of a

neural network-based optimal controller for an ice thermal storage system. The controller

was constructed with four neural networks, three of which map equipment behavior and

one that acts as a global controller. The controller self-learns equipment responses to the

environment and then determines the control settings that should be used. The

optimization was conducted by addressing cost function under a selected planning

window to determine the sequence of control actions. Massie et al. (2004b) reported the

verification of the results using computer simulation and with the operation in a full-scale

HVAC laboratory.

Massie et al. (2004b) described the validation and performance of an optimal

neural network-based controller for an ice thermal storage system. The controller learns

equipment responses and determines the control settings. As such, there is minimal need

to calibrate the controller to installed equipment. Massie et al. (2004b) verified the results

by conducting tests in a full-scale HVAC laboratory.

Ben-Nakhi et al. (2004) designed and trained general regression neural networks

(GRNN) to investigate the feasibility of using this technology to optimize HVAC thermal

energy storage in public buildings as well as office buildings. They used state of the art

building simulation software, ESP-r (Clarke, 2001), to generate a database covering the
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years 1997-2001 and to calculate hourly cooling loads for three office buildings using

climate records in Kuwait. They used the cooling load data for 1997-2000 for training

and testing the neural networks (NN), while robustness of the trained NN was tested by

applying them to a "production" data set (2001 data) that the networks have never

"seen" before. In addition, they determined optimum GRNN design parameters that best

predict cooling load profiles for each building by performing parametric studies. They

assumed external hourly temperature readings for a 24 h period as network inputs, and

the hourly cooling load for the next day as the output. They also evaluated the

performance of the NN using a statistical indicator (the coefficient of multiple

determination) and by statistical analysis of the error patterns, including confidence

intervals of regression lines, as well as by examination of the error patterns. Finally, they

concluded that a properly designed NN is a powerful instrument for optimizing thermal

energy storage in buildings based only on external temperature records. The application

is shown for load predication and does not address HVAC control.

Yang et al. (2003) presented an application of the ANN in a building control

system. The objective of this study is to develop an optimized ANN model to determine

the optimal start time for a heating system in a building. For this, programs for predicting

the room air temperature and the learning of the ANN model based on back propagation

learning were developed, and learning data for various building conditions were collected

through program simulation for predicting the room air temperature using systems of

experimental design. Then, the optimized ANN model was used to determine the optimal

start time.
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Ahmed et al. (1998a) proposed a combined feedforward and feedback control

approach for a laboratory HVAC system. A general regression neural network (GRNN) is

utilized in the feedforward component for HVAC system identification and control, while

the feedback component provides a control signal to offset any steady-state error. A

typical variable-air-volume laboratory HVAC control system is considered by the

authors. They studied pressure control in this paper. They also show the simulation

results obtained by using a laboratory simulator. The simulation results indicate that the

combined approach performs better than the feedback approach over widely varying

operating conditions and different damper characteristics. The main limitation of this

paper is that the simulation results were obtained for six cases of damper characteristics

separately, that is, the results do not include the dynamic situation of the damper

characteristics that exist in real systems.

Ahmed et al. (1998b) presented the second application of the combined

feedforward and feedback control approach. In the application, the internal heat

generation in the laboratory space is considered as a disturbance. The implementation for

temperature control is studied by using two closed loops: a supply air flow rate control

loop and an exhaust air flow rate control loop so that the laboratory pressure constraint is

met. In the control sequence the supply flow rate is increased by first opening the general

exhaust damper to increase the total laboratory exhaust flow rate. They show that the

FFPI control loop works well under a wide range of operating conditions. But in the

cooling temperature control system, the controlled variable is not the room temperature,

so that some offset of the room temperature may appear in steady state if the model is not

exactly correct.
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Ahmed et al. (1998c) presented the third application of the combined feedforward

and feedback control approach. In this application, two separate disturbance sequences

are considered for heating, and then the implementation for temperature control has been

studied by using two closed loops, a temperature control loop and a supply airflow rate

control loop. In addition, they also provided a summary and recommendations for the

three systems, pressure control system, temperature control system for cooling and

temperature control system for heating. They concluded that the FF part requires only a

single smoothing parameter to be estimated, which can be held constant for most of the

HVAC processes. The proposed FFPI controller may not need to be retuned. The main

limitation in the three application papers (Ahmed et al., 1998a, 1998b, & 1998c) is that

the identification results of GRNN were kept constant in the simulations.

Jeannette et al. (1998) have presented experimental results of a predictive neural

network (PNN) controller applied to an unstable hot water system in an air-handling unit.

The PNN controller works with a PID controller. The neural network learns the system

while it is operating under the PID controller, and depending on the predictions, the NN

used is "good" or not, the NN will or will not take control from the PID algorithm to

control the processes. The term "good" means that the average of the past ten COVs,

where COV is the coefficient of variation defined by Kreider and Haberl (1994) goes

below 0.45. When the NN is active and the average COV rises above 0.55, then the NN

model needs to be updated with new data and the controller reverts to PID control. Actual

laboratory testing of the PNN and PID controllers shows favourable results for the PNN

controller. The main limitation of the method is that the NN needs the PID controller's

support for training and works only under specified range of operating conditions.
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Atthajariyakul et al. (2005) presented a practical approach to determine human

thermal comfort quantitatively via neural computing. The neural network model, as an

explicit function of the relation of the predicted mean vote (PMV) index to accessible
variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity,

clothing insulation and human activity, allows real time determination of the thermal
comfort index. The authors used experimental results for an air conditioned office room

to demonstrate the effectiveness of the proposed methodology and show good agreement

between the thermal comfort index calculated from the neural network model in real time

and those calculated from the conventional PMV model.

2.7 EMCS in HVAC&R Systems

To reduce energy consumption of HVAC systems, EMCS (energy management

control systems) play a key part in building control. How to implement EMCS is still a

challenging research area. The survey of few studies on EMCS will be shown in this

section. In addition to the papers by Wang et al. (1999), Zheng et al. (1996), Wang et al.

(2000), Huang et al. (2006) reviewed in the previous sections, in the following several

papers related to EMCS will be reviewed.

Fong, Hanby and Chow (2006) proposed a simulation-optimization approach for

the effective energy management of HVAC system, and developed a metaheuristic

simulation-EP (evolutionary programming) coupling approach using evolutionary

programming, which can effectively handle the discrete, non-linear and highly

constrained optimization problems, such as those related to HVAC systems. They also

demonstrated the effectiveness of this simulation-EP coupling suite through the
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establishment of a monthly optimum reset scheme for both the chilled water and supply

air temperatures of the HVAC system in a local subway station. This reset scheme is

shown to have a saving potential of about 1% as compared to the existing operational

settings, without any extra cost.

Engdahl and Johansson (2004) presented the theory for an optimal supply air

temperature in a variable air volume (VAV) system to minimize the system energy use.

The optimal supply air temperature can be set dependent on the load, specific fan power

(SFP), chiller coefficient of performance, outdoor temperature and the outdoor relative

humidity. They also calculated the heating, ventilation and air-conditioning (HVAC)

energy use depending on supply air temperature control strategy, average U-value of the

building envelope. After analysis of energy use, they concluded that controlling the

supply air temperature optimally results in a significantly lower HVAC energy use than

with a constant supply air temperature.

Jin, Ren and Xiao (2005) developed an optimal strategy for outdoor air control

using a system approach based on prediction to minimize energy consumption. They used

ARMA (autoregressive moving average) model to predict the energy performance

expressed by an energy-increment equation. The energy-increment equation was formed

to involve the real-time variations of AHU (air handling unit) load and energy use of

reheaters of VAV terminals. By minimizing the energy-increment equation using genetic

algorithm, the optimal settings of outdoor air ratio of AHU and reheating were obtained.

The strategy was tested and evaluated in a simulated environment under various outdoor

and indoor conditions.
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Lu, Cai, Soh and Xie (2005a) presented the global optimization technique for

overall heating, ventilating and air conditioning (HVAC) systems. They formulated the

objective function of global optimization and constraints based on mathematical models

of the major components. All these models are associated with power consumption

components and heat exchangers for transferring cooling load. They introduced the

characteristics of all the major components, then transformed and simplified the

complicated original optimization problem for overall HVAC systems into a compact

form ready for optimization according to the characteristics of the operating components.

Lu, Cai, Soh and Xie (2005b) presented the solution for the global optimization

problem for overall heating, ventilating and air conditioning (HVAC) systems using a

modified genetic algorithm. They showed the implementation procedure of the proposed

optimal method. They concluded that the proposed method indeed improves the system

performance significantly compared with traditional control strategies through simulation

studies for a pilot scale centralized HVAC plant controlled by the optimal method (Lu et

al., 2005a).

Lu, Cai, Soh, Li and Xie (2005) presented a practical method to optimize in-

building section of centralized HVAC systems which consist of indoor air loops and

chilled water loops. First, they established mathematical models associated with energy

consuming devices. Then, they adopted adaptive neuro-fuzzy inference system (ANP7IS)

to model duct and pipe networks and obtain optimal differential pressure (DP) set points

based on limited sensor information to adapt variation of cooling load of each end user.

In addition, they formulated a mixed-integer nonlinear constraint optimization problem of
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system energy and used a modified genetic algorithm to solve it. The optimization
obtained by using a systematic approach in optimizing the overall system energy

consumption. They made comparisons between the proposed optimization method and
traditional ones for a typical centralized HVAC system. They provided the results and

showed that the proposed method improves the system performance.

2.8 Experimental Research in HVAC Controls

Experimental work on control methods in HVAC systems has been investigated

by several researchers. Kasahara et al. (1999) presented experimental results for PID

tuning methods in HVAC systems (reviewed in Section 2.4). Krakow (1998) (reviewed in

Section 2.4) used experimental responses for a Pi-controlled mixing valve air heating

system to show the relationship between sampling interval and digital PI control system

performance. Application of adaptive PID control methods to HVAC systems were

studied by Seem (1997) (reviewed in Section 2.3) and Nesler (1986a and 1986b)

(reviewed in Section 2.5). A tuning method based on relay feedback, to a HVAC system

was presented by Äström et al. (1993) (reviewed in Section 2.6.1).

Wang, Lee, Fung, Bi and Zhang (1999) proposed a PID controller design method

that achieves high performance for a wide range of linear self-regulating processes. The

PID tuning rules were developed using a second-order plus dead-time modeling

technique and a closed loop pole allocation strategy. The technique was applied to

processes with various dynamics, including those with low- and high-order, small and

large dead-time, and monotonie and oscillatory responses. Simulation examples and

comparisons with Ho's gain and phase margin method (GPM) (Ho, Hang, & Cao, 1995)
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were presented and the results showed that improved performance can be obtained. Also,

real-time experiments were carried out both in the laboratory and in the industry. The test
in the laboratory was conducted on a Dual Process Simulator KI 100 manufactured by
KentRidge Instruments, and the results from using both the proposed tuning method and
Ho's method for one oscillatory process were presented. The industrial test was

performed on an HVAC digital control system called Enflex, for a supply air pressure
loop and a zone air temperature loop, in the Supersymmetry Services PTC LTD,

Singapore. The process responses for both the proposed tuning method and Aström's

modified Ziegler and Nichols method (Aström & Hägglund, 1984) were presented. The
experimental results showed that improved performance is achieved by using the PID

tuning method they developed. The main limitation of the tuning method is that
robustness to uncertainties in the models is not considered and uncertainties in the models

certainly exist and have an effect on performance since an exact cancellation method is

used in their analysis.

Wallonborg (1991) proposed a control algorithm for a self-tuning controller. The

control algorithm depends on discrete-time process transfer function parameters, and the

parameters based on the wave form of a periodic oscillation obtained with a relay

feedback tuning experiment. The self-tuning controller is a general linear discrete-time

controller and was designed by using pole placement based on input-output models. In

addition, the self-tuning controller also has a feature that the sampling period and the

desired closed loop poles is determined automatically with respect to the process

dynamics and the desired closed loop performance can be easily modified by the

The experimental results for applying the control algorithm to a supply air temperature
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control and an air duct pressure control are shown. Wallonborg concluded that the

algorithm has worked well in many different HVAC applications, and a substantial
reduction in commissioning can be achieved compared with manual tuning of

conventional controllers. The main drawback of the algorithm is that in some cases it

may be difficult to obtain the necessary steady-state conditions for a tuning experiment.

J. Wang, Y. Wang, and Shao (2005) noted that variable air volume (VAV) air

conditioning control system has the feature of multi-control loops, so while all the control

loops are working together, they interfere and influence each other. Therefore, they

designed the decoupling unit in VAV air conditioning system using the method of

diagonal matrix decoupling, and adopted Lonworks technology into VAV air

conditioning decoupling control system so that data could be exchanged among multi-

loops. Experimental results demonstrate that the combination of the diagonal matrix

decoupling and Lonworks technology (decoupling compensation coefficients among

multi-loops are handled as network variables of Lonworks technology) can improve the

performance of the VAV air conditioning control system.

2.9 Summary and Discussion

In this chapter, the literature related to HVAC systems was reviewed. The

literature reviewed includes modeling, design of controllers, intelligent controls,

experimental controls and energy management control system (EMCS).

The modeling of HVAC systems is one of the most important aspects in system

design. The modeling effort has been focused at two levels. One is for simulation and the

other is for control design. The models for simulation of HVAC performance have been
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developed by many researchers such as Tashtoush et al. (2005), Mei et al. (2002), Huang
et al. (2006), and Wang et al. (1999). The models for control design, especially for auto

tuning and adaptive controls, have received little attention. A frequently used model for
local loop control is based FOPDT modeling approach. This is considered adequate if it

is used as a part of robust identification for parameter update.

From the literature review presented in this chapter, it is noted that while there

have been several studies on the design of controllers for HVAC systems most can be

grouped into simulation based energy efficiency analysis studies and control studies
which use either computer control or industrial controls. Such developed algorithms can
hardly be implemented on building control platforms currently available. Therefore, the
focus of this research has been to develop PI control tuning methods which can be

implemented on existing building control systems. Both online adaptation, robustness
issues have been addressed and the feasibility of NN control for HAVC systems has been

demonstrated.

PID controller is still the most popular controller in HVAC field today. However,

there is a need to augment the PID controller with energy optimal and robustness

properties. Although some studies on the combination of intelligent control and PID
control have been done by some researchers such as Seem (1997), Nesler (1986b), and

Qu et al. (2004), the developed control strategies have to be implemented in existing

building control hardware platform. This aspect is lacking in many of the studies done in
the literature.
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The interaction in HVAC systems makes control difficult. To solve this kind of

problem some researchers such as Wang et al. (2005), Rentel-Gómez et al. (2001), and
Semsar et al. (2003) have used decoupling control. For zone temperature controls in

multi-zone systems the interaction of airflow into zones could be solved by adopting
innovative two loop control structure. Such a control strategy will be studied in this
research.

EMCS in HVAC systems plays key part in implementing supervisory control

strategies to achieve energy savings. To achieve the energy saving goal, the local controls
in HVAC systems must be efficient and robust. The emphasis of this thesis is to develop

suitable and simple control strategies for local controls of HVAC systems that can be

implemented in real systems with EMCS. The detailed proposed control strategies will be

presented in the following chapters.
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3. Modified RLS Identification Algorithm for FOPDT

Systems

In order to develop improved adaptive control strategies a robust online

identification technique needs to be developed. Therefore, the objective here is the

development of a modified RLS algorithm that is suitable for online implementation.

An RLS identification algorithm for FOPDT model that uses a 2x2 matrix P

was developed in an earlier study (Qu, 2002). To improve the robustness property of the

RLS algorithm developed earlier, a matrix-reset technique is designed. Simulation results

show that with this technique a more robust online identification of plant parameters was

achieved.

3.1 RLS Algorithm for Online Identification of FOPDT Systems

The recursive least squares (RLS) method is an effective approach in online

identification because a new estimate can be obtained easily. In order to implement the

RLS algorithm for online identification of a system, consider the following diagram

(Franklin, Powell, & Workman, 1 997).

u(k) Plant
0°

y(k)

Prediction
?

y(k)

e(k;9)

Figure 3.1 Block diagram showing the generation of output prediction error
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Considering the system as a FOPDT model (3.1), it is noted that, if / is fixed, the

system identification reduces to the estimation of parameters a and b of the system.

s(?)ß??=_*?. (3.dU(Z) 1-az"1

Using measured or computed values of y(k) and u(k) for some k , we have

y(k) - ay(k - 1) - bu(k -l-l) = e(k;0) (3.2)

Let

? = [a bf . (3.3)

and

¥(k) = [y(k-\) u(k-l-mT 0?)

then, through analysis, we can write the error equation as

?(?) = ?(?)? + e(?;?) (3.5)

where

?{?) = [?(1 + 1) ?(1 + 2) ··· ?(?)?

e(?;?) = [e(1 + 1;?) - e{N;6)J

Y(N) = [y(l + ì) ¦¦¦ y(N)Y

Assume that we observe a set of inputs and outputs

{u(0), u(\), ¦ ¦ ¦ , utN), y(0), y(i), ¦ ¦ ¦ , y(N)}

and that we need to estimate the parameter T0 of the system and the prediction is ? . The

least-squares method can be expressed as

TmnJ(0) (3.6)
?

where J(O)= ^y¡w(k)e2(k;9) = eTW£ and the weighting function w(k) is positive.
*=/ + !
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For vAk) = af-k, ? = is the minimum of 7(0), the vector L(k) =
Lx(U) and the

2x2 matrix P(k) = Pu(k) PnVc)
P2i(k) P22(Q

, the scalar form of RLS algorithm for FOPDT

model described in the previous study (Qu, 2002) can be summarized as follows:

Step 1: Select N (>2xl)

Step 2: Select a, ?

Comment: a = ? = 1 is ordinary least squares; a = 1 - ? and 0 < ? < 1 is

exponentially weighted least squares

Step 3: Select initial values for P(N) and T(?) . One possibility is that set

T(?) = , P(N) = ß o"
0 ß_

, where /? is a large scalar. This requires less

memory and matrix inversion is not needed, and the computations can be reduced

to calculate P(N) and T(?)

Step 4: Collect y(N) and u(N-l) and form ?7 (N + \) = [y(N) u(N-l)}
Step 5: Let k <- N

can be done byStep 6: L(k + 1) <- ^-y(k + l) - + ?' (k+\)^-^y/(k + \)
a ?

step 6-1:

ß(k + \)<r
- + (pu(k)y2(k) + (Pì2(k) + P2ì(k))y(k)u(k-l) + P22(k)u2(k-l))/ ?

(3.7)
a

step 6-2: L,(k + 1) <- ß{k +l) {Pu(k)y(k) + Pl2(k)u(k-l))
7

(3.8)

45



and step 6-3: L2(A + 1) <- ^^(P2I(A)y(A) + P22(AMA - 1)) (3.9)
Y

Step 7: Collect y(A + l) and «(A-/ + 1)

Step 8: 0(A + 1) <- 0(A) + L(A + l)(y(A + 1) - ?t (k + I)A(A)) can be done by
step 8-1: <r(A + l) <- y(A + l)-(â(A)y(A) + £(A)w(A-/)) (3.10)
step 8-2: A(A + 1)«- 5(A)+ L1(A +.1)s(? + 1) (3.11)

and step 8-3: ¿(? + 1)*-£(?) + ?,(? + 1)s(? + 1) (3.12)

Step 9: P(A + 1) <--[/- L(A + 1)?/7" (A + l)]p(A) can be done by
Y

step 9-1: PLK1(A + 1)«- P11(A)L2(A + 1))>(A) (3.13)

step 9-2: PLF2(A + I)^P12(A)L2(A + 1) y(k) (3.14)

step 9-3: PI1(A + l)<--[Pn(A)(l-L,(A + l)y(A))-P2I(A)L,(A + l)K(A-0] (3-15)
Y

step 9-4: PI2(A + l)<--[P„(A)(l-I,(A + l)y(A))- P22(A)L1(A + 1)«(?-?] (3-16)
Y

step9-5: P21(A + !) <--[- PLF1(A + !) + P21 (A)(I-L2(A + !)^-/))] (3.17)
7

1and step 9-6: P22(A + 1) = -[- PLF2(A + 1) + P22(A)(I- L2(A + 1)h(A-/))] (3. 18)
Y

Step 10: A<-A + l

Step 11: Form ¡f(k + l)

Step 12: Go to step 6.

Note that all equations of the algorithm are expressed in scalar form (no matrix

inversion is required), so they can be directly implemented on the existing EMCS. This
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algorithm uses less memory than the original RLS (Franklin et al., 1997) for higher value
of / (/ > 2 normally) and no matrix inversion is required.

3.2 Issues in Using the RLS Algorithm for Online Identification

Numerical instability in the RLS algorithm may cause absolutely wrong

identification results. To avoid this situation, a robust RLS algorithm is developed. The

basis of the development strategy is described in the following.

First of all, in the RLS algorithm, we need to compute the elements of P(k +1) as

in step 9 of the algorithm, which uses the following equations.

P(k + l) = -[l - L(k + l)y/T(k + \)]p(k) (3.19)
r

where L(k + 1) = ^-y(k + 1)
Y

'- + yrT(k + \)^-i/s(k + \)
a ?

and

r(k) = [y(k-l) u(k-l-l)f.

The above equations do not guarantee that all elements in P(k + 1) with their

absolute values do not go to infinity. For example, in the case of Pu(k)<0, \Pu(k)\>M

(M is a large positive value which is close to the maximum operating value of the

system and 2M will be greater than the maximum operating value of the system) at a time

k , and [L2 (k + 1)| > 2 at the time it + 1 , from equation (3.13) we can see that \PLYt (k + l)\
will be greater than the maximum operating value for y(k) > I . From the step 6 and step

9 of the program, we can see that if Pu(k) < 0 and P22 (k) < 0 at a time k then the result

\Pu(k)\> M , \P22(k)\>M or one of \Pu(k)\ and \P22(k)\may tend to infinity for a
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symmetrical initial matrix P, 0<7<1 and µ(£+1)>0 because the following equations

exist under the symmetrical initial matrix condition.

Pu(k + \) = P2i(k + i)

P(k + l) = M^-äi!l±R(p(k)yik) + Pnik)u(k-l))2 and
r r

P22(k+i)=M^-^!ipl(pnik)yik)+p22(kMk-i)f7 T

In addition, 0(k + 1) = 0{k) + L(k + \)(y(k + 1) - ?t (k + \)ê(k)) shows that we need
to avoid L(A: + I) = O over a long interval which causes incorrect identification result

because in this case, even ïfy(k + ])*y/T(k + l)ê(k), there still exists 9{k + \) = ê{k) .
This observation can be drawn from P{k) = 0 through some analysis for the FOPDT

system.

As a result, we can say that P(k) = 0 causes incorrect identification and also

significantly higher absolute values of P(k) cause incorrect identification (the infinity

problem). Resetting the matrix P(k) in such cases is one way to solve this problem.

In the equation (3.7) in step 6-1, a division operation is required. However, by

computing g(k) first as in Equation (3.20), we can verify whether ç(£)goes to zero or

not. Therefore, we should guarantee that g{k) F? for validly computing ß{k + \) by

modifying the online identification algorithm.

ç(k) = - + (pu(k)y2(k) + (Pn(k) + P2](k))y(kMk-l) + P22(k)u2(k-l))/r (3.20)
a
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3.3 Matrix-Reset Technique

To avoid incorrect identification results or infinity problem, a matrix-reset

technique is developed. The basis for this is that we can set an upper bound on the sum of

the square values of elements in matrix P to solve the infinity problem and set a lower

bound on the sum of the square values of elements in matrix P to solve the incorrect

identification problem. That is, we should keep

LowValue< P55 < UpValue (where P55 = P* + P¿ + P¿ + P¿ ) (3.21)

and resetting to initial values for matrix P whenever the value of P55 is out of the bounds.

To choose the lower bound (LowValue ), we must avoid all elements of P which

are less than the smallest positive non-zero value of the processor (SPVOP) and at the

same time avoid L(k + Y) = O for k —? oo. Also, to keep the algorithm running in a normal

way which guarantees that the identification is converging, frequent resetting should be

avoided. Therefore, based on the above

1 > LowValue > SPVOP (3.22)

is an acceptable choice for the lower bound ( LowValue ).

Here we discuss how to choose the UpValue — the upper bound. First the

computed values in the algorithm must not lead to infinity. That can be ensured by

satisfying the following inequality

UpValue <-LJ- (3.23)
? +uJ max max
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Where, LPVOP is the largest positive non-zèro value of the processor. ymm is the

maximum value of y and «max is the maximum value of u.

Second, we need to also ensure that the following inequality is satisfied.

P{k) = ß o"
0 ß

, then P„ (k + l)< UpValue.

Therefore, for P(k) =

P1Ak + I) = Z-

ß o"
0 ß

, we have

r

\

ßy2(k)
1 +ßy2(k) + ßu\k-l)
a

(3.24)

P12(A: + I) = P21 (* + !) = - yff ßy(k)u(k-l)
7 ?

}
a

+ ßy2{k) + ßu\k-l)
(3.25)

P22(¿ + 1) = ^ ßu\k-l)
f ? \

- + ßy2(k) + ßu2(k-l)
Ka JJ

(3.26)

Let L = - + ßy2(k) + ßu2(k-l) , then 0< ?/(*) + "2(* 0)<L Therefore;a S

/»„(* + !) = ' ^y2a)ì , 2ß2y2(k)u2(k-l) , f , £h2(*-/)
£

+ -
^2S2

- + 1--
JE

2#2(*) , ßy2{k)(ß{y2{k) + u2{k-l)f- + -
^E GS

2ßu2(k-l) ßu2(k-l)
% ?2S

ß(y2(k) + u2{k-l)Y
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?
JJ

2-lLAß(y\k) + u\k-l))?2S

<< rß*'
\r j

1 + IzZ
, 7 J

s2^

?>0.5

, 0<y<0.5

Therefore, we can choose

V d?2LPVOP +1-1
3???'+?,

> UpValue > 2
max max ? TO

for ?>0.5,

V^^+ Üx^m»»'"
Jmax+"max max

ß
\7j

^ ? „?^
1 + 1-y

7 ;

(3.27)

(3.28)

for0<7<0.5. (3.29)

In the above algorithm, the value of a is between 0 < a < 1 . From the RLS

algorithm, we know that a and ? are related to weighting factors. For a fixed value of ? ,

choosing larger a means more weight is placed on the current measurement. If we let

y — \ and a be infinity, the parameter a will have no effect on the algorithm. In the next

section, simulation result will show that this modification makes the estimation process

fast. However, this modification must be combined with a reset technique to have better

robustness in real time applications.

To avoid the infinity problem, we must avoid division by zero in computing

ß(k+Y) = \l ç(k) (step 6-1). This can be ensured by considering the online identification

program to do reset to initial values for matrix P, when ç{k)<ô . Where, 5 is a small

?value (we can choose d > — > 0 and d > SPVOP ).
ß
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In addition, to avoid L(k + 1) = 0 for k —? co, LowValue < P55 and inequality (3.27)

should be checked and reset the matrix P to the initial status if any inequality is not

satisfied. Where, LowValue is a selected small positive value. If we let the initial values

of Pn = P21 be zero and Pn = P22 be positive, then we have Pn(K) = P2](k) . In a real

application, to avoid wrong measurement effect the identified parameters must be

bounded. To this end, the modified RLS identification algorithm can be stated as follows.

Initialization: Initialize the model parameters a , b and I obtained by applying any

off-line system identification method using a set of open-loop experimental data,

select or compute amax, amin, &max, and bmm by considering such as 75% changes

in Tc and Kc shown in Figure 4.3

Step 1 : Select TV ( > 2 ? / ), LowValue and UpValue

Step 2: Select a, ?

Comment: Ct= ? = 1 is ordinary least squares; a = 1 — ? and 0<?<\ is

exponentially weighted least squares; J-\ and a = °o is recommended.

Step 3: Set P,, (W) = P22 (N) = /&, Pn(N) = O, â(N) = a, and b(N) = b , where ß is a

positive large scalar that satisfies the inequality (3.28) for 7>0.5, and satisfies

the inequality (3.29) for 0 < ? < 0.5 .

Step 4: Collect y(N) and u(N-l)

Step 5: Let k <- N

Step 6: c(k+ì)<^ì/a+(Pu(k)y2(k) + 2Pn(k)y(k)u(k-l) + P22(k)u2(k-l))/ ?
(3.30)

Step 7: If \ç(k + ])\<d then go to step 20 else go to step 8 (avoid dividing by zero)
52



Step8: Z1(A + 1) <- (/?,'(Jfe)y(Jt) +./»2(?:)µ(* -/))/$"(* + 1)/ y (3.31)
Step 9: í2(i + l)<-(^2(/fc)#) + /522W«(¿-/))/í(Hl)/j' (3.32)
Step 10: Collect y(k+ï) and u(k-l + l)

Step 11: a(k+.\)<r-y(k + l)-\p(k)y{k) + b(k)u(k-l)) (3.33)
Step 12: âc(fc + l) <-a(*) + I,(Ä: + l)<T(* +1) (3.34)

Step 13: ¿c(* + 1) <- ¿(Jt) + L2(Jt + 1)«t(ä + 1) (3.35)

Step 14: PLY2(Jc + I)^-P12(AOL2(Ac + Dy(*) (3-14)

Step 15: ^1(Jk + 1) «- -[/>,(/c)(l - L1(A: + l)y(*))- ^2(Zc)L1(A: .+ !)«(*-/)] (3.36)

Step 16: />2(Jt + l) ^--[^(?^?-?,?? + ?)^*))-^^)^,^ + 0«(? -?] (3.16)
7

Step 17: P22(/t + l)--[-PL^Í/c + ^ + ^í/c^l-L.Í/c + l)«^-/))] (3.18)
?

Step 18: P„(/c + l) <- P,'(ic + 1) + 2^22(A; + 1) + P222(A: + 1) (3.37)

Step 19: If LowValue < Pss < UpValue then go to step 21 else go to step 20

Step 20: Set P1 , (Ac + I) = P22 {k + Y) = ß and F12(A: + I) = O (do reset)

Step 21: If amin<âc(k + Y)<amax and bmm <bc(k + \)<bmM then go to step 22 else go

to step 23 (only computed value in the considered range will be updated)

Step 22: â(k + Y)<-âc(k + ï) and b(k + 1) <-*>.(* + 1) then go to step 24

Step 23: â(k + \)<^â{k) and ¿(Jfc + 1) <- b(k)

Step 24: Jfc «- k + 1

Step 25: Go to step 6.
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3.4 Simulation Studies for the Modified RLS Algorithm

Real systems always have some delay and dynamics. The proposed modified RLS

identification algorithm will reduce the maximum delay and response time under realistic

operating conditions. Simulation results show that the proposed modified RLS

identification algorithm has smoother (smaller offset) response than the previous RLS

algorithm (Franklin, 1997; Qu, 2002). The simulation implementation in Simulink is

depicted in Figure 3.2.

?h r*€>

(M

Wmi

??? To WS
CZl

Digital Clock
-HËD—

Memory

?

a and b To WS

2*??f|,

Figure 3.2 Simulation scheme for on-line adaptive control

In Figure 3.2, the plant model is given by Equation (3.1) and the delay / is known.

The identifier is implemented by using RLS algorithm with or without the matrix-reset

technique. The //«, PI tuning algorithm is applied for the tuner in this section. Eight cases

are considered in the simulation study. The matrix-reset technique is not used in Case 3.1

(a = ? = 1), Case 3.3 (a = 0.5 and 7 = 0.5), Case 3.5 (a = °° and 7 = 1) and Case 3.7

(a = 0.05 and 7 = 0.95). In Case 3.2 (a = ? = \ ), Case 3.4 (« = 0.5 and 7 = 0.5), Case

54



3.6 (a = ?? and ? = 1) and Case 3.8 (a = 0.05 and 7 = 0.95), the matrix-reset technique

is applied with d=??ß, LowValue= 0.85 and UpValue=SxlU2 >2{ß??)2 .

The parameters of the simulated plant processes are as follows.

f 0.98 r<5000 f0.1278 i<5000
a = < , b = { , I = 9 (plant process 3.1),

[0.9866 ? ^ 5000 [0.0427 i>5000

Í 0.98 r<5000 Í0.1278 i<5000
a = < , b = < , I = 9 (plant process 3.2) and

[0.9735 i>5000 [0.2112 f>5000

Í 0.98 í<5000 Í0.1278 i<5000
a = < , b = < , I = 9 (plant process 3.3).

[0.9604 ¿>5000 [0.3796 ?>5000

The parameter limits were set as amm =0.9885, am-n = 0.9224, ¿7max =0.8681 and

bmin =0.0183. The simulation was made with TaQ = 78.O0F, N = 25tP(0) =

ß = 8xl(? and the sampling time T5 = 4s. The simulation results for different plant

processes and the cases are shown in Figures 3.3 to 3.8. Figures (c) and (d) are partially

enlarged views of Figures (a) and (b).

Figures 3.3 to 3.5 show that the identification of the plant Processes 3.1, 3.2 and

3.3 under Case 3.1 (a = ? = 1 without matrix reset technique) is incorrect. The dynamic

time of the identification (convergence to the real plant parameter values) for Processes

3.1, 3.2 and 3.3 under Case 3.2 (a = ? - 1 with the matrix reset technique) are 32s, 220s

and 68s. The dynamic time of the identification (convergence to the real plant parameter

values) for plant Processes 3.1, 3.2 and 3.3 under Case 3.6 {a = oo and ? = 1 with the
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Figure 3.3 Identification simulation results for process 3.1 under Cases 3.1, 3.2, 3.6
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Figure 3.4 Identification simulation results for process 3.2 under Cases 3.1, 3.2, 3.6
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Figure 3.5 Identification simulation results for process 3.3 under Cases 3.1, 3.2, 3.6

matrix reset technique) are 12s, 12s and 60s. The results indicate that to have correct

identification it is necessary to use the matrix reset technique. In addition, the results

show that choosing a = oo and ? = 1 with the matrix reset technique (Case 3.6) resulted

improved identification of the system parameters.

The identification results for Case 3.3 (a = 0.5 and ? = 0.5 without the matrix reset

technique) could not be shown in Figures 3.6 to 3.8, because simulation run was

interrupted due to infinity problem {\PLY2\ = Inf ). The simulation runs for Processes 3.1
to 3.3 were tried for Case 3.5 (a = oo and y = 1 without the matrix reset technique),

however, they were interrupted too due to infinity problem (| .PL K2J = Inf ). Therefore, no
figures for Case 3.5 could be recorded.
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Figure 3.6 Identification simulation results for process 3.1 under Cases 3.3, 3.4, 3.6

0988

0 986

0984

0 982

ro 0 98

0978

0.976

0.974

0972
401

-------- Case 3.3
------- Case 3.4
-------- Case 3 6

0.22

02

0.18

(a) -Q 0.16
0 14

0.12

(00 4500 5000 5500 6000 6500 7000
Tim e (s)

0.1.

-------- Case 3.3
- ·- Case 3.4Case 3.6

(b)

"4000 4500 5000 5500 6000 6500 7000
Tsne(s)

0 988
Case 3.3

------ Case 3.4
Case 3.6

0.982

(c) £> 0ro 0 98

0 978

Case 3 3
Case 3.4
Case 3.6

09741

500C 5005 5010 5015 5020
Tim e (s)

4995 5000 5005 5010 5015
Time(s)

Figure 3.7 Identification simulation results for process 3.2 under Cases 3.3, 3.4, 3.6
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Figure 3.8 Identification simulation results for process 3.3 under Cases 3.3, 3.4, 3.6

As shown in Figures 3.6 and 3.7, the response times of the identification for plant

Processes 3.1 and 3.2 for Case 3.4 (a = 0.5 and ? = 0.5 with the matrix reset technique)

and Case 3.6 (a = a> and ? - 1 with the matrix reset technique) are the same (12s). But,

the inflection point for Case 3.6 is closer to the real value compared with the inflection

point for Case 3.4. From Figure 3.8, it is noted that the response time of the identification

for plant Process 3.3 for Case 3.6 (60s) is much smaller than the response time of the

identification for plant Process 3.3 for Case 3.4 (124s).

It is clear that by using the matrix reset technique we can avoid the infinity

problem and better identification results can be obtained in most of the cases. But, in

some cases with the exponentially weighted least squares one can obtain better results

without the matrix reset technique. This is illustrated in Figure 3.9. The limit set in Figure
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3.9 refers to the plant parameter limits. The limit set 1 is same as chosen before, that is,

am3x =0.9885, amin =0.9224, bmm =0.8681 and bmin =0.0183. The limit set 2 parameter

limits are amax =0.9999, amin = 0.9224 , bm¡a = 0.8681 and bmin =0.0001. The

identification of plant Process 3.1 for Case 3.7 (without the matrix reset technique) with"
Limit set 1 (16s) is faster than for Case 3.8 (with the matrix reset technique) with Limit

set 1 (more than 1000s to reach real plant parameter values). The main reason for the

long response time for plant Process 3.1 for Case 3.8 (with the matrix reset technique) is

plant parameter limit selection. Figure 3.9 shows that the identification for plant Process

3.1 for Case 3.8 with Limit set 2 (108s to reach real plant parameter values) has better

performance. Figure 3.9 also shows that Case 3.6 (12s to reach real plant parameter

values) still is the fastest choice for the identification.
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Figure 3.9 Identification result comparison for Cases 3.7, 3.8, 3.6
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In summary, the identification method with a = «> and ? = \ (with the matrix

reset technique) gives fast and smooth identification responses. In addition, there is no

trial required to select a and ? values in this method. Therefore, it is recommended to

use a = °o and 7 = 1 with the matrix reset technique for the online identification of the

FOPDT plants.

3.5 Experimental Tests with the Modified RLS Algorithm

To test the modified RLS algorithm, we have applied the algorithm for online

identification and control of discharge air temperature in an HVAC test facility. The

results are plotted in Figures 3.10 - 3.12. The system was controlled by the simplified

optimal adaptive control (with modified RLS algorithm). Figure 3.10 shows the

identification of plant parameters. av is the estimated value of the parameter a and bv is

the estimated value of the parameter b in the identification process.
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Figure 3.10 Identification results of the experimental tests
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Figure 3.11 shows evolution of controller gains and Figure 3.12 shows the

discharge air temperature responses. The experimental results show that the simplified

optimal adaptive controller with modified RLS algorithm gives good setpoint tracking
responses.
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Figure 3.11 System PI parameters of the experimental tests
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Figure 3.12 Step responses of the experimental tests
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3.6 Summary

In this chapter, a modified RLS identification algorithm with the matrix-reset

technique for online identification was developed. The modified RLS algorithm was
tested by using computer simulations and experiment. The results show that the modified
RLS identification algorithm is able to track changes in the system parameters rapidly.
The matrix-reset technique makes the identification algorithm more reliable and stable.
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4. An Adaptive Control Strategy with a Robust Optimal
Control Algorithm for FOPDT Systems

In this chapter an on-line optimal proportional-integral plus feedforward (PI-FF)
controller tuning algorithm for single-input-single-output (SISO) thermal processes in

HVAC systems is presented. A discharge air system (DAS) is considered. The DAS is
modeled as a FOPDT system in discrete time domain. An optimization problem is

formulated and solved to derive the optimal PI-FF tuning algorithm combined with H00

based PI tuning rules. The proposed tuning algorithm has a weighting factor Q2 that can

be a new freedom parameter to improve the ability in rejecting the effect of system

parameter changes. Simulation runs in an adaptive control structure are made under
various operating conditions. The results show that the on-line tuned optimal PI-FF

controller in the adaptive control system is able to track setpoint changes rapidly and

smoothly, and has improved ability in rejecting the effect of system parameter changes

under suitably selected values of Q2 compared with other methods. Guidelines for

choosing Q2 in balancing different requirements are proposed. Finally, a specific case of
the optimal controller is proposed and experimentally tested and validated.

4.1 Introduction

Heating, ventilating and air conditioning (HVAC) systems in commercial

buildings account for more than half of commercial building's energy consumption.

Therefore, reducing energy consumption of HVAC systems remains a challenging area of

research with significant potential for economic benefits. To this end, optimal control

strategies offer a practical method for energy efficient operation of HVAC systems. In
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addition, improving robustness to system parameter changes is an important part of the
ongoing research.

A Discharge Air System (DAS), which is one of the basic components of a

heating, ventilating and air-conditioning system, is considered. Several different
discharge air system configurations exist depending on heating or cooling applications.

Figure 4.1 shows the DAS for sensible cooling of air. The discharge air temperature is

maintained close to a chosen setpoint by modulating the mass flow rate of chilled water

via valve control (u). The control of DAS represents an important control problem of

practical interest in HVAC. Because of the importance several studies have been done.

See for example, the work done on discharge air temperature system by McCullagh,

Green and Chandraseker (1969), Gartner (1972), Hamilton, Leonard and Pearson (1974

and 1977), Stoecker, Rosario, Heidenreich and Phelan (1978), Shavit and Brandt (1982),

Nesler and Stoecker (1984). A discharge air temperature system model was developed by

Hamilton et al. (1977). Stoecker et al. (1978) have studied the stability of the air

temperature control-loop. The dynamic performance of a discharge air temperature

system with a PI controller is examined by Nesler et al. (1984). Note that in the above

studies only the classical proportional-integral (PI) control problem is addressed. Here we

explore online optimal control of DAS which is robust.

In real HVAC systems, loads and system conditions change without schedule.

This implies that system parameters in a fixed model for an HVAC system will change

without schedule. Some researchers have used Hx technique to improve robustness to

parameter changes for HVAC systems (Qu et al., 2004; Al-Assadi et al. 2004). However,
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it is also important to design optimal controllers for DAS because good regulation of
discharge air temperature with strong robustness improves overall energy-use efficiency
of HVAC systems. Motivated by these considerations, we propose a methodology for on-

line optimal control of DAS applied in an adaptive control system and show results under
various operating conditions specially in improving the ability in rejecting the effect of
system parameter changes.

4.2 The DAS Model

In this section, we are going to derive state equations for closed loop DAS system
with a PI controller.

4.2.1 Physical Model

Figure 4.1 shows a schematic diagram of a DAS system. Mixed air enters the

cooling coil at temperature Ta0 . It is cooled and dehumidified in the cooling coil by using

chilled water. The temperature of the air leaving the cooling coil Ta is controlled by

modulating the chilled water flow rate in the coil as shown by the feedback control loop.

entering
air

temperature

TaO

3 controller
I u

Cooling
Coil

discharge
air

temperature

Figure 4.1 Schematic diagram of DAT system
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4.2.2 Temperature Control

In a typical HVAC system, several thermal processes are controlled

simultaneously to monitor and maintain temperature, pressure and flow rates at optimum

levels. This is achieved by using feedback control systems. The number of feedback

control loops, often referred to local control loops, varies depending on the complexity of

an HVAC system. The discharge air temperature control, zone temperature control,

airflow control etc are the most important local control loops in HVAC systems. The

objective of this study is to develop an optimal control method that can be applied to

local control loops in HVAC systems. The methodology is described by considering a

discharge air temperature system.

From a practical standpoint, the DAS controller should be: (1) simple for

implementation using available hardware, (2) adaptive to load changes and (3) stable, and

(4) giving near optimal temperature control. The major focus of this development will be

that the models should be suitable for on-line implementation and control.

In the following sections, a robust on-line optimal control combined with H00

tuning rules for thermal processes in HVAC systems is developed. First, state equations

for the closed loop DAS system with a PI controller are derived (Sections 4.2.3 and

Secondly, the optimal control problem is formulated as a standard constrained-minima

problem and solved using the method of Lagrange multipliers in Section 4.3. It is shown

that the optimal· solution consists of PI control signal and feedforward control signal.

Then, an algorithm for tuning of PI-FF controller parameters is proposed in Section 4.4.

Simulation results in an adaptive control system showing the operation of the optimal PI-
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FF controller under several operating conditions are presented in Section 4.5. A

simplified optimal control algorithm is proposed in Section 4.6 and its applications and
experimental validations are presented in Sections 4.7 and 4.8.

4.2.3 The First-order-plus-dead-time (FOPDT) Model

Assuming sensible cooling of air, the input-output model can be represented by

Figure 4.2 where u , the chilled water flow rate, is the input and Ta , the discharge air

temperature (DAT), is the output. The entering air temperature Ta0 is considered as

disturbance on the system.

1 Ta0

DAS system

Figure 4.2 Block diagram of DAS system

From the point of view of implementation, it is necessary to reduce the

computational effort required in the identification and control of the DAS system. To this

end, we model the DAS system as a first-order plus dead-time (FOPDT) system. The

model can be represented as Figure 4.3a. Where, Ta0 is the output of the system when

u = O; T0 is the output of the system and u is the input of the system. Assume that Tx is

the sampling time and

I=- (4.1)

is an integer. Then, the discrete model can be expressed as Figure 4.3b.
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Figure 4.3 First-order plus dead-time model

Where, the parameters a and b have the relationship with the parameters Tc and Kc as in

Equations 4.2 and 4.3.

a = eT< ¦ (4.2)

b = Kc{l-a) (4.3)
From the discrete time FOPDT model of DAS shown in Figure 4.3b, the outputs

of the model can be described by Equations 4.4 and 4.5.

y(*+D = ·
O k<l

ay(k) + bu(k-l) k>l

Ta{k) = Ta0-y{k)

(4.4)

(4.5)

In the above FOPDT model, the dead-time I can be obtained by applying least

squares identification techniques to the output data obtained from open-loop experiments.

The parameters a and ¿»will be computed on-line by applying the modified RLS

identification algorithm with the matrix-reset technique. The details of the algorithm are

given in Chapter 3.
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4.2.4 The Closed-Loop DAS Model

The closed-loop control diagram of the DAS with a PI controller is shown in

Figure 4.4. A digital PI controller with feedback gains K pd and Kid as in Equation 4.6

T1 z + l
2 z-1

K1.

&^
K.Pd

bz
1 - az

aO

+F T

Figure 4.4 Closed-loop diagrams of DAS with a PI controller Kd(z)

was used where Ts is the sampling time. The DAS model is described by Equations 4.4
and 4.5.

KAz)-
Kr*+:

K1J.id* s
Z +

K1J,id S Kpd

z-l

Let Kp, = [K . Kid ] , then we have

u{k) = -Kplx(k)

where

X(k): xi(k)
x2{k)_

x,{k) = e{k)

x2(k) = x2(k-\) + ^-{e(k) + e(k-l))

By considering

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)
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e(k)=T-Ta0 + y(k) (4.11)

we have

*(*) =

*,(*) =

I TKI-Ta0 0<k<l
\y(k) + Tset-Ta0 k>l

kTs{T5et-Ta0) ^ 0<k<lkTs(Tse,-Ta0) + ^-Ts + T^y(i) k>l¿ í=/+1

(4.12)

(4.13)

For k > I where / is the delay time, the model equations (Equations 4.12 and

4.13) of the closed-loop DAS can be expressed in terms of states and control input and

the system parameters as shown in Equation 4.14.

x(k + i) a 0
\ + a

T. 1 \x(k) +

1 set * aO

{k+\)rs(Tsel-TaQ)
u(k-l) +

b
bTr

b
bTr \-a

\<k<l

(Tia-Ta0) k>l

(4.14)

4.3 Optimization

It is worth noting that the energy consumption of HVAC systems during the start-

up dynamics over a period of time equal to the length of transportation delay / is much

less than the energy consumption over the time span to reach the target operating

setpoint. By noting this fact, we have formulated and solved the optimization problem for

the case when k > I . For the system given by

jc(Jfe + 1) =
a

\ + a
T. 1 *(*) +

b
bT u(k-l) + {\-a)?, <??-?ß0)

= Ax(k) + Bu(k-l) + C(Tseí-Ta0), k>l (4.15)
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where x(k) =
y(k) + Tsel-Ta0

?=; +1

A =

B

a
1 + a

b
bT.

T. 1

-C = (1-a)G,

we wish to select u(k-l) so that a cost function

J = I¿ [XT (Jt)Qjc(Jfc) + M7" (fc - Og2H(J: - Z)]2 *=/
(4.16)

is minimized. In Equation 4.16 Q1 is the symmetric weighting matrix and Q2 (Q2 F?)

is weighting on control energy. They are nonnegative definite. The above problem can be
considered as a standard constrained-minima problem that we wish to minimize J

subject to the constraint

-x(k+\) + Ax(k) + Bu(k-l) + C(Tse,-Tu0) = (), k=l,l + l,-,N (4.17)

By using the method of Lagrange multipliers (Franklin et al. 1997), the cost
function is written as

J' = -Y\xT(k)Qtx(k) + uT(k-l)Q2u(k-l)2 k=i
+ AT(k + l)(-x(ik + 1) + Ax(k) + Bu(k-l) + C(Tse, - Gß0))] (4. 1 8)

where Ä(k + 1) isa Lagrange multiplier .vector.
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By minimizing J' with respect to x(k), u{k-l), and Á(k) an optimal control

solution for Qx =
in 0
0 0 was found. The optimal control has the following structure

u(k) = -Kplx(k)-KFF(Tsel -TJ

where

KPl(k) =

K

K(A-BK)

1 0

0 0
Í 0
0 Uk

k = 0

\<k<l

K(A-BK)' k>l

KFAk)-

K
0

IT.
k=0

fk-\
K S(?-??)' C 1<?</

?-?

?\S(?-??)'\? k>l

with K = [?? K1]

P 0 + a)ß2

K =¦ 2^2-
(ì + a)Q2

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

From the above optimal results, we note that the control as in Equation 4.19 can

be implemented as a PI controller with a feedforward action as depicted in Figure 4.5.

From Equations 4.23 and 4.24, it is noted that the magnitudes of controller gains

K and K¡ are functions of the parameters ( ^n and C2) and the weighting factor (Q2).

The parameters qu and C2 can be chosen such that control response is fast and smooth.
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To this end, we have used the H„ tuning rules (Qu et al., 2004) developed by a loop-

shaping and robust stabilization technique (Tan et al., 1998). By assuming Q2 =1 it is

noted that the controller gain Equations 4.23 and 4.24 are the same as those obtained by

the //„ tuning rules. After some algebraic manipulations, we have

9n
(0.265r + 0.307)(l-tf2)

(0.265/+0.307)(l-a2)

ZIn a
+ 0.5 5.314^+0.951

1 +0.5
/Ina

2-/lna

Ina

J (/In a -2)7;

r,,^* - , -??a-0.951 ,with r=0.1974 forali / or ?- for' 5.314
2 < 8.922

In a In a

(4.25)

(4.26)

?a0 + ?

K FF

-*g> Ì~*\ T, z + ì
2 z-1

K1,

?-+®
X. u

A Kpd

bz
1 — az

?-»·

Figure 4.5 Closed-loop diagram of the optimal PI controller with feedforward action

According to the above selection, qn and C2 dependent on the model parameters,

and the weighting factor Q1 gives an additional degree of freedom to optimize the

performance of PI controller.
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4.4 Tuning Algorithm

In this section, we will present the developed optimal tuning algorithm, and

introduce a new index to evaluate the performance of the optimal PI-FF controller.

4.4.1 Optimal Tuning Algorithm

Here we give a set of tuning equations for the optimal PI controller derived in the

previous section. From the definitions of A, B, K , and by assuming

A-BK = Sil 6I2

<?2l SlI
= 8

(A-BK)' A11(O Zi12(O
Zz21(O Zz22(O

= Zz(O , and

J^(A-BKY = m2i(j) m22(j)
= m(j) ,

the following discrete time tuning equations for the controller parameters K . , Kid and

KFF were derived. These are:

*„(*> =

K1Ak) =

Kp k = 0
?G,?*) + *??(*) ^k < ?
K,,A11(Z) + AT,.A21(Z) *>Z

0 *=0

-(AT,A12(Zc) + K,.A22(A)) 1<*<Z
/^A12(Z) + AT1-A22(Z) *>Z

*«(*) =

??,??

(4.27)

(4.28)

fc = 0

(l-a)l^mn(^-l) + ^,/n2l(/v-l) + -(^m!2(Ä:-l) + K,.m22(/i-l))j 1<*<Z
(l-fl)í^mI1(Z-l) + Zf,.ffi2I(Z-l) + |(í:pm12(Z-l) + ír,.m22(Z-l))i Zc> Z

(4.29)
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Equations (4.22 - 4.29) describe the optimal tuning equations for FOPDT

processes in discrete time domain. We refer to this algorithm as Optimal Tuning

Algorithm (OTA). The algorithm can be implemented by following the steps given below.

However, it requires more memory and computation than the Hm PI tuning rules.

Initialization: Initialize the model parameters a , b and / obtained by applying any

off-line system identification method using a set of open-loop experimental data

Step 1: Update the model parameters a and ¿using a selected RLS identification

method at time k {>2xl + \) or keep the model parameters a and b as

initialized at time k (< 2 x / + 1)

Step 2: Update parameter C2 and weighting parameter qu (related to smooth

response)

Step 3: Choose weighting parameter Q2 (related to energy and robustness to system

parameter changes)

Step 4: Calculate K and A^,

Step 5: Update g, A(i),and m(i-\) with A11(O) = A22(O) = I, A12(O) = A21(O) = O and

/^,(-1) = w22(-l) = m12(-l) = m2)(-l) = 0 until i = k for 1 < k < I or i = l for

k>l

Step 6: Calculate Kpd , Kid and KFF from Equations 4.27, 4.28 and 4.29

Step 7: k «— k + 1 and go to Step 1 .
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4.4.2 Guideline for Choosing the Control Input Weighting

Parameter Q2

In the discharge air temperature cooling control system, an increase in the

discharge air temperature setpoint (step-up) would require less mass flow rate of chilled

water which in turn decreases energy consumption. On the other hand, a decrease in

setpoint temperature (step-down) will have the opposite effect. Therefore, it can be

reasoned that when the setpoint temperature is increased it would require less energy and

as such a smaller value of Qi would be appropriate so that the control response is not

over damped. Likewise, a higher value of Qi would be needed when the setpoint is

decreased. To this end, we introduce two parameters Q2-down and a reduction factor.

The value of Q2-down indicates the value of Qi that the system adopts in step-down

process and the reduction factor is the multiplier used to compute the value of Qi that the

system adopts in step-up process. The reduction factor is always positive and less than

one. That is, Qi = Q2-down ? reduction factor is the value of Qi in the step-up process.

We refer to this technique as Optimal Tuning Algorithm with Variable Parameter (OTA-

VP).

To develop guidelines in the selection of Q2-down and reduction factor, the

following index is defined. Where, ? is the number of the total considered processes and

IndexP¡ is index of the i th process.

IndexT = -YjIndexPl (4.30)

By defining au as the weighting factor for energy and CCe the weighting factor

for dynamic response, and noting that weighting factors should satisfy Otu+ae —\, the
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IndexP is formulated as follows:

IndexP = a,I U 2- ("(*) + «(* -I)K /sumRU + ae %-(\e(k)\ + \e(k-i)\)rsv*=*„ 2 ?*=*«2 y

fk.
SumRU

SumRE ¦

£^(?(*) + ?(*-1))G,V* o / reference

/SumRE

(4.31)

(4.32)

^St?+?^-1)!)7;! <4·33>*=*G2\*-*o s reference

Note that the IndexP is normalized with a reference value which in this case is

based on /Z00 PI tuning rules. When the value of JndexT is less than one for selected au

and CCe , it means that the system has better performance than the reference system during

the time interval [k0 kend]. In addition to using the index for the purpose of comparison,
we can minimize IndexT with respect to Q2-down and reduction factor to select the

optimal values.

In the next section the impact of Q2 on temperature regulation, energy

consumption of DAS, and robustness changes in system parameters will be investigated,

and further guidelines for choosing the control input weighting parameter Q2 in balancing

different requirements will be given.

4.5 Simulation Studies in an Adaptive Control System

The tuning algorithm should reduce control energy and be robust to changes in

system parameters. To test the developed algorithms, the DAS model parameters a and b
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were varied. To this end, seven different sets of models as shown on Table 4.1 were used.

We assumed 4s to be the sampling time (F5), and refer to these models as processes 4.1,

4.2, 4.3, and combined processes 4.1, 4.2, 4.3, 4.4.

Process

Parameters

«3000s
3000s<f<5000s

Process
4.1

0.9538
0.9538

Process
4.2

0.969
0.969

Process
4.3

0.9097
0.9097

Combined
Process 4.1

0.9538
0.9538

Combined
Process 4.2

0.9538

0.969

Combined
Process 4.3

0.9538
0.9538

Combined
Process 4.4

0.9538
0.9097

r>5000s 0.9538 0.969 0.9097 0.969 0.969 0.9097 0.9097

f<3000s 0.1329 0.0446 0.3896 0.1329 0.1329 0.1329 0.1329

3000s</<5000s 0.1329 0.0446 0.3896 0.1329 0.0446 0.1329 0.3896

/>5000s 0.1329 0.0446 0.3896 0.0446 0.0446 0.3896 0.3896

/

Table 4.1 Plant parameter changes for considered processes

The simulation implementation in Matlab Simulink is depicted in Figure 4.6.

Ta0 = 66.0F is assumed. The identification process is omitted in the simulation study for

simplicity. The current plant parameter values of a and b are directly sent to the tuner.

According to a new set of the input parameters, the tuner generates a new set of the PID

controller parameter values and sends to the PID controller. By setting Q2-down equal to

Q2 and reduction factor equal to one as the input values of the tuner in Figure 4.6 a

constant Q2 PI-FF control system can be simulated. This strategy with constant Q2 is

referred to here as Optimal Tuning Algorithm (OTA).

A time-scheduled operation of DAS involving change in setpoint temperature of

air leaving the coil was simulated. Three cases were considered. These are referred to as

Cases 4.1, 4.2 and 4.3 respectively and shown below.

T =<sel '

60F f <3000

61F 3000 < t < 5000 ,Tm H ~ ~~„ . V^ or 7^ =
6OF t > 5000

J60F r<3000
61F ?>3000'

|61F ?>3000
|60F r<3000
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Figure 4.6 Simulation structure for OTA and OTA-VP

4.5.1 Control Input Energy

Table 4.2 shows the simulation results for Processes 4.1, 4.2 and 4.3 with Case

4.1 using the optimal tuning algorithm (OTA) with six different sets of constant Q2
values. The integral of the mass flow rate was computed in each case as a measure of

control input energy. This will enable comparison of different Q2 values. A lower value
of the integral of u would signify lower energy consumption. Therefore, from the results
depicted in Table 4.2, it can be reasoned that in order to save energy one must choose a

higher Q2 value when the setpoint is changed from higher to a lower value and a smaller
value of Q2 when the setpoint is changed from lower to a higher value. Figure 4.7

illustrates the response, using the optimal tuning algorithm (OTA).
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Magnitude
OfQ2

0.25
0.5
0.75
1.0
1.25
1.5

1250 ?
S -¿-{u(k) + u(k-\)) for step-up

lt=751

Process 4.1
3445.4
3453.7
3462.1
3470.5
3479.0
3487.6

Process 4.2
6860.4
6877.2
6893.6
6910.4
6927.3
6944.3

Process 4.3
2306.6
2312.1
2317.7
2323.4
2329.1
2334.9

1750 J^ — [u{k) + u(k - 1)) for step-down
*=1251

Process 4.1
4203.5
4195.0
4186.5
4178.0
4169.4
4160.7

Process 4.2
8433.6
8416.7
8399.8
8382.7
8365.6
8348.4

Process 4.3
2793.0
2787.4
2781.7
2775.9
2770.2
2764.4

Table 4.2 Effect of Q2 on energy efficiency

The above results offer an important insight that it is important to choose the

magnitude of Q2 based on the direction of setpoint change. We refer to this technique as

Optimal Tuning Algorithm with Variable parameter (OTA-VP). The implementation
scheme of OTA-VP is depicted in Figure 4.6.
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2.5

?
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2.3

2.22000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
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Figure 4.7 Responses with the optimal tuning algorithm (Process 4.1; Case 4.1)
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4.5.2 Index Comparison with Other Methods

Simulation studies were made to compare the performance of OTA and OTA-VP

algorithms with the Hx and the Ziegler-Nichols (Z-N) tuning rules. The results using the
three processes namely Processes 4.1, 4.2 and 4.3 with Case 4.1, were evaluated with

au = 0.8 and ae = 0.2 over the time interval k0 = 751 to kend - 1750. Figure 4.8 shows

how the index value changes as a function of Q2-down weighting for different reduction

factors. IndexHT in the figure refers to the index based on the comparison with the H00

tuning rules and IndexZNT refers to the index with reference as the Ziegler-Nichols

tuning method. The results show that a minimum exists with respect to Q2-down and
reduction factor. The simulation results also show that the OTA (reduction factor = 1)

and the OTA-VP algorithms with good selection of Q2 could give better performance

compared to the H00 and the Ziegler-Nichols tuning rules. It is also noted that the OTA-

VP with a good choice of Q2 could yield better performance than the OTA because a
minimum Index!'for OTA-VP exists. It was found that a reduction factor = 0.85 and Q2-

down = 0.4 is close to the optimal result in minimizing the index. Likewise, Q2-down =

0.6 gives near optimal result for the OTA. Figure 4.9 shows the dynamic responses to

setpoint changes for the Hx and the Ziegler-Nichols tuning rules and for the OTA and

OTA-VP with near optimal Q2 values. The responses for H00 tuning rules, OTA and

OTA-VP algorithms are good. The dynamic responses of Z-N method are different for

different processes and show some oscillations.
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Figure 4.8 Index with respect to reduction factor and Q2-down
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Figure 4.9 Response comparisons between OTA-VP, OTA, H* tuning rules and Z-N method
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4.5.3 Robustness Studies

In order to test the robustness property of the optimal tuning algorithm, four

different DAS models referred to before namely, Combined Processes 4.1, 4.2, 4.3, and

4.4 were used. These combined processes simulate load changes that typically occur in an

HVAC system. This could impact the system parameters of the FOPDT model and may

require discharge air temperature to be regulated in a VAV system. The performance of

optimal tuning algorithm (OTA) in compensating for parameter changes assumed as

combined processes 4.1 to 4.4 and regulating the discharge air temperature was studied,

he results depicted in Figures 4.10 and 4.1 1 show that the OTA and the OTA-VP with the

near optimal parameters have improved ability to reject the effect of changes in

Combined Process 4.1

?-60.5

59 5
2000 3000 4000 5000 6000 7000

Time (s)
Method: OTA-VP;

62.5 r
Combined Process 4 2

V

59.5
2000 3000 4000 5000 6000

Time (s)
7000

Combined Process 4 3

58.5
2000 3000 4000 5000 6000 7000

Time (s)
OTA: - ?-infinity: Z-N

61.5r
Combined Process 4 4

£59.5

2000 3000 4000 5000 6000 7000
Time (s)

Figure 4.10 Robustness comparisons in the CPs 4.1 to 4.4 with Case 4.1
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Combined Process 4 1 with Case 4.2
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Figure 4.11 Robustness comparisons in CPs 4.1 and 4.3 with Cases 4.2 and 4.3

the system parameters (lower maximum shooting and fast convergence) compared with

Hx tuning rules and Zeigler-Nichols method.

Method IndexÇ {au = 0.8 and ae =0.2).
CP 4.1 CP 4.2 CP 4.3 CP 4.4

IndexT

Hx tuning rules 1.0000 1.0000 1.0000 1.0000 1.0000
OTA-VP with

Q2-down = 0.4&
reduction factor = 0.85

0.9256 0.9036 0.9233 0.9154 0.9170

OTA with ¡22 = 0.6 0.9480 0.9551 0.9663 0.9309 0.9501

Ziegler-Nichols 0.9159 1 .0082 0.9405 .0235 0.9720

Table 4.3 Index comparisons between methods for CPs with Case 4.1

The results depicted in Tables 4.3, 4.4 and 4.5 indicate that the OTA and the

OTA-VP with the near optimal parameters have lower index values {IndexT) compared to

85



Ha3 tuning rules or Zeigler-Nichols method. The improvement achieved with the OTA-VP

is significant.

Method IndexP, {au = 0.8 and ae =0.2)
CP 4.1 CP 4.3

IndexT

H^ tuning rules 1 .0000 1.0000 1 .0000
OTA-VP with

Q2-down = 0.4 &
reduction factor = 0.85

0.9152 0.9104 0.9128

OTA with Q2 = 0.6 0.9505 0.9421 0.9463

Ziegler-Nichols 0.9107 1.0099 0.9603

Table 4.4 Index comparisons between methods for CPs 4.1 and 4.3 with Case 4.2

Method IndexPt {au = 0.8 and ae = 0.2)
CP 4.1 CP 4.3

IndexT

/Z00 tuning rules 1.0000 1.0000 1 .0000
OTA-VP with

Q2-down = 0.4 &
reduction factor = 0.85

0.9254 0.9182 0.9218

OTA with Q2 = 0.6 0.9499 0.9429 0.9464
Ziegler-Nichols 0.9091 1.0152 0.9622

Table 4.5 Index comparisons between methods for CPs 4.1 and 4.3 with Case 4.3

4.5.4 Disturbance Rejection

From the above simulation results, it is clear that the OTA and the OTA-VP with

near optimal parameters have stronger robustness to changes in system parameters. In a

discharge air system, the disturbance effect such as those due to Ta0 always exists and

the measurements from the sensors have some white noise. To this end, the temperature

changes in Ta0 , were assumed to follow a Sine function with frequency of

2;r/ 86400=7.27x10" rad /s . To simulate these scenarios, we assumed the changes in

Ta0 given by 3sin(0.0000727?)and with a noise power of 0.1 added to the discharge air
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temperature sensor readings. Table 4.6 shows the simulation results for the four control

methods and Figure 4.12 illustrates robustness to disturbance using OTA-VP control.
The results also indicate that the OTA and the OTA-VP with near optimal parameters

have a slightly improved performance compared with the Hx tuning rules and the Ziegler-
Nichols method.

Method IndexPi {au = 0.8 and a, =0.2)
Process 1 Process 2 Process 3

IndexT

Hx tuning rules 1 .0000 1 .0000 1.0000 1 .0000
OTA-VP with

Q2-down = 0.4 &
reduction factor = 0.85

0.9968 0.9981 0.9945 0.9965

OTA with Q2 = 0.6 0.9949 0.9974 0,9905 0.9943

Ziegler-Nichols 0.9976 1 .0073 0.9958 1 .0002

Table 4.6 Index comparisons under disturbances and Case 4.1 between methods

-60.5

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

2 5 fV^J%^^

1.5
2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

Time (s)

Figure 4.12 Response with disturbance effect for OTA-VP control

87



4.6 Simplified Optimal Control Algorithm

Reliability of a control system in real applications sometimes relies on its

control's simplicity because simple control algorithm will reduce human error and is easy

to implement. From the robust optimal tuning rules given in Equations (4.27), (4.28) and

(4.29), if we assume An(Z) ~ 1, A2KO ~ 0, Ai2(Z) ~ 0, A22(Z) ~ 1, and a ~ 1 we will have

Kd ~ — , Kid ~ — and KFf ~ 0 for k > Z. This simplified form is very easy
(1 + O)Q1 (1 + O)Q1

to implement in an HVAC system similar to the //<*, PI tuning rules (Qu et al. 2004). Also,

it is close to OTA control in robustness and has improved robustness compared to the H„

PI tuning rules as shown in Figure 4.13. Note that Qj = 0.6 was used in the simulation

study for the simplified control and OTA control. For Q2= 1, Kpd and Kid shown above

are identical to the H^ PI tuning rules.

The simplified optimal control algorithm is summarized as follows.

^=THTtT' (4-34)(\ + a)Q2

2Ac,
K^-JT~br (4-35)(\ + a)Q2

The coefficients of qu and c2 are defined by equations of 4.25 and 4.26 respectively. In

the next two sections, the experimental results for two applications of the simplified

optimal control algorithm will be presented. In the first application the heating coil

control identified as node 77 in the Concordia University's HVAC system will be

considered. In the second application the discharge air temperature control in the VAV



laboratory test facility will be studied. The weight parameter Qi in the simplified optimal

control algorithm gives freedom to adjust the system performance to improve robustness

and step response. Experimental results show improvement in robustness and step

response performance.

61

61
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H -infinity

LU
<?- 60.5
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200Ci 2500 3000 3500 4000 4500 5000 5500 60O0 6500 7000
Time(s)

Figure 4.13 Robustness comparisons for different controls

4.7 Application to a Heating Coil System

In this section, we first present the problem of the original PI control system.

Then, the application of the modified H„ PI tuning rules to the heating coil control

system in an adaptive control structure is described. Finally, experimental results

showing comparisons between the two will be presented.
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4.7.1 The Problem in the Original Heating Coil Control System

The original control system was a PI control system. It is shown in Figure 4.14.

The problem in the original temperature control system was oscillations in warm air

temperature response by about 3 0C, when the outside weather was cold. The test results

of the original PI control heating coil system are shown in Figure 4.15. The red line

(MTAEC3GLCB) is the output air temperature from the heating coil system and the blue

line (ATAEC3GLCB) is the setpoint. The result shows the problem in the original heating

coil temperature control system that the response of the control system was oscillatory

and the maximum offset was great than 1 .6 0C.

T2Sik\
+

e[k] PI controller u„[k] Plant T2W

Figure 4.14 Original heating coil PI control system

;ca*:

\'-*m

UTAEmGLGB

ATAEa1SiSiUB

35JS
ttiwtwwimo! it! Time

Figure 4.15 Bad performance of the original heating coil PI control system
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4.7.2 Online Adaptive PI Control Strategy for the Heating Coil Control

System

To solve the problem mentioned in Section 4.7.1, we consider adopting the online

adaptive PI control strategy with the simplified optimal control algorithm. The simplified

optimal control algorithm has improved robustness compared to the H00 adaptive PI

tuning rules. The adaptive PI control structure is shown in Figure 4.16. To have the

adaptive ability, we add two new functional blocs to the original PI control system. These

are an identifier and a PI tuner. The identifier does the estimation of the system

parameters and the PI tuner does the PI parameters updating following the identified

system parameters online.

PI tuner

T2S[k] e[k]

Identifier

PI controller uv[k] 4—+ Plant T2Ik]

Figure 4.16 Adaptive PI control system for the heating coil system

4.7.3 Variables in the Heating Coil Control System

The heating coil air temperature is the controlled variable T2 that is named as

MTAEC3GLCBS in PPCL program. The setpoint is T2s that is named as ATAEC3GLCBS.

The setpoint value is in the range of 26 to 43 0C. The control variable uv is the input of
the hot water valve flow rate in percentage and named as CBCGLC470BS (0 to 100%).
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The PI parameters of the heating coil control system are Kpc¡ and K¡¿ named as

YTAEC3GLCBS and ZTAEC3GLCBS in PPCL program. The inlet air temperature of the

heating coil system is T20 .

4.7.4 Identification of the Plant

The plant (the heating coil) is modeled as a first order plus dead-time (FOPDT)

system. That is,

T(7\-T h7~u+i)
2 , ™=T—Ï (4-36)uv(z) \-az

and y(k) = T2(k)-T20. (4.37)

The transportation time delay / is considered as a constant that can be determined by an

Open-loop test. The identifier program estimates the parameters of a and b online.

The open-loop test was made on December 14, 2005. The experimental result is

shown in Figure 4.17. The green line is the percentage of the valve opening and the red

line is the output air temperature of the heating coil. The percentage of the valve opening
was set as follows.

'39% before 14:15:03
uv = ¡49% after 14:15:03 before 14:24:02

39% after 14:24:02

From the open-loop response, the delay time in the step-up mode of operation was

42s and the delay time in the step-down case was 55s. If we choose Ts = 8 s as the

sampling time, the model delay I should be chosen as 7 because7x8 = 56s. The online

identification algorithm proposed in Charter 3 was used for the identification of the

heating coil plant.
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Figure 4.17 Open-loop tests for determination of the heating coil system delay

4.7.5 Algorithm for the Heating Coil Control System

We keep the original PI control for the heating coil control system unchanged. In

order to have the adaptive PI control active, we add new functions that include both the

identifier and the PI tuner. The new algorithm does the identification of the system, and

then updates the PI parameters according to the simplified optimal control algorithm

based on the new identification result. The adaptive PI control with the simplified optimal

control algorithm is called simplified optimal adaptive control (SOAC). The new

algorithm is expressed in the following diagram. SECND5 is one of the system timers.

We use it to control the sampling time.

START

SECND5 = O

93



Yes

Shift previous values to
the related variables for

uv and T2-T20

Collect present values to
the related variables for

uv and T2-T20

Is it available to
dentifv (k>2W.

Compute Ç

Compute the values of
the system parameters
and values of P

Are the values
of P suitable?

Reset values for P

Are estimated
parameters in

range?

Compute new PI values

Yes

©

©

94



Are the PI
values in the

range?

Update PI parameters

Figure 4.18 Flowchart of the SOAC for the heating coil control

4.7.6 Experimental Results of SOAC for the Heating Coil Control

System

The experimental results shown in Figure 4.19 were compared. The blue line is

the setpoint, and the red and green lines are the output warm air temperature and the

percentage of the valve opening respectively.

The original PI control was active before 1 1 :32:33. After that, the control was

changed to SOAC with Qi= \. Because the internet communication was taking time and

the changes needed to be done one by one, this resulted in a big offset as shown in Figure

4.19. However, after few minutes the adaptive PI control (SOAC) made the system

converge and stay at the setpoint closely.

To show the advantage of the adaptive PI control, somewhat longer experimental

data was recorded. It is shown in Figure 4.20. The response is much closer to the setpoint

compared to Figure 4.15, but the offset is still greater than 0.8° C and the response is
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below the setpoint over a long time. This may imply that SOAC (becomes //„adaptive

PI control for Qi= I) can be further improved to reduce the effect of load changes.
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Figure 4.19 Comparison between the original PI and the adaptive PI controls
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Figure 4.20 Experimental result of SOAC with Q2 = I

To improve the performance of SOAC, the weight factor Q2 < 1 is appropriate.

Figure 4.21 shows the response for SOAC with Q2 =0.5. The response in Figure 4.21

seems to be closer to the setpoint compared to the response with Q2 = I shown in Figure
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4.20 and has balanced offset on both sides. The maximum offset in Figure 4.21 is less

than 0.6° C. It is clear that the response has been improved. The small oscillation in

Figure 4.21 shows the possibility that a further increase in Q2 would be appropriate. The
experimental results in Figure 4.22 show the response of SOAC with Q2 = 0.6993.
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Figure 4.21 Experimental result of SOAC with Q2 = 0.5
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Figure 4.22 Experimental result of SOAC with Q2 = 0.6993
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It can be seen that the response in Figure 4.22 has been further improved, because the

maximum offset is less than 0.4° C and the offsets on both sides are balanced. It is

apparent from these results that by properly selecting the value of Q2, the system
response can be improved.

We have also made the tests of step responses with Q2 = 1 and the original PI

control. The step response test result for the original PI control is shown in Figure 4.23.

The original PI control started at 16:20:00 and ended at 17:24:00 on December 14, 2005.

The step changes are ATAEC3GLCBS = 38.79°C from 39.790C at 16:49:00 and
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Figure 4.23 Step response of the original PI control

ATAEC3GLCBS = 39.790C from 38.79°C at 17:06:00. The overshoots are 66% for the

step-up setpoint change and 12% for the step-down setpoint change. The settling time for

the step-up setpoint change to within 0.220C is 774s and the settling time for the step-
down setpoint change to within 0.220C is 571s.
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Figure 4.24 presents the step response test result for SOAC with Q2 = 1 and the

identification results and the system PI parameters (which are 1000 times of the tuned PI

parameters, that is, YTAEC3GLCBS = Kpd and ZTAEC3GLCBS = Kid) are shown in

Figures 4.25 and 4.26 respectively. The step changes in Figure 4.24 are ATAEC3GLCBS

=40.49°C from 39.790C at 12:50:35 and ATAEC3GLCBS = 39.490C from 40.490C at

13:10:19. The overshoot for the step-up setpoint change is 69% and there is no overshoot

M somMm staiif.41« -J. SM» I41.« ?

«4IJS
41X0 £MlMPtixfAFim, **er.49«

tfüKI . ¦ fVJBO
zl·«»«? 2» OOi S3?0K- . S40JD

52J0040X0 2
Sj.Mi» Sf:··.·? Ji SfUlO'

»M SpXIO 5
4fliXl· UP--?·ß, ì

i£s2lù£i f»3D H. 48flÒ' .££#
r^—nr-^*¿?> ^ Ife-,##mr$i 47X0-¿!ß' äW^Mií? ^rO.M; MV1S» *Mí3840

& *W i>.~ •¡ME
rí tm ,->*-»* KmmLÇiwm ?.' bû¡H"-™. äAàs^fesia E T- 43.00?." 17Ï0 £

AlW G?37» O37.40 41.00 û
WJO 40JV JU

39.00 ' P*t37x0
a»

IW=?".

¡j
G G . ^gJ)Q ?38J0

V, ^«.'?MXO ssJn?1:4ß»???«?! Í9ÍÍM612*2:30 HÍ7X0 13100X0IMRM 13:10:38 f?Sl*°15:15*0, IM«: Time"GC

Figure 4.24 Step response for SOAC with 02 = 1
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Figure 4.25 Identification result in SOAC with Q2 = I

99



for the step-down setpoint change. The settling time for the step-up setpoint change to

within 0.220C is 610s and the settling time for the step-down setpoint change to within
0.220C is 549s.
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Figure 4.26 PI parameter evolution of SOAC with Q2 = I

The above results indicate that SOAC with Q2 = 1 is faster than the original PI

control system. It is also worth noting that if we increase the accuracy of the controlled

variable the identification will be more smooth which will lead to much better step

response for SOAC.

4.8 Application to the DAS

We have also done the experimental tests with the simplified optimal adaptive PI

control (SOAC) applied to the DAS in the laboratory HVAC test facility. The DAS

model remains the same as in Section 4.2.3. Figure 4.27 shows the step responses

controlled by SOAC with two different weighting factors Q2 - 1.3889 and Q2 = 1.6667

respectively. Figure 4.28 presents the system PI parameters tuned by the simplified
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optimal control algorithm and Figure 4.29 shows the identification results of the DAS

model parameters.
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Figure 4.27 Step responses of SOAC with Q2 = 1.3889 and 1.6667
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VaISP in Figure 4.27 is the setpoint of the discharge air temperature (CCOTS) and

CWFRG is the chilled water flow rate in GPM. The PI parameters (VaIKp and VaIKi) in
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Figure 4.28 are 1000 times the tuned PI parameters to account for the scaling factor. In

Figure 4.29, av is the estimated value of the parameter a and bv is the estimated value of

the parameter b responses obtained from the identification process.

The step responses in Figure 4.27 confirm that SOAC is able to give good step

response performance by changing the weighting factor Q2. The step response results also

show that increasing the weighting factor reduces overshoot and gives smooth step

response.

4.9 Summary

By describing the dynamics of a discharge air system (DAS) using a FOPDT

model, an online optimal control algorithm combined with the Hx tuning rules was

developed. The developed tuning rules were tested using computer simulations in an

adaptive control system. The results show that the proposed optimal tuning algorithm is

able to track changes in discharge air temperature setpoints efficiently and reduces the

effect of changes in system parameters significantly. Results also showed that the control

input weighting factor of the controller in response to a demand for an increase in

setpoint should be lower than the corresponding weighting parameter in the case of a

decrease in setpoint.

In this Chapter, we have also designed an adaptive PI control with the simplified

optimal control algorithm (SOAC). Applications to the heating coil control system in a

real building control system of Concordia University and the DAS in the laboratory

HVAC test facility are illustrated. The experimental results indicate that SOAC with a

suitable weighting factor has improved robustness and better step response.
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5. Adaptive Neural Network Strategy for DAS

In this chapter, an adaptive neural network controller is developed. The proposed

controller is constructed by augmenting the PID control structure with a neural network

control algorithm. Simulation study shows that the proposed controller has strong

robustness, improved regulation and tracking functions for FOPDT type plants compared

to classical PID controllers. Experiments were also conducted to compare the developed

strategies with some of the existing control strategies used in HVAC systems.

5. 1 Introduction

In Chapter 4, we have developed a robust optimal tuning algorithm which has

strong robustness property. However, it relies on plant model and needs plant parameter

identification in the adaptive control application. Neural network control is a kind of

model-less control strategy. Therefore, it is of interest to explore realizable neural

network control algorithms for HVAC controls.

The Discharge Air System (DAS) is one of the basic components of a heating,

ventilating and air-conditioning system. It was chosen again as a controlled plant for the

proposed adaptive neural network controller, also due to the fact that the DAS model has

dead zone nonlinearity. In the experimental studies section we will show the dead zone

nonlinearity observed from open-loop responses. Figure 4. 1 shows the DAS for sensible

cooling of air. The discharge air temperature is maintained close to a chosen setpoint by
modulating the mass flow rate of chilled water via valve control («). In previous studies,

as mentioned in Chapter 4, only the classical proportional-integral (Pl) control problem
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for the control of DAS is addressed. Here we explore on-line adaptive neural network

control (ANNC) of DAS which is useful for real-time implementation.

The methodology for on-line adaptive neural network control of DAS is presented in

sections 5.2 and 5.3. In section 5.2, the on-line adaptive NN control system configuration

is explained and the NN learning algorithm is described in section 5.3. Simulation studies

are conducted in section 5.4 and experimental studies are presented in section 5.5.

5.2 Adaptive Neural Network Control System

The adaptive neural network control of DAS is shown in Figure 5.1 . The entering air

temperature Tao and the supply chilled water temperature Tws are measurable; so we use

them as additional inputs of the neural network controller to improve its adaptive ability.

-*?-

Adaptive Tuner

a„
<a0

«v

Neural Network

Controller
Plant

Figure 5.1 Adaptive NN control system

In addition, the neural network controller has learning ability to changes in the dynamics

of the system. The adaptive tuner performs update function for adaptive parameters. The

adaptive tuner is designed to avoid over training and slow response.
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The adaptive neural network controller configuration is shown in Figure 5.2. In this

controller, we use PID structure to have three inputs x\ to X3 for the normal neural

network controller based on only one input e. av is an adaptive weight factor to avoid

slow response. aw is a boolean variable to avoid over training.

aO
C5

*s

I«»

Normal Neural
Network

Controller
U1-.

I «V
-av -*2>-

Controller

—?

Figure 5.2 The adaptive neural network controller

For the normal neural network controller, we select a 5-5-1 two layer network

structure with hyperbolic tangent activation function as shown in Figure 5.3. The

controller output U^n is proportional to the output O1 with a proportionality constant C1 .

The hyperbolic tangent (tanh(\.5x)) is chosen as the activation function for both

hidden and output layers because it has several advantages of equalizing training over

layers (Kaiman & Kwasny, 1992).
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Neural Networks

Figure 5.3 Selected normal neural network controller

5.3 Neural Network Learning Algorithm

The adaptive controller design objective was defined as the minimization of

performance index

I^Er =^ZiTjk)-Te(k)f ^ZMk))2%
(5.1)

Such that both set-point tracking error and energy consumption are minimized. We have
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min E(k) = min a.\<?Jk)-TM + ".\hW (5.2)

The network weights were updated along-vector gradient of error E (Gradient Descent

Method) such as

<„¦ ^dE(k) (5.3)

,(') î.Where ? is learning rate parameter (>0); Aw( is weight vector from I -Y to / layer

Following the chain rule, the above equation can be rewritten as:

A (/) dE(k) dE{k)dTa(k) , dE{k))duXk)d0i(k)- +

???{?) = ?

dTa(k)duv(k) duv{k))dot{k) dw{(?)

«.M)-mm-«Mw\%®a«.(*) dw

(5.4)

(5.5)

CCU was approximated as follows,

a.=-(r„,W-rJ*-,))"g5| = -(r„,W-r„WFgj (5.6)

thus, we have

Aw(/)=7| Mk)«AtJk)-TM^MTJk)-Ta{k)Y ^Huv(k)ttaik),. (? d0,{k)
duv(k) duv(k) ? ' P dw{l)

-riiTjkhTM^f^ + (TJk)-TM)Mk)Jc1 1^ (5.7)

The calculation of the partial derivative of the network output with respect to the

weight vector is calculated based on the network architecture, the only term cannot be
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analytically calculated is the partial derivative of the discharge air temperature (T0) with

respect to the controller output (wv) at each time step.

The actual value of dTa/duv is not important due to scaling of the term based on

the coefficient ? (equation (5.3)), but the sign of the above mentioned term needs to be

determined. By performing a step change on the controller output (Auv), a negative

proportional reaction of the discharge air temperature is obtained (AT0). Thus, the system

can be characterized as negative and monotone relevant to the command (wv), since the

partial derivative of the system output (Ta) relevant to the controller output (wv) is always

negative. The above assumption is correct only if the partial derivative exists for every

time step, which leads to continuous changes in the controller output. Equation (5.7) can

be written as

^? --^TJk)-TSk)IaMTJk)-TM^))^ (5-8)
Considering the choice of the hyperbolic tangent (tanh(\.5xj) as the activation

function for both hidden and output layers and assuming

H=Vh h - K, If (5.9)

*=[* xi ··· xm, If (5.10)

W0=Kl W02 ··· "On,, W(Km1+I)] (5.?)

W1=[Wn wn ··· wm_ w,,m.+1)] (5.12)

Ou11=W0H (5.13)

Kn=W1X (5.14)

gSk) = KcXTjk)-TM{ae+{Tjk)-TM»Ák)) (5.15)
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where m, is the number of the hidden nodes and m,- is the number of inputs, we have

oM)= l-e -30|J*)

\ + e-'°»°(k) (5.16)

?): l-e -3A„„(*)

l + e-3A«»(*) (5.17)

Considering the fact that

^l-g-3'ï_3e-3*(l + g3x)+3éT3jt(l-g-3j:)_ 6e-3?

(Ue^J (l + e-3*)1 = /'(1.5jc) (5.18)

we have

?.

= -?*.(*) 6e-ío""

*, " '(l + e-^J h, (/ =1, 2, ···, m,+l) (5.19)

Awu=-^-gw{k)f{í.5{W0H))Woíf'{l.5{WlX))xJ/C1

6e 6e77

*?. (l+if3o""f (l+*"3**/

(i' = l, 2, ···, m¡+l, j = l, 2, ·¦·, /?,.+l)

(5.20)

To achieve global convergence, we introduce two time-varying learning rates

instead of TJxI Ic^. For ?t?0? , we use

Uh Vo
l + hf+V+y + hi (5.21)

and for Aw. , we use
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TJx = , 2 ? (5.22)

where, T¡0 is a selected constant learning rate.

The inputs and the output of the normal neuron network controller can be

expressed as follows.

x,{k) = kee{k) = ke{Tjk)-Ta{k)) (5.23)

x2{k) = x2{k-l)+^{e{k)+e{k-l)) (5.24)

^)= cdKe[k)-f-l) ' (5-25)
x4{k)=a4c4{Tjk)-cJ+{l-a4)x4{k-l) (5.26)

x5{k) = a5c5{Ta0{k)-c50) + {\-a5)x5{k-l) (5.27)

oliB(*)=I>o,(*h(*) (5-28)

^{k)--Y^m^ê)^m (5·29)
*'{k)=i+rtk)+t(k)+-..+¿.(k) (5·30)
hM-Z^j(k)xj{k) (5.31)

J=I

To save computing time, we assume hu{k) = e3/!™(*), then (5.32)

and assuming o, ,(/:) = e3"""'*1, (5.34)
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we have

O1M=^H (5.35)
Let

we can update the weights and the output of the controller as follows.

w0M + l) = w0i{k)-%{k)gw{k)oMhM) (5-37)

wij(k + ì) = wtM)-VÀk)gAk)oJk)w0M)7^^Xj(k) (5.38)
IiM) = C1OMhCn (5.39)

From the equations (5.23) to (5.39), we note that to implement the controller we

need to determine the values of c,, C10, c4, C40, C5, C50, C1, crf, G5, a4 , a5, af , fcf , A1

and Tf0 . The coefficients c, and C10 depend on the performance of the actuator for the

chilled water control valve. C10 is the maximum input value of the actuator for zero water

flow, and c, can be computed by using equation (5.39) at O1(^) = I when uv(k) is equal

to the maximum input of the actuator for maximum water flow rate. C4 and C40 are

selected to obtain a suitable range for X4. The value of C40 should be less than the

minimum value of Tm in order to keep the controller monotone relevant to Tws . The

selection of C4 is related to the balance between Jt1 and X4. Qf4 is a filter parameter for x4

since Tws is measured and contains noise. Similarly, C5 and C50 are selected to have a

suitable range for X5 . Again the value of C50 should be less than the minimum value of
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Ta0 to keep the controller monotone relevant to Ta0 . as is a filter parameter. Ts is the

sampling time, c, and cd are control parameters. We can use Cohen Coon Method, or

Ziegler-Nichols Method or other tuning methods to determine ci and cd from a reference

plant. ke is a parameter that reduces the sudden impact of inputs on system responses. kt

is a scale factor to adjust the learning rate TJ0 .

To achieve smooth response, we need to stop training process of neural network

control at certain point. To this end, an absolute index is considered as defined in

equation (5.40). A small positive AO will yield small overshoot when IndexO is close to

IndexSet (equation (5.41)).

9985 999
Time (s)

9 975
Time (s)

Figure 5.4 Index and IndexSet consideration

In Figure 5.4, two kinds of responses with areas Al and A2 are shown. From this

figure, we can define IndexO and IndexSet as shown below.

IndexO = IndexAbs -AO = AO
CT,

(5.40)
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IndexSet =
AÌ-A2

CT

Where C =abs(TJk)-TJk-I))

(5.41)

(5.42)

To avoid slow response, we need to tune the adaptive parameter av online. Figure

5.5 shows the flow chart of the algorithm.

The flow chart shown in Figure 5.6 summarizes the adaptive neural network

algorithm. First we need to compute and select several specific parameters (as shown in

the chart) by the rules explained above and to initialize the weights. Then, following the

data collection and analysis the weights are updated. The data collection, computing and

decision are repeated automatically as shown in the flow chart.

Adaptive parameter
update algorithm

Comp. IndexO&IndexSet

av(ri) = av(n - 1 )

SetPointChanging?

Yes

IndexO>IndexTarget?

AlO = IndexO + IndexSet oc Al

A20 = IndexO - IndexSet oc A2

ßx>0; 1 > av{0) > 0

1
a„(p) = av{n - 1) (l - /J1 A20

av(n) = 0.0001

av(n) = 1

(^ End "^)
Figure 5;5 Flow chart of the adaptive tuning algorithm
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NN Algorithm

Compute C\, ci0

SeI. Ts,kt^o,ae.AO

SeI. C45,40,50. «4,5

Initialize Wo/, W//. av

Sei. /?, IndexTarget

i
Collect Zs6I1 a, sw, ao

Compute e_ x¡

Compute ?,·,·?, A,·,·, A/

Compute s?/?,s??. Oi

Compute w„

Compute ow, gn
— 1

Compute ??, ??

Compute IndexO.
IndexSet & av

ndexO<IndexSea

Yes

!Keep W0iW¡j(aw=0)\

?
Com. W0,,Wy(aw=l)

Figure 5.6 Flow chart of the adaptive neural network algorithm

The following initial weights w\\ = wn - W33 = -0.5, hoi = W02 = W03 = 0.6 and

others weights close to 0 resulted in faster training process.

5.4 Simulation Results

The adaptive neural network algorithm should be robust to changes in system

parameters. To test the developed algorithms, the DAS system was considered as FOPDT

model. Parameters in the model were varied. To this end, twenty-seven different sets of

parameters were used. Comparison with the classical PID control was made. The result

demonstrated that the proposed adaptive neural network control has stronger robustness

and good learning speed.

The FOPDT model is described in equations (5.43) and (5.44). It is assumed that

the original plant has a = 0.98 , 6 = 0.1 278 , and / = 9 with the sampling time of Ts = 4s.

We consider 50% changes in the parameters in continuous time domain. Twenty-seven
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sets of parameter changes in a , b and / were used for simulation study and these are

shown in Tables 5.1 to 5.3.

Ta{k)=Ta0-y{k)

y{k)=<
k<l

[ay{k-\)+bu{k-l-\) k>l

(5.43)

(5.44)

Par.\Set 01 02 03 04 05 06 07 08 09

0.9604 0.9604 0.9604 0.9604 0.9604 0.9604 0.9604 0.9604 0.9604

0.1265 0.1265 0.1265 0.253 0.253 0.253 0.3796 0.3796 0.3796

14 14 14

Table 5.1 Sets 1 to 9 of the plant parameter changes

Par.\Set 11 12 13 14 15 16 17 18 19

0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

0.0639 0.0639 0.0639 0.1278 0.1278 0.1278 0.1917 0.1917 0.1917

14 14 14

Table 5.2 Sets 11 to 19 of the plant parameter changes

Par.\Set 21 22 23 24 25 26 27 28 29

0.9866 0.9866 0.9866 0.9866 0.9866 0.9866 0.9866 0.9866 0.9866
0.0427 0.0427 0.0427 0.0855 0.0855 0.0855 0.1282 0.1282 0.1282

14 14 14

Table 5.3 Sets 21 to 29 of the plant parameter changes

The simulation runs were made using Simulink. Two main implementation blocks

in Simulink are shown in Figures 5.7 and 5.8. Because Ga0 and Tws change very slowly

we chose Ta0 to simplify the implementation in the simulation study. This resulted in a

network with 4 inputs and 4 hidden nodes. Tse, was set to 1 1°C or 13°C in the following
simulations.

115



Dead Zone Saturation
Unit Delay Tsel NN Controller

¡fi
Ta To WS

ud To WSMATLAB
Function
Tsetrunc u To VVS

Digital Cfcck I Tc VVSUnit Delay d
N Index

Index To VVS

M IndexAbs

IndexAbs To VVS

—»I IndexSet |
!ndexSel Tc WS IndexAbs

IndexUp
Urtrt Delay Index

IndexDownMATLABUnit Delay IndexAbs indexUpFunction
lnae^Up To VVbindexFuncIndexSet

IndexDown

Unit L'elsy ludexl
W indexO

IndexSet Memorv IndevU To VVb

Unit Delay
3v Memory

IndexD Memory

Figure 5.7 Adaptive neural network control system implementation in Simulink

Hn

Figure 5.8 Adaptive neural network controller implementation in Simulink
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Figure 5.9 shows a sample comparison of the step responses and the performance

index values for the proposed adaptive neural network controller without (av = 0) and

with (av F 0) adaptive tuning property. The step responses shown in Figure 5.9 (c) and the
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Figure 5.9 Comparison for the adaptive neural network control with «„ = 0 and a? f 0

performance indexes depicted in Figure 5.9 (d) with adaptive tuning are superior to those

without adaptive training shown in Figures 5.9 (a) and 5.9 (b). The controller without
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adaptive tuning property could not achieve fast response for all plants. However, the

controller with the adaptive tuning property did improve step responses even in the

presence of 50% change in plant parameters (Figure 5.9 (c)) with lower index values as

shown in Figure 5.9 (d).

In the above simulations the following parametric values were used: ß\ - av(0) =

0.03, ae = 12.0, c, = 5.0, fc, = 0.018, ciQ= 5.0, a4 = 1.0, C4= 0.1, C40= 5.0, ?0 = 0.000747,

ke = 0.05, kp = -1.2, ki = -0.0143, kd = -15.4497, c, = kp/k¡ = 83.9161, cd = kdlkp = 12.8748,

AO = IndexTarget = 16.0 and Tao = 270C. kp, k¡ and k¿ were obtained by using Cohen-

Coon tuning rules for the original plant. The results for all simulated plants indicate that

the adaptive neural network controller has the ability to minimize performance index for

all plants close to or even less than the target index. Figure 5.9 (c) and Figure 5.9 (d)

partially illustrate the results. The legends used in Figure 5.9 are defined in Table 5.4.

Plant Set J4 ¡5 J6 J7 J8 J9
Color Green Blue Red
Line

Table 5.4 Legends for different plant sets (j = 0, 1, 2)

The responses from the classical CCM-PID control and the proposed adaptive

neural network control were compared for Plant Sets 1-9, 11-19 and 21-29. It was

observed that almost half of the step responses of CCM-PID control were oscillatory

(Figure 5.10(a)). On the other hand, all step responses converged in the proposed

adaptive NN control (Figure 5.10(b)). As an example, the step responses for Plant Sets

21-29 are shown in Figure 5.10. The corresponding index values are shown in Figure
5.11.
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Figure 5.10 Comparison of step responses of CCM-PID and Adaptive NN control for

plant sets 21 to 29
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In the following the impact of the initial values of w„, wo¡, and AO on training and

convergence is illustrated. Consider plant set 26. With the previous values chosen in

Figure 5.10 the step response was not fast enough. To achieve faster step response and

shorter training process, it was observed that a smaller initial value of w„ is needed. From

Figure 5.12 (a), we can see that the step response for w„<0) = -2.0 is faster than the step

response for w,,(0) = -0.5, and has less overshoot than the step response for W11(O) = -3.5.

From Figure 5.12 (b), we note that the maximum index value for w„<0) = -2.0 is the

smallest of the three. In addition, a lower value of AO combined with w,,(0) = -2.0

resulted in improved step response and lower absolute index value. Figure 5.12 (c) and

(d) show the improved responses.
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Figure 5.13 illustrates the impact of training parameter Wo5(O) and index target on

step responses. As shown in Figure 5.13 (c) and (d) W05(O) = 0.5 gives better performance

than W05(O) = 0.25, 0.75 and 1.0. Figure 5.13 (a) and (b) show that W05(O) = 0.5 with

IndexTarget = 20 has very good performance and can reach the index target in the chosen

simulation time. Also Wo5(O) = 0.5 with IndexTarget = 16 has good performance too, but

the index target is too high and hard to reach.
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Figure 5.13 Effect of µ>05 and IndexTarget for Set 23

In the following the impact of learning rate is explored. The learning rate cannot

be too high or too low. A too high learning rate will never reach the target solution and a

too low learning rate will take too long time to get to the target solution. Figure 5.14 (a)

and Figure 5.14 (b) show that the learning parameter 7/0 = 0.0022 is too large for Plant
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Set 23. The learning rate Tj0 = 0.0022 resulted in oscillatory step response and higher

IndexO than the target value. Figure 5.14 (b) shows that ?0 = 0.0003735 is too small

because the target index hasn't been reached. However, the learning rates between TJ0 =

0.000747 to 0.0015 are suitable for Plant Set 23 for training because the value of IndexO

is equal to or less than the index target over the evaluation time. From Figure 5.14 (c) and

Figure 5.14 (d), we can see that TJ0 = 0.0011 is the best choice of the three because in a

short time IndexO has already reached the target index and has faster response.
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Figure 5.14 Step responses and IndexO on effect of TJ0 for Set 23

Figure 5.15 shows the effect of unsuitable initial set of wos(O) and 70on responses

and training time of the adaptive NN controller. Figures 5.15(a) - (b) show responses with



an unsuitable initial set. However, as the training time is increased the responses

improved progressively as shown in Figures 5.15 (c) — (d). Good initial values can be

obtained from a few trial and error simulation runs.
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Figure 5.15 Step responses and Indexes with poor parameter selection for Set 23

Set

w„(0) -1.2 -1.2 -1.2 -0.6 -0.6 -0.6 -0.5 -0.5 -0.5

W05(O) 0.38 0.38 0.38 0.0 0.0 0.0 0.0 0.0 0.0
Set 11 12 13 14 15 16 17 18 19

Wi1-(O) -2.0 -2.0 -2.0 -1.3 -1.3 -1.3 -0.9 -0.9 -0.9

W05(O) 0.51 0.51 0.51 0.15 0.15 0.15 0.05 0.05 0.05
Set 21 22 23 24 25 26 27 28 29

W11(O) -3.0 -3.0 -3.0 -1.9 -1.9 -1.9 -1.6 -1.6 -1.6
W05(O) 0.53 0.53 0.53 0.18 0.18 0.18 0.05 0.05 0.05

Table 5.5 Initial value selection of h>„(0) and W05(O) for fast learning for different plants
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Table 5.5 shows suitable initial values of vv„ and wos for several plant sets. These

initial values resulted in fast learning and better responses and these were obtained by

observing the trends from the simulation results.

The entering air temperature TOo is an input of the NN model. To study the effect

of Tao, simulations were carried out by assuming an entering air temperature profile over

a day by a sine function such as Ga0(0 = 3.0sin(0.000072722r) + 27.0 0C. This requires

choosing proper weights associated with the input Tao. To this end we chose two sets

W44(O) = 0.1; C4 = 0.5 and W44(O) = 0.38; C4 = 0.1. In each case c4o = 22.0 was kept

constant. The responses in Figures 5.16 and 5.17 show that the adaptive neural network

controller has the ability to respond to the effect of sinusoidal changes in the entering air
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Figure 5.16 Step responses with W44(O) = 0.1 and C4 = 0.5 for Set 15

126



temperature. The values of c4 = 0.5 and W44(O) = 0.1 were used in Figure 5.16, and c4 -

0.1 and W44(O) = 0.38 were used in Figures 5.17. Both the parameter selections resulted in

fast learning processes and good responses.
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Figure 5.17 Step responses with W44(O) = 0.38 and C4 = 0.1 for Set 15

In the above section, we have discussed how to select initial, control (index

and learning parameters to achieve stable step responses for the proposed adaptive neural

network control to plant parameter changes. Results between the proposed adaptive

neural network control and the classical CCM-PID control were made. Also guidelines

for selecting proper initial parameters are given. The effect of entering air temperature

was studied. The results indicate that the proposed adaptive neural network controller has

strong potential to improve robustness and performance of HVAC system. In the next

section, experiments will be conducted to verify these findings.

127



5.5 Experimental Studies

To test the proposed neural network control, experiments were conducted. The

experimental control system schematic diagram of the two-zone VAV-HVAC Test

Facility is shown in Figure 5.18.
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Figure 5.18 Schematic diagram of the VAV-HVAC system and its' controls

The test facility is located in the Thermal Environment Control Lab of Concordia

University. In the test facility, DMl and DM2 are damper motors that adjust the damper

position to modulate required airflow rate to zone 1 and zone 2 respectively. The

controllers Cl and C2 modulate the dampers. Chilled water is supplied to the cooling coil

(CC) from a 2-ton water-cooled chiller and a storage tank unit. The controller C is used to

control the discharge air temperature (CCOTS) of the cooling coil through the actuator V

to modulate the water flow rate. CF is the controller to adjust total airflow rate in the

system by controlling the fan motor speed and FVS is the actuator for the fan motor. The

test facility consists of several local control loops including the discharge air control loop.

A list of sensors used and their accuracy is given in Appendix. Figure 5.19 shows the

discharge air system.

128



Temperature System Cooling
Co

h

OA
t.

?

IMfistiBEHH I

tzfflsEHï lU

W

RA
I

m

t

Figure 5.19 Discharge air temperature control system implementation

The proposed neural network controller was tested in the discharge air

temperature control loop shown above. In the discharge air temperature control system as

shown in Figure 5.19, outdoor air (OA) and room return air (RA) are mixed and filtered

before entering the cooling coil. Air entering the cooling coil at temperature (CCITS) is

cooled to the discharge air temperature (CCOTS), which should track the desired

discharge air temperature (VaISP), by modulating the flow rate of chilled water

by a motorized three-way valve controlled by the controller output (VALVE in voltage).

The airflow rate in the system is measured by measuring the differential pressure (DPS),

which is converted to airflow rate in cubic feet per minute (CFM). The other variable

names used in the experimental system are defined as follows. DAMPl is the control

input of the damper in the duct to zone 1 . DAMP2 is the control input of the damper in

the duct to zone 2. FAN is the control input of the fan. CWSTS is the chilled water

supply temperature. CWRTS is the water temperature leaving the cooling coil. The
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measured airflow rate to each zone is DPSOOl to zone 1 and DPS002 to zone 2 in MA.

To simplify the entire system, the dampers and fan were set at constant position (open

loop control). The load changes for each zone were simulated by using individual electric

baseboard heaters.

An open-loop test for the discharge air temperature control loop was conducted on

March 25, 2008. Figure 5.20 shows the test result. From the open-loop test results, we

note that the control valve exhibits dead-zone nonlinearity identified in the figure. It is

important for the controller to mitigate the effect of dead zone on the output responses of

the system. This will be discussed later in this chapter.
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Figure 5.20 Open-loop tests for chilled water flow rate to its controls

Figures 5.2 land 5.23 give two example results of step responses controlled by the

proposed adaptive neural network controller. Figures 5.22 and 5.24 present the related

indexes. The full 5-5-1 neural network structure was implemented in the experimental

study using the proposed adaptive neural network controller. That is, the number of

inputs of the normal neural network controller is m, = 5 and the number of the hidden
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Figure 5.21 Step responses of the proposed controller under normal load conditions
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Figure 5.22 Index evolution during step response

nodes of "the normal neural network controller is m¡ = 5. To evaluate the system

performance several indexes were used in this study. The integrated square error (ISE) is

labeled as INDEX and the integrated absolute value of the error (IAE) is labeled as

INDEXabs. IndexNoAbs is the integrated error and IndexSet depends on it.

The experimental results in Figures 5.21 and 5.22 correspond to the conditions

and parameters depicted in Table 5.6.
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Conditions
cens
24.50C

CWSTS
6.2 "C

DAMPl
5.4V

DAMP2
5.8V

FAN
5V

HEATl
500 watts

HEAT2
875 watts

+-»
<u
E
ru

Q_

*7o h /?.
0.0005 -1.2 -0.0143 -15.4497 0.068 0.0187 0.03

c
ro
¦M

C
o
u

^10 C4 C4O C50

4.5 5.5 0.068 5.0 0.068 22.0 12.0

Q a4 «5 .40 IndexTarget
85.71 13.02 0.5 0.5 8.0 25.0

Wn W22 W33 VW44 W55 av

ro ai
!¦5 .5
c ro

— >

-0.992 -0.968 -0.96 -0.953 -0.937 0.001

W0I W02 W03 W04 W05 ??6

0.994 0.96 1.002 0.982 0.5 0.795

Table 5.6 Experimental conditions and parameter set 1

The setpoint (VaISP) was changed as shown in Figures 5.21 and 5.22. The

proposed neural network controller is tracking the setpoint changes smoothly and fast as

shown in Figure 5.21. The settling times for setpoint step-down are 151s & 144s (to

within 0.180C). The settling time for setpoint-up is 164s. The maximum overshoot is

8.9%. From Figure 5.22, we can see that IndexO < IndexSet and IndexO < IndexTarget.

This means that the neural network training process has stopped during this period. The

values of INDEX and INDEXabs as shown in Figure 5.22 are 84.68 & 75.82 and 64.75 &

55.44 respectively for step-up, and 65.01 & 65.54 and 44.72 & 45.05 for setpoint-down

changes. These results correspond to normal load conditions depicted in fable 5.6.

Another set of experimental results under high load conditions and parameters

defined in Table 5.7 are presented in Figures 5.23 and 5.24.

The step responses shown in Figure 5.23 are as fast as those in Figure 5.21 even

though the zone load was higher. We note that the main reason for this is due to the fact

that lower values of wu (/ = 1,2 and 3) were used to compensate for the high load.
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Conditions
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Cd O4 a5 ?0 IndexTarget
85.71 13.02 0.5 0.5 8.0 25.0

Wn W22 W33 VK44 W55 Ov
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'¦E -3
"e ra
— >

-1.282 -1.268 -1.26 1.242 1.234 0.001

Woi W(G W03 W04 Wo5 W06

0.994 0.96 1.002 0.978 0.978 0.492

Table 5.7 Experimental conditions and parameter set 2 for high load
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Figure 5.23 Step responses under high load conditions
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In Figures 5.25, 5.26 and 5.27 the evolution of the training process is presented.

We refer to this training as training process 1 . The system was started with initial weight

parameters at 9:04:12 on March 27, 2008. From Figure 5.27, we can see that the weight

parameters are changing from the initial values after 9:04:12. The experimental results

show that the settling time is decreasing for the step-up and step-down setpoint changes

as the training in progressing (Figure 5.25). The settling times for step-up setpoint
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changes to within 0.180C are 440s, 307s, 246s and 237s. The settling times for step-

down setpoint changes to within 0.180C are 285s, 233s and 261s respectively. From
Figure 5.26, we note that INDEXabs has decreased from 122.54 to 84.84 at the fourth

setpoint change.
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Figure 5.27 Sample weighting parameters in training process 1

From the simulation study in the previous section it was found that by increasing

Wa values the rise time can be decreased. The experimental results in Figures 5.28 and

5.29 verify this possibility. The step responses from 14:50:45 to 15:26:40 (settling time to

within 0.180C: 279s for step-up, 164s for step-down) are much faster than the step
responses from 14:04:01 to 14:32:00 (settling time to within 0.180C: 330s for step-up,

351s for step-down cases). The values INDEXabs (Figure 5.29) have been reduced from

83.21 to 69.73 in step-up case and from 92.86 to 50.05 in step-down setpoint case. The

performance was improved because w„ was decreased (w¡,+ = w,f - 0.5) at 14:32:00.

Figure 5.30 depicts the evolution of the parameter changes (wy).
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Figure 5.28 also shows the impact of leaning rate on the step responses. The

learning rate was changed at 13:34:00 from ^0= 0.0006 to 0.0005 (Figure 5.28). From

the step response results, it is noted that lower learning rate gives lower overshoot, and

smooth but slow step response. To reduce the settling time with lower learning rate, we

need to decrease the values of wu for i = 1, 2 and 3. Figure 5.28 presents the improvement

by decreasing learning rate and w„.
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Figures 5.25 and 5.28 also indicate that due to the nonlinearity of the valve, the

chilled water flow rate (CWFRG) remains constant even though valve control input is

changing. This is attributed to the mechanical dead-zone in the valve actuator system.

Even under this type of nonlinearity the neural network controller still can work properly

as shown by good responses of the discharge air control system.
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The effects of disturbances on the system responses were studied. Figure 5.33

shows the change in fan speed control input at 19:17:06. This change caused change in

airflow rate. As a result, overshoot increased as shown in Figure 5.31. Under those

conditions the training processes was continued (Figures 5.31 and 5.32) which results in

improved and fast response even though other disturbances such as the chilled water

supply temperature and the entering air temperature were also changing on the system.
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The effect of load changes were studied by conducting experiments using the

proposed adaptive neural network control (ANNC). Figures 5.34 and 5.35 present the
results. HEAT2 to zone 2 was increased from 1000 watts to about 2000 watts at 14:35:10

March 29, 2008 and decreased to 0 watts at 15:40:30. The load changes affect the

temperature of the entering air and the supply chilled water temperature as shown in

Figures 5.34 and 5.35. The increased load mainly increased the entering air temperature
(CCITS) and the chilled water supply temperature (CWSTS) in Figure 5.34 and the

decreasing the load resulted in decreasing CCITS and CWSTS (Figure 5.35).

i-H4:-56:44|-
4:29:37 yH:S$:5?

LJ 13 60

Q,13.TO

I iÍ-l:ÍÍ'Í3! ÍJ5:il::|3
?G33?25? «¿rorrean

ílL52:QQ 15:27:29
15:09:51

j VplS:31:49i; " i «™
U3
>

Km

'? tl.60 ; - -sfr- ;

U ? (O SSVZOS «33 10

Ji _,? "

^H

ZOO Ç2100 ·>

O
Zl

te
U
»i

b
G T

U
«s

Time

20 00
1PO0
16 00
17 00
16 00
1SO0
14 00
13 00
12 00
1100
10 00

eoo
ß 00
7.00
600
600
¦äOO
3 00
200
100
OOO

a

Figure 5.34 Step response of ANNC to increased heat to zone 2

Results Setpoint-down Setpoint-up
Settling time Settling time

Overshoot I NDEXa bsINDEX Overshoot INDEX INDEXabs
0.09°C0.18°C0.09 C0.18"C

14:29:37 8.87% 49.27

mÊÈËWÊmm14:52:00 21.67% 71.54mmmmmmmmmmsm
AM

15:09:51 4.43% 51.99 42.57

15:27:29 21.67% 64.95 52.16

Table 5.8 Performance results of ANNC to increased heat to zone 2
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The settling times, overshoot percentages and index values under increasing load

are summarized in Table 5.8.
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Figure 5.35 Step response of ANNC to decreased heat to zone 2

The settling times, overshoot percentages and index values under decreasing load

are summarized in Table 5.9.

Resultsl Setpoint-down Setpomt-up
Settling timeSettling time

Overshoot Overshoot INDEXabsINDEX INDEXabs INDEX
0.09"C0.18~C 0.09 C 0.18 Cmme

15:41:04 8.87% 65.04 66.18

15:59:36 26.11% 85.12 75.33

16:18:54 8.87% 56.61 40.34

16:27:39 30.54% 83.78 73.83

8.87% 51.61 37.1716:40:09 »Ml

Table 5.9 Performance results of ANNC to decreased heat to zone 2

From Figures 5.34 and 5.35, we note that the system recognizes change in loads

through its training mechanism. This can be observed by noting that increased entering

air temperature caused higher chilled water mass flow rate. And a decrease in entering air



temperature due to decreasing load resulted in lower mass flow rate of chilled water

(compare Figures 5.34 and 5.35).

The chilled water temperature is decreasing in Figure 5.34 and increasing in

Figures 5.35. However, from the two figures we may say that decreased chilled water

temperature may increase overshoot for step responses.

The air flow rate effect on the responses was also studied. Figure 5.36 shows the

effect with training control parameter set to aw = 0 (before 17:19:21) and aw = 1 (after

17:19:21). The damper control input DAMP2 was changed from 5.8V to 7.8V at 16:36:00

and 17:32:00 with VaISP = 14.04 (Figure 5.38). As shown in Figure 5.36, the air flow

rate change does not affect the response so much and it converges very fast.
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Figure 5.36 Comparison of response to dumper control changes for aw = 0 and aw = 1

With VaISP = 12.01, the changes to the damper control input were made from

7.8V to 3.8V (at 16:55:56 & 17:47:00) and 3.8V to 5.8V (at 17:10:00 & 17:57:00) as

shown in Figure 5.38. As shown in Figure 5.36, the ANNC is able to maintain the
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Figure 5.38 Dumper control changes for response comparison under aw = 0 and 1

discharge air temperature near the setpoint with deviations ranging as high as 0.720C.

From the results, we may say that the robustness of the proposed adaptive neural network

controller to the air flow changes for both aw = 0 and aw = 1 is similar, however, the

robustness to the air flow changes for aw = 1 maybe slightly better.

The responses from the proposed adaptive neural network control (ANNC) and

CCM-PID control were compared. Figure 5.39 presents the comparisons. The results



illustrate that the ANNC has better performance in step response but shows weaker

performance in disturbance (airflow) rejection.
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Figure 5.39 Response comparison of ANNC and PID control to dumper control changes

Figure 5.39 shows that the ANNC has lower overshoot to step response (8.87%

for step-up setpoint change and 0.00% for step-down setpoint change) compared with the

PID control's performance (69.46% for step-up change and 30.05% for step-down

change). In addition, the step response controlled by ANNC is much faster than the step

response controlled by the PID control.

The settling time and index magnitude comparisons between the two controls are"

summarized in Table 5.10.

Setpoint
direction

Settling time
0.090C

ANNC PID

0.180C

ANNC PID

INDEX

ANNC PID

INDEXabs

ANNC PID

Step-up 305s 543s 174s 407s 75.82 92.35 55.44 76.35

Step-down 162s 249s 144s 224s 65.54 57.77 45.05 48.27

Table 5.10 Comparisons between ANNC and PID control
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The experimental results with airflow changes were compared between the

proposed ANNC and CCM-PID control. With VaISP = 12.01, damper settings were

changed from 5.4V to 7.4V (at 20:09:52 & 21:53:33) and 7.4V to 3AV (at 20:31:4 &

22:01:14). As shown in Figure 5.39, the ANNC is able to maintain the discharge air

temperature near the setpoint with deviations ranging as high as 1.230C. The values of

IAE were 40.67 (ANNC) & 12.34 (PID) when damper control changed from 5.4V to 7.4V

and 83.35 (ANNC) & 57.29 (PID) for the change from 7.4V to 3.4V. The PID control

gives a better performance to air flow changes than ANNC in this case, but resulted in

higher overshoot. As a result, if we need to improve the disturbance (airflow changes)

rejection ability of the ANNC, it may be necessary to add the airflow rate as a new input

to the ANNC.

In this section, we have presented the experimental performance results of the

proposed neural network controller. The potential abilities of the ANNC were illustrated.

The comparisons between the ANNC and PID control were made. It is clear that the

ANNC has better step response performance in most cases. The robustness to air flow

changes for the ANNC may be not better than PID control in some cases. Some

experimental results show that good weight selection will give better performance right
away.

5.6 Summary

In this chapter, a new adaptive neural network controller with implementable

learning rules is developed. Guidelines for initializing the weights are proposed. Through
simulation studies, the robustness of the proposed ANNC to wide range of plant paramter
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changes are verified by comparing the results with the classical (CCM) PID controller.

The simulation studies also indicate that fast and smooth step response can be achieved

by ANNC. In addition, it is shown that if the selected weights are suitable the training

process could be shortened; but, if the initial weight values are not good enough the

training process could be very long. Experimental studies were conducted. The fastest

step responses controlled by the ANNC with no overshoot are shown in Figure 5.23 with

the settling time of 152s to reach within 0.180C for step-down setpoint change, and the

119s for step-up setpoint change. The experimental results show that the stable step

responses controlled by the ANNC can be achieved in a wide range of operating

conditions. Comparisons with PID control were made. The results indicate that the

proposed ANNC has smooth, fast and less overshoot step responses compared to the

CCM-PID control. The experimental also showed that the proposed ANNC was less

responsive than the CMM-PID control in the airflow disturbance rejection. This result

indicates that it is necessary to add airflow rate as an input for the ANNC. It was found

that with a suitable set of the weight values faster training and better control performance

can be achieved.
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6. Online Adaptive Two-loop Pl Control Strategy

In this chapter, the application of adaptive control strategy for zone temperature

control in HVAC systems will be described. An online adaptive two-loop control strategy

for VAV systems will be developed.

In modern HVAC systems, VAV control is more popular because of its energy

saving potential, however it also induces interaction between zones airflow rates and

contributes to uncertainty in plant parameters. Therefore, the airflow regulation in VAV

systems causes difficulty in maintaining zone temperature. To adapt and compensate for

the interaction and uncertainty in the VAV control system, an on-line adaptive PI&PI

controller (a two-loop PI control structure) for zone temperature control is proposed in

this chapter. The plant model consists of a two first-order plus dead-time (FOPDT) series

models and the interconnecting variable is the airflow rate (or velocity pressure) that is

measurable. The proposed controller is implemented by simulation and also on a real

VAV system. The system with the proposed controller has both stronger robustness to

parameter changes and good disturbance attenuation. At the same time, it makes VAV

control much simpler because the velocity pressure set-point or the airflow rate request is

automatically updated following the load changes.

6. 1 Introduction

Typical airflow regulation in zone temperature controls of HVAC systems

includes pressure independent control and pressure dependent temperature control. In the

pressure independent control, it is easier to get a stable airflow response but zone
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temperature set-point may not be satisfied because of plant uncertainty. In contrast, in the

pressure dependent temperature control zone temperature set-point can be reached but

pressure disturbance effect remains for long time resulting in a slow response. In

in multi-zone systems operating in VAV or VAV-VT mode, a damper position change or

a fan speed change for a new airflow requirement of a zone will affect the other zones'

airflow as a result of pressure disturbance. These limitations of the typical airflow

regulation in zone temperature controls will be addressed in this chapter.

To have both stronger robustness to time-varying thermal loads (reflected in

parameter changes of the plant model) and lower sensitivity to airflow rate changes into

other zones (disturbance effect), an on-line adaptive PI&PI controller for a VAV-HVAC

system will be developed.

6.2 Typical Airflow Regulation

In this section, first the limitations of the typical airflow regulation in zone

temperature controls of HVAC systems will be described by examples.

6.2.1 Pressure Independent Zone Temperature Control System

An example of the classical pressure independent zone temperature control

system is shown in Figure 6.1. In the system, Tz0 is the zone temperature with zero

airflow rate to the zone and L is a constant that relates the temperature difference

between Tz0 and zone temperature and the airflow rate in the supply duct. The functional

block Cq(z) is a PI controller. Gq{z) is the transfer function between damper control

cutoff input for minimum airflow rate and difference between supply airflow rate output
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and the minimum airflow rate. This relationship can be considered as first-order plus

dead-time model. Qmin is the minimum airflow rate to the zone and D is a disturbance to

the airflow rate in the supply duct. The function Gz(z) is the transfer function between

airflow rate in the duct to the temperature difference between Tz0 and zone temperature

T1 . This process is also considered as a first-order plus dead-time model and its' dead-

time will be longer than the dead-time of Gq(z). The combination of Gq{z) and G2 (z)
constitutes a two FOPDT series model and the airflow rate is assumed to be measurable.

t„„

-SM
T

L t+?—H c°.{z) G9(Z)

D

Om

G1U)
T.

-Xg) ?

Figure 6.1 A classical pressure independent control for zones

The plant models are

0.012
C<<Z) ,-0,8 ? , GAz) = - --9 (6.1)

? -0.99

with sampling time of 4s. A maximum airflow rate of 0.0944 m3 / s (200 cfm) to the zone
is assumed. Considering the minimum airflow rate as 40% of the maximum airflow rate,

we have gmjn =0.0378 m3/s (80 cfm). From the steady state analysis, we have

LxlimG,(z) = l, that is L = 0.01. Using the adaptive PI control strategy (Qu et al.,

for the interior control loop and the Hm PI tuning rules (Qu et al., 2004) for C (?), the

system was simulated in Simulink environment as shown in Figure 6.2. A saturator is

added to limit the control inputs from exceeding the capacity constraints. In the following

simulations, we consider that T10 - 30 °C and T.sel = 23 °C for t >5000s from 24 °C .
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Figure 6.2 Simulation structure for independent pressure control

To show the limitation of the pressure independent control, we choose 0.101%

change in the G1 (z) pole value. The simulation results show that for constant L the zone

temperature will shift from the original zone temperature response. The results are shown

in Figure 6.3. The plot 1 is the original zone temperature response; the plot 2 is the

55 23.5

4000 5000 6000 7000
Time (Sec)

8000 9000 10000

Figure 6.3 Sensibility to parameter changes in the independent pressure control
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response with 0.101% decrease in the G7 (z) pole value and the plot 3 is the response

with 0.101% increase in the Gz(z) pole value. Even though we can update the value of

L by using the information from the plant Gz(z) , we still cannot guarantee that the zone

temperature will follow the set-point in a real system because 0.101% or more error or

uncertainty in parameter estimation usually exists in real systems.

In spite of this, the pressure independent control has good airflow rate (or pressure)

response and shows good disturbance reduction. The simulation results in Figure 6.4

show this property of the pressure independent control. The plot 1 is the response without

disturbance. The plot 2 is the response with a negative disturbance (25% of maximum

5)23 5

22.5 h

4000 5000 6000 7000
Time (Sec)

8000 9000 10000

Figure 6.4 Airflow rate disturbance effect reductions in the independent pressure

control system
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airflow rate) that started at 750Os and the plot 3 is the response with a positive

disturbance (25% of maximum airflow rate) that started at 7500s. The good airflow rate

(or pressure) disturbance rejection comes from the control loop structure because the

controlled variable in the control loop is the airflow rate.

6.2.2 Pressure Dependent Zone Temperature Control System

As it is well known, the pressure dependent zone temperature control system is

different from the pressure independent control in terms of the choice of the controlled

variable. The controller in the pressure independent control system controls airflow rate

(or pressure) signal, in contrast the controller in the pressure dependent control system

directly controls the zone temperature. The system diagram for the pressure dependent

control is shown in Figure 6.5.

T..

t+?-? Q(Z) G1(Z) -*8>

D

Gz{z)
T.

Q, t

Figure 6.5 A classical pressure dependent control for zones

Considering the same plant as in Equation 6.1, the combination Gq (z) and G7 (z)

results in a longer delay that equals to the sum of the both dead-times. Because the pole

value of G, (z) is very close to 1 than the pole value of Gq{z), that is, the pole of G7 (z)
is critical in the combination, we consider that the combination model is also FOPDT in

order to facilitate the use of the online adaptive PI control strategy. With this
consideration, the simulation structure for the pressure dependent control system in
Simulink is constructed as shown in Figure 6.6.
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Figure 6.6 Simulation structure in Simulink for the pressure dependent control

As in the previous section, to study the sensitivity to parameter variations, we

choose 0.101% changes in the G,(z) pole value. The simulation results show that the

pressure dependent control system is robust to changes in magnitude of G1 (z) pole value

than the pressure independent control system. The reason is that Gz{z) is in the inside

control loop and the zone temperature is the controlled variable. The results are shown in

Figure 6.7. The plot 1 is the original response that is stable and shows fast and good

setpoint tracking. The plot 2 is the response with 0.101% decrease in the Gz(z) pole

value and the plot 3 is the response with 0.101% increase in the Gz{z) pole value. These

are almost the same as the plot 1 .

However, the pressure dependent control system is not good in rejecting effect of

disturbances in the airflow rate (or pressure) as the pressure independent control system

does. In the simulation test, a 25% maximum airflow rate disturbance (increase or

decrease in airflow rate) is added to the airflow rate at 7500s, the responses are
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Figure 6.7 Sensibility to parameter changes in the pressure dependent control

converging. But, these are not converging fast enough. These results are shown in Figure

6.8. The plot 2 shows the response has 0.6 0C maximum offset when the airflow rate is

decreased, and the plot 3 shows the response has 0.55 0C maximum offset when the

airflow rate is increased.

As a result, both of the typical airflow regulation strategies currently used in zone

temperature controls in HVAC systems have limitation in terms of robustness to

parameter changes or airflow rate disturbance rejection. To improve this limitation a two

loop control strategy to improve robustness to parameter changes and the airflow rate

disturbance rejection is proposed. This is a new control structure for airflow regulation in

zone temperature controls of HVAC systems. The detail will be discussed in the next

section.
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Figure 6.8 Airflow rate disturbance effect reductions in the pressure dependent control

6.3 Adaptive Two-Loop Pl Control Strategy

To achieve good zone temperature control, robustness to parameter changes and

good airflow rate disturbance rejection, an adaptive two-loop PI control structure is

proposed as shown in Figure 6.9.

In the proposed adaptive two-loop PI control system, there are two controlled

variables (airflow rate and zone temperature) and the sub-plant Gz(z) or Gq(z) is in the

inside loop. Cq{z) is a PI controller of the interior loop that maintains airflow rate Q (or

pressure) to track the airflow rate setpoint Qsel . The airflow rate setpoint is updated by

C1 (z) that is also a PI controller in the outer loop to maintain the zone temperature T
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close to T^1 . In addition, the element F is a factor that can be used to adjust the

response speed of the outer control loop and give added flexibility to the zone

temperature control system in commissioning. In the control structure, Q-Identifier and

T-Identifier are the identifiers for the interior and exterior sub-plants respectively. The PI

parameters of Cq(z) and C1 (z) are updated by Q-Tuner and T-Tuner respectively.

G"
C, V)

*f-> PI

C5(Z)
-*&

T-Tunei

Pl C?, (?)

D

O

CL

Q-Tuner O-Identifier

G1(Z)
T.

T-Identitler

Adaptive PM-PI Confro/lei-

Figure 6.9 Adaptive two-loop control structure for zone temperature controls

6.3.1 Equal Consideration of the Interior Loop for the Exterior Loop

In most zone temperature control systems, the Gz(z) pole value is very close to 1

compared to Gq (z) pole value. In addition, in most control loops the closed loop

response will be faster than the open loop response, that is, the bandwidth for the closed

loop transfer function will be larger than the bandwidth for the open loop transfer

function. Therefore, the bandwidth of the interior closed loop transfer function is very

large compared to the bandwidth of the G,(z) transfer function. This means that the

interior closed loop transfer function may be considered as constant within the bandwidth

frequency of Gz(z) for the adaptive two-loop control system. As a result, the PI controller

155



C1 (?) can be designed by considering FOPDT model for the plant as well as for the PI

controller Cq(z)-

Applying the above concept to the adaptive two-loop control system, and using

the Hm PI tuning rules (sampling time of T = 4 s), we obtain the interior PI controller

given by C (z) = 13.8041 +0.4491
T z + l
2z-l

Figure 6.10 shows the bode plots of the interior closed loop transfer function, the

transfer function Gq(z) and the transfer function G.(z). It shows that within the

bandwidth of the transfer function Gz(z) the interior loop transfer function becomes

Bode Diagram

f
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D) M
(ß "

t?
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Figure 6.10 Bode plots of Gz{z) , GAz) and the interior closed loop transfer function
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almost a constant one. Therefore, for F = 1 , we can say that the PI controller C1 (z) can

be designed by considering a plant with FOPDT model as well as the PI controller Cq (z) ¦

In other words, we can consider Gz(z) as an FOPDT plant to design the PI controller

Ct(z) by directly using the H„ PI tuning rules, likewise design the PI controller Cq(z)

by considering Gq(z) as an FOPDT plant.

6.3.2 Simulation Results for the Adaptive Two-Loop Control System

From the above discussion, the inner closed control loop function with faster sub-

plant is constant within the bandwidth of the function for an outer slower sub-plant. This

means in the outer closed loop design the inner closed loop function can be considered as

a constant. Therefore, the outer closed loop control structure becomes the same as the

inner closed loop control structure. From reference (Qu et al., 2004), the Hn PI tuning

rules and the adaptive PI control strategy can be applied to the FOPDT plant through a

closed PI control loop. To this end, the simulation in Simulink for the adaptive two-loop

control system for HVAC systems can be implemented as shown in Figure 6. 1 1 and the

PI parameters of C1 (z) and Cq (z) can be updated by the Hx adaptive PI tuning rules.

In the simulation, two saturators are also considered to maintain system capacity

constraints. In order to show the improved performance compared with the typical

airflow regulation methods discussed before, simulation runs were made with F = 0.7 .

Through analysis, it can be noted that FCt{z) updated by the Hx adaptive PI tuning

rules is the same as the simplified optimal control algorithm with Q2 = M F .
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Figure 6.11 Simulation structure for the adaptive two-loop control system

Figure 6.12 shows the simulation results for 0.101% changes in the Gz(z) pole

value. The plot 1 is the original response that is stable and is following the setpoint faster.
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Figure 6.12 Sensibility to parameter changes in the adaptive two-loop control system
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The plot 2 is the response with 0.101% decrease in the G1 (z) pole value and the plot 3 is

the response with 0.101% increase in the Gz(z) pole value. These are almost the same as

the plot 1 . Comparing these results with the results in Section 6.2.2, we note that the

adaptive two-loop control system has stronger robustness to parameter changes as the

pressure dependent control system does and more smooth responses than the pressure

dependent control system.

Figure 6. 1 3 shows the airflow rate disturbance rejection for the adaptive two-loop

control system. The plot 1 is the response without airflow rate disturbance. The plot 2 is

the response with a negative disturbance starting at 7500s and the plot 3 is the response

with a positive disturbance. The disturbance is 25% of maximum airflow rate. The

d 23.5

4000 5000 6000 7000
Time (Sec)

8000 9000 10000

Figure 6.13 Airflow rate disturbance rejections in the adaptive two-loop control system
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controller gives good airflow disturbance rejection similar to the pressure independent

control system.

The results depicted in Figures 6.12 and 6.13 show robustness to parameter

changes of the plant and good airflow disturbance rejection are obtained in the adaptive

two-loop control system. Also the zone temperature is maintained close to the setpoint

because of the PI controller used in the zone temperature control loop. However, in order

to implement the two loop control one must choose F . In the next section, guidelines on

the selection of F are given.

6.4 Selection of the Factor F

As mentioned in section 6.3.1, the inner closed loop can be considered as unit

(linearity) within the bandwidth frequency of G1 (z) . But, the saturator in the inner loop

could violate this situation. However, by reducing the maximum input value to the inner

loop it may be possible to hold the linearity condition to be true most of the time. The

factor F achieves this function in reducing the maximum input value of the inner closed

loop by choosing a positive value less than one.

If we assume that the parameters of the controller C,(z) updated by the Hx

adaptive PI control rules to the sub-plant G1 (z) are K , and K¡ti, then we can write

Kpl=FKpli,K,,=FK¡n (6.2)

This is a new optimal result for the selected weighting value Q2=M F which can be

shown through analysis. Therefore, a smaller value of F will slow down optimal zone

temperature response. The adjustable value of F gives us an additional degree of
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freedom to satisfy the linearity condition for the inner closed loop. The simulation results

in Figures 6.14 and 6.15 show the effect of the factor F .

In the above two figures, the plot 1 is with F = I; the plot 2 is for F = 0.7 and

the plot 3 is with F = 0.5 . As show in the figure, higher value of F displays the longer

nonlinearity effect and causes a bigger overshoot. However, a smaller value of F has

smaller nonlinearity effect and gives a better response. Therefore, in real systems, with

few trials we can get a suitable value of F to achieve good responses using the adaptive

two-loop PI control strategy.

6.5 Load Following Property of the Two-Loop Control

Parameter changes in the FOPDT model G,(z) reflect the load changes that

require corresponding changes in airflow rate in VAV system. That is, the load changes

require updating Qsel in the adaptive two-loop control system.

Online dynamic load changes are extremely difficult to predict. However, in the

adaptive two-loop control system the dynamic load changes will lead to Qset changes

automatically through the temperature controller C1 (z) . Therefore, we only need to

consider the maximum airflow rate and the minimum airflow rate for each path in the

adaptive two-loop control system design.

The simulation result in Figure 6.16 shows the load following property of the

adaptive two-loop control system. The plant model remains the same as given by

Equation 6.1 up to 7500s and at this point the G1(Z) pole value is changed to 0.991 as
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shown in the first plot in Figure 6.16. The new required airflow rate Qset changes

automatically following the parameter change. In the meantime, the zone temperature is

maintained to converge to the set-point.
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7000
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Figure 6.16 Response to the parameter change (load change) in the adaptive two-loop

control system

Now, we repeat the simulation with the above mentioned conditions for the

pressure independent control system. Figure 6.17 shows that the zone temperature with

the change in pole value cannot be maintained close to the setpoint, because QKI does not

follow the parameter change as the load changes in the pressure independent control

system. Comparing the adaptive two-loop control system and the pressure independent

control system, it is clear that the adaptive two-loop control system has the property of
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automatically adjusting Qset value according to the load. This property makes the VAV

implementation simple and effective.
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Figure 6.17 Response to parameter change in the pressure independent control system

As discussed before the pressure dependent control system has strong robustness

to parameter changes. Therefore, the zone temperature can be maintained to converge to

the set-point even though the load changes. However, the airflow rate change in the

pressure dependent control system is not smooth as compared to the adaptive two-loop

control system. The result is shown in Figure 6.18. The plot 1 is the responses for the

two-loop control system and the plot 2 is the responses for the pressure dependent control

system.
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Figure 6.18 Adaptive two-loop control and pressure dependent control responses to the

parameter change (load change)

6.6 Implementation in a VAV Test Facility

The adaptive two-loop control strategy was tested in a two-zone VAV-HVAC

Test Facility shown in Figure 5.18. The test facility is located in the Thermal

Environment Control Lab of Concordia University. In the test facility, DMl and DM2 are

damper motors that adjust the damper position to achieve airflow rate to zone 1 and zone

2 respectively. The controllers Cl and C2 modulate them individually. The output of the

controllers is updated by using the two-loop control strategy depending on the zone

temperature (ZTl or ZT2) and the velocity pressure in the supply air duct (PSl or PS2).

Here, the velocity pressure is considered to be the controlled variable directly. Chilled

water is supplied to the cooling coil (CC) from a 2-ton water-cooled chiller and a storage
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tank unit. The controller C is used to control the discharge air temperature of the cooling

coil (CCOT) through the actuator V to modulate the water flow rate. An automatically

operated open-loop fan motor speed control is used to adjust total airflow rate in the

system. CF is the controller and FYS is the actuator for the fan motor. The output of the
controller CF is

FAN = ka^Qse,{i) + c (6.3)
where, i is zone indicator and k is a coefficient that relates to the airflow rate requirement

in the VAV system. The coefficient ka can obtained by Equation (6.3) with c = O and the

required airflow rate values for all zones supplied by FAN. The coefficient ka was

determined by letting the dampers in full open position for each zone (open-loop test). In

the two-zone VAV-HVAC Test Facility, i = 1 or 2. In addition, we obtained

ka =10.5944 V /(m3/s) and selected c = 0.4 V. The maximum control value of the fan

is FAN =2.8 V. The control strategy improves zone temperature regulation under a

wider range of the load changes.

Experiment was done on the two-zone VAV-HVAC Test Facility. The

experimental results are shown in Figures 6.19, 6.20, 6.21 and 6.22. The discharge air

temperature was maintained at 12 0C. The zone load was simulated by using two electric
heaters.

The plant models require an estimate of the dead times which were obtained by

conducting open-loop tests. The obtained dead time was about 3s for the dynamic

process from the damper actuator to the velocity pressure (the airflow rate measurement)

and the dead time was about 36s for the dynamic process from the velocity pressure to
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the zone temperature. Using these dead times, the RLS algorithm with a matrix-reset

technique developed in Chapter 3 was used to implement the online identifications of the

processes in each zone.

The implementation also requires an estimate of Tz0 for each zone which is

somewhat difficult, but the temperature of the air entering the cooling coil (CCITS) is the

closest one can select. Therefore, we use CCITS as substitute for Tz0 in computing the

dynamic output of the process G,(z) in the parameter estimation. During the experiment,

sampling times of Is for the interior loop and 4s for the exterior loop were used.
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Figure 6.19 Zone temperature response and velocity pressure setpoint for zone 1

In Figure 6.19, ZTSOOl is the zone temperature setpoint and RTSOOl is the

measured value of the temperature for the zone 1. DlSP is the velocity pressure setpoint



(related to zone temperature setpoint and zone load) in the duct connected to the zone 1 .

The figure shows that the temperature setpoint changes the velocity pressure

consequently; the airflow rate changes steer the zone temperature to track the setpoint.

Zone 1 temperature shows good response with F(I) = 0.6667even though the fan control

input is changing as shown in Figure 6.20.
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Figure 6.20 Zone temperature response and velocity pressure requirement for zone 2

and fan control

Zone 2 temperature responses are depicted in Figure 6.20. The airflow setpoint

Qset was calculated by the following equation.

Qse,(i) = 1.29Aj0.1x{DiSP - 4)/16 m3 /s (6.4)
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where, i = 1 or 2 and A = 0.0309^n the duct area.

In the experiments the factor F(T) — 1 was used for the zone 2. The experimental

results in Figure 6.20 show that because of high cooling load in zone 2, the zone 2

temperature decreases slowly.
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Figure 6.21 Velocity pressure response and airflow rate for zone 1

From the experimental results in Figures 6.21 and 6.22, we note that the selection

of F for the both zones did cause saturation of the damper (10V actuator input for

dampers) and good tracking was achieved through velocity pressure control (or airflow

rate control) for both zones. However, the saturation time of damper opening was very

short, so we can say that the selected F values for both zones were acceptable. In Figure

6.21 , DPSOOlCFM, DAMPl , DlSP and DPSOOl are the airflow rate, the control input of



the damper, the velocity pressure setpoint, and the velocity pressure sensor measurement

respectively in the zone 1 duct. FAN is the fan control input. DPS002CFM, DAMP2,

D2SP and DPS002 in Figure 6.22 are the airflow rate, the control input of the damper, the

velocity pressure setpoint, and the velocity pressure in the zone 2 duct.
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Figure 6.22 Velocity pressure response and airflow rate for zone 2

The experimental results show that the interior loop is very fast compared the

exterior loop and the adaptive two-loop PI control strategy is well suited for VAV-HVAC

systems.

Keeping the airflow rate between the minimum and the maximum range is

essential in the VAV systems to maintain good air quality. By applying upper bound and

lower bound limits for the velocity pressure setpoint Qset we can achieve this



The following experimental results (Figures 6.23, 6.24, 6.25, 6.26) show the application

of the adaptive two loop control system in maintaining airflow rate within the chosen

high and low limits.
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Figure 6.23 Zone temperature response 2 and velocity pressure requirement for zone 1

From Figure 6.24 it is noted that the upper bound (210CFM) was reached for

certain times. The zone temperature responses to change in setpoints are shown in

Figures 6.23 and 6.25 together with corresponding airflow rates. Similarly, Figure 6.26

shows that the lower bound (80CFM) was reached over short intervals.
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Figure 6.24 Velocity pressure response 2 and airflow rate for zone 1
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Figure 6.26 Velocity pressure response 2 and airflow rate for zone 2

6.7 Summary

5:

1

This chapter has presented an online adaptive PI&PI controller for a VAV-HVAC

system. The system performance was evaluated through simulations and experiments.

The results show that the PI&PI controller gives good zone temperature setpoint tracking,

is able to reject pressure disturbances and is robust to load changes compared with

classical airflow regulation controls in VAV systems. The controller parameters for both

interior and exterior loops can be directly updated by using the H„ PI tuning rules.
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7. Conclusions and Recommendations

7. 1 Conclusions

The conclusions drawn from the four major contributions of this thesis, namely

development of, (a) a modified RLS algorithm, (b) on-line optimal control with Hx

tuning rules, (c) an adaptive neural network strategy and (d) an online adaptive two-loop

PI control strategy are summarized below.

A. A modified RLS identification algorithm

A modified RLS identification algorithm with the matrix-reset technique for

online identification of the FOPDT system parameters is developed, which is a useful

tool for the adaptive controls developed in this thesis. The specific conclusions from this

contribution can be summarized as the follows.

1. Numerical instability in the previous RLS algorithm (Franklin, 1997; Qu, 2002)

may cause absolutely wrong identification results in some cases. Through analysis

it was shown that some equations in the RLS algorithm don't guarantee that all

elements in P(k + 1) with their absolute values don't go to infinity (infinity

problem) and there still exists 9{k + 1) = 0(k) ifP(k) = 0 for the FOPDT system

(incorrect identification problem) even for y(k + \)F?t {k + \)9{k) .

2. To solve this problem it was proposed to keep LowValue< Pss < UpValue (where

pss = pu + pn + Pi\ + P2i ) and \ç(k + 1)| > d to do the identification for a FOPDT

system. This strategy was implemented by developing the matrix reset technique.
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3. Simulation results show that the identification algorithm (for y = l and # = °°)

with the matrix reset technique is able to track changes in the system plant

parameters rapidly and gives improved results compared to the ordinary least

squares (a = ? = 1) and some exponentially weighted least squares (CC — l — ? and

0<y<l) techniques. The use of existing identification algorithms (without the

matrix reset technique) frequently lead to infinity problem (\PLY2\ = Inf ),

consequently require interruption of online simulations. The matrix reset

technique avoids such interruptions and gives reliable results.

4. The experimental results show that the modified RLS identification algorithm

with the matrix reset technique can be implemented in building EMC systems and

is simple (without the need of using nxn matrix P), reliable and stable for

identification in an adaptive control system.

B. An on-line optimal control with Hx tuning rules

By describing the dynamics of a discharge air system (DAS) using a FOPDT

model, an online optimal control algorithm combined with the Hx tuning rules was

developed. Some specific conclusions are summarized below.

5. The optimal control problem for DAS was formulated and solved. It was shown

that the optimal control consists of PI-FF control structure, that is,

u{k) = -KPlx(k)-KFF{Tse,-Ta0).

6. In the discharge air temperature cooling control system, it was found that better

temperature responses were obtained with smaller weight value of £>2 weighting
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factor during setpoint step-up mode of operation and somewhat higher Q2 values

were found to give better responses during the setpoint step-down mode.

7. For the considered plant, it was found that a reduction factor of 0.85 and Q2-down

= 0.4 for the OTA-VP gave results that were close to the optimal results.

8. The developed tuning rules were tested using computer simulations in an adaptive

control system. The simulation results show that the proposed OTA and OTA-VP

with the near optimal parameters is able to track changes in discharge air

temperature setpoints efficiently and to reduce the effect of changes in system

parameters significantly.

9. The simulation results show that OTA-VP and OTA have improved performance

in disturbance rejection compared with the H00 tuning rules and the Ziegler-

Nichols method.

Reliability of a control system in real applications sometime relies on its control's

simplicity because simple control algorithm will reduce human error. The developed

simplified optimal control algorithm is the simplest one. Some specific conclusions for

this contribution are summarized below.

10. It was shown that by setting hu(J) ~ 1, h2i(l) ~ O, hn(l) ~ O, A22(Z) ~ 1, and a ~ 1

the online optimal tuning rules yield K d ~ — , Kid ~ — and Kff ~ 0.
(\ + a)Q2 {\ + a)Q2

The simplified optimal control algorithm is simple and easy to implement. It was

also shown that for Q2 -\ , the optimal tuning rules converge to //«, PI tuning rules.

1 1. The simplified optimal tuning rules were implemented on Concordia University's

heating coil system. The results show that with Q2 = 0.6993 the adaptive PI
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control system had improved response (the maximum offset is less than 0.40C and
the offsets on both sides of setpoint are balanced) compared with the original PI

control response (the maximum offset was great than 1 .60C and the offsets on
both sides were unbalanced).

12. The experimental results on the discharge air temperature control in the HVAC

test facility showed that by adjusting the weight parameter Q2 in the simplified

optimal control algorithm improved step responses were obtained.

C. Adaptive neural network control strategy

In contrast to the online optimal control algorithm which requires identification of

the model parameters, a new adaptive neural network controller with implementable

training rules is proposed, which is a model free method. The specific conclusions from

this contribution can be summarized as the follows.

13. An adaptive neural network controller (ANNC) is constructed by augmenting PID

control with a neural network control algorithm.

14. Simulation results show that with a suitable set of initial values the training

process could be very short for a fixed plant; but, if the initial weight values are

not good enough the training process could be very long. Also, decreasing the

initial values of w,,(0) decreases the rise time and increasing the initial value of

WOo(O) can reduce overshoot.

15. The fastest step responses of the ANNC recorded were as follows: the settling

time of 152s to within 0.180C for a 20C step-down setpoint change, and the

settling time of 1 1 9s to within 0.1 80C for a 20C step-up setpoint change.
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1 6. The experimental results demonstrated that stable step responses by the ANNC

were achieved over a wide range of operating conditions.

17. The output responses from the PID and ANNC control were compared. The

results show that the proposed ANNC has very smooth, fast and less overshoot

step responses compared with the CCM-PID control.

18. The experiments showing the disturbance rejection to the airflow rate changes

were made. The results show that the proposed ANNC may be not as efficient as

the CMM-PID control in the disturbance rejection to the airflow rate changes.

This shows that it may be necessary to add airflow rate as input to the ANNC to

improve the disturbance rejection property.

D. Online adaptive two-loop PI control strategy

For zone temperature controls in a VAV-HVAC system, an on-line adaptive

PI&PI controller is proposed. The system performance of the proposed controller was

evaluated through simulations and real applications. Some specific conclusions for this

contribution are summarized as follows.

19. The limitations of the typical airflow regulation in zone temperature controls of

HVAC systems were illustrated with examples. The simulation results show that

the classical pressure independent control results in offset in tracking the zone

temperature setpoint, but has stronger robustness to airflow rate (or pressure)

disturbance effect. The classical pressure dependent control for zone temperature

control system is not good in rejecting the effects of airflow rate (or pressure)

disturbance, but has stronger robustness to the parameter changes.
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20. The simulation results show that the proposed two loop PI&PI controller has

improved the zone temperature setpoint tracking property, better attenuates the

pressure disturbance effect and is robust to load changes compared to the classical

airflow regulation controls used in VAV systems.

21. The experimental results showed that the proposed on-line adaptive PI&PI

controller is tracking airflow rate requirement very quickly and is robust; and the

zone temperature setpoints were reached while satisfying the minimum and

maximum airflow requirements.

7.2 Contributions of This Study

The main contributions of this thesis are summarized below.

1. A modified RLS identification algorithm with Matrix-Reset Technique for online

implementation is proposed. It guarantees that the identification works properly

under all possible operating conditions by adopting a matrix-reset technique.

2. A new optimal control for FOPDT system augmented with improved robustness

is developed.

Changes in FOPDT model parameters in HVAC systems require strong

robustness property in control design. To achieve this requirement a new optimal

control for FOPDT system combined with H„ tuning rules (Qu & Zaheeruddin,

2004) is developed. This control improves the ability in rejecting the effect of

changes in system parameters.
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3. To develop implementable, simple control algorithm with stronger robustness

properties, a simplified optimal control algorithm is proposed. The characteristics

of this algorithm are verified by two adaptive control applications.

4. An online intelligent control strategy with the integration of adaptive control,

neural network control and PID control is developed for local controls of HVAC

systems. Simulation and experimental results show that the proposed control

strategy has stronger robustness, improved regulation and tracking functions for

FOPDT type plants compared to classical PID controls.

5. An online adaptive two-loop PI control strategy (PI&PI) for multi-zone systems is

developed. It is combined with classical two-loop structure and H00 tuning rules

and achieves good zone temperature control, robustness to parameter changes and

good airflow rate disturbance effect reduction compared to classical multi -zone

controls.

7.3 Recommendations

The results described in this thesis are useful for real implementation of adaptive

local loop controllers in HVAC systems. In order to extend these methods to buildings

with a large numbers of control loops, the following recommendations are made.

1. Develop implementable supervisory control strategies for the entire HVAC

control system in which all control loops can be simultaneously tuned.

2. Conduct more real building experimental tests with the developed control

strategies.
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Appendix

Sensor type
Variable
measured Sensor range Accuracy Output signal

RTD Temperature 55-95F (13-350C) ±0.5F (±0.3°C)
±0.12% Ohms (Ik max)

RH Relative humidity 0-99% ±2% 4-20 MA
Pressure
transducer

Pressure 0-0.1" WG ±1% 4-20 MA

Water flow
meter

Chilled water flow
rate 0.5-6 gpm ±2% 4-20 MA

Table A.l Spécifications and accuracy of the sensors used
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