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Abstract

NMR Studies on N-Sulfinylanilines: solvent effects and complexation with pyridine

Sanjun Li, Ph.D.
Concordia University, 2009

N-sulfinyl compounds RNSO show a wide range of reactivities to water with a change of
the substituent R. For several N-sulfinylamines, Mironova and Konoplva proposed that

the reaction of a pyridine-H20 complex with the N-sulfmylamine is the rate-determining

step in its hydrolysis. And later, Cerioni et al. observed complexes of N-sulfinylamines
with pyridine by 13C and 17O NMR spectroscopies and proposed an equilibrium between
"free" and "complexed" N-sulfinylamines. Muchall proposed an anti-hydrogen bond,
C-H... O, in N-sulfinylamines through an analysis of the calculated electron density. We
are interested in whether the C-H... O interaction has an effect on the reactivity of the

? ? ?

sulfur atom in RNSO compounds, especially in N-sulfmylanilines. Using H and O

NMR spectroscopies we have obtained experimental evidence for the C-H... O
interaction. The 17O chemical shins are more sensitive to the polarity or polarizability of

a solvent rather than to its ?-bonding capabilities, which support the fact that the oxygen

atom is involved in an intramolecular C-H... O interaction. The small dependence of the

17O chemical shift of all N-sulfinylanilines on the ?-donating ability of a solvent supports

the idea of planar molecules with intramolecular C-H... O bonds. The strength of the
C-H... O interaction is dependent on the strength of the S...N interaction in the

complexes of N-sulfinylanilines with pyridine. Temperature studies show an increasingly
deshielded (shielded) 17O (1H) nucleus upon an increase in temperature, and ortho H

iii



nuclei are deshielded as the pyridine concentration is increased. These changes can be

interpreted to demonstrate a strengthening of the C-H... O interaction upon S...N

complexation. Equilibrium constants show that an electron donating substituent leads to a

weaker complex. It is also shown that a weaker complex possesses a stronger C-H... O

interaction based on substituent effects on the temperature dependence of the ' O nucleus
in a complex. It is deduced that a "strong" C-H... O interaction could inhibit

complexation, and maybe lead to a reduced reactivity of a N-sulfiny!aniline.

IV



Acknowledgements

Thanks for great helps and instructions in my thesis preparation.

Dr. Heidi M. Muchall (supervisor)

Dr. Sébastien Robidoux

Dr. Louis A. Cuccia

Thanks to Dr. Sébastien Robidoux for all training and assistance in NMR.

Thanks to my parents and my brothers and sisters for encouraging and helping in my PhD
studies.

Thanks to my wife, Kun Dang, for taking care of my life and helping with each other.

Thanks to my sons, Xiangzhe Li and Daniel Zhiyuan Li, for bringing me happiness and

hope!

?



Dedication

I dedicate my PhD thesis to my parents, my brothers and sisters, to my wife and my sons.

Vl



Table of contents

List of Figures x

List of Tables xiii

List of Abbreviations and Symbols xv

1 Introduction 1

1 . 1 N-Sulfinylanilines 1

1 .2 NMR spectroscopic studies on H-bonds 6

1.2.1 1H NMR spectroscopy 6

1.2.2 17O NMR spectroscopy 9
1.2.2.1 Studies on intramolecular H-bonds 9

1 .2.2.2 Studies on intermolecular H-bonds 1 1

1.2.2.3 Solvatochromic comparison method 12

2 Objectives 14
3 Syntheses 17
4 Substituent and solvent effects on dp? in N-sulfinylanilines 1 8

4. 1 Substituent effects in 1 - 4 18

4.2 Solvent effects in 1 - 4 21

4.2.1 Unsubstituted N-sulfinylaniline (1) 25

4.2.2 Substituted N-sulfinylanilines 2-4 32

4.3 Summary 35

5 Complexation of N-sulfinylaniline (1) 37

5.1 13C NMR spectra 38

VIl



5.2 17O NMR spectra 40

5.3 1H NMR spectra 44
5.4 IR studies 49

5.5 Summary 50

6 Complexation of substituted N-sulfinylanilines 2-4 52

6.1 17O NMR spectra 52
6.1.1 Substituent effects 52

6.1.2 Temperature effects 55

6.2 Summary 60

7 Summary, conclusions and outlook 62

7.1 Summary and conclusions 62

7.2 Outlook 66

8 Experimental 68

8.1 NMR spectroscopy 68

8.2 IR spectroscopy 68

8.3 NMR sample preparation 69

8.4 Syntheses 69

8.4.1 o-Chloro-N-sulfmylaniline (2-1) 69

8.4.2 m-Chloro-N-sulfmylaniline (2-2) 70

8.4.3 p-Chloro-N-sulfinylaniline (2-3) 70
8.4.4 o-Methoxy-N-sulfinylaniline (3-1) 71

8.4.5 m-Methoxy-N-sulfinylaniline (3-2) 71

8.4.6 p-Methoxy-N-sulfinylaniline (3-3) 72

Vili



8.4.7 o-Nitro-N-sulfinylaniline (4-1)

8.4.8 m-nitro-N-sulfinylaniline (4-2) 72

8.4.9 p-Nitro-N-sulfinylaniline (4-3) 73
9 References 74

Appendix A. 17O NMR and solvent effect 8 1
Appendix B. 1HNMR 95
Appendix C. 17O NMR and temperature effect 97
Appendix D. 17O NMR and temperature effect plots 10

IX



List of Figures

Figure Page

1 . 1 Preparation of N-sulfinylaniline (1) from aniline 1

1.2 Base-catalyzed hydrolysis of N-sulfinylaniline (1) 3

1 .3 Reaction of the pyridine-H20 complex with N-sulfinylaniline (1) 4

1.4 Selected geometrical parameters of N-sulfinylaniline (1) from ref. 25 4

1 .5 C-H. . .0 and S. . .N interaction in the complex of N-sulfinylaniline (1) and 5

pyridine

1 .6 Reference compounds for intramolecular H-bonds 1 0

1 .7 Reference compounds for intermolecular H-bonds 1 2

2. 1 N-sulfinylanilines 1-4 used in these studies 1 5

3 . 1 Preparation of N-sulfinylaniline (1) from aniline 1 7

4.1 17O spectrum of neat N-sulfinylaniline (1) at 21 0C 18

4.2 17O spectrum of neat p-methoxy N-sulfinylaniline (3-3) at 40 0C 19
4.3 Plot of the 17O chemical shift of the neat para-substituted compounds (2-3, 21

3-3 and 4-3) and 1 at 40 0C as a function of the Hammett s+ constant
4.4 Resonance in the NSO group of 1 26

4.5 Plot of the 17O chemical shift (corrected average from the two calculations) 27

of N-sulfinylaniline (1) in various solvents (1:1 mol%) against their
dielectric constants. The half-error bar shows the range between the

uncorrected and the corrected averaged chemical shifts

4.6 Correlation between original experimental and calculated (from the 29

solvatochromic equation) 17O chemical shifts for N-sulfinylaniline (1) in



different solvents at a 1:1 molar ratio

4.7 Correlation between corrected for external reference and calculated (from the 30

solvatochromic equation) 17O chemical shifts for N-sulfinylaniline (1) in
different solvents at a 1 : 1 molar ratio

4.8 Correlation between corrected for solvent and calculated (from the 30

solvatochromic equation) 17O chemical shifts for N-sulfinylaniline (1) in
different solvents at a 1:1 molar ratio

4.9 Structure of sulfinamide 31

4.10 The two possible conformations for ortho-substituted N-sulfinylanilines: 33

planar with a C-H. . .0 interaction or twisted by 1 80°

5.1 The complex of 1 and pyridine, denoted 1-py, with C-H... O and S...N 37

interactions, a) Taken from ref. 19; b) Representation showing the

perpendicular attack.

5.2 13C chemical shifts (ppm) in aniline 39

5.3 Resonance in the NSO group of 1-py, from ref. 1 9 40

5.4 17O NMR spectrum of 1 in pyridine at 2 1 0C 40

5.5 Temperature effect on the 17O signal of free ( ? ) and complexed (¦) N- 42

sulfmylaniline in pyridine (1:1 molar ratio)

5 .6 C-H ... O and N-H ... O interactions in N-sulfinylpyrrole 43

5.7 Temperature effect on 51H of the ortho-protons in 1. a) 10 mol% and b) 40 45
mol% 1 in pyridine

5.8 Temperature effect on d? of the meta- and para-protons in 1 (10 mol% in 45
pyridine)

Xl



5.9 Concentration effect on the ortho-protons of N-sulfinylaniline (1) in pyridine 48

5.10 Concentration effect on meta- and para-protons of N-sulfinylaniline (1) in 48

pyridine

6. 1 Determination of the equilibrium constant for complexation from the 59

chemical shift

XIl



List of Tables

Table Page

1.1 Properties of ?-bonds, from ref. 30 6

1 .2 The solvatochromic parameters for a small selection of solvents 1 3

4.1 17O chemical shifts (ppm) and half-widths (Hz) for neat 20

N-sulfinylanilines 1 - 4 (at 40 0C)

4.2 17O chemical shift (d in ppm, original) of N-sulfinylaniline (1) neat 25

and in various solvents (1:1 mol%)a and their dielectric constants e

4.3 Solvatochromic coefficients for N-sulfinylanilines 2-4 34

5.1 13C chemical shifts for 1 (uncomplexed) and 1-py (complexed) in 38

pyridine and chloroform solution

5.2 17O chemical shifts (ppm) and integration ratios for N- 41

sulfinylaniline (1) in pyridine (1:1 molar ratio) at various

temperatures (0C)

5.3 Phenyl 1H chemical shifts (ppm) for different concentrations of 47

N-sulfinylaniline (1) in pyridine at ambient temperature

5.4 Concentration effect on v(S=0), v(N=S) and v(C-N) (cm-1) of 49
N-sulfinylaniline (1) in pyridine

6.1 17O chemical shifts (ppm) of N-sulfinylanilines 1 - 4, in pyridine 54

(1:1 molar ratio, complexed and uncomplexed) and in the neat

compounds at 40 0C

6.2 Temperature coefficients (ppm/K) for the 17O chemical shift of 55
N-sulfinylanilines 1 - 4, in pyridine (1:1 molar ratio, complexed and

xiii



uncomplexed) and in the neat compounds

6.3 Crossover temperature (0C) and d 17O (ppm) for N-sulfinylanilines 58
in pyridine (1:1 molar ratio)

6.4 The K values for N-sulfinylanilines at 20 0C 60



List of Abbreviations and Symbols

?-bond donor acidity scale for a solventa

ß

d

p"

s

Xm

Xv

a

b

b.p.

e

DMSO

HMDS

IR

K

M

m

?-bond acceptor basicity scale for a solvent

chemical shift

dielectric constant

stretching frequency

volume fraction

polarity-polarizability scale for solvents

density

Hammett substituent constants

molar susceptibility

volume magnetic susceptibility

solvatochromic ?-bond donating coefficient

solvatochromic ?-bond accepting coefficients

boiling point

concentration

dimethyl sulfoxide

hexamethyldisiloxane

infrared

equilibrium constant

molar mass

medium

xv



m.p.

?

NMR

ppb

ppm

Py

UV/Vis

Vm

melting point

number of moles

nuclear magnetic resonance

parts per billion

parts per million

pyridine

solvatochromic polarity coefficient

strong

ultraviolet/visible

molar volume

mole fraction

XVl



1 Introduction

1.1 N-sulfinylanilines

The formation of N-sulfinylaniline (1) was reported first by Bottiger[l] in 1878 and by
Michaelis and Herz[2] in 1890. Michaelis and Herz used the reaction of aniline with

thionyl chloride, SOCl2, to produce 1 (Figure 1.1), and later Michaelis used this

procedure to prepare seventy five N-sulfinylamines.[3] Michaelis' work provided a solid
foundation for the research of the structure, properties, reactions and applications of N-

sulfmylamines. Even now, many N-sulfinylamines are still prepared by Michaelis'
method.

NH2 ? o

Il J + SOCl2 - y J + 2HCl
1

Fig. 1.1 Preparation of N-sulfiny!aniline (1) from aniline

Although N-sulfmylaniline (1) was found so early, Romano et al. only determined its
structure in 1999.[4] Earlier, there was a controversy about whether N-sulfinyl amines

prefer the syn (shown in Figure 1.1, the CNSO torsional angle is 0°) or the anti
configuration (the CNSO torsional angle is 180°). For example, Roberts et al. determined

the 15N NMR spectra for N-sulfinylaniline, N-sulfinylcyclohexaneamine, p-mefhoxy-N-

sulfmylaniline and p-nitro-N-sulfinylaniline.[5] The 15N NMR chemical shifts are 57.6
ppm for N -sulfinylaniline and 22.6 ppm for N-sulfinylcyclohexaneamine, relative to
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external nitric acid in D2O. The deshielding effect on the nitrogen of the aromatic N-

sulfinylaniline by 35 ppm was interpreted to show that the NSO group conjugates with

the benzene ring, and the electron density of the nitrogen atom in N-sulfmylaniline would

therefore be reduced more than that of the nitrogen atom in N-sulfinylcyclohexaneamine.

Using 1H and 13C NMR, Stufkens et al. suggested that N-sulfinylaniline is planar with a
syn configuration, while 2,4,6-trimethyl-N-sulfinylaniline still has a syn configuration,

but the dihedral angle between the NSO group and the ring is 90°.[6] In contrast to this
and based on the stereochemistry of the products from the cycloadditions of N-

sulfinylanilines with l,4-epoxy-l,4-dihydrophthalene, Hanson et al. suggested that N-

sulfinylaniline has an anti configuration in the ground state or is in a syn/anti

equilibrium. [7_1 1] Della Vedova et al. finally confirmed that N-sulfinylaniline is planar and
has a syn configuration in the crystalline state by X-ray diffraction, [12] and later that this
is also true for liquid and dissolved states by various (especially Raman)

G131spectroscopies.1

For the electronic structure of the NSO group, it is known that the N=S bond is a four

electron bond with the S atom as the positive and the N atom as the negative end of the

dipole.[I4] But for the SO bond, there was an uncertainty about its structure. The NSO

group has been described as a "cumulated n-system",[15] but the SO bond has also been
described as s+-0~[16"18] Further 17O NMR studies on the SO bond showed it to be a

1 7
"four electron bond" with double bond character, due to the fact that the trend of O

chemical shifts for these SO bonds in organic compounds is very similar to that for

carbonyl CO bonds. [19]
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Glass et al. reported the IR spectra for N-sulfinylaniline, N-sulfinylmethylamine and N-

sulfinylethylamine. [20] Stephenson et al. determined the IR spectrum for N-
sulfinylaniline,[21] and Stufkens et al. reported the IR spectra of 15N labelled N-
sulfmylaniline,[6] which allowed the characteristic vibrations of the NSO group to be
determined. For example, the frequencies are 1284 cm"1 for the NS and 1 155 cm" for the
SO stretch in N-sulfinylaniline. For comparison, the symmetric and asymmetric stretches

in SO2 are found at 1151 and 1361 cm"1, respectively, whereas the SO stretch in

compounds that have more single bond character for S-O, such as sulfoxides, is at about
1050cm"'.[22]

Mironova et al. used pyridine as a catalyst in the hydrolysis study of N-sulfinylanilines

(Figure 1.2).[23] The proposed mechanism for hydrolysis of N-sulfinylanilines includes
the reaction of a pyridine-H20 complex with the N-sulfinylanilines in the rate-

determining step (Figure 1.3, Py = pyridine). Cenoni et al. were able to observe the
it in

complex of N-sulfinylanilines with pyridine in the absence of water in C and O NMR

spectra.[19] They suggested an equilibrium between "free" and "complexed"
N-sulfinylanilines.

NH2

* O * so'
1

Fig. 1.2 Base-catalyzed hydrolysis of N-sulfinylaniline (1)
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py"~H\ /H
O

H2O-Py
-»- products

1

Fig. 1.3 Reaction of the pyridine-F^O complex with N-sulfinylaniline (1)

Our group is interested in the structure and reactivity of N-sulfinylamines. Muchall

studied the electronic structure of the NSO group in CH3-NSO and CH3-NH-NSO by

computational methods.[24] In comparison to the SO bond in SO2, it was found that the
SO bond is best described as a polar double bond, similar to the CO bond in carbonyl

compounds. It was also found that the oxygen of the NSO group can form an anti- (or

blue-shifting) hydrogen bond (C-H... O interaction) with ortho hydrogen atoms of

aromatic N-sulfinylamines. [25] Calculated (B3LYP/6-31 1+G(d,p)) geometrical parameters
for the syn unit that lead to the short C-H. . .0 distance are given in Figure 1 .4.

!2.3 A

Fig. 1.4 Selected geometrical parameters of N-sulfinylaniline (1) from ref. 25

In an anti-hydrogen bond, the C-H stretching frequency is blue shifted, in contrast to the

4



red shift found for, e.g., the N-H stretching frequency in an N-H... O hydrogen bond.1"

According to the electron density, an anti-H bond behaves just like a ?-bond. Other than

the frequency shift, there is nothing special about it in terms of the H... O interaction.1271
Ivanova and Muchall have studied the complexes of N-sulfinylaniline (1) with one to

three and five water molecules computationally. [28] It was shown that water attacks on the
sulfur atom perpendicular to the NSO plane. Hydrolysis is concerted and shows two

possible mechanisms, as 1 reacts across the N=S or the S=O bond. For a series of
substituted N-sulfinylamines, the charge on sulfur correlates well with the activation

enthalpy of hydrolysis. [28]

H--0 N '

Fig. 1 .5 C-H. . .0 and S. . .N interaction in the complex of N-sulfinylaniline (1) and

pyridine

In the hydrolyses, the S...0H20 interaction in the rate-determining step leads to a reaction
and to the destruction of the NSO unit. In contrast, the S...Npyridine interaction in the

complex of pyridine with 1 (Figure 1.5) does not lead to a reaction, and so these

complexes can be studied spectroscopically to learn about the reactivity of the sulfur

atom and the importance of the C-H. . .0 interaction.

<
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1.2 NMR spectroscopic studies on H-bonds

The hydrogen bond (?-bond) is a fundamental weak interaction in organic systems. '

Many physical methods have been used to study the ?-bond. For ?-bonded systems that

involve hydrogen and oxygen atoms, 1H and 17O NMR spectroscopies can be used for
direct observation of effects on hydrogen and oxygen atoms.131' 32] Table 1.1 shows the

properties of H-bonds,[30] and, as follows from the small energy value for a weak H-bond
and in analogy to the small shift in IR frequencies, chemical shift changes in weak H-

bonds are relatively small and potentially difficult to detect.

Table 1.1 Properties of ?-bonds, from ref. 30
Normal

Examples

Energy (kcal/mol)

IR vs shift (cm"1)

d(H...A)(Â)

0-H...O=C

4-15

5 - 25%

1.5-2.2

Weak

C-H... O

<4

<5%

2.0-3.0

1.2.1 1H NMR spectroscopy

1H NMR spectroscopy is an extremely sensitive method for identifying ?-bonds. In 1951

Liddel and Ramsey first identified ?-bonds by 1H NMR spectroscopy.[33] Since then, 1H
NMR spectroscopy has been widely applied in the study of ?-bonds. If a proton is
involved in an ?-bond, it will be deshielded (shifted to lower field or higher ppm). For
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example, the hydroxyl proton in ethanol as a dilute solute in a non-hydrogen-bonding
solvent such as CCl4 resonates at d 0.7 ppm. But in pure ethanol with extensive H-

bonding, it resonates at d 5.3 ppm. In addition, there is a temperature dependence to the
chemical shift. [34] Early on, temperature coefficients have been related to the extent of

exposure of the ?-bond donor atoms to the solvent.1 5J

Temperature coefficients are known for ?[34] and l5N[36] nuclei, and the proton is most
well studied. When different types of ?-bonds are considered, temperature coefficients

are less negative for stronger ?-bonds. In general, the signal shifts upfield as the
temperature increases, because the hydrogen bond is weakened (lengthened on average).
This is termed a negative temperature coefficient, ?d/??. Not surprisingly, temperature

coefficients vary with structure (type of interaction, participating functional group,

directionality, hybridization of the acceptor atom) and solvent.|j4]

Temperature coefficients for the 1H signal in N-H...N range from -17 to -7.5 ppb/K in
thioamides with intramolecular ?-bonding; for comparison, the temperature coefficient

of non-H-bonded N-H signals is more positive than -5 ppb/K in non-H-bonding solvents.

?d/?? for N-H...N in amides is in general smaller and reported as small as -4.8 to -1

ppb/K, even though these amides and thioamides are not comparable in structure.[34]
Direct comparisons are provided for Tl and Al, where ?d/?? for the 1H signal in N-
H...N in the fhioamide is -14 ppb/K, that in the amide is -9.3 ppb/K; and for 12 and A2,

where ?d/?? for 1H in N-H... O in the thioamide is -2 ppb/K whereas that in the amide

is -1 ppb/K. Some ?d/?? for 1H in N-H. . .0 in thioamides range from -4 to -2 ppb/K. [34]
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N-H N-H

For diamides, the size of the temperature coefficient has been related to the change in IR

intensity. For the two N-H in A3, 1H in N-H...O shows -9.8 ppb/K that corresponds to a
large decrease in IR intensity upon a raise in temperature, whereas the non-interacting N-

H only shows -2.5 ppb/K and the relative intensity of the IR band hardly changes.1371

O

N
H

H

A3 O

Temperature coefficients for 1H in intramolecular 0-H...0 interactions in complex
alcohol structures in DMSO are about -1 ppb/K. [38] While the literature contains many

reports on N-H and O-H temperature dependences, not much is reported for C-H. In

acetone/water mixtures of different composition, from the data reported for three

different temperatures, the temperature coefficient for the methyl protons of acetone can



be estimated to be about -2 ppb/K.[39] In t-butanol/water mixtures, it is about -3 ppb/K
for the methyl protons. The C-H. . .0 interactions in both systems are anti-H bonds. [40]

1.2.2 17O NMR spectroscopy

There are three stable oxygen isotopes, 16O, 17O and 18O. As 16O and 18O both have a
nuclear spin of I = O, 17O with I = 5/2 is the only NMR active nucleus. In practice, the
detection of 17O signals is often difficult because of the low natural abundance (0.037%)

of 17O. The calculated receptivity of 17O nuclei is about 10~5 that of protons. As the 17O
nucleus (I = 5/2) has a quadrupole moment, for diamagnetic species the quadrupole
relaxation mechanism dominates and leads to short relaxation times Tl and T2. These

short relaxation times give rise to large linewidths. For small molecules these are from
several tens to several hundred Hz (compared to < 1 Hz for 1H). To improve the signal to

noise ratio (needed for accurate measurements of linewidths or intensities), isotopically

enriched samples have been used.[41] But nowadays, with high field spectrometers,
natural abundance samples are sufficient to record good 17O spectra for small molecules,
especially for terminal (doubly bonded) oxygen systems.1421

1.2.2.1 Studies on intramolecular H-bonds

In the early 1960s, Christ et al. studied intramolecular ?-bonds in the enol of
acetylacetone (A, R = R'= CH3, Figure 1.5) by 17O NMR spectroscopy. [43] The fact that
only one signal was observed at 269 ppm for the two oxygen atoms suggested an

9



intramolecular hydrogen bond and fast chemical exchange, so that only the average of the

two extreme oxygen environments could be seen.

In 1967, Gorodetsky et al. studied the intramolecular ?-bond in the two enol tautomers of

nonsymmetric ß-diketones (A, Figure 1.6).[44] For each enol pair with its two distinct
oxygen atoms, only one '7O signal again indicated the existence of fast chemical
exchange. While there are two ?-bonds, only one average signal was observed. Two

signals were observed for the enol of 1 ,2-cyclohexanedione (B, Figure 1.6) due to slow

chemical exchanged441 Boykin et al. also observed intramolecular ?-bonds in the related
2,5-dihydroxybenzoquinone (C, Figure 1.6).[45]

R'

O- .O O^ ,0? H'

?*% / \ .P
N

OH I O
/

o- H
transeis E

Fig. 1 .6 Reference compounds for intramolecular H-bonds

In contrast to these equilibrating system, Fiat et al. studied acetophenones (D, R = CH3)

Figure 1.6) and benzaldehydes (D, R = H, Figure 1.6).[46] '7O signals for the ortho-
hydroxyl isomers were found at higher field, by about 24 ppm, than expected based on
the signals in the para isomers, which was taken as evidence for intramolecular H-bonds.
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In a conformational analysis of N-acetyl-L-proline (E, Figure 1.6), Lauterwein et al.

reported two sets of signals for the 170-enriched carboxyl and amide groups, indicating
the existence of eis and trans conformers obtained from rotation about the N-C bond. '

48] Upon dilution with acetone, downfield shifts were observed for both O amide

signals, with the larger concentration dependence for the eis isomer. This was taken as
1 7

evidence for an intramolecular ?-bond in the trans conformer, where the amide O

nucleus would not be experiencing large changes in environment upon dilution. In the eis

isomer, on the other hand, the amide 17O nucleus would be exposed to the solvent and

therefore report on a change in solvation. '

More examples are given in a comprehensive account by Boykin.1

1.2.2.1 Studies on intermolecular H-bonds

Intermolecular ?-bonds were studied by 17O NMR spectroscopy in the solutions of
formamide (F, Figure 1.7),[50] N-methylformamide,[50] N,N-dimethylformamide,[50] 1-
methyl-2-pyrrolidinone,[51] l-ethyl-2-pyrrolidinone (G, Figure 1.7)[5|J and substituted
benzaldehydes.[52"56] Because inert solvents can disrupt the intermolecular interactions of
the solute, dilution of the ?-bonded systems caused downfield shifts of the '7O
resonances. [50] Protic solvents could form new intermolecular ?-bonds with solutes,

which resulted in the carbonyl 17O resonances to shift upfield.[50] For example, for N-
methylformamide, the downfield shift of its 17O resonance on dilution with acetone was
taken to show that the intermolecular amide ?-bonds are destroyed by acetone. The
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upfield shift of the 17O resonance on dilution with water showed that stronger H-bonds
formed between N-methylformamide and water. [50] The downfield shift for the carbonyl
17O signal of the N-methylformamide monomer (infinite dilution in diethylether) is 52

ppm compared to the fully ?-bonded carbonyl signal in water solution.150' For 1 -ethyl-2-
pyrrolidinone (G, Figure 1 J), the stronger the proton-donating ability of the solvent, the

greater the upfield shift of the 17O signal.[51] For example, upfield shifts of 2.4 ppm in
ethanol and 5.3 ppm in 2,2,2-trifluoroethanol were observed.1511

N —<(
/?H H N

Fig. 1.7 Reference compounds for intermolecular H-bonds

From the above, it is obvious that the 17O signal is influenced by its environment, as has
been acknowledged in the literature.150"561 It is therefore not surprising that other solute-
solvent interactions cannot be neglected in 17O NMR studies. The solvatochromic

comparison method developed by Taft et al.[57] can be used to unravel multiple solvent
effects on properties studied, such as 17O chemical shifts.

1.2.3 Solvatochromic comparison method

The solvatochromic comparison method[57] uses the change in position (and sometimes

intensity) of a UV/Vis absorption band with a change of solvent with different polarity
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and hydrogen bond properties. The solvatochromic equation in the solvatochromic

comparison method is

XYZ = XYZ0 + STT* + aa +bß

where XYZ usually stands for spectral shifts,[58"63] reaction rates[64"66] and equilibrium
constants,[67] XYZ0 is the intrinsic value, p*[68], a[69] and ß[701 are solvatochromic
parameters for solvents, and s, a and b are solvatochromic coefficients and indicate the

responses of the property to polarity and ?-bonding, p* is the polarity-polarizability scale

for solvents and indicates the ability of a solvent to stabilize a charge and dipole by its

dielectric effect, a is the ?-bond donor acidity scale for a solvent and measures the

ability of the solvent to donate a proton to the solute, ß is the ?-bond acceptor basicity
scale for a solvent and measures the ability of the solvent to accept a proton from the

solute. Table 1 .2 shows the solvatochromic parameters for a small selection of solvents;

Table Al 3 in Appendix A shows the solvatochromic parameters for all the solvents used

in these studies. [57] From Table 1.2, dimethyl sulfoxide (p* of 1.00) has the strongest

ability to stabilize a charge and dipole by its dielectric effect, and only methanol (a =
0.98) has the ability to donate a proton to the solute. The three solvents in Table 1.2 have
almost the same ability to accept a proton from the solute.

Table 1 .2 Solvatochromic parameters for a small selection of solvents

Solvent p* a ß

Methanol Ö6Ö Ö98 Ö62
Pyridine 0.87 0.00 0.64
Dimethyl sulfoxide 1.00 0.00 0.76
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2 Objectives

The long-term question is: Does the C-H... O interaction in certain N-sulfinylanilines

affect their reactivity? As this is not trivial to answer, we use complexation as a model for

reactivity, in particular, we study the complexation of N-sulfinylanilines with pyridine.

As the C-H... O interaction is very weak, the effects of this interaction on reactivity

might be very small and hard to detect. However, the changes in the spectroscopic
properties of the atoms involved in the C-H... O interaction can be used to monitor

complexation and therefore reactivity.

We select substituted N-sulfinylanilines (1 - 4, Figure 2.1) to study substituent effects on
the C-H... O and S...N interactions. As we know, in N-sulfinylaniline the phenyl ring is

coplanar with the NSO group, giving an extended p-system with its resonance structures.

Therefore, the chosen para-substituted N-sulfinylanilines with an electron donating

substituent are expected to increase the electron density on the sulfur atom in the NSO

group and the S...N interaction (complexation) should be weaker than that of N-
sulfinylaniline. The reverse should be true for p-electron withdrawing groups, and
stronger complexes due to a more electrophilic sulfur atom are expected. We also choose
ortho-substituted N-sulfinylanilines, because these might be expected to be twisted,

depending on the size and electronic nature of the substituent. A twisted conformation
would reduce the conjugation of the phenyl ring with the NSO group, and so substituents

should have smaller effects on the electron density of the sulfur atom than in the planar

systems. While mono-ortho-substituted compounds still retain an ortho-hydrogen atom
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for a C-H... O interaction, the substituent effects on this C-H... O interaction should be

reflected in the NMR studies.

H Cl

MeO

CLN

MeO
3-1 3-2

O2N
4-1 4-2

OMe

Fig. 2. 1 N-sulfinylanilines 1-4 used in these studies

As 1H and 17O are directly involved in the C-H. . .0 interaction, we take 1H and 17O NMR
as the main methods in our studies. As the systems studied are in liquid phase or solution,

we evaluate whether the solvent effects arise from the polarity or from H-bonding

interactions. We use the solvatochromic comparison method to separate and analyze the

polarity and ?-bond effects of solvents. The range of solvents chosen are from H-
bonding, protic and polar alcohols to apolar aprotic solvents such as cyclohexane or
benzene. The solvatochromic coefficients (s, a and b) are expected to differ for the

different compounds, and they are analyzed in terms of substituent effects.
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Compounds 1 - 4 are complexée with pyridine. The presence of two signals around 400

ppm in the 17O NMR spectrum shows the presence of a complex. [19] At the same time, the
13C chemical shifts should change to those of the precursor anilines because of the

anticipated loss of conjugation. [19] This is checked for 1. Differences in the 17O chemical
shifts in the "free" and the "complexed" species and temperature studies on the equilibria

provide more data to find the source of the substituent effect on the S... N and C-H... O
interactions. Equilibrium constants are determined to provide independent data on the

strengths of the S...N interactions.

As both H and O atoms are involved in the C-H... O interactions, 1H NMR temperature

studies are used in combination with 17O temperature studies to provide complementary

data. Concentration studies on 1 are expected to give information on the strength of the

C-H...O interaction and its dependence on the strength of the complexation.

We also use IR spectroscopy as a survey on 1, because IR data are in general very useful

in ?-bonding studies. These studies establish whether the S=O stretching vibration is

sensitive enough to report on changes in C-H. . .0 and S. . .N interactions.

All compounds have to be synthesized, except N-sulfinylaniline (1) which is

commercially available. All compounds are known and are prepared according to

literature procedures.
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3 Syntheses

The procedure for preparation (Figure 3.1) of N-sulfinylaniline (1) is that aniline is

dissolved in dry benzene. The benzene has to be dry (dried over sodium metal), as N-

sulfinylaniline is susceptible to base-catalyzed hydrolysis. With cooling (ice bath) and

stirring, thionyl chloride is dripped into the solution. A large amount of aniline

hydrochloride precipitates and the solution turns yellow to orange with the formation of
1. The solution is heated under reflux until there is no more precipitate. After the excess

thionyl chloride and benzene have been distilled off, the N-sulfinylaniline is vacuum

distilled.[3] N-sulfinylaniline was not synthesized in our lab as it is commercially
available.

NH N^ ^O

[fS + SOCl2^=- (M + 2HCl<i^i 2 ice bath \^
1

Fig. 3.1 Preparation ofN-sulfinylaniline (1) from aniline

The general procedure above was followed for the substituted compounds as well. All
substituted N-sulfinylanilines (2 - 4) were synthesized according to the literature
methods.[3] On vacuum distillation, the fresh N -sulfmylanilines are bright yellow or

orange liquids or solids. All compounds were freshly prepared and not stored for long
(less than one week) for hydrolysis reasons. Details on the syntheses can be found in
Chapter 8.
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4 Substituent and solvent effects on d1 7O in N-sulfinylanilines

4.1 Substituent effects in 1 - 4

Figure 4.1 shows the 17O spectrum of N-sulfinylaniline (1), with its narrow signal (the
half-width is 117 Hz) at 413 ppm, and Figure 4.2 the 17O spectrum of para-methoxy-N-
sulfmylaniline (3-3), with its broader signal (half-width 613 Hz) at 398.64 ppm. For

comparison, the 17O signals for sulfoxides (R-SO-R') are in the range of -10 to 70
ppm,[49] those for R-O-SO-O-R and R-O-SO-Cl are in the range of 170 to 225ppm,[49]
and those for simple amides around 300 ppm.[50] The 17O chemical shifts for N-
sulfinylanilines are therefore larger than those of related compounds with terminal

oxygen atoms. Among the reasons for this is that a) the SO bond in 1 has more double
bond character than that in sulfoxides, where oxygen carries a negative charge and b) the

electron density on oxygen in the NSO group is lower than that of oxygen in a general

X=O bond (X = S, N), because of the conjugation of the NSO group and the phenyl ring
ini.

412.67
G;

fi

420 4 0 D

Fig. 4.1 17O spectrum of neat N-sulfinylaniline (1) at 21 0C
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398.64

-, 1 ! 1 I ' '
420 4 0 0

Fig. 4.2 17O spectrum of neat p-methoxy-N-sulfinylaniline (3-3) at 40 0C

Table 4.1 shows 17O chemical shifts and signal half-widths for N-sulfmylanilines (1 - 4).

The 17O chemical shifts for ortho- and meta-chloro-N-sulfinylaniline (2-1 and 2-2) are at

lower field compared to that for 1, whereas the signal for the para-chloro-N-

sulfinylaniline (2-3) shows a smaller chemical shift than that for 1. Obviously, from the

two opposing effects, i.e. electron donation by conjugation and electron withdrawal by
induction, the inductive effect is important in the ortho- and meta-chloro-substituted N-

sulfmylanilines and the conjugation effect is important in the para-chloro-N-

sulfinylaniline. The electron density on the oxygen nucleus is decreased in the order ortho
> meta > para and therefore shows a normal distance effect. In contrast to the ortho- and
meta-chloro-N-sulfinylaniline, the 17O signals for methoxyl-substituted N-sulfmylanilines
(3-1, 3-2 and 3-3) appear at a higher field compared to that for 1, due to the dominating

p-electron donating effect of the methoxyl group. Finally, the 17O signals for the nitro-N-
sulfmylanilines (4-1, 4-2 and 4-3) are found again at a lower field compared to 1,

showing the strong p-electron withdrawing effect of the nitro group. Cerioni et al.[19] and
Dans et al.[71] also showed these substituent effects for methoxyl and nitro groups in their

studies. The substituent effect in the neat compounds is illustrated in Figure 4.3, where

the 17O chemical shift is plotted against the Hammett s+ constants[72] for the three
substituents (Cl, OCH3 and NO2) and for hydrogen in para position. The good linear
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correlation shows that the substituent effect is transmitted effectively to the oxygen atom

of the NSO group. In fact, with this small set of substituents, and for the neat compounds,

a better correlation with s+ is obtained than for a larger set (exactly which were used is

unspecified) in chloroform.

Table 4.1 17O chemical shifts (ppm) and half-widths (Hz) for neat N-sulfinylanilines 1 -

4 (at 40 0C)

d170 Wi/2

"1 413.75a \VF
2-1 419.16 329
2-2 418.44 322
2-3 410.88a 133*
3-1 409.80 510
3-2 411.60 456
3-3 398.64a 613?

C4-1 422.76fl'c 136
4-2 424.20flC 109c
4-3 424.20a'c 112*'c

a Values in chloroform at unknown concentration and 294K from ref. 19: 1 406, 2-3 408,

3-3 391, 4-3 432 ppm. * Values in chloroform from ref. 19: 1 120, 2-3 280, 3-3 140, 4-3
66 Hz. c In benzene solution at 40 0C.
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Fig. 4.3 Plot of the 17O chemical shift of the neat para-substituted compounds (2-3, 3-3

and 4-3) and 1 at 40 0C as a function of the Hammett s+ constant

The half-widths data in Table 4.1 do not show a substituent effect. They are similar in

size or somewhat larger than those reported in chloroform, [19] or for 7O signals in
amides, which are on the order of 150 Hz. [5

4.2 Solvent effects in 1 - 4

In these solvent studies, the 17O NMR measurements were performed with an external

standard (water) in a capillary tube. Therefore, all raw 17O chemical shifts need to be
corrected for the difference in volume magnetic susceptibility, ??, of sample and standard

(reference correction). In principle, this is possible, in practice it presents many problems,

one of these being the magnetic susceptibility of the solution, which is derived from that

of the solute (solvent correction). The following are attempts to address these corrections.

y=16.19x + 411.4
R2 = 0.967
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For a superconducting magnet, the correction is

Ocorrected = Observed "*" 47Î/J(Xv,standard ~~ Xv,sample)

The problem is that xv,samPie is not known, because the sample is an equimolar mixture of

solute and solvent. To address this problem, we are considering the following. The

volume magnetic susceptibility is related to the molar susceptibility, ??, through the

density, p, and the molar mass, M, as in

Xm = Xv-M/p

For a mixture of compounds 1 and 2, the molar susceptibility is given by

XM.mixture = Xl-XMl + *2"XM2

where ? is the mole fraction (x\ and x2 here are 0.5). Experimental values for both ?? and

?? are compiled in, e.g., the CRC Handbook of Chemistry and Physics for many solvents

and other compounds.1731 Unfortunately, ?? is not known for the N-sulfinylanilines, but it
can be calculated quantumchemically. For the solvents used here, experimentally

determined and calculated ?? are in very good agreement (see Table Al, Appendix A).

Most compounds studied here have more than one conformer, and ?? can differ by as

much as 4 ppm between conformers (see Table A2, Appendix A).[74] So ?? (as the
weighted average for the conformers) can be obtained accurately for all N-
sulfinylanilines studied, but as their densities are also not known, the conversion from ??

to ?? introduces an error. Densities are estimated as follows, based on the density changes
for related aromatic systems (such as substituted anilines and benzenes). The density for

the parent Ph-NSO is known (p 1.236 g/mL), substitution of a hydrogen by a chlorine
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atom adds 0.2 g/mL, a nitro group adds 0.3 g/mL and a methoxy group adds 0.1 g/mL. A

final uncertainty is introduced by the fact that there could be a change in volume as the

sample and the solvent are mixed; we are assuming that, if there is any, it is negligible,

and so the density of the mixture is taken as the average of the densities of sample and

solvent.

Here is a calculated example for the correction for the chloro series (2-1 to 2-3) in

methanol; the correction is estimated using two different versions.

First version. The weighted average for ?? from Table B2 for o-chloro-N-sulfinylaniline

is -82.3 ppm, for m-chloro -77.2 ppm, and ?? for p-chloro is -78.2 ppm. For

consistency, we also use the calculated, rather than the experimental, ?? for the solvent.

An equimolar mixture in methanol would have a XM,mixture of -5 1.9 (ortho), -49.4 (meta)

and -49.9 (para) ppm. With averages for density (1.1 g/mL) and molar mass (102.8

g/mol) for the mixture, these convert to xv,mixture, or xv,Sampie, of -0.56 (ortho), -0.53

(meta) and -0.53 (para) ppm. The correction for the external standard, using the

calculated ?? for the standard, is therefore -0.9 (ortho), -1.0 (meta) and -1.0 (para) ppm.

Second version. The volume susceptibility can also be expressed by

Xv.mixture = ^-XvI + 02"3Cv2

where f is the volume fraction. The volume fraction is expressed through the calculated

molar volume, Vm, by
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f\ = ni ¦ Vmi/(ni · Vmi + n2-Vm2)

The weighted average for ?? for o-chloro-N-sulfinylaniline from Table A2 is -0.66 ppm,

for m-chloro -0.62 ppm, and ?? for p-chloro is -0.63 ppm; the weighted averages for the

molar volumes are 109 mL/mol for o-chloro, 107 mL/mol for m-chloro, and Vm for p-

chloro is 106 mL/mol. These give values for xVjmixture, or xv,SamPie, of -0.63 (ortho), -0.60

(meta) and -0.61 (para) ppm, and the correction for the external standard is -0.6 (ortho)

and -0.7 (meta and para) ppm.

Both versions employed here lead to similar corrections, and, even though the %m in the

chloro series differ by as much as 5 ppm, the necessary correction in each case amounts

to only about 1 ppm.

Alternatively to the above, the influence of the solvent on the chemical shift can be

standardized by extrapolation to infinite dilution. This was done in studies on solvent

effects on amides, where 17O chemical shifts of amides were extrapolated to infinite

dilution in water and in acetone. [50] Yet, chemical shifts are not always corrected in the

literature, and this is the case in the solvent effect study on 2-pyrrolidinone.[75] This
makes comparisons to literature values of solvent effects difficult. In our solvent studies,

we therefore report uncorrected as well as corrected chemical shifts. Crude estimates of
the "infinite dilution chemical shift" in the different solvents are gained by using the

value of the neat sample and that in equimolar solution.

Tables A3 -Al 2 in Appendix A give the original, experimentally determined d 17O for 1-4,
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•17/·the corrections calculated using both version 1 and version 2, and the corrected d O

determined from the average of the two corrections. For 1, the corrections are less than 2

ppm. The larger corrections are 1.50 ppm for acetone and 1.43 ppm for methanol. For 2

and 3, the corrections are less than 1 .2 ppm. The larger corrections for 2 and 3 are 1 ppm

for acetone and methanol. For 4, the corrections are less than 1.4 ppm. The larger

corrections are 1 .24 ppm for acetone. In the following, we will correlate uncorrected and

corrected chemical shifts with the solvatochromic parameters for the solvents.

4.2.1 Unsubstituted N-sulfinylaniline (1)

As mentioned above, solutions were prepared equimolar in 1 and the solvent. Table 4.2

Table 4.2 17O chemical shift (d in ppm, original) of N-sulfinylaniline (1) neat and in

various solvents (1:1 mol%)a and their dielectric constants e

solvent O17O solvent

412.67

17.51 412.31

Neat

1 -Butanol

2-Propanol 19.92 412.31
1 -Propanol 20.45 411.95
Ethanol 24.55 410.87

Methanol 32.66 411.59

Acetone 20.56 412.31

Pyridine 12.91 411.23;* 426.41
Acetonitrile 35.94 409.79

b,c

Dimethyl sulfoxide
Methylene chloride
Chloroform

Carbon tetrachloride

Toluene

Benzene

Cyclohexane
Hexane

4.89

2.24

2.38

2.27

2.02

1.88

O17O

46.45 409.07

8.93 410.87

411.23

414.83

414.83

413.75

416.27

416.27

a At 21 0C. * 406 and 413 ppm at unknown concentration and 294K from ref. 19. Signal

for the complex of 1 with pyridine.
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shows the experimentally determined 17O chemical shifts of N-sulfinylaniline (1), neat
and in various solvents, as well as the dielectric constants for each solvent. [76] Table A3
in Appendix A lists the corrected chemical shifts.

17/A clear solvent effect is observed, and the largest changes in O chemical shifts are 3.6

ppm towards lower field for cyclohexane and 3.6 ppm towards higher field for dimethyl

sulfoxide (DMSO), both compared to neat N-sulfinylaniline. These solvent-induced

changes compare well in size to those observed for l-ethyl-2-pyrrolidinone (G, Figure

1.6), with 26 ppm and 2 ppm towards higher field for trifluoroethanol and DMSO,

respectively, compared to neat l-ethyl-2-pyrrolidinone,[51] where the solvent effect
mainly stems from ?-bonding interactions with the solvents. For 2-pyrrolidinone, which
can in addition interact through its N-H bond, solvent effects are observed by 14

(towards higher field) and 9 (towards lower field) ppm shifts for trifluoroethanol and

DMSO, respectively, both compared to neat 2-pyrrolidinone. [75] Here the solvent effect
stems from both the dielectric and ?-bonding interactions of 2-pyrrolidinone with the

solvents. As has been done for 2-pyrrolidinone,[75] the changes for 1 can be explained

through small changes in the electronic structure. For example, while the NSO group can,

N- N

+

•o

H

la lb

?'

Ic

Fig. 4.4 Resonance in the NSO group of 1
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in general, be described through three resonance structures (Figure 4.4), in DMSO Ic,

with its higher electron density on oxygen, seems to have more weight.

17/The same is true for the other aprotic, polar solvents, acetone and acetonitrile, and the O

chemical shifts follow the polarities of these solvents. The protic, polar alcohols can

interact strongly with 1 due to their hydrogen bonding ability in addition to their high

polarity. From Table 4.2 we can see that d170 for 1 in alcohols moves to higher field
compared to the neat 1. This is expected, because a) in general, ?-bonding induces a

shielding of the 17O atom as the electron density at the nucleus increases,[29J and b) we
have already mentioned that polar solvents lead to shielded 17O nuclei. There are two
additional observations. First, the extent of shielding follows the dielectric constants of

417

416

g 415
Q.
a 414

IS 413
73 412

1 411
"" 410
O
- 409

408

407

I
i

ì t 1Iil 1I I
I

10 15 20 25 30
dielectric constant

35 40

?
45 50

Fig. 4.5 Plot of the 17O chemical shift (corrected average from the two calculations) of N-
sulfmylaniline (1) in various solvents (1:1 mol%) against their dielectric constants. The

half-error bar shows the range between the uncorrected and the corrected averaged
chemical shift
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the alcohols except for methanol. And second, comparing the shielding in alcohols and

DMSO, we can see that polarity has a larger effect on the 17O chemical shifts of 1 than H-
bonding. From Figure 4.5 we can see that a general agreement is observed between the

change in dielectric constant of the solvent and the change in the 17O chemical shift, but
there is no obvious correlation.

In order to quantify the above observation we made on the influence of DMSO, we have

used the solvatochromic comparison method[57] to analyse the solvent effect on the O
chemical shifts further. In Table Al 3 we show the solvatochromic parameters for the

solvents used in our studies. We have used a multiple linear regression analysis to obtain

the solvatochromic equation for the 17O chemical shifts of 1. We used the original,
corrected for external reference, and corrected for solvent (that is, for infinite dilution)

from Table A3 in Appendix A. For N-sulfmylaniline (1), the solvatochromic equations

are as given in Equations 1-3.

From the original values: d170 = 417 - 6.7p* - 1.8a - 0.4ß (1)

From external reference correction: d170 = 417 - 7.4p* - 3.5a - 1 .2ß (2)

From infinite dilution: d1 7O = 421 - 13.2p* - 2.5a - 2.4ß (3)

Because the calculated reference corrections were only small, Equations 1 and 2 are

similar and both are somewhat different from Equation 3, but while the absolute values in

these three equations obviously differ, it is important to note that trends do not change.
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For example, all corrections enter the three equations with negative signs, and the p*

contribution is largest for all three. Figures 4.6, 4.7 and 4.8 show the correlations for the

original, corrected for external reference and corrected for solvent values with the

corresponding calculated (from the solvatochromic equations) 17O chemical shifts for 1 in
various solvents. We can see that the R2 values increase from the original (0.9018) over

the corrected for external reference (0.9154) to the corrected for solvent (0.9204) O

chemical shifts. Following Equation 3, the 17O chemical shift of 1 is therefore more

responsive to the polarity or polarizability (factor of -13.2) than to the ?-bonding abilities

(factor of -2. 5 for a and -2.4 for ß) of a solvent. It is interesting to note that the 17O

Cyclohexane
418

417

? 416
a 415
* 414
?

M 413

¡ 412 ?
411

410 -I
409

y =0.9018x+ 40.51
R' = 0.9018

DMSO

MeOH

408 409 410 411 412 413 414 415 416 417

experimental 4L7ppm4

Fig. 4.6 Correlation between original experimental and calculated (from the

solvatochromic equation) 17O chemical shifts for N-sulfinylaniline (1) in different
solvents at a 1 : 1 molar ratio
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Fig. 4.7 Correlation between corrected for external reference and calculated (from the

solvatochromic equation) 17O chemical shifts for N-sulfinylaniline (1) in different
solvents at a 1 : 1 molar ratio
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Fig. 4.8 Correlation between corrected for solvent and calculated (from the

solvatochromic equation) 17O chemical shifts for N-sulfinylaniline (1) in different
solvents at a 1 : 1 molar ratio
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chemical shift of 1 has about the same sensitivity to the ?-donating and accepting ability

of a solvent, because 1 does not possess active ?-atoms. But because the H-accepting

ability of a molecule (here the solvent) is related to its basicity or nucleophilicity, the ß

value in these equations is an indication of the complexing ability of 1, which will be

addressed in Chapter 5.

Ruostesuo and coworkers also proposed solvatochromic equations for O chemical shifts

of sulfanamide (Figure 4.9)[77] (Equation 4) and pyrrolidinone[75] (Equation 5) in various
solvents.

o
Il

Fig. 4.9 Structure of sulfmamide

sulfinamide: O17O = 78.9 - 0.526p* - 4.35a (4)

pyrrolidinone: d170 = 280.3 + 8.1p* - 14.3a + 3.5ß (5)

They chose 1:1 mixtures and did not use any corrections on their chemical shifts. In

comparison, Equations 1, 2 and 3 for N-sulfinylaniline have coefficients for both a and ß,

whereas for the sulfinamide that is not the case, because it does not possess active H-

atoms (and unlike 1 can also not complex on sulfur), and so the value for b is zero. Also,
all coefficients for 1 are negative, while those for p* and ß are positive for pyrrolidinone

and therefore deshielding for the oxygen nucleus. In contrast to 1 and not unexpected,
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pyrrolidinone is more susceptible to the ?-bond donating ability of the solvent than to its

polarity or polarizability. This could be due to oxygen in 1 already being involved in an
intramolecular C-H. . .0 interaction.

4.2.2 Substituted N-sulfinylanilines 2-4

The same analysis as for 1 was done for 2-4. The original data are given in Tables A3 -

Al 2 of Appendix A. Table 4.3 shows the solvatochromic coefficients for original,
corrected for external reference and corrected for solvents O chemical shifts of N-

sulfinylanilines 1 - 4 in different solvents. For comparison, we discuss the corrected for

solvent (infinite dilution) correlation, because this showed the best correlation for 1. For

the nitro-substituted N-sulfinylanilines (4-1, 4-2 and 4-3), because there is no "neat" 17O
chemical shift (the compounds are solids), the correlation for corrected external reference

will be compared.

Table 4.3 shows that the correction for solvent can be large, and so 4-1 to 4-3 cannot be

discussed reliably. But in addition, we are using crude corrected chemical shifts, obtained

from a two-point (100% and 50% 1) linear extrapolation to infinite dilution, when it is
known that the dependence of the 17O chemical shift on the molar fraction can be
somewhat curved. [78] For a more reliable analysis, more accurate chemical shifts at

infinite dilution should be employed, as they would be obtained from an extensive

dilution study.
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Nevertheless, some general statements can be made from Table 4.3. All solvatochromic

parameters enter the equations with either negative or close to zero coefficients (only two

ß coefficients are close to zero). This leads in all cases to a decrease in the intrinsic '7O
chemical shift upon interaction with a solvent, and therefore to a more shielded O

nucleus, unlike in the loosely related amide, pyrrolidinone (Chapter 4.2.1). The

solvatochromic parameters for meta-substitution do not vary substantially from those for

1, as would be expected because electronic effects cannot be transmitted to the O

nucleus effectively. With the strongly electron-donating methoxyl-substituent in ortho-

and para-position, there is no dependence on the ?-bond accepting properties of the

solvent (the value for b is close to zero). For 1, we interpreted the ß contribution to

indicate complexation on sulfur, and this interpretation is supported and strengthened by

the equations determined for 3-1 and 3-3. A nucleophile would not as readily attack a
more electron-rich sulfur atom. In contrast, we would expect to see a larger b-value for

the nitro-substituted N-sulfinylanilines 4-1 and 4-3 than for 1, because the sulfur atom

should be electron-poor. This seems to be suggested by the large b-values for 4-1, but as

mentioned above, confirmation will have to wait for an extensive dilution study of

fXr-R
Fig. 4.10 The two possible conformations for ortho-substituted N-sulfinylanilines: planar

with a C-H. . .0 interaction or twisted by 1 80°

^^
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Table 4.3 Solvatochromic coefficients for N-sulfïnylanilines 2-4

XYZ0 R¿

1 original 417 -6.7 -1.8 -0.4 0.9018
Corrected for reference 417 -7.4 -3.5 -1.2 0.9154

Corrected for solvent 421 -13.2 -2.5 -2.4 0.9204

2-1 original 419 -2.8 -0.2 -1.0 0.7933
Corrected for reference 418 -2.8 -0.2 -1.2 0.8195

Corrected for solvent 419 -5.6 -0.3 -2.5 0.835

2-2 original 422 -6.3 -2.5 -1.8 0.9161
Corrected for reference 422 -6.2 -2.8 -2.1 0.9233

Corrected for solvent 427 -12.5 -5.5 -3.9 0.9233

2-3 original 418 -2.7 -8.8 -5.5 0.7311
Corrected for reference 417 -2.8 -8.2 -5.6 0.7575

Corrected for solvent 424 -5.5 -16.5 -11.1 0.9477
3-1 original 413 -4.1 -2.2 -0.3 0.8328

Corrected for reference 412 -4.0 -2.2 0.1 0.8455

Corrected for solvent 416 -8.0 -4.3 0.1 0.8455

3-2 original 413 -3.8 -0.6 -1.0 0.5453
Corrected for reference 412 -3.7 -0.6 -1.2 0.5658
Corrected for solvent 412 -7.5 -1.1 -2.5 0.5658

3-3 original 402 -3.8 -2.7 0.4 0.8412
Corrected for reference 401 -3.7 -2.6 0.1 0.8513
Corrected for solvent 404 -7.4 -5.2 0.2 0.8513

4-1 original 430 -13.2 -3.2 -6.6 0.9793
Corrected for reference 429 -12.3 -3.7 -7.4 0.9678

4-2 original 426 -10.1 -1.8 -4.5 0.865
Corrected for reference 424 -9.2 -2.3 -0.8 0.6097

4-3 original 424 -5.3 -14.2 -2.7 0.6396
Corrected for reference 424 -7.2 -8.8 -2.2 0.5477

compounds 4. Finally, most a-values for the substituted 2 - 4 are small, as was found for

1. The small response to the ?-donating ability of a solvent agrees with the fact that all

substituted N-sulfinylanilines possess a C-H... O interaction, even upon ortho-
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Substitution, and are therefore planar (Figure 4.10). The only exception to this is the large

negative a-value for the meta-chloro substituted 2-3, but there is no reason to assume that

this molecule would be twisted and its oxygen atom more accessible to the solvent.

4.3 Summary

We have determined the 17O chemical shifts for the parent N-sulfinylaniline (1) and its

ortho-, meta- and para-substituted derivatives (substituents Cl, OCH3 and NO2) neat and
in various solvents.

For all chloro-substituted N-sulfinylanilines, the dominant substituent effect seems to be

inductive. The dominant substituent effects are electron donating for all methoxyl-

substituted N-sulfinylanilines and electron withdrawing for all nitro-substituted N-

sulfinylanilines. The neat 17O chemical shifts for the para substituted N-sulfinylanilines
correlate well with Hammett s+ constants.

For 1 and the chloro- and methoxy-N-sulfmylanilines, with one exception, the O

chemical shifts are most sensitive to the polarity or polarizability of the solvents rather

than to their ?-bonding capabilities.

In general, the small dependence of the 17O chemical shift of all N-sulfinylanilines on the
?-donating ability of a solvent supports the idea of planar molecules with intramolecular
C-H... O bonds that decrease the solvent accessibility for intermolecular ?-bonds. The
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presence of a small dependence of the 17O chemical shift on the ?-accepting ability of a
solvent is attributed to its nucleophilicity, and therefore its ability to complex with the

electropositive sulfur atom.
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5 Complexation of N-sulfinylaniline (1)

Cerioni et al.[19] proposed complexes of N-sulfinylaniline (1) and a series of para-

substituted N-sulfinylanilines in pyridine (py) solution from C and O NMR

spectroscopic studies (Figure 5.1). Two sets of 13C NMR signals for the phenyl carbon
atoms arise from the complexed (1-py) and uncomplexed 1. There are also two O

resonance signals, that at lower field for the complexed 1-py and that at higher field for

the "free" or uncomplexed 1. Muchall[25] proposed from a computational study that there
is an anti-hydrogen bond (C-H. . .0) in 1. Thus, there are S. . .N and C-H. . .0 interactions

in the complexes. Chapter 4 shows that structural and medium effects influence the O

chemical shift, and in particular that the nucleophilicity of a solvent has an effect on the

electron density at the 17O nucleus. We would therefore expect that there is an interplay
between the strength of the S. . .N interaction and that of the C-H. . .0 interaction.

a) b)

H---0

^N'

-N;

CXr:°

Fig. 5.1 The complex of 1 and pyridine, denoted 1-py, with C-H. . .0 and S. . .N

interactions, a) Taken from ref. 19; b) Representation showing the perpendicular attack 78
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To confirm the existence of complex 1-py, we repeated the 13C NMR study on 1 in
1 7 1

pyridine. To study the interplay of the two interactions, we monitored both O and H

nuclei in temperature (21 to 70 0C) or concentration studies.

5.1 13C NMR spectra

In order to confirm the presence of the complex of N-sulfinylaniline (1) in a pyridine

solution, we repeated the 13C NMR studies of Cerioni et al.[19] From Table 5.1 we can
indeed see the two sets of 13C chemical shifts for the carbon nuclei in 1 and one set of C

Table 5.1 13C chemical shifts for 1 (uncomplexed) and 1-py (complexed) in pyridine and

chloroform solution.0

b r^nb ^„b%1 1 1' 2 2' 3 3' 4 4' Cab CßD Cy1

97.5e 140.6 146.8 124.1 112.3 127.8 127.8 128.2 115.9 146.9 121.9 133.5

96.8e 140.8 147.8 125.4 112.6 127.4 127.3 128.3 115.9 147.9 121.9 133.8

79.2' 140.6 147.9 125.3 112.5 127.4 127.4 128.3 115.8 147.8 121.9 133.4

55.1e 140.8 148.0 124.5 112.3 127.8 127.8 128.3 115.6 147.9 121.8 133.4

30.9e 140.8 148.0 124.4 112.2 127.8 127.8 128.3 114.5 147.9 121.8. 133.4

35£/ 142.3 ----- 126.7 — 128.5 —- 130.5 —- ----- —-

a Internal reference for the pyridine solution: Hexamethyldisiloxane. Signals for nuclei in

the complex 1-py are denoted with a prime. b Pyridine carbons. c In pyridine. In
chloroform.
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127.4 113.0

Fig. 5.2 13C chemical shifts (ppm) in aniline

chemical shifts for the pyridine carbon atoms. The 13C chemical shifts for aniline from
our lab are shown in Figure 5.2 for comparison. The differences for the two sets of JC

chemical shifts in 1 are ipso (entries 1 and G) 7.0 ppm, ortho (2 and T) 12.4 ppm, meta

(3 and 3') 0 ppm and para (4 and 4') 12.7 ppm. These are comparable to those in the
earlier study, where differences for ipso 6.3 ppm, ortho 12.6 ppm, meta 0 ppm and para

13.5 ppm were reported.1191 For comparison, one experiment was run in chloroform, to
show the absence of the second set of signals for 1.

As Cenoni et al. already noted,[19] the aromatic 13C chemical shifts in 1-py (the "prime"
entries in Table 5.1) are similar to those of aniline carbon atoms (Figure 5.2). One

possible reason for this is the possible hydrolysis of 1, where aniline and SO2 are the
products. However, SO2 has a 17O chemical shift (513 ppm) that is not observed. And if
SO2 reacts with pyridine, different 13C signals for pyridine should be observed, which is
also not the case. A second possible reason is the complexation of N-sulfmylaniline with

pyridine. The interaction between the S atom and pyridine (S...N) would cut the p-
system in 1 into two parts. In the complex, only the N atom of the NSO group would
conjugate with the phenyl ring, not the S=O part, which would lead to aniline-like ljC
chemical shifts (1-py-b in Figure 5.3). An equilibrium between complexed and
uncomplexed 1 would therefore have two sets of 13C signals for 1 in solution. In the
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complex, a fast exchange of pyridine would lead to only one set of signals for

pyridine. [19]

N +
I

I
I

N ^O
I

N +

1-py-a 1-py-b 'Pyc

Fig. 5.3 Resonance in the NSO group of 1-py, from ref. 19

175.2' ? NMR spectra

The two sets of 17O signals that are observed for the oxygen in the NSO group of 1 in

pyridine confirm the second scenario given in Chapter 5.1. Figure 5.4 shows the spectrum
we obtained at 21 0C.

411.23
416.2?!

WyhfaWUHM^ Vt^'H^W'«*

420 4 Ü Í)

Fig. 5.4 17O NMR spectrum of 1 in pyridine at 21 0C

Cenoni et al.[19] proposed a complex of 1 with pyridine, suggesting that one signal
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belongs to the free 1 (411.23 ppm; 406 ppm in ref. 19) while the other belongs to the

complexed 1 (416.27 ppm; 413 ppm in ref. 19). The 17O chemical shift for the free N-
sulfinylaniline is found at slightly higher field compared to that of the neat 1 (412.67

ppm) as pyridine is an aprotic, polar solvent. The signal for the complexed N-

sulfinylaniline, at the temperature chosen (21 0C), is found at lower field. The explanation

given for this was that resonance structure Ic loses weight, and lb becomes more

important (Figure 4.3).[19] The results from the 13C NMR study support structure 1-py-b
(Figure 5.3) for the complex of 1 and pyridine, because the 13C chemical shifts become
aniline-like upon complexation, indicating loss of conjugation across the C-N bond, as

discussed above. J

Table 5.2 addresses the temperature dependence of the 17O chemical shifts (given in

graphical form in Figure 5.5) and integration ratios of a 1:1 (molar ratio) N-

sulfinylaniline-pyridine solution.

Table 5.2 17O chemical shifts (ppm) and integration ratios for N-sulfmylaniline (1) in

pyridine (1:1 molar ratio) at various temperatures (0C)

Temperature d ? Integration ratio
21 411.23,416.27 3:1
32 411.59,421.67 14:1
40 411.95,426.35 24:1
50 412.67,432.12 35:1
60 413.75,437.88 20:1
70 414.83,444.36 18:1
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The 17O chemical shifts in this temperature study are uncorrected. There will of course be

errors for the reported chemical shifts, but because all spectra have two sets of signals

and the analyses are comparative (17O in the complex 1-py versus that in the
uncomplexed 1), the errors should cancel out. For example, in the temperature study, the

volume susceptibility is temperature dependent, because it has the density in it. We are

not correcting for changes in density, because the two sets of data ( O signals) lead to

one graph with two different slopes (Figure 5.5), so a change in density should affect the

two signals alike. Also, between different samples, the density dependence on the

temperature should be comparable.

450 -,

445

"g· 440
a.

-5 435

I 430-
« 425 -

I 420
1 4is
" 410

405

0 10 20 30 40 50 60 70 80
Temperature (0C)

Fig. 5.5 Temperature effect on the 17O signal of free (?) and complexed
(¦) N-sulfmylaniline (1) in pyridine (1:1 molar ratio)

From Figure 5.5, the 17O chemical shifts for both free and complexed 1 move to lower
field with an increase in temperature, by 3.6 ppm and 28.1 ppm, respectively, from 21 to

70 0C. We can assume that, with a temperature increase, the C-H. . .0 interaction in 1 will

y =0.57x+ 403.94
R2 = 0.9987

y = 0.0739x + 409.32
0.9512R
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be increasingly disrupted by rotation about the C-N bond. As the oxygen atom is
shielded in a C-H... O interaction, it therefore will be increasingly deshielded. Figure 5.5

shows that this is the case, therefore supporting the presence of a C-H... O interaction,

and it can be seen that the effect is larger in the complex. The temperature coefficients

?d/?? that can be seen from the slopes in the equations are 0.57 ppm/K for O in the

complex and 0.074 ppm/K for that in the free 1. If the change with temperature for the

uncomplexed 1 is taken as "normal" (ab initio calculations give a maximum change from

503 ppm in the planar 1 to 511 ppm in the 90° twisted 1),[79] then the much larger
dependence for the oxygen nucleus in the complex must be due to S... N complexation.

This could be indicating a stronger C-H... O than in the free 1 due to the S...N

interaction, as suggested from resonance structure 1-py-c (Figure 5.3). In support of this

interpretation, the calculated maximum changes in 17O chemical shift upon a twist in N-
sulfinylpyrrole (Figure 5.6) are 90 ppm for loss of the C-H. ..O interaction and 150 ppm

for loss of the stronger N-H. . .0 interaction. [79]

N^O N^%

&??' "^r""H - r ?"1

Fig. 5.6 C-H... O and N-H... O interactions in N-sulfmylpyrrole

A linear regression was chosen in Figure 5.5, and seems to fit very well over the
relatively small temperature range. The plot suggests a crossover of the two straight lines
below 10 0C, and this is supported by the 17O chemical shifts that can be calculated with
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ab initio methods for 1 and 1-py. At OK in the gas phase, these are 503 and 477 ppm,

respectively. [79] Obviously, this suggests that a regression similar to that in Figure 5.5
should not be linear over the OK to 340K range.

The change of the integration ratio reflects the changes in the relative amounts of free and

complexed N-sulfinylaniline, and, as expected, the relative amount of the complex is

largest at the lowest temperature.

5.3 1H NMR spectra

A change of temperature and concentration is expected to shift the equilibrium between

free and complexed N-sulfinylaniline (1), and spectral changes are expected due to

changes in S...N interaction and C-H... O strength. Because a proton is involved in the

C-H... O interaction, we obtained additional information from the 1H NMR spectra of 1

in pyridine, especially from the 1H chemical shifts for the ortho-protons of the phenyl
ring.

Table Bl in Appendix B shows the phenyl 1H chemical shifts for different concentrations
of 1 in pyridine at various temperatures. As in Chapter 5.2, the values are not corrected,

because we can compare changes in the d1 H for the ortho-protons to those of the meta-

and para-protons, and so any deviations arising from temperature changes (e.g. in the

density of the solution) should affect all signals equally. Two representative plots for the
data listed in Table Bl are given in Figure 5.7. Figure 5.7a shows the graphical
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representation of the temperature effect on the ortho-protons of 1 in a 1 0 mol% solution.

Figure 5.7b is the corresponding plot for a 40 mol% solution and shows that the

temperature effect for the ortho-protons is linear, rather than exponential as might be

suggested from Figure 5.7a. Figure 5.8 shows phenyl meta- and para-protons in the 10
mol% solution.

a)
7.75

7.7

7.65

y = -0.001x+ 7.744
R2 =0.8929

25 30 35 40 45 50 55 60 65 70 75

Temperature (0C)

-1

b)
7.7

7.65

y = -0.00 Ix + 7.722
R2 = 0.9259

7.6

25 30 35 40 45 5 0 55 60 65 70 7 5

Temperature (0C)

Fig. 5.7 Temperature effect on d? of the ortho-protons in 1. a) 10 mol% and b) 40 mol%

1 in pyridine

7.22

7.17

J=
O

X

7.12

y = 0.0003x + 7.147

25 30 35 40 45 50 55 60 65 70 75

Temperature (t)

Fig. 5.8 Temperature effect on O1H of the meta- and para-protons in 1 (10 mol% in
pyridine)

Opposite to what was found for the 17O chemical shift (Chapter 5.2), the 1H chemical
shift for the ortho-protons moves to higher field for all solutions as the temperature is
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increased. In contrast, the 1H chemical shifts for meta- and para-protons show only small

irregular changes that are not significant. The value of the temperature coefficient ?d/??

for the ortho-protons (-1.0 ppb/K) is clearly higher than that for meta- and para-protons

(-0.3 ppb/K), which supports the conclusion drawn from the 17O study above that there is
indeed a C-H... O interaction in 1. As an ortho-proton in 1 forms a C-H... O interaction

with the oxygen atom of the NSO group,[25] the electron density of the proton is
decreased and the 1H chemical shift is found at lower field.[29] As discussed above, the

C-H... O interaction is increasingly disrupted as the temperature is increased. As the

ortho-proton is increasingly released from the C-H... O interaction with a raise in

temperature, its electron density increases and its 1H chemical shift moves to higher field.
Because the meta- and para-protons do not take part in weak interactions, they are largely

unaffected by the temperature change.

To put the above into context, temperature coefficients for 15N signals in N-H... O
interactions of amide-modified oligosaccharides are on the order of -0.015 to -0.020

ppm/K. That for the 1H signal in these N-H... O interactions is about -0.007 ppm/K, so
the 15N coefficients are more sensitive and show a larger dynamic range. [35] The same is
found for 17O and 1H signals in the C-H... O interaction of N-sulfinylanilines (1). As the
C-H... O interaction is much weaker than the N-H... O interaction, the temperature

coefficient for 1H in the weaker interaction is, not surprisingly, much smaller.

Table 5.3 shows the 1H chemical shifts of the phenyl ring for different concentrations of 1

in pyridine, and Figure 5.9 shows the concentration effect on the phenyl ortho-protons
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graphically. Figure 5.10 shows the dependence for the meta- and para-protons of 1. From

Figure 5.9 we can see that the ortho-protons become deshielded as the neat N-

sulfmylaniline (100 mol%) is diluted with pyridine. The concentration coefficient ?d/Ac

is 1.3 ppb/mol%. The 1H chemical shift difference for the ortho-protons is 0.13 ppm from
"no complex" (100 mol% 1) to "all complexed" ("0" mol%, or infinite dilution). From

Figure 5.10, we can see that the meta- and para-protons of 1 also shift in the same
direction as the concentration of pyridine increases, but that the concentration coefficient

with 0.8 ppb/mol% is smaller. The 1H chemical shift difference for meta- and para-
protons is only 0.07 ppm over the full range of complexation. The values in Table 5.3 are

again uncorrected, and so the small concentration coefficient for meta- and para-protons

can probably be attributed to the change in magnetic susceptibility of the solution as the

Table 5.3 Phenyl 1H chemical shifts (ppm) for different concentrations of N-

sulfinylaniline (1) in pyridine at ambient temperature

mol% ortho-H meta-? para-H
KX) 7^62 7JK) 7ÏÏÔ
90 7.63 7.10 7.10

80 7.64 7.11 7.11

70 7.67 7.11 7.11

60 7.67 7.12 7.12

50 7.67 7.13 7.13

40 7.71 7.13 7.13

30 7.71 7.15 7.15

20 7.73 7.15 7.15

10 7.73 7.17 7.17
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composition is changed. With this as calibration, the almost twice as large concentration

coefficient for the ortho-protons should be a real effect. Because in the complex the

ortho-proton is deshielded compared to the uncomplexed, neat N-sulfinylaniline, the

C-H... O interaction might be considered stronger in the complex. This interpretation is

thus the same from 17O and 1H studies.

73 7.7
1

y = -0.0013x + 7.75
R2 = 0.9579

7.6

0 10 20 30 40 50 60 70 80 90 100

mole % N-sulfinylaniline

Fig. 5.9 Concentration effect on the ortho-protons of N-sulfinylaniline (1) in pyridine

7.28
e
a.
o.

T3 7. Ii
o

'B

7.08

y = -0.0008x + 7.1687
R2 = 0.9451

0 10 20 30 40 50 60 70 80 90 100

mole % N-sulfinylaniline

Fig. 5.10 Concentration effect on meta- and para-protons of N-sulfinylaniline (1) in
pyridine
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5.4 IR studies

Stufkens et al. assigned the characteristic vibrations of N-sulfmylamines in the IR spectra

of 15N labelled N-sulfinylamines.[6] For the NSO group in N -sulfinylaniline (1), the
frequencies are reported as 1155 cm"1 for the SO stretch (v(S=0)) and 1284 cm"1 for the
NS stretch (v(N=S)), both with strong ("s") intensities, which makes the bands easy to

identify. The frequency for C-N stretching (v(C-N)) was reported as 1299 cm"1, with a
medium ("m") intensity.[6] We focus here on the vibrational frequencies for S=O, N=S
and C-N of N-sulfinylaniline in pyridine, because with changing concentration, we might

expect to observe shifts of the vibrational frequencies and intensity changes that reflect

Table 5.4 Concentration effect on v(S=0), v(N=S) and v(C-N) (cm"1) of N-

sulfinylaniline (1) in pyridine0

mol% v(S=0) v(N=S) v(C-N)
100 1161s 1283s 1298m
90 1160s 1283s 1298m

80 1160s 1283s 1298m
70 1160s 1283s 1298m

60 1161s 1283s 1298m
50 1160s 1283s 1298m
40 1160s 1283s 1298m

30 1160s 1283s 1298m
20 1160m 1283m 1297m

10 1161m 1283m 1297m
a The entries "s" and "m" refer to the relative band intensities.
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the strength of the S...N or C-H... O interactions in the N-sulfinylaniline-pyridine

complex.

Table 5.4 shows the wavenumbers for v(S=0), v(N=S) and v(C-N) for different

concentrations of 1 in pyridine. We could not observe a concentration dependence for the

three vibrations. Ab initio calculations predict a wavenumber difference for v(S=0)

between neat N-sulfinylaniline and the complex of only 5 cm"1 in the gas phase.'
Obviously, we cannot detect this small wavenumber change that would reflect the S... N

interaction. From Table 5.4, we can see that the intensities for v(S=0) and v(N=S) change

from strong to medium for dilute samples, which is relatively arbitrary and not

significant.

5.5 Summary

We were able to observe the complex formation between N-sulfinylaniline and pyridine

by 13C and 17O NMR spectroscopies, as had already been reported in the literature.1 19'

The 17O chemical shift for N-sulfinylaniline is temperature dependent. With an increase

in temperature, the 17O chemical shift for both the "free" and the "complexed" N-
sulfinylaniline is observed to be progressively deshielded, in line with a loss of the

C-H... O interaction. Over the range from 21 - 70 0C, the signal for 1-py shows a much

larger temperature coefficient than that for 1, and this is interpreted to reflect a stronger

C-H. . .0 interaction upon complexation.
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The 1H chemical shift for the ortho-protons of 1 in pyridine is more sensitive to

temperature variation than those of meta- and para-protons, because the ortho-protons are

involved in a C-H... O interaction. With an increase in temperature, this is disrupted, and

51H for the ortho-protons moves to higher field. The 1H chemical shifts also show a
concentration dependence upon dilution of 1 with pyridine. All H signals of N-

sulfmylaniline are observed to be progressively deshielded as the amount of pyridine is

increased, but the effect is larger for ortho- than for meta- or para-protons. These changes

upon temperature and concentration variation provide information on the interplay
between S...N and C-H... O interactions in 1 and can again be interpreted to imply a

stronger C-H. . .O interaction upon complexation.

We did not observe a concentration dependence for the characteristic stretching

vibrations of N-sulfinylaniline in pyridine due to the very small changes upon

complexation.
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6 Complexation of substituted N-sulfinylanilines 2-4

6.1 17O NMR spectra

From the complexation study on N-sulfinylaniline (1) in Chapter 5, we saw that O

NMR spectroscopy gives information about the complexation (S...Npyndnc interaction).

From the substitution study in Chapter 4, we saw that the 17O nucleus reports on the
change in substitution on the aromatic ring. We will now investigate how the substituents

affect the S...N interaction by again monitoring the 17O chemical shift. We also
investigate how temperature changes affect the S...N interaction in the complexes of
2-4.

6.1.1 Substituent effects

As deduced in Chapter 4.2.2, in all N-sulfinylanilines 1 - 4 the phenyl ring is coplanar

with the NSO group, giving an extended p-system with its resonance structures. For N-

sulfmylanilines 3-1, 3-2 and 3-3, the methoxyl group with its electron donating ability

increases the electron density on the sulfur atom in the NSO group, and the S...N

interaction should therefore be weaker than that with 1. The reverse should be true for N-

sulfinylanilines 4-1, 4-2 and 4-3. Stronger complexes could be expected due to a more

electrophilic sulfur atom caused by the electron withdrawing nitro group. This conclusion

was also reached by Cerioni et al. from the fact that only one 17O signal was obtained in
their "complexations" of para-dimethylamino-N-sulfinylaniline and 4-3 with pyridine.1'91
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This was interpreted to reflect a lack of complexation for the electron rich para-

dimethylamino compound and complete complexation for the electron poor 4-3. [19' It is at
this point unclear whether the larger density on oxygen for methoxyl-substitution also

suggests a stronger C-H... O interaction, but this will be addressed again in Chapter
6.1.2.

In this study, complexes are observed for all substituted N-sulfinylanilines. Table 6.1

shows the 17O chemical shifts of N-sulfinylanilines 2 - 4 in pyridine, those for 1 are

included for comparison, as are the neat values from Table 4.1 for easy comparison.

Within a series, the change in 17O chemical shift is similar for the uncomplexed and the

neat compounds. And so, for example, d170 for the uncomplexed ortho-, meta- and para-
chloro-N-sulfinylanilines (2-1 to 2-3) in pyridine reflects the normal distance effect of the

substituent that was already discussed for the neat compounds in Chapter 4. The presence

of pyridine also does not change the fact that the 17O nucleus is still shielded for
methoxyl-substitution and deshielded for nitro-substitution on the aromatic ring. This is

true for the uncomplexed as well as the complexed N-sulfinylanilines. But upon

complexation with pyridine, in the 2- and 3-series, the 17O chemical shift for the
complexed N-sulfinylanilines is almost insensitive to the substituent position, again

supporting resonance structure b in Figure 5.3. The para-nitro substituent in 4-3-py is the

only one that increases the range of 17O chemical shifts in the complexes. Upon closer
inspection, for the chloro-substituted N-sulfinylanilines 2-py a reversal in distance effect

is observed, which suggests that multiple, contrasting electronic effects are at play that

are hard to interpret without the help of ab initio calculations.
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While Cerioni et al. also observed a similar electron donating effect for para-methoxy-N-

sulfinylaniline in pyridine as well as the complex of para-chloro-N-sulfinylaniline, they

did not observe the complex for para-nitro-N-sulfinylaniline in pyridine.1 We believe
that the reason for this might be found in the temperature dependence of the O chemical

shift, as discussed in Chapter 6.1.2.

Table 6.1 17O chemical shifts (ppm) of N-sulfinylanilines 1 - 4, in pyridine (1:1 molar

ratio, complexed and uncomplexed) and in the neat compounds at 40 0C.
O17O

complexed uncomplexed neat
Ï 426.35a 411.95° 410.88o

2-1 428.52 417.00 419.16

2-2 429.24 416.28 418.44

2-3 430.68* 413.76" 410.88èc
3-1 420.96 410.52 409.80

3-2 422.04 409.80 411.60
3-3 421.68a 400.44° 398.64e
4-1 417.72 417.72 422.76rf
4-2 415.56 411.00 424.20d
4-3 431.05a 416.28 424.20w

a Values at unknown concentration and 294K from réf. 19: 1 413, 406 ppm; 2-3 415,

406.5 ppm; 3-3 413, 395.5 ppm; 4-3 409.4 ppm. b Values in chloroform at unknown
concentration and 294K from réf. 19: 1 406, 2-3 408, 3-3 391, 4-3 432 ppm. c 2-3 is

liquid at 40 0C. d In benzene.
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6.1.2 Temperature effects

As for 1, a temperature dependence of the 17O chemical shift was found for all substituted
N-sulfinylanilines in pyridine. The temperature 17O NMR data for 1 - 4 are shown in
Tables Cl - C3 in Appendix C. Figure Dl in Appendix D shows the plot for the

temperature effect on the 17O signal of neat 1, Figure D2 repeats the plot for the
temperature effect on the 17O signal of free and complexed 1 in pyridine. Figures D3, 5,
7, 9, 11, 13, 15, 17, 19 show the data for the neat N-sulfinylanilines 2-4 (2-3 at 20 0C
was taken in hexane and data for the solid 4 were taken in benzene) and Figures

Table 6.2 Temperature coefficients (ppm/K) for the 17O chemical shift of N-
sulfinylanilines 1 - 4, in pyridine (1:1 molar ratio, complexed and uncomplexed) and in

the neat compounds

?d/??

complexed uncomplexed Neat
1 0.570 0.074 0.058

2-1 0.641 0.108 0.086

2-2 0.531 0.064 0.086
2-3 0.491 0.060 0.090
3-1 0.609 0.068 0.121
3-2 0.802 0.104 0.032
3-3 0.633 0.051 0.208
4-1 0.559 0.127 0.054"
4-2 0.476 0.141 0.069°
4-3 0.534 0.111 0.065a

" In benzene.



D4, 6, 8, 10, 12, 14, 16, 18, 20 those for N-sulfinylanilines 2 - 4 in pyridine. Table 6.2

summarizes the temperature coefficients for the '7O chemical shifts of N-sulfinylanilines
1-4, neat, uncomplexed in pyridine and in the complex.

As was already noted for 1 in Chapter 5.2, from Table 6.2 it is obvious that the

temperature coefficients (?d/??) in the complexes are larger than those in the

uncomplexed and in the neat species. The temperature coefficients in the complexes

range from 0.476 (4-2-py) to 0.802 (3-2-py) ppm/K. Temperature coefficients in the

uncomplexed and in the neat N-sulfinylanilines are rather similar and range from 0.050

(3-3) to 0.141 (4-2) ppm/K and from 0.054 (4-1) to 0.121 (3-1) ppm/K, respectively. As

in the 17O temperature study for 1, because even the ortho-substituted N-sulfinylanilines

2-4 retain an ortho-hydrogen atom, with a temperature increase, the C-H... O

interaction will be increasingly disrupted and therefore d 17O will be shifted downfield.

The stronger the C-H... O interactions in the N-sulfinylanilines are, the larger the

deshielding is, which means larger temperature coefficients. With this reasoning, we can

see that the C-H... O interaction is strengthened in all pyridine complexes of N-

sulfinylanilines, showing a cooperative effect between C-H. . .0 and S. . .N interactions.

At the beginning of Chapter 6.1.1, we made a prediction for the strength of the

complexation for methoxyl- and nitro-substituted N-sulfinylanilines, based on the

findings from the solvent study. Table 6.2 shows that larger ?d/?? are found for

methoxyl substitution (3-series) than for 1, while the nitro-substituted 4-2 has the

smallest ?d/??. While it seems that these temperature coefficients cannot be correlated
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with the strength of the complexation, they do show the expected trend as to the strength

of the C-H... O interaction. In Chapter 6.1.1 we commented on the larger electron density

on the 17O nucleus in the methoxyl-substituted 3. As the 3-series also shows the larger

temperature coefficients, it seems safe to state that their C-H... O interaction is indeed

stronger.

Because the temperature coefficients for the free and complexed species in pyridine are

different, the two lines in the temperature plots cross at one point (the actual crossover

point is not shown in Figure 5.5). The crossover temperatures, calculated from the

intercept of the two straight lines, are listed in Table 6.3. Obviously, at these crossover

points, the 17O chemical shifts of free and complexed N-sulfmylanilines are identical.
This does not necessarily mean that the two C-H... O interactions are of the same

strength or that the two oxygen nuclei experience the same environment, though. The

environments could be quite dissimilar, but different shielding or deshielding effects on

the two nuclei could simply sum up to the same observed chemical shift. From Table 6.3,

the temperature at the crossover point in the 2- and 4-series is related to the distance

between the oxygen atom and the substituent. In general, the crossover temperature is

lowest for para-substitution (as well as for no substitution in 1). This could be a

manifestation of the inductive effect on the oxygen nucleus that should be greater the

closer the substituent is. So far, it is unclear of whether any other physical relevance

should be attributed to the crossover point and the change in its position in the

temperature plots for the different N-sulfiny!anilines.

57



There is one practical significance to the crossover point, though. For 2-1, 3-1 and 3-2,

the crossover temperatures are at just about room temperature. If someone takes O

NMR spectra at room temperature only, he might only see one signal instead of two, and

the complexation might be missed entirely. Cerioni et al., for example, did not see all

complexes (for example, that for 4-3 was not found),[19] maybe for just this reason.

Table 6.3 Crossover temperature (0C) and d170 (ppm) for N-sulfmylanilines in pyridine

(1:1 molar ratio)

Temperature d ' 7 O
I TÖ8 410.00

2-1 18.9 414.72

2-2 11.9 415.13

2-3 -1.1 411.73

3-1 19.7 409.65
3-2 26.0 408.09

3-3 2.1 397.98

4-1 34.2 415.21
4-2 29.9 411.77

4-3 6.3 412.57

To finally establish a link between the strength of the C-H... O interaction, as discussed

above, and the strength of the S...N interaction in the complexes, we determined the

equilibrium constants (K) for complex formation. K for complex formation can be

calculated according to the equation in Figure 6. 1 .[
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A + B ~ A----B

1 1 1
------ = +
? K *r *A ?

obs comp comp

Fig. 6.1 Determination of the equilibrium constant for complexation from the chemical
shift

In the equation, K is the equilibrium constant, and ? is the molar fraction of B. The ?-

values are Aobs = ôobs - ôfree, Acomp = ôcomp - ôfree, where ôobs is the chemical shift of the

uncomplexed A, ôcomp is the chemical shift of the complexed A, and ôfree is the chemical

shift of the neat A. Here A is a N-sulfinylaniline and B is pyridine. The chemical shifts

are the 17O chemical shifts.

The equilibrium constants for complexes of N-sufinylanilines 1-4 and pyridine are
shown in Tables Cl, C2 and C3 of Appendix C. The K values show that the complexes

1 7

weaken as the temperature is increased, as was found from the integration of the O

signals for 1 and 1-py in Table 5.2. Earlier we found for all N-sulfmylanilines that the
C-H... O interactions are increasingly disrupted with a raise in temperature. Therefore,

both weak interactions are disrupted with an increase in temperature, as might have been

expected.

The equilibrium constants for 20 0C are summarized in Table 6.4. K for 1-py formation is

smaller than that for chloro-substitution 2-py. Upon chloro-substitution, the equilibrium

shifts closer to a 1:1 composition. The interesting complexes are again 3-py and 4-py,
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because of the contrasting electronic effects of their substituents. Table 6.4 shows

equilibrium constants for the methoxyl-substituted 3-series that are much smaller than

those for the nitro-substituted 4-series (where K values are now larger than 1, showing

the equilibria shifted far to the side of the complexes), finally confirming the predicted

stronger complexes for nitro-substitution, due to the electron withdrawing effect on the

sulfur atom.

Table 6.4 The K values for N-sulfmylanilines at 20 0C
_

1 0.57

2-1 0.77

2-2 0.63

2-3 0.76
3-la 0.36

3-2a 0.33

3-3° 0.40

4-1 15.35

4-2 14.15

4-3 3.47

a Because solutions of 3-2 and 3-3 at 20 0C were highly viscous, temperature data were

measured at 30 0C.

6.2 Summary

All substituted N-sulfinylanilines studied here show complexes with pyridine, in contrast

to what was reported in the literature.[l9] In the complexes, the substituent effect on the
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17O nucleus is vastly reduced in comparison to that in the neat N-sulfinylanilines, which

indicates a disruption of the p-conjugation between the aromatic ring and the S=O group.

As for the parent compound 1, for all substituted N-sulfinylanilines, the temperature

coefficient for the 17O signal in the complex is larger than that in the uncomplexed and in

the neat species. Again we attribute this to stronger C-H... O interactions in the

complexes, which demonstrates a cooperative effect between C-H... O and S...N
interactions.

The difference in temperature coefficients of d170 for an uncomplexed and a complexed
N-sulfinylaniline leads to a crossover point, at which the 17O chemical shifts of free and
complexed N-sulfinylanilines are identical. This is of practical importance, in that care

must be taken if, upon addition of pyridine, only one 17O signal is obtained and therefore
seemingly complexation is not observed.

Equilibrium constants for complexation show the expected trend with temperature, that

is, lower temperatures shift the equilibrium to the side of the complexes. More of interest

is that equilibrium constants confirm that the electron donating methoxyl substituent

leads to weaker complexes. For the electron withdrawing nitro substituent, the

equilibrium is decidedly on the side of the complexes.
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7 Summary, conclusions and outlook

7.1 Summary and conclusions

The here presented studies were prompted by a lack of understanding to which extent a

weak bonding interaction can influence reactivity. Even though the NSO group of N-

sulfmylanilines should be considered a heterocumulene, N=S=O, resonance contributors

with a positive charge on sulfur can be formulated that show its electrophilic nature.

Accordingly, most reactions of N-sulfmylanilines are initiated by a nucleophilic attack on

the sulfur atom of the NSO group. In hydrolysis, for example, an initial attack of the

water oxygen on sulfur, a S... O interaction, is followed by a proton transfer from the

water molecule. Tertiary amines such as pyridine are able to initiate a similar S...N

interaction, but further reaction is not possible due to missing active hydrogen atoms on

nitrogen of the amine. Complexation of a N-sulfmylaniline, therefore, can be used as a

model for the initial step of its reactions. Complexation on sulfur causes changes in the

electronic structure of the NSO group, and these changes can be probed

spectroscopically. The oxygen atom of the NSO group is a particularly good probe,

because it not only is directly connected to the complexing sulfur, but, according to

computational studies, it is also involved in a C-H... O interaction with available ortho-H

atoms on the aromatic ring of the N-sulfinylaniline.

Based on the above, we set out to determine whether the intramolecular C-H... O

interaction could influence N-sulfinylaniline reactivity as modeled by S...N
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complexation with pyridine. Our main tool was '7O NMR spectroscopy, but ' C and H
NMR, and IR spectroscopies were also employed. In addition to the unsubstiluted parent

N-sulfinylaniline (Ph-NSO, 1), we chose a selection of substituted (Cl, OCH3, NO2) N-

sulfinylanilines 2-4 with substituents on the aromatic ring that would allow for a wide

range of electron donating and withdrawing abilities to tune the electron density on the

NSO group. Except for I5 all compounds were synthesized according to literature

procedures.

To begin with, it was important to determine how sensitive the NSO oxygen nucleus is to

changes in its environment that are caused by changes in solvent and nature and position

of substituents on the aromatic ring. The 17O chemical shift lies around 400 ppm, and a

chemical shift range of about 25 ppm was determined for the different neat compounds.

Chemical shifts for the para-substituted compounds follow Hammett substituent

constants, which illustrates the extent of conjugation in the system. But overall,

substituent effects are hard to interpret, because of multiple influences on the O

nucleus: s- and p-effects directly through the aromatic ring but also s-effects on the

ortho C-H bonds and therefore indirectly through the C-H... O interaction. Solvent

induced chemical shift changes are in general somewhat smaller. While they follow the

solvent dielectric constants only loosely, they can be described well with solvatochromic

equations. In general, the 17O chemical shifts are more sensitive to the polarity or
polarizability of a solvent rather than to its ?-bonding capabilities, in line with the fact

that the oxygen atom is involved in an intramolecular C-H... O interaction. Interestingly,

though, a dependence on the ?-bond accepting properties of a solvent is found, which is
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interpreted as the complexing ability of the solvent with the sulfur atom. This dependence

is largest for nitro-substitution, and therefore the most electropositive sulfur.

One more change in environment for the NSO oxygen nucleus was brought about by a

change in temperature, because the oxygen is thought to be involved in a hydrogen-

bonding interaction. Upon an increase in temperature, a downfield shift of the O signal

was observed in all N-sulfmylanilines, signalling that the oxygen was increasingly

released from an intramolecular C-H... O interaction. This was seen even for mono-

ortho-substitution. For the parent N-sulfinylaniline (1) only, we also probed the

temperature dependence of the 1H signals. The small shifts for 1H signals from meta and
para protons provided a calibration, and the larger temperature coefficient for the ortho

protons was found to be significant. Upon an increase in temperature, the signal for the

ortho protons shifted upfield, again signalling that the hydrogen was increasingly released

from its C-H... O interaction.

We were unable to show the complex of N-sulfinylaniline (1) with pyridine through IR

spectroscopy due to very small changes in band positions upon complexation, but NMR

spectroscopy proved sensitive enough. We observed a small concentration dependence of

the meta and para protons as 1 was diluted with pyridine, and again this was taken as

calibration. The larger deshielding of the ortho protons not only showed complex

formation, but also suggested a stronger C-H... O interaction in the complex. Complex

formation in 1 was also shown through the appearance of a second set of C signals for

the aromatic ring of 1 upon addition of pyridine. That all N-sulfinylanilines form
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complexes with pyridine was shown from two sets of signals in their O NMR spectra.

In the complexes, there was a reduced substituent effect on the 17O chemical shift, which
demonstrated the change in electronic structure of the NSO group upon complexation of

sulfur and the loss of conjugation with the aromatic ring. The 17O nucleus was deshielded
with an increase in temperature, and temperature coefficients for the complexed N-

sulfinylanilines were greater than those for the free species, which can lead to an

accidental degeneracy of the two signals. The observed deshielding was in line with a

gradual loss of an intramolecular C-H... O interaction upon a raise in temperature, and

the larger changes in the complexes implied stronger C-H... O interactions in the

complexes. Equilibrium constants for complexation corroborated the conclusion drawn

from the solvent study, in that the strongly electron withdrawing nitro group gave rise to

stronger complexes.

In conclusion, we were able to demonstrate experimentally the intramolecular C-H... O

interaction in N-sulfmylanilines, which formerly had only been predicted

computationally, and the dependence of its strength on the S...N interaction in the

complexes of N-sulfinylanilines with pyridine. From the different temperature

dependences of a 17O nucleus in a N-sulfmylaniline and in its complex, it seems safe to
state that the C-H... O interaction is strengthened upon complexation. Equilibrium

constants indicate that an electron donating substituent leads to a weaker complex.

Finally, substituent effects on the temperature dependence of the 17O nucleus in a
complex seem to indicate that a weaker complex possesses a stronger C-H... O
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interaction. If this is phrased the other way around, a "strong" C-H... O interaction could

inhibit complexation, and maybe lead to a reduced reactivity of a N-sulfmylaniline.

7.2 Outlook

Several questions follow logically from the various studies performed here, which should

be addressed in the future.

First of all, for temperature coefficients, computational results suggest that the selection

of reference compounds for which intramolecular ?-bonds strengths are known would be

useful. Not much is known on the temperature dependence of O signals in simple

terminal oxygen systems, and these studies would complement this work on N-

sulfinylanilines. Also, a system such as N-sulfinylpyrrole, with the possibility of both

C-H... O and N-H... O interactions should provide additional valuable insight as to the

size of temperature coefficients.

Secondly, 1H NMR studies, for both temperature and concentration dependences, should

be carried out for the substituted N-sulfinylanilines. While changes in H chemical shifts

are naturally smaller than those for 17O, 1H chemical shifts are more "robust" and suffer
less from environmental changes as do 17O chemical shifts. Substituent effects might be
more easily interpreted with these sets of data available, even though they are expected to

be complementary to the 17O results.
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Third. To get a less crude idea of the solvent influence, one might want to conduct

detailed "infinite dilution" studies, especially towards very dilute solutions, because it is

known that there can be a curvature in that region in a plot of chemical shift versus

concentration. Studies on solvent effects in ortho-disubstituted N-sulfmylanilines, where

there is no C-H... O interaction, and on N-sulfinylpyrrole, where there is possibility of

both C-H... O and the stronger N-H... O interactions, should provide important

additional results. In ortho-disubstituted N-sulfinylanilines, a twisted conformation would

a) reduce the conjugation of the phenyl ring with the NSO group, and so substituents

should have smaller effects on the electron density of the sulfur atom than in the planar

systems, and b) expose the oxygen atom to the solvent more than a planar system.

Finally, even from the limited computational data provided here, it is obvious that, in

order to interpret the data fully, quantum chemical results are needed.
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8 Experimental

8.1 NMR spectroscopy181"871

The 1H NMR spectra were run on a Varían UNITY INOVA-300 NMR spectrometer. For

the proton spectra, a 5 mm probe was used and spectra were referenced to an internal

standard, hexamethyldisiloxane (HMDS). For variable temperature 1H NMR spectra, air
was used for a requested temperature between 15 and 70 0C. The air flow was adjusted to

about 10 L/min. A standard methanol sample was used to calibrate the probe temperature.

As 17O spectra are not routine spectra, there are no standard parameters in NMR
instruments. After the selection of many parameters, we set up the 17O NMR parameters
in the Varían UNITY INOVA-300 NMR spectrometer. [88"89] A 5 mm broadband probe was

operated at 40.687 MHz, 29.9 kHz spectral width, 90° pulse and 0.1 µ8 acquisition delay.

The pulse width was 11.3 µ8. Acquisition time was 0.05s. Spectra were not proton-

decoupled. The number of transients was from 40,000 to 80,000. External D2O (d = 0

ppm) in a concentric tube was the reference. All experiments were performed with

materials of natural isotopie abundance. A molar ratio of 1 : 1 N-sulfmylaniline with the

various solvents was used. The half-widths for 17O signals were measured with the

command " res".

8.2 IR spectroscopy

Infrared spectra of samples at room temperature were recorded in the 500 - 4000 era"
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region with a Magna 550 spectrometer from Nicolet. Two NaCl plates were used. Each

spectrum was composed of 32 scans. Infrared spectra of liquid samples were recorded for

the pure liquids. Infrared spectra of solid samples were measured with mulls. A mull was

prepared by grinding the sample with mineral oil. The paste was sandwiched between

NaCl plates.

8.3 NMR sample preparation^01

Good-quality NMR tubes were selected. Used tubes were carefully cleaned and dried

before using again. The NMR tube was filled to a height of 5 cm with sample and

deuterated solvent not to complicate shimming. Samples were fully mixed. Solid particles

remaining in the sample were filtered off by a small amount of glass wool in a pipette.

8.4 Syntheses

8.4.1 o-Chloro-N-sulfinylaniline (2-1)

In a 50 mL flask fitted with a water condenser, 15.5 g (0.122 mol) of o-chloroaniline and

17 mL of sodium-dried benzene were placed. Thionyl chloride (14.5 g, 0.122 mol) was

added dropwise with magnetic stirring and ice bath cooling. A vigorous reaction took

place and aniline hydrochloride precipitated. As a result of the exothermic reaction,

benzene reflux temperature was reached. The reaction mixture was stirred and heated

until the solids gradually disappeared (5 hours), after which 0.5 mL thionyl chloride were
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added. The reaction mixture was heated for an additional 2 hours. A clear solution

without residue in the flask was obtained. The benzene and excess thionyl chloride were

evaporated using a rotary evaporator under reduced pressure at 50 0C. Then the residual

brownish-yellow liquid was distilled under vacuum. Yield 17.12 g (80.8 %, lit. 83 %[ '"
93]), yellow liquid, b.p. 68-77 °C/0.4-0.5 mmHg (lit. 76-80 °C/0.5-0.6 ramHg[91"93]). 1H
NMR: 8.1 (IH, m), 7.3 (IH, m), 7.1 (IH, m), 7.0 ppm (IH, m). 13C NMR: 139, 131, 130,
129, 128, 127 ppm. IR: 1168 v(S=0), 1218 cm"1 v(N=S).

8.4.2 m-Chloro-N-sulfinylaniline (2-2)

Same procedure as in 8.4.1.

Yield 15.1g (71.3 %, lit. 79 %[93]), yellow liquid, b.p. 78-86 °C/0.4-0.5 mmHg. (lit. 79-85
°C/0.4-0.5 mmHg[93]). 1HNMR: 7.6 (IH, m), 7.5 (IH, m), 7.2 (IH, m), 7.1 ppm (IH, m).
13CNMR: 142, 133, 129, 127, 125, 124 ppm. IR: 1167v(S=0), 1219 cm"1 v(N=S).

8.4.3 p-Chloro-N-sulfinylaniline (2-3)

In a 50 mL flask fitted with a water condenser were placed 10.2 g (0.244 mol) of p-

chloroaniline and 15 mL of sodium-dried benzene. 9.49 g (0.244 mol) of thionyl chloride

were added dropwise to the flask. The contents were heated to reflux until the material in

the bottom of the flask disappeared. After 5 hours of reflux, a dark solution was obtained

with a big lump of black solid in the bottom of the flask. The liquid was decanted. The

benzene and excess thionyl chloride were evaporated using the rotary evaporator under
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reduced pressure at 50 0C. Then the residual black liquid (p-chloro-N-sulfmylaniline in

benzene) was distilled under vacuum by fractional distillation apparatus. We obtained the

yellow p-chloro-N-sulfinylaniline, which solidified readily at room temperature. Yield

9.11 g (21.5 %, lit. 41 %[91'92'94]), yellow solid, b.p. 78-86 °C/0.4-0.5 mmHg (lit. 108-109
0CA. 5 mmHg191·92'941) m.p. 22-23 0C. 1H NMR: 7.8 (2H, dd), 7.3 ppm (2H, dd). 13C
NMR: 140, 136, 129, 128 ppm. IR: 1160 v(S=0), 1221 cm"1 v(N=S).

8.4.4 o-Methoxy-N-sulfinylaniline (3-1)

Same procedure as in 8.4.1.

Yield 16g (78 %, lit. 87 %[93]), orange liquid, b.p. 93-95 °C/3 mmHg (lit. 94 °C/3
mmHg[93]). 1HNMR: 8.1 (IH, m), 7.3 (IH, m), 7.2 (IH, m), 6.8 (IH, m), 3.7 ppm

(3H, s). 13C NMR: 152, 132, 131, 127, 120, 111, 55 ppm. IR: 1160 v(S=0), 1221 cm-1
V(N=S).

8.4.5 m-Methoxy-N-sulfinylaniline (3-2)

Same procedure as in 8.4. 1 .

Yield 17.5g (85 %, lit. 90 %[95]), orange liquid, b.p. 132-135 °C/17 mmHg (lit. 133-134
°C/17 mmHg[95]). 1H NMR: 7.3 (IH, m), 7.2 (IH, m), 7.0 (IH, m), 6.7 (IH, m), 3.5 ppm
(3H, s). 13C NMR: 159, 142, 129, 119, 116, 111, 54 ppm. IR: 1162 v(S=0), 1230 cm"'
V(N=S).
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8.4.6 p-Methoxy-N-suIfinylaniline (3-3)

Same procedure as in 8.4.1.

Yield 16.9g (82 %, lit. 91 %[96]), orange liquid, b.p. 142-144 °C/17 mmHg (lit. 144 °C/15
mmHg[96]). 1H NMR: 7.8 (2H, dd), 6.8 (2H, dd), 3.8 (3H, s). 13C NMR: 160, 137, 129,
114,116, lll,55ppm. IR: 1 147 v(S=0), 1218 cm-1 v(N=S).

8.4.7 o-Nitro-N-sulfinylaniline (4-1)

In a 50 mL flask fitted with a water condenser were placed 10.2 g (0.122 mol) of ortho-

nitro aniline and 15 mL of sodium-dried benzene. 9.49 g (0.122 mol) of thionyl chloride

were added dropwise to the flask. The contents were heated to reflux until the material in

the bottom of the flask disappeared. After 5 hours of reflux, a dark solution was obtained

with a big lump of black solid in the bottom of the flask. The benzene and excess thionyl

chloride were evaporated using the rotary evaporator under reduced pressure at 50 0C. A

residual oil was obtained that solidified. Recrystallization from a mixture of benzene and

petroleum ether gave yellow crystals. Yield 4.1g (24 %, lit. 51 %[91]), yellow crystals, m.p.
51-54 0C (lit. 52 °C[91]). 1H NMR: 8.0 (IH, m), 7.4 (IH, m), 7.0 (IH, m), 6.6 ppm (IH, m).

13C NMR: 136, 128, 125, 122, 121, 116 ppm. IR: 1220 v(S=0), 1260 cm"1 v(N=S).

8.4.8 m-nitro-N-sulfinylaniline (4-2)

Same procedure as in 8.4.7.
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Yield 10.2g (60 %, lit. 71%[97'98]), yellow crystals, m.p. 62-65 0C (lit. 63.5 °C[9798J). 1H
NMR: 8.5 (IH, m), 8.2 (IH, m), 8.1 (IH, m), 7.7 ppm (IH, m). 13C NMR: 143, 134, 124,

118, 124, 121 ppm. IR: 1176v(S=0), 1217 cm-' v(N=S).

8.4.9 p-Nitro-N-sulfinylaniline (4-3)

Same procedure as in 8.4.7.

Yield 11g (65 %, lit. 77 %[97' 98]), yellow crystals, m.p. 69-71 0C (lit. 70 °C[97' 98]). 1H
NMR: 8.1 (2H, dd), 6.7 ppm (2H, dd). 13CNMR: 143, 134, 124, 118, 124, 121 ppm. IR:

1 176 V(S=O), 1217 cm"1 v(N=S).
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Appendix A

Computational data in Tables Al and A2 were provided by Dr. Heidi Muchall,
private communication.

Table Al Experimentar and calculated* molar (??) and volumetric (??) susceptibility in
cgs-ppm, densityac (p, g/mL), molar mass (M, g/mol) and molar volume* (V111, mL/mol)
of solvents.

Table A2 Calculated0 molar (??) and volumetric (??) susceptibility in cgs-ppm, density
(p, g/mL), molar mass (M, g/mol), molar volume (Vm, mL/mol) and population (%) of
the rotamersc of N-sulfinylanilines 1-4.

Table A3 Experimental and corrected 17O chemical shifts (ppm) for N-sulfinylaniline (1)
in different solvents. Corrections for external standard from two correction versions,"

final corrected value and value upon infinite dilution.

Tables A4-A12 Same as Table A3, for N-sulfinylanilines 2-4

Table Al 3 Solvatochromic parameters of the solvents used.a
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Table Al Experimental0 and calculated* molar (??) and volumetric (??) susceptibility in
cgs-ppm, densitya,c (p, g/mL), molar mass (M, g/mol) and molar volume* (V111, mL/mol)
of solvents

—XM.exp —XM,calc P M Vm ~~Xv.exp —Xv.calc
~^ater ??97 Í4X) 0.998 M) 16 0.719 Ö776
methanol 21.40 21.5 0.7914 32.0 30 0.530 0.532
ethanol 33.60 34.2 0.7893 46.1 44 0.575 0.586

1-propanol 45.176 45.9 0.8035 60.1 61 0.6047 0.614
2-propanol 45.794 47.4 0.7855 60.1 61 0.5985 0.620
1-butanol 56.536 57.4 0.8098 74.1 72 0.6176 0.627

methylene 46.6 47.9 1.325 84.9 44 0.733 0.748
chloride

chloroform 59.30 59.4 1.492 119.4 66 0.740 0.742
tetrachloro 66.60 66.6 1.5867 153.8 79 0.691 0.687
methane

acetone 33.7 33.7 0.7899 58.1 57 0.460 0.458
acetonitrile 28.0 28.0 0.7857 41.1 41 0.534 0.535
DMSO 43.7J 45.9 1.1014 78.1 64 0.616e 0.647
pyridine 49.21 47.9 0.9819 79.1 71 0.611 0.595
benzene 54.84 54.4 0.8765 78.1 74 0.611 0.611
toluene 66.11 64.0 0.8669 92.1 92 0.6179 0.602
hexane 74.6 75.5 0.6603 86.2 99 0.565 0.578

cyclohexane 68.13 67.3 0.7785 84.2 90 0.627 0.622
a From the CRC Handbook of Chemistry and Physics, 63rd edition, CRC Press, 1983.
b Geometry optimization with B3LYP/6-31+G(2d,2p). GIAO isotropic susceptibilities
(??) with OPBE/6-3 1 1++G(2df,pd). Molar volume to the 0.001 e/bohr3 density.
0 Density mostly given at 20 0C.
d From the volumetric susceptibility.
e From A.B. Kudrzavtsev, W. Linert, Physico-chemical applications of NMR, World
Scientific, Singapore, 1996.
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Table A2 Calculated0 molar (??) and volumetric (??) susceptibility in cgs-ppm, density
(p, g/mL), molar mass (M, g/mol), molar volume (Vm, mL/mol) and population (%) of
the rotamersc of N-sulfinylanilines 1-4

-Xm ? M Vn, -?? Population
Ph-NSO 64.4 L236 YÎ92 88 0.572 HX)
2-Cl 75.5 1.4 173.6 107 0.61 <1
6-Cl 82.3 1.4 173.6 109 0.66 >99

ortho average'' 82.3 109 0.66
3-Cl 78.8 1.4 173.6 103 0.64 49
5-Cl 75.7 1.4 173.6 110 0.61 51

meta average1' 77.2 107 0.62
4-Cl 78.2 1.4 173.6 106 0.63 100
2-NO2 61.9 1.5 184.2 110 0.50 11
6-NO2 62.4 1.5 184.2 113 0.51 89

ortho average17 62.3 113 0.51
3-NO2 67.0 1.5 184.2 121 0.55 46
5-NO2 63.7 1.5 184.2 108 0.52 54

meta average17 65.2 114 0.53
4-NO2 70.4 1.5 184.2 111 0.57 100
2-OCH3 78.5 1.3 169.2 122 0.60 3
6-OCH3 76.2 1.3 169.2 110 0.59 97

ortho average17 76.3 110 0.59
3-OCH31Sy/ 79.0 1.3 169.2 132 0.61 57
3-OCH312n/ 77.9 1.3 169.2 129 0.60 9
5-OCH3'sy/ 74.4 1.3 169.2 115 0.57 24
5-OCH3ian/ 75.9 1.3 169.2 116 0.58 10

meta average17 77.5 126 0.60
4-OCH3>sy/ 81.7 1.3 169.2 113 0.63 51
4-OCH3'an/ 77.9 1.3 169.2 118 0.60 49

para average*7 79.8 ?5 ???
a Geometry optimization with B3LYP/6-31+G(2d,2p). GIAO isotropic susceptibilities
(??) with OPBE/6-31 1++G(2df,pd). Molar volume to the 0.001 e/bohr3 density.
* Estimated density upon substitution: chloro 1.236 + 0.2 g/mL, nitro 1.236 + 0.3 g/mL,
methoxy 1.236 + 0.1 g/mL.
c Given for a set of rotamers in equilibrium: ortho (2 and 6), meta (3 and 5), para
methoxy (4syn and 4ant¡). Calculated from the difference in total energy.
d Weighted average.
e Syn has the CH3 group oriented towards the SO oxygen, anti away from it.
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Table A3 Experimental and corrected 17O chemical shifts (ppm) for N-sulfinylaniline (1)
in different solvents. Corrections for external standard from two correction versions,0

final corrected value and value upon infinite dilution

original correction correction corrected error infinite dilution shifts'"version 1 version 2

neat 412.67

methanol 411.59 410.48 409.85 410.16 -1.43 410

ethanol 410.87 409.88 409.38 409.63 -1.24 409

1-propanol 411.95 411.05 410.42 410.73 -1.22 411

2-propanol 412.31 411.45 410.99 411.22 -1.09 412

1-butanol 412.31 411.48 411.07 411.28 -1.04 412

methylene
chloride 410.87 410.30 409.84 410.07 -0.80 410

chloroform 411.23 410.70 410.33 410.51 -0.72 411

tetrachloro
methane 414.83 414.22 413.80 414.01 -0.82 418

acetone 412.31 411.15 410.48 410.82 -1.50 411

acetonitrile 409.79 408.72 408.13 408.42 -1.37 407

DMSO 409.07 408.28 407.88 408.08 -0.99 406

pyridine 411.23 410.37 409.77 410.07 -1.16 410
426.41 425.41 424.81 425.11 -1.30 440

benzene 413.75 412.93 412.22 412.58 -1.18 415

toluene 414.83 414.01 413.14 413.58 -1.26 417

hexane 416.27 415.48 414.78 415.13 -1.14 420

cyclohexane 416.27 415.48 414.68 415.08 -1.19 420
" See text for correction versions 1 and 2 used.
4 Using the average of the two corrections.
' Crude estimate from the neat and the equimolar value.
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Table A4 Experimental and corrected 17O chemical shifts (ppm) for o-chloro-N-
sulfinylaniline (2-1) in different solvents. Corrections for external standard from two

correction versions,0 final corrected value and value upon infinite dilution

original correction correction corrected error infinite dilution shifts'version 1 version 2

neat 416.64

methanol 415.20 414.25 414.17 414.21 -0.99 412

ethanol 416.28 415.46 415.33 415.40 -0.89 414

1-propanol 417.72 416.98 416.82 416.9 -0.82 417

1-butanol 416.28 415.63 415.42 415.53 -0.76 414

methylene
chloride 415.56 415.20 414.78 414.989 -0.57

413

chloroform 416.64 416.32 415.95 416.14 -0.51 415

tetrachloro
methane 419.52 419.12 418.78 418.95 -0.57

421

acetone 417.72 416.77 416.61 416.69 -1.03 416

acetonitrile 415.56 414.66 414.53 414.59 -0.97 413

DMSO 413.04 412.47 412.18 412.32 -0.72 408

pyridine 413.76 413.07 412.86 412.96 -0.80
426.72 426.03 425.82 425.72 -0.80 409

benzene 417.00 416.35 416.10 416.25 -0.78 416

toluene 419.88 419.06 418.98 419.02 -0.86 421

hexane 417.72 417.11 416.77 416.94 -0.78 417

cyclohexane 416.64 416.04 415.78 . 415.91 -_0J3 41^5
a See text for correction versions 1 and 2 used.
bUsing the average of the two corrections.
c Crude estimate from the neat and the equimolar value.
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Table A5 Experimental and corrected 17O chemical shifts (ppm) for m-chloro-N-
sulfmylaniline (2-2) in different solvents. Corrections for external standard from two

correction versions," final corrected value and value upon infinite dilution

original correction correction corrected error infinite dilution shifts'version 1 version 2

neat 417.00

methanol 414.58 413.45 413.45 413.45 -1.03 409

ethanol 415.92 415.02 414.97 415.00 -0.93 413

1-propanol 415.56 414.74 414.66 414.70 -0.86 412

1-butanol 417.00 416.26 416.14 416.20 -0.80 415

methylene
chloride 417.36 416.87 416.58 416.73 -0.64 416

chloroform 416.28 415.84 415.59 415.72 -0.57 414

tetrachloro
methane 420.60 420.11 419.86 419.99 -0.62 423

acetone 417.72 416.65 416.61 . 416.63 -1.09 416

acetonitrile 416.28 415.29 415.25 415.27 -1.01 414

DMSO 413.76 413.07 412.10 412.98 -0.78 409

pyridine 416.28 415.50 415.38 415.89 -0.39 415
424.92 424.14 424.02 424.08 -0.84 431

benzene 419.52 418.79 418.62 418.71 -0.82 420

toluene 420.24 419.42 419.34 419.38 -0.86 422

hexane 422.40 421.71 421.45 421.58 -0.82 426

cyclohexane 421.32 420.63 420.46 420.55 -0.78 424
a See text for correction versions 1 and 2 used.
bUsing the average of the two corrections.
' Crude estimate from the neat and the equimolar value.
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Table A6 Experimental and corrected 17O chemical shifts (ppm) for p-chloro-N-
sulfinylaniline (2-3) in different solvents. Corrections for external standard from two

correction versions,0 final corrected value and value upon infinite dilution

original correction correction corrected error infinite dilution shifts'
version 1 version 2

neat 410.16"

methylene
chloride 413.40 413.04 412.62 412.83 -0.57 416

chloroform 413.40 413.08 412.71 412.89 -0.51 416

tetrachloro
methane 417.72 417.32 416.98 417.15 -0.57 424

acetonitrile 411.96 411.06 410.93 410.99 -0.97 412

DMSO 411.24 410.67 410.38 410.52 -0.72 411

pyridine 415.92 414.50 415.02 414.76 -1.16 413
422.76 422.19 421.86 422.03 -0.90 427

benzene 415.20 414.55 414.30 414.42 -0.78 419

toluene 416.64 415.82 415.74 415.78 -0.86 421

hexane 417.36 416.75 416.41 416.58 -0.78 423

cyclohexane 417.72 417.12 416.86 416.99 :073 424
" See text for correction versions 1 and 2 used.
* Using the average of the two corrections.
c Crude estimate from the neat and the equimolar value.
d Solid sample, hexane solution.
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Table A7 Experimental and corrected 17O chemical shifts (ppm) for o-methoxy-N-
sulfinylaniline (3-1) in different solvents. Corrections for external standard from two

correction versions,0 final corrected value and value upon infinite dilution

original correction correction corrected error infinite dilution shifts'
__________________________version 1 version 2
neat 409.80

methanol 408.36 407.25 407.54 407.39 -0.97 406

ethanol 408.72 407.73 407.94 407.83 -0.89 407

1-propanol 409.44 408.54 408.70 408.62 -0.82 409

1-butanol 409.77 408.98 409.06 409.02 -0.78 410

methylene
chloride 408.36 407.79 407.79 407.79 -0.57 407

chloroform 409.08 408.59 408.55 408.57 -0.51 409

tetrachloro
methane 411.24 410.67 410.63 410.65 -0.59 413

acetone 409.44 408.33 408.49 408.41 -1.03 408

acetonitrile 408.72 407.65 407.90 407.77 -0.95 407

DMSO 408.72 407.94 408.03 407.98 -0.74 408

409.44 408.58 408.66 408.62 -0.82 409
pyridine 415.56 414.70 414.78 414.74 -0.82 421

benzene 411.96 411.14 411.22 411.18 -0.78 414

toluene 411.59 410.77 410.85 410.81 -0.78 413

hexane 412.32 411.50 411.50 411.50 -0.82 415

cyclohexane 412.32 411.54 411.58 411.56 -0.76 415
" See text for correction versions 1 and 2 used.
' Using the average of the two corrections.
c Crude estimate from the neat and the equimolar value.



Table A8 Experimental and corrected 17O chemical shifts (ppm) for m-methoxy-N-
sulfinylaniline (3-2) in different solvents. Corrections for external standard from two

correction versions," final corrected value and value upon infinite dilution

original correction correction corrected error infinite dilution shifts'version 1 version 2

neat 411.32

methanol 410.52 409.41 409.74 409.57 -0.95 408

ethanol 408.00 407.01 407.26 407.13 -0.87 403

1-propanol 411.24 410.38 410.50 410.44 -0.80 410

1-butanol 407.28 406.46 406.59 406.52 -0.76 402

methylene
chloride 409.08 408.55 408.51 408.53 -0.55 406

chloroform 408.36 407.87 407.83 407.85 -0.51 404

tetrachloro
methane 412.68 412.11 412.07 412.09 -0.59 413

acetone 409.08 407.97 408.18 408.07 -1.01 405

acetonitrile 410.52 409.45 409.70 409.57 -0.95 408

DMSO 407.64 406.90 406.98 406.94 -0.70 403

pyridine 408.36 407.64 409.42 408.53 0.17 406
422.04 421.32 421.30 421.33 -0.71 431

benzene 410.16 409.34 409.42 409.38 -0.78 407

toluene 410.52 409.70 409.78 409.74 -0.78 408

hexane 410.88 410.10 410.10 410.10 -0.78 409

cyclohexane 413.40 412.62 412.70 412.66 -0.74 414
" See text for correction versions 1 and 2 used.
b Using the average of the two corrections.
c Crude estimate from the neat and the equimolar value.

89



Table A9 Experimental and corrected 17O chemical shifts (ppm) for p-methoxy-N-
sulfinylaniline (3-3) in different solvents. Corrections for external standard from two

correction versions,0 final corrected value and value upon infinite dilution

original correction correction corrected error infinite dilution shifts'version 1 version 2

neat 398.64

methanol 397.19 396.16 396.45 396.31 -0.89 394

ethanol 398.28 397.33 397.59 397.46 -0.82 396

1-propanol 398.27 397.45 397.62 397.54 -0.74 396

1-butanol 398.27 397.49 397.62 397.56 -0.72 396

methylene
chloride 398.64 398.15 398.15 398.15 -0.49 398

chloroform 397.92 397.48 397.43 397.45 -0.47 396

tetrachloro
methane 401.16 400.63 400.63 400.63 -0.53 403

acetone 400.44 399.37 399.58 399.47 -0.97 400

acetonitrile 397.55 396.53 396.81 396.67 -0.88 395

DMSO 397.91 397.22 397.30 397.26 -0.65 396

pyridine 397.55 396.77 397.36 397.07 -0.48 383
415.20 414.42 415.01 414.71 -0.49 418

benzene 400.08 399.30 399.43 399.36 -0.72 400

toluene 400.44 399.62 399.75 399.68 -0.76 401

hexane 401.16 400.42 400.42 400.42 -0.74 402

cyclohexane 401.52 400.78 400.87 400.82 -0.70 403
" See text for correction versions 1 and 2 used.
' Using the average of the two corrections.
c Crude estimate from the neat and the equimolar value.
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Table AIO Experimental and corrected 17O chemical shifts (ppm) for o-nitro-N-
sulfmylaniline (4-1) in different solvents. Corrections for external standard from two
correction versions0 and final corrected value

original correction correction corrected Error
version 1 version 2

" See text for correction versions 1 and 2 used.
' Using the average of the two corrections.
c Solid sample, no dissolution with nonpolar aliphatic solvents.

neat

methylene chloride 418.44 417.61 417.61 417.61 0.00
chloroform 419.52 418.78 418.77 418.77 -0.01

acetone 416.64 415.29 415.45 415.37 0.08

acetonitrile 415.56 414.23 414.47 414.35 0.12

DMSO 412.32 411.32 411.41 411.36 0.05

pyridine 417.36 418.43 418.34 418.39 1.03
423.48 423.48 424.46 423.97 0.49

benzene 421.68 420.65 420.74 420.69 0.04

toluene 422.40 422.40 421.46 421.52 -0.06
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Table All Experimental and corrected 17O chemical shifts (ppm) for m-nitro-N-
sulfinylaniline (4-2) in different solvents. Corrections for external standard from two

correction versions0 and final corrected value

original correction correction corrected Errorversion 1 version 2

neat

methylene chloride 417.72 416.96 416.89 416.92 -0.80
chloroform 419.52 418.84 418.77 418.80 -0.72

acetone 417.36 416.07 416.17 416.12 -1.24

acetonitrile 412.68 411.41 411.59 411.50 -1.18

DMSO 418.08 417.14 417.17 417.16 -0.92

pyridine 410.88 409.86 409.90 409.88 -1.00
413.00 411.98 412.02 412.00 -1.00

benzene 419.16 418.18 418.21 418.20 -0.96

toluene 422.04 421.22 421.10 421.16 -0.88
a See text for correction versions 1 and 2 used.
* Using the average of the two corrections.
' Solid sample, no dissolution with nonpolar aliphatic solvents.
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Table Al 2 Experimental and corrected 17O chemical shifts (ppm) for p-nitro-N-
sulfinylaniline (4-3) in different solvents. Corrections for external standard from two
correction versions0 and final corrected value

original correction correction corrected errorversion 1 version 2

neat

methylene chloride 416.28 415.63 416.89 416.26 -0.02
chloroform 416.28 415.71 418.77 417.24 0.96

acetone 416.28 415.09 416.17 415.63 -0.65

acetonitrile 412.68 411.52 411.59 411.56 -1.12

DMSO 418.08 417.25 417.17 417.21 -0.87

pyridine 415.56 414.65 414.58 414.62 -0.94
425.64 424.73 424.66 424.70 -0.94

benzene 419.16 418.28 418.21 418.25 -0.91

toluene 422.04 422.04 421.10 421.57 -0.47
" See text for correction versions 1 and 2 used.
* Using the average of the two corrections.
c Solid sample, no dissolution with nonpolar aliphatic solvents.
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Table Al 3 Solvatochromic parameters of the solvents used"
solvent p* a ß
1-butanol Ö46 079 ÖW
2-propanol 0.46 0.78 0.95
1-propanol 0.51 0.80 0.95
ethanol 0.54 0.86 0.77

methanol 0.60 0.98 0.62
acetone 0.72 0.07 0.48

pyridine 0.87 0.00 0.64
acetonitrile 0.85 0.15 0.31

dimethyl sulfoxide 1.00 0.00 0.76
methylene chloride 0.80 0.22 0.00
chloroform 0.76 0.34 0.00

carbon tetrachloride 0.29 0.00 0.00

toluene 0.54 0.00 0.11
benzene 0.59 0.00 0.10

cyclohexane 0.00 0.00 0.00
hexane 0.08 0.00 0.00

a From reference W
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Appendix B

Table Bl. Phenyl 1H chemical shifts (ppm) for N-sulfinylaniline (1) in pyridine at various

temperatures.
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Table Bl Phenyl 1H chemical shifts (ppm) for N-sulfinylaniline (1) in pyridine at various

temperatures

T(0O

30

40

50

60

70

30

40

50

60

70

30

35

40

45

50

55

60

65

70

40

50

60

70

30

40

50

60

70

ortho

10 mol% N-sulfinylaniline

7.72

7.70

7.69

7.68

7.68

7.15

7.16

7.17

7.17

7.16

30 mol% N-sulfinylaniline

7.72

7.69

7.69

7.66

7.68

7.16

7.14

7.15

7.16

7.15

50 mol% N-sulfinylaniline

7.69

7.68

7.67

7.67

7.67

7.67

7.66

7.65

7,65

7.14

7.14

7.14

7.14

7.14

7.12

7.13

7.12

7.14

70 mol% N-sulfinylaniline

7.64

7.63

7.64

7.62

7.11

7.1

7.11

7.11

80 mol% N-sulfinylaniline

7.67

7.65

7.66

7.65

7.63

7.12

7.12

7.11

7.11

7.11

para

7.15

7.16

7.17

7.17

7.16

7.16

7.14

7.15

7.16

7.15

7.14

7.14

7.14

7.14

7.14

7.12

7.13

7.12

7.14

7.11

7.1

7.11

7.11

7.12

7.12

7.11

7.11

7.11

TCP

30

40

50

60

70

30

40

50

60

70

30

40

50

60

70

30

35

40

45

55

60

65

70

ortho

20 mol% N-sulfinylaniline

7.72

7.71

7.69

7.69

7 67

7.17

7.17

7.17

7 16

7 16

40 inol% N-sulimylaniline

7.69

7.68

7.68

7.66

7.65

7.14

7.14

7.15

7.15

7.13

60 mol% N-sulfinylaniline

7.67

7.66

7.65

7.65

7.65

7.14

7.13

7.13

7.13

7.12

90 mol% N-sulfinylaniline

7.66

7.66

7 64

7.64

7.62

7.65

7.65

7.63

7.10

7.10

7.1 I

7.09

7.08

7.10

7.09

7.09

para

7.17

7.17

7.17

7.16

7.16

7.14

7.14

7.15

7.15

7.13

7.14

7.13

7.13

7.13

7.12

7.10

7.10

7.1 1

7.09

7.08

7.10

7.09

7.09

Reference HMDS.
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Appendix C

Table Cl Temperature 17O NMR data for N-sulfinylaniline (1) and chloro-N-
sulfinylanilines 2-1, 2-2, 2-3

Table C2 Temperature 17O NMR data for methoxy-N-sulfinylanilines 3-1, 3-2, 3-3

Table C3 Temperature 17O NMR data for nitro-N-sulfinylanilines 4-1, 4-2, 4-3
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Table Cl Temperature (0C) 17O NMR data for N-sulfinylaniline (1) and chloro-N-
sulfmylanilines 2-1, 2-2, 2-3. Chemical shifts (ppm), half-widths (Hz)

_________complexed uncomplexed

T 517O Wy2 d^? W13 d^? W|ß K_
1 1 Neat

20 416.27" 58 411.23a 113 412.67 160 0.57
30 421.67' 51 411.59b 102 413.39 141 0.36
40 426.35 51 411.95 96 413.75 117 0.25
50 432.12 43 412.67 92 414.47 101 0.18
60 437.88 42 413.75 68 414.48 87 0.06

70 444.36 41 414.83 64 415.92 76 0.07
2-1 2-1 Neat

20 414.84 167 414.84 167 416.64 385 0.77
30 422.76 44 415.92 122 418.44 329 0.70
40 428.52 43 417.00 110 419.16 249 0.33
50 434.29 42 418.08 108 419.52 199 0.20
60 440.41 42 419.16 107 420.60 174 0.13
70 448.00 38 420.24 104 421.32 149 0.09

2-2 2-2 Neat

20 420.00 109 415.92 200 415.92 455 0.63
30 424.92 67 416.28 167 417.00 322 0.24
40 429.24 51 416.28 133 418.44 247 0.17
50 435.01 33 417.72 113 418.44 236 0.13
60 440.77 29 418.44 109 419.88 195 0.12
70 446.53 25 418.80 89 420.24 155 0.11

2-3 2-3 Neat
20 423.14 56 413.04 233 409.80e 211 0.76
30 426.72 54 413.76 211 410.16 133 0.46
40 430.68 51 413.76 194 410.88 118 0.32
50 436.45 44 414.84 144 411.96 89 0.24
60 441.85 39 415.56 122 413.04 83 0.19
70 447.25 39 415,92 113 414.12 67 0-15

"Shifts at 21 0C.
b Shifts at 32 0C.
c 2-3 is solid at 20 0C. Determined from a 0.9 mol% hexane solution.
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Table C2 Temperature (0C) 17O NMR data for methoxy-N-sulfinylanilines 3-1, 3-2, 3-3.
Chemical shifts (ppm), half-widths (Hz)

_________complexée) uncomplexed OMe NSO OMe
T 817O W,ffl 517O Wifl 517O 5'7O W1/2 d|70 K

3-1 3-1 Neat

20 410.88 233 410.88 233 17.65 407.64 720 16.57 0.36
30 415.56 119 409.44 231 17.65 408.36 510 16.93 0.21

40 420.96 56 410.52 220 18.37 409.80 399 17.65 0.14
50 427.44 55 411.24 129 18.73 410.88 377 18.37 0.04
60 434.65 51 412.32 122 19.81 411.24 304 18.37 0.10
70 440.77 47 413.76 109 20.53 414.14 441 19.45 0.03

3-2 3-2 Neat

30 409.12 113 408.36 234 35.78 412.32 456 36.73 0.33
40 422.04 68 409.80 211 35.61 411.60 432 36.57 0.29
50 428.16 61 410.52 167 36.73 412.68 345 36.63 0.24'
60 433.92 31 411.60 123 36.73 413.60 234 36.11 0.16
70 443.29 30 412.68 97 37.45 413.04 210 36.45 0.02

3-3 3-3 Neat

30 415.21 144 397.55 455 17.65 393.11 613 17.34 0.40
40 421.68 101 400.44 344 18.37 398.64 551 18.73 0.17
50 428.16 87 399.36 231 19.09 401.52 498 18.37 0.15
60 434.65 57 400.80 210 19.45 401.16 346 19.09 0.02
70 441.13 49 402.24 153 20.17 402.24 257 20.17 0.27
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Table C3 Temperature (0C) 17O NMR data for nitro-N-sulfinylanilines 4-1, 4-2, 4-3.
Chemical shifts (ppm), half-widths (Hz)

_________complexée! uncomplexed NO2 NSO NO2
T 517O W,/2 5'7O W,/2 d'70 d|70 W|/2 d|70 K_

4-1 4-1 Neat"

20 408.72 89 414.48 456 580.49 422.04 155 579.41 15.35

30 411.97 344 411.96 344 575.45 422.40 136 580.49 7.06

40 417.72 256 417.72 256 580.85 422.76 109 579.77 4.23

50 423.48 94 417.36 224 577.61 423.48 107 582.65 2.81
60 429.60 79 418.44 218 580.85 424.20 99 581.21 1.03

70 436.09 78 419.52 210 581.21 424.56 87 583.01 1.38

4-2 4-2 Neata
20 406.97 93 412.00 467 571.84 422.76 124 576.89 14.15

30 413.00 91 410.88 338 579.05 423.84 109 579.05 8.23

40 415.56 59 411.00 189 577.25 424.20 89 585.53 5.79

50 420.96 57 415.56 122 579.41 424.92 84 583.73 3.47

60 426.00 56 416.28 109 582.65 425.64 67 582.31 1.93

70 431.41 39 417.72 107 581.57 426.36 65 584.09 1.26

4-3 4-3 Neata
20 419.16 112 413.76 234 577.97 423.12 134 576.17 3.47

30 425.64 56 415.56 134 576.53 423.48 112 577.25 1.57

40 431.05 43 416.28 133 578.69 424.20 110 581.93 1.07
50 436.45 46 417.72 112 580.13 424.92 111 580.13 0.77
60 441.13 45 418.44 113 580.49 425.64 109 581.93 0.63

70 446.17 43 419.52 112 580.85 426.36 109 583.73 0.51
" Solid sample, no dissolution with nonpolar aliphatic solvents. Determined from a 0.8 mol% benzene solution.
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Appendix D

Fig. Dl Temperature effect on the 17O signal of N-sulfinylaniline (1)

Fig. D2 Temperature effect on the 17O signal of free (¦) and complexée (?) N-
sulfinylaniline (1) in pyridine (1:1 molar ratio).

Figs. D3, 5, 7, 9, 11, 13, 15, 17, 19: Same as Dl, for N-sulfmylanilines 2 - 4

Figs. D4, 6, 8, 10, 12, 14, 16, 18, 20: Same as D2, for N-sulfinylanilines 2-4
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Fig. D2 Temperature effect on the 17O signal of free (¦) and complexée (?) N-
sulfinylaniline (1) in pyridine (1 : 1 molar ratio)
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sulfinylaniline (2-1) in pyridine (1 : 1 molar ratio)
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Fig. D5 Temperature effect on the O signal of m-chloro-N-sulfmylaniline (2-2) in

hexane (1:1 molar ratio)
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Fig. D6 Temperature effect on the 17O signal of free (¦) and complexée (?) m-chloro-N-
sulfinylaniline (2-2) in pyridine (1:1 molar ratio)
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Fig. D7 Temperature effect on the ? signal of p-chloro-N-sulfinylaniline (2-3) in
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Fig. D8 Temperature effect on the 17O signal of free (¦) and complexed (?) p-chloro-N-

sulfinylaniline (2-3) in pyridine (1:1 molar ratio)
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Fig. DlO Temperature effect on the 17O signal of free (¦) and complexée (?) o-methoxy-
N-sulfinylaniline (3-1) in pyridine (1:1 molar ratio)
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Fig. D12 Temperature effect on the 17O signal of free (¦) and complexée (?) m-
methoxy-N-sulfinylaniline (3-2) in pyridine (1:1 molar ratio)

107



e
a.

406

404

402

400

398

396

394

392 H

390

y = 0.2078x+388.94
R2 = 0.7742

Fig.

0 10 20 30 40 50 60 70 80

Temperature (0C)

Dl 3 Temperature effect on the 17O signal of p-methoxy-N-sulfinylaniline (3-3)

445

440

^ 435
E
& 430

S 425
.=
??

8 420
I 415
1 4l0
" 405

400

395

y = 0.6327x + 396.63
R2 = 0.9992

y =0.0505x+ 397.87
R2 = 0.3615

10 20 30 40 50

Temperature (0C)
60 70 80
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Fig. D16 Temperature effect on the 17O signal of free (¦) and complexée (?) o-nitro-N-
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