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ABSTRACT

Decentralized Receding Horizon Control of Cooperative

Vehicles with Communication Delays

Hojjat A. Izadi, Ph.D.

Concordia University, 2009

This thesis investigates the decentralized receding horizon control (DRHC) for a

network of cooperative vehicles where each vehicle in the group plans its future

trajectory over a finite prediction horizon time. The vehicles exchange their predicted

paths with the neighbouring vehicles through a communication channel in order to

maintain the cooperation objectives. In this framework, more frequent communication

provides improved performance and stability properties. The main focus of this thesis is

on situations where large inter-vehicle communication delays are present. Such large

delays may occur due to fault conditions with the communication devices or limited

communication bandwidth. Large communication delays can potentially lead to poor

performance, unsafe behaviour and even instability for the existing DRHC methods.

The main objective of this thesis is to develop new DRHC methods that provide

improved performance and stability properties in the presence of large communication

delays. Fault conditions are defined and diagnosis algorithms are developed for situations

with large communication delays. A fault tolerant DRHC architecture is then proposed

which is capable of effectively using the delayed information. The main idea with the

proposed approach is to estimate the path of the neighbouring faulty vehicles, when they
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are unavailable due to large delays, by adding extra decision variables to the cost

function. It is demonstrated that this approach can result in significant improvements in

performance and stability. Furthermore, the concept of the tube DRHC is proposed to

provide the safety of the fleet against collisions during faulty conditions. In this approach,

a tube shaped trajectory is assumed in the region around the delayed trajectory of the

faulty vehicle instead of a line shaped trajectory. The neighbouring vehicles calculate the

tube and are not allowed to enter that region. Feasibility, stability, and performance of

the proposed fault tolerant DRHC are also investigated. Finally, a bandwidth allocation

algorithm is proposed in order to optimize the communication periods so that the overall

teaming performance is optimized. Together, these results form a new and effective

framework for decentralized receding horizon control with communication faults and

large communication delays.
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Chapter 1. Introduction
The successful cooperative behaviour of biological systems, such as flocks of birds,

has motivated engineers to develop and use cooperative vehicle systems instead of a
single vehicle for complex missions. Cooperative control of multiple vehicle systems
covers a wide range of applications including air traffic control, automated highway

systems, search and rescue missions, mining robots, space exploration, satellite networks,
security systems, and many others. In each case, using a team of cooperative vehicles is
more efficient and reliable than using a single vehicle.

The control of cooperative vehicles is traditionally performed in a centralized

manner, where a central controller communicates with each vehicle and coordinates their

actions. However, using a central controller is difficult especially when the number of

vehicles becomes large. The computation resource required rapidly grows with the

number of group members. Furthermore, failure of the central decision maker leads to

failure of the entire group. Due to these aforementioned problems, over the past several

years there has been significant interest in developing the decentralized cooperative
controllers [1-3]. In such systems, control decisions are made by individual vehicles or

subgroups that require less computation than centralized implementations. The
decentralized structure potentially results in increased autonomy of agents and affordable

communication requirement. Decentralized control architectures are usually developed
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by breaking the centralized control problem into local control problems of smaller size in

order to reduce the computation requirements. Hence, the control action of every agent

depends only on the local information, such as states and control inputs of neighbouring

vehicles, to achieve the global objectives of the vehicle group. The local information is

usually provided through inter-vehicle communication or onboard sensors. The main

distinction between the decentralized approaches usually arises from the type of the

information they need to communicate, the form of the communication topology, and the

type of control strategy.

The decentralized implementation must provide and respect the primary objectives

of cooperative control problem, these primary objectives are: 1) the total cost added due

to cooperation must provide a greater increase in system effectiveness than the case of

non-cooperating vehicles, 2) the performance lower bound of a cooperative system as

communication degrades should never be worse than the performance of the same

vehicles without cooperation. To achieve these primary goals of the cooperative control,

the new potential approaches are under investigation. For example, with recent advances

in distributed computation, there have been numerous attempts to use optimization-based

control methods, such as receding horizon control (RHC) [4, 5] to decentralize the

cooperative control problems. Although RHC is computationally expensive, it has some

prominent capabilities which motivate researchers to develop the RHC based

decentralized control architectures [1, 2, 3, and 4]. For instance, since the RHC generates

the control action through minimizing a cost function, it is easy to provide cooperation

among neighbouring subsystems in the cost function and/or in the constraints. Another

capability of RHC that makes it an attractive control method from the industry

2



perspective is its prominent ability to handle the system's constraints and saturations
while providing optimal or suboptimal control actions [3]. Further, the predictive nature
ofRHC makes it suitable for applications such as path planning and conflict resolution.

In this thesis, the hierarchical design for cooperative control problems has three main

levels: high-level, mid-level and low-level. The high-level includes the tasks such as
mission management, task assignment, timing/scheduling and has the most interaction
with human supervisor. Some issues such as path planning, collision avoidance, obstacle
avoidance, formation keeping, reconnaissance, and search algorithms are designed in the

mid-level. The low-level (or vehicle-level) design discusses issues such as inner loop

control, trajectory following, disturbance rejection and robust control. Sometimes the
mid-level design can be combined partly with low-level design which provides

consistency between these two levels. For instance, since the RHC has the capability for
both path planning and inner loop control, these two tasks may be combined [6-8] which
results in feasible paths. In this thesis, this type of combined design is utilized and the
high-level design such as task assignment is not addressed, i.e., it is assumed that an
efficient task assignment and mission management algorithm is available. Figure 1.1

shows the hierarchy of the cooperative team design where the mid-level and low-level

designs are combined.

As seen in Figure 1.1 the information exchange are performed among the

cooperative vehicles and also among high-level, mid-level and low-level. The information
structure represents the access of each component in the team to the global or local
information. Different scenarios can happen with different possibilities for information

structure including unidirectional or bidirectional information flow, connectivity of

3



communication topology and fixed/varying communication topology. In this research it is

assumed that the communication graph is not full, i.e., only some specific subgroups of

vehicles can talk to each other and have access to each other's information.

a
o

Task
Assignment

Timing

Mission

Management

*=H

Path
Planning

Path

Planning

Path
Planning

Inner loop
Control

Inner loop
Control

Inner loop
Control

Vehicle 1 £=¿3

Vehicle 2 *C=3

Vehicle Nv :<=F?.

High-Level
Mid-level and Low-Level

Figure 1.1: Hierarchy of a typical cooperative team design where the mid-level and low-level designs are
combined.

1.1. Receding Horizon Control

With Receding Horizon Control (RHC), also known as Model Predictive Control

(MPC), the control action is generated through the rninimization of a cost function



subject to dynamical model and dynamical constraints of the process. The name

"Receding Horizon Control" emerges from the fact that solving an infinite horizon

optimal control problem is demanding and thus the horizon is receded to decrease the
computation effort; whereas, the name "Model Predictive Control" comes from the fact
that the RHC/MPC uses a mathematical model of the system to predict its future

evolution by designing the control law.

Roughly, with RHC a cost function is minimized over a period of time called the

prediction horizon denoted by T, to obtain the corresponding control trajectory over the
prediction horizon. Meanwhile, only the first portion of the control trajectory over a

smaller time called execution horizon (time) denoted by d , is applied to the plant till the

next sampling data is available. Repeating this procedure yields a close loop solution.

Figure 1.2 shows the relation between prediction horizon T, and execution horizon

d (sampling time). Also, tc denotes the computation time which is assumed to be
negligible in most of the current research [9, 10] including this thesis. In situation where

the computation time is not negligible and a zero computation time assumption is invalid

two methods may be used: 1) Retarded Actuation [11] and 2) On-the-Fly Computation

[12] where the input planned at previous time step (¿¿_i) is used during [í¿,/¿ +tcV, the

discrete sampling is denoted by /* and the next sample time is given bytk+i = tk + d .

I te
i ?

?—-£ X X
to tk+1 tk

Figure 1.2: Timing in RHC.
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Some of the main advantages of RHC are listed below:

1- Constraint Handling: one of the unique properties of the optimization based

control methods such as RHC is the capability of handling the dynamical

constraint, saturation and constraints resulting from the nature of the mission. The

constrained nature of the most of the physical processes makes RHC an attractive

control approach.

2- Generality: RHC is applicable to generic set of dynamics including linear and

nonlinear. Also, RHC is one of the few methods which provide the feedback

control design for nonlinear systems.

3- Reconfigurability: the outstanding flexibility and adaptive nature of RHC comes

from the fact that it is capable to redefine the cost functions and modify the

constraints as needed in an online fashion to follow the changes in the system,

mission requirements and the environment.

4- Optimality: RHC provides the optimal or suboptimal solutions and allows

applying control objectives through the cost function.

However, RHC has some shortcomings:

1- Computational Demand: the huge online computation effort of the classical RHC

and other optimization based methods are a barrier for employing them for fast

dynamics such as aerospace vehicles. Nevertheless, there have been several

attempts to tackle this problem by modifying the cost function and terminal

constraint that lead to reduced online computation burden. The advent of fast

computers also facilitates the use of RHC for fast dynamics.
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2- Theoretical Demand: in general, it is difficult to address the stability, feasibility

and performance of RHC and often the stability conditions are too conservative

and provide poor performance.

These drawbacks motivate new research to develop more efficient RHC architectures

for benefiting the unique advantages of RHC.

1.2. Literature Review

The existing literatures on the decentralized receding horizon control (DRHC) cover

a wide range of issues including stability, feasibility, implementation, performance

analysis, robustness, applications, etc. Since most of the works on DRHC are extensions

of classical RHC for single process, a short literature review on RHC is inevitable. In this

section first some literatures on cooperative control are reviewed, and then the important

contributions on the RHC are reviewed. Finally, the significance of RHC for control of

cooperative vehicles is highlighted through reviewing the literatures on DRHC.

1.2.1. Cooperative Control

Research on cooperative control is carried out on three different levels of hierarchy

(see Figure 1.1). For instance, at the high-level, one can point to works performed on task

assignment [77, 96-98], search and classification [99, 100] and reconnaissance [101]. In

the mid-level, very interesting works have been carried out in [6, 7, 78, 79, and 81] for

path planning, obstacle avoidance and collision avoidance. Formation keeping, trajectory

tracking, target tracking and safety [102] have also received good attention. For the

purpose of this research, the literatures addressing path planning, formation control,

swarming, flocking problems and consensus/agreement algorithms are reviewed.
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Reviewing the papers based on the mentioned categories can reflect the information and

control structure specifications as well as practical issues and different applications of the

cooperative control.

1.2.1.1. Pathplanning

The path planning for cooperative vehicle systems has been investigated in several
research works. Some of the main challenging issues in this field are collision avoidance,

obstacle avoidance, highly obstructed complex environments, feasibility of the generated

paths and trajectory planning in environments with non-convex obstacles. Different

methods have been developed for the path planning of multiple vehicles.

In [78] a graph based method is developed where a sequence of vertices is assigned

to discrete points in space, then edges are used to connect these vertices. A cost is
assigned to each of the edges, and the graph is searched for the minimum cost. This
method is well suited to complex environment with general form of obstacles.

Probabilistic roadmap planning (PRM) is another efficient method to compute

collision-free paths for UAVs [81]. This method consists of two phases: a building and a

query phase. The building phase is the construction of a graph called 'roadmap'. The

nodes in the roadmap are collision-free configurations and the edges linking the nodes are

collision-free paths. The query phase is finding a path between an initial and goal

configurations by connecting these nodes to the road map and searching them for a

sequence of edges linking the two nodes. This method was originally developed for
holonomic robots in a static environment; however, it has been recently applied to non-

holonomic robots with constrained kinematics and high degrees of freedom [82]. In a

new extension of this method [83], a so-called coarse-roadmap is built during the
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building phase and fiirther refined in the query phase with focus on the area of interest,

and it is customized to specific preferences such as maximum number of sharp turns.

The virtual potential fields and forces are another technique proposed by Bortoff [79]

(see also [80]). In this method, a chain of masses connected to each other by springs and

dampers represents a vehicle path. Obstacles to be avoided have repulsive force fields

and the cohesion of the group produces an attracting force that shapes the path until

equilibrium is reached. Bortoff concludes that the method is quite promising for uniform

radar field [84]. Most recently, this method has found some attentions in collision

avoidance of flocks and swarms [85, 86].

Another promising methodology for path planning is the optimization based methods

[87, 55, 58]. In this approach a cost function consisting of a path length or time or fuel is

minimized to generate an optimal path. The optimization problem is subject to initial and

target state constraints and a model of the vehicle to ensure the feasibility of the paths.

The main drawback of this method is that it needs a high computational power, and that

the computation load increases dramatically with the scale of the problem. Hence, to

reduce the computational time a finite horizon time is used instead of an infinite horizon

time. This method is used in this research to generate the paths.

1.2.1.2. Formation control, Flocking and Swarming

Formation, flocking and swarming are three main scenarios studied in the

cooperative control problems. In the formation control problem, the cooperation is

characterized by forcing the entire group to move in a certain pre-specified shape such as

triangle where the shape (formation) follows a given path (probably generated by any of

methods of previous section). The formation shape must be preserved during the mission
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while the entire group behaves like a rigid body. The formation control can be performed
in three different methods: leader-follower [88], virtual-leader [89] and leaderless [90]

formations. In the leader-follower the given trajectory is followed (or generated) by one

(or more) of the vehicles (leaders) and the rest of the group {followers) align then-

velocity, position and heading angle with respect to their assigned leader. In the virtual-
leader approach a virtual vehicle is considered which plays the role of the actual leader.
In the leaderless approach each vehicle in the group considers itself as Hie follower of its

neighbouring vehicle. A comprehensive review of the formation control problems can be
found in [88]. In this thesis both leaderless and leader-follower formations are considered

in the simulation examples.

According to the definition in [9 1] flocking is a form of collective behaviour of large

number of interacting agents with a common group objective. In a more precise and

mathematical definition [92] a group of mobile agents are called flock if all the agents

attain the same velocity vector and the relative distances between agents are stabilized to

some certain constant value. Aggregation and cohesion are two basic behaviours in

flocking. The flocking is inspired by the collective behaviour of species such as simple
bacteria colonies, flocks of birds, schools of fish, herds of mammals and swarm of

insects. Such collective behaviours of biological species are observed to be helpful in

achieving common teaming objectives such as avoiding predators, increasing the chance

of finding food, etc. Huge numbers of agents is the main distinction between swarm and

other cooperative scenarios, different applications of swarms are discussed in [93].

In general, the overall shape and size of group in formation control, flocking and

swarming are the main interest; however, the key issue in formation control is the exact
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inter-vehicle distances while in flocking and swarming the aggregation and cohesion of

the group are the challenging issues.

1.2.1.3. Consensus/agreement algorithms

In the consensus algorithms the main problem is about having agreement on some

quantities of interest. Such quantities might or might not be related to the motion of the
individual agents [119]. For instance, in a formation control problem the agreement on

the center of formation is required when the information flow is not bidirectional or

communication structure is varying [94]. The consensus algorithms are very suitable

tools to analyze the effect of information structure on the properties of mission. For
instance, in [95], graph Laplacians are used to investigate the effect of communication
topology on the formation stability for groups of agents with linear dynamics. It is shown
that the algebraic graph theory is useful in modeling the communication network and

providing a connection between the communication topology and the formation stability.
The main issues in consensus research includes variety of assumptions on the network

topology (being fixed or switching), presence or lack of communication, time-delays,
connectivity of network and direct (unidirectional) or indirect (bidirectional) information
structure. In general, the convergence analysis of consensus protocols on direct graphs is

more challenging than the case of indirect graphs. This is partly due to the fact that the
properties of graph topologies are mostly known for direct graphs.

1.2.2. Receding Horizon Control (RHC)

RHC was first introduced in the process control community. It has attracted the

attention of many researchers due to its ability to handle the constraints on the states and
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inputs in control problems [16-28]. But its huge online computation load did not first

allow using RHC for fast dynamics such as aerospace application.

The first RHC concepts were derived from the optimal control theory where a cost

function is optimized over an infinite horizon to generate the control action. With the

optimal control problem using the infinite prediction horizon the stability is achieved

easily but there is no analytical solution for most of cases except linear quadratic

regulator (LQR); also, it often leads to solving two point boundary value problems

(TPBVP). On the other hand, solving an optimization problem over an infinite time is

computationally prohibitive that drives engineers to employ a reduced horizon scheme

called receding horizon control (RHC).

In 1990, Bitmead et al. [62] showed that the reduced form of optimal control

problem (RHC) does not guarantee closed-loop stability readily but the closed-loop

stability can be achieved by a careful tuning of RHC parameters such as prediction

horizon, and matrix penalties in the cost function along with including final equality

( x(T) = 0) or inequality constraints (x(T)&Xf) in the optimization problem. Bitmead

et al. [62] proposed a stabilizing scheme for the case of linear systems without input

constraint. In 1990, the similar results are published by Mayne and Michalska [20] where

they showed that under some strong conditions such as imposing the final state equality

constraint ( x(T) = 0 ), the stability can be achieved for a class of nonlinear systems

subject to input constraints (see also [22]). Although this work was a quick jump towards

the nonlinear systems, this strong assumption ( x(T) = 0) was restrictive computationally

and theoretically since it needs infinite iterations to be satisfied. Also, it was required that

the cost function be continuously differentiable which is a very strong assumption. Then,
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in 1993 these assumptions were relaxed by Michalska et aL [31] where they proposed a

dual mode RHC in which they employed a linear state feedback control in a

neighbourhood of the origin by considering some terminal region (set) containing the
origin; in this scheme the RHC is applied outside the terminal region.

In 1998, Chen and Allgower [10] modified the dual RHC approach by proposing a

quasi-infinite RHC that relaxed the utilizing of linear state feedback inside the terminal
region around the origin. In that, in this approach the RHC controller is used all the time,
no matter whether the states are inside or outside of terminal region; also, the linear state

feedback controller is only used for offline computation of terminal region and terminal

matrix penalty. The terminal matrix penalty in this approach is obtained by solving the
Lyapunov equation with feedback terminal controller under which the terminal region is
an invariant set for the system. This approach has been the most useful approach among

RHC architectures. In general, although all the approaches presented after then have tried

to relax the final inequality constraint, they left the problem with another constraint and

in some cases they need some restrictive assumptions. In this thesis, the quasi-infimte
RHC is used.

Using the final inequality constraint instead of final equality constraint considerably

reduced the computation load; but it was not efficient yet for very fast processes. Then, in

1 998 a new approach was developed by Primbs et al. [65, 66] and De Nicolao et al. [64],

and later in 1999 was extended by Jadbabaie et al. [67] in order to relax the final

inequality constraint. This approach utilizes an appropriate Control Lyapunov Function

(CLF) as the final cost to guarantee the stability. More precisely, it is proved that the CLF

is an upper bound on the infinite cost function and can be found in some neighbourhood
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of the origin. The method is successfully applied to the Caltech ducted fan which is

known as one of the fast aerospace dynamics. To introduce a suitable choice of CLF in

[68] Jadbabaie et al. employed the Linear Parameter Varying (LPV) method as a choice

for CLF. However, it is not always possible to find a global CLF (the system may not be

stabilizable). Then in 2001 by Jadbabaie et al. [69], the region of attraction of CLF based

RHC and RHC is compared and it is shown that under some circumstances this region of

attraction can be expanded to the region for infinite horizon controller by increasing the

horizon length which is not attractive computationally.

Although the CLF based RHC methods are computationally attractive and the

aforementioned efforts proposed significant theoretical background for RHC, they lack a

sufficient stability guarantee for systems with input and state constraints; therefore, they

were not interesting for industry applications because as mentioned previously, one of the

main attractive features of RHC is its capability for handling the constraints. Hence, some

new research has been started to include the state and input constraints into the

optimization problem. For example, in [70] Jadbabaie et al. show that using Dini's

theorem on the convergence of functions, the exponential stability is obtained for input

constrained RHC with a general nonnegative terminal cost with sufficiently large

horizons. It is shown that there is always a finite horizon for which the corresponding

RHC is stabilizing without terminal cost. Also, in [71-73] the authors attempt to remove

the final constraint while the state and input constraints are present.

Another promising approach is proposed by Scokaert et al. [74] for reducing the

computation complexity of RHC by relaxing the optimality condition; the authors

proposed a suboptimal RHC architecture where the feasibility of the solution implies the
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stability. It was a great progress for reducing the online computation since reaching the

global optimum is computationally expensive and sometimes it does not exist for non-
convex optimization problems.

The attempts for reducing the online computation load of RHC have not been
restricted to theoretical approaches. In 2000 by Milam et al. [11], a direct method for

solving optimal control problems has been proposed based on the properties of flat
outputs which reduce the online computation time by mapping the optimization problem
to a smaller dimension. Taking the advantages of the new advances in the computation

power, most recently it is used widely for fast dynamics. The method proposed in [11]
was applied successfully to a vector thrust flight experiment in 2003 [29, 30], which is
example of an aerospace system with fast dynamics. Further in [75], it is applied to the
fast and nonlinear dynamics of vortex-coupled delta wing aircraft, simulations illustrates
that the reasonable online computation expense allows employing the RHC for the fast

aerospace dynamics subject to actuator saturation and state constraints.

Although it is tried to draw a general sketch for the history of RHC in this
subsection, the readers are encouraged to see Mayne et al. [35] for a comprehensive

review of RHC history, research, application and architectures.

1.2.3. Decentralized Receding Horizon Control (DRHC)

Interest in decentralized control dates back to 1970's when Wang and Davison [36]

used the decentralized approach for the large scale systems and since then there has been

a significant attempt to use this 'approach in a wide range of engineering applications
including large scale systems [36-40], and cooperative control of dynamically coupled
[41] and dynamically decoupled subsystems [42, 43]. In this thesis, the main focus is on
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the decentralized control of networks of dynamically decoupled subsystems. The

motivation for using decentralized approach for such networks of dynamically decoupled

subsystems arises from the abundance of networks of independently actuated subsystems
and also the necessity of avoiding centralized design for such large scale systems, due to

their computational complexity [43]. Networks of vehicles in formation, production lines,

units in a power plant, a network of security cameras at an airport [44], distributed paper
machine control [45, 46] and mechanical actuators for deforming surface are just a few

examples. More examples and applications to the decentralized control design are given
in [47-55].

In the previous section some of the quite unique benefits of RHC are discussed. The
motivation for using RHC in cooperative control problems arises from the mentioned

benefits of RHC and the fact that it is easy to provide cooperation by RHC using the cost

function. The optimality property of receding horizon control makes it a suitable tool to
control the formation flight of a group of spacecraft where the main concern is to

minimize the fuel consumption of the group [56, 57]. Also, the optimality property along

with the constraint handling makes it a potential approach for feasible path planning;

further, it is possible to combine the path planning and inner loop control design. As an

example, a nonlinear decentralized model predictive control is proposed in [58] (see also

[55]) for flying multiple autonomous helicopters in a complex three-dimensional dynamic

environment. The proposed decentralized RHC in [58] provides a framework to solve

optimal discrete control problem for the nonlinear systems under state constraint and

input saturation. Also, the trajectory generation with operational constraints and
stabilization of vehicle dynamics are combined by including a potential function
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reflecting the state information of a possibly moving obstacle or other agents to the cost

function. It is also shown that the computation load of this approach is small enough to be

used for the real-time applications.

In [14, 15, 53, 59, 60, 164] a combination of different techniques is used to develop

robust decentralized model predictive control architecture for path planning. For

example, the constraint tightening technique is used to achieve robustness, it is proposed

to modify the speed limit, turn rate and obstacle relative distance in order to guarantee the

robust constraint satisfaction. Also, an invariant set is used around each vehicle to ensure

safety. Further to account for non-convex coupling constraints arising from collision

avoidance and obstacle avoidance constraints the Mixed Integer Linear Programming

(MILP) technique is used. MILP is an implementation technique which breaks the non-

convex constraint to some convex constraints. In this framework, a suitable cost function

is selected to generate an intelligent trajectory around obstacles in the environment; the

developed decentralized model predictive control architecture includes both lower-level

issues such as inner loop control and trajectory planning in the mid-level. Each vehicle

plans only for its own action, but feasibility of the sub-problems and collision avoidance

between multiple aircrafts are guaranteed in a sequential, decentralized fashion, in which

each aircraft takes into account the latest trajectory and loiter pattern of the other

aircrafts. Also, UAVs communicate relevant plan data to ensure that decisions are

consistent across the team. The efficiency of this approach is verified experimentally in

[61] where two different test-beds with 4 and 8 UAVs are developed and tested.

As in classical RHC, most researchers have addressed stability and feasibility of

DRHC by modifying the cost function and constraints. For example, a sophisticated work
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is conducted by Keviczky et al. [1], where a DRHC is proposed to control a team of
vehicles with decoupled discrete-time dynamics through breaking a centralized RHC
architecture into distinct RHC controllers of smaller sizes. Each RHC controller is

associated with a different vehicle and computes the local control inputs based only on

the states of itself and of its neighbours. With such approach, the vehicles are coupled

through a cost function and the required information from the neighbouring vehicles is
provided through non-delayed communication or on-board sensor measurements. Each
vehicle predicts its neighbours' behaviour from the dynamical model available and, based
on this prediction, plans the trajectory of itself and its neighbours, but executes only its
own trajectory. It is proved that if the mismatch between the predicted and actual

trajectories of all neighbours is smaller than some value of the cost function related to the
initial conditions then the global group stability is achieved [I]. In another work [2],

Dunbar et al. proposed a distributed RHC for multiple vehicles with continuous-time
dynamically decoupled subsystems whose state vectors are coupled through the cost
function of an RHC control problem. Each vehicle solves an optimization problem and

generates its own control action using an assumed control action of neighbouring
vehicles. The key requirement for stability is that each control input does not significantly
deviate from the previous one, which is used as the assumed control action by
neighbouring vehicles. Throughout the thesis at each situation the related DRHC papers
will be reviewed.
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1.3. Thesis Objectives

The main objective of the thesis is to develop new decentralized RHC (DRHC)

architectures for formation control and path planning of multiple vehicles in presence of

large communication delays. Such large communication delays can result from
communication failure and limited communication bandwidth. Communication failures

leading to large communication delays are defined and some fault diagnosis algorithms

are developed. A fault tolerant reconfigurable DRHC method is then developed which

account explicitly for large communication delays. An approach for safety against

collisions is proposed based on the tube DRHC concepts. Analysis of feasibility,

stability, and performance of DRHC is also performed. Finally, an approach for optimal

allocation of communication bandwidth for DRHC is proposed which improves the

teaming performance in presence of limited communication bandwidth. The results

together form a new framework for DRHC of cooperative vehicles with large

communication delays.

1.4. Structure of the Thesis

Figure 1.3 shows the overall structure of the thesis. Chapter 2 presents the

formulation of RHC and delay-free DRHC. The corresponding algorithms are also

presented and simulations are used to illustrate the implementation issues. Then the

overall problem statement is presented which includes a defined faulty condition

involving the failure of a high performance communication device leading to large

communication delays. Chapter 3 develops fault diagnosis algorithms for detecting

communication failure in different cases including direct communication topology
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(unidirectional communication), indirect communication topology (bidirectional
communication), and cases where the transmitter and receiver communication devices are

separate. In Chapter 4, a fault tolerant delayed DRHC architecture is proposed to
explicitly account for large communication delays. A tube DRHC approach is proposed
in Chapter 5 in order to provide fleet safety against possible collisions in faulty situations.

Chapter 6 investigates the feasibility, stability, and performance of the proposed delayed
DRHC approach. In Chapter 7, the case of limited communication bandwidth is
considered and a bandwidth allocation algorithm is proposed in order to optimize the

cooperative control performance. Chapter 8 presents conclusions and future work.
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Figure 1.3: Structure of the thesis
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1.6. Notation and Terminology

In this thesis, the terms group, team, fleet, and network bear the same meaning; and

so do the terms vehicle, agent, team member, and subsystem. Also, the text often talks
from the local vehicle's perspective unless otherwise is emphasized.

Further, in general for scalars a lower-case italic notation is used (except T which is
traditionally used for prediction horizon), e.g., ? and y denote the components of position
vector. For vectors the bold lower-case italic notation is used, e.g., x denotes the state

vector. For matrices the UPPER-CASE italic letter is used, e.g., A is used for linear

system dynamics. Also, the UPPER-CASE BLACKBOARl BOLP characters are used

for sets; for instance: R, N, X, U, and E . The specific notations corresponding to each

part of the thesis are described in the first place where they appear.
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Chapter 2. Background Materials and Problem
Statement

This chapter presents the required background materials on the decentralized

receding horizon control (DRHC) of the multiple vehicle systems. First, the formulation

of quasi-infinite RHC [10] is presented, and then this framework is used to formulate the

decentralized RHC. Quasi-infinite RHC architecture imposes the lowest online

computation effort while satisfying the dynamical constraints. Also, it provides enough

theoretical tools to analyze the stability and performance of the controller.

2.1. Receding Horizon Control Formulation

Consider the following general nominal model for the subsystems:

x = f (X(OMO) X(O) = X0 ?2·1)
where ? e Wn is the state vector of the vehicle and u e Rm is the input vector satisfying

the constraints:

«(0 e U; V/ > 0 (2.2)
.jc(0 e X; Vi > 0

where U and X are the set of admissible inputs and states respectively.

Assumption 2.1: fis twice continuously differentiable andXO,O)=O, which means the

origin is the equilibrium of the system [10].

Assumption 2.2: U and X are compact and convex and contain the origin [10].
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Assumption 2.3: All parameters of system in /are known and all states are either
measurable or observable. The system is also controllable.

Assumption 2.4: the linear realization of the nonlinear dynamics (2.1) is introduced
as follows:

x = Ax+ Bu (2.3)

. Also, A is stabilizable [10].where A-
dx

n-df
(X=O, M=O) 0U (X=O, H=O)

Remark 2.1: the linearization is required for the off-line tuning of the matrix

penalties in the cost function so that the stability is provided. In the online calculation the
nominal model (2.1) is used.

In the optimal control a cost function is optimized over an infinite horizon to achieve

the requirement for the stability, where the cost function is represented as follows:

J00 (X(O), U(O)) = ] q(x(T), u(r))dr ^
0

where q(x(r), u(t)) is assumed to be positive definite function of ? ; it is usually

selected as a quadratic cost function and reflects the performance specifications of the

system and mission to minimize fuel, time, etc.

Assumption 2.5: q(x(r),u(r)) is a positive definite function of x, i.e., there exist a

class ?: function Y\ (·) such that q(x,u) > /i(\\ *|¡)[152].

To address the stability, the optimal cost function (2.4) is often selected as the

Lyapunov candidate function; with the infinite horizon the optimal cost is guaranteed to
be non-increasing and then the stability analysis is straightforward. However, in real

time applications with fast dynamics solving the optimization problem over the infinite

time is computationally prohibitive. Therefore, with RHC the infinite horizon is reduced
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to a finite time called the prediction horizon, T and hence the cost function is presented as
follows:

t+T

Jr (x(0, «(/))= J q(x(r)MT))dT + F(x(t + T)) (2-5)

The cost F(x(t + T)) is called the final cost (or terminal cost) which is used to

compensate for the removed tail of the infinite cost function (2.4) in order to provide the
stability.

Definition 2.1: the set X/ ={xel" \F{x)<p,p>o} is called the terminal set and
Xy c X . ? is chosen so that there exist a feedback controller U=Kx called terminal
controller under which X/ is positively invariant set for/ i.e., for all trajectories starting

in X/ the remaining trajectory stay in X/ forever when the terminal controller u=Kx is
applied.

Lemma 2.1: if ?(x(r), «(r)) =|?*(*")??? +11 u(t)\\r and F(x)=\\x\\2p=xPx, then? is
the unique, positive definite and symmetric solution of the following Lyapunov equation:

ap+p2=-q (2·6)
where A = A + BK + al , Q = Q + KRK , 1 is the identity matrix, also ael satisfies:

0 < a < -/I1113x (A + BK) where Amax (A + BK) is the largest eigenvalue of A + BK. Further,

there exists a positively invariant terminal set X/ such that Vx e Xy :

¿(II* HfO ^ ., :||2 (2·7)dr 'Wat?

Proof, see [10].

Lemma 2.1 provides a systematic method for choosing /*.
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The trajectory of control inputs over the prediction horizon computed at time t to be

applied to plant is represented byH,(·) :

ut(-) = {u(s)\se[t,t + T]} (2.8)
The RHC problem $>(tk)is defined at time /¿where tk+\=tk+5 (and Z0=0) as

follows:

Problem 2. 1 : RHC Problem 3>{tk ) :

Min JT(x(tk),u(tk)) (29)

subject to (during / e [?¿ ,/¿ + T] ):

¿(0 = /(*(/), «(O); x(tk) = xactual(tk) (2-10a)

«(OeU; x(0eX (2.10b)

x(tk+T)eXf (2.10c)

where u (·) denotes the optimal input trajectory for time interval It]1Jk +^? ·

Remark 2.2: Constraint (2.10c) is added to guarantee the stability of the RHC

according to [10]; in fact, by the means of the RHC the trajectory of system is driven to a

neighbourhood of the origin and after that the terminal controller -a linear local feedback

controller- stabilizes the system; hence, for the open loop system, control input is as
follows:

\UtAt) xeX

Where, K is the gain of the terminal controller.
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Remark 2.3: in the quasi-infinite RHC the terminal controller is used only in offline

computations to tune terminal matrix penalty P for providing the stability of the RHC;
but in the online computations only the RHC controller scheme is used inside and outside
the terminal set.

To provide a closed loop solution only the first portion of the optimal solution is
applied to the system during a period of time called execution time, d until the next
sampling is available, and again a new optimization problem is solved with the updated
information in each time step.

The following algorithm is used for the online implementation of RHC problem

Algorithm 2. 7: RHC:

1: A=O.

2: while x(tk)*0. //assuming the origin is the target point

3: Measure X(Z4).

4: Solve the RHC problem f{tk ) and generate the control trajectory ut¡¡ (·) .

5: Execute the control action during the time interval [tt ,ti+i].

6: k=k+1.

7: end

Repeating this algorithm yields a closed-loop feedback control law. Algorithm 2.1 is

applicable to only the case of single vehicle. For the case of multiple cooperative vehicles
a centralized or decentralized approach is needed.
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2.1.1.Example: Vortex Coupled Roll Dynamics of Delta Wing Aircraft

In this section, to illustrate the implementation issues of RHC, it is used to control

the roll dynamics of a delta wing aircraft augmenting vortex breakdown location. This
dynamics is relatively difficult to control due to the highly nonlinear dynamics involved a

variety of nonlinear behaviours such as bearing friction, saturations, zero dynamics, time
delay and uncertainty in both model and parameters. The simulations show that RHC
have prominent capabilities such as ability to handle the saturations, flexibility for
trajectory generation and designing feedback control for nonlinear systems.

2.1.1.1. Dynamical Equations

A complete experimental study has been conducted to understand the flow physics
and to obtain a mathematical model for roll dynamics of delta wing aircraft as described

in [106], [107]. The mathematical model is a 4th order nonlinear dynamics formulated as
follows [104]:

X^t) = CX2(O
x2(t) = -cxl(t)-sdx2(t)+x4{t)+x4(t-rd)
¿3(0 = *4(0
X4(O = u(t)l Iw-C¡(xvb{t))q- fc sgn(xA(t))

x (t)=[x ,x ] (2 13)vb vbl vbr v " '

where C1 is the rolling moment coefficient, q is the dynamic air pressure, Iw is the

moment of inertia, u(t) is the control input (torque) [105], fc is the bearing friction

constant, sd is the damping constant, c is a positive constant and rd is the bounded state

delay.
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In the above dynamics, X3 and X4 are the state variables corresponding to the bank

angle (F) and the roll rate respectively. The two first states are used to incorporate the

vortex breakdown location into the roll dynamics. The rolling moment coefficient (C, ) is

a 3rd order polynomial ofvortex breakdown locations [105]:

where xM and x^ represent the vortex breakdown locations for the left and right

vortices, e0,eve2 and e3 are coefficients which are obtained from experimental data by

nonlinear polynomial curve fitting. xM , ?^ and all coefficients are computed as

indicated in [105]. By considering (2.14), dynamical equation (2.12) becomes highly

nonlinear; it is desired to design a feedback control law for this nonlinear dynamics.

2.1.1.2. Flat Outputs

The dimension of the RHC problem can be reduced by means of so-called flat

outputs. It is worth mentioning that the RHC problem can be solved with and without

using the flat outputs; however, using the flat outputs reduces the online computation

effort of optimization problem.

A flat system can be briefly described as follows: the dynamical system (2.1) is

called a flat system if there exist outputs ? [29] such that:

z = g(x,u) (2.15).
and the states and the control signal can be recovered from ? and its derivatives; that is,

(x,u) = h(z,i,-~,z(r)) (2-16)
which means for a system to be flat, it is required that all the system's states and control

inputs can be recovered from a finite number of flat outputs derivatives and without

integration of the flat outputs; the interested reader is referred to [29] for more details.
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If the dimension of ? is smaller than that of? and u, then the optimization problem is

mapped to a lower dimension. In delta wing example, the following flat outputs can be
chosen:

All states and control inputs can be recovered from these outputs and their derivatives as

follows:

JC1(O=Z1(Z)
x2 (0 = z,(0
X3(O = Z2(O (2-18)
^4(O=Z2(O
u(t) = Iw[z2(t)+C,(xit(t))q+fcsgn(z2(t))]

Also the cost function and all constraints have to be converted to flat outputs space then .

one has to solve an optimization problem with only two decision variables instead of five

decision variables which leads to 2.5 times reduction in computation burden.

2.1.1.3. Simulationsfor Stabilizing Roll Control

The cost function (2.5) is selected as the following quadratic form:

q{x{t\u{t)) = xQc+ÙRu (2.19)
F(x(0) = x Px (2-2°)

where P, Q and R are the controller gains and have to be adjusted such that firstly they

are positive definite for a unique global minimum point of cost function and secondly

since they define the importance of the term they multiply by, they have to manage the
distribution of error in states, control signal and final constraint on states. Matrix

penalties Q and R are selected as identity matrix and P is obtained by solving the

Lyapunov equation for linearized delta wing model [10]. Polynomial class function has
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been used to parameterize the flat outputs as a function of time; the order of polynomials

is three. A sequential quadratic programming (SQP) [108] method has been used to solve

the optimal control problem. Briefly, SQP method is an optimization method in which a

quadratic cost function is solved by means of any recursive method like the steepest

decent (SD) method.

The saturations in our case are considered to be on bank angle and input as follows:

-90° < f < 90° (2.21)
-15 < u < 15 (2.22)

These inequality constraints will be checked in all break points for all polynomials.

Furthermore, there are four equality constraints:

1- Continuity of polynomial functions in break points;

2- Continuity of 1st derivative in break points;

3- Continuity of 2nd derivative in break points;
4- Initial condition on states

Also, to investigate the robustness of the system against uncertainties, random term

a has been added to the right hand side of nominal system in the simulations; that is:

¿ = /(?,«) + a (2.23)
where -0.2 < a, < 0.2 in radian. The prediction horizon and execution horizon are

respectively set to T=\ sec and d = 0.1 sec. The response of the system to an initial

condition of f = 60° is depicted in Figure 2. 1 ; as seen after about 2 seconds states vanish.

Also, Figure 2.2 shows the history of the control input. As seen, the PvHC controller

can stabilize the roll dynamics properly.
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Figure 2.1: Time history of states due to an initial condition.

time^sec)

Figure 2.2: Control input time history.

2.1.1.4. Tracking Controller Design

In this section, the main purpose is to design a roll tracking controller by means of

RHC. The following cost function has been used for tracking controller synthesis:

q(x(t), i4.ty)=(x-xcmd)ax-Xcmd)+uRu (2·24)

F(x(t)) = (x-xcmd)P(x-xcmd) (2.25)

where ? is the command input, in our case this is set as a sinusoidal function. Figureand

2.3 shows the time history of bank angle and the command trajectory. It shows that RHC

controller perfectly follows the command trajectory.
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Figure 2.3: Actual and command bank angle time history.
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Figure 2.4: Actual and command roll rate time history.
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Figure 2.5: Roll rate error time history.

Also, in Figure 2.4, the actual and command trajectories of the roll rate have been

depicted; it can be seen that contrary to initial mismatch between command and actual
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roll rate, it follows the command roll rate properly. Figure 2.5 shows the error in roll rate.

Further, Figure 2.6 shows the time history of input signal, comparing this control signal

with control signals provided by other control methods [104], one can conclude that the

control action generated by RHC is much smoother and without sharp oscillations which

makes it possible to apply the control signal in real world applications.
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Figure 2.6: Control input time history

Together simulation results show that the RHC is capable of controlling the

nonlinear dynamics of highly nonlinear, constrained and uncertain dynamics in both

stabilizing and tracking cases. A Pentium IV computer with 2.5 GHz CPU with Matlab

software is used to perform this simulation. It is seen that the overall computation time is

reasonable and using faster optimization algorithms and programming languages such as

C++, it is possible to apply the RHC method to real-time applications.

2.2. Cooperative Control

Consider a team of Nv cooperative vehicles with uncoupled dynamics. Each vehicle

in the team is equipped with three main components: 1) measurement sensors, 2)

communication device, and 3) computation resource. The measurement sensors of each

vehicle measure its own states (it is assumed that the states are either measurable or
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observable). The communication device is used to gather the information from the

neighbouring vehicles and communicate with human operators. Using the computation
resource, each vehicle solves a decentralized optimization problem at each sampling time

based on its current measured states (from sensors) and the predicted plans of its

neighbouring vehicles (provided through communication). Moreover, each vehicle has a
dynamic model of its neighbouring vehicles available to calculate the neighbour's
trajectory based on communicated neighbour's plans when required. It is also assumed
that there are no sensor errors, actuator errors, model uncertainty, or communication

noise. These assumptions allow one to focus on the core issue of the problem

(communication delay); however, the proposed approaches in this thesis can be extended
to the cases above by suitably modifying the proposed algorithms to account for these
non-ideal effects.

In the cooperative control, one deals with a team of vehicles instead of one vehicle;
then the interaction between vehicles must be considered. As some examples of such

interactions one can point to the physical interactions such as collision avoidance,

formation keeping and communication interaction.

2.2.1. Interaction Modelling

The interaction between cooperative vehicles is usually represented by an

"interaction graph" which is described by two basic elements: nodes and arcs, where the
nodes represent the subsystems/vehicles and an arc between two nodes denotes the

existence of interaction between the two subsystems; the interaction graph is denoted by

G(/) and represented as follows [1, 136]:

G(O = {V,E(/)} (2.26)
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where V is the set of nodes (vehicles) and E(/) ç Vx V is the set of arcs (/' , J) at time /,

with y'eV . This interaction graph enables one to represent all configurations of the

subsystems.

Considering a set of Nv vehicles cooperating to perform a common mission, the /'

vehicle in the team is associated with the i4h node of the graph. If an arc (/, J) connecting

the z'th and/h node is present in E , it means the z'th and/h vehicles have an interaction; this
relation is termed as neighbourhood for /' and/ vehicles.

In this thesis the main interactions arise from control structure and information

exchange structure. In general it is assumed that the interaction graphs of these two

interactions coincide unless otherwise is indicated. It means the vehicles will

communicate if they are coupled in the cost function or constraints. It is usually assumed

that the information exchange has a particular structure and is set by human operator

prior to the mission. The "interaction graph" can be direct (unidirectional) or indirect

(bidirectional).

2.2.1.1. Indirect Communication Graph Topology

The indirect communication graph is suitable to present a mutual relationship among

vehicles, i.e., (/, j) e E implies (j, i) e E even though it does not appear inE . The indirect

communication graph topology is used when the inter-vehicle communication has a

bidirectional nature. Let N' denotes the number of neighbours of vehicle ./' when an

indirect communication topology is used.
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2.2.1. 2. Direct Communication Graph Topology

Some extensions should be performed to the indirect graph topology to distinguish

between leader and follower. Still if an arc (/, y) connecting the ith node to the/ node is
present, it means that the /,b vehicle has a coupling term containing they vehicle's states
in its cost function and/or in its constraint (interaction), and hence communicate withy"

vehicle. This relationship is termed as neighbourhood for the * andj* vehicles and it is
said that:

/th andyth vehicles are neighbouring vehicles and
7th vehicle is thefollower of they* vehicle and

- y'th vehicle is the leader of the t vehicle.
The main distinction between indirect and direct graph topology is that with the

direct interaction graph, (iJ)eE does not imply necessarily (;,;)eE unless it appears

explicitly in E . Also, with the direct interaction graph any vehicle /" can be both leader
and follower to neighbouring vehicle j. Further, any vehicle /' can be leader to
neighbouring vehicley anafollower to another vehicle. Using this flexible graph topology

allows representing all types of interactions among subsystems. Also, let N\ and

N' denote the number of the leaders and followers of vehicle /' respectively. This

representation does not conflict with indirect graph formulation; it is a general form of

indirect graph topology. The direct graph topology allows formulating the leader-

follower formation problems.

2.2.2. DRHC Terminology

The notation presented in this section is the key issue to understand the analysis

presented in this thesis. The possible state vectors are introduced as follows:
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- ?' (/) : the actual state vector of the /th vehicle at time /.

- xi,j{t) : the state vector of the Ith vehicle at time t, predicted (estimated) by they'

vehicle at time step h ¦

Then, the state of vehicle / predicted by itself at time tk is represented by x1^1 (/) . Further,

the sequence of these states over the prediction horizon (during [tk,tk +T]) is called the

state trajectory of vehicle i calculated by itself and is represented by x'{'1 (·) which is

defined by default on the interval [tk , tk + T] :

<0 = {<(OUe[/A,/A+7l}
«;;*(->={«;;'co |íet/jfc,/jfc+7*i

(2.27)

However, if the trajectory is defined on an interval which is different from [t^Jk +^3 ^y

other vehicles, then the beginning and end time are indicated as: ? (tf, : te) , i.e.,'k

¿t'Htb ¦ *e) = \xt'J « I ' e VbJeI J e V> V'J) e Elh ( k > (2.28)
«ïkJ(tb--te) = {uïkJ«)\te[tb,te], JeY, (/,? e E}

where [îb, te] is the interval on which the trajectory is defined. This notation is used in

Chapter 4 where the missing trajectory of faulty vehicle is estimated by neighbours.

Then let the following represent the concatenated state and input trajectories of the

neighbours of the /th vehicle at timeik :

x7'(-) = \x]'J(-)\JeY, (/j)eE'k l A

u-i(.)JuJ>J\.)\jeY, (U)eIE
k ' (2.29)
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The following summarizes the notation presented in this section:

owner, calculator , >X , , ¦ ¦ (t., t ) (2.30)calculation time v b ' e ' '

where the parameter ?: belong to the first superscript (owner); the 2° superscript

(calculator) calculates that parameter at time mentioned in subscript (calculation time).

/¿and ie are the start and final time of the trajectory. For example, xlt'J(tb :te)\s the

state trajectory of vehicle /' over the time interval [tb, te] which is computed by vehicle,/

at time '¿ .

2.2.3. Delay-Free (Fault-Free1) DRHC Formulation
In some previous work [1, 161] a DRHC scheme is used where the vehicles need to

exchange only their instant states and each vehicle predicts the trajectory of neighbouring

vehicles to have an estimate of their future plan, the main disadvantage ofthat method is

its high computation time and thus it is not suitable for very fast dynamics. However, for

the scheme presented in this thesis the predicted trajectories are exchanged instead of

being estimated thereby reducing the online computation time. Figure 2.7 shows the

inter-vehicle communication between two neighbouring vehicles at time tk for the delay-

free condition. As seen the information exchange is not subject to communication delay.

*;;»
yt^ï>\

'k

Figure 2.7: The inter-vehicle communication between two neighbours in the delay-free condition

1 Since in this thesis in the fault-free conditions a delay-free DRHC scheme is used, both delay-free and fault-free terms refer to the
same architecture. And so do the terms delayed-DRHC and fault tolerant DRHC.
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However, due to computation delay at least a one-step delay should be considered as

the computed trajectories are not available instantly; then the information set of the t
vehicle for the case of delay-free DRHC is introduced as follows:

G'"^) = !*'"^), *;*_,(¦)} (2-31)
where set T'(tk) contains the updated information available to the /' vehicle at

time/A and is referred to the information set in this thesis. This collects 1) the instant state

vector of z'th vehicle and 2) the concatenated state trajectory of neighbours calculated at

the previous time step ( ? ' (¦) ).
'k-\

For the particular case of formation control, the delay-free decentralized cost

function for the /th vehicle in the team at timeí¿ is defined as follows:

h+Tf
J'{Tl{tk))= J ¡xl/(t)-xc''\\ +«,¡''(i)

2^
Wf + xityk+T)-x C1I

tk+T
(2.32)

+ S I
y|(U)eE tk

x>'(t)-x 'J(t)-r
1 1, « h

J>J(t\-r''J dt

where |jc|L =x'Qx and P, Q, and R are positive definite and symmetric matrices, S is

positive semi-definite symmetric matrix, xc,ì is the state vector of target of vehicle / , and

rl'J is the vector of desired relative position between agents /' andy.

Remark 2.4: The cost xl'l{t)-xJ,'J{t)-rl'J is called the coupling or cooperation

cost. This cost with positive semi-definite matrix penalty S allows incorporating the

desired states with a desired degree of importance in the cooperation cost. In other

literatures such as the work by Keviczky et al. [1], it is simply assumed that S=Q; but
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practical and simulation trials suggest that different S and Q facilitates tuning the

controller and providing a balance between global and local objectives as S represents the

penalty for local cooperation objectives and Q represents the penalty for global objectives
in the cost function.

2.2.4. Delay-Free DRHC Problem

Assume the dynamics of the homogeneous vehicles is represented by (2.1). Then, the

delay-free decentralized receding horizon (DRHC) problem ¡P'(tk) is then defined for

the /th vehicle at time tk as follows:

Problem 2.2: Delay-Free DRHC Problem f'(tk) (i e V ):

Min J''(T''(í.)) (2.33)
{??(·?(-)}

Subject to (for t e [t k,t k + T] ):

(2.34a)k k k

k

x1/ (OeX '',Mp(OeU''; (2.34b)'k 'k

??{?k+T)^Xif (2.34c)
where X' , V' and X'y denote the set of admissible states, inputs and final set (terminal

region), respectively, for the z* vehicle.
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2.2.5. Delay-Free DRHC Algorithm

The following algorithm is presented for the on-line implementation of the delay-free

DRHC problem Pl(tk) . The algorithm is formulated for the /* vehicle as follows:
Algorithm 2.2: Delay-Free DRHC (online)

1: Let A=Q measure ;c'(/¿)andGOTOstep3.

2: Receive the trajectory x{,J (·) from neighbours j (where (/,_/) e E ), measure x' (tk) and

update the information set G' (r¿ ) from Eq. (2.31).

3: Solve &l(tk) and generate the control action u1'1 (·) and the state trajectory x't'1 (·) .
ft ft

4: Send the trajectory x1'1 (¦) to the neighbouring vehicles.

5: Execute the control action for the individual vehicle /during [tk , tk+\ ] :

"'"(O = ^(O; 'E[Z^+1] (2.35)
6: *=A:+7.GOTOstep2.

Algorithm 2.2 is repeated until the assigned targets are reached. The targets are

assumed to be known and assigned to each agent apriori by a task assignment algorithm.

Algorithm 2.2 is a relevant algorithm for DRHC implementation and is used

extensively in other literatures [42, 109] with some small changes.

2.2.6. Example: Formation Control of Unmanned Vehicles

A leaderless formation of a fleet of 6 unmanned vehicles with the following 3DOF

dynamics is considered [HO]:
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Xj — X2
JC? = -Ii +Mi
x-x (2·36)X 3 — -*4
?4 = -?4 +u2

where ? = [?, ?, y, y] and K = [U15M2] are the state and input vectors respectively, also, ?
and y are the components of position vector. The inputs are saturated at: 0<w, <10 and

0<w2<10 (m/sec2). Further: a/*2 + j2 <10w/sec . These values are used for the
modeling of all team members.

For the simulations CORA (Control Optimization and Resource Allocation) library

developed in CIS (Control and Information Systems) laboratory of Concordia University
is used. CORA is an object oriented library based on the Microsoft C++ environment and

uses the SNOPT optimization package [112] to solve the RHC and other optimization

problems. Also, for generating the trajectories CORA uses the B-Spline type of basis
functions. One of the main functions added to CORA by user for formation problems is

Set_Formation() that gets executed before starting any optimization to calculate the
geometry of formation and defining the graph topology. In this function all vehicles are

assigned manually to one specific node of a formation, such as triangular formation, and
during the mission the vehicles are supposed to participate in formation cohesion. The

formation in this chapter is leaderless, i.e., at any time each vehicle aligns itself with

neighbouring vehicles; in the other word, each vehicle assumes itself as the follower of

all its neighbours. The indirect communication graph topology is selected as follows:

¥ = {1,2,3,4,5,6} (237)
E = {(1,2),(2,3),(2,4),(4,5),(6,3)}
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The following section describes the formation geometry calculation used in

Set_FormationO-

2.2.6.1. Formation Geometry

Assume vehicle F (Follower) tries to align itself with its neighbour L (Leader):

Figure 2.8: Geometry of formation for each pair of vehicles: Follower (F), Leader (L).

For the formation it is required that at any time the angle between the velocity vector

and relative position vector ( 6> ) remain constant to a predefined value, and velocity

vector ofFollower be the same as Leader, then:

uF =uL

Vp =VL

Xp = ? ? -dcos(y)
y F =yL~dsin(r)

where, u and ? are the component of velocity vector and:

? = ??+?2

?? = atan(^-)
U1

(2.38)

(2.39)
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where 0 is the desired angle between the velocity vector of vehicle L and relative

position vector and to be defined by user, the formation is kept by regulating this angle. If

? = 60° then an equilateral triangle formation is resulted. Other formulations for

formation along with the stability discussions are carried out by Dunbar et al. [145], Gu

et al [147] and Wesselowski et al [146].
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Figure 2.9: Triangular formation of a fleet of 6 unmanned rotorcrafts.

A triangular formation of a fleet of 6 vehicles and the corresponding relative

distances are shown in Figure 2.9 where the initial positions of vehicles are perturbed. It
is seen that the distances are stabilized to the desired value.

2.3. Problem Statement: Communication Failure

Recent research in the field of cooperative vehicle systems has increasingly

considered practical implementation issues in addition to the theoretical issues. Issues

such as communication requirements, and model uncertainties have thus received

significant attention, see for example: [132, 136, 150, 153-156, and 158]. In this thesis,
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the decentralized receding horizon control (DRHC) of multiple cooperative vehicles

where the inter-vehicle communication is subject to delay is considered. The

neighbouring vehicles exchange their predicted trajectory at each sample time to maintain
the cooperation objectives. Such large communication delays can lead to poor

performance and even instability. The communication delay can result from two main
sources: 1) the communication failure and 2) limited communication bandwidth of

communication channel.

Some examples of communication failures leading to large communication delays

for the team of cooperative vehicles can be found in [128, 132, and 133]. In [128], the

wireless communication packet loss/delay is considered. Also, in [132], the

communication failure in the formation flight of multiple UAVs leads to break in the

communicated messages that force the fleet to redefine the communication graph.

It is assumed that in the fault-free condition, the vehicles communicate with each

other through a high performance communication channel. Then, the high performance

communication devices (transmitter-receiver), installed on each vehicle, enable vehicles

to communicate through the high performance channel with neighbouring vehicles with a

very small delay, typically smaller than the sampling time. Then the communication

failure involves the failure of the high performance communication device and hence the

faulty condition is defined as follows:

Faulty Condition: The high performance communication device installed on one

vehicle fails, which does not allow this vehicle to send/receive the information to/from the

neighbouring vehicles; the vehicle whose communication device fails is called the faulty
vehicle.
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The rest of the thesis will answer the questions regarding the detection of such

failures and designing new controllers which are capable of handling such failure while

still maintain cooperation among vehicles and the safety of the fleet in faulty condition is

provided.

Limited communication bandwidth can also give rise to communication delay and

lead to poor performance and instability; then, an appropriate communication bandwidth
allocation algorithm is required which allows each vehicle to distribute the available

communication bandwidth to its neighbouring vehicles so that the overall teaming

performance is optimized.

2.3.1. Hierarchical Fault Diagnosis and Fault Tolerant Algorithm

Since, the fault detection, fault tolerant controller and team safety need different

computation and communication requirements a hierarchical approach is used for
managing the fleet in the faulty conditions. The proposed hierarchy has two main layers:

1) Higher layer which accounts for coordination among neighbouring vehicles for

fault diagnosis.

2) Lower layer which accounts for control of local vehicles. This layer includes fault

tolerant delayed DRHC and collision avoidance algorithm. The lower layer also uses the

decision of the higher level to adjust the control action.
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Figure 2.10: Hierarchy of the fault handling scheme and the corresponding communication requirement for
each layer.

Each layer needs different communication, information flow and computation
requirements. A sketch of the hierarchy is shown in Figure 2.10. The fault diagnosis
algorithm needs more cooperation among the vehicles and is placed in the higher layer of
the hierarchy. The fault tolerant controller deals with the local control actions and hence

is placed in the lower layer. Also, the safety scheme is placed in the lower layer of the
hierarchy due to its close relation with the fault tolerant controller. The information flow
and communication requirements are also shown (and described throughout the thesis);
the dashed arrows show the inter-vehicle communication.

2.4. Summary

In this Chapter first the quasi-infinite RHC architecture is formulated and applied to

a complex nonlinear dynamics in order to demonstrate the implementation issues of RHC
and also illustrate the capabilities of RHC to handle the highly nonlinear and constrained

49

INTER-VEHICLE
COMMUNICATION

"Health^ signal.

XJiJ- (·)

? VUihnriiv:

( Leader J

*£ÜL_L I Follower)



dynamics. Then, the direct and indirect graph topology is introduced to formulate the

interaction among the cooperative vehicles. Also, a decentralized receding horizon

controller (DRHC) along with the implementation algorithms is formulated. Finally the

main problem of the thesis which is the failure of high performance communication

devices is explained; a hierarchical approach is used in this thesis to handle the

communication failure.
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Chapter 3. Communication Failure Diagnosis
The failure diagnosis algorithm is the main part of any fault tolerant architecture. For

the cooperative decentralized multiple vehicle systems, the decentralized nature of the

problem and the requirement that each vehicle in the group must independently detect the

communication failures result in a challenging diagnosis problem.

A few research works explicitly address the communication failure detection for

multiple vehicles. A very closely related work is presented in [132] where it is desired to

manage the communication failures in formation flight of multiple UAVs; it is assumed

that the communication failure leads to information flow blockage to and from faulty

vehicle. Hence, in [132] to keep all aircrafts informed about all operational members in

the group, an extra broadcasting communication channel is used. If after some specific

time one aircraft has not sent its "alive" signal through the backup communication

channel, that aircraft is considered lost. Whenever an aircraft is lost the formation must

be reconfigured to a predetermined allowable formation, available to all vehicles, and the

vehicles use an appropriate manoeuvre to reconfigure to the new formation. In another

related work [128], two faults for formation flight of UAVs are considered: 1) GPS

sensor failure and 2) wireless communication packet losses. To detect the GPS sensor

failure a state/output observer is used which monitors the behaviour of a UAV. The

output of the observer is compared with the GPS data, and if the difference is larger than

some threshold then a GPS fault is identified. Furthermore, in [128] to detect the
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communication packet loss/delay, the faults are identified by numbering the packets

sequentially and the number of the packet is also transmitted; a mismatch between the

expected packet number and the received packet number implies the occurrence of a

failure (packet loss). Once the packet loss/delay occurs, the previous available trajectory

of the UAV is extrapolated to predict the future reference trajectory.

The failure diagnosis algorithm for each vehicle /eV includes: 1) monitoring and

detecting the faulty situation, 2) identifying the faulty vehicle in the team (whether / € V

is faulty or its neighbours, and what neighbour is faulty).

The proposed diagnosis algorithms in this thesis are based on the notion that

communication can lead to break or large delay in the exchanged messages. Depending

on the communication topology and the devices employed, different algorithms may be

required to diagnose failure and identify the faulty vehicles in the group. Three fault

diagnosis algorithms are developed for cases with communication that is bidirectional,

unidirectional, and employed with separate transmitter and receiver units. For each case,

the necessary conditions are derived for the communication graph topology under which

failure is detectable. Using probability analysis the reliability of the proposed algorithms

is also investigated.

3.1. Communication system

Figure 3.1 shows a general schematic of a communication system. Every

communication system has three main units [129]: transmitter (TX), receiver (RX) and

communication channel. Transmitter is a device, installed on the source vehicle, which

converts the messages to the suitable signals such as electrical or electromagnetic signals;
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also, using an antenna the transmitter propagates this signal through the communication

channel. A receiver device has an operation inverse to the operation of the transmitter

[129]; the receiver is installed on the destination vehicle; radio and telephone are two

examples of receivers. A channel is a medium used to carry the information from

transmitter to receiver [129]; it can be a wire, a band of frequencies, light or whatever

that can carry the signals.

Source Devlin Mimi

j iw Nr-^=1HIr[-«iiwiilkt y% . Cliarmet > Kiccrvcr '

Figure 3.1: Schematic of communication system

In this thesis it is assumed that each vehicle in the team receives/sends the

information to/from neighbours. Hence, each vehicle needs both transmitter and receiver

units. The communication system may have both these parties together in one unit similar

to duplex communication systems, or two separate devices may be used for TX and RX.

In this chapter both cases are addressed.

More precisely, the communication failure in this thesis is referred to the situations

where the transmitter-receiver devices do not work due to any reason. If they are

embedded in one single unit then the failure of each one implies the failure of both. The

neighbouring vehicles cooperate to detect such failures.

3.2. Failure Detection Scheme

To monitor the status of the communication devices a "Healthy" signal is introduced

which is communicated between each pair of neighbouring vehicles at each time step.
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The "Healthy" signal does not impose considerable communication load but allows

providing more coordination among vehicles for communication failure detection. Also,

the terms small communication delays ts and large communication delays tl are

defined; let d denotes the sampling time then ts < d and tl > d . The sampling time is

chosen as the threshold between the small and large communication delays as most of the

decentralized control schemes for cooperative multiple vehicles require the information

from neighbouring vehicles before any sampling time. It means if the communicated

messages are subject to large delays a communication failure is concluded from the

control perspective and a reconfigurable fault tolerant controller which relies on the

delayed information should be employed. This is the reason why in this thesis the small

communication delays are considered as the delay-free cases.

In the fault-free situation, at each time step every vehicle in the team receives/sends

the "Healthy" signal from/to their neighbours without delay (or a small delay as less than

sampling time or any other thresholds). Figure 3.2 shows the inter-vehicle

communication between two neighbouring vehicles and the information exchanged at

time t for the fault-free (delay-free) condition. As seen the exchanged messages are not

subject to delay.

_______ "Healthy" Signal

( 'w"lt< ) (¦' Aerei» " ) " '
"Healthy" Signal ¦ ¦

Figure 3.2: The inter-vehicle communications between two neighbours in fault-free condition

The proposed communication failure scheme is based on the fact that the

communication failure results in break/delay in the communicated messages and hence if

the communication delay of received messages is larger than sampling time, which is the
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limit between small communication delays and large communication delays, the

occurrence of communication failure is concluded (See Figure 3.3 and compare with

Figure 3.2). Both faulty vehicle and its neighbours can use this sign to detect the failure.

However, depending on the type of communication topology this idea needs to be

expanded to find which vehicle is faulty in the team.

_"//eâ/fAj/JSignal _

M - 1 delay r¿ L TçalthyZ Sig,al_^sí^
delay t , L ^. . .,„

Figure 3.3: The inter-vehicle communication between faulty vehicle i and healthy neighbourj.

3.2.1. Failure Detection with Indirect Communication Graph Topology

When the communication topology is indirect the vehicles are forced to maintain a

bidirectional communication structure.

Assume at some time the vehicle /eV does not hear from its neighbours. The

question is: how vehicle / determines whether the break in the messages is due to failure

in its own communication device or that of its neighbours. The approach presented here

to answer this question requires that each vehicle in the group to have at least two

neighbours, i.e., N'„ > 2 ; i e V and works based on the following rules:

1- If vehicle i hears from all neighbours (N'„ >2 ) then it concludes that neither its

communication device nor those ofneighbours isfaulty.

2- If vehicle i does not hear after a certain time (tl > S) from all its neighbours it

concludes that its communication device is faulty and does not allow it to

communicate with neighbours.
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3- Accordingly, once the vehicle i hears from at least one neighbour without delay it

concludes that its communication device is not faulty, and the communication

device of its neighbour(s) is faulty which does not allow vehicle i to hearfrom that

(them).

In this way the failure is detected and the faulty vehicle is identified by all

neighbours. This fault detection algorithm is summarized in Figure 3.4.

Start

?Í No Failure I
Does vehicle /receive Yesinformation from all neighbors

without delay?

/High \f performance \
No

communtcafion
device ??oes vehicle /receive

Yes pi vehicle /is notinformation from at least
faulty but that ofone neighbor without
at least one of
nenhborsis

faulty.''';·^ '.]No

Figure 3.4: Fault detection algorithm for vehicle / with indirect communication topology

3.2.2. Failure Detection with Direct Communication Graph Topology

The main difference between the indirect and direct communication topology is that

with the direct graph topology the communication flow may not be necessarily

bidirectional between two neighbouring vehicles; this implies there may exist some team

members which do not receive any information from neighbours as they are only leaders.

On the other hand, the proposed fault detection algorithm presented in Section 3.2.1 for

indirect graph topology requires that each vehicle in the team receives the information

from at least two team members. Thus, the algorithm in Section 3.2.1 fails for the case of
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direct communication graph where there may exist some vehicles which are only leader

and do not receive information from other team members. Thus the condition

N'„ > 2 ; i e V for indirect graph is changed to N\>2 ; / e V for direct graph. The rest of

the job follows the same idea and rules as Section 3.2.1 for indirect graph. This fault

detection algorithm is summarized in Figure 3.6.

In the fault-free condition all the followers receive the "Healthy " signal from then-

leaders with no delay (or a small delay as less than sampling time). If the communication

delay of received "Healthy" signal is larger than sampling time (execution horizon),

which is the limit between small communication delays and large communication delays,

the occurrence of communication failure is concluded (See Figure 3.5 and compare with

Figure 3.2).

ß? delay

//ea/My Signal
Healfiiy? Signaldelay t

Figure 3.5. The inter-vehicle communication between faulty (agent /) and healthy (agents ? andy) vehicles
using direct communication topology.

3.2.3. Separate Receiver (RX) and Transmitter (TX) Devices

So far, it is assumed that the transmission and receiving the information is performed

through the same unit for each vehicle and the communication unit failure implies the

failure of both transmitter and receiver. However, if the communication unit has separate

57



receiver (RX) and transmitter (TX) devices [129] (or channels) then the failure may

happen to only one of them; this case needs more complex fault detection algorithms.

For instance, if the TX of one vehicle is faulty and the RX is healthy then the faulty

vehicle can receive the information from neighbours but it is not able to send the

information to neighbours; in this situation the faulty vehicle does not know whether the

neighbouring vehicles can receive the information or not if the presented algorithms of

previous sections are used. Then a suitable algorithm is required to monitor and detect the

failure in RX and TX separately.

Start

)oes vehicle/ receive t
No FailureHealthy signal from all its

A-QommunicatiorXJ device of vehicle /\
is notfaulty. ·', l

1- CommunicationNo
device of vertiefe a

2 Communication
Ye device of me feaderHealthV signal from at

which vertice (least one leader without
does not hear fromdelay? V is faulty yNo

Figure 3.6. Fault detection algorithm for vehicle / with direct communication topology

3.2.3.1. RX Fault Detection

If the RX of one vehicle is faulty then depending on whether the communication

topology is direct or indirect any of the algorithms presented in Sections 3.2.1 and 3.2.2

can be used to detect this failure. In this case, the "Healthy" signal is used to detect the

possible failures in RX.
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Figure 3.7. The inter-vehicle communication between faulty (agent ;') and healthy (agents/; and/) vehicles
when the transmitter TX and receiver RX communication devices are separate.
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Figure 3.8. TX fault detection algorithm for vehicle ;" with direct or indirect communication topology

3.2.3.2. TXFault Detection

To detect the failure an "Acknowledgment1 signal is considered which imposes the

neighbouring vehicles to acknowledge the receipt of the "Healthy' signal, see Figure 3.7.
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Any vehicle j e V receiving the "Healthy" signal from neighbour / € V will acknowledge

the receipt of the "Healthy" to the sender / e V by sending the "Acknov/ledgmenf signal.

If any vehicle i e V does not receive the "Acknowledgement" signal after two sampling

time from at least one of its neighbours, then a failure in TX is concluded. Also, it is

required that N'f > 2 ; / e V . This way each vehicle can detect the possible failures in its

TX. Figure 3.8 shows the algorithm for detecting the TX failure.

3.3. Reliability against Simultaneous Failures

The presented fault detection algorithms in this chapter for the communication

failure may fail if simultaneous failure happens and the communication graph topology is

not well-connected. The reliability of the proposed algorithms is investigated through

probability analysis. The proposed fault detection algorithms of Sections 3.2.1 and 3.2.2

work properly if the communication device of at least one neighbour is healthy. The first

question is: is it possible that the communication devices of all neighbours of vehicle i

fail simultaneously which leads to false positive failure conclusion for vehicle / about its

communication device? The answer is yes; if the probability of failure for one

communication device is p, the probability for simultaneous failure of communication

device of all neighbours for indirect communication topology is calculated as follows:

Probability ofSimultaneous Failures = pN" (3.1)
Then the reliability is:

Reliability = I- ?"» (3.2)
and likewise for direct communication topology:
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Reliability= 1- PN' (3.3)
For the case where TX and RX are separate, since the TX fault detection is based on

sending the "Healthy" signal and receiving the confirmation through the

"Acknowledgment signal then the Byzantine fault [130, 131] may occur. The Byzantine

fault is first referenced in a network of computers where the receipt of any message to

any destination computer is confirmed through sending back a confirmation signal.

However, the confirmation signal needs another confirmation signal from the recipient.

This leads to an inconclusive sequence of events and is referred to as the Byzantine fault

and for distributed networked a Byzantine fault tolerance algorithm may be required

[131]. Then the reliability of TX fault detection against Byzantine fault is calculated as
follows:

Reliability= 1- N'i Nf? ? +p J (3.4)

The reliability decreases dramatically as the number of neighbours increases. For

example if the probability of failure of one vehicle's communication device is

/?=10%=0.1 and vehicle / has N'n = 2 neighbours, then the probability for simultaneous

failure of communication devices of both neighbours of vehicle /' is 0.1 =0.01 and the

reliability of algorithm is: 1.0-0.01 = 0.99 or 99%. This suggests that for a more reliable

fault detection algorithm more vehicles should communicate and exchange the "Healthy"

ana "Acknowledgment" signals; in fact, more cooperation leads to more reliability and the

desired reliability of the algorithms can be achieved by appropriate setting the

communication graph topology.
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3.4. Summary

In this chapter three algorithms are presented to detect the communication failure

and the faulty vehicle in the team for the case of direct communication graph, indirect

communication graph and cases where there exist separate devices for receiving and

transmitting the information. The proposed algorithms require that each vehicle in the

team exchange the information with at least two other neighbours.

The reliability of the proposed algorithms is also discussed. A formula is suggested

for calculating the reliability for each algorithm. It is concluded that more reliability

against the simultaneous failures can be achieved by strongly connecting the

communication graph topology.

Since the strong connection of the communication graph topology is only required

for fault detection purpose, it suggest that using two different communication graph

topologies for failure detection in higher-layer of hierarchy of Figure 2.10 and fault

tolerant controller in lower-layer of that hierarchy can optimize the communication load

over the network. Therefore, a hierarchical approach for the fault detection algorithm and

the fault tolerant controller is preferred.
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Chapter 4. Fault Tolerant Controller

Once the failure is detected and the faulty vehicle is identified in the team a suitable

fault tolerant scheme is required to address the communication failure. In Section 2.3 it is

mentioned that all the vehicles have access to a high performance communication

channel, and that the faulty condition involves the failure of the high performance

communication devices by which the communication through the high performance

communication channel is possible. If no line of communication exists between the faulty

vehicle and its neighbours, then there would be no remedy except forcing the faulty

vehicle to leave the group, because in a communication based approach the major means

of cooperation is communication; once the communication is broken there will be no

cooperation among the vehicles. Therefore, it is assumed that each vehicle has access to a

"high performance communication channel" and a backup "low performance

communication channel"; both communication channels possess constant communication

bandwidth. In the fault-free condition the high performance communication channel is

used which leads to small communication delays, typically smaller than the sampling

time; once the high communication device becomes faulty the high performance

communication channel can no longer be used, therefore in the faulty conditions the low

performance communication channel is used by suitable backup communication devices

installed on the vehicles; the low performance communication devices can maintain the



communication between faulty vehicle and neighbours; however, the communicated

messages are subject to the large communication delays.

In general, it is assumed that the communication failure leads to large

communication delays due to any reason such as failure in the communication devices

and communication channels, inappropriate weather conditions, high communication

loads, etc. Hence, an appropriate reconfigurable fault tolerant DRHC controller is

required to address such large communication delays, then such controller is called
delayed DRHC or fault tolerant DRHC in this thesis.

In this chapter, it is assumed that the failure applies to both receiver and transmitter

which means any communication failure causes information blockage to and from faulty

vehicle. This is a general case and the formulation for other cases (e.g., TX failure or RX

failure) can be derived from that. Also, the formulation is consistent with both direct and

indirect communication topologies.

4.1. Fault Tolerant DRHC

In the faulty condition, all the vehicles involving in the failure (the faulty vehicle and

those which have a faulty neighbour) will construct the set of faulty neighbours, which is

denoted by Y'F , the set of faulty neighbours of vehicle /'. The vehicles which have a faulty

neighbour assign the faulty neighbour to this set, and the faulty vehicle assigns all of its

neighbours to this set, even though they are not faulty, because the faulty vehicle receives

the information from healthy neighbours with a large delay.

Since in the faulty conditions the vehicles receive the faulty neighbour's trajectory

with a delay, for the tail of the cost function there is no trajectory of neighbours to set the
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formation. More precisely, if it is assumed that at time tk the vehicle /' receives the

information from neighbour j with time-delay r , then the trajectory of neighbour j is

available to vehicle /', only for the interval [tk-T,tk+T-r] ; meanwhile, according to the

cost function of Eq. (2.32) vehicle /' needs the trajectory of neighboury during the entire

segment [tk,tk + T] . Hence for the portion [tk+T-r,tk+T] the trajectory of vehicle,/ is not

available due to the delay (see Figure 4.1). If the time delay is small then this lack of

information is not critical, but in presence of the large communication delays, the tail of

cost function during [tk + T-r,tk + T] becomes large and as shown in the example section

it can lead to poor performance and even instability (see also [135, 136]). One remedy to

this problem is proposed here by estimating the tail of the cost function via including
extra decision variables in the cost function.

Vehicle i
, ... . Pt

______________j Faulty Neighbor Tail of cog¡| function (?)
? i ? 1 1 »
? tk-T tk h'T+T lk+T

Figure 4.1: The tail of the cost function in the presence of communication delay

Although recently there has been a significant interest to study the communication

delay in the networks of systems [137-144], a relatively small amount of existing work

has investigated the communication delay in the DRHC framework. Few research works

have proposed a systematic estimation process for the tail of the trajectories during

[tk +T -T,tk+T] to compensate for large communication delays. For instance, in [121,

122, and 123], which address quite the same problem, no prediction or estimation for the

65



trajectory of neighbouring vehicles is performed and it is assumed that the neighbouring

vehicles remain at the last delayed states broadcasted by them. Such assumptions may

yield poor performance for large communication delays since the constant state vector is

not a good estimation of a trajectory of states in general. Similar issues are also

investigated in [124] where for the hardware implementation of a robust decentralized

model predictive control (DMPC) to wheeled robots, both computation and

communication delays are considered. To account explicitly for the time delays a model

of the neighbouring vehicle is used to estimate its state vector when required. The

uncertainty arising from this estimation is taken into account by accommodating that into

the effective disturbance force used for constraint tightening.

The main idea with the proposed fault tolerant DRHC approach in this thesis is that it

estimates the trajectory of the neighbouring vehicles for the tail of the prediction horizon

which would otherwise not be available due to the communication delay. The tail of the

cost function is estimated by adding extra decision variables in the cost function.

Remark 4.1: The proposed fault tolerant algorithms proposed in this thesis can

handle the multiple simultaneous failures (without further extensions); however this case

happens rarely and single failure is the main subject of this thesis.

4.1.1. Delayed Cost Function

It is assumed that in the faulty conditions the communication delay is larger than the

sampling time, i.e., t > d , see Figure 4.2. Further, assume (d - 1)d < t < ?d

where d e N ; hence, in this thesis d resembles the (discrete) communication time delay.

This is used instead of r in most of the cases to provide synchronization between the

communication delay and RHC sampling time (see Figure 4.3).
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Figure 4.2: The inter-vehicle communication between two faulty vehicles
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Figure 4.3: Synchronization of communication delay with RHC timing

As mentioned previously, due to computation delay at least a one-step delay should

be considered as the computed trajectories are not available instantly even if an infinite

communication bandwidth is used; then the following assumption should be made on d:

Assumption 4.1: always d > 1 or d e N1 . Also, delay d is time invariant.

As mentioned, in the faulty conditions the vehicles receive the delayed information

from faulty neighbour and the non-delayed information from the fault-free neighbours;

consequently, the information set is updated according to the following general form

(compare with Eq. (2.31)):

G%> ={*'>*)> *rL(0}' (4-1}
where d=l for healthy neighbours and d>\ for faulty neighbours:

IJ = I (/,y)eE & jtVlF
\d>\ (JJ) e E & jeY'F

(4.2)
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The information set Tl{tk) represents updated information available to the /' vehicle

at time tk . It implies that at time tk each vehicle /" has access to its own delay-free

information and delayed information from neighbours. The later includes the delay—free

(small delay) information of healthy neighbours and the delayed information (large

delay) of its faulty neighbours.

The delay dependent cost function for the faulty conditions (large communication
:th.delay) can now be presented as follows for the / vehicle in the team at time tk :

tk+Tf
x>'(t)-xC, ?

2 2^
U1Mt)h

+
R

dt +
J

h ?
C,l + (4.3a)

S

+ S
J\(ÎJ)eE

'k-d+T
xl;\t)-xJ.'J (t)-r''Jh 'k-d

h+T
dt + J

5 h-d+T
xY(t)-xJ'\t)-rl'J dt

tk+T (

h-d+T ?
xJ/(t)-xh

c,j +

Q

2\

R
tit + xJ>\tk+T)-x1Ie K

CJ

(4.3b)

(4.3c)

where, the subscript "D" stands for Delay. The delay dependent decentralized cost

function J1Jy of each vehicle ; includes two main parts:

1) The first part is associated with the cost of the local vehicle / and therefore uses

the delay-free information. It is used to compute the trajectory of the local vehicle /' over

the time interval [tk,tk+T] (see Eq. (4.3a)).

2) The second part (Eq. (4.3b) and Eq. (4.3c)) is associated with the cost of the

neighbours and then uses the information subject to delay (only one step delay for healthy

and larger delay for faulty vehicles). It is used to compute the cooperation cost over the

time interval [tk,tk + T] (see Eq. (4.3b). For the tail of the cost function during
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[tk_d+T,tk+T] an estimation of the faulty neighbour's trajectory is required; hence, the

cost of Eq. (4.3c) is added to incorporate some decision variables for this portion.

The main distinction between the proposed delay-dependent cost function (4.3) and

the delay-free cost function (2.32) is the inclusion of two terms: the term (4.3c) and the

second term in (4.3b), which together present a systematic way for estimating the tail of

faulty neighbour's trajectory where the information is not available due to

communication delay (see Figure 4.1). In other research [121-124], the tail of the faulty

neighbour's trajectory is estimated by setting «=0 or extrapolating the previous control

input. These ordinary estimations may suffice for small communication delays but it is

shown by simulations that for large communication delays they yield poor performance

and can lead to instability while the estimation by minimizing the proposed cost function

(4.3) is more efficient as it imitates the calculation procedure of the faulty neighbour.

4.1.2. Fault Tolerant Delayed DRHC Problem

The delayed DRHC problem $%(tk) for the faulty conditions is defined below at

time tk for any /h vehicle which involves in the fault (either it is faulty or its neighbour is

faulty). The outputs of this decentralized optimization problem are:

1- The input trajectory of the local vehicle /' over the prediction horizon, i.e., u't'' (¦) ,

2- The state trajectory of the local vehicle i over the prediction horizon, i.e., x't'' (·) ,

3- The estimated tail of faulty neighbour's trajectory which is not available due to

communication delay, i.e., x~' {t k_d + T:t k+T) (see Figure 4.1).
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Problem 4.1: Fault Tolerant Delayed DRHC Problem %{tk) :

Min -^(T1-CJ) (4-4)
{u-/k(-),x't''kax7'(tk_d+T:tk+T)}

subject to:

-forte[tk,tk+T]:

x\y) = /(xlyuiy)); x\yk) = x'"^) (4.5a)
X1S(OeX1 ,M^(OeU'' (4.5b)

-for t e [tk_d + Tjk + T] and (i,j)eE

¿//? = /(*/;«,»;;'(o) ; *iyk_d +d = */^^+r> (4.5c)
1A

x/''"(0 e XJ, uJ/{i) e U-> (4.5d)

(4.5e)
*·' (^+OeX'

x^'(/¿+0eX}; (?, y) e E
In (4.4), J¿>is calculated from (4.3). Constraints (4.5a) and (4.5b) are the same as

(2.34a) and (2.34b) for the delay-free DRHC problem $>\tk) and correspond to the

trajectory for calculating the cost (4.3a). Constraints (4.5c) and (4.5d) correspond to the

cost function (4.3c). Constraint (4.5e) is the terminal constraint and the same as (2.34c)

for^'"(/Ä).

The problem ¡P¿(tk) can be used in the delay-free conditions too; hence it can be

used always by all the vehicles; thus, in ¡P¿ (tk) it is perfectly valid to choose ieV.
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4.1.3. Fault Tolerant Delayed DRHC Algorithm

The following algorithm is presented for the on-line implementation of the delayed

DRHC problem ¡P¿(tk). The algorithm is formulated for the z* vehicle; in fact, all
vehicles run this algorithm during the mission simultaneously:

Algorithm 4.1: Delayed DRHC (online)

1: k <- 0 , and GOTO step 3.

2: Receive xJ'J (¦) from leaders where (/,./') e E .
'k-d

3: Measure x'(tk) and update the information vector of Eq. (4.1).

4: Solve ^¿(tk).
5: Send the state trajectory x't'' (·) to followers where (j, i) e X .

6: Execute the control action for the local vehicle /during^, ^+1].

7: ¿<-¿ + l.Gotostep2.

This algorithm is a modified version of Algorithm 2.2 and handles the large

communication delays for faulty conditions; by choosing d =1 this algorithm reduces to

Algorithm 2.2.

4.2. Simulation Results

The application of the proposed delayed DRHC algorithm to cases where the

subsystems are described by either a linear or nonlinear dynamics is investigated through

simulations.

71



4.2.1. Example 1: Vehicles with LTI Dynamics

In this section, the proposed Algorithm 4.1 is tested on the formation problem of a

fleet of unmanned vehicles with linear dynamics. It is assumed that the communication

graph is indirect and hence a leaderless formation can be handled. The indirect

communication graph topology is set as follows:

Y =^ (4.6)
E = {(1,2), (1,3), (2, 3)}

The dynamics of each subsystem is described by the following 2DOF dynamics:

X1 = X2

*2=~X2+Ml (4.7)
Xt1 — Xq

X4 = -X 4 +"2

where X1 and X2 denote the components of position vector in x-y coordinate and X3 and

X4 are their corresponding velocity components. The input vector is given by « = [WpM2] ·

4.2.1.1. Investigating the Effect ofTail Cost

In the first simulation example, it is desired to examine the effect of the tail cost
added to the cost function. The simulation was run for two cases:

1) Using the cost function without the tail cost. In this case the control input is set to

H=O for the tail of the cost function (4.3c). The extra decision variables for the tail cost

estimation are not included in the optimization Problem 4.1.

2) Using the cost function with the tail cost. In this case the tail of the cost function

(4.3c) is estimated using the extra decision variables in the optimization Problem 4.1.

The matrix penalties in the cost function are chosen as follows:
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Q =

10 0 0

0 10 0
0 0 10

0 0 0 1

R =
1 o

0 1
P =

0.72 0 0 0

0 0.5 0 0
0 0 0.72 0
0 0 0 0.5

S =

2 0 0 0

0 10 0
0 0 2 0
0 0 0 1

(4.8)

Final penalty matrix P is calculated from the Lyapunov equation [10]. The optimization

horizon and the execution horizon are given by T = 3.0 sec and d = 0.1 sec , respectively.

In all cases no disturbances, sensor noise, or model uncertainty are considered in the

simulations in order to focus on the effect of the communication delay.

A triangular leaderless formation of three vehicles is first considered. The vehicles

start around the origin and are asked to follow a moving target initiating at point (25, 25)

and ending at point (45, 0) in xy-plane while moving in triangle formation. The moving

target is used to ensure that the optimization problem updates the trajectories at each timé

step so that the delayed trajectories become different from the updated ones. Figure 4.4

shows the snapshot of the formation for the two mentioned cases. The red-dotted

triangles are the formation for the case 1 (without tail cost) and the green solid triangles,

are the formation for case 2 (with the tail cost). It can be seen easily that the formation

corresponding to the case 2 is more analogous to an equilateral triangle when comparing

with formation corresponding to case 1. To measure the deviation from the desired

equilateral triangle formation, the decentralized formation error is calculated as the

performance index, as follows:

£''(0= S |*,'(')-*;(0->·''·-'(?|| (4.9)

This error is depicted in Figure 4.5 (right); as seen the error corresponding to the case 2 is

much less than the case 1 and this implies the advantage of using the tail cost for

improving the performance.
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Figure 4.4: Snapshot of trajectory for three vehicles in triangular leaderless formations
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Figure 4.5: Distances between each pair of vehicles (left) and formation error (right)
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The simulation was repeated for several cases with different communication delays

and the results are gathered in Figure 4.6 which illustrates the average and maximum of

the formation error (4.9) with each point representing a single simulation. It can be seen

from Figure 4.6 that using the tail of the cost function yields a smaller error and in some

cases it can reduce the error by 1 50%.

It can also enhance the stability of the formation; for this particular example, it is

seen that if the communication delay is increased to around ¿/=30 time steps

(orr = 3.0 sec ), the formation becomes unstable when using the cost function without the

tail cost. However, it is still stable with the proposed cost function including the tail cost.

This result is consistent with that of [145, 147] where a final cost is added to the cost

function for formation stability, although they didn't consider communication delays. The

overall trend of the graphs in Figure 4.6 shows that the error increases with delay. The

small downward fluctuations are probably due to the time delay related nonlinearities and

imperfect numerical optimization.

Without Tail cost

; ^* With Tail Cost

T.sec

? -Without Tail cost
50M*^™WithTailCost

r.sec

Figure 4.6: Percentage of average (left) and maximum (right) error versus communication delay for a
triangle leaderless formulation of three vehicles.
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4.2.2. Example 2: Application to Formation Control of Miniature Hovercrafts

In this section, the new approach is tested on the formation problem of a fleet of

miniature hovercrafts with a nonlinear dynamics. The leader-follower triangular

formation of 6 vehicles is considered. It is assumed that the communication graph is

direct which allows performing a leader-follower formation; the direct communication

graph topology is set as follows:

V = {1,2,3,4,5,6)1 , (4.10)E = { (1, 2), (2, 1), (3, 1), (4, 2), (5, 4), (6, 3)}
The matrix penalties in the cost function are chosen as Q=I, R=I, P=IlI and 5=20/,

where / is the identity matrix. Final penalty matrix P is approximated from the approach

proposed in [10]. The optimization horizon and the execution horizon (sampling time) are

given as T = 2.0 sec andj = 0.2 sec .

4. 2.2.1. Hovercraft Dynamics andModeling

The hovercraft configuration is illustrated in Figure 4.7. The three degree of freedom

(DOF) motion of each hovercraft is controlled using two DC motor propeller actuators

that are computer controlled through wireless radio communication links. The position of

the hovercraft is measured using a 4 camera overhead vision system with a sampling rate

of 26Hz. The velocity and acceleration are estimated from the position values.

The equations for each hovercraft in the body frame (Xb, Yb) are presented by Aguiar,

Cremean, & Hespanha [148] as follows (see Figure 4.7):

M(ù-vr) = C]W +Fr +Fj
M(v + nr) = C2V (4·?)
Jr = c3r + -(Fr - F1)
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Figure 4.7: Miniature hovercraft (left) and schematic model (right).

where u and ? represent the components of forward and side velocity in Xb and Yb

directions, respectively. The variable r represents the yaw rate. The mass is represented

by M and the moment of inertia by J. The parameters c\ and ci represent the coefficients

of viscous friction in the XB and the 7B directions, respectively. The rotational coefficient

of viscous friction is represented by C3. Also, Fr and F¡ are the inputs to the system and

saturated at: -lO<Fr ¿lOand-iOaF, <10 (N).

In order to minimize the number of parameters to be identified in the model, the

equations are arranged as follows:

ù = C]U + vr + a\Fr + «2-^/
? = c^y - ur

f = c3r + a3Fr + Ci4F1 (412)
? = r

? = ucosiy - ? sin ?
y = wsin^ + ? cos ?

where the last three equations give the relationship between (u, v, r ) and the coordinates

in the inertial reference frame (XG,YG) (Figure 4.7). Also, ? denotes the yaw angle, ? and y

are the components of position vector in frame (X01Yg) ¦
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The parameter values for the hovercraft model were identified experimentally using

a vision-based measurement setup and by performing a least-squares curve fit to

experimental data; the results are listed in Table 1 .

Table 4.1: Parameters of hovercraft

aj a2 Ü3 Ü4 Ci C2 Ci

1.40 0.45 14.9 -2.47 -0.25 -0.34 -9.11

These values are used for modeling of all the team members.

4.2.2.2. The effect oftail cost

In the first simulation example, it is desired to examine the effect of the tail cost

added to the cost function. The simulation was run for two cases:

1) Using the cost function without the tail cost. In this case the control input is set to

H=O for the tail of the cost function (4.3c). The extra decision variables for tail

cost estimation are not included in the optimization Problem 4.1.

2) Using the cost function with the tail cost. In this case the tail of the cost function

(4.3c) is estimated using the extra decision variables in the optimization Problem

4.1.

Figure 4.8 shows the trajectory and snapshot of the trajectories for the case where no

fault tolerant algorithm is used.
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Figure 4.8: Trajectory (left) and snapshot (right) of six vehicles in triangular leader-follower formation
when no tolerant algorithm is used.

This simulation was repeated for many cases with different communication delays

and the results are gathered in Figure 4.9 in terms of average and maximum of formation

error of Eq. (4.9). As seen using the tail of the cost function yields a smaller error and in

some cases it can reduce the error by 255%. For this particular example if the

communication delay is increased to around J=IO time step (orr = d- J = 2.0 sec) the

formation becomes unstable when using the cost function without tail cost; however, it is

still stable with the proposed cost function with tail cost. This result is consistent with

that of [145] and [147] where a final cost is added to the cost function for the formation

stability, although they didn't consider the communication delay.

It is also seen in simulations that in faulty conditions although adding the final cost

can lead to more precise estimation and stable formation, the vehicles may still get too

close to each other and collide. For example, in Figure 4.10 the minimum distance

between each pair of neighbouring vehicles for a set of simulations is depicted versus

communication delay. The desired distance between each pair of neighbouring vehicles is
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7.07 m. As seen even for the case 2 where the tail cost estimation is used the vehicles

may get too close to each other.
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Figure 4.9: Average (left) and maximum error (right) versus communication delay.
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Figure 4.10: Minimum distance between vehicles during a communication failure. Left: r=lsec, Right: 7-2
sec.

4.3. Summary

In this chapter a reconfigurable fault tolerant delay dependent DRHC architecture is

proposed. The key feature of the proposed fault tolerant algorithm is that the tail of the

neighbour's trajectory, where the trajectories are not available due to the large
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communication delays, is estimated by adding extra decision variables in the DRHC

problem. Simulations illustrate that the proposed delayed DRHC can reconfigure

effectively in the presence of the communication failures leading to large communication

delays. It is also demonstrated that using a prediction for the tail of the trajectories can

lead to better overall performance and stability.
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Chapter 5. Tube DRHC Approach for Collision

Avoidance

The collision avoidance constraint can not be included in the optimization problem

of DRHC because of its non-convex nature as it can lead to multi-optima. Hence, the

collision avoidance can not be guaranteed with the DRHC framework. Instead, in practice

the desired distance in formation problems should be chosen large enough to ensure the

collision avoidance. However, in the faulty conditions due to the large communication

delays the lack of updated information on the trajectory of neighbours can lead to

collisions if the desired relative distances do not account for the delays. This is the reason

why in some simulations of Chapter 5 in faulty conditions, although adding the tail cost

can lead to more precise estimation and a stable formation, the vehicles may still get too

close to each other and collide, see for example Figure 4.5 (left) and Figure 4.10.

Furthermore, for non-formation problems such as air traffic control [170-172], road

traffic control [173, 174], mobile robots [175, 176] and cooperative UAVs [177, 162], the

classical DRHC is complained about its weakness in handling the non-convex constraints

arising from collision avoidance problem [177, 162].

In this chapter to address the collision avoidance problem, the Tube-DRHC approach

is proposed. Roughly speaking, in this approach, the neighbours of the faulty vehicle

consider a tube shape trajectory set around the trajectory of the faulty vehicle instead of a



line shape trajectory. This will put the faulty vehicle in a safe zone (tube) where the

neighbours of the faulty vehicles are not allowed to enter.

The radius of the tube is a function of the communication time-delay d, and

manoeuvrability (U' ). Then, if a constraint is imposed on the manoeuvrability of the

faulty vehicle, then the reachable set (tube) of the faulty vehicle can be computed by

neighbouring vehicles using the available, albeit delayed, information from faulty

vehicle. The manoeuvrability of faulty vehicle is restricted by imposing an input

constraint in its optimization problem such that at any time instant the computed inputs

do not deviate too far from the previous one.

The concept of the tube MPC (or tube RHC) in existing works [126, 157] is normally

used to calculate a robust bound on the states due to model uncertainty, but in this thesis

the approach is used to calculate bounds on the uncertainties arising from the large

communication delays.

In this chapter, the collision avoidance is addressed for both formation problems and

non-formation scenarios such as air traffic control problems.

5.1. Reachable Set and Tube Formulation

5.1.1. Reachable Set Formulation

The reachable set of vehicle i at time t is formulated as:

Ai(t,xi0,Vi) = {xÍ(t)\xi(s) = f(xÍ(S),uÍ(s)), xi(t0) = xi0,ui eU¡,je[/0,í]¡ (5.1)
Figure 5.1 shows a graphical sketch of the reachable set of 3 neighbouring vehicles at

time t:

83



A^1?
UT

Figure 5.1: The reachable set for three vehicles at some specific time.

It is evident that if the reachable sets of neighbouring vehicles have no intersection

(?!??^p??=0) then no collision will happen at time t.

In general, in this thesis it is assumed that the reachable sets are convex; it is not a

restrictive assumption as even for most of the nonlinear systems a convex reachable set

can be computed, and non-convex reachable sets can be bounded by a convex set.

5.1.2. Tube Formulation

In order to take advantage of the predictive nature of RHC and predict the possible

collisions during the prediction horizon, all. reachable sets should be computed over the

prediction horizon and connected together which results in the tube concept; in fact, tube

is formed by connecting the reachable sets over the prediction horizon. Figure 5.2 shows

how by connecting the reachable sets a tube is formed. From Figure 5.2 it is clear that if

the tube of neighbouring vehicles have intersection (i.e., H!nH-/nI?#0) then a

collision is possible. In general sufficient condition for collision avoidance is that:

H1OH2^lI3O ? H v =0. This tube analysis allows predicting the possible
collisions and hence, changing the plan to avoid the collisions.

84



AHt)

Figure 5.2: The reachable sets of three vehicles over the prediction horizon. The tube is formed by
connecting the reachable set over the prediction horizon.

Definition 5.1: the absolute value of vector is shown by | ¦ | and is defined as follows:

(5-2)

The state vector of each vehicle contains two types of state variables: 1) the states

which involve in physical collision such as position components and are denoted by

vector £ , and 2) The rest of states such as velocity, and are denoted by vector ? ; hence:

? = [?,?] . Tube, in this thesis, is referred to as an extraction of the reachable set which

includes only the position states £ . Figure 5.3 shows the tube H around a nominal

trajectory #(->"0) . Then, the tube H is formulated as follows (see also [152]):

H(tk) = \(t,4)e[tk,tk+T]xRP ?((,?)-?(?,?? )'k <a(t) (5.3)
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where a(t) e R p is the radius of tube at time t; also, ? is the dimension of ? (for a 2-D

motion /7=2). Some methods are presented for calculating this tube for vehicles obeying

linear or nonlinear dynamics.

£(·,«<>>

T

Figure 5.3: A tube around a nominal trajectory.

5.2. Tube Calculation Algorithms

5.2.1. Tube Calculation for LTI Systems

Different methods may be used to approximate the reachable set of dynamical

systems; in this section an LMI based approach is used.

5.2.1.1. LMIApproximation ofReachable Set

Consider the following nominal dynamics of each vehicle:

x = Ax + Bu ; Jc(Z0) = *q (5.4)
Then the following lemma presents a method for approximation of the reachable set of

LTI systems:
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Lemma 5.1: for LTI system (5.4) if:

u'"(0 = w I Jm udì < ß (5.5)

Then the reachable set ?' (i, jc0,U') is bounded by the ellipsoid T centered at X0 :

? = {?\(?-??)?(?-?0)<ß] (5.6)
where Mis symmetric and diagonal solution of the following LMI:

M>0 <0 (5.7)
?'? + ?? MB

BM -I _
Also if (5.4) is controllable then M=WX where if is the controllability Gramian.

Proof, see [169], page 78.

5.2.1.2. Tube around the Delayed Trajectory

The following theorem presents a method for calculating the tube around the delayed

trajectories from neighbours and Lemma 5.1:

Theorem 5.1: Assume at time tk the d step delayed trajectory of neighbour j, i.e.,

xf'J (¦) is available to vehicle /'. If:'k-d

f h/j(0-"/j (0 h/j(0-"/j (0'k-d tk 'k-d
W<ßj{d) ,

lk-d

then the trajectory of vehicley' at time í¿ belongs to the tube around the delayed trajectory

of neighbourj calculated by vehicle / as:

¦ /H(''í)e['* ¦'*-<* +r]! ?{?)-?!'] (0
1 k-d

<aJJ(t) (5.8)
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where:

aJ'l{t) = \ßj{d)^ \ßj{d)^ ^ \ßj{d)mu V m~n ' '\| m, (5.9)
?1 \ "'22 V '"PP

and where M - diag(mlì,m22, mnn) , mu,m22, mnn el is a solution of the LMI

(5.7).

Proof: assume at time tk_d vehicle,/ uses the input trajectory uJ,J (·) which yields'k-d

the state trajectory*/'7 (·) ; then:

. . . *

xJ>J (t) = (p{t,tk_d)xJ{tk_d)+ J f{?, s)Bu¡''J (s)ds ; t e[tk_d,tk_d+T]1 Ir-si * k—d'k-d
'k-d

where f is the state transition matrix. But if vehicle j uses the input trajectory

uj'J (·) + Au -which is assumed by neighbours ofj- then the trajectory is different and'¦k-d

calculated as follows:

h-d
h-d

Then the difference between these two trajectories is:

(5.10)

AxjJ (O = */'7' {t)-xi'j (0= J <p(t,s)BAu ds
'k-d 'k-d k-d

k-d

Considering (5.11) AxJ'J (t) is the solution of the following LTI:
'k-d

(5.11)

Axj =AAxJ + BAuJ ; Axj(tk_d) = 0
Using Lemma 5. 1 and considering:

(5.12)



j AuJ(t) Auj {t)Vlt < ß](d)

then the reachable set of LTI system (5.12) is bounded by the ellipsoid:

T^(O = Ul[Ax/ (O]M[Ax/ {t)]<ßj{d)\ tz[tk_d,tk_d+T] (5.13)'k-d 'k-d

Substituting (5.1 1) into (5.13) yields:

rJ(t) = {x\[xj;J (t)-XJ'j (t)]'M[xj>J (t)-xJ'J {t)]<ßj(d)}'k-d 'k-d 'k-d 'k-d

te[tk_d,tk_d+T]
(5.14)

Using the ellipsoid formula, the radius of the ellipsoid (5.14) for vehicle ye Vin

each direction is calculated as follows:

V =
J RJlßJ ß ßJ

mr
(5.15)

Since the ellipsoid (5.14) over t &[tk_d,tk_d +T] is equivalent to the tube (5.8);

then, abstracting the tube H J'1 from the ellipsoid T J is straightforward. For each

component of ? (? component) one should find the corresponding component in r , .

Lemma 5.2: Assume in the DRHC problem the control input varies as follows:

uJ'J{t)-uJ'J (t)
'k 'k-l <µ] te[tk,tk_,+T] ; ken (5.16)

where µ] >0 is the manoeuvrability parameter of vehicle/. Also, the communicated

trajectories between vehicles / and y are subject to d step delay. Then ß} ??t y e V is

calculated as follows:

ßJ\d)=d3o[MJ]'[MJ] (5.17)
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Proof.

Au = [h/J - h/J ] = [(if/J - h/J ) + («/'¦'" - «/J ) + + («/J - «/J )]'* h-d h h-\ h-\ h-i' h-d+i {k-d

<[juj +µ] +.... + µ]] = ?.µ]
Then:

J Au Audi= ] [d.pJ][d^J]dt
h-d h-d

h
<¿VV J dt = d2MJ"fiJ(tk_d-tk) = d3ô[MJ][MJ]

h-d

=>ßJ\d)=d2S[MJ][Mj]
The procedure presented in this section for tube calculation is summarized in the

following algorithm. Assuming the vehicle i calculates the tube around the trajectory of

neighbour/:

Algorithm 5. 1 : Tube Calculator for LTI Subsystems:

Given the manoeuvrability µ} > 0 of neighboury, delay d, and matrix M from LMI

(5.7):

1: Calculate/?·7'^) =?2d[µJ]'\pj] .

2: Calculate the tube radius aJ = ßj ß^
mn Mm22

around the

delayed trajectory of neighbour j.

Calculation of tube radius does not impose any on-line computation time as it can be

computed off-line. Because the only parameter which may not be known prior to mission

is d which can be decomposed from formula of ßj(d) =?2d[µ^] \jiJ'] and multiplied
by the computed bound when determined online.
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5.2.2. Tube-DRHC for Nonlinear Systems

For a general class of dynamics the analytical bound on the states can be found, but

the available analytical bounds are usually too conservative and not in the desired format

for tube analysis (often a bound on the norm of states is available). Hence, a numerical

bound should be calculated instead, for any specific form of dynamics. The following

problem represents a method for calculating the tube for a general class of nonlinear

systems:

Problem 5.1: Consider the dynamics of each vehicle is described by (2.1), with

nominal trajectory x( -,H0) . Then calculate the tube H on the interval [??, T] so that:

|«(?)-«0(?)|</? ;te[t0,T] (5.18)
Solution: The nominal solution of differential Eq. (2.1) on the interval [??, T] is

calculated as:

t

x(t,u0) = x(t0) + J f(x(s,u0),u0(s))ds (5.19)
?

And any other trajectory y(-,u) of the system on the interval [??, T] is calculated as

follows:

y(t,u) = x(t0) + \ f(y(s,u),u(s))ds (5.20)
?

Subtracting (5.19) from (5 .20) yields:

t

y(t,u)-x(t,u0) = ¡[f(y(s,u),u(s))-f(x(s,uQ),uQ(s))]ds (5.21)
?

Then, using (5.21) in the tube formula (5.3) yields:
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= {(t,y)e[t0,T]xRn\\y(.t,u)-x(t,u0)\<a(t)}
(t,y)e[t0,T]x:

(t,y)e[t0,T]x\

) f(y(s,u),u(s))ds- ) f(x(s,u0),uQ(s))ds

][f(y(s,u),u(s))-f(x(s,u0),u0(s))~jds

<a(t) & \u-uA<ß

<a{t) & |w-«0 < ß

Finding a(t) determines the tube H . a(t) is the upper bound on

/ r-

{ /(y(s, "), u(s)) - f(x(s, uQ), U0 (S))

following maximization problem:

ds and then is calculated by solving the

a(t) = Max
t

I [fiy(s, u), u(s)) - f(x(s, U0), u0(s))]ds (5.22)

subject to:

y = f(y,«Y, j(0, h) = x(o, M0)
y(t,u)&X
u(t) e V
\u(t)- u0(t)\^ ß
te[t0,T]

In the optimization problem of equation (5.22) a nominal trajectory x(-,uQ) is

required, in other words the optimal value depends on any nominal trajectory. On the

other hand, at any time step DRHC generates a new trajectory which is served as nominal

trajectory in (5.22). Hence, (5.22) should be modified to be independent of any nominal

trajectory and be applicable for a general x( -,M0) . This way, the tube can be computed

offline and used for online applications. Hence, x(-,uQ) is considered as another

decision variable in the optimization problem as follows:
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a(t) = Max J [f(y(s, u), u(s)) -f(x(s,uO),uQ(s))]ds (5.23)

subject to:

j = /(J,"); j(o, M) = Jc(O, M0)
x = /(x,m0); x(0,w0)eX
.KMOeX
jc(M^o) e ^
u(t) & M0(OeU
|h(0-m0(0|<^
/€[?0,G]

The following translates this algorithm to the DRHC notation. The results of

Problem 5.1 are used to calculate the tube H around the trajectory of each neighbouring

vehicle experiencing the fault:

Problem 5.2: Assume that the control input for faulty vehicley is bounded as follows:

uJ'->(t)-uJ'J(t)\k-\
<µ ;te[tk,tk_l+T] (5.24)

where µ is the bound on input variation. Then, if at time tk vehicle /' receives the

information from faulty neighbour7 with d steps time delay, i.e., xJ,J (¦), then calculate'k-d

the tube around the trajectory of vehicley at time tk-

Solution: the results of Problem 5.1 is applicable by finding a and ß . To find ß

after d step delay the input constraint (5.24) can be used sequentially as follows (the

superscript^ is dropped temporarily):
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-M<utk(t)-utk](t)<M ; íefo.f^+r]
-M<utkì(t)-utk2(t)<M ; tefa^t^+T]

-d.ß<utk{t)-utkd(t)<d.ß ; te[tk,tk_d + T]

(5.25)

Hence,

ß = ?.µ- t£[tk,tk_d+T] (5.26)

Then the tube H^ around the trajectory of vehiclej is presented as follows:

{(t,y)e[tk,tkd +T]XlSl"
f(y(s, u), u(s)) -f(x >J (j),« 'J (s))

' I. J ' I. Jk-d
ds <aj(t) &

k-d
< ?.µ

(5.27)

where aJ(t) , the radius of tube H J , is calculated from the following algorithm:

Algorithm 5.2: Tube Calculator (off-line)

1 : For t = 0:At:T-dS % (choose At as small as appropriate)

2: Solve the following maximization problem:

aJ(t)= Max
{aHt),x(;«o)}

?

J [f(y(s, u), u(s)) - f(x(s, H0), U0(S))] ds
subject to :

y = f(y, "); j(o, «) = *(0, M0 )
¿ = /(*>"o); x(0, U0) e X
j>(r,«)eX
?;(/,µ0) e X
m(0 & »0(0 e U
\u(t) — UQ(t)\<d^

Save a J (t) vs. / to be used for on-line tube calculation.

end
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The output of this algorithm is the trajectory of vector a ^' (r) over the time interval [to,

T-dS] and will be used in the online Algorithm 5.3.

Remark 5.1: Calculation of a ^(O does not impose any on-line computation time as it

can be computed off-line. For example, Figure 5.4 shows the computed bound for

different time delays, T= 5 sec, and the dynamics described in Section 4.2.2.

time (sec)time (sec)

Figure 5.4: Bound on the states over time.

These graphs can be given to the DRHC controller as some tabulated data and be

used in the faulty conditions; in this manner no online computation is imposed.

5.3. Collision Avoidance in Formation Problems

For the formation problems the collision avoidance is provided by adding the tube

radius, as an extra distance, to the desired relative distance between healthy and faulty

vehicles (see Figure 5.5). The following subsections explain how the non-convexity

avoidance and formation keeping in this framework is addressed.
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Figure 5.5: Safety Guarantee Using Tube-DRHC in Formation Problems

5.3.1. Non-Convexity Avoidance

In the tube around the trajectory of vehicle j, (i.e., MJ ) at any time there is a set of

possible states for faulty neighbour instead of a single state. Based on the tube-DRHC

idea, for a safe trajectory (no collision with neighbours), in the cost function of Eq.

(4.3b), jc-7'·7 (i) must be chosen from the boundary of the tube H-7 and not theh-d

trajectory jc-7'-7 (/) ; however, this can lead to non-convexity of the optimization problemh-d

due to non-convex nature of tube. Thus, in order to avoid the non-convexity, in the cost

function of Eq. (4.3b), jc/'-7 (/) is not modified (or replaced by tube H·7), instead theh-d

desired relative position r,,J (J) will be modified as follows:

r ¡'J (t) <- r ¡'J (t) + sign(r U (/)) · Ar Ü (t) (5 .28)
In fact, the margin Ar',J\t)>Q is added to the desired distance to ensure the safety.

Since r''J(t) is the relative position vector, Ar '^(t) is multiplied by diagonal matrix

sign(r''J (/)) to make sure that change happens in magnitude of rl,J (t) and hence the
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second term does not decrease the magnitude of rl,J(t) . The margin Ar',J (t) is the

radius of the tube at any time /; hence:

Ari'J(t) = aJ(t) (5.29)
where aJ(t)is the tube radius at time t and is calculated from algorithms presented in

Section 0.

5.3.2. Preserving Formation Shape in Faulty Conditions

Using a tube instead of a trajectory in the formation leads also to the concept of tight

and loose formations; because in faulty conditions the position of the faulty vehicle is

assumed to be a closed set (like a sphere), rather than a single point (Figure 5.6 (middle)).

In a loose formation the vehicles will keep a larger distance than desired from the faulty

vehicle. However, if only the distances to the faulty vehicle become larger than others,

the desired formation shape will be rained; hence, in this case all the vehicles in the team

will keep the larger relative distance to preserve the formation shape, no matter if they

involve in the fault or not (Figure 5.6 (right)). In general, it is desired to have a tight

formation ifpossible.

CK
> ^¡^

Tight Formation (Fault-Free) Loose Formation (Faulty) Loose Formation (Faulty) for

preserving the formation shape

Figure 5.6: Preserving the Formation Shape, Tight and Loose Formations.
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5.3.3. Fault Tolerant Tube-DRHC Problem

The fault tolerant Tube-DRHC problem P¿(tk) for the faulty conditions is defined

below at time tk for any z* vehicle which involves in the fault (either faults with itself or

its neighbours).

Problem 5. 3 : Tube-DRHC Problem ?¿(tk):

Min -7D^7C*)) (5·3°)

subject to:

-forte[tk,tk+r\:

¿;·''(?=/(*;,/(?,»;''''(?) ; *;'''"(/?)=*%) (5-31a>k k k k

X^(O eX'', Hf(OeU'" (5.31b)

-for te[tk_d+T,tk+T] and (i,j)eE:

xj/{t) = f{xJ/{t\u/\t)); XJ>'\tk_d+T) = xJJ (tk_d+T) (5.31c)A KK K Ku

xj/{t)&\j, uj/{t)t\5J (5.3Id)'k h

??{?,+t)&t.\* J (5.31e)
xj'l(tk+T)eXJf ; (i,j) e E

-fortelt^t^+T]:

U1Mt)-U1/ (?)<µ (5.3If)'* lk-\

In Eq. (5.30) ./¿is calculated from Eq. (4.3). Constraint of Eq. (5.3If) is imposed for

safety guarantee purpose. This constraint restricts the manoeuvrability of the vehicles



involving in the fault in the faulty conditions and allows the neighbouring vehicles to

calculate the reachable set and tube.

5.3.4. Fault Tolerant Tube-DRHC Algorithm

The following algorithm is presented for the on-line implementation of the proposed

fault tolerant Tube-DRHC problem ^¿(tk) . The algorithm is formulated for the z'th
vehicle; in fact, all vehicles run this algorithm during the mission simultaneously:

Algorithm 5.3: Fault Tolerant Tube-DRHC (online)

1: k <-0, and GOTO step 4.

2: Receive xj'J (¦) from leaders where (/,_/) e E .

3: Take Ar''J = aJ(t) and update rIJ (t) <- r'J (t) + sign(r''J (t)).Ar'·-* (t) and update r'J in

the cost function (4.3).

4: Measure xl (tfc) ana upáaielhe information set oí Eq. (4?).

5: Solve P¿(tk) of Problem 5.3.

6: Send the state trajectory x1'1 (·) to followers where (J, /) e E .'k

7: Execute the control action for individual vehicle /during [tk , tk+i ] .

8: A <- yfc + 1 . Goto step 2.

This algorithm is a modified version of Algorithm 2.2 and handles the large

communication delays for faulty conditions. It also performs the safety guarantee by

executing the step 3 and updating the tube around the trajectory of faulty vehicle(s).
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5.3.5. Example 1: Tube-DRHC for LTI Systems

In the following simulation the effectiveness of the proposed tube-DRHC for

avoiding the collision in formation problems is investigated. This case involves the

triangular formation control of six vehicles with linear dynamics (4.7). The direct

communication graph topology is set as follows:

¥ = {1,2,3,4,5,6}? ' ' ' ' ' ' (5.32)
E = {(1,2),(1,3),(2,3),(2,4),(3,6),(4,5),(5,6)}

The neighbour assignment is performed manually prior to the mission by selecting

the two or more vehicles that are closest in the desired formation. The results are shown

in Figure 5.7 and Figure 5.8. In this case, two set of way points are considered to be

visited by the fleet. At first the fleet is not faulty but after 5 sec (around point (70,60))

vehicle 2 (whose trajectory is dotted) becomes faulty which leads to a d=S time step

delay in the messages communicated to and from vehicle 2. As shown in Figure 5.7, due

to the result of using the tube-DRHC approach the distances between vehicles increase

and the formation is expanded for safety upon fault occurrence. The distances between

each pair of neighbouring vehicles are shown in Figure 5.8 for two cases: 1) faulty

without any fault tolerant algorithm (Algorithm 2.2) and 2) faulty with the proposed fault

tolerant Algorithm 5.3. It is desired that vehicles keep a 7m distance from neighbours. As

seen from Figure 5.8 (right) in the case of Algorithm 2.2, the vehicles get too close to

each other and may collide. However, the reconfigurable Algorithm 5.3 offers a larger

distance (Figure 5.8, left) and the formation is safe as a consequence of using the tube-

DRHC approach.
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Figure 5.7: Trajectory (left) and snapshot (right) of a six vehicle triangle configuration experiencing a
communication failure: the formation expands upon fault occurrence.

Fault Tolerant Reconfigurable controller

dr

No Diagnosis Algorithm

Figure 5.8: Distances between each pair of vehicles in a six vehicle triangle configuration experiencing a
communication failure (at i=5s): Algorithm 5.3 (left) and Algorithm 2.2 (right).

The time history of control input is depicted in Figure 5.9; as seen the control input is

bounded and does not fluctuate. Figure 5.10 shows the time history of velocity vector for

all the vehicles. These results imply that the controller is feasible and can be implemented

in practice.
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Figure 5.9: Vehicle control inputs
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Figure 5.10: Vehicle velocities and constraints
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5.3.6. Example 2: Tube-DRHC for Nonlinear Systems

In this section the proposed Algorithm 4.1 which implements tube DRHC approach

is employed for formation control of six vehicles with nonlinear dynamics (4.12). The

results are shown in Figure 5.11 through Figure 5.13. In this case, two sets of way points

are considered to be visited by the fleet. At the beginning the fleet is not faulty but after 3

sec (around point (22,22)) the vehicle 2 (whose trajectory is dotted) becomes faulty, this

leads to d=l time step delay in the communicated messages to and from vehicle 2. As

seen from Figure 5.1 1 the vehicles start to keep a larger distance and the formation is

expanded for safety upon fault occurrence. Figure 5.12 shows the same scenario when no

detection algorithm is used (Algorithm 2.2).

Agent!
Agents

—Agenta
Agent4

—Agento
Agente

5tart Pomi

Fau t Occurrence Location

Figure 5.11: Trajectory (left) and formation snapshot (right) of six vehicles in triangular formations when
the reconfigurable fault tolerant controller is used.

The distances between each pair of neighbouring vehicles are shown in Figure 5.13

for two cases: 1) faulty without any fault tolerant algorithm (Algorithm 2.2) and 2) faulty

with proposed fault tolerant algorithm (Algorithm 4.1). It is desired that vehicles keep a

7.07m distance from neighbours. As seen from Figure 5.13 (right) in the case of

Algorithm 2.2, vehicles get too close to each other and may collide. However, the
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reconfigurable Algorithm 4.1 offers a loose but safe formation as the consequence of

using tube RHC for safety.

Vehicle

— Agenti
Agent2
Agent3

— Agent4
— Agent5

Agent6
Star! Pomt
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Faun Occurrence Location

20 40 60 80 100 120 140 160

Figure 5.12: Trajectory (left) and formation snapshot (right) of six vehicles in triangular formations when
no fault tolerant algorithm is used.
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wws»

Time (Sec) Time (Sec)

Figure 5.13: Distances between each pair of vehicles for algorithm 4 (left) and without detection (right).

5.4. General Collision Avoidance Problems

In this section using the general approach of Tube-DRHC the collision avoidance

and conflict resolution for non-formation problems is addressed. The new demands in

decentralized collision avoidance and conflict resolution span a wide range of application

such as air traffic control [170-172], road traffic control [173, 174], mobile robots [175,
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176] and cooperative UAVs [177, 162]. Many approaches have been used to design a

safe trajectory planner for such applications. Among them model predictive control has

found a considerable attention while it is complained constantly about its weakness in

handling the non-convex constraints arising from collision avoidance problem. To tackle

this problem, in [162] a hybrid rule-based extension of the decentralized receding horizon

control (DRHC) is proposed to avoid possible collisions. Also, in [177] a mixed integer

linear programming (MLIP) approach is utilized to handle the non-convex collision

avoidance constraint by decentralized model predictive control architecture. In [175] the

safety is provided by seeking new manoeuvres such that all conflicts are avoided. Most

recently, in [178], using the concept of invariant sets a set of emergency manoeuvres is

computed to avoid collisions whenever the feasibility is lost.

Using RHC for developing the collision avoidance and conflict resolution algorithms

is motivated by three main property of RHC: its predictive nature allows predicting the

possible collisions, its unique advantage for handling the constraints helps avoiding the

predicted collisions by imposing some constraints on the inputs. Also, it is easy to

provide cooperation through the cost function among the vehicles to avoid collisions. In

this section, all these three advantages are utilized to develop a novel DRHC approach

which guarantees the collision avoidance in presence of large communication delays.

In Section 5.3 a tube-based DRHC is proposed to provide formation safety under
communication failures where the desired relative distances in the cost function are set to

be larger than the radii of the reachable sets; although it has shown great efficiency to

provide safe formation in simulations, in general it is not applicable to non-formation

problems; also, it may not guarantee the collision avoidance as the local minimum of the
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Cooperation cost is computationally difficult to be achieved; further, the overshoots in

transient response may lead to collisions. The approach presented in this section for

collision avoidance in a decentralized framework is based on a simple idea: '7 restrict my

manoeuvrability then you compute my reachable set and avoid that". Technically

speaking, a tube is assumed around the delayed trajectory of neighbouring vehicles; since

the neighbouring vehicles may not stay on the delayed paths the radius of the tube is non-

zero; as mentioned previously the tube radius depends on the delay and the

manoeuvrability during the delay time. Then the neighbouring vehicles are assumed to

avoid each others tube. Also, the desired relative distance is chosen to be larger than the

radii of the reachable sets of neighbouring vehicles and hence respect the previous results

in Section 5.3. Although the main problem in formation control is to force the team

members to move in a pre-specified shape, for applications such as air traffic control the

formation formulation can be used by relaxing this requirement, i.e., the vehicles may be

forced to get different relative positions from their neighbouring vehicles and these

relative positions may vary depending on the communication delay and manoeuvrability.

The tube analysis allows each vehicle to predict the possible collisions and hence,

change the plan to avoid the collisions; the collision avoidance policy is based on setting

the admissible input set U' so that the tubes do not intersect. Then at each time step each
vehicle /eV:

1- Calculates the neighbour's tube from delayed information by assuming

limited manoeuvrabilityfor neighbours.

2- Sets U' (manoeuvrability) so that its tube does not intersect with

neighbour's tube.
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Based on this idea, an algorithm is proposed by which each vehicle determines its

manoeuvrability so that its tube does not intersect with neighbour's tube and hence the

collision is avoided.

Each vehicle / uses the formula ßJ(d) = a3d[µ^][µ-)'] in (5.17) where (i,j) e E to

calculate the bound on the inputs of its neighbour7 as it sees a d step delay fromj; in fact,

this is the bound calculated by vehicle / then the second superscript is added in order to

indicate that vehicle /' calculates this bound for neighbour j, i.e.,

ßJ'i(d)=d3S\jiJ]'\jiJ].

However, the vehicle / has access to its updated trajectory with only one step delay

and then set d=\ which yields /?'¦' = d[µ'][µ'] to be used by vehicle / for calculation of its

own tube. Then the tube of vehicle j calculated at time tk by neighbour / from the

delayed trajectory ?}'} is denoted by H-''' in (5.8). Also the tube of vehicle / calculated
'k-d *

at time tk by itself from one step delayed trajectory ?!'1 is denoted by ?.? and

calculated from (5.8) by setting d=\ and hence using y?''' = d[µ']'[µ'] . Then, each vehicle

/ e V chooses its manoeuvrability µ' so that the following collision avoidance condition

holds:

l'''nly'=0 /JeV &(i,j)eE (5.33)
In fact, each vehicle /' calculates the tube around the delayed trajectory of each

neighbour and then define its manoeuvrability µ' so that there is no intersection between

its tube and the tube of neighbouring vehicles. Thanks to the capability of DRHC it is



U'(/.) = \u(t)\u 'J(t)-u 'J(t)K lk 'k-1

easy to enforce the manoeuvrability condition (5.16) in the optimization problem via

input constraints in (5.3 lb). Hence the input set in DRHC is updated as follows:

<MJ\te[tk,tk_l+T]\ (5-34)
If the graph topology is well-connected then the decentralized condition (5.33) can

imply condition l'ni2ni3n r\MN* =0 and hence collision avoidance
satisfaction.

5.4.1. Formation Setting

The desired relative distance rUJ for all state components in ? is well-defined as

follows:

G'·??) = a'(?) + a?? (iJ)eE (5.35)

If the cooperation cost reaches its minimum, i.e., zero, then this condition also guarantees
the collision avoidance.

5.4.2. Collision Avoidance DRHC Algorithm

Initial feasibility Assumption: assume at time tk for V/ e V there exist µ'0 so that a

feasible solution satisfying collision avoidance condition (5.33) exists.

The following algorithm is presented for the on-line implementation of DRHC with

the proposed collision avoidance scheme, V/ e V :

Algorithm 5.4: DRHC with Collision Avoidance

1- Let Ar=O, and GOTO step 4.
2- Receive the trajectory xJ'j (·) ; (/, j) e E (wit6h appropriate d).'k—d

3- Calculate admissible U' :

a. Choose µ1 = µ^ and calculate H J for (/, j) e E .
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b. Choose µ '' = µ'0 and calculate H ' . If H ' ? H 7' * 0; (/, ;')eE then reduce µ ' and
redo the step.

c. Compute the admissible input set U ' from (5.34).
4- Measure x'(tk) and calculate G '(í¿).
5- Solve f' (tt ) and generate: «J·' (·) and jc*** (·) .
6- Send the trajectory x''' (·) to the neighbouring vehicles.
7- Execute the control action for individual vehicle /over the time interval [tk ,tk+l].
8- *=/r+7.Gotostep2.

The only difference between this algorithm and Algorithm 5.3 is step 3 which

provides collision avoidance.

5.4.3. Simulation Results

Collision avoidance of a fleet of unmanned vehicles with double integrator dynamics

and velocity damping in the 2D plane is considered, where ? eR2 , ueR2, »el2 and

? = ? , ? = -?+[?, 0A]u. This dynamics is marginally stable; hence, to take advantage of

the Controllability Gramian for stable systems an inner loop feedback controller is first

designed to stabilize the dynamics by placing the poles at [-0.0513; -0.0513; -1.9487; -

1.9487] using the feedback controller: K= [0.1, 0, 1.0, 0; 0, 0.25, 0.0, 2.5].

5.4.3.1. Off-line Calculations

Then the solution of the LMI (5.7) is M= Wx = diag(12.0, 120.0, 75.0, 750.0). To
verify this ellipsoid bound the corresponding ellipsoid along with 100 random

simulations for four different ß (see (5.5) are depicted in Figure 5.14. As seen the

ellipsoid is non conservative bound on the reachable set.
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Figure 5.14: The reachable sets corresponding to positions for different manoeuvrability.

5.4.3.2. Simulation ofOn-line Scenarios

The prediction horizon and execution horizon (sampling time) of DRHC is set to T=I

sec and d = 0.2 sec, respectively. Also, it is assumed that the communicated messages are

subject to a delay of d=7> steps (or r = d.8 = 0.6 sec). Further the initial manoeuvrability

parameter is set to ¿/¿=40/. To test the proposed collision avoidance algorithm, a

scenario (see Figure 5.15) is considered where the vehicles start from some random

positions (circles) and they have to visit some targets (cross product sign). The target

positions are assigned so that the vehicles potentially collide. This scenario can imitate

the air traffic control scenario near the airports. For example, the Figure 5.15-Left shows

the case where no collision avoidance constraint is used; in fact, the vehicles do not

cooperate and hence two of the vehicles collide according to the corresponding distance

time history in Figure 5.16-Left. For this scenario the Figure 5.15-Right shows the effect
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of the proposed collision avoidance algorithm. As seen from the corresponding distance
profile of Figure 5.16-Right the proposed algorithm can predict the possible collisions
and avoid them.

O Initial Position ~ ^tffc)^
X Target

Figure 5.15: The snapshot of the trajectories of three vehicles: Left: no collision avoidance algorithm,
Right: collision avoidance algorithm.

V /

Time (Sec) Time (Sec)

Figure 5.16: The distance between each pair of vehicles: Left: no collision avoidance algorithm, Right:
collision avoidance algorithm.

To consider a more complex scenario 3 vehicles are added to the mission and the

snapshot of the trajectories for both cases, when no collision avoidance algorithm is used

and when the proposed collision avoidance algorithm is used, is shown in Figure 5.17.

Also the corresponding distance profile is shown in Figure 5.18. For this case, if the
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collision avoidance algorithm is not used two pair of vehicles will collide according to

Figure 5.18-Left, but the proposed collision avoidance algorithm is able to resolve the

conflicts.
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Figure 5.17: The snapshot of the trajectories of six vehicles: Left: no collision avoidance algorithm, Right:
collision avoidance algorithm.
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Figure 5.18: The distance between each pair of vehicles: Left: no collision avoidance algorithm, Right:
collision avoidance algorithm.

5.5. Summary

This chapter involves the development of a tube-DRHC approach to provide safety

against possible collisions in presence of communication failures giving rise to large

communication delays. The main idea is to consider a tube shape trajectory around the
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trajectory of faulty vehicle instead of a single trajectory. Using the state transition matrix

and LMI approach a method for calculating such tubes for subsystems with linear

dynamics is presented which allows offline calculation of tube and hence, does not

impose any on-line computation. Also, a computational algorithm for calculation of such

tube for a general class of dynamics is presented which does not need any online

computation. Both formation problem and non-formation scenarios are considered; non-

formation scenarios can address a general class of applications including road or air

traffic control. Then two algorithms are proposed for implementing the Tube-DRHC

architecture. Simulations illustrate that the proposed approach can lead to a safe

formation in presence of communication failures.
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Chapter 6. Stability and Feasibility Analysis

In this chapter the feasibility, stability and performance analysis of the delayed

DRHC architecture proposed in Chapter 4 are discussed. Even for the classical RHC it is

not straightforward to provide the stability and feasibility; as it is discussed in Chapter 1

the stability of RHC is provided by fine tuning ofprediction horizon, execution horizon,

terminal set and terminal matrix penalty which may lead to very conservative and poor

performance. For DRHC it is even more difficult to provide the stability and feasibility

due to interactions among neighbouring vehicles and unavailability of updated

neighbour's plans. In most of the cases an asymptotic stability is not guaranteed and a

general stability argument is studied, for instance see [117]. In some cases a restrictive

condition should be imposed; for example, in [151] the asymptotic stability is achieved

by imposing the final equality constraint x(t + T) = 0 which is computationally

prohibitive.

Similar to RHC the stability and performance of DRHC is often improved by careful

formulation of the cost function and constraint [1, 2, and 3]. For example, Keviczky et al.

in [1] and [151], proposed to control a team of vehicles with decoupled discrete-time

dynamics by breaking down a centralized RHC architecture into a set of distinct RHC

controllers of smaller sizes; with such approach, the vehicles are coupled through the cost

function. In [151], each vehicle predicts its neighbour's behaviour from the dynamical

model available; and based on such predictions every vehicle plans its future behaviour.

Stability analysis shows that a smaller mismatch between the predicted and the actual
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trajectories of all the neighbours can lead to improved closed-loop stability. Furthermore,

in [2] and [117], Dunbar et al. proposed a distributed RHC for multivehicle systems

where the continuous-time dynamically decoupled subsystems have their state vectors

coupled through the cost function of an RHC control problem. Each vehicle solves an

optimization problem and generates its own control action using the available

information of neighbouring vehicles, which is possibly delayed. In [117], the key

requirement to ensure multi-vehicle systems stability is that each vehicle's control input,

at each time step, does not significantly deviate from its control action applied at the

previous time step. Also, in [3, 13], authors a decentralized robust safe but

knowledgeable (RSBK) model predictive control algorithm [14] is developed. The RSBK

MPC uses the constraint tightening technique to achieve robustness and lower online

computational burden. Using local knowledge, it is shown that each vehicle always has a

solution for the DRHC problem guaranteeing robust feasibility for the entire fleet in

presence of disturbances acting on the vehicle dynamics. . The algorithm is extended in

[15] to account for the communication and computation delays in presence of bounded

disturbances acting on the vehicle dynamics.

One of the few works on the stability of delayed DRHC is conducted by Parisini et

al. [121] where a receding horizon approach is utilized for the distributed control of

cooperative agents with delayed information exchange and linear dynamics. In such

framework, to incorporate the communication delay, the control law is broken down in

two components: one due to feedback from local states and the other based on the

delayed information gathered from neighbouring vehicles. But the cost function is not

delayed itself. Using the analytical solution of finite RHC, the global stability of the
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system is provided and a rigorous performance analysis is established. Also, in [122] to

derive a relationship between the stability of the team of cooperating agents with the

coupling matrix penalties chosen in the local cost functions, the results of [121] are

extended by developing a set of bounding expressions for the linear control law. It is

shown that the stability of the overall team of cooperating agents can be guaranteed by

appropriate selection of matrix penalties in the cost function. The authors extend their

approach to the case of agents with nonlinear dynamics in [123] by exploiting the input-

to-state stability (ISS) argument.

The stability analysis of this chapter is based on the quasi-infinite-KHC formulation

[10] where the key issue is to tune the terminal cost so that the closed-loop DRHC bear

the property of an infinite horizon controller. In this approach the states are driven to a

neighbourhood of the origin where it is a positively invariant set under a feedback

terminal controller for linearized system. In fact, the terminal set is the region of

attraction of the linearized system under the feedback terminal controller. Hence, the size

of the terminal region depends on the degree of nonlinearity of the system; and since for

linear stable systems a globally stabilizing feedback terminal controller can be found this

restriction can be relaxed.

6.1. Performance Analysis

The simulation results in Chapter 4 show the promising performance of the proposed

Delayed DRHC over the classical DRHC algorithms for handling the delays. Although it

is not straightforward to prove that the proposed controller always provides better
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performance than previous ones, two important issues should be pointed out about the

performance results:

1- By predicting the tail of the trajectories, the proposed Delayed DRHC controller

can imitate the process which neighbouring vehicles are using to predict their trajectories;

and hence, obtain similar results and behaviour as neighbours.

2- The proposed controller allows providing a bound on the performance while other

methods do not. In fact, by imposing some limitation on the manoeuvrability of each

vehicle, which is possible by constraint handling property of DRHC, depending on the

communication delay, the desired bound on the performance can be achieved. For

instance, assume the manoeuvrability of each vehicle is restricted so that V/'eV:

XJ'J(t)-XJ'J (0j, j ¿M

xJ'J(t)-xJ'j{tk_l+T)
*/'·''(0 -*/'·''Sh_d+T)

<µ?

<µ?

te[tk,tk_ì+T]

te(tk_ì+T,tk+T]

tc(tk_d+T,tk+T]

(6.1)

where µ is a vector with appropriate length and called the manoeuvrability vector. Then

the actual cooperation cost is measured as the performance index:

h+?

7'?',7')e? tk
X''' -XJ'J dt (6.2)

Also, assume that each optimization problem ¡P¿(tk) reaches its global minimum

which results in zero predicted cooperation cost; hence:
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S í

W,3~)e&tk_d+T\

0 + ?7»7 —XJ'J
2\ tk+T f

dt+ J
>k-d+T

0 + XJ>' -xJ'J dt

XJ,J _XJ,J
'k-d h

2?

S
dt +

lk lk-d x!'J (tk-d+T)-x!:J
2\

dt

Then using the bound (6.1) sequentially yields:

? 'J(t)-x >J (t) \<?µ
lk 'k-d I

xJ'j{t)-xJ/j (t, + T)

'k 'k-d

te[tk,tk_d+T]

< µ? + id -\)d?µ < ?dµ t e (tk_d + T ,tk +T] (6

<µ?<?dµ t^ih-d+T'tk+T^

Using (6.4) in (6.3) yields:
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I\tk)< J N'n(d2Ämax(S)xM^)dt +
h

Nl„ J (d2ô2Amax(S)xM'M + d2S2Amax{S)xv'v)dt (6-5)
= N^d2 Amax{S)x µ µ)?{? - ?d)+ 2??{?2d2 Amax{S)x µ µ)?{?d)
= N,nd2Amax(S)^M(T-dS) + 2N'„d3SìAmax(S)M'M

Inequality (6.5) implies that the bound on the performance (cooperation cost) is a

nonlinear function of communication delay d, the manoeuvrability µ , sampling time

d , prediction horizon T, and the maximum eigenvalue of S. then by appropriately

setting these parameters for the proposed controller the desired bound on the

performance can be achieved.

6.2. Feasibility Analysis

A solution set (x'(t),u'(t),x~'(t),u~'(t)) to the optimization problem $>¿(tk)is called

feasible if it satisfies constraints (4.5a) through (4.5e) and (5.3If) in finite time. The

following theorem addresses the feasibility of the developed controller.

Theorem 6.J (Feasibility): Assume the initial optimization problems $>¿(tQ) , ¡P¿(t{) ,

...$>¿(td) are feasible for V/ e V. Further, assume the sets of admissible states and inputs

contain the origin. Then all future subsequent DRHC problems are feasible.

Proof: It is sufficient to prove that if P¿(tk) , P¿(tk-\), ¦ ¦ ¦ ^¿(<k-d) are feasible then there

will be a feasible solution to the problem ¡P¿(tk+\) for keN and z'eV. The feasible

solution can be constructed from the solution of ¡P¿¡(tk) and terminal controller?, K' and
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K> where (ij)eE. The terminal sets X^ and X{ are invariant sets under the terminal

controllers K' and Kj respectively.

For simplicity consider the case of two vehicles: (/'=1, j=2). Consider the

optimization problem $%{tk) . Since, h¿^('*+i) and u^2{tk+i) are calculated from two
different optimization problems, p¿(tk) and g>¿ {tk) respectively, they are not necessarily the

same even if there are no uncertainties in the model. This means the following shifted

optimization solutions may not be feasible:

Klx)'l(t) te[tk+T,tk + l+T]
: * (6-6)
uf'Ht) te[tk + i_d,tk+T]lk

K2xf>l(t) te[tk+T,tk + i+T]lk

where, the parameter with bar denotes those corresponding to the terminal controller.

However, since the communication is performed among vehicles it is possible to

construct the following feasible shifted control trajectory by exchanging the predicted

trajectory of vehicles:

'«,U(0 te[tk+l,tk+T]

" (0 =
'/t + I

«2 (0 =
't + 1

lk

uhf (t)
'k+\ K^ X1^(I) te{tk+T,tk + l+T]

(6.7a)

"2,/(0 =
'A+l

.2,2
k+l-d

(0

K2xu{t)
te[tk+],,tk+l-d >lk-d+l + T]

tc(tk+],+T,tk+1+T]
(6.7b)
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where the superscript "f denotes the feasible trajectories, e.g., u'f (/)is the feasible
'k+l

input of ith vehicle at time / constructed at time ¡k+i (from the optimized solution at

time ik ).

To prove the feasibility of the candidate inputs (6.7), it is shown that the

corresponding trajectories satisfy (4.5a) through (4.5e) and (5.3If) at time tk+i .

Dynamics constraints (4.5a) and (4.5c): Since the dynamics of the vehicles are not

coupled the trajectory corresponding to (6.7a) satisfies (4.5a) during [tk+vtk + T] . During

(tk+T,tk+l+T] since the feedback input h1'1 = Klxl,1(t) e U1 is applied to vehicle 1, the

trajectories satisfy (4.5a). Further, since it is assumed that there is no uncertainty in the

dynamics, the initial condition in (4.5a) is satisfied.

Since the dynamics of the vehicles are not coupled the trajectory corresponding to

(6.7b) satisfies (4.5c) during [tk+]_d,tk+i_d + T] . During Ck+]_d+T,tk+l + T] since the

feedback control m2'2 = K2x2'l(t) is applied to vehicle 2, the trajectories satisfy (4.5c).

2 2
Further, the initial condition in (4.5c) is satisfied as the delayed trajectory u ' (t) is

used which yields: xf'1 (t . , . +T) = x2'2 (t, {, + T) .'k+i 'k+i-d

Saturation Constraints (4.5b) and(4.5d):

1) Constraint (4.5b): Since it is assumed that f¿(tk) is feasible, then the trajectories

generated by (6.7a) satisfy (4.5b) during [tk+l,tk+T]. Also, during (tk+T,tk+l+T] the

control input i/1'1 = ???1,?(?)& U1 is applied to vehicle 1 and since x]'\tk+T)eX]f and'k 'k k
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;t?,? _ JrI=MiX^ is an invariant set under the control action u ' = K1X^ (t) , then for all times beyond

the prediction horizon ( / > tk + t ) the trajectory remains in Xl , i.e. , ? ' (í)eXl; on the* ?, J

other hand X^- ç X1 which implies Jt1'1 (/) e X1 for te(tk + T,tk+l + T] .
¡k

2) Constraint (4.5c/): Likewise since it is assumed that f¿(tk_d+l) is feasible, then the

trajectories generated by (6.7b) satisfy (4.5c/) during [tk+l_d,tk_d+i + T] . Also, according to

(6.7) during (tk+i_d + Tjk+]+T] the control input w2'1 = K2x2,1(t) e U2 is applied to

vehicle 2 and since x^'i(tk+T)sXj and X2f is an invariant set under the control action
= 2,1-2=2,1u ' =K¿x ' (t), hence, for all times beyond the prediction horizon (t>tk+1_d + T) the

trajectory remains in Xf ; on the other hand X2 cX2 which implies xf-(t)eX for

te«k+T,tk+l+T].

Final constraints (4.5e): During (tk+T,tk+l + T] the control input

w1'1 = Klx1,l(t)eVl is applied to vehicle 1 and since *'·' (tk + T) e Xf and X^ is an

invariant set under control action m ' = K^x ' (t) , hence, for all times beyond the
h h

prediction horizon (t>tk+T) the trajectory remains in X^ hence x]^(tk+i+T)eXf . A

similar statement can be used to prove that xp] (tk+j +T)eXJ-.

Manoeuvrability constraint (5.3If): for satisfaction of this constraint it is enough to

prove that 1,1 Uf
'k 'k+i <µ for Vfe[/t+1,/t +T]; since 1,1 IfU ' -U'J

'k 'k+i = 0 during this time and it
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is assumed in general that µ>0 then input (6.7a) satisfies constraint (5.3If), (In general,

it is assumed that the radius of U1 is much larger than µ ).

Hence, the shifted input (6.7) satisfies constraints (4.5a) through (4.5e) and (5.3If)

which implies the feasibility at time?i+1. Then, since at time /0 the problem g%{t0) and

p¿ (t0) are feasible by induction it is concluded that all the future g%(tk) and p¿(tk)axt

feasible.

The same analysis can be carried out for the general case with Nv vehicles for any

/ e V and (i,j) e E with the following shifted trajectory:

«Ì'f (0
lk + l

« ''(O
lk te[tk + l,tk+T]

K'x'/it) te(tk+T,tk + ]+T]
(6.8a)

uj'f(t) =
uJJ (0

k-d+l
t^k-J+V*k-d+Vl k-d+l + T]

KJx{'\t) te«t_d+i+T,tk+.+T}
(6.8b)

lk+l

6.3. Stability Analysis

In this section, the constructed feasible solution (6.8) is used to provide the sufficient

stability condition of the entire group.

Assumption 6.1: the linear realization of the nonlinear dynamics (2.1) is introduced
as follows:

x = Ax + Bu (6.9)

where A =
dx (.?=0,?=0)

R-df . Also, assume A is stabilizable.
(J=O1H=O)
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Lemma 6.1: Under Assumption 6.1, there exists a closed and convex terminal set X'f

and terminalfeedback controller K' for each vehicle i e V so that:

a) P1 is the unique, positive definite and symmetric solution of the following

Lyapunov equation:

ÀTpi+p'Â = -Q (6-10)

where A = A + BK* +al, Q = Q + KVRK' +(NJ + N'f)S , I is the identity matrix and a is a

positive value satisfying: 0<a<-?pa?(? + ???) and Ámax{A + BKi)is the largest eigenvalue

of A + BK'.

b) V*' eXV :

d \x'\
W « .ii2 (6.11)¦<-*'

dt II ÏÏQ+K' RK' +(N',+N'f)S

where n) and n'j- are the number of leaders and followers of vehicle /' respectively. Also,

P1 is the terminal matrix penalty of vehicle /'. Equation (6.11) implies that X'f is an

invariant set for vehicle /' under the feedback terminal controller K' .

Proof.

a) It is well known that the Lyapunov equation (6.10) has a unique,

positive-definite and symmetric solution P if A is stable (Hurwitz)

and Q is positive-definite. Since ?>0, /?>0and 5'>0thenß>0and it

is assumed that ^' is a feedback controller in ?^ and considering
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a<-Ämax(A+ßK'), it follows that in x'f a unique positive-definite and

symmetric P1 exists. The existence of K1 follows from the fact that A

is stabilizable in X/·

b) By choosing q *-q + (n¡ +N'f)s the proof is the same as in [10].

Theorem 6.2 (Convergence): Assume that the communication graph is connected,

i.e., each team member has at least one follower or leader which implies: n) + n'j- >i .

Then under the feasible solution of optimization problem f¿(tk) we have:

where superscript * denotes the optimal value of the parameter and:

(6.12)

M= Í
h

+ S
7l(/,y)eE

*''(0:

'k-d+\

Í
tk-d+T V

«:¦'(/)

>k

2\
dt

dt + \
h

x'''(t)-xJ'J (O
'k <k-d

dt
(6.13)

and:

ß'?= S
J\UJ)e®

and:

ßi= S
7 IC/Je E

tlr-H+T

'k +T
\

'k+\-d+f
xJ''(t)-

h ls+?
dt

xJ'J (t)-xJ'J (0|'*-rf 'k+i-d

h + \-d+T
dt+ \

S h-d+T
xJ>'(t)-xJ'J (0 dt

(6.14)

(6.15)

Proof. Consider the following optimal delayed cost functions for vehicle / at time

instant tk :
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JbF1 Vk)) = J
?

tk+T f
+ S Í

h-d+T
+ S Í

J\(i,j)eB u

tk+T( 2
^ if) + «'•'(0 dt + xl''(tk+T)

P1

+

Q
uj'\t)

1\
dt + xjJ{tk+T)

? pj

xU(t)-xJJ (0
'* h-d

tk+T
dt+ J

h-j+T
xl>\t)-xj>\t) dt

(6.16)

< A " lk-d -

The feasible solution (6.8) is used to calculate the cost function at time instant tk+] which

is not optimal necessarily:

JbWk+I))= \

+ S
7l(í.y')eB

xiJ (t)
'k+l

2 h i,2 A ?, ? 2
Uf1+

tM+T (
\

h+x-d+T^

uiJ (0
'A+I R

dt + xl;J(tk+l+T)<k pi

XJ'f(t)
?+1

+ UJJ(t)
2 > h ??2

j,f ?
R

dt + xJ'J(tk+l+T)
?

+ S
lk+l-d+T

\
?+1

xUf (t)-xjJ (t)

tk+T
Í x'''(t) "'''(O

?

?+?

2^

*y

¦ S
h+\+T

\
'k+i-d+T\

h+l-d

h+\+T
dt+ \

tk+T V
2

2 /t+i+r
¿ft+ J

5 'A+W +7"

*''' (0
?

"'''(O
?

x¡'f (t)-xj'f(t)
?+? h+\

R

dt-

dt

xl;\tk+i+T)'k p¡
(6.17)

xJ'' (t)
?+?

+\\ûJ>' (o!
Q

dt + ¿J'1 (tk+l+T)

- S
J\('J)sE

h+x-d+T
Í

lk+\
xiJ(t)-xJ'J (t)

? fk+\-d

tt+T

dt+ J
lk+\-d+T

x'''(t)-xJ'' (i)y.'

'A+I

2

+ Í
tk+T

x'''(t)-xJ>1 (t)
'k !k+l

dt
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W(Z*))

¦/?(G''(/*+?»

WUt+I))

/t +G ?**/ + T

Figure 6.1: Schematic representation of the trajectories used to compute the three used cost functions in
analyzing the stability.

Figure 6.1 shows schematically the three trajectories used to calculate the cost

functions (6.16) and (6.17). Following the fact that some portions of (6.16) and (6.17)

overlap and using the optimality property yield:

¦/ß(G''(/?+?))--/?(G''(^))^·/?G'^+?))-·/?*(G,(^))= (6-18a)
lk+\

- Í +

Q
dt- ? ¡

j\(i,j)eE tk_d+T v

r 2
xjJ(t)

lk ?
dt

(6.18b)

¦ S J
7?0·.7)e? tk

x''l(t)~xJ'J (t)
'k >k-d

dt

h+\+Tf

tt+T 'k

h+\+T

+
'k

2?

R
dt+ S I

j\UJ)eE tk+T v
x» (t) ?" (t)

2\
dt

(6.18c)

+ S J
j\(i,j)eE fk+T

xl>l{t)-xJ>' (i) dt

+ x';'{tk+l+T) + S
P' i'IO',;")eE

xJ'' (tk+l+T)
'k+ì

(6.18d)

xl'\tk+T) - S
P' M¡J)éE

xjJ{tk+T)
<k
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tk+Tf
?

h+\ ?
*'''(0

tt+T

dt + S ?
M,J)éBtk+1_d+T

xJ'1 (/)
(k+\

+

Q
ü}'1 (0

<k+\

2?
dt

+ S
y|(/,7')eE

??+G'
- í

í

2

JC''' (/) -xJ'J (t)
'k+l-d

2 tk+T
dt + }

s t^.+T
?µCt)-X^ (i) df

'*+i-<r

*'''(0 +

2^
(6.18e)

?- S í xJ''(t)\ +

Q
uJ>'(t)
h

dt

tk-d+T\\
S J \\x'>l(t)-xJ>J (0

mu* h+\
h h-d

2 tk+T
dt- j

5 h-d +t
Xh'(t)-XJ''(t)

h h
dt

From (6.1 1) for vehicle /', it is concluded that:

dW\•||2\\?>
dt

<-x
,Ii 2

<-\x (6.19)
Hß+/f '**'+(#,' +A^)S H WQ+K' RK' +N)S

Likewise, for all leadersy of vehicle /:

,11 2
<-WxJ (6.20)

dt H \\Q+KrRKJ+(N{+N}f)S Il \\q+kjrkj+s

Since it is assumed in general that n/ +nj>ì then (6.20) holds. Then the summation of

(6.19) and (6.20) (for all leaders) yields:

d ?'
Wp'

dt M'J)eE dt
2 Il ill2. ¦ - S Fi ·Q+K'RK'+N¡S y|(,'j)eEll »Q+KJRKJ+S

Il -||2 h i|2
S *? . - S ?*? =

O+K' RK' h iijv;s MiJ)ëBi Wq+K' rkJ MU)eJ Ils
H-/ II2 H-/ II2

'''""' » Wn'.s
Il l|2 II ,||2 il ||2H ¦¦ - S M ¦¦ -^F - SIl Wq+k' rk· MJ)eE" Wq+k'rkJ II Ws ?'.?e?

•II2

UJ\
Il Wq+K1RK' y|(/j)eEll ??+*'*^ y,(/J)eE
Il l|2 II ,-Il 2-Fi ¦ - S M ¦ - SIl Wq+K' RK' MJ)eEW iQ+KJ rkJ 7l(;J)eE

H-/ II2 II- II2

(6.21)
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The last inequality follows from the fact that |a||2 +¡¿|2 >||a-è|2 . Then integrating both

side of inequality (6.21) yields:

I
tk+T

( Il II2dr'\ > d\\xJ
Sdt i.rTi _. dt

VJt <

(6.22)
'*+?+7?? |.2 'k+i+T 2 'k+l+T ( 2\- f 1*1 - dt- f y ?-? .. .?- f y b'-3cy U

Then, since for VS' exy , then «' =a:V and hence Le' IQ+K' RK'
IU-Il2 IU II2= jc ' +W\\ .Therefore:Il Wq Il »a

II2 Il ¦ II2 Il II2 Il ¦ II2t'('k+\+T)W ·+ ? F7Ca+I +T)W .-¡?' (h +T)W - Y Jc^ (r4 +G) .<P' -^ ?-' P' -¿-1 P.'
7?('".?e? H^

tk+T ^
2 ? '*+1+7~

?'? + «i tò- f y f*''Il h II Ia G j„ .,,~_„ Il

yi(/,y)eB
2 ? '*+i+r

«Jll pi- J S
tk+T 7l(¡j)eB

(6.23)

And this means the summation of terms (6.18c) and (6.18d) is non-positive and can be

removed from inequality (6.18) which results in:

^V1-(Z4+I))- j£(r''(ft)) s (6.24a)
'k+l

- I
h

? ·'(/) + «M(0
R

h-d+\ +t
?- S J

j\(i,j)eE tk_d+T y
xJ''(t)

'k
+ uJ'l(t) dt

(6.24b)
'k+i

¦ S J
;i('".y)eE ,.

xUl(t)-xJ'J (t)
h 'k-d

dt

S J ?» (i) +

0
«" (0!

'¿+1
?

+ S
y1(í,y)eE

^+1-?/+7,
J

'*+!

?'''^)-*7'7 (i)
r¡.+r

dt+ J
'*+!-</ +G

x'''(0-xJ'' (0
'k+ì

dt

(6.24c)
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ÍL.+T

- S J

h-d+T\\

xJ''(t)\\ + uJ'l(t)

S J \\xl'l(t)-xJ'J (O
M,J)eR t h-d

*+l

dt

tk+T
(6.24d)

dt- J
5 Ít-?+G'*-</"

xiV'(0-xy,!(0
?*

dt

Using the fact that || a ||| -|| 6 ||| < || a-? ||| yields:

¦/¿(G''('*+1))-./£(G'·(/,))* (6.25a)

- J *M(0
h

+

ß
"'''(O ?

- S
y'l(í,7)eE

+ S
y|(/,y)eE

- S
y'l(í,y>E

tk-d+i+T( . . 2
? */''(0 UJ/(t)

2\ 'k+\

dt+ ¡ x''l(t)-xJ'J (0
h h-d

dt

(6.25b)

¡k+T

tk+\-d+T\
uJ>l(t)-üJ>' (O?<

'k-d+T
J

h+\
xJ'J (t)-xJ'J (0

'*¦+!

J»y

*-/>/(0-*-/,i (0
<* 't+1

2 ^

s+e
^

'*-rf ¦t+l-rf

2 'i+i-rf+T"

S (k-d+T
xJ'l(t)-xJJ (0

lk h+l-d
dt

(6.25c)

(6.25d)

Or simply:

J^'ih^-JD^^h^^-ßi + ßi + ßi (6-26)
where ß[= - terms in (6.25b), ßl2 = terms in (6.25c), ß^ = terms in (6.25d), are class-

JC functions (positive definite).

Theorem 6.3. There exist functions ?^ (¦) , ?\ (·) and ?^ ()e J^00 and the positive

constant C1 such that for V/ e V :

^(G'(^+1))-^(G'(/,))<
[-? (il *'('*) II) + ö, (H *''(/*) H)]+ S /? (2H^i Oll) + - (6.27)

('¦y)el

Proof: From Theorem 6.2 we have:
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^r'(íi+1)W¿J(r<(^))<- *;¦'('*> (6.28a)

+ S
y|(/,y)eB

íi+G

'i+I-rf+7,
uu(t)-ûSJ (O + x^'iO-x" (t)

5+e
df (6.28b)

+ S ^(S)MM(T-IiS + S)
J\(U)eEL

+ S
7'IO'J)eE

't+i-rf+7.
J

Then considering (6.4):

¿Jtf-xJJ {tk_d+T) + xJ>J (tk_d+T)-xj'j (t)
h h-d h-d h+x-d

(6.28c)
dt

^''(^^^'^»??? (6.29a)

+ S
y|(/,y)eE

Í
'¿+?-«/+7.

uJ'l(t)-UJ>' (t)
h h+x

xJ>'(t)-xJ>1 (t)
h h+x S+Q

dt (6.29b)

+ S ^x(S)M M(T -dS + S)
y|(',y')6BL

+ S
y|(/,y)eE

h+x-d +T
J *?'(0 + ¿J (h_d+T)

h-d

2? (6.29c)

Ot + (S3^x(S)XMM)

Hence:

^(r'(^+1))-^Î,(r'^))<-|^ (tk)\Q + s jj
'h-d (h-d+Ty (6.30a)

+ S
7l('.y)eE

tk+T r

h+x-d +T \
k+X-d

uJ''(t)-üJ>1 (t)
<k h+i + \\xJ'l(t)-xJ'' (t)h h+X S+Q J

dt

(6.30b)

+ S Í
J\(iJ)éE tk_d+T

xJ'l(t)
h

dt

+ S ^x(S)M M(T -dS + S) + S (S3^x(S)XMM)
7'K'.y')eEL J j\(ij)eEL

(6.30c)
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The terms in (6.30b) are increasing functions of the initial condition of optimization

problem P¿(tk) and vanish if the initial conditions of optimization problem &¿(tk) vanish;

then there exist functions O1 (·) and O2 (·) e ^O0 SUCÛ that:

+ S
y|(i,y-)eB

tk+T
i

{k+\-d +T
h+i-d+T

uJ'l(t)-üJ'' (i)
'* (k+\

+ X^(O-Jc7'' (0R Il '* 'k+l
2 Ì

5+e
?

(6.31)

+ S 7 k/''"(0 ?£0,(||*''(/*)1?)+ S ^2 (il ^' (Oil)/If/ /WIR .^ '* k V ' /If/ ?=? \ '*·-</ /y|(/,y)eE t +T II '**-</" jl(«.y>E

Substituting into (6.30) yields (6.27), where C1 = terms in (6.30c),

Yi W = ¿max (011 ·*(?2 and /J1 (J) = A1118x (5) II j ||2 ^ + O2 (J).

Definition 6.1: A system is called input-to-state practically stable (ISpS), if there

exist /?(·,/) e JC£ , ?(·) e JC^ and positive constant c such that:

Il x(t) ||< /?(|| x0 H,/) + /(H «(0 H00) + c

forali ? e Rn and «(¦)eRw.
(6.32)

Lemma 6.2: A system is input-to-state practically stable (ISpS), if there exist an ISpS

Lyapunov function ?(?,p(-)) :l"xKr->l with a? (·) , a2(·) , /(¦) and s(·) e ^00 ,
/?(¦) e J3T and a positive constant c such that:

a, (H ? H) < ?(?,p(·?) ^ a2 (|| Je ||) + s(|| *(¦) | (6.33)
and:

V(x(k + \)^ k + x(-))-V(x(k),nk(-))< -?(\\?\\) + ?(\\p??{-)\\) + c (6.34)

for ail je e M" and p(·) elm.

Proo/ See [179].
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Remark 6.1: If s(·) = 0 and c=0, then Lemma 6.2 reduces to the sufficient condition

for the input-to-state stability (ISS) argument.

The following theorem summarizes the results to cast the stability problem into the

conditions of Lemma 6.2.

Theorem 6.4 (Stability): All of the team members are input-to-state practically stable

under the solution of the optimization problems &¿(tk) for V/ e V if there exist a function

?(·) e JC^ such that:

-Y1 (J) + 0, (s)<-r(s) (6.35)

where ?^ (s) = Ämax (Q) \\ s ||2 and ?? (·) is associated with bound in (6.31).

Proof. Let 5c(tk) = [xl(tk),x2(tk), ,xNv(tk)í and

ü(tk) = [u\tk),u2(tk), ,uNv(tk)]' then:

J^{k{tk),xtkd(),ütk())= S JbV'i'k+l» (6.36)
/e V

Then:

JÌ(x{tk),x ())= S -/JjVc4 + I)) (6.37)*~" /e V

Then, the sum of optimal value function Jy(x(tk),x (·)) can be considered as an'k-d

ISpS Lyapunov function for the overall system of multiple vehicles; because first: since

r * f ~ ,Ji(XOk), xn ,(¦))* S 1'''CJt)IL (6.38)
2^3 . /-/OMl ?-//-/, M|2Then considering the fact that || *'('*) Il ¿-^min (011 xlifk)\\ men tnere exist

2 *
OCx (·) e J^00 such that: ^1 (|| Sc(Jk)\\) ^ Y1 x'(tk) . Also, considering J^(O, O) = 0 and;C¥ Q
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the fact that Jy(x(tk),xt (·))>0 for Vx(tk) *0 and Vx, (·)*0 , it can be'k-d 'k-d

concluded that there exist a2 (·) , and s(·) e J^00 so that:

^I (¦*('* )' -^^ O) ^ «2 (*('* )) + a(*tk_d O) (6.39)
Then the first condition of Lemma 6.2 is satisfied. Second, considering the condition

(6.35) and Theorem 6.3, the second condition of Lemma 6.2 is straightforward.

Hence, according to Lemma 6.2 all of the vehicles are input-to-state practically stable.

Remark 6.2: Existence of /(¦) e JC^ in Theorem 6.4 requires that the function

O1 (s) be sufficiently small; then considering (6.31) it follows that if at the terminal set

X'f, the solution of DRHC optimization problem &>¿(tk) for Vi e V is close enough to

the solution of terminal controller then a small O1 (s) can result. On the other hand, since

Y1 (s) = Ämax (Q) Il s ||2 then if ?? (s) < Amax (Q) \\ s ||2 the condition in Theorem 6.4
is satisfied.

6.4. Summary

In this Chapter, it is shown that using the proposed delayed DRHC of Chapter 4

always a lower bound on the performance can be guaranteed. Also, under quite mild

conditions always there exists a feasible solution to the optimization problems. Further,

employing the input-to-state practical stability (ISpS) argument, sufficient stability

condition for the proposed delayed DRHC is derived.
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Chapter 7. Bandwidth Allocation Algorithm

Technically speaking, the large communication delays happen due to limited

communication bandwidth of the low performance communication channel employed in

the faulty conditions. Hence, in this chapter, it is desired to design a bandwidth allocation

algorithm which enables each vehicle to distribute its available communication

bandwidth to the neighbouring vehicles (followers) so that the teaming performance is

optimized. Then the proposed bandwidth allocation algorithm is integrated with the

proposed delayed DRHC architecture of Chapter 4.

According to the discussion on the performance analysis of Chapter 6 (equation

(6.3)), it is mentioned that the mismatch between the neighbour's delayed trajectories and

the actual trajectories is the main source of poor performance. Hence, the key idea with

the proposed bandwidth allocation algorithm is that at each time step, each vehicle

measures the mismatches between its delayed and updated trajectories; this mismatch

causes an error in the solution of neighbouring vehicle's optimization problem. Then,

based on minimizing a bound on the error in the cost function of all neighbouring

vehicles, each vehicle allocates its available communication bandwidth to its

neighbouring vehicles. In fact, the available communication bandwidth is employed to

reduce the effect of mismatch which leads to poor performance.

The resource allocation problems are normally performed in a centralized manner

when the global information is available to a central decision maker. Due to the

decentralized nature of the problem in this thesis the proposed bandwidth allocation
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algorithm must be decentralized and rely on the local information which makes the

problem more challenging.

Few works in the context of DRHC have addressed the bandwidth allocation

algorithm for DRHC. In [120], the problem of optimal formation control under limited

communication capacity is considered for two-vehicle formations. They demonstrate that,

in the case of noise-free communication, bit-limited exchanges can reduce the

performance of the fleet by as much as 20% when compared to the case of unlimited

communication capacity. However, the work in [120] does not investigate dynamic

bandwidth allocation. Also, another work in [168] studies the effect of limited

communication bandwidth on the control of multiple miniature robots; a resource

allocation algorithm is proposed to dynamically assign the available communication

bandwidth; the team control in [168] is accomplished in a centralized fashion, contrary to

the present work.

In this chapter by focusing on the systems with linear dynamics an analytical bound

on the cost function due to mismatch between the actual and the delayed trajectories is

calculated. Then a bandwidth allocation algorithm is developed which works based on

minimizing the bound on the cost function.

7.1. The Bandwidth Allocation Scheme

For bandwidth allocation purpose, it is desired to find the relationship between the

DRHC performance and the communication bandwidth, and then allocate the bandwidth

to each neighbour so that the overall teaming performance is optimized.
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The proposed bandwidth allocation algorithm works based on measuring the current

mismatches between the delayed and the updated trajectories and improving the future

undesirable behaviour caused due to current mismatches; Figure 7.1 shows a schematic

sketch of the approach.

,O-
A

Bandwidth
Allocation

*;¦' (¦) y
\ s = ?

'k
TT

? h-d 't 'k+° Time

Figure 7.1: Performance enhancement using a Feed-forward loop.

As seen in Figure 7.1, the mismatch is measured using the available trajectories at

time tk ; any mismatch implies an error in future behaviour; hence, the mismatch is used

by a bandwidth allocation algorithm to reduce the effect of such error. Assuming the

perfect optimization, availability of feasible solutions at all time, no communication

noise, no model uncertainty, the mismatch between the delayed and the actual trajectories

is the only source of poor performance. Hence, the main idea here is to allocate the

available bandwidth based on such mismatches.

From now on, the index i is used for the vehicle allocating its communication

bandwidth to its neighbours; also the indexj is used for neighbours to which the vehicle i

allocates the bandwidth for transmitting the information.

A more detailed graphical sketch of this approach is shown in Figure 7.2

(considering the only neighbour of vehiclej is vehicle /'). As seen from Figure 7.2 at time

tk , the vehicle /' computes and uses the updated trajectory *'''(·) while neighbour y does
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not have access to this trajectory due to communication delay and uses the delayed

trajectory of /', i.e., x''' (·) where d e R . The mismatch between these two trajectories is'Jt-d

denoted by e ''-7O) = X1J1^)-X1'1 (·) . The mismatch e',J\-) causes an error in input oflk 'k lk-d 'k

the optimization problem &¿{tk) and consequently will lead to an error in desired

solution of ?¿(tk), the error in solution of P¿(tk) is denoted by ??/''(·): the error in

solution of optimization problem P¿(tk) due to mismatch between delayed and updated

trajectory of neighbour / at time tk .

?,' (·) i uses the updated trajectory<k

XL·^ Neighbourj uses the delayed tmiectorytitfye

**;:.,<¦)??-0PA ih) WW
'k+s-?

Pd^ k+d)
??/;' (¦)'k+s fc

Figure 7.2: Error propagation due to mismatch between delayed and updated trajectory of vehicle /, as seen
by vehicle/

Likewise ???'(·) is served as an error in the input of the next step optimization

problem ^¿(tk+i) which leads to error ??/'' (¦) ; this error can propagate to the futurek+i

optimization problems. Note that finally ??/'' (¦) must be calculated for all neighbours'k+s

of vehicle /where s e M .

In Figure 7.2 only the neighbour y is shown for problem presentation purpose. The

vehicle /' must calculate ??/'' (¦) for all neighbours j (where (_/,/) e E). Allocate the'k+s
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available bandwidth to neighbours bases on ??/'' (·) from each neighbourj so that thek+s

effect of ??/'' (·) on the cost function is minimized. Then this approach is presented in'k+s

the following steps:

1) Calculate ??/''(-) , the effect of s'.,J (·) on the solution of f¿(tk) , (see Lemma 7.1).'k 'k

2) Calculate ??/''(·), the effect of error in solution of 3>¿{tk), on the solution of all

subsequent optimization problems: &¿{tM) , P¿{tk+2) ,···, ^d Ct+0-) for anY

arbitrary s (i.e., calculate ??/" (·), Ax/'' (¦), ??// (·)), {see Lemma 7.2).

3) Calculate ??/'' (·), the effect of the error in the solution of PÁ(tk+<T) , on the cost'k+s

function JJ (r\tk+a)), this effect is denoted by AJh' , (see Lemma 7.3 and
Theorem 7.1).

4) Do the previous steps for all the neighbours of /', and calculate the overall
mismatches as follows:

·,'' j,i
AJ = S ^J

./10'.OeE

¦J
5) Minimize AJ subject to bandwidth allocation constraint to find the optimum

allocated bandwidth to each neighbour^', (see Problem 7.1)

The following subsections and lemmas are presented to accomplish each step.
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7.1.1. The Bound on the Cost Function

The following lemma is presented to calculate the errors due to mismatch sl'J (¦)

between the updated and delayed trajectories, for a class of LTI systems using the

analytical solution of DRHC problem.

Lemma 7.1: Consider the following LTI dynamics for the/A vehicle:

xJ(t)= AxJ(t)+ BuJ\t); xJ(t0) = xj (0) C7·1)
with the following non-delayed cost function of/A vehicle at any time h:

tk+Tf
JJ(rJ(tk))= I XJ/J (/) + uJ'J(t)lk + S xj>J(t)-x''l(t)lk lk

dt
(7.2)

x" (tk+ T)

Also, assume the neighbours ofy at time tk calculate the update trajectory *'''(·) where'k

(j,i)eE. Whereas vehicle j uses the delayed trajectory x'/ (-) of neighbour /'; hence,'k-d

there is a mismatch e',J (¦) = jc '''(·) -Jc''' (·) . Then the error in the solution of g>Â{tk)
lk-d

due to mismatch e l('J (¦) in the updated and the delayed trajectory of neighbour /', denoted

by Ax-!'' (t) , is calculated as follows:
'k

(7.3)

Proof: Since the analytical solution of the delayed DRHC problem f¿(tk) is not

available, then the solution of the P¿(tk) is approximated by the solution of the non-

delayed DRHC problem $>J{tk) . To find the effect of mismatch e ''J (¦) on the solution of
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f¿(tk), the analytical solution of f¿(tk) is sought using Hamiltonian equation as follows

[167]:

H = rJ >J + uJJ
h + S

R /|(y,0eB <y(0-<(0 + q (AxJ'J + Buj,j ) (7 .4)'i 'k

where <? defines the vector of co-states. The necessary conditions for the optimality are

[167]:

I)V jjH = 0^>uJ'Jit) = -{R + RrlBq = ~R-lBq
\ k l

2)?=-VxJjH
Combining this with system dynamics yields:

UJ
X A

-2(Q + NJS)

1 ? ·
2

!

-A

r7 ij
+ S

i\U,i)zE 2SxI

with boundary conditions:

q(tk+T) = 2PxjJ{tk+T)
Define:

(7.5)

(7.6)

(7.7)

J - h

Ö

2Sx!'''
h

A =
-2(Q + NfS) -A

Then using state transition matrix, the solution of (7.6) is:

(7.8)

141



zj (t) = <p(t,tk)zJ\tk) + S Í <p(t, s)y'1 (s)ds
/|a,?>? tk

(7.9)

Now assume there is a mismatch in broadcasted information and hence leads to error in

yl(t). The effect of such error in yl(t)is investigated using the perturbation theory as

follows:

/'(0<-/'(0+d/(0=>
zj{t) + Azj{t) = cp(t,tk)zj{tk) + S Jp(f,j)(/(j)+Ay(0)<fr=>

/|(y,/)6B tk

????= S \ç>{t,sW{t)ds
(7.10)

The effect of each neighbour can be decoupled as follows: assume AzJ'1 is the effect

of error in broadcasted information from neighbour / to vehiclej; then:

AzJ>'(t)= ^<p(t,s)Ay'(t)ds
Then form (7.8):

(7.11)

ÁzJJ(t)= j<p(t,s)Ay'(t)ds = je^~s)AAy¡(t)ds

t its)

-V
-0.5BR-1B

-2(Q+NfS) -A
2Ss1;3

ds

-J
-h3(t-S)(-0.5BR-'B)x2SsiJ

h

3(ts)(-A)x2SJJ
ds

(7.12)

Then using (7.8) for decomposing AzJ'\t) yields:

-Id ?AxJ/ it) = Ut-'X-osBir>B ) x 2Suds (7.13)
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And this completes the proof.

Lemma 7.2: Consider the effect of Ax/''(·) (error in solution of 2>¿{tk)) on the'k

solution of the next optimization problem ^¿{tk+\) is denoted by Ax/'' (·) ; and the

effect of ??/'7 (¦) on 9Á (tk+2) is denoted by Ax/'' (·) and so on. Also, assume that the'k+i 'k+2

sampling time d is small enough so that during [?^,?^+d] , Ax/'' Q can be'k

approximated by a constant vector s''J\tk) , i.e., £¦/''(·) » s'J (tk) . Then the error in the

solution of fl{tk ) denoted by Ax/'' (·) and ?«/'7 (·) is calculated as follows:

Ax/'' (/) ='k+s
eK * ' ? Mj + ey k ' ? M4 2Ss'J(tky,

(7.14)
?&[^+s?+s+?]

And:

??/'7' (t) = -R~lB ?{t-,k-5){-2{Q+NJS)-\x {t-tk-ô){-À)x Se'J(tk); (7.15)
t^k+aSk+a+Tì

where Mis a partitioned matrix of matrixes with («?«) dimension: M], Mi, M?, and M$, (n

is the size of state vector of each vehicle) and is calculated as follows:

= M = (Ä)~](esl-l\ (7.16)
Proof. Again (7.9) is used as follows:

M] M2
M3 M4

z/ (/) = ç?(/, /?+1 )zy (/A+i ) + S J ?>(M)/ W*?+1 (7.17)
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Since, (7.3) represents the error at time /^+1 which is the initial condition of optimization

problem P¿{tk+\) , this error in the initial condition is studied using the perturbation in
the initial condition as follows:

zj{th+l) <- zj(tk+0 + teJ(tk+i) =>
t

zi (? + ??/ (t) = <p(t,tk+1)(zJ(tk+l) + teJ(tk+ì))+ S \ <P(t,s)y' (s)ds (7.18)
k+i k+] '1(7,OeEi4+1 '*+>.

Az^(I) = <p{t,tk+1)Azj(tk+l)
From (7. 11):

??/ (0 = <p(t,tk+1)ÁzJ(tk+l) = e{l-'^)A ? J e{t~s)A ? Ay\t)ds (7.19)
'k+l

<k

Then:

Az;k+](t)=ç(t,tk+l)Azj(tk+i) (7·2°)
Using/ = /^+2 yields:

teÎk+l(h+2) = <P(tk+2,tk+l)teJ(tk+Ù (7-21)
Analogously for subsequent optimization problems:

??/ ,(ít+3) = ?(íi+3»'i+2)^(/i+2) = í'(,t+3.ít+2)í,(íit+2»ít+l)aíJ(íi+l)?+2

??/ (í/fc+4) = ^A+4»'*+3Mí*+3»/*+2MíA+2.í*+l)AZ-/('*+l)^+3 (7.22)

s

??/; ,(W) = ? ^+„,^+„-?)??^(/?+1)
?=2?+s-1

If again (7.18) and (7.22) are used together, the error of ?¿{tk+a) is calculated as
follows:

s

Az-! {t) = cp(t,tk+<J)AzJ{tk+(T) = (p(t,tk+(T)Y\ <p{tk+n,tk+n-x)AzJ(tk+l) (7.23)k+a n=2
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Substituting for the state transition matrix, the above error can be simplified. The state

transition matrix is calculated as follows:

9>(t,t0) = e«-t°)1 (7-24)
which has the following property:

<P(tk+l,tk) = e{tk+ì~tk)1 =eSl i ViIeN (7-25)
Using (7.25) in (7.23) yields:

^(oJ'^^^V'^^í^^V'íy ; te[tk+a,tk+a+T] (7.26)
The simplification in (7.26) is done using the fact that t, -t.+sd .

In (7.26), AzJ (tk+\) is the error in initial condition of P¡j(tk+i) ', since it is desired to

find the effect of mismatch of information of neighbour i, then AzJ (tk+i) = AzJ'1 {tk+i)

where AzJ'l{tk+i) is calculated from (7.11); a superscript i is also added to AzJ (0 to
'k+s

clarify that this error is due to mismatch from neighbour i as follows:

In (7.27) the integration interval is {tk,tk+\\ > hence if the sampling time

d = tk+í -tk is chosen small enough, it can be assumed that Ay1 (t) is constant during

this interval, i.e., Ay (t) » Ay ; te[tk,tk+i]; then:

^?? = '{"'-d)*4*??*-?&-> ^[W,W+r] (7-28)
Denote:
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M = (A)-¿\-Ujä i = ?? M2
M3 M4 (7.29)

where Mis a partitioned matrix with (???) matrix entries: M\, Mj, Mi and Ma, also ? is

the size of state vector of each vehicle. Then, from (7.8) since the first entry of Ay is

zero:

Mj Mi
Mt1 M4.

Mj M2
M3 M4Ay =

Then from (7.28) and (7.30):

2Ss'J
2M2Ss'J
2M4Ss'J

(7.30)

AxJ/ (t)
'k+s
J, i

Aq(t)

if-tk-d)

= e{t-tk-S)A 2M2Ss J{tk)
2M4S~shJ{tk)

A -0.5BlT1B'
jJ .<?·> -a-2[Q+NfS) 2M2SshJ(tk)

2M4Ss 'J(tk)

X-** '^ ? 2M2SS1' j (tk ) + eH* -^)W^-15· ) ? 2M4s^J {tk )"
,(/-/? -ô)(-2(Q+N/S))x2M2SsiJ(lk)+e('->k-Sî{-A > x2A/4S*''-/(/jk)

(7.31)

Then, separating the solution for q and Ax/'' (?) in (7.31) yields:'k+s

¿J, i (0 = (¿t-tk -^xM2+ «('"'* -^("O·5^1 *' ) ? M4 Ì 2S'siJ {tk );
^['¿+s-'^+s+^?

and substituting for g in (7.5) yields:

(7.32)

'k+s
,H-i)[-2^/S)]x +eK-í)H')xu -'.7Sff' (^); (7.33)

'etW.W+7']
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where Mi and M4 are partitioned matrices built from A, B, Q, R and S and calculated from

(7.29).

Equations (7.32) and (7.33) represent the effect of mismatch sl,J (¦) on the solution

of they vehicle at time /¿+ s .

''J,Remark 7.1: One approximation to e ' (/¿) for interval [^,í¿+i] can be:

e?(0 = ??(0-*? (0
'*-</

^(/t) = -ÍS_—_i
(7.34)

To find how the mismatch can affect the cost function (performance index) the

following lemma is presented.

Lemma 7.3: consider the desired trajectories xJ,J'(¦) and «/'"? ; also, consider the

cost function (7.2). Assume there is an error in the mentioned desired trajectories, i.e.,

jc/'jG(·) <- xJ'j'(¦) + ??/'1'(·) and u-j,J (¦) <r- u-j,J (¦) + Au-J'' (¦) , due to mismatch between

delayed and actual trajectory of neighbourj, theses errors lead to an overhead cost AJJ''

to the non-delayed cost function JJ . Then, the extra cost added to non-delayed cost

function (7.2) due to these errors is bounded as follows:

r/>»
tk+Tf

AJJ'' < \
tk v

AuJ/(t)
k

+N J'1 i??/"(0
2^

dt J>1d?/;·(/a+?)| (7.35)

where Nj is the number of leaders of vehicle j, AJJ'' is the deviation from the desired

non-delayed cost JJ and should be minimized.
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Proof. Using perturbation theory yields:

jt/J0<-Jt/J0 + Ax/''(·)'k lk lk

h/J0<-"/J(-) + Ah/'/(·)
'k 'k 'k

JJ <^JJ +AJj
h+T

h
J] + ¿jJ,' = r JxJJ (i) + ¿¿J (r) + UJ,J (/) + ???< (/)h h Q h

S jc/'-,'(0 + Ax/,/(0-JcÎ'/(0:'k 'k 'k
dt +

h

x^J(tk+T) + Ax^(tk+T)
7 9 7

Using the homogeneity axiom of vector norms and applying |a + Z>|L ^|HL+|HU

leads to (7.35).

The following theorem integrates the results of Lemma 7.1, Lemma 7.2 and Lemma 7.3

to complete the mentioned steps for bandwidth allocation problem.

Theorem 7.1: Assume that vehicle / at time tk calculated the updated trajectory

Jt '''(·) while follower / have access to delayed trajectory Jt''' (¦) . Hence, there is aIv 'k-H

mismatch e\'J (·) = Jt''' (·) - Jt''' (·) between updated and delayed trajectories of vehicle'L· ¡Ir '¡·_/?'k-d

i. The effect of this mismatch in the cost function JJ(TJ(tk+CT)) where s e M. of vehicle

j at future time tk is the extra cost calculated by:

t, +Tik+s

AJJ'1 < \
'k+a V

J''??/" (0k+s
+ ?«/'1' (i)k+s +Nj AJt/'' (?)k+s

dt + J>!??/" (tk+T)
k+s

(7.36)
P

where AxJ'' (t) and ?«/' (t) are calculated from (7.32) and (7.33).
k-t-s k+s

Proof, using Lemma 7.3 and shifting forward the calculation time in (7.35) by cr

step yields (7.36); then using Lemma 7.1 and Lemma 7.2, the proof is straightforward.
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The extra cost AJj'' is imposed by errors AxJ'' (t) and AuJ,i (0 which can be
k+s k+s

due to any source. For example, imperfect optimization, communication noise, model

uncertainty which lead to mismatch between actual and delayed communicated

trajectories in previous time steps can cause errors AxJ'1 (r) and Auf ' (/) . More
k+s k+s

precisely, ??-7'' (t) and AuJ'1 (t) are functions of 1- communication delay ( s ) 2-
k+s k+s

mismatch between actual and delayed communicated information from neighbours of
vehicle /.

7.1.2. Bandwidth Allocation Formulation

The general overview of the proposed communication bandwidth algorithm is

explained in Section 7.1.1; this section will add more detail to that and connect the

previous analysis with the communication bandwidth equations and DRHC algorithm.

Consider a network of vehicles, where the communication channel of each vehicle is

used to communicate with neighbouring vehicles. Hence, in such situation, the following

communication constraint must be satisfied by each vehicle /' when communicating with

neighbours [180]:

S ??<? (7.37)
./1(/,OeE t?

where, r,-,- is the delay for transmitting the information from i to/. K¡¡ (bytes/sample) is

the size of packet sent to j by /' and B (bytes/sec) is the available bandwidth of the

communication channel after counting for other communications such as operator

commands.
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Figure 7.3: Communication delays between neighbouring agents

In the previous sections to avid making the notation too complicated, the short

notation d and t are used for time-delay; however, the nature of bandwidth allocation

algorithm makes the communication delay time-varying and different for each pair of

vehicles. Then in this section the algorithms will be updated with the new notation.

Assume the amount of allocated bandwidth to follower j by vehicle / is denoted by

B¡j and the maximum available communication bandwidth is used; hence:

then from (7.37):

7'10'-OeE

BÜ1V

(7.38)

(7.39)

7. 1.2.1. Equal Bandwidth Allocation

If the communication bandwidth allocation algorithm is not used then an equal

bandwidth allocation strategy may be employed which leads to equal communication

delay for neighbouring vehicles; hence, considering (7.37) the vehicle / allocates equal
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bandwidth to each neighbourj ; then the communication bandwidth allocated to the/

neighbour of/ and the equivalent communication delay is calculated as follows:

¦th

A.-4-

t.. =N'
?-

? 'J

; yeV&aOeE

yeV&(y,0eE
(7.40)

? f B

where y is the number of followers of z'th vehicle in a direct communication graph (V

is changed to #' for an indirect communication graph).

7.1.2.2. Variable Bandwidth Allocation

The proposed bandwidth allocation approach is based on minimizing the bound on

the cost function (7.36). In this approach the mismatch of the previous time steps is

measured and then based on the mismatch, the bound (7.36) on the future cost function is

approximated and is minimized to find the optimal communication bandwidth for each

vehicle. The notation in bound (7.36) needs to be improved as s = atj , for bandwidth

allocation purpose:

Ax/'' (0 =
k+a-i.

M-h-sy xM, +e(t-lk-S)(-0.5BR-]B) xMA 2Se'J\tk); (7.41)

^[tk+a¡j,tk+(J¡j+T]

U'Auj'1 (t) = -R B
k+°ij

(t-t -ô\-2(Q+NJS)} (t-i s\(-A) x MA Ss'J{tk);
te[t. ,t, +T]L k+a..' k+s.. J

(7.42)
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Then the bandwidth allocation algorithm is the solution of the following

minimization problem:

Consider the vehicle i has the available bandwidth B. Then, a solution to the

bandwidth allocation problem solved by vehicle / e V is the solution of the following

minimization problem:

Problem 7.1: Bandwidth Allocation

tk+aij+Tr
K

Min Y f
/l^>E};|(y./)eE JWy

rJ>1

Ax/'' (i)'k+ay
+

Q+NJS
???/;' (0 Mi

to<*V^ +r>
K1subject to: ^ —^-<By|(y,/)eE ds?

(7.43)

where ??/'' (/) and ?«/'' (t) are calculated from (7.41) and (7.42) respectively. It is

worth mentioning that the integration interval in (7.43) is consistent with time interval on

which (7.41) and (7.42) are available.

In the next section, this bandwidth allocation problem is integrated with the delayed

DRHC f¿(tk).

7.2. Delayed DRHC with Bandwidth Allocation

The following algorithm is a modification to the delayed DRHC Algorithm 4. 1 where

the bandwidth allocation algorithm is integrated with the delayed DRHC f¿(tk):
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Algorithm 7.1: Delayed DRHC with Bandwidth Allocation

1: Initialization:

a. k<-0,

b. measure x'(tk),
c. Calculate the equal bandwidth allocation for initialization from (7.40) as

N'„
d. GOTO step 5.

2: Receive x/'7 (¦) from leaders where (ij')eE.'k-d

3: Bandwidth Allocation:

a. Find the delay d.. where the delayed trajectory that the follower y is using at the current

time tk is Jt''' (·)¦
k-d¡j

b. Measure As ' (tk ); (J, i) e E from (7.34) by setting d = d.. from previous step.

c. Solve the minimization Problem 7.1 to find the optimal communication time delays s = s..
U

where (J, i) e E .
?,

d. Calculate the allocated bandwidth to each follower from B¡; = ; (J, i) e E
ds??

according to (7.39).

4: Measure x'(tk) and update the information set from (4.1).

5: Solvent).
6: Send the state trajectory Jt''' (¦) to followers utilizing the allocated bandwidth B¡¡ (of stepk J

1 or step 3) where (JJ) e E .
7: Execute the control action for individual vehicle /during [tk,tk+l].
8: k<-k + l. Goto step 2.

This algorithm is a modified version ofAlgorithm 4.1, while at each iteration step 3,

is executed to allocate the communication bandwidth efficiently. The following describes

the changes to each step:
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Step 1: since at the beginning, there is no history of communication with followers,

an equal bandwidth allocation strategy is employed.

Step 2: the vehicle / receives the most available trajectory of leader computed by

them. Also, the time these trajectories are calculated are sent to measure the

communication delay.

Step 3. a: it is determined that at the current time the followers use which of the

previously computed and communicated trajectories. It doesn't need any communication;

each vehicle /' has a buffer that stores the history of time and corresponding delay of the

previously communicated information to each neighbour. For example, assume

<5 = 0.5 sec ; then at /. = 2.5 sec the vehicle / has the history of the previous

communication times T = {0.5, 1.0, 1.5, 2.0} with follower j with the following delays

respectively: © = {4,1,2,3} ; then it follows that d..=2 , because

1.5 + 2?£)=2.5 = 4 = current time . Also, in the case of two or more answers for this

procedure the most updated information will be used and the previous information is

removed to free the buffer for new information.

Step 3.b: this step calculates the mismatch between the updated trajectory, which

local vehicle / is using, and the delayed trajectory, which follower7 is using.

Step 3.c: based on the calculated mismatch of step 3.b, the bound on the cost

function is minimized to find the optimum future delays for each neighbour.

Step 3.d: the bandwidth is allocated to followers to be used for communication in

step 6.

Steps 4, 5, 6, 7 and 8 are the same as the corresponding steps in the Algorithm 4.1.
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It is worth mentioning that the above algorithm does not intend to increase the

capacity of the communication facility. Rather, it tries to balance the available

communication in the sense that it distributes the available resources efficiently based on

the needs of the neighbouring vehicles.

7.3. Simulation Results

A leaderless formation of a fleet of three unmanned vehicles with the following

3DOF dynamics is considered [HO]:

?? — X2
i 2 =~x2 +ui
X3^x4 (7-44)

where x = [x,x,y, y] and u = [u.,u2] are the state and input vectors respectively, also, ?

and y are the components of position vector. The inputs are saturated at: 0<w, <10 and

O < u2 < 10 (N). Also: V*2 + >"2 - 10 m /sec · These values are used for the modeling of
all team members.

The actual trajectories for three vehicles in a triangular formation and the

corresponding distance profile are shown in Figure 7.4. The vehicles are supposed to fly

in a triangular formation and visit some predefined waypoints. In this formation, it is

desired that moving vehicles keep a relative distance of 3m while flying in a triangular

formation. As seen from Figure 7.4 the vehicles reach the desired distances after some

time.
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Figure 7.4: Triangular formation of a fleet of unmanned rotorcrafts visiting waypoints.

7.3.1. Coupling Cost (Performance) & Communication Delay versus Mismatch:

Figure 7.5 shows the maximum coupling cost (summation of errors in desired

relative distance) versus mismatch (7.34) for different simulations. Each point

corresponds to a simulation where different parameters of the system such as the initial

conditions are changed to span a wide range of errors and mismatches, while the overall

scenario of Figure 7.4 remains the same for all simulations. As seen from Figure 7.5 the

maximum coupling cost will increase with the mismatch.

200,

t. 150

"0 50 100 150 200 250 300
Mismatch

Figure 7.5: Coupling cost vs. Mismatch
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Figure 7.6: Mismatch vs. Communication Time Delays

As another case study, the effect of communication delay on mismatch (7.34) is

investigated. Figure 7.6 shows the average and maximum mismatch for 7 different

simulations versus communication delay. The simulations differ only in communication

delays. As seen from Figure 7.6, the overall mismatch will increase with the

communication delay. Consequently, one can conclude that communication delay can

have an adverse effect on the stability and performance, which is intuitively expected.

7.3.2. Example: Bandwidth Allocation

In the following simulations it is assumed that the same size for all communicated

messages, i.e., Ki2 = Ki3 = ¦¦¦ = K21 = K2^ = — = K - 1000 bytes I sample . And the

communication bandwidth is B = 500 bytes I sec .

The simulation results for two different cases are depicted in Figure 7.7 and Figure

7.8. In Figure 7.7, the delayed cost function of the second vehicle is plotted versus time

for two different cases (the cost for other vehicles follows the same pattern).
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Figure 7.7: Cooperation cost history corresponding to improved Algorithm 7.1 vs. Algorithm 4.1.
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Figure 7.8: Delay variation in the channel of the third vehicle using improved Algorithm 7.1.
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First, an equal bandwidth allocation strategy is utilized based on (7.40) using

Algorithm 4.1; the average cost for this case is 1736.6 as seen from Figure 7.8. Second,

proposed Algorithm 7.1 allocates bandwidth so that the average cost is reduced to 1537.

The bandwidth allocation leads to varying communication delays for each vehicle as

seen in Figure 7.8, where the time history of the delay allocation (due to bandwidth

allocation) is plotted for the communication channel of the third vehicle. The

communication delay is denoted by r and (d -?)d < t < d d where d e N . As seenJ J ? V '.I J ¡J IJ IJ

from Figure 7.8 whenever there is no critical situation both the neighbouring vehicles 1

and 2 are assigned the same communication delay, namely J31 = d^2 = 4. However, in

the case of one agent in critical situation where the communication delay of one vehicle

is reduced to d=3, the penalty is that the communication delay corresponding to the other

neighbour will increase to d=5 to satisfy the communication constraint (7.37).

3500

o 2500

¡? 2000
a 1500
o 1000
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3 4 5
Test No

Figure 7.9: Summation of cooperation cost for the entire fleet corresponding to improved Algorithm 7.1
(Varying Bandwidth Allocation) vs. Algorithm 4.1 (Equal Bandwidth Allocation).
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Figure 7.10: Maximum of cooperation cost of the entire fleet corresponding to improved Algorithm 7.1
(Varying Bandwidth Allocation) vs. Algorithm 4.1 (Equal Bandwidth Allocation).
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Figure 7.11: Percentage of improvement in performance using improved Algorithm 7. 1 (Varying
Bandwidth Allocation) vs. Algorithm 4.1 (Equal Bandwidth Allocation).

This simulation has been done for several cases to see the effectiveness of the

approach; the results are shown in Figure 7.9, Figure 7.10 and Figure 7.11. As seen the

approach can lead to more than 50% improvement in the performance.

7.4. Summary

A new delayed DRHC algorithm with bandwidth allocation capability is proposed.

The bandwidth allocation algorithm works based on measuring the mismatches between

the delayed and the updated trajectories and then the vehicle exposed to larger mismatch
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(misunderstanding) is allocated more bandwidth. To find a relation between the delayed-

DRHC and mismatches between the delayed and updated trajectories, the analytical

solution of the delayed-DRHC is approximated by the solution of the non-delayed DRHC

since the analytical solution of the delayed DRHC is not straightforward to calculate;

contrary to this, the simulation results imply that this is an appropriate approximation and

can lead to improvement in performance for DRHC. However, to further improve the

effectiveness of the proposed approach the exact analytical solution of the delayed DRHC

is required. The proposed method is decentralized, and does not impose significant online

computation and communication loads.
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Chapter 8. Conclusions and Future Work

This chapter summarizes the thesis contributions and presents future directions for

the research.

8.1. Conclusions

A new framework has been developed in this thesis for decentralized receding

horizon control (DRHC) of cooperative multiple vehicle systems with large

communication delays. The main thesis contributions are as follows:

1) In Chapter 3, three new fault diagnosis algorithms are proposed for

communication failures which lead to large delays. The research suggests

that a hierarchical approach which isolates the required information for

fault diagnosis and fault tolerant control can lead to more efficient

algorithms with optimal communication over the network.

2) In Chapter 4, a new fault tolerant delayed DRHC approach is proposed

that explicitly accounts for large communication delays. The main idea

with this approach is to estimate the path of the neighbouring faulty

vehicles, when they are unavailable due to large delays, by adding extra

decision variables to the cost function. This enables the delayed DRHC

system to use available computational resources to improve the stability

and performance.
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3) A new delayed DRHC approach is proposed in Chapter 5 using tube

DRHC concept to provide safety of the fleet against collisions during

faulty conditions. With this approach, a tube shaped trajectory is assumed

around the trajectory of the faulty vehicle and the non-faulty vehicles are

restricted from entering the unsafe region. Collision avoidance for two

cases are addressed:

i. Formation control problems: The safety is provided by adding the

tube radius to the desired relative position,

ii. General collision avoidance problems: Each vehicle calculates the

tube around the neighbour's delayed trajectory and sets its

manoeuvrability parameters such that its tube does not intersect

with the neighbour's tube.

4) Feasibility, stability, and performance results are developed in Chapter 6

for the delayed DRHC approach proposed in Chapter 4. It is demonstrated

that:

i. With the proposed framework, it is possible to guarantee a lower

bound on the performance,

ii. Always there exists a feasible solution to the proposed delayed

DRHC problem if it is initially feasible,

iii. A sufficient stability condition based on the input-to-state practical

stability (ISpS) argument for the proposed delayed DRHC

algorithm is derived.
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5) A new bandwidth allocation algorithm is proposed in order to optimize the

communication periods to achieve improved control performance. The

proposed algorithm adjusts the communication periods subject to

communication bandwidth constraints. Simulations indicate a significant

increase in cooperation performance can be achieved with this approach.

The thesis contributions are summarized in the hierarchal diagram presented in

Figure 8.1. The results together provide a new framework for DRHC of cooperative

vehicle systems with communication faults, large communication delays and limited
communication bandwidth.

LAYERS:

Higher Layer:
1- Fault Diagnosis Algorithm

2- Bandwidth Allocation Algorithm
i

y! : Sci of fan Iu \ chicle

SB

INTER-VEHICLE
COMMUNICATION

Lo» er Layer:
1- I-'aull "Tolerant Dclayed-DRHC
2- Safety Scheme (Tubo-DRIIC)

"Healthy" signal

rhl

".tk\

¦ ? ( Neighboring
Vehicles

*/£*.?- ( Leader J
_*£O +f Follower)

Figure 8.1 : Hierarchy of the proposed approach for handling the communication delay.

8.2. Future Work

The following problems are suggested for future research:

1 ) Feasibility analysis of the proposed collision avoidance algorithm in Chapter 5 is

required. The condition under which there always exists a feasible tube for each
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vehicle in the team is required. Algorithms for resolving dead-lock situations are

also required.

2) The bandwidth allocation algorithm presented in this thesis addresses only the

case where the subsystems have linear dynamics. This approach could be

generalized to subsystems with nonlinear dynamics by developing an efficient

approach for calculating the bound on the cost function for this situation.

3) Experimental application of the proposed methods can be performed to

investigate implementation issues and determined how well the proposed

approaches scale for existing computation and communication hardware.

4) The effect of non-ideal situations including model uncertainty, communication

noise, imperfect optimization, etc. on the proposed algorithms should be

investigated.
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