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Abstract

Bayesian Methods for Non-Gaussian Data Modeling and Applications
Tarek Elguebaly

Finite mixture models are among the most useful machine learning techniques and are receiving
considerable attention in various applications. The use offinite mixture models in image and signal
processing has proved to be of considerable interest in terms of both theoretical development and
in their usefulness in several applications. In most of the applications, the Gaussian density is
used in the mixture modeling of data. Although a Gaussian mixture may provide a reasonable

approximation to many real-world distributions, it is certainly not always the best approximation
especially in image and signal processing applications where we often deal with non-Gaussian
data.

In this thesis, we propose two novel approaches that may be used in modeling non-Gaussian
data. These approaches use two highly flexible distributions, the generalized Gaussian distribu-

tion (GGD) and the general Beta distribution, in order to model the data. We are motivated by
the fact that these distributions are able to fit many distributional shapes and then can be consid-

ered as a useful class of flexible models to address several problems and applications involving
measurements and features having well-known marked deviation from the Gaussian shape. For
the mixture estimation and selection problem, researchers have demonstrated that Bayesian ap-
proaches are fully optimal. The Bayesian learning allows the incorporation of prior knowledge
in a formal coherent way that avoids overfitting problems. For this reason, we adopt different
Bayesian approaches in order to learn our models parameters.

First, we present a fully Bayesian approach to analyze finite generalized Gaussian mixture
models which incorporate several standard mixtures, such as Laplace and Gaussian. This approach
evaluates the posterior distribution and Bayes estimators using a Gibbs sampling algorithm, and
selects the number of components in the mixture using the integrated likelihood. We also propose
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a fully Bayesian approach for finite Beta mixtures learning using a Reversible Jump Markov Chain
Monte Carlo (RJMCMC) technique which simultaneously allows cluster assignments, parameters
estimation, and the selection of the optimal number of clusters. We then validate the proposed
methods by applying them to different image processing applications.
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Chapter 1 I

Introduction

Over the last decade, technological advances have led to an explosion ofenormous data size. These

data pose a challenge to standard statistical methods and have received much attention recently.
The importance of finding a way to model and analyze data lie in their usefulness in wide range
of applications such as Bioinformatics, image processing, and computer vision. In recent years
a lot of different algorithms were developed in the aim of automatically learning to recognize
complex patterns, and to make intelligent decisions based on observed data. Machine learning is
a scientific discipline that is concerned with the design and development of algorithms that allow
computers to change behavior based on data, such as from sensor data or databases. A major
focus of machine learning research is to offer a principled approach for developing and studying

automatic techniques capable of learning their parameters based on training data [1-4}. Machine
learning and statistical pattern recognition have seen dramatic growth over the past few years, this
is due to the fact that it can be applied in diverse areas such as engineering, medicine, computer

science, psychology, neuroscience, physics, and mathematics. In many statistical applications the
observed data can be seen as stemming from multiple populations. It is of interest to build a generic

model, which allows us to combine the samples from different populations.
Mixture models are one of the machine learning techniques receiving considerable attention

in different applications. They are an interesting and flexible model family. The different uses of
mixture models include for example clustering and density estimation. Moreover, mixture models
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have been successfully used in various kinds of tasks such as modeling failure rate data, and clus-
tering teaching behavior. Although mixture models have been applied in different areas, they have
proven particular efficiency in quality control systems.

In telephone networks, for instance, mixture models were applied in order to evaluate and
monitor speech quality [5]. For software quality prediction, mixture models are used as a tool for
early prediction of fault-prone program modules [6, 7]. In Bioinformatics, the analysis of DNA
microarray data sets can be important in order to diagnose and discover different types ofdiseases,
the use ofmixture models can lead to a better treatment ofpatients in high risk [8]. Mixture models
can be finite or infinite [9, 10]. In this thesis, we are only interested in finite mixture models.

1.1 Finite Mixture models

Finite mixture models assume that each component comes from a probability distribution, P,
which has a given weight pjt j = 1,...,M7 where the sum of the weights of all components is
equal to one and M represents the total number of components. Finite mixture models can be
represented by

M

?(?\T) = S?,?(?\??) (1)
where p¡ (0 < p3 < 1 and Y,f=lPj = 1) are the mixing proportions and P(X]Qj), is the prob-
ability density function describing component j. The symbol Sj, j = 1,...,M, represents the
different parameters vectors of the mixture components. In order to use mixture models, three
main problems have to be resolved: the choice of the probability density function (PDF), parame-
ters estimation and the selection of the number of clusters.

1.1.1 Probability Density Function Selection

The selection of the PDF to be used for modeling the data is of a crucial importance, because
it affects the capability of the mixture to represent the data shape. The wrong selection of PDF
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may force the mixture model to increase the number of components in order to model the data

(i.e overfitting). In most of the applications, the Gaussian density is used in the mixture modeling
of data. As a smooth, bell-shaped distribution that can be completely characterized by its mean
and its standard deviation, the Gaussian is in general used and justified for asymptotic reasons (i.e
the sample is supposed to be sufficiently large) [H]. Although a Gaussian mixture may provide
a reasonable approximation to many real-world distributions, it is certainly not always the best
approximation especially in image and signal processing applications where we often deal with

small samples [12-15]. Indeed, there are many phenomena and applications for which the Gaus-
sian model is not realistic (for instance, it is well-known that natural image clutter is generally non-
Gaussian). In this thesis, we consider the generalized Gaussian distribution (GGD) and the general
Beta distribution as they can be good alternatives to the Gaussian distribution thanks to their shape
flexibility which allows the modeling of a large number of non-Gaussian signals [12, 16-19].

1.1.2 Parameters Learning

Parameter learning approaches are used in order to estimate the model parameters. This problem is
not straightforward and many deterministic as well as Bayesian approaches have been proposed. In
deterministic approaches, parameters are assumed as fixed and unknown, and inference is founded

on the likelihood of the data. Despite the fact that deterministic approaches have dominated mix-
ture models estimation due to their small computational time, many works have demonstrated that
these methods have severe problems such as convergence to local maxima and their tendency to
overfitt the data [11], especially, when data are sparse or noisy. With the computational tools evo-
lution, researchers were encouraged to implement and use Bayesian Markov Chain Monte Carlo
(MCMC) methods and techniques as an alternative approach [20, 21]. Bayesian methods consider
parameters to be random, and to follow different prior distributions. These distributions are used to

describe our knowledge before considering the data, as for updating our prior beliefs the likelihood
is used. Please refer to [1 1, 22] for interesting and in depth discussions about the general Bayesian
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theory. In this thesis, we are interested in the application of MCMC methods for the estimation of
the model parameters.

1.1.3 Selection of the number of components

An important issue in mixture modeling is the selection of the number of components. The usual
tradeoff in model order selection problems arises: with too many components, the mixture may
overfitt the data, while a mixture with too few components may not be flexible enough to approxi-
mate the true underlying model. Lack of knowledge about the number of clusters is a challenging
problem in mixture modeling and considerable efforts already have been made to investigate this
important aspect. The majority of the approaches that have been proposed separate the estimation
and the selection of the number of components (i.e a certain criterion should be compared for dif-
ferent number of clusters) (see, for instance, [9, 10] for interesting discussions and comparisons
between different criteria). In this thesis, we use two different methods in order to select the num-
ber of clusters. The first method, is used to compare different values of M and finally select the
one that increases the marginal likelihood ofthe data. For this method, we employ two criteria: the
Bayesian information criterion (BIC) and the Laplace approximation. The other method takes into
account the fact that both estimation and selection problems are strongly related. In order to apply
this method we are using the Reversible Jump MCMC (RJMCMC) to simultaneously estimate and
select mixture models parameters.

1.2 Contributions

The contributions of this thesis are as follows:

<&- A Bayesian Approach for Finite Generalized Gaussian Mixture Models Learning:
We implement a fully Bayesian approach to analyze GGM models. Our approach evaluates the
posterior distribution and Bayes estimators using a Gibbs sampling algorithm, while for model
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selection uses the integrated likelihood. We then validate this novel approach by applying it to
different image processing applications; while comparing it to different other approaches.

<®° A Fully Bayesian Model Based on RJMCMC and Finite Beta Mixture:

We propose a Bayesian model founded on the RJMCMC for the General Beta distribution. Our ap-
proach is able to select and estimate finite Beta mixture models simultaneously. This was reached
by treating the number ofclusters as a random variable having a prior distribution. We then demon-
strate its effectiveness using synthetic mixture data, real data, and image texture classification and
retrieval.

1.3 Thesis Overview

The organization of this thesis is as follows:

D The first Chapter contains an introduction to finite mixture models.

Q In Chapter 2, we introduce a Bayesian model based on Gibbs sampling, integrated likelihood,

and finite Generalized Gaussian mixture. We investigate the effectiveness of our model by

comparing it to different Bayesian and deterministic methods in various image processing
applications.

Q In Chapter 3, we propose a fully Bayesian algorithm for Beta mixtures learning based on

the RJMCMC technique. We study the capability of our model in texture classification and

retrieval while comparing it to the Gaussian mixture model.

O In Conclusions, we summarize our contributions.
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Chapter 2

Bayesian Learning of Finite Generalized
Gaussian Mixture Models on Images
This chapter presents a fully Bayesian approach to analyze finite Generalized Gaussian mixture
models which incorporate several standard mixtures, widely used in signal and image processing
applications, such as Laplace and Gaussian. Our work is motivated by the fact that the Generalized
Gaussian Distribution (GGD) can be applied on a wide range of data due to its shape flexibil-
ity which justifies its usefulness to model the statistical behavior of multimedia signals [23]. We
present a method to evaluate the posterior distribution and Bayes estimators using a Gibbs sam-
pling algorithm. For the selection of number of components in the mixture, we use the Laplace
approximation and Bayesian information criterion. We validate the proposed method by applying
it to: synthetic data, real dataseis, texture classification and retrieval, and image segmentation;
while comparing it to different other approaches.

2.1 Introduction

Finite mixtures are a flexible and powerful probabilistic tool for modeling data [9]. Mixture mod-
els are very useful in areas where statistical modeling of data is needed such as in signal and image
processing, pattern recognition, bioinformatics, computer vision, and machine learning. As noted



earlier, the three main problems in mixture modeling are the choice of the probability density func-
tion (PDF), the parameters and model learning. Many studies have shown that the GGD, can be
a good alternative to the Gaussian thanks to its shape flexibility which allows the modeling of a
large number ofnon-Gaussian signals [12, 16-18]. The GGD contains the Laplacian, the Gaussian
and asymptotically the uniform distribution as special cases [24] and has been used, for instance,
in [14,25] to fit subband histograms, in [26] for multiresolution transmission of high-definition
video, in [27] for subband decomposition of video, in [28] for buffer control, in [29-31] for tex-
ture classification and retrieval, in [32] for denoising applications, in [33, 34] for data and image
compression, in [35] for edge modeling, in [36,37] for image thresholding, in [38, 39] for speech
modeling, in [40, 41] for video and image segmentation, in [42] for SAR images statistics model-
ing, and in [43] for multichannel audio resynthesis.
Several approaches have been considered in the past to estimate GGD's parameters such as mo-
ment estimation [27,44,45], entropy matching estimation [39,46], and maximum likelihood es-
timation [12,29,44,47,48]. It is noteworthy that these approaches consider a single distribution.
Concerning finite mixture models parameters estimation, some deterministic approaches have been
proposed in the past for the estimation of finite generalized Gaussian mixture (GGM) models pa-
rameters (see, for instance, [40,41]). To the best of our knowledge the learning techniques that
have been proposed for the GGM are deterministic and then usually excessively sensitive to noise.
Thus, we propose in this chapter a novel Bayesian approach to evaluate the posterior distribution of
GGM and then learn its parameters using Gibbs sampling [49] for the estimation and the integrated
likelihood for the selection of the optimal number of components. To validate our learning algo-
rithm, we compare it to three different techniques: the expectation-maximization (EM) estimation
of the GGM, the EM and Bayesian approaches for the Gaussian mixture (GM) using synthetic
data, real dataseis, and real world applications involving texture classification and retrieval, image
segmentation, biomedical image analysis, and DNA spot detection
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2.2 The Finite GGM and Bayesian Estimation

2.2.1 Finite GGM Model

If the random variable ? e E follows a GGD with parameters µ, a and ß, then the density function
is given by [25,27]:

0a ,_.,_ ..,xa
(1)?{?\µ,a,ß) = „J!i*,Me-Wx-rtß2G(1//3)

where a = ?^/?|?|1, -?? < µ < ??, /? > 0, and a > 0, and G(.) is the Gamma function given
by: T(x) = f™ t^e^dt, ? > 0. µ, a and /? denote the distribution mean, the inverse scale
parameter, and the shape parameter, respectively. The parameter ß controls the shape of the pdf.
The larger the value, the flatter the pdf; and the smaller the value, the more picked the pdf. This
means that ß determines the decay rate of the density function (see Fig. 2.1). Note that for the

Ä- O 03 (-

P=R-S

Figure 2.1: Generalized Gaussian Distributions with different values of the shape parameter.

two special cases, when ß = 2 and ß - 1, the GGD is reduced to the Gaussian and Laplacian
distributions, respectively. If ? follows a mixture of M GGDs, then

M

p(x I T) = Sp{x\ßj , (Xj , ßj )Pj (2)
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where Pj (O < Pj < 1 and ]T\=1 pj = 1) are the mixing proportions andp(x|^, O7-, /?,·) is the GGD
describing component j. As for the symbol ? = (?, ?), it refers to the entire set of parameters to
be estimated, knowing that ? = (µ?, «?, ß?, ..., µ?, a?, Pm), and ? = (ph ...,??).
Consider N observations, X = (X1, ..., xN), the well-known approach to estimate the parameters
of a mixture model is to maximize the likelihood through the expectation-maximization (EM)
algorithm [50], supposing that the number of mixture components M is known. The likelihood
corresponding to this case is:

N M

?(*??) = ?S*<?*&)?? (3>
¿=1 j=l

Where ?^ = (ß^a^ßj). For each variable x¿, let Zi be an M-dimensional vector known by the
unobserved or missing vector that indicates to which component x¿ belongs, such that: Zi3- will be
equal 1 if x¿ belongs to class j or O, otherwise. The complete-data likelihood is then:

N M

p(X,Z\e) = lHl(p(xt\QPj)zv (4)
z=l j=l

Where Z = {Zi,Z2,...,ZN}. The EM algorithm consists of getting the mixture parameters that
maximize the log-likelihood function given by:

M N

L(G, ?,?) = SS zv log(P(*ifo>¿) (5)
j= l 2 = 1

by replacing each Z^ by its expectation, defined as the posterior probability that the ith observation
arises from the jth component of the mixture as follows:

Zw = y v *ISj ,yi {¿\

where í denotes the current iteration step and £J4) and pf* are the current evaluations of the param-
eters. The EM produces a sequence of estimates to the mixture parameters T*, for t = 0, 1, . . .,
until a certain convergence criterion is satisfied through two different steps: the expectation and
maximization. The EM algorithm consists of:



1 . Initialization of the mixture paraneters.

2. ?-step: Compute Z^ (Eq. 6) using the initialized parameters.

3. M-step: Update parameters estimates using: ?(?) = argmaxe ¿(??_1, Z, X)
However, the EM has some drawbacks, like convergence to local maxima due to its dependence
on the initialization step. For a detailed and interesting discussion about EM disadvantages please
refer to [50]. An efficient alternative technique that we will propose in the following is the Bayesian
approach which has received a lot of attention recently thanks to the evolution of Markov Chain
Monte Carlo (MCMC) computational tools.

2.2.2 Bayesian Estimation of the GGM

Simulation methods like MCMC algorithms are chosen as a solution to overcome the problems
of numerical methods. Generally these methods are related to the Bayesian theory, which means
that they allow for probability statements to be made directly about the unknown parameters of the
mixture, while taking into consideration prior or expert opinion. The goal is to get the posterior
distribution p{ß\?,?), by combining the prior information about the parameters, p(?), with
the observed value or realization of the complete data p(X, ?\T), which is derived from Bayes
formula:

Where (X, Z), is the complete data. Having the joint distribution, p(?)?(?, ?\?), we can deduce
the posterior distribution (Eq. 7). With p(?\?, Z) in hand we can simulate our model parameters
T, rather than computing them. The Gibbs sampler is a well known simulation technique [49]
and it is based on the successive simulation of Z, p, and ? conditional on each other and on the
observations which offers an efficient way to explore the parameter space. The standard Gibbs
sampler for mixture models consists of:

1 . Initialization: choose p0 and ?°

10



2. Stepí, fori = 1,...

(a) Generate ?® from tt(?|T, X).

(b) Generate ?® from p(?|?^).
(c) Generate ?« from tt(£|?« , X).

We simulate Z according to the posterior probability p(?\?,?), chosen to be Multinomial of
order one with a weight given by Zi0[M[I; Zn;...; ZiMj). This choice is due to two reasons, first,
we know that each Z¿ is a vector of zero-one indicator variables to define from which component
j the ? observation arises. Second, the probability that the ith observation, xi} arises from the jth
component of the mixture is given by Z^. So, we can deduce that each vector Zi is generated by
a Multinomial distribution of order one with weight given by Zy. Now to simulate ? we need to
get p(?\?®), using Bayes rule: p[?\?) = f^tít) ? p(?\?)p(?)· This means that we need to
determine p[?\?), and p(?). It is well known that the vector ? is defined as (^rLi Pj = 1> where
Pj > 0), then the commonly considered choice as a prior is the Dirichlet distribution [1 1, 22]:

nip)=w^)Up' (8)
Where (^1, . . . , ??) is the parameter vector of the Dirichlet distribution. As for p(?\?) we have:

M NM M

p[?\?) = J] ,T(ZiIp) = ¡J IK" = Up? (9)
j=l i=l j=l J-=I

Where Ti7- = X)i=rl Izij=1 , then we can conclude that:

p(?|?) = Tr(ZIP)TT(P) = ^%) , ?^G*'"1 a P^ + »?· -> ^ + "") (10>Hj=I -t TOJ j=l

where V denotes the Dirichlet distribution with parameters [?? + ??,...,?? + nM). Thus, we can
deduce that the Dirichlet distribution is a conjugate prior for the mixture proportions (i.e the prior
and the posterior have the same form). As for the parameters ?, we assigned independent Normal
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priors for the distributions means, and Gamma priors for the inverse scale and shape parame-
ters [5 1, 52]: ßj ~ ?G(µ0, ajj) , ßj ~ Q(ocp, ßß) , a¿ ~ G(aa, ßa), where ??(µ0, s%) is the normal
distribution with mean µ0 and variance s\, Gi&ß, ßß) is the gamma distribution with shape param-
eter aß and rate parameter ßß. µ0, s$, aß, ßß, aa, ßa are called the hyperparameters of the model.
Having these priors in hand, the posterior distributions for µ, a, and ß are (see Appendix A):

(Mi-Mo)2 . ^ ? ? |\|8,·
p(µ^?, X) oc e 2s? '-7-1 (H)

n(aj \Z, X) oc a?ß"V^(a,·)^ßS^=? (-^-^'1^' (12)
t?(^??,?') oc ßC^e-Wii-Jti—?^??^{-a^'?[?3 (13)

In this case we can notice that our posterior distributions are not in well known forms, so we cannot

simulate directly from these posterior distributions. The Metropolis-Hastings (M-H) algorithm
[51] offers a solution for this problem, and thus the complete algorithm is given by:

1. Initialization: choose p0 andG0

2. Stepi, fori = 1,...

(a) Generate zf ~ (M(I; Zn; ...; ZiM))
(b) Compute nf = J2?=1 1 <t)
(c) Generate pW fromEq.(lO).

(d) Generate (µ,-, qj, ß)<*> for (j = 1, ..., M) from Eqs.( 1 1), ( 12), and( 13) using M-H
algorithm.

The M-H algorithm can be summarized in 3 steps:

1. Generate (fi^a^ßy) ~ q(ßj,aj,ßj \ µ^ , af~1] , ß^*~?)) andU ~ W[0,i]
2 rnmtiiitc r - F^?^?^?'^G1^-5^)Z.. ^UIIipUlC / — , (f-l) \ / ~ (t_i) (i-1) „(t-??

12



3. If r < U then {µ?, af , ßf ) = (µ,, a,, ß) else (µ«, af , ß?) = (µ™ ,a™, ß™)
The major problem in this algorithm is the need to choose the proposal distribution q. To solve
this problem we used the most generic random walk M-H by considering the following proposals:
S5 ~ Ctf{\og{p%-\ C2), ßj ~ £7\A(log(/f"x)), C2), where CM is the log-normal distribution,
since, we know that Sj > O and ßj > O. As for fi¡¡ we have µ3 ~ ?(µ^~1\ ?2), where C2 is the
scale of the random walk. With these proposals the random walk M-H algorithm is composed of
the following steps:

1. Generate µ3 ~ M(^, ?2), Sj ~ CM^af'^^2), 03 ~ CM(log(ßf^), ?2), and
U ~ W[o,i]

2. Compute

?µ <ß{r]\Z^)M{ßj\^~l\c2)
r Ir(Sj]Z, X)CN(a{;-l) J logfc·), C2)

iriaf-» I Z, X)CM[S3 1 ?f$-\ ?2)
r p(^[?, ?-)£?G(^-1}[ IQg(^), C2)Tß n(ß^\Z,X)CM(ß3\\og(ßf-\(*)

3. . If ?µ > u then ¿if = µ3, else /if = µ^
• If ra > u then af = a,·, else af = ajt_1)
• If ?, > u then /?f = ßj, else /?f = ßf~x)

2.3 Experimental results

2.3.1 Design of Experiments

In this section, we apply our Bayesian GGM estimation algorithm for synthetic data, real dataseis,
and real applications involving texture classification and retrieval, and image segmentation. We
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validate our algorithm by comparing it to the EM approach, the EM and Bayesian approaches for
the well-known GM. In fact, choosing a relevant model consists both of choosing its form (GGM
or GM in our case) and the number of components M. We use two approaches in order to rate
the ability of the tested models to fit the data or to determine the number of clusters M. The first

criterion is one of the key quantities used for Bayesian hypothesis testing and model selection, the
integrated or marginal likelihood defined by [53]:

p(X\M) = I p(?\?, M)dQ = ? ?(?\?, ?)p(?\?)?? (17)
where ? is the vector of parameters of a finite mixture model, p(?\?) is its prior density, and
?(?\?, M) is the likelihood function taking into account that the number of clusters is M. Using
the Laplace approximation as in [53] we get:

- ^N 1 ~
log(p(X\M)) « log(p(X\e, M)) + log(7r(9|M)) + -f 1?§(2tt) + - \og{\H{Q)\) (18)

where \H(Q)\ is the determinant of the Hessian matrix, and Np is the number of parameters to
be estimated which is equal to (4M) for the GGM. We can use the Laplace-Metropolis estima-
tor [53] which consist of finding the Metropolis estimates of ? and ?(?). With samples of the
posterior parameters simulated from the M-H in hand, we estimate ? as the ? in the sample at
which the likelihood ?(?\?, M) achieves its maximum. For the other quantity needed ?(?) it
is asymptotically equal to the posterior covariance matrix, and could be estimated by the sample
covariance matrix of the posterior simulation outputs. The second approach is the Bayesian In-
formation Criterion (BIC) of Schwartz [54] which is actually an approximation for the integrated
likelihood criterion [53]: BIC = log(X\M,§M) - ^log(N). In the following applications,
we have used 5000 iteration for our Metropolis-within-Gibbs sampler (we discarded the first 800
iterations as "burn-in" and kept the rest), and our specific choices for the hypeparameters are
(µ0, s?, aa, ßa, aß, ßß) = (0,1, 0.2, 2, 0.2, 2). As for the scale of the random walk we use it as
C2 = 0.01 to increase the sensitivity of the random walk sampler.
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Table 2.1: Parameters for the different generated data sets. N represents the number of elements
in each data set. µ?,a^ ß?, and p¿ are the real parameters. µ?, âjt fy, and pó are the estimated
parameters.

Data 1 (JV=262144)

Dala 2 (^=65536)

Data 3 (?=97344)

100.0000
200.0000
63.6283
104.68S4
195.2122
33.1256
95.5550
150.5876
185.9900

0.0778
0.0406
0.0700
0.0603
0.0333
0.0500
0.0450
0.0650
0.0400

1.7000
2.3000
2.1000
1.9000
1.7000
2.0000
2.4000
3.5000
3.1000

0.7800
0.2200
0.1458
0.7370
0.1172
0.1721
0.2000
0.3700
0.2579

100.0086
200.0248
65.1100
106.0010
196.5765
33.7487
95.7038
150.0495
185.3104

0.0704
0.0434
0.0692
0.0658
0.0340
0.0509
0.0434
0.0636
0.0409

1.7300
2.2900
2.0000
1.9400
1.6600
1.9899
2.4368
3.7778
3.1177

0.7799
0.2201
0.1523
0.7222
0.1255
0.1768
0.1928
0.3751
0.2552

2.3.2 Synthetic Data

This section has two main goals, first testing the effectiveness of the algorithm to: estimate the
mixture parameters and to select the number of clusters. Then to illustrate the higher performance
ofour algorithm compared to the EM estimation. To reach our first goal we generated three dataseis
and applied our method to estimate the parameters and select the number of components of the
associated mixture models. Table 2.1 contains the real and estimated parameters of the generated
dataseis. Fig. 2.2 shows the real and the estimated histograms of the three generated data sets.
The integrated likelihood and the BIC calculated for different number of clusters (M=I, 2, 3, 4
and 5) of the above datasets are given in Fig. 2.3. Fig. 2.4 shows the time series plot of our

2B 260 303

(a) (b) (e)

Figure 2.2: Real and estimated histograms for the three datasets. (a) First dataset with M=I, (b)
Second dataset with M=3, (c) Third dataset with M=A.
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Table 2.2: Parameters for
number of elements in the

the generated data set using both algorithms. N and M represent the
data set, and the number of components, respectively, µ,-,a^·, /3,·, and

Pj are the real parameters. fif,af, ßf, and pf are the estimated parameters using our algorithm.
f-EM ?EM ßfM, and pfM are the estimated parameters using the EM.

"HTv-i ßi Pi ßf ??_ 4*-'M ß:?,??
r-j

(/V- 15625)
(?/=5)

40.0000
75.0000
105.0000
182.0000
215.0000

0.0381
0.0655
0.0400
0.0475
0.0600

4.5000
2.5000
3.3000
3.0000
3.5000

0.1900
0.1500
0.2200
0.2500
0.1900

40.2617
74.1178
107.6681
182.2170
217.3647

0.0400
0.0620
0.0460
0.0451
0.0559

4.4549
2.4363
3.1363
3.1749
3.5041

0.1889
0.1394
0.2286
0.2514
0.1963

50.8644
101.4133
202.4412

0.0343
0.0404
0.0364

2.8050
2.0245
2.4100

0.2466
0.3164
0.4370

1* Dataset

-«-Mafg.táeL

NumberofClusters

(a)

2nd Dataset

Number oí eluden

(b)

3rd Dataset

12 3 4

Numbercföusiers

(e)

Figure 2.3: Marginal Likelihood and BIC values for the three dataseis with different number of
clusters, (a) First dataset, (b) Second dataset, (c) Third dataset.

Bayesian algorithm iterations by taking the first dataset as an example. We can see clearly that
our algorithm is able to get the exact number of clusters and a very good approximation of the
mixtures parameters of the generated data sets. For the second goal, we generated a dataset that
has five components and applied both methods (Bayesian and EM) to check ifthey can approximate
it effectively. For our algorithm, it was able to: recognize that the dataset is generated from five
classes, and to estimate its parameters effectively. As for the EM algorithm its selection of the
number of components was wrong which forces it to a false estimation of the parameters. Table
2.2 contains the real and estimated parameters of the generated dataset using both algorithms.
Fig. 2.5 shows the real and the estimated histograms of the dataset using the two methods. The
integrated likelihood and the BIC calculated for different number of clusters (M=I, 2, 3, 4 and 5)
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Figure 2.4: Time series plot of Gibbs-within-Metropolis iterations for the first dataset. (a) Itera-
tions for µ?, (b) Iterations for µ2, (c) Iterations for O1, (d) Iterations for â2, (e) Iterations for Â, (f)
Iterations for /32, (g) Iterations for P1 ,(h) Iterations for ^2.

of the two different algorithms are given in Fig. 2.6
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Figure 2.5: Real and estimated histograms for the dataset using both algorithms (a) Bayesian
algorithm, (b) EM algorithm.
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Figure 2.6: Marginal Likelihood and BIC values for the dataset with different number of clusters
using the two algorithms, (a) Bayesian algorithm, (b) EM algorithm.

2.3.3 Real Datasets

We devote this section to real datasets. Our method is used to model three standard widely used
datasets. The first one describes an enzymatic activity in the blood among a group of 245 unrelated
individuals, and the second one is an acidity index measured in a sample of 155 lakes in the
Northeastern United States. The third and last one, consists of thickness of 485 postage stamps
produced in Mexico. For these three data sets, a mixture of 2 distributions is generally identified
[55]. Figures 2.7, 2.8, and 2.9 show the real and the estimated histograms for the three datasets,
respectively, when applying the GGM and the GM using EM and Bayesian approaches. In all
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Figure 2.7: Real and estimated histograms for the enzyme data set. (a) Using Bayesian estimation
for GGM, (b) Using EM for GGM, (c) Using Bayesian estimation for GM, (d) Using EM for GM.

3S t 45 S 55

(a) (b) (e) (d)

Figure 2.8: Real and estimated histograms for the acidity data set. (a) Using Bayesian estimation
for GGM, (b) Using EM for GGM, (c) Using Bayesian estimation for GM, (d) Using EM for GM.

cases, it's clear that the GGM and the GM fit the data. The final results of the Bayesian and
EM estimations, in the GGM case, are given in table 2.3. The values of the BIC, and marginal
likelihood criteria for both GGM and GM using Bayesian and EM methods for different values of
M are given in Fig. 2.10. According to these figures the optimal number of components to fit the
three datasets in all cases is M = 2.
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Figure 2.9: Real and estimated histograms for the stamp data set. (a) Using Bayesian estimation
for GGM, (b) Using EM for GGM, (c) Using Bayesian estimation for GM, (d) Using EM for GM.
[ht!]

Table 2.3: Bayesian and EM parameters estimation of the three datasets using two components
GGM (B and EM denote Bayesian and EM estimations, respectively).

Enzyme Mode I
Enzyme Mode 2
Acidity Mode 1
Acidity Mode 2
Stamp Mode i
Stamp Mode 2

0.6325 0.1981
0.3675 1.2395

5.0556
2.0059

2.345 0.6040 0.1899
1.3347 0.3960 1.3119

6.0323
2.1682

0.5956 4.4279
0.4044 6.1410

1.8592
1.9923

2.2566 0.5998
1.0495 0.4002

4.3203
6.2820

2.2629
1.6287

1.8949
1.466«
1.9693
1.9987

0.7134 0.0774 101.4945 2.4315 0.6948 0.0773 95.0483 2.0311
0.2866 0.1025 65.7201 2.2048 0.3056 0.1066 65.0550 2.1729

2.3.4 Classification and Retrieval of Texture Images
Approach

Texture is one ofthe main characteristics used to describe natural images, which explain its impor-
tant role in image processing, computer vision and pattern recognition applications. Texture analy-
sis is a fundamental step in a variety of image processing applications such as industrial inspection,
medical imaging, remote sensing, and content-based image classification and retrieval [29, 56, 57].
Texture analysis approaches can be divided into four categories: statistical, geometrical, model-
based, and signal processing methods [58]. Many classification methods based on images fre-
quency analysis have been proposed in the past. The basic assumption of these methods is that tex-
ture can be identified by the energy distribution in the frequency domain via the decomposition of
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the frequency spectrum into a sufficient number of sub-bands. Then, the statistics of the sub-bands
coefficients can be derived and modeled to distinguish different image textures. Indeed, texture
information can be modeled using second or higher order statistics [59] and it is well-known that
natural image textures generally give rise to non-Gaussian highly-peaked sub-bands densities [60].
In this section we propose an approach for texture images classification and retrieval based on
our GGM Bayesian learning algorithm. The used classification methodology, previously adopted
in [61] using GM, takes into consideration that signatures of different textures will differ when
transformed to frequency domain.
In our classification framework, an image texture is first transformed to gray scale and decomposed
into sub-bands using steerable filters [62, 63]. Figure 2.1 1 shows a texture image and its multiscale
version in a pyramid hierarchy. The histograms of the resulted filtered images are show in Fig. 2. 12
which shows clearly that the Gaussian assumption would be inappropriate. Then, each sub-band's
marginal density is approximated by a GGM model using our Bayesian estimation algorithm (see
Fig. 2.13). Finally, the Earth Mover's Distance (EMD) [64] is used to measure the distribution
similarity between a set of components representing an input image texture (ie. test image) and sets
of components representing texture classes (i.e training images). In our case, EMD can be viewed
as the minimum cost of changing one mixture into another, when the cost of moving probability
mass from components in the first mixture to components in the second mixture is calculated using
Kullback-Leibler (KL) divergence given by:

mU)= /Vi(Z)IOg(^) (19)
Where /¿ is the component i of the input sub-image mixture, gó is the component j of the class
sub-image mixture. The derivation for the KL divergence of the Generalized Gaussian distribution
is known to be [29]:

D{m)=]oe(ß^)Hi)e'^r-ß. (20>
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Where (cti, /?¿) are the parameters of /¿, and (aij,ßj) are the parameters of ^. With KL in hand
we have to start the minimization problem in which we need to get the m ? ? matrix F, where /¿J
is the amount of weight wxi matched to wyj (wxi and wyj are the weights of the distribution), that
will minimize the following equation

m ?

EMDsub = SS f*DUi\\9i) (21)
¿=i i=l

and subjected to the following constraints:(l) /^ > 0, where 1 < i < m and 1 < j < n, (2)
S™ ? fa = ^wi» where 1<3 <n> (3) EJ=i /y = wxi, where 1 < i < m, (4) X)^1 E"=i k =
min(wx, Wy), where wx = $^¿=i ""7^" an(^ ^y = S^=? w3/i· Note that when the image texture is
decomposed of L sub-bands, then the total EMD is the sum of that of each sub-band, EMD =

Sa=1 EMD5Uh1. By computing the EMD between the input texture image and each texture class,
each image is affected by the class for which the EMD is the smallest.

Results

The images that we have used in our experiments are from the MIT VisTex database ' . Six homo-
geneous texture groups (Bark, Fabric, Food, Metal, Water, and Sand) were considered (Fig. 2.14).
For each of the Bark, Fabric, and Metal texture groups, we used four 512 ? 512 images each di-
vided into sixty four 64 ? 64 subimages. And for the Food, Water, and Sand texture groups, we

used six 512 ? 512 images each divided into sixty four 64 ? 64 subimages as well. This gives us a
total of 256 subimages for each class in the first three groups, and 384 subimages for each class in

the second three groups. We then applied our classification approach 10 times, each time using 24

subimages ofeach original texture image for training and the remaining 40 for testing. This brings
us to a total of 720 images from all six groups as training samples for our algorithm, and 1200 as

testing samples. We compared the accuracy of our algorithm to classify all 1200 images to those
of the three other methods (EM+GGM, Bayesian+GM, EM+GM). We applied our algorithm twice

1MIT Vision and Modeling Group (http://vismod.www.media.mit.edu).
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Table 2.4: The Average (± standard deviation) classification accuracy, over 10 trials, of the four
different methods

______________Method Using 3 levels pyramid Using 5 levels pyramid
Bayesian General Gaussian Mixture Models 94.12% ± 1.62% 95.62% ± 1.34%

EM General Gaussian Mixture Models 92.58% ± 1.74% 93.66% __ 1.69%
Bayesian Gaussian Mixture Models 91.92% ± 1.36% 92.35% ± 1.51%

______EM Gaussian Mixture Models 90.83% ± 1 .92% 91 .97%) ± 2.72%

first using three levels pyramid and second using five levels pyramid to compare the two cases
together (see Table 2.4). From these results we can observe two main points: our algorithm has the
highest accuracy and as expected the five levels pyramid improves the performance over the three
levels pyramids, however this improvement is very small compared to the enormous difference in
computational time.

In the retrieval application, we have used each and every subimage as a query and checked ifwe
are able to retrieve all the other 64 subimages coming from the same mother image. Our retrieval
approach can be divided into two steps. First task, is the same as the classification approach, we
classify the image into one ofthe six groups. For the second step, we compare the input image with
the other images in the same group and retrieve the closest images to our query. We applied our
retrieval process twice former using three levels pyramid and latter using five levels pyramid. To
measure the retrieval rates (precision and recall), each image was used as a query and the number
of relevant images among those that were retrieved was noted. Table 2.5 presents the retrieval
rates obtained in terms ofprecision when 64 images are retrieved each time in response to a query.
Note that in this case the precision and recall are the same because for a given image we have
at most 64 images which are similar to it. Figure 2.15(a) displays the average (averaged over all
the queries) precision rate for different texture classes when we consider only the first 64 images
retrieved. Figure 2.15(b) shows two graphs the overall recall of our retrieval method when varying
the total number of images retrieved taken into consideration. According to the results in Table 2.5
we can reach the following conclusions. First the highest average retrieval rate is reached using our
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________Table 2.5: Average Retrieval rate(%) for the four different methods
Method Using 3 levels pyramid Using 5 levels pyramid

Bayesian General Gaussian Mixture Models 81.25% 83.81%
EM General Gaussian Mixture Models 76.37% 79. 1 6%

Bayesian Gaussian Mixture Models 72.91% 74.52%
EM Gaussian Mixture Models 7 1 .66% 72. 1 2%

method. Second, it is enough to use three levels pyramid due to the large computational difference
between it and the five levels pyramid, and the small difference in their effectiveness.

2.3.5 Image Segmentation

Image segmentation is one of the most significant problems, due to the fact that it is fundamental
to many tasks of pattern recognition, image processing, computer vision where the segmentation
results generally govern the final quality of interpretation. Several approaches have been proposed
in the past. Many techniques, based on finite mixture Gaussians, have been developed, also, where
the idea was to partition the image in regions (each associated with one mixture component).
However, generally the pixel intensities inside the image regions are heavy-tailed which force
the Gaussian mixture model to lose its accuracy. Often, image segmentation must be done in an
unsupervised fashion in that training data is not available and the class conditioned feature vectors
must be estimated directly from the data. In this section, we apply our estimation algorithm for the
segmentation problem by formulating it as a classification problem with mixtures of generalized
Gaussian distributions. It is noteworthy to mention that the main purpose of this application is
to compare our Bayesian estimation with the EM one and with the results obtained when using
Gaussian mixture models. Comparisons with the several other segmentations approaches that have
been proposed in the past is out of the scope of our work.

We tested the effectiveness of our method on two different types of images, Printed circuit
board (PCB) and Synthetic Aperture Radar (SAR) images, we decided to use these images because
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of their non-Gaussian characteristics.We began our experiment by applying our algorithm on four
complex electronic printed circuit board (PCB) images, to check if the algorithm is able to rec-
ognize the background from the printed circuit, Integrated Circuits (IC), wiring, and the pinholes
in images. We ran these images with the four different algorithms to compare their effectiveness
for separating non-Gaussian data. The first image is an image of a complex PCB (Fig 2.16(a)),
applying the four different methods, we obtained three different outputs in regard with the number
of clusters. The Bayesian and EM Generalized gaussian algorithms segmented the image into four
groups, while the Bayesian Gaussian algorithm divided it into three classes, and the EM Gaus-
sian algorithm separated it into two groups, respectively (Fig. 2.17). We can notice two points:
the general Gaussian mixture was able to identify the right number of clusters, and the Bayesian
algorithm performs a slightly better refinement in the electronic circuit wiring then the EM. The
second image is also an image of a (PCB). We decided to use this image (Fig. 2.16(b)) as it has
something written on the board. Applying our segmentation algorithm, it was able to identify the
four different classes of the image and to segment it accurately. As for the three other algorithms
they were unable to identify the right number of classes which led them to wrong segmentations
(Fig 2.18). For the third image (Fig 2.16(c)), we used an image corrupted with Salt and Pepper
noise to check ifthe Bayesian algorithm will be able to segment a corrupted image correctly and to
identify its components. We found that our method was able to identify all the small details of the
PCB, while all the three other method fail to do so (Fig 2.19). A new area where image processing
can be applied and indispensable, is the automated visual inspection ofmanufactured goods. Most
of the electronic components manufactures use image processing to identify missing components
in the circuit before shipment. We used the four methods on (Fig 2.16(d)) which contains some
missing components. Our segmentation method was able to identify the missing components in the
circuit and to separate it to a class that only contains these missing components. In other words,
our method identifies that the image contains five classes exactly, where the fifth class contains
only the places in the PCB where there are missing components. For the three other methods, they
were unable to segment and identify the missing components in the image (Fig 2.20).
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We have also tested our method using SAR images. Unlike natural images, SAR images char-
acteristically have a particular kind of noise called speckle, which is introduced due to the coherent

imaging process. This causes serious problems for SAR image segmentation process. Hence seg-
mentation techniques that work successfully on natural images may not perform as well on SAR

images. We used three different images to investigate the effectiveness of our algorithm. The First
and second images are used to illustrate the segmentation effectiveness of our method in segment-
ing images highly corrupted by atmospheric turbulence (Figs. 2.21(a), 2.21(b)). For both images
we can notice that the Bayesian Generalized Gaussian is the most effective approach as it was able
to approximate the data with the best estimated histogram compared to the three other methods.
The third image (Fig. 2.24) was taken for the Beijing area, China. We can notice that the Bayesian

generalized Gaussian mixture estimated histogram is the closest one to the real histogram.
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Figure 2.10: BIC and Marginal Likelihood for several values of M when using the four different
methods, (a) For the Enzyme dataset, (b) For the Acidity dataset, (c) For the Stamp dataset.
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(a) (b)

Figure 2.11: Original image and its steerable pyramid decomposition, (a) Original image from
Bark group in Vistex, (b) Sub-images output using five level steerable pyramid.
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Figure 2.12: Histograms of the 14 Sub-images of the steerable pyramid.

Figure 2.13: An example of the Sub-image real and estimated histogram using 5 components
GGM.
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(e)

Figure 2.14: Sample images from each group, (a) Bark, (b) Fabric, (c) Food, (d) Metal, (e) Sand,
(f) Water.
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Figure 2.15: Average retrieval rate, (a) Precision rate using the 4 different methods for each of the
6 classes used, (b) Overall recall rate using the 4 different methods.
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Figure 2.16: Tested images (a) Complex PCB, (b) PCB with text, (c) PCB with noise, (d) PCB
with missing components.
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Figure 2.17: Segmentations results for Fig 2.16.a. (a) Bayesian Generalized Gaussian Mixture, (b)
E-M Generalized Gaussian Mixture, (c) Bayesian Gaussian Mixture, (d) E-M Gaussian Mixture.
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Figure 2.18: Segmentations results for Fig. 2.16.b. (a) Bayesian Generalized Gaussian Mixture,
(b) E-M Generalized Gaussian Mixture, (c) Bayesian Gaussian Mixture, (d) E-M Gaussian Mix-
ture.
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Figure 2.19: PCB Original image corrupted with noise (Fig 2.16.c) and its segmentations using
the four methods, (a) Bayesian Generalized Gaussian Mixture, (b) E-M Generalized Gaussian
Mixture, (c) Bayesian Gaussian Mixture, (d) E-M Gaussian Mixture.
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Figure 2.20: Segmentations results for Fig 2. 16.d. (a) Bayesian Generalized Gaussian Mixture, (b)
E-M Generalized Gaussian Mixture, (c) Bayesian Gaussian Mixture, (d) E-M Gaussian Mixture.
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Figure 2.21: Tested SAR images (a) First image (Courtesy ofNASA), (b) Second Image (Courtesy
ofNASA), (c) SAR image (Courtesy of European Space Agency).
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Figure 2.22: SAR image (Fig. 2.2 La) and its segmentations using the four methods, (a) Bayesian
Generalize Gaussian Mixture, (b) E-M Generalize Gaussian Mixture, (c) Bayesian Gaussian Mix-
ture, (d) E-M Gaussian Mixture.
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Figure 2.23: SAR image (Fig. 2.2 Lb) and its segmentations using the four methods, (a) Bayesian
Generalize Gaussian Mixture, (b) E-M Generalize Gaussian Mixture, (c) Bayesian Gaussian Mix-
ture, (d) E-M Gaussian Mixture.
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Figure 2.24: SAR image (Fig. 2.2 Lc) and its segmentations using the four methods(a) Bayesian
Generalize Gaussian Mixture, (b) E-M Generalize Gaussian Mixture, (c) Bayesian Gaussian Mix-
ture, (d) E-M Gaussian Mixture.
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2.3.6 Biomedical/Bioinformatics Applications

In the context of biomedical image processing and Bioinformatics, an important problem is the
development of accurate models for image segmentation and DNA spot detection. In this part we
study a highly efficient unsupervised algorithm for biomedical image segmentation and spot detec-
tion of cDNA microarray images, based on the Generalized Gaussian mixture models. Our work
is motivated by the fact that biomedical and cDNA microarray images both contain non-gaussian
characteristics, impossible to model using rigid distributions. Generalized Gaussian mixture mod-
els are robust in the presence of noise and outliers, more flexible to adapt the shape of data, and
less sensible for over-fitting the number of classes compared to Gaussian mixture.

Biomedical image segmentation

Image segmentation is one of the major challenges in image analysis, since image analysis tasks
highly depend on how well previous segmentation is accomplished. Image segmentation is the pro-
cedure ofdividing an image into different groups with each group enjoying similar properties such
as texture, color, boundary, and intensity [65, 66]. Despite, the existence of different segmentation
methods, many of them fail to provide satisfactory results when applied on biomedical images.
Reasons behind this failure are numerous. First, image segmentation is strongly influenced by the
quality of data and biomedical images contain different noises such as speckle, shadows which
may cause the boundaries of structures to be indistinct and disconnected. Second, most of image
segmentations algorithms are founded on the assumption that the data are Gaussian which is not
the case for biomedical images. Further complications arise as the contrast between areas of in-
terest in biomedical images is low, which make the extraction of the desired regions impossible as
they are statistically indistinguishable. Last but not least, most of existed segmentation methods
do not integrate uncertain prior knowledge.
In this section, we develop a new segmentation methodology, using our GGM Bayesian MCMC
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algorithm. We can divide our method into two main steps: histogram adjustment, and identifica-
tion of object of interest using the Bayesian GGM with the integrated likelihood. We validate our
algorithm by comparing it to a state ofthe art segmentation algorithm [67]. This method is divided
into two stages: preprocessing, and object segmentation. Preprocessing stage contains histogram
adjustment, noise reduction, and layer of interest extraction using K-means algorithm. For the
object segmentation a marker-controlled watershed technique is used.

3S$fâ#

1 mm

(a)

Figure 2.25: Microscopic images used, (a) The rat spleen tissue pulps (Courtesy of Dr. Jinglu
Tan), (b) Lung Carcinoid tumor (Courtesy of Dr. Robert Cardiff).

The first image used is the image ofa rat spleen tissue pulps (Fig. 2.25(a)). For visual differenti-
ation of cellular components, the tissue section was stained with haematoxylin and eosin (HkE).
Under a microscope, nuclei are usually dark blue, red blood cells orange/red, and muscle fibers
deep pink/red. The feature used to differentiate red and white is the density of the lymphocytes.
The white pulp has lymphocytes and macrophages surrounding central arterioles. The distribution
of the lymphocytes in red pulp is much looser than those in white pulp. Evaluating the severity
of infection requires identifying the white pulps. We started by transforming the color image to a
gray level image (Fig. 2.26(a)) in order to simplify the processing procedure. For grayscale image
nuclei are dark objects within a gray background. Then Histogram adjustment [68] is applied on
the image to increase image contrast (Fig 2.26(b)). At this point, we applied our Bayesian GGM to
identify the object of interest in the image (Fig 2.26(c)). Comparing the output from our method to

*~jSK:jti6

(b)
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the one from the watershed method (Fig 2.26(d)), we can find that we were able to reach a higher
identification for the infected regions. Also, the proposed method is less complex due to the fact
that we did not need to use neither noise reduction, nor marker-controlled watershed techniques.
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Figure 2.26: The different stage outputs for the two methods on the rat spleen tissue, (a) The gray
scale image, (b) the image after histogram adjustment, (c) The identified object of interest using
our method, (d) The identified object of interest using the state of the art algorithm.

The second image is an image of a carcinoid tumor seen in the lung of eighty one years old
female (Fig. 2.25(b)) . To be able to differentiate visually the cellular components, the tissue
section was stained with haematoxylin and eosin (HkE). The size of the tumor is of 2.5 cm long
as shown in the image.

First we transformed the image into gray scale image (Fig. 2.27(a)). Next, we applied the
histogram adjustment on the image (Fig. 2.27(b)) , and last we applied our algorithm on it to reach
the object of interest (Fig. 2.27(c)). Also, it is quite clear here that our algorithm overperformed
the watershed algorithm.
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Figure 2.27: The different stage outputs for the two methods on the Lung Carcinoid tumor, (a) The
gray scale image, (b) the image after histogram adjustment, (c) The identified object of interest
using our method, (d) The identified object of interest using the state of the art algorithm.

Experimental results show that the proposed method is effective and accurate in segmenting
microscopic images even without the need of noise reduction stages and marker-controlled water-
shed techniques to separate the touching objects.

Spot detection and image segmentation in DNA microarray data

In this section, we propose an optimized clustering-based method for microarray image segmenta-
tion using GGM. Our algorithm is based on the fact that GGM are flexible to model the shape of
data, and have high immunity to noise. To access the performance of our method, we compare it
to two well known algorithms: k-means clustering microarray image segmentation (SKMIS) [61],
and optimized k-means microarray image (OKMIS) [69]. We evaluate the segmentation perfor-
mance of the three methods on the spot images from ApoAl Data [70].
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DNA microarray technology is a high throughput technique allowing the comprehensive mea-
surement of the expression level of thousands of genes simultaneously in the studies of genomics
for biology and medicine [71,72]. Complementary single stranded DNA (cDNA) microarrays
consist of thousands of individual DNA sequences printed in a high density array. Nowadays,
microarray experiments are used to compare gene expression from two samples: target or exper-
imental, and control. The mRNA of both biological tissues (normal and tumor) is extracted, then
reversed transcribed into complementary DNA (cDNA) copy, followed by a labeling procedure
using two fluorescence dyes, Cyanine Cy3 (green channel) and Cy5 (red channel). After labeling,
the two samples are mixed and hybridized with the arrayed DNA sequences. Afterwards, fluores-
cence measurements are made for each dye separately, and the digital image scanner records the
intensity level at each microarray location producing two grayscale images [73].

Image analysis is an highly important aspect of cDNA microarray experiments, as it is respon-
sible for reducing an image of spots into a table with a measure of the intensity for each spot.
Efficient, accurate and automatic analysis of cDNA spot images is necessary in order to apply this
technology in different biological experiments. cDNA microarray gene expression data analysis
involves three main stages: spot localization or gridding, background separation or image segmen-
tation, and intensity estimation. Spot localization or gridding is used to identify blocks and to
position rows and columns of spots within each block. Background separation or image segmen-
tation is used to segment the image into background or foreground, and the intensity estimation
step gets the red and green intensities and assigns the log ratio after background correction in order
to represent the log relative abundance of each spot. These stages are quite important, since the
accuracy of the resulting data is essential in posterior analysis.

In cDNA microarray experiments, noise is a challenging problem as it can be produced by
laser light reflection, dust on the glass slide, and photon and electronic noise. These noises force
microarray images to vary in intensity, in the spot sizes and positions. For this reason, we decided
to apply the Bayesian GGM on this problem respectively for its immunity to noise [74].
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Over the past few years, many approaches have been proposed for microarray image segmen-
tation. Fixed circle segmentation is the first applied technique on microarray images, its idea is to
assign the same circle size to all the spots. Another proposed method in order to avoid the drawback
of the fixed circle segmentation is the adaptive circle segmentation technique. This algorithm fits a
circle with adaptive size around each spot, in order to characterize the pixels in the circle as signal
pixels and the pixels out of the circle as background pixels i.e. foreground or background. Another
technique that has been efficiently used in microarray image segmentation is clustering, since it is
not restricted to a particular shape and size for the spots. Single k-means clustering microarray im-
age segmentation (SKMIS) attempts to cluster the pixels into two groups, one for foreground, and
the other for background. Therefore in SKMIS, feature vector is reduced to a single variable in the
Euclidean one-dimensional space. Optimized k-means microarray image segmentation (OKMIS)
not only consider the intensity of the pixel but also the shape of the spot based on the fact that the
position of the pixel could also influence the result of the clustering. Our algorithm is very simple
as we only apply a two component GGM to classify the data to either foreground or background.

y
(a) (b) (e) (d) (e)

Figure 2.28: Five noisy spots obtained from the 1230clG/R microarray image.

In order to compare GGM, OKMIS and SKMIS, we applied the three methods on the 123OcI G/R
microarray image obtained from the ApoAl data. Fig. 2.28 shows some examples for the noisy
spots in our microarray image. From Fig. 2.29 It is quite clear that our method was able to re-
trieve the true foreground from the background. We also observe that the GGM overperformed the
SKMIS and OKMIS in identifying noisy pixels from foreground. Note that, the GGM was able to
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take the data form . Hence, the GGM is more suitable when dealing with cDNA microarray image
segmentation.
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Figure 2.29: The Experiment results of the three methods on the five noisy spots.

2.4 Conclusion

We have presented a Bayesian analysis of finite generalized Gaussian mixtures. Our learning
algorithm is based on the Monte Carlo simulation technique of Gibbs sampling mixed with a
Metropolis-Hasting step. For the estimation of the number of clusters describing the mixture
model, we used the marginal likelihood with Laplace approximation, and the BIC criterion. We
have demonstrated clearly by different applications that Bayesian estimation and selection gives
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reliable estimates. The Bayesian approach provides a natural extension to deal with uncertainty
and noise by incorporating prior information.
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I
Chapter

A Fully Bayesian Model Based on
Reversible Jump MCMC and Finite Beta
Mixtures for Clustering

The use of mixture models in image and signal processing has proved to be of considerable in-
terest in terms of both theoretical development and in their usefulness in several applications.
Researchers have approached the mixture estimation and selection problem, to model complex
datasets, with different techniques in the last few years. In theory, it is well-known that full
Bayesian approaches, to handle this problem, are fully optimal. The Bayesian learning allows
the incorporation of prior knowledge in a formal coherent way that avoids overfitting problems.
In this chapter, we propose a fully Bayesian approach for finite Beta mixtures learning using a
Reversible Jump Markov Chain Monte Carlo (RJMCMC) technique which simultaneously allows
cluster assignments, parameters estimation, and the selection of the optimal number of clusters.
The adverb "fully" is justified by the fact that all parameters of interest in our model including
number of clusters and missing values are considered as random variables for which priors are
specified and posteriors are approximated using RJMCMC. Our work is motivated by the fact that
Beta mixtures are able to fit any unknown distributional shape and then can be considered as a use-
ful class of flexible models to address several problems and applications involving measurements
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and features having well-known marked deviation from the Gaussian shape. The usefulness of the
proposed approach is confirmed using synthetic mixture data, real data, and through an interesting
application namely texture classification and retrieval.

3.1 Introduction

In recent years Bayesian approaches have found an increased interest in the image and signal pro-
cessing community [75]. Bayesian inference provides consistent learning frameworks for model
uncertainty, through the use of posterior model probabilities, which is fundamental in image pro-
cessing applications [76]. The majority of the approaches that have been proposed separate the es-
timation and the selection ofthe number of components (i.e a certain criterion should be compared
for different number of clusters) (see, for instance, [9, 10] for interesting discussions and compar-
isons between different criteria). Note, however, that both estimation and selection problems are
strongly related and depend heavily on the underlying mixture density components choice.

In this chapter, we propose to simultaneously estimate and select finite Beta mixture models

using the reversible jump samplers introduced by Green [77] and which have been applied suc-
cessfully for instance to Gaussian [78-81], Poisson [82, 83], exponential [84] mixtures, to variable

selection [85], and to model selection in general [86, 87]. The basic idea of PvJMCMC approach is
that it is possible to move between parameter subspaces corresponding to statistical models, such
as mixture models with different number of components, which offers effective model selection

(i.e structure discovery) and produces a good mixing of the Markov chains. Using RJMCMC al-

lows us to explore simultaneously both the parameter and model space by treating the number of
clusters as a random variable having a prior distribution ' and it does not need to be specified in
advance, since it can be automatically adjusted during iterations. Our work is motivated by the

1It is noteworthy that other works, that we do not investigate in this chapter, have put prior distribution on the
number of components (see, for instance, [88-91]).
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compactly supported nature of the data generally handled in image and signal processing applica-
tions and by the fact that the Beta distribution is able to model any unknown distributional shape
generated by this kind of data. Despite these advantages, finite Beta mixtures have been largely
ignored and relatively less visited avenue of study compared to finite Gaussian mixtures. More-
over, it is well-know that any continuous density can be well-approximated by a mixture of Beta
distributions (See [92], for instance, for formal statement and detailed proof). For this reason the
Beta distribution and mixtures of Beta have been widely used to model expert opinion, as a prior,
in Bayesian settings [87,93,94]. In this work, however, Beta is used as a parent distribution to
model directly the data.

This chapter is structured as follows. After presenting our hierarchical finite mixture Beta Bayesian
framework in Section 2, the complete RJMCMC algorithm is discussed and developed in Section
3. Section 4 is devoted to the experimental results. Finally, some conclusions are drawn and future
research possibilities are highlighted in Section 4.

3.2 Bayesian Analysis of Beta Mixture Model

3.2.1 Finite General Beta Mixture Model

General Beta Distribution

If the random variable x, where a < ? < b and (a, b) 6 M2, follows a general· Beta distribution
with parameters a and ß, then the density function is given by [95]:

*'!«¦ m = {b _ B^-tr?tt)rW {x - a)°-'(6 - *>'" m
where a > 0 and ß > 0. Note that this distribution is reduced to the well-known Beta when

(a, b) = (0, 1), which is actually the univariate case of the Dirichlet distribution which has proven
high flexibility to model data [96]. The mean and variance of the general Beta distribution are
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given by:

m = E(x) = (b-a)—^- + a (2)
a + ?

V = Var{x) = {b-a)\a + ßna + ß + l) . (3)
Using equation 2, it is easy to obtain the following location-scale parametrization of the general
Beta:

O(x\m s) = EM (x - a)sS^i-1(b - ???-t??)-1 (4)

where s — a + ß and represents the scale of the distribution and m represents the location. Note

that this alternative provides interpretable parameters because m and s represent the mean and
a measure of the sharpness of the distribution, respectively [97]. A large value of s produces a

sharply peaked distribution around the mean m. And when s decreases, the distribution becomes

broader. An additional advantage of this parametrization is that m lies within the bounded space

[a, 6], leading to an increase in computational efficiency. Therefore, this parametrization will be
adopted for learning.

Finite General Beta Mixture

A general Beta mixture with M components is defined as:
M

?{?\?) = ^2p(x\mj, Sj)Pj (5)

where {pj} are the mixing proportions which are constrained to be non-negative and sum to one,
and p(x\m,j, Sj) is the general Beta distribution. The symbol ? = (?, P) refers to the entire set of
parameters to be estimated, where ? — (mi, S1 . . . , mM, sM), and P = (pi, . . . ,Pm)-
Given a set of data with N observations X = [X1, . . . ,xn}, the classical approach to estimate
the parameters of a mixture model is to maximize the likelihood through the Expectation Maxi-

mization (EM) algorithm which theoretical framework was first introduced in the seminal paper by
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Dempster et al. [98]. The EM, however, guarantees convergence only to a local maximum which
quality depends highly on the initialization step (i.e as a deterministic approach the EM gets stuck
at local maxima that are not globally optimal). Moreover, it is well-known that estimation ap-
proaches based on maximizing the likelihood can cause overfitting by preferring complex models.
Many researchers have developed modifications and extensions ofthe EM algorithm (the interested
reader is refereed to [50,99, 100]) 2. A detailed discussion about the drawbacks of deterministic
estimation in the case of finite Beta mixtures can be found in [19]. EM is based on the idea of
explicitly representing the mixture components generating each observation via latent allocation
variables Zu i = 1, . . . , N. Each Z1 is an integer in {1, . . . , Af} denoting the unknown component
from which x¿ is drawn. The unobserved (or missing) vector Z = (Z1, ... , Zn) is generally called
the "membership vector" of the mixture model and its different elements Z¿ are supposed to be
drawn independently from the distributions

P(Zi=J)=Pj j = l,...,M. (6)
The same idea has an important role when using Bayesian approaches which are now widely
applied as an alternative thanks to modern Bayesian computational tools. Bayesian estimation
has become feasible due to the development of simulation-based numerical integration techniques
such as Markov chain Monte Carlo (MCMC) methods [H]. MCMC methods have revolutionized
Bayesian statistics by allowing inference for highly complex models which can be treated tractably,
albeit numerically, through the simulation of required estimates by running appropriate Markov
Chains using specific algorithms such as Gibbs sampler. The Gibbs sampler, however, can be
difficult to implement when the conditioning distributions have complicated awkward forms. In
this case, solutions include the Metropolis-Hastings algorithm [11] which we will use in this work.
Among the important problems that arise in using Bayesian techniques is the choice of priors. In
the following, we present our Bayesian model, the priors that we have considered and the resulting
posteriors.

2In particular the authors in [100] classify these extensions into three groups: pure, hybrid and EM-type
accelerators.
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3.2.2 Hierarchical Model, Priors and Posteriors

Hierarchical Model

Fully Bayesian analysis considers the number of components M as a parameter in the model for
which a conditional distribution should be found. Moreover, the unknowns M, ? and P, in our
mixture model, are regarded as random variables drawn from some prior distributions. The joint
distribution of all these variables is

p(M, P, Z, ?, X) = p(M)p(P\M)P(Z\P, ?)?(?\?, P, ?)?{?\?, Z, P, M)

A common approach is to impose conditional independencies [78], ?(?\?, P, M) = ?(?\?) and
p(X\Ì, Z, P, M) = ?(?\?, Z), which give us the following joint distribution

p(M, P, Z, ?, X) = p(M)p(P\M)P(Z\P, ?)?(?\?)?(?\?, Z)

It is worth mentioning that if we condition on Z, the distribution of x¿ is simply given by the
Zjth component in the mixture, ?(?\?, Z) = n¿IiP(x¿lCzJ· Moreover, an extra layer can be
introduced to the hierarchy to represent the model parameters (M, P, ?) priors, which gives the
following final form of the joint distribution

N

?(?, d, ?, M, P, Z, ?, X) = ?(?)?(d)?(?)?(?\?)?(?\?, d)?(?\?, ?)?(?\?, ?) ?[?(??\???)
(7)

where ?, d and ? are the hyperparameters on which M, P and ? depend, respectively.

Priors and Posteriors

Let us now define the priors, which we suppose that are all drawn independently 3, of the different
parameters in our hierarchical model. We know that each location rrij is defined in the compact

3The choice of a simple independence prior structure is a common assumption taken generally when defining
Bayesian models.
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support [a,b], then an appealing flexible choice as a prior is a general Beta distribution, with loca-
tion e and scale ? common to all components, which was found flexible in real applications. Thus,
rrij for each component is given the following prior:

?[t??\e,?) ~ x„ ,„„J-^L,^ ^TTTK - a)i^i-1(b-mj)<:{1-^>-1 (8)---------------777—t—— (mi — a) <>-<» (6 — m,»u b-a>

Since Sj control the dispersion of the distributions, a common choice as a prior is an inverse gamma
with shape ? and scale w common to all components [101], then

w^ exp(—?s/Sj)

using the two previous equations, we have
M

V[U)SY1 (9)

C(e-a)

?[?\?,?) = 1[?[p?3\e,?)?^\?,p?) =
J=i T[u)M[b - a)M(C-D

M exp(-ro/jjj)(mj—a) *>-" (6-roj)" fc-a·1'1
^+1

r(Îf?)r(C(i - ^))
M

(10)

Having this priors in hand, the ? hyperparameter in equation 7 is actually [e,?,?,ts). Thus,
according to the previous equation and our joint distribution in equation 7, the full conditional
posterior distributions for rrij and Sj are

M N N

p[rrij\...) oc \[?[p??\e,?)?[8?\?, w) JJp(^ICzJ ocp[mj\eX) Y[p[xMzt)
i=l z=l

OC

X

r(Si)
.(ft.^-irfîfcîljr^-il-î^))

T(C)

?
Zi=j

. ae-o.)

Si(TTIj-O.)[Xi - a)^ l[b- Xi)^-TkT)-I

(6_a)C-ir(fci)r(C(l-fES)) (m._a)^?-i(ò_m.)C(i-f5f)-i (H)

M N N

p[Sj\...) OC Y[p[mj\£,C)p[Sj\d, W)Wp[X^) CC p[Sj\§,W)Wp[X^)
j=l i=\

r r(s,)oc

X ro,?exp(—VJJSj)

x7· — a) 5^
^-("1J-") -.

(6 - z¿) JJj(I-

*.0+1 (12)
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where rij = S?=1 Izt=j and represents the number ofvectors belonging to cluster j.
Moreover, we know that the vector P is defined on the simplex {(p1; . . . ,pM) : Y^1J11 pj <

1}, then the typical choice, as a prior, for this vector is a Dirichlet distribution with parameters
S = (S1,... Jm)[U]

According to equation 6, we have also
M

p(Z\P, M) = Up? (14)

Using the two previous equations and our joint distribution in equation 7, we obtain

p(P\...) cxp(Z\P, M)p(P\M, d) « JI^ J|iÊLiZ JJ^-1 « fj^-1 (15)j=i 1Ij=I1W)^1 j=1

which is actually proportional to a Dirichlet distribution with parameters (d? + ??,...,d? + nM).
It is noteworthy that the prior and the posterior distributions, p(P]M, d) and p(?\ . . .), are both
Dirichlet. In this case we say that the Dirichlet distribution is a conjugate prior for the mixture pro-
portions. In addition, using equations 6 and 7, we have the following posterior for the membership
variables

P(Z, = j\ . . .) oc 2*? (X - a)fi^-> - x)-i(i-=&-i
(16)

In order to have a more flexible model, we introduce an additional hierarchical level by allowing
the hyperparameters to follow some selected distributions. The hyperparameters, e and C, asso-
ciated with the rrij are given uniform (we have started by testing a Beta prior for e, and the best
experimental results were obtained with location equal to 1 and scale fixed to 2, which corresponds
actually to a uniform distribution) and inverse Gamma priors, respectively:

P(e)~W[o,u (17)
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Thus, according to these two previous equations and equations 10 and 7, we have

M M v(r\?(f..) «^??-??e,? ex g (b _ a)t_,r(ca|¡r(c(1 _ m to-ai^-Hb-n,?»-*»
(19)

M

KCl···) oc p(C|yj, g) YIp(TUjIe, ?) (20)

^expÇ-?/?? T(O , ?^-?,?. VCd-S=^)-I

The hyperparameters, $ and zu, associated with the s,- are given inverse Gamma and exponential
priors, respectively:

?(ts\f) ~ f???(-fp) (22)

Thus, according to these two previous equations and equations 10 and 7, we have

M M ? ,_ . ,
pH . . .) oc pH0) TJp(Sj Ii?, ^) oc f ß??{-f?) Ff ^ !*P Zi (24)i=i 7=1 rW5i

For the number of components M, which has no particular reason to be fixed in advance, we take
as a prior a common choice which is a Uniform {1, . . . ,s} distribution, where s is a constant
representing the maximum value allowed for M. Our hierarchical model can be displayed as a
directed acyclic graph (DAG) as shown in Fig. 3.1.
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Figure 3.1: Graphical Model representation of the Bayesian Hierarchical finite general Beta mix-
ture model. Nodes in this graph represent random variables, rounded boxes are fixed hyperparam-
eters, boxes indicate repetition (with the number ofrepetitions in the lower right) and arcs describe
conditional dependencies between variables.

3.3 Reversible Jump MCMC Algorithm

3.3.1 RJMCMC Move Types

Let AM denotes the complete set ofunknown variables (i.e the sate variable),

?? = {?,?,?,?,?,p,e,?).

We consider also a countable family of move types, indexed by ? = 1, 2, .... In our case, and fol-
lowing [78], the moves consist of: (1) updating the mixing parameters, (2) updating the parameters
s and m, (3) updating Z, (4) updating the hyperparameters ?, w, e, ?, (5) splitting one component
into two, or merging two into one, (6) the birth or death of an empty component. In [78] a sweep
is defined as a complete pass over the six moves and is considered as the basis time step of the
complete learning algorithm. The first four moves do not change the dimensionality of the param-
eter vector and are actually classic Gibbs sampling moves. Note, however, that moves (5) and (6)
necessitate changing (?, P, Z) and changing M by 1. The MCMC step representing move (5) takes
the form of a Metropolis-Hastings step by proposing a move from a state AM to A'M with a target
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probability distribution (posterior distribution) p(AM\X) and proposal distribution qt{AM, A'M)
for the move t. When the current state is AM, a given move t to destination A'M is accepted with
probability

? (A AM -miJl ??^£??^?µ)?7G^??, ??) - mm < 1, ——— —— > (25)t ?(?µ?)&(?µ,?'µ)]
When we have a move, lying in a higher dimensional space, from a state ?? to another state
A'M, it is possible to implement this move by drawing a vector of continuous random variables u,
independent of AM [78]. And the new A'M state is set through an invertible deterministic function
of ?µ and u: f(AM, u). Thus, the move acceptance probability is given by

7?-?(??,??) = mnW 1, p(A'M\X)rt(A'M)
p{AM\X)rt{AM)q{u)

3?'?
d(AM,u) (26)

where rt(AM) is the probability of choosing move type t when in state AM, q(u) is the density
is the Jacobian function arising from the variable change from (AM, u)function of u and

???'?.

d*M
d(AM,u)

3.3.2 Implementation of the Moves

Gibbs Sampling Moves

As we mentioned above the first four moves are classic Gibbs sampling moves. For the first
move the mixing parameters are generated from equation 15. The second move is based on the
generation of rrij and s¿. It is noteworthy that the sampling of rrij and Sj is more complex, since
the conditional posteriors given by equations 1 1 and 12 do not have known forms. Thus, we have
used the Metropolis-Hastings algorithm (M-H) (see, for instance, [102], for a detailed introductory
exposition and discussions). At iteration t, the steps of the M-H algorithm, to generate Sj, can be
described as follows

1. Generate S7- ~ ç(sj|sji_1)) and u ~ ¿Y[0,i]
2. Compute r = —,/_' ?—¡^r-
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3. If r < u then sf = S1 else sf = s{¡~l)JJ JJ

The major problem in this algorithm is the need to choose the proposal distribution q. The most
generic proposal is the random walk Metropolis-Hastings algorithm where each unconstrained
parameter is the mean of the proposal distribution for the new value. As Sj > 0, we have chosen
the following proposal ~Sj ~ CN{\og{s{*~l)),e2), where CM{\og{s{^1]),e2) refers to the log-
normal distribution with mean log(eJ*_1)) and variance e2. Note that this is actually equivalent to
1Og(S7-) = log(sji_1)) + €jt where ej ~ JV(O, e2). In the case of my we have opted for general Beta
proposals, centered at the current values, to assure that rrij € [a, 6]. With these proposals the M-H
algorithm, to generate rrij, is composed of the following steps:

1. Generate rhj ~ #(mji-1), S) and u ~ W[0,i]·
2 Compute r = p^I-)^'1^^)P(^-0I-O-B(Aj-ImJ'-1' ,5)
3. If r < u then mf = m,- else t?? = m{!'l)JJ JJ

where #(mj_1), S) is a general Beta distribution with location m^ and scale S. The third
move is based on the generation of the missing data Zhi = ?,.,.,? from standard uniform
random variables rn, where Z¿ = j if p(Z¿ = 1| ...) + .. . ,p(Zi = j - 1\...) < rn < p{Zi =
1| ...) + ...+ p(Zi = j\ . . .) (see equation 16) [80]. The fourth move consists of updating the
hyperparameters ?, w, e, C- The posterior distribution of e, C, ? and w, given by equations 19, 20,
23 and 24, respectively, are not of standard forms. However, it is possible to show that they are
log-concave [103] (i.e it is straightforward to show that the second derivatives of the logarithms
of these functions are negative), then the samples generation is based on the adaptive rejection
sampling (ARS) [104].

Split and Merge Moves

In move (5), we have to choose between splitting or merging a given component with probabilities
aM and bM = 1 - aM, respectively, depending on M. Note that O1 = 0 and as = 0 (recall that
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s is a constant representing the maximum value allowed for M), otherwise aM = bM = 0.5. The
merging proposal works as follows: choose two components J1 and J2, where mJ1 < mJ2 with no
other rrij G [m^ , mJ2] (i.e adjacency condition). If these components are merged, we reduce M by
1, which forms a new components j* containing all the observation previously allocated to J1 and
J2 and then creates values for pjif, Sj*,rrij*, by preserving the first two moments, as follows (see
Appendix B)

Pj*= Pj1 +Pj2 (27)
_ Pj1TUj1 + pj2mj2m¦J* - ---^Z. (28)Pj1 +Pj•2

? Pj* (raj, -a) (6-îTCj«)òi* — 7 ñ t r i (29)

Pj1 ^j1 + Sj.i+1 j + Pj2 i mj2 + J-T1 J - Pj*mjm
When the decision is to split, we choose a component j* at random to define two new components
Ji and J2 having weights and parameters (ph , mh , sh ) and (ph , mj2 , sh), respectively, conforming
to equations 27, 28 and 29. According to this transformation, there are 3 degrees of freedom,
thus we need to generate 3 random numbers u = (U1, u2, uz) drawn from Beta distributions with
parameters (2, 2), (2, 2) and (1, 1), respectively [78]. The split transformations are thus defined as
following (see Appendix C)

Pj1 = U1Pj, Pj2 = (1 - U1)Pj* (30)

rn^rn^-UtJ^;^-™^ mn= ^ +J^ ~ 0X* ~^ (31)V («i* + i)p¿i ? (^ + 1K
_ (mJi -a){b- TUj1) __ (mn - a){b - mJ2)

Sjl UZ{l-ul)^'-sa)^m^^ Sh ~ (1 - U3)(I - uB^-aW-m^)^ ~ 1 (32)
Note that we have also to check the adjacency condition previously defined for the split move. If
this condition passed, then we assign the different x¿ previously in j* in J1 or j2 using equation 16
(i.e Bayes rule). If the condition is not satisfied, we reject the move in order to preserve the
reversibility of split/combine moves.
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Now, we calculate the acceptance probabilities of split and combine moves: min{l, A} and
min{l, A'1}, where we have the following according to equation 26:

A = p(Z, P, M + 1, ?, ?, p, e, (\X)bM+i OAM
(33)p(Z, P, M, ?, ?, zu, e, (\X)aMPallocq(u) \ d(AM, u)

where PaUoc is the probability ofmaking this particular current allocation ofdata to components J1
and j2:

Palloc = TT PhP(ZiHnSj1) j-r PnP(xi\mJ2,sh)
Zi=Ji Php{xi\mh,sh) +Pj2P(X^mJ2, sj2) 11 ???(?,-|t??, Sj1) + pJ2p(xi\mJ2, sJ2)
IJZi=J1 PjiPfoKi , Sj1) UZi=J2 Pj2P(zi\mJ2,sJ2)

Hz1=J* Pj1P(XiIrUj1 , Sj1 ) + php(xi\mj2 , sJ2)
q(u) = P(U1)P(U2)P(U3)

(34)

(35)

p{z,p,M¿,*,*>,e¿\x) ,s develoPed m Appendix D and ??'

d{AM,u) is given by

dA\M
d(AM,u)

d(Pji , Pj2 , mJ1 , mj2 , Sj1 , sj2 )
0(U1 , Pj* , TUj* , U2 , Sj* , M3)

„ (mh - ^(Sj1 + I)(Sj2 + 1)
^u2(I -u¡)u3(l- u3)(Sj* + 1) W

which is the Jacobian that arises from transforming (pjm , U1 , rrij* , u2 , Sj* , u3) to (Pjl , pJ2 , mh , mJ2 , sJ1 ,
and is developed in Appendix E.

Birth and Death Moves

In move (6), birth-and-death, the first step is to choose randomly between birth and death with
probabilities aM and bM as above. The birth step consists in adding a new Beta component in the
mixture by generating its parameters, mjt and s,·», from the associated prior distributions given
by equations 8 and 9, respectively. The weight of the new component, ??*, is generated from the
marginal distribution ofpjif derived from the distribution of P = (p1; . . . ,pM,Pj*)· The vector P
follows a Dirichlet with parameters (S1,..., d?, Sj*) (see equation 13), thus the marginal of Pj*
is a Beta distribution with parameters (d3*,?™=? 5j) [95]. Note that in order to keep the mixture
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constraint Y,j=1Pj + Pj* = 1, the previous weights p¿,j = 1, ... ,M have to be rescaled and
then all multiplied by (1 - pjt). The Jacobian corresponding to the birth move is then (1 -
Pj*)M. For the opposite move, we choose randomly an existing empty component to delete, then of
course the remaining weights have to be rescaled to keep the unit-sum constraint. The acceptance
probabilities of birth and death moves: min{l, ^4} and min{l, A'1}, are calculated according to
equation 26 (see Appendix F):

M_ p(M + 1) rfo« + S,=? Sj) fj.-i ?+??_ ? d?_? bM+1 1A- P(M) m,)T(E^A)Pj* ( P°*] {M+l)aM(M0 + I)P(Pj1'
(̂37)

where M0 is the number of empty components before the birth.

3.4 Experimental results

In this section we report results on different interesting applications. In the first application, we
briefly discuss the results obtained with some artificially generated data sets. The discussion will
not be very detailed since, the experiments with generated data are not as significant as those with
real data. We investigate the effectiveness of our algorithm by applying it on four well-known real
data sets, while comparing it to the RJMCMC in the case of Gaussian mixture model [78] in the
second application. Last but not least, we demonstrate the usefulness of our algorithm for texture
image classification and retrieval. In these applications our specific choices for the hyperparame-
ters were 771 = . . . , ?? = 1, (f, ?, ?, µ, f)=(2,5,0.2,2,1), S and e2 (in the M-H algorithms) were
set to 2 and 0.01, respectively, and s (the maximum value allowed for M) was set to 30.

3.4.1 Synthetic Data Sets

We dedicate this section for the analysis ofgenerated data. The goal of this section is to investigate
if our algorithm is able to: estimate the mixture parameters and select the number of clusters
effectively. We generated 100 data sets using different parameters and number of clusters, in order
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Table 3.1 : Summary of the results for the 1 00 generated data sets. M denotes the obtained number
of clusters.

Number of clusters M
M=I
M-3
M=A
M=S
Af=6
M=I

Number of dataseis
25
20
15
15
15
10

M :
100%
0%
0%
0%
0%
0%

M :

100%
6.67%

0%
0%
0%

M=A

0%
92.23%

0%
6.67%

0%

Af =5
0%
0%
0%

100%
6.67%

0%

M = 6
0%
0%
0%
0%

86.66%
10%

0%
0%
0%

Table 3.2: Parameters of four different generated data sets. N represents the number of elements
in each data set. rrij, sjt andp7 are the real parameters. mJ5 sj, and p¿ are the estimated parameters.

Data 1 <7V=3365)

Data2(/V=3647)

Data3(/V=3703)

Data4(jV=3706)

2.00
5.00
1.00
3.50
6.00
1.00
3.00
5.00
6.50
1.00
2.00
4.00
5.00
6.50

10.00
19.00
12.00
22.00
13.00
15.00
14.00
19.00
17.00
15.00
25.00
14.00
19.00
17.00

Pf
0.60
0.40
0.35
0.35
0.30
0.10
0.30
0.20
0.40
0.10
0.20
0.30
0.20
0.20

1.94
4.90
0.90
3.35
5.90
1.17
3.01
4.85
6.51
1.11
2.03
3.82
5.14
6.53

12.31
17.71
15.11
26.00
16.57
18.90
12.70
18.79
23.40
19.22
23.91
15.83
19.05
16.69

0.57
0.43
0.34
0.35
0.31
0.11
0.28
0.20
0.41
0.12
0.19
0.28
0.21
0.20

to investigate the method on a wide range of data. Applying our methods on these data sets, we
found that it was able to identify the right number of clusters in 96% of the cases as shown in
table 3. 1 . For the 4% wrongly modeled data sets, we can notice that they were fitted with a smaller
number of components. It is noteworthy that in each of these four cases the probabilities for the
right number ofcomponents were quite close to the ones chosen. We choose four data sets for more
in details inspection. The real and estimated parameters for these data sets are given in table 3.2,
and the real and estimated histograms are drawn in Fig. 3.2. According to these results it is clear
that our algorithm has very good learning capabilities.
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Figure 3.2: Real and estimated histograms for four generated data sets, (a) a 2 components mix-
ture, (b) a 3 components mixture, (c) a 4 components mixture, (d) a 5 components mixture.

3.4.2 Real Data Sets

We devote this section to real data modeling and analysis. We apply our algorithm on four standard
widely used data sets: enzyme, acidity, galaxy, and stamp 4. The first data describes an enzymatic
activity in the blood among a group of 245 unrelated individuals, and the second one is an acidity
index measured in a sample of 155 lakes in the northeastern United States. The third one consists

4http://www.maths.uq.edu.au/~gjm/DATA/mmdata.html
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Table 3.3: Estimated posterior probabilities of the number of components given the data for the
four data sets, with percentage of accepted Split-Combine, and Birth-Death moves.I r-i_. . I ¡Cr I '" ' ' ' ,, . :.-i — .

Enzyme

Acidity

Galaxy

Stamp

p(k\X)

P(\\X) = 0.0000 ?(2|??) =0.1712?(3|?-) = 0.4152 p(4\X) =0.3782
P(5\X) = 0.0341 S fc>6p(fc|^) = 0.0013

P(II*) = 0.0000 p(2\X) = 0.4307 p(3|.¥) = 0.3354 p(4\X) = 0.1942
P(5\X) = 0.0231p(6[.¥) = 0.0154 S%>7 PWX) = 0.0012

p(l\X) = 0.0000 p(2|AT) = 0.0010 p(3|*) = 0.0210 p(4|A') = 0.2031
?(5|?·) = 0.3671?(6|;?) = 0.0798 p(7|A") = 0.3167 p(8| X) = 0.0094

S?>9?(*0= 0.0019
p(l\X) = 0.0000 p(2|A-) = 0.0000 p(3|A-) = 0.0001 p(4|A-) = 0.5612
?(5|?-) = 0.3574p(6|^) = 0.0231 ?(7|?") = 0.0556 p(8|*) = 0.0012S l><¡ PWX) = 0.0014

Proportion (%) of Split
-Combine moves accepled

9.32%

Proportion (%) of Birth
-Death moves accepted

2.16%

ofthe velocities of 82 distant galaxies, diverging from our own galaxy, as for the last data set it con-
sists of thickness of 485 postage stamps produced in Mexico. The enzyme data set was analyzed
in several research papers such as in [105] where it was modeled by two skewed distributions,
and in [78] where the use of three to five Gaussian components was favored. For the acidity data
and Galaxy data sets, three to five components were generally identified [78]. The 1872 Hidalgo
postage stamps of Mexico data set was introduced in [106] and has been used in several research
papers (see, for instance, [107, 108]) which identified seven and three components Gaussian model
with equal and unequal variances, respectively. Using these four datasets we compared our model
to the one in [78]. In all the runs the number ofcomponents has never exceeded fifteen. Estimated
posterior probabilities of the number of components given the data for the four data are given in
table 3.3. For the enzyme data our algorithm favors 3-5 components with maximum posterior prob-
ability for three components, same as the GMM, this is due to the fact that the enzyme data are not
skewed (see Fig. 3.3) . For the acidity data set a mixture of two components was chosen as shown
in Fig. 3.4. For the galaxy and stamp data sets the data are highly skewed and spread which force
the algorithm to use a higher number ofcomponents, for this reason our algorithm supports the use
of five components for both data sets (See Figs. 3.5 and 3.6). In each case, we can relate the num-
ber of components to the skewness to the data. Also note that the general Beta can model skewed
data which is not the case for the Gaussian, and this advantage is demonstrated for the acidity
and galaxy datasets where our algorithm favors the use of two and five components, respectively,
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Figure 3.3: Enzyme data modeling when considering the mixtures with the highest probabilities,
(a) Beta mixture models, (b) Gaussian mixture models.

compared to three and six for the GMM (See table 3.5). According to the experiments presented
here it is clear that the general Beta mixture model outperforms the Gaussian one, by representing
the data effectively with less number of components. This result was already expected due to the
fact that the general Beta mixture model is more flexible which helps it to represent highly spread
and hard to model data.

3.4.3 Texture Images Classification and Retrieval

Approach

An interesting difficult problem in image processing is texture analysis. Indeed, texture provides
important characteristics for surface and object identification (depth and orientation, for instance)
in many types of images (satellite, medical, etc.) and plays an important role in several appli-
cations such as content-based image categorization, browsing and retrieval [109]. Methods for
texture analysis can be grouped into four major categories: statistical, geometrical, model based
and signal processing approaches [58]. An efficient technique for analyzing image textures is the

Histogram
r*=3
M=A
M=5

1.5

1

*«*

1 1.5
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Figure 3.4: Acidity data modeling when considering the mixtures with the highest probabilities,
(a) Beta mixture models, (b) Gaussian mixture models.

Table 3.4: Parameters of the mixture models representing the different tested real data sets, j
component number. mó, Sj, and p¿ are the real parameters. mó, Sj, and fP- are the Beta mixture
estimated parameters, ßj, s?, and ?? are the Gaussian mixture estimated parameters

Enzyme

Acidity

Galaxy

Stamp

0.1960
1.1008
1.9492
4.3615
6.3149

9.7101
16.1737
20.0898
24.1064
32.9518

0.0705
0.0803
0.0971
0.1140
0.1284

64.1054
42.9680
13.4360
23.7136
11.8544

69.0788
106.9899
109.0967
54.3933
28.1897

103.0930
129.4502
57.5257
28.4719

580.7500

0.6450
0.2630
0.0920
0.3500
0.3854

0.0854
0.0320
0.5366
0.3095
0.0366

0.2202
0.4270
0.2094
0.1168
0.0265

"j
0.1962
1.1006
1.9492
4.1865
5.0168
6.3926
9.7101
17.5649
19.9782
22.7039
25.1517
33.0427

0.0710
0.0789
0.0907
0.1016
0.1157

0.0078
0.0448
0.1271
0.0691
0.0868
0.1593
0.1931
1.5392
0.3540
0.4731
1.2112
1.0256

0.2320 X 10~
0.2392 X 10"
0.2709 X 1O-
0.3080 X 10"
0.7166 X 10"

0.6431
0.2637
0.0932
0.4240
0.2086
0.3674
0.0988
0.1006
0.3416
0.2692
0.1655
0.0243
0.2133
0.4152
0.1015
0.1666
0.1035

multichannel decomposition approach, using the assumption that the energy distribution in the fre-
quency domain identifies texture, based on Gabor filters [59, 110-112], wavelet transforms [1 ?-
? 16] and steerable pyramids [61-63]. A detailed survey and intersting discussions can be found
in [117], also. The texture can then be modeled by the marginal densities of the coefficients of
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Figure 3.5: Galaxy data modeling when considering the mixtures with the highest probabilities,
(a) Beta mixture models, (b) Gaussian mixture models.

the resulted filtered subband images which allows a more compact representation than histograms
which necessitate many parameters (hundreds). This approach is also justified by some psycho-
logical researches on human texture perception which have shown that textures producing simi-
lar marginal densities are very difficult to discriminate [29]. It is noteworthy that the sub-band
marginal densities are generally non-Gaussian especially for natural images texture [118]. In this
section we propose an approach for texture images classification and retrieval based on our finite

general Beta mixture model. In our classification framework, an image texture is first transformed
to gray scale and decomposed into sub-bands using steerable filters [62, 63]. Figure 3.7 shows a
texture image and its multiscale version in a pyramid hierarchy. The histograms of the resulted
filtered images are show in Fig. 3.8 which shows clearly that the Gaussian assumption would be
inappropriate. Then, each sub-band's marginal density is approximated by a finite general Beta
mixture model using our Bayesian learning algorithm (See Fig. 3.9). As a result each texture im-
age will be represented by a set of finite general Beta mixture models which can be viewed as the

signatures of the image. Finally the Earth Mover's Distance (EMD) [64] is used to measure the
distribution similarity between a set of components representing an input image texture (ie. test
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Figure 3.6: Stamp data modeling when considering the mixtures with the highest probabilities, (a)
Beta mixture models, (b) Gaussian mixture models.

(a)

2?8e?

(b)

Figure 3.7: Original image and its steerable pyramid decomposition, (a) Original image from Bark
group in Vistex, (b) Sub-images output using five level steerable pyramid.

image) and sets ofcomponents representing texture classes (i.e training images). In our case, EMD
can be viewed as the minimum cost of changing one mixture into another, when the cost of mov-
ing probability mass from components in the first mixture to components in the second mixture is
calculated using Kullback-Leibler (KL) divergence given by:

J 9i(x) (38)
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Figure 3.8: Histograms of the 14 sub-images of the steerable pyramid.

InEaHiStD(P1Sm
" Estimated Histogram

-13

Figure 3.9: A sub-image histogram fitted by a Beta mixture model.

Where /¿ is the component i of the input sub-image mixture which we suppose that it has m

components with weights ?ß, and gj is the component j of the class sub-image mixture which we
suppose that it has ? components with weights pgj. For two general Beta distributions /¿ and gj the
KL divergence has a closed form expression and we can show that is given by (see Appendix G)

G(a?+?)G(a,)G(/5,)D(fi\\gj) = log (b - a)a*+&-ai-tor(aj + ßj)T{ai)T{ßi)
+ {aj -ai + ßj - ?)F(a< + Ä) - (a,- - «¿)F(a?) - (ß, - ?)F(?')

(ßj -ßi + aj - ai) log (b - a)
(39)

Where (a¿, ßi) are the parameters of /¿, (aj,ßj) are the parameters of gj, and F is the digamma
function. With the KL divergence in hand we have to start the minimization problem in which we

need to get the m ? ? matrix F, where /y is the amount of weight ?µ matched to pgj, that will
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minimize the following equation
t? ?

EMDsub = SS iW« (40)
¿=1 J= 1

and subjected to the following constraintsr(l) fa > 0, where 1 < i < m and 1 < j < ?, (2)
TZi fa = P3J, where 1 < j < ?, (3) £J=1 ¿j = Vfu where 1 < i < m, (4) ^1 ^1 fa =
minŒ21Li Pß, S)"=? Psi) = !· Note tnat when the image texture is decomposed of L sub-bands,
then the total EMD is the sum ofthat of each sub-band, EMD = J^f=1 EMDsubl. By computing
the EMD between the input texture image and each texture class, each image is affected to the
class for which the EMD is the smallest.

Results

We performed our classifications experiments using the Vistex data set 5. Six homogeneous tex-
ture groups (Bark, Fabric, Food, Metal, Water, and Sand) were considered (See Fig 3.10). We used
four 512 ? 512 images from each of the Bark, Fabric, and Metal texture groups, and six 512 ? 512
from each of the Food, Water, and Sand texture groups, then we divided each image into sixty
four 64 ? 64 subimages. Thus, we obtained a total of 256 subimages for each class in the first
three groups, and 384 subimages for each class in the second three groups. We then applied our
classification approach 10 times, each time using 24 subimages of each original texture image for
training and the remaining 40 for testing. This brought us to a total of 720 images from all six
groups as training samples for our algorithm, and 1200 as testing samples. Moreover, we applied
our algorithm by using first three levels pyramid and second by using five levels pyramid. The
classification results, when using both finite general Beta and Gaussian mixture models, are given
in table 3.5. From these results we can observe that our algorithm has a higher accuracy then the
Gaussian which is a further endorsement of our model. In addition, and as expected, the five levels
pyramid improves the performance over the three levels pyramids, yet this improvement is very
small compared to the enormous difference in computational time.

5MIT Vision and Modeling Group (http://vismod.www.media.mit.edu).
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(a) (b) (e) (d) (e) (f)
Figure 3.10: Sample images from each group, (a) Bark, (b) Fabric, (c) Food, (d) Metal, (e) Sand,
(f) Water.

Table 3.5: The Average classification accuracy (%) of the two different methods.
Method Using 3 levels pyramid Using 5 levels pyramid

General Beta Mixture Models 92.50% ± 1.41% 93.58% ±1.33%
Gaussian Mixture Models 91.67% ± 1.66% 92.58% ± 1.08%

We conducted another experiment designed to retrieve images similar to a given query. Our re-
trieval approach can be divided into two steps. First task, is the same as in the classification

approach, since we have to choose the nearest texture group to the query. For the second step, we
compared the input image (i.e, query) with the other images in the same group and retrieve the

closest images to our query using the EMD. We applied our retrieval process twice former using
three levels pyramid and latter using five levels pyramid. To measure the retrieval rates (precision
and recall), each image was used as a query and the number of relevant images among those that
were retrieved was noted. Table 3.6 presents the retrieval rates obtained in terms ofprecision when
64 images are retrieved each time in response to a query. Note that in this case the precision and
recall are the same because for a given image we have at most 64 images which are similar to it.
Figure 3.11(a) represents the average (averaged over all the queries) precision rate for different

texture classes when we consider only the first 64 images retrieved. Figures 3.1 1(b) and 3.1 1(c)
show two graphs illustrating the overall precision and recall, respectively, of our retrieval method
when varying the total number of images retrieved taken into consideration.
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Table 3.6: Average precsion rate (%) of the two different methods.
Method Using 3 levels pyramid Using 5 levels pyramid

General Beta Mixture Models
Gaussian Mixture Models

75.32%
71.56%

78.12%
73.32%
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Figure 3.11: Precision and recall, (a) Average precision when 64 retrieved images are considered
for each class, (b) Average precision when varying the number of retrieved images, (c) Average
recall when varying the number of retrieved images.

3.5 Conclusion

We presented a fully Bayesian analysis, coupled with MCMC techniques, of finite Beta mixtures
with unknown number ofcomponents. The proposed algorithm automatically handles the problem
of the specification ofthe number of clusters on the basis of the RJMCMC approach, which allows
varying the dimension of the mixture, by constructing split and merge moves that rely on moment
matching. The results from applying the proposed model to different applications have been pre-
sented and justify further the recent interest on the use ofBayesian machinery in image processing.
The finite Beta mixture has many appealing advantages that make it useful for a variety of image
processing applications which require the modeling ofnon Gaussian data.
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Chapter 4T I

Conclusions

The problem of clustering data into similar groups is one of the most widely studied problems and
has applications in several domains and areas. Finite mixture models offer a formal approach to
this problem. In order to use mixture models, three main points have to be identified: the choice of
the probability density function, the approaches used for parameters estimation and the selection
of the number ofclusters. The majority of approaches previously proposed the use of the Gaussian
density in the mixture modeling ofdata. However, it is certainly not always the best approximation
especially in image and signal processing applications.

In this thesis, first we have proposed a new Bayesian approach for finite generalized Gaussian
mixtures. The Monte Carlo simulation technique of Gibbs sampling mixed with a Metropolis-

Hasting step was used to learn the model parameters. The integrated likelihood was used to esti-
mate the number ofclusters describing the data. In order to study the effectiveness ofour algorithm,

we have applied it in different image processing applications. The results not only demonstrate the
reliability ofthe method, but also its capability to reach better estimates when compared to different
Bayesian and deterministic methods.

Second, we have extended the application of RJMCMC sampler to the general Beta mixture.

The proposed algorithm handles the problem of the specification of the number of clusters on the
basis ofthe RJMCMC approach, which allows varying the dimension ofthe mixture, by construct-

ing split and merge moves that rely on moment matching. We demonstrated the effectiveness of
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Chapter 4. Conclusions

this approach when applied to signal and image processing applications.
In conclusion, compared to existing techniques, generally based on the Gaussian assumption,

our approaches not only can model non-Gaussian data, but also can reach better approximation for
the model parameters, and even a better selection for the number of clusters.

Over the last decade, the use oftechnological advances have brought an explosion of enormous
multidimensional data. In order to analyze and understand these data, the use ofmultidimensional
mixtures is needed. In future, we will try to apply both algorithms for the case ofmultidimensional
data. As noted before, the estimation of the number of clusters that best describes the data without

over- or under-fitting is one of the most challenging aspects when using mixture models. For this
purpose, we will investigate the GGM approach in the infinite case.
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Appendix A

Proof of Equations 11, 12, and 13

The derivation of (Eq. 1 1) is as follows:

p{µ-?\?, X) oc 71-(/Xj) JJ p(X\ßj,aj, ß?) (1)
Thus,

p(µ;\?, X) ex -^e-^G- J] (^^^^^'^ (2)?2ps0 /? ¿? V-/Pj)^tJ = I

In this case we have s0 as a constant hyperparameter, also Ct7-, /J7- are considered as constant param-
eters, which gives us

p(µ?\?, X) oc ß^^ßS'?«=?(~ß??~µ,'?) (3)
The derivation for (Eq. 12) is as follows:

n(<Xj\Z, X) oc 7T(^) JJ p(xi|¿t¿, a,, /?_,-) (4)
Thus,

aa-!ßaa ßaaj ßp{a???, x) « -^_ ? (_^_e-(*-,o^ (5)-^iJ= I

In this case we have (aa, ßa) are constant hyperparameters, also ßj is considered as a constant
parameter, which gives us

p(a?\?, X)(X a^-1ß-ßa^(a^?S?^?~a3???~µ?)ß] (6)
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Appendix A. ProofofEquations 11,12, and 13

The derivation for (Eq. 13) is the same as for (Eq. 12). (aß, ßß) are constant hyperparameters
(Xj is considered as a constant parameter.

Tr(PjIZ, X) oc ß^-ie-ß^(—^—peZz^{~ajlXi-flji}ßj
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Appendix B

Proof of Equation 29

We can show that the new variance Vj* for component j* satisfies [78]

Besides, according to equation 2 we have
p?? — a _ rïij - a ,., To7-- a. b — rrij

3 b-a b-a b-a b-a

Using the two previous equations, equation 3 becomes

Vi = {b-aU^+m^+^+i) = {b~a) ^iTT)- ?t? (2)
substituting the previous equation into equation 1, we obtain

„ (rr? I (™j*-a)(b-mi*)\ _n (m2 ¦ ?-a)(&-%)? ¦„ (m2 ¦ K2 ~ <*)(*> ~ "Ij2)p>* V^ ?^p ; " Pji ?+ 5? + 1 ) +Pn Va «a + 1
(, (">f, -o)(ò-m .· ) \ / _ (ro,· -a)(6-m,-„)

111UB> _j _ fî ^7-A 1 L _ m^ and
Pj*{mj* — a)(b — mj*)

Sj* — (TTIj1 -O)(S-TTtJ1) \ / 2 1 (TnJ2-O)(J)-TTiJ2) \ _ „. ^,2pu <+ .;+i " +?* ^+ %+i ^ -?*™*
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Appendix C

Proof of Equation 32

When we split a component j* to define two new components J1 and j2 having weights and pa-
rameters (ph , TTIj1 , Sj1) and (pJ2 , mJ2,sJ2), respectively, we can set the following [78]

Vj1 = U3(I - u\)vjß^- (1)
Pjl

vh = (1 - U3)(I -Ui)Vj^ (2)
By substituting equation 2 into equation 1, we obtain (™* -"X*-™* ) = u i1_u2\(mj^a)(b-mjt) p^
thus

(TTIj1 -a) (b -TTIj1)
sji

°v ¿J Sj*+1 Pjl

By substituting equation 2 into equation 2, we obtain {mj2 a){* mj2) = (?-uM-iâ) (m>*-aKb~mi*) 2¡±Sj2 + L \ 0^ ¿/ Sj.+l Pj1'
thus

(mj2 -a)(b- TTIj2)Sj2 (l - U3)(I - u¡Ym^-a^;m^EíLv °/v ¿' Sj, +1 Pj1

77



Appendix D

Proof of Equation 33

p(Z, P, M + ?,?,?, tv, e, ?\?) =?(?,?,?,?,?,p,e,?\?) K )
„•,vu ? ¦ ?? + 1)\?(? + 1)?(?\? + 1,d)?(?\?,? + 1)?(?\? + 1,?) . . .?| . ,a|? . . .,.

where "likelihood" ratio is the ratio of the likelihood using the new parameter set, corresponding to M + 1
components, to that for the old one corresponding to M components:

likelihood ratio = ,, (2)??=??=^??)

g^) ??+1 ?,-l T(E^T1 ^+^+¿J2) p?-1 Sj-I Sj1-I Oj1-I?{?\? + 1,d) = ?jlí1^) 11J=1 ^ ^ ?^?1 G(^ TO1)IX^2)11J=I pJ ?? ??
?(?\?,d) ~ T(Z^1Sj)nM Sj-I T(EfJi1 Sj+Sj.) ?t?-1 -A-I-A".-!WLtTsI) L 1J=1 PJ tìm^ T(SAr(S^) 11J=1 ^' ^i*?£? r(íj) ? 1^=1 ^ p£? T(Si)F(Si,)

31 JJ2 XjM-I JIj JIj1 JiJ2
hp(Z|F, M + 1) _ J^V IX=i P/ _ 2>¿1>

P(ZIP1M) P^-UiLi1P? #

-i

-(3)

(4)
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Appendix D. ProofofEquation 33

where Hj1 and Uj2 are the numbers of observations to be assigned to components j\ and ji.

?(?\? + 1,?)
?(?\?,?)

ts*G(?ß??( -w \ Si'Jl eJ2 Sj*/
(TTIj1-a)(rrij2—a) \ b~a ( (6—TTLj1)(O-TrIj.

m,jt—a b—TTijt
Cd-IEf)-I

{^)?+1G(?){? - O)(C"1) G( C(e-q)
6— a ?)G(?(?-^))

(5)
and where the term M! arises due to the exchangeability of the priors of the ? parameters. Indeed, it is
known that Label-switching is of important concern, and numerous papers have discussed this subject (see,
for instance, [119]). In our case we have adopted a simple approach that has been found effective in practice
and according to our experimental results. Indeed, we impose an identifiability constraint on the parameter
space which is toi < mi < . . . < rriM- It is noteworthy that using this constraint results in M\ ways of
labeling the mixture components.
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Appendix E

Proof of Equation 36

dò!,M
\d(AM,u)

By computing the derivatives, we obtain:

9Ph _ 9Ph

Q(JPj1 ; V32 1 171Jl ! rnJ2 > sji ì sh ,
9(ui , Pj* , rrij* , U2, Sj* , U3)

du\ Pj*

dp'il
öp,-

dut

= Ul

-Pj,
OTTIj1 dmj2 ds'Jl as'J2

dp'32

du\

1 - Ui

OUj OUi
dm'31 dm¦h = 0

ds'Jl ______ _ Pji ("V1 - o)(& - "Ij1) (sj> + 1) = -(Sj1 + 1)
OPj* Pj* (™j* - a)» - mj*) «3(1 - u¡) Pj*

Os10 Pj2 (mj2 — a) (6 — mj2) (sj* + 1) _ — (sj2 + 1)°J2

^Pj* Pj* (mj* - a)(è - mj*) (1 - «3)(1 - «i)
dPji ^Pj2

Pj,

dmj* Omj,
0

<9m'Jl

Om1* 1 -U2 a + 6- 2m,-'j* Pj2

72 =l+u2 ^
dmj*

ds

(mj* — a) (b — mj*)(sj* + I)Pj1
Ph

(mj* — a)(b — mj*)(sj* + l)pj2

1 +

1 +

(TTIj1 — rrij*)(a + b — 2m,j*)
2(mj* — a) (b — mj*)

(mJ2 ~ tnj*)(a- + b — 2mj*)
2(mj» — a) (6 — m^-*)

9m,
Pj1 (a + b — 2mj*)(m.j1 — a)(b — TTIj1)(Sj* + 1) _ (a + b — 2mj*)1Ji _

Os

Omj ?
1J2 _

Pj*(mj* - a)2(b - mj*)2u3(l - u?,) (mj* - o)(& - mj*)
Pj2(a + b — 2mj*)(mj2 - a)(& - mj2)(sj* + 1) _ (a + ò — 2mj*)

Pj*(mj* - a)2(b - mj*)2(l - U3)(I — u2,) (mj* - a)(b - mj*;

(Sj1 + 1)

(Sj2 + 1)
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Appendix E. ProofofEquation 36

( Pj*

Ui

O

O

O

O

dPh dp,
Ou2

dm1Jl
duo

= 0

dm'32

duo

Pj2 (twj* -g)(b- mj*) _ (TWj1 - twj*
V Ph (SJ* + !) u2

= Pjl (mj* ~ a)(b ~ ™j*) = (mh - twj*)
V Ph («i* + 1) U2

dsj
du

1 = 2 J171Ji -a)(b- mJ1) (sjm + 1) ph
î*2

2U2(TTiJ1 - g)(& - mh) [Sj* + Ij Pjl 2u2
1 (twj* -a)(b- twj*) U3(I - u\f Pj* (1 - u¡) {*? + }

dsj2 _ (TWj2 -a)(b- TWj2) (sj* + 1) pj2 2u2
du2 2 (mjt-a)(b- TWj.) (1- Tz3)(I -ulfpj* (1 - u22){Sj2 + '

-Pj*

1 — Ui

0

0

0

0

dmjl u2

dsj* 2(sj> + 1)

dpJ1 = dpj2 = o
OSj* OSj*

I {mjt - a)(b - m,j*) pj2 = (twj* - TWj1 )
(sj* + 1) Pj1 2(Sj* + 1)

<9tW'J2

9sj*
t?2 /(twj* — a)(6 —

2(sj* + 1) y (sj, + 1)
OSj1 = (TWj1 -O)(O-TWj1)Pj1

mJ*) Pn (m,* - m'32 )

dsj* (twj* —a)(b — TWj*) pj* *u3(l - u\
dsj2 _ (twj2 — a) (? — t?

pj2 2(sj, + 1)
_ (Sj1 + 1)

Sj* + 1)
-^. = ^)Pj8 1 = (sj2 + 1)

ôsj* (rrij, - a){b - rrij*) pj* (1 - U3)(I - ?%) (sj* + 1)
OPj1 Op._ ^j2
chz3 <9m3 du3

dmj1 dm,j2
du3

= 0

9Sj1 = (TWj1 - g)(b - TWj1 ) Pj1 (sj* + 1) = (Sj1 + 1)
ÔTĴ3 (rwj* - a)(b - TWj*) pj* tt|(l - u2,)

^5J2 = (rwj2 -a)(6- TWj2) pj.
du. '

U3

? = (mj2 -a)(b- mj2 ) pJ2 (Sj* + 1) _ (sJ2 + 1)
13 (twj* - a) (ft - TWj*) pj* (1 - ií3)2(1 - ul) ~ (1 - u3)

0

0

-, , JrTIj1 -mj„){a+b—2mj,)
2(rrej» — a)(b—m,j*)
[mJ1-THj,)

U2

(TtIJr-TnJ1)
2(sj,+l)

0

0

0
.. (Tra32-mj»)(a+6-2mj»)

2(toj, —a) (6— mj* )
(mJ2-Tnj,)

U2

(mj,—THj2)
2(sj»+1)

0

«3)
0

-(gji+l)

(a+6—2TnJ4)(Sj1+!)
(mj„ — a) (6—TOj,)

2Tt2(Sj1+!)

(*Ji+l)
(Sj,+1)

«3

0

-('J2+1)
Vj,

(a+fc-2mj*)(sj2+l)
(ttij,—a)(6— TOj»)

2tj2(sj2+1)
(i-«3)
"J2 +1)

(sj.+l)
(«J2+1)
(1-U3)
0)
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Appendix E. ProofofEquation 36

= Pj
?« - mh){mn - Tn^)(Sj1 + I)(Aj2 + 1)

«3(1 -W3)(Sj* + 1)
{mh-mh) -M-M i )(mj* - TUj1)(TrIj2 - rrij*)' vu2(l - «2) .

J*u2(l - UJ)U3(I - U3)(Sj* + 1)

(2)

(3)
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Appendix F

Proof of Equation 37

According to equation 26, we have the following in the case of the birth of an empty component, where now
(pj*, mj*, Sj*) play the role of it:

A = P(Z, P, M + 1,?,?,p,e,?\?)??+1 dA\M
d(AM,u) (1)p(Z, P, M, ?, t?, tu, e, C\X)aMp(pj*)p(mj*)p(sj

?(?,?,?,??p,e,?\?) 1S develoPed ?? Appendix C. In the birth case, however, the likelihood ratio is 1 and
we have also

r(E,y=1ij)r(<j.+Zf=1<,-) p? f /. ,,s-i *¿.-ip(P[M + 1,<5) _ rfr^^n^rft)1^=1^11"^ ^*
p(P|M,5)

•¦M
-M

and
.0 TlMp(Z\P,M + l) _ p% n;iife(l - Pj*)P

?M riji=i P/
= (i-Pi.)^=iní = (i-Pi*; TV

(2)

(3)p(Z\P,M)
Note also that our specific choice of generating rrij* and Sj*, from the associated prior distributions given
by equations 8 and 9, respectively, simplify the calculations, since

?(?\? + 1,?) 1
P(£|M,77)g(ií) p{pj*) (4)

Recall that the Jacobian is (1 - Pj*) , thus

A = P(M + I)T(Sj, + S£? ¿j)
P(M) G(^)G(??! i,-)

^1p. (1-?,-,)"+S?=?*-"(? + 1) —&̂MH
aM(M0 + l)p(pj* -(I -pj·*) M

(5)

83



Appendix F. ProofofEquation 37

where Mo is the number of empty components before the birth and p{pj*) is a Beta distribution with param-
eters (i,-„ S™=1 Sj).



Appendix G

Proof of Equation 39

If a 2-parameter density ? belongs to the exponential family, then we can write it as the following [120]

?(?\?) = H(x) exp (G(0)trT(x) + F(?)) (1)
where G(9) = (Gi (T), G2(O)), T(x) = (T1(X), T2(x)) and tr denotes the transpose. The K-L divergence
between two exponential distributions is given by [120]

D(p(x\0) \\?'(?\?')) = F(?) - F(?') + [G(O) - G(0')}trEe[T(X)] (2)

where Eg is the expectation with respect top(x\0). Moreover, we have the following [120]

E9[T(X)] = -F'(?) (3)

The general Beta distribution can be written as an exponential density. In fact, we can easily show that

= exp - '- ¦
(b - U)^P-1T(Ct)T(P)

log (T(a + ß))-(a + ß-1) log(ò - o) - log (T(a))

- log (?(ß)) + (a - 1) log(a; - a) + (ß - 1) log(6 - x)

Then by letting

F(a, ß) = log (G(a + ß)) - log (T(a)) - log (?(ß)) -(a + ß) log (b - a)

G1(^ ß) = a G2(a,ß) = ß T1 (?) = log(x - a) T2(x) = log(6- x)
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Appendix G. ProofofEquation 39

H(x) = exp I — log(x — a) — log(ò — ?) + log(ò — a)

we obtain Ee[log(x - a)] = -F(a + /S) + F (a) + log (6 - a), E0[IOg(O - ?)} = -F(a + /3) + F(/3) +
log (6 — a), thus

£)(j)(x|ö)t|j/(x|6f)) = log (G(a + /3)) - log (G(a' + /?')) + log (IV)) - log (G(a))
+ log (G(ß')) - log (G(/3)) - (a + ß - ?/ - ß') log(& - a)
+ (e/ - a)[F(a + ß)- F(a) - log (6 - a)] + (/?' - /?)[F(a + /?) - F(/3) - log (6 - a)]

G G(a + /?)G(a')G(/?').
0g [(& - a)«+/3-«'-/3'G(a/ + /?')G(a)G(/?)_

+ (a' -a)[F(a + ,9)-F(a)-1?§(&-a)] + (/3/-/3)[F(a + /3)-F(/3)-1?§(6-a)]
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