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ABSTRACT 

An Agent-Based Approach for Distributed Resource Allocations 

Antoine Nongaillard, PhD 

Concordia University 

Universite Lille 1, 2009 

Resource allocation problems have been widely studied according to various scenarios 

in literature. In such problems, a set of resources must be allocated to a set of agents, accord­

ing to their own preferences. Self-organization issues in telecommunication, scheduling 

problems or supply chain management problems can be modeled using resource allocation 

problems. 

Such problems are usually solved by means of centralized techniques, where an om­

niscient entity determines how to optimally allocate resources. However, these solving 

methods are not well-adapted for applications where privacy is required. Moreover, sev­

eral assumptions made are not always plausible, which may prevent their use in practice, 

especially in the context of agent societies. For instance, dynamic applications require 

adaptive solving processes, which can handle the evolution of initial data. Such tech­

niques never consider restricted communication possibilities whereas many applications 

are based on them. For instance, in peer-to-peer networks, a peer can only communicate 

with a small subset of the systems. 

In this thesis, we focus on distributed methods to solve resource allocation problems. 

Initial allocation evolves step by step thanks to local agent negotiations. We seek to provide 

agent behaviors leading negotiation processes to socially optimal allocations. In this work, 

resulting resource allocations can be viewed as emergent phenomena. We also identify 

parameters favoring the negotiation efficiency. We provide the negotiation settings to use 

when four different social welfare notions are considered. The original method proposed 

in this thesis is adaptive, anytime and can handle any restriction on agent communication 

possibilities. 

i i i 
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Keywords: Distributed problem solving, individual based reasoning, social networks, 

social welfare, information privacy. 



RESUME 

Une Approche Centree Individu de l'Allocation de Ressources Distribute 

Antoine Nongaillard, PhD 

Concordia University 

Universite Lille 1, 2009 

Les problemes d'allocation de ressources suscitent un interet croissant aussi bien en 

Economie qu'en Informatique. Dans ces problemes, un ensemble de ressources doit etre 

alloue a un ensemble d'entites selon leurs propres preferences. De nombreux problemes 

dans des domaines aussi divers que varies peuvent etre modelises grace a un probleme 

d'allocation de ressources. L'auto-organisation de reseaux en telecommunications, la plan-

ification en logistique, ou des problemes bases sur des reseaux sociaux peuvent en effet 

gtre representes par des problemes d'allocation de ressources. 

Ordinairement, ces problemes sont resolus grace a des methodes centralisees, dans 

lesquelles une entite omnisciente determine comment allouer les ressources de maniere op-

timale. Cependant, ces approches font des hypotheses qui ne correspondent pas toujours 

a la realite. Dans bien des contextes, il n'est pas possible d'avoir une entite omnisciente. 

Certaines applications sont dynamiques et necessitent une methode de resolution adapta-

tive qui puisse prendre en compte de nouvelles informations au cours de la resolution. Ces 

approches considerent toujours que les possibilites de communication entre les differents 

participants ne sont pas restreintes, ce qui n'est evidemment pas le cas dans la plupart des 

cas, comme dans les reseaux pair-a-pair par exemple ou un pair ne peut communiquer 

qu'a un ensemble restreint du systeme. 

Dans cette etude de doctorat, nous nous focalisons sur les approches de re-allocation 

distribuees, basees sur des systemes multi-agents, qui transforment une allocation initiale 

par des sequences de transactions locales entre agents. Nous cherchons a concevoir des 

comportements d'agents menant un processus de negociation a une allocation socialement 

v 
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optimale. Cette allocation peut alors etre vue comme un phenomene emergent. Nous 

voulons egalement identifier les parametres favorisant l'efficacite des negotiations ainsi 

que ceux qui la restreignent. Nous considerons differentes mesures de bien-etre social 

et nous fournissons les comportements a implementer pour negocier efficacement dans 

chaque cas. Nous proposons une methode adaptative et "anytime" ou n'importe quel type 

de reseau d'accointances peut etre considere. 

Mots-cles: Resolution distribute de problemes, raisonnement individuel, reseau social, 

bien-etre social, information privee. 
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Introduction 

This thesis is related to the distributed solving of resource allocation problems. We argue 

that simple agent behaviors always exist to efficiently solve allocation problems. In this 

chapter, we describe the main issues of this thesis. After a presentation of the context and 

a description of the motivations of this study, our objectives are detailed. The outline of 

this thesis is then presented. 

Context and motivations 

Auction, manufacturing scheduling, supply chain management or critical resource sharing 

are applications that can be modeled by resource allocation problems. A set of resources 

must be allocated to a set of entities who have preferences on them. The aim is to allocate all 

resources to entities, usually maximizing a given objective. Allocation problems are usually 

solved by centralized approaches. A central entity, who is omniscient, optimally allocates 

resources to entities. However, such solving methods do not suit many applications. 

Indeed, an omniscient central entity may not be available. Moreover, dynamic applications, 

in which data evolve constantly, cannot be solved efficiently by centralized techniques 

since any change in the initial data leads to a restart of whole solving processes. As well, 

applications in which entities keep private some information cannot be handled using 

centralized solving processes. For instance, Internet related applications require more and 

more privacy for users who do not want to reveal their preferences to everybody. 

We choose in this thesis to focus on distributed approaches, solving allocation prob-
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lems by agent negotiations. According to such techniques, agents are autonomous and 

act according to their own behavior. They locally negotiate with other agents in order to 

identify resource transactions satisfying their own acceptability criteria. An initial alloca­

tion evolves little by little by means of resource transactions among agents, until nobody 

is able to use acceptable transactions. Completed resource allocations can then be viewed 

as emergent phenomena. Each agent's decision-making is only based on its acceptability 

criterion. Indeed, agents are only aware of a restricted part of the system: No agent knows 

the whole resource allocation at a given time. In the literature, different notions of the 

social welfare theory can be used to collectively evaluate allocations. We focus on the four 

main social welfare notions: The utilitarian welfare that only considers the global efficiency, 

the egalitarian welfare that focuses only on the poorest agent, the Nash welfare that is a 

compromise between global efficiency and fairness, and the elitist notion that considers 

only the richest agent. 

Objectives and contributions 

In this thesis, we seek to design agents' behaviors leading negotiation processes to op­

timal allocations, or to socially close allocations when the need arises. We assume that 

the agent population is homogeneous, i.e. that all agents act similarly. Agents express 

their preferences thanks to additive utility functions. Different authors have studied agent 

negotiations in the literature. Some of them focus on a specific welfare notion, whereas 

others focus on mathematical properties of preference representations favoring the achieve­

ment of socially optimal allocations. However, none of them considers that agents have 

restricted communication abilities. Indeed, in real life, in social networks like Facebook or 

MySpace, users only have a restricted number of "friends". Each user has its own list of 

contacts, which is different from the lists of other agents. Usually in the literature, agents 

can negotiate with all other agents in the population, which is not a plausible assumption 

for most applications. 
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Our contribution is first to consider restricted communications between agents, which 

are represented by social graphs. Their price are also evaluated, i.e., their impact on the 

quality of achieved allocations. We provide a complete study identifying characteristics 

favoring the achievement of socially interesting allocations for each social welfare notion. 

We compare the efficiency of our negotiation processes to optimal solutions, which are 

provided by centralized methods. We finally provide negotiation settings to use in order 

to achieve optimal allocations. 

Thesis outline 

Chapter 1: Resource allocation problems. This chapter presents the general context of 

allocation problems. Their main characteristics are described and their impact on ne­

gotiation processes are discussed: the nature of the resources and representation of agent 

preferences are presented. Individual and collective evaluations of allocations are detailed. 

Centralized solving approaches and distributed ones are then presented. Contexts favor­

ing the efficiency of each method is presented, with a description of their characteristics. 

Application examples that can be efficiently solved by each technique are also presented. 

Chapter 2: Distributed negotiations. This chapter focuses on distributed solving processes 

for allocation problems. After a brief presentation of advantages of agent-based approaches 

and multi-agent systems, agent negotiations are defined and all features are detailed: 

Social graphs describing agent relationships, classes of transactions and their complexity, 

acceptability criteria and agent behaviors are successively described. Finally, issues related 

to the evaluation of negotiation processes are discussed. 

Chapter 3: Experimental protocol. This chapter describes the simulation protocol, present­

ing the generation of different parameters, in order to precisely characterize experiments 

and to ensure their reproducibility. Algorithms required by the generation of graphs, 

preferences and initial allocations are detailed. Data instances and simulations are also 

characterized. 



4 

Chapter 4: Bilateral negotiations. In this chapter, results related to bilateral negotiation 

processes are presented. Each welfare notion is successively evaluated as follows. First, we 

present centralized methods, providing optimal solutions. Then, negotiation properties 

are specified according to the considered welfare notion. Different facets of negotiation 

processes are evaluated and important characteristics favoring the achievement of socially 

efficient allocations are identified. Utilitarian negotiations, egalitarian negotiations, Nash 

negotiations and elitist negotiations are successively investigated. 

Chapter 5: Multilateral negotiations. This chapter is dedicated to multilateral transactions. 

Pros and cons are discussed in order to determine their effective interests within negotiation 

processes. A scalable method to determine acceptable multilateral transactions is described. 

Multilateral negotiation processes are then evaluated. Solution improvements due to their 

use is finally quantified. 

We conclude this thesis by a summary of our contributions. Limits of this thesis are 

also described with a description of extensions that seem interesting to investigate. 



Chapter 1 

Resource Allocation Problems 

Resource allocation is a research topic at the interface of two fields: Economics and Com­

puter Science. Even if both communities study similar problems, fundamental differences 

appear when considering their respective objectives. While economists study qualities 

that resource allocations should satisfy, e.g., using the social choice theory and different 

welfare notions, computer scientists focus on mechanisms that identify resource alloca­

tions satisfying the required qualities. Studies carried out by both communities are thus 

complementary. 

Recently, resource allocation problems arouse increasing interest due the large number 

of applications that can be modeled using this problem pattern. Up to now, most studies 

focused on combinatorial auction and their different facets, usually maximizing the global 

efficiency of the system. Representations of preferences and their mathematical properties 

are studied in order to decrease the problem complexity and to design efficient solving 

methods. Resource allocation problems are usually considered as optimization problems 

and solving processes are mainly centralized. Distributed approaches based on multi-agent 

systems have been investigated, achieving resource allocations thanks to local negotiations 

between agents. The aim is often to maximize a specific welfare notion in both cases. 

In this chapter, resource allocation problems and their main characteristics are first 

described in Section 1.1. Features of resources and representations of agent's preferences 
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are presented. Issues related to individual and collective evaluations of resource allocations 

are discussed, i.e., how allocations are evaluated either from the individual's point of 

view, or from the society's point of view. The two main solving approaches are then 

presented and compared. Principles of centralized techniques are described in Section 1.2. 

Some applications for which these methods are not well-adapted are identified. Classes of 

applications that can be efficiently solved by these approaches are also described. Moreover, 

Section 1.3 is dedicated to distributed solving processes. Examples of applications that can 

be efficiently solved only using distributed methods are characterized. 

1.1 Problem description 

This section is dedicated to the description of the main facets of resource allocation prob­

lems. Several essential questions arise during the problem definition: "What are the proper­

ties of a resource? How does an agent express its preferences over the resource set? How is evaluated 

the individual welfare of an agent? How a resource allocation can be evaluated?". Each question 

corresponds to an important parameter characterizing the problem. Even the slightest 

change of problem settings drastically affects the properties of allocation problems, their 

complexity and then the way to solve them efficiently. 

A resource allocation problem is defined considering a set of resources and a set of 

entities. Resources correspond to anything that can be owned by entities, i.e., concrete 

resources like books or any physical goods as well as abstract resources like CPU time or 

network bandwidth. Entities express preferences over the whole resource set. The aim of 

an allocation problem is to identify a distribution of all resources maximizing, minimizing 

or satisfying a given objective. It can be formally defined as follows: 

Definition 1.1 (Allocation problem). An allocation problem is a tuple CR,P,tl), where K 

is a set of m available resources, P is a finite set of n entities, and HA is a vector of entity's 

preferences on the resource set. The aim is the identification of a resource distribution of "R 

over <P satisfying an objective, according to the preferences of the entities tl. 
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A resource allocation problem is illustrated in Figure 1.1. Two parts can be distin­

guished: on the left hand side, the initial data and a result on the right hand side. The 

allocation problem is defined here by a set of 3 entities and a set of 9 resources. According 

to the preferences of each agent 1A = {u$, U\, ui), the solving process leads to an allocation 

in which each entity gets a set of resources. 

Resource Set 7? 

A 

Wf J3 

Entity Set P ® 
© 

© 

£ 

Resource allocation 

Figure 1.1: Resource allocation problems 

Depending on the kind of solving method considered, a specific terminology can be 

used. Indeed, in a distributed context, the set of entities is usually assimilated to a popula­

tion of agents. However, in a centralized context, the use of the term "agent" is improper, 

according to the standard definition of an agent (Ferber, 1999; Woolridge, 2001). Indeed, 

entities are neither distributed, nor autonomous and no decision is made at the entity 

level. Everything is decided by the central entity, which is most of the time omniscient. 

Entities neither have perception nor consider their neighborhood, which are important 

notions defining agents. Aware of the difference between entities and agents, an abuse of 

terminology is tolerated in this thesis, and the term "agent" will be used in both cases. 

Each agent of the population owns a finite set of resources, called a resource bundle. A 

resource allocation describes how resources are distributed to agents. Then, the definition 

of a resource allocation can be based on the resource bundle of each agent. 

Definition 1.2 (Resource allocation). Given a set 'R of m resources and a population V of 
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n agents, a resource allocation A is represented as an ordered list of n resource bundles 

7?; Q *R describing the subset of resources owned by each agent i: 

A = [nlr...,Kn], l,...,neP, A € ft. 

where ft is the set of all possible allocations. The f-th element of an allocation A corresponds 

to the resource bundle of agent i. It can be written as follows: 

A[i] = Ki, i e p , A e ft. 

Example 1.1. Let us consider the resource allocation described in Figure 1.1. Let A e ft 

denotes this allocation, which can be explicitly written as follows: 

A = [ftcKi,^] = [{*}{*, ®,A}{/>,^,»,^}]. 

According to allocation A, entity 0 owns only one resource KQ = {*}. Entity 1 has three 

resources in its bundle %\ = I*,®, A ] whereas entity 2 owns the five remaining resources 

Different aspects of resource allocation problems are successively discussed in the rest 

of this chapter. First, various kinds of resource are presented in Section 1.1.1 and their 

impact on the problem model. Then, different ways to represent agent's preferences are 

described in Section 1.1.2. The evaluation of the individual welfare of an agent is also 

discussed. Finally, issues related to the collective evaluation of resource allocations are 

addressed in Section 1.1.3. Notions proposed by the social choice theory are presented as 

well as their impact on the resource distribution. 

1.1.1 Resource characteristics 

Resources are central elements of allocation problems. Their properties deeply affect 

the model, independently of the solving approach that is considered. The nature of the 
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resources also influence the properties of allocations. The most important resource features 

are described in the next parts (Chevaleyre et al, 2006a). 

Continuous or discrete 

According to the physical properties of resources, they can be either continuous like water, 

or discrete like books. This influences the way that resources are exchanged. 

Typically, continuous resources can be divided in as many parts as required. In such a 

case, resources available in the system correspond to quantities. For instance, a government 

aiming to fairly distribute water among cities according to their needs can be modeled 

thanks to continuous resources (Cormas, 2001). Indeed, the only physical resource of this 

problem is "water". Resources of the allocation problem are quantities of water. 

Allocation mechanisms designed for discrete resources are also suitable in the case of 

continuous resources. However, such mechanisms are often not as efficient as mechanisms 

designed specifically for continuous resources. At the opposite, discrete resources are 

always indivisible and represent units. Continuous resources may be discretized, i.e., 

transformed into discrete resources. The whole quantity is divided into several parts, 

which are then considered as discrete and indivisible units. Allocation problems based on 

continuous resources are widely studied in the literature in Economics, whereas Computer 

Science mainly focuses on discrete resources. Only discrete resources are considered in this 

thesis. 

Divisible or not 

Resources may be either divisible or indivisible. At the opposite of the former property, 

this one is related to the allocation mechanism rather than to resources themselves. A 

resource may be divided a given number of times, beyond which the resource becomes an 

indivisible unit. However, only indivisible resources are considered in this thesis. 
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Sharable or not 

Resources may also be sharable. This property affects the way that the agent welfare is 

determined. When resources are sharable, it is not required to own a resource in order 

to benefit from it. For example, if resources are assimilated to abilities, agents do not 

necessarily need the ability itself, they only need to know other agents which have this 

ability and then ask them to perform a task. Such a situation occurs in distributed service 

environment for instance (Chakraborty et al, 2006). Another typical example is the usage 

of common expensive resources like pictures got from a satellite (Lemaitre et al, 1999). A 

single resource can be allocated to several agents. In this thesis, only not sharable resources 

are considered. 

Static or not 

Sometimes, resources may be usable. Such resources can be consumed by their owner, 

which perform a specific task. For instance, resources like food are edible. An agent may 

be able to eat some parts of its bundle in order to stay alive. Resources may then disappear 

from the system. Resources may also be perishable and then have a value or a quantity 

decreasing in time. In such cases, resources are considered as usable. At the opposite, 

resources are static when their properties do not change in time. As usually assumed in 

most of resource allocation studies, only static resources are considered in this thesis. 

Single-unit or multi-unit 

In multi-unit environments, resources may be identical, and then indistinguishable. Thus, 

they are addressed using a single name. For instance, in an egg box, all eggs are sim­

ilar and cannot be distinguished. In single-unit environments, resources can always be 

distinguished from others. An identification tag is assigned to each resource. Multi-unit 

environments can be turn into single-unit environments by tagging all resources. For ex­

ample, in the egg box, each tag allows agents to address a specific egg. The main difference 
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between these environments comes from the resource representation. In this thesis, only 

single-unit environments are considered. 

Resource or task 

Resource allocation problems and task allocation problems can be distinguished. But, tasks 

are often resources associated with a negative value. While agents benefit from standard 

resources, tasks can be viewed as duties, and then represent a burden to their owners. An 

important characteristic of tasks is that they are often related to other tasks, e.g. the ones 

are conditions to fulfill in order to perform the others. For instance, in factories, products 

may require the achievement of specific tasks in order to undergo new transformations, 

which correspond to other tasks. This thesis focuses on resource allocation problems. 

Even if negative values can be assigned to resources, no dependence relationship will be 

considered. 

Allocation properties and complexity 

In this thesis, resources are assumed to be discrete, not divisible and not sharable. All 

resources are unique and agents cannot alter them. Since the characteristics of resources 

we consider is now well-defined, properties of resource allocations can be specified. 

Property 1.1 (Resource allocation properties). Since the allocation environment is single-unit 

and resources are assumed to be indivisible, discrete and not sharable, each resource is allocated 

to only one agent. Agents' resource bundle must be pairwise disjoint. We also assume that all 

resources must be allocated. More formally: 

p|A[i] = p | ^ = 0, AeW; 

\jA[i\ = \jKi = K, A eft. 

Different parameters may, more or less, affect the complexity, and then the identification 



12 

of optimal allocations (Chevaleyre et al, 2006a; Estivie, 2006). According to the nature of 

the resources we consider, the size of the solution space can be deducted. 

Property 1.2 (Size of the solution space). An allocation problem based on a population Pofn 

agents where m resources of a set 7? are available has an exponential number of possible solutions: 

\!R\ = nm. 

The explanation is quite simple since it corresponds to the number of possible combinations. 

Each resource of % can be allocated to any agent of the population T, so n times. Similarly 

for all m resources, the total number of possible resource allocations can be deduced. Thus, 

the solution space has an exponential size: 

\R\ = J] n = nm. 
reK 

1.1.2 Representation of preferences and individual welfare 

The representation of an agent's preferences is an essential issue in allocation problems. 

Preferences express the relative or absolute satisfaction of an agent which needs to consider 

several alternatives. 

Five important features should be addressed when investigating preference represen­

tation languages (Chevaleyre et al, 2006a). These features allow comparisons of different 

representation languages, considering their different facets. 

• Elicitation: It evaluates the difficulty of designing algorithms for an agent to get an 

output expressed in a given language; 

• Cognitive relevance: This criterion describes the ease for a human to know and express 

its preferences in a given language; 

• Expressive power: In a given language, it identifies the different sets of preference 

structures that can be expressed; 
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• Computational complexity: It evaluates the complexity of comparing two alternatives, 

or the complexity of determining an optimal allocation for a given language; 

• Comparative conciseness: For two languages expressing the same content, it evaluates 

the size required for a given expression. 

These characteristics are used to describe different classes of preference structure in this 

section. The most widely used preference representations are presented. The individual 

welfare evaluation is discussed with some issues related to so-called side payments. 

Families of preference structures 

The representation of agent's preferences has been studied for a long time (Doyle, 2004; 

Fishburn, 1970; Mas-Colell et al, 1995). Four families of preference structures can be 

distinguished: 

• A cardinal preference structure is usually a utility function, denoted by u, which 

associates a value from the set Vol to all alternatives of the set X: 

u : X -+ Val. 

If Val is a set of numerical values, the preference structure is called quantitative, 

whereas if Val is an ordered set of qualitative values, like linguistic expressions, e.g., 

{good, excellent,...}, the preference structure is called qualitative; 

• An ordinal preference structure is a binary relation on alternatives, denoted by <, 

which is reflexive and transitive; 

• A binary preference structure is simply a partition of the set of alternatives X into two 

subsets representing "good" and "bad" alternatives. 

• A fuzzy preference structure is a fuzzy relation over X allowing the expression of a 

degree of preference: 

f i : X 2 ^ [ 0 , l ] . 
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Binary and fuzzy preferences have not been used much as far as resource allocation 

problems are concerned. Indeed, binary preferences are very restrictive and once the 

"good" alternatives are regrouped, nothing indicates which one should be chosen. Fuzzy 

preferences allow the comparison of alternatives by pairs. However, they are not conve­

nient when a very large number of alternatives must be compared. 

Ordinal preferences can only express the satisfaction of an agent for all alternatives. 

Intensity cannot be expressed and, given a resource allocation, it is not possible to determine 

which agent is more satisfied. These preferences are not much used in a resource allocation 

context in Computer Science (Bouveret et al, 2009), because of the few information revealed. 

Even if qualitative cardinal preferences can express intensity, they suffer of similar 

drawbacks than ordinal preferences. The satisfaction of two agents possessing different 

resources cannot be compared. More formally, there is no relationship between u,(r) and 

Uj(r') with i, j eP and r, r' e H, which are then not comparable. 

The most widely used representation of preferences in Computer Science is the quan­

titative cardinal structure. In this thesis, agents express their preferences by numerical 

preferences. The utility function can then be defined as: 

u : 2K -> R. 

According to such a definition, 2 ^ - 1 values must be specified. However, the exponential 

nature of an explicit specification leads to unscalability in most cases. Then, it is relevant 

to consider restricted preference structures. 

In Economics, preferences are always represented by ordinal function nowadays (Mas-

Colell et al, 1995). Since there is no comparable scale of values between two agents, it is not 

possible to compare the individual welfare of two agents who own two different resources. 

However, the context is generally different from ours. Indeed, economists always consider 

human actors only and purely economic applications. However, in Computer Science, 

in many classes of applications, agents are not necessarily humans (e.g., computers or 
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software programs). Resources have nature pretty similar. In such a restricted context, 

cardinal preferences represent a plausible assumption. 

Quantitative preferences 

Utility functions are defined over resource bundles, and we assume that agents' preferences 

only depend on the resources they own. The agent's utility is independent of the utility of 

other agents. Such preferences said to be called free of externalities. More formally: 

u{(A) = Ui(A\i]) = UiCRi), ieP, A e 3K. 

Several languages can be used to represent utility functions, and the most important 

ones are presented next (Chevaleyre et al, 2006a; Estivie, 2006). Let us consider K = 

{r\Ji,- ••,ym} the set of available resources and p c % a subset of resources in order to 

illustrate the different forms. 

First, the bundle enumeration, also called explicit form, is the most basic form of 

utility function. The utility function is a set of pairs (p, U;(p)). The bundle form is obviously 

fully expressive: Any utility function can be described. The description length is a major 

drawback since its exponential length increases with the number of resources m. 

Example 1.2. Let us consider a resource set K = {r\Ji,r^. According to the bundle 

enumeration form, the utility function of agent i e V must explicitly describe the utility of 
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M{ri}) 

Ui({r2}) 

Ui([r3}) 

Ui({n,r2}) 

Ui({n,r3}) 

Ui({r2,r3}) 

Ui({rlr r2, r3}) 

= val\ 

= val2 

= vol?, 

= vali 

= vals 

= vals 

= valj 

Such a representation is fully expressive, but is not succinct since it requires an exponential 

number of expressions. As well, the computational complexity is also high: The determi­

nation of an optimal allocation requires an explicit consideration of all possible resource 

allocations. It represents the major drawbacks of this representation which cannot be used 

in practice. 

The additive form expresses the utility associated with a given subset of resources p 

relatively to the utility associated with each resource of this subset p (Wellman and Doyle, 

1992). The utility associated with a set of resources simply corresponds to the sum of 

the utilities associated with each resource of this set. More formally, a utility function is 

additive if and only if there exist, for all resources rep, coefficients ar such as: 

rep 

Example 1.3. Let us consider a set of resources 7? = {r\,r2,r^\. According to the additive 
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representation, the utility function of agent i e f only requires the utility of each resource: 

Ui({ri}) - vah 

Ui{{ri\) = val2 

Ui({r3}) = vah 

The utility value associated with any subset of H can be easily computed from these values. 

For instance: 

Ui({ri,r2}) = Ui({ri}) + Ui({r2}) = vah + val2. 

Such a representation is not fully expressive since no synergy among resources can be 

expressed. However, this representation is very succinct and has a low computational 

complexity. This additive form is the one used to represent agent's preferences in simula­

tions performed in this thesis. 

The /c-additive form is inspired by the fuzzy measure theory (Grabisch, 1997; Miranda 

et al, 2005). It corresponds to a generalization of the additive representation. A utility 

function is ft:-additive if and only if there exists a coefficient a1 for each resource set t of size 

at most k. 

ui(p) = Yja
t
ir ieP, pc f t . 

tcp 

The coefficient a1 represents the synergy value of owning all resources in the set t. If agent 

i owns all resources in a term t, its utility value increases of a*. 

Example 1.4. Let us consider a set of resources K = {ri,r2,rz\. A utility function can be 

written in a polynomial form, where variables r, (the resources) are Boolean values. For 

instance, a 2-additive function, which allows the expression of synergy between at most 

2 resources, with two non null coefficient a{ri\ = vah (where Vp c ?l,a{p} denotes the 
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coefficient associated with the subset of resources p) and a{r2, r3\ - vah can be written as: 

Uj = Val\Y\ + Val2r2r3 

The representation of this utility function according to the bundle form requires the speci­

fication of 5 terms: 

Ui{{r{\) = vah 

Ui({ri,r2}) = vah 

Ui({n,r3}) = vah 

Ui({r2,r3}) = vah 

Mi({ri,r2/r3}) = vah + val2 

The fc-additive form is also fully expressive, but only if k is large enough. Such an assumption 

is not true in practice since k is generally restricted to a relatively small value. This form is 

nevertheless more succinct than the bundle form. 

The weighted propositional form makes an explicit use of logic (Bonzon et al, 2009; 

Chevaleyre et al, 2006b; Coste-Marquis et al, 2004; Lang, 2004; Uckelman et al, 2009). It is 

possible to express all kinds of synergy using logic formulas. Each resource r is represented 

using a propositional variable, which is true if the agent owns r and false otherwise. 

Each propositional formula can be considered as a goal, and a goal base GB represents 

the whole set of formulas. Each agent has then a goal base expressing its preferences. 

Numerical weights represent the relative importance of the formulas. Intuitively, the 

degree of satisfaction associated with a particular propositional allocation A is the sum 

of the weights of the formulas satisfied by this allocation A. However, different kinds of 

aggregations can be used instead of a summation. 

Example 1.5. Let us consider a set of 4 resources fl = {r\,r2,r3,r^. The goal base can be 
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GB = {{vali, n A r2), {val2, ->ri A r3}), (uflZ3/ r3 -> r4)}. 

According to the resources owned by the agent, the individual welfare can be evaluated: 

UGB{[T\, r2, r3/ r4]) = uflZi + uaZ3 

" G B ( [ - ' ^ 1 / ^ 2 / ^ 3 / - , ^ ' 4 ] ) = ^ 2 

The weighted propositional representation is a fully expressive form since any synergy 

among resources can be expressed by means of formulas. It is less succinct than additive 

preferences and more complex computationally. 

The X-OR form is the most widely used binding language. It became a standard in the 

expression of preferences in combinatorial auction (Nisan, 2000; Sandholm, 2002). Agent's 

preferences are a set of pairs (p, aP) where ap is the value associated with the resource set 

p. At the opposite of the /c-additive form, instead of adding all active terms, the valuation 

of a bundle is simply the highest value offered for any of its terms. 

Mj(p) = max a\, i € P, p Q K. 
tQp 

Example 1.6. Let us consider a set of 2 resources % - \r\,r2\. A utility function can be 

written in a polynomial form, where variables r ; (the resources) are Boolean values. For 

instance, an X-OR utility function can be written as: 

U{ = vahri + val2ri + val^riTi 

Let us assume that vali < valj, < val2. Then, the representation of this utility function 
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according to the bundle form requires the specification of 3 terms: 

Ui({n)) = vali 

Ui({r2}) = val2 

Ui({ri,r2}) = val2 

Evaluation function 

Since the representation of agent's preferences is clearly defined, issues related to the 

determination of the agent individual welfare can now be considered. 

Agents determine their individual welfare thanks to an evaluation function. Such a 

function may be based on several criteria, including not only the utility function. For in­

stance, in the case of allocation problems where the use of money is allowed, the individual 

welfare of agents can be based on their resource bundle and their wallet. 

In most studies of the literature, money is considered in allocation problems through 

side payments (Sandholm, 1998). When agents trade resources, they may get resources 

associated with a lower utility value than the ones they give. Most of the time, agents 

are assumed to be selfish, i.e., they can only accept resource transactions increasing their 

individual welfare. The agent selfishness prevents transactions to be performed if one of 

the participants is not satisfied. If an agent notices a decrease of its satisfaction, it then 

refuses the transaction. However, the loss of utility can be compensated thanks to side 

payments from other participants. Thus, a transaction, where an agent receives resources 

associated with a lower utility value than the ones it provides, can still be performed if 

the decrease of satisfaction is compensated by a side payment. In such systems, the use 

of money is nevertheless constrained. The quantity of money in the system is constant. 

In other words, when agents trade resources adding side payments, the amount of money 

given by an agent is equal to the amount of money received by the other agent. With such 

a constraint, the overall amount of money does not vary. However, this amount is not 
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bounded. Indeed, agents have no budget limit. Then, they are always assumed as rich as 

required to perform any transaction that seems of interest. 

Example 1.7. Let us consider a transaction 5 involving two agents i, j e P, changing the 

initial resource allocation A in another one A' (A, A' € J?l). During this transaction, agent i 

gives one of its resources, r e Hj, to agent j . 

Both agents are here assumed to be selfish. They only accept transactions increasing 

their individual welfare. The acceptability of a transaction 5 is determined based on the 

utility participants get in the new allocation and on the payments they make or receive. 

More formally, an acceptability condition can be formulated for each agent as follows: 

Ui(A') + p(i) > Ui{A) 

Uj(A') + p(j) >Uj(A). 

where p(i) and p(j) are respectively the side payments made during the transaction by 

agents i and ;'. The value associated with a payment function value is positive when agents 

receive money while it is negative when they have to pay. Since no money is created during 

the transaction, the following relationship is satisfied: 

p(i) = -p(j). 

The amount of money given by one agent is equivalent to the amount of money received 

by the other agent. According to the transaction, i.e., the gift of a resource r here, the 

acceptability conditions can be written as follows: 

Ui(A) - Ui(r) + p(i) > Ui(A) 

Uj(A) + Uj(r) + p(j) > Uj(A) 
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P(0 > Mr) 
< 

Uj(r) > -p(j) 
v 

Both expressions can be combined into a single one: 

Uj(r) > p(i) > Ui(r). 

If the amount of money owned by each agent is not bounded, then independently of the 

utility value associated with resource r by both agents, a compensatory payment satisfying 

this expression always exists. 

Thus, independently of the conditions that transactions must satisfy, any transaction 

can be performed since they can be artificially satisfied using unbounded side payments. 

Since such an assumption is not plausible from a practical point of view, side payments 

are considered as being beyond the scope of this thesis. Thus, money is prohibited and the 

evaluation of the individual agent welfare is restricted to a utility function. 

Definition 1.3 (Utility function). An agent evaluates its individual welfare thanks to an 

additive utility function «; : 2K —> R. When agent i e V owns a set of resources p c % its 

utility is evaluated as follows: 

Ui(p) = Y, Mr), ieP, pQK. 
rep 

Example 1.8. Let us illustrate the individual evaluation of agent welfare using a simple 

example, based on a population of 3 agents, V - {1,2,3}, and a set of 3 available resources 

^ = {r\J2,^}. The agent's preferences are described in Table 1.1. For instance, agent 1 

associates with resource ri the following utility value: U\(r2) = 7. 

If the initial resource allocation is A = [foHri, T2, f(,W3, rs}]/ then the utility of all agents 
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Table 1.1: Utility function - Example of agent's preferences 

Population V 

1 
2 
3 

Resource Set H 
r\ n r3 r4 r5 r6 

10 7 10 9 2 1 
6 10 3 4 8 6 
1 2 1 2 1 3 

can be easily computed as follows: 

uiCRi) = U!({r4}) = Mi(r4) = 9 

U2CR2) = u2({n, r2l r6}) = u2(r1) + ux{r2) + u2(re) = 6 + 10 + 6 = 22 

u3{K3) = u3({r3,r5}) = u3(r3) + u3(r5) = 1 + 1 = 2 

1.1.3 Social welfare theory 

The collective evaluation of resource allocations constitutes an important issue. "How can 

the evaluation of an allocation be based on the welfare of each agent in the population?". An 

answer can be found in the literature thanks to the social choice theory (Arrow, 1963; 

Moulin, 1988; Sen, 1970). The social choice theory, which comes from Economics, defines 

a set of tools used to measure the welfare of a society from the individual welfare of all 

agents. Several notions exist, and most of them can be applied to allocation problems 

according to different contexts (Arrow et al, 2002; Moulin, 2004; Sen, 1997). In this section, 

these notions are successively detailed with their impact on resource distributions. 

Utilitarian welfare 

The most widely used notion to evaluate resource allocations is the utilitarian welfare. The 

welfare of a population is evaluated through the sum of the individual welfares of all agents 

in the society. This notion is often used to maximize the global welfare of a population, 

without consideration for individual welfare. 



24 

Definition 1.4 (Utilitarian welfare). The utilitarian welfare of a resource allocation A, 

denoted by swu(A), corresponds to the sum of individual utilities. 

swu(A) = J^ uiCRi), A£j{. 

The utilitarian welfare is not well-adapted to all cases, especially when fairness among 

agents is considered. In such cases, the egalitarian welfare is favored. 

Egalitarian welfare 

The egalitarian welfare of an allocation corresponds to the individual welfare of the poorest 

agent in the population. Its maximization tends to reduce inequalities over the population. 

Fair sharing is an important issue for many resource allocation problems (Brams and Taylor, 

1996; Moulin, 2004; Rawls, 1999; Sen, 1995). 

Definition 1.5 (Egalitarian welfare). The egalitarian welfare of an allocation A, denoted by 

swe{A), corresponds to the individual utility of the poorest agent. 

swe(A) = mmuiCRj), A e 31. 

Nash product 

The Nash product considers the welfare of the whole population and reduces the inequal­

ities among agents at the same time (Ramezani and Endriss, 2009). The Nash product is 

a social notion that can be viewed as a compromise between the utilitarian and the egali­

tarian welfare. This notion is independent of utility scales, and it also normalizes agent's 

utilities. In spite of its qualities, a drawback remains: this notion becomes meaningless if 

non-positive values are used. 

Definition 1.6 (Nash product). The Nash product of an allocation A, denoted by swn(A), 
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corresponds to the product of individual utilities. 

swn(A) = Yl Ui{%), A eft. 

Elitist welfare 

The elitist welfare is the exact opposite of the egalitarian notion. It only considers the 

welfare of the richest agent in the population. This notion can be useful in the context of 

artificial agent societies for instance, where agents have a common objective. This objective 

must be fulfilled, independently of the agent who achieves it. The elitist welfare notion is 

then suitable. 

Definition 1.7 (Elitist welfare). The elitist welfare of an allocation A, denoted by swe{(A), 

corresponds to the individual utility of the richest agent in the population. 

swet{A) - maxuiCRj), A e 31. 

Other notions 

Various other notions and properties exist to evaluate resource allocations. According to 

the envy-free notion (Brams and Taylor, 1996), agents evaluate their individual welfare 

using a comparison with the resource bundle of others. Indeed, a resource allocation is 

envy-free if all agents are at least as happier with their bundle as they would be with 

the resource bundle of other agents. More formally, an allocation is envy-free when the 

following expression is satisfied: 

UiCRt) > UiCRj) \/i,J£p. 

According to the notion of jealousy, agents evaluate their welfare using a comparison 

with the welfare of others. Agents are not jealous when their individual welfare is larger 

than the welfare of other agents. More formally, an allocation is jealousy-free when the 
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following expression is satisfied: 

UiCRi) > UjCRj) Vi,jeP. 

Pareto optimal allocations (Moulin, 1988) are allocations in which no agent can improve 

its individual welfare without penalizing the welfare of another agent. Such a notion does 

not require any numerical preferences representation. More formally, an allocation A £ J{ 

is Pareto optimal if: 

$A' e 3K, sw(A) < sw(A') such as Vz € P, m(A) < Ui(A'). 

Lorenz optimality (Moulin, 1988) is a notion combining utilitarian and egalitarian as­

pects of social welfare. The idea is to favor allocations improving the utilitarian welfare 

without causing a loss in egalitarian welfare. 

Theoretical studies on allocation properties based on these notions have been carried 

out (Chevaleyre et al, 2007,2009; Endriss et al, 2006). In spite of their interest, these notions 

are not studied in this thesis. Thus, only the four main welfare notions are considered, i.e., 

the utilitarian welfare, the egalitarian welfare, the Nash welfare and the elitist welfare. 

Impact on resource allocations 

The four main welfare notions have different impacts on resource distributions. Indeed, 

the use of a specific welfare notion may induce undesirable properties, which should be 

avoided depending on the application context. 

Example 1.9. Let us consider a population of 3 agents V = {1,2,3} and a set of 6 resources 

^ = {ri, ?2, ?"3, r$,7"5, Y(,}. Table 1.2 describes the agent's preferences. 

Table 1.3 shows optimal social values and a corresponding resource allocation according 

to the different social welfare notions. Characteristics of optimal allocations are then 

discussed. 
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Table 1.2: Welfare impact - Example of agent's preferences 

Population P 

1 
2 
3 

Resource Set H 
n r2 r3 r4 r5 r6 

10 7 10 9 2 1 
6 10 3 4 8 6 
1 2 1 2 1 3 

Table 1.3: Optimal allocation examples for all welfare notions. 
Social welfare 

swu 

swe 

swn 

swe( 

Value 
53 
8 

1800 
39 

Resource allocation 
[{ri,r3/r4}{r2,r5,r6}{}] 
[{ri}{rs]{r2,r3,r4,r6}] 
[{ri,r3}{r2,r5}{r4,r6}] 
[{r\,ri,r3,r^r5lre){}{)] 

The use of the utilitarian notion leads to a resource allocation where one agent, agent 

3, does not get any resource. Indeed, some agents may be neglected, especially if, for each 

resource, there exists another agent who associates with it a larger utility value. Such a 

situation may be unreasonable. 

The use of the egalitarian welfare leads to a resource allocation that provides at least 

one resource to each agent. Thus, if the number of available resources is greater than the 

number of agents (n < m), no agent is neglected in egalitarian allocations. However, the 

resource distribution can be very unbalanced. Agents with low preferences, like agent 3, 

drain resources. Such agents may obtain most of the resources in order to compensate for 

their low preferences. 

The Nash product also leads to a resource allocation where all agents get at least one 

resource, as in the egalitarian case. However, the optimal allocation is more balanced, 

avoiding the draining phenomenon. Nevertheless, this notion can only be used if the 

agent's utility values are positive. 

The elitist social welfare neglects all agents except one and leads to an allocation where 

all resources are in the same bundle (when utility values are positive). This last notion is 

mainly used when it is essential to achieve the objective, independently of the agent who 

achieves it. 
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Finally, let us note that the welfare value achieved according to these different notions 

are quite different. However, their comparison is meaningless since the different welfare 

notions are used for different purposes. The choice of a specific welfare notion only depends 

on the application context. 

1.2 Centralized approaches 

Obviously, resource allocation problems can be solved using centralized approaches. Such 

approaches consider resource allocation problems as optimization problems. They are 

appropriate to solve many application classes. However, they are not adapted to all 

cases since they make specific assumptions, even implicitly, which may prevent their use 

under different conditions. These assumptions are detailed in this section. Then, we 

discuss application characteristics according to which centralized solving processes are not 

adapted. Finally, we describe applications that can be solved efficiently using centralized 

models. 

1.2.1 Description 

All centralized techniques are based on the same principle. The solving process can 

be decomposed into three main steps as described in Figure 1.2: information gathering, 

computations, and the notification of the outcome to all agents. 

Wo, {®, A , ?•'»} 

£ 
tt,*,^} 

1: Gathering information 2: Computing 3: Allocating resources 

Figure 1.2: Principles of centralized techniques 
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First, all agents of the population must send their private information to a central entity, 

i.e., their preferences and a list of the resources they own. This central entity can be either 

an agent or an external entity. The central entity can be considered as omniscient since it 

gathers all information: It knows preferences of all agents and a complete list of resources 

available in the system. According to a predefined objective, e.g., a social welfare notion 

as defined in Section 1.1.3, the central entity determines a resource allocation maximizing 

this objective. Finally, once computations are over, it notifies all agents what they get and 

then it allocates resources accordingly. Let us note that these methods do not consider that 

resources are initially allocated anywhere. They assume that all resources are available and 

just determine optimal allocations. 

Resource allocation problems are assimilated to optimization problems. Such central­

ized approaches can be used to solve some classes of applications, while other classes 

cannot use them in a reasonable time. Since the solution space is finite according to Propo­

sition 1.2, an exact centralized method always exists. Indeed, the explicit enumeration of 

all solutions, keeping the one maximizing the objective, is always possible. However, since 

the solution space is exponentially large, this method is not scalable at all. Other limitations 

are described in the next section. 

1.2.2 Limiting cases 

Centralized solving processes cannot be used to efficiently solve some classes of problems. 

These applications have specific features, described in this section, that can be viewed as 

drawbacks. Some are directly related to the application context, whereas others are related 

to implicit assumptions made by centralized approaches. 

Dynamic applications cannot be solved efficiently using centralized approaches. In­

deed, in dynamic applications, data evolves constantly and these methods cannot handle 

such evolutions. In order to consider new data, they have to restart a complete solving 

process. A continuous evolution of the initial data cannot be handled properly. Adaptive 

processes are then essential to efficiently solve dynamic applications. For instance, in peer-
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to-peer applications, e.g., file sharing applications (Deshpande and Venkatasubramanian, 

2004; Ge et al, 2003), agents continuously enter and leave the system, bringing new files 

to share with others. Thus, centralized techniques are not well-adapted to the solution of 

dynamic problems. Applications can be considered as dynamic when the time required 

for the solving process exceeds the time between two data evolutions. 

Scalability issues may quickly arise according to the population size and the number 

of resources available in the system. Indeed, a resource allocation problem based on a 

population foin agents and a resource set 7? of m resources leads to an exponential number 

of allocations, according to Proposition 1.2. Thus, large problems may be unscalable. Even 

if the solving process is centralized, computations may be distributed. Indeed, there exists 

optimization problems with distributed constraints (Petcu et al, 2006). According to the 

problem structure, the distribution of computations may be more or less efficient. The 

improvement of the scalability due to the distribution is limited anyway. 

Information privacy. An important limitation is related to the issue of information pri­

vacy. Indeed, depending on the application context, agents may need to keep information 

private. Especially when Internet-based applications are considered, more and more peo­

ple do not want to disclose private information to everybody, such as personal preferences 

on resources. However, no privacy notion is possible when using centralized processes. 

The central entity must gather the resource list and the preferences of all agents in order 

to determine the best resource allocation, according to the objective. Thus, when privacy 

is required, centralized methods are not suitable. Two notions must be distinguished: 

selfishness and privacy. Even if agents want to keep some information private, they are 

not necessarily selfish. Agents may have a common objective and hence a cooperative 

behavior, but also do not want to report all private information. At the opposite, selfish 

agents generally refuse to disclose private information (Nisan, 1999; Sen, 1996). These 

notions are not equivalent and must be distinguished. 

Communication abilities. Centralized processes provide allocations but do not con­

sider the way to achieve them in practice. They assume that provided solutions can always 
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be applied. It is also possible to find transaction sequences leading to such solutions using 

centralized methods, but it may not be scalable even with data instances of moderate size. 

They implicitly assume that any agent can communicate with all the other agents in the 

population. Such an assumption is not plausible for many applications. Indeed, in any 

application based on a community, an agent only knows a small subset of the overall pop­

ulation, and it can only talk to this subset. For instance, in a peer-to-peer network, a peer 

only knows a subset of the whole population. Centralized approaches do not focus on the 

way to achieve the provided resource allocations in practice. Since they assume complete 

communication abilities, they also assume that a resource can always circulate without 

restriction from its initial owner to its final owner in the final allocation. Thus, when 

restricted communication abilities are considered, the solutions provided by centralized 

techniques may not be achievable in practice. Restricted communication abilities interfere 

in the resource circulation, which may then prevent their achievement. The identification 

of a transaction sequence leading to optimal allocations cannot be solved in a scalable way 

by centralized approaches. When restricted communication abilities are considered, no 

simple test can determine whether or not a path of satisfying transactions exists leading 

to an optimal solution. The complexity of such problems is exponentially larger than the 

complexity of simple allocation problems. 

1.2.3 A typical application: combinatorial auction 

Centralized methods are very efficient for several classes of applications. Indeed, one of 

the most popular applications in Economics can be solved using centralized approaches. 

Auction problems have been widely studied (Bellosta et al, 2006; Boutilier et al, 1999; 

Cramton et al, 2006; De Vries and Vohra, 2003; Nisan, 2000; Sandholm, 2002). Various 

kinds of auctions exist, and different models can be used to solve them. 

Auction problems fit very well with centralized solving methods. Indeed, agents 

represent auction clients. In practice, clients report their preferences over resources to an 

auctioneer, who is the central entity. This auctioneer can then determine optimal outcomes 
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and allocates resources to clients accordingly. 

Many kinds of auction exists (Krishna, 2002): English auction also called "open as­

cending price auction", dutch auction also called "open descending price auction", sealed 

first-price auction or first-price sealed-bid auction, Vickrey auction or sealed-bid second-

price auction, . . . . These four types of auctions are only the most important, but many 

others exist. Each kind requires a specific model in order to be solved efficiently. This ap­

plication class is very rich and many issues are still open (Lehmann et al, 2006; Sandholm, 

2002). 

Generally, centralized approaches are efficient when the applications exists have some 

suitable features. Any static application where no specific relationship among agents can 

be solved efficiently using centralized approaches. If no privacy is required or if we are just 

interested in results themselves and not in the way of achieving them, centralized solving 

techniques are favored. 

1.3 Distributed approaches 

Alternative methods have been developed in order to overcome the limits of centralized 

methods. These methods are based on the notions of agents and multi-agent systems (Fer-

ber, 1999; Woolridge, 2001). Moreover, standard allocation problems become multi-agent 

resource allocation problems that can be solved thanks to agent negotiations. In contrast 

to centralized techniques, agent-based approaches are scalable and adaptable, i.e., large 

dynamic systems can be handled as well as restricted relationships among agents. We 

first describe the principles of these solving processes and identify the main characteris­

tics of suitable applications. We then discuss several issues related to the importance of 

considering agent relationships. We also explain why provided allocations can be viewed 

as emergent phenomena. Finally, some application examples, for which centralized ap­

proaches are not adapted, are finally presented. 
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1.3.1 Description 

The principles of distributed approaches (Moulin and Chaib-Draa, 1996) are fundamentally 

different from the centralized ones. In agent-based methods, agents participate actively 

in the determination of allocations optimizing the objective. Solving processes start here 

from initial resource allocations, which evolve step by step using local negotiations among 

agents. Such solving processes correspond to negotiation processes, which are illustrated 

in Figure 1.3. 

Figure 1.3: Principles of distributed methods 

Figure 1.3 shows a negotiation process based on a population of 4 agents, V = {0,1,2,3}, 

and a set of 5 resources, % = {®, Jk, m, *, *}. The communication possibilities are 

represented by a graph: Two nodes directly linked can communicate. Different steps 

of the negotiation process are illustrated. It starts from an initial resource allocation 

AQ = [{'Er,,A}{*}{*}{«}]. Agents 0 and 2 negotiate first and finally provide two resources, 

respectively * and A . Exchanges are represented by dotted links on the figure. The ini­

tial resource allocation AQ evolves into a new allocation A\ = [{Sf*}{*}{A}{«T}]. Thus, a 
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sequence of local transactions among agents leads to the final resource allocation, which 

constitutes the solution provided by the negotiation process. 

Agent-based solving techniques handle resource allocation problems by considering 

different aspects. Situations for which distributed solving processes are more suitable than 

centralized ones are discussed next. 

1.3.2 Characteristics 

Adaptivity. Multi-agent systems are widely used to model dynamic phenomena. Resource 

allocation problems which are solved using a multi-agent system can model dynamic 

applications. Arrivals and departures of agents during the solving process do not lead to 

restart the whole process. Since multi-agent systems are naturally expandable, they can 

manage the continuous evolution of data. 

Social graph. Relationships among agents can be considered and modeled using 

multi-agent systems. The communication possibilities of agents are represented thanks to 

social graphs. According to the topology of a social graph, two agents can communicate 

if they are directly related in the graph. Restricted communication abilities influence 

a lot the efficiency of negotiation processes since they restrict the resource circulation. 

Such restrictions are widely encountered in various applications. Especially in the case of 

large systems, like Internet, complete communications possibilities are neither possible nor 

plausible. 

Applicability. Since the solution of resource allocation problems is the result of local 

negotiations among agents, a sequence of transactions is identified, from initial resource 

allocations to the final solutions. Thus, allocations provided by multi-agent approaches 

can always be achieved independently of the agents' communication abilities. However, 

the applicability should be moderated. A transaction sequence leading from the initial 

solution to the final solution is identified with respect to the agents' communication abilities. 

However, since agents only have a limited view of the system, they cannot be sure that 

the negotiation process will end. In order to be sure that negotiation processes end, a 
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centralized coordinator is required. 

Scalability. Multi-agent systems are also highly scalable compared to centralized 

approaches. Indeed, a multi-agent system is populated by autonomous agents. This 

characteristic allows an easy distribution of the computations. Very large populations can 

be handled in a scalable way since computation costs can be split over the population. In 

the case of negotiation processes, while one negotiation remains scalable, large populations 

can be handled. However, if the determination of a transaction requires an exponential 

time, it is obvious that the overall solving process cannot be scalable. 

Heterogeneity. Multi-agent systems handle homogeneous populations, where all 

agents act according to the same behavior, as well as heterogeneous populations, where 

each agent acts according to its own behavior. Such notions are not taken into account 

in centralized techniques. Large heterogeneous populations can be managed quite easily 

using new design approaches, like the IODA methodology (Interaction Oriented Design 

Agent simulation) which focuses on the agent interaction instead of the agent behavior 

(Kubera et al, 2008). A simulation is characterized by a matrix, which defines the interac­

tions that occur between agents with respect to their type. The combined use of interaction 

matrices with generic interactions allows convenient simulation designs. For instance, free-

rider issues are widely studied in file sharing problems (Groves and Ledyard, 1977; Morge 

and Mathieu, 2007). In such applications, two kinds of agents can be distinguished: purely 

selfish agents who only get the media contents without providing anything to others, and 

generous agents who do both operations. They study the rate of free-riders in a population 

and its impact on the service efficiency. Their aim is to design agent behaviors discouraging 

others to act selfishly. Even if the management of heterogeneous populations is possible, 

this thesis only focuses on homogeneous populations. Indeed, studies on heterogeneous 

populations deal mainly with evolutionary issues (Hofbauer and Sigmund, 2003; Weibull, 

1997), which is a topic beyond the scope of this study. 

Information privacy. Depending on the required level of privacy, a negotiation can 

be designed in a suitable way. Depending on the quantity of information that agents 
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accept to disclose, different negotiation protocols can be designed. Indeed, negotiation 

protocols influence the efficiency of solving processes. The more information agents accept 

to reveal, the more accurate are negotiations, and hence more efficient is the identification 

of acceptable transactions. Indeed, a negotiation protocol based on binary information is 

very limited, i.e., a yes/no answer contains only few information, whereas the expression 

of a degree of envy on resources may help to identify acceptable transactions. 

The social graph: an essential issue? 

Various studies have been carried out to solve multi-agent resource allocation problems, 

but only few of them consider restricted communication among agents. Distributed solving 

methods can model them using social graphs. Studies focusing on distributed techniques 

can be classified in two main classes. The first set of studies is mainly theoretical and 

aim to prove the existence of solutions or to identify mathematical properties favoring 

the achievement of optimal solutions. The second set of studies mainly concentrate on 

mechanisms required to achieve these solutions. 

An approach to solve the task reallocation problem uses marginal cost for different 

classes of transactions (Sandholm, 1998). He analyzed the characteristics of local optima 

avoided by each transaction class. He also established theorems on the existence or not of 

transaction sequences leading from any initial resource allocation to optimal ones, depend­

ing on the transaction allowed during negotiation processes. These transaction classes and 

their efficiency have been assessed (Andersson and Sandholm, 1998) but the evaluation is 

restricted to a small number of resources with a small population (less than 10 resources 

and 10 agents). Each agent can always communicate with all other agents. Other authors 

consider the contract sequencing (Andersson and Sandholm, 2000). They described a pro­

tocol to solve the multi-agent Traveling Salesman Problem, and they compared strategies. 

However, only relative comparisons are performed and the communication possibilities 

are always assumed to be complete. Their work has been extended with studies mainly 

related to the transaction sequence length (Dunne, 2005). The author established bounds 
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on the length of transaction sequences required to achieve optimal allocations. He also 

introduced a new transaction class and evaluated its efficiency. However, restricted com­

munication possibilities were still not considered. A multi-agent system was proposed to 

solve distributed resource allocations relying on a market biding model(Chavez et al, 1997; 

Clearwater, 1996). These authors specifically addressed CPU time allocation problems. 

However, they did not compare the efficiency of their allocation processes with optimal so­

lutions. Classes of utility functions and payment functions have also been studied to design 

convergent negotiation processes (Chevaleyre et al, 2005). Authors analyzed the mathe­

matical properties of different functions and identified sufficient and necessary conditions 

to ensure the convergence of negotiation processes. These negotiation processes have been 

evaluated using social welfare theory (Moulin, 1986; Arrow et al, 2002). They established 

convergence results depending on the transaction classes allowed during the negotiations. 

They also studied different scenarios corresponding to different preference representations 

and to different acceptability criteria (Endriss et al, 2006). However, they never considered 

restricted agent's communication abilities. These studies designed abstract frameworks, 

but none of them is able to exhibit acceptable transaction sequences leading to optimal 

allocations. Moreover, none of these studies proposed the agent's behaviors to implement 

in order to negotiate efficiently in practice. Negotiation protocols were also designed where 

no common knowledge is available (Saha and Sen, 2007) or when agents express multi-

criteria preferences (Hemaissia et al, 2007). However, the communication possibilities of 

agents are always assumed to be complete. Such an hypothesis restricts a lot the field of 

applicability once more. 

Since the "agents' communication abilities" facet of resource allocation problems was 

not considered in former studies, it is legitimate to investigate the importance of such a 

parameter. Negotiation processes, which lead to optimal solutions according to complete 

communication possibilities (i.e., based on complete social graphs), may only lead to 

solutions far from the optimum, when communications are restricted. 

Property 1.3 (Social graph impact). Independently of the objective function considered, a re-
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stricted social graph may prevent the achievement of optimal resource allocations. 

Proof. Let us prove this proposition using a counter-example, based on a population of 3 

agents P = {1,2,3}, and a set of 3 available resources 'R = {r\, r2, r?). The agent's preferences 

are described in Table 1.4. 

Table 1.4: Social graph impact - Example of agent's preferences 

Population P 

0 
1 
2 

Resource Set K 
r\ r2 r3 

3 1 9 
1 4 1 

10 2 3 

The social graph is described in Figure 1.4. In this social graph, agents 0 and 2 

cannot communicate. This figure also describes an initial resource allocation, which is 

A = [{ri}{r2}{r3}]. 

iri) {r2} {r3} 

Figure 1.4: Social graph impact - Social graph example 

Agents are assumed to be selfish in this example, i.e., they only accept transactions 

increasing their own utility. Under such conditions, no transaction can be performed as 

described in Table 1.5. This table lists the possible resource exchanges and shows that none 

increases the utility value of all participants. Only two exchanges are possible: between 

agents 0 and 1 who respectively exchange resources r\ against r2, and between agents 1 

and 2 who then exchange resources r2 against r$. Both cases lead to a decrease of the utility 

of at least one participant. 

However, the exchange of r\ against r^, which leads to an increase of the utility of 

both participants, is not possible since they cannot communicate according to the graph 

topology. If the utilitarian welfare is the social objective to maximize, then the allocation 

A = [{r3}{r2}{ri}] represents an optimal solution, which cannot be achieved since the agent 

communication possibilities are restricted. • 



39 

Table 1.5: Social graph impact - Set of possible transactions 

Transaction 

Initially 

r2 <->r3 

Agent's utility u\ 
UQ U\ U2 

3 4 3 
1 1 3 
3 1 2 

Restricted social graphs also have an indirect influence on the negotiation process. The 

order according to which agents negotiate is not important when complete social graphs 

are considered. Indeed, resources can always be traded with all other agents. However, 

this order becomes an important parameter when considering a restricted social graph. 

Property 1.4 (Negotiation order). Independently of the objective function which is considered, 

the order in which agents negotiate with each other may prevent the achievement of optimal resource 

allocations. 

Proof. Let us prove this proposition using a counter-example, based on a population of 3 

agents "P = {1,2,3}, and a set of 3 available resources "R = {r\, r2, r^). The agents' preferences 

are described in Table 1.6. 

Table 1.6: Negotiation order - Example of agent's preferences 

Population V 

0 
1 
2 

Resource Set % 
n r2 r3 

2 10 4 
5 3 9 
2 7 1 

The social graph and the initial resource allocation are described in Figure 1.5. In 

this social graph, agent 0 cannot communicate to agent 2 and the initial allocation is: 

A = [{rx}{r2}{r3}]. 

{ri} {r2} {rs\ 

Figure 1.5: Negotiation order - Social graph example 
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Let us assume that agent 1 initiates a negotiation. Depending on which neighbor it 

selects to negotiate first, with respect to its behavior, the negotiation process may end with 

sub-optimal allocations instead of optimal ones. We assume here that the objective is the 

maximization of the utilitarian welfare, but examples can be designed for all other notions. 

Table 1.7 lists the possible transactions depending on who the initiator selects to negoti­

ate with. As described in this table, if agent 1 first chooses agent 0, the exchange leads to a 

sub-optimal allocation from which the negotiation process cannot leave. If the initiator first 

selects agent 2, then the negotiation process ends on a socially optimal allocation. Hence, 

the optimum can only be achieved using a specific order of negotiation. 

Table 1.7: Utility of agents according to the initiator partner 

Negotiating agents 

Initially 
Agent 0 <-> Agent 1 
Agent 1 <-> Agent 2 

Agent's utility w, 
UQ U\ UI 

2 3 1 
10 5 1 
3 7 2 

Welfare 
swu 

6 
16 
17 

• 

Thus, the social graph represents an important issue since its topology may prevent the 

achievement of an optimal resource allocation in practice. Its influence on the efficiency of 

negotiation processes must be considered and should not be omitted as it has been done in 

former studies. 

An emergent phenomenon? 

The concept of "emergence" is used by different communities but there still does not exist an 

agreement around a common definition (Corning, 2002; Goldstein, 1997; Serugendo et al, 

2006). Indeed, there are as many definitions as users of this concept! 

However, an operational definition of the concept of emergence is established (Capera 

et al, 2003). According to (Di Marzo Serugendo et al, 2006), this definition, proposed by 

computer scientists, is based on two main issues: 
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• The subject. The objective of a computational system is to achieve an adequate 

function. This function, which may evolve during time, has to emerge. 

• The condition. This function is emergent if the coding of the system does not depend 

on any knowledge related to this function. This coding has to contain the mechanisms 

allowing the adaptation of the system, so as to tend anytime towards the adequate 

function. 

According to this operational definition of emergence, our distributed approach based 

on agent negotiations provides resource allocations that can be viewed as emergent phe­

nomena. Conditions to have an emergent phenomenon is to have a global objective func­

tion, and local mechanisms that have no knowledge on this objective function. In practice, 

agents have only a local view of the system. At most, they can collect information from 

their neighborhood with respect to the social graph topology. No agent is able to know 

what is exactly the current resource allocation at a given time. Agents only know their 

own resource bundle. It is then not possible for them to know the value associated with 

the objective function. 

1.3.3 Application examples 

Many problems studied by the Computer Science community can be modeled as resource 

allocation problems. 

Over the past years, there has been an increasing interest for routing problems and 

network designs, in relation to self-organization issues (Serugendo et al, 2006). How 

a network is designed is an important issue that influences its efficiency. Multi-agent 

approaches can be used to design or maintain large networks (Anshelevich et al, 2008). 

Each edge of the network has a cost, and agents try to minimize this cost, according to some 

connectivity requirements for instance. Characteristics like performance or resilience of 

resulting networks can be studied (Chun et al, 2004). According to the cost function which 

is considered, various topologies can be generated, and the control of nodes degree, i.e the 



42 

number of neighbors per node, appears to be of great importance in order to control the 

network balance. Recently, several studies addressed the design of peer-to-peer networks. 

Such networks are dynamic and their growth may alter the efficiency of the services that 

they provide. For instance, in the case of file sharing applications, bottlenecks may appear 

as a result of the constant evolution of the overlay. A proper adaptation of the overlay 

is essential to maintain the quality of service (Ni and Liu, 2004; Hales, 2004). Based on 

a specific overlay, selfish routing can be addressed using multi-agent resource allocation 

problems (Gairing et al, 2008; Gibney and Jennings, 1998). In such applications, agents 

have to assign traffic to one of their links. Generally, traffic of other agents is unknown. 

Efficient load-balancing can be achieved in this way based on any kind of topology. Several 

grid computing issues can also be modeled as multi-agent resource allocation problems. 

For instance, tasks should be uniformly split among different nodes in order to speed 

up computations (Buyya et al, 2002; Galstyan et al, 2005). Thus, load balancing can be 

performed using agent-based techniques. Usually, resources of such systems are CPU 

time. 

Supply chain problems are based on a network of facilities, which perform procurement 

of materials and transformations of these materials into different products, intermediate 

products as well as finished products (Kaihara, 2003). Facilities can perform different 

tasks on products. According to the manufacturing process, tasks must be performed 

in a specific order. The dependencies among tasks that can be performed by facilities 

represent a social graph. The resources are the time of engine usage. Various criteria can be 

considered in such a problem. Material flows must be organized in order to maximize the 

production of facilities, to minimize the cost of transportation and distribution, to respect 

production delays , . . . . Some agent-based approaches are proposed to solve the distributed 

manufacturing scheduling (Shen, 2002; Sycara et al, 1991). The aim of such systems is to 

maximize the global efficiency. However, no client can be completely neglected and see 

its products manufactured too late. The Nash product seems to be a welfare notion of 

interest in such situations. Continuous planning issues under spatial constraints are also 
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addressed (Sahli and Moulin, 2009). Spatially-aware agents are used to solve complex 

planning problems in real dynamic and large-scale spaces. 

Applications based on social networks become more and more popular nowadays. 

Social networks regroup most of the time people who have elements in common such 

as preferences, geographic locations, friendships and blood relationships. Such a network 

represents the social graph on which is based an agent negotiation process. When agents are 

related, they have common interests and they are able to negotiate their resources. Recently, 

many Internet applications based on barter appear on the Internet. For instance, in services 

like www. homexchange. com or www. gchangetout. com, clients are related according to their 

preferences. They would like to lend their own house for a given number of weeks, in order 

to obtain the same number of weeks in another house located in an area corresponding to 

their wish. The aim of such a barter system is to satisfy all members of the community, 

which corresponds to an egalitarian problem. Such a system can be easily modeled by 

means of cooperative agents. All agents enter in the community bringing at least one 

resource: their house. The aim of all agents is similar. They want to find a house to 

exchange with their own house for a given vacation period. All agents express preferences 

on the kind of house they wish, on the location and on the time period. Resources that 

agents offer and wish from other agents represent connections among the agents, which 

constitute a social graph. Two agents are related if one of them offers a resource (i.e., 

an house during an acceptable time period) that interests the other, or if they have close 

interests. An agent who stays with its own house is a situation associated with a very 

weak satisfaction. However, when an agent who lends its own house but does not get any 

in return, this corresponds to the worst situation that is associated with either a negative 

utility if such values are allowed, or with a null utility otherwise. The aim is to provide an 

house to every community members during their vacation period. 
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1.4 Summary 

In this chapter, allocation problems have been described and their three main characteristics 

have been presented. 

• Nature of resources: Resource properties have an important influence on allocation 

problems. Depending on them, efficient solving processes in a given context may be 

completely inefficient in another context. We specifically address allocation problems 

in which resources are assumed to be discrete, not divisible, not sharable, and static. 

• Preferences representation: Agent's preferences also deeply affect allocation prob­

lems. We choose to use a cardinal quantitative representation of preferences. Agents 

express them using an additive utility function. Compensatory payments are prohib­

ited in this thesis. 

• Collective evaluation: From the society's point of view, allocations can be evaluated 

thanks to social welfare notions and negotiation settings must be designed according 

by. In this thesis, four main notions are considered: the utilitarian welfare, the 

egalitarian welfare, the Nash welfare and the elitist welfare. 

Centralized solving approaches have been described. They are well-adapted in some 

cases, e.g., for auction problems, but are not applicable when applications are dynamic 

or when privacy is required by agents. In this context, we discussed distributed meth­

ods. These two kinds of approaches do not address the same problems. Based on agent 

negotiations, distributed methods provide a sequence of transactions to achieve the pro­

vided solutions in practice, and they can handle restricted communication possibilities. 

A suitable design is nevertheless required to achieve allocations as emergent phenomena. 

The next chapter is dedicated to the negotiation design and provides a description of the 

different parameters that we choose to consider to set up negotiation processes. 



Chapter 2 

Distributed Negotiations 

In this chapter, multi-agent negotiation problems are described. The combined use of nego­

tiations and multi-agent systems raise several important issues, which are never addressed 

in centralized approaches. We will discuss issues related to the design of solving processes, 

focusing on agent behaviors and trying to answer a crucial question: "How do agents need 

to behave in order to lead negotiation processes to socially optimal solutions?" 

The challenges related to the design of negotiation processes are described in Section 

2.1, where we explain the difficulties related to such a process. Then, formal definitions 

of negotiation problems and agents are presented in Section 2.2. Their features are succes­

sively detailed in the next sections. Restrictions on agent communications are presented 

in Section 2.3, which describes different topologies of relationships that can be modeled 

and have their typical characteristics. Then, different classes of transactions are presented 

in Section 2.4. Section 2.5 details the decision-making criteria used by agents, i.e., the 

conditions that transactions must satisfy in order to be performed. Section 2.6 discusses 

agent behaviors, and presents different methods to model agents' interactions. Finally, we 

present in Section 2.7 the evaluation of negotiation processes and the metrics used during 

the experiments that we carried out. 

45 
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2.1 Challenges 

The design of negotiation processes is an essential issue affecting a lot their efficiency. 

Different techniques based on multi-agent systems have been described in Section 1.3 with 

an emphasis on their advantages, but a suitable design is required to benefit from them. 

The challenges related to the negotiation process design can be illustrated by a proposition 

of (Sandholm, 1998), which was initially written in a task allocation context. 

Property 2.1 ((Sandholm, 1998), path). A sequence of resource purchases (O-contracts) always 

exists from any resource allocation to the optimal one. The length of the shortest path is at most m 

(the overall number of resources). 

Proof. The transaction sequence can be constructed by moving a resource one at a time 

from the agent that initially owns it to the agent that gets it in the globally optimal resource 

allocation. D 

According to Proposition 2.1, a path of O-contracts, which corresponds to the purchase 

of a resource, always exists between any initial allocation to an optimal one. Although this 

proposition is proposed in the case where communications are not restricted, it is still valid 

in the context of restricted communication possibilities, if no agent group is isolated from 

the others. Indeed, the proof is based on the existence of a path between any pair of nodes 

in the graph, which is always satisfied when the graph is complete. Such a path also exists 

if the restricted graph is connected. However, the length of the shortest path can be longer 

than m depending the agents' relationships. Resources may have to go through different 

bundles in order to achieve an optimal solution. In practice, the main issue is to identify 

such a path. 

In order to find it, agents have to accept any transaction. Resources should then freely 

circulate among the agents in order to finally be owned by the agent that has it in a 

globally optimal resource allocation. According to agent-based method principles, the 

initial allocation evolves thanks to local transactions among agents. However, since agents 

must accept any transaction, they do not distinguish a profitable transaction from another 
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one. Thus, agents negotiate endlessly and the negotiation process cannot end. Even if 

an optimal resource allocation is achieved during the solving process, agents continue to 

negotiate and perform new transactions. This optimal resource allocation is then lost. 

Agents must be able to identify profitable transactions. Agents should be autonomous 

and their decision-making should be based on a local acceptability criterion. This criterion 

must only be based on the information that agents can get themselves during a negotia­

tion. When no agent can identify an acceptable transaction within its neighborhood, the 

negotiation process is over. The resource allocation achieved at this moment is the solution 

provided by the distributed negotiations. This is an important issue in order to ensure the 

quality of achieved allocation. Negotiation processes must be finite, agents must be able 

to make their own decision based on local information until no agent identifies acceptable 

transactions. These features can be achieved through a suitable design of agent behaviors 

and the choice of an appropriate acceptability criterion. 

2.2 Definitions 

A resource allocation problem in an agent society can be solved thanks to negotiation pro­

cesses among agents. Such problems can be distributed using the notion of agent. Instead 

of maintaining an up-to-date state of the whole system and of all entities' information in 

a single location, they are distributed inside agents. The notions of negotiation problem and 

agent, which are closely related, can be defined as follows: 

Definition 2.1 (Negotiation Problem). A negotiation problem is a tuple (P, H, T), where 

P = {1 , . . . , n} is a finite population of n agents, % = {r\,..., rm) is a finite set of m resources, 

and T corresponds to the set of transactions allowed during the negotiation process. 

The transactions that can be allowed are presented later, in Section 2.4. An agent can be 

defined in a generic way by a resource bundle, a utility function describing its preferences, 

a list of agents with whom it is able to communicate, a behavior describing how it interacts 

with other agents and an acceptability criterion related to its decision-making. 
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Definition 2.2 (Agent). An agent i e P is a tuple <??,-, Mi, Ni, Si, C;), where !??, is its set of 

m, resources, u, is its utility function, N[ is the list of n,- neighbors, S ; defines the agent 

behavior according to which the agent negotiates, and C\ is its acceptability criterion on 

which are based its decisions. 

Preferences of agent i are defined according to Definition 1.3 by means of additive utility 

functions. The behavior Si describes agent i from an external point of view, whereas the 

acceptability criterion C; describes it from an internal point of view. Indeed, the behavior 

describes how an agent interacts with others while the acceptability criterion corresponds 

to the conditions that a transaction must satisfy in order to be performed. This criterion thus 

represents the central condition of the agent decision-making. Behaviors and acceptability 

criteria are respectively detailed in Sections 2.5 and 2.6. 

Two notions must be distinguished. First, a negotiation seeks to identify an acceptable 

transaction among agents. A negotiation is defined by interactions among agents (see 

Section 2.6). A negotiation process seeks to find a path of acceptable transactions, and 

thus includes many negotiation problems. In this thesis, we always consider a specific 

negotiation problem based on an agent population P, a set of resources <R which are 

initially distributed over the population, and a set of transactions T allowed among agents 

of the population. 

2.3 Social graphs 

At the opposite of centralized solving processes, which always assume complete communi­

cation possibilities, solving methods based on multi-agent systems can handle the notions 

of neighborhood and social graph. 

Definition 2.3 (Neighborhood). The neighborhood of agent i 6 P, denoted by N\, is a 

subset of the population P with whom it is able to communicate. 

Mc(f\( i | ) , ieP. 
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A graph of relationships, which we call a social graph, can be extracted from the 

neighborhood of all agents. 

Definition 2.4 (Social graph). The social graph Q is a graph of relationships describing 

the communication possibilities among agents of a population f. In such a graph, nodes 

represent agents, and an edge between two nodes means that the corresponding agents are 

able to communicate. 

Property 2.2 (Relationship symmetry). Let e^ be an edge of a social graph Q between two nodes 

i and j . This edge means that both agents i, j e V are directly related. If agent j is a neighbor of 

agent i, then agent i must also be a neighbor of agent j . More formally: 

eij eQ => jeJVj and i e Nj, i, j e P. 

Such relationships are represented by non-oriented graphs. 

The different classes of social graphs can be grouped into three main classes: 

• Complete graphs; 

• Structured graphs; 

• Random graphs. 

First, negotiation processes based on complete social graphs can be compared to cen­

tralized approaches. Indeed, both of them assume complete communication possibilities 

among all the agents, and then have similar solving conditions. However, such graphs are 

only used to carry out comparisons between distributed results and the ones provided by 

centralized techniques. 

Then, graphs with regular topological characteristics belong to the class of structured 

graphs. For instance, a graph where all agents have the same number of neighbors belongs 

to this class. Structured graphs also include some specific topologies like grids (Berman 

et al, 2003), rings or trees. 
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Finally, unstructured graphs have an irregular topology. Several classes of random 

graphs exist (Bollobas, 2001), like Erd6s-Renyi graphs (ErdSs and Renyi, 1959), free-scale 

graphs or small worlds generated either by preferential attachment or by circle rewiring 

(Albert and Barabasi, 2002). The probability distribution is uniform when Erdos-Renyi 

graphs are considered. Links between any pair of nodes have the same probability to 

be generated. In small-worlds, the larger number of neighbors has a node, the larger is 

the probability to link this node. Such topologies correspond to real-life graphs like the 

Internet. The algorithms used to generate the classes of social graphs considered in this 

thesis are detailed in Chapter 3. 

Complete graph Ring g r a P n 

Grid graph Tree graph Random graph 

Figure 2.1: Classes of social graphs 

Different classes of social graphs are illustrated in Figure 2.1. We will select specific 

graphs for the experiments in Chapter 3: complete graphs, grids, Erdos-Renyi graphs 

and small-worlds. These graphs correspond to a representative sample of what can be 

encountered in most applications. Indeed, their characteristics vary significantly when 

these graphs are evaluated with the most widely used metrics (Biggs et al, 1986), which are 

described in the next paragraphs. 

The mean connectivity, which corresponds to the mean number of neighbors, goes 

from n - 1 with complete graphs (where n is the overall number of agents) down to four 
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neighbors in grids. If n; is the number of neighbors of agent i, it can be evaluated as follows: 

connectivity = — / n;-. 

The clustering coefficient is a metric that quantifies how well connected is the neighbor­

hood of an agent. The more the neighbors of an agent are directly related, the higher 

is the clustering coefficient. This coefficient is weak when grids are considered since the 

four neighbors of an agent are not related directly, whereas the clustering coefficient be­

comes high when complete graphs are considered since the neighborhood of an agent is 

completely connected. 

clustering = - ^ n , ( n , _ ^ /,* e Nif ejk e Q; 

with n the overall number of agents, n, the number of neighbors of agent i, and e^ an edge 

between two neighbors j , k of agent i. 

Another important characteristic is the mean-shortest path length. This metric describes 

the mean closeness among agents. In grids, two agents may be far from each other (e.g., 

the opposite corners of a grid) whereas in small-worlds, the mean distance between any 

pair of agents is really small. If dl}. denotes the shortest path length between two agents 

i, j e V, it can be computed as follows: 

mean shortest path length = — — / d1J. . 
y 6 n[n-\) *-u mm 

Only connected graphs are considered in this thesis. In such graphs, a path always exists 

between any pair of nodes, and its maximal length is n -1. If a social graph is not connected, 

then agents from disconnected parts cannot communicate with each other. Resources can 

circulate inside a portion of the graph, but cannot move to another one. Hence, these 

portions can be considered as independent. Thus, a resource allocation problem, which is 

based on a not connected social graph, can be split into as many independent sub-problems 
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as there distinct portions in the social graph. 

Property 2.3 (Not connected graph). Independently of the objective considered, the solution of 

an allocation problem based on a non-connected social graph is equivalent to the association of the 

partial solutions provided by the solving process applied to all the portions of the graph. 

Proof. If a social graph is composed by x portions, there is no path between nodes that 

belong to different portions. Any pair of agents who do not belong to the same group 

cannot communicate. Then, no resource can circulate from one of them to another. The 

solution of the overall problem can be obtained by the union of the solution from each 

portion. The resource allocation problem can be divided into x independent sub-problems, 

each one restricted to the population of a portion. The optimal allocations provided 

by the different solving processes can be merged to constitute the solution of the whole 

problem. • 

2.4 Transactions 

During negotiation processes, the resource allocation evolves, step by step, by means 

of local transactions among agents. The resource traffic is generated thanks to these 

transactions, which move resources successively from an agent bundle to another one. 

Definition 2.5 (Transaction). A transaction is an operation on resources among several 

agents, which transforms an initial resource allocation A into a new one A'. Agents 

involved in a transaction are called participants, but two agent roles can be distinguished: 

the initiator who starts the negotiation, and the partners who are selected by the initiator in 

its neighborhood. 

The definition of a transaction can be based on the offers made by the participants. 

The number of resources that the participants can offer depends on the allowed transaction 

class. Indeed, different classes of transactions exist, which are more or less time-consuming, 

which involve more or less agents, which move more or less resources . . . Three classes of 

transactions can be distinguished. 
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• Bilateral transactions, which involve only two agents at a time (also called one-to-one 

transactions in the literature); 

• Multilateral transactions, which involve more than two agents at once according to 

two different transaction patterns: 

- One-to-Many transactions, where the initiator is involved in all resource opera­

tions; 

- Many-to-Many transactions, where any resource operation is allowed among all 

the participants. 

In this section, these three classes of transactions are described. For each class of 

transactions, the computational complexity, i.e., the number of possible transactions, is 

determined according to the number of participants and according to the size of their 

bundle. 

2.4.1 Bilateral transactions 

Bilateral transactions, also called one-to-one transactions, only involve two agents at a 

time. They represent the most widely used class of transactions in the literature. Bilateral 

transactions can be defined in a parametric way using two parameters representing the size 

of the offers proposed respectively by the initiator and its partner, as illustrated in Figure 

2.2. 

Definition 2.6 (Bilateral transactions). A bilateral transaction between two agents i, j £ V, 

denoted by b\, is initiated by agent i who involves one of its neighbors ;' e TV,-. It is a pair 

bl{a, b) = (p6, p6), where the initiator i offers a set p6 of a resources (p6 c 7?,) and the selected 

partner ; offers a set p6 of b resources (p6 c 7?;). 

Let us recall the resource allocations' properties which are satisfied according to the 
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Figure 2.2: Bilateral transactions 

nature of the resources that we choose to consider (see Section 1.1.1): 

p | %• = 0 and | J % = K. 

Hence, the intersection of the offers proposed by different agents is always empty. 

The nature of the considered resources affects the definition and the properties of all 

transactions. According to the size of the offers proposed by both participants, the possible 

number of bilateral transactions is restricted. 

Property 2.4 (Bilateral transaction complexity). Let us consider a bilateral transaction bl{a, b), 

where the initiator i e V owns initially nti resources and offers a resources (a < mi), and where it 

involves a neighbor j G A/i who initially owns m.j resources and offers a set ofb resources (b < mf). 

The possible number of bilateral transactions of cardinality {a, b) between agents i and j is: 

According to Proposition 2.4, the number of possible bilateral transactions grows exponen­

tially with the size of the offers a and b proposed by the participants. Some negotiation 

policies allow transactions of different cardinality during the same negotiation process. 

Indeed, even if an agent i owns mz resources, it may be useful to bound the number of 

resources it can offer in order to reduce the complexity. Under such conditions, two nego­

tiating agents may offer a resource set of any size from a single resource up to a' and V, 

which bounds the size of the offered resource sets. We call such negotiation policies "up to 
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(a', b')". The number of possible bilateral transactions can then be determined as follows: 

( a' I \\( v I \\ 

«i=E? If? -1-
\x=0 x 'J\x=0 v ') 

Any bilateral transaction, e.g., defined in (Sandholm, 1998), can be defined by this repre­

sentation, and the possible number of transactions can be evaluated using Proposition 2.4. 

Bilateral transactions with specific cardinality are presented in the following paragraphs. 

A gift, also called O-contract, is a transaction where the initiator offers a single resource 

and its partner none. The gift of resource r e %i from agent i to agent ; is represented by 

6;(1,0) with p6 = {r} and p6 = 0. Only m, gifts are possible. 

A cluster transaction, also called C-contract, is a transaction where the initiator offers 

a set of resources and its partner none. Hence, the cluster of a resources from agents i to 

agent / is represented by 5;<a,0) with p5 = {r\,...,ra) £ % and p5 - 0. Then, (™') cluster 

transactions are possible, which correspond to the number of sets containing exactly a 

resources in %. If the negotiation policy allows agents to offer up to their whole bundle, 

i.e., if the size of the offers that agents may propose is not bounded, the number of possible 

clusters is 2m' - 1. 

A swap transaction, also called S-contract, is a transaction where both participants offer 

each other a single resource. A swap between agents i and ;', who respectively exchange 

resources r e % and r' e Hj, is represented by bl{\, 1) with pb - {r} and p6 = {/}. In a such 

case, m.i x m; swaps are possible. 

Finally, a cluster-swap transaction is the general form of bilateral transactions, where 

both agents offer a subset of their bundle. Then, a cluster swap between agents i and ;, who 

respectively offer a set of a and b resources, is represented by S;(a, b) with p5 = {r\,... ,ra\ £ 

Ki and p6 = {r'v..., r'b) c Kj. Thus, (^0(^0 cluster-swaps are possible when agent i exactly 

offers a resources and agent; exactly offers b resources. If the negotiation policy allows the 

agents to offer up to their whole bundle, the number of possible cluster-swap transactions 

is 2m'+mi - 1. 
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Let us note that cluster transactions include gifts. Cluster-swap transactions, which 

are the general form of bilateral transactions, contain gifts, clusters and swaps. Figure 2.3 

shows the inclusion relationships among the different bilateral transactions. 

Figure 2.3: Relationships among bilateral transactions 

According to the cardinality parameters, these relationships are pretty obvious to prove. 

Indeed, according to the definition of cluster transactions bl{a,Q), the offer of the initiator 

is constrained by a < m.[. If the initiator only provides a single resource, the transaction 

b\ corresponds to a gift. Similarly, according to the definition of cluster-swap transactions 

bl{a,b), the size of the participant offers are bounded by a < rrij and b < nij. If both 

agents only provide a single resource, it corresponds to a swap, if the partner does not 

provide anything, the transaction corresponds either to a cluster or to a gift. Let us note 

that the situation in which both agents do not provide any resource is not considered as a 

transaction. 

In this section, all bilateral transactions have been presented. Let us summarize the 

complexity of the different classes of bilateral transactions in Table 2.1. Let us consider 

a bilateral transaction bl between two agents i, j e P. They own respectively m, and ntj 

resources. The total number of possible transactions is defined according to the restriction 

on the agent offers. 



57 

Table 2.1: Summary - Complexity of bilateral transactions 

Transaction 5!. 
1 

Gift 

Cluster 

Swap 

Cluster-swap 

Allowed transaction T 
(1,0) 
<fl,0> 

up to (a, 0) 

<u> 
<fl,b> 

up to (a, b) 

Number of possible transactions 
rtii 

CO 
E 0) -1 

x=0 
ra,- x ra; 

2.4.2 Multilateral transactions 

Another important class of transactions can be used to modify resource allocations. In­

deed, while bilateral transactions only involve two agents at once, multilateral transactions 

involve more than two agents. During a multilateral transaction, the initiator is able to in­

volve a set of neighbors at once. Two multilateral transaction patterns exist: One-to-many 

transactions and many-to-many transactions, as described next. 

One-to-many transactions 

During one-to-many transactions, the initiator is able to negotiate simultaneously with a 

whole subset of its neighborhood. The initiator can offer to each partner a set of resources, 

and inversely, all partners can offer a resource set to the initiator, as illustrated in Figure 

2.4. 

} Initiator i e <P 

} Partners j,k,...Je A6 Q Nf 

Figure 2.4: One-to-many transaction 

The main constraint of this transaction pattern is that the initiator is always involved 
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in any resource move. Resource sets are either offered or received by the initiator. Two 

partners cannot negotiate with each other. One-to-many transactions can then be formally 

defined as follows. 

Definition 2.7 (One-to-many transactions). A one-to-many transaction 5A is initiated by an 

agent i e P and involves a subset of n§ neighbors A6 c M{. It is a list of pairs describing the 

resource sets given and received by all participants. Let p6
u denote the resource set given 

by agent k to agent I. The initiator must always be involved in all offers, either to provide 

or to receive them. 

Let us note that, according to Definition 2.3, ; e A6 => i'. ± j in this definition. Obviously, 

the resources provided by the initiator are constrained. The initiator cannot give the 

same resource to different neighbors (due to the nature of the considered resources). Such 

constraints are required to ensure consistency during a multilateral negotiation. More 

formally: 

(J 9% c %, i e P; 

jeA6 

jeA6 

One-to-many transactions are more complex than bilateral transactions, and then more 

time-consuming. Indeed, a one-to-many transaction can be considered as several bilateral 

transactions performed simultaneously. 

Property 2.5 (One-to-many transaction split). A one-to-many transaction 6A is equivalent to at 

most n§ simultaneous bilateral transactions. 

Proof. According to the definition of a one-to-many transactions 6A, the initiator i involves 

at most n§ neighbors in the transaction. Since the initiator is always involved, it corresponds 
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to a list of at most n§ elements. Indeed, any agent k e A5 from the initiator neighborhood 

who either gives or receives resources leads to the addition of a pair of resource sets (p5., p6). 

However, a partner may not be interested in the transaction and hence do nothing. Each 

pair (p6., p6.) corresponds exactly to a bilateral transaction by definition. • 

Property 2.6 (One-to-many transaction complexity). Let us consider a one-to-many transaction, 

where agent i e P is the initiator. It initially owns mi resources and involves a set A6 c J\f{ of 

n& neighbors. Each neighbor ] e A6 initially owns a set ofmj resources. The possible number of 

one-to-many transactions is: 

#6f = (n6 + If 
;eA6 

- 1 . 

Proof To count the number of possible one-to-many transactions, we consider the resource 

allocations themselves. In other words, we determine where resources can be allocated 

according to their initial owner. 

According to Definition 2.7, resources initially owned by a partner of A6 can be either 

allocated to the initiator i, or stay in the resource bundle of their initial owner. It represents 

2 £ mj allocations. The resources owned by the initiator can be allocated either to itself 

or to any partner, which represents {n^, + l)m' different allocations. The combination of 

both parts corresponds to the overall number of possible allocations resulting from a one-

to-many transactions. Since the situation in which no modification is performed is not 

consider as a transaction, we finally deduct the initial allocation. • 

Many-to-many transactions 

During a many-to-many transaction, the initiator i and the set of partners constitute a group 

where everything is allowed. The main restriction of one-to-many transactions is omitted: 

The initiator is not anymore necessarily involved in all resource moves. Any agent of this 

group can offer a set of resources to any other agents of the group, as described in Figure 

2.5. 
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Figure 2.5: Many-to-many transactions 

In many-to-many transactions, the role of the initiator is depreciated since any agent 

of the group can negotiate with the others. However, in practice, since two neighbors are 

not necessarily directly linked according to the social graph topology, the initiator can be 

used for the transit of the traded resources. A many-to-many transaction can be formally 

defined as follows: 

Definition 2.8 (Many-to-many transactions). A many-to-many transaction 6A is initiated 

by agent i e V and involves a subset of its neighbors A"5 c J\[{. It can be defined as a list of 

pairs describing the resource sets offered and received by two agents ;, k € A6 U {/}. 

5? = {(p6
jk,p

5
kj)\j,k£A6U{i},j<k}. 

where p6
k is the resource set given by agent ;' to agent k and inversely, p*. corresponds to 

the resource set given by agent k to agent;'. 

Only constraints ensuring the consistency must be satisfied: A given resource can only 

be offered to another agent. These constraints depend on the resource nature. 

p6
jkQKj, ; , /ceA6u{f}. 

Many-to-many transactions are more complex than one-to-many transactions, which 

are themselves more complex than bilateral transactions. While a one-to-many transaction 

can be viewed as several bilateral transactions performed at the same time, a many-to-many 
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transaction can be considered as several simultaneous one-to-many transactions. 

Property 2.7 (Many-to-many transaction split). A many-to-many transaction is thus equivalent 

to at most n?, simultaneous one-to-many transactions or to n^(n^ - 1) simultaneous bilateral 

transactions. 

Proof. According to the definition of a many-to-many transactions 5A, the initiator i involves 

at most ng neighbors in the transaction. n&(ns - 1) pairs of participants can be constituted. 

Each pair of participants who provide or receive resources corresponds to an element of the 

list. Each pair (p5
k, p

6
k.) exactly corresponds by definition to a bilateral transaction. Then, 

a many-to-many transaction corresponds to n^(n^ - 1) simultaneous bilateral transactions. 

If we regroup the different pairs of offers according to the agent providing the first offer, it 

corresponds to several one-to-many transactions. • 

Property 2.8 (Many-to-many transaction complexity). Let us consider a many-to-many trans­

action 5A, where agent i e V is the initiator. It initially owns m, resources and involves a set 

A6 c / / ; ofns neighbors. Each neighbor j e A6 initially owns a set ofntj resources. The possible 

number of many-to-many transactions is: 

#6A = (n6 + If1' - 1, where m! = J ^ m;. 
;'eA6U(i) 

Proof. As done for one-to-many transactions, the most convenient way to proceed is to con­

sider the resource allocations that can be achieved thanks to a many-to-many transaction, 

and then where resources can be allocated. 

According to Definition 2.8, any resource can be allocated either to the initiator or to an 

involved agent, m' corresponds to the number of resources available in this restricted 

population i U A6. Each resource can be allocated to any agent of the restricted population, 

so (n§ + 1) times. Applied to all resources, it corresponds to the number of possible many-

to-many transactions. The initial allocation must also be subtracted since no transaction is 

performed. • 
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Many-to-many transactions without restriction on the size of the offered resource sets 

can be considered as a reallocation of all available resources over the restricted population 

of involved agents. On a complete social graph, an initiator involving its whole neigh­

borhood in a many-to-many transaction, involves the whole population since all agents 

are related. In such conditions, many-to-many transactions are equivalent to classical 

centralized solving methods. 

2.5 Acceptability criteria 

Agents must locally decide about which actions to perform when several actions are pos­

sible. They must be able to determine the best action. Such a decision is based on an 

acceptability criterion. It strongly influences the negotiation process. Indeed, it highly 

restricts the set of possible transactions among the agents, by defining the conditions that 

transactions must satisfy in order to be performed. Accordingly, agents can determine 

whether or not transactions are profitable. Such criteria can be based on different no­

tions. In this thesis, two main notions are considered: Rationality and sociability. These 

notions are successively described, and are finally compared in order to emphasize their 

differences. 

Let the criteria defined in this section be illustrated by means of a transaction 6A. This 

transaction changes the initial resource allocation A into a new one A'. Then, let %^ denote 

the resource bundle of any agent k € V in the allocation A and "R'k its bundle in A'. The 

following definition can be restricted to the bilateral case. 

2.5.1 Rational criterion 

The individual rationality is the most widely used criterion in the literature. It specifies that 

agents can only accept transactions increasing their individual welfare. It is used especially 

in the case of selfish agents. 

Definition 2.9 (Rational agent). A rational agent only accepts a transaction that increases 
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its own utility value. If the agent i e V is rational, an acceptable transaction must satisfy 

the following condition: 

ul{K'i)>ui{Kd, i&P, 'Ru'R-C'R. 

Definition 2.10 (Rational transaction). A rational transaction 6, initiated by agent i e P, is 

a transaction involving rational agents only. Participants accept rational transactions only 

if the following condition is satisfied: 

Ujtfi'j) > UjCRj), ;'GA6U{f}, ft^cft, A6 c N{. 

This criterion can be computed using local information only. Indeed, the current 

resource bundle, the offer an agent makes and the ones it receives are the only information 

required. These information are available locally from the agent's point of view. However, 

the rationality criterion strongly restricts the transaction possibilities. Its use may thus 

prevent the achievement of socially optimal allocations. 

2.5.2 Social criterion 

With respect to the social criterion, the welfare of the whole society cannot decrease. 

Sociability is more flexible than rationality. Social agents are usually qualified as generous. 

Definition 2.11 (Social agent). A social agent is an agent who only accepts transactions 

that increase the welfare of the whole society. 

Definition 2.12 (Social transaction). A social transaction 5, which changes the initial re­

source allocation A to a new one A', is a transaction leading to an increase of the social 

welfare. 

sw(A') > sw(A), A, A' € J{. 

The social criterion is centered on the social welfare value, which is a global notion. 

Its value can only be determined thanks to the welfare of all agents. Agents should then 
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know the resource bundle and the preferences of all agents in the population, in order 

to determine the value associated with the objective function. Such conditions cannot be 

satisfied since agents have only local information. The social value of the objective cannot 

then be locally computed. But, the computation of the exact value of the welfare function 

is not essential, to know its evolution is sufficient to determine whether or not a transaction 

penalize the society. Such computations can be restricted to the local environment of 

agents. If participants to a negotiation consider the remaining population as a constant, the 

evolution of the social value can be determined on a local basis. The formal definition of 

social transactions can be specified according to the welfare notion. The expressions of the 

conditions that transactions must satisfy, once applied to a specific social welfare notion, 

are detailed in dedicated sections of Chapter 4. 

2.5.3 Difference and impact 

Two acceptability criteria have been described. Both of them can be used locally to deter­

mine whether or not a transaction is profitable. However, these notions are not equivalent. 

Rational transactions are always social, but at the opposite, social transactions are not 

necessarily rational. 

Example 2.1. Let us illustrate the difference between these notions with an example, using 

a population of 3 agents V - {0,1,2}, and a set of 3 available resources % - {r^r^r^. 

The preferences of all agents are described in Table 2.2. The initial resource allocation is 

A = [kiM^fo}]- The social objective considered in this example is the egalitarian welfare, 

which focuses on the individual welfare of the poorest agent. 

Table 2.2: Acceptability criteria - Example of agents' preferences 

Population P 

0 
1 
2 

Resource Set "R 
r\ r2 r3 

8 6 7 
9 5 2 
6 1 3 
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able 2.3: Acceptability criteria - Set of possible exchan 

Transaction 

Initially 

r2 <-*r3 

Agent utility u; 
Wo U\ U2 

8 6 3 
6 9 3 
7 5 6 
8 2 1 

Criterion C; 
Rational Social 

x y 
x y 
X X 

ges 

Table 2.3 lists all possible exchanges. It also indicates whether or not acceptability 

criteria are satisfied. It shows that no rational transaction can be performed. Each time 

an agent wants to exchange its resource with another one, one participant decreases its 

utility. Thus, none of them is rational. However, when the social criterion is considered, if 

the richest agent accepts to loose some utility, the egalitarian welfare can be increased. For 

instance, let us consider the exchange of resources r\ and r3 between agents 1 and 3. This 

resource swap is not possible if agents are rational, whereas it is acceptable between social 

agents, as it leads to an increase of the egalitarian welfare value of the whole society. 

These criteria influence a lot negotiation processes and it is essential to consider them in 

the agent decision-making. They restrict the set of possible transactions more or less. The 

social criterion is more flexible than the rational one and allows agents to perform more 

transactions. More importantly, both criteria lead to a finite negotiation process. 

Property 2.9 (Finite negotiation process). A negotiation process based on rational transactions 

or on social transactions end after a finite number of transactions. 

Proof. According to Proposition 1.2, an allocation problem with m resources and n agents 

has a finite solution space: \J{\ - nm. The set of all possible allocations is finite even if its 

size is exponential. 

Any transaction 5, rational or social, always leads by definition to an increase of the 

social welfare value (independently of the notion considered). Since, during a transaction 

sequence, it is not possible to return to an allocation previously encountered, the associated 

social welfare value cannot be greater. Then, no cycle can then appear. Since no cycle 
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appears, coupled to the finite number of distinct resource allocations, negotiation processes 

end after a finite number of transactions. • 

2.6 Agent interactions 

Behaviors define agents from an external point of view. They describe how agents interact 

with each other, i.e., how they negotiate. During a negotiation, each agent makes and 

receives offers, and check their acceptability according to its own criterion. If a transaction 

is acceptable for every participant, it is performed. Otherwise, agents have to decide who 

has to modify its offer according to their behavior, and thus the negotiation continues. 

This section focuses on bilateral negotiations. Multilateral transactions are much more 

complex to realize. Indeed, the initiator requires more information. In order to identify 

where resources should be allocated, a lot of information is required, like the partners' 

preferences. Such a process is memory and time consuming, and some alternative methods 

should be used. Chapter 5 addresses issues related to multilateral negotiation. 

A negotiation between agents can be managed in different ways (Parsons et al, 2003; 

Rahwan and Larson, 2008; Saha and Sen, 2007). First, participants need to choose the order 

in which they propose their offers to their partners. According to the minimal concession 

strategy (Morge et al, 2009), agents always suggest first what is the most advantageous for 

them. The two participants successively suggest different alternatives until they agree on 

an acceptable transaction. However, this strategy was initially designed for agents knowing 

the complete bundle of the other agent. Considering the set of available resources, agents 

generate the possible set of allocations and sort it according to their preferences. They 

alternatively suggest an allocation, making more and more concessions until either they 

agree on an acceptable allocation, or they abort the negotiation. 

This minimal concession strategy has to be adapted in order to satisfy the requirements 

ensuring the autonomy of all agents. In other words, this process must be based on personal 

information only. Since an agent ignores the bundle of the other agents, it must reason 
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on its own bundle instead of allocations. An agent must prepare the set of offers it can 

propose, denoted by L(p), and orders it according to its own preferences. Then, an agent 

can propose in the first place the offer the least penalizing for it. Indeed, agents always 

propose the offer associated with the lowest utility value. For any agent i e V, the set 

of offers Li(p) can be generated from its resource bundle % and from the set of allowed 

transactions T. For instance, if a negotiation process allows only gifts, then the set of 

alternatives corresponds to the resource bundle, and agents just have to sort it according to 

their preferences. According to a negotiation policy "up to (3,3)", which allows agents to 

propose up to 3 resources, agents have to generate the list of offers whose size is less than 

or equal to three. 

Let us assume that agent i € P initiates a negotiation and proposes an offer to one of 

its neighbors ; € Ni previously selected. Both offers correspond to a bilateral transaction 

bl. If both agents consider this transaction acceptable, it is performed. However, if one 

participant rejects the offer, three alternatives can then be considered: 

• agent i gives up and ends the negotiation; 

• agent i changes the selected neighbor; 

• agent i changes its offer or asks its partner to modify its own offer. 

Based on this set of actions, various behaviors can be designed. Considering what we 

call a rooted behavior, an agent cannot change the selected neighbor during the negotiation. 

The initiator has to randomly select a member of its neighborhood. In contrast, a frivolous 

behavior allows the initiator to change its partner during the negotiation. The initiator 

should then shuffle its neighborhood and involve each neighbor successively. A stubborn 

agent only makes one offer. If the transaction is rejected by one participant, the initiator 

does not want to negotiate again with it. In this case, the initiator only considers the first 

offer of L(p), which corresponds to the least penalizing one. Inversely, considering a flexible 

behavior, the initiator can change the offer that it proposes during the negotiation. In such 

a case, an agent can propose successively different offers of L(p). 
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Determining the order of these actions is an important issue. For instance, the number 

of resources that agents offer can vary according to T, and the order in which they consider 

the size of the possible offers is important. Agents can either regroup in L(p) all their offers 

without considering their cardinality (the number of resources that agents can offer), sort 

L(p) and then start the negotiation, or negotiate successively with the offers regrouped by 

cardinality. Agents start by proposing successively resource sets of a first kind, and if no 

acceptable transaction is identified, then they propose offers of an other cardinality. The 

process continues until all allowed transactions 6 e T have been attempted, or until an 

acceptable transaction is identified. 

Example 2.2. Let us consider a single agent i £ P, who owns three resources in its bundle, 

% - {TiJ2rr"i\- This agent evaluates these resources as follows: u,-(ri) = 1, Uifo) = 3 and 

ui(r3) = 8. This agent is involved in a negotiation with one of its neighbors. According to 

the negotiation settings, several transactions are allowed: T = {(1, X), (2,X)}. Agent i can 

either offer its neighbor a single resource or a set of two resources from its bundle. The 

order in which offers are proposed is described in Table 2.4 according to the negotiation 

policy considered. 

Table 2.4: Sequence of offers proposed by the agent 
Negotiation policies 

All together 

r\ 
ri 

r\ri 

n 
nn 
rir-i 

By cardinality 

n 
ri 
r-z 

nr2 
nr3 
W3 

The list of offers that agent i € V can propose, denoted Li(p), is always sorted according 

to its preferences u;, so that it can first propose offers with the lowest utility value. According 

to the policy "all together", Li(p) is generated at the beginning of the negotiation according 

to T and independently of the transaction cardinality. According to the second policy "by 

cardinality", the list of offers is regenerated for each allowed transaction in T and the order 
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is modified. The larger is the agent's bundle %i, the higher are the differences of the two 

lists. 

The first possible behavior is the simplest one. The initiator i G P only proposes its offer 

associated with the lowest utility value (the first element of Lj(p)) to one of its neighbors 

j e Ni. If the transaction is rejected, then the negotiation aborts. This agent behavior is 

called rooted stubborn and is described in Algorithm 2.1. The initiator can only propose a 

single offer. In all behaviors described in this section, the TEST instructions correspond to 

acceptability tests, in which agents determine whether or not a transaction is profitable. 

The main criteria have been described in Section 2.5. The expression to use in such tests 

depends on the welfare objective considered, and hence is detailed in the corresponding 

section of the next chapter. 

Algorithm 2.1: Rooted and stubborn agent behavior 
Input: Initiator i 

Output: TRUE if a transaction is performed 

L,(p) <—generate(7-,!^!); / / l i s t of a l l poss ib le generated of fers 

Sort U(p) according to uz; 

p <— argmin U;(p'); / / s e l ec t i on of the cheapest offer 
p'6L,-(p) 

j <— random(A/;); // random selection of a partner 

Get p' from j ; // get the offer from the partner 

6«-(P/P'); 

if TEST then / / a c c e p t a b i l i t y t e s t 

Perform 5; 

End the negotiation; 

return TRUE ; 

end 

return FALSE 

According to the second behavior, the initiator i e P can only propose its offer p. that is 

associated with the lowest utility. However, it can successively select different neighbors 
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during the negotiation. If the transaction involving the first partner is rejected, the initiator 

can select another neighbor to continue the negotiation. Such an agent behavior is called 

frivolous stubborn and is described in Algorithm 2.2. The neighborhood should be shuffled 

between two negotiations in order to modify the order in which neighbors are considered, 

otherwise a bias may appear. 

Algorithm 2.2: Frivolous and stubborn agent behavior 

Input: Initiator i 

Output: TRUE if a transaction is performed 

Lf(p) «-generate(7",^I-); 

Sorts Lj(p) according to u,; 

p <-argmin«i(p ' ) ; 
p'eLi(p) 

Shuffle Ni; 

forall the j e Ni do 

Get p' from j ; 

6 < - ( P , P ' ) ; 

if TEST then 

Perform 5; 

End the negotiation; 

return TRUE ; 

end 

end 

return FALSE ; 

// list of all possible generated offers 

// selection of the cheapest offer 

// sequential selection of neighbors 

// get the offer from the partner 

// acceptability test 

An agent behavior is called rooted flexible when the initiator i e P can successively 

propose different offers p. e Lj(p), and it cannot change the selected neighbor. Such a 

behavior is described in Algorithm 2.3. 
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Algorithm 2.3: Rooted and flexible agent behavior 

Input: Initiator i 

Output: TRUE if a transaction is performed 

Lj(p) <— generate(7_,'R;); / / l i s t of a l l poss ib le generated offers 

Sort U(p) according to M, ; 

;' <— random(A/r
!); / / par tner s e l ec t ion 

forall the p e L,(p) do 

forall the p' e Lj(p) do 

6*-(p,p'); 

if TEST then / / a c c e p t a b i l i t y t e s t 

Perform 5; 

End the negotiation; 

return TRUE ; 

end 

end 

end 

return FALSE ; 

According to the next behavior, the initiator i e V can change partners as well as its offer 

during a negotiation process. The initiator /proposes each offer p. G L;(p) to all its neighbors 

; e Ni before changing it. According to such a behavior, if an acceptable transaction exists 

somewhere in the neighborhood, it will necessarily be identified. Such an agent behavior 

is called frivolous flexible and is described in Algorithm 2.4. The neighborhood should be 

shuffled between two negotiations in order to modify the order in which neighbors are 

considered. 
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Algorithm 2.4: Frivolous and flexible agent behavior 

Input: Initiator i 

Output: TRUE if a transaction is performed 

Uip) <- generate(T,!Ri); 

Sort Lj(p) according to U\; 

Shuffle Ni; 

forall the p e Lj(p) do 

forall the ;' e N do 

forall the p' e Lj(p) do 

6 < - ( p , p ' ) ; 

if TEST then 

Perform 5; 

End the negotiation; 

return TRUE ; 

end 

end 

end 

end 

return FALSE ; 

/ / l i s t of a l l poss ib le generated of fe rs 

/ / f l e x i b i l i t y 

/ / f r i v o l i t y 

/ / a c c e p t a b i l i t y t e s t 

Agents may also scan their whole neighborhood in order to identify the best transaction 

to perform. Such agents are called perfectionist, and their behavior is illustrated in Algorithm 

2.5. In such situations, the initiator z e P starts a rooted and flexible negotiation with each 

neighbor, and only memorizes the best transaction encountered, which is finally performed. 

The determination of the best transaction between 5 and 5' can be adapted according 

to the agent's acceptability criterion for instance. It can be either the maximization of 

its own utility or the maximization of the welfare of the population. Such a behavior 

is more expensive than the others since agents try all possible transactions with their 

neighbors. Always performing the best transaction does not ensure that optimal allocations 
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are achieved at the end of negotiation processes. Even if the transaction is locally the most 

interesting one, it may lead resources into a dead-end whereas socially greater allocations 

might be achieved by allocating these resources to other agents, which are not directly 

related to the initiator for instance. Negotiation processes among perfectionist agents can 

be compared to greedy heuristics in the Optimization field. 

Algorithm 2.5: Perfectionist agent behavior 
Input: Initiator i 
Output: TRUE if a transaction is performed 

Li(p) ^-generateOr,??,); / / l i s t 
Sort L{(p) according to u,; 
forall the ;' e Ni do 

forall the p e U(p) do 
forall the p'inLj(p) do 

6 ' < - ( p , p ' ) ; 
if TEST then 

if 5' is BETTER THAN 5 then 

end 
end 

end 
end 

end 
if 6 * 0 then 

Perform 5 ; 
End the negotiation; 
return TRUE ; 

end 
return FALSE ; 

According to flexible behaviors, as described in Algorithms 2.3 and 2.4, the initiator i 

sequentially proposes all possible offers p. € Lj(p). For each initiator's offer, all the offers 

p. that can be proposed by its partner ;' e N must be attempted. In other words, when the 

initiator's offer is rejected, it always ask to its partner to propose something else. When it 

is no more possible, the initiator changes its offer and try to associate it with all possible 

offers of its partner. 

However, when flexible behaviors are considered, negotiations can be managed in a 

of a l l poss ib le generated of fers 

/ / a c c e p t a b i l i t y t e s t 
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different way. Indeed, each time that a transaction is rejected by one participant, instead 

of always requesting to the partner to change its offer, participants may determine which 

one should change its offer using a specific test. This test, called CHANGE TEST in Algorithm 

2.6 can be based, for instance, on the difference of utility values between what they get and 

what they provide. More formally: 

CHANGE TEST := Ui(p^) - Uj(pp > ? My(pJ) - Uj{p^) 

Thus, in all behaviors, instead of a loop based on p' e L;(p), Algorithm 2.6 can be used 

during a negotiation to decrease the number of attempted transactions. 
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Algorithm 2.6: Who has to change its offer? 

indexl <^- 0 ; / / index on the i n i t i a t o r ' s l i s t of of fers 

indexP <— 0 ; / / index on the p a r t n e r ' s l i s t of of fers 

while indexl < mi && indexP < nij do 

p <— Li(p)[indexl]; 

p' <— Lj(p)[indexP]; 

6 < - ( P , P ' ) ; 

if TEST then / / a ccep t ab i l i t y t e s t 

Perform 6; 

End the negotiation; 

else 

if CHANGE TEST then / / change t e s t 

indexl <— indexl + 1; 

else 

indexP <— indexP + 1 ; 

end 

end 

end 

• • • / 

Note that in this thesis, we focus more on the distributed problem solving than on 

the agent language. The speech acts performed by participants are not explicitly written. 

Indeed, the initiator can access directly to some information of its partner, such as its offers 

and its individual welfare. The initiator chooses itself the minimal concession exchange 

(the least penalizing for both agents). However, this process can obviously split into 

different speech acts (Guerra-Hernandez et al, 2009), as described in Figure 2.6. This 

figure describes the different speech acts required. Alternatively, each agent makes offers, 

analyzes the information provided by the other agent, in order to finally determine if 



76 

Initiator Participant 

offer pi 

reject 

! report AUJ, offer pj 

reject 

accept 

give pj 

give pi 

Figure 2.6: Sequence of speech acts 

the transaction composed of both offers is acceptable or not. Each agent determines the 

acceptability of the transaction according to its own criterion. The simplification made in 

our algorithm is possible since all agents act according to the same behavior and to the 

same acceptability criterion. 

Behavior names defined in this section are abbreviated in the experiments reported in 

Chapter 4 to improve the understanding of graphs. Table 2.5 summarizes the different 

behaviors and their abbreviated name. 

Table 2.5: Summary - Agent behaviors 

Stubborn 

Flexible 

Rooted 
fs 
rf 

rf full 

Frivolous 
rs 
ff 

ff full - agent 
ff full - resource 
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• rs: rooted stubborn behavior; 

• fs: frivolous stubborn behavior; 

• rf: rooted flexible behavior based on a specific mechanism to determine who has to 

modify its offer; 

• rf full: rooted flexible behavior; 

• ff: frivolous flexible behavior based on a specific mechanism to determine who has 

to change its offers; 

• ff full - agent: frivolous flexible behavior where the initiator favors the partner 

change; 

• ff full - resource: frivolous flexible behavior where the initiator favors the offer 

change. 

2.7 Evaluation of negotiation processes 

The evaluation of negotiation processes is not an obvious issue. Centralized methods are 

most often evaluated using the computation time or the quality of the provided solutions 

(e.g., in the case of heuristics), but negotiation processes can be evaluated using many 

metrics. Depending on the chosen metric, the performance of negotiation processes may 

vary. Hence, various metrics should be considered during their evaluation. 

2.7.1 Evaluation metrics 

A fair evaluation must consider the different aspects of negotiation processes. We propose 

a set of usable metrics in this section. 

First, the number of performed transactions indicates the overall number of transac­

tions effectively performed during the whole negotiation process. It corresponds to the 

length of the transaction sequences required to evolve the initial resource allocations to the 
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provided solutions. The acceptability criterion significantly affects this metric. Indeed, it 

restricts the set of possible transactions among agents. Negotiations based on a restrictive 

criterion, like rationality, may end faster than negotiations based on a more flexible criterion 

like sociability. 

The number of attempted transactions is the overall number of offers proposed during 

a negotiation process. Two factors influence this metric: the agents' behaviors and the 

allowed transactions. When agents are stubborn and/or rooted, they only make a single 

offer during a negotiation, and then highly limit the number of attempted transactions. 

However, in the case of flexible and/or frivolous agent behaviors, agents attempt many 

more offers. In such cases, the set of transactions allowed is an essential parameter. 

The larger is the number of possible transactions, the larger is the number of attempts, 

as summarized in Table 2.6. Thus, the number of attempted transactions may increase 

exponentially. 

Table 2.6: Summary - Transaction complexity 
Transaction kinds 

Bilateral bl 
i 

Multilateral <5A 

i 

(a,b) 

up to {a, b) 

One-to-many 

Many-to-many 

Number of possible transactions 

2(n6 + VT 

(n6 + If1' - 1 wi 

L rrij\-l 

th m ' = £ mj 
;'eA6U{i} 

Then, the number of traded resources indicates the density of the resource traffic when 

coupled with the number of performed transactions. Bilateral transactions, as well as 

multilateral transactions, may have a bound on the size of the offers. According to these 

limits, the number of traded resources during a transaction can vary. For instance, during 

a bilateral transaction bl{a,b), a maximum of a + b resources may be traded. However, 

from the same initial resource allocation, and in order to achieve the same final allocation, 

a sequence of a gifts bl{\, 0) and b gifts b\{\, 0) is required. 

A negotiation process is a sequence of negotiation steps which are initiated by agents. 
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Each step corresponds to the identification of an acceptable transaction. The number of 

speech turn corresponds to the number of times a negotiation is initiated, i.e. the number 

of steps. This metric depends on two parameters: The agent behavior and the allowed 

transactions. If agents' behaviors are rooted and/or stubborn for instance, they may need 

a larger number of negotiations to identify an acceptable transaction with one of their 

neighbors. Similarly, in the case of negotiation processes which are only based on gifts, 

the number of negotiations required to end the negotiation process is larger for processes 

based on cluster-swaps for instance. 

Finally, the topological sensitivity should also be evaluated. Indeed, the topology of 

social graphs affects a lot the negotiation process. Considering different graph topologies 

of the same class, negotiation processes starting from the same initial allocation can achieve 

different allocations. The topological sensitivity can be evaluated thanks to the standard 

deviation among the social values achieved at the end of negotiation processes. A large 

deviation means that the negotiation process is very sensitive to the graph topology, and 

thus the quality of the provided allocation significantly varies according to the initial 

conditions. 

2.7.2 Negotiation efficiency 

The efficiency of negotiation processes is an important goal. Indeed, if a negotiation process 

ends quickly, it might not be interesting if the provided solution is associated with social 

values which are far from the optimum. The negotiation settings allow the achievement of 

different kinds of allocations, as illustrated in Figure 2.7. 

This figure represents the different allocation sets which are achievable according to the 

negotiation settings. The largest set corresponds to the whole solution space. Different sets 

of allocations can be achieved depending on settings, like the set of allowed transactions 

or the topology of social graphs. In a situation where negotiation processes always lead to 

optimal allocations, the different solution sets are similar to the optimal one. 

In order to evaluate the quality of the provided solutions, we can carry out comparisons 
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Allocation Set J{ 

... achievable 
according to the 
set of allowed 
transaction 7~ 

Figure 2.7: Different sets of achievable solutions depend on the negotiation settings 

between the values provided by centralized techniques and by distributed negotiations. 

Centralized approaches provide social values used as a reference for the comparisons 

with the results which are provided by distributed negotiations. This social value is called 

a global optimum. 

Definition 2.13 (Global optimum). A resource allocation A e 3K is a global optimum if no 

other resource allocation A' e J{ associated with a greater social value exists. 

$A' 6 & sw(A') > sw(A) A, A' £ 31 such that A t A'. 

A global optimum is not dependent on the allowed transactions among agents. De­

pending on the kinds of allowed transaction, resource allocations corresponding to global 

optima might not be achievable. Moreover, the optimal social value is unique but several 

resource allocations can correspond to it. 

During a negotiation process, agents negotiate until none of them is able to identify 

acceptable transactions. The final solution is the resource allocation represented by the 

state of system at that time. This state can be considered as an equilibrium state for the 

negotiation process. 

Definition 2.14 (Local optimum). A resource allocation A e ${ is a local optimum if no 

sequence of transactions, belonging to the set of allowed transactions T, leading to a 

. . . achievable 
according to the 
social graph Q 

Optimal 
allocation set 
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resource allocation associated with a greater social welfare value exists. 

VA' e ^ l , $6f sw(A')>sw(A) 5eT,Ae^{. 

A local optimum is an equilibrium which can not be avoided using transactions from 

T, with respect to the social graph topology. The closer are the social values associated 

with the local optimum and with the global optimum, the more efficient are the negotiation 

processes. 

The comparison between the social value achieved by both approaches corresponds to 

an evaluation of the price of anarchy (Gairing et al, 2006; Koutsoupias and Papadimitriou, 

2009). This notion is often used to quantify the loss due to the distribution of solving pro­

cesses (Christodoulou and Koutsoupias, 2005; Roughgarden, 2005). This price of anarchy 

can be evaluated when the centralized and the agent-based approaches have pretty similar 

conditions, especially regarding the communication possibilities. This is the case when 

negotiation processes are based on a complete social graph, which allows to have "similar" 

solving conditions, and hence to carry out relevant comparisons. 

However, restrictions on communication possibilities have a significant impact on ne­

gotiation processes. Thus, another notion can be introduced: the price of the social graph. 

This notion quantifies the quality loss due to the restriction imposed on the agent commu­

nication possibilities. In this way, negotiation processes based on different social graphs 

can be compared, and the topology's characteristics favoring the resource traffic or the 

negotiation efficiency may be identified. 

2.7.3 Computation time 

The computation time required to carry out negotiation process is also an important eval­

uation criterion. Its evaluation is quite simple. A solving process starts with the first 

negotiation, and is over when no agent in the population is able to identify an acceptable 

transaction. 
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Since many parameters can influence a negotiation process and its efficiency, the com­

putation time should be determined according to the most time-consuming settings. It 

should represent an upper bound of the time required to end distributed negotiations 

when restrictions are made. For instance, a complete social graph maximizes the com­

munication possibilities and the resource traffic. This setting can be considered as the 

worst topology from a computational point of view, maximizing negotiation opportuni­

ties. Agent behaviors also greatly influence the computation time. The worst behavior 

in terms of computation time is flexible and frivolous. Agents who can change partners 

as well as offers require more time to negotiate than other agents. Thus, in our experi­

ments, the computation time required by a negotiation process, for a given set of allowed 

transactions T, is evaluated on complete graphs involving flexible and frivolous agents. 

2.8 Summary 

In this chapter, distributed solving methods based on agent negotiations have been de­

scribed. Challenges related to agent-based methods have been discussed and the different 

parameters defining agents have been successively detailed. 

• Social graphs: Restricted communications among agents can be modeled using a 

social graph representing agent relationships. Any graph topology can be handled, 

but this thesis focuses on complete graphs, Erdos-Renyi graphs, grids and small-worlds. 

• Transactions: Different transaction classes have been presented, from simpler ones 

like bilateral transactions to more complex ones like multilateral transactions. Complex­

ity issues have also been discussed. 

• Acceptability criteria: In order to obtain finite negotiation processes, agents must be 

able to determine locally if transactions are profitable or not. Two criteria have been 

defined and characterized: Rationality and sociability. 

• Agent behaviors: Agents can negotiate in several different ways. Behaviors define 
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how agents interact with each other. We defined the main features characterizing 

agent behaviors: Rooted or frivolous, stubborn or flexible, perfectionist,... 

Finally, we discussed the evaluation of negotiations. Different metrics are presented 

in order to consider every facet of distributed negotiations: The number of performed trans­

actions, the number of attempted transactions, the number of speech turns, the number of traded 

resources and the topological sensitivity. We also discussed the negotiation efficiency by com­

paring optimal values provided by centralized techniques and by distributed methods. 

Simulations must be performed in order to establish the validity of our model of 

distributed negotiations. This model is characterized by a large number of parameters, 

and the next chapter describes algorithms required to generate them. Such algorithms are 

required to ensure the reproducibility of the experiments. 



Chapter 3 

Experimental Protocol 

After theoretical studies of centralized and distributed approaches, experiments and sim­

ulations must be performed in order to valid our approach. A large number of parameters 

can be considered as described in Section 2.7. A precise simulation protocol is required, 

describing how each parameter is generated, in order to characterize precisely experi­

ments and to ensure their reproducibility. Indeed, each parameter significantly affects the 

qualities of achieved allocations. This chapter is thus dedicated to the description of the 

experimental protocol. 

According to our definition of agent (see Section 2.2), we need to consider five different 

parameters. Agent behaviors and acceptability criteria have already been detailed respec­

tively in Section 2.5 and 2.6. The three other parameters must still be specified. Initial 

allocations and agents' neighborhood are generated using centralized algorithms and then 

distributed among the agents. Data instances are described and the simulation settings are 

also characterized. 

This chapter is organized as follows. First, the generation of the agents' preferences 

is described in Section 3.1, i.e., how utility functions are generated. Then, a method to 

determine initial resource allocations is detailed in Section 3.2, since all resources must be 

allocated before the beginning of negotiation processes. Section 3.3 is dedicated to the gen­

eration of social graphs. For each class of social graphs considered during the experiments, 

84 
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an algorithm of generation is provided. Section 3.4 describes how sequential negotiation 

processes are managed in practice, with a description of the mechanism distributing the 

speech turn among agents. Conditions to satisfy in order to detect the end of negotiation 

processes are also discussed. Finally, the characteristics of data instances and simulation 

settings are described in Section 3.5. 

3.1 Generation of agents' preferences 

As described in Section 1.1.2, agents express their preferences using an evaluation function 

restricted to an additive utility function. Agents' preferences are generated randomly 

according to a uniform distribution, as described in Algorithm 3.1. During our experiments, 

the utility value range is [0, m], where m is the total number of resources. Negative utility 

values can also be used without any impact on the negotiation process efficiency, except 

when the Nash welfare is considered. 
Algorithm 3.1: Generation of utility functions 

Input: Agent i, Resource Set K 

Output: Utility function u, of agent i 

forall the r e "R do 

vol <— random integer draw in [0, m]; 

add (r, vol) to U{; 

end 

The size of the range from which utility values are drawn also has an impact on 

negotiation processes. Indeed, if the range of utility values is not large enough compared 

to the overall number of resources, a very large number of equivalent optimal solutions 

may appear. It may then bias the real efficiency of the negotiation processes. The larger is 

the number of equivalent optimal solutions, the easier is the achievement of one of them. 

Thus, an inappropriate range value of generation biases the efficiency of negotiations. In 

order to avoid such a phenomenon, we suggest to generate utility values in the range [0,m], 

where m is the total number of available resources. 
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3.2 Generation of initial allocations 

A negotiation process starts from an initial allocation, which evolves step by step, thanks 

to local negotiations among agents. According to Proposition 1.1 describing allocation 

properties inherent to the resource nature, all resources must be allocated to agents and 

each resource must be allocated to only one agent. Since there is no reason for an agent 

to own a resource more than others, the initial resource allocation is generated randomly. 

Thus, each resource is randomly allocated to an agent according to a uniform distribution, 

as described in Algorithm 3.2. 

Algorithm 3.2: Generation of initial allocations 

Input: Agent population V, Resource Set K 

Output: Initial allocation A 

f orall the r e % do 

i <— random draw in V; 

add r to A[i]; 

end 

Initial resource allocations influence significantly the negotiation efficiency when re­

stricted social graphs are considered. Indeed, these graphs restrict the resource traffic 

according to their topology. Thus, an agent might never see resources depending on where 

they are initially allocated. In such a context, initial allocations affect optima that can be 

achieved. The generation of different graphs are described in the next section. 

3.3 Generation of social graphs 

Relationships among agents are generally not considered in resource allocation problems. 

Most of studies on resource allocation problems implicitly assume that the solutions ob­

tained by the proposed methods can always be achieved in practice. According to this 

assumption, any agent of the population is able to communicate with all the other agents. 

However, many applications do not satisfy such an assumption, especially when large 
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systems are considered. A social graph must then be defined, representing relationships 

among agents. The features of different classes of social graphs have a great impact on the 

efficiency of negotiation processes. This section provides algorithms generating different 

classes of social graphs, as presented in Section 1.3. They generate non-oriented graphs, 

but they can be easily adapted to generate oriented graphs, if required. 

In our experiments, simulation environments are assumed to be static: Populations and 

resource sets do not change. Social graphs are generated using a centralized algorithm, and 

then split and distributed among agents. All algorithms defined in this section, generate 

and return a social graph Q, which is modeled as an ordered list of neighborhoods. The 

neighborhood of agent i € V corresponds the z'-th element of the social graph, Q[i\ = Mi, as 

described in Figure 3.1. 

Example 3.1. The following example illustrates the representation of a social graph used 

in this thesis. The relationships among the 5 agents of a population f - {0,1,2,3,4} are 

described by the social graph illustrated in Figure 3.1. 

0 

}W0 

2J? 
Social graph Q 

Figure 3.1: A social graph and its representation 

The social graph shows that agent 0 is linked to only three other agents. Then, its 

neighborhood contains three agents: Q[Q] = Mo = {1/2,4}. Thus, the whole social graph 

can be defined by: Q = {M0,Nlf M2,M3,N*} = {{1,2,4}, {0,3,4}, {0,4}, {1,4}, {0,1,2,3}}. 

Relationships among agents might also be represented by a connection matrix. The 

social graph Q is a Boolean square matrix of size nxn (where n is the total number of 

agents). Each Boolean value ^[/][;] represents the existence of a link between two agents 
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i, j e P. However, since we adopt a distributed approach, agents ignore the real size of the 

population. A representation based on a list of neighbors is thus favored. 

The following sections detail how we generate the different classes of social graphs 

used in the experiments. 

3.3.1 Complete graphs 

In a complete social graph, each agent of the population can communicate with all other 

agents, as illustrated in Figure 3.2. Such a social graph is equivalent to the one used in 

most other agent-based studies or in centralized approaches. 

Figure 3.2: Example of complete graphs 

A complete social graph is generated as described in Algorithm 3.3. 

Algorithm 3.3: Generation of complete graphs 

Input: Agent population P 

Output: Social graph Q 

forall the i: € P do 

forall the j€p\ {i} do 

add j to Q[i]; 

end 

end 

Complete graphs are only used for comparison purposes. Such a topology cannot be 

ignored since the efficiency of negotiation processes will be compared to the efficiency of 

centralized approaches. However, complete graphs have no real interest in the solution of 

multi-agent resource allocation problem. 
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3.3.2 Erdos-Renyi graphs 

Erd6s-Renyi graphs are basically random graphs. Two generation models exist (Erd6s 

and Renyi, 1959; Bollobas, 2001), namely G(n,M) and G(n,p). The first model, G(n,M), 

is characterized by the number of nodes and the total number of edges required in the 

graph, whereas the second model, G(n, p), is characterized by the number of nodes and the 

probability to set an edge between agents of any pair of nodes. According to this model, the 

probability to set an edge is the same and is independent from the probability to set other 

edges. This second model G(n, p) is the one that we use to generate the random graphs in 

our experiments, as illustrated in Figure 3.3. 

Figure 3.3: Example of Erdos-Renyi graphs 

An ErdSs-Renyi social graph, which is based on the G(n, p) model, is generated using 

Algorithm 3.4. 

Algorithm 3.4: Generation of Erdos-Renyi graphs 

Input: Agent population V, probability p 

Output: Social graph Q 

forall the (z,;') e V x V such that i < j do 

vol <— random draw in [0,1]; 

if vol <= p then 

add ; to Q[i\; 

add i to §[j\ • 

end 

end 

Let us note that generated graphs are not necessarily connected. If the probability 
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p is not large enough, some nodes may be isolated. If social graphs are not connected, 

then multi-agent resource allocation problems can be split into several independent sub-

problems, as described in Proposition 2.3, and they can be solved independently. 

3.3.3 Grids 

In populations where all agents have exactly four neighbors, toric grids can be used to 

represent their relationships, as illustrated in Figure 3.4. According to the characteristics 

described in Section 1.3, the grids that we generate tend to have balanced dimension (i.e. 

a shape close to a square). Given a population of agents, it is quite easy to determine the 

corresponding dimensions of the grid using a prime number decomposition. Such grids 

can be generated using Algorithm 3.5. 

Figure 3.4: Example of grids 
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Algorithm 3.5: Generation of grids 

Input: Agent Population P, lengthGrid / 

Output: Social graph Q 

f orall the iepdo 

// determine the 4 neighbors of each agent 

north <— i -I; 

if north < 0 then 

north <— north + n ; 

end 

west«— z - 1 ; 

if west < 0 then 

west <— west + n ; 

end 

south *- i + l; 

if south > n then 

south <— south - n ; 

end 

east <— i + 1 ; 

if east > n then 

east«— east - n ; 

end 

add north, south, east, west to Q\i[; 

end 

3.3.4 Small-worlds 

Small-worlds describe a wide range of real systems in nature and societies. In our ex­

periments, small-worlds are generated using the preferential attachment model (Albert 

and Barabasi, 2002). New agents joining into the population are connected to the existing 
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agents with a probability proportional to their number of neighbors. An example of small 

world is illustrated in Figure 3.5. 

Figure 3.5: Example of small-worlds 

Such small-worlds can be generated using Algorithm 3.6. 

Algorithm 3.6: Generation of small-worlds 

Input: Agent Population T 

Output: Social graph Q 

total <— 1; 

forall the z G IP do 

for j = 0 —> i do 

limit <- (2 * Nj) I total; 

random draw of p; 

if p < limit then 

add i to Q[j\; 

add ; to Q[i\; 

total <— total + 1; 

end 

end 

end 

In this section, the generation of different classes of social graphs has been described. 

Each of them has different characteristics that prevent negotiation processes to achieve 

optimal resource allocations, as discussed in Section 1.3.2. 
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In order to ensure the reproducibility of our experiments, some characteristics of the 

protocol must still be detailed. Since agents negotiate sequentially, a specific mechanism is 

used to distribute the speech turn among them. Such a mechanism is described in the next 

section as well as ending conditions of negotiation processes. 

3.4 Negotiation processes 

In order to fully define a finite negotiation process, some details must still be given. The 

first mechanism is the speech turn distribution process, whereas the second is related to 

the ending conditions of negotiation processes. 

Negotiation processes are sequential in this study: Only one agent at a time can initiate 

a negotiation, according to its behavior. To achieve this, a classical mechanism based on a 

token is used to decide which agent can initiate a negotiation. The speech turn is uniformly 

distributed over the population: No agent talks twice unless all agents have talked at least 

once. Such a distribution is done thanks to a well-known round-robin algorithm, which 

is often used as a task scheduler. The order in which agents receive the token may bias 

the process. To avoid this phenomenon, the population is shuffled when every agent has 

initiated a negotiation, i.e., periodically every n negotiations. The distribution process of 

the token is illustrated in Figure 3.6. 

Population V 

1 — > 0 1 2 

Shuffle V 

n —| 

Figure 3.6: Distribution of the speech turns 

The last issue is related to ending conditions of negotiation processes. In other words, 

when can we consider that a negotiation process is terminated? During our experiments, 

negotiation processes end when no agent in the population can identify acceptable trans­

actions to perform. Thus, negotiation processes can be managed as described in Algorithm 
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3.7. We assume that the initiator of a negotiation returns the Boolean value TRUE if an 

acceptable transaction is performed, and FALSE otherwise. 

Algorithm 3.7: Negotiation processes 

Input: Agent population f 

transactionDone <— TRUE ; 

while transactionDone = TRUE do 

transactionDone <— FALSE ; 

shuffle P; 

forall the i e <P do 

result <— i negotiates; 

transactionDone <— transactionDone OR result; 

end 

end 

Ending conditions described here are based on a Boolean criterion. However, depend­

ing on agents' behaviors, a different condition may improve the efficiency. In Algorithm 

3.7, when no agent is able to identify acceptable transactions, negotiation process end. 

However, the end of negotiation processes does not necessarily mean that no acceptable 

transaction exists. For instance, when rooted behaviors are considered, the initiator nego­

tiates only with one neighbor. A negotiation process based on such conditions may end 

prematurely if every agent has selected a "bad" neighbor. Allowing several negotiation 

rounds where no agent is able to find acceptable transactions may then improve solutions. 

These additional rounds may allow agents to select a proper neighbor to negotiate, and 

then identify acceptable transactions. 

This tip must nevertheless be moderated. Its efficiency is conditional to the negotiation 

cost. Indeed, when simple transactions such as gifts are allowed, allowing additional 

negotiation rounds is not expensive. However, in the case where complex transactions are 

allowed, such a tip may become exponentially time-consuming. 
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3.4.1 Simulation and practice 

In practice, it is possible to greatly reduce the computation time. Indeed, negotiation 

simulations are usually run sequentially. One agent at a time can initiate a negotiation, 

and once this negotiation is over, another agent is selected to start a new negotiation. 

However, such a method does not take advantage of the distributed nature of multi-agent 

systems and of the agent's autonomy. Parallel negotiations can be used to greatly reduce 

the computation time. In such cases, each agent can only initiate one negotiation at a time, 

but it can be involved in several negotiations simultaneously. However, synchronization 

and deadlock issues should be considered. Since agents can negotiate in a concurrent way, 

consistency must be ensured using specific mechanisms. If an agent is involved in several 

different negotiations at once, it must not promise the same resource to different partners 

since resources are not sharable. 

Two main different mechanisms are available to synchronize negotiations. The first 

mechanism applies at the "agent" level whereas the second mechanism applies at the 

"resource" level. 

The first mechanism is the most basic one: The synchronization by neighborhood 

exclusion. An agent who is already involved in a negotiation cannot be involved in another 

one at the same time. Once the current negotiation is over, it can then be involved in a new 

negotiation, as described in Figure 3.7. In this figure, agents 0 and 2 are negotiating as well 

as agents 1 and 3. These agents are then locked. Agent 4 who looks for a partner cannot 

either choose agent 2 or agent 1 since they are already busy. It should select agent 5. 

This synchronization mechanism is simple and easy to implement. Negotiation pro­

cesses based on bilateral transaction bl{a, 0), i.e., where partners do not offer any resource 

like in gifts or clusters, synchronization mechanisms are useless. Indeed, agents do not 

wait for an offer of their partner. Since an agent can only initiate one negotiation at a time, 

no specific synchronization mechanism is required. However, during a negotiation, most 

of the time agents only offer a small subset of their bundle. Other agents can negotiate with 

them the unused resources. This idea leads to the second synchronization mechanism. 
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Locked agents 

New initiator 

Impossible transactions 

Figure 3.7: Agent-based synchronization mechanism 

It is based on the resource exclusion. Instead of waiting that the agent completely ends 

a negotiation, it is possible to negotiate the resources which are still available as described 

in Figure 3.8. 

An agent and its 
resource bundle 

Figure 3.8: Resource-based synchronization mechanism 

Several agents can involve a common neighbor in simultaneous negotiations. This agent 

locks each offered resource. Synchronization mechanisms must be carefully designed in 

order to avoid deadlocks. These situations arise when several agents wait for the other 

participants to negotiate. 

We have implemented parallel negotiations: Agents are represented by independent 

threads. Negotiations have been simulated on an homogeneous cluster of computers. Each 

node of this cluster is a 2.2 GHz AMD Opteron 64-bit processor. It utilizes the InfiniBand 
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network as the means for node-to-node communication and for Input/Output to the cluster 

file system. The computation time of sequential negotiations have been compared to the 

computation time of parallel negotiations, involving an increasing number of processor 

cores. Both synchronization mechanisms have been implemented and tested on numerous 

simulations, showing a decrease of the computation time with the increase of the number 

of cores. 

3.5 Experimental protocol 

Issues related to the evaluation of negotiation processes have been discussed in Section 2.7. 

The fair evaluation of negotiation processes must be done according to an precise protocol. 

The purpose of this section is to describe the different settings used. An experiment is 

characterized by the characteristics of the data instances and of the simulation. 

3.5.1 Instance characteristics 

An instance is composed of a population of agents who express their preferences over 

the resource set thanks to a utility function, as described in Section 3.1. Agent neighbor­

hoods are defined by social graphs, generated according to a given class (see Section 3.3). 

Social graphs and population preferences depend on some parameters that must be set 

beforehand, as described in Figure 3.9. Parameters are represented by boxes, processes by 

ellipses, and results by double boxes. 

Link probability p 

Population Size n 

Number of resources m 

Social graph Q 

Agents preferences u 

Figure 3.9: Data instance specifications 



98 

First, the number of agents n varies from 25 up to 500 agents. The number of available 

resources is a little dependent on the population size. Indeed allocating 100 resources over 

a population of 10 agents or over a population of 100 agents has not the same complexity. 

Instead of characterizing instances by the overall number of resources m, they can be 

characterized by the mean number of resources per agent &. In our experiments, ^ 6 

{5,10,20}. For each pair (n,m), 10 population preferences are generated. 10 social graphs 

of each class are generated. Hence, for a given link probability and a population size, 31 

social graphs are generated: 1 complete graphs, 10 grids, 10 Erd6s-Renyi graphs and 10 

small-worlds. In the case of graphs from the random family, the link probability p affects 

the social graph mean connectivity. In this study, p varies from 0.05 up to 1.0. Finally, the 

association of a social graph with a set of agents' preferences set corresponds to one data 

instance. 

3.5.2 Simulation characteristics 

Some simulation settings must still be specified in order to clearly define the experimental 

protocol. A simulation can be completely specified by four parameters: The agent behavior 

S, the acceptability criterion C, the class of allowed transactions and finally the social 

welfare notion sw considered, as described in Figure 3.10. 

Data instance 

Acceptability criterion C 

Agent behavior S 

Allowed transaction kind T 

Social welfare notion sw 

Figure 3.10: Simulation specifications 

The four main social welfare notions are considered, namely the utilitarian welfare, the 

Results 
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egalitarian welfare, the Nash product and the elitist welfare. Different transactions can be 

allowed during a negotiation process. Multilateral deals or bilateral deals, such as gifts, 

swaps or larger exchanges. Two acceptability criteria will be investigated: the individual 

rationality and the sociability, as defined in Section 2.5. Finally, as described in Section 2.6, 

various agent behaviors are assessed: Rooted, flexible, frivolous, s tubborn, . . . 

The combination of these four parameters, associated with data instances, defines 

a simulation. Each simulation will be iterated 100 times from different initial resource 

allocations in order to evaluate the topological sensitivity as described in Section 3.2. 

The description of data instance features and of simulation features shows the very 

large number of experiments that have been realized, and their diversity. Results related 

to bilateral negotiations are described and analyzed in Chapter 4, while multilateral issues 

are addressed in Chapter 5. 



Chapter 4 

Bilateral Negotiations 

Bilateral transactions are the simplest and the most widely used transaction class in the 

literature. During such negotiations, the agent who initiates a negotiation can only involve 

one neighbor at a time. These transactions are popular since they require few informa­

tion. This chapter seeks to find an answer to the following question: "How agents must 

interact in order to maximize the efficiency of negotiation processes?", according to the 

social notion considered. This chapter also shows that restricting negotiation processes to 

bilateral transactions may affect the efficiency of negotiations. Parameters maximizing the 

negotiation efficiency are identified, i.e., suitable agents' behaviors, allowed transactions 

and the most adapted acceptability criterion. 

This chapter is divided into four sections. Each section is dedicated to a specific 

social welfare notion. Negotiation processes are analyzed in order to identify simulation 

features leading agent negotiations to socially optimal allocations, or to socially close 

allocations when the need arises. Each section is organized as follows. First, centralized 

approaches are described and algorithms are provided in order to determine the optimal 

social welfare value. Then, the expression of acceptability criteria are specified according to 

the objective function considered, and negotiation properties are described. Different facets 

of negotiation processes are then evaluated according to various metrics. The impact of the 

different parameters are discussed like agent behaviors, allowed transactions and social 

100 
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graphs. Section 4.1 is dedicated to the utilitarian welfare, Section 4.2 describes egalitarian 

negotiations, Section 4.3 presents the results related to the Nash negotiations and finally 

Section 4.4 deals with elitist negotiations. 

4.1 Utilitarian bilateral negotiations 

The utilitarian welfare is the notion the most widely used in the social welfare theory. This 

notion is especially used for applications in Economics, as for example the e-trade. An 

utilitarian objective maximizes the global welfare of the society without any consideration 

of the individual welfare. First, different centralized approaches are described in order to 

provide the global optimal welfare value. Such a value can then be used as a reference 

in order to evaluate the efficiency of utilitarian negotiation processes. The expression of 

acceptability criteria is then specified when the utilitarian notion is considered. Negotiation 

properties are also discussed. Finally, negotiation processes are evaluated according to 

different parameters as described in Section 2.7. 

4.1.1 Centralized techniques 

Generally, several ways can be used to determine the optimal welfare value. When the 

utilitarian welfare is considered, two ways are possible. The first one is to model utilitarian 

resource allocation problems by means of linear programs, which can be solved using any 

mathematical programming optimizer like CPLEX (ILOG Inc, 1995). The variables of such a 

model, denoted by Xjr, represent the ownership of resource r e 7? by agent i € P as follows: 

if agent i owns resource r 
reK, ieP. 

otherwise. 
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Then, the determination of the optimal utilitarian welfare value can be formulated as 

follows: 

max £ £ Ui(r)xir 
ieP reft 

so;* = I s.t: E Xjr = 1 reK 

xir e {0,1} re% i e 7>. 

The objective function is the maximization of the utilitarian welfare, which can be written 

as the sum of all agents welfare according to Definition 1.4. Two consistency constraints 

are required. According to the resource nature, i.e., since resources are neither divisible nor 

sharable, Boolean variables are considered. However, this model can be adapted easily. 

For instance, continuous resources could be represented by real variables. The second 

constraint becomes x,> G [0,1], r e H, i e V. 

The other way to determine the optimal utilitarian value is to generate an optimal allo­

cation. However, the explicit enumeration of all allocations in order to extract the largest 

social value is not a scalable approach, as a result of the exponential size of the solution 

space. However, optimal utilitarian allocations satisfy a specific structural property when 

additive utility functions express agents' preferences. This property can be used to sim­

plify the generation of an optimal allocation, and then the determination of the optimal 

utilitarian welfare value. It specifies how to allocate resources over the population in order 

to maximize the utilitarian efficiency. 

Property 4.1 (Utilitarian optimum). In utilitarian optimal allocations, each resource is allocated 

to one of the agents who associates the largest utility value with it. 

Proof. Let us make a proof by contradiction. A resource allocation A e 3\. is assumed to 

be a global optimum, in which an agent i e P owns a resource r €%. Let us now assume 

that another agent ; e V \ {/} associates a greater utility value with this resource r. More 

formally: 

3(r,;') € % x <P such that Uj{r) > u{{r), i e P. 
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If the resource allocation A' € J{{A ± A') corresponds to the allocation in which resource r 

is allocated to agent /, then the following expression is satisfied: 

SWU(A) = J^^k) 
ke<P 

= mCRi) + UjCRj) + YJ uk(Kk) 
keP\{i,j) 

< UiCRi) - ut(r) + UjCRj) + Uj(r) + J ^ ukCRk) 
ke<P\{i,j] 

< swu(A'). 

The utilitarian welfare value associated with A' is greater than the one associated with A: 

swu(A) < swu(A'). Then, allocation A cannot be a global optimum since there exists an 

allocation associated with a greater utilitarian welfare value. Thus, allocations that do not 

allocate all resources to one of the agents who associates with them the largest utility value 

are not a global optimum. • 

Thus, thanks to this property, optimal allocations can be easily generated when the 

utilitarian welfare is considered. A simple algorithm can be designed for this purpose. 

According to Proposition 4.1, such an algorithm has to allocate each resource to an agent 

who values it the most, as described in Algorithm 4.1. 

Algorithm 4.1: Determination of the optimal utilitarian welfare value 

Input: Agent population P, Resource set K 

Output: sw* the optimal utilitarian value 

f orall the r £ R do 

f <—arg max Mfc(r); / / Determination of who es t imates r the most 
keP 

AddrtoA[z ' ] ; / / Add r to agent z's bundle 

end 

return szvu(A); 



104 

4.1.2 Utilitarian negotiation properties 

The expression of the rationality test does not vary according to the welfare notion consid­

ered since it is only based on the agent resource bundle. However, the sociability criterion 

is based on the chosen welfare notion and its expression can then be specified. It is based 

on the evolution of the utilitarian welfare value during a transaction. Let us note A e Jl the 

resource allocation before the bilateral transaction bl{a, b) and A' the allocation afterwards. 

Such a transaction involves two agents i,j e V who respectively propose offers p6 and p6. 

The resource bundle of any agent k € P is denoted by H^ before the transaction and by "R'k 

afterwards (k e {i, /}). Any social transaction must satisfy the following expression: 

swu(A) < swu(A') 

kef kef 

Ui{<Ri) + UjCRj) + YJ u^k) < Mty + "/(ft-) + £ uk{H'k) 
keP\{i,j} keP\{i,j] 

Ui{Ki) + UjCRj) < Ui(<%) + u;(7?;.) 

UiCRi) + UjCRj) < urn) + ui(pt) - Ml-(pf) + UjCRj) + Ujip^) - Uj(pp 

"«(pf) + «/(pf) <Mp6
j) + uj(p

6
i) 

Thus, the utilitarian acceptability criterion is only based on the offers proposed by the 

participants. During a social transaction, agents who receive resources must associate with 

them a larger utility value than their initial owner. The initial welfare of participants does 

not affect the acceptability of a transaction. This expression corresponds to the acceptability 

test that agents perform to determine whether or not a transaction is profitable when the 

utilitarian welfare is considered. Hence, the acceptability test, which is represented by the 

instruction TEST in all behaviors of Section 2.6, can be replaced by: 

TEST := [u;(pf) + Uj(p?j) < Uiipp + U;-(pf)] 
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When the utilitarian welfare is considered, bilateral transactions have some important 

properties. Acceptable bilateral transactions b].{a,b) may not be split into a sequence of 

acceptable bilateral transactions of lesser cardinality. This means that transactions with a 

large cardinality might be required to achieve socially optimal allocations. 

Property 4.2 (Utilitarian transaction split). Within an utilitarian society where agents express 

their preferences by means of additive utility functions, it is not always possible to split social bilateral 

transactions bl{a,b) between two agents i,j e P into a sequence of social bilateral transactions 

bl{a', b') of lesser cardinality (a > a' and/or b > b'). 

Proof. Let us consider a counter example based on a population of two agents, P = {0,1}, 

who negotiate three available resources % = \r\,r2,r^\. Their preferences are expressed by 

utility functions described in Table 4.1. The initial resource allocation is A = [{fi,^}!^}]: 

Agent 0 owns two resources, KQ = \?\J?\, whereas agent 1 only owns resource K\ = {r^}. 

Table 4.1: Utilitarian transaction split - Example of agent preferences 

Population P 

0 
1 

Resource Set H 
n r2 r3 

4 6 7 
10 1 3 

Let us consider the transaction Sj(2,1) = {{r\, r^\, {r^}), which changes the initial resource 

allocation A into another allocation A' (A, A' e J?l). During this transaction, agent 0 

proposes p^ = \x\, ri) while agent 1 proposes p^ = {r^}. Such a transaction is social since: 

Mfc}) + ui({ri,r2}) > u0({ri,r2}) + ui({r3}) 

Such a transaction leads to an increase of the utilitarian welfare value from swu(A) = 13 

initially to swu(A') = 18 afterwards. However, this transaction 5j(2,1) can be split into 

a sequence of social transactions. Two decomposition patterns can be observed: A swap 

transaction concatenated with a gift or three successive gifts are the lone possible sequences. 

Table 4.2 describes the three possible sequences containing transactions of lesser cardinality. 

In each of them, at least one transaction of the sequence is not acceptable. 
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Table 4.2: Utilitarian transaction split - List of possible sequences 
Split of 61 

({ri,r2},{r3}) =({ri},{r3}) + ({r2}/0) 
= ({r2},{r3}) + ({ri},0) 
= ({ri},0) + ({r2}/0) + (0,{ri}) 

Social sequence? 
({r2},0) is not social 

({̂ 2}/ {̂ 3}) is not social 
({r2}, 0) is not social 

According to Table 4.2, the transaction 6j = ({ri, r2}, ^3}) cannot be split into a sequence 

of acceptable transactions of lesser cardinality. Thus, social bilateral transactions b\{a, b) 

cannot always be split into sequences of social transactions of lesser cardinality when the 

utilitarian welfare is considered. Let us note that, since the utility values are positive, any 

transaction that cannot be split is locally sub-optimal: A transaction of lesser cardinality 

achieves a larger utilitarian value. • 

4.1.3 Evaluation of utilitarian negotiations 

This section is dedicated to the evaluation of the different facets of utilitarian negotia­

tions. First, impacts of restrictions on the transaction cardinality are investigated. Then, 

the efficiency of negotiations based on different transactions, on different graphs and on 

different acceptability criteria are studied, using a comparison with the optimal welfare 

value provided by centralized methods. The impact of the social graph connectivity is then 

presented. Agent behaviors are evaluated using several metrics to quantify the negotiation 

process quality. Finally, issues related to the scalability of utilitarian negotiation processes 

are discussed. 

Influence of the transaction cardinality 

According to Definition 2.6, a bilateral transaction b{a, b) is defined using two parameters 

a and b, which bound the size of agents' offers. Their size influences a lot the resource 

negotiation process. Proposing large offers during a transaction may be theoretically 

required to guarantee the achievement of optimal allocations since they cannot always be 

split. However, allowing such large offers increases exponentially the cost of a negotiation 
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with the size of the participant's bundle. Thus, the following question can be raised: Does 

the efficiency improvement justifies additional costs induced by the use of large bilateral 

transactions? 

Figures 4.1 show the impact of the transaction cardinality on utilitarian negotiation 

processes, according to two metrics: The computation time and the number of transac­

tions performed during the whole processes. Negotiation processes are based here on a 

population of 50 social agents who negotiate 250 resources on complete graphs. 

Figure 4.1a represents the utilitarian welfare value evolution according to the computa­

tion time, while Figure 4.1b represents its evolution according to the number of performed 

transactions. On each figure, different transactions are allowed during the negotiation 

process. The keys characterizing the curves in these graphs represent the transaction car­

dinality (a, b). The curve denoted by "up to (2,2)" means that agents can propose from an 

empty offer to a set of 2 resources. Then, the set of allowed transactions T can be explicitly 

written as: T = {(1,0), (0,1), (1,1), (2,1), (1,2), (2,2)}. 

Figure 4.1a shows that, independently of the cardinality of the allowed transactions, 

all negotiation processes converge towards very close utilitarian welfare values. Large 

bilateral transactions do not allow the achievement of greater utilitarian allocations whereas 

they are more time consuming. Negotiation processes based either on (0,1) transactions 

(gifts), on (1,1) transactions (swaps), or on both transactions ("up to (1,1)") end after 

1 second while 10 seconds are required when transactions of cardinality "up to (3,3)" 

are allowed for instance. Figure 4.1b shows that the number of performed transactions is 

almost similar in all cases. Large bilateral transactions do not shorten transaction sequences 

required to close the negotiation processes. Negotiation processes based on swaps (1,1) end 

on socially weaker allocations. Since the initial resource distribution cannot be modified, 

negotiation processes based on swaps end on weaker local optima. Since the utilitarian 

welfare value achieved is almost similar, independently of the transaction cardinality, the 

use of large bilateral transactions is not justified due to important additional costs. 
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Figure 4.1: Evaluation of the transaction cardinality impact in terms of computation time 
in 4.1a and of performed transactions in 4.1b. 
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Price of social graphs 

The efficiency of negotiation processes is an essential feature. This efficiency is evaluated 

here by a comparison between optimal utilitarian welfare values, provided by centralized 

algorithms described in Section 4.1.1, and social values provided by agent negotiations. 

Negotiations are based on a population of 50 agents where 250 resources are available. 

Table 4.3 presents the efficiency of negotiation processes based on different sets of 

allowed transactions, on different acceptability criteria, and on different classes of social 

graphs. This table shows the proportion of the optimal welfare value that can be achieved. 

The greater is the proportion, the closer optima are the resulting allocations. Table 4.4 

describes the standard deviations observed among the social values provided from different 

initial allocations. A large standard deviation means a high topological sensitivity. For 

instance, negotiation processes based on a grid where rational agents negotiate using 6(1,1) 

transactions only end on social values representing 79.0% of the optimum with a standard 

deviation of 1.6%. Depending on the initial resource allocation, the utilitarian welfare value 

achieved may vary of 1.6%. 

Table 4.3: Utilitarian efficiency (%) according to the class of social graphs 
Social graph 

kind 
Full 
Grid 

Erdos-Renyi 
Small world 

Rational 
(1,1) up to (2,2) 
96.6 97.0 
79.0 81.3 
94.8 95.0 
80.8 84.8 

(1,0) 
100 
86.2 
98.9 
91.4 

(1,D 
98.3 
85.3 
97.1 
90.0 

Social 
up to (1,1) 

100 
86.1 
98.9 
90.2 

up to (2,2) 
100 
86.1 
98.9 
90.3 

Table 4.4: Standard deviation of the utilitarian efficiency (%) according to the class of social 
graphs 

Social graph 
kind 
Full 
Grid 

Erdos-Renyi 
Small world 

Rational 
(1,1) up to (2,2) 
0.3 0.2 
1.6 1.3 
0.5 0.4 
2.0 1.3 

(1,0) 
0 

0.9 
0.1 
0.8 

(1,1) 
0.2 
1.1 
0.2 
1.0 

Social 
up to (1,1) 

0 
0.9 
0.1 
0.8 

up to (2,2) 
0 

0.9 
0.1 
0.8 
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When considering complete social graphs, different negotiation strategies always lead 

to optimal resource allocations. The transactions of weakest cardinality, which achieves 

optimal allocations, are social gifts, i.e., social (1,0) transactions. Any negotiation policy 

that includes social gifts, like "up to (1,1)", "up to (2,2)" or "up to (3,3)" also achieve 

socially optimal resource allocations. However, their use leads to important additional 

costs. The use of social gifts is sufficient to achieve optimal allocations when the utilitarian welfare 

is considered. Table 4.3 also shows that, independently of the social graph class, rational 

negotiation processes always lead to socially weaker allocations than social negotiation 

processes. The restrictive character of the acceptability criterion affects the resource cir­

culation, and then the quality of the provided solution. The more restricted are social 

graphs, the weaker is the negotiation efficiency. The combination of a restricted social 

graph like a grid and the use of rational swaps, which restrict a lot transaction possibilities 

(since initial resource distributions cannot be modified), leads to the worst social efficiency: 

Only 79% of the optimal welfare value can be achieved. When grids are considered, social 

negotiation processes achieve up to 86.2% of the optimum. The weak mean connectivity 

handicaps the resource traffic and hence the achievement of socially efficient allocations. 

Negotiation processes lead to allocations associated with up to 98.9% of the optimal welfare 

value when ErdSs-Renyi graphs are considered. Only 91.4% of the optimum is achieved 

when small-worlds are considered. In an Erdos-Renyi graph, the probability for a link to 

exist between any pair of nodes is always the same, while in small-worlds, the larger is 

the number of an agent's neighbors, the higher is the probability to link this agent. Many 

agents have only one neighbors, and the resource traffic is unequally distributed. Then, 

bottlenecks, i.e., agents who block the resource circulation, may appear. Swaps are the least 

efficient transactions, but the difference is generally small. Since the number of resources 

per agent cannot vary, the resource circulation is very limited. In all cases, the standard 

deviation observed among the social values achieved remains weak for a given class of 

social graphs. It means that when the utilitarian welfare is considered, the topology has not 

a significant impact for a given class. The deviation is higher when rational transactions 
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are considered. Indeed, the rational acceptability criterion holds up the resource traffic, 

which then influences on the quality of the provided allocations. The more restricted is the 

resource traffic, the higher is the standard deviation, and thus more important become the 

initial resource allocation. 

Theorem 4.3. Within an utilitarian society, where agents express their preferences by means of 

additive utility functions, negotiation processes based on complete social graphs always converge 

towards a global optimum using only social (1,0) transactions. 

Proof. Since the social graph is complete and fully connected, any agent i 6 V can com­

municate with every other agents j e P \ {i}. If a social (1,0) transaction containing r can 

be performed between agents i and ;, then Uj{r) > U{(r) according to the definition of a 

social transaction. It is always possible to create a sequence of social (1,0) transactions 

leading a resource into the bundle of an agent who associates the largest utility value with 

it. Applying this process to each resource, and according to Proposition 4.1, the resulting 

allocation is a global optimum. • 

Influence of the social graph connectivity 

The social graph topology greatly affects the resource circulation and the negotiation effi­

ciency. The larger are agent neighborhoods, the denser are social graphs, and the easier 

is the resource traffic. The model of generation for Erd6s-Renyi graphs G(n, p) is used to 

evaluate the impact of the connectivity on utilitarian negotiation processes. The probability 

p for a link to exist between nodes from any pair can be modified. Note that such a model 

does not guarantee that the generated graphs are connected. 

Figure 4.2 shows the impact of the social graph connectivity on the negotiation effi­

ciency within a population of 50 agents who negotiate 250 resources using social (1,0) 

transactions. Figure 4.2a represents the evolution of the utilitarian welfare value according 

to the computation time, whereas Figure 4.2b represents its evolution according to the 

number of performed transactions. 
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Figure 4.2: Evaluation of the mean connectivity impact in terms of computation time in 
4.2a and of performed transactions in 4.2b. 
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These figures show that a weak probability, which corresponds to small agent neigh­

borhoods, leads to short transaction sequences and utilitarian welfare values far from the 

optimum. For instance, when p = 0.05, negotiations end after a sequence of 300 gifts 

performed in only 0.5 second. However, negotiation processes end on allocations so­

cially far from the optimum. The gradual increase of the probability p leads to longer 

transaction sequences, to the achievement of larger utilitarian welfare values, and to more 

time-consuming negotiations. Larger neighborhoods facilitate the resource circulation by 

offering a larger number of possible transactions to all agents. The impact becomes really 

significant when p < 0.3. Above this value, the resource circulation is sufficient to achieve 

socially interesting allocations, but below this threshold, social graphs are too restricted, 

and the flexibility of the social criterion cannot compensate for the restrictiveness of graph 

topologies. 

Influence of agent behaviors 

Behaviors define how agents interact with their neighbors, and then how they negotiate. 

Different behaviors, defined in Section 2.6, can be compared using the metrics presented 

in Section 2.7.1. In order to evaluate the agents' behaviors, any factor that may alter 

the comparison should be avoided, like the social graph topology for instance. For this 

purpose, the negotiation processes which are compared here, are based on complete social 

graphs, with a population of 50 agents and 250 resources. Agents negotiate using social 

(1,0) transactions only since they are the most efficient transactions. 

The name of agent behaviors are abbreviated in Figure 4.3, as described in Table 2.5. Let 

us recall that "rs" corresponds to rooted stubborn behaviors, while "fs" defines frivolous 

stubborn behaviors. Flexible behaviors can be either rooted "rf" or frivolous "ff". Accord­

ing to behaviors qualified as full, the initiator makes an exhaustive negotiation with its 

partner. If agents are moreover rooted, their behaviors correspond to "rf full", whereas 

when agents are frivolous, a priority can be defined either on offers or on partners, "rf 

full - agent" denotes agent behaviors favoring partner changes, while "rf full - resource" 
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denotes agent behaviors favoring offer changes. 

When rooted stubborn agents negotiate, transaction sequences are short: Only few 

transactions are performed before the end of utilitarian negotiations. Indeed, around 400 

social gifts are required on average to end such processes. Agents always propose first 

the offer the least penalizing for them. However, since agents are stubborn, they only 

attempt a single offer, which is always a singleton since all utility values are positive. 

Thus, according to rooted stubborn behaviors, the number of performed transactions is 

equivalent to the number of exchanged resources. A large number of speech turns is 

required to end the negotiation process: Many speech turns are required to communicate 

with all neighbors for instance. Since agents attempt a single offer per negotiation, the 

number of attempted transactions is equivalent to the number of speech turns. Thus, when 

agents interact according to rooted and stubborn behaviors, negotiation processes are quite 

short, only few offers are attempted and lesser are performed. Such processes generally 

end on allocations associated with weak social values. 

A stubborn but frivolous agent behavior leads to a weak number of performed trans­

actions as well as to a weak number of exchanged resources. Since the initiator can change 

partners, the number of speech turns required to end such negotiations is weaker than in 

the case of rooted stubborn behaviors. The number of attempted transactions becomes 10 

times higher. Moreover, negotiation processes can achieve socially more interesting alloca­

tions, even if they become more time consuming. Both stubborn behaviors are not socially 

efficient since corresponding negotiation processes end on socially weaker allocations (15% 

weaker) after similar elapsed time. 

Negotiations among flexible agents increase drastically the number of performed trans­

actions. More transactions are performed if the flexible negotiations are "full" (since such 

behaviors identify all acceptable transactions if some exist in the neighborhood), but the 

number of exchanged resources are close. If agent behaviors are moreover rooted, the num­

ber of speech turns becomes very large. More than 3000 negotiations are required in the 

case of rooted agents while only 1300 steps are sufficient when agents behave frivolously. 
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Figure 4.3: Evaluation of the agent behavior impact in terms of performed transactions in 
4.3a, in terms of transacted resources in 4.3b, in terms of speech turns in 4.3d, in terms of 
attempted transactions in 4.3e, and in terms of computation time in 4.3e. 
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However, frivolous flexible behaviors lead to a very large number of attempted transactions 

(10 times more). The number of attempted transactions increases exponentially with the 

mean number of resources per agent. No real difference can be distinguished between the 

frivolous flexible behaviors. The values of the different metrics are always close. Indeed, 

on complete graphs, the order on which agents negotiate is not critical, especially when 

the utilitarian welfare notion is considered. 

Negotiation scalability 

The scalability is also an important issue, which is evaluated according to the conditions 

described in Section 2.7.3, i.e., on complete social graphs among frivolous and flexible 

agents. 

Figure 4.4a represents the evolution of the utilitarian welfare value according to the 

computation time, on several population sizes, while Figure 4.4b shows its evolution 

according to the number of performed transactions. The different curves of these figures 

are characterized by a pair n-m describing the size of the instances, where n is the number 

of agents and m the overall number of resources. Then, the key "25-125" on Figures 4.4 

corresponds to instances populated by 25 agents who are negotiating 125 resources. These 

graphs underline the impact of the instance size on the observed metrics. Independently of 

the mean number of resources per agent, the increase of the metric values is almost regular. 

Tables 4.5 and 4.6 respectively present the elapsed time that is required to end utilitarian 

negotiation processes according to several instance sizes and to the number of performed 

transactions. Each experiment is characterized by the population size n and by the mean 

number of resources per agent ^ . According to these tables, 100 agents owning on average 

10 resources each, end utilitarian negotiation processes in 4.1 seconds after a sequence of 

3700 social gifts. These tables show that large instances can still be solved in a reasonable 

time. 

Property 4.4 (Utilitarian gift-based negotiation complexity (Endriss and Maudet, 2005)). 

During a negotiation process based on social gifts, the number of distinct attempted transactions 
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Figure 4.4: Evaluation of utilitarian scalability in terms of computation time in 4.4a and 
performed transactions in 4.4b. 
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Table 4.5: Utilitarian negotiation scalability - Computation time 

Population size n 

25 
50 
100 
500 

Mean number of resources per agent ^ 
5 10 20 

400 ms 550 ms 950 ms 
625 ms 1.2 s 2.4 s 

1.7 s 4.1s 12 s 
45 s 150 s 450 s 

Table 4.6: Utilitarian negotiation scalability - Number of performed transactions 

Population size n 

25 
50 
100 
500 

Mean number of resources per agent ^ 
5 10 20 

325 625 1300 
800 1500 3000 
1900 3700 7100 
13500 25000 47500 

and the number of transactions that can he performed are both polynomial. 

Proof. When the utilitarian welfare is considered, a social transaction 6;(1,0) between 

two agents i, j e V, in which resource r e %\ is offered, is characterized by the relation 

Uj(r) > U{(r). Then, during a social gift sequence, the utility value associated with r 

gradually increases with its successive owners. No social gift allows the return of r to 

former owners. No cycle of social gifts can then appear. A specific resource r can be 

transacted at most n - 1. Then, the overall number of performed transactions is bounded 

by m(n - 1) ~ 0(nm). a 

The demonstration of the complexity in terms of attempted transactions depends a lot 

on features like the implementation or the distribution of the speech turns. However, if they 

are uniformly distributed as described in Section 3.4, the proposition can be demonstrated 

as follows: 

Proof. The maximum number of distinct attempted gifts per agent corresponds to m(n - 1 ) . 

Indeed, in the worst case, an agent may punctually own each resource and tries to give 

them to everybody. Thus, the number of distinct attempted transactions is bounded by 

m(n - l ) 2 ~ 0(n2m). a 
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4.1.4 Conclusion 

Centralized approaches are quite trivial when utilitarian problems are considered. Each 

resource must be allocated to one of the agents who associates with it the largest utility. 

In distributed agent negotiations, the use of social (1,0) transactions is the most efficient 

negotiation policy among frivolous and flexible agents. 

Best utilitarian negotiation policy 

Transaction: 

Criterion: 

Test on 51.: 
i 

Behavior: 

(1,0) (i.e., gifts) 

social 

Uiip^ + UjippKUiipp + UjipS) 

frivolous and flexible 

Bilateral transactions are sufficient to achieve socially interesting allocations. The utilitarian 

welfare notion is flexible enough to favor the resource traffic. The more resources circulate 

among agents, the easier is the achievement of optimal allocations. Experiments show that 

large bilateral transactions do not improve the provided solutions, but lead to important 

additional costs, especially in terms of computation time. Social (1,0) transactions are 

sufficient to guarantee that optimal allocations are achieved when negotiations are based 

on complete social graphs. When restricted social graphs are considered, like Erdos-Renyi 

graphs, grids or small-worlds, social (1,0) transactions cannot guarantee the achievement of 

a social optimum but lead to socially close resource allocations. The rational acceptability 

criterion, which is usually used in the literature, restricts a lot the resource circulation 

and leads utilitarian negotiations to suboptimal allocations, which may be far from the 

optimum. Utilitarian negotiations based on social (1,0) transactions remain scalable even 

when large instances are considered. Allocations maximizing the utilitarian welfare can be 

achieved by a negotiation process among flexible and frivolous agents who negotiate with 

social gifts, independently of the social graph considered. 
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4.2 Egalitarian bilateral negotiations 

The egalitarian welfare is an important notion, especially when fairness in a society of 

agents must be achieved. This notion focuses on the welfare of the poorest agent within 

the population. In this section, centralized approaches are first described in order to 

estimate the egalitarian optimal value. Egalitarian negotiation issues are then discussed 

with the specification of the acceptability test expression and the detail of some important 

properties of agent negotiations. Finally, egalitarian negotiations are evaluated to identify 

the suitable parameters allowing the achievement of fairness within societies. 

4.2.1 Centralized techniques 

The identification of the optimal egalitarian welfare value is a difficult problem. 

Theorem 4.5 (Egalitarian welfare optimum complexity (Bouveret and Lang, 2005)). The 

determination of the optimum egalitarian welfare value is a NP-hard problem. 

Egalitarian resource allocation problems can be formulated by means of a mathematical 

model using variables xz> describing the ownership of a resource r e 9Z. by an agent i e P: 

1 if agent i owns resource r 
re% iep. 

0 otherwise. 

Then, egalitarian resource allocation problems can be written as follows: 

maxmin £ u\(y)Xir 

SW* = < s.t: £ xir = 1 r e f ? 

xir £{0,1} re% ieP. 

The objective is the maximization of the welfare of the poorest agent. Two consistency 

constraints are also defined. The first one ensures that each resource is allocated to a single 
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agent while the second constraint specifies that all resources are discrete and not sharable. 

Then, variables x,r correspond to Boolean variables. However, the model can be adapted 

easily to other resource natures if required. For instance, continuous resources should be 

represented by real variables. The second constraint becomes: xir € [0,1], re %, i e P. 

This model can be solved using any mathematical programming optimizer like CPLEX 

(ILOG Inc, 1995). However, such a method does not provide an exact solution, and only 

provides an estimation that can be more or less accurate according to the required gap. 

This gap is a parameter provided to the solver as an estimation of the distance between 

returned solutions and optimal ones. The weaker the gap, the more accurate are provided 

social values, but more time-consuming becomes the solving process. A centralized solv­

ing process with a required null gap, is almost similar to the explicit enumeration of all 

allocations and hence cannot be considered to be scalable. 

Heuristics can also be designed to build allocations associated with near-optimal so­

cial values. Since egalitarian negotiation processes tend to reduce inequalities, the equal 

distribution of resources over the population can be considered. One way to proceed is to 

sequentially allocate to each agent the best remaining resource, as described in Algorithm 

4.2. Another way to proceed is to sequentially allocate the current resource to the poorest 

agent of the population, as described in Algorithm 4.3. 
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Algorithm 4.2: Estimation of the optimal egalitarian welfare value - 1 

Input: Agent population V, Resource set ft 

Output: sw* the estimation of the optimal egalitarian value 

i < - 0 ; 

ShuffleCP); / / Mix the populat ion V 

while H ± 0 do 

r <— argminu,(r'); // Determination of the best remaining resource 
r'eK 

Add r to A[i]; / / Al locat ion of resource r t o agent i 

<R^R\{r); 

i *- (z + l)%n ; 

end 

return swe(A); 

Algorithm 4.3: Estimation of the optimal egalitarian welfare value - 2 

Input: Agent population V, Resource set % 

Output: sw* the estimation of the optimal egalitarian value 

forall the r e % do 

i <— argminujCRj); / / Determination of the poorest agent 

AddrtoA[z '] ; / / Al locat ion of resource r to agent i 

end 

return swe(A); 

In spite of their scalability, these two heuristics have a major drawback affecting the 

quality of the solutions. They are not really reliable. Indeed, both of them are very sensitive 

to the order in which agents are considered. Depending on this order, egalitarian welfare 

values provided by such heuristics may vary a lot. 
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4.2.2 Egalitarian negotiation properties 

To express the social acceptability criterion, we use the definition of the egalitarian welfare 

(Definition 1.5). The initial resource allocation A e J{ changes into another one A' by 

means of a social transaction &l{a,b). Such a transaction involves two agents i,j e P, 

who respectively propose the offers p6 and p6. The resource bundle of any agent k e P is 

denoted by ^ before the transaction and H' afterward. According to the social acceptability 

criterion, an egalitarian transaction must satisfy the following condition: 

swe(A) < swe(A') 

min(ui(Ri)) < min(«,-(#,')) 

When the egalitarian welfare is considered, the expression of the social acceptability 

criterion is not a strict inequality. Indeed, depending on the involvement of the poorest 

agent in the current transaction, the egalitarian welfare value may not increase. If the 

poorest agent is not involved in the current bilateral transaction b\, its utility value, which 

corresponds to the egalitarian welfare value, does not vary since its resource bundle is 

not modified. Thus, the egalitarian welfare value changes only if the poorest agent of the 

population is involved. 

The expression that social transactions 6 ; must satisfied can be restricted to only two 

agents. In such a case, the poorest agent after an egalitarian transaction must be richer than 

it was before the transaction. 

mmiuiiKilujCRjj) < m i n U c ^ ) , ^ ' ) ) 

nun (iiiCRi), ufiKj)) < mm (Ml-(ft,-) + u^) - Ui(p% Uj(Kj) + «;-(pf) - u^)) 

In contrast to the utilitarian expression of the social acceptability criterion, which only 

depends on the traded resources, the egalitarian expression is based on the sets of traded 
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resources transacted as well as on the initial resource bundle of each agent. According to 

such a criterion, a very rich agent may accept to decrease its own utility for the sake of 

the whole society. In the case where the poorest agent of the population is not involved 

in the current bilateral transaction, the social criterion favors the resource circulation, and 

consequently by the negotiation process can avoid local optima. Indeed, during egalitarian 

negotiation processes, resources progressively move from richer agents to poorer agents to 

distribute the richness among agents. The agent's decision making is represented by the 

instruction TEST in all agent's behaviors described in Section 2.6. This test allows agents to 

determine whether a transaction is fair or not. It can be written as follows: 

TEST .= min(ui(<Ri),uj('Rjj) < rnin («,•(*?«) + tn(p)) ~ u,(pf), u;(7?;) + «,-(pf) - Uj(pp) 

When the egalitarian welfare is considered, bilateral transactions have some important 

properties. Social bilateral transactions bl{a,b), i.e., transactions satisfying the egalitarian 

acceptability criterion, may not be split into a sequence of egalitarian bilateral transactions 

of lesser cardinality. This means that transactions of large cardinality may be required to 

achieve a socially optimal resource allocation. 

Property 4.6 (Egalitarian transaction split). Within an egalitarian agent society, where agents 

express their preferences by means of additive utility functions, it is not always possible to split 

social bilateral transactions 5!.(a,b) between two agents i,j e P into a sequence of social bilateral 

transactions bl{a', V) of lesser cardinality {a > a' and/or b > b'). 

Proof. Let us consider a counter example based on a population of two agents P = {0,1} who 

are negotiating three available resources K = {r\,r2,ro,}. Their preferences are expressed 

by additive utility functions described in Table 4.7. The initial resource allocation is A = 

[{r\i ^iW'i)]'- Agent 0 owns two resources, %) = \r\, r?\, whereas agent 1 only owns a single 

resource, K\ = [r^\. 

Let us consider the transaction Sj(2,1) = {{r\, r-)\, {r^}), during which agents 0 and 1 

respectively offer p^ - [r\, rfi and pb
x = {r3}. Such a transaction is social since agent 0, who 
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Table 4.7: Egalitarian transaction split - Example of agent preferences 

Population *P 

0 
1 

Resource Set JZ 
r\ r2 r3 

7 4 5 
5 2 1 

is the poorest agent after the transaction 6* with UQ{T3) = 5, is richer than agent 1, who was 

initially the poorest with Uo,(r3) = 1. More formally: 

min(M0({ri/r2})/Mi({r3})) < min(uo({r3}),ui({ri,r2})) 

"i(fo}) < Mo({r3l) 

Such a transaction leads to an increase of the egalitarian welfare value from 1 to 6 afterwards. 

Only two decomposition patterns are possible: A swap combined with a gift, or three gifts. 

But, no (1,0) transaction is social. Indeed, an agent who gives one of its resources to its 

partner becomes poorer than the poorest agent before the transaction. Since all possible 

sequence of transactions of lesser cardinality contains at least one gift, the transaction 

Sj(2,1) = ({ri, r2}, {r3}) cannot be split into a sequence of acceptable transactions. 

Hence, an egalitarian bilateral transaction cannot always be split into a sequence of 

egalitarian bilateral transactions of lesser cardinality. Thus, transactions of large cardinality 

may be required to achieve socially optimal solutions. • 

4.2.3 Evaluation of egalitarian negotiations 

The different facets of egalitarian negotiations are successively evaluated in this section. 

First, the impact of the transaction cardinality on negotiation processes is studied. Then, 

the fairness of resource allocations achieved using distributed negotiations are compared. 

The optimal egalitarian value is estimated using a centralized technique. This estimation 

is then used as reference. The price of the social graph can then be discussed. Next, 

the impact of the social graph mean connectivity on negotiation processes is presented. 

Behaviors are compared according to several metrics, in order to identify characteristics 
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allowing the achievement of fair allocations. Finally, issues related to the scalability of 

egalitarian negotiation processes are discussed. 

Influence of the transaction cardinality 

As defined in Definition 2.6, bilateral transactions bl{a,b) between two agents i,j e V 

are specified thanks to cardinality parameters (the number of resources that participants 

i, j can offer) a and b. The size of agents' offers influences the efficiency of negotiation 

processes. Figure 4.5 shows the influence of the transaction cardinality on the evolution of 

the egalitarian welfare value during the negotiation processes. Experiments are here based 

on a population of 50 agents who negotiate 250 resources by means of social transactions. 

As defined previously, the negotiation policy "up to (2,2)" corresponds to T = {(a, b)\a < 

2, b < 2). 

On both figures, several floors can be observed during the evolution of the egalitarian 

welfare value. These floors characterize specific negotiation periods during which the 

poorest agent of the population is not involved. As described in the previous section, even 

if the resources can circulate, no improvement of the egalitarian welfare value might occur. 

Figure 4.5a focuses on the number of performed transactions required to end egalitarian 

negotiation processes, while Figure 4.5b focuses on the computation time. Negotiation 

processes based on social (1,0) transactions end after only 450 social gifts. Indeed, they 

lead to shorter transaction sequences, which are less time consuming. However, such 

negotiation processes end with social values far from the ones achieved by larger bilateral 

transactions. Nevertheless, such processes might be used when the negotiation speed is 

the most important objective in spite of a solution of worse quality. 

Negotiation processes based on social (1,1) transactions require a large number of 

performed transactions, which barely improves the social welfare value. Negotiation 

processes based on (1,1) transactions end on socially very weak allocations. Since such 

processes are time consuming and inefficient, the use of (1,1) transactions should be 

avoided. 
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Figure 4.5: Influence of the transaction cardinality according to the number of performed 
transactions in 4.5a and to the computation time in 4.5b. 
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The larger is the cardinality of allowed transactions, the more time consuming becomes 

the negotiation process. The length of transaction sequences is also higher than in the case 

of (1,0) transactions, but remains very close. Similarly, the egalitarian welfare achieved at 

the end of egalitarian negotiations is almost identical. The use of a larger set of allowed 

transactions than T = {(1,0), (1,1)} is useless since it leads to additional costs in terms of 

computation time without significant improvement of the solution quality. 

Price of social graphs 

The efficiency of egalitarian negotiation processes is evaluated thanks to a comparison 

between the estimation of the optimal egalitarian welfare value, which is provided by cen­

tralized methods described in Section 4.2.2, and the welfare value obtained by egalitarian 

negotiations. 

Negotiations are based here on a population of 50 agents where 250 resources are 

available. All agents interact according to frivolous and flexible behaviors. Different sets 

of allowed transactions are considered, from T = {(1,0)} to T = {(a, b)\a < 2, b < 2}, which 

corresponds to the negotiation policy denoted by "up to (2,2)". Since all utility values are 

positive, no gift can be rational, and then the rational policy allowing both gifts and swaps 

is equivalent to swaps. 

Table 4.8 shows the impact of the social graph topology on the egalitarian negotia­

tion efficiency and Table 4.9 describes the standard deviation among provided egalitarian 

welfare values. 

Table 4.8: Egalitarian negotiation efficiency (%) according to the class of social graphs 
Social graph 

kind 
Full 
Grid 

Erdos-Renyi 
Small world 

Rational 
(1,1) up to (2,2) 
19.3 20.8 
13.9 14.6 
17.4 20.2 
13.1 13.9 

(1,0) 
78.5 
66.2 
77.3 
63.8 

(1,D 
24.1 
23.6 
23.8 
23.4 

Social 
up to (1,1) 

99.9 
80.2 
96.1 
78.1 

up to (2,2) 
99.9 
80.6 
96.6 
78.2 

Table 4.8 shows that, generally, negotiations among rational agents achieve unfair 
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Table 4.9: Standard deviation of the egalitarian efficiency (%) according to the class of social 
graphs 

Social graph 
kind 
Full 
Grid 

Erdos-Renyi 
Small world 

Rational 
(1,1) up to <2,2) 
62.9 73.9 
71.3 80.2 
71.9 76.8 
73.0 77.5 

(1,0) 
1.8 
4.1 
2.2 
10.4 

(14) 
28.7 
29.6 
27.3 
27.8 

Social 
up to a i) 

0.3 
1.8 
6.8 
9.4 

up to (2,2) 
0.3 
1.7 
6.5 
10.5 

allocations. Indeed, independently of the allowed transactions, independently of the social 

graph topology, rational negotiation processes end quite far from the optimal welfare value. 

Only 20% of the optimal welfare value is achieved in the best cases. According to Table 

4.9, the standard deviation of negotiations among rational agents is very important. In 

the case of rational negotiations based on small-worlds, egalitarian welfare values that can 

be achieved may vary by 73%. Initial resource allocations and social graph topologies are 

the most important factor when rational egalitarian negotiations are considered. Thus, the 

rationality criterion is definitively not well-adapted to solve egalitarian problems efficiently. 

It restricts the set of possible transactions too much and throws negotiation processes into 

local optima. Generosity is hence an essential feature in order to achieve fair allocations. 

Even using on complete graphs, no social negotiation policy can guarantee the achieve­

ment of egalitarian optima. Whereas social (1,0) transactions are well adapted to the 

solution of utilitarian problems, they do not suit to the case of egalitarian problems. Only 

78.5% of the optimum can be achieved in the best cases. Indeed, after a finite number of 

transactions, agents can not give any additional resource without becoming poorer than 

their partners. The exclusive use of gifts is then not sufficient to lead negotiations to so­

cially efficient resource allocations. Negotiations based on social (1,1) transactions lead to 

severely sub-optimal resource allocations with an efficiency of 24.1% on complete social 

graphs in the best case. Such a weak efficiency is mainly due to the inherent constraints 

of swap transactions. Since the resource distribution cannot be modified, a poor agent 

who has only few resources initially, penalizes a lot the egalitarian negotiation process. 

When both gifts and swaps are allowed, i.e., when T = {(a, b)\a <l,b< 1}, the negotiation 
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efficiency is really close to the optimum. Larger bilateral transactions improve only a little 

the fairness among agents, but are much more expensive to determine. 

Social graphs of weaker mean connectivity like grids lead negotiation processes to 

socially weaker allocations whereas, when small-worlds are considered, the resource traffic 

is restricted. The standard deviation is higher when small-worlds are considered. In such 

cases, according to the generation rules, many agents have only one neighbor, which may 

penalize egalitarian negotiations. Indeed, if such agents cannot identify an acceptable 

transaction with their lone neighbor, some resources may be trapped in the bundle of such 

agents. 

Theorem 4.7. Within an egalitarian society where agents express their preferences by means of 

additive utility functions, bilateral transactions cannot guarantee the achievement of an egalitarian 

optimum, independently of the social graph considered. 

Proof. Let us consider a counter-example, based on a population of three agents f = {1,2,3} 

and a set of three available resources */? = \r\, ri, r^}. The agent preferences are described in 

Table 4.10. 

Table 4.10: Bilateral insufficiency in egalitarian negotiations - Example of agent preferences 

Population f 

0 
1 
2 

Resource Set ft 
r\ r2 r3 

2 1 5 
5 2 1 
1 5 2 

The complete social graph is described in Figure 4.6 with the initial resource allocation 

A = [{fiM^Hfa}]- This figure also described the lone egalitarian transaction that would be 

acceptable. 

No sequence of acceptable bilateral transactions can lead to an optimal resource alloca­

tion. Indeed, six (1,0) transactions are possible but none can be performed since they are 

not social. Indeed, if an agent gives a resource, its bundle becomes empty, and the associ­

ated egalitarian welfare value becomes null. Three (1,1) transactions are possible, but each 
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Figure 4.6: Deadlocks in egalitarian negotiations 

time the welfare value decreases, meaning that the transaction is not acceptable. Hence, 

even if the multi-agent system is completely connected, the optimal solution cannot be 

achieved using only bilateral transactions. Only a multilateral transaction corresponding 

to three simultaneous gifts is acceptable as described in Figure 4.6. 

Since bilateral transactions are not sufficient when negotiations are based on a complete 

social graph, they are also not sufficient when the social graph is restricted. Indeed, in such 

cases, less transactions are possible, and not acceptable transactions on a complete social 

graph are still not acceptable on a restricted social graph. • 

Influence of the social graph connectivity 

The social graph topology influences a lot the resource circulation as well as the efficiency of 

negotiation processes. The larger are agents' neighborhoods, the denser are social graphs, 

and consequently resources can circulate easily. Thanks to the model of generation of 

Erdos-Renyi graphs G(n,p), which is described in Section 3.3.2, the probability of link 

generation between two agents can be modified. High probabilities correspond to dense 

social graphs. 

Since rational negotiations can barely identify acceptable transactions, only social nego­

tiations are represented here. Figures 4.7 show the impact of the connectivity. Erdos-Renyi 

graphs are generated with an increasing probability p from p = 0.05 to p = 1.0. 

Similarly to utilitarian negotiations, Figures 4.7 show that a high probability, which 

corresponds to a dense social graph, leads to longer sequences of transactions during ne-
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Figure 4.7: Influence of the mean connectivity on egalitarian negotiations in terms of the 
computation time in 4.7a and of number of performed transactions in 4.7b 
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gotiation processes, which achieve moreover a higher welfare value. Larger neighborhoods 

facilitate the resource circulation by offering larger numbers of possible transactions to all 

agents. The impact of the connectivity is important only if the probability p of link gener­

ation is very low. The impact of the connectivity is not linear, it becomes really significant 

below p < 0.3. 

Influence of agent's behaviors 

Behaviors define how agents interact. The different behaviors defined in Section 2.6, can be 

compared using metrics presented in Section 2.7.1. In order to evaluate agents' behaviors, 

any factor that may affect the comparison should be avoided, as for example the social 

graph topology. For this reason, our experiments with negotiation processes are based on 

complete social graphs, with a population of 50 agents and 250 resources. Agents only 

negotiate using social transactions: 7" = {(1,0), (1,1)}. Both gifts and swaps are allowed 

since they correspond to the most efficient negotiation policy. 

Negotiations between stubborn agents lead to short transaction sequences, where only 

few resources are exchanged. When agents are also frivolous, the number of exchanged 

resources is at most 500 whereas negotiations between flexible agents, rooted as well as 

frivolous, lead to a minimum of 1500 traded resources. Negotiations between stubborn 

agents are generally fast and end after 1.5 seconds, but lead to weak egalitarian values. 

When agents are stubborn, the number of performed transactions corresponds to the 

number of traded resources. 

As observed in utilitarian negotiations, egalitarian negotiations between flexible agents, 

for both negotiation mechanisms (i.e., full or not), lead to close results. The welfare values 

achieved at the end of negotiation processes are almost identical, but full negotiations 

are more time consuming. If agents are also frivolous, then the number of attempted 

transactions is higher but such behaviors also improve the resulting welfare values. Rooted 

behaviors require a larger number of speech turns compared to frivolous behaviors. The 

most efficient behavior is the "flexible and frivolous" one, since negotiation processes 
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achieve the fairest allocations. The flexibility is the most important characteristic of agent's 

behaviors when egalitarian negotiations are considered. In order to reduce the inequalities 

within the agent society, agents must accept to offer any resource of their bundle. 

Negotiation scalability 

The scalability of egalitarian negotiations is evaluated in terms of performed transactions 

and in terms of computation time. Negotiation processes are based here on complete social 

graphs when agents are frivolous and flexible. Such a simulation setting corresponds to 

one of the most expensive configurations. 

Figure 4.9a represents the evolution of the egalitarian welfare value according to the 

computation time required to end egalitarian negotiations, on several instance sizes. Fig­

ure 4.9b shows the evolution of the egalitarian welfare value according to the number of 

performed transactions. The objective value increases faster at the beginning of the nego­

tiation processes, which then spend a lot of time to lightly improves the solution. Most of 

the transactions performed during negotiation processes are performed at the beginning 

of negotiations. 

Thus, even if large bilateral transactions improve the solutions, the time required before 

the end of negotiation processes increases significantly for a small improvement of the 

solution quality. Negotiations based on social transactions such that T = {(1,0), (1,1)} 

seem to be the best compromise between efficiency and scalability. The mean computation 

times, which are required to end negotiation processes, are presented in Table 4.11, while 

Table 4.12 details the length of the transaction sequences which are performed. Egalitarian 

negotiations are more time consuming than utilitarian ones. For instance, a negotiation 

process between 100 agents who own 20 resources each requires 25 seconds to converge. It 

is still reasonable compared to the solving time required by a linear program solver as the 

one described in Section 4.2.1. 
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Table 4.11: Egalitarian negotiation scalability - Computation time 

Population size n 

25 
50 
100 
500 

Mean number of resources per agent ^ 
5 10 20 

400 ms 650 ms 1.6 s 
750 ms 1.5 s 5 s 

2 s 5.8 s 25 s 
110 s 342 s 1500 s 

Table 4.12: Egalitarian negotiation scalability - Transaction sequence length 

Population size n 

25 
50 
100 
500 

Mean number of resources per agent ^ 
5 10 20 

450 800 1900 
1000 2150 4300 
2500 5000 11000 
18500 38000 78000 

4.2.4 Conclusion 

The determination of optimal allocations is a NP-hard problem even when agent prefer­

ences are expressed by additive functions. Either heuristics or linear programs can be used 

to estimate this optimal welfare value. In distributed agent negotiations, the combined use 

of social (1,0) and social (1,1) transactions corresponds to the most efficient negotiation 

policy among frivolous and flexible agents. 

Best egalitarian negotiation policy 

Transaction: 

Criterion: 

Test on bl: 
i 

Behavior: 

(1,0) + (1,1) (i.e., gifts and swaps) 

social 

mm(ui{Ki),Uj(Kjj) < min(»*,•(*,•) + «,-(p*) -
i,j€fv > > i ijep v ; 

frivolous and flexible 

- rnip*),UJCRJ) + uj(p
6

i) --MP6,)) 

Egalitarian negotiation processes based on bilateral transactions cannot guarantee the 

achievement of optimal resource allocations. Generosity is an essential feature required 

in order to achieve fair resource allocations. The rational acceptability criterion which is 

commonly used in the literature is in fact very inefficient. The social graph topology also 

greatly influences the negotiation efficiency. Any characteristic disturbing the resource traf-
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fie leads to a decrease of the negotiation efficiency, such as weak mean connectivity and the 

existence of bottlenecks (e.g., agents with only neighbors). Negotiation processes should 

be based on social transactions of T - {(1,0), (1,1)}. Indeed, the exclusive use of gifts or 

swaps is not efficient and the use of transactions of larger cardinality leads to important 

additional costs for a slight improvement of the welfare value. Even on large instances, 

egalitarian negotiations remain scalable compared to the solution of optimization models. 

4.3 Nash bilateral negotiations 

The Nash welfare is an interesting notion that can be viewed as a compromise between the 

utilitarian and egalitarian welfare notions. This notion favors a decrease of the inequalities 

within a population as well as an increase of the global welfare of the society. The Nash 

product is nevertheless barely used due to its computational complexity. Dedicated to the 

Nash product, this section is organized as follows. Issues related to the estimation of the 

optimal welfare value are first discussed. Centralized methods face specific difficulties 

which are described. The expression of the social acceptability criterion is detailed when 

the Nash welfare is considered. Properties of Nash negotiations are then described. Several 

aspects of Nash negotiation processes are finally evaluated: the transaction cardinality, the 

negotiation efficiency and their scalability, the impact of the social graph connectivity and 

the agents' interactions. We finally discuss the implementation of characteristics in order 

to efficiently negotiate when using the Nash welfare. 

4.3.1 Centralized techniques 

The identification of the optimal Nash welfare value is a difficult problem. Indeed, accord­

ing to Definition 1.6, the Nash welfare notion is not a linear objective. 

Theorem 4.8 (Nash welfare optimum complexity (Ramezani and Endriss, 2009)). The de­

termination of the optimum Nash welfare value is a NT-hard problem. 

Nash resource allocation problems can be formulated by means of a mathematical 
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model using variables x!r describing the ownership of a resource r e "R by an agent i e V: 

f 

1 if agent i owns resource r 
r e f t , i e f 

0 otherwise. 

Then, the Nash resource allocation problem can be formulated as follows: 

max n £ Ui(r)xir 
ieP reK 

SW* s.t: I xir = 1 reK 

xir€{0,l} reK ieP. 

The objective is the maximization of the Nash product, i.e. the maximization of the product 

of all agents' utilities. A consistency constraint ensures that each resource is allocated to 

only one agent. Since resources are discrete and not sharable, Boolean variables are used, 

but the model can be easily adapted to other resource natures. For instance, continuous 

resources are represented by real variables, corresponding to quantities of the considered 

resource: xir e [0,1], r eKief. 

Such a model cannot be handled in a classical way since the objective function is neither 

linear, nor convex, nor concave. Theoretically, an estimation could be made thanks to a 

combination of different optimization techniques. First, a Lagrangian relaxation could be 

used (Fisher, 2004). This method can solve a system of non linear equations if the objective 

function is convex. However, the Nash product is not a convex function. A multi-start 

algorithm has to be combined with this relaxation. Starting from multiple initial solutions 

may help to avoid local optima when non convex functions are considered (Hickernell and 

Yuan, 1997). Moreover, since resources are not divisible, an integer solution has still to be 

found. Indeed, the relaxation changes the Boolean variables of the discrete value set {0,1} 

into reel variables of the continuous value set [0,1]. In order to obtain an integer solution, 

a branch-and-bound algorithm is used. Such an algorithm can be guided by the values 
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provided by the relaxed solution in order to improve the integer solution and to reduce the 

computation time. 

Such a method cannot guarantee the optimality of the resulting solution. Moreover, 

this method is not really scalable, as a consequence of the non-linearity of the objective and 

of the exponential solution space. For instance, solving a simple system with 25 agents is 

equivalent to optimize a sum of products with 25 terms each. 

Since such a method is not scalable, we developed some heuristics in order to estimate 

the optimal Nash welfare value. Since the Nash welfare notion is a compromise between 

fairness and global efficiency, an estimation of the optimal welfare value can be determined 

according to different methods based on these characteristics. A first possibility is to 

consider the fairness of the resource distribution, as described in Algorithm 4.4. This 

algorithm sequentially allocates the best remaining resources to each agent. 

Algorithm 4.4: Estimation of the optimal Nash welfare value -1 

Input: Agent population P, Resource set R 

Output: sw* the estimation of the optimal Nash welfare value 

i <- 0 ; 

Shuffle(P); / / Mix the populat ion P 

while K t 0 do 

r <— argmin «;(?•'); // Determination of the best remaining resource 
r'eK 

Add r to A[f]; / / Al locat ion of resource r to agent i 

n^n\{r}; 

i <- (z + l)%n; 

end 

return szvn(A); 

Another way to estimate the optimal Nash welfare value is to consider, focusing on the 

global efficiency, as described in Algorithm 4.5. The first step of this algorithm allocates 

each resource to the agent who values it the most. However, some agents can be neglected 

and do not get any resource. Such a situation corresponds to a null Nash welfare value. In 
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order to avoid this phenomenon, the algorithm must perform a second step ensuring that 

all agents own at least one resource and, if the need arises, it tries to pick from an agent 

who has at least two resources the resource maximizing the local welfare value. 

Algorithm 4.5: Estimation of the optimal Nash welfare value - 2 

Input: Agent population P, Resource set 'R 

Output: sw* the estimation of the optimal Nash welfare value 

; / / F i r s t s tep 

forall the r e K do 

i <— arg max Uj(r); / / Determination of who values r the most 

Add r toAD']; / / Al locat ion of resource r to agent i 

end 

; / / Second s tep 

for i e P s.t. m; = 0 do 

val <— 0; 

for ;' £ ? s.t. mz > 1 do / / Determine where to pick up a resource 

r' <- argmaxUi(r')ujCRj \ {/}); 

if val < Ui(r')UjCRj \ {r}) then 

val <— Ui(r)UjCRj \ {r}); 

r <— r'; 

end 

Add r to A[i]; / / Real locat ion of resource r t o agent i 

end 

end 

return swu(A); 

In spite of their scalability, these two heuristics have the drawback to affect the quality of 

provided solutions, and thus are not really reliable. Similarly to the heuristics estimating 
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the optimal egalitarian value, these heuristics are very sensitive to the order in which 

agents are considered. Depending on this order, the Nash welfare value provided by such 

heuristics may vary a lot. 

4.3.2 Nash negotiation properties 

The expression of the social acceptability criterion can be specified when the Nash welfare 

is considered and the expression of the agents' decision making can be specified. Let us 

note A € J{ the resource allocation before the bilateral transaction 5!. (a, b) that evolves into 

a new allocation A' e $\(A + A'). Such a transaction involves two agents i,j e P, who 

respectively propose the offers p6 and p6. The resource bundle of any agent k e V is denoted 

by %k before the transaction and <Kk afterward. A social bilateral transaction must satisfy 

the following condition: 

swn(A) < swn{A') 

Y[ukCRk) < Y[uk(<Rk) 
keP kef 

UMUJCRJ) Y[ uk(<Rk) < Uii^UjCR'l) 11 ukCR'k) 
keP\{i,j\ kef>\[i,j} 

UiiKdujdij) < (utCRi) - ui(p\) + Ui(pp) (UJCRJ) + Uj(pp - Uj(pp) 

Similarly to the egalitarian interpretation of the social acceptability criterion, the Nash 

criterion must be based on traded resources as well as on initial resource bundles of both 

agents. Then, the acceptability test, which is represented by the instruction TEST in all 

behaviors described in Section 2.6, can thus be replaced by the following expression: 

TEST := [mityUjiKj) < (uiCRd - M,-(pf) + u^pp) (UJCRJ) + «;-(pf) - Uj(pp)] 

When the Nash welfare is considered, bilateral transactions have some important prop-
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erties affecting the negotiation efficiency. An acceptable bilateral transaction b.{a,b) may 

not be split into a sequence of acceptable bilateral transactions of lesser cardinality. This 

means that transactions of large cardinality may be required to achieve socially optimal 

resource allocations. 

Property 4.9 (Nash transaction split). In a society where agents express their preferences by 

means of additive utility functions and where the maximization of the Nash welfare is the objective, 

social bilateral transactions bl{a,b) between two agents i,j e V cannot always be split into a 

sequence of social bilateral transactions &l{a', V) of lesser cardinality (a > a' and/or b > b'). 

Proof. Let us consider a counter-example based on a population of two agents, V = {0,1} 

who are negotiating the two available resources % = {ri,^}. Their preferences are expressed 

by means of additive utility functions described in Table 4.13. The initial resource allocation 

is A = [{ri}{r2}]: Each agent owns one resource. 

Table 4.13: Nash transaction split - Example of agent preferences 

Population P 

0 
1 

Resource Set R 
n r2 

7 3 
4 1 

Let us consider the transaction 6j(l,1) = ({?"i}, j?^}), during which agents 0 and 1 re­

spectively propose p* = {r{\ and p^ = {rz}- This transaction corresponds a social swap 

since: 

Mo({ri})Mi({f"2}) < Ko({r2})Mi({ri}) 

This swap increases the Nash welfare value from swn (A) = 7 of the initial resource allocation 

to swn(A') = 12 afterwards. This transaction can only be split into a sequence of two gifts. 

However, no gift is acceptable. Indeed, any agent who gives its lone resource stays with 

an empty bundle, which is always associated with a welfare value of 0. In such a case, the 

Nash welfare value of the whole society is null. 

Hence, when the Nash welfare is considered, a social bilateral transaction cannot always 

be split into a sequence of acceptable bilateral transactions of lesser cardinality. Transactions 



144 

of large cardinality may thus be required to achieve a socially optimal solution. a 

4.3.3 Evaluation of Nash negotiations 

This section is dedicated to the evaluation of the Nash negotiations. In order to determine if 

large bilateral transactions are required to achieve socially efficient allocations, the influence 

of the size of agent offers is studied first. Then, the Nash welfare values provided by 

heuristics are compared to the ones provided by negotiation processes. The impact of the 

social graph topology is then presented as well as suitable behavior characteristics. Finally, 

scalability issues are addressed. 

Let us first note that it is not convenient to directly work with the Nash welfare values. 

According to Definition 1.6, the Nash welfare is the product of the individual welfares of 

all agents. Such values become quickly so huge that it is difficult to deal with them. For 

instance, a population of 50 agents where each agent estimates all of 250 resources with a 

positive utility value in the range [1..250] leads to Nash welfare value scale around 1060. 

Thus, Log(swn(A)) is used instead of swn(A) in the different comparisons, in order to avoid 

accuracy problems. However, a side effect of the use of Logarithms is the "reduction" 

of the gap between two welfare values. Indeed, a gap of 0.1% between two Logarithms 

represents an exponentially larger gap between the values themselves. 

Influence of the transaction cardinality 

Bilateral transaction bl{a, b) between two agents i, j e V is characterized by the cardinality 

of the parameters a and b, describing the size of agent offers. These experiments are based 

on a population of 50 agents who negotiate 250 resources. Several negotiation policies are 

used and described using the cardinality parameters. The negotiation policy denoted by 

"up to (2,2)" means that agents can offer up to two resources during the same transaction. 

Figure 4.10 shows the evolution of the Nash welfare value during a negotiation process 

according to the transactions cardinality. 

Figure 4.10a shows that the transactions cardinality mainly affects the elapsed time. 
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Negotiation processes based on (1,0) transactions are less time-consuming and agents 

perform less transactions in such a case. The larger the allowed transactions, the more time 

consuming are negotiation processes. However, according to Figure 4.10b that focuses 

on the number of performed transactions, larger bilateral transactions do not improve the 

quality of achieved solutions. Negotiations relying only on (1,1) transactions require less 

transactions but also achieve socially weaker allocations. All other negotiation processes 

end after sequences of transactions of close length. Large bilateral transactions do not seem 

to significantly improve the Nash welfare value achieved at the end of the negotiation 

processes. The use of transactions of large cardinality does not justify the important 

additional costs, and thus the size of the offers should be restricted. 

Price of social graphs 

When the Nash welfare is considered, the efficiency of the negotiation processes can be 

evaluated using a comparison with the estimation given by centralized techniques. Several 

centralized heuristics are described in Section 4.3.1, but only the one providing the largest 

results is used here. The best results are provided by Algorithm 4.5 which focuses on the 

global efficiency. It first allocates each resource to the agent who values it the most, and 

then allocates at least one resource to each agent who gets nothing. Table 4.14 shows the 

efficiency of negotiations depending on the class of social graphs considered, whereas Table 

4.15 shows the standard deviation of the different Nash welfare values, which correspond 

to the topological sensitivity. 

Negotiations are based here on a population of 50 agents where 250 resources are 

available. All agents interact according to a frivolous and flexible behaviors in every case. 

Different sets of allowed transactions are considered, from T = {(1,0)} to T = {(a, b)\a < 

2, b < 2}. As described in the previous sections, since all utility values are positive, no gift 

can be rational, and then the rational negotiation policy allowing both gifts and swaps is 

restricted to swaps. 

Table 4.14 shows that some welfare values achieved are greater than 100%. Since 



147 

Table 4.14: Nash negotiation efficiency (%) according to the class of social graphs 
Social graph 

kind 
Full 
Grid 

Erdos-Renyi 
Small world 

Rational 
(1,1) up to (2,2) 
99.9 100.1 
97.0 97.5 
99.6 99.8 
97.2 98.0 

Social 
(1,0) (1,1) up to (1,1) up to (2,2) 
101.6 100.1 101.7 101.7 
99.6 98.2 99.7 99.7 
101.4 99.9 101.6 101.6 
100.2 98.9 100.4 100.4 

heuristics can only give an estimation of Nash welfare values, an efficiency greater than 

100% means that the corresponding negotiation processes lead to socially more interesting 

allocations than the ones provided by the heuristics. As observed in the case of egalitarian 

negotiations, it is not possible to guarantee that optimal allocations can be achieved using 

bilateral transactions only. 

Rational negotiations generally achieve socially weaker allocations than social negoti­

ations. Two negotiation policies, which are based respectively on T - {(a,b)\a < \,b < 1} 

and on 7" = {{a,b)\a <2,b< 2}, lead to similar results. Allowing gifts and swaps during a 

negotiation process seems sufficient to achieve socially efficient allocations. Larger transac­

tions do not significantly improve the Nash welfare values achieved while the negotiation 

cost that increases a lot. 

Similarly to the egalitarian case, negotiations based on swap transactions achieve the 

socially weakest allocations. Since the initial resource distribution cannot be modified, 

negotiations end quickly on local optima. According to Table 4.15, the standard deviation 

related to negotiations based on (1,1) transactions is also higher than for other transactions. 

Negotiation processes based on grids leads to the socially weakest allocations. The mean 

connectivity of the social graphs is an important feature deeply affecting the negotiation 

efficiency. Relationships among agents are too restricted to allow a suitable resource traffic, 

and then prevent the achievement of optimal allocations. The comparison between results 

achieved on Erdos-Renyi graphs and the ones achieved on small-worlds indicates that a 

large number of agents, leaves of the graph (who have only one neighbor), penalizes a lot 

the negotiation process. 
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Table 4.15: Standard deviation of the Nash product (%) according to the class of social 
graphs 

Social graph 
kind 
Full 
Grid 

Erdos-Renyi 
Small world 

Rational 
(1,1) up to (2,2) 
0.33 0.27 
0.44 0.40 
0.33 0.28 
0.46 0.38 

Social 
(1,0) (1,1) up to (1,1) up to (2,2) 
0.06 0.31 0.02 0.02 
0.14 0.37 0.14 0.14 
0.06 0.32 0.02 0.02 
0.13 0.37 0.12 0.12 

Theorem 4.10. When the Nash welfare is considered, within a population of agents who express 

their preferences by means of additive utility functions, bilateral transactions cannot guarantee the 

achievement of optimal allocations, independently of the social graph considered. 

Proof. Similarly to the proof of Proposition 4.7, a counter-example can be generated with 

different agent preferences, where only a multilateral transactions can solve the problem. 

D 

As for the other welfare notions, negotiations among social agents achieve more efficient 

allocations compared to rational negotiations usually studied in the literature. Negotiations 

based on T = {(1,0), (1,1)} can be considered as the best alternative to achieve socially 

interesting allocations. Transactions of weaker cardinality are not sufficient whereas larger 

transactions do not improve the Nash welfare value while their use increases the negotiation 

cost. However, the exclusive use of bilateral transactions cannot guarantee the achievement 

of a global optimum, but leads to socially close allocations instead. 

Influence of the social graph connectivity 

The social graph topology affects the negotiation efficiency and may prevent the achieve­

ment of socially optimal allocations. Agent relationships are represented here by Erdos-

R£nyi graphs, which is generated thanks to the model G(n,p). The variation of the proba­

bility influences on the number of links, and thus the mean neighborhood size. 

Figure 4.11a represents the Nash welfare evolution according to the elapsed time, 

and Figure 4.11b corresponds to the Nash welfare evolution according to the number of 
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performed transactions. They show that denser social graphs lead to longer negotiation 

processes (with larger number of performed transactions) and to a higher utilitarian welfare 

value at the end of the negotiation process. The connectivity has an important influence 

only if the probability p of link generation is very low. The influence of the connectivity is 

not linear, it becomes really significant below p < 0.3. 

Influence of agent behaviors 

Behavior defines how agents negotiate. The different behaviors, which are defined in 

Section 2.6, can be compared using metrics presented in Section 2.7.1. In order to eval­

uate agents' behaviors, any factor that may alter the comparison of the different agents' 

behaviors should be avoided, like the social graph topology. For this reason, simula­

tions of negotiation processes are based on complete social graphs, with a population of 

50 agents and 250 available resources. Agents negotiate using social transactions only: 

r = {<i,o),<i,i)}. 

The more restrictive the agents' behaviors, the shorter are the transaction sequences. For 

instance, stubborn and rooted agents can only perform few transactions during negotiation 

processes. Since only few offers are attempted, the identification of acceptable transactions 

is difficult. Resources barely circulate, and then negotiation processes end on socially 

sub-optimal resource allocations. 

When agents are still rooted but flexible, the number of attempted transactions increases 

as well as the number of performed transactions. A large number of speech turns is required 

to end Nash negotiation processes. Since agents can propose several offers during a 

negotiation, the identification of acceptable transactions is easier, which favors the resource 

traffic and the achievement of socially interesting allocations. 

Frivolous agents benefit from their neighborhood during a negotiation. This behavior 

characteristic increases the potential number of transactions that agents can attempt during 

a negotiation process. If agents are also stubborn, they only make a single offer during a 

negotiation. Agents' neighborhoods are large since the social graph is complete, then the 
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number of offers that agents can attempt is large enough to ensure a sufficient resource 

traffic. A weak mean connectivity decreases the profit of frivolous and stubborn behaviors. 

The larger the set of offers that agents can attempt during negotiation processes, the 

socially greater are generally the achieved allocations. Frivolous and flexible agents max­

imize the transaction possibilities as well as the resource traffic. A larger number of 

transactions are performed and more resources are traded. Since agents can benefit from 

their neighborhood and from their bundle (several offers during the same negotiation can 

be attempted), only few speech turns are required. The maximization of the resource 

traffic leads to the achievement of the largest Nash welfare values, independently of the 

negotiation mechanism used. 

Negotiation scalability 

The scalability of Nash negotiations is evaluated according to one of the most time-

consuming simulation settings, as described in Section 2.7.3, i.e., on a complete social 

graph with frivolous and flexible agents, who negotiate using either social gifts or social 

swaps: T = {(1,0), (1,1)}. 

Figure 4.13a represents the evolution of the Nash welfare value according to the compu­

tation time whereas Figure 4.13b shows its evolution according to the number of performed 

transactions. Several instance sizes are used during the experiments, which are charac­

terized by a pair (n, m), where the first element corresponds to the number of agents and 

the second one corresponds to the number of available resources. Then, the key "25-125" 

on Figures 4.13 corresponds to instances populated by 25 agents who are negotiating 125 

resources. 

The mean computation time required to end negotiation processes are presented in 

Table 4.11, whereas Table 4.12 details the length of the transaction sequence performed. 

Nash negotiations are a little more time consuming than utilitarian negotiations, but less 

than egalitarian negotiations. For a given instance, the number of transactions performed 

does not significantly vary, while the time required to end the negotiation process may 
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significantly vary by a factor greater than 2. 

Table 4.16: Nash negotiation scalability - Computation time 

Population Size n 

25 
50 
100 
500 

Mean number of Resources per Agent ^ 
5 10 20 

340 ms 540 ms 750 ms 
520 ms I s 2 s 

1.4 s 2.4 s 6.7 s 
60 s 250 s 600 s 

Table 4.17: Nash negotiation scalability - Transaction sequence length 

Population Size n 

25 
50 
100 
500 

Mean number of Resources per Agent ^ 
5 25 50 

320 600 1300 
740 1500 3000 
1700 3300 6900 

10500 27000 55000 

4.3.4 Conclusion 

Centralized solving methods quickly face scalability issues. The determination of optimal 

allocations is a Af!P-hard problem. Heuristics must be used to estimate this optimal wel­

fare value. In distributed approaches, the combined use of social (1,0) and social (1,1) 

transactions is the most efficient negotiation policy among frivolous and flexible agents. 

Best Nash negotiation policy 

Transaction: 

Criterion: 

Test on 5L. 
i 

Behavior: 

(1,0) + (1,1) (i.e., gifts and swaps) 

social 

Ui(%)uj(Kj) < {um) - u^) + Ml-(p*)) (ujCRj) + M;-(pf) -

frivolous and flexible 

-Uj(pp) 

Similarly to egalitarian negotiations, bilateral transactions cannot guarantee the achieve­

ment of socially optimal resource allocations. The determination of such optima is a difficult 

task even when centralized approaches are considered. The optimal Nash welfare value can 

only be estimated in a reasonable time. When negotiations are based on T = {(1,0), (1,1)}, 
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socially efficient allocations can be achieved. Transactions of weaker cardinality are too 

restrictive and larger transactions do not significantly improve the social welfare value 

achieved, but increase a lot the negotiation costs. This negotiation policy is flexible enough 

to ensure a sufficient resource traffic on various classes of social graph topologies. Nash 

negotiations remain scalable thanks to the limitations on the transaction cardinality even on 

large instances. Efficient Nash negotiations can be performed among frivolous and flexible 

agents allowing two transactions: social gifts and social swaps. Although the social graph 

topology has an important impact, this negotiation policy can always be considered as the 

best alternative. 

4.4 Elitist bilateral negotiations 

The elitist welfare is a social welfare notion that aims to maximize the welfare of the richest 

agent of the population, as defined in Definition 1.7. This notion is commonly used in 

artificial societies, where a given objective must be achieved at any cost. The objective 

must be fulfilled, no matter who achieves it. The determination of global optimal elitist 

welfare values are first presented using centralized techniques. Then, elitist negotiations 

are discussed with the expression of the elitist acceptability criterion. Elitist negotiations 

are finally evaluated in order to determine how to negotiate efficiently in elitist societies 

and how agents should interact in such a context? 

4.4.1 Centralized techniques 

The identification of the optimal elitist value is a quite simple problem, especially when 

agents express their preferences using additive utility functions. Since all utility values 

are positive, optimal elitist allocations satisfy some properties that can be used to simplify 

the determination of the associated social value. This property specifies how to allocate 

resources over the population. 

Property 4.11 (Elitist optimum). When the elitist welfare is considered, in socially optimal 
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resource allocations, all resources are allocated to one agent, who assigns with them the largest 

utility value. 

Proof. Let us make a proof by contradiction. A resource allocation A e 3\ is assumed to be 

a global optimum. Then, according to its definition, the following relationship with any 

other resource allocation A' € Jl(A ± A') must be satisfied: 

swet{A) > swe{{A') A, A' G ^1 , A ± A' 

Let us assume that, in the optimal allocation A, agent i e V is the richest agent of the 

population. Then, according to Definition 1.7, the optimal elitist value corresponds to its 

utility value: 

max ukCRk) = UtCRi) 
keP 

If agent i does not own all resources, then the allocation A is not a global optimum. Indeed: 

3r e % j e V r e 7?;, such tha t ; ^ i 

Any allocation A' that allocates this resource r to agent i is associated with a higher elitist 

value. 

Ui(r) > 0 

UiCRi) + u{(r) > um) 

swe({A') > swei{A) 

Thus, since all utility values are positive, in an elitist optimum, all resources must be 

allocated to the same agent who estimates the whole resource set K the most. • 

Elitist resource allocation problems can be formulated by means of a mathematical 

model using Boolean variables x,> describing the ownership of a resource r e H by an agent 
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ie<P: 

Xir = < 

1 if agent i owns resource r 

0 otherwise. 

ref t , ie<P. 

Then, elitist resource allocation problems can be formulated as follows: 

swtt = 

max max £ Uj(r)Xir 

s.t: Lxir = l reft 

xire{0,l} reft, iep. 

Here, the objective is to maximize the utility of the richest agent. Consistency constraints, 

which are inherent to the resource nature, ensure that each resource is allocated to only one 

agent. 

The other way to determine the optimal utilitarian value is to build an optimal allo­

cation, according to Proposition 4.11. A simple algorithm can then be designed for this 

purpose. All resources associated with a positive utility value are summed for all agents, 

and the maximum constitutes the optimal elitist value, as described in Algorithm 4.6. 

Algorithm 4.6: Determination of the optimal elitist welfare value 

Input: Agent population V, Resource set ft 

Output: sw*( the optimal elitist welfare value 

i <— arg max Uj(ft); 
jep 

A[i\<-K; 

return szve{(A); 

In the case where negative values can be associated with resources, this algorithm must 

be adapted. Indeed, instead of considering the whole set of resources ft, each agent must 

only consider resources that it associates with positive values. The agent that associates 

with such a resource set the largest welfare obtains this set. The remaining resources can be 

randomly allocated to others, since they do not affect the elitist welfare value. Algorithm 
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Algorithm 4.7: Determination of the optimal elitist welfare value adapted to negative 

values 
Input: Agent population V, Resource set % 

Output: sw*e the optimal elitist welfare value 

maxVal <— 0; 

maxBundle *— 0 ; 

f orall the i e V do 

tmpVal <— 0 ; 

tmpBundle <— 0; 

forall the r € K do 

if Uj(r) > 0 then 

tmpVal <— tmpVal + Ui(r); 

Add resource r to tmpBundle; 

end 

end 

if maxVal < tmpVal then 

maxVal <— tmpVal; 

maxBundle <— tmpBundle; 

end 

end 

.A[/| <— maxBundle; 

forall the r € 7? \ {maxBundle} do / / Remaining resources a l l o c a t i o n 

z <— random (!P \ {;'}); 

Add r to i; 

end 

return stf^(A); 
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4.4.2 Elitist negotiation properties 

The expression of the elitist acceptability criterion, defined in Section 2.5, is based on 

the evaluation of the elitist welfare value evolution between two allocations. Let us note 

A e ^ l the resource allocation before the bilateral transaction b!{a, b) that changes into a new 

allocation A' e J{(A + A'). This transaction involves two agents i, j e V, who respectively 

propose the offers p6 and p6. The resource bundle of any agent k € P is denoted by H^ 

before the transaction and by H^ afterward. 

An elitist transaction must satisfy the following condition: 

swet{A) < swet{A') 

max(uiCRi)) < max ( u ^ ' ) ) 

Similarly to the egalitarian interpretation of the social acceptability criterion, the elitist 

interpretation is not a strict inequality when the test is restricted to only two agents. 

However, the restriction is not as strong as the one imposed in the egalitarian case. Indeed, 

if the poorest agent of the population is not involved, the egalitarian welfare value cannot 

vary, but according to the elitist notion, even if the richest agent of the population is not 

involved, the welfare value may increase. Nothing prevents for instance another agent to 

become richer than the agent of the population who was the richest before the transaction. 

The expression that elitist transactions bl must satisfied can be restricted to only two 

agents. In such a case, the richest of the two involved agents after an elitist transaction 

must be richer than the agent that was richer before. 

max (UiCRi), UjCRj)) < max (uflfyMK)) 

max(mCRi), ufiKj)) < max (ui(%) + Ui(pd.) - u,-(p?), tiffi) + M;-(pf) - u^)) 
i,jeP v ' i,jef v > > ' 

According to the elitist criterion, when two agents i, j e V negotiate, an agent should 
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give all its resources to its partner in order to maximize the welfare of this agent. It must 

become richer than the richest agent before the transaction. The agents' decision making, 

which is represented by the instruction TEST in all behaviors that are described in Section 

2.6, is based on this expression: 

TEST max ( u ^ ) , "/(^/)) < m |x(u ;(ft i) + Uiip*) - u,-(p?), «/(*?;) + u;-(pf) - Ujipp) 

Some properties related to the decomposition of elitist transactions can be established. 

Similarly to the other cases, elitist bilateral transactions of large cardinality may be essential 

to achieve optimal resource allocations. 

Property 4.12 (Elitist transaction split). Within an elitist society where agents express their 

preferences by additive utility functions, social bilateral transactions bl(a,b) between two agents 

i,j e V cannot always be split into a sequence of elitist bilateral transactions b\{a!, b') of lesser 

cardinality (a > a' and/or b > b'). 

Proof Let us consider a counter-example based on a population of two agents, f = {0,1} 

who are negotiating the three available resources H = {r\,r2,r^\. Their preferences are 

expressed by means of additive utility functions, described in Table 4.18. The initial 

resource allocation is A = [{r\, ^Hr?}]. 

Table 4.18: Elitist transaction split - Example of agent preferences 

Population V 

0 
1 

Resource Set R 
n r2 r3 

5 6 1 
4 5 5 

Let us consider the transaction <5j(2,0) = {{r\,r2},%), during which agents 0 and 1 

respectively propose p6
Q = \r\, r%] and p^ = 0. Such a transaction is social since the utility of 
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the richest agent increases from 11 in the initial allocation to 14 in the final allocation: 

max(uo({r1/r2})/Mi({r3})) < max(uo(0),ui({ri,r2,r3})) 

u0{{ri,r2}) < ui({ri,r2,r3}) 

This transaction can be only split into two successive gifts. However, none of them is 

acceptable according to the social acceptability criterion. If agent 0 gives one of its resources, 

then the other agent becomes the richest, but the elitist welfare value of the population is 

weaker than it was initially. Such gifts are thus not acceptable. 

Hence, in elitist societies, bilateral transactions cannot always be split into a sequence 

of elitist bilateral transactions of lesser cardinality. Transactions of large cardinality may 

thus be required to achieve a socially optimal solution. • 

4.4.3 Evaluation of elitist negotiations 

As described in Section 2.7, different facets of negotiation processes are evaluated in this 

section. First, the impact of the transaction cardinality is investigated in order to determine 

which transactions are the most suitable to efficiently negotiate according to an elitist 

objective. Then, the efficiency of different negotiation policies is described according to 

different classes of social graphs. The impact of the mean connectivity on the negotiation 

efficiency is presented as well as the weight of the agents' interactions. Finally, issues 

related to the scalability of elitist negotiation process are discussed. 

Influence of the transaction cardinality 

According to the elitist acceptability criterion, restrictions can be made on the cardinality 

of the allowed transactions. Since all utility values are positive, an implicit consequence 

can be observed: An elitist negotiation process tends to gather all resources into a single 

agent bundle, who assigns the largest utility value to them. Then, any bilateral transaction 

bl{a, b) such that b > 0 is contrary to this objective. 
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According to Proposition 4.12, elitist transactions may not be split in a sequence of 

elitist transactions of lesser cardinality. Agent i e P should then be able to offer its whole 

resource bundle, without compensation: T - {(ra,,0)}. Such a transaction is meaningless 

when other social welfare notions are considered, but perfectly suits the elitist notion. 

Several sizes of offers can be tested. However, the computation time required to end an 

elitist negotiation processes based on bl(\, 0) for instance is exponentially higher (/, j e P). 

Even instances of reasonable size (e.g., 50 agents and 250 resources) are not really scalable. 

Thus, only cluster transactions of maximal size, i.e., (p6,0) transactions should be used 

when negotiating. 

Price of social graphs 

Since only cluster transactions are considered, an acceptability criterion cannot be used 

anymore. Indeed, since agents only offer their whole resource bundle without compensa­

tion, the rational acceptability criterion is improper. Since all utility value are positive, no 

rational cluster transaction exists. Thus, such an acceptability criterion is unadapted and 

inefficient when the elitist welfare notion is considered. This acceptability criterion is thus 

not represented in the following experiments. 

Table 4.19 presents the efficiency of elitist negotiation processes based on social 5(m„ 0) 

transactions and on different classes of social graphs. Here, 50 agents negotiate 250 re­

sources according to frivolous and flexible behaviors. 

Table 4.19: Elitist negotiation efficiency(%) and standard deviation according to the class 
of social graphs 

Social graph 

Full 
Grid 

Erdos-Renyi 
Small world 

Social efficiency (%) 
<m/,0> 

100 
31.17 
95.12 
68.43 

Standard deviation 

0 
26.92 
11.53 
66.50 

Table 4.19 shows that, when the relationships among agents can be modeled by a 

complete social graph, negotiation processes based on 6(77?;, 0) transactions, i.e., cluster 
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transactions of maximal size, always lead to socially optimal resource allocations. When 

grids are considered, negotiation processes achieve allocations which correspond to only 

31.17% of the optimum. The mean connectivity is too weak to ensure a proper resource 

traffic. Moreover, the achieved elitist welfare value may vary by 26.92%. The large standard 

deviation reveals the important impact of the topology allocation. Since resources circulate 

barely, depending on the agent to which they are initially allocated, resources can be 

trapped somewhere, and then penalize elitist negotiations. Resources remain dispatched 

over the population, which explains the poor efficiency of negotiations based on grids. 

Negotiations based on Erdos-Renyi graphs achieve socially efficient allocations. Indeed, 

95.12% of the optimal welfare value can be achieved, with a standard deviation of 11.53%. 

The mean connectivity is higher than in grids, which allows a sufficient resource circulation 

and result in interesting allocation. However, in the case of small-worlds, only 68.43% of the 

optimal welfare value can be achieved. Their mean connectivity is really low (on average 

6.8 neighbors per agent) and irregular. Most agents have only few neighbors while few 

agents have many neighbors. This irregularity explains the very large standard deviation 

which is observed. Depending on the initial resource allocations, many resources cannot 

change of owners and thus lead negotiation processes into a local optimum. 

Theorem 4.13. Within an elitist society where agents express their preferences by means of additive 

utility functions, a negotiation processes based on complete social graphs always converge towards 

a global optimum using cluster transactions of maximal size, i.e., 5(mi, 0)for any initiator i e P. 

Proof. Since the social graph is complete and connected, any agent i e P can talk with 

every other agents of the population. The resource traffic is composed by several sets of 

resources. The number of dispatched resource sets decreases gradually during negotiation 

processes while their size is gradually growing. Indeed, since T = {(mi, 0)}, each time that 

two agents negotiate, one of them offers its whole resource bundle to the other, who finally 

owns a larger resource bundle. 

It is always possible to create a sequence of cluster transactions that gather all resources 

into a single agent bundle, which is associated with the largest utility value. The size of the 
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cluster transactions gradually increases during negotiation processes until the whole set of 

available resources is owned by a single agent. Once all resources are gathered, the whole 

set of resources can still be offered to agents associating a larger utility value to it. When 

it is no more possible, according to Proposition 4.11, the resulting allocation is a global 

optimum. • 

Influence of the social graph connectivity 

The mean connectivity of social graphs affects the negotiation efficiency since it restricts 

more or less the transaction possibilities. Considering Erdos-Renyi graphs, the mean con­

nectivity can vary thanks to the probability p of link generation in the model of generation 

G(n,p). These simulations are based on a population of 50 agents who negotiate 250 

resources, carrying out frivolous and flexible behaviors. 

As shown in Figure 4.14b, the number of performed transactions does not vary signifi­

cantly (between 65 and 80). Negotiation processes end after transaction sequences of close 

length. Figure 4.14a shows on the other hand that the computation time varies from 40 ms 

to 125 ms. However the elitist welfare value on which negotiation processes end vary a lot. 

The mean connectivity significantly affects the quality of provided solutions only when the 

probability is below p = 0.3. If the probability of generating a link between two nodes is 

higher, the efficiency is not affected more than 8%. But if the probability is lower, the elitist 

welfare value that can be achieved decreases drastically. 

Influence of agents' behaviors 

Behaviors define how agents interact, i.e., how they negotiate. The different agent behaviors 

defined in Section 2.6, can be compared using various metrics as presented in Section 2.7.1. 

Negotiation processes are based in these experiments on complete social graphs, with 

a population of 50 agents and 250 available resources. Agents negotiate using social 

transactions only: T = {(m,,0)}. 

Only one transaction is allowed during elitist negotiation processes. As described in 
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4.15d. 
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the previous sections, only (m,,0) transactions are allowed where i e f is the initiator. 

Accordingly, agents are only able to make a single offer. Thus, flexible behaviors have 

no impact because U{p), the list of offers that agent i can propose has only one element 

corresponding to its whole bundle *Ri. For this reason, rooted behaviors, either flexible or 

stubborn obtain almost similar value for all metrics. 

Related to the four frivolous behaviors, negotiations end after transaction sequences 

of identical length, where almost the same number of resources are traded. However, 

variations can be observed when the number of speech turns or the number of attempted 

transactions is considered. These variations are simply due to the frivolous character of the 

agents' behaviors. The order in which neighbors are considered influences the negotiation 

process. According to this order, the number of attempted transactions varies. In order to 

achieve socially optimal allocations, agents must be frivolous. They can thus interact with 

all their neighbors. 

Negotiation scalability 

The scalability of elitist negotiations is evaluated when relationships among agents are 

modeled by means of complete social graphs. Agents interact according to frivolous 

behaviors. On each figure, several sizes of instances are used. An instance is characterized 

by a pair n-m, where n is the number of agents and m is the overall number of resources, 

initially distributed in a random way. For instance, the key "100-1000" corresponds to an 

instance where 100 agents negotiate 1000 resources using only (m;, 0) transactions for any 

initiator i e P. 

Figure 4.16a represents the evolution of the elitist welfare value according to the com­

putation time, using different instance sizes. Larger instances lead to longer negotiations 

and to greater elitist welfare values. The different floors that can be observed correspond 

to transactions between agents who cannot become the richest ones in the population. 

According to the elitist acceptability criterion, one of the involved agent becomes richer 

than the richest agent before the transaction. However, if it does not become richer than 
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the richest agent of the population, the elitist welfare value does not change, but resources 

circulate. 

Figure 4.16b shows the evolution of the social welfare value according to the number 

of performed transactions. It reveals that, independently of the mean number of resources 

per agent, the number of performed transactions if almost the same. Since agents negotiate 

using only (nii,0) transactions, agents offer their whole resource bundle independently 

of their size. The number of resources per agent does not affect the length of transaction 

sequences, in contrast to negotiation processes based on other social welfare notions, which 

suffer from an exponential increase. 

Table 4.20 presents the computation time required to end elitist negotiation processes 

according to the instance size, whereas Table 4.21 focuses on the number of performed 

transactions. These tables show that the mean number of resources per agent has a weak 

impact on elitist negotiation processes. Such elitist negotiations remain highly scalable 

even when large instances are considered. Indeed, a negotiation among 500 agents and 

10000 agents can be solved in 8.2 seconds, after a sequence of 819 cluster transactions. 

Table 4.20: Elitist negotiation scalability - Computation time 

Population Size n 

25 
50 
100 
500 

Mean number of Resources per Agent ^ 
5 10 20 

98 ms 113 ms 120 ms 
132 ms 136 ms 140 ms 
276 ms 350 s 642 ms 

1.6 s 3.3 s 8.2 s 

Table 4.21: Elitist negotiation scalability - Transaction sequence length 

Population Size n 

25 
50 
100 
500 

Mean number of Resources per Agent ^ 
5 25 50 
35 44 46 
82 84 87 
162 170 174 
781 803 819 
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4.4.4 Conclusion 

Centralized techniques are quite trivial when elitist problems are considered. All resources 

must be allocated to the agent who assigns with them the largest utility to them. In 

distributed agent negotiations, the use of social (m*, 0) transactions is the most efficient 

negotiation policy among frivolous and flexible agents. 

Best elitist negotiation policy 

Transaction: 

Criterion: 

Test on 5L. 
i 

Behavior: 

{mi, 0) (i.e., cluster of maximal size) 

social 

max(ui(7?i)/"y(ftj)) < max («;(??;) + u{(p
6) -

frivolous 

«i(p?),My(Ky) + M;(p?)--Uj(pp) 

The elitist welfare notion can be used in specific situations where an objective must be 

achieved independently of the agent who achieves it. The maximization of the welfare of 

the richest agent may seem inappropriate to human societies, but suits many applications 

among artificial agents. The rational acceptability criterion is meaningless when the elitist 

welfare notion is considered since no cluster transaction can be rational. Collaboration 

among agents is essential during elitist negotiations, which then should be based on social 

transactions. Only one transaction is required to negotiate efficiently: (m;, 0) transactions, 

during which an agent offers its whole resource bundle. Since agents can only make one 

offer, agents do not need to behave with flexibility. Only the frivolity characteristic is useful, 

to benefit from their neighborhood. When relationships among agents are represented by 

means of complete graphs, elitist negotiations based on social (m*, 0) transactions always 

lead to global optima. When the agents' neighborhoods are restricted, the achievement 

of global optima cannot be guaranteed, but if the agent neighborhood are large enough, 

socially efficient allocations can still be achieved. The mean number of resources does 

not affect the scalability of elitist negotiations, while it has an exponential cost when other 

welfare notions are considered. Elitist negotiations are highly scalable and large instances 

can be solved quickly. 
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4.5 Summary 

In this chapter, agent negotiations based on bilateral transactions have been evaluated. 

Different facets of negotiations have been considered: The size of offers that agents can 

propose, the agent acceptability criterion or their behaviors, social graph classes, the nego­

tiation efficiency according to the social graph, and their scalability. The four main notions 

of the social welfare theory have been investigated. 

Generally, even if they are widely used in the literature, rational negotiations are not 

efficient when the aim is to maximize the social welfare. To achieve socially efficient 

allocations, agents must be generous. They must accept to loose a little for the sake of the 

whole society. 

Utilitarian negotiations are the most efficient among frivolous and flexible agents, 

using only social (1,0) transactions (i.e., gifts). When complete social graphs are considered, 

optimal allocations can always be achieved. When restricted relationships are considered, 

socially efficient resource allocations can still be achieved. Such utilitarian negotiations 

favor the resource circulation sufficiently in order to be efficient on many classes of graphs. 

Moreover, they remain scalable even on large instances. 

Egalitarian negotiations are the most efficient among frivolous and flexible agents. 

Two transactions must be used among the agents: Social (1,0) transactions and social (1,1) 

transactions are required to achieve fair resource allocations (i.e., either gifts or swaps). Bi­

lateral transactions cannot guarantee the achievement of socially optimal allocations. Such 

negotiations are more sensitive to topological issues of restricted social graphs. Moreover, 

any characteristic restricting the resource circulation affects a lot the negotiation efficiency. 

They remain scalable on large instances in contrast to exact centralized techniques. 

Nash negotiations are also the most efficient among frivolous and flexible agents, 

using both social (1,0) transactions and social (1,1) transactions (i.e., gifts and swaps). 

As in egalitarian negotiations, bilateral transactions cannot ensure the achievement of the 

socially optimal allocations. The efficiency of such negotiation processes is difficult to 
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evaluate since centralized techniques are not easy to handle. Nash negotiations are less 

sensitive than egalitarian negotiations and also less time-consuming. Indeed, they remain 

scalable on large instances of population. 

Elitist negotiations are efficient among a population of frivolous agents. Agents should 

use cluster transactions of maximal size, i.e., social (%, 0) transactions. Agents should offer 

their whole resource bundle if it improves the elitist welfare of the society. Thus, the notion 

of rationality does not fit at all. Based on complete graphs, negotiations always achieve 

optimal solutions, but not when restricted communication possibilities are considered. 

Such negotiations are scalable on large instances, and the computation time is moreover 

independent of the number of resources available. 

Table 4.22: Summary - Efficient bilateral negotiation settings 

Acceptability criterion 
Allowed transactions 

Agent behaviors 

Social welfare notions 
Utilitarian Egalitarian Nash Elitist 

social 
gifts gifts and swaps 

frivolous and flexible 
maximal cluster 

frivolous 



Chapter 5 

Multilateral Negotiations 

Generally, bilateral transactions are not sufficient to guarantee the achievement of socially 

optimal allocation. Especially when the social graphs are restricted, the agent communica­

tion possibilities are also restricted, which make difficult the resource circulation. In order 

to favor resource circulation, multilateral transactions might be used. Allowing such trans­

action classes may increase the possible number of transactions, as described in Section 

2.4.2 and hence may improve the quality of provided allocations. However, the determi­

nation of such acceptable transactions is not an obvious task, and negotiation processes 

based on such transactions may face scalability problems. 

This chapter addresses multilateral transactions. First, the motivations and the limits 

using such a transaction class are presented in Section 5.1. This section describes how such 

transactions favor resource circulation and the achievement of socially more interesting 

resource allocations, especially when restricted social graphs are considered. Multilateral 

transactions also suffer from drawbacks that may prevent their practical application. These 

drawbacks and the limits of the use of multilateral transactions are also discussed. A 

literature review is presented in Section 5.2, in order to describe different studies on this 

topic and their characteristics. Section 5.3 is dedicated to the model that we propose to solve 

the problem of the determination of acceptable multilateral transactions. An introduction 

to an efficient solving method is presented in Section 5.4. This solving method is applied 
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to our problem in Section 5.5, whereas Section 5.6 evaluates the solutions. 

5.1 Motivations and limitations 

The determination of acceptable multilateral transactions is not an obvious issue. Accord­

ing to the description of multilateral transactions of Section 2.4.2, an exponential number of 

possible multilateral transactions can be carried out during each negotiation. This section 

reviews the pros and cons of using multilateral transactions during negotiation processes. 

Do their advantages compensate their drawbacks? 

5.1.1 Mot iva t ions 

Multilateral transactions favor the resource traffic during negotiations and hence can facil­

itate the identification of acceptable transactions. When restrictive acceptability criteria are 

considered, only few transactions might be acceptable by an agent. For instance, within a 

population of rational agents, agents only accept transactions increasing their own utility 

value. Such negotiation processes limit a lot the resource traffic and may only achieve 

socially sub-optimal allocations. However, during a multilateral transaction, e.g., dur­

ing a one-to-many transaction 6A, the initiator can negotiate with a set of its neighbors 

A6 = {j, k} c M{. It can compensate a loss of utility from a part of the transaction in­

volving one neighbor, with the benefit resulting from a part of the transaction involving 

another neighbor. Thus, the use of multilateral transactions increases the number of ac­

ceptable transactions and negotiation processes may avoid local optima. Let us illustrate 

this phenomenon with an example. 

Example 5.1. Let us consider an agent population V = {0,1,2} where 5 resources are 

available, K = {r\,...,r^. Agents express their preferences by means of additive utility 

functions described in Table 5.1. The initial resource allocation is A = [{fi^K^K^}]- The 

social objective of this system is the maximization of the utilitarian welfare, but examples 

can be designed for any other notions of the social welfare theory. We also assume that all 
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agents are rational. Hence, they only accept transactions increasing their own welfare. 

Table 5.1: Multilateral transaction motivations - Example of agent preferences 

Population <P 

0 
1 
2 

Resource Set % 
n r2 r3 r4 

5 7 10 3 
7 5 4 5 
2 9 6 4 

Agent 0 is the initiator of a one-to-many transaction involving its two neighbors, 

agents 1 and 2, such that, according to Definition 2.7 of a one-to-many transaction, 

6 o 2 = KPm,p?0)'(Po2'P2o)} = {({ r i } '{ r 3M{ r 2 } '{ r 4 })}- A § e n t ° o f f e r s a § e n t 1 t h e r e s o u r c e 

set pL = {r\} and receives p^Q = {r^}. Simultaneously, agent 0 offers agent 2 another set of 

resource p6
Q1 = {r2} and receives p^0 = {r$}. 

This one-to-many transaction is rational and then acceptable since it leads to an increase 

of the utility of all involved agents, according to Table 5.2, which describes the utility of 

the involved agents before and after the multilateral transaction. 

Table 5.2: Multilateral transaction motivations - Evolution of utility values 

Population P 

0 
1 
2 

Agent utility 
Initially After S*2 

uo{{nr2}) = 12 u0({r3r4}) = 13 
«i({r3}) = 4 Ml({n}) = 7 
«2({r4}) = 4 u2({r2}) = 9 

However, the bilateral transactions 6j and 6̂  are not individually rational. Performed 

simultaneously, these transactions satisfy the rational acceptability criterion, but not indi­

vidually since one of them, 5^, is not rational. The initiator uses the utility savings from 

one part to compensate the loss of the other one. 

A multilateral transaction can be viewed as a sequence of bilateral transactions at the 

end of which all involved agents satisfy their own acceptability criterion. This criterion 

is not necessarily satisfied after each bilateral transaction of the sequence, as described in 

Figure 5.1. A sequence of acceptable bilateral transactions exists, changing successively the 
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initial resource allocation AQ to A\,A2, A3 and finally A4, which corresponds to a socially 

optimal resource allocation. All bilateral transactions of this sequence are acceptable. An 

acceptable multilateral transaction can be viewed as a sequence of bilateral transactions, 

which are not necessarily individually acceptable, but which ensure the acceptability of the 

achieved allocation. In this figure, the acceptable solution space is connected, but this is not 

the case most of time, especially when restricted social graphs are considered. In such cases, 

the use of multilateral transactions can be the only way to guarantee the achievement of 

socially optimal allocations. Some optimization methods have some similarities. In order 

to speed up the solving process or to leave local optima, some optimization methods 

accept to go through non-satisfiable solutions if they are sure that satisfiable solutions can 

be achieved later on. 

Acceptable solution s p a c e ^ - — - ^ 

/ Ax A 2 \ 

/ x * x \ 

/ / \ x 1A3 
Initial allocation AQ I x / \ / \ 

A' x* x AyOptimal allocation 

Figure 5.1: Interpretation of multilateral transactions 

5.1.2 Limitations 

Multilateral transactions have some significant drawbacks that must be considered. The 

first drawback is related to the quantity of information required to identify an accept­

able multilateral transaction. Indeed, an initiator may offer some resources to different 

neighbors simultaneously. In order to avoid an exponential number of offers that can be 

proposed to the different neighbors, the initiator can gather information about its neigh­

bors' preferences and their resource bundle. The initiator can then identify an acceptable 

multilateral transaction. However, to apply such a solving process, all neighbors must 
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accept to reveal their private information to the successive initiators. Without such an 

information gathering step, it is still possible to identify acceptable transactions, but it 

may require the explicit enumeration of all possible transactions. It may then compromise 

the scalability of just one negotiation and then a complete negotiation process may not be 

scalable. Thus, in order to use multilateral transactions in a scalable way, the information 

privacy must be sacrificed. 

Another important limitation depends on the social welfare notion that is considered. 

Indeed, each welfare notion does not lead to the same complexity of the solving process. 

There is no specific difficulty when utilitarian problems are considered. In the case of 

egalitarian problems, negotiation processes may face scalability problems. Indeed, as 

described in Section 4.2.1, the exact resolution may be time consuming, but it is still possible. 

But, when the Nash product is considered, such a method is not scalable. The exhaustive 

enumeration cannot be avoided to guarantee that no acceptable multilateral transaction 

exists among the involved agents. Thus, the determination of acceptable multilateral 

transactions is more or less complex and expensive depending on the social welfare notion 

considered. 

Bilateral transactions cannot guarantee the achievement of optimal allocations, for 

instance when the egalitarian welfare notion is considered (Proposition 4.7). Some classes 

of multilateral transactions can solve such problems, e.g., many-to-many transactions, but 

if the social graph is restricted, even the use of multilateral transactions cannot certify the 

achievement of socially optimal resource allocations. Proposition 1.3 is still true when the 

use of multilateral transactions is allowed. 

Example 5.2. Let us consider a population of four agents, V = {0,.. . , 3}, and a set of 

four available resources, % - {r\,...,r$\ which are initially allocated as follows: A -

[{^l}^}!^}^}]- Their preferences are expressed by means of additive utility functions that 

are described in Table 5.3. 

The relationships among the agents are represented by the social graph illustrated in 

Figure 5.2. The social graph topology is a chain, where agents know at most 2 neighbors. 
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Table 5.3: Multilateral transaction insufficiency - Example of agent preferences 

Population V 

0 
1 
2 
3 

Resource Set K 
n r2 r3 r4 

3 1 1 9 
1 3 1 1 
1 1 3 1 
9 1 1 3 

{ri} {r2} {r3} {u) 

Figure 5.2: Insufficiency of multilateral transactions - Example of social graph 

The objective is to maximize the utilitarian welfare. The optimal allocation is A' = 

[{^M^JfoHfi}]/ which is associated with the welfare value sxvu(A') - 24. However, even 

allowing multilateral transactions, no acceptable sequence leads r\ into agent 3's bundle 

and inversely r$ into agent O's bundle. Then, the socially optimal resource allocation cannot 

be achieved, even if multilateral transactions are allowed. 

A question can be raised: Since the achievement of optimal allocations cannot be 

guaranteed by the use of multilateral transactions, are their use justified in spite of their 

costs? In order to be interesting, an efficient method must be designed to determine 

acceptable multilateral transactions. 

5.2 Related works 

Efficient resource allocation is a complex issue and encounters very quickly some scalability 

difficulties. A formal classification of the transactions is proposed (Sandholm, 1998). The 

classification starts with bilateral contracts, e.g. gifts, swaps or clusters and ends with 

multilateral transactions such as the multi-agent contracts and the OCSM contracts that 

involve more than two agents simultaneously. These multilateral transactions can either 

be one-to-many or many-to-many transactions according to the resource traffic, as defined 

in Section 2.4.2. The author showed that the use of multilateral transactions is essential 
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in order to guarantee the achievement of optimal allocations, when the social graph is 

complete. However, only few works have studied their complexity (Endriss and Maudet, 

2005; Friedman and Rust, 1993). Multilateral transactions are difficult to determine and 

not necessarily scalable. 

In order to tackle the scalability issues, different studies suggest to use a restricted set 

of transactions. First at all, start with the simplest ones, then use more complex ones only 

when no simpler one is possible (Andersson and Sandholm, 1998). This iterated process 

leads most of the time to a local optimum. 

In the literature, generic models are proposed to solve problems under incomplete 

information, which are represented by means of types, which represents the agents' beliefs. 

Mechanism design is then used to create interaction rules among the agents of a society. It 

is a sub-field of microeconomics and game theory that considers how to design the rules of 

interaction in a game to achieve specific properties, for problems involving multiple agents. 

Most of the time, systems are populated by selfish agents who can misreport information 

about their preferences, in order to manipulate the mechanism and increase their profits. 

By properly designing the interaction rules, it is possible to incite the agents to report 

truthful information only. Mechanism design recently became a tool in computer science 

and operational research (Conitzer and Sandholm, 2002; Feigenbaum and Shenker, 2002; 

Dash et al, 2003), due to distributed systems, like Internet, which have many characteristics 

of an economy. Such approaches are typically used in applications where agents have 

limited resources (Kfir-Dahav et al, 2000; Dash et al, 2005) or in load balancing problem 

(Grosu and Chronopoulos, 2004). These studies are always based on selfish agents (Nisan, 

1999). Issues related to faithful mechanism are studied (Dash et al, 2004). Mechanisms are 

specifically designed to incite agents to report truthful information during negotiations. 

Recent studies (Sandholm, 2003) introduce the notion of Automated Mechanism Design. 

This approach tackles mechanism design as an optimization problem and proposes to 

automatically design the target mechanisms by means of optimization algorithms. The op­

timization algorithm defines the rules of interaction, hence the agents' behaviors. Integer 



180 

linear programs are used to model and implement Arrovian welfare functions (Sethura-

man et al, 2003). An algorithm for automated mechanism design was proposed in the 

context of bartering problems (Conitzer and Sandholm, 2004). Only bilateral exchanges 

are considered without side payments. Two agents are considered with up to 90 types, but 

the set of possible allocations is restricted to only 30 outcomes. However, the complexity 

of determining an optimal mechanism grows exponentially with the number of agents in­

volved in the transactions. The efficiency of such a mechanism is also discussed (Jameson 

et al, 2003). 

The determination of acceptable multilateral transactions is modeled in a context of 

automated mechanism designs. Agents can behave according to different acceptability 

criteria. Depending on which acceptability notion is considered, the constraints of the 

model change, as described in the next section. 

5.3 Problem statement 

This section describes the model that we propose to determine acceptable multilateral 

transactions. This model is adapted to the automated mechanism design problem. 

The definition of agent and utility function must be adapted to automated mechanism 

design problems. Let us note o the outcome of such problems and O the set of all possible 

outcomes. An outcome can be thought as a restricted resource allocation problem. Instead 

of considering the whole population f, only the agents involved in the multilateral trans­

action 6A are considered, V ~ A6 U {/}, and the set of available resources is restricted to the 

bundle of the involved agents, H' = (J %. Each agent i is defined by means of: 
ieP' 

• A finite set 0 , of U types, where each element 6. e 0 , defines preferences that indicate 

which outcome is preferred in a pair of outcomes; 

• A probability distribution P,- on 0,: pk is the probability that agent i reports the type 

• An utility function u, : 0 , x (9 —> R that allows the agent to evaluate an outcome. 
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The state of the multi-agent system is described by a type profile 6 = (8V...,6m), 

i.e., a vector composed by the types reported by the n§ involved agents into the current 

multilateral transaction SA: 6. is the type reported by the agent j e P' = A6 U {/}. The set 

of possible type profiles is denoted by 0 e ©i x • • • x &„6. The optimization problem is 

defined over the variables gK where a specific gK is the probability for the mechanism of 

choosing the outcome o^ eO when the types reported by the agents correspond to the type 

profile 6. A slight abuse of notation is used here, because G corresponds to a type profile, 

it is a little improper to use it as an index for the variables. 

The type of the mechanism characterizes the design of the mechanism: 

• A deterministic mechanism always returns the same outcome. It uses Boolean vari­

ables for a specific type profile: gk
Q 6 {0,1}; 

• A randomized mechanism returns a probability distribution per type profile. Thus, 

it uses real variables: g^ e [0,1]. 

Since all involved agents have an acceptability criterion to satisfy, a set of acceptability 

constraints must be added to the model. When agents are rational, individual rationality 

constraints are introduced in the model. Some variants of this notion are used in the 

literature (Mas-Colell et al, 1995). 

• Ex post: Each agent has to obtain equal or greater utility than initially, after he knows 

the outcome chosen by the mechanism. If there exists an outcome ojt which gives less 

than the initial utility of at least one agent for a given type profile 9, the constraints 

lead the variable g\ to 0. Hence, it is impossible for the designer to return such a 

mechanism. The constraints are defined as follows: 

36 G 0 , M,-(0, ofc) < «,-(©, oINIT) => g* = 0, ie<P,oeO. 

• Interim: Before knowing the outcome chosen by the mechanism, the expected utility 

of the agents are greater or equal on average than their initial utility. This interim 
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scenario incites the agents to participate in the transaction. However, these constraints 

do not guarantee the achievement of a greater utility. Indeed, the constraints are about 

expected utility, i.e., the average utility obtained over the type profile. In most cases, 

the agents obtain more than initially, but some cases may occur in which they obtain 

less. There is a part of uncertainty. With this concept, the constraints are defined as 

follows: 

okeO 

When agents are not rational but social, sociability constraints must be added to the 

model. Since such an acceptability criterion must be interpreted according to the social 

welfare notion considered, the expression of acceptability constraints also depends on it. 

Such acceptability constraints must ensure that the social welfare value increases with the 

current multilateral transaction. When the utilitarian welfare is considered, the summation 

of the utilities obtained by all involved agents must increase: 

Y Y Ui(6, ok)^e > Y Ui(6, oINIT), 6 e 0. 
ieP' okeO ieP' 

When the egalitarian welfare notion is considered, the poorest agent after the transaction 

must be richer than the poorest agent before: 

min ) Ui(6, ok)gi > min u,-(0, oINIT), 0 6 6 . 
okeO 

Agents have a set of types that they can report to others. Only one "true" type, 

denoted 0., from this set corresponds to the true preference of agent i e V. However, in 

the literature, it is assumed that an agent can misreport its type in order to manipulate 

the mechanism and to try to achieve a greater utility. Consequently, a set of incentive 

compatibility constraints must be added to the model. According to the kind of equilibrium 

required among the involved agents, the expression of the constraints may change. For 

instance, a Bayes-Nash equilibrium can be used, meaning that reporting truthful information 
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gives to the agents at least equal or greater utility, assuming other agents report truthful 

information too. Let 6 be the truthful type profile, i.e., in which all agents report truthful 

information. The constraints can then be written as follows: 

okeO ok&0 

Another possible equilibrium that can be used would be the dominant-strategy equilibrium 

where reporting truthful information gives to agents at least an equal or a greater utility 

even if the other agents misreport their types. The constraints for a dominant-strategy 

equilibrium are stronger than the constraints for a Bayes-Nash equilibrium. In the case of 

a dominant-strategy equilibrium, the constraints are defined as follows: 

£ ui(e_ir a, ok)gl > £ ui(d_if e\, o^ d,eee,i€P'. 
okeO okeO 

where 6_. is an incomplete type profile, without the type reported by agent i. Hence, 

Ui(0'_.ojt) corresponds to the evaluation by agent i of the outcome ok, when agent i reports 

truthful information &., and other agents report any information 6 . (either truthful or 

wrong types). 

Finally, the objective function must be defined. A social welfare function can be used 

here, or it is possible to define a specific objective for the initiator. For instance, in a rational 

society, an initiator may want to maximize it personal profit. In such a case, the objective 

function can be written as follows: 

Ui = Y_t YaUi<"e'°k^-
6e0 okeO 

When the objective function is either the maximization of the utilitarian welfare notion, 

or the maximization of the egalitarian welfare, the objective function can respectively be 
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written as follows: 

swu = 
9e0 
L 

swe = 
0e0 
L 

ieT> oeO 

min 7 udG, o^) 

&> 

ie-

5.4 Introduction to column generation methods 

This section is dedicated to the description of a method corresponding to the determi­

nation of acceptable multilateral transactions depending on the considered parameters. 

Unfortunately, the translation into an optimization formulation generates a huge number 

of variables, even for moderate problem sizes. Efficient solving methods must be used in 

order to ensure the scalability. 

Column generation (Chvatal, 1983) is a way to begin with a small and manageable 

part of a problem (only few of the variables), and solving this part. The analysis of the 

corresponding partial solution helps to determine the next part of the problem (one or 

several variables) to add to the model. This enlarged model can then be solved. Column­

wise modeling repeats such a process until it achieves a satisfactory solution to the whole 

problem. 

In formal terms, column generation techniques are solution methods for linear pro­

grams with a very large number of variables (e.g. exponential) where constraints can be 

implicitly expressed with respect to the variables. They are widely used for solving large 

scale integer programs whose solutions schemes rely on linear programming relaxations. 

Their general principle is described in the sequel. 

5.4.1 The master problem 

Let us consider an integer linear program with a huge number of variables, say n, and 

m constraints such that the relationship m « n is satisfied. The optimal solution of this 
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z = i 

system is denoted by z*. 

mincx 

subject to: Ax >b (5-1) 

x e Z + n . 

The classic method to solve integer linear programs corresponds to the so-called branch-

and-bound. For minimization problems, relaxations are used in order to get lower bounds 

on the optimal integer solution. The most used relaxation is the linear relaxation, denoted 

by (5.2), that corresponds to the solution of the following linear program: 

mincx 

Z*P = \ subject to: Ax > b (5-2) 

x > 0 . 

The variables x of the linear relaxation (5.2) corresponds to the columns of the matrix A. 

Thus, variables and columns are used indifferently in the sequel. The optimal solution of 

(5.2), which can be determined using either the simplex algorithm or the column generation 

technique, provides a lower bound. Indeed, the following relationship is satisfied: 

Z*P = 5 < Z*. 

Nowadays, linear programs are well solved in practice using effective implementations of 

the simplex algorithm, for example using the CPLEX software (ILOG Inc, 1995). However, 

when the number of variables is very large, it is better to use column generation methods. 

Column generation methods rely on a decomposition of the initial linear program into 

a restricted linear program and a pricing problem. The restricted linear program is often 

called master problem. It corresponds to a linear program associated with a restricted matrix 

A', which is a sub-matrix of A. Such a decomposition is illustrated in Figure 5.3. Here is its 
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guiding principle: if an optimal solution of the restricted linear program is identified, this 

solution may also be optimal for the initial linear program. It can be tested thanks to the 

signs of the reduced costs of the missing columns, i.e., those are not explicitly considered 

in the linear relaxation (5.2). 

c1 d 

A1 aJ 

Figure 5.3: Matrix decomposition of a linear program 

Column generation techniques proceed as follows: we consider a sub-matrix of di­

mension m x m, from the original matrix, say A1 = A'. For this sub-matrix, we solve the 

corresponding linear program, and obtain an optimal solution, denoted by xjp. Remember 

that c1 is a sub-vector of c, which corresponds to the columns of A1. 

mine1* 

subject to: A1x > b 
CPLEX 1 

> Y (5.3) 
0 < x < l 

xeWK 

A question should then be raised: "Is there a column a) e A \ A1 such as Cj < 0?" In other 

words, can we find a column of the matrix A \ A1 for which the reduced cost is negative? 

There are two possible answers: 

• NO: The optimal solution xjp of the system (5.3) is optimal for the initial program 

(5.2). 
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YES: Some columns must be added to the matrix A1 in order to find the optimal 

solution. In that case, the following system must be solved: 

CPLEX 9 /<- A\ 

— > xiP (5.4) 

min c2x 

subject to: A2x > b 

0<x< 1 

x e R"2, 

with A2 = A1 U {ai\ such that c; < 0. 

The process is iterated as long as we are able to find ; such as Cj < 0, i.e., a column for which 

the reduced cost is negative. When iterations are no more possible, the optimal solution 

for the initial problem (5.2) is achieved. 

The column generation technique needs either a feasible solution or an artificial solution 

in order to start. An artificial solution can be generated in insignificant time: the artificial 

solution corresponds to a set of columns, which constitute a square matrix with dimension 

equal to the number of constraints. That number is tiny compared to the number of 

variables. Moreover, in practice, it is more efficient to add a small set of columns than 

add columns one by one. Let one important remark be specified: in order to minimize 

the objective function, the algorithm needs a negative reduced cost, but if the aim is to 

maximize the objective function, the reduced cost that the algorithm looks for, is then 

positive. 

It remains the following question: "how to determine if whether or not there exists 

a column with a negative reduced cost?" To answer this question, the so-called pricing 

problem must be solved. 

5.4.2 The pricing problem 

Consider the current master problem, e.g. equation (5.3). In order to improve the current 

solution of the master problem, a column a) associated with a negative reduced cost is 
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sought. For that purpose, the pricing problem has to be solved according to: 

min c(a>) 
(5.5) 

with constraints on the elements of a) to guarantee that A2 c A, 

where A2 = (Al\a>). Indeed, A2 is the concatenation of A1 and a), i.e. the concatenation of 

the matrix previously considered in the master problem and the new column. 

For the master problem, the reduced cost is defined in the matrix form as follows: 

c = c - vA where v is the vector of the dual variables associated with (5.2). Hence, for 

column a), the expression of the reduced cost becomes: 

Cj = Cj - v1^ - Cjiai) - v1 • a), (5.6) 

where c, is the reduced cost associated with column a), and v1 is the optimal dual vector 

that is obtained when solving (5.3). 

The variables of the pricing problem (5.5) correspond to the m components of vector 

ah The constraints on a) come from the definition of the constraint matrix of the master 

problem, which must be a sub-matrix of A. 

Solving the pricing problem is equivalent to solving the following problem: 

c* = min{c(a) = c(a) -va:aeA}, 

where A = {a e Rm : {Al\a) is a sub-matrix of A). 

The pricing problem (5.5) is very often a combinatorial problem which is difficult to 

solve as it is often A/T'-complete. However, it is not necessary to solve it exactly at each 

iteration. Indeed, it is enough to design a heuristic and to use it in combination with an 

exact algorithm as described in the sequel. 

If the heuristic returns c such as c < 0, the production of an optimal solution is not 

important because an improvement of the current solution is possible: the associated 
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column is added to the current constraint matrix and a new iteration is carried out. 

However, if the heuristic returns c such as c > 0, the exact algorithm is called in order 

to check the sign of the optimal solution of (5.5), denoted by c*: 

1. c* = 0: there is no missing column with a negative reduced cost. Hence the optimal 

solution of the current master problem is indeed the optimal solution of the initial 

LP-relaxation. 

2. c* < 0: an iteration has to be carried out. 

The optimal value of the reduced cost c* provided by the exact algorithm cannot be positive. 

Indeed, in the case where the optimal solution has been identified, the lowest reduced cost 

is then associated with a column already added to the constraint matrix of the master 

problem. In this way, the associated reduced cost is zero. 

Hence, the heuristic searches after a column with a negative reduced cost, which means 

that the optimal solution for the pricing problem has not been found. As long as such 

columns exist, iterations have to be performed. If a positive reduced cost is returned, the 

exact algorithm is used. Then, if the provided exact solution is still positive, it does not 

exist a column with a negative reduced cost, and the optimal solution of the current master 

problem is an optimal solution of the initial LP-relaxation, whereas if the returned exact 

solution is negative, improvements can be done thanks to additional iterations. 

Figure 5.4 summarizes the solving process of column generation techniques. The dotted 

lines represent the different stages, including the pricing problem. 

5.5 Expression of the pricing problem 

Three kinds of constraints are required in the model: probability constraints ensuring the 

consistency, rationality constraints to check the agents' savings, and finally incentive com­

patibility constraints to prevent the misreport of information. Let A = (APROBA, AIR,AIC) be 

the constraint matrix of the current master problem. It consists of 3 sets of constraints. 
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Create an artificial solution 

Solve the master problem 

I 
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i c < 0 

! Heuristic ] 

""T" 
\YES ! Add the associated column 

to the master problem 

t°______ 
Exact Algorithm • 

r~~: 
' \ 

\ YES \ T < 0 >• 

NO 

Optimal solution 

Figure 5.4: Column generation solving process 



191 

Firstly, the sub-matrix PROBA comes from the constraints linked with the probability dis­

tribution. Secondly the IR sub-matrix comes from the individual rationality constraints and, 

thirdly, the ic sub-matrix comes from the incentive compatibility constraints. 

Let us denote E, a generic column of the constraint matrix, which is associated with 

a variable g^ and composed by various coefficients in each part. The dual vector can be 

decomposed in a similar way: 

a 

P 

y, 

V = 

-.PROBA 

ylR 

Then the formula of the reduced cost associated with a variable g^ becomes: 

ce,k = ce,k - vPROBA • ae'k - vIR • f'k - viC • y e > k . 

Let us introduce the following x^ and ye such as: 

if ojt is selected 

otherwise. 

if 0 is the type profile reported 

otherwise. 

Consider the first part of the column: 

(F)e'k = ae'k 

VWPROBA 

There are as many constraints related to the probability part as the number of type profiles, 

Xk =< 

Ve =• 
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|0 | . Hence, one index is enough to identify the element of that column part. 

ae'k 
i a e = 6' 

0 otherwise. 

Hence, the expression of the probability part of the inner product becomes: 

P̂ROBA . ae,k = £ v^Aae^ 

0'e© 

Then, let us consider the second part of the column: 

(£)?/ = f*. 

The number of individual rationality constraints is |01 x n, the number of type profiles times 

the number of involved agents. Hence, two indices are required for element identification 

in this part of column. 

Ui(d,ok) if 9 = 6' 

0 otherwise 
Pi,6' 

Hence, the inner product related to this set of constraints can be expressed as: 

iep 6'e® 

/ i ie'Pi.e 

ieP 

Finally consider the last part of the column, the one related to the incentive compatibility 
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constraints. 

( # = Ye'k-

The number of constraints is (|0| - 1) x |©| x n. In this case, the elements of this part of a 

column have to be identified by three indices. 

<i,B',B" 

Ui(6,ok) 

-Ui{6',ok) 

0 

Hence, that part of the inner product becomes: 

if 6 = 6' 

if 6 = 6" 

otherwise. 

.,ic _ ..6,k 

i€<P B'eQ e"£0 
B"*e' 

ieP e'ee e'ee 
6'±6 Q'*B 

= YJYJ \vie,e'u^e'°k) - ^e,eUi{d',ok)\ 

The final expression of the reduced cost is based on the summation of the three parts 

according to the analytic formula (5.6). Using the expressions of the previous inner products 

yPROBA. ae,k^ vm. p9,k a n ( j v\c . y6,k a n c j ^ e v a r i a bles introduced, an expression of the reduced 

cost associated with variable g* can be deduced: 

co,k = xkyeLk - vp
e
ROBA + £ U ( 0 , ok)(^

R
0 + £ v^ee) - £ M«(0', o * ) ^ 

ieP e'ee 
B'+B 

e'ee 

Constraints have to be added in order to ensure that the new generated column properly 

defines the constraints of the master problem: the mechanism has to return a probability 

distribution over the set of possible outcomes O, and each agent is able to report only one 
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type as its true type. 

^ xk = 1; 
okeO 

5.6 Experimental evaluations 

Two main facets can be evaluated in the context of resource allocation problems. The 

first one corresponds to an evaluation carried out from the agent's point of view, which is 

related to the cost and the efficiency of identifying an acceptable multilateral transaction 

in the agent's neighborhood (either one-to-many or many-to-many). The second facet 

corresponds to an evaluation carried out from the population's point of view, which is 

related to the efficiency of negotiation processes, especially on restricted social graphs. 

This second evaluation determines whether or not multilateral transactions significantly 

improve the efficiency of negotiation processes compared to their costs. 

5.6.1 Evaluation of multilateral transactions 

Let us consider agent i e V, who initiates a multilateral negotiation in its neighborhood. 

It gathers the information that it needs to design the suitable optimization model. The 

growth of the number of variables (g^, 6 € ©, o^ G O) according to the neighborhood size 

is described in Table 5.4. These experiments are characterized by the number of neighbors 

of the initiator i. All agents have only one type. For instance, when the agent initiator has 3 

neighbors involved in the multilateral transaction, and when all of them have 3 resources 

in their bundle, the optimization model has 3969 variables. 

Table 5.5 shows the growth of the number of variables (g^, 6 e ©, o^ e O) in the 

optimization model according to the number of types per agent. These experiments are 

characterized by the number of types per agent and the number of resources per agent. 

The initiator i involves 3 neighbors in its multilateral transaction bf. For instance, when 
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Table 5.4: Impact of the neighborhood size on the number of variables explicitly considered 

Neighborhood Size 

1 
2 
3 
4 

Number of Resources per Agent 
1 2 3 4 
1 9 49 225 
2 36 686 11700 
3 81 3969 236925 
4 144 11956 2093400 

each agent has 3 different types and 3 resources in its resource bundle, the optimization 

model contains 107163 variables. 

Table 5.5: Impact of the number of types per agent on the number of variables explicitly 
considered 

Number of types per agent 

1 
2 
3 
4 

Number of Resources per Agent 
1 2 3 4 
3 81 3969 236925 

24 648 31752 1875400 
81 2214 107163 6396975 

192 5184 254016 15163200 

The neighborhood sizes and the number of types per agent remain relatively small, but 

they are sufficient to show the evolution of the problem complexity. The main factor of the 

growth of the complexity is the number of agents involved in the negotiation: the number 

of possible exchanges increases exponentially with respect to the number of agents. The 

number of types per agent has only a secondary impact on the complexity: the number 

of type profiles increases exponentially with the number of agents and linearly with the 

possible number of types per agent. 

Experiments of this section evaluate the identification of a multilateral transaction, 

involving different number of participants with resource bundle of different sizes. The 

different curves on the following figures represents different population sizes. 

Figure 5.5 shows the rate of variables explicitly considered by the column generation 

method, i.e., the variables that have been added to the master problem. This parameter is 

important since the main drawbacks of automated mechanism design is its huge number 

of variables. Hence, any method that uses a small percentage of variables helps to apply 
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the automated mechanism design to larger instances, which are relevant in practice. 
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Figure 5.5: Number of variables (%) explicitly that are considered during the solving 
process 

Small instances (e.g., with 2 agents) have a higher percentage of considered variables in 

consequence of the low number of variables. Instances with only one resource per agent are 

not meaningful. Indeed, in order to efficiently use the column generation techniques, the 

constraint matrix must have a specific form: One dimension has to be much smaller than 

the other ones. However, if the instances are too small, e.g., 2 agents with 1 or 2 resources 

each, the number of variables becomes similar to the number of constraints. Then, the 

percentage of considered variables becomes higher. Figure 5.5 shows that the percentage 

of considered variables drops to less than 1% of the variables that must be considered by the 

simplex algorithm. This small percentage represents the efficiency of column generation 

techniques, which can then solve instances quite larger within the same memory space. 

Figures 5.6a and 5.6b summarize the computation time respectively for the simplex 

algorithm and the column generation technique, depending on the number of resources 

per agent and on the number of involved agents. Each agent has only one type. These 

figures show that the column generation technique becomes faster than the simplex al-

2 agents 
3 agents 
4 agents 
5 agents 

1 2 3 4 

Number of Resources per Agent 
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Figure 5.6: Comparison of the computation time that is required by the simplex algorithm 
in 5.6a and by the column generation techniques in 5.6b (each agent has only one type). 
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Figure 5.7: Comparison of the computation time required by the simplex algorithm in 5.7a 
and by the column generation techniques in 5.7b (each agent has two types). 
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gorithm beyond 2 resources per agent. The computation time of the simplex algorithm 

increases exponentially while it increases linearly associated with a weak slope in the case 

of column generation technique. Indeed, the number of agents has a significant impact 

on the number of variables and the column generation techniques are able to select the 

best variables to be explicitly considered. In these settings, since only one type per agent 

is allowed, the number of variables corresponds to the number of possible exchanges 

among the agents. This number of variables increases exponentially with the number of 

agents and the number of resources owned by each agent. It could explain the exponential 

growth of the computation time observed when the simplex algorithm is considered. The 

column generation technique, even with a straightforward approach to solve the pricing 

problem, is able to find the few variables associated with a reduced cost of the specified 

sign (respectively positive for a maximization problem and negative for a minimization 

problem). They correspond to the exchanges with a positive probability of being selected 

in the optimal solution. 

Figures 5.7a and 5.7b summarize the computation time respectively for the simplex 

algorithm and the column generation technique, depending on the same features (the 

number of agents and the number of resources per agent) but when an agent can have 

2 different types. The appearance of the curves remains similar as in the previous case 

of considering only one type per agent. The simplex algorithm computation time grows 

exponentially whereas the column generation technique results correspond to a linear 

growth associated with a weak slope. As previously, when the instances have a moderate 

size, the column generation approach is not really competitive. However, the advantages 

show up with larger instances with which the column generation approach is significantly 

better. 

We described a scalable method to determine acceptable multilateral transactions. Such 

a method remains scalable even when large instances are used. It is also possible to bound 

the number of neighbors that can be involved in a multilateral negotiation in order to 

ensure the scalability of the approach. Since an efficient method exists, issues related to its 
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effective use within a negotiation process must be addressed. 

5.6.2 Evaluation of multilateral negotiation processes 

This section is dedicated to the impact of multilateral transactions on the efficiency of nego­

tiation processes. The efficiency of negotiations based on social many-to-many transactions 

are evaluated by means of a comparison with the global optimal welfare value. This effi­

ciency is compared to the efficiency of negotiation processes based on (1,0) transactions, 

which are the most efficient transactions with utilitarian societies. Experiments are based 

here on systems populated by 50 agents, who negotiate 250 resources. Similarly to exper­

iments described in Chapter 4, agents negotiate sequentially, initiating the determination 

of an acceptable multilateral transaction involving its neighborhood. 

Table 5.6 shows the efficiency achieved by different negotiation processes, the first ones 

based on (1,0) transactions and the second ones based on many-to-many transactions. For 

instance, when the social graph that is considered can be represented by a grid, negotiation 

processes based on social gifts only achieve 86.2% of the optimal welfare value, with 

0.9% of standard deviation, whereas negotiation processes based on social many-to-many 

transactions can achieve 94.7% of the optimal welfare value, with a standard deviation of 

0.45%. 

Table 5.6: Efficiency (%) of multilateral transactions on negotiation processes depending 
on the social graph topology 

Social graph kind 

Full 
Grid 

Erdos-Renyi - p = 0.05 
Erdos-Renyi - p = 0.1 
Erdos-Renyi -p ~0.2 
Erdos-Renyi -p = 03 
Erd6s-Renyi -p = 0.5 
Erd6s-Renyi - p ~ 1.0 

Small world 

Social 6(1,0) 

100 0.0 
86.2 0.9 
83.1 1.36 
91.3 0.70 
95.4 0.38 
97.6 0.21 
98.9 0.12 
100 0.0 
91.4 0.78 

Social mtm 

100 0.0 
94.7 0.45 
94.3 0.76 
99.1 0.76 
99.9 0.02 
100.0 0.0 
100.0 0.0 
100.0 0.0 
99.5 0.13 

When full social graphs are considered, socially optimal resource allocations can be 
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achieved in both cases. Since social gifts are sufficient to ensure the achievement of optimal 

allocations, and since many-to-many transactions contain gifts, negotiations based on these 

transactions lead to optimal solutions. 

However, when the considered social graph is restricted, the efficiency of multilateral 

transactions is larger. When grids are considered, only 86.2% of the optimal welfare value 

can be achieved when negotiations are based on social gifts, while 94.7% can be achieved 

with multilateral transactions. Multilateral transactions favor a lot the resource traffic over 

the population, which limits the impact of the social graph topology. 

5.7 Conclusion 

Traditionally, negotiation among agents have been limited to the use of bilateral transac­

tions. However, when restricted social graphs are considered, multilateral transactions 

can favor the resource circulation and then help in order to achieve socially more interest­

ing resource allocations. The lack of scalable methods to efficiently determine acceptable 

multilateral transactions limits their use in practice. We propose a scalable method to 

determine acceptable multilateral transactions. These transactions improve the efficiency 

of negotiation processes, especially when restricted social graphs are considered. They fa­

vor the circulation of resources among agents, and hence allow solving processes to leave 

many local optima, but their use cannot guarantee the achievement of socially optimal 

allocations. Moreover, their use requires the relaxation of some assumptions that we made 

initially. Indeed, agents involved in a multilateral transactions must accept to reveal private 

information, such as their resource bundle or their preferences. This relaxation can be con­

sidered as a major drawback depending on the considered application, and consequently 

it may prevent their use. 

Thus, the use of multilateral transactions during agent negotiations leads to socially 

more interesting allocations without guarantee to achieve optimal solutions. Even if they 

improve the provided solution, especially when the mean connectivity of the social graph 
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is weak, the use of multilateral transactions requires to give up important assumptions 

related to the agents' autonomy. Depending on the considered application, the system 

designer will need to asses their interest. 



Conclusion and Further Works 

This chapter presents the conclusion of this thesis, coming back on the main issues. Our 

contributions are also presented with the main results we established. Finally, we describe 

the limits of this thesis throughout the presentation of interesting further works. 

Context 

Resource allocation problems have been studied for a long time, usually by means of cen­

tralized techniques, which are not well-adapted to variety of applications. Application 

characteristics like dynamism, privacy or restricted agent communications cannot be han­

dled in scalable ways. These features are essential to many applications. In this thesis, we 

focus on distributed solving methods based on local agent negotiations. A solving pro­

cess starts from an initial allocation that evolves step by step, thanks to local transactions 

between agents. In contrast to centralized techniques, agent negotiations ensure that the 

provided solutions can be achieved in practice, specifying transaction sequences leading 

to these solutions. 

The objective of this thesis is to design a distributed mechanism based on local transac­

tions leading agent negotiations to socially optimal allocations. In this purpose, we identify 

four important parameters that must be considered: the transactions, the interactions, the 

acceptability criteria and the social graphs. We identify the simplest kinds of transactions 

ensuring the efficiency of the negotiation processes. We also proposed a local acceptability 

criterion, allowing efficient negotiations among agents, even when restricted communica-

203 
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tion abilities are considered. We also introduce the notion of social graph, which represents 

the relationships between agents. In each case, we propose a negotiation setting ensuring 

the achievement of socially optimal allocations. 

Contributions 

We successively studied four notions of the social welfare theory in order to identify which 

agent's behavior can lead negotiation processes to socially optimal resource allocations. 

Generally, the individual rationality does not achieve socially optimal resource allocations. 

Indeed, this acceptability criterion is too restrictive, and a new one was proposed, which 

is based on the evolution of the social welfare value. It allows the achievement of socially 

interesting allocations. The main results and the efficient negotiation settings that we 

propose, are summarized in Table 5.8. Each column of this table corresponds to a specific 

welfare notions. 

When the utilitarian problems are considered, social gifts are sufficient to guarantee the 

achievement of optimal solutions on complete social graphs (Nongaillard et al, 2008b,a). 

The number of performed transactions and the number of attempted transactions are both 

polynomial. Agents' behaviors should be frivolous and flexible in order to favor the 

resource circulation. However, when the social graph is restricted, the achievement of 

optimal solutions cannot be guaranteed any more. Nevertheless, the utilitarian notion is 

flexible enough to allow a minimal resource traffic ensuring the achievement of socially 

interesting allocations. When social graphs are restricted, the most efficient negotiation 

policy is still based on social gifts (Nongaillard et al, 2009b). 

When the egalitarian welfare is considered, it is not possible to guarantee the achieve­

ment of optimal solutions using only bilateral transactions, even on complete social graphs 

(Nongaillard and Mathieu, 2009b,a). However, socially close allocations can be achieved 

using two transactions. Both social gifts and social swaps are required to ensure efficient 

egalitarian negotiations. Gifts allow to change the initial resource distribution, and swaps 
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allow improvements on the egalitarian welfare value, which is not possible with gifts. 

Theoretically, large bilateral transactions are required since they may lead to egalitarian 

improvements. However their cost does not justify the slight improvement that they bring. 

Egalitarian negotiations are also sensitive to bottlenecks in the social graph topology. A 

too weak mean connectivity of agents (with only one neighbor for instance) restrict the 

resource circulation a lot and hence the efficiency of egalitarian negotiations. These negoti­

ations are more time consuming than in the utilitarian case, but remain scalable even with 

large instances. 

The Nash welfare is a notion for which it is only possible to roughly estimate the optimal 

welfare value using centralized heuristics (Nongaillard et al, 2009a). Similarly to the 

egalitarian case, two kinds of transactions are required to negotiate efficiently: Social gifts 

and social swaps. However, bilateral transactions cannot ensure the achievement of optimal 

allocations, and Nash negotiation processes may then end on local optima. Nevertheless, 

such negotiation processes achieve socially closer allocations than the heuristics that we 

designed. Frivolous and flexible agent behaviors favor the resource traffic and then help 

in the achievement of interesting allocations. The Nash welfare is more flexible than the 

egalitarian notion, and is consequently less sensitive to social graph restrictions, even if a 

very weak mean connectivity handicaps negotiations. 

Finally, elitist societies have been studied. This welfare notion is very specific since 

it only considers the richest agent, neglecting all other agents. The rational acceptability 

criterion has no meaning here, and the most efficient transaction corresponds to an agent 

who offers its whole resource bundle. Indeed, any initiator has to give all its resource 

bundle to its partner if this one becomes richer than the initiator would become receiving 

the whole resource bundle of its partner. In other words, maximal clusters are the most 

suitable transactions to efficiently negotiate within elitist societies. When social graphs are 

complete, it is possible to guarantee the achievement of optimal solutions. However, it is 

no longer possible when restricted communication possibilities are considered. 

Multilateral transactions have been presented with their advantages and drawbacks 
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(Asselin et al, 2006). Such transactions favor the resource circulation and hence help in the 

achievement of more interesting allocations. However, when the social graph is restricted, 

they cannot guarantee the achievement of socially optimal allocations. They are expensive 

and time consuming to determine, and some assumptions must be relaxed: no information 

privacy can be considered. All agents in the initiator's neighborhood must report their 

private information in order for it to determine whether or not an acceptable transaction 

exists. A scalable method based on an optimization technique has been described, and the 

efficiency of these transactions has been compared to bilateral ones. Especially when the 

mean connectivity is weak, multilateral transactions may improve the provided allocations 

up to 10%, but does this improvement justifies the sacrifice of the agents' autonomy? 

Only application designers can find an answer to this question. Indeed, depending on the 

application, the autonomy of the agent cannot be relaxed, and then multilateral transactions 

cannot be efficiently used. 

Further works 

In the future, we propose to study different preference representations. In this thesis, 

we studied the efficiency of agents' negotiations according to several welfare notions. 

However, we always assumed that agents express their preferences by means of additive 

utility functions. Such a representation is quite restrictive since agents cannot express 

dependencies among resources. For instance, agents may associate a larger utility value 

with a set of resources than the simple summation of the utility associated with each of 

them. Sometimes, resources from a set may have an interest if the agent owns all of them, 

while individually they have no real value. Other restrictions cannot be expressed, like 

exclusions: agents may be satisfied or own either a resource or another one, but not if 

they own both of them. Agents' preferences can be represented by means of weighted 

propositional formula (WPF), which is a fully expressive representation. Any synergy can 

be expressed using logic formulas. Each resource is represented using a propositional 
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variable which is true if the agent owns the resource, and false otherwise. Numerical 

weights represent the relative importance of this formula. 

We also propose to study different models of generation for agents' preferences. In 

this thesis, no relationship has been considered between neighbors and their preferences. 

Indeed, instances have been randomly generated. However, in applications related to social 

webs, neighbors can be considered as "friends", which have a higher probability to have 

similar preferences. Then, topologies of social networks are related to agents' preferences. 

Such an assumption has an important influence on the resource circulation and on the 

optimal solution. The resource circulation would be easier among agents who express 

close preferences, which may facilitate the achievement of socially optimal allocations. 

Investigations on different functions for the evaluation of the individual welfare seem 

of interests. The welfare of agents depends only on the resources in their bundle. Such 

evaluation functions are called "free of externality". The agent welfare is independent 

of the welfare of others. However, in social networks, the notion of group should be 

considered. Agents belong to different groups or communities. The individual welfare of 

agents partially depends on the welfare of their group. Thus, agents may be satisfied if 

any agent of their group owns the resources they wished. Interesting simulations could be 

performed considering externalities among agents. 

Dynamic environments should also be studied. We always assume that negotiations 

take place in static environments. Indeed, neither the agents' preferences, nor the social 

graph topology can vary. However, in practice, the utility value associated with a resource 

may decrease in time. Indeed, an agent may lose interest in some resources while it may 

express an increasing interest for other resources. As well, the topology of the social graph 

cannot vary in our approach. However, in dynamic systems, new agents constantly enter 

with their resources while other ones leave. Arrivals of new agents change the network 

topology, affecting the resource traffic. With new agents, resources that were blocked 

somewhere in the system may circulate again, leading the negotiation process to socially 

more interesting allocations. The dynamic facet of resource allocation problems seems to 
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be of interest to us. 
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