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Abstract

Computation and Visualization of Invariant Manifolds

Zhikai Wang

In this thesis, we start with the basic concepts of dynamical systems. Then we introduce

the general types of problems that the well-known software package AUTO solves. AUTO
uses a boundary value algorithm with Gauss collocation and pseudo-arclength continua-

tion. These two features distinguish AUTO from other general ODE solvers for dynamical

systems. In order to compute 2D solution manifolds, AUTO uses orbit continuation. With
these tools, we study two famous problems, the Lorenz system and the Circular Restricted

Three-Body Problem (CR 3BP). We briefly discuss the basic bifurcation and stability anal-
ysis of general ODE systems. The numerical analysis of the two problems leads to the
newest algorithm to compute the 2D stable manifold of the origin of the Lorenz system and
the 2D unstable manifold of appropriate periodic orbits of the CR3BP. We utilize Python

for the flow control of AUTO. We also implement two visualization packages, QTPlaut and
MATPlaut. They make possible the processing of large quantities of AUTO solution data

with the OpenGL graphical library, dynamic memory allocation and interpolation methods.
We conclude with prospect for future research.
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Chapter 1

Introduction

In this chapter, we give some introductory concepts of dynamical systems. Then we discuss
how AUTO is applied to some problems of dynamical systems. We also present graphical

methods for visualizing AUTO results. An outline of the thesis is at the end of this chapter.

1.1 Dynamical systems

A dynamical system is the mathematical formalization of a deterministic process. The future

and past states of many systems can be derived to some degree by knowing their present
state and the governing laws. It is formed by three elements, the state space, the time set

and a family of evolution operators. The state space is the set of points characterizing all
possible states of the system. The evolution operators have two natural properties. First, the

system does not change its state "spontaneously". Second, the law governing the behavior
of the system does not change in time, namely, the system is "autonomous" . An orbit is an

ordered subset of the state space. It starts from a given point in the state space and has a

corresponding point for all elements in the time set. An orbit is also called a trajectory: see
[108].

In a global view, the atomicity of AUTO computations is orbit wise. Thus in this thesis,

the simplification or optimization of visualizing AUTO solutions will operate upon orbits.
They can be the reduction of actual orbits or interpolation operations on actual orbits.

An equilibrium or a fixed point is a point such that for all elements in the time set, the
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point will be mapped to itself by the evolution operator. A cycle or a periodic orbit is an
orbit such that after a certain time, each point in the orbit will return to itself.

The equilibria and the periodic orbits are like the outstanding landmarks or major routes

of a map when we are presenting a mathematically formalized dynamical system graphically.

1.2 Differential equations and the problems AUTO solves

A differential equation is an equation involving derivatives. The differential equation's order

is the highest order of the derivative. For example, we ha\'e the first order equation

x' = f(t,x),

where x' = ^, and f{t,x) is a continuous function of t and x. Many higher order
differential equations can be expressed as a system of first order equations. A system of ?
first order differential equations can be described by

u'(i) = f(i,u), u e Kn, t £ K, (1.1)

where K is the set of real numbers. If f is linear then the system is linear, otherwise

nonlinear. The dynamical systems we deal with are usually defined by ? ordinary differential

equations. ODEs for short. A different iable function u — u(i), u € M" is the solution of

the system if u(i) satisfies u'(i) = f(t, u(i)). If f has no explicit dependence on t, then
the ODE system

u' = f(u) (1.2)

is called autonomous; see [54] and [55].
The software AUTO can do a limited bifurcation analysis of algebraic systems

f(u,p) = O, (1.3)
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where O is the zero vector in K™, and f(·,·)> u G R". The main algorithms in AUTO are
aimed at the continuation of solutions of autonomous systems of ODEs of the form

u'(í) = f(u(í),p), where f(·,·), u(·) G M", (1.4)

subject to boundary or initial conditions and integral constraints. Above, ? denotes the
vector of free parameters. These boundary value algorithms also allow AUTO to do certain

stationary solution and wave calculations for the partial differential equation (PDE)

ut = Du11 + f(u,p), where f(·,·). O e R". (1.5)

In this thesis, we utilize AUTO's capabilities for Equation (1.3) and especially for Equation

(1.4) [34].

1.3 Stable and unstable invariant manifolds

"A manifold is a topological space that is locally Euclidean {i.e., around every point, there

is a neighborhood that is topologically the same as the open unit ball in R")'' [106]; see also

[12, 37, 38, 47, 59, 65, 82].
Let Uo be an equilibrium of the system (1.2) {i.e.. f(tto) = 0) and let A denote the

Jacobian matrix dî/du evaluated at Uo- Let ra_, no, and n+ be the number of eigenvalues
of A with negative, zero and positive real part, respectively. The equilibrium is called

hyperbolic if no = 0 and either n_ or n+. or both are greater than zero; see Figure (2.1)

[108]. "'The rank, index and signature of a matrix are called the invariants of the matrix, a
quantity which remains unchanged under certain classes of transformations. Invariants are

extremely useful for classifying mathematical objects because they usually reflect intrinsic

properties of the object of study" [37]; see also [6, 76]. For example, in linear algebra, if
a linear transformation takes a vector from a subspace back to the same subspace, such a
transformation is invariant; see [83]. In dynamical systems, an invariant set is a subset of

the state space such that after the evolution operation the point is still in the subset, for
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all elements in the time set [108].

Definition 1.1. An invariant set S C K" is said to be a Cr(r > 1) invariant manifold if S
has the structure of a C differentiable manifold [37, 85, 89].

We give two invariant sets for an equilibrium uo:

Ws(u0) = {u : u(í) -S>u0,i->+oo},

and

Wu(u0) = {u:u(í)->u0,í-> -oc}.

Definition 1.2. Ws(uo) is called the stable manifold of uo. W"(uo) is called the unstable
manifold of uo-

Ws and W" are manifolds of dimensions n_ and n+ respectively; see [108]. "A con-

nected topological manifold is locally homeomorphic to Euclidean ?-space, and the number

? is called the manifold's dimension" [106]; see also [46, 73, 82, 37]. In most cases in this
thesis, an orbit computed by AUTO is a one-dimensional manifold. The adjacent orbits

form a surface that is usually a two-dimensional manifold, which we can visualize using a
triangulated mesh with computer graphics packages.

1.4 Numerical methods for the computation of stable and

unstable manifolds

To find ? = (u, p) in Equation (1.3) for which f(x) = 0 with ? fixed, one can use Newton's
method; see [81]. For a modified Newton method, namely the Newton-Chord method for
nonlinear systems; see [108]. In AUTO, the tolerance settings for the Newton-Chord method
are crucial in deciding the precision of the numerical results.

It is difficult to find analytical solutions for most problems in dynamical systems. To
study a dynamical system, the numerical integration of an ODE system plays a key role

[10]. There are some general numerical integrators, like Eulers method, the Trapezoidal
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method, Runge-Kutta methods, the BDF methods (backward differentiation formulas), etc.
[17, 37, 40, 54, 55, 68, 81].

These methods can often be analyzed by Taylor expansion to determine the order of

accuracy. It is common practice to use one of the above numerical integrators. However,

such integration methods are of limited use. Key issues in the analysis of a dynamical

system, e.g. to pass a fold or to follow the bifurcated paths, which will be explained in later
chapters, need a more powerful algorithm.

Another basic numerical method is continuation. For the case of equilibria, the main

idea is to start with locating at least one equilibrium at certain fixed parameter values,

and then by varying one of the system's parameters, one follows the obtained equilibrium

with respect to this parameter. Special points may be detected during this continuation

process. In this thesis it will be shown that numerical continuation is also an extremely

effective method for computing 2D stable or unstable manifolds. We generalize work on
orbit continuation as given in [30].

There are two basic tasks for numerical analysis of dynamical systems. The first one

is to use continuation to find a solution family and analyze this family. The second is to

switch paths according to bifurcation analysis. Software for analyzing dynamical systems
and revealing their nature has been developed for decades. Early versions of such software

packages are for the computation of one-dimensional solution manifolds. As the computing
technology and numerical methods improve, software for dynamical systems can perform

more and more complex tasks. The work of Doedel's AUTO was started in the mid 1970s

with H. B. Keller at Caltech. The first publication on AUTO appeared in 1981; see [30].
For a description of the evolution of AUTO and related packages see [108]. It shows the
key role AUTO plays and its outstanding features compared to other packages.

1.5 Different approaches for computing 2D stable/unstable
manifold

A stable manifold can be computed as an unstable manifold when time is reversed in the

system. When we want to compute an unstable manifold, we could take a small sphere
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Ss in the appropriate eigenspace with radius d around an equilibrium uo, and evolve S6
under the flow to generate the manifold W"(uo). This is fine for one-dimensional unstable
manifolds, as the process just evolves two points at distance d from Uo under the flow.

When it is used for computing a two or higher dimensional manifold, the mesh we acquire

by discretization will deteriorate very rapidly. So the mesh cannot represent the two or
higher dimensional manifold W"(uo) properly. Different approaches have been developed
to solve this problem. The usual practice is to grow Wu(uo) from -a local neighborhood
(Sg) of uo. Such methods differ in the different mesh representations of WM(uo). Some of
these techniques are described below. For further references see [9] and [77] .

Most algorithms used for computing two-dimensional unstable manifolds are for vector
fields. Guckenheimer and Worfolk [49] describe a method to compute the two-dimensional
unstable manifold of the origin for a specific problem, the Lorenz system, which is also con-
sidered in this thesis. It starts with a small circle S^ around uo in the unstable eigenspace.

Then, by iterating, a family of circles can be obtained as the approximation of the unstable
manifold.

Krauskopf and Osinga [7, 8] compute W"(uo) as a sequence of geodesic circles. This
method computes new mesh points on the next geodesic circle by solving corresponding

boundary value problems appropriately. The growth of the manifold is a sequence of dis-
cretized geodesic circles until they are no longer smooth. Adaptive coordinate systems are
used to trace the manifold .

In the method of Guckenheimer and Johnson [69], the manifold is computed as a set of

curves. If the length of these curves grows very quickly, interpolations are used to place new
points on the curves such that the generation of the unstable manifold will be adequate.
The remaining issue is that if there are sharp folds, it is difficult to apply an interpolation
technique.

Doedel [9] computes unstable manifolds by following orbits that lie on the manifold by
numerical continuation. The procedure is stepwise and each step is treated as a two point

boundary value problem. The result is very accurate and the setting is flexible because

different boundary and integral conditions can be specified. In the two main approaches in
this thesis, we utilize Doedel's method, which we shall call orbit continuation.
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This thesis does not include the computation of one or two-dimensional unstable mani-

folds of maps; such methods can be found in [63, 67, 88].

1.6 Graphical methods to visualize AUTO solutions

As mentioned in the previous section, we use numerical continuation in AUTO to com-

pute the orbits that form the manifold. The latest \-ersion of AUTO is AUTO-07p [34].

The computational results of AUTO are formatted and written to the file system. We

utilize QTPlaut based on the QT libraries [96] to interpolate and make projections of the
AUTO solution files, acquiring a 2D or 3D graphically representable manifold. Then we use

QTPlaut and MATPlaut based on MATLAB [94] to refine the graphical representations.
Adjacent orbits in àn AUTO solution file can form a smooth surface. So we can triangulate
the mesh points along two adjacent orbits, which is how the triangulated surface of AUTO

solutions is built. QTPlaut not only ports the manifold to the format that MATLAB can
plot, but also is able to convert it into GTS [93] format. Further conversions from GTS for-

mat to various other formats like PMesh, Geomview, PLY, VRML, eie, can be done using

MeshViewer [95]. There are some common 3D mesh simplification methods [16] in various
libraries for the above mentioned mesh formats, like vertex clustering, vertex decimation,

etc.. The mesh we discuss here for 3D graphical models diners from the mesh mentioned in

Section (1.5).

The graphical simplification methods reduce the size of graphical meshes greatly. They
also retain the manifold topology very accurately. However, the manifold will be destroyed

in a dynamical system sense. When we are using orbit continuation, we must keep the
information of the orbits. The manifold should not be treated simply as a mesh. In the

implementation , the interpolations, projections, subsettings act only upon the orbits. Thus

we maintain the topology of adjacent orbits as much as possible.
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1.7 Organization of the thesis

Chapter 2 Orbit Continuation
We introduce the basic numerical concepts and methods underlying AUTO. We also

give computational results for two examples of dynamical systems.

Chapter 3 Elementary Bifurcation Concepts
We introduce basic but crucial concepts in bifurcation theory. They are applied in the

computations of Chapter 4 and Chapter 6.

Chapter 4 Computing the Lorenz Manifold
We compute the stable manifolds of the Lorenz system with AUTO. We also compute

the symbol sequence of heteroclinic connections that are encountered during the computa-
tion. Our results are visualized by QTPlaut "and MATPlaut.

Chapter 5 The Stability of Periodic Solutions

We discuss the stability analysis of periodic solutions for dynamical systems. The anal-

ysis is applied in the computations of Chapter 6.
Chapter 6 The Circular Restricted Three-Body Problem

We give a brief history of this problem. Our focus is the computation of the 2D unstable
manifold of the periodic orbits and the heteroclinic and homoclinic connections. We also

visualize the results with QTPlaut and MATPlaut. The computational work is an extension
of the AUTO demo 'r3b'.

Chapter 7 Conclusions and Prospects

An overview is given of the work we have done and possible future improvements are
suggested.

This thesis uses the methodologies and algorithms implemented in AUTO rather than
contributes to bifurcation and dynamical systems theory. We "compute" and "visualize'"

numerical results. Crucial background material is discussed, and the sources are listed.
The development of QTPlaut and MATPlaut is independent work. The study of symbol

sequences of the heteroclinic connections of the Lorenz system and the study of the connec-
tions of the L families in the CR3BP can be considered as independent work, but they are

not possible to achie\'e without existing AUTO examples.
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Chapter 2

Orbit Continuation

In this chapter we introduce the basic numerical concepts and methods underlying AUTO.
At the end of this chapter, we will give computational results for two examples of dynamical

systems.

2.1 Stability of equilibria

The solution of an ODE system gives the orbits or trajectories of a dynamical system. It

is very important to study whether trajectories that evolve close to each other display a
similar qualitative behavior. We start our analysis from an equilibrium.

An equilibrium is stable if the system will return to the same state after small distur-

bances. If the system does not stay at the equilibrium after small disturbances, then the
equilibrium is unstable.

In Equation (1.2), we have Uo as an equilibrium point, that is, f(uo) — 0. The equilib-
rium point Uo has the following classifications:

• It is called stable if, for each e > 0 there is a d > 0 so that whenever |u - uo| < d,
then |u(f) - u0| < e for all t > 0;

• It is called unstable if it is not stable;

• It is called asymptotically stable if it is stable and there is some d > 0 so that u(i) -» Uo
when t —> oo for all u(0) with |u(0) — uo| < d.

9



Generally, we will only consider asymptotic stability in this thesis.
"The phase portrait of a dynamical system is a partitioning of the state space into

orbits" [108]. One of the major tasks of this thesis is to compute and present the orbits of
a dynamical system.

The solutions of a linear system can often be found explicitly. However, real life problems

are usually modeled by nonlinear systems. The behavior of a dynamical system around an
equilibrium can be described by a procedure called linearization, which provides the desired

local qualitative description of the solution of a nonlinear system in a linear way. Consider

the autonomous system (1.2) in a two-dimensional case. Let u — («i,t¿2)T and write the
system as:

«Í = /l(«l,«2),
[Z. L)

«2 = /2(W1, U2),

where «1,^2 G R-, /11/2 : K2 h-> R and (·)t denotes the vector transpose. The Taylor
expansion at an equilibrium (??^,?,®) of the system gives

/l(«l,U2) = ^K,^)(«l-«?) + ^K,«§)(«2-^)+t.h.O.,.
/2(«l:«2) = g£(«?, «§)(«! - «?) + ^K,«§)(«2 - tig) + t.h.O..

where t.h.o. denotes the terms of higher order, namely 0(|u - u°|2) and /i(«î, M21) = 0,
/2(1*?, «2) = 0· The Jacobian matrix is

C =
/ e/ii„o ,^ M(uo oxu2v 1. 2; , (23)
V^(«ï.«§) si« «s)

The linear system (u — Uo)' = f„(u — Uo) locally approximates the non-linear system (1.2);
see [81]. The roots Xi, i — 1, 2, ... ?, of the characteristic polynomial det(f„ — ??) = 0
are the eigenvalues of the system's Jacobian at uo- In E2, there are three basic types of
equilibria. Their types are indicated by the values of the eigenvalues: see the Table (2.1)

and Figure (2.1). For further references see [81] and [108].
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Equilibrium type
Node

Focus

Saddle

Characteristics of eigenvalues
Two real eigenvalues of the same sign
A pair of conjugate complex eigenvalues
Real eigenvalues of different sign

Table 2.1: Classification of equilibrium points

2.2 Continuation of solutions

2.2.1 Regular solutions

Consider the equation

G(u, ?) = 0, u, G(-, ·) G En, AeR. (2.4)

With ? ? (u, ?), Equation (2.4) can be re-written as

G(x) - 0, G : Rn+i -»«+1 _>. TCP" (2.5)

We have a solution xo of G(x) = 0. xo is regular if the ? (rows) by ? + 1 (columns) matrix
G^ ? Gx(xo) has maximal rank. Near a regular solution xo, there exists a unique one-
dimensional continuum of solution x(s), called a solution family or a solution branch; see
[30].

2.2.2 Parameter continuation

The discussion in the previous section hints at a way of getting a family of stationary
solutions of a dynamical system, which is usually the first step in analyzing the system.

Suppose we have a solution (uo, Ao) of G(u. ?) = 0 and the direction vector ùo = du/dX.
The computation of a solution uj at ?? = ?? + ?? can be done by solving the system (2.4)
for u using Newton's method. We get the following system

» (")Gu«\ A1)Au^
u

-G(U^A1):
uW + Aul"1, !/ = 0,1,2,.

(2.6)
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(n+,n_)

(0,2)

(1,1)

(2,0)

Eigenvalues Phase portrait

> Ì*C < Node

focus

<? Q >rr saddle

^- node

focus

Stability

stable

unstable

unstable

Figure 2.1: Basic equilibria types in R2 [108].

At the first step of the iteration, we set Uj = u04-AAùo. If Gu(ui, Ai) is nonsingular and
?? is sufficiently small, this iteration will converge. After Ui is obtained, the new direction

vector uj can be computed by solving system Gu(ui, Ai)Ui = — G>(ui.Ai).
Parameter continuation will typically fail if the solution family has a fold. For details

12



see Section (3.1).

"u"

* ? du . « ,u(=—at A0)

? 0 "1

Figure 2.2: Graphical interpretation of parameter continuation [30].

2.2.3 Keller's pseudo-arclength continuation

(un, Xn)O' vo

0 '?

Figure 2.3: Graphical interpretation of pseudo-arclength continuation [30].

13



AUTO uses Keller's pseudo-arclength continuation which, in particular, allows the con-

tinuation to pass a fold. Given a solution (uo, Ao) of G(u, ?) = 0 and the direction vector
(Uq, A0), the system to solve for (ui, A1) is

G(U1, Ai) = 0 ,

(U1 - U0, U0) + (Ai - A0)A0 - As = 0 ;

here (·, ·) denotes the dot product of two vectors [30]. The Newton iteration will be

(2.7)

/ (GJ1)W (G\)M1\(") \
,\T\ u0 A0

/ ?,» \

J
Au

MV ??G j

I G(U^, A^)
^ (u^ - U0, U0) + (A^ - A0)A0 - As

with the new direction obtained from

The Jacobian of the pseudo-arclength system is nonsingular at a regular solution point; see

[30].

2.3 Boundary value problems

Suppose we have a first-order system of ordinary differential equations

u'(í)-f(u(í),M,A) = 0, ie[0,l],

where

u(.),f(-) e M", AeM, µ e R"".

It is subject to boundary conditions

b(u(0),u(l), µ, A) = O, b(·) G Mn\

14



and integral constraints

/ q(u(s),M,A)ds = 0, q(-) G Rn*.Jo

AUTO obtains solutions by solving such a boundary value problem (BVP) for u() and µ.

We require that ?µ= n\, + nq- n> 0. for this problem to be formally well-posed. Above,
? is the continuation parameter in which the solution (u, µ) may be continued. A simple

case is that where nq = 0, n& = n, and ?µ — 0.

2.3.1 Orthogonal collocation

AUTO uses orthogonal collocation with piecewise polynomials to solve boundary value prob-
lems [14, 97]. It gives very accurate results and allows adaptive mesh-selection. We briefly
describe the set-up .

First, there is a mesh

{0 = to < ¿i < - <tN = 1},

with

hj=t3-tj^, (l<j<N).

The space of (vector-valued) piecewise polynomials P™ is defined as

P^ = {p,eC[0,l] : pil^^eH,

where P'm is the space of (vector-valued) polynomials of degree < m. The orthogonal
collocation method with piecewise polynomials [99] is to find p/¡ G ?™ and µ G ?.?µ, so the
following collocation equations are satisfied:

P'h(zj,i) = {(Ph(zj,i)-ß,>>), 3 = !,-, N, i = l,...,m,

and Pf1 also satisfies the boundary and integral conditions. The collocation points Zj¿ in

each subinterval [í¿_i,íj] are the (scaled) roots of the mth-degree orthogonal polynomial
(Gauss points): for a graphical interpretation see Figure (2.4). Since each local polynomial

15



is determined by (m + l)n coefficients, the total number of degrees of freedom (considering

? as fixed) is (t? + 1)?? + ?µ. This is matched by the total number of equations:

collocation : mnN,

continuity : (N — l)n,

constraints : n^ + nq (= ? + ?µ).

If the solution u(i) of the BVP is sufficiently smooth then the order of accuracy of the
orthogonal collocation method is m, i.e.,

Il Ph- u lu- 0(hm).

At the main mesh-points tj we have superconvergence:

i—eto h h

hdt)

'¿-2/3 '¿-1/3

local collocation points

local Lagrange basis points

local basis polynomials

Figure 2.4: The mesh { 0 = t0 < h < ¦ ¦ ¦ < tN = 1 }. Collocation points are shown for the
case m = 3.
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mSXj\ph(tj)-u{tj)\ = 0(h¿m).

The scalar variables µ are also superconvergent [14]. Combined with good mesh adaption
strategies, this method gives very accurate solutions. This orthogonal collocation method

with piecewise polynomial has been implemented very efficiently in AUTO.

2.4 Implementation of the orthogonal collocation method

In AUTO, the discretization of orbits uses the method of orthogonal collocation with piece-
wise polynomials. The number of collocation points per mesh interval is between two and

seven, see [14, 97, 98]. The Lagrange basis polynomials for each subinterval [i,-_i,ij] are

{tj,i(t)} -, J = 1,2,·· -,JV, ¿ = 0,1,2,-··, m ,

defined as
t - ? .'*<'>=. n,.tj ,_.:.¦ &

where

k

t ^=tj--hj . (2.9)

See Figure (2.4) for an illustration. The local polynomial is then of the form

m

Pj (t) = l>.iW "J- ± ¦ (2-10)
¿=0

With this choice of basis, u, will approximate u(<j), and u-x will approximate u(i-_j_),
where u(i) is the solution of the continuous problem.

As described before, the collocation equations are

P^) = I-(Pj (^.?,µ, ?), ¿ = 1,2,·· -,m, J = 1,2,.··, TV . (2.11)
17



The discrete boundary conditions are

6¿(u0,ujv,m, ?) =0 , i = l,--- ,nb . (2-12)

The integrals can be discretized as

Nm

SS?-^ ^(1V i ' P ' ?) = 0 - fc=l,---.ra9, (2.13)
J=I J=O

where the LJj1J are the Lagrange quadrature coefficients.
The pseudo-arclength continuation equation is

/ (u(í)-uo(í),uo(í)) dt + (µ-µ0,µ0) + (? - A0)A0 -As = O,
./o

where (??0,µ0, ?0) is the previous computed solution of the solution family, and (U0, µ, ?)
is the normalized direction of the solution family at the previous solution. The pseudo-
arclength equation can be discretized as

Nm

EEwJ^uj-- " (uo)j~±Á^o)j-±) + (µ-µ0,µ0) + (A-A0)A0-As = 0,
J = I j=0

where lojj denotes quadrature weights.

2.5 Orbit continuation

AUTO can also use continuation to compute solution families to initial value problem. It

has a great advantage over integration of a large number of initial conditions, because the

manifold described by the orbits is well covered. Even when the system we are solving has
very sensitive dependence on the initial conditions, orbit continuation still gives reliable
results.

Suppose a dynamical system in the general form

u' = f(u)

18



has a saddle equilibrium Uo with a two-dimensional unstable manifold. For the case of a
stable manifold the integration time T will be in the negative direction. Suppose we know

that the Jacobian fu(uo) has exactly two positive real eigenvalues µ\ and /¿2 with µ? > µ^.
Let vi and v2 be the respective eigenvectors. We want to use continuation to compute the

corresponding unstable manifold. We write the system in a scaled time format ( a detailed
derivation is in Chapter 4 )

u'(t) = Tf(u(f))·

The initial condition is

u(0) = U0 + ¿(cos(0)vi - sin(0)v2), (0 < ? < 2p),

i.e., u(0) lies on a small closed curve around uo- The choice of ? G [0, 2p), guarantees
that the manifold spanned by the two eigenvectors will be fully covered, at least in some

neighborhood of uo.

At first, we set a fixed T. Normally we choose ? = 0, so that u(0) = uo + ávi, where vi is
the eigenvector corresponding to the larger eigenvalue µ? . In this case, the orbit can usually

be computed for sufficiently long time. Once the starting orbit is obtained, for example,
a desired length is obtained, this orbit is subsequently continued numerically, where the

initial point on the small closed curve around uo, i.e., as controlled by T, is now one of the
continuation valuables. In this step, the system can be formalized as F(X) = 0, where

F(X)
u'(i) - T f(u(<))
u(0) - A(COS(O)V1 - sin(0)v2) (2-14)
TJ01 H f(u(s)) H ds -L.

Suppose we have the solution X¿. Then obtain X¿+i by solving

F(X2+1) = 0 ,
(2.15)

??+1 -X11X,) - As = 0.
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Here, ||X¿|| — 1 and X ? (u(-),ö, T), while L and d are fixed. We note that we do not
just change the initial point (i.e., the value of Ö), and that the continuation step size As

measures the change in X [30].

2.5.1 Example 1, AUTO demo um2

Consider the system

u' = f(u),

where

u and f(u)
' tu\ — m|

V U2 + Uf

We see that point u = 0 is an equilibrium. The Jacobian is

/
fu(u) = -3w|

3«f

(2.16)

and

fu(0) =
0 1

From det(fu — µ I) = 0, we get the two eigenvalues µ? — e. /¿2 — 1. If e > 0, we
have a 2D unstable manifold at the equilibrium point (0, 0). This system is a good example
showing the sensitive character of the initial condition when e is small and positive. We use

the AUTO demo um2 to compute families of orbits for different values of e . In order to show

the performance of AUTO in dealing with such an initial condition sensitive problem, we
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also use an explicit ODE integrator. The choice is the fourth-order Runge-Kutta method,

Ic1 = ?? f(í„ ,Un) ,

k2 = Atï{tn + — , u„ + - Ic1) ,

Ic3 = ?? f(?? + — , u„ + - Ic2) ,

Ic4 = ?? f(?„ + ?? , Un + k3) ,

Un+1 = un + - Ic1 + - k2 + -k3 + - k4 . (2.17)

We use a C++ program to extract the initial points from AUTO results, and then we

integrate the system from these initial values. The solution of AUTO and the solution of

the fourth-order Runge-Kutta method are put in the same figure with QTPlaut. For the

best visual effects, we plot the results as Figure (2.5) to (2.9) using MATPlaut. In these
figures, the results of AUTO are colored blue and the results of the fourth-order Runge-

Kutta method are colored red. In both methods, the computation starts from a small circle

centered at the equilibrium point (0, 0) with a radius 0.1 and ends when the end point is at

distance 0.6 from the origin. In the Runge-Kutta method, ?? is 0.001. Since the method

is 0(??4), it has rather high accuracy. The accuracy setting of AUTO can be defined in
the constants files. We observe that when e — 1.0 and e — 0.5, the results of both methods

coincide, and the 2D-manifolds differ little graphically. In these cases, since it is an explicit

method, the fourth-order Runge-Kutta method is faster. However, as e decreases to 0.05,

the Runge-Kutta method is incapable to cover the same manifold that AUTO generates.

Not only do the two manifolds fail to coincide, but also the orbits computed by the Runge-

Kutta method jump and fail to form a smooth manifold. However, Equation (2.16) shows
that the solutions of the um2 demo form a smooth 2D-manifold. When e = 0.005. the

Runge-Kutta method fails to cover the manifold shown in Figure (2.8). We further change
?? to 0.0001, but in the graphical presentation, see Figure (2.9), there is no significant
improvement. We can decrease ?? even further, but the integration will take noticeably

longer time and the results don't improve, whereas AUTO is able to cover the manifold
even when e is as small as 10^10.
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2.5.2 Example 2, AUTO demo um3

The system discussed in the above section can be extended to a three-dimensional system
as follows:

u' = f(u),

where

u = U2

\u3 J

and f(u) =
' eui - u% + M3* »

U2 + u\
y -U3 + u\ j

(2.18)

Here

fu(u) =
-3u| 3m|

3m?
V

0

2M1 0 -1 /

where the point (0,0,0) is an equilibrium. The eigenvalues at (0,0,0) are µ? — e, µ2 — 1,
µ3 = — 1. Thus we have a 2D unstable manifold and ID stable manifold at the point (0, 0, 0).
Again we compare the Runge-Kutta and the continuation methods discussed previously, as

illustrated in Figures (2.10) to (2.12). When e = 1, in Figure (2.10), the manifolds spanned
by AUTO and the 4th-order Runge-Kutta method agree. When e = 0.5, in Figure (2.11),
there are subtle differences in the manifolds. When e — 0.05, the Runge-Kutta method

again fails to span the manifold as AUTO does.

In both examples, the 4th-order Runge-Kutta is inaccurate not only because its graphical
representation does not coincide with the results of AUTO, but also because the orbits

jump irregularly, so that adjacent orbits will not form a part of a smooth manifold. This
contradicts the smooth variation of the mathematical solutions of the system.

2.5.3 Discussion

Initial condition sensitive equations may have sharp turns in the trajectories governed by

the evolution laws. An explicit integrator fails at dealing with such equations. Like walking

in the dark with a dimmed flash light , a good solver of dynamical systems like AUTO judges
its step according to the known situation. At sharp, bumpy turns, it will take careful steps.
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When the road is straight and even, it will stride with confidence and speed. When things

go wrong, it can provide analysis, step back or suspend for user interaction. AUTO utilizes
Keller's pseudo-arclength algorithm which enhances convergence at each step. It also utilizes

dynamic mesh adaption and it uses collocation with super-convergent accuracy. Further,
AUTO uses orbit continuation on entire trajectories to span the manifold. For these reasons

the computational results are more likely to have the smoothness that can be derived from
their mathematical formalization.

For further references of the algorithms in AUTO see [30].
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Figure 2.5: AUTO demo um2 with e = 1.0. The results of AUTO are colored blue; the
results of the 4th-order Runge-Kutta method with At = 0.001 are colored red.

Figure 2.6: AUTO demo um2 with e = 0.5. The results of AUTO are colored blue; the
results of the 4th-order Runge-Kutta method with ?? = 0.001 are colored red.
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-0.65

Figure 2.7: AUTO demo um2 with e = 0.05. The results of AUTO are colored blue; the
results of the 4th-order Runge-Kutta method with At = 0.001 are colored red.

Figure 2.8: AUTO demo um2 with t. = 0.005. The results of AUTO are colored blue; the
results of the 4th-order Runge-Kutta method with At = 0.001 are colored red .
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Figure 2.9: AUTO demo um2 with e. = 0.005. The results of AUTO are colored blue; the
results of the 4th-order Runge-Kutta method with ?? — 0.0001 are colored red.

Figure 2.10: AUTO demo um3 with e = 1.0. The results of AUTO are colored blue; the
results of the 4th-order Runge-Kutta method with ?? = 0.001 are colored red.
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Figure 2.11: AUTO demo um3 with e = 0.5. The results of AUTO are colored blue; the
results of the 4th-order Runge-Kutta method with At — 0.001 are colored red.

4-

Figure 2.12: AUTO demo um3 with e = 0.05. The results of AUTO are colored blue; the
results of the 4th-order Runge-Kutta method with ?? = 0.001 are colored red.
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Chapter 3

Elementary Bifurcation Concepts

In this chapter, we introduce basic but crucial concepts in bifurcation theory for this thesis.

In Chapter 2, we gave two examples for which the manifolds can be computed without
bifurcation analysis. However, the computations in Chapter 4 and Chapter 6 can not be

done without such analysis. A discussion of the stability of periodic solutions is given in

Chapter 5. For a further reference for this Chapter, we refer to [81].

3.1 Bifurcation and bifurcation diagrams

Consider a finite dimensional system

f(u,A) = 0, ue Rn, f(·,·) G 1" and ? e 1. (3.1)

We first consider the case ? = 1. We apply the chain rule to f(u(X), X) = 0 to help us to

identify the relation between the value of ? and the solution. We get

OJMaU + Of^X1 _0Ou dX dX

Thus the relation between u and ?

du _ df/dX
dX df/du

28
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There are three basic cases in deciding the nature of the solution family of u(X).

fu(uo, ??) f 0: The curve can be uniquely continued in a ?-neighborhood,
that is, the curve is smoothly continuable.

fu{uo, Ao) = 0 and f\(uo, ??) ? 0: The tangent of the curve u(X) is not
defined.

fu(uo, ??) = 0 and f\(uo. ??) = 0: The tangent of curve u(X) is not unique.

We need special methods to find the tangent (s).

In the case u 6 M", we require a measurement of the vector u. We shall use the no-

tation [u] for such a scalar measure of u. For example we can choose

[u] — Uk, for some k, 1 < k < n;

[u] = \\uh:={u\ + ul + ... + ulY12-
[u] = ||??||?? :=max{|ui|.|«2|,..., |«n|},

where || · || denotes the norm of a vector. Equipped with a scalar measure [u] of the vector
u, we are able to depict the solutions of Equation (3.1) in a diagram like Figure (3.1).

Definition 3.1. A diagram depicting [u] versus ?, where (u, ?) solves Equation (3.1), is
called a bifurcation diagram.

Solutions may form continua, reflected by continuous curves in bifurcation diagrams.
The continua of solutions are called branches or solution families.

Definition 3.2. A branch point or bifurcation point (with respect to ? ) is a solution (uo, ?)

of Equation (3.1), where the number of solutions changes when ? passes ??·

While varying the parameter ?, a point where solutions begin to exist can be a fold.
Other names used for a fold are limit point, turning point, or saddle node bifurcation. We

call a solution family or a part of a solution family stable (unstable) if all its solutions are

stable (unstable). A family is periodic, symmetric, or stationary if its solutions are periodic,
symmetric, or stationary. We see that locally there are no solutions on one side of a fold and

29



i, [u]

/
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/

/

*(2)

(i) ^-\
/ ^ ^

?

Figure 3.1: An example bifurcation diagram [81].

two solutions on the other side. At a fold, two solutions are born or two solutions annihilate

each other. We can also characterize a bifurcation point geometrically: two branches with

distinct tangents intersect at a bifurcation point .

Several key concepts from linear algebra are crucial for bifurcation analysis. "The col-
umn space of a matrix is the set of all possible linear combinations of its column vectors.

The column space of an m ? ? matrix is a subspace of m-dimensional Euclidean space. The
dimension of the column space is called the rank of the matrix. The column space of a

matrix is the range of the corresponding matrix transformation'" [15, 24, 41, 83, 84, 106].
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Definition 3.3. Let u be an ?-vector, (uo, ??) is a simple stationary bifurcation point if
the following four conditions are true:

f (U0, A0) =0;
rank of fu(uo, Ao) = ? — 1;

f\(u0, A0) € range fu( U0, A0); and
exactly two branches of stationary solutions intersect, with two distinct tan-

gents.

Definition 3.4. (uo, Ao) is a (simple quadratic) fold (also referred as a turning point, a fold
bifurcation, a limit point bifurcation, or a saddle-node bifurcation) of stationary solutions

if the following four conditions are met:
f(U0, A0) =0;

rank of fu(uo,Ao) = ? — 1;

f\(uo, A0) i range fu(u0, A0), that is, rank (fu(u0, A0)|fA(u0, A0)) = n; and
there is a parameterization ??(s), ?(s) with ??(s?) — uo, ?(s?) = Ao, and

d2X(ao)/da2 f 0.

For further details, see [81].

3.2 Hopf bifurcation

The bifurcation that connects equilibria with periodic motion is the Hopf bifurcation.

Definition 3.5. A bifurcation from a branch of equilibria to a branch of periodic oscillations
is called Hopf bifurcation.

Poincaré proved basic results about the Hopf bifurcation; in 1929, Andronov studied the

planar case [I]. These early results refer to the bifurcation from equilibria to limit cycles as
the Poincaré-Andronov-Hopf bifurcation. The name "Hopf bifurcation" is nowadays more

commonly used, in recognition of the work of Hopf, who considered the n—dimensional case:
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Theorem 3.6. (Hopf 1942 [28]) Assume for f <E C2
f(uo, A0) =0;

fu(uo, ??) has a simple pair of purely imaginary eigenvalues µ(??) — ±iß
and no other eigenvalue with zero real part; and
d(Re µ(??))

d\ F 0.

Then there is a birth of limit cycles at (uo, ?). The "initial period" ( i.e... in the limit
toward the zero-amplitude oscillation) is

T0 =
2p

?t?(µ) i

ß ??

Re(ß)

Figure 3.2: The path of eigenvalues of fu(u(A),A) related to the Hopf bifurcation, as A
passes through Ao [81].

The Hopf bifurcation theorem is a local result. It guarantees the emergence of a small

amplitude limit cycle branching from the fixed point. Figure (3.2) shows a possible path of
the eigenvalues corresponding to Theorem (3.6-(2)). For further reference, see [81].
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3.3 Homoclinic and heteroclinic orbits

A heteroclinic orbit (sometimes called a heteroclinic connection) is a trajectory in phase
space which joins two different equilibrium points. If the equilibrium points at the start

and the end of the orbit are the same, the orbit is a homoclinic orbit [52, 106]. Figure (3.3-a)
shows the connection between two distinct saddle points; this is a heteroclinic orbit. Figure

(3.3-b) shows a homoclinic orbit connecting a saddle point to itself. Figure (3.3-c) gives an
example of a Silnikov connection, a homoclinic connection of a saddle-focus equilibrium in
three-dimensional space. A sequence of heteroclinic orbits may form a closed path, called

a heteroclinic cycle; see Figure (3.3-d).

We assume that u' = f(u, ?) has a homoclinic orbit at ? = ??·

(b)

(e) (à)

Figure 3.3: Heteroclinic and homoclinic orbits [81]
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Definition 3.7. A branch of periodic orbits undergoes a homoclinic bifurcation at Ao if the

orbits approach a homoclinic orbit for ? -> Ao-

A2

Ai = Ao + e

?_? = A0 - e

Figure 3.4: A homoclinic bifurcation at Aq [81].

In Figure (3.4), we illustrate how a saddle equilibrium and a periodic orbit get close to
each other as A —> Ao-
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Chapter 4

Computing the Lorenz Manifold

4.1 Introduction

4.1.1 Formalization of the system

In the early 1960s, the meteorologist Edward Lorenz started modeling the Earth's atmo-
sphere. His work models the convective motion of a volume of air, which is warmed from

below and cooled from above. His final model involves only three elementary equations:

Íu[ ^ a{u2 -U1) ,
«2 = PUi-U2-UiUz , (4-1)
«3 = UiU2 - ßu5 .

Here, we have u — (uj , U2, u^)T € K3; s. ? and ß e K are physical constants: u\ is propor-
tional to the intensity of the convective motion, and u2 is proportional to the temperature

difference between the ascending and descending currents. The third components us is pro-

portional to the distortion of vertical temperature profile from linearity. The Lorenz system

(4.1) has the symmetry (ui, 1*2. 1*3) —> (—ui, — u2, 113) of rotation by p radians about the
U3-axis. i.e., if {ui(t), u2{t), u^(t)) isasolution, then (—ui(t), — u2(t),U3(t)) is also a solution.
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4.1.2 Elementary analysis

In the Lorenz system there are three system parameters p. s and /3, where ? is perhaps the
most important parameter. It is also called the Rayleigh number and it is proportional to
the temperature difference across the layer, which is responsible for driving the fluid motion

at a rate given by the variable u\, in the context of convection in a fluid or the atmosphere.
The parameter s is called the Prandtl number. The parameter ß is positive. Usually s and

ß are set to 10 and 8/3 respectively. The "standard" value of ? is 28. For these customary
values, if we plot us(t) against U1 (t) as t varies, the famous "Lorenz butterfly" appears. It is
interesting to observe that different starting points lead to quite different behavior. However

the system evolves into a visually identifiable butterfly structure, which is called an attractor.

The dynamics on the attractor [51] will be similar in outline, but much different in details
depending on the initial conditions, that is, the dynamics is chaotic [44]. The attractor is
a fractal, a geometric pattern that iterates infinitely often with recurring self-similarity. It
is also called a strange attractor, in which the system exhibits chaotic behavior. We can

see orbits go back and forth irregularly between the two "wings" of the "butterfly" . An
important property of chaos is the sensitive dependence on initial conditions. The Lorenz

system is a classic example of a vector field with a chaotic attractor. In this thesis, the
study of chaos is not our main concern.

The computation of the Lorenz manifold, the two-dimensional stable manifold, is of
interest in exhibiting the interesting behavior of the system. Different algorithms have been

developed. In the discussion of Chapter 1, we mentioned different approaches to compute
2D stable and unstable manifolds, which apply to the Lorenz system. In fact, the motive of

these methods was, in part, to study the Lorenz system better. We will consider the Lorenz
system in more details in the following.

Obviously, the origin 0 = (0, 0, 0)T is a stationary solution of Equation (4.1). The
Jacobian matrix of f is

fu(u)
-s s 0

-W-3 + /3 -1 -Ui

U2 U\ -ß
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Evaluating the Jacobian matrix at 0 we have

fu(0) =

-s s 0

? -10

0 0-/3

so the characteristic polynomial of f at the origin is

?3 + (1 + s + ß)?2 + (ßs + ß + s- ?s)? + ßs(1 - ?) = 0,

from which

The eigenvalues are

(? + /?)[?2 + (s + 1)? + s(1 - ?)] = 0

?2,3 =

-/3 ,
-(s + 1) ± V(^+l)2-4CT(l-p)

If ? < 1, all three eigenvalues are negative and real. If ? > 1, ?2 becomes positive, so

the stability of the origin changes from attracting to repelling. For instance, if we fix the
parameters at the standard values ? — 28, s — 10 and ß — 8/3, we will obtain one positive

eigenvalue ?^ « 11.828 and two negative eigenvalues Af « -2.667 and ?| « -22.828.
The eigenvectors that correspond to the two stable eigenvalues span the stable eigenspace

Es(0), and the Lorenz manifold Ws(0) is tangent at 0 to the eigenspace Es(0). There are
two more stationary solutions of Equation (4.1) when ? > 1, namely.

P± = {±y/ß{p-\), ±y/ß(p-l), p-1),
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approximately at (±8.485, ±8.485, 27) when ? = 28, and symmetric to each other. Consider
the Jacobian matrix at p+

Iu(P+)
0

-y/ß(p-l)
V(ß(p-i)) ?/(/9(?-?)) -ß

its characteristic polynomial is

?3 ± (1 + s + ß)\2 ± (ßs + ß?)? + 2ßs(? -I)=O .

We can see, for the customary parameters values each of these two secondary equilibria has

one negative eigenvalue and a pair of complex conjugate eigenvalues with positive real part.
In fact there exists a critical value of p, where the stability of these equilibria changes from
stable to unstable for ? beyond that value [9, 92].

The origin 0 is stable for ? < 1 and becomes a saddle in a pitchfork bifurcation at

UO)
1 50e*01 -

homo ,ex} >i hot bif
I.

auiTiï"-)
I Of

a.ooe+00 .006*01 2.00e*01 3.00e*01
5.00e+00 SOe-fOI 2.50e*01

Figure 4.1: Bifurcation diagram of the Lorenz system: max u\ vs. p.

/0=1. For ? > 1, 0 has a one-dimensional unstable manifold TF"(0) and a two-dimensional
stable manifold W(O), which we refer to as the Lorenz manifold. For ? > 1 the two
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other secondary equilibria p1*1 are each other's image under the symmetry. The secondary
equilibria are attractors with a pair of complex conjugate eigenvalues until they lose stability
in a subcriticai Hopf bifurcation at

PH = s(ß + s + 3)(s - ß - I)-1 = -^ « 24.7368.
Past the Hopf bifurcation for ? > p¡j the equilibria ?* are saddle points and have two-
dimensional unstable manifolds Wu(p±), associated with the complex conjugate eigenval-
ues with positive real parts and one-dimensional stable manifold Ws(p±).

There exist two saddle periodic orbits T^ that bifurcate at the Hopf bifurcation in the
interval pr < ? < pu. They bifurcate at pr « 13.9265 in a symmetrically related pair of

homoclinic orbits, that are homoclinic to the origin; see Figure (4.1). This codimension-one
homoclinic bifurcation is also known as a homoclinic explosion point. It is the source of

all complicated dynamics in the Lorenz system: for ? > pr « 13.9265 we can find in a

tubular neighborhood of the two homoclinic loops not only the two periodic orbits F^ but
also infinitely many other saddle periodic orbits (of known symbolic description) [21, 74].

We note that the homoclinic explosion point at pr does not produce a chaotic attrac-
tor. Rather one initially finds lpre-turbulence' in the form of a chaotic transient before the

system settles down to one of the attracting equilibria p^ [21, 57]. At phet « 24.0579 there
are two codimension-one heteroclinic orbits that create a chaotic attractor. More precisely,

at Phet there are two symmetrically related heteroclinic orbits between the origin 0 and the

saddle periodic orbits T^. For ? < phet, the unstable manifold Wu(0) lies in the basin of
attraction of the attractors p± . At the heteroclinic bifurcation at p^et the one-dimensional
manifold Wu (0) connects 0 to the saddle periodic orbits G*, that is, Wu(0) is entirely con-
tained in T1/S(r±). As a result, for ? > p/,eí, W(O) no longer lies in the basin of attraction
of p^ , but instead its closure is a chaotic attractor. This chaotic attractor coexists with the
attracting equilibria p^ until they disappear in the Hopf bifurcation at pjj. For ? > pjj,
the chaotic attractor is the only attractor. For further references see [9], [32] and [77].
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4.2 Previous work

To study the phase portraits of a dynamical system, the stable and unstable manifolds

associated with equilibrium points are important objects. It would appear that the compu-

tation of such manifolds can be carried out easily by numerical integration. This is often
true for one-dimensional manifolds. However, we find that higher dimensional manifolds

are difficult to compute using numerical integration. For example, a 2D stable manifold

like the Lorenz system can exhibit the characteristics of complex geometric objects. For
the standard system parameters, the origin has a two-dimensional stable manifold and each

of the two secondary equilibria has a two-dimensional unstable manifold. The intersections
of these two. manifolds in the three-dimensional phase space form heteroclinic connections

from the non-zero equilibrium to the origin. There are two difficulties in computing the
Lorenz manifold [53]. For example, the case ? = 28:

• "The stable eigenvalues at the origin of this system are approximately —2.667 and

—22.828, with a ratio that is approximately 8.56. Trajectories in the manifold tend to
follow the weakly stable direction, which makes it difficult to 'cover' the full manifold,

even relatively near the origin" [77]. We observe a similar behavior from the two
examples discussed in Chapter 2.

• "Part of the global manifold spirals around the z-axis while other parts of it curl

around the stable manifolds of the equilibria located at approximately (±8.485, ±8.485,27)"

[77].

The manifold will approach itself arbitrarily closely, in fact infinitely often, in certain areas
of phase space. It is practically impossible to reliably compute a large portion of the man-

ifold with techniques that advance its computational boundary based on local information

near this boundary. In fact, such methods are prone to "sheet jumping" as we illustrated
in Chapter 2. Many papers address the geometry of the Lorenz manifold because of its

astonishing properties. Perelló [20] computed the stable manifold of the origin as a function
of p. and also gave a sketch for ? close to the critical \^alue pc « 24.74. He also consid-
ered the unstable manifold of the non-zero equilibria. It was obtained by following a line
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segment, which is quite close to the approach of computing the unstable manifold of the

non-zero equilibria in [77]. Thompson and Stewart [60] computed trajectories that illus-
trate the local stable manifold. Based on this, a more advanced visualization was done by

Stewart [42]; the dynamics and global bifurcations of the Lorenz system can be observed
there in the three-dimensional phase space. The first hand-drawn image of the Lorenz man-
ifold computed under the standard parameter values appeared in the book of Abraham and

Shaw [79] in 1985, while Guckenheimer and Worfolk's article [49] is the first paper that has
computer-generated images of the Lorenz manifold. For more details, see [9].

4.3 Computing the stable manifold of the origin

In Chapter 2, we introduced the concept of orbit continuation and the algorithm to span a

2D manifold starting from an equilibrium point. Here we discuss the spanning procedure

further, as we use orbit continuation to compute the Lorenz manifold, which is far more
complex than the examples given in Chapter 2.

4.3.1 The method for computing the stable manifold of the origin

We use numerical continuation as the method for computing the stable manifold of the

origin. Consider the ODEs representing the Lorenz equations, with the standard parameter
values, written as

u' = f(u(i)) , te [0,T] . (4.2)

Since the integration time T will be variable, we introduce a new, scaled time \'ariable t

to let the integration always take place over the interval [0, 1]. The transformation is as
follows

?=? t e [0,1].
Then

, du du dt du 1
uW ~ ~dt H dt, ~ YtT'

Let

Û(f) = u(t(t)) ,
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so that

or

^ = f(û(f)),dt T K v "'

dû „,„,„ /-.,-? - rf(û(t)) .
a?

Dropping the " " " the transformed equation is

u'(t) = Tf(u(í)), ? e [0, 1] · (4.3)

Note that the original integration time T is now an explicit variable in the equations. As

mentioned before, the origin 0 = (0, 0, 0)r is a saddle point, for- ? — 28. The eigenvalues
are µ? « —2.66, µ2 « —22.8, µ% « 11.82, and corresponding normalized eigenvectors vi, V2

and V3. In the AUTO implementation, the parameter ? can be changed in the equations file

'man. P file; see Appendix (A). The computational procedure is as follows. First, suppose
that an initial orbit u0(i) has already been computed, for t from 0 to To (where T0 < 0,

since we deal with a stable manifold here), with uo(0) close to the origin 0 , and uo(0) in
the stable eigenspace spanned by vi and V2 , or, more precisely,

.„. „ ,cos(ö) sin(ö)U0(O) = 0 + ei-r-^-^ - ^pV2),Imi I Im2|

where e is a small radius in the stable eigenspace centered at the origin. Starting data
include a value of ? between 0 and 2p. If we take ? = 0, then the initial orbit satisfies

Equation (4.3) and

U0(O) = -—TV1.Imi I

The starting orbit u(f ) has length

To I Hf(U0(S)) ||ds.
./0

In other words, for given e = e0 and L — L0, the initial orbit is a solution X0 = (u0(·), ??, T0),
with 0o = 0 , of the equation F(X) = 0 , where X = (u(·), T, T). Here F(X) can be written
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as

F(X)
u'(í) - ïï(u(i))

u(0) - e(2gpva
TJ01IIf(U(^))IId5 -

IS1V2) (4.4)

Given Xo and Xo, with ||Xo|| = 1, pseudoarclength continuation can now be used to

compute a next solution X], etc. . In this way, step by step, the whole manifold can be

covered. Given X¿, the next solution Xj+1 is obtained by solving

F(X;+1) = 0,

(Xi+I - X¿, X¿) -As = O,

where i > 0. This is the so-called orbit continuation referred to in Chapter 2. There are

possible variations on the basic numerical scheme. For example, instead of fixing L and
allowing T to vary, one can fix T, and allow L to vary. In this case, F(X) still takes the
form of Equation (4.4), but with X — (u(), T, L), for given e and T . Alternatively, one can

fix one coordinate or a function of the coordinates at a particular value to constrain the

end point, and again free both T and T. This is done by including an appropriate function

g [9]; thus F(X) becomes

F(X)
u'(i) - Tf(u(i))

u(0) - e( cos(fl)
V1 -

sin(fl)
I/Ì2I V2) (4.5)

g(u(l),T) - a

In the computation, we sometimes want the orbits be computed with a fixed T value or a
fixed L value. We call such values the nominal time or the nominal arclength, denoted by
Tnom or L„om. However, there are cases where we cannot vise the exact nominal values. For

example, when during the continuation the orbit is approaching an equilibrium, the value
of T will approach oc. If we compute the orbit with fixed arclength Lnom, the continuation

will not end. On the other hand, if we set a fixed time T, some orbits will be too long and

some too short. Thus we set a constant Cn (Ln Lq) x I Tq — T„om|. An alternate
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boundary condition is then

^nom [J-1TiOm J-1) x \-l J nom] — O.

Thus the complete F(X) becomes

u'(i) - Tf(u(i))
/n\ /cos(ö) sin(ö) \

TJ01Hf(U(S))IId5 - L
^nom ~~ y^nom *-*) X \x ¿non

F(X) = { (4.6)

with X = (u(·), T, T, L, (Lnom -L)x\T- Tnom\):

4.3.2 Numerical results

In Figure (4.2) we show the Lorenz manifold Ws(0) for four different ? values. The manifolds
are colored according to the geodesic distance to the origin, and the nominal arclength is

set to be 200. The stable manifold Ws(0) is the smooth image of a disc that simultaneously
'rolls' into the right and left 'wing' of the Lorenz attractor. It has in a primary helix along

the positive z— axis [11, 44, 45]. We can observe that the torsion of the helix around the

positive z— axis increases as ? decreases [32]. Although not shown in this figure, we also
observe that the larger the value ? the more initial-condition sensitive character the system

becomes. In Figure (4.3) we show two manifolds, one with ? = 15 and another one with
? = 60, together in one figure. It should give a better sense of how a planar disc 'rolls up'

under the evolution laws. At the same time, we also see more clearly the role that ? plays.

4.4 Locating heteroclinic connections in the Lorenz manifold

We have discussed the method of covering the 2D stable manifold of the Lorenz system of
the equilibrium 0. Now we consider how to locate heteroclinic connections in the manifold

we computed.
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4.4.1 The existence of homoclinic orbits and heteroclinic orbits

The existence of a homoclinic orbit in the Lorenz system was proved in the early 1990s.

Hastings and Troy [86, 87] show that for each (s, ß) in some neighborhood of (10, 1), there is
a ? in the range (1, 1000) for which the Lorenz system has a homoclinic orbit. Hassard and

Zhang [5] gave a rigorous proof. Their work is based on Sparrow's [21] numerical shooting

argument that a homoclinic orbit exists. Chen [107] gave a necessary and sufficient condition
on the parameters (s, ß) for the Lorenz system to have a homoclinic orbit for some p. To

be more explicit, he proved that there is a homoclinic orbit to the origin for some ? > 0 if

and only if s > g . It also follows from this proof that the homoclinic orbit converges
to a singularly degenerate heteroclinic cycle as ? —» oo and s —> (2/3 + l)/3. Hiroshi and

Robert [43] give a system that possesses a singularly degenerate heteroclinic cycle, adding
to the mathematical understanding of its structure. They also show that their system can

be considered as a small perturbation of the original Lorenz system.

4.4.2 The continuation procedure

The Lorenz system has two secondary equilibria p+ and p~~. We want to compute the

connection from the zero equilibrium p0 to p+ or p~ . Let px denote either choice of the

two secondary equilibria. Let E"p be the unstable eigenspace associated with px. Let wx
denote the eigenvector associated with the stable eigenvalue of the transpose Jacobian at

px. At each continuation, we compute an orbit starting at u(0) ending at u(l). We define

Tx = (u(l) -p'T.wx).

See Figure (4.4). If Tx is equal to zero, an orbit's end is in the plane E" . We let do denote
the (very small) distance of the end point of the orbit to px; see the notation in Figure

(4.4). We clarify the "numerical" detection of a heteroclinic connection as follows.
The conditions for the detection of a heteroclinic orbit are

(1) lu(l) — Px| — do, where do is small;
(2) rx = 0.

45



F(X) (4.7)

We reformulate F(X) as follows

' u'(i) - rf(u(0)
„(0) - £(£glVl - ™giV2)
TZ01IIf(U(S))HdS - L
||u(l)- p-l! -d0

(u(l)-p'T,wx) -Tx
(-"nom \i-"nom J-/ ) * I-* ~" -* nomi ·

Both conditions (1) and (2) are necessary for the orbit's end to approximate px. Condition
(1) is sufficient for a heteroclinic connection. However, when u(l) approaches an equilib-
rium, the continuation can take infinitely long time. Thus condition (1) with very small do is

not a good boundary condition. We can use condition (2) to compute many more candidate

orbits. These candidates orbits' ends lie in E"p. They may stay in E"p and evolve toward
the equilibrium or they may leave E"p. In the AUTO implementation, we compute many
candidate orbits and then select those orbits that stay in E"p and approach the respective
equilibrium.

Thus the AUTO continuation consists of two runs. Before these two runs, we will com-

pute an initial orbit, where {Lnom — L) ? \T — Tnom\ is computed to Cnom- In the first run,
we use condition (2) as the boundary condition. In the second run, we fix the continuation
parameter such that Tx — 0, and try to increase time |T|. Since we are computing the stable
manifold, T is less than zero. The continuation ends when condition (1) is met. Such a

setting ensures that the orbit stays in E"p.
Figure (4.5) show the paths that the orbits' ends sweep in the E"p of p+ and p~. The

path in the plane of the eigenspace of p+ is indicated by small red dots. The path on the
plane of the eigenspace of p~ is indicated by small blue dots. The two green dots represent
the two secondary equilibria.

In Figure (4.6), we show 1,024 computed heteroclinic connections. The length of the
connections' symbol sequence is ten. The concrete implementation can be seen in the FOR-

TRAN file and Python scripts in Appendix (A).
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4.4.3 The symbol sequence of the heteroclinic connections

In Figure (4.6), all heteroclinic connections are computed to the rim of a disk with radius

2.0 centered at either secondary equilibrium. The holes in the manifold could be filled in

fact, but this would take more computer time. The orbits can circle an arbitrary number
of times around an equilibrium. Each such revolution relates to a unique intersection

point of the heteroclinic orbit with the section S?. which is located at the height of the

secondary equilibria. The flow of the orbit is required to be pointing upwards, that is, in
the direction of increasing z. The precise notion of the revolution around p+ or p~ enables

us to introduce a symbolic coding. In [21] and [25] a similar coding has been used. In this

text, we follow generally the coding used in [32]. However, in [32], heteroclinic orbits are
computed from one of the secondary equilibria to the equilibrium at 0, which is just on the

contrary direction of our computation. The first symbol is either an R or an L. R denotes

the orbit passing section S,? of p+ infinitely many times. L denotes the orbit passing section
S,? of p~ infinitely many times. Then we add one or more I or r to the left of the first

symbol. Here, I denotes the orbit passing section S? of p~ once, while r denotes the orbit
passing section S? of p+ once. In a symbol sequence, any / adjacent to L will of course be
absorbed by L. Similarly any r will be absorbed by R. Thus there is no adjacent / to the

left of L, no adjacent r to the left of R. We formalize the definition as the following.

Definition 4.1. For a given integer N > 1 ( the length of the symbol sequence), we write
the symbol sequence as

siS2---Sn, where < Sj — I if the jth passing of S? is near ? ,
Sj — r if the jth passing of T.„ is near p+ .

Here, Sn is either R or L, which represents the infinitely many passes through S? near p+
or p~ respectively. We call such a sequence in the verbose form. Further, we use a compact
form as

{if SM = Rr SM-I IS I,

if Sm - L. Sm-I is r.

Heve, M < N, sm — sjv and if ?/ - 1 < 0 then s\..sm-\ is empty.
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For example, if the length of the symbol sequence is ten, then UllrrrrrR is in the
verbose form. UUR is the compact form of UllrrrrrR, which is convenient for data handling.

However, it is difficult to tell the symbol length, for example, UUR may represent UllrrR
of a sequence of length seven. It may also represent a length ten sequence UllrrrrrR. So it
is necessary to specify the sequence length when giving a symbol sequence.

In [32], 512 heteroclinic connections from p+ to 0 are computed. These heteroclinic
orbits occur in the recursive ordering of a full binary tree. By contrast, in this thesis, we
start the computation from 0. We fully span the stable manifold of 0 and extract 1,024

heteroclinic connections with symbol sequence length ten. As in [32], our results can be
presented in Figure (4.8).

In our computation, shown in Figure (4.8), the beginning level is the empty set 0. The
first heteroclinic connection is always L, no matter the length of symbol sequence. The last

heteroclinic connection is R. Then for any sequence, if the sequence goes one level down, it
will first branch to an I, then branch to an r. At each deeper level, half of connections will

have the same compact form as their parent sequences. The total number of connections at
this level is twice that of the higher level. Therefore, there are a total of 2n connections if

the length of the symbol sequence is n. The symbol sequence is helpful for us to understand
the folding features of the Lorenz manifold.

We plot the computation time length, Li norm, T, the arclength, and the nominal
constant Cnom of the orbits as a function of the scaled index in Figure (4.9) to Figure

(4.13), respectively. In each figure, a black dot represents a heteroclinic connection. The
scaled index is calculated as follows. Suppose we set the length of the symbol sequence as n.

so we have a total of 2" orbits. The scaled index of orbit m (1 < m < 2") is (m - 1)/(2" - 1).
We see that at a heteroclinic connection the L2 norm and the arclength have local minima:

while the time T and the nominal constant {Lnom - L) ? \T - Tnam\ have local maxima.
In addition, we also observe that T, which is a very sensitive parameter in the system, has

local maxima and local minima in two distinct regions in Figure (4.13), respectively.
The computation of the full series of heteroclinic orbits of a given a symbol sequence

length is important in the study of the combinatorics of limiting homoclinic orbits that are

encountered when following the heteroclinic connections for varying parameter p. In this
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thesis, we only compute orbits with the typical setting of the Lorenz system ( ? = 28, s — 10

and ß — 8/3). Similar computations would make it possible to study the dependence of the
Lorenz manifold, W(O), and its relation to the unstable manifolds Wu(p±) and Wu(r±),
on the other parameters ß and s.
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Figure 4.2: The Lorenz manifold with different ?, computed using Tn om — — 7, Tnom — 200
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Figure 4.3: Comparing the Lorenz manifolds for ? = 15 and ? — 60.

51



«? 2

' The path of orbit ends

Figure 4.4: Detecting a heteroclinic orbit.
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Figure 4.5: The path of candidate orbits' end points.
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Figure 4.7: Selected heteroclinic orbits (their symbols are in the compact form).
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Figure 4.8: The relation between symbol sequences and their lengths.
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Figure 4.9: Scaled orbit indices vs. time.
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Figure 4.10: Scaled orbit indices vs. Li norm.
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Figure 4.11: Scaled orbit indices vs. T.
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Figure 4.12: Scaled orbit indices vs. arclength.
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Figure 4.13: Scaled orbit indices vs. [LTl L)x\T- Tn
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Chapter 5

The Stability of Periodic Solutions

In this chapter, we discuss the stability analysis of periodic solutions in dynamical systems.

The analysis is immediately applied in the computations of Chapter 6. For further reference

of this chapter see Chapter 7 of [81].

5.1 Periodic solutions of autonomous systems

Periodic solutions are time-dependent or space-dependent orbits that "cycle" ( or "oscil-

late"). Our main concern is time-dependent periodicity of solutions of autonomous system
of ODEs

u'(i) = f(u:A), f: K" ? R -> M". (5.1)

For time-periodic solutions, the minimum time interval T G W+ is called the period for the
system to return to the original state . We have u(i + T) — u(<) for all t. Equation (5.1) is

autonomous, thus whenever u(t) is a solution. u(f + ?) is also a solution for all constants ?.
Therefore if we want to measure the period T, which is usually not known beforehand, we

can start at any point denoted by u(io)· We assume an "initial" moment ?? = O. T must be

calculated together with u. Since T is the minimum period and T > 0, we let u(0) = u(T).
In Chapter 2 we introduced stability of equilibrium points. The stability of periodic

orbits can also be studied in a similar way. To analyze the stability of periodic solutions,
we need the concepts of monodromy matrix and Poincaré map.
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d(í?* +do
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Figure 5.1: A periodic trajectory u* and a neighboring trajectory [81].

5.2 The monodromy matrix

We now investigate the stability of a particular periodic solution u*(f). Its period is T and
the system's dependence on ? is omitted.

The stability of u* depends on the behavior of its neighboring trajectories. We illustrate

the key notations for our discussion in Figure(5.1). Let ? be a periodic trajectory such

ip(t.z) solves Equation (5.1) with ? = u(0). (5.2)

We define a distance vector with an initial distance vector do such

d(t) = ¥j(í;z*+do)-¥>(í;z*).

Here z* = u*(0). After one period, the distance is

d(T) = ?{?- ?* +do) -f(?, ?*).
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Taylor expansion gives

d(fi(T:z*)d(T) = —^ do + terms of higher order.
OZ

Obviously, the matrix
??(?;?* (5.3)dz

decides whether the do decays or grows. We call the matrix (5.3) the monodromy matrix.

From Equation (5.1) and Equation (5.2), we also get

^(*;z) =f(y,(f;z).A), for allí.at

Differentiating this equation with respect to ? yields

d d<p(t; z) _ d?(?, ?) d<p(t; ?)
dt dz Tf dz

Since f(0, ?) = ?, we get
df{^?) _

dz

Thus the matrix (5.3) can be re-written as F (T), such F(?) solves the matrix initial-value
problem

F' = ??(?*,?)F, F(0) = ?. (5.4)

F also depends on u* and F = F(?;??*). We can consider u*(t) only and we neglect the
argument u* for convenience. We call the F the fundamental solution matrix. It also gives

rise to the following definition:

Definition 5.1. The ? by ? monodromy matrix or circuit matrix M of the periodic

solution u*(<) with period T and initial vector z* is defined by

M := F(G) = WZ*}Oz

f and F are defined in Equation (5.2) and (5.4).

64



We can check the local stability of u* by Floquet theory, based on the monodromy
matrix [27, 36, 56, 75, 105]. We also know the monodromy matrix M has the following two
properties.

Lemma 5.2. (a) $(jT) = M> , and
(b) M has +1 as eigenvalue with eigenvector f(u(0), ?) [81].

5.3 The Poincaré map

The Poincaré map is used for describing dynamics of different types of periodic oscillation.

The arguments based on the Poincaré map are very helpful for us to find the stability results
for periodic orbits.

Figure 5.2: The phase plane of Example (5.3), an example Poincaré map [81].

Example 5.3. Consider the ODE system

"1 - «2 - U\{u\ + ill),
U\ + U2 - U2(uj + U21)-
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We rewrite the system in polar coordinate as

?' = 1.

We can see a stable limit cycle when ? = 1, ? = t in Figure (5.2). The neighboring
trajectories approach the unit limit cycle. We choose the positive ui-axis to measure how

the neighboring trajectories vary, namely

O ={(?,?)\?> 0,0 = 0}.

An analytical solution is

P=[I + (Po2 - l)e"2iH , 0 = * + 0o,

for initial values po, ??- As a result, a trajectory that starts from q G O requires time 2p

to complete one orbit and passes ii at the radius

P(q) = {l + (q-2-l)e-*«]-ì.

Function P(q) is an example of a Poincaré map. We have a fixed point of the Poincaré

map where the periodic orbit passes O [P(I) — I)- Numerically we also get a trajectory at
q = 0.0001 that gives the following intermediate results

P(q) = 0.05347...,

P2(q) = P(P(q)) = 0.99939...

We can generalize the concept of a Poincaré map by an ?-component differential equa-

tion like Equation (5.1). O is an (n — l)-dimensional hypersurface, see Figure (5.3). In

addition, all trajectories cross O in a neighborhood of q* G O meet two requirements:
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The trajectories intersect O transversally, and

the trajectories cross O in the same direction.

O is thus specified as a local set by these requirements. If we choose a different q*, then
there will be another O. O is also called the Poincaré section. We let q* be the position

where the specific periodic orbit intersects O such

q* = <^(T;q*).

Let ?O (q) be the time for <£>(*; q) to first return to O with q G O. We have

¥>C?h(q);q)en.

The Poincaré map or return map P(q) is defined by

P(q):=Pn(q) = v(7h(q);q). (5.5)

We illustrate P(q) in Figure (5.3). P is an (n - l)-dimensional map. Both q and P(q) have
(n — 1) components. It satisfies

P(q*) = q*.

For a fixed point q* of P.

Tn(q) -» T as q -* q*.

Here, we can study the stability of u*(i) by studying the Poincaré map near the fixed point
q* to see if it is repelling or attracting. Here q* can be considered as an (n - l)-dimensional
part of z* = u*(0). Let µ?, ..., µ?_? be the eigenvalues of the linearization of P

dP(q*) f . 1

near the fixed point q*. The following rule applies for the stability of fixed points: If
the moduli (the absolute value) of all eigenvalues are smaller than 1, then q* is stable
(attracting); if the modulus of at least one of the eigenvalues is larger than 1, then q* is
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unstable(repelling) [81].

The dynamic behavior of the sequence P-'(q) on fi relies on the eigenvalues and the
corresponding eigenvectors in an analogous manner [81]. We observe the possible paths of

the sequence

q -» P(q) -> P2(q) -> ...

as in Figure (5.4). The sequences of points PJ(q) of one trajectory are not continuous

curves but discrete return points. The curves shown in Figure (5.4) that look continuous
are the union of a large number of possible intersection points of distinct orbits; compare

Figure (5.3). Depending on the dynamic behavior on O. the periodic orbit related to q* is

called a saddle cycle as in Figure (5.4-a), a spiral cycle as in Figure (5.4-b), or a nodal cycle

as in Figure (5.4-c). If we reverse the arrows in (b) and (c), we can obtain the illustrations
of the repelling behaviors.

We now apply the stability result for the fixed-point equation P(q) = q to periodic

/·

\
\O

\

I^q)
u* m

? /

/

\

\

Figure 5.3: Two trajectories intersecting a Poincaré section O [81].

solutions of Equation (5.1). To get the related eigenvalues, we calculate the linearization of

the Poincaré map of Equation (5.5) around the fixed point q* as

dP(q*) _ d<p(T;q*)
dq dq
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Here, we restrict ? to the (n — l)-dimensional O. The ? by ? monodromy matrix

M = ^; z*)

has +1 as an eigenvalue. The related eigenvector (u*)'(0) is tangent to the intersecting
curve u*(i). Because u*(i) is transversal to O, this eigenvector is not in O . If we select a

basis for the ?-dimensional space, we find that the remaining ? — 1 eigenvalues are those of

¿>P(q*)
9q

These eigenvalues are independent of the choice of O [71].
We can draw a conclusion about the relation between the eigenvalues of the linearization

of the Poincaré map and the eigenvalues of the monodromy matrix M: M always has +1

as an eigenvalue corresponding to a perturbation along u*(£) leading out O; the remaining
ones of M are just the eigenvalues of the linearization of the Poincaré map. These ones

determine what happens to small perturbations within O. The eigenvalues of M are called
Floquet multipliers or characteristic multipliers.

O O O

^q

^q
f(q

(a) (6) (e)

Figure 5.4: Three Poincaré sections with discrete return points filled to curves, q* is the
return point of a periodic cycle, (a) Saddle cycle, (b) spiral cycle, and (c) nodal cycle [81].
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5.4 Mechanism of losing stability for periodic orbits

We have discussed how the local stability of a particular periodic solution is related to the

Floquet multipliers. The multipliers and the stability may vary with ?. We give a sum-

mary of stability of periodic orbits below. After that, we will discuss mechanisms of losing

stability. For further references see [50], [81] and [103].

Summary 5.4. Let u(t) be a periodic solution to u' = f(u, ?) with period T. The mon-
odromy matrix is defined by ?(?) = F(G), where F(?) solves the matrix initial-value

problem

F = fu(u, ?)F, F(0) = I.

The matrix M(A) has ? eigenvalues µ? (?), ..., µ?(?). Let µ? be the one equal to +1. The
other ? — 1 eigenvalues determine the local stability by the following rule :

u(i) is stable if |µ^| < 1 for all j — 1, .... ? — 1;
u(i) is unstable if |µ^| > 1 for some j.

Im(u)

S \
4- /

Çlìclu)
• /

y
A = A A = A0 ??

Figure 5.5: Multipliers (eigenvalues of the monodromy matrix) for three values of A [81].

In Figure (5.5), we show three values of A and the related multipliers of fictive periodic

solutions. The circle is the unit circle. For all A. there is a eigenvalue +1. For A = Ai,

the figure illustrates a stable solution, because all eigenvalues ¡ij lie inside the unit circle
for j = 1, ..., ? — 1. For A — A2, there is one multiplier outside the unit circle. Thus the
periodic orbit is unstable. For some value Ao between A] and A2, we see that one multiplier

crosses the unit circle. The stability is lost or gained, depending on the approaching direc-
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tion to ??· In Figure (5.5), we assume that the critical multiplier crosses the unit circle at

— 1. In the following discussion, we see how different types of branching depend on where

the critical multiplier or a pair of complex conjugate multipliers cross the unit circle [103].
Generally, there are three ways of crossing the unit circle, thus three associated types

of branching. In Figure (5.6), we show the path of the critical multiplier, the value of the

eigenvalue with |µ(??)| = 1. In Figure (5.6-a), one eigenvalue reaches in addition to +1,
µ(??) = 1. In Figure (5.6-b) the multiplier crosses the unit circle along the negative real

axis, µ(??) = — 1- In Figure (5.6-c) the crossing is with nonzero imaginary part, where a

pair of complex conjugate eigenvalues cross the unit circle. All three cases correspond to a
loss of stability when ? passes Ao · If the arrows are changed to the opposite direction, the

figures will illustrate the gaining of stability. Below we list three kinds of mechanisms of
losing stability in the remaining part of this section.

(a) µ(?0) = 1,

(b) µ(?0) = -1,

(c) /t?(µ(??)) f 0.

1 m (µ)

Rc(,L)

y
(b) (e)

Figure 5.6: Three ways multipliers leave the unit circle [81].

5.4.1 Branch points of periodic solutions

Let P be the Poincaré map associated with Equation (5.1). We study the fixed points of
the Poincaré map,

P(q,A) = q,
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for q e O. Assume situation (a) is met, where -g— has unity as an eigenvalue for ? = ??,
the fixed point equation is

f(q,A) := P(q,A) - q = 0, (5.6)

which is a system of ? — 1 scalar equations. We can set the Jacobian of f as

9f _ OP
<9q <9q

Here, µ(??) = 1 implies that at Ao we get a zero eigenvalue of the Jacobian of f . This is the

stationary bifurcation scenario. If the eigenvalue is real, that is, we have simple bifurcation

points and folds of the Poincaré map. In Figure (5.7), we illustrate the multiplicity of fixed

point of P on O. For Aj, we have one fixed point only. For A2, we have three fixed points.
At Ao, there is a bifurcation of the periodic orbit; see Figure (5.8).

The situation of a fold is illustrated in Figure (5.9). If we vary A approaching Ao from
A2, the two fixed points eventually collapse. At A = Ao, the resulting periodic orbit is semi-

stable. If A passes Ao, this periodic orbit will vanish. This scenario is shown in Figure (5.10).
It shows the three two-dimensional phase planes for Ai, Ao and ?2· At ?2, the periodic orbit

disappears. If we \^ary A from A2 to Ai, it gives birth of a limit cycle at A = Ao- Further, it
will split into two periodic orbits.

For //(Ao) = 1, we give a summary: typically, folds occur. These folds are accompanied

Ai An ?

P

Figure 5.7: Illustration of a pitchfork bifurcation in a Poincaré section [81].
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Figure 5.8: Close tö a pitchfork bifurcation; corresponding to À2 in Figure (5.7) [81].

unstab

stable

Figure 5.9: Close to a fold [81].

by the birth or death of limit cycles. Sometimes, if f satisfies symmetry or other regularity
properties, pitchfork or transcriticai bifurcation may happen.
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U2

U1

U2

U]

U2

Ui

Figure 5.10: Phase planes illustrating how a stable orbit collapses at a fold for Ao [81].

5.4.2 Period doubling

We now discuss the second case, the loss of stability with µ(??) = — 1. From Equation (5.6)
we expect that the Jacobian of

f(q,A0)=P(q,A0)-q

is nonsingular. As a result, at Ao there is no branch point as that happens under condition

(a). Furthermore, what we see is a smooth branch q(A) passes through q(Ao) without
bifurcating itself. The logistic map is a typical example [81]. There is a swap of stability of
period-one fixed points to period-two fixed points at Ao- We call this phenomenon period
doubling.

We give a short discussion of periodic oscillations, when for A = Aq the monodromy
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matrix has an eigenvalue µ — —1. We apply chain rule to the Poincaré map and get

We can see the fixed point q of P(q) = q leads to the eigenvalue µ = +1 for P2(q) =

fi

PM

Figure 5.11: Close to period doubling [81].

P(P(q)). We illustrate this bifurcation of the double period in Figure (5.11). The dashed
curve represents an unstable simple period oscillation; the heavy curve is a stable double

period orbit. We call a band which is spanned by the trajectories a Möbius strip; see Figure
(5.11). For ? approaching Ao, the double-loop orbit reduces to the single-loop orbit. For

? leaving ??, we observe that at Ao the stable single-period oscillation splits into stable
double-period oscillations. At least a three-dimensional phase space of the autonomous

system (5.1) is required for this splitting, namely ? > 3. The term "period" has different

meanings for the Poincaré map P and the periodic oscillation u(t). For a map, it is the
number of iterations for P to reproduce the fixed point. When A is varied, this integer

remains constant given no further period doubling occurs. However, that of the periodic
oscillation may vary with A. The single-period oscillations and the double-period oscillations

have different responses to this variation. It is known that the periods do not differ exactly

by a factor of 2 [22].
Period doubling is also called flip bifurcation or subharmonic bifurcation. We observe
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this phenomenon in many applications, for example, in chemical reactions [13, 18, 26], nerve
models [64], and Navier-Stokes equations [101]. It also occurs in the Brusselator [70] and
the Lorenz equations [21].

Although we do not focus on the computing of period doubling solutions, such dynamical
behavior is crucial to understand systems like the Lorenz equations, the CR3BP, etc..

5.4.3 Bifurcation to a torus

For condition (c), for which a pair of complex-conjugate multipliers crossing the unit circle
cause the loss of stability, where

µ(?0) = e±?, for ? f 0 and ? f p.

i is the imaginary unit and the angle ? is an irrational multiple of 2p. Then we see the

Poincaré map has an invariant curve C in O; see Figure (5.12). If we mark an arbitrary
point q on C, then all iterates of the Poincaré map stay on that "drift ring." Consequently,
trajectories spiral around a torus-like object. There is a cross section between the hypersur-
face O and the torus as the invariant curve C. The central axis of the torus is the unstable

periodic orbit. At Ao, we see a bifurcation that a periodic orbit bifurcates into a torus. A bi-

furcation into a torus can take place only for ? > 3, since such bifurcation requires complex
multipliers in addition to the eigenvalue that is unity. Tori can also be attractive or repelling

O

^x

f
\

Figure 5.12: A "Torus" trajectory encircles an unstable periodic orbit [81].
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like periodic orbits. Trajectories approach an attractive torus from both the inside domain
and the outside domain, for ? = 3. The projection of trajectories to the hypersurface O

resemble the dynamics close to a Hopf bifurcation, where a stable limit cycle encircles an

unstable equilibrium. We also call the bifurcation into a torus a Hopf bifurcation of periodic
orbits, a secondary Hopf bifurcation, or a generalized Hopf bifurcation. Due to a theoretical

result of Naimark and Sacker [62, 80], bifurcation into tori is also called Naimark-Sacker

bifurcation. For a repelling torus, we can visualize it as a tube surrounding a stable periodic

orbit (n = 3). The domain of attraction of the limit cycle vanishes and the torus dies as ?
tending to Ao · We call this case a subcriticai torus bifurcation. If ? is an irrational multiple

of 2p, a trajectory that starts on the invariant curve C will never return to the original

position. There are two frequencies ?\ (A), W2(A) after the bifurcation from periodic orbit
with frequency ?(?) to a torus. One frequency shows longitudinal motion along the axis

within the torus, the other frequency shows latitudinal motion along the cross section; see

the inset in Figure (5.12)). If the ratio uj\/uj2 is irrational, the flow is called quasi-periodic.
?\ and W2 are incommensurate if the equation

??\ + quoi — 0

has no nonzero integer solutions for ? and q. If for some ?, ?\/?2 is rational, we call it
a locked state. The trajectory on the torus is closed and becomes periodic. In [60] this
phenomenon is explained as a global bifurcation caused by saddle node entering the drift

ring. For quasi-periodic flow on tori, refer to [56, 61]. For higher dimensional tori, "m-torus"
for m-dimensional torus, see [81]. In chapter 6, we show some tori computed by AUTO for
the CR3BP.
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Chapter 6

The Circular Restricted

Three-Body Problem

We will study the CR3BP in this chapter. We first describe the history of the circular
restricted Three-Body problem. For a detailed bifurcation and stability analysis see [29,
102]. Our focus is the computation of the 2D unstable manifold of periodic orbits and
the detection of heteroclinic and homoclinic connections. As in Chapter 4, we also try to
visualize the computational results with the latest visualization tools. The computational
work in this chapter is an extension of the AUTO demo 'r3b'.

6.1 Introduction

In this section we give a brief introduction to the history of the studies leading to the
CR3BP. For more details see, for example, [19]. To study the CR3BP, we must start from
the famous N-Body Problem. The CR3BP is a special case of the N-Body Problem. The
classical N-Body Problem assumes that there are ? objects that attract one another by
their mutual gravitational forces only. If the initial positions and velocities of the objects
are known, we want to determine their positions and velocities at any time in the future.
For centuries, the X-Body Problem has been actively studied. Newton first formulated
this problem precisely. Other famous scientists, such as Copernicus, Kepler, Lagrange and
Poincaré also contributed. However, there remain many unresolved issues. The simplest

78



case of the N-Body Problem is the One-Body Problem. In the One-Body Problem, there
is only one body with initial position and velocity. When an external force is applied to

it, the motion of the body changes. Next, consider two isolated objects that interact with

each other through their gravitational forces, for example the Sun and the Earth. This
problem can be studied analytically. However, it requires advanced knowledge of calculus

and analytic geometry. Newton solved this problem by means of Newton's law of gravitation.

If we add a third body such as the Moon to the problem, we obtain a Three-Body system.

The third body makes the motion of the bodies very complicated. It is quite difficult to

predict the positions of the bodies later on, and many questions remain unanswered.

Facing the complexity of the Three-Body Problem, mathematicians began to look for
some simplifications of the problem. People considered special cases, for example, the case

where one particle is much less massive than the other two, or the case where two particles

are much less massive than the third. Pierre-Simon de Laplace gave results for a special case.

However, he failed at the general case. Henri-Poincaré also studied this problem, but his

attempt failed too. Wcierstrass tried a different approach. He believed that the problem has

no closed-form solution. He proposed to approximate the solution by finding a convergent

series. His approach led to many breakthroughs. Heinrich Bruns confirmed Weierstrass'

idea in 1892. The Finnish mathematician Karl Sundham obtained the first convergent series

for the Three-Body Problem in 1913, although for practical purposes the convergence is so

slow for it to be useless in practice. In 1941, Siegel introduced a series solutions for a triple

collision. In the 1960s, Stephen Smale of the University of California, Berkeley, proposed

a new method for the Three-Body Problem. He believed that the dynamical system can

be studied in terms of topological transformations. In 1991, Qiu Dong Wang also got a

convergent series. In his method, Wang resolved the problem of collisions. He introduced

a measure that makes time run faster as two or more bodies approach each other. Thus,

if the system approaches a collision, time approaches infinity. However, the convergence is
still too slow to be practical.

Chenciner and Montgomery [2] discovered a strange periodic solution of the Three-Body
Problem. In this solution, the three bodies have equal masses and they move along the same

planar figure-8 curve. The three bodies share the same period, but there are phase delays
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of one-third the period. The system has a zero total angular momentum. Except for the
well-known triangular circular orbits, the figure-8 orbit is the first periodic solution that
has the remarkable triple overlap property.

6.2 The circular restricted Three-Body Problem

To formalize the CR3BP, we have to start from Newton's universal force law or Newton's
gravitational law. It states that

F9 = G-1^r1 (6-1)
where,

F9 is the gravitational force in units of N (Newton),
G is the universal gravitational constant, G = 6.672 ? 10~nN-m2/kg2,
mi, 77i2 are the masses of the two bodies in units of kg,

r is the distance between the two bodies, in units of m (meter).
If we take into account the direction of the force, then the above equation becomes

_. ^ TTIi ¦ W2Fg = G ~Jmt r' (6'2)
where r denotes the vector from mi to m2 and ||r|| represent the distance beUveen the two
bodies. In the general Three-Body Problem, each of the three bodies i has mass m¿, and

its position in space is denoted by r,, for i — 1,2,3. In this system, the motion of a body
obeys the classical Newtonian law of inertia, namely, acceleration = force/mass. According
to this law, we obtain

' d2n/dt2 = (F12 + F13)An1,
<fr2/dt2 = (F21 + F23)An2, (6.3)

^ d2r3/dt2 = (F31+F32)An3.
In the abov« equations,

m-i is the mass of the object i,

Ti is the position vector of the object m¿ in space,

F1J is the gravitational force of attraction of object m¿ toward object rrij,
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t is the time.

By geometric principles, we let r,j be r^ — r¿. By Newton's universal force law, if we do not
consider the direction of the forces, we have,

lFyll = G-¡¿-^. (6.4)

We know that the direction of Ff, is the same as that of the unit vector r¿j/[|r¿j||. Therefore,
the vector form of Equation (6.4) is

*?-° h,.. 113 · V>·0)

Substituting Equation (6.5) into Equation (6.3), the classical form of motion of the Three-
Body Problem is

= G [?-^ + ?^? ; i,j,fc = 1,2,3; i¿j, i?k, j f k; (6.6)dvj _ ímyTjj rrik- rik
dt* - \ ||r¿j||3 + ||rifc||3

for further details see [19, 48]. In the restricted Three-Body Problem (R3BP), the mass of
the third body is supposed to be infinitesimally small. It will not influence the motion of the

other two large bodies, which are called the primaries. Many possible forms of the R3BP

are discussed in [104]. The most general one is the circular restricted Three-Body Problem
(CR3BP) . In the CR3BP, the two primaries move in planar circular orbits around their

common center of mass (barycenter). The movement of the third body is determined by

*** = G (^ + ^i . (6.7)dt2 VIIr3I II3 ||r32||3_

Since the two primaries are moving in circulai- planar orbits, we can put the system in a

rotating coordinate frame. In this frame, the two primaries are fixed. The origin of the

frame is at the barycenter of the two primaries. The x-axis points from the large primary to
the small primary. The x-axis is orthogonal to the orbital plane, and the y-axis completes

the right-handed orthogonal coordinate system. The ? and y axes rotate with constant

angular velocity, ?. The two primaries are fixed at (xj. 0,0) and (x2-0, 0), where x\ is
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negative. The third body, called the infinitesimal, is located at the position denoted by
{x,y,z).

If we let x' be the first order derivative of ? and x" the second order derivative of x,
then from Equation (6.7), we get

? = ^ —p—ñs—h —p—ris— + 2ujy + ? x-\ l|r3i||3 ||?32||3 J

y" - -G "GSf+ rap)+ w+^-
Vllr3ir llr32lldy

Here, ? is the rotation speed of the frame, determined by

W2IIr12H3= G(TTi1 +m2), (6.9)

and

||ri2|| — X2 -x\,
mv ||r12||

X1 =

iTi2- Hr12IIX2 = ' "¦ (6.10)
m\ + m2 '

To1 + m2

A parameter µ is introduced to simplify the system further. It denotes the ratio of the

small primary's mass to the total mass of the system. For example, for the Earth-Moon
system, µ = 0.01215; for the Sun-Jupiter system, µ = 9.53 ? IO"4: and for the Sun-Earth
system, µ = 3.0 ? IO"6. Proper units are chosen so that the distance between the primaries,
the sum of the masses of the primaries, the angular velocity ? of the primaries and the

gravitational constant are all equal to one. The small primary is located at (µ, 0,0), and
the large primary at (1 - µ, 0,0). The orbital period T is 2p. Equation (6.8) can then be
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written in the following form [4, 58]

(?-µ)(? + µ) µ(?-1 + µ)x" = 2y' + ?- r\
y" = -2x> + y-{-^py-q,
?" = Jl-til-V, (6.11)

where

? = ||r3i|| = yj{x + µ)2 + y2 + ?2, (6.12)
r2 = Hr32H = ^{?-1 + µ)2 + ?2 + ?2.

We also have the Jacobi constant C which is equal to —2E. For the above equations, there

is an integral of motion, which is a function of the coordinates and the velocities, and which

is constant along a trajectory in phase space. This constant is called the energy [4, 58],

x'2 + y'2 + ?'2 µ(1-µ) ,„ lqxE = U(x, y, z) , (6.13)

where

U=l-^ + ^ + X^. (6.14)
The Jacobi integral is the only integral of the Restricted Circular Three-Body Problem [58].
See the thesis of C. Zhang [23] about the history and derivation of the CR3BP: see also

thesis of V. Romanov [102] for work related to this section.

6.3 Computing periodic orbits with AUTO

We introduced pseudo-arclength continuation in Chapter 2. In AUTO, we can use it to

compute a family of periodic solutions of a system. In Equation (5.1), there are ? component,

functions for the nonlinear function f, e.g., /i(u, ?), ..., /„(u, ?). We formulate the orbit
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continuation as the following constrained periodic boundary value problem [23, 30]:

(O1) ui(i) = T1I-(U1 (0,A1),
(a2) U1(O) = U1(I),

(a3) /^u1(T)5UO(T)) dr = 0,
(6) /Q(U1(T)-U0(T)5U0(T))OiT + (T1 - T0)T0 + (A1 - X0)X0 = As.

(6.15)

This equation is to be solved for X1 = (U1(^)5T11A1), given Xo = (uo(-),To,Ao) and

the path tangent Xo = (Uo5To5Ao)- T1 is the unknown period. Equation (6.15-O2) im-
poses unit periodicity, after we rescale the independent variable t. Equation (6.15-as)

is a phase condition. The condition fixes the phase of the new orbit ui(·) relative to

the given orbit uo(·). We can also replace it by the classical Poincaré phase condition

K) (U1(O) - U0(O)5U0(O)) = 0.
However, the integral phase condition Equation (6.15-0.3) has the desirable property of

minimizing phase drift relative to u0(·). This often allows much bigger continuation steps
to be taken [31]. Equation (6.15-6) provides the functional form of the pseudo-arclength

constraint of the orbit continuation; see Equation (2.15). Orbit continuation enables us to
get U1, U2 ... after we compute the first orbit U0. As we have discussed in the previous

chapters, AUTO uses piecewise polynomial collocation with Gaussian-Legendre collocation

points ( "orthogonal collocation") with adaptive mesh selection [14, 78, 100]. In this respect
it is similar to COLSYS [97] and COLDAE [99]. Combining this method with continua-
tion, we can get the numerical solution of "difficult" problems. AUTO also computes the

characteristic multipliers (or Floquet Multipliers), that determine asymptotic stability and

bifurcation properties, as a by-product of the decomposition of the Jacobian of the bound-
ary \'ahie collocation system [31, 66, 90]. The stability analysis using Floquet multipliers

is discussed in Chapter 5. For more details on the boundary value approach for computing

periodic solutions see [31]; further references include [3, 35].
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6.4 The CR3BP implementation in AUTO

As mentioned earlier, in the CR3BP system, there is one conserved quantity, namely, the

Jacobi constant C; see Equation (6.13). To use AUTO to continue periodic solutions of the
CR3BP, we need to modify the original form of the equations. First, the three-dimensional

second-order equations are re-written as a standard six-dimensional system in first order
form with scaled time. Thus the period T appears explicitly in the equations. Periodic

boundary conditions and the integral phase constraint are also added, as in Equation (6.15).
Second, in order to use boundary value algorithms, we introduce an unfolding term with

corresponding unfolding parameter. A suitable choice for the unfolding term is AV£", where
? is the unfolding parameter. However, this choice is not unique. For the CR3BP it is

more convenient if we introduce a simpler unfolding term, namely, one that corresponds

to "damping". After we introduce the unfolding parameter, the first order system then
becomes:

x' — Tvx ,

y = Tvy ,

z' = Tv2 ,

< = T (2,, + x - (1 - "><* + "> - "<* - ' + "') + ?,„
„; = r(-2„, + s-íi^*-í|)+Alv,
< - r(-.íi^!>i-S¿+A„,. (6.16)

It is important to stress that, while ? is a scalar unknown that is solved for at each

continuation step, its value will be zero (up to numerical precision) upon convergence of

Newton's method. There is a discussion for this simple yet crucial observation in [33]. It is
also theoretically justified in [39].
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6.5 Some facts about the CR3BP

There are five equilibrium points [19, 29, 58], also called the libration points or Lagrange
points. Ll1 L2, L3, L4 and Lb. All five lie in the same plane as the primaries. The points

Ll, L2 and L3 are on the same line as the two primaries. The points LA and Lb each form

an equilateral triangle with the primaries.

The points Ll, LI and LZ can be computed by solving ? from the following equation,"

where ? = 0, y = 0, and x\ and X2 are acquired from Equation (6.10), choosing ||ri2|| — 1:

0 = x (1-µ)(?-??) µ{?-?2)
X-Xl X - X2

(6.17)

For the libration points LA and Lb, the y-coordinate is non-zero . Their positions [72] are

(x, y, z) - 2µ) V3 ^ (6.18)

In Table (6.1), we list some notation used for the CR3BP. For further details see [29]. There
are also symmetries in the CR3BP system: first, if (x, y, z) is a solution, then so is (x, y, —z).

Second, if (x, y, z) is a solution then so is (x, —y, z).

Symbol Definition

libration Point, (i = 1, ..., 5)
The Axial family from L¿, (i — 1, 2, 3)
The Backflip family from V¿, (i = 1,2, 3)
The planar "Circular" family, (i = 1,2)

H, The Halo family that bifurcates from Lj, (i = 1, 2.3)
K1 The K-families from L¿, (i = 1, ...,4)

The planar Lyapunov family from L¿, (i = 1, 2, 3)
The Long-Period planar family from L¿, (i = 4, 5)
The planar families that bifurcate from Li, (i = 1,2,3)

V,- The Vertical family from ¿,-,(i=l,...,5)
Table 6.1: Some abbreviations used in the CR3BP
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6.6 Computing unstable manifolds and heteroclinic orbits of

the CR3BP with AUTO

6.6.1 The general procedure

(a) Compute the starting data. Normally we compute the equilibria at this

stage of different µ values. Then from one equilibrium, we can compute a

family of periodic orbits. Sometimes, another family of periodic orbits can

be reached from a computed family. For example, the Hi family bifurcates
from the Li family.

(b) AUTO computes the Floquet multipliers of the periodic orbits in step (a).
We can use the AUTO command ' @fl' to list their values. The orbits that

we are interested in will have exactly one multiplier for which the absolute

value is greater than 1, thus these orbits are unstable.

(c) Convert the data for a selected solution from the family chosen in (b) and
add a zero adjoint variable. Save the converted solution.

(d) Compute the Floquet eigenfunction. At the end of this step, the norm of
the eigenfunction should be nonzero. Save the result.

(e) We extract data for the selected solution from the results of steps (c) and
step (d). We save the extracted data containing the mass-ratio parameter
µ. the energy E, the initial step size e into the direction of the unstable

manifold, the orbit coordinates at "time zero", and the Floquet eigenfunction
coordinates at "time zero" .

(f) In step (e) we have the starting point in the unstable manifold. Now we do

a time integration using continuation in the orbit segment time T. We save
the trajectory as the starting orbit in the unstable manifold.
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(g) After we successfully compute a starting orbit in the unstable manifold, we

also adapt the step size into the unstable manifold, namely, by varying the
parameter e. This variation resembles the different propelling efforts for a

satellite's rocket. However, the parameter t should not be too large, because

then the manifold may no longer be accurate.

(h) If we extend the computation in step (f) by continuing for higher value of
T1 it may be possible to locate a heteroclinic orbit or a homoclinic orbit.

For details see AUTO demo 'r3b'. In Appendix (B), we give a Python script that
generalizes the computational set-up and provides more supporting functions.

6.6.2 Results

The CR3BP has a wealth of solutions. In our numerical results, we reveal some aspects of

the nature of the solutions. Our results are given in graphical presentations, together with
explanations.

For convenience of computation, µ is set equal to 0.063 (not the real value for the Earth-

Moon system). Other µ values are left for future study.

In the following figures, the large primary is shown as the Earth and the small primary
is shown as the Moon. The five grey cubes represent the equilibrium points L\ to Ls-
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Figure 6.1: An unstable manifold of a periodic orbit in the family H1 at energy -1.465584.

Figure 6.2: An unstable manifold of a periodic orbit in the family H1 at energy -1.673174.
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Figure 6.3: An unstable manifold of a periodic orbit in the family Vi at energy —1.660129.

1.2 e^

Figure 6.4: An unstable manifold of a periodic orbit in the family Vi at energy —1.507751.
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Figure 6.5: A heteroclinic connection from a periodic orbit in family H1 to a torus at
equilibrium L3 at energy -1.465585.
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Figure 6.6: A heteroclinic connection from a periodic orbit in family Hi to a torus at
equilibrium L2 at energy —1.673190.

Figure 6.7: A homoclinic connection from a periodic orbit in family Hj to Hi at energy
-1.673174 .
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Figure 6.8: A heteroclinic connection from a periodic orbit in family Vi to a torus at
equilibrium L\ at energy —1.507750.

Figure 6.9: A heteroclinic connection from a periodic orbit in family Li to L3 at energy
-1.520881.
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Figure 6.10: A heteroclinic connection from a periodic orbit in family Li to L2 at energy
-1.506991.
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Figure 6.11: A heteroclinic connection from a periodic orbit in family L1 to L3 at energy
-1.430828.
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Figure 6.12: An unstable manifold of a periodic orbit in the family Lj at energy —1.766528.

Figure 6.13: A homoclinic connection from a periodic orbit in family Li to Li at energy
-1.764280.
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Figure 6.14: An unstable manifold containing homoclinic connections from a periodic orbit
in family Lj to L1 around the Moon at energy —1.764280.
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Figure 6.15: An unstable manifold containing homoclinic connections from a periodic orbit
in family Li to Li at energy —1.761132.
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Figure 6.16: An unstable manifold containing homoclinic connections from a periodic orbit
in family Li to Li at energy —1.761125.
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Figure 6.17: A homoclinic connection from a periodic orbit in family Li to Li around the
moon at energy —1.754963 .
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Figure 6.18: An unstable manifold containing homoclinic connections from a periodic orbit
in family L1 to Lj at energy -1.754963.

10.5

1

1
1

Figure 6.19: An unstable manifold containing homoclinic connections from a periodic orbit
in family Li to L] at energy -1.749074.
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Figure 6.20: A heteroclinic connection from a periodic orbit in family L2 to Li at energy
-1.724892.
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Figure 6.21: A heteroclinic connection from a periodic orbit in family L2 to L1 at energy
-1.708555.
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Figure 6.22: A heteroclinic connection from a periodic orbit in family L2 to Li at energy
-1.691739.
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Figure 6.23: An unstable manifold containing homoclinic connections from a periodic orbit
in family L2 to L2 around the Moon at energy —1.691739.
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Figure 6.24: A homoclinic connection from a periodic orbit in family L3 to L3 at energy
-1.559424.

Figure 6.25: An unstable manifold containing heteroclinic connections from a periodic orbit
in family L3 to family Li at energy —1.559424.
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Figure 6.26: An unstable manifold containing heteroclinic connections from a periodic orbit
in family L3 to Lj at energy —1.548840 .

Figure 6.27: A homoclinic connection from a periodic orbit in family L3 to L3 at energy
-1.548840.
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Figure 6.28: A homoclinic connection from a periodic orbit in family L3 to L3 at energy
-1.548840.

¡t

Figure 6.29: An unstable manifold containing homoclinic connections from a periodic orbit
in family L3 to L3 at energy —1.548840.
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Figure 6.30: A homoclinic connection from a periodic orbit in family L3 to L3 at energy
-1.506991.
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Figure 6.31: A heteroclinic connection from a periodic orbit in the family L3 to L2 at energy
-1.506991.
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Figure 6.32: A homoclinic connection from a periodic orbit in family L3 to L3 at energy
-1.453254.
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Figure 6.33: A homoclinic connection from a periodic orbit in family L3 to L3 at energy
-1.453254.
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Figure 6.34: A homoclinic connection from a periodic orbit in family L3 to L3 at energy
-1.430830.
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Figure 6.35: A heteroclinic connection from a periodic orbit in family L3 to Li at energy
-1.506991.

106



10.5

1

1
1

Figure 6.36: A homoclinic connection from a periodic orbit in family L3 to L3 at energy
-1.506991.
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Figure 6.37: A homoclinic connection from a periodic orbit in family L3 to L3 at energy
-1.506991.
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Chapter 7

Conclusions and Prospects

In this thesis, we started with the basic concepts of dynamical systems. Then we intro-

duced general approaches to solve ODE systems. We discussed the features that distinguish
AUTO from general ODE solvers. We also recalled the elementary stability and bifurcation

facts, which are crucial for the problems we deal with in this thesis.

We used AUTO to study two problems. The first one is the Lorenz system. The sec-
ond one is the CR3BP. We do not only use orbit continuation to compute stable/unstable

manifold of these systems, but we also use various boundary condition settings to locate
homoclinic and heteroclinic connections within the manifolds we compute. We use Python

scripts to generate large amount of data. To deal the huge quantity of data, we use scripts for
selecting and extracting key results. In addition, the graphical visualization tool QTPlaut

greatly réduces our effort in selecting interesting connections, by browsing the manifolds

(AUTO solutions) like turning a photo album. Another visualization tool MATPlaut pro-
vides high quality graphics processed by QTPlaut. Transparency effects, coloring schemes

and marking facilities of the orbits/manifolds can be adjusted through a convenient graph-
ical user interface. QTPlaut and MATPlaut are a combination of tens of thousand lines

C/C+-1- code and MATLAB scripts. They are introduced in a separate document as a user
manual.

Our work is far from complete. For the Lorenz system, we should go further in the study

of the symbolic dynamics. We should try the continuation of the system with different sys-

tem parameters. For the CR3BP, we need to find better classification and sorting methods
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to clarify the possible connections, both homoclinic and heteroclinic, between periodic or-
bits and equilibria. In this thesis we only considered the 2-dimensional unstable manifold

of the CR3BP. Higher dimensional unstable manifolds are also a direction of further study.
We should study how the results are affected by µ.

To visualize the computational results of AUTO better, we need a measure such that the

orbits can have a more uniform distance between every pair of adjacent orbits, so that the
graphical mesh will look even and smooth. Thus in the orbit continuation process, we need
to know information of a computed orbit while computing a new orbit. In our experiments,
we found that the Python command line interface cannot deal with a file larger than 2
Giga-bytes. Although we can divide AUTO solutions into smaller ones, the programming
becomes very complex and difficult to read. We hope that in future AUTO implementation
these two points can be improved.
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Appendix A

Computing Heteroclinic
Connections of the Lorenz

Manifold

In this chapter, we list the technical details about how to compute 1,024 heteroclinic con-

nections of the Lorenz manifold, starting from 0 the ending at the secondary equilibria.

A.l The equation file man.f

c

C man : Stable manifold of the origin in the Lorenz model
c

SUBROUTINE FUNC(NDIM, U, ICP, PAR, I JAC, F, DFDU, DFDP)
c

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION U(NDIM) ,PAR(*) ,F(NDIM)

rho = PAR(I) ;beta = PAR(2) ; sigma = PAR(3); T=PAR(Il)
F(D= T * (sigma * (U(2)- U(D))
F(2)= T * (rho*U(l) - U(2) - U(1)*U(3))

F(3)= T * (U(D*U(2) - beta*U(3))

RETURN
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END

c

SUBROUTINE STPNT(NDIM, U, PAR, time)
c

IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION U(NDIM) ,PAR(*)

DIMENSION Vl (3) ,V2(3) ,Wl (3) ,W2(3)

rho =28.; beta = 8.d0/3.d0; sigma= 10.
PAR(I) = rho; PAR(2) = beta; PAR(3) = sigma

C Get eigenvectors at the origin:

CALL EIGVO (NDIM, PAR, Vl, V2)

C Set initial approximate solution (for small T)
rad =0.1; theta = 0.; T =-le-5; RL= le-5

PI = 4*DATAN(l.dO); angle= 2*PI*theta
cs = DCOS(angle); sn = DSIN(angle)
U(D= rad * ( cs*V2(l) + sn*Vl(l) )

U(2)= rad * ( cs*V2(2) + sn*Vl(2) )

U (3)= rad * ( cs*V2(3) + sn*Vl(3) )

PAR(4) = rad; PAR(5) = theta

C At time=l (at one of the nonzero equilibria) :
xl =-SQRT(beta*(rho - I)); yl = xl; zl = rho - 1
CALL EIGVl (NDIM, PAR, Wl)

PAR(8)=(U(l)-xl)*Wl(l)+(U(2)-yl)*WH2)+(U(3)-zl)*Wl(3)
C At time=l (at the other nonzero equilibrium) :

x2 = SQRT (beta* (rho - I)); y2 = x2; z2 = rho - 1
CALL EIGV2(NDIM,PAR,W2)

PAR(9)=(U(l)-x2)*W2(l)+(U(2)-y2)*W2(2)+(U(3)-z2)*W2(3)
PAR(IO) = RL; PAR(Il) = T

RLnom = 1030.; Tnom = -14.; Cnom = 300.

PAR(21) = RLnom; PAR(22) = Tnom; PAR(23) = Cnom

PAR(24) = (RLnom-RL)*ABS(T-Tnom) - Cnom

RETURN

END
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C

SUBROUTINE BCND(NDIM, PAR, ICP, NBC, UO, Ul ,FB.IJAC, DBC)
c

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION PAR(*) ,ICP(*) ,UO(NDIM) ,Ul(NDIM) ,FB(NBC) ,DBC(NBC,*)

DIMENSION Vl (3) ,V2(3) ,Wl (3) ,W2(3)

PI = 4*DATAN(l.dO)

rho = PAR(I) ; beta = PAR(2) ; sigma = PAR(3)
rad = PAR(4); theta = PAR(5) ; angle = 2*PI*theta
cs = DCOS(angle); sn = DSIN(angle)

C At time=0

CALL EIGVO(NDIM, PAR, Vl, V2)

FB(D= UO(I) - rad * ( cs*V2(l) + sn*Vl(l) )

FB(2)= U0(2) - rad * ( cs*V2(2) + sn*Vl(2) )

FB (3)= UO (3) - rad * ( cs*V2(3) + sn*Vl(3) )

C At time=l (at one of the nonzero equilibria) :
xl =-SQRT (beta* (rho - I)) ; yl = xl ; zl = rho - 1
CALL EIGVl (NDIM, PAR, Wl)

FB(4)= (Ul(l)-xl)*Wl(l)+(UH2)-yl)*Wl(2)+(Ul(3)-zl)*Wl(3)-PAR(8)
C At time=l (at the other nonzero equilibrium) :

x2 = SQRT (beta* (rho - I)); y2 = x2; z2 = rho - 1
CALL EIGV2 (NDIM, PAR, W2)

FB (5)= (Ul(l)-x2)*W2(l)+(Ul(2)-y2)*W2(2)+(Ul(3)-z2)*W2(3)-PAR(9)
C A constraint on T and L:

RL = PAR(IO); T = PAR(Il); RLnom= PAR(21)

Tnom = PAR(22); Cnom = PAR(23)

FB (6)= (RLnom-RL) *ABS (T-Tnom) - Cnom - PAR (24)

EPSD = 50.0; PAR(7) =1.0

IF (ABS(PAR(8)) .LE. le-5 .0R. ABS(PARO)) .LE. le-5 ) THEN

PAR(7) =0.0

ENDIF

IF (PAR(25) .GE. EPSD .0R. PAR(26) .GE. EPSD )THEN

PAR(7)=1.0
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ENDIF

RETURN

END

c

SUBROUTINE ICND (NDIM , PAR , ICP , NINT , U , UOLD , UDOT , UPOLD , FI , IJAC , DINT)

c

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION U(NDIM) ,UOLD(NDIM) ,UDOT(NDIM) ,UPOLD(NDIM)

DIMENSION FI(NINT) ,DINT(NINT,*) ,ICP (*) ,PAR(*)

DIMENSION FF (3)

CALL FUNC(NDIM, U, ICP, PAR, O, FF, DFDU, DFDP)

FI(1)=SQRT(FF(1)**2 + FF(2)**2 + FF(3)**2 ) - PAR(IO)

RETURN

END

c

SUBROUTINE PVLS (NDIM, U, PAR)

C

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION PAR(*) ,U(NDIM)

DIMENSION Ul (3) ,Fl (3) ,WL(3) ,WR(3)

Ul(I) = GETPCBVl", 1, U)

Ul (2) = GETPCBVl", 2, U)

Ul (3) = GETPCBVl", 3, U)

CALL FUNC (NDIM , Ul , ICP , PAR , O , Fl , DFDU , DFDP)

CALL ScaleV(NDIM.Fl)

C At time=l (at one of the nonzero equilibria) :
CALL EIGVl(NDIM, PAR, WL)

PAR(18) = F1(1)*WL(1) + F1(2)*WL(2) + F1(3)*WL(3)

C At time=l (at the other nonzero equilibrium) :
CALL EIGV2 (NDIM, PAR, WR)

PAR(19) = F1(1)*WR(1) + F1(2)*WR(2) + F1(3)*WR(3)

rho = PAR(I); beta = PAR(2) ; sigma = PAR(3)
xl =-SQRT (beta* (rho - I)); yl = xl; zl = rho - 1
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tmp = (Ul(l)-xl)**2; tmp = (Ul(2)-yl)**2 + tmp
tmp = (Ul(3)-zl)**2 + tmp; PAR(25) = SQRT(tmp)
x2 = SQRT (beta* (rho - I)); y2 = x2; z2 = rho - 1
tmp = (Ul(l)-x2)**2; tmp = (Ul(2)-y2)**2 + tmp

tmp = (Ul(3)-z2)**2 + tmp; PAR(26) = SQRT(tmp)
PAR(6) = Ul(I); PAR(27) = Ul (2); PAR(28) = Ul (3)

RETURN

END

c

SUBROUTINE EIGVO (NDIM, PAR, Vl, V2)

C

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DIMENSION PAR(*) ,Vl(NDIM) ,V2(NDIM)

COMMON /FIRSTO/ ifirst

rho = PAR(I); beta = PAR(3) ; sigma= PAR(3)
C Stable eigenvalues:

d = (sigma+l.d0)**2 + 4.d0*sigma*(rho-l .dO) ; sq = DSQRT(d)
evi =-beta; ev2 = (-sigma - l.dO - sq)/2.d0
IF (evi. GE. OdO .0R. ev2. GE. OdO) THEN

WRITE(6,*)" Error in user subroutine EIGV"

STOP

ENDIF

C Normalized stable eigenvector 1

Vl(D= 0.; Vl(2)= 0.; Vl(3)= 1.

C Normalized stable eigenvector 2

V2(l)=ev2+l.d0; V2(2)=rho; V2(3)= 0. ; ss=0.dO

DO i=l,3

ss=ss+V2(i)**2

ENDDO

ss=DSQRT(ss)

DO i=l,3

V2(i)=V2(i)/ss

ENDDO
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C Scale the normalized stable eigenvector 2:
SC=DABS(EVl) /DABS (EV2)

DO i=l,3

V2(i)=sc*V2(i)

ENDDO

C Write the eigenvalues/vectors upon first call :
IF(ifirst .NE. 1234)THEN

WRITE(9,101);WRITE(9,102)evl,Vl(l),Vl(2),Vl(3)

WRITEO, 102)ev2,V2(l),V2(2),V2(3)

101 FORMATC Stable eigenvalues/vectors at the origin:")
102 F0RMAT(4X,1P4E19.10)

ifirst=1234

ENDIF

RETURN

END

c _

SUBROUTINE EIGVl (NDIM, PAR ,Vl)

c

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION PAR(*) ,Vl(NDIM)

DIMENSION A(3,3) ,WR(3) ,WI (3) ,Z(3,3) ,FV1(3)

INTEGER IVl (3)

COMMON /FIRSTl/ if irst

rho = PAR(I); beta = PAR(2) ; sigma= PAR(3)
C One of the nonzero stationary points:

xl =-SQRT(beta*(rho - I)); yl = xl; zl = rho - 1

C The transpose Jacobian at the nonzero stationary point

A(I, 1) =-sigma; A(2,l) = sigma; A(3,l) = O
A(I, 2) = rho - zl; A(2,2) =-1; A(3,2) =-xl

A(I, 3) = yl; A(2,3) = xl; A(3,3) =-beta
CALL RG(3, 3, A, WR, WI, 1, Z, IVl, FVl, 1ER)

erO = WR(I); eri = WR(2) ; er2 = WR(3)

eiO = WKl); eil = WI (2); ei2 = WI(3)
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IFCeiO.EQ.O.dO .AND. erO.LT.O.dO)THEN

DO i=l,3

Vl(i) = Z(i,l)

ENDDO

ELSE

WRITE(6,*)" Real part complex e.v. in EIGVl not real, negative"
WRITEO,*)" Real part complex e.v. in EIGVl not real, negative"
STOP

ENDIF

C Normalize :

SS=DSQRT(Vl (1)**2 + Vl(2)**2 + Vl(3)**2)

Vl(l)=Vl(l)/ss; Vl (2)=Vl(2)/ss; VlO)=Vl (3)/ss
C Set the orientation

IF (Vl(I). LT. OJTHEN

DO i=l,3

Vl(i)=-Vl(i)

ENDDO

ENDIF

C Write the eigenvalue/vector upon first call:

IF(if irst .NE. 1234)THEN

WRITEO, 101); WRITEO, 102) erO.eiO; WRITEO, 102) eri, eil

WRITEO,102)er2,ei2;WRITEO,103);WRITE(9)104)Vl(l),Vl(2),Vl(3)

101 FORMAT(/," Adjoint eigenvalues at nonzero SSl:")
102 F0RMAT(4X,1P2E19.10)

103 F0RMAT(/," Adjoint stable eigenvector at nonzero SSl:")
104 F0RMAT(4X,1P3E19.10)

ifirst=1234

ENDIF

RETURN

END

c

SUBROUTINE EIGV2 (NDIM, PAR, Vl)

C
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IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION PARC*) ,Vl(NDIM)

DIMENSION A(3,3) ,WR(3) ,WI (3) ,Z(3,3) ,FVl (3)

INTEGER IVl (3)

COMMON /FIRST2/ ifirst

rho = PAR(I); beta = PAR(2) ; sigma= PAR(3)
C One of the nonzero stationary points:

xl = SQRT (beta* (rho - I)); yl = xl; zl = rho - 1
C The transpose Jacobian at the nonzero stationary point

A(I, 1) =-sigma; A(2,l) = sigma; A(3,l) = 0
A(I, 2) = rho - zl; A(2,2) =-1; A(3,2) =-xl

A(I, 3) = yl; A(2,3) = xl; A(3,3) =-beta
CALL RG(3,3,A,WR,WI,1,Z,IV1,FV1,IER)

erO = WR(I); eri = WR(2) ; er2 = WR(3)

eiO = WI(I); eil = WI(2); ei2 = WI(3)

IF(eiO.EQ.O.dO .AND. erO.LT.O.dO)THEN

DO i=l,3

Vl(i) = Z(i,l)

ENDDO

ELSE

WRITE(6,*)" Real part complex e.v. in EIGV2 not real, negative"
WRITEO,*)" Real part complex e.v. in EIGV2 not real, negative"
STOP

ENDIF

C Normalize:

SS=DSQRT(Vl (1)**2 + Vl(2)**2 + Vl(3)**2)

Vl(l)=Vl(l)/ss; Vl(2)=Vl(2)/ss; Vl(3)=Vl(3)/ss

C Set the orientation

IF(VKl). LT. O. )THEN

DO i=l,3

Vl(i)=-Vl(i)

ENDDO

ENDIF
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C Write the eigenvalue/vector upon first call:
IF(ifirst.NE.1234)THEN

WRITEO, 101); WRITEO, 102) erO.eiO; WRITEO, 102) eri, eil

WRITEO,102)er2,ei2;WRITE(9,103);WRITE(9,104)Vl(l),Vl(2),Vl(3)

101 FDRMATC/," Adjoint eigenvalues at nonzero SS2:")
102 F0RMAT(4X,1P2E19.10)

103 FORMATC/," Adjoint stable eigenvector at nonzero SS2:")
104 F0RMATC4X.1P3E19.10)

ifirst=1234

ENDIF

RETURN

END

SUBROUTINE SealeV CNDIM, V)

IMPLICIT DOUBLE PRECISION CA-H, 0-Z)

DIMENSION VCNDIM)

C Scale the vector V so that its discrete L2-norm becomes 1.

SS=O . dO

DO i=l,NDIM

SS=SS+VCi)*V(i)

ENDDO

SS=DSQRTCSS)

DO i=l,NDIM

VCi)=VCi)/SS

ENDDO

RETURN

END

SUBROUTINE FOPT

RETURN

END
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A.2 Computing the candidate orbits

The computation is done by calling AUTO script with the command

auto start.auto

A.2.1 File start.auto

import os

def detectMX (solution, logName, files) :
#detect "MX" , report an error and terminate the program

if solution ["Type name"] == "MX":
print "\n Abnormal termination at step No. ",files," ."
os._exit(99)

def ifASolutionExist (pattern) :
#solutionName : input a string, return if this solution exist

fn2rml = >s.7.(f ile)s' 7. {'f ile' :pattern>
fn2rm2 = ^.'/,(filejs1 7. {>f ile' : pattern}
fn2rm3 = 'd.7.(f ile)s' 7. {'f ile' :pattern}

return os. path. exists (fn2rml) and os. path. exists (fn2rm2) \
and os. path. exists (fn2rm3)

#clean previous computation
files = 1

while ifASolutionExist('man7.(dl)04d'7.{'dl' :files» :

dl('man7.(dl)04d'7.{'dl':files» ¡files = files + 1

print "\n***Generate starting data***"

run (e=' man' ,c='man. 1 ' , sv=' start')

logName = 'notset ' ;f iles = 0; solution=sl(' start ') [-1] ;
detectMX (solution , logName ,files)
while True :

print "YnFiIe number :" ,files, " ."
theta = solution. PAR(5)

if abs (theta) > 1:

print "\nEnd, I theta I > l";break
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files = files + l;lab=solution["Label"] ;

rtm(c=,man.2' ,IRS=lab,s=solution)

Sri

sv('man*/,(dl)04d,7„{ 'di': files})

solutio^sK'man/adimd'y.-C'dl' -.files}) [-1]

detectMX (solution , logName ,files)
#candidates computed, select heteroclinic connections

cinds = 'auto run. auto '; print cmds;os. system(cmds)

print "\n***Clean the directory***"
clO

A.2. 2 Constants file c.man.l

3 4 OO NDIM, IPS, 1RS, ILP

5 11 10 8 9 24 NICP, (ICP(I) ,1=1, NICP)

200 4 3 0 1 0 6 1 NTST, NCOL, IAD, ISP, ISW, IPLT, NBC, NINT

9999 -le6 le6 0 le9 NMX, RLO, RLl, AO, Al

9999 2 3 9 7 3 0 NPR, MXBF, HD, ITMX, ITNW, NWTN, JAC

le-9 le-9 le-7 EPSL , EPSU , EPSS

-0.1 le-4 10. 1 DS, DSMIN, DSMAX, IADS

3 NTHL, /((I, THL(I)), I=I, NTHL)

10 0.

11 0.

24 0.

0 NTHU, /((I, THU(I)), I=I, NTHU)

1 NUZR, /((I,UZR(I)), I=I, NUZR)

-24 0.

A.2. 3 Constants file c.man.2

3 4 2 0 NDIM, IPS, 1RS, ILP

7 5 11 10 8 9 18 19 NICP, (ICP(I) ,1=1 ,NICP)

300 4 3 0 1 0 6 1 NTST, NCOL.IAD, ISP, ISW, IPLT, NBC, NINT

99999 -1.01 1.01 0 le9 NMX, RLO, RLl, AO, Al

99999 2 2 9 5 3 0 NPR, MXBF, HD, ITMX, ITNW, NWTN, JAC
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le-9 le-9 le-7 EPSL, EPSU, EPSS

Ie-I le-4 10. 1 DS, DSMIN, DSMAX, IADS

3 NTHL, /((I, THL(I)), I=I, NTHL)

10 0.

11 0.

24 0.

0 NTHU, /((I, THU(I)), I=I, NTHU)

4 NUZR, /((I, UZR(I)), I=I, NUZR)
8 0.

9 0

-5 1.

-5 -1.

A.3 Computing the candidate orbits

After getting the 'man' files, we compute the candidate orbits longer until their distances
to the objective equilibrium meet preset limit. Call the script with command:

auto run.auto

After running the script, the symbol sequence of each orbit in the 'het' files will be

saved in file *.seq. The sequence file's name is as the setting in file man.f. For example,
'R1030T14C300.seq' means we set the nominal arclength 1030, the nominal time 14 and

the nominal constant 300 in the equation file 'man.f.

A.3.1 Script run.auto

import os

def detectMX(solution,logName, files) :

#detect "MX", report an error and terminate the program
if solution ["Type name"] == "MX":

print "\n Abnormal termination at step No. ",files," ."
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os._exit(99)

def ifASolutionExist (pattern) :

#solutionName: input a string, return if this solution exist
fn2rml = 's//.(file)s' 7. {'file' !pattern}

fn2rm2 = 'b.7.(f ile)s' '/. {'file' : pattern}
fn2rm3 = 'd.7.(f ile)s' 7. {'file' : pattern}

return os.path.exists(fn2rml) and os. path. exists (fn2rm2) \
and os. path. exists (fn2rm3)
Tc=-19.0; epsd=le-4; epsf=0.5; Dc = 3
if True :

RLnom = 1030.; Tnom = -14.; Cnom = 300.

het = >R7.(dl)dT7.(d2)dC7»(d3)d'7.{'dl' :RLnom, >d2' :abs(Tnom) , 'd3' :Cnom}

dl(het)

files = 1

while ifASolutionExist('het7„(dl)04d'%{'dl' :files}) :

dl('het'/.(dl)04d'°/,{'dl':files})

files = files + 1

files = 1; ld(e='man')

sol_str = 'man7.(dl)04d'7,{'dl':files}

het_str = 'het7.(dl)04d'7.{'dl':files}

fl = open('7.(sl)s.seq'7.{'sl':het},'w');fl.close()
f3 = openCend8trace.txt' , 'w') ;f4 = openCend9trace.txt ', 'w')
count = 1

while ifASolutionExist (sol_str) :

count = count + 1; ct8 = 0; ct9 = 0; solutions = sl(sol_str)

for sol in solutions:

lab=sol ["Label"]

if abs(sol.PAR(8)) < epsd and abs(sol.PAR(25)) < 20 :

print " Restart Label ",lab

print "PAR(8):",sol.PAR(8),"\tPAR(18):", \
abs (sol. PAR(18)), "XtPAR(Il): ",sol. PAR(Il), "\tPAR(25) : " , sol. PAR(25)

run (c= 'man. 3' ,IRS=lab, S=SoI); sol2 = sl() [-1]

print "PAR(8):",sol2.PAR(8),"\tPAR(18):", \
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abs(sol2. PAR(18)), "XtPAR(Il) : ",sol2. PAR(Il), "\tPAR(25):",sol2.PAR(25)

if sol2.PAR(25)< Dc:

ct8 = ct8 + 1

f3.write('7.(dl)6d 7.(sl)20s 7.(d2)6d\n> \

'/,{'di' :count-l,'sl>:lab,'d2':ct8»

ap(het_str); print "***Solution" ,lab, " : saved***"

elif abs (sol. PARO)) < epsd and abs(sol.PAR(26)) < 20:
print " Restart Label ",lab

print "PARO) : " ,sol .PARO) , "\tPAR(19) : " ,\
abs (sol. PAR(O)), "XtPAR(Il): ",sol. PAR(Il), "\tPAR(26) :" , sol. PAR(26)

run(c='man.4'.,IRS=lab,s=sol);sol2 = sl()[-l]

print "PARO) :",sol2. PARO), "XtPAR(19):", \
abs (sol2. PAR(O)), "XtPAR(Il) :",sol2. PAR(Il), "\tPAR(26) : " ,sol2.PAR(26)

if sol2.PAR(26)< Dc:

ct9 = ct9 + 1

f4.write('7.(dl)6d 7.(sl)20s 7.(d2)6d\n'\

7.{'dl> :count-l,'sl,:lab,'d2, :ct9»

ap(het_str); print "***Solution" ,lab," : saved***"
rl(het_str); cmds = 'Qcount °/„(sl)s' '/, {'si' :het_str}

print cmds; os .system (cmds)
seq_str = '7.(sl)s.seq' '/, { 'si' :het_str}; f2 = open(seq_str, 'r')
lines = f2.readlines() ; f2.close()

fl = open('7.(sl)s.seq'7.{'sl':het},>a')
ct = 1

for line in lines:

fl.write('7.(sl)15s %(dl)6d 0/.(l)s"/,{'sl' : 's.7.(ss)s'\

7.{'ss':het_str},'dl':ct,,l':line})

ct = ct + 1

fl.closeO; cmds = 'rm 7o(sl)s.seq' 7, {'si ' :het_str}; print cmds
os.system(cmds) ; files = files + 1

sol_str = 'man7.(dl)04d'7.-f'dl':files}; het_str = 'het7.(dl)04d'7.{'dl' :f iles}

f3.close(); f4.close()

print "\n***Clean the directory***"; cl()
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A.3.2 Utility file count.f

c======================================================================

C Utility Program for Counting Sequences for the Lorenz Data
C======================================================================

PARAMETER (NDIMX=3 , NC0LX=4 , NTSTX=5000 , NPARX=50 , NSEQX=2048)

PARAMETER (NTPLX=NTSTX*NCOLX+ 1 )

DOUBLE PRECISION UU (NTPLX ,NDIMX)

DOUBLE PRECISION UO(NDIMX) ,Ul(NDIMX) ,RLDOT(NPARX) ,PAR(NPARX)

INTEGER ICP(NPARX)

INTEGER IBR, NTOT, ITP, LAB, NFPR, ISW, NTPL, NAR, NROWPR, NTST, NCOL1NPAR

CHARACTER* 1 SEQ(NSEQX)

OPEN (28, FILE=' fort. 28', STATUS=' old')

1 CONTINUE

READ(28,*,END=99) IBR, NTOT, ITP, LAB, NFPR, ISW, NTPL, &

* NAR, NROWPR, NTST ,NCOL, NPAR

WRITE(6,*) IBR, NTOT, ITP, LAB, NFPR, ISW, NTPL, &

* NAR, NROWPR, NTST, NCOL, NPAR

WRITE(6,*)NTST,NC0L,NPAR

IF (NTST. GT. NTSTX .0R. NCOL . GT . NCOLX .0R. NPAR. GT. NPARX) THEN

WRITE ( 6 , * ) NTST , NCOL , NPAR

WRITE ( 6 , * ) NTSTX , NCOLX , NPARX

WRITE(6,*)" Error: Dimension exceeded."

STOP

ENDIF

C Read the solution:

NDIM=NAR-I

DO j=l,NTPL

READ(28,*) T,(UU(j,i),i=l,NDIM)
ENDDO

C Skip UDOTPS:

DO j=l,NTPL+2

READ(28,*)

ENDDO
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C Read parameter values :

READC28,*) (PAR(i),i=l,NPAR)

rho=PAR(l); beta=PARC2) ;xl=-SQRTCbeta*Crho - I));

x2= SQRT (beta* (rho - I))

C Initialize:

NDIM=NAR-I

DO i=l,NDIM

UO(i)=0.; UKi)=O,

ENDDO

DO i=l, NSEQX

SEQ(i)=" "

ENDDO

C Do the counting:
n=0

DO J=I1NTPL

DO i=l,NDIM

UOCi)=UKi)

ENDDO

DO i=l,NDIM

UlCI)=UUCj ,i)
ENDDO

IFCUOCl). GT. xl .AND. Ul Cl) .LE. Xl)THEN

n=n+l

SEQ Cn) ="1"

ELSEIF CUO CD. LT. x2 .AND. Ul(I) .GE. x2)THEN

n=n+l

SEQCn)="r"

ENDIF

ENDDO

C Simplify the symbol sequences by using "R" and "L" :
IF(SEQ(n).EQ."l")THEN

DO i=n-l,l,-l

IFCSEQCi). EQ. "r")THEN
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nO=i+l

SEQ (nO)=" L"

GOTO 2

ENDIF

ENDDO

nO=l

SEQ(I) = 11L"

ELSEIF (SEQ (n) .EQ. "r")THEN

DO i=n-l,l,-l

IF(SEQ(i).EQ."l")THEN

nO=i+l

SEQ(nO)="R"

GOTO 2

ENDIF

ENDDO

nO=l

SEQ(I)=11R"

ENDIF

C Write the symbol sequences :

2 WRITE(6,102) LAB, (SEQ(i) ,i=l,nO)

WRITE(Il, 102) LAB, (SEQ(i) ,i=l,nO)

GOTO 1

99 RETURN

102 F0RMAT(I6,": ",80Al)

END

c

SUBROUTINE SKIP (IUNIT, NSKIP, EOF)

C Skips the specified number of lines on fort. IUNIT.
LOGICAL EOF

EOF=. FALSE.

DO 1 I=I, NSKIP

READ(IUNIT, *,END=2)

1 CONTINUE
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RETURN

2 CONTINUE

EOF=. TRUE.

RETURN

END

C======================================================

A.3.3 Constants file c.man.3

3 4 316 0 NDIM, IPS, 1RS, ILP

5 11 5 10 9 24 NICP, (ICP(I) ,1=1, NICP)

300 4 3 0 1 0 6 1 NTST, NCOL, IAD, ISP, ISW, IPLT, NBC, NINT

99999 -26. Ie9 0 le9 NMX, RLO, RLl, AO, Al

99999 2 2 9 7 3 0 NPR, MXBF, I ID, ITMX, ITNW, NWTN, JAC

le-6 le-6 le-5 EPSL, EPSU, EPSS

-5e-l le-4 10. 1 DS, DSMIN, DSMAX, IADS

3 NTHL, /((I, THL(I)), I=I, NTHL)

10 0.

11 0.

24 0.

0 NTHU, /((1,THU(I)), I=I, NTHU)

7 NUZR, /((I, UZR(I)), I=I, NUZR)

-11 -30

-5 1.

-5 -1.

-25 2.5

-26 2.5

-25 100

-26 100

A.3.4 Constants file c.man.4

3 4 80 0 ND IM, IPS, 1RS, ILP

5 11 5 10 8 24 NICP, (ICP(I) ,I=I1NICP)

300 4 3 0 1 0 6 1 NTST, NCOL, I AD, ISP, ISW, IPLT, NBC, NINT
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99999 -26. Ie9 O le9 NMX ,RLO, RLl ,AO, Al

99999 2 2 9 7 3 0 NPR, MXBF, HD, ITMX, ITNW, NWTN, JAC

le-6 le-6 le-5 EPSL ,EPSU, EPSS

-5e-l le-4 10. 1 DS, DSMIN, DSMAX, IADS

3 NTHL, /((I,THL(I)), I=I, NTHL)

10 0.

11 0.

24 0.

0 NTHU, /((I, THU(I)), I=I, NTHU)

7 NUZR, /((I,UZR(I)), I=I, NUZR)

-11 -30

-5 1.

-5-1.

-25 2.5

-26 2.5

-25 100

-26 100
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A.4 Checking if the symbol sequences are complete

First we can run Python script mlvl.py to detect the max length of a complete set of symbol
sequences.

For example,

python mlvl.py R1030T14C300.seq

Length 1 passed!

Length 2 passed!

Length 3 passed!

Length 4 passed!

Length 5 passed!

Length 6 passed!

Length 7 passed!

Length 8 passed!

Length 9 passed!

Length 10 NOT passed!

A.4.1 Python script mlvl.py (max level)

import os , sys , shut i 1

if len(sys.argv) < 1:

print "Usage python gs.py seq_f ilename! " ;os._exit(99)
seq_f ilename = sys.argv[l]
if not os. path. exists (seq_f ilename) :

print seq_f ilename, " does not exist!"; os._exit(99)
fl = open(seq_f ilename, 'r') ; lines = f 1 .readlinesO ; fl.closeO
level = 1

while True:

str_list = [] ; hit_list = [] ; 1 = level

139



for i in range(l,2**l+l,l) :
r = i'/.2

if r==l:

s='L'

else:

s='R'

d = (i-D/2; 12 = 1 - 1

while 12>= 1:

r = d°/.2

if r == 0:

s = ,y.(sl)s,/.(s2)s)7,{'sl':'l','s2':s}

else:

s = ,7.(sl)s7.(s2)s's/.{'sl':'r','s2,:s}

d = (d)/2; 12 = 12 - 1

se = s[level-l:level] .lowerO ; s2 = s [level- 1 : level]

lib = True

for j in range(level-2,-l ,-1) :
if nb:

if not s[j:j+l] == se:
s2 = ,7,(sl)s%(s2)s'71{'sl':s[j:j+l]>,s2':s2}
nb = False

else:

s2 = '7.(sl)s7.(s2)s'M'sl':s[j:j+l],'s2':s2}
str_list .append(s2) ; hit_list.append(0)

il = 0; i2 = 0; i3 = 0

for line in lines:

i2 = il; i3 = i3 + 1; s2 = line. split () [3]
if len(s2) > level:

continue

found = False

while True:

if str_list[i2] == s2:

hit_list[i2] = hit_list[i2]+l; found = True
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break

i2 = Ì2+1

if i2 >= len (str_list) :

break

if found:

il = i2

if i2 >= len (str_list) :

break

found = True; i = 0; met = 0

for hit in hit_list:

if Mt == 0:

found = False

met = mct+1

i = i+1

if found:

print "Length ",level," passed!"; level = level + 1
else:

print "Length ",level," NOT passed!"; break

A.4. 2 Record the sequences

If the set with desired length is not complete, we can use AUTO script trace.auto to detect

the sequences that are missing. It will create three log files. For examples, R 1030T14C300. trace1

gives the complete set of symbol sequences meeting a given length with both compact form
and verbose form. R1030T14C300.trace2 lists the computed sequences and missing se-

quences of a given length. R1030T14C300.trace3 records a sequence's origin solution "het'

file and the label in the 'het' file. The script can be called by command line.

auto trace.auto sequencefilename sequenceJength

A.4.3 AUTO script trace.auto

import os,sys,shutil

def ifASolutionExist (pattern) :
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#solutionName: input a string, return if this solution exist
fn2rml = >s.7.(f ile)s' 7. {'file' : pattern}
fn2rm2 = 'b.'/.Cf ile)s' */. { 'file' : pattern}
fn2rm3 = 'd.7.(f ile)s' '/. {'f ile' :pattern}

return os.path.exists(fn2rml) and os. path.. exists (fn2rm2) \
and os. path. exists (fn2rm3)

if len(sys.argv) < 3:
print "Usage: auto trace. auto sequencef lléname sequence_length" ; os._exit(99)

solutionName = sys.argv[2]; seq_f ilename = '°/t(sl)s.seq'7.{'sl' :solutionName}
if not os. path. exists (seq_f ilename) :

print seq_f ilename," does not exist!"; os._exit(99)
level = int(sys.argv[3])
if level < 1:

print "Level must be greater than 0!"; os._exit(99)
print "Maximum sequence length ",level
str_list = [] ; fullstr_list = [] ; hit_list = [] ; 1 = level

f2 = open(',/.(sl)s.tracel'%{'sl,:solutionName},'w')
for i in ranged, 2**1+1, 1) :

r = i%2

if r==l:

s='L>

else:

s='R'

d = (i-D/2; 12 = 1 - 1

while 12>= 1:

r = d'/.2

if r == 0:

s = '7„(sl)sy.(s2)s'7„{'sl':'l','s2':s}

else:

s = '7.(sl)s7.(s2)s'7.{'sl':'r','s2':s}

d = (d)/2; 12 = 12 - 1

#zip

se = s[level-l:level] .lowerO ; s2 = s[level-l :level] ; nb = True
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for j in range (level-2, -1,-1) :
if lib:

if not s[j:j+l] == se:
s2 = ,7t(sl)sy.(s2)s'7.{'sl':s[j:j+l],,s2':s2}
nb = False

else :

s2 = '7.(sl)s%(s2)s,7.{,sl,:s[j:j+l],'s2':s2}

str_list.append(s2) ; fullstr_list . append (s) ; hit_list.append(0)
f2.write('7.(dl)5d I 7.(sl)15s I 7.(s2)15s\n>7.{ 'dl' :i, 'si' :s, 's2' :s2})

f2.close(); fl = open(seq_f ilename, 'r') ; lines = f 1 .readlinesO
il =0; i2 = 0; i3 = 0; print "file length ", len(lines)
f4 = open('7.(sl)s.trace2'7.{'sl':soliitionName},'w')
f5 = open('y.(sl)s.trace3'7.i'sl' :solutionName},'w')
for line in lines :

i2 = il; i3 = i3 + 1; s2 = line. split () [3]
f4.write('7.(dl)5d I 7.(sl)25s'7.{'dl> :i3, 'sl> :s2»

if len(s2) > level:

f4. write C Yn') ; continue

found = False

while True :

if str_list[i2] == s2:

hit_list[i2] = hit_list[i2]+l; found = True

f4.writeC I 7.(dl)5d I 7.(sl)25s I 7.(d2)5d*'7.i 'dl' \

:i2+l,'sl':str_list[i2] , 'd2' :hit_list [i2]})

f 5. write (' 7, (di) 6d 7„(sl)20s 7.(s2)10s 7.(s3)15s 7.(s4)15s \n' \

·/.{ ' dl ' : i2+l , ' si ' : line . split () [0] , ' s2 ' : line . split O [1] , ' s3 ' : \

line. split () [3] ,'s4' :fullstr_list [i2]})
break

i2 = i2+l

if i2 >= len (str_list) :

break

if found:

il = i2
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if i2 >= len (str_list) :

break

f4.write('\n')

found = True; i = 0; met = 0

print "\nComputed sequences for sequence length ",level
f4.write("\nComputed sequences for sequence length 7,(dl)d An" \
Vd' di': level})

print "7.(s0)20s 7,(sl)15s 7.(s2) 15s"7.{'s0' : 'sequence' , \
'si': 'Time PAR(IO) ', 's2' : 'Arc PAR(Il) '}

f4.write("7.(s0)20s 7.(sl)15s 7.(s2)15s"7.i's0' : 'sequence' , \
'si': 'Time PAR(IO) ', 's2' : 'Arc PAR(Il) '})

for hit in hit_list:

if hit > 0:

found = False; met = mct+1; print str_list[i]
str = "7.(sO)20s\n"7.{'sO':str_list[i]}; f4.write(str)

i = i+1

if found:

print "There are no Computed sequences ! "

f4. write ("There are no Computedsequences! ")
else:

print "Total " , met , " Computed sequences . "

f4. write ("Total 7»(dl)d Computed sequences. "7.{'dl' :mct})
found = True; i = 0; met = 0

print "\n\nMissing sequences for sequence length ",level
f4.write("\nMissing sequences for sequence length 7.(dl)d An" \
7.{'dl' : level})

for hit in hit_list:

if hit == 0:

found = False; met = mct+1; print str_list[i]
f4.write(str_list[i]) ; f4.write('\n')

i = i+1

if found:

print "There are no missing sequences!";
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f4. write ("There are no missing sequences!")
else:

print "Total ", met," missing sequences.";

f4. write ("Total %(dl)d missing sequences. "7.-['dl' :mct})
f4.close(); f5.close() ;f 1 .closeO ; os._exit(99)

A. 5 Supplement missing sequences manually

Sometimes, for a given sequence length, there are only few sequences are missing. We can
calculate them by decreasing the continuation step size or increasing the accuracy. For ex-
ample, after running all the above scripts, we find for length ten there is only one sequence
UlrrrrrlR is missing. By checking file R1030T14C300.trace2, we find its two adjacent se-
quences UlrrrrrL and UlrrrrrrL are all in s.hetOOOt). So we can seek in file s.man0009 the
original solutions. We select a label near UlrrrrrL and continue for some steps with smaller
'DS' and higher accuracy. We will get some additional candidates and we can find a desired
sequence among them.

Then we use ' ©count man0009+' to compute more candidates. Again we continue the

@R man 21 man0009

@sv man0009+

@rl man0009+

orbits with longer time to test if a candidate is a connection by '@R man 3 man0009+'.
Save the connections by '@sv het0009+'. We may use QTPlaut or PLAUT04 to help find
the label of the missing sequence, since we have only one orbit missing. We then add line

126 s.het0009+ 1 UlrrrrrL lllrrrrrlL

to file R1030T14C300.trace3. The label in het0009+ may vary.

A.5.1 Constants file c.man.21

3 4 234 0 NDIM, IPS, 1RS, ILP

7 5 11 10 8 9 18 19 NICP, (ICP(I) ,1=1, NICP)

300 4 3 0 1 0 6 1 NTST, NCOL, IAD, ISP, ISW, IPLT, NBC, NINT
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20000 -1.01 1.01 0 le9 NMX, RLO, RLl, AO ,Al

99999 2 2 9 5 3 0 NPR, MXBF, HD, ITMX, ITNW, NWTN, JAC

le-9 le-9 le-7 EPSL, EPSU, EPSS

le-2 le-5 10. 1 DS, DSMIN, DSMAX, IADS

3 NTHL, /((I, THL(I)), I=I, NTHL)

10 0.

11 0.

24 0.

0 NTHU, /((I, THU(I)), I=I, NTHU)

4 NUZR, /((I, UZR(I)), I=I, NUZR)
8 0.

9 0

-5 1.

-5-1.

A.6 Extract the connections to one solution

All the connections are saved in the 'het' files. The file names and labels are recorded in file

R1030T14C300.trace3. We can extract all the connections to a single solution by AUTO

script extract.auto seqfile should be seqfile.trace3.

auto extract. auto seqfile svname

A.6.1 AUTO script extract.auto

import os.sys.shutil

def ifASolutionExist (pattern) :
#solutioiiName : input a string, return if this solution exist

fn2rml = 's.7.(f ile)s' '/, {'f ile' :pattern}
fn2rm2 = 'b.'/.(f ile)s' '/, {'file' : pattern}
fn2rm3 = 'd.7.(f ile)s' '/. {'file' :pattern>
return os .path. exists (fn2nnl) and os.path.exists(fn2rm2) \

and os. path. exists (fn2rm3)

if len(sys.argv) < 4:
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print "Usage: auto extract. auto seqfile svname"; os._exit(99)
seqName = sys.argv[2]; seqName = "/,(sl)s.trace3,'/,{'sl' : sys . argv [2] }
if not os. path. exists (seqName) :

print seqName," does not exist!"; os._exit(99)
fl = open ( seqName, 'r') ; seqs = f 1 .readlinesO ; fl.closeO;

svname = sys. argv [3]; soin = 'notlnited';
for seq in seqs:

sgs = seq. split () ; soln2 = sgs[l] . split (' . ') ; lab = int(sgs[2])-l
soln3 = soln2[l]

if not soin ==soln3:

soin = soln3; print soin; sols = si (soin)
sol= sols [lab]

if abs(sol.PAR(8)) < le-3:

run (e='man' ,c= 'man. 32' ,s=sol)

if abs(sol.PARO)) < le-3:

run(e='man' ,c='man.42' ,s=sol)

ap(svname)
rl(svname); cmds = 'Ocount 7,(sl)s' '/, {'si ': svname}; print cmds
os.system(cmds) ; print "\n***Clean the directory***"; cl(); os._exit(99)

A.6. 2 Constants file c.man.32

3 4 316 O NDIM, IPS, 1RS, ILP

5 11 5 10 9 24 NICP, (ICP(I) ,1=1, NICP)

300 4 3 O 1 O 6 1 NTST, NCOL, I AD, ISP, ISW, IPLT, NBC, NINT

99999 -26. Ie9 0 le9 NMX, RLO, RLl, AO, Al

99999 2 2 9 7 3 0 NPR, MXBF, HD, ITMX, ITNW1NWTN, JAC

le-6 le-6 le-5 EPSL, EPSU, EPSS

-Ie-I le-6 10. 1 DS, DSMIN, DSMAX, IADS

3 NTHL, /((I, THL(I)), I=I, NTHL)

10 0.

11 0.

24 0.

0 NTHU, /((I, THU(I)), I=I, NTHU)
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7 NUZR, /((I,UZR(I)) ,I=I1NUZR)

-11 -100

-5 1.

-5 -1.

-25 2.

-26 2.

-25 100

-26 100

A.6.3 Constants file c.man.42

3 4 80 0 NDIM, IPS, 1RS, ILP

5 11 5 10 8 24 NICP, (ICP(I) ,1=1, NICP)

300 4 3 0 1 0 6 1 NTST, NCOL, IAD, ISP, ISW, IPLT, NBC, NINT

99999 -26. Ie9 0 le9 NMX, RLO, RLl, AO, Al

99999 2 2 9 7 3 0 NPR, MXBF, HD, ITMX, ITNW1NWTN, JAC

le-6 le-6 le-5 EPSL, EPSU, EPSS

-Ie-I le-6 10. 1 DS, DSMIN, DSMAX, IADS

3 NTHL, /((I, THL(I)), I=I, NTHL)

10 0.

11 0.

24 0.

0 NTHU, /((I, THU(I)), I=I, NTHU)

7 NUZR, /((I, UZR(I)), I=I, NUZR)

-11 -100

-5 1.

-5-1.

-25 2

-26 2

-25 100

-26 100
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Appendix B

Computing CR3BP Unstable
Manifold

In this chapter, we give the technical details of computing the CR3BP unstable manifold.
This chapter is an extension of AUTO demo 'r3b'.

B.l The general procedure

First, we have to use demo 'r3b' to compute the differnt periodic solution families. For a

given family, for example the family L2, we can call following line command to get the ID
unstable labels listed in file 'L2-c.Ompute.log'.

auto work.auto O L2

Then for a given label xx. we call the following command line .

auto work.auto 1 L2 xx eps

This run will compute a starting orbit of the ID unstable manifold, 'eps' is the e. It
can also perform limited correction if PAB(5) < O when computing the adjoint, eigenfunc-
tion. We span the unstable manifold (the continuation of e).
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auto work.auto 2 L2 xx eps

After this step, we will get a series of AUTO solutions spanning different solutions in
the 'start' solution. Then we use QTPlaut to browse these files. QTPlaut has a function

that will record a file called 'BK.LIST'. For example, a line written to 'BK. LIST'

s.uL2_029_+le-5-0052 17 L2-HOMO

means in solution file 's.uL2_029_+le-5_0052' (L2 family label 29, e = +le - 5, starting

label 52) has a homoclinic connection saved as label 17. 'L2-HOMO' is a comment added
by the user.

auto work.auto 4 L2 xx eps

will backup the results to a separate folder according to 'BK.LIST'. At the same time,
each solution's key parameters are put to a log.

auto work.auto 5 L2 xx eps

will clean the computing result in the current folder.

B.2 Scripts

B.2.1 AUTO script work.auto

import os,sys,slmtil

def bkSingleSolution (uSolution,all_flg,special_f Ig, \
familyLog_fds ,bk_lines , f? , fm , stbl , mult , eng , fullBkFolder ) :

if ifASolutionExist (uSolution) :

print uSolution, 'exists ... '
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print 'Performing data analysis ' ,uSolution, ' ...'
u_branches = si (uSolution)

u_maxlabel = int(u_branches[-l] ["Label"])

u_i = 1

while True:

if u_i > u_maxlabel:

break

# write a line to logs

# if this label u_i is in the BK list

j=0; found = False; rmk = ' '; eng2 = 0
dist = 0; ptime = 0; arci = 0
for bline in bk_lines:

h = bline. split ()
if fn == h[0][2:] and u_i == int( h[l]):

print u_i,',',int( h [I])
found = True

if len(h) >=3 :

c=0

for th in h:

if O= 2:

rmk = th +' '

c=c+l

break

eng2 = u_branches[u_i-l] ["Parameters"] [2]
dist = u_branches[u_i-l] ["Parameters"] [5]

ptime = u_branches[u_i-l] ["Parameters"] [10]
arci = u_branches[u_i-l] ["Parameters"] [11]

lb = u_branches[u_i-l] ["Label"]

line2w = '7.(fm)6s */„(fn)25s 7.(lb)5s 7.(stbl)6s\

7.(mult) 13s y.(eng)13e 7.(dist)13e 7,(time)13e 7,(arcl)13e\
7„(eng2)13e 7.(rmk)6s\n' 7.{'fm' :fm, 'fn' :fn, 'lb' :1b, >stbl> :stbl,\
'mult' :mult, 'eng' :float(eng) , 'eng2' :float(eng2) , 'dist' :f loat\
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(dist) , 'time' :f loat(ptime) , 'arci' : float (arci) , 'rmk' :rmk}
if found:

#write to all logs

all_fIg . write (line2w)
#write to special logs

special_f Ig. write (line2w)
familyLog_fds. write (line2w)
#back up this file

print 'back up files to folder ' ,fullBkFolder.uSolution
copyPathSolution (uSolution, fullBkFolder.uSolution)

else:

#write to all logs

all_flg.write(line2w)
u_i = u_i+l

def generateLogs(solutionName) :
cmds = 'QfI 7.(sl)s > flqtmp.txt' 7. {'si' : family}

print cmds; os.system(cmds)
branches = sl(solutionName)

maxlabel = int (branches [-1] ["Label"] ) ; print maxlabel

fi = openCflqtmp.txt', 'r')
f2 = open('7.(sl)s-compute.log'7. {'si' ¡family}, 'w>)
f3 = open('7.(sl)s-brief .log '7. {'si' ¡family}, 'W)
flqlines = f 1 .readlinesO
i = 1

str = '7.(s0)8s 7.(sl)5s 7.(s2)18s 7.(s3)18s 7.(s4)9s\tRemarks\t\n'7.\

{'sO': 'Computed', 'si': 'Label', 's2' : 'Engergy' , 's3' : 'Multiplier' ,\
's4' : 'Stability'}

f2.write(str) ; f3.write(str)

while True:

if i >= maxlabel :

break

abspart= [' ',' ',' ',' ',' ',' ']
fabspart= [' ',' ',' ',' ',' ',' ']
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hh = flqlines[(i-l)*7+l] .splitO
abspart[03= KK[83; fabspart[0]= float(hh[83)
Kh = flqlines[(i-l)*7+2] .splitO

abspart [1]= hh[8]; fabspart [1]= float (hh[83)
Kh = flqlines[(i-l)*7+33 .splitO
abspart [23= Kh [83; fabspart [2]= float (hh [8])
Kh = flqlines[(i-l)*7+4] .splitO

abspart [33= Kh [83; fabspart [33= float (Kh [83)
Kh = flqlines[(i-l)*7+53.split()
abspart [43= Kh [83 ; fabspart [43= float (Kh [83)
KK = flqlines[(i-l)*7+63 .splitO

abspart [53= KK [83; fabspart [53= float (Kh [83)
j = 0; dtmp = fabspart [03 ; flct = 0
for pt in fabspart :

if pt > dtmp:

flct = j ; dtmp = pt

J= J+I
str = "/.(s0)8s */.(sl)5s °/.(s2)18s °/,(s3)18s 7.(s4)9s\t\t\n' \

°/.{'s0' : ?' , 'si' :branches[i3 ["Label"3 , 's2' :brancKes[i3 ["Parameters'^ \

[23 , 's3' : abspart [flct3 , 's4' :f lqlines[(i-l)*73 .split O [43}
if int (flqlines[(i-l)*73. splitO [43) == 5:

f2. write (str)

f3. write (str)

i = i+1

fl.closeO; f2.close(); f3.close()

cmds = 'rm flqtmp.txt'; print cmds; os .system (cmds)
def cKTime(f ileName.newTime) :

print "new time 7.(dl)f "7„{'dl' mewTime}
f = open(fileName, 'r') ; lines = f .readlinesO ;s f.closeO
h2 = "-11 7.(dl)f \n"y,i'dl' rnewTime}

f = open(fileName, 'w'); j=0; NUZRat = -1
for line in lines:

i = line.find("-ll"); found = line.f indO'NUZR")
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if found >= 0:

NUZRat = j

print i

if i >= 0 and j== NUZRat+1:

f. write (h2); print h2
else:

f .write (line) ; print line

j = J+I

f.closeO

def chIRS (f ileName, newIRS):

f = open(f ileName, 'r') ; lines = f .readlinesO ; f.closeO
h = lines [0] . split ()
h2 = "/.(sl)s °/.(s2)s 7.(s3)s y.(s4)s NDIM, IPS, 1RS ,ILP\n'\

7.{'sl' :h[0] , 's2' :h[l] , 's3' :newIRS, 's4> :h[3]}

f = open (f ileName, 'w') ; i = 0
for line in lines:

if i >0:

f .write (line)

else:

f. write (h2)

i=i+l

f .closeO

def ifASolutionExist (pattern) :
#solutionName: input a string, return if this solution exist

fn2rml = >s.7.(f ile)s' '/. {'file' : pattern}
fn2rm2 = 'b.7.(f ile)s' '/. {'file' :pattern}
fn2rm3 = 'd.7.(f ile)s' '/. {'file' : pattern}

return os.path.exists(fn2rml) and os .path. exists (fn2rm2) and \
os .path . exists (fn2rm3)
def copyPathSolution (src,dstpath,dest) :

if ifASolutionExist(src) :

shutil . copy ( ' s . 7.(src) s ' 7.{ ' src ' : src} , >7.(dstpath) s/s . 7. (dest) s ' \
7.{'dstpath' :dstpath, 'dest' :dest})
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shut il . copy ( 'b . % (src) s ' '/.{ ' src ' : src} , ' 7. (dstpath) s/b . 7,(dest) s ' \
7.{' dstpath' : dstpath, 'dest' :dest})

shutil. copy ('d.7.(src)s>7.{' src': src}, '7.(dstpath)s/d.7.(dest)s>\
'/,{'dstpath' : dstpath, 'dest' :dest})
def removeFileCfn2rm) :

if os. path. exists Cfn2rm) :
os . remove Cfn2rm)

def removeASolution (pattern) :
fn2rm = 's.'/.Cf ile)s' 7. {'f ile' :pattern}; removeFile(fn2rm)
fn2rm = 'b.7.(f ile)s' 7. {'file' : pattern}; removeFileCfn2rm)
fn2rm = 'd.7.Cfile)s' '/. {'file' :pattern}; removeFileCfn2rm)

def removeATmpSolut ion (pattern) :
fn2rm = 's.7oCf ile)s~' 7. {'file' :pattern}; removeFileCfn2rm)
fn2rm = 'b.7.Cf ile)s~' '/. {'file' : pattern}; removeFile(fn2rm)
fn2rm = 'd.7.Cf ile)s"' '/. {'f ile' :pattern}; removeFile Cfn2rm)

control = int Csys.argv [2] )

if control == 0:

family = sys. argv[3]
if not ifASolutionExistCfamily) :

print "run r3b.auto to compute ",family,"!"; os._exitC99)
if not os. path. exists ( '7.Csl)s-brief .log'7„{'sl' :family» \

or control == 0:

generateLogs (family)

print "BRIEF"; cmds = 'cat 7.(sl)s-brief .log'7.{'sl' :family}
print cmds; os. system (cmds)
print "TO COMPUTE"

cmds = 'cat 7.(sl)s-compute.log'7.{'sl' :family}
print cmds; os .system(cmds)

if control == 1 :

family = sys.argv[3]; startlbl = sys.argv[4]; eps = sys.argv[5]
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cmds = 'autox ext.py 7.(sl)s 7,(s2)s 7.(s3)s' 7. \
{•si' :family,'s2' :startlbl, 's3' :eps}

print cmds; os.system(cmds)
print 'Or flq ext'; os. system ( 'Sr flq ext')
print '@sv flq'; os. system COsv flq')
removeATmpSolution('flq') ; solution=sl('fIq') [-1]
? = solution ["Parameters"] ; print "\nPAR(5) : " ,p[4] , "\n"
if ? [4] <= 0.0:

print "Or flq ext PAR(5)<0"; os._exit(99)
else:

os.systemCautox data.py')
cmds = 'cp c.man.7.(sl)s.O c.man.7„(sl)s. 10' % { 'si' ¡family}
print cmds; os.system(cmds)
cmds = OR man 7.(sl)s.l0' '/. {'si' ¡family}; print cmds

os.system(cmds) ; solution=sl() [-1]
if solution ["Type name"] == "MX":

print " restart step 0"; branches = si O
maxlabel = int (branches [-1] ["Label"] )

print branches [maxlabel-2] ["Parameters"] [10]
chTime('c.man.7„(sl)s.lO' '/. {'si' ¡family}, \

float (branches [maxlabel-2] ["Parameters"] [10])*0.99)
cmds = 'OR man 7,(sl)s.l0' 7. {'si' ¡family}; print cmds

os.system(cmds)
solution=sl() [-1]

if solution ["Type name"] == "MX"¡
print "\n Abnormal termination at ",cmds; os._exit(99)

cmds = 'Osv start7.(sl)s_7.(s2)03d_7.(s3)s' 7. \

{' si '': family, 's2' : int (startlbl) , 's3' ¡eps}
print cmds; os. syst em (cmds)
removeATmpSolution('start7.(sl)s_7.(s2)03d_7„(s3)s' 7. \

{'si' ¡family, 's2' : int (startlbl) , 's3' ¡eps})

#if flq par(5) <=0
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if control == 10:

family = sys.argv[3] ;startlbl = sys.argv[4]; eps = sys.argv[5]
if len(sys.arg) == 7 :

flq = sys.argv[6]
cmds = 'autox ext.py 7.(sl)s %(s2)s 7.(s3)s 7.(s4)s' 7?

{'si' ¡family, 's2' ¡startlbl, 's3' ¡eps, 's4' :flq}
else:

cmds = 'autox ext.py "/.(sl)s 7,(s2)s 7.(s3)s 50' 7?
{'si' ¡family, 's2' :startlbl, 's3' :eps>

print cmds; os .system(cmds)
print '@R flq 2 ext'; os. system ( 'OR flq 2 ext')
print '@sv flq'; os. system 0@sv flq'); removeATmpSolutionCfIq')
print '@R flq 3'; os. system C@R flq 3')
print '@sv flq'; os.system('@sv flq'); removeATmpSolutionCfIq')
solution=sl('flq') [-1] ; ? = solution ["Parameters"]
print "\nPAR(5):",p[4],"\n"
if p[4] <= 0.0:

print "Sr flq ext PAR(5)<0"; os._exit(99)
else:

print 'autox data.py flq 4'; os .system( 'autox data.py flq 4')
cmds = 'cp c.man.7.(sl)s.0 c.man.7.(sl)s. 10' '/, {'si' :family}
print cmds; os.system(cmds)
cmds = 'OR man 7.(sl)s.l0' '/, {'si ' ¡family}; print cmds

os . system(cmds) ; solution=sl () [-1]
if solution ["Type name"] == "MX":

print " restart step 0"; branches = si O
maxlabel = int (branches [-1] ["Label"])

print branches [maxlabel-2] ["Parameters"] [10]
chTime('c.man.7.(sl)s.lO' 7. {'si' :family}, \

branches [maxlabel-2] ["Parameters"] [10])

cmds = 'OR man 7.(sl)s.l0' 7. {'si' ¡family}; print cmds

os . system(cmds) ; solution=sl () [-1]
if solution ["Type name"] == "MX":
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print "\n Abnormal termination at ",cmds; os._exit(99)
cmds = >@sv start7.(sl)s_7„(s2)03d_7.(s3)s> 7. { 'si' : family ,\

>s2' :int(startlbl) ,'s3' :eps}

print cmds; os. system (cmds)
removeATmpSolution('start7.(sl)s_7.(s2)03d_7.(s3)s' 7?

{'si' : family, 's2' :int (startlbl) , 's3' :eps})

#span unstable manifold
if control == 2:

family = sys.argv[3]; startlbl = sys.argv[4]; eps = sys.argv[5]
startSolution = 'start7.(sl)s_7.(s2)03d_7.(s3)s' 7. \

{'si' :family,'s2' : int (startlbl) , 's3' :eps}
if not ifASolutionExist (startSolution) :

print "solution ",startSolution," does not exist !" ;os._exit (99)
instStartSolution = si (startSolution) [-1]

maxlabel = int(instStartSolution["Label"] )

cmds = 'cp c.man.7.(sl)s.l c.man.7„(sl)s. 11' 7. {'si' :family}
print cmds; os.system(cmds)
if len(sys.argv) == 6:

if len(sys.argv) == 7:
i = int (sys . argv [6] )

else:

i = 2

while True :

if i > maxlabel :

break

str_rstlabel = >7.(dl) .d'7.{'dl ' :i}

print "restart label " , str_rstlabel
chIRS ( ' c .man . '/,(si) s . 11 ''/.{' si ' : family} , str.rstlabel)
cmds = '<3R man %(sl)s.ll 7.(s2)s' 7.\

{'si' : family, 's2' : startSolution}
print cmds; os.system(cmds) ; solution=sl() [-1]
if solution ["Type name"] == "MX":
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print "Yn Abnormal termination at ",cmds
os._exit(99)

cmds = ><3sv u7.(sl)s_7„(s2)03d_7„(s3)s_7.(d4)04d' '/.\

{'sl':family,'s2' : int (startlbl) , 's3' :eps, 'd4' :i}
print cmds; os. system (cmds)
removeATmpSolution('u7.(sl)s_7.(s2)03d_7,(s3)s_7.(d4)04d' 7?

{'si' :family,'s2' : int(startlbl ) , >s3' :eps, 'd4' :i})
rl('u7,(sl)s_7,(s2)03d_7,(s3)s_7.(d4)04d> 7?

{'si' :family,'s2' :int (startibi) , 's3' :eps,'d4' :i})
i=i+l

#unstable

if control == 3:

family = sys.argv[3]; startlbl = sys.argv[4]
eps = sys.argv[5]; fileNo = int (sys.argv[6] )
str_rstlabel= sys.argv[7]
startSolution = >u7.(sl)s_7.(s2)03d_7,(s3)s_7„(d4)04d' 7. \

{'si' : family,'s2': int (startlbl), 's3' :eps, 'd4' : fileNo}
if not ifASolutionExist (startSolution) :

print "solution ",startSolution," does not exist !" ;os._exit (99)
chIRS('c.man.7.(sl)s.3'7.{'sl':family},str_rstlabel)

print "extend longer orbit"
cmds = 'OR man 7.(sl)s.3 7.(s2)s' 7. {'si' :family, 's2' : startSolution}

print cmds; os.system(cmds) ; solution=sl() [-1]
if solution["Type name"] == "MX":

print " restart step 0"
branches = sl(); maxlabel = int (branches [-1] ["Label"])
if maxlabel <= 2:

print "Not enough branches to restart"; os._exit(99)
print branches [maxlabel-2] ["Parameters"] [10]
chTime('c.man.7.(sl)s.8' 7, {'si' :family}, \

branches [maxlabel-2] ["Parameters"] [10])

cmds = '@R man 7.(sl)s.8' '/, {'si' -.family}; print cmds
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os.system(cmds) ; solution=sl() [-1]
if solution ["Type name"] == "MX":

print "\n Abnormal termination at ",cmds; os._exit(99)
cmds = '@sv u7.(sl)s_7.(s2)03d_7.(s3)s_7.(d4)04d_rst> 7. \

{'si' ¡family, 's2' : int (startlbl) , 's3' :eps,'d4' ¡fileNo}
print cmds; os. system (cmds)
branches = sl(); maxlabel = int (branches [-1] ["Label"] )
start2File = ,u7.(sl)s_7„(s2)03d_7.(s3)s_7.(d4)04d_rst ' 7. \

{'si' ¡family, 's2' : int (startlbl) , 's3' :eps, 'd4' :fileNo}
chIRSCc. man. 7.(sl)s.4'7.{'sl' ¡family}, maxlabel); print "Sweep DS+"
cmds = '0R man 7.(sl)s.4 7.(s2)s' 7. {'si ' :family, 's2' :start2File}

print cmds; os.system(cmds)
if solution ["Type name"] == "MX":

print "\n Abnormal termination at ",cmds; os._exit(99)
cmds = '@sv u7.(sl)s_7.(s2)03d_7„(s3)s_7.(d4)04d_DS+> 7. \

{'si' ¡family, 's2' :int(startlbl) , 's3' :eps,'d4' :fileNo}
print cmds; os.system(cmds)
chIRS('c.man.7.(sl)s.5'7.{'sl' ¡family}, maxlabel); print "Sweep DS-"
cmds = 'SR man 7.(sl)s.5 7.(s2)s' 7. {'si ' ¡family, 's2' : start2File>

print cmds; os.system(cmds)
if solution ["Type name"] == "MX":

print "\n Abnormal termination at ",cmds; os._exit(99)
cmds = '@sv u7„(sl)s_7.(s2)03d_7.(s3)s_7„(d4)04d_DS-' 7. \

{'si' ¡family, 's2' :int(startlbl) , 's3' :eps,'d4' :fileNo}
print cmds; os.system(cmds)

#bk by BK. list

if control == 4:

family = sys.argv[3]; startlbl = sys.argv[4]; eps = sys.argv[5]
startSolution = 'start7.(sl)s_7.(s2)03d_7„(s3)s' 7. \

{'si' : family, 's2' : int (startlbl) , 's3' :eps>
if not ifASolutionExist (startSolution) :

print "solution ",startSolution," does not exist !" ;os._exit (99)
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bkFolder = '7.(sl)s_7.(s2)03d_7.(s3)s' 7. {'si' :family, \

's2' :int(startlbl),'s3' :eps}
fullBkFolder = ,,7.(hm)s/7.(fd)s" '/. {'hm' :os.getcwd() , 'fd' :bkFolder}

if ( not os. path. exists (fullBkFolder) ):
os . mkdir (fullBkFolder)

#Backup constant file

cmds = 'cp c. man. 7.(sl)s.* 7.(s2)s' 7. {'si' :family, 's2' : fullBkFolder}
print cmds; os. system (cmds)
cmds = >@fl 7.(sl)s > flqtmp.txt' 7. {'si' -.family}
print cmds; os. system (cmds)
cmds = 'cp flqtmp.txt 7.(s2)s/7.(sl)s_flq.txt ' 7. \

{'si' : f amily ,'s2' ¡fullBkFolder}

print cmds; os.system(cmds)
logFile_all = '7. (si) s_alllogs.txt '7.{'sl' : startSolution}
all_flg = open(logFile_all,'w')
line = '7.(fm)6s 1 7.(fn)-25s 1 7.(Ib) 5s |7.(stbl)6s 17. (mult) 13s 1 7. (eng) 13s I \

7.(dist)13s|7.(time)13sl7.(arcl)13s|7.(eng2)13sl7.(rmk)6s\n'7. \ {'fm' : 'Family' , 'fn' :\
' File Name' , 'lb' : 'LAB' , 'stbl' : 'Stable' ,'mult' : 'Multiplier' , 'eng' : 'Energy', \
'eng2' : 'End Eng' ,'dist' : 'Distance' , 'time' : 'End time', 'arci' : 'Arc-length' ,'rmk' : 'Remarks'}

all_fIg. write (line)
line = '7.(fm)6s I7.(fn)25s I7.(lb)5s |%(stbl)6s 1 7. (mult) 13s I7.(eng) 13s I \

7.(dist)13sl7.(time)13sl7.(arcl)13sl7.(eng2)13sl7.(rmk)6s\n'7.\

{'fm' : '-' ,'fn' : '-' , 'lb' : '-' , 'stbl' : '-' ,'mult' : '-' ,'eng' :\

'PARO) ' , 'eng2' : 'PAR(3) 2' , 'dist' : 'PAR(6) ' , 'time' : 'PAR(Il) ' ,\
'arci' : >PAR(12) ' , 'rmk' : ' '}

all_fIg . write (line)
logFile_special = '7.(sl)s_speciallogs.txt '7.{'sl' : startSolution}
special_flg = open(logFile_special, 'w')
linei = '7.(fm)6s|7.(fn)-25sl7.(lb)5sl7.(stbl)6sl7.(mult)13s|\

7.(eng) 13s 1 7.(dist) 13s 1 7.(time) 13s 1 7.(arcl) 13s 1 7.(eng2) 13s I \
7.(rmk)6s\n'7. {'fm' : 'Family' , 'fn' : ' File Name' ,\
'lb' : 'LAB', 'stbl' : 'Stable', 'mult' : 'Multiplier', 'eng': 'Energy' ,\

*eng2' : 'End Eng' , 'dist' : 'Distance' , 'time' : 'End time' ,\
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'arci' : 'Arc-length' , 'rmk' : 'Remarks'}
special_fIg. write (linei)
line2 = >7.(fm)6slKfn)25sl7.(lb)5slKstbl)6sl7.(mult)13sl7.\

(eng)13s|%(dist)13sr/.(time)13sr/.(arcl)13s|y.(eng2)13sl7.(rmk)6s\n'\
7,{'fm': '-','fn':'-','lb':'-','stbl': '-','mult': '-','eng' :\

'PARO) ' , 'eng2' : 'PAR(3) 2' , 'dist' : 'PAR(6) ' , 'time' : 'PAR(Il) ' ,\
'arci' : 'PAR(12) ' , 'rmk' : "}

special_fIg . write (line2)
familyLog= ' 7. (fm) s_speciallog . txt ' 7,{ ' fm ' : family}
if not os. path. exists (familyLog) :

familyLog_fds= open(familyLog, 'w')

familyLog_fds. write (linei) ; familyLog_fds. write (line2)
else:

familyLog_fds= open(familyLog, 'a')
brief_info_f ile= ' 7. (si) s-brief . log ' '/.{ ' si ' : family}
brief_info = open(brief_info_f ile, 'r')
brief_lines = brief_info.readlinesO

bk_file= 'BK. LIST'; bk_fds = open(bk_f ile, 'r')
bk_lines = bk_fds.readlines()

instStartSolution = sl(startSolution) [-1]

maxlabel = int (instStartSolution ["Label"] )

fm = family

stbl = brief .lines [int(startlbl)-l] .split () [4]
mult = brief_lines[int(startlbl)-l] .splitO [3]

eng = brief„lines [int (startlbl)-l] .splitO [2]
i = 1; print 'Performing data analysis ',' ...'
while True:

if i > maxlabel :

break

str_rstlabel = '7,(dl) .d'7.i 'dl ' :i}

uSolution = 'u7.(sl)s_y.(s2)03d_7.(s3)s_7.(d4)04d' 7. \

{'si' : family, 's2' :int(startlbl) , 's3' :eps,'d4':i}
fn = uSolution
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bkSingleSolution (uSolution, all_f lg, special_f lg, \
familyLog_fds , bk_lines , f? , fm, stbl ,mult , eng , fullBkFolder)

uSolution = >u7»(sl)s_7.(s2)03d_7.(s3)s_7.(d4)04d_rst> 7. \

{'sl,:family,'s2,:int(startlbl),,s3,:eps,,d4,:i>
f? = uSolution

bkSingleSolution (uSolution, all_fIg, special_f Ig ,\
familyLog_fds , bk_lines , f? , fm , stbl ,mult , eng , fullBkFolder)

uSolution = 'u7.(sl)s_7.(s2)03d_7„(s3)s_7.(d4)04d_DS-' 7. \

{'si' : family, 's2' :int(startlbl) , 's3' :eps, 'd4' :i}
fn = uSolution

bkSingleSolution (uSolution , all_fIg , special_fIg , \
f amilyLog_fds , bk_lines , f? , fm, stbl ,mult , eng , fullBkFolder)

uSolution = 'u7.(sl)s_7.(s2)03d_7„(s3)s_7.(d4)04d_DS+' 7. \

{'si' :family,'s2> :int(startlbl) , 's3> :eps,'d4' :i}
fn = uSolution

bkSingleSolution (uSolution, all_flg ,special_fIg, \
familyLog_fds,bk_lines,fn,fm, stbl,mult, eng, fullBkFolder)

i=i+l

familyLog_fds.close() ; bk_fds. close ()
special_flg.close() ; all_f Ig. closeO
cmds = 'cp 7. (si) s 7.(s2)s/7.(sl)s' 7. \

{'si' :startSolution,'s2' :fullBkFolder}

print cmds

copyPathSolution (startSolution.fullBkFolder, \
startSolution)

#back up the logs

cmds = 'cp y.(sl)s 7.(s2)s/7.(sl)s' 7. \
{'sl':logFile_special, 's2' : fullBkFolder}

print cmds; os.system(cmds)
cmds = 'rm 7.(sl)s' '/. {'si' :logFile_special}

print cmds; os.system(cmds)
cmds = 'cp 7.(sl)s 7.(s2)s/7.(sl)s' 7. \

{ ' si ' : logFile_all , ' s2 ' : fullBkFolder}
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print cmds; os.system(cmds)
cmds = 'rm '/.(sl)s' '/. {'si' :logFile_all>; print cmds
os . system(cmds)

cmds = 'cp y.(sl)s 7.(s2)s/7.(sl)s' 7. {'si' : 'BK. LIST' , 's2' : fullBkFolder}
print cmds; os.system(cmds)

#remove solutions

if control ==5:

family = sys . argv [3] ; startlbl = sys.argv[4]; eps = sys.argv[5]
startSolution = 'start7.(sl)s_7,(s2)03d_7.(s3)s' 7. \

{'si' :family, 's2' : int (startlbl) , 's3' :eps}
if not ifASolutionExist (startSolution) :

print "solution ",startSolution," does not exist ! ";os._exit (99)
print 'clean solutions of last computation' ,startSolution
instStartSolution - si (startSolution) [-1]

maxlabel = int (instStartSolution ["Label"] )

i = 1

while True :

if i > maxlabel:

break

str_rstlabel = '7.(dl) .d'7„{'dl' : i}

uSolution = 'u7.(sl)s_7.(s2)03d_7.(s3)s_7.(d4)04d' 7. \

{'si' :family, 's2' : int (startlbl) , 's3' :eps, 'd4' : i}
if ifASolutionExist (uSolution) :

print 'Remove solution ' ,uSolution

removeASolution (uSolution)

removeASolution('7o(sl)s_rst'7.{'sl' : uSolution})

removeASolution('7o(sl)s_DS+'7.{'sl' :uSolution})

removeASolution ( ' '/, (si) s_DS- ' 7.{ ' si ' :uSolution>)

i=i+l

if ifASolutionExist (startSolution) :

removeASolution (startSolution)

print 'rm -f *"'; os.systemCrm *"'); os._exit(99)
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