
Inter-Module Interfacing Techniques for SoCs with Multiple Clock Domains to Address

Challenges in Modern Deep Sub-Micron Technologies

Syed Rafay Hasan

A Thesis

In the Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy at

Concordia University

Montreal, Quebec, Canada

December 2009

© Syed Rafay Hasan, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-67368-3
Our file Notre reference
ISBN: 978-0-494-67368-3

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondares ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

Abstract
Inter-Module Interfacing Techniques for SoCs with Multiple Clock Domains to Address

Challenges in Modern Deep Sub-Micron Technologies

Syed Rafay Hasan, Ph. D.
Concordia University, 2009

Miniaturization of integrated circuits (ICs) due to the improvement in lithographic

techniques in modern deep sub-micron (DSM) technologies allows several complex

processing elements to coexist in one IC, which are called System-on-Chip. As a first

contribution, this thesis quantitatively analyzes the severity of timing constraints

associated with Clock Distribution Network (CDN) in modern DSM technologies and

shows that different processing elements may work in different clock domains to alleviate

these constraints. Such systems are known as Globally Asynchronous Locally

Synchronous (GALS) systems.

It is imperative that different processing elements of a GALS system need to

communicate with each other through some interfacing technique, and these interfaces can

be asynchronous or synchronous. Conventionally, the asynchronous interfaces are

described at the Register Transfer Logic (RTL) or system level. Such designs are

susceptible to certain design constraints that cannot be addressed at higher abstraction

levels; crosstalk glitch is one such constraint. This thesis initially identifies, using an

analytical model, the possibility of asynchronous interface malfunction due to crosstalk

glitch propagation. Next, we characterize crosstalk glitch propagation under normal

iii

operating conditions for two different classes of asynchronous protocols, namely bundled

data protocol based and delay insensitive asynchronous designs. Subsequently, we

propose a logic abstraction level modeling technique, which provides a framework to the

designer to verify the asynchronous protocols against crosstalk glitches. The utility of this

modeling technique is demonstrated experimentally on a Xilinx Virtex-Il Pro FPGA.

Furthermore, a novel methodology is proposed to quench such crosstalk glitch

propagation through gating the asynchronous interface from sending the signal during

potential glitch vulnerable instances. This methodology is termed as crosstalk glitch

gating. This technique is successfully applied to obtain crosstalk glitch quenching in the

representative interfaces.

This thesis also addresses the clock skew challenges faced by high-performance

synchronous interfacing methodologies in modern DSM technologies. The proposed

methodology allows communicating modules to run at a frequency that is independent of

the clock skew. Leveraging a novel clock-scheduling algorithm, our technique permits a

faster module to communicate safely with a slower module without slowing down. Safe

data communications for mesochronous schemes and for the cases when communicating

modules have clock frequency ratios of integer or coprime numbers are theoretically

explained and experimentally demonstrated. A clock-scheduling technique to dynamically

accommodate phase variations is also proposed. These methods are implemented to the

Xilinx Virtex II Pro technology. Experiments prove that the proposed interfacing scheme

allows modules to communicate data safely, for mesochronous schemes, at 350 MHz,

which is the limit of the technology used, under a clock skew of more than twice the time

period (i.e. a clock skew of 12 ns).

iv

To My Parents

V

Acknowledgements

This thesis could not have reached its conclusion without the support of many

individuals. I take this opportunity to express my gratitude to all these people.

I am deeply indebted and grateful to Dr. Yvon Savaria and Dr. M. Omair Ahmad for

their excellent supervision. Dr. Yvon Savaria supervised me with great conviction and

patience. His deep and insightful knowledge of the digital design prevented me from

straying in wrong directions. His guidance was really instrumental in polishing my

technical skills. I am also very fortunate to have had Dr. M. Omair Ahmad as an

affectionate mentor to turn to for guidance. His thoughtful suggestions assisted me

tremendously in my research. And his scholarly advices were always a source of

inspiration for me.

I am thankful to all the committee members for accepting to be on my doctoral

advisory committee. It is an honour for me to have a scholar like Dr. Manoj Sachdev as

my external examiner. I am highly indebted that he obliged our request to attend my thesis

examination, in spite of his busy schedule. I would also like to thank Dr. Asim J. Al-

Khalili, Dr. Ibrahim Galal Hassan and Dr. Otmane Ait Mohamed for their constructive

feedback during the course of my studies.

I started my research under the supervision of Dr. Mohamed Nekili. I would like to

thank him for being instrumental in the initial stages of my post graduation pursuits.

I would also like to thank my colleagues, mentors and friends, with special thanks to

Dr. Normand Belanger and Dr. Osman Hasan for their constructive inputs, Mr. Tadeusz

Obuchowicz for spending endless hours with me in supporting EDA tools, my friend Bill

vi

Pontikakis for his invaluable peer advice, and all the VLSI lab colleagues in Concordia

University and Ecole Polytechnique de Montreal.

I cannot thank my parents enough who selflessly supported all my decisions. My

father, a scholar himself, took a lot of interest in my studies. Their constant

encouragement was a great source of inspiration for me. All my siblings were supportive

of me. In particular, my eldest brother Syed Ziaul Hasan was very kind in uplifting my

spirits. I would like to mention the extended support from my in-laws. My parents-in-law

showed enormous faith in my abilities, and their unconditional trust helped me a lot in

achieving my goals.

Last, but not by any means least, I want to express my gratitude to my wife. I cannot

imagine how this thesis could have reached its conclusion, had it not been for her

understanding, endurance and support. And the new inclusion in our family, our daughter,

has been a source of enormous zeal and energy for me.

vn

TABLE OF CONTENTS

LIST OF FIGURES XII

LIST OF TABLES XVII

LIST OF ACRONYMS XVIII

CHAPTER 1: INTRODUCTION 1

1.1. DESIGN-RELATED TECHNICAL ISSUES WITH SOCS IN DSM TECHNOLOGIES 1

1.2. DESIGN-RELATED ECONOMIC ISSUES WITH SOCS IN DSM TECHNOLOGIES 4

1.3. OVERVIEW OF INTER-MODULE COMMUNICATION TECHNIQUES IN M C D S 5

1.4. CONTEXT-BASED SELECTION OF INTER-MODULE COMMUNICATION METHOD 7

1.5. PROBLEM IDENTIFICATION 12

1.6. CONTRIBUTIONS OF THIS THESIS 15

1.7. THESIS OUTLINE , 19

CHAPTER 2: STATE-OF-THE-ART INTER-MODULE INTERFACING METHODOLOGIES
FOR SOCS 21

2.1 ASYNCHRONOUS INTERFACES 22

2.1.1 Pausible Clocking Based GALS Design : 22

2.1.2 Asynchronous FIFO Based Methodologies 28

2.2 SYNCHRONOUS INTERFACES 29

2.2.1 Known Maximum Phase Offset 30

2.2.2 DDS based Solutions for Rational Frequencies 34

2.3 DISCUSSION : 35

CHAPTER 3: PROBLEMS ASSOCIATED WITH INTERCONNECT BANDWIDTH IN
CONVENTIONAL CDN 36

3.1 CLOCK FREQUENCY LIMITATIONS IN CLOCK DISTRIBUTION NETWORK (CDN) 37

vin

3.2 H-TREE SPLITTING 40

3.3 SIMULATION SETUP 42

3.4 COMMUNICATION MECHANISM 47

3.5 SUMMARY AND DISCUSSIONS 50

CHAPTER 4: CROSSTALK EFFECT IN EVENT-DRIVEN ASYNCHRONOUS HANDSHAKE
SCHEMES 52

4.1 INTER-WIRE CAPACITANCE 54

4.2 CROSSTALK COMPARISON AMONG DIFFERENT TECHNOLOGIES 56

4.3 EFFECTS OF INTER-WIRE CAPACITANCE ON WELL KNOWN ASYNCHRONOUS

INTERFACING METHODS: LOGIC LEVEL ANALYSIS 61

4.3.1. Bundled-Data Protocol Based Design 62

4.3.2. 1-of-N Data Encoded Delay Insensitive (Dl] Designs 63

4.4 VALIDATION OF CROSSTALK GLITCH EFFECTS IN ASYNCHRONOUS CIRCUITS USING
ELECTRICAL SIMULATIONS ; 65

4.4.1. Quantitative Crosstalk Glitch Analysis of the Conventional i-of-4 Dl
synchronous Interface 66

4.4.2. Crosstalk Glitch Analysis of Bundled Data Handshake Schemes 71

4.5 SUMMARY AND DISCUSSIONS 75

CHAPTER 5: CROSSTALK GLITCH PROPAGATION: GENERALIZED NOTION,
MODELING, AND VALIDATION 78

5.1 UNIQUENESS OF AQX GLITCHES: A MOTIVATION FOR DESIGNING A LOGIC LEVEL

MODELING TECHNIQUE FOR CROSSTALK GLITCHES 80

5.2 GENERALIZED NOTION TO THE GLITCH PROPAGATION PHENOMENON 81

5.2.1. Preliminary Notations 81

5.2.2. Wire Glitch Element 83

5.2.3. Glitch Propagation (GP) Sets ; 85

5.3 CROSSTALK GLITCH PROPAGATION MODELING 86

5.4 APPLICATION OF THE PROPOSED MODEL 91

5.5 EXPERIMENTAL VALIDATION 96

IX

5.6 SUMMARY AND DISCUSSIONS 99

CHAPTER 6: CROSSTALK GLITCH QUENCHING SOLUTION 100

6.1 CROSSTALK GLITCH GATING: CROSSTALK GLITCH QUENCHING SOLUTION 101

6. /. / Case 1-A & 1-B 102

6.1.2 Insertion of Crosstalk glitch Gate Control Signal6, 'Con', during Ate
(AtGi and Atcij 106

6.1.3 Case2-A 108

6.1.4 Case 2-B 112

6.1.5 Case 3: (ALJn A VLJnj A (AL_out *VLJn) 112

6.2 A METHOD TO INTRODUCE CROSSTALK GLITCH GATING IN ASYNCHRONOUS „
HANDSHAKE SCHEMES 112

6.3 APPLICATION OF THE PROPOSED METHOD ON REPRESENTATIVE ASYNCHRONOUS

HANDSHAKE SCHEMES OF TWO DIFFERENT CLASSES ; 115

6.3./ The Bundled Data Asynchronous Interface 115

6.3.2 Proposed l-of-4 Data Encoded Dl Asynchronous Interface 123

6.4 SUMMARY AND DISCUSSIONS 129

CHAPTER 7: SKEW TOLERANT SYNCHRONOUS INTERFACE FOR HIGH-
PERFORMANCE POINT-TO-POINT COMMUNICATION 131

7.1 CONCEPT OF WIDER Bus WIDTH 134

7.2 PROPOSED INTERFACE FOR M=N: LEVERAGING HIGHER BANDWIDTH 136

7.2.1 Region A and C (skew independent regions) 140

7.2.2 Region B 142

7.2.3 Timing Analysis in region 8 of the Proposed Design 148

7.3 UTILIZATION OF THE HIGHER BANDWIDTH CONCEPT, WHEN M < N 160

7.4 SUMMARY OF THE ADVANTAGES OF THE PROPOSED DESIGN: 166

7.5 SIMULATION SETUP AND RESULTS 168

7.6 PROTOTYPE IMPLEMENTATION AND BACK-ANNOTATED SIMULATION RESULTS 171

7.7 SUMMARY A N D DISCUSSIONS 178

CHAPTER 8: SKEW TOLERANT SYNCHRONOUS INTERFACE FOR MODULES HAVING
RATIONAL FREQUENCY RATIO OF COPRIME NUMBERS 180

8.1 STATIC CLOCK-SCHEDULING METHODOLOGY 181

8.1.1 What are the Limitations of Existing Designs for Rational Clocking? 181

8.1.2 Skew Tolerant Design for Rational Clocking 182

8.1.3 Algorithm to Generate Cyclic Phase Mapping ______ 184

8.1.4 Practical Example of Clock-scheduling Utilizing the Proposed
Algorithm 186

8.1.5 Hardware Implementation 188

8.1.6 Simulation Results of the Design Example J 92

8.2 DYNAMIC CLOCK-SCHEDULING METHODOLOGY 194

8.2.1 Motivation for Proposing a Dynamic Clock-scheduling Methodology
194

8.2.2 Dynamic Clock-scheduling Algorithm 195

8.2.3 Implementation of Clock-scheduling For Variable Skew Tolerance 197

8.2.4 Hardware Implementation of Dynamic Clock-scheduling
Methodology /99

8.2.5 Simulation Results 201

8.3 SUMMARY AND DISCUSSIONS 203

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 205

9.1 CONCLUSIONS : 205

9.2 FUTURE WORK : 209

REFERENCES 210

APPENDIX: METASTABILITY TOLERANT MESOCHRONOUS SYNCHRONIZATION 225

XI

List of Figures

FIGURE 1.1. DESIGN-RELATED TECHNICAL ISSUES WITH CLOCK DISTRIBUTION
NETWORKS OF SOC IN DSM TECHNOLOGIES 2

FIGURE 1.2. DESIGN-BASED ECONOMIC ISSUES WITH SOCS IN DSM TECHNOLOGIES 5

FIGURE 1.3. OVERVIEW OF POSSIBLE INTER-MODULE COMMUNICATION _ TECHNIQUES
INMCD 7

FIGURE 2.1

FIGURE 2.2

BUNDLED DATA PROTOCOL

FIGURE 2.3 TWO ISOCHRONOUS REGIONS WITH COMMUNICATION LINKS [78]

23

DUAL RAIL DELAY INSENSITIVE SCHEME: BLOCK DIAGRAM, TRUTH
TABLE, FOUR PHASE WAVEFORM AND STATE MACHINE
DEPICTION 26

32

FIGURE 3.1.

FIGURE 3.2.

FIGURE 3.3.

FIGURE 3.4.

FIGURE 3.5.

FIGURE 3.6.

FIGURE 4.1.

FIGURE 4.2.

FIGURE 4.3.

FIGURE 4.4.

FIGURE 4.5.

BALANCED 4-LEVEL H-TREE 39

MAXIMUM FREQUENCY SUBJECT TO PROCESS VARIATION AND MAXIMUM
3 DB FREQUENCY VS. NUMBER OF SPLITS 44

(A) CLOCKING SCHEME FOR SOCS WITH SPLIT H-TREE AND POTENTIAL
REQUIREMENT OF PLLS AT EVERY SPLIT NODE C 45

A) MODIFIED H-TREE AFTER ONE SPLIT (B) PROPOSED CLOCKING SCHEME
WITH SPLIT H-TREE FOR SOCS WITH THE REQUIREMENT OF ONLY ONE PLL

46

H-TREE WITH SELF-TIMED CIRCUIT

H-TREE WITH PAUSIBLE CLOCKING INTERFACE.

LOCAL LAYER INTERCONNECTS

49

_50

55

(A)THREE DIMENTIONAL VIEW OF THE METAL LINES (B) _ ELECTRICAL
EQUIVALENT CIRCUIT FOR SIMULATIONS 56

CC/CG FOR 180NM, 130NM AND 90NM FOR TOP METAL LAYERS 57

A) AGGRESSOR AND VICTIM VOLTAGE FOR 90NM, 1 MM LONG WIRES
(ABOVE) B) AGGRESSOR AND VICTIM VOLTAGE FOR 180NM, 1 MM LONG
WIRES (BELOW) 60

(A) CONCEPTUAL HARDWARE IMPLEMENTATION OF THE BUNDLED DATA
PROTOCOL (LEFT) (B) CONCEPTUAL WAVEFORM TO ILLUSTRATE FAILURE
DUE TO CROSSTALK GLITCH IN THE HARDWARE IMPLEMENTATION OF
THE BUNDLED DATA PROTOCOL (RIGHT) _63

XII

FIGURE 4.6. GENERALIZED HARDWARE IMPLEMENTATION OF 1 -OF-N DATA _ ENCODED
DI SCHEMES 64

FIGURE 4.7. EXPECTED WAVEFORM DEPICTION UNDER THE INFLUENCE OF
CROSSTALK GLITCHES 64

FIGURE 4.8. A) HARDWARE IMPLEMENTATION OF THE DATA ENCODED DI SCHEME _B)
EXPECTED WAVEFORM OF THE DESIGN WITH GLITCH SCENARIOS 67

FIGURE 4.9. CIRCUIT LEVEL SIMULATION RESULTS FOR OPTIMIZED l-OF-4 DATA
ENCODED DI DESIGN SCHEME, SHOWN IN FIGURE 4.8-A, FOR AN
INTERCONNECT LENGTH OF 1.5MM (WXE SIMULATION). 70

FIGURE 4.10. CROSSTALK GLITCH PEAK VOLTAGE IN 1 -OF-4 DATA ENCODED DI DESIGN
(HAVING BEEIN OPTIMIZED FOR LATENCY IN NXE SIMULATIONS) 71

FIGURE4.il . CONVENTIONAL BUNDLED DATA PROTOCOL: THE BLOCK DIAGRAM
SIMULATION RESULTS 72

FIGURE 4.12. ELECTRICAL SIMULATION RESULTS FOR A CIRCUIT LEVEL
IMPLEMENTATION (TT) OF THE BUNDLED DATA PROTOCOL (A)
INTERCONNECT LENGTH OF 0.5 MM (B) INTERCONNECT LENGTH OF 2 _ MM

74

FIGURE 4.13. CROSSTALK GLITCH PEAK VOLTAGES IN BUNDLED DATA PROTOCOL 75

FIGURE 5.1. LOGIC LEVEL REPRESENTATION OF AQX, CALLED WIRE GLITCH ELEMENT
(WGE) 83

FIGURE 5.2. GP SETS FOR THE INVERTER, THE AND AND OR GATES, AND THE MULLER
' C ELEMENT 86

FIGURE 5.3.

FIGURE 5.4.

FIGURE 5.5.

FIGURE 5.6.

PICTORIAL ILLUSTRATION OF POSSIBLE INPUTS TO THE GLITCH
PROPAGATING LOGIC ELEMENT (LE) FOR THE CASE A L O U T A VL_IN. 88

PICTORIAL ILLUSTRATION OF THE POSSIBLE INPUTS TO THE GLITCH
PROPAGATING LOGIC ELEMENT(S) (LE) FOR THE CASE ALJN A VLJN 88

FLOWCHART OF THE PROPOSED MODELING APPROACH 90

HARDWARE IMPLEMENTATION FOR R„ SIGNAL GENERATION OF THE
DOUTPUT PORT, WITH CONCEPTUAL REALIZATION OF WGE 93

FIGURE 5.7.

FIGURE 5.8.

IMPLEMENTATION FOR RP SIGNAL GENERATION WITH WGE 94

HARDWARE IMPLEMENTATION OF THE DI DATA ENCODED INTERFACE
WITH CONCEPTUAL WGES 96

FIGURE 5.9. CIRCUIT USED FOR SIMULATING WGE BEHAVIOUR AT THE LOGIC LEVEL97

FIGURE 5.10. VIRTEX II-PRO BACK-ANNOTATED SIMULATION RESULTS OF THE DESIGN
SHOWN IN FIGURE 5.6 98

FIGURE 5.11. VIRTEX II-PRO BACK-ANNOTATED SIMULATION RESULTS OF THE DESIGN
SHOWN IN FIGURE 5.7 98

X l l l

http://FIGURE4.il

FIGURE 6.1. GLITCH GATING SOLUTION FOR: (A) AND (B) ARE THE SOLUTIONS FOR _ GP
SETS OFTHE AND GATE WITH OUTPUTS DG' AND DG, RESPECTIVELY. (C)
AND (D) ARE THE SOLUTIONS FOR THE GP SETS OF THE OR GATE WITH
OUTPUTS DG AND DG', RESPECTIVELY. (E) AND (F) ARE THE SOLUTIONS
FOR GP SETS OF THE MULLER ' C ELEMENT WITH OUTPUTS DG AND DG' AT
T+, RESPECTIVELY. 103

FIGURE 6.2. THE SOLUTIONS IF BOTH THE GP SETS, WITH OUTPUTS DG AND DG', EXIST
FOR THE SAME LOGIC ELEMENT (A) SHOWS THE SOLUTION FOR AND GATE,
(B) SHOWS THE SOLUTION OF MULLER ' C ELEMENT (C) SHOWS THE
TRUTH TABLE FOR THE ASSERTING THE SELECT BIT FOR THE
MULTIPLEXER. 104

FIGURE 6.3. THE SOLUTION FOR THE CASE WHEN ALOUT IS FED BACK TO A LOGIC
ELEMENT IN THE MODULE. THIS EXAMPLE HAS OR GATE AS LOGIC
ELEMENT 105

FIGURE 6.4

FIGURE 6.5

FIGURE 6.6

NRZ SIGNALING SCHEME 106

RTZ SIGNALING SCHEME 107

GRAPHICAL DEPICTION OF WHEN TO INSERT THE AQX BLOCKING CIRCUIT
IN THE CONVENTIONAL DESIGN FLOW 114

FIGURE 6.7 STATE TRASITION GRAPH (ABOVELEFT) AND EXPECTED WAVEFORM
(RIGHT(BELOW) FOR THE CONVENTIONAL BUNDLED DATA PROTOCOL 117

FIGURE 6.8 STG FOR THE PROPOSED D OUTPUT PORT OF THE BUNDLED DATA
PROTOCOL (B) STG OF THE DELAY STATE MACHINE (C) CROSSTALK
GLITCH GATING FOR DMY SIGNAL. (D) CROSSTALK GLITCH GATING FOR
RI SIGNAL. 121

FIGURE 6.9 TRANSISTOR LEVEL SIMULATION RESULTS (A) FOR CONVENTIONAL
DESIGN (B) FOR MODIFIED DESIGN (CROSSTALK GLITCH GATING
IMPLEMENTED) 122

FIGURE 6.10 PROPOSED HARDWARE IMPLEMENTATION OF 1 -OF-4 DATA ENCODED _ DI
ASYNCHRONOUS INTERFACE 125

FIGURE 6.11 EXPECTED WAVEFORM OF THE PROPOSED HARDWARE IMPLEMENTATION
OF l-OF-4 DATA ENCODED DI ASYNCHRONOUS INTERFACE 126

FIGURE 6.12 TRANSISTOR- LEVEL SIMULATION RESULTS FOR CONVENTIONAL DESIGN
(ABOVE) AND FOR MODIFIED DESIGN WHERE CROSSTALK GLITCH GATING
IS IMPLEMENTED (BELOW) 128

FIGURE 7.1. ELABORATION OF TWO IP MODULES WITH INTERFACING REGISTERS 135

FIGURE 7.2. (A) HARDWARE IMPLEMENTATION OF INTERFACING REGISTERS FOR THE N
MODULES WITH SAME FREQUENCY AND BUS-WIDTH (N ASSUMED EVEN
HERE FOR SIMPLICITY) (B) WAVEFORM REPRESENTATION OF
INTERFACING REGISTERS FOR THE N MODULES VERSION WITH SAME
FREQUENCY AND BUS-WIDTH (ARROWS X, Y AND Z, ARE SHOWING ONE
COMPLETE DATA PATH) 137

XIV

FIGURE 7.3. CONVENTIONAL SOURCE SYNCHRONOUS INTERFACING SCHEME [78] 141

FIGURE 7.4. (A) CONVENTIONAL TWO-REGISTER COMMUNICATION. BOTH REGISTERS
ARE WORKING WITH THE SAME FREQUENCY BUT DIFFERENT PHASE
RELATIONSHIP, DUE TO SKEW CAUSED BY NON-IDEALITIES OF THE CLOCK
TREE NETWORK (B) WAVEFORM REPRESENTATION OF A CONVENTIONAL
DESIGN SUBJECT TO POSITIVE SKEW ONLY (C) WAVEFORM
REPRESENTATION OF A CONVENTIONAL DESIGN SUBJECT TO NEGATIVE
SKEW ONLY 143

FIGURE 7.5. ELABORATION OF THE PROPOSED DESIGN FOR MODULES WORKING AT
SAME FREQUENCY 151

FIGURE 7.6. (A) HARDWARE IMPLEMENTATION OF F-TO-S CONVENTIONAL DESIGN. (B)
WAVEFORM REPRESENTATION OF CONVENTIONAL DESIGN, WITH
FASTER SENDER MODULE AND SLOWER RECEIVER MODULE (F-TO-S
SYSTEMS) 162

FIGURE 7.8. SIMULATION RESULTS SHOWING EFFECT ON FREQUENCY WITH THE
INCREASE IN POSITIVE SKEW FOR UNIDIRECTIONAL COMMUNICATION
(QBW AND CONVENTIONAL DESIGNS) 169

FIGURE 7.9. SIMULATION RESULTS SHOWING EFFECT ON FREQUENCY WITH THE
INCREASE IN POSITIVE SKEW FOR UNIDIRECTIONAL COMMUNICATION.
(QBW AND CONVENTIONAL DESIGNS) 170

FIGURE 7.10. BI-ORIENTED SKEW VS. FREQUENCY FOR CASE A (QBW AND
CONVENTIONAL DESIGNS) 171

FIGURE7.il. BACK-ANNOTATED SIMULATION RESULTS USING XILINX VIRTEX II-PRO,
FOR THE PROPOSED DESIGN SHOWN IN FIGURE7.3A, TERMINATING
MODULE WORKING AT 250 MHZ. AND NEGATIVE SKEW OF 10 NS (> (N/2)T1)

173

FIGURE 7.12. BACK-ANNOTATED SIMULATION RESULTS USING XILINX VIRTEX II-PRO,
FOR THE PROPOSED DESIGN SHOWN IN FIGURE7.3A, WITH TERMINATING
MODULE WORKING AT 250 MHZ. AND A POSITIVE SKEW OF 10 NS (> (N/2)T,)

173

FIGURE 7.13. BACK-ANNOTATED SIMULATION RESULTS USING XILINX VIRTEX II- _ PRO,
FOR THE PROPOSED DESIGN SHOWN IN FIGURE7.7A, WITH TERMINATING
MODULE WORKING AT 250 MHZ. AND A NEGATIVE SKEW OF 10 NS (> (
N/2)T1) : 174

FIGURE 7.14. BACK-ANNOTATED SIMULATION RESULTS USING XILINX VIRTEX II- _ PRO,
FOR THE PROPOSED DESIGN SHOWN IN FIGURE7.7A, WITH _TERMINATING
MODULE WORKING AT 250 MHZ. AND A POSITIVE SKEW OF 10 NS (> (N/2)T1)

174

FIGURE 7.15. WAVEFORM OF A PROTOTYPE FPGA IMPLEMENTATION OF THE PROPOSED
F-TO-S SYSTEM: SIGNAL AT MSB OF OUTPUT 1 RECEIVED BY MSB OF
SYSTEM OUTPUT 1 177

XV

http://FIGURE7.il

FIGURE 7.16. WAVEFORM OF A PROTOTYPE FPGA IMPLEMENTATION OF THE PROPOSED
F-TO-S SYSTEM: SIGNAL AT MSB OF OUTPUT 2 RECEIVED BY MSB OF
SYSTEM OUTPUT2 177

FIGURE 7.17.

FIGURE 7.18.

FIGURE 8.1.

FIGURE 8.2.

FIGURE 8.3.

FIGURE 8.4.

FIGURE 8.5.

FIGURE 8.6.

FIGURE 8.7.

FIGURE 8.8.

FIGURE 8.9.

FIGURE 8.10.

WAVEFORM OF A PROTOTYPE FPGA IMPLEMENTATION OF THE PROPOSED
F-TO-S SYSTEM: SIGNAL AT MSB OF OUTPUT 3 RECEIVED BY
MSB OF SYSTEMOUTPUT3 177

WAVEFORM OF A PROTOTYPE IMPLEMENTATION ON FPGA OF THE
PROPOSED F-TO-S SYSTEM: SIGNAL AT MSB OF OUTPUT 4 RECEIVED BY
MSB OF SYSTEMOUTPUT4 178

BLOCK LEVEL DESCRIPTION OF THE PROPOSED HARDWARE DESIGN 183

(A) CLOCK-SCHEDULING WITH MINIMUM DELAY TOLERANCE OF 2 _ T I M E
UNITS (B) AND OF 4 TIME UNITS 188

SENDER CONTROL UNIT (SCU): HARDWARE REALIZATION 189

HARDWARE REALIZATION OF THE RECEIVER CONTROL UNIT (RCU) 190

SENDER STATE MACHINE (LEFT) AND RECEIVER STATE MACHINE (RIGHT) _
192

SIMULATION RESULTS FOR FUNCTIONAL VERIFICATION OF THE _ DESIGN
PROPSED IN FIGURE 8.1 193

ALGORITHM FOR DYNAMIC CLOCK PHASE MAPPING 197

CLOCK PHASE MAPPING (MAGNIFYING THE SWITCHING PROCESS) 199

STATE DIAGRAM FOR RCU 201

BACK-ANNOTATED SIMULATION RESULTS OF THE SYNTHESIS OF OUR
ADAPTIVE INTERFACING SCHEME (XILINX VIRTEX-II-P FPGA IS USED FOR
SYNTHESIS) 202

xv i

List of Tables

TABLE 1.1. OVERVIEW OF CONVENTIONAL INTER-MODULE INTERFACEING SOLUTIONS IN
MCDS 11

TABLE 4.1 . SIMULATION RESULTS FOR CROSSTALK GLITCHES IN 90NM AND 180NM
TECHNOLOGIES 59

TABLE 4.2. SYNTHESIZED BOOLEAN EQUATIONS FOR THE STG OF THE PROTOCOL
ELABORATED IN [8] 72

TABLE 6. 1. EQUATIONS FOR ASYNCHRONOUS STATE MACHINE FOR CONVENTIONAL AND
PROPOSED BUNDLED DATA PROTOCOL 116

TABLE 7. 1. TIMING CONSTRAINTS FOR UNIDIRECTIONAL COMMUNICATION BETWEEN
THE TERMINATING MODULES OF CONVENTIONAL AND PROPOSED DESIGNS,
RUNNING AT SAME FREQUENCY 158

TABLE 7. 2. TIMING CONSTRAINTS FOR BI-DIRECTIONAL COMMUNICATION BETWEEN THE
TERMINATING MODULES OF CONVENTIONAL AND PROPOSED DESIGNS,
RUNNING AT SAME FREQUENCY (FOR KNOWN AND UNKNOWN SKEW
ORIENTATIONS) 158

TABLE 7. 3. A SUMMARY OF TIMING CONSTRAINTS FOR CONVENTIONAL F-TO-S SYSTEM,
ALONG WITH THE CORRESPONDING INEQUALITIES OF CONVENTIONAL
DESIGN OF FIGURE 7.4A, I.E. WHEN THE TERMINATING MODULES HAVE SAME
FREQUENCY ; 164

TABLE 8. 1. LATENCY IMPROVEMENT COMPARISON 202

xvn

List of Acronyms

AQX

ASIP

CDN

ConCLK

DDPS

DDS

DI

DSM

FIFO

F-to-S

GALS

GP

GUM

IPRX

IPTX

MCD

MPSoC

MTBF

NRZ

NXE

QBW

RCU

RR(X)

RSMCLK

RTL

RTZ

SCU

SLID

Aggressor-to-Quiet-line Crosstalk

Application Specific Instruction set Processors

Clock Distribution Network

Conventional Clock

Direct Digital Period Synthesis

Direct Digital Synthesis

Delay Insensitive

Deep Sub-Micron

First In First Out

Fast-to-Slow

Globally Asynchronous Locally Synchronous

Glitch Propagation

Globally Updated Mesochronous

Intellectual Property Receiver Side

Intellectual Property Transmission Side

Multiple Clock Domains

Multi Processor SoCs

Mean Time Between Failures

Non-Return-to-Zero

No-Crosstalk glitch Effect

Quadruple Bus Width

Receiver Control Unit

Receiver Register(X)

Receiver State Machine Clock

Register Transfer Logic

Return-to-Zero

Sender Control Unit

Synchronous Latency Insensitive Design

SoC System-on-Chip

SR(X) Sender Register(X)

SSMCLK Sender State Machine Clock

S-to-F Slow-to-Fast

STSS Self-Test Self-Synchronizing

WGE Wire Glitch Element

WXE With Crosstalk glitch Effect

xix

Chapter 1: Introduction

1.1. Design-Related Technical Issues with SoCs in DSM

Technologies

Advances in integrated circuit technology have revolutionized modern day electronic

appliances. Laptops, PDAs, cell phones, GPS, and so many other electronic devices are

now part of our daily lives. All these devices use higher and higher integration levels,

along with a tremendous increase in functionalities and features. An electronic device

that supports multiple features often requires a separate processing element for each of

these features. Every processing element may be designed independently by a different

vendor and may have some unique characteristics. Such independently designed

processing elements are also called Intellectual Property Modules, or sometimes simply

intellectual property (IP). With growing market competition and increasing demand of

shorter time-to-market, IPs form a major constituent of modern-day integrated circuits

that are often called Systems-on-Chip (SoCs).

1

Although designing SoCs is providing new and exciting dimensions to the electronic

systems market, at the same time, SoC design experiences significant challenges. For the

past few years, the International Technology Roadmap for Semiconductors (ITRS) has

been stating that the RC delays through fixed-length wire increases as the base

fabrication technology scales to smaller dimensions [1]. This is attributed to the use of Cu

instead of Al, dominating fringe capacitances, skin effects etc. This phenomenon sets a

limit to interconnect bandwidth, which makes the upper frequency at which complex

SoCs operate no longer depends on the gate speed alone. In fact frequency of complex

SoCs becomes a function of interconnect bandwidth as well.

Combinational
Logic Elements

SoC

Sequential Logic
Elements

Memories Clocking and
Interconnects

Local
Interconnects

Power

Stand-out
solution

/deteriorates
VPerformano

Figure 1.1.

Intermediate
Interconnects

Grid Based
CDN

Divide
System into

smaller
Clcok

Domains
(MCD)

Reduce the
Clock
Speed

CO
o

o
C/3

Un-manageable skew is a
Problem Associated with

CDN in DSM

Global
Interconnects

Clock

Design-related technical issues with clock distribution networks of SoC in DSM
technologies

2

One of the major components of SoCs that requires long wires is the Clock Distribution

Network (CDN) [2][3]. The trend of increment in clock speed follows the Moore's law

[110], which says that frequency of the microprocessor doubles for each generation. This

trend is started about 40 years ago and it is going to last at least another decade and a half

[111]. Therefore, it has become an enormous challenge to design a reliable CDN while

keeping pace with the demand of frequency increment. Figure 1.1 shows that the CDN

requires global interconnects. In DSM technologies, interconnect bandwidth is a dominant

factor to set the CDN frequency limit [4] [5]. Repeaters are conventionally used to alleviate

the problems associated with interconnect bandwidth [2], but repeaters introduce timing

uncertainties due to process variations (which are becoming more and more significant as

feature sizes are reduced), which leads to timing skew. Skew becomes unmanageable in

CDN of modern DSM technologies [81] and this unmanageable timing skew may lead to

intolerable phase discrepancies among communicating modules driven by the same CDN.

Several de-skewing techniques are proposed in the literature [57], [58], [109]. These

schemes introduce phase detection and correction schemes at different stages of clock

distribution. De-skewing mechanisms have its limitation due to the additional buffers,

which are needed to perform phase detection and correction. These buffers may introduce

some delay that leads to extra jitter, which can overwhelm the improvements it may

provide.

Large phase discrepancies due to unmanageable skew adversely affect the timing

budget and, consequently, are detrimental to inter-module communication in SoCs. Figure

1.1 shows two obvious choices to overcome this problem of unmanageable skew. One

solution is to reduce the clock frequency to accommodate the phase discrepancy within the

3

timing budget. Obviously, this solution deteriorates performance and hence it is not a

desirable solution. Another and more prevailing solution, also shown in Figure 1.1, is the

introduction of the concept of Multiple Clock Domains (MCDs), where different IPs may

be grouped in separate clock domains. Hence, every clock domain has its own CDN,

which does not need to be distributed throughout the entire chip. Although this solution

alleviates the interconnect bandwidth issue for individual clock domains, in order to

leverage the functionalities from different modules in the integrated circuit, IPs in

different clock domains require an interfacing mechanism to interact with each other.

Therefore, there is a growing need to investigate different mechanisms to interface

modules in MCDs.

1.2. Design-Related Economic Issues with SoCs in DSM

Technologies

Another aspect of designing an integrated circuit is its economic viability. It is shown

in Figure 1.2 that time-to-market is one of the key economic design issues regarding SoCs

in DSM technologies. In order to avoid long iterative design cycles (to reduce time-to-

market), integrated circuit designers heavily rely on IPs and standard design practices.

4

(Design-Related) Economic Issues with
SoCs in DSM

Yield & Time to Market

Dependent on
Process

Technology

£
Using off-the-shelf

components

solut ions involved
to reduce T ime-

to-Market

Dependent on
Design

1
Following the

standard design
f low

Use IPs constituting
MCDs in the SoC, with

Standard Interfaces

Figure 1.2. Design-based Economic issues with SoCs in DSM technologies

As discussed in the preceding section, these IPs may have different signalling and clock

requirements, which usually leads to IPs running under different clock frequencies and

results in MCDs in SoCs. This is pictorially represented in Figure 1.2. Summing up with

the previous section, economic and technical design-related issues for SoCs in DSM

technologies point toward the same solution of dividing the SoCs into MCDs.

1.3. Overview of Inter-Module Communication Techniques in

MCDs

It was established in the previous section that SoCs with MCDs promise to solve most

of the design-related technical and economical issues. This requirement results in the

5

growing need for designing interfaces that allow communications among modules in

MCDs. In this section, an overview of possible inter-module communication techniques is

provided. Figure 1.3 suggests that inter-module communications in SoCs with MCDs can

be classified into four main classes: point-to-point communications [7], [8], [9], [10], [11],

point-to-multipoint communications [12], Bus based, and Network-on-Chip (NOC) based

[13], [14], [15], [16] design schemes.

In all the communication methods listed in Figure 1.3, there is always a need to

physically connect a module with another module, irrespective of the nature of the inter­

module communications. This requirement suggests that a point-to-point communication

method is always required. Therefore, this research is directed toward proposing new and

improved methods for point-to-point communications, as is indicated in Figure 1.3.

Indeed, if a point-to-point communication method is broad enough to encompass all

possible variations under different timing constraints, or can at least suggest a good

solution under a given set of conditions, then it should lead to a better overall system

architecture.

6

Point-to-point

Asynchronous
1

Synchronous

FIFO based
(e.g. Latency

Insensitive requires
synchronizers)

1
GALS based
(e.g. Pausible

Clocking)

^ • i
Working at similar I I Working at different

frequecies frequencies

Mesochronous ioyv'i Plesiomronous
Maximum Phase offset is

known

Context based
fsynchronous solutions^
L are provided to avoid t

the use of PLLs

Frequency ratio
is an integer

• I

Frequency ratio
is fractional

Arbitrary

Maximum phase
offset is known

Maximum phase
offset is unknown

Slow
to Fast

Fast to
Slow

Slow
to Fast

Fast to
Slow

Figure 1.3. Overview of possible inter-module communication techniques in MCD

1.4. Context-Based Selection of Inter-Module Communication

Method

Several different classes of point-to-point communication methods have been

suggested in the literature. It can be seen in Figure 1.3 that some of the state-of-the-art

solutions follow the synchronous design style for IP communication, while other

designers seek solutions in asynchronous or partially synchronous and partially

asynchronous (such as Globally Asynchronous Locally Synchronous (GALS) [17])

design methods. This section discusses the suitability of the available design methods

under different design contexts.

7

Choosing among different point-to-point solutions, from synchronous and

asynchronous design paradigms, is a difficult design decision. The suitability of a design

scheme (synchronous, asynchronous, or GALS) depends on the context of the design and

sometimes even on the natural inclination of the system designer(s). Moreover, different

applications lead to different inter-module communication requirements and hence may

lead to different solutions. For example, in multi-standard digital television applications,

there is a requirement to produce clocks having frequencies, such as 354.6895 and 360

MHz that are related by a ratio of exactly 709379/720000. These clocks must have a very

low timing jitter, typically below 200 ps [20]. Hence, such designs cannot rely on

pausible clocking techniques, due to their use of jitter prone ring oscillators to generate

clocks (see Table 1.1). Also, the required frequency precision and accuracy in this

application imposes a tremendous effort toward designing ring oscillators with very fine

resolution.

A similar example of contextual choice of communication interface is the

asynchronous FIFO-based technique which falls in the asynchronous paradigm as shown

in Figure 1.3. This is a typical solution to interface interacting modules in multiple clock

domains in a significant number of the multi-million transistor chips [21], [22], [23].

These interfaces also require synchronizers for control signals. This solution is popular

mainly because it requires less deviation from the conventional synchronous digital design

flow and CAD tools. However, FIFO based techniques increase latency, because in order

to transfer the control signals these interfaces requires synchronizers, which adds latency

to the system. This latency issue with asynchronous FIFO-based solutions is not

favourable for microprocessor interfaces that have stringent latency requirements. For

8

example, multi-core architectures are especially sensitive to inter-processor latency for

remote cache lookups and local memory accesses [24]. Some low-latency FIFO-based

designs have been suggested in the literature [25], but the use of synchronizers makes the

interface non-deterministic. Therefore, for multi-gigahertz microprocessors, asynchronous

FIFO based designs along with synchronizers reduce the performance. Consequently,

alternative methods are required to cope with such problems.

The above examples of different design contexts show that choosing inter-module

interfacing solutions in MCDs depends upon the context of the design and available

expertise. A summary of state-of-the-art asynchronous/GALS solutions and synchronous

solutions is shown in Table 1.1. This table shows that there can be many different

combinations of criteria that may have to be looked upon before making a decision.

Hence, it is virtually impossible to have one universal solution that fits all the contexts.

However, it is entirely possible that a context may have more than one solution, which

may even belong to different design paradigms. This can be seen in Table 1.1, e.g. in the

first row for Mean Time Between Failures (MTBF); both pausible clocking (a

asynchronous interfacing technique in which clock is paused for the duration of

communication, explained in Chapter 2) in the asynchronous design paradigm and the

solution when the maximum phase offset is known provide reliable solutions. Therefore,

in such a case, it is the choice of the designer(s) to select the interface that is best for a

particular system, which can be based on some other design metric.

Following the needs of context-based design solutions, this work proposes novel

designs in both, synchronous and asynchronous, domains. The major objective of these

novel solutions is to alleviate the design issues that restrict performance of SoCs in

9

modern DSM technologies. The following discussion illustrates the shortcomings of the

state-of-the-art solutions to cope with the challenges of modern DSM technologies, and it

provides a set of problems that are not resolved in the state-of-the-art designs.

10

T
ab

le
 1

.1
. O

ve
rv

ie
w

 o
f

co
nv

en
tio

na
l I

nt
er

-M
od

ul
e

In
te

rf
ac

in
g

So
lu

tio
ns

 in
 M

C
D

s

M
T

B
F

 P
ro

ne

Worst Case
Latency

Sa
m

e
F

re
qu

en
cy

A
rb

it
ra

ry

M
aj

or
 D

es
ig

n
Is

su
es

E
D

A
 T

oo
ls

 A
va

ila
bi

lit
y

St
at

e-
of

-t
he

-A
rt

 A
sy

nc
hr

on
ou

s/
G

A
L

S
So

lu
ti

on
s

P
au

si
bl

e
C

lo
ck

in
g

[7
,8

,9
]

N
o

U
nd

et
er

m
in

ed
 (

de
pe

nd
s

on

th
e

fl
ow

 c
on

tr
ol

 s
ig

na
ls

)

U
nd

et
er

m
in

ed

S
ep

ar
at

e
cl

oc
ks

, p
ro

ne
 t

o
ji

tt
er

 p
ro

ne
,

no
n-

de
te

rm
in

is
ti

c
la

te
nc

y,
 C

A
D

is

su
es

,
re

qu
ir

es

ch
ar

ac
te

ri
za

ti
on

 a
t

th
e

ph
ys

ic
al

 l
ev

el

L
im

it
ed

F
IF

O
-B

as
ed

[2

5,
26

,
82

]

Y
es

F
IF

O
 D

el
ay

F
IF

O
 D

el
ay

 +

in
te

ge
r

ra
io

L
at

en
cy

 (
no

t
su

it
ab

le
 f

or
 h

ig
h

pe
rf

or
m

an
ce

de

si
gn

s)

L
im

it
ed

St
at

e-
of

-t
he

-A
rt

 S
yn

ch
ro

no
us

 S
ol

ut
io

ns

W
or

ki
ng

 a
t

sa
m

e
fr

eq
ue

nc
ie

s

M
ax

im
um

 p
ha

se

of
fs

et
 i

s
kn

ow
n

[7
6,

 7
7]

N
o

D
ep

en
ds

 o
n

ph
as

e
ad

ju
st

m
en

t
of

 F
IF

O

N
A

W
or

st
 c

as
e

a
pr

io
ri

 t
im

in
g

in
fo

rm
at

io
n

is

re
qu

ir
ed

M
at

ur
ed

M
es

oc
hr

on
ou

s
[2

8,
 2

9]

Y
es

V
ar

ie
s

(u
su

al
ly

se

ve
ra

l
cl

oc
k

cy
cl

es
)

N
A

T
ra

in
in

g
se

qu
en

ce

re
qu

ir
ed

,
H

ig
he

r
fr

eq
ue

nc
ie

s
re

su
lt

s
in

hi

gh
er

 M
T

B
F

et
c.

M
at

ur
ed

 w
it

h
D

F
T

is

su
es

W
or

ki
ng

 a
t

di
ff

er
en

t
fr

eq
ue

nc
ie

s

W
or

st
 C

as
e

K
n

ow
n

(R
at

io
na

l
ra

ti
o)

[3

4,
35

,
78

]

N
o N
A

D
ep

en
ds

 u
po

n
th

e
ph

as
e

ad
ju

st
m

en
t

of

F
IF

O

l)
T

he
 m

ax
im

um

ac
hi

ev
ab

le
 f

re
qu

en
cy

is

 t
he

 s
lo

w
es

t
of

 t
he

tw

o
IP

s
(2

)
S

am
e

as

co
lu

m
n

4

M
at

ur
ed

W
or

st
 C

as
e

U
nk

no
w

n

[2
0,

31
1

Y
es

N
A

S
ev

er
al

C

lo
ck

 c
yc

le
s

M
T

B
F

,
F

re
qu

en
cy

li

m
it

at
io

ns
,

L
ow

 j
it

te
r

to
le

ra
nc

e

M
at

ur
ed

 b
ut

cu

m
be

rs
om

e

1.5. Problem Identification

As a precursor to our research it is observed that the recent literature addresses either

the limitations of the CDN or the interfacing techniques for communication between

modules in MCDs. Consequently, we realized that there is a need to establish a

quantitative procedure to determine the requirement of MCD in advanced SoCs.

Therefore, we address this problem first, before making a comprehensive study on the

interfacing techniques.

As discussed earlier interfacing solutions for MCDs spread in both, asynchronous and

synchronous, design domains. We carefully analyzed the current state-of-the-art

interfacing solutions against the challenges posed by the scaling of modern DSM

technologies. This careful analyses lead to identify problems in interface of both,

synchronous and asynchronous, design paradigms. These problems are elaborated as

follows:

Asynchronous Paradigm: In Figure 1.3 two sub-categories of asynchronous solutions are

shown. Due to time constraint in this thesis, we restricted our attention to pausible-

clocking based asynchronous handshake schemes, which are described in [7] - [11]. By

convention, system designers tend to describe such handshake schemes at the RTL level

and little emphasis is put on physical level issues. As the modern DSM technologies

scales further, RTL description alone cannot encompass the inevitable physical-level

non-ideality effects in the handshake schemes [4]. To deal with the challenges of modern

DSM technologies, such asynchronous interfaces must be analyzed at the physical level.

Among the different sources of non-idealities, we singled out crosstalk glitches, because

12

of the fact that, if crosstalk glitches are not treated properly, then they may lead to

malfunctioning of the system. Also the current brute force repeater insertion solutions to

cope with crosstalk glitches are overkill and power hungry. Understanding the gravity of

this matter leads us to investigate this problem further. It is found that the current

solutions are vulnerable to crosstalk glitch propagation. This is mainly because the

protocol designers are unaware to such purely physical characteristics of electrical

circuits. It is also noticed that state-of-the-art techniques fail to provide a framework that

can identify the effects of crosstalk glitches in modern DSM technology at higher

abstraction levels. A framework is necessary in order to establish awareness among the

protocol designers about the physical characteristics. Furthermore, no proper

methodology is defined to make such asynchronous interfaces tolerant against crosstalk

glitches. These problems aggravate as the modern DSM technology scales further down,

hence there is an urgent need to solve these issues. Therefore, in this thesis, we provide

novel solutions to address these problems, which are concisely explained in Section 1.6,

and detailed explanations are provided in Chapters 4 - 6 .

Synchronous Paradigm: In Figure 1.3, synchronous design interfacing technique is

further sub-divided into several categories. Here, due to time limitations, we restricted

our study to interfacing technique where the maximum phase offset is known. Under this

category our study addresses the communicating modules working at the same frequency

or having a rational frequency ratio of integer or coprime numbers. State-of-art

interfacing choices for such a case [76] - [79], show that current design solutions for

MCD interfacing are not able to answer the following fundamental problems: as the

current state-of-the-art design techniques only emphasise the correct functionality of the

13

system, hence the performance of the system are sometimes compromised. This in turn

makes the maximum throughput of the communicating modules a function of clock skew.

Hence, in modern DSM technologies, where worst-case clock skew between

communicating modules can be very high, the current state-of-the-art techniques severely

affects the performance of the system.

Furthermore, in current techniques, in order to communicate, two modules that work at

different frequencies require rate multipliers [23], [35], [77] or lookup tables to skip clock

edges [34]. These techniques limit the system throughput and the throughput becomes a

function of the slowest module in the system. In high performance design scenarios,

especially applications like SERDES or burst data communications, fast modules require

to communicate with slower modules without slowing down.

Currently, the state-of-the-art synchronous interfacing methodologies are not part of the

standard library of the EDA tools. This is because, to the best of our knowledge, the

current techniques do not provide a comprehensive case-by-case timing constraints. For

this, a mathematical formulation is required to obtain such timing relationships for all

possible clock scenarios.

A relatively recent concern regarding such interfacing scenarios is in relation to the

dynamic phase variations in modern state-of-the-art Multi Processor SoCs (MPSoCs),

which is mainly due to varying hot spots due to the changes in thermal gradients [85] -

[88]. Currently, the interfacing techniques do not address the dynamic time variations in

the system hence there is a need to address this issue as well.

These problems are critical and need to be resolved before the scaling of modern DSM

technology cease to extract any advantage out of the interfacing techniques. These

14

problems are addressed in this thesis. In the next section, a discussion about the

contribution of this thesis is provided. Due to relatively diverse nature of asynchronous

and synchronous design paradigms, these two paradigms are treated separately.

1.6. Contributions of this Thesis

In the preceding section w have seen the need for a quantitative study of the

requirement of MCDs in modern DSM technologies. The first major contribution of this

thesis is the quantitative analysis of the benefits of MCDs in terms of increasing the

performance of SoCs. This study is elaborated in Chapter 3 of this thesis, where a

balanced CDN is studied and a methodology is devised to alleviate the interconnect

bandwidth reduction in modern DSM technologies. This work resulted in a publication

"Split H-tree Design Method for High-Performance GALS Systems" in NEWCAS-2006.

Regarding interfacing requirements, this work advocates context-based design

schemes. These design schemes recommend that designers should not restrict their efforts

to a particular class of interfacing solutions; rather, they should examine all the possible

design choices to obtain the optimum solution under a particular design context. Keeping

the same concept of context-based design, this thesis provides a comprehensive study of

different design styles for point-to-point communication under several design contexts. A

summary of design contexts and their sate-of-the art solutions are provided in Figure 1.3

and Table 1.1, respectively. This thesis contributes in both, synchronous and

asynchronous, design paradigms. Following, we summarise the contribution of this thesis

15

with respect to the solutions provided for interfacing methodologies in both, design

paradigms:

Asynchronous Paradigm

This thesis addresses all the problems raised in the preceding section (in relation to

asynchronous interfaces) and produced following pertinent solutions:

1) Effects of crosstalk glitches in modern DSM technology on the conventional

asynchronous handshake schemes are identified. State-of-the-art techniques mostly

address these problems from the synchronous design perspective [71], [72]. Our

analysis is performed to understand the physical nature of these crosstalk glitches for

event-driven asynchronous interfaces. It is emphasized that these effects are

aggravating with the advancement in DSM technologies. This work led us to publish

a paper entitled "Crosstalk Effects in Event-Driven Self-Timed Circuits Designed

With 90nm CMOS Technology", in ISCAS 2007.

2) To this day, crosstalk glitches are treated using bus encoding techniques [68], [69],

but these solutions fail to address the case when an aggressor line inflicts glitches on

to a quiet neighbouring line. Such a phenomenon is called as Aggressor-to-Quiet-line

Crosstalk (AQX) in this thesis. Our next contribution is to provide a framework, at

the logical abstraction level, for modeling the possible behaviour of asynchronous

handshake schemes, designed in modern DSM technologies, under the influence of

crosstalk glitches due to AQX. These behaviours cannot otherwise be investigated

without transistor-level circuit analysis. This modeling technique is intended to

provide a basis for formal verification of asynchronous handshake schemes in the

presence of the physical design challenges posed by modern DSM technologies. This

16

research led us to publish a paper "Crosstalk glitch Propagation Modeling for

Asynchronous Interfaces in Globally Asynchronous Locally Synchronous Systems",

to IEEE Transaction on Circuits And Systems I (TCAS -I). This paper is accepted for

publication.

3) Conventional solutions to alleviate crosstalk glitches require the knowledge of

detailed physical analysis [68], [69], and [74]. Utilizing our modeling approach, we

proposed novel technique(s) to design robust asynchronous handshake schemes for

modern DSM technologies that can cope with the crosstalk glitch propagation. This

technique is named crosstalk glitch gating. Our solution can be implemented at an

early stage in the design cycle. This solution may become part of the standard library,

which can be used whenever potential crosstalk glitches can lead to malfunction of

the system. This work is submitted to IEEE TCAS -I, in a paper entitled "Crosstalk

Glitch Gating: A Solution for Designing Glitch Tolerant Asynchronous Handshake

Schemes for GALS Systems". This paper in under revision.

Synchronous Paradigm

Our work also addresses the problems identified in the preceding section in relation to

current synchronous interfaces. Our solutions can be applied to modules in MCDs where

their clock frequency may be the same, or be integer multiple or rational ratio of coprime

numbers. This solution leads to following significant contributions:

1. Through novel techniques adapted for clock scheduling an interfacing methodology is

developed with two levels of interfacing registers, instead of one in the conventional

source synchronous designs [76] - [79]. This technique made the communicating

17

modules clock frequency independent of the clock skew. In doing so, our design

technique is free from clock data delay mismatches. This is made possible by utilizing

worst-case a priori timing information to adjust clock phases. Our analysis provided

solutions for both setup and hold time violations.

2. For providing solution to interface modules running at same frequency a

comprehensive mathematical model is developed which makes our design readily

available for EDA tools.

3. In order to provide solutions for interfacing techniques between modules having

clock frequency ratio of integer number or coprime numbers, our work allows a

slower module to communicate with a faster module without slowing down the faster

module. These different inter-module bandwidth requirements (e.g. fast sender to

slow receiver) are accommodated by managing the bus widths accordingly along with

periodical clock scheduling. A complete methodology is developed and illustrated in

Chapter 81 to provide a solution, which includes a periodical clock scheduling for the

special case of rational frequency ratio of coprime numbers.

Our work on the interfacing mechanism for modules working at the same frequency

and for the modules having frequency ratio of an integer number, is submitted to Journal

of VLSI integration (Elsevier) entitled "All Digital Skew Tolerant Synchronous

Interfacing Methods for High-Performance Point-to-Point Communications in DSM

SoCs". This work also appeared as a technical report # EPM-RT-2008-10 in the

Department de genie electrique, Ecole Polytechnique de Montreal, Montreal, QC, Canada,

December 2008 [84]. One of our proposed design, which allows communication between

modules having frequency ratio of coprime numbers, was published as paper "All-digital

18

skew-tolerant interfacing method for systems with rational frequency ratios among

Multiple Clock Domains: Leveraging a priori timing information", in MNRC-2008 [93].

Extension of this work to dynamically adjust the phase variations was published in

ISCAS-2009 as a paper entitled "An All-Digital Skew-Adaptive Clock-scheduling

Algorithm for Multiprocessor Systems on Chips (MPSoCs)" [98].

1.7. Thesis Outline

The next chapter of this thesis provides a concise review of the state-of-the-art of inter­

module interfacing methodologies in SoCs. Chapter 3 discusses the problems associated

with interconnect bandwidth in conventional CDNs. A specific and often used CDN, the

H-tree, is studied. A technique is devised to introduce MCD by dividing the H-tree, and

allowing modules in each clock domain to communicate with each other. A mathematical

formulation and simulation results show that the resulting system may allow local

synchronous modules to run at a faster frequency, compared to conventional globally

clocked systems.

After establishing the need for MCD, an investigation is made into conventional

pausible-clocking-based GALS designs in modern DSM technologies. In Chapter 4, it is

recognized that the state-of-the-art pausible-clocking-based designs are vulnerable to

glitch due to AQX at the asynchronous interfaces. Chapter 5 builds a framework that

allows representing the possible behaviour of a logic structure in the presence of crosstalk

glitch at the logic abstraction level, hence avoiding the need of detailed electrical

simulation to analyze crosstalk glitch effects. In Chapter 6, crosstalk glitch gating is

19

proposed to quench the glitches due to AQX in such pausible-clocking-based GALS

systems.

After investigating asynchronous domains for modern DSM technologies, we switch

our attention to interfacing solutions in the synchronous design paradigm. Chapter 7

provides a skew tolerant solution for systems where communicating IPs have the same

frequency, or frequencies related by an integer, but with phases that are not aligned, and

for which the maximum phase offset is known. Chapter 8 deals with IPs having a

frequency ratio of coprime numbers (i.e. rational clocking). A clock-scheduling algorithm

is developed and ways to cope with dynamically varying phases are described. A complete

design methodology is proposed to devise a clock-schedule that provides enough

information to generate automatically a state machine for adjusting clock phases. Finally,

Chapter 9 concludes this thesis, with suggested future work.

20

Chapter 2: State-of-the-Art Inter­
module Interfacing Methodologies for

SoCs

It was established, in the previous chapter, that MCDs are an inevitable design choice

in SoCs designed using modern DSM technologies. Therefore, a mechanism is required to

interface modules in different clock domains. In a GALS design, individual modules in a

clock domain are synchronous but the two modules that communicate are mutually

asynchronous. Note that the communication mechanism to interface communicating

modules in a GALS design can be either synchronous or asynchronous. Initially the

concept of GALS design was proposed by Chapiro in his thesis in 1984 [17]. GALS are

getting popular in the design community for various reasons, such as its potential for low

power design and promise to avoid safe data transaction in modern DSM technologies

[49], [75], and therefore various design projects have started in this direction [18], [39].

This thesis has provided GALS-based interfacing solutions in both, synchronous and

asynchronous, design domains, while addressing the challenges of modern DSM

technologies, and providing guidelines of contextual suitability for each solution, as

described in Table 1.1. To understand the challenges posed by DSM technologies to

sustain the growth in performance and reliability in modern day SoCs, one has to critically

21

analyze the state-of-the-art of both design paradigms, asynchronous and synchronous.

This chapter provides this overview and is divided into two separate sections, one for each

paradigm. It should be noted that this thesis does not intend to prove the superiority of

one design scheme over another; rather this thesis and this review help appreciate the

benefits of each design paradigm and understand their limitations.

2.1 Asynchronous Interfaces

To interface two communicating modules in a GALS design both asynchronous or

synchronous based design techniques may be used. This section discusses asynchronous

interfaces. Broadly, asynchronous interfaces are divided into two classes: pausible clock-

based design and asynchronous FIFO-based designs with synchronizers.

2.1.1 Pausible Clocking Based GALS Designs

Pausible clocking techniques stop the local clock of the synchronous module during

asynchronous communications. The clock resumes only after it receives acknowledgement

from the receiver, thus averts any reliability issue due to metastability that conventional

synchronization schemes have (e.g. two flop synchronizers [79]). Generally in terms of

handshaking mechanism, asynchronous designs are divided into bundled data protocols

and delay insensitive protocols (DI), each of these mechanisms may adopt different

signalling techniques, such as 4-phase, or 2-phase etc. [45]. Following is an overview of

22

GALS based designs in the literature and classified into bundled data designs and DI

designs.

A) Bundled Data Protocol Based GALS Designs

Figure 2.1 represents the conventional bundled data protocol scheme. In such a

protocol the data and control signals travels in different paths. Some of the earlier work in

this domain is by Yun et al. [36]. Their work presents a bundled data scheme. It uses an

asynchronous FIFO channel to communicate between each pair of locally synchronous

blocks. The communication between a block and the FIFO is done using a

request/acknowledge handshaking. Synchronization of handshaking signals to the local

(block) clock is done with pausible clocking. The scheme requires at least two clock

cycles to transfer data and at most one port per module can be active at a time because of

the arbiter. Moreover, increasing fan-ins and fan-outs make their arbiter block large and

impractical [8].

Control

1
Latch

Req In"
Delay

Req Out"

" Ack

Data
Combinational

Logic

Control

' '

Latch

Req In"
Delay

Req Out '

' Ack

Combinational
Logic

Control

\

Latch

Req In
Delay ->•

* Ack

Combinational
Logic

Figure 2.1. Bundled Data Protocol

Muttersbach et al. [8] used the similar pausible clock generation scheme to prevent

metastability. The 4-phase bundled data handshake protocol has been used to signal

23

validity of the data. This technique resolves the disadvantage of the scheme shown in [36]

where increasing fan-in and fan-out from a sub-block make its arbiter block large and

impractical.

The four transitions required per handshake in [8] could result in significant

performance penalty. De Clercq et al. [7] invented a high-speed GALS communication

structure using bundled-data single-track (ST) handshaking pausible clocking. Due to the

ST handshaking scheme, the latency in [7] is lower when compared to [8]. However, since

these schemes rely on momentarily high impedance states on the ST lines, the

implemented circuit will run correctly only if it is not exposed to heavy ambient noise.

Moore et al. [9] use a clock pausing methodology, and they devised two interfaces, one

for synchronous producer to asynchronous consumer and the other for asynchronous

producer to synchronous consumer. These two schemes can be joined together with

asynchronous coupling (FIFO) such as GASP [37], to give a solution for communications

between two synchronous domains. In [9], for larger frequency differences between

consumer and producer, the effect on FIFO depth may hamper the performance severely.

Moreover, the delay elements put a limit on the time span of the handshaking signals. This

timing assumption is on top of clock pausing. Two more slight deviations of similar

interfaces are called stretchable [40], [42] and data-driven [40], [43] techniques. These

techniques are different in terms of the implementation of the clock generation

mechanism. However, they fare better in terms of throughput and power consumption,

respectively.

A design limitation of bundled-data protocol based designs is the interdependence in

timing relations of the request signal and the data which lead to a similar kind of timing-

24

closure problem as synchronous designs face for long interconnects [44] . To cope with

this issue, DI designs are introduced in the literature. An overview of such design

methodologies is provided in the following paragraphs.

B) Delay Insensitive (DI) Protocol Based GALS Design

Figure 2.2 shows the block diagram of a dual rail DI design scheme. In DI designs, the

request signal to send data and the data itself are encoded using a data encoding

mechanism. The encoding mechanism may vary from simple dual rail protocol to complex

m-to-n coding protocols. As data and control signals are encoded, therefore no delay

matching is required to make sure that a request arrives after the data has reached the

receiver (as is the case in designs based on bundled data protocol). As of writing of this

thesis DI designs have not been seriously considered as an alternative asynchronous

interface for pausible clocking based GALS designs and a handful of solutions are

suggested that includes DI designs with pausible clocking [97]. In [44], a novel solution is

introduced using the l-of-4 data encoding DI interface technique introduced in [55]. Gasp

[37] buffers are introduced to decouple the receiver and sender in order to establish an ST

handshake mechanism. This solution utilizes the trigger signal for pausible clocking from

the synchronous domain, hence making sure that reliability issues are completely

eradicated. Other techniques were also introduced in the literature which do not rely on

pausible clock and hence prone to reliability issues [46].

Pausible or stretchable clocking design suffers from the clock over-run problem [38].

With pausible clocking schemes, some data might get lost during the time period from

when the clock is requested to be stopped to the time it is actually paused. In order to

avoid this problem, different delay insertion mechanisms are introduced in [38], [10], [11].

25

Pausible clocking techniques, though very promising especially if the mutual frequency

of the communicating modules is not known, pose some severe design challenges as well.

In such methods, jitter vulnerability of the local clocks varies significantly from cycle to

cycle as it restarts from a pause [41], [47]. Furthermore, design flow deviations due to the

introduction of asynchronous components goes against a limitation on CAD tools, and

hence are counter-productive aspects of pausible clocking interface mechanisms.

Sender

Data yReq ^
) ^
2n

, Ack
\

Receiver

Empty ("E")
Valid "0"
Valid " 1 "
Not used

d.t
0
0
1
1

d.f
0
1
0
1

Figure 2.2. Dual Rail Delay Insensitive Scheme: Block Diagram, Truth table, four phase waveform
and state machine depiction

Conventional Asynchronous Circuits are Vulnerable to Malfunction in modern DSM

Technologies due to Crosstalk Glitches: Conventional asynchronous circuits are

designed to avoid data hazards and race conditions [65], [66], but design methods fail to

address non-idealities introduced by crosstalk glitches in modern DSM technologies [4].

In [68], [69], [91], and [92] the crosstalk effects in circuits implemented in DSM

technologies were mitigated with the introduction of encoding in the data bus. Though

such encoding techniques are indeed very advantageous in alleviating the delays

26

introduced due to crosstalk, unfortunately in modern DSM technologies, the data bus is

not the only crosstalk-affected region. Crosstalk glitches influence control signals, such

as the handshake signals in asynchronous interfacing circuits, and may induce even more

serious consequences if not treated properly. Here it is worth mentioning that the

crosstalk glitches we are mentioning here is aggressor to quiet line crosstalk (AQX)

glitches.

In [70], a behavioural level crosstalk detection methodology for sequential

asynchronous circuits is developed. This methodology allows crosstalk detection in an

early phase of the design cycle and it provides recommendations for transition reshuffling.

This design method checks for intrinsic transition faults in a sandwiched wire, due to

crosstalk glitches, only if its two adjacent signals are performing a transition toward the

same polarity, i.e. 00 to 11 or 11 to 00. On the other hand, in modern DSM technologies,

as stated earlier, considerable crosstalk glitches appear in quiet lines due to transitions in

aggressor lines (AQX). These crosstalk glitches may propagate undesirably and lead to

eventual system failure.

There are other types of glitches as well, which appear in the combinational logic due

to mismatch in the delay paths. These glitches have settled logic values and research was

done to learn how to avoid them for power reduction [71], [72]. Such glitches are studied

in the synchronous design context. A robust asynchronous circuit is always designed to

avoid such data hazards and race conditions [65], [66]. Thus, the context of crosstalk

glitch propagation due to AQX is different from such settle-time glitches and henceforth

drew our attention. Our study of crosstalk glitches due to AQX in asynchronous interfaces

is reported in Chapter 4 to 6 of this thesis.

27

2.1.2 Asynchronous FIFO Based Methodologies

As shown in Figure 1.3, another asynchronous interfacing design possibility is the use

of asynchronous FIFO based designs, without pausing the clock. Some of the earlier work

in asynchronous FIFO based design is reported in [56] and [37] but these designs were

proposed initially only for purely self-timed event-driven asynchronous systems.

Designs with Synchronizers: Another design style called latency-insensitive is proposed

in the literature as an alternative asynchronous FIFO schemes [25], [26], [48], [82].

Chelcea et al. [26] propose a new design method for synchronous systems that makes the

design functionality insensitive to long wire latency. They optimized the famous

approach of pipeline synchronization, presented by Seizovic [50], by noting that

synchronizations are only needed for the receiver when the buffer is almost empty and

only needed for the sender when the buffer is almost full. In order for this system to work

properly, it needs to be "patient", where a patient system is a synchronous system whose

functionality only depends on the order of the events of each signals and not on their

exact timing [51].

Another asynchronous FIFO approach in the literature is proposed by Chakraborty et

al. [23]. This work proposes a novel solution using the STARI FIFO [83] technique to

address arbitrary clock frequency domains. In this scheme, transmitter and receiver

forward their clocks to each other. This helps in estimating the clock frequency.

Whichever has the higher frequency uses a rate multiplier to create an approximation of

other one. This solution also tolerates a phase discrepancy of up to two clock cycles, when

the synchronous domains are working at the same frequency.

28

Asynchronous FIFO solutions are good solutions for inter-module communications

especially when the mutual frequency between the modules is arbitrary and flow control

information is limited. The latency of the synchronizer is a severe drawback in

implementing such designs in high performance systems. A rule of thumb is to keep 40

gate delays to resolve the metastability, which for 130nm technology translates into 2.5 ns

[41].

2.2 Synchronous Interfaces

Figure 1.3 shows that the synchronous design domain is further sub-divided into three

sub-categories: mesochronous, plesiochronous, and the case when maximum phase offset

is known. Plesiochronous schemes are usually found in telecommunication systems,

where the two interacting modules typically have independent clocks generated from

separate crystal oscillators. Such a scenario is not likely to be present in on-chip or even in

on-board systems [27], and is not further considered in this thesis.

Conventionally, both the mesochronous synchronization and the category of known

maximum phase offset are solved by the same set of solutions. Mesochronous

synchronizing techniques such as the delay line synchronizer [52], the Self-Test Self-

Synchronizing (STSS) method [28], or the Globally Updated Mesochronous (GUM)

method [29], utilize synchronization schemes with a stringent timing constraint for

resolving the metastability within half a clock cycle. This constraint restricts the maximum

speed of an interface.

29

2.2.1 Known Maximum Phase Offset

Same Frequency: Recently in the third category, shown as "maximum phase offset is

known" in Figure 1.3, a new solution was proposed which utilizes a priori timing

information of the maximum phase offset. This work is described by Caputa et al. [76]

and Edman et al. [77] [78]. A generalized cartoon depiction for such a case is shown in

Figure 2.3. Here, it is depicted that clock is provided using the same source to two

different modules and because of the potential difference in delay in the clock lines

(shown as IA and ta in Figure 2.3), an interfacing technique is required to allow the two

modules to perform safe data transaction. They devised a FIFO based methodology with

a priori knowledge of the maximum phase offset. In their methodology, the clock signal

from the sender, called strobe signal, is sent to the receiver along with the data. Data is

latched, when it arrives, using the strobe signal. The receiver clock that latches the data is

sourced from a particular clock and is delayed enough so that it can tolerate the

maximum skew in the system.

Such a design requires stringent matching delay properties between the data and clock

signals, as data has to arrive before the setup time of the strobe signal edge [80]. However,

this design methodology tolerates a fairly large skew but the maximum attainable

frequency for the terminating modules is a function of the clock skew [80]. Our solution,

provided in Chapter 7 of this thesis, addresses these issues and our solution rectifies the

mentioned shortcomings.

Different Frequencies: Another branch of synchronous methods, shown in Figure 1.3,

consists of solutions for the case when the interacting modules are working at different

30

frequencies. This category is divided into sub-categories on the basis of the frequency

ratio between the communicating modules, which may be an integer, fractional, or

arbitrary rational number. Various techniques are proposed in the literature for interfacing

modules working at rational frequencies [24], [34], [35]. In [34], Sarmenta et al. utilize the

knowledge of the timing information to setup a lookup table in order to pass selected

pulses to the communicating modules. These modules are supposed to have a rational

frequency ratio. Due to the centralized nature of this design, modern DSM technologies

pose a serious limitation to such designs as phase discrepancy grows with the wire length.

In [35], Mekie et al. propose a solution that utilizes prior knowledge of the data flow and

timing. By exploiting this knowledge, the design signals the receiver IP at instances that

fall on the prohibitive window of the registers, and skips communication on those clock

edges. One of the limitations of such designs is the size of the shift register required to

store the desirable sequence of clocks, and hence this solution has its hardware limitations

even for some commonly used rational frequencies.

To follow the conventional design flow, in [78], Edmand et al. extended their

technique, for communicating between modules working at the same frequency, [76],

[77], to modules working at rational frequencies. This work utilizes same rate multiplier as

used in [23] to choose the right phase to send the data. This design technique can

accommodate large clock skews, but the maximum achievable clock period of the IP

modules is still dependent upon this clock skew. This technique also suffers from the

control and data delay mismatch problem and also the classic problem of slowing down

the faster module that limits the maximum possible throughput obtained to a function of

the frequency of the slower module.

31

Isochronous
Regfon A

Isochronous
Region B

Figure 2.3. Two isochronous regions with communication links [78]

Along with the drawbacks mentioned, the above solutions (discussed in this section)

have one common limitation: their frequency of data transfer cannot exceed the frequency

of the slowest module in the interface. Solutions provided in Chapter 8 addresses the

problems mentioned here.

Dynamic Phase Variations: As we go deeper into modern DSM technologies there is also

a growing concern of dynamic phase variations due to varying thermal gradients. In

particular, high-speed applications are more affected due to the non-uniform delays

generated across chips by dynamic thermal variations. Thermal variations are observed at

run time, since they are workload dependent [98]. It has been projected that, in high-

performance ICs, the peak chip temperature could raise up to 160°C for the 90nm

technology node, that surpasses the maximum acceptable junction temperature of 125°C

32

after which reliability issues arise [85]. In [86], it was shown that for every 20°C increase

in temperature, the Elmore delay for the long global interconnects increases by

approximately 5%-6%. Assuming a 25 °C nominal temperature, this translates into 30%-

35% delay variation between the nominal and peak temperatures in integrated circuit

implemented with 90-nm CMOS. In [87], it was shown that the inverter optimal size that

minimizes delay per unit length in a repeater structure is dependent on the ratio of the

transistor resistance (Ron) to the wire resistance. Thus, the temperature dependence of that

ratio has a significant impact on the repeater insertion methodology. In [87], it was also

shown that a 75°C increase in temperature from the nominal value results in 34% and 45%

change of value of that resistance ratio for the 180nm and 65nm technologies,

respectively. Such a large deviation in the resistance values, and therefore in delays, will

translate into clock skew and could cause timing violations.

In order to mitigate the effects of on-chip temperature variations on delay, several

solutions have been implemented. In a single core chip, a variability-aware micro­

architecture partitions a processor into multiple independent voltage-frequency islands

[88]. Another micro-architecture, may partition the chip into different clock domains with

each clock being derived from a common source [83]. These frequencies are exact rational

multiples of each other, and the clock frequency ratios are known a priori. Such a micro­

architecture is common in System-on-Chip (SoC) designs having IP blocks running at

their own frequencies. The IP blocks are usually optimized and often comprise various

ASIPs (Application Specific Instruction set Processors) that are part of heterogeneous

multiprocessor Systems-on-Chip (MPSoCs). This section focuses on this type of micro­

architecture.

33

In multiprocessor architectures, stop and go [96] policies are the most commonly used

to reduce peak temperature. In such policies, in order to preserve the state of the core, it

needs to be saved in memory before powering down. When the core is "awaken" again,

significant current draw is required from the power supply, whose higher capacity output

creates more heat. In addition, the load on the power supply is larger at start-up, with a

consequence of larger temporal temperature variations. From the above, it is obvious that

clock skew variations will be introduced by these policies. Hence, a technique to

accommodate the run time delay variations due to thermal gradients is required. This

technique is illustrated in the second half of Chapter 8

2.2.2 DDS based Solutions for Rational Frequencies

Another family of solution is dedicated for the rational frequencies of large co-prime

numbers. Direct Digital Synthesis (DDS) [31] is a popular synchronizing method for

communicating among the modules having such fractional frequency ratio. But, due to its

dependency on analog components, DDS has its limitations with the maximum attainable

frequency. Furthermore, DDS is unable to generate rational number frequencies if the

denominator cannot be expressed by 2", where n is an integer [53].

Calbaza et al. proposed a solution, called DDPS (Direct Digital Period Synthesis) [20],

for communicating at fractional frequency ratio by using only digital logic, hence that

work promises to achieve a higher frequency. Boyer et al. used a similar concept to

produce variable speed processors (VSP) [33].

Even though DDPS and VSP provide flexibility in clock multiplication, their control

signals require a separate frequency phase detector and low pass filter [54].

34

2.3 Discussion

It has been indicated in the first chapter that this thesis is written based on the notion

that there is no one universal solution for all the design contexts. Rather, based on a

particular design context, the designer has to choose among the given alternatives

keeping in view the design constraints of each design in hand. Shortcomings of each

method are provided at the end of the discussion of each class of state-of-the-art

solutions. Some of these shortcomings are addressed in the proposed solutions stated in

this thesis. Chapters 4 to 6 provide solution to the challenges associated with the

reliability of asynchronous interfaces designed for modern DSM technologies. Similarly,

Chapters 7 and 8 provide answers to the challenges pointed out as shortcomings in this

literature review for the synchronous interfacing method.

35

Chapter 3: Problems Associated with
Interconnect Bandwidth in conventional

CDN

As discussed in the preceding chapters, in modern DSM technologies, interconnect

bandwidth is a dominant limiting factor. Repeaters are commonly used to alleviate the

problems associated with interconnect bandwidth but this solution introduces timing non-

idealities due to process variations (which get worse as technology is scaled down), which

leads to timing skew. The skew associated with repeater-insertion methodologies limits

the maximum frequency in Clock Distribution Networks (CDN).

In order to address problems linked to skew, various techniques have been suggested in

the literature. Recent approaches use a phase detector or an additional mesh in the H-tree,

to reduce skew [57], [58]. However, these approaches have limitations and they require

additional routing and hardware, in addition to not addressing the problem of interconnect

bandwidth specifically. They rather focus on having the least phase difference among the

different clock sinks.

In this chapter, a method is presented that mitigates both interconnect bandwidth and

clock skew problems. It follows a divide-and-conquer strategy. The proposed solution

divides the H-tree CDN into smaller blocks and supports communications among different

36

IPs within the sub-blocks through self-timed or asynchronous circuits. This design

methodology relaxes the timing constraints by a substantial factor, up to 3 times. A closed-

form mathematical model for the length of interconnects, after successive splitting, is

formulated. Simulation results support our analytical finding that split H-trees allow

clocking chips, of a particular die size, at a higher frequency. Moreover, a comparison of

different asynchronous communication mechanisms is achieved to suggest an optimum

design based on the target system performance. It is observed that adapting some sort of

interfacing technique for these split regions promises higher performance in modern DSM

technologies.

3.1 Clock Frequency Limitations in Clock Distribution

Network (CDN)

This section introduces some important concepts and states the basic equations that are

essential to understand the rest of this chapter. In [5], Zarkesh-Ha quantitatively analyzed

the factors responsible for limiting clock frequency. As a first order approximation, due to

the difficulty of modeling and simulating lossy and non-uniform transmission lines, it is

assumed that ground return path wiring has been implemented on the two metal levels

above and below the clock wire to reduce inductance effects. Therefore, in this analysis,

inductance effects are ignored.

37

Quantitatively speaking, maximum interconnect bandwidth can be defined by assuming

that an interconnect is a low-pass RC filter such that its maximum 3dB frequency

(f3dB(MAX)) is represented by (3.1):

2 * km * in.) / :
J3dB(MAX) <-> / \7 2 W - l)

where rint and c,„, are interconnect resistance and capacitance per unit length respectively,

and / is the length of interconnect from clock source to the middle of the sub-block,

shown in Figure 3.1. Let us analyze quantitatively the effects of process variations in

clock distribution networks (CDN). Considering a balanced H-tree with one source

repeater and driving repeaters at each sub-block as shown in Figure 3.1, the delay from

the H-tree source to an H-tree sub-block can be obtained as follows [5]:

T = 0 4
1 Delay U ^

P£r
\HmTILD j

,2 ^
/^+X_L/ + o.7/?frCi (3.2)

where p, Him and TUD are the line resistivity, thickness and inter-level dielectric (ILD)

thickness between interconnects and er is the relative dielectric constant of the ILD

material, c0 is the speed of light in free space, R,r is the driver resistance, and Q is the

total wiring and input capacitance of the destination register within the sub-block.

Ignoring process variations within the sub-blocks, the clock skew, defined as the time

difference between the maximum and minimum source-to-sink delay between CLK1 and

CLK2 (TCSK), see Figure 3.1, can be written as follows [4] (for further details, refer to

[5]):

2 4^
TCSK = 0.4(rintcint)/2 + ^ - ^ / + S

" •* Delay

BX;
Ax,. (3.3)

38

where {x;} is the set of parameters retained by Zarkesh Ha et al. in [5]. These parameters

include variations in oxide thickness, threshold voltage, interlayer dielectric thickness,

wire thickness, channel length, IR drop, non-uniform register distribution and

temperature gradient. Figure 3.1 also shows two nearest neighbours that are subject to a

maximum skew according to a summation model, since their common ancestor is farthest

[59]. This is further explained in Section 3.2.

n = 4

Figure 3.1. Balanced 4-Level H-Tree

Equation 3.3 has two components: the first two terms of the right side represent the

wire delay in the sub-block, while the third term indicates the overall variation in delay

from the clock source to the beginning of the sub-block identified as CLK1. Assuming a

budget of 10% (as currently it is a normal practice to keep a budget of 10% for clock skew

in digital systems [5], Chapter 12 of [62], clock frequency,^, is defined as follows:

fk(MAX) = 0.1/TcSK (3.4)

39

Interconnect bandwidth and process variations affect the clock distribution network

concurrently. Therefore, clock frequency is determined by the factor that turns out to be

dominating, following the following criterion:

Jc ~ m l n V 3db(MAX)' Jk(MAX) I (3-5)

3.2 H-tree Splitting

In order to take into account the observations made in the previous section, a technique

is proposed to split the H-tree so that the benefits of shorter interconnect length can be

exploited. H-tree splitting is the division of a conventional H-tree into two or more

sections where each section has the same number of sinks as the others and has its own

clock source repeater. In order to get the most out of H-tree splitting, identifying key

splitting locations in the H-tree is required. As far as skew is concerned, H-tree splitting

where communicating node pairs have the worst expected skew within a H-tree, is

expected to lead to maximum skew reduction. To obtain the best splitting locations, a

summation model, introduced by Fisher and Kung [59], is used. According to this

fundamental architectural model (that is independent of process technology), the skew

between two clock sinks of an H-tree is directly proportional to the sum of lengths leading

to their common ancestor. This captures the effects of worst-case parametric variations. As

far as interconnect bandwidth is concerned, the summation model implies that the skew

between two nodes is worst when their common ancestor is the tree root. Indeed, the

branches directly connected to the root are the longest in the tree. Therefore, it is

recommended that designers split the H-tree at its root to avoid worst-case skew. The

40

same reasoning applies recursively. Thus, the second and subsequent considered splits

break the sub-trees at their last common ancestor. In Section III of [60], Nekili et al.

established the same fact. They showed that, in order for two clock sinks to produce the

maximum skew their paths should diverge at the tree root.

The following analysis allows finding the effective length of H-tree paths during the

splitting process. Assuming n is the number of H-tree levels and sp is the numbers of

splits, there are four possibilities for H-tree splitting depending on whether n and sp are

odd or even. Now, let us consider the case where the number of H-tree levels and numbers

of splits are even (let's call this: case A). It is known from [3] that the length of the path

from H-tree source to the sub-block input is as follows,

/ = D 1 -
2

(3 . 6)

where D is the dimension of the die as shown in Figure 3.1, and n is the number of H-tree

levels before splitting. In case A, for every 2 splits, two branches of the same lengths are

removed from the initial path of H-tree source to the sub-block input. The length of the

resulting H-tree source to sub-block input is described mathematically as follows:

l=D 1-
'1Y2

v̂ y
- D * 2

1 1 1 1
- T + - T + - T + - T + . . + -

1

2 2*2 :

where sp is the number of splits. Further simplification of the above equation leads to

(3.7):

41

l = D 1 - IV _D_ ̂ J_ (3.7)

Similar analysis for other cases gives the following respective closed-form length

equations: Equation (3.8) is the case when n even and sp odd, while (3.9) corresponds to

the case when both n and sp are odd, and (3.10) models the situation when n is odd and sp

is even.

/ =

/ =

D

D

1 -

1 -

' 1 '

v " 2 \

. nil '

) .

. nil

)

D
- * , = 1

i=0 *•

D

I = D

I = D

I = D

' - ' T

'-'r

D
2 2

22 £ 2 2'

5 > 1 and si odd

^ = 1

s „ > 2 and is odd

(3 .8)

(3 . 9)

I = D\\-

D

2 2

D u

D

s

-i--
1=2 *• 2

D

2

5 = 2
p

sp > 2 a n d is e v e n

(3 . 1 0)

3.3 Simulation setup

For analyzing the effect of splitting the H-tree on the clock frequency, and validating

the concept of H-tree splitting, simulations are performed with Matlab. Design parameters

42

for the 0.18 micrometer (TSMC) CMOS technology were used and equations (3.1), (3.3)

and (3.4) were implemented in order to calculate frequency. Furthermore, we substituted

equations (3.7) to (3.10) into equation (3.3). In order to perform the sensitivity analysis,

the parameters proposed in [5] were used to allow comparing results (for details on

sensitivity equations please refer to [5]). We assumed that die size ranges from 1 cm to 4

cm (in steps of 1 cm), with CL= 6.25pF, rjntCjnt=115ps/cm2, VDD = 1.8V, VT=0.32V,

R t r= 12Q, Leff =0.18 urn. Moreover, we assumed that, before splitting, the number of

levels in the H-tree, n, was 8.

Based on the model formulated above, the maximum frequencies according to process

variations and to the standard 3dB constraints are plotted in Figure 3.2. These results show

that interconnect bandwidth dominates the clock frequency when the number of splits

considered is small. Process variations start dominating the clock frequency when the

number of splits increases (3 or more). An observation that confirms the validity of the

proposed splitting locations is the increase in 3dB frequency with every considered split

(having inverse square relationship with reduction in length as given in equation 3.1). The

splitting process keeps producing large improvements in maximum 3dB frequency at each

considered split. For illustration, consider the second dotted curve from the top (data

points are shown in asterisks in Figure 3.2). This curve indicates the variation in frequency

with respect to the number of splits for a die size of 2 cm due to process variations. For the

same die size, the interconnect bandwidth curve is shown as the second solid curve from

the top. The above-mentioned two curves and equation (3.5) imply that, for the first two

splits, the frequency is dominated by interconnect bandwidth, and further splitting will

make it dominated by process variations.

43

x10

1.5 2 2.5 3 3.5
Number of Split Levels

Figure 3.2. Maximum Frequency subject to process variation and Maximum 3 db Frequency vs.
Number of Splits

As an example, in Figure 3.2, for a non-split H-tree, Sp=0 and die size of 2 cm, the

maximum achievable frequency is 393.6 MHz. The first split results in an increase in

clock frequency that is a factor of almost 1.85 (732 MHz). Similarly, the second split gives

a 2.45 times improvement in frequency as compared to sp = 1. Although the length of the

first and second H-tree levels are the same for sp=0, in this case, their widths are different

to minimize reflections. This explains why the second and first splits do not lead to the

same frequency increase. From the third split, the dominant factor switches to process

variations and it leads to a 1.54 times increase in frequency compared to sp=2 but, from

the fourth split and onwards, the frequency increment reaches a quasi-saturation, where

44

the improvements are small due to smaller interconnection length reductions. This

analysis takes us to the conclusion that if an H-tree clock distribution network is split, it

can then work at a higher frequency. However, in order to make this solution practical, it

requires additional circuit mechanisms that can allow communication among the different

sub-H-trees created by this splitting; this is addressed in the next section.

A possible concern with the proposed H-tree splitting scheme comes from the fact that

clock generation circuits are often driven by PLLs and that splitting could mean inserting a

PLL at the root of each branch. This is illustrated in figure 3.3 where branches of a split H-

tree are driven be separate PLLs. This is costly in area, power and design complexity. In

this thesis, what we have in mind for a practical way to implement the split H-tree as

shown in Figure 3.4, which shows that the root wire of the H-tree can be replaced by

minimum size inverters to feed the two split halves of the H-tree with a single PLL at the

root. The proposed overall clocking scheme is elaborated in Figure 3.4b. This method may

introduce extra clock skew, but this can be accommodated in the interfacing methodology

proposed in the subsequent chapters.

PLL

PLL

Pll

H-tree

H-tree

H-tree

Local Grid

Local Grid

Local Grid

Figure 3.3. Clocking scheme for SoCs with split H-tree and potential requirement of PLLs at every
split node

©

45

&
PLL

(a)

Split H-tree

Split H-tree

Split H-tree

Local grid

Local grid

Local grid

(b)

Figure 3.4. a) Modified H-tree after one split (b) Proposed clocking scheme with split H-tree for
SoCs with the requirement of only one PLL

46

3.4 Communication Mechanism

The proposed solution (that involves H-tree splitting) comes with a price. H-tree

splitting (a virtual process) leads to two H-tree halves with n /2 nodes in each half.

Suppose the H-tree was working at a clock frequency of Fp before the splitting, and then

works at a frequency of Fp+A after the splitting. Only a communication mechanism that

can safely transfer data within l/(Fp+A) (in time units) will make splitting a beneficial

solution. If fW(MAX) is the reciprocal of the maximum delay of the asynchronous wrapper,

then equation (3.5) can be rewritten as,

Several different approaches have been proposed in the literature to support

communication between two mutually asynchronous domains. Generally speaking, these

sorts of asynchronous interfaces are divided into two classes, the first class uses an

interface with pausible clocking and the second class uses some self-timed FIFO-based

arrangement, with reliability issues (as discussed in Chapter 2). In order to choose a

suitable interface type, first, the designer has to identify the clock source for each sub-tree.

There are generally two different ways of supplying clock to different synchronous

blocks in GALS systems. Clock is either provided by a single (slow) global clock that

supplies different (multiple) clock domains and each domain contains a clock multiplier to

make the clock run at its desired frequency. Otherwise, each clock domain has its own

clock generator. In the former case, a self-timed interface is an obvious choice, as these

systems are analogous to mesochronous designs where self-timed design was proven

successful [23]. For the latter case, a self-timed wrapper will need an extra level of effort

47

to make it work safely while abiding all the timing constraints. Therefore, in this case a

wise choice is pausible clocking.

If a self-timed interfacing wrapper is introduced (the corresponding modification in the

H-tree is shown in Figure 3.3), then the timing constraints of that wrapper will define the

limitations of the entire system. For example, let us consider the recently developed self-

timed wrappers by Chakraborty et al. [23]. With their wrapper, the timing limitations of

the system will be P > 2 r\, where r\ is the time from triggering the latch controller to

subsequently returning the self-timed circuit to its initial condition, and P is the clock

period [23]. H-tree splitting puts an additional limit to this wrapper, and, in order for the

design to work properly, it has to respect the condition r\ < 1 /2(FP+A). Circuit simulation

of the wrapper proposed in [23], using the 0.18 micrometer TSMC technology, shows that

this interface can run up to a point-to-point delay of approximately 340 pico-seconds (see

Table 3.1). Thus, it could run at approximately 1.25 GHz, compared to 393 MHz for the

initial non-split H-tree that did not require asynchronous communication mechanisms (a 3-

fold improvement). It should be noted that the maximum frequency is limited by process

variations rather than the actual latency of the wrapper as illustrated in equation 3.11. The

proposed splitting method thus trades extra hardware for high performance.

Table 3.1. Comparison of Designs

Die Size= 2cm and n = 8

Asyn. Int

Self-timed

Pausible

w/o split

of advantageous splits

3

2

-

Interfaces (number)

8

4

-

Freq Hz.

1.25 G

1.1 G

393.6M

48

Now, let us analyze the case when pausible clocking is used. For illustrative purposes,

we adopted the design by De Clercq et al., which is one of the efficient pausible clocking

wrappers reported [7] (the corresponding modification in the H-tree is shown in Figure

3.4). This wrapper is known as "single-track adaptor". This design reportedly works with

a latency of 909 ps using the 180 -nm TSMC CMOS technology.

The above two interfaces allow designers to split the H-tree up to two levels or more.

Table 3.1 summarizes our results. One can see the significant advantage of self-timed

wrappers. The choice of wrappers is context based, and depends on several factors. A

guide line can be obtained by using Table 1.1.

A

..

5 '
C

t

* r

E

. .

•A

si

•A
•

S]

A
M 1

' '
G /\

^

cp

K

v>

K.

' V

N

1 ^

B

.

*
D

-

'
F

4

. J

N
V

H

T

3
—en—•

t CL H V

_T
-
M [-
— e n — >

M T

—en—<

H* •

*
— e n — i

v> L. i A
M V

v.
k CL

b CL

i L

% y

-
V

OX
* • 1—<

Cor itr o Her

i

.

'
K

.

'
M

k

si
si

>i

: M

/\
si

>
o s\

"̂

O

,

K

v>

IV

V

IS

v

J

v.

L

. .

• " • '

N

. LsJe.

N
V

P

R

Figure 3.5. H-Tree with Self-timed circuit

49

a °

« H

=«CLkJ=

WCL

J
«CLfc

« C L K

K K

I A M V K K J U S

Clk1
A S Y N C R S T

Clk2

ASYN. WRAPPER
Figure 3.6. H-Tree with Pausible Clocking interface.

3.5 Summary and Discussions

This chapter introduced a high performance H-tree design methodology combining H-

tree splitting and the use of asynchronous wrappers. Closed-form equations were derived

for interconnect length as a function of the number of splits. Different design choices were

investigated to cope with the challenges of communication between mutually

asynchronous designs. Based on this study, design recommendations are made regarding

the number of H-tree splits for an optimal performance given a certain die size. This

design method shows a substantial improvement in clock frequency, up to 3 times, for a

die size of 2 cm by 2 cm in 0.18 micrometer TSMC CMOS technology.

50

This work draws the attention of engineers and scientists that a class of CDN, which

promises to be skew tolerant, poses severe problems of clock skew that it promises to

solve due to process variations in modern DSM technologies. Hence, this work

encourages system designers to rely on small and independent IP modules that may

communicate through some interfacing mechanism. These independent IP modules in

SoCs are likely to be associated with MCDs. Therefore, subsequent chapters of this thesis

focus on the different interfacing mechanisms to communicate such IPs in MCDs. Both

the design paradigms, asynchronous interfaces and synchronous interfaces, are

investigated for a complete understanding of the subject.

51

Chapter 4: Crosstalk Effect in Event-
Driven Asynchronous Handshake

Schemes

It is described in the preceding chapter that CDN experiences a tremendous problem in

providing synchronous clocks to the entire chip in the modern Deep Sub-micron (DSM)

process technologies. Due to this limitation to CDN, SoCs designed in modern DSM

technologies often comprise smaller modules in Multiple Clock Domains (MCD), so that

the CDN can meet the required skew budget for each module of the system. Based on the

knowledge of the preceding chapter, a designer may be able to identify the regions that are

most affected by skew, where an interface must be inserted. Asynchronous handshake

schemes are among the popular communication methods for interfacing these modules or

Intellectual Properties (IPs) in MCD. Along with the need for methods to interface MCDs,

there are also other challenges in advanced VLSI process technologies. Leakage power

due to sub-threshold currents, domination of interconnect parasitic delays over gate delays

[1], and increased crosstalk due to higher coupling interconnect parasitics are some of the

phenomena that are affecting SoCs more significantly in modern DSM technologies than

in earlier process technologies. Therefore, it is more challenging to design robust

asynchronous interfacing mechanisms as the technology evolves.

52

Small spacing between adjacent interconnects and increased thickness of the metal

layers lead to more coupling capacitance in modern DSM technologies. These coupling

capacitances have dual deteriorating effects on the performance of the system. They add

delay and introduce unwanted glitches (called as crosstalk glitches) that may lead to

malfunction of the digital logic. Moreover, glitches on a signal in an event-driven design

(a set which encompasses most of the asynchronous interfaces) can affect more adversely

than glitches on a signal in synchronous designs. This is because, in event-driven systems,

an event can cause a process to start, terminate, or change state at an inappropriate time.

To the contrary, in a synchronous system, a process is sequenced with respect to clock

edges in synchronous designs.

In this chapter, the increased importance of crosstalk glitches between different metal

lines with the advancement of process technologies is investigated. To simplify the

analysis, it is assumed that a good current return path surrounds each wire that is

susceptible to an inductance effect. Therefore, this study is limited to the analysis of

coupling capacitances only. This is in line with most of the crosstalk glitch analyses in

advanced DSM technologies found in the recent literature [61]. It is found that, in 90nm

and beyond technologies, crosstalk glitches can lead to system failure even for fairly short

wires. The next section discusses the effects of inter-wire capacitance on some widely

known asynchronous interfacing methods at the logic level. This logic level analysis is

validated by electrical simulations for the representative interface designs for two well

known asynchronous handshake schemes. Toward the end of this chapter, results of these

circuit level simulations are discussed and finally a discussion summarized the chapter.

53

4.1 Inter-wire Capacitance

As the technology improves, multiple interconnect layers are introduced in order to

provide more functionalities. The metal layers are usually divided in three categories

namely local, intermediate, and global interconnects. For example, in the 180-nm TSMC

process, a six metal layer technology, layer 1 to layer 3 are used for local interconnect,

layer 4 and 5 for intermediate, and the top layer is reserved for global interconnect [62].

Capacitance in DSM technologies is not limited to parallel plate structures; rather,

fringing and coupling capacitances are becoming a substantial portion of the total

capacitance if not the dominant portion [3] [61]. Figure 4.1 shows the cross section of a

metal layer sandwiched between an upper and a lower metal layer. Showing the upper and

lower layers as carrying the ground signal in Figure 4.1 may be justified by the fact that

each metal layer usually runs orthogonally to its immediate vertical neighbours, thus the

combined effect due to all signalling is nullified. Therefore, the coupling effect of metal

layers immediately above or below a metal layer reduces to that of a grounded wire. In

this analysis, Cc refers to the coupling capacitance and Cg refers to the total ground

capacitance.

54

GROUND

T
i

7̂ ,
Layer n+1

t
C±

Ctop=fc

Signal
Line

sz

i

'adj

CV=b

G=L

Signal
Line

^•adi

3 :c4=
o

I
i

Signal
Line

T
i

CD

CD

GfcOUNlD

T .w_ • _ s Layer n-1

Figure 4.1. Local Layer interconnects

In Figure 4.1, Cgnd = Ct,0t + Ctop and total capacitance Ctotai = Cgnd + 2CC + Cfnngc- In the

case of the top metal layer, Figure 4.1 does not have any Layer n+1 coupling. In this

context, the analytical models of Cc and Cg are given by the equations in Chapter 8 of

reference [61]. For ease of reading, these equations are reproduced here:

-!LB- + 2.22
e h U + -70/7

+ 1.171
s + \.5\h t + 4.53/?

(4.1)

£ S\ h + 2.06s
+ .73 w

w+l.65
+ 1.16

' + 1.875 Z7 + .98

(4.2)

where w, and t are the width and thickness of the wire, whereas 5 is the pitch (distance

between the neighbouring lines of the same metal layer) and h is the distance from the

55

adjacent metal patch in the different metal layer. These parameters are summarized in

Figure 4.1. As the process technologies grow deeper into sub-micron, spacing and

thickness between layers are reduced [62], [63], [64]. Reduction in these dimensions leads

to denser metal layout, and, consequently, to higher capacitive effects due to neighbouring

wires, i.e. higher coupling capacitance. This is discussed further in the next section.

4.2 Crosstalk Comparison among Different Technologies

In order to understand the effects of the aforementioned parasitics, electrical

simulations are required. Figure 4.2a, presents a three dimensional view of two parallel

metal lines. Figure 4.2b shows the electrical parameters of the lines, each of the lines is

driven by an amplifier. In order to provide practical value to the simulation we added 5 to

6 inverters to the ideal voltage source before supplying this voltage to the aggressor line.

The aggressor line is considered to be the one that inflicts glitches, due to a transition of its

own value, to the adjacent metal line. The line that exhibits a glitch in response to the

transition in the aggressor line is called the victim line.

Figure 4.2.

, Ural \
1 Step;

(a)

(a)Three dimentional view of the metal lines

Aggressor

"; Cap

-AM' r ~-|
RA T

W,—L-A v

^Cgv Rv +cfl»
T

Victim

(b)

(b) Electrical Equivalent Circuit for
Simulations

56

As mentioned earlier, there are two major deteriorating effects due to crosstalk:

increased delay and crosstalk glitches. Though delay hampers the performance of the

system, crosstalk glitches may potentially result in system failure.

Cc/Cg for 90, 130 and 180nm (For the lop metal, spacing = width)

90nm
130nm
180nm

=^5p

1 1.5 2 2.5 3 3.5 4 4.5 5
Spacing and width (spacing=width) expressed as a multiple of the minimum wire width

Figure 4.3. Cc/Cg for 180nm, 130nm and 90nm for top metal layers

In this study, emphasis is put on the investigation of the effects of glitches due to

crosstalk. These crosstalk glitches can cause the system to fail when two conditions are

met. First, the peak value of the glitch must be high enough to cross the threshold of the

receiving device. Second, the crosstalk glitch pulse width must be wide enough to drive

the loading capacitance to a potential that can be interpreted as a different logic value. In

[61], glitch magnitude is computed as follows,

V. peak c C IC

v r +c c ic +i
(4.3)

57

where Vpeak is the peak glitch voltage, VDD is the supply voltage, Cgv is the victim ground

capacitance and Cc is the coupling capacitance. It can be seen from (4.3) that the crosstalk

glitch voltage gets to its peak theoretical value (VDD) as Cc/Cgv ratio increases. With the

Cc/Cgv ratio getting as high as 4 in 45nm technology [4], [61], crosstalk glitches for the

circuits designed in U-DSM technologies are more susceptible to get close to its

theoretical maximum value i.e. VDD- Here, it should be noted that the effective coupling

capacitance (which constitutes the equivalent load-to-ground capacitance on the driving

gate) in a crosstalk prone environment is also dependent on the transitioning signal status

on the neighbouring wires [6], [68], [69], [89], [90], which is represented as a switching

factor (SF) in the literature [61]. Here on the other hand, in crosstalk glitches affecting

quiet neighbouring lines due to transitions in aggressor lines, the SF is almost always

unity. The SF is unity because quiet neighbouring line in ideal condition does not change

its electrical potential, for details please refer to [61, Chapter 8]. Moreover, an increase in

the coupling capacitance, as the one caused by reduced feature size, increases the settling

time constant. This phenomenon contributes to longer crosstalk glitches, along with higher

crosstalk glitch magnitude in U-DSM technologies.

Figure 4.3 shows that the value of Cc/Cg increases as the process technologies shrink.

Utilizing the capacitance values from Figure 4.3, an electrical simulation is performed on

the model of Figure 4.2b. In Figure 4.4, the result of the electrical simulation is shown for

two different process technologies under similar driving conditions (minimum technology

size drivers) and same wire length. Figure 4.4 and Table 4.1 provide a comparison of peak

glitch voltage, under minimum size amplifiers, for two different process technologies. It

can be seen from Figure 4.4 and the corresponding values in Table 4.1 that smaller

58

technologies are more susceptible to crosstalk glitches. It is shown in Table 4.1 that, in the

case of the 180nm technology, the crosstalk glitch voltages do not cross the VDD/2 level.

Whereas, in 90nm, these crosstalk glitch magnitudes cross over VDD/2 (which is the

threshold voltage for a matched CMOS gate) for a substantial period of time. Appreciating

the severity of crosstalk glitches, the ITRS-2007 introduced a new crosstalk glitch

parameter which shows that, by 2015, in the 17nm technologies, even the first metal layer

will have glitches of 25% of the switching voltage for a 46u.ni wire length; in comparison

to 105(xm for the 50nm technology [1].

TABLE 4.1. SIMULATION RESULTS FOR CROSSTALK, GLITCHES IN 90NM AND 1 80NM TECHNOLOGIES

90nm, 1mm wire, min. tech. size driver for victim, top metal layer, Cc= 113.6*10"18 * 1000 =

113.6*10"15, Cg= 35.6*10"18 * 1000 = 35.6*1015, R= 0.022* 1000/.42 = 52.38 Ohms, VDD = 1.2V

Period

(ns)

8

4

2

Rise time

(ps)

500

100

100

Vic/Agg (V/V)

+ve

0.722/1.2

0.711/1.19

0.645/1.17

-ve

0.689

0.638

0.450

Time Width (ps)

+ve

782

845

752

-ve

580

573

535

T for glitch > VDD/2 (ps)

+ve

335

308

190

-ve

180

139

-

180nm, 1mm wire, min. tech. size driver for victim, top metal layer, Cc=101.8*10"'8*1000 =

101.8*10',5,Cg=46.5*10-18* 1000 = 46.5*10 ,5,R=.02*1000/.860 = 23.25 Ohms, VDD= 1.8V

Period (ns)

8

4

2

Rise time (ps)

500

100

100

Vic/Agg (V/V)

+ve

0.847/1.8

0.862/1.8

0.803/1.75

-ve

-0.873

-0.855

-0.671

Time Width (ps)

+ve

623

669

633

-ve

465

460

431

Hence, from the above discussion it is concluded that, as the gate length in DSM

technologies is shrinking, the crosstalk glitch amplitude is increasing for similar driving

strengths. These high crosstalk glitch magnitudes can sometimes be interpreted as a valid

signal at the receiving end, for a particular range of load capacitance. Hence, it gives way

59

http://46u.ni

to crosstalk glitch propagation, which may lead to some serious consequences on system

behaviour. Because, this phenomenon introduces a crosstalk glitch in the quiet

neighbouring (victim) line, induced by the switching (aggressor) line, therefore it is

termed as Aggressor-to-Quiet line Crosstalk (AQX).

2 . 0 ,_» : •" input 1 . 8 V
A g g r e s s o r V s . V ic t i r f
(V o l t s) , l a o n m , I m r

-ywir© l e n g t h

/ A g g r e s s o r

(a)
~: /^vetim A g g r e s s o r V s . V i c t i m V o l t a g e , fo r 9 0 n m , - : xagresaor

1 m m l o n g w i r e s

Figure 4.4. a) Aggressor and Victim Voltage for 90nm, l mm long wires (above) b) Aggressor and
Victim Voltage for I80nm, l mm long wires (below)

For a first order comparison, the peak positive glitch (transition from 0 to positive

potential represented as +ve glitch) observed for a 8 ns period, reported in the +ve column

of the vic/agg (victim/aggressor) group in Table 4.1, is compared for the two technologies

and it is found that the observed glitch, normalized for respective VDD, is up to 1.3 times

60

larger in 90nm than in 180nm technology (e.g. 0.722/1.2 is 1.28 times more than

0.847/1.8). The time width column of Table 4.1 indicates the time the +ve glitch, or -ve

glitch (transition from 0 to negative potential) for the respective -ve column, remains at

more than half of the peak glitch value (i.e. more than 0.847/2 in the case of +ve glitch

column of 180nm technology for 8 ns period). When the time width of glitches for the two

technologies, given in Table 4.1, are compared, an up to 1.26 times wider width is

observed for smaller (i.e. 90nm) technology, e.g. when results in the 8 ns row for both

technologies are compared, 782 ps is found, which is 1.26 times more than 623 ps. The

90nm technology has one extra column for pulse width during which the crosstalk glitch

magnitude is greater than VDD/2. It can be seen in Table 4.1 that, for the 180nm

technology, the crosstalk glitch magnitude does not reach VDD/2. Here it is worth

mentioning that the duration for 90nm technology glitches above VDD/2 is more than three

times the F04 gate delay for the conventional 90nm CMOS technology [105].

4.3 Effects of Inter-Wire Capacitance on Well Known

Asynchronous Interfacing Methods: Logic Level Analysis

The effects of glitches on average signals are not of much concern in synchronous

designs because they behave with reference to a sequencing signal (clock). Synchronous

designers choose clock periods such that signals become stable before the next assertion of

the clock signal. Unfortunately, asynchronous designs do not have the luxury of clock

signals. They are event-driven self-timed designs. So, if an event is generated due to an

error in the system, it might lead to a series of erroneous signal transitions, which

61

consequentially trigger unwanted transactions with the possible result of system failure.

Previously, asynchronous designers aimed only at making asynchronous systems hazard

immune and race free. On the other hand, in advanced DSM technologies, a considerable

attention must be given to crosstalk glitches. It is shown, in preceding sections that, in

90nm and smaller technologies, wide glitches in adjacent wires may reach VDD/2.

Crosstalk Glitches of this magnitude have significantly higher probability of reaching the

threshold level of the driven gates, thus leading to erroneous event generation. The rest of

this section elaborates on the crosstalk glitch effect in some of the well known self-timed

asynchronous designs that are widely used as an interfacing technique in GALS systems.

4.3.1. Bundled-Data Protocol Based Design

In a bundled data protocol, data is bundled with request and acknowledge signals as

shown in Figure 4.5(a). In Figure 4.5(b) waveform for a possible case of system failure

due to crosstalk glitch is illustrated. Here, its is shown that the Ack signal glitches,

labelled as False ACK in Figure 4.5(b), due to a 0-to-l transition on the Req_in signal,

shown as Req #1 in the Figure 4.5(b).

In the circumstances mentioned above, the sending module falsely assumes that the

sent signal has been received by the receiver. Consequently, the sender may generate

another request signal, shown as Req#2, while the receiver is still in the process of

generating the Ack signal for the earlier request, Req#l, signal. Continuing the usual

operation, Req#l goes through a delay and produces Req_Out, which in turn generates the

Ack signal. Hence, the sender may receive this Ack signal at a sensitive time window, i.e.

62

concurrent or close to the assertion of Req#2 signal as shown in Figure 4.5(b). Therefore,

this phenomenon results in either false latching of the data or the loss of the data. This

example is a logic level depiction of possible spurious signal generation under the

influence of crosstalk glitch which in turn leads to system malfunctioning.

— R e q j n — • Delay HReq_ouh
Control Control

-Ack-

Latch Data); Latch

ReqJ

False
ACK due to

glitch

— V w

Ack

^Comb. Delays1

Figure 4.5. (a) Conceptual hardware implementation of the bundled data protocol (left) (b)
Conceptual waveform to illustrate failure due to crosstalk glitch in the hardware implementation of the

bundled data protocol (right)

4.3.2. 1-of-N Data Encoded Delay Insensitive (DI) Designs

Delay insensitive (DI) data encoding is used for communication between different

modules that are distant and when a priori prediction of their timing constraints is

difficult [45]. 1-of-N data encoding scheme is chosen in this thesis because, presumably,

this scheme is least affected by crosstalk glitches. This is because of the fact that only one

line get activated during signal transmission.

63

Sender
End j£

-L[1]-

-L[2]-

4*

,<2&^

L[N]-

-Acknowledge (Ack)-

Receiver
End

Figure 4.6. Generalized Hardware Implementation of 1-of-N Data Encoded DI Schemes

-Ack

L[1]

Figure 4.7. Expected waveform depiction under the influence of crosstalk glitches

Figure 4.6 shows the generalized hardware implementation of such data encoding

schemes. These designs assert only one signal at a time, and the data and request are

encoded within that signal [45]. The receiver is designed to decode these encoded data

items. However, due to crosstalk glitches, it is possible that the receiver falsely

understands that the line adjacent to the true asserting signal line is also asserted. Such a

scenario is illustrated in Figure 4.7 where L[l] is the true asserting signal but inflicts

crosstalk glitches on L[2]. L[l] may also induce a crosstalk glitch on the acknowledge

64

signal, 'Ack', if this acknowledge signal is neighbouring L[l]. It is also depicted in

Figure 4.7 that the effects of crosstalk glitches reduce in farther neighbouring signals. As

the receivers are designed to entertain only one signal at a time, therefore, concurrent

assertion of two signal lines is improperly handled by the receiver and, in turn, this leads

to system malfunction.

4.4 Validation of Crosstalk Glitch Effects in Asynchronous

Circuits Using Electrical Simulations

This section characterizes the effects of AQX, which were described at the logic level

in the preceding section, on asynchronous interfaces. Before going into details of

asynchronous circuit mechanisms, some general assumptions and choice of asynchronous

protocols are stated to facilitate understanding.

Assumption: In this work, only crosstalk glitches induced by an intrinsic signal transition

within the same asynchronous domain, due to AQX, are analyzed. This assumption is

justified, for instance, in GALS systems, for which the top metal layer is used to

implement asynchronous interfacing signals. In this case, these signals are surrounded by

signals that are typically least affected by AQX, i.e. VDD and GND. Hence, such an

implementation reduces the possibility of any signal external to the asynchronous domain

to cause AQX. This makes the contribution from external signals to AQX small compared

to the contribution from intrinsic signals.

To simplify the analysis, it is also assumed that a good current-return path surrounds

each wire, which alleviates inductive effects. Therefore, this study is limited to the

65

analysis of coupling capacitances only. This is in line with most crosstalk analyses in U-

DSM technologies found in recent literature [55].

Choice of Asynchronous Interface: Several asynchronous interfaces are proposed to

implement GALS systems. Most of these interfaces follow one of the two protocols

bundled data protocol [8], [106], [107]or Delay Insensitive (DI) data encoded protocol

[55], [67], [108]. In order to understand the effects of crosstalk glitches in these

asynchronous handshake protocols, a comprehensive investigation is performed in the

following sections for representative circuits of the above mentioned asynchronous

interfacing protocols. The representative asynchronous interfaces chosen for this study are

numerously cited and used as benchmark circuits in many recent papers as well [106],

[107], [108].

4.4.1. Quantitative Crosstalk Glitch Analysis of the Conventional 1-of-

4 DI Asynchronous Interface

This section analyzes the reasons for the vulnerability to AQX of a conventional 1 -of-4

data encoded delay insensitive (DI) design [12], [55], as shown in Figure 4.8a. This

analysis is based on the waveforms of Figure 4.8b that illustrates possible AQX scenarios.

Subsequently, these scenarios are examined in relation to possible hardware

implementations of Figure 4.8a, to identify the actual gates that are susceptible to

propagate crosstalk glitches.

66

qO

q1

CD q2
"O
C
CD
CO q3

Reset

inO SD~
in1

H£>-
in2

R£>-|
in3

HI>T

nma

i L <r

nxO

^E> outO

nx1 ffi>
nx2

.n»al.

OUt1

out2

out3

t=f£>

Out Ack U
nx

dO

d1

d2

d3

R
ece

 ver

ACK

b)

Figure 4.8. a) Hardware implementation of the data encoded DI Scheme b) Expected Waveform of
the Design with glitch scenarios

Logic Level Sequence of Signals Causing AQX

In order to appreciate the effect of crosstalk glitches in such an interface, understanding

the mechanics of the design is essential. The circuit of Figure 4.8a shows the following

AQX-occurrence scenarios during normal circuit operation. The nxO to nx3 group of

67

signals are set to VDD as an initial condition. This group of signals is represented as nx[0-

3] in the rest of this chapter. Similarly, in[0-3] represents the inO to in3 group of signals

and out[0-3] represents the outO to out3 group of signals. According to the 1-of-N DI data

encoded protocol, of which l-of-4 is the special case shown in Figure 4.8a, only one of the

input lines of in[0-3] can go high at a given time. When any of these input signals

becomes high (in order to transfer some data), the corresponding line in the group nx[0-3]

is pulled down to logic '0'.

Due to coupling capacitances, each switching line becomes an aggressor that can affect

the neighbouring lines. Such perturbation lasts until the driver of the neighbouring line

restores the charge on the quiet neighbouring line. This phenomenon introduces a

crosstalk glitch in the quiet neighbouring (victim) line, induced by the switching

(aggressor) line, and hence causes AQX. This is shown as the first scenario in Figure 4.8b,

where nx3 falls in response to a rise in in3 that introduces a glitch on nx2.

The second glitch scenario arises when the transition in the nx signal, shown at the

bottom of Figure 4.8a, causes a glitch in a neighbouring line (nx3 in this example). The

second scenario appears twice in Figure 4,8b, one for each logic level transition on the nx

line.

Validation using Transistor Level Simulation: To validate the above analysis, two

separate sets of circuit level simulations were performed using the 90nm

STMicroelectronics CMOS technology [64]. Initially, a l-of-4 data encoded DI design is

simulated with a model that includes the impedance of the lines but without the coupling

effect. This set of simulations is designated as the no-crosstalk glitch effect (NXE)

simulations. Even though the coupling effect is not taken into consideration in the first

68

simulations, for fair comparison with the simulations that include coupling capacitance, an

additional ground capacitance of the same magnitude, as the coupling capacitance is

included in NXE simulations. When performing NXE simulations, the l-of-4 data

encoded Dl design is optimized for a particular worst-case delay. This worst-case delay is

measured from the rise of any of the in[0-3] signals to the latching of the data at the

corresponding output. The value of this particular delay was optimized and is close to 450

ps for a wire length of 1.5 mm. In simulation results reported later, the interconnect length

was set to 1.5 mm and the same 90- nm STMicroelectronics CMOS technology was used.

In all these simulations, the top level metal layer is used, and interconnects are modeled

using a 511 model, for which the relative delay errors associated with the use of lumped

models are less than 3% [3]. Top metal layer is used because inter-module communication

requires longer wire lengths and top metal layer provides lowest resistance.

The second set of simulations includes coupling capacitances and is dubbed "with

crosstalk glitch effect" (WXE). This set of simulations is performed on the same

optimized interface design (i.e. with no change in transistor sizing), while the line

impedances include coupling effects.

Simulations on the circuit of Figure 4.8a for the four process corner cases (SS, SF, FF,

FS)1 and for a typical case (TT)1 were performed. These transistor-level simulations

consider the case when in3 and in2, alternately, rise to logic ' 1' to measure the undesirable

crosstalk glitch magnitude at the output. The WXE transient circuit level simulation

results are shown in Figure 4.9. These results show that such glitches may be latched as a

valid output signal. For example, Figure 4.9 shows that the out3 glitch magnitude is

' SS means both PMOS & NMOS are Slow; SF Slow PMOS, Fast NMOS, FS Fast PMOS, Slow NMOS, and FF means both are
Fast, TT represents both MOS have typical values

69

approximately VDD/2. This crosstalk glitch propagation can lead to a malfunction of the

system, as the simulation shows that two of the out[0-3] signals are asserted concurrently,

which is forbidden in the protocol.

a
©•

3
O

<a-

prosstalfcrQlitcfo.

a

x :[B=:f^
dh1^tdfydaitfe<

•N... f̂ .-
im> ii^^mLl

c~\. f — I

,—W jjl
•:F

ros4jtalk-gliteh #ue to transition jn nx2 jy

7 ? ' / / }••••/ i V w V V \J

J. t£d--
T i m e (ns)

Figure 4.9. Circuit level simulation results for optimized l-of-4 Data Encoded DI Design scheme,
shown in Figure 4.8-a, for an interconnect length of 1.5mm (WXE Simulation).

The magnitude of the crosstalk glitch peak voltage at out3 is shown in Figure 4.10 as a

function of the interconnect length. This illustrates that the crosstalk glitch magnitude on

signal out3 increases with the length of the wire. It is also observed that the crosstalk

glitch magnitude may reach VDD/2 (0.6V), for 1.5 mm length interconnect, which is high

enough to turn on the subsequent gates and allow glitches to propagate. Note that the

variations in crosstalk glitch magnitude among different comer cases in Figure 4.10 is due

to the non-balanced sizing of PMOS and NMOS transistors, which is a requirement to

optimize delays.

70

« 1 -

£ 0-8-

5 0.6-

O 0.4 -

B- 0.2 -

° 0 -
0.5 1 1.5 2

Interconnect Length (mm)

Figure 4.10. Crosstalk glitch peak voltage in l-of-4 Data Encoded DI Design (having beein optimized
for latency in NXE simulations)

Through the above simulation results, it is demonstrated that crosstalk glitches can lead

to malfunction in the l-of-4 data encoded delay insensitive asynchronous interfaces. The

next section demonstrates the same behaviour occurs in the conventional bundled data

asynchronous interface.

4.4.2. Crosstalk Glitch Analysis of Bundled Data Handshake Schemes

Another class of asynchronous interface often used in GALS systems for inter-module

communication is the bundled data protocol [8], [9]. This section examines the

functionality of those asynchronous designs and the possibilities of AQX during their

normal operation. Figure 4.11 shows the generalized block level structure for

asynchronous interfaces utilizing this protocol [45]. In [8], this concept is further

elaborated using state machines along with synthesis results obtained through the 3D tools

[65], [66]. The synthesized Boolean equations of the State Transition Graph (STG),

71

elaborated in [8], are given in Table 4.2. These equations are obtained by synthesizing the

STG through the 3D tools.

-Den-
D-Type output

port

rr
Ri1 Ai1

LA

•Rp-

-Apn

P-Type Input
Port

ME with Ring
Oscillator I

72
CD
o CD
<
CD

o 7}
0) O
Q) [T
_L ®
O O
-" 3T

<1> 0

•

rr
Ai2 Ri2

-Pen-

ME with Ring
Oscillator 2

Figure 4.11. Conventional bundled data protocol: the block diagram Simulation Results

Signal Transition Sequences Causing AQX in the Bundled Data Protocol

TABLE 4.2. SYNTHESIZED BOOLEAN EQUATIONS FOR THE STG OF THE PROTOCOL ELABORATED IN [8]

Doutput Port

Pinput port

Synthesized Boolean Equations
Ri = Ap + Den' Zl + Den Zl ' + Den' Ri Z0'

Rp = Den' Ai Ap' Z0' + Ai Ap' Z0' AT
Z0 = Den'Ap + Ai Z0

Zl = Den Ap + Den Zl + Ai'Zl
Ri = RpRi + Pen' Rp Ti

Ap= Ai
Ti = PenAi + Ai'Ti+Ri'Ti

From Figure 4.11, it is obvious that the most crosstalk-prone signals in this interface

are the longest parallel-running handshake signals Rp and Ap. On closer inspection of this

protocol [8] and the corresponding synthesized Boolean equations in Table 4.2, it is

observed that signal Rp undergoes a transition prior to Ap. Therefore, there is a possibility

of an AQX glitch occurrence in Ap. Large crosstalk glitch in Ap may lead to premature

72

termination of the handshake. It is also noticed that this glitch in Ap forces false latching

of the data in Ap, which is an added adverse effect due to crosstalk glitches.

Validation Using Transistor Level Simulation: To validate these analytical results and to

quantitatively characterize the crosstalk glitch effect, two sets of simulations were performed. Similar to the

case of DI designs, these sets are designated as NXE and WXE simulations. As part of the first set of

simulations with no crosstalk (i.e. NXE), the bundled data interface is optimized for a delay of,

approximately, 3 ns when the interconnect length between the two communicating module is 2 mm. The

delay is measured from the assertion of the Den signal to the negation of An, which indicates that the

request (Rp) has been sent and acknowledged (Ap), for complete protocol specification please see [8]. As is

usually done with GALS systems using asynchronous interfaces, the sender clock is paused throughout the

handshaking [7], [8], [9].

In order to do a fair comparison between NXE and WXE, all interconnect parasitic

capacitances are connected in both cases. However, in the NXE set of simulations, both

nodes of the Cc capacitors are connected with an equal magnitude capacitor to the ground.

By contrast, in the WXE simulation set, one Cc capacitor is connected between each pair

of handshake signals. The WXE simulation set uses the same transistor sizing as the

optimized NXE design.

Figure 4.12 shows the WXE transient circuit level simulation results for this protocol.

The simulated interconnect length between the two modules was varied from 0.5 mm to 3

mm. In Figure 4.12a, simulations performed for an interconnect length of 0.5 mm, it can

be seen that Ap glitches with the rise of Rp, but this glitch magnitude is not large enough to

cause a glitch to propagate in the circuit. However, in Figure 4.12b, when the interconnect

length is increased to 2 mm, the magnitude of the glitch is large enough to falsely negate

RP and consequently terminating the handshake scheme prematurely (indicated by the

negation of An). Arrows in Figure 4.12b indicate one such occurrence. Figure 4.13 shows

73

the rise in crosstalk glitch magnitude with the increase in interconnect length. Glitch

magnitude of VDD/2 (which is the threshold voltage in balanced static CMOS gates that

allows glitches to propagate) is reached for an interconnect length of 2 mm.

R p *

Dend

Z1

ZO

Time (nsec)

(a)

1 O-
.75-

Ap s
25-
0-

1.0

Rp5

Ai ' l l

1.0-
: .75

Derv»
25

Z l ' °

1 0

0.5 VDD (0.6V)

\ . Glitch in Ap caused _ .
1 \ false transition in Rp, [\
/ iin_tum Ai1 is negated / \

J T ^ l \ A V A
• \ \ \ \

I / \ I
\ __ n

Time (nsec)

(b)

Figure 4.12. Electrical simulation results for a circuit level implementation (TT) of the bundled data
protocol (a) interconnect length of 0.5 mm (b) interconnect length of 2 mm

74

Hence, the above examples demonstrate that conventional asynchronous circuits are

susceptible to glitches due to AQX under normal operating conditions. This quantitative

analysis also shows that, the identification of AQX effects requires detailed electrical

simulations, and these effects are otherwise hidden from logic designers.
m

V
o

lts

c

V
o

lt
a
g

e

700

650

600

550

500

450

400

350

300
0.5

S^
jy

/

TT
—•— FF
—:-—SS

1.5 2 2.5

Length in mm

Figure 4.13. Crosstalk glitch peak voltages in Bundled Data protocol

4.5 Summary and Discussions

In this chapter, it was shown that digital designs are getting vulnerable to crosstalk

glitches as technology feature size is shrinking. Quantitatively it is shown that, for a 1 mm

wire length, substantial increase, about 1.3 times, in crosstalk noise-impulse width and

magnitude is observed for the 90nm ST Microelectronics technology when compared to

the 180nm TSMC technology. The adverse contributions of these crosstalk glitches on

75

event-driven asynchronous handshake schemes, that are notably proposed as a solution to

the clock distribution and timing problems found in advanced SoCs, are studied in details.

It is demonstrated that the asynchronous handshake schemes may allow crosstalk glitches

to propagate into the circuits when influenced by AQX under normal operating conditions

in modern DSM technologies. Representative circuits of two widely used classes of

asynchronous handshake circuits are simulated under the 90nm STMicroelectronicds

CMOS technologies. It is shown that a crosstalk glitch can propagate in these interfaces

for reasonably short interconnect lengths: 1.5 mm for the l-of-4 DI protocol and 2 mm for

the bundled data protocol can cause glitches of magnitude VDD/2 or higher, which is

significant enough to trigger the subsequent gates to which this signal acts as an input.

Hence these simulation results prove that conventional asynchronous interfaces are, in

principle, not immune to intrinsic crosstalk glitches due to AQX.

It can be observed that, in order to understand the AQX glitch propagation in

asynchronous interfaces, detailed circuit level analysis is required. Asynchronous

protocols are designed at logic level (or further higher in the abstraction levels), and

hence often due emphases on the physical aspects are ignored. This is mainly because

there is no work that can translate these physical level behaviours into logic level.

Therefore, there is a requirement to develop a methodology that can predict the

vulnerable nodes/conditions/primary inputs that must be avoided at the logic abstraction

level. On the other hand, when they cannot be treated at logic abstraction level then this

information is relayed to the physical level, where any of the glitch quenching

mechanism can be utilized. In this regards, the next chapter proposes a novel modeling

76

approach to identify the possibilities of AQX glitches in asynchronous interfaces at logic

abstraction level.

77

Chapter 5: Crosstalk Glitch
Propagation: Generalized Notion,

Modeling, and Validation

Asynchronous interfaces are typically defined at the gate or RTL logic levels [7], [8],

[44], [67]. Hence, some of the physical level characteristics are ignored. Crosstalk glitch

propagation due to AQX, as demonstrated by electrical simulations in the previous

chapter, is one such physical-level phenomenon. Crosstalk glitch propagation due to

AQX may lead to system malfunctioning but, currently, there is no mechanism or analysis

method available (other than circuit level simulations) that may check such catastrophic

outcome of AQX at the logic abstraction level and warn the design engineer before

implementation of the asynchronous protocols. Therefore, there is a need to bridge this

gap between these higher abstraction level definitions of asynchronous interfaces and the

problems associated with their physical level implementation. As an attempt to bridge this

gap, in this chapter, a novel technique is proposed to model crosstalk glitch propagation

due to AQX at the logic abstraction level. This technique facilitates asserting

asynchronous interface robustness to crosstalk glitches. This model can accurately identify

the possibility of intrinsic crosstalk glitch propagation, at the logic level, in asynchronous

circuits that utilize conventional logic gates and Muller ' C elements. As most of the

78

asynchronous circuits consist of conventional elements [7] - [9], [19], therefore we may

say that our technique is applicable to most of the asynchronous interface schemes. Hence,

this analysis builds a framework that allows representing the possible behaviour of a logic

structure in the presence of a crosstalk glitch without resorting to circuit level simulations.

The proposed technique includes a novel technology-independent wire glitch element

(WGE) to represent glitches at the logic level. Utilizing AQX identification using the

WGE, glitch propagation (GP) sets are proposed for each logic element to describe the

conditions under which a crosstalk glitch may propagate. Leveraging these GP sets, a

complete set of conditions is modeled for crosstalk glitch propagation. These conditions

are applicable to the most widely applied asynchronous handshake schemes used for

interfacing MCD modules. This modeling can make the logic designer aware, at an earlier

design-flow stage, of the possible system conditions that lead to crosstalk glitch

propagation.

The next section elaborates the uniqueness of AQX glitches as compared to other

glitches addressed in the literature. The following section describes the proposed modeling

technique, while providing definitions of the new concepts along the way. Subsequent

section leverages these GP sets to formalize a comprehensive set of conditions for

modeling crosstalk glitch propagation in asynchronous handshake schemes. A design

perspective is discussed before an experimental validation of the model is demonstrated.

Back-annotated simulation results using Xinlinx Virtex II-Pro (XC2VP30-7F896) FPGA

is reported and, to finish off this chapter, a summary is provided.

79

5.1 Uniqueness of AQX glitches: A Motivation for Designing

a Logic Level Modeling Technique for Crosstalk Glitches

Conventional asynchronous circuits are designed to avoid data hazards and race

conditions [65], [66], but these design methods fail to address non-idealities introduced by

crosstalk glitches. Usually the crosstalk effects in circuits implemented in DSM

technologies were mitigated with the introduction of encoding in the data bus [68], [69],

[91], [92]. But such techniques falls short of addressing crosstalk glitch influence on

control signals, such as the handshake signals in asynchronous interfacing circuits, which

may induce even more serious consequences if not treated properly. Furthermore, in

modern DSM technologies, as stated earlier, considerable crosstalk glitches appear in

quiet lines due to transitions in aggressor lines (AQX). These crosstalk glitches may

propagate undesirably, and lead to eventual system failure, which cannot be alleviated by

using behavioural design method that checks for intrinsic transition faults in a sandwiched

wire [70]. Also, crosstalk glitches due to AQX are different, in nature, than settle-time

glitches, which appear in the combinational logic of the synchronous designs due to

mismatch in the delay paths. Thus, the context of crosstalk glitch propagation due to AQX

is different from all the other type of glitches, which are commonly known to the design

community. Therefore, a need arises to investigate the affect of crosstalk glitch

propagation due to AQX. An investigation is performed, in the following sections, which

leads to the conditions that model crosstalk glitch propagation due to AQX in

asynchronous handshake schemes. The benefit of this modeling technique is its

applicability at logic abstraction level, which is earlier in the design cycle than physical

80

abstraction level and hence helps the designer to come up with a robust interface that

avoids crosstalk glitch propagation within the interface.

5.2 Generalized Notion to the Glitch Propagation

Phenomenon

This section provides a generalized notion to the glitch propagation phenomenon in

asynchronous interfacing circuits. Using this notion, a designer can identify the possibility

of crosstalk glitches, which may propagate into the asynchronous circuits and make them

unreliable.

5.2.1. Preliminary Notations

Inspired by the D-algebra, proposed by the test community [73], [95], a new concept is

introduced in this section for modeling the effects of crosstalk glitches in asynchronous

handshake schemes. It helps in establishing criteria for crosstalk glitch propagation in

logic gates and ' C elements in the context of asynchronous handshaking schemes. As part

of the proposed framework, an essential notation is first defined as follows.

As it is shown in the preceding chapter, in the context of asynchronous handshake

schemes, the aggressor line (AL) and the victim line (VL) of interest are handshake

signals that are communication lines between two mutually asynchronous communicating

modules, which may be classified as sender and receiver modules. Hence, such lines (AL

81

and VL) are either input or output to these modules. The analysis performed in this section

only considers the modules where VL is an inbound signal. This is because the possibility

of glitch propagation is only associated with such modules (this is further explained in

definition 5). Thus, the input and output notation is used with respect to the modules to

which VL is an input. Note that, because asynchronous circuits, in general, consist of logic

elements or Muller ' C elements, AL and VL can always be studied as inputs or outputs to

various logic elements. The ' i n ' in A L i n (VLin) and the ' o u t ' in ALout (VLout),

respectively denote whether the AL (VL) signal is an inbound signal or an outbound

signal to the relevant asynchronous module.

Definition 1: T (T') is a signal transition from logic level 0 to 1 (1 to 0).

Lemma: T (T') is said to be deterministic if it is associated with ALout . This is because

the conditions for asserting the signal are known to the module under study.

Consequently, T (T') is called nondeterministic if it is associated to A L i n .

Definition 2: G (C) represents glitches in the VL due to transition T (T') in the AL.

Glitch on a particular VL, say A, due to T (T') in AL is represented as GA (GA')- VL

returns to its stable state after a bounded delay, Ato-

Note that, in the context of AQX, VL may glitch, G (G'), only if VL and AL are at the

same logic level before the transition T (T') in AL. This is explained further in definition

4.

Definition 3: DG (DC) represents composite logic values of the form v/vg, where v and

vg are values of the same signal in glitch-free and non glitch-free circuit, respectively.

The composite logic values that represent errors, 1/G' and 0/G, are denoted by the

symbols DG and DG', respectively. This notation was chosen by analogy with D-algebra;

82

where 1/0 and 0/1 are, respectively, represented as D and D'.

5.2.2. Wire Glitch Element

Definition 4: Wire Glitch Element (WGE) is a logic level representation of the AQX

phenomenon, as shown in Figure 5.1. The WGE translates a physical-level AQX-affected

signal into a representation that can be understood at the logic abstraction level. In Figure

5.1 the values on II and 12 are the values imposed on the AL and VL, respectively.

Provided there is no AQX phenomenon, then 01 and 02 keep the logic values that are

imposed on II and 12, respectively. On the other hand, if the wires are subject to AQX

then 01 and 02 represent the resulting propagated values on the wire due to the AQX

effect. The logic table in Figure 5.1 shows that, whenever II and 12 are at same initial

logic levels, T (T') in II causes DG' (DG) in 02, while Ol keeps the same value T (T'). It

is imperative for this modeling approach to define the criteria for WGE insertion.

11—f WG \ - 0 1 —

11 12 01 02
T O T DG'(0/G)
T' 0 T' 0
T 1 T 1
T 1 T DG(1/G')

Figure 5.1. Logic Level Representation of AQX, called Wire Glitch Element (WGE)

Criteria to insert a WGE: Any pair of intrinsic handshake signals that may utilize global

or intermediate wires and that, at the same time, experiences the following condition will

require WGE insertion:

83

According to the asynchronous protocol, at some stage during the handshake, one of the

two signals, which can potentially run parallel, does a transition T (T) while the other

signal remain stationary at logic level 0 (1.

As glitch magnitude is proportional to wire length, therefore consideration should be

given to the length of wires as well. From the simulation results for the technology that is

been used in the preceding chapter, the 90nm STMicroelectronics CMOS technology, it

can be safely concluded that, in an asynchronous interface, only the longest wires require

WGE insertion. As we move deeper into the DSM technologies, WGE insertions will be

required even for local length interconnects as explained earlier. Hence, the requirement of

evaluating more factors will arise; following is a list these factors:

1) Knowledge of the maximum length of wire for which a F04 gate can keep the

glitches within VDD/4. For example, in ITRS-2007[11], a new metric is introduced

to cope with the catastrophic crosstalk effects predicted in future technologies.

2) Identify the potentially weak drivers for non-transitioning wires.

3) Special consideration should be given to feedback signals because they are usually

driven by large drivers. Hence, glitches inflicted due to a feedback signals are

strong candidates for WGE insertion.

Leveraging WGE to identify AL and VL

In order to model AQX glitches at the logic abstraction level, it is necessary to identify

the AL and the VL. The following steps are proposed for identifying AL and VL in an

asynchronous interface. These steps leverage the WGE:

I) Identify the signals where WGE insertion is required (using the criteria for WGE

insertion)

84

II) Leverage the knowledge of the asynchronous protocol to find the sequence of

transitions in the handshaking schemes.

III) For each transition, check the WGE truth table shown in Figure 5.1 for possible

glitch occurrence; hence, identify AL and VL.

IV) If the asynchronous handshake scheme involves a RTZ signaling scheme, then

such a glitch may occur twice (positive and negative transition); therefore, reapply

this method for the second transition.

5.2.3. Glitch Propagation (GP) Sets

Definition 5: Glitch Propagation (GP) set is a set of conditions that allow a glitch, in

different logic gates and Muller ' C elements, to propagate. This work focuses on four

specific gate types: inverter, two-input AND and OR gates, and Muller ' C elements. It is

possible to express all circuits of interest using these gates. Also, the analysis method

used to derive the glitch propagation sets can easily be generalized to cover all other

gates of interest. As an example, the GP set for the AND gate that produces DG at the

output is {(1, DG), (DG, 1), (DG, DG)}. Figure 5.2 summarizes these conditions for the

four considered logic elements. The GP sets for the Muller ' C element have a timing

notation as well (t- and t+). The second GP set of the ' C element, {(0,DG), (DG, 0),

(DG, DG)} -> t-=l and t+=DG, indicates that, if the output of the ' C element is logic ' 1 '

before the occurrence of composite logic value DG in any or both the inputs of the ' C

element, then, due to the glitch, the output of the ' C element will have a composite logic

value of DG at the output after the gate propagation delay at time t+.

85

{DG1} -> DG {DG} -» DG'

t>
{(1, DG), (DG, 1), (DG, DG)} -» DG
{(1, DG'), (DG', 1), (DG', DG')} •» DG'

r>
Inverter Glitch Propagation Set

{(0, DG), (DG, 0), (DG, DG)} -> DG
{(0, DG'), (DG', 0), (DG', DG')} -» DG'

AND gate Glitch Propagation Set

{(0, DG), (DG, 0), (DG, DG)} • * f = 1 and t* = DG
{(1, DG'), (DG', 1), (DG', DG')} •» t" = 0 and t* =DG'

£> C Element \ _

OR gate Glitch Propagation Set Muller ' C Element Glitch Propagation Set

Figure 5.2. GP sets for the inverter, the AND and OR gates, and the Muller ' C

element

Note that each element of these GP sets always contains a V L i n (in the form of

DG or DG'), as shown in Figure 5.2. In the example of the GP set of the AND gate

discussed above, each element of the set has at least one input as DG, which corresponds

to the VLin, while the other input is either DG or the non-controlling value of the gate,

which is T for the AND gate. Therefore, the glitch-propagation analysis is considered

complete only if it contains all the modules to which VLin is one of the inputs. VL may

also be an output to the module, but it cannot contribute to glitch propagation in that

module. However, it may act as an input to the opposite module, so it must be analyzed

when the opposite module is investigated. A DG or DG' on the right hand side of GP sets

in Figure 5.2 shows that the output of the gate represents propagation of the glitch.

5.3 Crosstalk Glitch Propagation Modeling

This section utilizes the notions developed in the preceding section to model crosstalk

glitch propagation. It has been seen above that G (G') in VL is a consequence of T (T') in

86

AL, which may be A L i n or ALout to the module. Therefore, it can be concluded that

"for all GP sets, there exist some AL, such that AL is either A L i n or ALout causing G

(G') in VLin" . The statement in quotes can be written mathematically as the following

corollary:

Corollary: \/GP3AL\((AL_in AVL_in)\>(AL out/\VL in))

Explanation: Before elaborating on the above corollary, some background information is

provided here: Each asynchronous module may consist of many logic elements. ALou t

and V L i n can be associated with one or more logical elements inside the module. Note

that the only necessary input signal for the glitch to propagate in a logic element is

VLin, which is represented as DG or DG' in GP sets. ALin and ALout signals can

cause V L i n to G (G'), but may not necessarily be part of the same logic element that

propagates the glitch. The above corollary shows that glitch propagation is possible in

any of the following three cases:

1) ALout A VLin, i.e. the module has a V L i n that glitches, G or G', due to T or T' in

ALout. Based on the possibilities of inputs to the logic elements through which the glitch

may propagate, this case can be further sub-divided. It is evident from Definition 5 that

one of the two inputs of the glitch propagating logic element should be VLin . The other

input should have a sensitizing value in order to fulfill the condition of a GP set.

Physically such a signal can be: (a) an independent sensitizing signal, shown in Figure

5.3a (b) another handshaking signal which is affected by crosstalk, illustrated in Figure

5.3b or (c) a feedback signal which is derived from AL, shown in Figure 5.3c.

87

vTifr
LE

pVsynchronou%
Module /

(3)

>•'"""v:

«>l

3

In
p

1
WG \

Element£i=!{l
V > , -T^P »

c
0
a

I JS

LE

Asynchronous
Module

/
/

/ n-tput

"0
0
3.

ri
~ 3.2

Figure 5.3. Pictorial illustration of possible inputs to the glitch propagating Logic Element (LE) for

the case ALout A VLin .

2) AL_inAVL_in, i.e. the module has a V L i n that glitches (G or G') due to

transition (T or T") in ALin . Again based on the possibilities of inputs to the logic

element through which glitches may propagate, this case can also be further sub-divided

into the following two cases (following the same guidelines as adopted for case 1): a) GP

set inputs are V L i n and sensitizing signal, or b) the GP set consists of V L i n and A L i n

(or two VL_in signals). Figure 5.4 elaborates these cases pictorially.

idea
1

r

2

w<

.

3

c —I
_i

l Element J

N . . ^ J
VI . in "|

LE

ns
iti

za
tio

n

CD

S
ig

na
l

'

_

_

In
pu

t P
or

t

Z

yn
ch

ro
no

us

M
od

ul
e

to

O
utput Port

**

o

re a.

4
w
TO
<c
a
o

de
al

 I
np

ut
 1

< '

' WG
Eleme

Id
ea

l I
np

ut
 2

XAL i t

n t) „
•VL_in

^ • — * » •

In
pu

t
P

or
t

LE

Asynchronous
Module

*

*

B
c
0 '
£ /
"0 /
*
>

• * *•*
— CO
O a>

CB
a o

Figure 5.4. Pictorial illustration of the possible inputs to the glitch propagating Logic Element(s) (LE) for the

case AL in A VL in

3) (ALin A VLin) A (AL_out A VLJri). There are several possibilities associated with

this case. To simplify the analysis, it is treated as two different non-concurrent events.

This case is divided into two sub-cases as follows: a) if V L i n is the same physical line

for both events (this is a possibility when the same V L i n is subject to the glitch due to

two physically different ALs), and b) if two physically different VLin(s) are involved

(i.e. the asynchronous module receives two or more VL at two different time instances

due to physically different AL(s)). The GP sets for these sub-cases can be obtained by

utilizing the description of the preceding two cases (i.e. cases 1 and 2).

Modeling crosstalk glitch propagation at the logic abstraction level: In essence, a

designer begins the analysis by utilizing the proposed WGE to identify the AL and VL and

their directions (input or output to the module). Next, the designer has to identify the logic

element(s) to which the VL is an input (VLin). Benefiting from the different cases of the

corollary, which use the proposed GP sets, a designer can predict whether or not the glitch

may propagate in the circuit under study. Hence, this modeling technique enables the

designers to identify crosstalk glitch propagation at the logic abstraction level. This

modeling approach is broad, as it analyzes the constituents of asynchronous circuits (i.e.

the logic elements) and therefore can be applied to a broad range of asynchronous

handshake interfaces. These steps are summarized in the flowchart shown in Figure 5.5. .

In this figure, it is assumed that S is the total number of WGE required for the interface.

This number is obtained by applying the WGE insertion criteria to the given interface. The

algorithm shown in Figure 5.8 illustrates the conditions under which the AQX glitches

propagate to Primary Outputs (PO). The final outputs of this flowchart are the Primary

Inputs (PI) and/or initial conditions along with the identification of the WGE node where

89

the glitch enters the asynchronous interface. The following section utilizes this modeling

approach to obtain the conditions under which glitches may propagate in the example

asynchronous interface.

Dummy Variable initialization: s = 0; V = 0 |

I
Check the s pair of long wires in the system where

WGE is applicable

Identify AL and VL by utilizing the steps that are
stated in Definition 4 under the heading of
"Leveraging WGE to identify AL and VL"

z
Identify the logic elements of the module(s) in the

system to which VL is an input

Does the module >~«^No
jrresponds to Case 1, 2,^rJ

FYes
Apply GP sets to all the elements in the VL_in signal

path for all possible Pis and initial conditions

alitch due to AQX, whichis"-
denoted by DG(DG'), reached

the Primary Outputs (PO) 1W

The first logic element of this path is tagged as vulnerable
node 'Node(V)' (associate Node(V) to the respective PI);

s = s+1;V = V+1

No
ZS =

es
s = s+1

There are V logic elements that are vulnerable to glitch propagation

Figure 5.5. Flowchart of the Proposed Modeling Approach

90

5.4 Application of the Proposed Model

The proposed modeling scheme can be applied to any asynchronous interfacing scheme

to identify the possibility of glitch propagation at the logic abstraction level. In this

section, the usefulness of the proposed technique is illustrated by applying it on the same

bundled data protocol based interface circuits as described in Chapter 4. It is imperative

for establishing the validity of the proposed model that this analysis, using the proposed

modeling approach, gives the same conclusions as obtained using the circuit level

simulations which is elaborated in Section 4.4.2. This is demonstrated in the following

analysis.

Application to the Bundled Data Protocol: Table 4.2 provides the Boolean equations

describing the two ports of an interface implemented according to the bundled data

protocol. For convenience, these Boolean equations for the two outputs of the Doutput

port are reproduced here: RJI = Ap + Den'Zl + DenZl' + Den'RnZO' and Rp = Den'

Aj|Ap' ZO' + AM Ap'ZO'Zl'. It is shown in Section 4.4.2 that Ap is the only V L i n for the

Doutput port, which is the sender module output. In this section, the proposed modeling

technique is applied to this interface. Considering the first WGE insertion criterion, the

WGE is applicable on one set of parallel wires, which consists of signals Rp and Ap. Now,

the application of algorithm (Figure 5.5) identifies that Rp is the AL and Ap is the VL

signal (as explained in the preceding chapter). Ap is an input (i.e. VLin) to the logic gates

that generate both Primary Output (PO) signals. Therefore, a separate analysis is

conducted on both (R;i and Rp), the PO signals. This analysis, as the algorithm suggests, is

used to predict the circuit behaviour due to the crosstalk glitches (with Ap as VLin) at the

91

logic abstraction level for all the Pis and initial conditions. This is the same circuit that

was described in Section 4.4.2 through circuit level simulations.

The Rn signal;The hardware implementation of the Rn-generating circuit, along with the

WGE for the glitch-affected signal, Ap, is shown in Figure 5.6. From the truth table of the

WGE, the condition for Ap (VLin) to glitch due to the transition in Rp (ALout) can be

obtained. ALout and VLin make this circuit an example of case 1 of the corollary. The

GP set of the OR gate suggests that the glitch may propagate through the OR gate of

Figure 5.6 when the derived inputs (i.e. other than VL_in signal) act as sensitizing signals

while V L i n is subject to DG'. Hence, this example can be further sub-classified as case

1-A, where the GP set inputs are VLin and a sensitizing signal. For the next step in the

algorithm (application of the GP sets for all possible Pis), the GP sets for the OR gate (the

logic element to which VL is an input) is utilized. It is shown in Figure 5.2 that the set {(0,

DG'), (DG', 0), (DG', DG')} will cause a glitch (composite logic DG') that propagates to

the output of the OR gate. As the second part of this step, all the PI combinations are

investigated for which the two derived inputs (i.e. the inputs other than the VLin) of the

OR gate can become "00" (the non-controlling value for OR gate). These PI vectors are

found to be {Den, Zl, Z0} = {001, 110, 111}. These three vectors are obtained from

classic digital design technique. Hence, it is shown that this modeling approach provides

digital designers with the conditions that can lead to crosstalk glitch propagation.

Further inspection of the protocol under study [8] shows that, according to the Boolean

equations of the state machine (Table 4.2), only vector '110' is allowed to occur in this

protocol. The other elements are filtered out by the protocol itself. Hence, the proposed

modeling technique allows identifying at least one possible scenario in which a crosstalk

92

glitch may propagate to Rn. An experimental validation is performed for this case in

Section 5.5.

Figure 5.6. Hardware implementation for Rj, signal generation of the Doutput port, with conceptual

realization of WGE

The Rp Signal: Figure 5.7 shows the hardware implementation of the Rp signal (the

Boolean equation is shown in Table 4.2) along with the WGE. A similar analysis as

exercised for the Rn signal led us to identify Ap as V L i n and Rp as ALout. It is seen

from this figure that Ap (VLin) is an input to both AND gates (after passing through an

inverter). As the next step, it is observed from Figure 5.7 that this signal-generating circuit

is an example of case 1-A of the corollary (where one of the inputs to the logic element is

V L i n and the other is a sensitizing signal). The following step requires application of the

GP sets for all the Pis. The GP sets for the AND gates (Figure 5.2) shows us that, when

Den, Ail, ZO, Zl= {1100, 0100}, then they act as sensitizing signals for propagating the

composite value of DG'. Here, it is worth mentioning that the glitch occurrence that is

shown in Figure 4.12b is for input vector (0100), which is identical to one of the vectors

93

predicted by the proposed modeling. Hence, it is demonstrated through the above analysis

that the proposed model has correctly predicted the outcome of the AQX affected bundled

data protocol at the logic abstraction level. An experimental validation is provided in the

next section. In order to see the practicality of this result it is observed that, in the protocol

provided in [8], both these conditions are possible.

Rp (AL_out)

Figure 5.7. Implementation for Rp signal generation with WGE

Application to the DI Data Encoded Protocol: Knowledge of the WGE insertion criteria

leads the designer to quantify the number of WGE elements. To provide an example with

the DI data encoded protocol, we use a simplified version of the interface shown in Figure

4.8a. This simplified interface is shown in Figure 5.8. As it can be seen, there are two

WGEs in this figure, one for each scenario depicted in Figure 4.8b. As a first step toward

implementing our modeling approach, we need to know the AL and VL of the design.

Here, the knowledge of the protocol plays a major role in understanding the nature of the

aggressor and victim lines. Through the steps illustrated for "leveraging WGE to identify

AL and VL", which is defined in the preceding section under Definition 4, it is observed

94

that both nx2 and nx3 may act as both the AL and VL at different stages of the protocol.

Furthermore, the nx line can also act as an AL, which may inflict a glitch on the VL (nx3).

In this protocol, VL(s), under all the conditions, are inputs to the C elements at the

receiving end. Hence, this interface can be treated as an example of case 3, where the

WGE1 depicts the case when both AL and VL are inputs to the receiver module. Whereas,

WGE2 shows that the AL is an output to the receiver module and the VL is an input to the

receiver module. Therefore, WGE1 can be considered, by utilizing the information of case

2-A and glitch propagation at WGE2, a case 1-A. Hence, both cases may contribute to the

crosstalk glitch propagation and should be handled accordingly. Following the steps of the

algorithm for each WGE, the GP sets are applied to the glitching output of both WGEs

separately.

WGE1: According the protocol, when idle, out[0-3] are at logic '0' and nx[0-3] are at

logic ' 1'. Therefore, the GP set for the inverted Muller ' C element that applies to this case

is {(0, DG), (DG, 0), (DG, DG)} -» t" = 0 and t+ = DG'. Hence, if Ack = 0, this glitch may

propagate.

WGE2: Again according to the protocol, it is known that nx rises only when one of the

out[0-3] signal rises. The rise of out[0-3] is possible only when either nx2 or nx3 is at

logic '0 ' . Hence, we can say that the glitch propagation is possible when one of the

following two combinations of initial conditions according to the GP sets happen:

(Out3=0 and ack=l) or (out3 =1 and ack=0).

The above examples show that this modeling approach is flexible and can predict the

conditions of glitch propagation on different asynchronous interface circuits. As our

modeling approach is dependent upon the GP sets that identify glitch propagation through

95

logic elements that are the constituent elements of the asynchronous interfaces, therefore,

it is broadly applicable to various asynchronous designs.

In2

In3

nx2

"5 62

nma V
nva <h

^ >
DuJ2

^ >
Out3

0
Ack

nx

Figure 5.8. Hardware Implementation of the DI Data Encoded Interface with Conceptual WGEs

5.5 Experimental Validation

This section discusses the result of the experiments, which were performed to validate

the proposed modeling method on the bundled data asynchronous interface. Hardware

implementations of the Rn and Rp signal generating circuit, along with WGE for the

glitch-affected signal, Ap, are shown in Figure 5.6 and Figure 5.7, respectively.

Glitches coming out of conceptual WGE in Figure 5.6 and Figure 5.7 are introduced

utilizing the circuit shown in Figure 5.9 and synthesized with the Xilinx Synthesis Tool

(XST) using the 'keep' attribute. The simulation results given in Figure 5.10 and Figure

5.11 show the back-annotated simulation results for an FPGA implementation, using a

96

Xilinx Virtex II-Pro (XC2VP30-7FF896), of the hardware design shown in Figure 5.6 and

Figure 5.7, respectively.

rO£H> ODD # of_
Inverters")Glitch

Output

Figure 5.9. Circuit used for Simulating WGE behaviour at the logic level

FPGA implementation of Ril signal: Figure 5.10 shows back-annotated simulation

results for the Rn signal generating hardware shown in Figure 5.6. This simulation is

performed for both conditions, with and without the glitches for the same input vector, in

order to show the usefulness of the proposed model. The left circle in Figure 5.10 shows

that, if there is no glitch, then RJI (represented as ri in Figure 5.10) is not asserted for the

input vector Den, Z l , Z0 = "110". The right circle shows the converse case, that is, when

the circuit is subject to glitch (Ap is VL_in) for the same input vector, then this glitch is

propagated to the primary output Rn. The Count value shows the number of transitions in

Rn. This result is in agreement with the analysis provided in the preceding section.

These implementations are carried out at the hardware as well, utilizing an FPGA board

provided by the Xilinx University Program. For the input vector {"110"}, countval

(measuring the number of assertions in Rn) is observed for both, with and without glitch,

scenarios. The results were found to be in compliance with the simulation results.

FPGA implementation of Rp signal: Figure 5.11 shows the back-annotated simulation

results for the FPGA implementation of the circuit shown in Figure 5.7. The right hand

side of Figure 5.11 shows that, when {Den, An, Z0, Zl}= {(0100)}, a glitch in the Ap

97

signal (VLin) (labeled as glitchoutput) is propagated to Rp thus forcing it to do a false

transition from logic 1 to 0. This figure shows that the results that were obtained through

the transistor level simulation (and shown in Figure 4.12b) are reproduced here at the logic

abstraction level, using the proposed modeling approach. Similarly, the transitions on the

left side of Figure 5.11 illustrates that Rp signal does a false transition for the case {Den,

A,,,Z0,Z1} = {(1100)} as well.

8000000
L. . i t _ j .

No Glitch therefore no false transition Glitch lea to false transition in ri
in ri signal; for DenZIZO = {110} signal; for DenZIZO = {110}

Figure 5.10. Virtex H-Pro back-annotated simulation results of the design shown in Figure 5.6

40000 50000 60000
,i i , F L _ l 1_1 I I I j L j — l ^ L y J L—l * ' * » " i B t 1 t t F

70000

glitch_ouipui

rp

ail

den

zO

z l

—"j0~^^^t ^

5=
%. x ± 55

Rp has false transition due to glitch in
glitchoutput(Ap)

Figure 5.11. Virtex II-Pro back-annotated simulation results of the design shown in Figure 5.7

98

5.6 Summary and Discussions

/

In order to understand AQX effects at a higher abstraction level, a glitch propagation

modeling technique is proposed in this chapter. This model identifies the possibility of

intrinsic crosstalk glitch propagation in asynchronous handshake interfaces at the logic

abstraction level. This modeling technique is applied to one of the asynchronous protocols

under study to predict the glitch propagation possibility. This approach successfully

predicted the conditions under which this interface may propagate glitches. The results

obtained through the proposed modeling technique were experimentally validated with an

FPGA implementation on Xilinx Virtex II-Pro XC2VP30-7FF896. It is seen that the same

glitch behaviour is obtained at the logic abstraction level, through the proposed modeling

technique, as was obtained at the transistor level simulations. This is a first work on a

framework that allows representing possible behaviour of a logic structure, for

asynchronous handshake scheme, in the presence of crosstalk glitch without the help of

circuit level simulations. This framework can be used as a step toward formalizing the

asynchronous circuit behaviour under crosstalk glitches. Furthermore, it is utilized in

proposing solutions to stop such glitches from propagating to the primary output, which is

the subject of next chapter.

99

Chapter 6: Crosstalk Glitch Quenching
Solution

In the previous chapter, a crosstalk glitch modeling technique is proposed that provides

a framework, which allows representing the possible behaviour of a logic structure for

asynchronous handshake schemes in the presence of crosstalk glitches without the help of

circuit level simulations. This chapter leverages the knowledge of this crosstalk glitch

modeling in asynchronous handshake schemes, and proposes a novel solution called

crosstalk glitch gating, to design crosstalk glitch tolerant asynchronous design schemes.

The crosstalk glitch gating proposed in this chapter provides a pool of design

modifications, which can be applied, as the need arises, for different classes of

asynchronous circuits as characterized in the previous chapter that are, subject to crosstalk

glitches.

Conventional solutions for crosstalk glitch elimination are usually implemented at the

detailed layout stage of the design flow [74], [68], [69]. In this chapter, a complete design

methodology is proposed to implement crosstalk glitch gating in asynchronous handshake

schemes. This methodology can be introduced as early as at the logic- synthesis stage of

the design flow. This design methodology may also require some iterations at the back-

100

annotated STA (Static Timing Analysis) stage, for globally routed designs, which is still at

an earlier stage compared to the detailed routing stage.

The proposed methodology is implemented on representative circuits of two broad

classes of asynchronous handshake schemes: the bundled data protocol based schemes [8],

[19], [45] and the data encoded delay insensitive schemes [45], [55]. It is shown that, for

the same interconnect length, the proposed method leads to designs that efficiently block

the crosstalk glitch propagation.

In the next section, a pool of crosstalk glitch gating solutions is proposed for each case

of asynchronous handshake schemes as characterized in the previous chapter. The

subsequent section describes the method to implement the proposed crosstalk glitch gating

solutions. Section 6.3 demonstrates the implementation of this methodology on two

representative circuits of widely used asynchronous handshake schemes. Simulation

results validate the design modifications.

6.1 Crosstalk glitch Gating: Crosstalk glitch Quenching

Solution

Crosstalk glitch gating is a technique in which glitch propagation is quenched by

introducing control signals. These control signals are generated using some determinism

or pseudo-determinism (described later on in this section) on AL signals. This section

introduces the crosstalk glitch gating technique proposed to prevent crosstalk glitch

propagation in all the cases of the corollaries in the preceding chapter.

101

6.1.1 Casel-A&l-B

It is assumed in the previous chapter that all the logic elements are reduced to two input

elements. Here, we are keeping the same assumptions. Here it is assumed that, Y

represents an input other than VLin to the logic elements, 'Cntval ' defines the control

value of the gate [73], [95], and ® is a generalized symbol for any logic operator. From

the GP sets shown in Figure 5.2 it can be seen that if the value of Y does not have a

'Cntval ' then, according to the GP sets, the glitches to the input propagate to the output:

Provided glitches reach the threshold limit, which is ascertain by the criteria of WGE

insertion. This glitch propagation condition can be defined as follows: if Y ^ Cntval then,

from the GP sets, it can be concluded that Y is a sensitizing signal. Thus, it allows the

glitches on V L i n to propagate. Consequently, Y ® DG' (DG) produces either DG (DC)

or Y®DG' (DG) produces DG' (DG) depending on the logic gate behaviour. Following

paragraphs elaborate on a crosstalk glitch gating technique to block glitches for this case.

To Block G (C) for only one type of glitch event, DG or DG'

Because, in this case, AL_out is deterministic (Lemma in Chapter 4), therefore, Ato can

be estimated using timing libraries. In order to block glitch propagation, it is required to

introduce control signals for the Ato duration. Different gate implementations are required

for each GP set. Below, an example GP set for the AND gate is analyzed. A similar

analysis can be performed for the other GP sets shown in Figure 5.2.

Let us consider the GP set of the AND gate: [{(1, DG), (DG, 1), (DG, DG)} ^ DG]. In

such a case, G' is propagated instead of logic ' 1 ' for the Ate duration. This problem is

resolved by an additional logic element that can keep the logic ' 1' at the output of the

102

AND gate for Ate duration through a crosstalk glitch gate control signal. The

implementation of this crosstalk glitch gating solution is shown in Figure 6.1b. Figure 6

summarizes the crosstalk glitch gating solutions for the rest of the two input GP sets

shown in Figure 5.2.

CorTT ' '

utput = Ofor AtG

AAB otherwise

00

Output = 1 for AtG

AAB otherwise

(b)

putpu t = 1 for AtG

AvB otherwise

Com

AJ

(c)

Con

Output = 0 for Ato
A v B otherwise

•Q-^i^S 0_Cothe
forAtG

otherwise

(e)
H

(d)
Con

c
Element D_Ou!

0

Output = Ofor Ate

C otherwise

(0

Figure 6.1. Glitch gating solution for: (a) and (b) are the solutions for GP sets ofthe AND gate
with outputs DG' and DG, respectively, (c) and (d) are the solutions for the GP sets of the OR

gate with outputs DG and DG', respectively, (e) and (f) are the solutions for GP sets of the
Muller ' C element with outputs DG and DG' at t+2, respectively.

To Block G (C) for both types of glitch event

Figure 6.2a, and b describe the crosstalk glitch gating solutions for the case when a

Boolean logic equation within an asynchronous module is subject to both types of glitch

events, DG and DG' at different time instances. The order of occurrence is irrelevant in

this case, as long as the crosstalk glitch gate controlling signals, 'Con', are raised properly

for their respective logic elements. The two glitch durations are represented as Atoi and

Atc2 in the figure. Here, Atci is the glitch duration when VL in experiences G'. Similarly

2 The t* notation is associated to the asynchronous logic, see [6 , chapter 10] for details.

103

Ato2 is the glitch duration when VLin experiences G. Figure 6.2a illustrates that the

combination of Figure 6.1a and b results in a circuit that can block both types of glitch

propagation through AND gate. A similar solution is introduced for an OR gate by

combining Figure 6.1c and d (not shown in Figure 6.2).

Logic "V for the duration of Ate,

A .

B '

, _ I T — < u Output = 1 for the duration of
AtG and AAB otherwise

Logic '0' for A fe

'Con' for the duration of Ata

(a)

A

B,
C Element BntV

Output of 'C Element
= 0 C

IN

'Con' for the duration of fits!
> W

Select Bit

Con OR Con AND Output

0 0 0

0 l 0

(b) (c)

Prohibited
l

Figure 6.2. The solutions if both the GP sets, with outputs DG and DG', exist for the same logic
element (a) shows the solution for AND gate, (b) shows the solution of Muller ' C element (c)

shows the truth table for the asserting the select bit for the Multiplexer.

Figure 6.2b shows a circuit that rectifies such a glitch condition in a Muller ' C

element. A multiplexer is introduced in this circuit, in addition to combining the solutions

described in Figure 6.1e and f, to filter the glitch value. The select bit is dependent on the

'Con' values for the OR and AND gates. When both the ConOR and ConAND are idle,

(i.e. they are respectively at logic level '0 ' and T) , then the multiplexer may choose any

104

input. For such a situation, the implementation shown in Figure 6.2b and c chooses bit '0 ' .

Note that it is prohibited to have both the 'Con' bits asserted concurrently.

Case 1-C:

As explained in Chapter 5, this case contains a feed back signal derived from AL. The

generalized hardware implementation is shown in Figure 5.3c.

To Block such Glitches: If the 'GP sets' sensitization, which may be for any type of

logic element, depends upon the AL feedback signal, then, the return path of the AL signal

should be delayed by a At<3 duration in order to curb the glitch propagation. E.g., it is

illustrated in Figure 6.3 that one of the inputs of the OR gate is V L i n signal and another

input is derived from ALout , which is feedback to the same asynchronous module. This

derived signal acts as a sensitization signal to the OR gate, as shown in Fig 6.3. In this

case, by delaying the sensitization signal, which is dependent on ALout, for Ate duration,

the glitch propagation can be blocked. An example of such a case is discussed in length

later on in this chapter in Section 6.3.2.

VI
Glitch Propagation is

avoided by adding the 5>
AL (Feed back signal) Dependent on AL

Sensitization*-^ D e ! a y a t A L

Figure 6.3. The solution for the case when ALout is fed back to a logic element in the module. This
example has OR gate as logic element

105

6.1.2 Insertion of Crosstalk glitch Gate Control Signal6, 'Con', during
AtG (AtGi and AtG2)

This section discusses the generation and insertion of the crosstalk glitch gate-

controlling signal during Atoi and Ato2- This phenomenon can be divided into two sub­

cases one for the NRZ (Non-Return-to-Zero) and another for RTZ (Return-to-Zero)

signalling schemes.

NRZ Signalling Scheme: This scheme produces fewer transitions than RTZ in a data

transaction; hence, it is more robust in a crosstalk glitch sensitive system. As shown in

Figure 6.4, each data transaction starts with a transition in the 'En' signal, denoted by ' 1 s t

(2nd) Data ready' in Fi gure 6.4, which in turn asserts the handshake signals. Hence,

ALout is always dependent on the 'En' signal, which makes it deterministic. Here, it is

appropriate to mention that 'En' cannot be dependent on a VL transition because G (G')

in VL is a reactionary process to T (T') in AL. Leveraging the fact that crosstalk glitches

have bounded delay, the crosstalk glitch gate controlling signal, 'Con', can be generated

with the transition in the 'En' signal and should remain asserted for the duration shown as

'Cnt. Duration' in Figure 6.4 to stop the propagating glitch in the V L i n signal.

cos
£"5

Cnt. Durat ion

Figure 6.4 NRZ Signaling Scheme

106

Cnt. Dura t ion

Figure 6.5 RTZ Signaling Scheme

RTZ Signalling Scheme: This scheme is more vulnerable to crosstalk glitch effects

because both AL and VL perform two transitions in a data transaction. Figure 6.5 depicts

this scenario; it is worth mentioning that Figure 6.5 represents one data transaction and

Figure 6.4 shows two data transactions. This is due to difference in signalling scheme.

There are at least two scenarios of glitch propagation for each data transaction in RTZ

signalling scheme shown in Figure 6.5. One scenario in such designs (the one at the

beginning of the protocol) is identical to what is discussed in NRZ scheme, and is dealt

with in the same way. In the second scenario (when ALout performs T') it is highly

likely that this transition (T' in Figure 6.5) in the ALout signal is directly dependent on

the VL_in signal. In such cases, it is required to introduce some dummy signal, which can

reduce the dependence of the ALout signal on the VL_in signal and helps in generating

the corresponding 'Con' signal. The insertion of additional signals also requires

reformulation of the logic equations of the state machine. Section 6.3.1 elaborates one

such case with a detailed analysis.

107

6.1.3 Case 2-A

Let a system follow case 2-A (as defined in Chapter 5), and comply with the RTZ

signalling scheme. The RTZ scheme is chosen because, in the previous section, it is

observed that this scheme is more cumbersome to deal with, in terms of crosstalk issues,

compared to single transition NRZ scheme. Due to the un-deterministic nature of A L i n

(refer to Lemma), the crosstalk glitch gating technique cannot directly be implemented. To

apply this crosstalk glitch gating technique, some sort form of determinism is required for

the ALin signal. To obtain this determinism, signals may be modified so that A L i n is

produced in response to an output signal from the asynchronous module. Such modified

A L i n signals are called as pseudo-deterministic signals. The following theorem is

proposed to make the A L i n signal pseudo-deterministic.

Theorem

In the case when the asynchronous module is subject to AL_in A VL_in, whereas the

inputs to the glitch propagating logic gate are: VL_in and a sensitization signal (case 2-A),

H, then the theorem states: If both AL and VL are function of the same sensitized signal

(say H) then the glitch propagation can be temporally shifted by changing the initial logic

level of one of the signal lines.

Assumptions: Let 'H' be the common sensitizing signal. The initial stable state of the

system assumes that (1) ALin and the potential VLin are at the same logic level, and

(2) H is not a controlling value 'Cntval ' .

Proof: According to the Lemma in Chapter 5, ALin is non-deterministic. Since in this

case AL and VL are inputs to the module, it is also possible that the same line may act as

both at different time instances. Therefore, the VL notation is treated differently in this

108

analysis and called Potential VL or PVL. The previously stated assumptions can be

defined as follows:

(1) A L I = PVL I (i.e. AL and PVL are initially at the same logic level, ' 1 ' or '0')

(2) H + Cntval

Due to the RTZ scheme, ALin and PVLin are subject to two transitions in a single

data transaction. Let AL_I(T) represent the transition, T, and similarly ALI(T') represent

the transition, T'. Similar definition leads to PVLI(T) and PVLI(T') . If one of the input

signals to the two different (two-input) logic elements in a given asynchronous module is

PVLin or A L i n and the other one is the common sensitizing signal 'H', then, to avoid

crosstalk glitches due to coupling capacitance, the following conditions are specified in

asynchronous protocols:

AL_1(T) A PVLI(T) = False; i.e. these transitions are mutually exclusive (1) and

either

(AL_I(T) ® H) produces T or T at the output of the logic element (because, as stated

earlier, H 4- Cntval)

or (PVLI(T) ® H) produces T or T' at the output of the other logic element (here it is

noticed that, for this case, the glitch may propagate only if PVL glitches toward G) (II).

But, it is also possible that AL_I(T) leads to glitches, which can be expressed as:

GPVLJ —»• AL_I(T) (i.e. GPVLJ is true only when AL_1(T) is true, the arrows in this

analysis follows the discrete mathematics' definition)

this implies that: DG' —• GPVLJ

which allows the glitch to propagate, as shown below;

(AL_I(T) ® H) produces T or T" and, concurrently,

109

DG' ® H produces DG or DG' (following the relevant GP set)

A similar analysis proves that glitches may propagate during the second transition, T',

as well, thus, we conclude that, if AL_I and PVL_I are having same initial logic level,

then crosstalk glitch may propagate, under the above explained scenario.

Now, as stated in the theorem, if the first assumption is changed as follows:

AL_I(AL_I') = P V L J ' (PVLI) (i.e. initially A L i n is at logic ' 1 ' ('0') and PVLin is

at logic 'O'(' l ')) ,

then, the two conditions of the protocol change as follows:

AL_I(T) A PVLI(T') = False (i.e. the mutually exclusive transitions are opposite in

polarity) a

And

either (ALJ(T) ® H) produces T or T' at the output of the logic element

or (PVLI(T') ® H) produces T or T' at the output of the other logic element (here it is

noticed that, for this case, a glitch may propagate only if PVL glitches toward G')-

A similar analysis that has been performed for the former case, leads to the following:

GPVL_r does not occur when AL_I(T); this is because PVL in is initially at the same logic

level where AL is transiting toward. But G'PVL r may occur when AL is making T'

transition, as here the two signals are initially at the same logic value, this is

mathematically written as follows,

G'PVLJ —• ALI(T ') , which implies that DG —» GPVL r

This allows the glitch to propagate, as shown below;

DG ® H produces DG or DG'

110

As the glitch is propagating at ALI(T') instead of AL_I(T), therefore, it can be said

that the glitch has been temporally shifted with the change in the logic levels because it

happens toward the terminating end of the handshake scheme.

Crosstalk glitch Gating Solution to Case 2-A

Though this theorem cannot directly solve the problem of glitch propagation, it helps in

resolving it by making AL pseudo-deterministic. This theorem shows that the first

transition of AL (i.e., AL_I(T)) becomes glitch free but this change makes the glitch

temporally shifted to the later transition of the AL, (i.e. ALJ(T')), where ALI(T') is

generated in response to an output signal (usually an acknowledge signal). Thence, it

makes the A L i n signal pseudo-deterministic, and allows a gate control signal to be

generated to avoid any potential glitch propagation through the sensitizing signals.

Let us now describe the usefulness of this theorem in the presence of sensitizing signal

'H'. Considering the assumption of the theorem, crosstalk glitch gating is applied as such

that it negates signal H as soon as the AL_I(T) transition is over. This negation should

start before sending the acknowledge signal, if this acknowledge is part of the protocol. H

should remain negated, through crosstalk glitch gating, at least up until Ate duration after

AL_I(T'). Therefore, it is made sure that the signal H does not have a sensitizing value

during the transition on ALl(T ') , which causes the potential VL (PVL) to G', denoted as

G'PVLJ- Because, H is not at a sensitizing value during Ate with the application of this

theorem, therefore DG® H' blocks the glitch propagation. An example of such a case is

discussed in section 6.3.1.

I l l

6.1.4 Case2-B

In the context of asynchronous handshaking schemes, only data encoded DI systems

may have A L i n and V L i n (input) to a particular module. Therefore, it is known to the

designer whether the data encoding technique permits the specific AL and VL to make

concurrent transitions. By exploiting this knowledge, the designer may seek the solution to

such a case using data error detection techniques [67]. Such correction techniques are not

explained in this text as it requires a separate analysis that is beyond the scope of this

study.

6.1.5 Case 3: (AL_in A VL_in) A (ALout AVL_in)

Case 3 is basically a union of case 1 and case 2. Therefore, it is resolved by treating

each case separately. The corresponding analysis, as explained in preceding subsections, is

applied to each sub-case. The order in which these analyses should be used depends on the

order of occurrence of these problems. In section 6.3.2, an example of such a case is

explained.

6.2 A Method to Introduce Crosstalk Glitch Gating in

Asynchronous Handshake Schemes

This section describes the proposed method to introduce crosstalk glitch gating

solutions for making 'asynchronous handshake schemes' crosstalk glitch tolerant. This

112

method utilizes the theory developed in the preceding sections to curb the triggering of

false events caused by glitch due to AQX. This solution can be introduced early in the

design cycle, i.e. at back-annotated gate-level synthesis stage as shown in Figure 6.6, thus,

providing faster time-to-market. The steps of the proposed method are defined as follows:

Step 1. Identification of wires that run the longest distance in parallel: these are the signals

that are most sensitive to crosstalk glitches. This identification should be made through

understanding the asynchronous protocol rather than waiting for detailed layout of the

system. Usually, these are handshaking signals that connect the two interfacing modules.

Step 2. Utilize knowledge of the protocol and the definitions of WGE and DG(DG'),

introduced in the preceding chapter, to distinguish between AL and VL. Conclude about

the direction of AL, i.e. whether it is an inbound signal or an outbound signal (ALin or

ALout), which is a requirement in the Lemma (Chapter 5) to find out the determinism of

AL signal. This step is implementable at an earlier stage of design flow, because it

requires only the understanding of the behavioural description of the asynchronous

protocol.

Step 3. Leverage the GP sets to find out the possibility of crosstalk glitch propagation in

most glitch affected signals, which are obtained in step 1. This step requires the

knowledge of gate-level logic synthesis of asynchronous state machines.

Step 4. Depending on the direction of AL, found in step 2, and its susceptibility to

propagate crosstalk glitches, observed in step 3, conclude which of the discussed three

cases corresponds to the asynchronous system under study. Implement the pertinent

crosstalk glitch gating solutions to the corresponding cases as explained in the preceding

section.

113

Step 5. Perform the circuit adjustments required to accommodate the changes needed for

implementing the solution(s) suggested in step 4. This step may require iterations as it

initially introduce the AQX blocking circuit based on library cell and wire delay model to

ensure that the gating covers the required time interval (AtGi or Ato2). The need to

readjust the proposed circuit implementation based on back-annotated wire and gate

delay values (obtained after global routing) may arise.

A r c h i t e c t u r a l S p e c i f i c a t i o n s
a n d R T L C o d i n g

I
R T L S i m u l a t i o n s

Log i c i s y n t n e s i s .
O p t i m i z a t i o n a n d S c a n

Insertion

A d j u s t m e n t o n t h e
' C o n ' s i g n a l d u r a t i o n

b a s e d o n b a c k
a n n o t a t e d

i n f o r m a t i o n a b o u t
i n t e r c o n n e c t a n d g a t e

d e l a y s
^

Insertion of AQX blocking
circuits a r d Con ' Sicjnal,

Based on pre layout cell l ibrary
and wire models

I
S T A (p r e - l a y o u t o r b a c k

a n n o t a t e d)

G l o b a l R o u t i n g a n d P o s t
G l o b a l R o u t e S T A

I
R e s t o f t h e B a c k E n d

S y n t h e s i s F l o w

Figure 6.6 Graphical depiction of when to insert the AQX blocking circuit in the conventional
design flow

114

6.3 Application of the Proposed Method on Representative

Asynchronous Handshake Schemes of Two Different

Classes

This section applies the proposed method to the representative circuits of two popular

classes of asynchronous handshake scheme: bundled data and delay insensitive.

6.3.1 The Bundled Data Asynchronous Interface

This section applies the proposed method to the conventional bundled data protocol

based design [8], which is introduced in Chapter 4 and further elaborated in Figure 6.7, to

obtain crosstalk glitch tolerant asynchronous interface. The steps of the method yield the

following results:

Step 1: In Figure 4.11, Ap and Rp are identified as the most crosstalk glitch sensitive

signals. This is because these two handshaking signals run in parallel between the two

communicating blocks, which is the longest distance a signal traverses in such an

interface. Step 2: It is found, by inspecting the expected waveform of the protocol, shown

in Figure 6.7, that T (T') in Rp precedes T (T') in Ap. Hence, it is concluded that Rp is an

AL and Ap is a VL. The state transition diagram shown in Figure 6.7 indicates that Ap is

an input to the sender module, i.e. VLin, and Rp is an output of the sender module, i.e.

ALout. Only the sender module is analyzed for AQX glitch propagation, as the receiver

module does not have an inbound VL signal or VLin.

115

TABLE 6. 1. Equations for Asynchronous State Machine for Conventional and proposed Bundled Data
Protocol

Asynchronous State
Machine in

Conventional Design

Asynchronous State
Machine in Proposed

Design

D output Port:
Ri = Ap + Den' Zl + Den Z l ' + Den' Ri ZO'

Rp = Den' Ai Ap' ZO' + Ai Ap' ZO' A l '
ZO = Den'Ap + Ai ZO

Zl = Den Ap + Den Zl + Ai'Zl
P input port:

Ri = RpRi + Pen' Rp Ti Ap = Ai
Ti = PenAi + Ai'Ti+Ri'Ti (Ti is not affected by AQX, therefore not discussed

further)

Modified D output Port:
Ri = Ap + Den'Rct + DenRct'

Rp = Den'AiRc2t + DenAiRct'
Dmy = DenAp + Ap'Dmy + Rp'Dmy

Delay State Machine:
/ t o = Dmy Ret + Den Ret + Ai'Ret + Dmy Den Ai ZO'

Z0= Ai 'Rct+ AiZ0+ RctZO

Step 3: Signal Ap, which is the VL in this system, is an input to all the four Boolean

equations of the state machine shown in the first row of Table 6.1. Utilizing the GP sets, it

is seen that all these equations may potentially allow glitch propagation. To elaborate, the

conditions for propagation of G in Ap in all the different signals are illustrated. ZO

propagate G in Ap, when Den = logic '0 ' , this may happen during state transition 6 to 7 (in

the state diagram of Figure 6.7). Zl propagates crosstalk glitches due to G in Ap when Den

= logic ' 1 ' , this may happen during the state transition from 1 to 2 in the state transition

diagram (Figure 6.7). Rp may propagate crosstalk glitches due to G in Ap when Den, An,

ZO and Zl = {0,1,0,0}. Likewise, Rn may propagate crosstalk glitches due to G in Ap

when Den, Zl, ZO = {000, 001, 110, 111}. Luckily, this protocol filters all the possible

glitch-propagating vectors for R;i except for 110 (where Zl may become a subject to

glitch propagation due to G in Ap, which is further explained in the next paragraph). A

116

similar analysis can be done to find out vectors for propagating crosstalk glitches due to

G' in An.

(p } - R p + Pen+/Ri2+-^TVAi2+/Ap+Ti+^2^

\\2-IAp- Rp-/Ri2-

($\ 'P Input Port' State (J \
^Y Transition Diagram y^

?p-/Ri2- Ai2-/Ap-

HM+Ai2+ / Ap+ Ti—(T\«Pen- Rp+/Ri2+-/T)

Ah-/ Q 2>

/ * N 'D Output Port' State \£
v*_y Transition Diagram CAJ

< § + + Ai1-/

0-t-0-f-©-!-<i>

Figure 6.7 State Trasition Graph (aboveleft) and Expected waveform (right(below) for the
Conventional Bundled Data Protocol

117

file:////2-IAp-

To find out that, whether, these crosstalk glitch propagations lead to the malfunctioning

of the protocol or not, an extrapolation of one of the scenarios is performed here. Suppose

that, during state transition 1 to 2 in Figure 6.7, G occurs in Ap and, hence, it may cause,

Rp to make a false T' (following equation of Rp in the firstlst row of Table 6.1). Also, this

glitch in Ap causes Zl to rise. The equation of Zl reveals that it has a property to hold its

value. When Ap settles back to logic '0 ' , the equation for Rn (given in Table 6.1) reveals

that this signal will go to logic '0' (because Den is logic ' 1 ' and Zl is falsely equal to

logic '1'). As T' on Rn leads to the termination of the protocol, therefore, it can be said

that such glitches lead to premature termination of the handshaking protocol. A glitch in

Ap also leads to false data latching, due to the fact that the Ap signal is used as a data-

latching signal (shown in Figure 4.11).

Step 4: This step introduces crosstalk glitch gating to stop the system malfunctioning

elaborated in the implementation of step 3. The expected waveform, provided in Figure

6.7, shows that there are two state transitions, 1 to 2 and 6 to 7, when crosstalk glitch is

inflicted upon Ap (i.e. VLin). Transition 1 to 2 indicates that T in Rp introduces G in Ap

during Atc2- Similarly, the duration of the glitch that occurs during state transition 6 to 7 is

indicated by Atci. As the ALout , which is Rp for this interface, is not a feedback signal,

therefore, this asynchronous interface belongs to case 1 -A of the corollary. Application of

the proposed solution for case 1-A requires identification of the signal transitions that may

be utilized to generate the crosstalk glitch gate-controlling signal, 'Con', to avoid glitch

propagation. Due to the use of the RTZ signalling scheme, both transitions, T and T' of

AL have to be analyzed. It is observed from Figure 6.7 that, during transition from state 1

to 2, T in Rp is caused by a local signal (local to D output port state machine), An, which

118

is analogous to En in Figure 6.5. Therefore, for &U32, an auxiliary signal can be derived

from the transition, T, in An. The state diagram in Figure 6.7 also shows that, during the

other state transition (6 to 7), T' in Rp is the sole signal transition to cause G' in the V L i n

signal, Ap. Hence, here dummy signals are required to generate the crosstalk glitch gate-

controlling signal to block the glitches during Atci. These dummy signals introduce

additional states in the D output port state machine, which is shown in Figure 6.8. These

additional states are inserted between states 2 to 4, and 8 to 10, as shown in Figure 6.8a.

The new signals are called Dmy and Ret signals, which are controlled by a new state

machine called "delay state machine", shown in Figure 6.8b. The P input port state

machine remains the same. The corresponding state machines were synthesized using the

3-D synthesis tool [65], [66].

Step 5: Crosstalk glitch Gating Control Signal Generation- The modified D output port

state machine equations, based on step 4, are shown in row 2 of Table 6.1. These modified

equations show that the VL (Ap) is the input to the two Boolean equations. These

equations generate the Dmy and Ril signals.

For the Dmy Signal: Figure. 6.8a illustrates that a transition on the Ail signal, while

changing state from state 1 to 2, leads to a transition, T, on AL (Rp). This produces G in

the V L i n (Ap). According to the Boolean equation for Dmy, in Table 6.1, glitch (G) in Ap

forces a G in Dmy for the duration of Afa. Therefore, the first control signal, ConAND

in Figure 6.8c, is generated at the rising edge of An for a Ato2 duration to avoid glitch

propagation through Dmy signal. Furthermore, Dmy signal experiences a glitch, G',

during the state transition from 7 to 8. Therefore, the auxiliary signal ConOR is

introduced, shown in Figure 6.8c. The required circuit is similar to Figure 6.2a, except for

119

the fact that, here, the crosstalk glitch signal is associated with an OR gate rather than with

an AND gate.

Glitch Gating for Rtl: With the introduction of the delay state machine, the transition, T',

in AL (Rp) is made dependent on any transition on the Ret signal through a delay state

machine. The Boolean equation of Ru, given in the second row of Table 6.1, shows that

the Ru signal is sensitive to G' in the VLin signal (Ap). Ru may propagate G' in Ap when

the state machine of Figure 6.8a is in transitions from state 3 to 4 and 9 to 10. Therefore,

the gate control signal, shown as 'Con' in Figure 6.8d is generated through Ret for

duration AtGi- This signal ensures that no glitch is propagated through the RJI generating

circuit. G in V L i n does not affect Ru during AtG2, as it is not solely dependent on V L i n

signal (Ap) for this interval.

Simulation Results: Figure. 6.9 shows the transistor level simulation results for the

conventional and proposed bundled data asynchronous handshake scheme for same

interconnect length, 7.5 mm, under the 90nm STMicroelectronics CMOS technology.

Although conventional designs malfunctioning starts at 2 mm, as seen in previous chapter,

but here more than 3 times extended length is chosen to test the sustainability of the

proposed solution under severe operating conditions. Interconnect parasitics are obtained

using the data sheet provided from STMicroelectronics [64]. All these simulations utilize

the 517 model, due to its effectiveness in the reduction of lumped model inaccuracies to

3% [3]. In Figure 6.9a, the false negation of the Rp signal is caused by the high glitch

magnitude on Ap, which is acting as VLin for this module.

Figure 6.9b shows that, by the implementation of crosstalk glitch gating, the modified

design functions properly under the same design constraints, as there is no occurrence of

120

false transition. Hence, the proposed crosstalk glitch gating technique provides a solution

to design flawless asynchronous bundled data protocol based designs under the conditions

of interconnect at which the conventional designs failed to operate correctly.

Den7Ri1+ Ail7 Ap7 Rct7

Ai1'/|

O j Den* A i f D m / / R t f / ^

©
Ap7Ri1

©*-0^7<D^rA0^!
Rct/Rp- D m y - Rp+ ^

(a)

m

(7y —T (?)
V _ y Den Ai1+Dmy7 R c t \ l /

(^\ Den* AM* Dmy* / R c t / T)

Ai1
/

Air
/

(3) + ft)
V _ y DenAi1 + Dmy" /RcrV l /

(b)

—Con AND

Den A|>
—-Ap' Dmy'

—Rp' Dmy'
-Con OR = 1

my-

(c)

Den' Ret

Den Ret'

—Con = 1 (AtG

(d)

Figure 6.8 STG for the Proposed D output Port of the Bundled Data Protocol (b) STG of the Delay
state machine (c) Crosstalk glitch gating for Dmy signal, (d) Crosstalk glitch gating for Ri signal.

121

1.30

Den 600 m

-100m

1.30

Pen600m

-100m
0.0

-200m

1.30

Ap600m t

-100m

1.30

m

r>

Time 20n

Den 600 m

-100m r-*—; ' . a i r— • * - : :

ure 6.9 Transistor level simulation results (a) for conventional design (b) for modified design (crosstalk
glitch eating implemented)

6.3.2 Proposed l-of-4 Data Encoded DI Asynchronous Interface

This subsection shows the implementation of the proposed crosstalk glitch gating

method on the l-of-4 data encoded DI asynchronous interface.

Step 1: The wires that run the longest length in this interface are nx[0-3] and nx (because

they link the two sides), as shown in Figure 4.8a. Hence, these are designated as the most

crosstalk glitch prone signals.

Step 2: To identify the direction of AL and VL, it is necessary to understand the

mechanics of this interface. The following description, of Figure 4.8a, shows the

scenarios of AQX occurrence during the normal circuit operation. The nxO to nx3 group

of signals are initially at logic ' 1 ' . This group of signals is represented as nx[0-3].

Similarly, in[0-3] represents the inO to in3 group of signals and out[0-3] represents the

outO to out3 group of signals. According to the 1-of-N DI data encoded protocol, of

which l-of-4 is a specific case, only one of the input lines of in[0-3] can go high at a

given time. There are two scenarios of crosstalk glitch occurrence in this design with

respect to the receiver module and they are, shown in the expected waveform of the

conventional design in Figure 4.8b.

First Scenario: If any of the lines in the nx[0-3] group of signals, which rises initially at

logic ' 1 ' , performs a transition T' then its neighbouring line within the same group

experiences glitch G'; e.g. if nx3 does a transition T' then its neighbouring line nx2

experiences glitch G', as shown in Figure 4.8b. Hence, nx3 is acting as an AL and nx2 as

a VL in this case. Such a situation relates to the case 2-A as both AL and VL are inputs to

the receiver module.

Second Scenario: The interface shown in Figure 4.8a may also experience glitch, G, in

123

nx3 due to T in nx. This occurs during the handshaking termination phase, when any of

the out[0-3] group of signals makes a transition toward logic ' 1 ' . In this situation, nx is

the AL which is an output from the receiver module end and nx3 is the VL which is an

input to the receiver module. Hence, this scenario is an example of case 1 -A. The second

scenario appears twice in Figure 4.8b, one for each logic level transition in nx line.

These two glitch scenarios are illustrated with arrows in the expected waveform, shown

in Figure 4.8b. The existence of these scenarios makes this design an example of the third

case of the corollary, where (ALin A VLin) A (ALout A VLin) = True. Figure 4.8b

suggests that the first scenario belongs to case 1, whereas the second scenario belongs to

case 2. As stated in the preceding chapter, these two cases are treated separately in order to

quench the glitches.

Step 3: This step shows that whether the crosstalk glitches propagate into the interface or

not. It can be noticed here that all the Muller ' C elements have an inverted output in

Figure 4.8a. Also, initially, all receiver-end Muller ' C elements are sensitized via the

OutAck signal. Therefore, if any of the nx[0-3] signals produces G' due to transition T'

in an adjacent line then, the GP sets of Muller ' C element suggests that the glitch

propagates, provided that the output of the C element at t" in Figure 6.2, is at the initial

condition of logic '0 ' . Similarly, the second scenario of glitch propagation may take place

through the respective receiver end Muller ' C element if OutAck signal is at logic ' 1 '

when nx[0-3] glitches to G, due to T in nx.

Step 4: While identifying the direction of AL and VL in step 2, it is concluded that this

design requires a two-stage procedure to resolve the crosstalk glitch issue: one stage each

for case 2-A and case 1-B. Step 3 has shown that these glitches haves the potential to

124

propagate into the interface, therefore, in this step, the proposed solutions are applied to

resolve each of the two cases.

Application of the proposed solution for Case 2-A: Application of the theorem results in

alternating the polarities of nx[0-3], as shown in Figure 6. 10. These changes are labelled

as 1st in Figure 6.10; e.g. initial condition of nx[0-3] has changed from '1111' to '1010'.

The following explanation illustrates the effects of such changes.

Figure 6.10 Proposed Hardware implementation of l-of-4 Data Encoded DI Asynchronous Interface

In contrast to the conventional design, now, when nx3 does a transition, T, it does not

inflict a glitch in nx2. Rather, during the termination phase, i.e. pseudo-deterministic

phase, of the handshake, due to RTZ signalling, if nx3 does a transition T' then nx2

experiences a glitch G'. The modified expected waveform, shown in Figure 6.11,

demonstrates the temporal shift of the crosstalk -glitch toward the terminating end of the

protocol. OutAck is the sensitizing signal that causes the glitch to propagate in this

125

interface via C elements. It is seen from the protocol that, once OutAck is utilized by nx3

to generate out3, it is not necessary to keep its value to the same logic level during the

termination phase of that particular data transaction. Therefore, if OutAck signal is

reversed after the assertion of out3 and before the inversion of nx3 then the glitch

propagation is blocked for the first scenario. Also, another implicit advantage of this

solution is that the glitch occurrence due to the second scenario in Figure 4.8 is also

eliminated. On the other hand, as a consequence, another glitch of the same type (case 1 -

B) has appeared at a different place in the circuit. This is caused by the introduction of the

polarity reversal on nx3, which causes a glitch on nx, as shown in Figure 6.11. Solution to

this new occurrence of the glitch is provided in the following section.

Out_Ack

Figure 6.11 Expected Waveform of the Proposed Hardware implementation of 1 -of-4 Data Encoded DI
Asynchronous Interface

126

Application of the proposed solution for Case 1-B: As explained above, such a design

choice introduces the potential for glitch propagation at the sender end. This can be seen

by glitches in nx in Figure 6.11. The glitch in nx due to transitions in nx3 is an example of

case 1-B of the corollary, where nx acts as a VLin signal to the sender module. Here,

glitch propagation is dependent on the feedback signal from the AL, which generates the

'nina' signal in Figure 6.10. Application of the solution to such a case, as shown in Figure

6.3, suggests the introduction of the delay element at one of the inputs of the AND gate

generating the nina signal.

Step 5: Finally, the hardware implementation of the circuit, based on the modification of

the design, is explained here. The modified design is shown in Figure 6.10. There are three

modifications done in this design and are labelled as 1st, 2nd, and 3rd in Figure 6.10: 1) The

nx[0-3] signals now have alternating polarity because due to half of the output bubbles in

the Muller ' C element at the sender end that have been shifted to the inputs of the Muller

' C element at the receiver end and to the inputs of the AND gate (that generates the 'nina'

signal), in order to keep the same Boolean relations. 2) According to the theorem, the first

modification introduces a temporal shift in the glitch and this shifted glitch is barred from

propagation through an additional Muller C element (shown in the bottom of Figure 6.10).

(This modification ensures that the sensitizing signal is inverted before the termination of

the RTZ signalling scheme begins). 3) The third modification is to the nx signal, which

becomes a VL when its adjacent nx[0-3] line is asserted. Therefore, a delay is introduced

to the nina signal generation, as explained in step 4. These adjustments in the hardware

implementation affect the expected waveform and are indicated by arrows, which

represent respective modifications, in Figure 6.11.

127

Time (ns)

(a)

j-i 1 : — , , — — . •• - , 1

o 2.5 5.0 Time 1 0 ° 12-5 ' 5 , °

(b)

Figure 6.12 Transistor- level simulation results for conventional design (above) and for modified design
where crosstalk glitch gating is implemented (below)

Simulation Results: Figure 6.12 shows the transistor level simulation results of the

conventional and modified (with the implementation of crosstalk glitch gating) 1 -of-4

Data Encoded DI asynchronous handshake schemes. Both designs are simulated for the

same interconnect length, 1.5 mm, in the 90nm STMicroelectronics processing

128

technologies [64]. It is seen in the conventional design that crosstalk glitch may be latched

at the output as can be seen in the topmost signal of the simulated waveform of Figure

6.12a. The proposed design obtains a cleaner waveform and avoids crosstalk glitch

propagation. Figure 6.12b shows that the proposed design avoids latching any glitches for

the same interconnect length. Hence, it is experimentally shown that the proposed

crosstalk glitch gating technique makes this asynchronous handshake schemes tolerant to

crosstalk glitches.

6.4 Summary and Discussions

A comprehensive set of possible cases in asynchronous handshake signalling schemes

that may lead to crosstalk glitch propagation was formulated in the previous chapter.

Leveraging the knowledge from the previous chapter, a novel set of design solutions,

called crosstalk glitch gating, is proposed to resolve crosstalk glitch propagation on a case-

by-case basis. A detailed methodology is developed to analyze the AQX effect on

asynchronous handshake schemes and to implement the proposed crosstalk glitch gating

technique. Implementation of the proposed methodology on two representative

asynchronous handshake schemes, of different classes, is performed. It is demonstrated

through transistor- level electrical simulations that the proposed method generates

crosstalk glitch gate controlling signals, which effectively stops glitch propagation. This

work is a step towards dealing with glitch sensitivity as part of logic design and synthesis

as opposed to dealing with the issue as part of the physical design steps.

129

While comparing with conventional crosstalk glitch solutions it is observed that

conventional solutions usually deal with a wire sandwiched between the two transitioning

wires. For example, bus encoding techniques [6], [23] or behavioral-level crosstalk

detection methodology [24] for sequential asynchronous circuits check for intrinsic

transition faults in sandwiched wires only. On the other hand, the proposed technique

solves the problem of AQX glitches in asynchronous handshake schemes. Therefore, an

objective apple-to-apple comparison is not possible. Still, there are some measures that

can distinguish our technique. For instance, conventionally brute force buffer insertion is

used for signal integrity but this is done much later in the design flow, usually post-place-

and-route. Our method is advantageous because it is introduced earlier in the design cycle.

The automation level that is possible with our solution is also comparable to that of the

buffer insertion technique. With only basic knowledge of the asynchronous protocol,

designers may obtain the desired glitch tolerant circuit. As it is implemented only at the

places where there is a potential for glitches to propagate, therefore it reduces overall area

and power overhead in comparison to brute force buffer insertion or Triple Modular

Redundancy (TMR) with phase shifting. An objective comparison with conventional

designs obtained twice the performance of the conventional Bundled Data designs and

more than 20% performance improvement is observed in Delay Insensitive designs.

130

Chapter 7: Skew Tolerant Synchronous
Interface for High-Performance Point-to-

Point Communication

It is mentioned, in the first chapter, that this thesis addresses issues related to modern

DSM technologies in both synchronous and asynchronous design domains. In the

preceding chapters, significant reliability issues in modern DSM technologies to

implement asynchronous interfaces have been discussed. This and the following chapter

discuss the challenges of communicating modules in MCD through synchronous

interfaces when they are designed in modern DSM technologies.

It was established in Chapter 3 of this thesis that high-performance clocking of

intellectual properties (IP) modules, within a skew budget, is becoming difficult in modern

DSM technologies. It has been seen in Chapters 4 to 6 that, to communicate between two

modules in MCD, asynchronous interfaces may be utilized. At the same time, the design

community has investigated different methods in synchronous design paradigms.

Synchronous interfacing methods often require PLL based synchronization, which

requires phase correction that consumes useful bandwidth and mixed-signal components.

Another synchronous design methodology from Edman et al., in [78], is the Synchronous

Latency Insensitive Design (SLID) method. This design technique can accommodate large

clock skews, but the maximum achievable clock period of the IP modules is a function of

131

the clock skew, which consequently limits the throughput of the system. This technique

also suffers from the control and data signal delay mismatch problem [80], which is a

severe constraint in modern DSM technologies, especially for long interconnects.

This chapter contains the description of a new class of solutions that can be utilized for

communications between two modules running at the same frequency or at different

frequencies (Chapter 8) that have non-aligned clock phases. This novel and all digital

synchronous design method for point-to-point communications uses two stages of

n interfacing registers and a locally delayed clock with phase adjustments. This design is

free from synchronizers and clock-data delay mismatch problems. Moreover, the

communicating modules run at frequencies which are virtually independent of the clock

skew. A comprehensive case-wise mathematical analysis is also provided to facilitate

design automation for synthesizing such designs as standard cells. It is assumed in this

study that worst-case timing information is available a priori for the interfacing system

that helps in quantifying the worst-case phase offset among the communicating blocks.

This assumption is in line with the stat-of-the-art techniques presented in recent literatures

[76]-[78].

It is assumed, in this work, that there are at least two IP modules, a sending and a

receiving IP module, in each system. Sending and receiving modules are referred to as

terminating modules, unless otherwise stated. Terminating modules are supplied with the

clock from the same clock source, but with a certain phase difference between each other.

This phase difference is due to skew in the CDN. It is further assumed that the maximum

skew bound is known. Links in the system are assumed to be subject either to positive or

132

negative skew and a comprehensive mathematical treatment is performed on all the

possible sub-cases of timing constraints.

Contribution of the Work described in this chapter: The proposed design leverages

larger bus width (as wires are usually abundant in on-chip systems [16]) to alleviate the

problems in inter-module communications. By careful adjustment of the interfacing clock

(slow) phases and through knowledge of maximum skew bound, higher skew tolerance is

achieved.

The work described in this chapter provides the following contributions to the current

literature:

1) Introduction of the new design concept of higher-bandwidth multi-stage interfacing

registers to overcome clock skew of far-apart (with respect to relative difference in clock

signal delay from the clock source) modules: The shortcoming of the state-of-the-art

solutions in fulfilling the requirements for far-apart terminating modules in MCDs, to run

at a speed independent of the clock skew and of highly unpredictable clock-data delay

mismatches, instigated this work.

2) A comprehensive mathematical analysis in an attempt toward making the proposed

design scheme synthesizable as standard cells: this analysis is beneficial to design

automation.

This chapter is organized as follows. Section 7.1 presents an overview of the

fundamental higher-bandwidth scheme to accommodate large skews. Sections 7.2 and 7.3

utilize the concepts introduced in Section 7.1 for designing interfaces for two special

cases: identical or integer multiple frequencies between the communicating modules. A

complete mathematical analysis of the proposed interfacing method is performed in this

133

section along with a summary of the advantages achieved by the proposed designs. The

next section provides a general discussion about the advantages of the proposed design

schemes. Section 7.5 discusses the simulation setup and results as well as a comparison

with conventional synchronous designs. Section 7.6 explains the prototype

implementation of the proposed design using a Virtex-II Pro FPGA from Xilinx.

Section 7.7 summarises this chapter.

7.1 Concept of Wider Bus Width

The requirement of interfacing registers to better utilize a CDN is well established in

Chapter 3 of this thesis. It is apparent from the discussions in that chapter, and from the

elaborations on equation 3.11, that, usually, the initial splits in H-tree work at a higher

frequency, and the fastest speed at which modules may communicate in MCD is usually

lower than the speed with which each terminating module can function individually. This

is due to the delay variations in CDN designed in modern DSM technologies, which give

rise to clock skew. The design proposed in this chapter leverages larger bus width (as

wires are usually abundant in on-chip systems [16]) to alleviate the problems in inter­

module communications. Using the concept of larger bus width and by careful

adjustment of the interfacing clock phases, and benefiting from the knowledge of

maximum skew bound, higher skew tolerance is achieved.

134

r-Ws inH

Sender IP
Running at

Fs
MAA

Interfacing
Register 1
(running
at fs i„,)

1_. •Ws_

Interfacing
Register m
(running at

fs int)

Interfacing
Register 1
(running
at fR_i„t)

\—WR inf

Interfacing
Register n
(running at

fk int)

-W, fRin^J
•WRH

Receiver
IP

Running at
FR

Figure 7.1. Elaboration of two IP modules with interfacing registers

What is Larger bus width: This design scheme allows any two terminating modules that

have known maximum phase discrepancy, to communicate through slow but wide (or

parallel) stages of interfacing registers, and that is why it is given the term larger bus

width in this thesis. In Figure 7.1, the concept of larger bus width is introduced for two

mutually asynchronous IPs. These IPs are running at frequencies Fs (sender frequency)

and FR (receiver frequency), with their bus width being Ws and WR, respectively.

Consequently, the time periods of the sender and receiver modules are denoted by

Ti=l/Fs and T2 = 1/FR, respectively. It is assumed that the clock skew limits the sender

and receiver interfacing registers to run at frequencies of fsjnt and f* j n t , respectively, to

accommodate the setup timing constraint. In this scenario, the only requirement of such

designs to function properly is to follow equation (7.1), which expresses the fact that the

sustained bandwidth of all stages of the interface, in Figure 7.1, must be the same.

FSWS = Wsjntfsjmm = WRJntfRj„,n = FRWR (7.1)

where m and n, denote the number of interfacing registers of widths Wsj„t and WR_int for

the sending and receiving ends, respectively. This general formulation can represent

cases where m and n are related by a fractional ratio. A simpler situation would be the

135

case where that ratio or its inverse is an integer. For example if m=2n, the sender would

operate at twice the speed of the receiver. However, in this chapter, we will first focus on

the situation where m=n and then generalize to integer ratios. Means to support fractional

ratios is investigated in the next chapter.

In contrast to the design proposed by Edman et al. [78], this design does not use a

strobe signal, rather, based on a priori timing information, phases of the interfacing

registers are adjusted to accommodate phase discrepancies. Avoiding the use of a strobe

signal solves the control signal and data delay-mismatch problem. The proposed

technique introduces two stages of interfacing registers (Figure 7.1). These registers act

as FIFO stages and absorb the clock skew, hence they allow the maximum clock period

of the IPs to be independent (virtually) of the clock skew (mathematically explained in

the next section). These registers also use multiple phases of the clocks to manage

bandwidth while alleviating clock-skew problems in a manner that is similar to previous

work done by our research group [94]. The following section proves the usefulness of

this concept of higher bandwidth for interfacing the modules in MCD.

7.2 Proposed Interface for m=n: Leveraging Higher

Bandwidth

This section describes how to use higher bandwidth to provide reliable communications

among modules that share the same clock frequency but varying phases, called

mesochronous schemes [79].

136

CLK1

Figure 7.2. (a) Hardware implementation of interfacing registers for the n modules with same
frequency and bus-width (n assumed even here for simplicity) (b) Waveform representation of

interfacing registers for the n modules version with same frequency and bus-width (Arrows X, Y and
Z, are showing one complete data path)

137

An analysis (that is provided below) shows that this design allows terminating

modules to run at a frequency that is independent of the clock skew, which is in contrast to

what the state-of-the-art design offers [78] (elaborated further through Equation 7.6 later

in this section). The analysis also shows that the two stages of interfacing registers in

Figure 7.2 decouple the two clock domains and, in the process, help achieve clock skew

independency for the terminating modules. Furthermore, in this study, a comprehensive

investigation is performed for unidirectional and bi-directional communications with

known and unknown clock skew orientations for following clock skew magnitude: tSk <=

n/2T] and n/2Tj < tsk < nTj, where tsk is clock skew, n is the number of interfacing registers

in each stage, and Tj is the frequency of the terminating (sending and receiving) modules.

This study provides timing information required by design automation tools to use such

class of interface designs.

In this section, it is assumed that all the registers have the same width, terminating

modules have the same frequency and correspondingly m = n and fsj„, = fRjm— fmt =

Fs/m=mT] (Fs/n - nTi). Figure 7.2a shows a practical implementation of such a design. In

this analysis, it is also assumed that the setup time (tsu), hold time (thoid), and clock-to-Q

delay (tco) of all the registers in the system are equal between registers. The maximum

clock skew between the phases of the clocks of the two modules involved in a point-to-

point link is represented by tst, and the maximum possible jitter on each side of the

nominal edge of the clock is denoted tj. Therefore, the maximum possible deviation

between the two clocks, due to jitter, is 2tj. The clock skew is assumed to be random but

fixed (or changing very slowly) while the jitter component may change rapidly. As shown

in the Figure 7.2a, the system is divided into three regions: A, B, and C. Region A and C

138

have deterministic timing relations for the data paths within each region, as all the

modules are clocked by a single phase edge of the same clock source. Following the

concept of higher bandwidth, Region B has two stages of interfacing registers and the

clock signals travel different lengths for each stage. Hence, the timing relation between the

left and right parts of this region is non-deterministic.

Figure 7.2b shows the expected waveform of the proposed design, shown in

Figure 7.2a, where the top waveform is the sending IP (TX) clock, denoted CLK1. The

next three waveforms correspond to Sender State Machine clocks, denoted SSMCLK(x),

where x is an integer number from 0 to n-\ (in this figure only nil phases are depicted)

and which represents the clock phase. Similarly, the next (fifth) waveform represents the

receiving LP RX clock, denoted CLK2. The last three waveforms belong to the Receiver

State Machine, denoted RSMCLK(x). The numbers below the CLK1 and CLK2

waveforms, in Figure 7.2b, indicate the clock sequence number. The time period of the

two state machine clocks, SSMCLK(x) and RSMCLK(x) is T, which is «Ti, with the

interfacing frequency fjnt = l/(«Ti). This, in turn, implies that the terminating modules are

running at frequency «fjnt, as shown in Figure 7.2a. It can further be noticed that any two

successive interfacing registers in region A and in region C respectively, RRO and RR1 for

example (or SRO and SRI), receive clock signals separated by a Ti time interval (or T2 as

Ti = T2). Moreover, in Figure 7.2b, tsK represents a negative skew between CLK1 and

CLK2. Generally, the skew is defined as the time difference between the nominal edges of

the sending and receiving clocks, further discussion on the skew orientation is deferred to

subsequent sections. The three arrows linking the rising edges represent the expected drift

(jitter) in the clock. Arcs X, Y, and Z relate to one complete data-path from the sender

139

module to the receiver module. Sender and receiver module are shown as IP TX and IP

RX in Figure 7.2a, respectively.

The following section provides the timing description about each region in Figure 7.2a.

7.2.1 Region A and C (skew independent regions)

A closer inspection of the Region A in the design shown in Figure 7.2a yields the

following set of relations. Equalities (7.2) and (7.3) represent the case of one-cycle

latency, while (7.2a) and (7.3a) show the case of zero-cycle latency:

tCQ + tSU <T, + tSM (7.2) tCQ > thou + tSM (7.3)

or

teg + tsu < tSM (7.2a) Ti> tsM + thoid- tCQ (7.3a)

where all the timing parameters correspond to those of the registers used when data

traverses from IP TX to SR(x) in Region A of Figure 7.2a, while tsM is the clock-to-

output delay of the Sender State Machine (SSM). Similarly, by inspecting the data path

from RR(x) to IP RX in Region C of Figure 7.2a, inequalities (7.4) and (7.5) are

obtained:

max(tSM + tMux_D + tCQ + tsu, tsEL + tMuxj + tsu) < T] (7.4)

max(t$M + tcQ + tMUX_D, tsEL + tMVXj) > hold (7-5)

140

Write Port

DATA

Select Signals

Input
Counter

Reg(m-I)

Reg.

Reg(1)

Reg(O)

Strobe-

I \l\ux

Output
Counter

i

Read Port

— R< 39 *
H

Local Clock

Figure 7.3. Conventional source synchronous interfacing scheme [78]

where tMux_D and tMuxs are the multiplexer delays from the data input to output, and

from the selector signal to the output, respectively. ISEL and ISM represent the clock-to-out

delay of the selector and of the Receiver State Machine (RSM) respectively.

Inequalities (7.3) to (7.5) show that T], the terminating-IP time period, is independent of

the clock skew. This is a significant improvement in comparison with the state-of-the-art

designs, where the frequency of the terminating modules is always a function of the

skew. For example, the frequency of the terminating modules requires fulfilling condition

(7.6) in a source synchronous design:

*cnt ' 'cq

+ tsk + 2tj <T-tsu(7.6)

where tcnt is the counter delay. One such design is described in [78] and is shown in

Figure 7.3. In this relation, the time period of the terminating modules, denoted by T, is

dependent on clock skew tsk. If \tsk\ is so large that it requires an increase of the time

period T, then relation (7.6) shows that designs of this class lead to slower terminating

modules. Our proposed solution solves this problem by decoupling the sender and

receiver clocks with the introduction of two stages of interfacing registers, whereas clock

skew is absorbed in region B that is described in the following analysis.

141

file:///l/ux

7.2.2 RegionB

As explained earlier, the analysis for region B is the most critical as it involves two

different derived clocks (from the same clock source), which feature a phase difference.

In order to better illustrate the timing constraint in this region, first, an analysis that

assumes a conventional design is performed devised in this analysis is either implicit or

not explained in other references. For example, the introduction of delay insertion, as

denoted by A in the following analysis, and its upper and lower limits, are usually not

discussed in the literature. Also, the notations vary in different references. Hence, it is

hard to avoid ambiguity while analyzing the complete set of equations of the proposed

designs (developed in the following section) with the equations provided in the different

references. Moreover, the following analysis allows establishing the notation in a

complete self-contained derivation, and it is used as a basis to obtain timing constraint

relations of the proposed schemes and serves as a benchmark for comparison.

Foundations of this analysis can be found in the literature [6], [16].

Timing constraint in a conventional design, similar to region B

Hardware implementation of a conventional design is shown in Figure 7.4a.

CONCLK1 and CONCLK2, are derived from the same clock tree network.

CONCLK1 has the time period of Ti, and similarly CONCLK2 has the time period T2.

142

IPTX DATA

LCON c L K 1 - C C I O C k T r e e N e t W O r l l)LCON_CLK2J

H2ljh

CON CLK1
T T

tcq + A

»«-W »i^w>!

CON CLK2

i i

CON CLK1_ _ JJ or • I
i t c + a

K * W * - '

CON CLK2 JJt-theid*-;

n -

-Tr

(b)

-Ti-

(c)

w
i,ts..fl

^ - 1

ff

l«*tsufl
- • l

Figure 7.4. (a) Conventional two-register communication. Both registers are working with the same
frequency but different phase relationship, due to skew caused by non-idealities of the clock tree
network (b) Waveform representation of a conventional design subject to positive skew only (c)

Waveform representation of a conventional design subject to negative skew only

Due to the non-idealities in the clock tree network, as stated earlier, there may be some

phase discrepancies between the CONCLK1 and CON CLK2. There are two possible

cases either CONCLK2 clocks IP RX, in Figure 7.4a, before CONCLK1 clocks IP TX

143

or after. Depending on the direction of data flow, these phase discrepancies are treated

differently.

The two terminating modules in Figure 7.4a, IP TX and IP RX, may act as a sender or

receiver at a time. If IP TX is the sending module and IP RX is the receiver module and

CONCLK2 clocks IP RX after CONCLK1 clocks IP RX, then such a phase

discrepancy is called positive skew, tSk+. Similarly, if CONCLK2 clocks IP RX before

CONCLK1 clocks IP RX, then the phase discrepancy is called negative skew, tSk_. The

expected waveforms for tsk+ and tSk_ are shown in Figure 7.4b and Figure 7.4c,

respectively. In these figures, it is assumed that the two modules of this conventional

design are communicating with a latency of one clock cycle.

To generalize the analysis, the phase discrepancy between the two clock modules in

Figure 7.4a can always be represented as tSk, which is defined as follows:

tsk = tSk+ when tsk > 0

and tsk = - tsk_ when tsk < 0

In a system subject to phase discrepancy, setup time and hold time constraints of the

registers require a more careful analysis. These timing constraints are treated one by one

in the following analysis. In all of the subsequent analyses, the latency is assumed to be

of one clock cycle, unless otherwise stated. The following inequality shows how the

setup time affects the time period of CONCLK1 of IP TX as shown in Figure 7.4a.

Provided that the data is traveling from IP TX to IP RX, irrespective of the sign of the

skew, the setup time constraint can be expressed as follows:

T, + tsk>tcq +2tj +tsu (7.7)

where, Ti is the time period of CONCLK1 and CONCLK2, tcq is the clock to Q delay

144

for the IP TX and tsu is the setup time for IP RX. The term 2tj, in inequality (7.7), shows

the worst-case, i.e. CONCLK2 rises duration of tj before the nominal edge, and

CONCLK1 rises tj duration after the nominal edge. The above inequality shows that if

tsk > 0, i.e. there is a positive skew (tSk+), then it is advantageous to the system as a shorter

Tj can be acceptable, this is mathematically shown in inequality (7.8). Likewise, when

tSk < 0 in inequality (7.7), i.e. there is a negative skew (tSk~), then Ti becomes longer and

in turn, it makes the system slower, this is illustrated by inequality (7.9).

Tj > tcq + 2tj + tsu~tSk+ (tsk > 0, waveform shown in Figure 7.4b) (7.8)

Ti > tcq + 2tj + tsu + tsk- (tSk < 0, waveform shown in Figure 7.4c) (7.9)

The following analysis considers the timing constraint with respect to the hold time.

Conventionally, the hold time violation for the design shown in Figure 7.4a can be

avoided if inequality (7.10) holds, with the same assumption that data is traveling from IP

TX to IP RX:

tcq > tsk + 2tj + th0ld (7.10)

where, tcq is the clock to Q delay for IP TX, and thoid is the hold time for IP RX. Again, 2tj

is associated with the worst-case assumption that CONCLK1 rises for duration of tj

before the nominal edge and CONCLK2 raises tj after the nominal edge.

Mathematically, utilizing inequality (7.10), the hold time constraints for the two possible

cases of skew can be written as follows:

tCq > tsk+ + 2tj + thoid (tsk > 0, waveform shown in Figure 7.4b) (7.11)

tcq > - tsk- + 2tj + thoid (tsk < 0, waveform shown in Figure 7.4c) (7.12)

If the clock-to-Q delay of IP TX does not meet the requirements of the hold time

constraints in the above inequalities, then the insertion of an additional delay, A, is

145.

required to cope with the phase discrepancy, tSk- Hence, the above inequalities are

modified as follows:

tcq + A > tSk+ + 2tj + thoid (tsk > 0, waveform shown in Figure 7.4b) (7.13)

tcq + A > - tsk- + 2tj + hold (tsk < 0, waveform shown in Figure 7.4c) (7.14)

The insertion of delay, A, is not used only to cope with the phase discrepancy alone; in

DSM processing technologies, due to long interconnects between interfacing modules,

additional buffers are inserted in the interconnects, which in turn increases the phase

discrepancy between the two modules, A is used to manage such problems as well.

However, insertion of delays has its limitations. For example, for a system with a

maximum latency of one clock cycle, the delay should be inserted in such a manner that

it does not affect the subsequent clock cycles. Such a limitation can be avoided by

observing the following constraint:

t Cq + A < Ti — 2t j - thold + tsk

A < 77+ tsk - 2tj -tsu-t cq (7.15)

where, tcq is the clock to Q delay of IP TX, tsu is the setup time of the IP RX, and 2tj

shows the worst-case timing jitter.

Relations (7.7) to (7.15) are general guidelines for the timing constraints of

conventional designs. Depending upon the context of the system, a different set of

relations is valid. Following, different contexts are discussed; it is assumed that all the

systems use different forward and backward channels to pass the data.

System is only subjected to unidirectional communication with positive skew, i.e. tst > 0

or tsk = tsk+: In such systems, inequality (7.8), holds for setup time constraint and

inequalities (7.11) and (7.13) holds for hold time constraint. Inequality (7.13) and (7.15)

146

lead to the following relationship for the delay insertion,

tsk+ + 2tj + hold - tCq < A < T, + tsk+- 2tj - t s u - t cq (7.16)

System is only subject to unidirectional communication with negative skew, Le. 4t < 0

or ts/c = —tsk-:

Here, inequality (7.9) defines the setup time limit and inequality (7.12) is valid for the

hold time constraint. As the only possible orientation of skew is negative, therefore,

there is no requirement of any delay insertion.

System is subject to bi-directional skew, the maximum value oftSk+ and tSk- is known:

When the system communicates in either direction, then skew orientation has converse

relationship for each pair of communications. So, under this context, the designer has to

choose the worst-case design consideration. This leads to the choice of following worst-

case inequalities. Inequality (7.9) is valid for the worst-case setup-time constraint, hence,

it indicates the most restricted limit on time period, Tj. Similarly, inequality (7.11) is

valid for the worst-case hold-time constraint when no delay is inserted. Inequality (7.16)

leads to the worst-case relation for the magnitude of delay insertion.

System is subject to bi-directional unknown skew orientation, the maximum value of

tSk+ and tSk- is known: This is a context in which the digital system designer is provided

only with the maximum phase discrepancy and no knowledge of the skew orientation. In

such a case, the choice of the magnitude of the inserted delay, A, is of real importance.

Indeed, increasing the magnitude of A is advantageous for one skew orientation (W)

while it is disadvantageous for the other skew orientation (tSk-). The value of A is

obtained using the following set of rules. Firstly, the minimum value of A is obtained

using inequality (7.13). Secondly, this minimum value of A is checked for the maximum

147

bound using inequality (7.15) for the negative skew. These two steps can be summarized

mathematically as follows, where tSk on either side of the relation has the same magnitude

but differs in their orientation for a given context of communication,

tsk+ + 2tj + thQid-tcg<A< Tj-tsk--2tj-tSu-1cq(7.17)

Finally, the setup time constraint is checked for this minimum value of A using inequality

(7.9a), which, in turn, advises the designer about any requirement for increasing the time

period T] to accommodate the given t^. Inequality (7.9a) is a modified form of inequality

(7.9) as shown below,

T, > tcg + A + 2tj + tsu + tsk- (7.9a)

7.2.3 Timing Analysis in region B of the Proposed Design

In inequalities (7.8) and (7.9), and later from inequalities (7.15) to (7.17), it is shown

that, in conventional designs, the skew tolerance is proportional to the time period of the

clock, which is denoted by Ti in the above relations. In the proposed design, this limit on

skew tolerance is relaxed by introducing a suitable number of interfacing registers

activated by a version of the clock with an appropriate phase difference. The resulting

skew tolerance becomes proportional to an integer multiple of Ti. This integer number

may range from, depending upon the skew conditions, the total number of interfacing

registers, n, to half of this number (n/2, assuming n is even; this assumption can be

relaxed at the expense of more elaborate analysis).

In the rest of this section, a timing analysis of the proposed design is performed that

encompasses several possible design variations. Figure 7.2b shows the expected waveform

of the proposed design. To simplify the following derivations, without loss of generality,

148

we are performing the analysis for even number of interfacing registers in each stage.

Analysis for odd number of interfacing registers is a trivial extension to this analysis. All

the interfacing registers, SR(x) or RR(x) in Figure 7.2a, are clocked once, in a successive

manner by the SSMCLK(x) or RSMCLK(x) signal, within duration of nTi. At time nTj,

the state machine sends out the reference signal again, and the cycle is repeated.

To exploit the benefits of interfacing registers, the clocking order of sending and

receiving registers are kept different, as shown in Figure 7.3. For example, the SRI

interfacing register at the sender end (or first stage) is clocked by SSMCLK1. SRI is

connected to RR1 at the receiving end (or second stage) of interfacing registers and it is

clocked by RSMCLK((n/2)+l), where n is an even number, as stated earlier. Therefore, a

phase difference of n/2Ti is created between the SR(x) and RR(x). This in turn makes the

digital system more tolerant to the phase discrepancy, while trading off a latency of n/2

times the shorter clock period, Tj.

As stated earlier arcs X, Y, and Z in Figure 7.2b illustrate the propagation of Data 'A' .

Initially, the transfer of Data 'A' is initiated by the sender clock CLK1 on the sender

register, IP TX. Arc X shows that Data 'A' is clocked by SSMCLK1 at the sender-end

interfacing register, SRI. Arc Y shows the data path between the interfacing registers of

stage I (sending end), SRI in this case, and stage II (receiving end), RR1 in this case.

This arc also shows that the RR1 interfacing register is clocked by RSMCLK(n/2+l). Arc

Z shows the data path between the RRl interfacing register and the receiver register, IP

RX. The receiver-end register, IP RX, safely receives Data 'A' at the n/2+2 clock edge,

as shown in Figure 7.2b.

In order to understand the effect of setup and hold time constraints on the clock period

149

and delay insertion requirements in the proposed design, an analysis is performed in line

with the conventional design analysis, carried out in the preceding section. Figure 7.2b

shows the expected waveform of the proposed design when the system has zero skew, i.e.

tSk = 0. For illustration purposes, the signals associated with arc X and arc Y are drawn

separately in Figure 7.5. Arcs X and Y show that the data is initiated from EP TX and

destined to IP RX. If the rising edge of the signal RSMCLK(n/2+l) shifts toward the left

from the position shown in Figure 7.5, then the skew between CLK1 and CLK2 is

negative, and the converse shift indicates a positive skew between CLK1 and CLK2. As

described earlier, tsk < 0 is a negative skew and tSk > 0 is a positive skew.

To avoid any data loss, the maximum phase discrepancy (or maximum clock skew

magnitude, \tsk\), has to be within one large clock period, nT] (otherwise, an initial offset

scheme or some sort of pipelining within the interconnect has to be introduced). As the

RSMCLK(x) is clocked (n/2)Ti apart from SSMCLK(x) at tsk = 0, therefore, the timing

constraints of such designs can be split into two cases. The following discussion first

neglects the setup and hold times, which will be considered later. Let us first consider the

case where |tSk|< (n/2)Ti, with reference to Figure 7.5; in this case, the data sent on the

'First' rising edge of SSMCLK1 signal has to be latched by the 'First' rising edge of

RSMCLK(n/2+l). For this case, the latency in terms of the slow (nTj) clock period is

zero. The other cases considered are when («/2)Ti < |tSk| < riY\. Of course, here, timing

relations of the two interfacing registers depends upon the skew orientation. For a

positive skew, the first rising edge of RSMCLK(«/2+l) moves toward the right and shifts

beyond the boundary point C shown in Figure 7.5. So, the data from the 'First' rising

edge of SSMCLK1 is latched beyond boundary point C by the 'First' following rising

150

edge of RSMCLK(«/2+l). For negative skew, the 'First' rising edge of RSMCLK(«/2+l)

moves to the left with respect to the position shown in Figure 7.5 and shifts beyond

boundary point A. Therefore, the data sent on the 'First' rising edge of SSMCLK1 is

latched at the following rising edge of RSMCLK(«/2+l), which is one cycle later, with

the system exhibiting a one nT] cycle latency. Of course, this 'Second' rising edge of

RSMCLK(n/2+l) is a nT\ duration away from the 'First' nominal rising edge of

RSMCLK(w/2+l).

-T/2-

CLK1 ; n 4*f
1~ T/n» 2tr~T« t

n72 (n£+1) (n/2)+2 n " 1
__—uruBTLfff Iff

o 1

SSMCLK1 to SR1 Q

RSMCLK(n/2 + 1)
To RR1 :: 4ii 1

/ 7 N -*- tsu—»SFirst

v_J*-- . ts k . Region • J - * - - - - - - - - t s k + Region-

Figure 7.5. Elaboration of the proposed design for modules working at same frequency

For the first case, i.e. when |tsk| < («/2)Ti, the setup timing constraints of the proposed

design are modeled by the following inequality, (see inequality(7.7) where Tj has been

replaced by n/2T{),

(n/2) Tl + tsk > tcq + tsu + 2tj (7.18)

here tcq is the clock-to-Q delay of the SRI register in Figure 7.2a, and tsu is the set up

time of the RR1 register. 2tj is the worst-case jitter amplitude. This indicates that the

clock edge defining the data path that arrives first rises tj before its nominal time, while

151

the clock edge that arrives second, due to phase discrepancy, rises /, after its nominal

time. Inequality (7.18) can be written as follows for the two different skew orientations,

similar to inequality (7.8) and (7.9),

(n/2) T, > tcq + tsu + 2tj - tsk+ (for tsk > 0) (7.19)

(n/2) T, > tcq + tsu + 2tj + 4*- (for tsk < 0) (7.20)

For the second case, when («/2)T] < |tSk| < «Tf, the setup time constraint leads to the

following generalized inequality, which is independent of skew orientation, with the

assumption that latency is one clock cycle in terms of the slow clock period and tsk may

have either orientation:

nT, + t^ > teg + tsu + 2tj (7.21)

where, the definition of tcq, tsu and 2tj are the same as in inequality (7.18). In this case,

tsk may be formulated as:

\tsk\ = (n/2)T, + d (7.22)

where, 3 is the portion of tsk that is above (n/2)T\. Substituting (7.22) into (7.21) yields:

nT, +[5 + (n/2)T,J > tcq + tsu + 2tj (7.23)

This inequality can be written as follows, when tsk > 0:

(3/2)nT, > tcq + tsu + 2tj - 3 (7.24) (for tsk > 0)

In inequality (7.24), tcq represents the clock-to-Q delay of the first rising edge of

SSMCLK1, shown in Figure 7.5, while tsu is the setup time of 'First' rising edge of

RSMCLK(«/2 +1), shown in Figure 7.5. When \tsk\>n/2T,, RSMCLK(n/2+l) shifts to

the right beyond the boundary point C, shown in Figure 7.5, and this may cause an

ambiguity condition with respect to latching the data with the first or the second rising

edge of SSMCLK1. This possible system malfunction is always avoided in worst-case

152

designs because the worst-case setup timing-constraint condition takes care of this

ambiguity condition. This condition is derived by rewriting inequality (7.23) for tsk< 0 as

follows:

nT, >tcq + tsu + 2tj + S (fortsk<0) (7.25)

In inequality (7.25), the definitions of tcq and 2tj are same as above. But tsu is the setup

time of the second rising edge of RSMCLK(n/2+l). This edge may be visualized in

Figure 7.5 when RSMCLK(n/2+l) is considered to have moved toward the left farther

than n/2Tj. At this instant, the next rising edge of RSMCLK(n/2+l), which is not shown

in Figure 7.4d, appears before boundary point C.

In the same way as the inequalities for setup time constraints are obtained, the hold

time constraint is also divided into two cases. When \tsk\ < (n/2)Tj, the latency in terms of

the slow clock period is zero clock cycle, hence there is no possibility of hold time

violation. For the second case, when (n/2)Tj < \tsk\ < nT/, the following inequality (which

is similar to inequality (7.10)) holds, with the addition of A and n/2Ti (A is 0 when no

delay insertion is required) to generalize the inequality:

n/2 T,+ tcq+A> tsk + thoid + 2tj (7.26)

In inequality (7.26), tcq is the clock-to-Q delay of SRI, while thoid is the hold time of

RR1. For a positive skew tsk > 0, the inequality (7.26) can be written as follows:

n/2 T,+ tcq+A> tsk+ + thoid + 2tj (for tsk > 0) (7.27)

Substituting (7.22) into (7.27) leads to (7.28) which is same as inequality (7.13) in

which tSk+ is replaced by 8:

tcq + A > S + thoid + 2tj (7.28)

153

Here, tcq is measured with respect to the 'Second' rising edge of SSMCLK1 in Figure

7.5. hold is the hold time of the RR1, when the 'First' rising edge of RSMCLK(n/2+l) has

moved further right to the 'Second' rising edge of SSMCLK1, i.e. beyond the boundary

point C in Figure 7.5. The definition of 2tj remains the same. As the rising edges are

explicitly stated therefore any ambiguity with respect to clock phases has also been

resolved.

Likewise, for a negative skew, i.e. tsk< 0, inequality (27) becomes:

n/2 T,+ tcq+A>- tsk- + thoid + 2tj (for tsk < 0) (7.29)

substituting (7.23) into (7.29), and knowing that the RSMCLK(n/2+l) signal repeats

itself after an nTj duration, the above inequality can be written as inequality (7.30), which

is similar to inequality (7.14) where -tSk- is replaced by -5:

tcq+A>-d + thold+2tj(7.30)

here, tcq is the clock-to-Q delay of the Second rising edge of SSMCLK1 in Figure 7.5 and

hold is also measured with respect to the Second rising edge of RSMCLK(n/2+l). This

edge may be imagined as appearing from the shown hypothetical point C in Figure 7.5

and moving toward the left with the increment of 8. 2tj still has the same definition.

In order to maintain the maximum latency of one clock cycle, there is an upper limit

on delay insertion. The following inequality shows the maximum value of this delay

insertion:

tcq+ A < n/2 T, + thoid ~ 2tj

A < n/2 T, + thoia~ 2tj - tcq (7.31) (for \tsk\> n/2T,)

where tcq is the clock-to-Q delay of SRI with respect to the Second rising edge of

SSMCLK1 in Figure 7.5, and similarly thoid is the hold time for the RR1 register. The 2tj

154

term reflects the case where the rising edge of SSMCLK1 is tj after its nominal time

while the clock edge of RSMCLK is tj before its nominal time.

In modern DSM processing technologies, due to long interconnects between

interfacing modules, additional buffers are inserted in the interconnects. This, in turn,

increases the phase discrepancy between the two modules to a value that is higher than

the maximum \tsk\ specified in the analysis by the relation (n/2)Ti < \tsk\ < nTj. The

proposed design may be extended to support such interconnect delays by leveraging the

wave pipelining concept to achieve higher performance, but it is not studied here.

Comparison of the Proposed Design with the state-of-the-art design Techniques:

In line with the conventional design analysis performed in the preceding section, the

same contexts are investigated here. So that a performance comparison can be made

between the conventional design and the proposed design. These investigated contexts

are as follows:

The system is only subject to unidirectional communication with positive skew, i.e. tSk >

0 or tst = 4A+. In such systems, inequality (20) holds for setup time constraint when tsk <

(n/2) Tj. When tsk > (n/2)Tj, inequality (25) follows the setup time constraint. Similarly,

inequalities (7.27) and (7.28) set a limit for the hold-time constraint (i.e. the hold-time

constraint is only valid for tsk > (n/2)Tj, as explained earlier). The delay insertion limit is

obtained from inequalities (7.28) and (7.31):

S + hold + 2tj -tcg<A< n/2 T, + thold - 2tj-tcq (7.32)

The system is only subject to unidirectional communication with negative skew, i.e. tSk

< 0 or tSk ~ -tSk-- Here, inequality (21) defines the setup-time constraint when tsk >

-(n/2)T, (or | ^ | < (n/2)T,). On the other hand, for tsk< -(n/2)T, (or \tsk\ > (n/2)T,\

155

inequality (7.25) follows the setup-time constraint. Inequalities (7.29) and (7.30) are valid

for the hold time constraint, whereas the delay insertion limit is obtained from

inequalities (7.30) and (7.31),

S + thold + 2tj - tcq < A < n/2 T, + thold - 2t} - tcq (7.33)

The system is subject to bi-directional communication and the orientation of the skew

is known, (the maximum values of phase discrepancy is tSk). This analysis must be

divided into two cases: when |/5*| < (n/2)Ti, there is no possibility of hold-time violation

and, hence, only the worst-case inequality of setup time constraint, inequality (7.20), is

sufficient for the whole system.

On the other hand, when this bi-directional system is subjected to (n/2)T/ < \tsk\ < nTj,

both the hold-time constraint and the setup-time constraint have to be considered.

Inequality (7.25) shows the worst-case setup-time constraint, whereas inequality (7.27)

and (7.28) define the worst-case hold-time constraint. The worst-case delay-insertion

value must be within the bounds shown in inequality (7.32).

The system implements bi-directional communications and the skew orientation is not

known, (the maximum values are tsk+ and tSk-): As the maximum values of phase

discrepancy is known, therefore, it is known a priori whether \tSk\ is higher than (n/2)Ti

or not. If \tsk\<(n/2)Ti, then, as analyzed in the case of bi-directional communications,

inequality (7.20) describes the period of the system and there is no possibility of hold-

time violation. When the system is subject to \tsk\ > (n/2)T/, then, following an analysis

similar to that performed for the conventional design under identical conditions, a set of

rules are devised, as follows, to find the maximum value of A that it can tolerate. Firstly,

inequality (7.28) imposes the minimum value of A. Secondly, this minimum value of A is

156

checked with inequality (7.31) to find out whether, for a given set of conditions and a

given Ti, A is within the bounds (specified in 7.31) or not. Finally, the setup time

constraint is checked for this minimum value of A using inequality (7.25a), which in turn

advises the designer about any requirement for incrementing the time period Ti to

accommodate the maximum specified tsk- Inequality (7.25a) is a modified form of

inequality (7.25) provided below,

nT, > tcq+A + tsu + 2tj + 8 (7.25 a)

The above inequalities of the proposed design can be compared with their

corresponding inequalities in the conventional design analysis to estimate the benefits of

the proposed design. This comparison is tabulated in Table 7.1 and 7.2 for uni-directional

and bi-directional communication respectively. From the second column of Table 7.1, it

is observed that inequality (7.20) and (7.25) of the proposed design and inequality (7.9)

of the conventional design indicate worst-case setup-time constraints. Comparing these

inequalities, it is found that the skew tolerance is increased, in the proposed design, in

proportion to the number of interfacing registers, i.e. n, up to n/2 times for zero-cycle

latency and up to n times for one-cycle latency.

Similarly, from the first column of Table 7.1, it is observed that relation (7.32) for the

proposed design and relation (7.16) for the conventional design show that the limit of

delay insertion, to cope with the hold-time constraint, is increased in the proposed design.

This increase is proportional to n/2.

Column 1 of Table 7.2 leads to exactly the same result for the setup and hold-time

violations as obtained by analyzing Table 7.1. On the other hand column 2 of Table 7.2,

which shows the results of bi-directional communications for unknown skew orientation,

157

leads to similar results but via different inequalities.

TABLE 7. 1. Timing constraints for unidirectional communication between the terminating modules of
conventional and proposed designs, running at same frequency

Conventional
Design

Proposed Design
(|tsk| < (n/2)Ti)

Proposed Design
((n/2)T, < |tsk| <

nT,)

t s k>0

Ti > tcq + 2tj + tsu - tSk+
(7.8)

tcq >t sk+ + 2tj+thold(7.11)
tsk+ + 2tj + thoid - tcq < A < T| + tsk+

- 2 t i - t s u - t c q (7 . 1 6)
(n/2)T, >tc q + tsu + 2 t j - tsk+

(7.19)
No hold time violations

(3/2)nT, >tcq + tsu + 2 t j -5
(7.24)

tcq + A > 6 + thoW + 2tj (7.28)
8 + thold + 2tj - t c q < A < n / 2 T , +

thold _ 2tj - tcq (7.32)

t s k < 0
T, >tcq + 2tj + tsu +W(7.9)

tcq > - W + 2tj+thold(7.12)
No requirement of any A insertion

in this case

(n/2)T, >tcq + tsu + 2tj + tsk_
(7.20)

No hold time violations

nT, >t,q + tsu + 2tj + 5 (7.25)
tcq + A > - 8 + tho!d+2tj(7.30)

-5 + thold+2tj - t c q < A < n / 2 T 1 +thold

- 2tj - tec (7.33)

TABLE 7. 2. Timing constraints for bi-directional communication between the terminating modules of
conventional and proposed designs, running at same frequency (for known and unknown skew orientations)

Conventional
Design

Proposed
Design

(|tsk| < (n/2)T!)
Proposed

Design
((n/2)T, < |tsk|

<nT,)

Bi-directional Communication with
known skew orientation

T] >t c q + 2tj + tsu + tsk_(7.9)
tsk+ + 2tj + thold - tcq < A < Ti + tsk+

- 2tj - t s u - t c q (7 .16)

(n /2) T , > tcq + t s u + 2tj + tsk_ (7.20)

no hold time violation

nT, > teq + tsu + 2tj + 5 (7.25)

8 + thoid + 2tj - tcq < A < n/2 Ti + thoid

- 2 t j - t c (7 .32)

Bi-directional Communication
with unknown skew orientation

T, >tcq+ A +2tj + t s u + W (7.9a)
tsk+ + 2tj + th0,d - tcq < A < T, - 1 ^ - 2t j -

tsu-t c q (7.17)

(n/2)T, > tcq + t s u + 2tj + tsk_(7.20)
no hold time violation

nT, >tc q + A + tsu + 2tj + 5 (7.25a)

5 + thoid + 2tj - tcq < A < n/2 T, +

thoid - 2tj - tcq (7 .32)

Another aspect for which the proposed design fares better is the requirement of delay

insertion. Inequality (7.11) indicates that, in the conventional design, delay insertion is

required when:

tsk+ > tcq ~2tj-thold (7-34)

whereas, in the proposed design, delay insertion is required only when tsk > (n/2)Tj. It is

158

known that, in most digital systems, to meet the setup-time constraint, tcq « T] as can be

seen in inequality (7.9) for example. Therefore, it is concluded that there is a substantial

relaxation in timing budget to enable delay insertion in the proposed system. This

relaxation is also proportional to n/2. The clock period of the proposed design can be

estimated by using all the relevant relations, if \tsi\< (n/2)Ti,

Ti=max(((tcq+A+tSu +2tj+tsk)/n),

maxftsM + tMUX_D+tcq+tsu, tSEL + tmJXJ + tsu),(tcq + tsu~ tSM>,(tSM +tf,old~tcq)) (7.35)

and if nTi < |tsk| < (n/2)Ti

T,=max(((tcq+A +tSu +2tj+ts0/n), 2/n(A+thoid + 2tj + tcq),

max(tsM + tMUX_D+tcq + tSU, tSEL + tMUXJ + tsu),(tcq + tsU~tsM),(tsM +thold-tcq)) (7.36)

where, the first term is the generalized form of inequalites (7.25), (7.25a), and (7.20),

and the second, third, fourth, and fifth term in (7.36) are directly taken from inequalities

(7.31), (7.5), (7.3), and (7.4a), respectively. This equation can be compared to the similar

expression for conventional design which is obtained from inequality (7.9a) and (7.15)

and is as follows:

T, = max (tcq +A + 2tj + tSu + tsh A + 2tj + hold + t cq) (7.37)

The first term of equations (7.35), (7.36), and (7.37) contains tsk and it is likely in DSM

designs that this term would dominate. Hence, comparison of these first terms shows that

the proposed design allows terminating modules to run at faster frequencies.

Quantitatively, Ti can be tSk/n when tSk » tcq + A + 2tj + tsu, which is a realistic

condition in designs utilizing modern DSM technologies.

In comparison with the state-of-the-art design, which was explained when describing

relation (7.6), it is observed that only the Region-'B' components of the proposed design

159

require clock-skew information in this analysis. Therefore, it is concluded that the clock-

skew (up to the stated limits) is absorbed by the interfacing registers. Also, as the

maximum achievable frequency of terminating modules is obtained through the analysis

of Region A and C, it is concluded that their clock period is virtually independent of clock

skew. Consequently, our proposed design allows the terminating modules to run at higher

clock frequencies, which leads to achieving higher overall performance of the digital

system.

In comparison with conventional pipeline implementation we compared our design

approach with the state-of-the-art design shown in Fig. 7.3. The details of this

comparison are provided in the preceding section while explaining Region A and C.

Here, it is worth mentioning that in comparison to conventional pipelining approach our

proposed design allows the terminating modules to run faster, which allows more

throughput.

7.3 Utilization of the higher bandwidth concept, when m < n

Having studied the utilization of the higher bandwidth concept for m=n, in this

section, we develop a design scheme that allows communication when the modules are

working at different frequencies with their frequency ratio being an integer. In this study,

only communications between Fast-to-Slow modules are discussed, denoted as F-to-S

systems. Analyzing the constraints for the case of communications between Slow-to-Fast

(S-to-F) modules is simply a trivial extension of this analysis. S-to-F and F-to-S variants

of the proposed design can be applied to design parallel-to-serial and serial-to-parallel

160

data converters, respectively. These data converters are fundamental blocks for the design

of Serializers-Deserializers commonly known as SERDES. The hardware implementation

and expected waveform of the conventional design of this category is shown in

Figure 7.6, while the proposed design is depicted in Figure 7.7.

Timing Constraint in conventional designs: In conventional design schemes, if the

sender module is n times faster than the receiver module, a F-to-S system, then the

receiving module has to be designed such that it latches n data items at each receiving

end (slower) clock cycle edge. Mathematically, the frequency relationship between the

terminating modules can be represented as: Fs = nFg andfi„, = FR, and it implies that

Fs=J/Tj, FR=1/T2, and n=T2/T/. The hardware implementation and the expected

waveform of conventionally implemented F-to-S systems are shown in Figure 7.6a and

Figure 7.6b, respectively. A detailed analysis similar to the one presented for m = n in

Section 7.2 was applied to conventional F-to-S systems. The timing constraints were

obtained by assuming the data is traversing between IP TX to IP RX(X) via the

Demultiplexer in Figure 7.6a. The inequalities obtained for this design are summarized in

Table 7.3. For simplicity, it is assumed, in inequalities 7.38 to 7.44 in Table 7.3, that the

Demultiplexer has the same delay in both selector to data output and data input to data

output paths. Table 7.3 also shows the corresponding inequality obtained in Section 7.2

to illustrate the similarity of these relations.

Timing constraints in the proposed F-to-S system. This section performs the

mathematical analysis in the same way as was done for the proposed design, in the

preceding section, when m=n. Here, the frequency relationship between the terminating

modules can be represented as: Fs = KFR and fint = FR, and it implies that Fs=l/Ti,

161

FR=1/T2, and n=T2/Tj. In the proposed F-to-S system, it is considered that the slow

receiver module is able to latch the data only once in the entire slow cycle nTj, where as

the sender may send data at its every clock tick. Figure 7.7a and 7.7b respectively, show

the proposed interfacing mechanism and expected waveforms for the proposed F-to-S

system.

CLK1

1

D
E
M
U
L
T
I

P
L
E
X
E
R

H

IP RX(O)

3 IP RX(n -1)

Clock T ree Ne twork .
CON_CLK1 — - k ^ J i c O N _ C L K 2 .

CON_CLKt
(Sender Clcok) L

To avoid Negative Skew Ti > tcq + A + t DMUX + t su + 2 tj + |t st.ve|

LKilsrn at i at i mv at. i air

CON_CLI
(Receiver Clcok) *,

To avoid Positive Skew tcq + A + t DMUX > t hoid + 2 tj + |t sk+ve|

(b)

Figure 7.6. (a) Hardware implementation of F-to-S Conventional Design, (b) Waveform
Representation of conventional design, with faster sender module and slower receiver module (F-to-S

systems)

162

Data(nC)

o

pata(nC+1)

ita(n-1)

Receiver
State

machine

IPRX
(RSMCLKn/2)

Region C

CLK2

iU Ml fun m
n/2-1 (nk) (n/2)+1 n-1 +0 •(«) *(n/2*i)

ffl

(b)

Figure 7.7. (a) Hardware implementation of Interfacing registers for the n modules with integer
multiple frequencies. Faster sending module and slower receiving module (F-to-S system-II) (b)

Waveform representation of Interfacing registers for the n modules with integer multiple frequencies.
Faster sending module and slower receiving module (F-to-S system-II)

TABLE 7. 3. A Summary of timing constraints for conventional F-to-S system, along with the
corresponding inequalities of conventional design of Figure 7.4a, i.e. when the terminating modules have

same frequency

Setup time

constraint

Hold time

constraint

Delay insertion

limit

F-to-S conventional System shown in

Figure 7.6a

T, + tsk > tcq + t DMUX + tsu + 2 tj (7.38)

Tl >teq +tDMUX + 2tj +tSU - W (t s k >0)

(7.39)

Tl > tcq + toMUX + 2tj + tsu + tsk-

(t s k <0) (7.40)

tcq + A + t DMUX > thold + 2 tj + t sk

(7.41)

tcq + A + tDMUX > tSk+ + 2tj + thoia (tsk>0)

(7.42)

tcq+ A + tDMUX > - tsk- + 2tj + thold (tsk < 0)

(7.43)

A < T[+ tsk — 2t j - thorn — tcq - tDMUx

(7.44)

Conventional Design shown

in Figure 7.4a

T, + t s k>tc q +2tj + t s u

(7.7)

T, >tc a + 2tj + t s u - t s k + (7 .8)

T, >tcq + 2tj + tsu +tsk_

(7.9)

tcq > tsk + 2tj + thold

(7.10)

tcq+A > tsk+ + 2tj + thold (7.13)

tcq +A > - tsk_ + 2tj + thold

(7.14)

A<T,+ t s k - 2 t j - t s u "tcq .

(7.15)

Region A and B: Inspection of Figure 7.7a demonstrates that Region A and B of this

design are identical to Region A and B of Figure 7.2a. Hence, their timing constraints are

also identical. Table 7.3 shows that the conventional design shown in Figure 7.6 has

timing constraints of the same order (but a little higher due to the demultiplexer) as for

the conventional design shown in Figure 7.4. Due to the fact that Region B is identical

for the proposed design of both the cases, m = n and m < n, the skew absorption and

tolerance advantages (illustrated previously for m=n) are similar for both these proposed

designs.

Region C: Region C of Figure 7.7a is also comparable to Region C of Figure 7.2a, where

the multiplexer of Figure 7.2a is replaced by a wider register RRIM and IP RX of

Figure 7.2a is replaced by a wider IP RX in Figure 7.7a. Due to the different nature of IP

164

RX in this context (i.e. IP RX is slower than IP TX), a wider register is required to latch

the entire set of n*W_int data items concurrently at the receiving end (i.e. Region C).

This, in turn, introduces a worst-case timing constraint that the data transaction between

RR(X) and IP RX has to be completed within one (fast) clock cycle, Ti. To alleviate this

local timing constraint an intermediate register, RRIM is introduced. This register has

data port of width n/2 * W_int, which allows concurrent latching of half of the data items

from the RR(x) interfacing registers. Therefore, IP RX receives half the data (sent by

RR(X)) from RRIM and the other half directly from RR(x). Hence, RRIM retimed the

design and acts as a buffer stage to improve timing constraint between the RR(X) to IP

RX up to («/2j7V

This phenomenon is further elaborated in Figure 7.7a. This figure shows that RR(X)

receives the data sent by IP TX (via SR(X)) and latches it at RSMCLK(n/2) to

RSMCLK(n/2-l) clock edges. RRIM latches half of the data items, from RR(0) to

RR(n/2-l) at the next clock edge, RSMCLK(O). IP RX is clocked with RSMCLK(n/2) and

it latches data safely from all the RR(X) registers, with half of the data coming via RRIM.

The benefit of using RRIM is due to the fact that, for the duration when it receives the data

from RR(X) (that are latched at RSMCLK(n/2) to RSMCLK(n-l)), IP RX does not

receive any data. Therefore, if the internal delay of Region C exceeds duration Tj, then

RRIM acts as a buffer stage and allows IP RX to utilize clock edges for which the IP RX

does not receive any data. Hence, IP RX may latch the data as late as RSMCLK(n-l)

enabling the design to tolerate a local delay, to Region C, of n/2Ti, as stressed by the

arrows from RR(X) to IP RX in Figure 7.7b. This timing constraint is deterministic in

Region C as all these modules are clocked by CLK2 or its derivatives. The worst-case

165

timing constraint is described by the following inequality for the data path from RR(X) to

IP RX(X) via RRIM in Figure 7.7a:

(n/2)T, > max(tcqRR(X), ^ R R ^) + tsu + tSM (7.45)

where tcqRR(x) and tcqRRiM are the clock-to-g delay of RR(X) and RRIM, respectively.

Inequality (7.45), along with equalities (7.2) and (7.3) obtained for region A in the

preceding section, indicates that the clock frequency of the terminating modules, IP TX

and IP RX, are still independent of the clock skew. IP RX may latch the data at any clock

phase edge from RSMCLK(n/2) to RSMCLK(n-l). This design latches the data without

slowing down the fast sender module.

A similar design may be utilized for S-to-F interface. We may draw parallels from F-

to-S design for S-to-F designs, such as Region B should be identical, and Region A and

Region C should be swapped. Thus, the analysis performed for F-to-S system may be

extended for S-to-F system. Due to its similar nature, this is not performed separately in

this work. However, it is safe to say that the major advantage of skew tolerance is almost

identical to what is shown for F-to-S systems..

7.4 Summary of the Advantages of the Proposed Design:

This section summarizes the advantages of the proposed design over state-of-the-art

design schemes, such as shown in Figure 7.3, and conventional designs, such as shown in

Figure 7.4 and Figure 7.6. This summary shows that the proposed design achieves skew

tolerance and delay insertion relaxation while averting the drawbacks associated with

state-of-the-art designs.

166

Skew Tolerance is increased — Inequalities (7.20) and (7.25) indicate that the skew

tolerance is increased in the proposed design in proportion to the number of interfacing

registers.

Delay Insertion limit is increased - Relation (7.32) indicates that the limit of delay

insertion, to cope with the hold time constraint, is proportional to n/2. This is a substantial

improvement compared to conventional design requirements where clock skew directly

limits the delay insertion capability.

The above mentioned advantages are achieved by some of the state-of-the-art designs

as well. However, our design not only provides these benefits but it also avoids the

following shortcomings of the state-of-the-art designs:

The terminating-module timing margins are virtually independent of the clock skew -

As seen in section 7.2 and 7.3, inequalities (7.3) to (7.5), and (7.46) show that 7/, the

terminating-IP time period, is independent of the clock skew. A closer inspection

identifies that the relaxation in Ti is directly proportional to the number of registers in

each stage.

No possibility of clock-data delay mismatch - No clock signal needs to travel the entire

length of the data path. Therefore, there is no possibility of clock-data delay mismatch,

which is a major performance bottleneck in state-of-the-art source synchronous designs

[80].

A faster module can communicate with a slower module without compromising the

frequency of faster module. On the other hand, the source synchronous state-of-the-art

designs, [76], [23], use rate multipliers that limit the frequency of the interface to be

equal to or slower than the slowest communicating module.

167

Our work also provides a complete mathematical model for all the different possible

scenarios in a digital system while crossing the clock domains. This is beneficial in

implementing such designs using CAD synthesis tools based on standard cells.

7.5 Simulation Setup and Results

In order to verify the validity of the proposed solution, detailed design and simulations

were performed for the case explained in the section 7.2, where two terminating modules

are communicating at the same frequency. Gate level synthesis, simulations, and static

timing analysis are performed for 0.18 micron TSMC CMOS process technology, using

Synopsys' Design Compiler (DC) [99], and Prime Time for static timing analysis [100].

This section describes the assumptions and simulation setup, along with the results and

their comparison with the conventional synchronous designs.

Two different sub-cases are simulated. The first sub-case simulates the hardware

implementation of the structure shown in Figure 7.4a, which is a conventional design and

does not contain any interfacing registers. The other sub-case simulates an example of the

proposed hardware implementation shown in Figure 7.2a. This simulated design example

has four interfacing registers at each terminating end.

It can be seen in Figure 7.8 that, for a given skew value, under unidirectional

communication, and when the system is subject to positive skew only, the proposed design

with four interfacing registers at each stage can communicate at a higher frequency than

the conventional design. The proposed solution with four interfacing registers at each

terminating end is called the Quadruple Bus Width (QBW) solution.

168

600 -

N 500 H
X
f 400 -

o 300
c
g- 200-
0)

£ 100 -

0

»-__

7.5

—•— QBW •-»•— Conxentional Design

* m j »

i l l !

11.5 15.5 10.5 23.5

Positive Skew in Nano Seconds

n
1

27.5

Figure 7.8. Simulation results showing effect on frequency with the increase in positive skew for
unidirectional communication (QBW and Conventional Designs)

Initially, to keep the speed of terminating modules within practical limits, it is

observed, from gate level simulations, that a very simple circuit, the TFF (Toggle Flip

Flop), can operate at a maximum frequency of approximately 500 MHz with the 0.18

micron TSMC CMOS process technology. It is possible to obtain higher frequency using

custom design for the same circuit using the same technology but, as this would digress

from the goal of our research, we considered the maximum frequency for this technology

synthesized using standard design library for Design Compiler. In Figure 7.8, it is shown

that the conventional design can run at up to 125 MHz for a 7.5 nsec skew, whereas the

proposed design allows the terminating modules to work at a frequency as high as

500 MtLz for the same skew. This improvement in positive skew tolerance is in

accordance with the analytical study performed in section 7.2. Here the skew is bounded

by, n/2Ti < \tsk\ < nTj and the simulation results are within the limit provided by

inequality (7.24).

The second simulation result, shown in Figure 7.9, addresses the timing constraints

associated with unidirectional systems that are subject to a negative skew only. The

169

simulation results show that, with a 3.3 nsec negative skew, a conventional design can

work at a maximum frequency of 250 MHz, while the proposed design for the same skew

can work at double the frequency, i.e. 500 MHz. This means QBW works twice as fast

(n/2 = 4/2) as the conventional design for the same skew budget. This is in agreement with

the analytical results obtained for the proposed design when \tsk\ < (n/2)Tj and expressed

by inequality (7.20).

600

500

400

200 J

100

a s ^

3.3

- • — QBW —is— Conventional Design

5.3 7.3 9.3 11.3

Negative Skew in Nano Seconds

Figure 7.9. Simulation results showing effect on frequency with the increase in positive skew for
unidirectional communication. (QBW and Conventional Designs)

Figure 7.10 shows a third case where bi-directional communications are simulated

under the assumption that skew orientation is not known. Data points for conventional

design are shown with the squares. Data points for QBW design are represented by

diamonds. The simulation results in Figure 7.10 for the zero clock cycle latency case

show, for a skew of 3.3 nsec, that the terminating modules of the proposed design

communicate at 500 MHz, as compared to 142 MHz for conventional design under the

170

same context. It can be noticed that 3.3 nsec is less than (n/2)Tj; hence, the obtained

frequency values are in compliance with inequality (7.9a) for the conventional design and

with inequality (7.20) for the proposed design. Similarly, the proposed design tolerates

about 13.3 nsec of skew at the frequency of 142 MHz. This result is still within the limit of

(n/2)Ti duration, in compliance with the theory, and also shows a skew tolerance of

approximately 4 times than its conventional counterpart running at the same frequency.

600

500 -
N

S 400 -
c
g> 300
c
9 §• 200-
2
"" 100

n

«

—•—QBW (Bi-oriented Skew) ~~m~~ Comentional Desig (Bi-oriented Skew)

\
N.

^ ^ ^ ^

^— îr̂ ^̂
3.3 5.3 7.3 9.3 11.3 13.3

Bi-oriented Skew in Nano Seconds

Figure 7.10. Bi-Oriented Skew vs. Frequency for Case A (QBW and Conventional Designs)

7.6 Prototype Implementation and Back-Annotated

Simulation Results

Prototypes of the proposed designs were implemented using a Virtex-II Pro-based

FPGA board from Xilinx. A gate-level HDL description was written for the proposed

design shown in Figure 7.2a. In this prototype implementation, a 3-bit binary counter is

171

the (data generating) sender module, along with two stages of four interfacing registers

and the receiver unit comprises a 4-to-l Multiplexer and a receiver register. Figure 7.11

(and Figure 7.12) shows the back-annotated simulation results of the design where the

terminating modules are working at 250 MHz and a negative (and positive, respectively)

clock skew of 12 ns is applied (which is more than (n/2)T)). Both design parameters are

limited by the FPGA technology used. The Virtex-II Pro FPGA XC2VP30-7FF896 can

run at a maximum clock frequency of 250 MHz under the slow model and at 320 MHz

under the fast model, when an internal clock of 100 MHz is used to synthesize frequencies

through Digital Clock Managers (DCM) [101]. The 12-ns skew used is close to the

maximum delay that can be introduced by this FPGA technology [101]. Outputs 1 to 4 in

Figure 7.11 and Figure 7.12 correspond to data output from SR(X) and similarly outputs 5

to 8 represent data output from RR(X). Outputcounter and Systemoutput represent data

of IP TX and IP RX modules, respectively. Also, CLK FX and CLKFX2 represent CLK1

and CLK2 respectively.

Similarly, Figure 7.13 and Figure 7.14 show the back-annotated simulation waveforms

of the proposed F-to-S design described in Figure 7.7a under the assumption that the skew

can be negative or positive, respectively. The signal names in Figures 7.13 and 7.14 are

almost identical to those in Figures 7.11 and 7.12, with few additions and exceptions:

IMoutputl and IMoutput2 represent data coming out of RRIM while the wider bus is used

for IP RX, therefore the width of systemoutput is four times that of the sender, which is

denoted as Systemoutput(X) in Figures 7.13 and 7.14. It can be seen, from the

waveforms, that the sender module is working at 250 MHz and that the skew, in either

orientation, is 12 ns. Following the data path from the counter (IP TX in Figure 7.7a) to

172

the Systemoutput (IP RX in Figure 7.7a), it is concluded that the sender data is

completely and safely latched at the receiver.

CLKFX

CLKFX_2

8» output_counter_sig(2:0)

t> output! (2:0)

J> output2(2:0)

l> oulput3(2:0)

i> output4(2:0>

E> output5(2:0)

B> output6(2:0)

t» output7(2:0)

»• output8(2:0)

is* Syslem_output(2:0)

400ns 450 ns soons

.:]]:i:r. [. ; :D ; ; : nia i iij• r^] i :oi : : ;JD IJ Olio:iiJiiuuI:i:i:::
0 1 23^567 0l||23|j45|67Ji01 23p 5||67||D l|M||4.5p;7||o[l|fep[[4l5||67 0 1

0 1 5 1] 5 1 . 5 1 5 1 5 I

0 2 [6 2 | 6 2 | 6 | 2 | 6 | 2 6

0 | 3 7 3 [7 3 7 3 7 3 | 7

0 4 [G | 4 J O | 4 | Q 4 [0 J 4 i

0 l | 5 1 | 5 l l J 5 | l l 5 1

0 2 6 2 6 2 6 | 2 ! 6 | 2

0 3 7 3 7 3 | 7 | 3 | 7 3

0 4 0 4 0 4 | 0 4 0 4

Q 1 2 3 45 67 0 12 3 4 5[6|7|0h 2345670 1 pi 3456 70 1 2(3|.

Figure 7.11. Back-Annotated Simulation Results using Xilinx Virtex II-Pro, for the proposed design
shown in Figure7.3a, terminating module working at 250 MHz. and negative skew of 10 ns (> (n/2)Tl)

40ons 500 ns

C L K F X in -; HIIMMiMl;iiHi j ; • IjI!!T;i;j11:[|!; Mlini;i:l|!lll!III|[|IIIH!|l!i!l!IHII|;ill!l[! nll-lii
C L K F X _ 2 l l l l i l l l l ; l l l ! l l l ! l l i ' l ! l ! i ! ' l ! i!l!!l ; i l i l l l i l lMl l i i l l i i l l i l i l ' l l l l i l l l i ! ! IP!lm!il l| l l l | | l l | i | j l l l l i |

f output_counter_sig(2:0) j 0 1 j tf 5 T | | l j s| s| $ l[jsj |>j n |1|@[Nlj7] H H lB I 7 ! N § N 3 1 N I5! §. l1f

»* output1(2:0)

s> output2(2:0)

la- output3(2:0)

• output4(2:0)

0 I 1 5 1 5 1 5 ' 1 : 5 1 5 | 1 5 1 : 5 ,

0 2 J 6 2 6 2 6 2 J 6 2 6 2 | 6 2 6

0 3 [7 3 7 3 ! 7 3 7 ; 3 7 3 7 3 7

0 i 4 i 0 i 4 I 0 ! 4 0 (4 0 4 ! G 4 0 4 ' <

s» output5(2:0)

»• output6(2:0)

s> output7(2:0)

*• output8(2:0)

•• System_output(2:0)

0 M ; 5 : l ! 5 ! l | 5 ! l ! 5 M ! 5 M ! 5 j 1 i

0 2 6 ' 2 6 2 6 | 2 6 Z ' 6 '> 2 6 2 ;

0 J 3 7 3 | 7 3 7 3 | 7 3 7 j 3 7 3

0 4 ' 0 4 0 i 4 0 4 | 0 ' 4 0 4 * 0 <

0 |lb3J45|s7D12^567joil|23J4Bfe|7f312^J4j5J670lJ23^5&7[012345[s7Joi23

Figure 7.12. Back-Annotated Simulation Results using Xilinx Virtex II-Pro, for the proposed design
shown in Figure7.3a, with terminating module working at 250 MHz. and a positive skew of 10 ns (>

(n/2)T,)

173

35ons 400ns 450ns soon

CLK1 [11 j"l ! I ij lj |j J ij I Jij Ij [: [j M j Ij It J LI i j I j (j I j I I ,.| I.I!... I j Li 11 1.1!..
Rev end reference CLK | j I j I I I I ; j 11 \\ | j 11 | j | II

!«» ou tpu t_cour r teus ig (2 :0) i 0 J1 \z |3 | - * [s J6 j ^ J o 11 [2J3 | 4 { 5 J 6 J 7 [o i 1 J2 [3 [4 (5 ! 6 J7 | o | 1 [2 (s J4 [s J 6 |7 [o j 1 [2 |

s> output l (2:0) I O | 1 | 5 | 1] 5 I 1 | S i 1 J 5 j 1 ;

0 | 2 | s | 2 | e | 2 | 6 | 2 | e j >

0 | 3 ! 7 l 3 l 7 J 3 J 7 J 3 | 7 :
0 | 4 0 ; 4 | o l 4 | o | 4 | o :

0 1 J 5 1 I 5 1 | 5 1 j 5 :

O { 2 i 6 | 2 ! 6 J 2 J 6 J 2 j 6

O I 3 i 7 J 3 I 7 I 3 i 7 I 3] : •
O J 4 | o i 4 | o J 4 J O | 4 '

0 I i i s] - s i s j i l s l - f r

O J 2 ; 6 | 2 | 6 ! 2 | e ! 2 i

0 l | 5 I I [s [l j s j l '

0 2 I 6 2 6 I 2 6 [2

O j 3 | 7 [3 [T- j 3 f 7 l 3 ^
0 i 4 | 0 ! 4 | 0 J 4 l 0 [4

B> output2(2:0)

• » • output3(2:0)

*• output4(2:0)

s> output5(2:0)

ft* output6(2:0)

9- output7(2.0)

«<- output8(2:0)

»- IMoutput l (2:0)

8» IMoutput2(2:0)

s» System_output1(2:0)

B> System_putput2(2:0)

• • System_output3(2:0)

s»- System_output4{2:0)

CLK2

Figure 7.13. Back-Annotated Simulation Results using Xilinx Virtex II-Pro, for the proposed design
shown in Figure7.7a, with terminating module working at 250 MHz. and a negative skew of 10 ns (>

(n/2)Tl)

2 3 0 0 n s 2 3 5 0 n s

CLKI I •l: I . .MI[. i ! . . ! l . lLl! l ; . : I .M1 | j ?] M M (l [j IM JI j !i :1 IJ U L - L : M_: M l i j j l j ! I h l n i i . i L ;
Rcvref. clock _]J U J j i UAJJH J j JAi 1, J j j i A i l J Aiilj~. WJiU.U V'iiLLiJi.UjJiliil.:.,J.jJ.iiLiii:.:.
ou1put^courrter__sig(2:0) 4 s'e17JO11 la j314(5|e|7'|o| 1 [2 jsUisle W o h [2J3I4I5Is[7-|o[l (2fsf^|sieJT-lol 1 |2J3[4-|S |S

if outputl (2:0)

s- output2(2:0)

«*• output3(2:0)

£»• output4(2:0)

»»• outputS(2:0)

5»- o u t p u t 6 (2 : 0)

»'- o u t p u t 7 (2 : 0)

B» o u t p u t 8 < 2 : 0)

B» I M o u t p u t l (2 : 0)

E* I M o u t p u t 2 (2 : 0)

S» S y s t e m _ _ o u t p u t 1 { 2 : 0)

&• S y s t e m _ o u t p u t 2 (2 ; 0)

£> S y s t e m . . o u t p u t 3 (2 : 0)

SB" Sys1ern_output4(2:0)

CLK2

2 J 7 [3 j 7 ! 3 J 7 - | 3 | 7 | 3 i 7 I 3 j

3 [o | 4 i o ; 4 | o | . 4 ! 0 J 4 j 0 | 4 i

0 | s i l [5 ; l | 5 | l | 5 l l | 5 ! l l 5 !

i | e ! 2 [e [2 i e ! 2 | e J 2 i e l 2 i 6 !
O [7 i 3 i 7 | 3 ! 7 | 3 J 7 | 3 j 7 | 3

3 | o | 4 i O i 4 i o | 4 i o | 4 J o j

2] s | l | s | - ! | 5 | l | s | l |

1 | e ! 2 [6 i 2 | e [2 | 6 ! 2 | e l 2 :

4 [o | 7 | 3 i 7 | 3 i 7 ! 3 i 7 ; 3 i 7

7 i 3 | o | 4 ! o i 4 | o ! 4 i o l 4 i o

4 | o [7 i 3 | 7 i 3 | 7 | 3 | 7 | 3

7 ! 3 l o i 4 i o i 4 l o ! 4] o i 4

2 [5 j 1 5 | \ 5 1 S | 1 I 5

t | e i 2 | e ! 2 l e | 2 | e i 2 | 6

Figure 7.14. Back-Annotated Simulation Results using Xilinx Virtex II-Pro, for the proposed design
shown in Figure7.7a, with terminating module working at 250 MHz. and a positive skew of 10 ns (>

(n/2)Tl)

174

Due to the limited number of channels that can be shown on the oscilloscope that was

used for this experiment, all the data signals cannot be shown concurrently. The design

chosen for demonstration purposes is shown in Figure 7.7a where the output module is

slowed down to one fourth of the sender frequency. Figure 7.15 shows a representative

waveform of the prototype implementation. This figure demonstrates the case when the

sender module is working at 350 MHz, which corresponds to a time period of 2.67 ns.

Note that, although the frequency limit according the manual is 320 MHz [101], in

practice it is seen that a frequency of 350 MHz is achieved. This may be attributed to the

fact that the system designed in this work does not exactly match the loading criterion and

the process parameters for which the value is reported in the design manual. As it is of

lesser significance for our design goal, we did not investigate further this issue.

The skew applied to this design is 12 ns in either orientation. This skew was chosen to

observe the effect of skew of a magnitude higher than (n/2)Tj on the proposed skew

tolerant design. Two separate tests are performed for positive and negative skews,

applying the same skew.

The three-bit binary counter counts up to 7 and then resets to 0. Each set of three bits is

called a count value below. Therefore, the 3-bit counter has a total of 8 possible count

values, from 000 to 111. The time to complete the counting from 000 to 111 and back to

000 is called a count cycle. The top waveform of Figure 7.15 represents the MSB (most

significant bit) of the count values from one of the four sending-end interfacing registers.

The second waveform from the top shows the MSB of the corresponding IP RX register at

the receiving end. As the three-bit counter is working four times faster than the

corresponding receiver, and since, as explained above, each count cycle is performed in

175

eight fast clock cycles, therefore, each receiving-end register can hold only two of the

eight possible count values in one count cycle. Each count value in the receiving-end

register lasts for four sending-end (faster) clock cycles. Therefore, the fastest transition

that can be seen at the receiver end is one fourth of the faster clock cycle and is visible at

the MSB (and this is why only that bit is shown). Note, however, that it has been observed

through the FPGA implementation, that the receiver register receives all the count values.

Figures 7.15 to 7.18 show the output of the first-stage interfacing registers and compare

them with the values latched in corresponding IP RX register. This experiment not only

demonstrates that the correct functionality is obtained at the maximum frequency of the

FPGA used, but it also shows that the 12-ns clock-skew is tolerated. It is not possible to

distinguish, in these waveforms, whether the skew is positive or negative (only the phase

difference is shown) but the experiment was performed for both types of skew. The

decreasing phase difference of IP RX with each of the interfacing register validates the

functionality. The frequency of the analog waveform is measured to be 43.6 MHz, which

is very close to (350/8) MHz. The delay between the two MSB waveforms ranges from 10

to 20 ns, depending on the four different phases used to clock the interfacing registers.

Hence, overall, this implementation shows that the proposed design scheme successfully

retrieves all the data elements sent by the four-times faster sender module, along with a

phase shift of more than (n/2)Tj.

176

1 l.OOV/ 2 l.OOV/ , O.O . Si-CX)'./ Aula # 2 l . l ! w

Figure 7.15. Waveform of a prototype FPGA implementation of the proposed F-to-S system: Signal
at MSB of Output 1 received by MSB of Systemoutputl

Figure 7.16. Waveform of a prototype FPGA implementation of the proposed F-to-S system: Signal at
MSB of Output 2 received by MSB of System_output2

1 l.OOW 2 i .OOv/ r O.O& 5 .00 . ? / A u t o JF 2 1.1 i v

.-. . A Y C 2 > , = , - 3 . 8 E S Y ,

Figure 7.17. Waveform of a prototype FPGA implementation of the proposed F-to-S system: Signal at
MSB of Output 3 received by MSB of System_output3

177

MSB 0|itput4
A X = «J.«JOns
i / A X - 1 0 1 . 0 1 M H z
A Y C 2) - J.02'JV

Figure 7.18. Waveform of a prototype implementation on FPGA of the proposed F-to-S system:
Signal at MSB of Output 4 received by MSB of System_output4

7.7 Summary And Discussions

In this chapter, two different cases of point-to-point communications for MCDs are

addressed: first, when the terminating modules communicate at the same frequency and,

second, for fast-to-slow systems. The timing constraints for all the possible cases of

unidirectional and bi-directional communications in the proposed solutions have been

mathematically established. It is observed that skew tolerance increases linearly with the

number of interfacing registers, which is a classical result for such interfacing methods.

The proposed technique is insensitive to clock-data delay mismatches. Also, it is

proven mathematically (and supported with simulations and through a prototype

implementation) that the clock skew is absorbed in the interfacing registers. It is also

validated through simulations that the terminating modules clock frequency limitation is

independent of the clock skew (at a hardware cost that grows with the length of the

tolerated skew).

Gate level simulations were performed for different clock frequencies using the TSMC

180nm technology library. These results are in full compliance with the analytical results.

178

Comparison with the conventional design shows that, a tolerance in skew of up to n/2 or n

clock cycles is achieved when the clock skew magnitude \tsi\ is <= (nl2)Ti and when it is

between (nl2)Tj to nTj respectively. Prototype implementations of the proposed systems

were also done using a Virtex-II Pro FPGA from Xilinx. Back-annotated simulation

results confirm the validity of the proposed design with the terminating module working at

250 MHz and subject to skew of 12 ns (> (n/2)Tf) in either orientation. Hardware

implementation of a fast-to-slow system verifies the proper functionality of the design

under a timing (skew) constraint of 12 ns (> (n/2)T/), where the sender module works at

350 MHz and the frequency at the receiver module is 87.5 MHz. A natural extension of

this design is to provide an interface for complex frequency ratios between the

communicating modules. In the next chapter details of the solution for the communicating

modules that have a frequency ratio of coprime number is described.

179

Chapter 8: Skew Tolerant Synchronous
Interface for Modules Having Rational
Frequency Ratio of Coprime Numbers

In the preceding chapter, an interfacing methodology was described that allows skew

tolerant communications between different modules in multiple clock domains (MCD)

running at the same frequency (or integer multiple frequencies) and non-aligned phases.

However, it is often the case that the two communicating modules have frequencies such

that their ratio is a rational number and that they are coprime. Another issue, which has

recently gained attention, is the non-uniform delays across chips in modern DSM era,

which is mainly caused by the thermal variations observed at run time due to the dynamic

changes in the workload in chips that consist of multiple processors within a SoC called

multiprocessor Systems on Chips (MPSoCs) [93]. In this chapter, the skew tolerant

design, presented in the preceding chapter, is extended for such systems that have rational

ratio frequencies (of coprime numbers) between the module clocks. The methods

proposed in this chapter utilize a similar concept of phase adjustment, as was used in the

preceding chapter, to tolerate clock skew. However, for the case of rational ratios of

coprime numbers, the clock-scheduling mechanism is more involved and requires a clock-

scheduling algorithm. The first section of this chapter discusses this new static clock-

scheduling and its implementation. Furthermore, appropriate measures are also required to

180

manage the run time variations in clock phases. The second section of this chapter

elaborates the dynamic clock-scheduling algorithm and its implementation to handle run

time variations in clock phases.

The general assumptions are similar to the ones considered in the preceding chapter,

i.e. the clocks for the communicating modules are derived from a common source and the

frequency ratio between the communicating modules is a rational ratio of two coprime

numbers.

8.1 Static Clock-scheduling Methodology

This section discusses the static clock-scheduling algorithm and a complete

methodology which describes communication between the modules working at rational

frequencies (ratio of coprime numbers) while the maximum phase difference is known in

advance.

8.1.1 What are the Limitations of Existing Designs for Rational

Clocking?

In this section we emphasized the challenges faced by the designers to make robust

interfaces for modules having rational frequency ratio of coprime numbers. Conventional

design schemes, as discussed in section 2.2, have limitations in accommodating dynamic

changes in the timing behaviour of the system. Also most of the high performance

conventional solutions suffer from data signal delay mismatch issues due to the

181

introduction of strobe signal. On the other hand, other solutions that resort on FIFO and

synchronization mechanism for control signals introduce long latency and fail to follow

conventional design flow. Furthermore in high performance techniques the maximum

achievable clock period of the IP modules is dependent upon the clock skew. Moreover,

along with these drawbacks, all the above solutions also have one common limitation:

their frequency of data transfer cannot exceed the frequency of the slowest module in the

interface. Hence these drawbacks instigated need of a high performance design which can

be hardware efficient while keeping the interfacing scheme skew tolerant and allow faster

module to communicate slower module at the pace of faster module.

As was the case in preceding chapter, the proposed design does not involve a strobe

signal; rather, based on a priori timing information, phases of the interfacing registers are

adjusted. The delay mismatch problem is resolved by avoiding the use of a strobe signal.

Using a cyclic clock-scheduling scheme and a wider data bus, this technique allows the

faster module (among the interacting modules) to send or receive data at its own data rate.

The proposed technique introduces interfacing registers that absorb the clock skew, hence

it allows the maximum clock period of the IPs to be independent (virtually) of the clock

skew at the expense of some hardware. It also uses multiple phases of the clocks to

manage bandwidth in a manner that is similar to one of previous work [94].

8.1.2 Skew Tolerant Design for Rational Clocking

This section provides an overview of the proposed skew tolerant design system and the

algorithm for clock-scheduling, subsequent sections deals with the details of different

aspects of the proposed design. Figure 8.1 shows an implementation of the proposed

182

design. This design exploits knowledge of the a priori timing information regarding the

clock frequency ratio of the communicating modules. The system is composed of a sender

module, a receiver module, two sets of interfacing registers, and control units for those

registers. The interfacing registers are in two groups: one that is controlled using the

sender clock (or clocks related to the sender clock) and one controlled by the receiver

clock (or clocks related to the receiver clock). Using two groups allows absorbing the

phase difference between the two clocks, thus providing clock skew tolerance.

Region A

j IPTX
I Time Period = 'N'

CLK1

Sender
Control

Unit
(SCU)

Figure 8.1.

-Region B-
RegionC

SRI t : RR1

SR2 n>RR2

H SR3
M

RR3

SR(n©RR(nK

RX1

RX2

RX3

RR(n)

x

X
CL
n

^
II

o
* L _

<D
0 .
0
E
I -

Receiver
Control Unit

(RCU)

O
. r - .

Block Level Description of the Proposed Hardware Design

As was the case in the previous chapter, for ease of analysis, Figure 8.1 is divided into

three regions. These regions are defined based on their clock source. Region A only

involves components that are clocked by the sender clock or CLK1. Similarly, region C

consists of components that are clocked by the receiver clock, CLK2, or the clock that is

183

derived from CLK2. Region B comprises interfacing registers that are driven by clocks

from each clock source, CLK1 and CLK2.

8.1.3 Algorithm to Generate Cyclic Phase Mapping

Since the frequencies of the two modules are related by the ratio of two co-prime

numbers, their exact phase mapping does not follow a simple regular pattern and thus, it is

difficult (if not impossible) to come up with a closed form mathematical relation for

phases in the two clock domains. To resolve such an issue, usually an algorithmic design

approach is utilized. Hence, in this section, a complete set of rules is provided, in an

algorithmic form, to generate a cyclic phase mapping between the sender and receiver

clock phases that allows data transfers to occur at the right pace for both the sender and

the receiver.

Without loss of generality, it is assumed that the sender and receiver clocks, CLK1 and

CLK2, have frequencies that are co-prime of each other. Otherwise, this frequency ratio is

simplified until the quotient is the ratio of two co-prime numbers and the simplification

factor can be used to scale the solution. The time period of CLK1 is N and that of CLK2 is

M. For brevity, the case where M > N is studied, therefore data is transferred from a fast

module to a slow module. Analysis for the converse case is a trivial extension of this

work. In addition, worst-case flow control is assumed, i.e. the sender sends data at every

clock cycle. Any deviation from this flow control assumption will lead to a more relaxed

hardware implementation. It is also assumed that the clock can be divided into n pulses

where n = ceil(M/N). Finally, it is assumed that a common reset signal initiates the

184

communication between the modules. Steps of the proposed phase mapping algorithm are

elaborated as follows:

Step 1: Let, n = ceil(M/N).

Step 2: The receiver control circuit provides n different phases of the slow clock.

The delay between two successive phases is almost M/n.

Step 3: Because M and TV are co-prime numbers, two clock edges. coincide again

after MN time units. In order to allow the (fast) sender to send data at every

clock edge, a clock-scheduling technique is required. This technique makes

sure that the clock-scheduling is periodic after every MN time units. The

following PHA and PHB sets denote the clock edge instances for CLK1

and n phases of CLK2, respectively,

PHA = {0, N, 2N, ... (M-l) N); and similarly, the receiving clock edges are,

PHB = {PHB1, PHB2, ... PHB"}, where elements of PHB are:

PHB1 = {[0], [MJ, [2MJ, ... [(N-J)MJ}

PHB2 = {[M/n], [M+M/n], ... [(N-l)M + M/n]}

and so on until PHB", which is defined as follows,

PHB"={[(n-l)M/n],[M+(n-l)M/n],...f(N-l)M+(n-l)M/n]j

Step 4: Map the clock edges of set PHA onto edges of PHB so that data associated

with each sending-end clock edge is safely latched by the mapped edge of

one of the n receiver-end clock phases, exploiting the a priori timing

information to meet the minimum required delay.

A total of M CLK1 pulses must be mapped onto Nn slow phases of the clock. This

proposed clock-scheduling algorithm accommodates skew and various other timing non-

185

idealities, associated with DSM processing technologies, by leveraging the worst-case a

priori timing information of the system. In order to keep this design scheme periodic, the

scheduling scheme is repeated after MN clock cycles. The scheduling technique is further

elaborated with an example in the next section.

8.1.4 Practical Example of Clock-scheduling Utilizing the Proposed

Algorithm

Suppose the sender module is fast and is working with a clock period equal to five time

units (N = 5), and the receiver module is working with a clock period equal to eleven time

units (M = 11). Following Step 1 of the algorithm, n = ceil(M/N) = 3. Step 2 suggests that

three phases of CLK2 are required, with approximately M/n = 3.66 time units. Step 3

defines the two sets of clock edges. Following, the proposed technique used to generate set

PHA and PHB in the preceding section, the two sets of clock edges for the given example

are:

PHA = {0, 5, 10, 15, 20. 25, 30, 35, 40, 45, 50, 55} and

PHB= {PHB1, PHB2, PHB3} as n = 3;

PHB1 = {0,11,22,33,44}

PHB2= {3.66, 14.66, 25.66, 36.66,47.66}

PHB3= {7.32, 18.32, 29.32, 40.32, 51.32}

Following step 4, a mapping of the sender and receiver clock edges is performed. The

proposed method utilizes the a priori timing information to decide upon mapping clock

edges. The following criteria are required for safe data latching:

186

1) The receiver mapped clock edge must happen later than the corresponding sender

mapped clock edge.

2) Due to timing discrepancies, phase mismatches and various non-idealities in DSM

processing technologies, it is necessary to keep a minimum distance between the

mapped values. This minimum distance is dependent on the minimum tolerable

delay between the sender and receiver clock edges, further elaborated in the

explanations of equation (8.1).

Figure 8.2 shows the mapping of clock edges for two different delay tolerances for this

particular example. PHB1, PHB2 and PHB3 represent three different phases of the receiver-

end clock (represented by B1, B2, and B3 in Figure 8.2). The initial delay, required to latch

the 0th pulse of sender clock, is termed as the offset in Figure 8.2. The minimum offset

value increases with the required delay tolerance. As shown in Figure 8.2, those timing

offsets are, respectively, 3.66 time units and 7.32 time units for minimum delay tolerances

of 2 time units and 4 time units. Note that for all related phases identified by arrows, the

time difference between the respective receiver and sender is larger than the specified

delay tolerance. Because M sending-end clock edges can be mapped to Nn receiving-end

clock phase edges, there are some redundant clock edges. The number of redundant clock

edges is Nn - M. On the timing axis in Figure 8.2, there are (15 - 11) = 4 such redundant

clock phase edges at the receiving clock, indicated by ovals.

187

Offset
B 1 B1

B2 B3 i ^ B2 B3 I B2 B

3^—ASH ^nyu. l ia Hir.32 22 x§i§/29

B2 BJ B2 BJ

0 3 j » ' j 2 \ T T > / 1 V b B 1 ° a 2 22 WeSS/29.32 33 W6gf40.32 44 47.66 V j j * / SB.fcib

/ / / / / / /

Figure 8.2. (a) Clock-scheduling with Minimum Delay tolerance of 2 time units (b) and of 4 time
units

8.1.5 Hardware Implementation

As previously explained, Figure 8.1 shows the block level representation of a hardware

implementation of such designs. This section further elaborates on each individual block.

Region A

Region A of the hardware consists of the transmitting-end IP module, which has a clock

period of N time units, Sending-end Registers, which are denoted SR(X), and a Sender

Control Unit (SCU).

Sender Control Unit (SCU): Figure 8.3 shows an expanded view of the SCU. It contains

three units. A one-hot state machine generates n clock pulses. These clock pulses pass

188

through a switch to SR(X). Based on the static scheduling described in the preceding

section, this switch connects the clock pulses, from the one-hot state machine to the

appropriate SR(X). The control bits for the switch are generated from a second state

machine. This state machine exploits the scheduling knowledge of the system and changes

the switch outputs as desired.

O n e H o t
S t a t e

M a c h i n e

- A 1 -

A 2 -

A n -

SW I T C H

C o n t r o l bi t

- S e n d e r C l o c k -

i§4^

- C L K to S R 1 •

- C L K to S R 2 -

- C L K to S R (n) -

S e n d e r
S t a t e

M a c h ine
(S S M)

Figure 8.3. Sender Control Unit (SCU): Hardware Realization

SR(X): Region A consists of n sending-end interfacing registers. These registers are

clocked by the SCU based on the static scheduling technique described in the preceding

section.

Region C

Region C of the hardware implementation shown in Figure 8.1 consists of the receiving-

end IP module (IP RX), the Receiver Control Unit (RCU), the Receiving-end interfacing

Registers RR(X), and Receiver-end registers, RX(X).

189

Receiver Control Unit (RCU): This section illustrates the hardware realization of the

Receiver Control Unit (RCU), which is shown in Figure 8.4. The clock phase generator

produces n different phases of the receiver clock, CLK2, which has a clock period Mwith

M>N. The switch unit selects one of the n phases of CLK2 for each of the RR(X). The

phase selection depends on the control signals. These control signals are generated from a

Receiver State Machine (RSM) based on the clock-scheduling.

RR(X): Similar to region A, region C consists of n registers RR(X). They are clocked by

the RCU as shown in Figure 8.1.

RX(X): There are n Receiving-end registers and they are denoted RX(X). These registers

can be clocked by one of the phases from the set of clock phases 'PHB'. During each MN

macro cycle, a total of N occurrences of a particular phase are possible. Each occurrence

should latch only the valid data available since the last occurrence of the phase.

-CLKtoRRI

•CLK to RR2

•CLK to RR(n

p n

n2

n1

I \

H

er
at

or

C
lo

ck
 P

ha
se

 G
en

(n

 p
ha

se
s)

t CLK2

Control
Signals"

Receiver State
Machine
(RSM)

T Derived Clock

Figure 8.4. Hardware Realization of the Receiver Control Unit (RCU)

190

Region B

This region contains two stages of interfacing registers, SR(X) and RR(X). These

interfacing registers are clocked by different phases of CLK1 and CLK2, following the

clock-scheduling shown in Figure 8.2. This region absorbs the clock skew and hides the

skew constraints from timing relations of Regions C and A. The worst-case timing

constraint for clock sequence scheduling should respect the following conditions:

MinDelay > tcq + tsu + tSK + 2tj (8.1)

M/n > tRcu (8.2)

Offset = (M/n) (ceil [Min_Delay/MJn]) (8.3)

where MinDelay is the minimum tolerable delay between the sender and subsequent

receiver clock edges based on a priori timing information. tcq and tsu are the clock-to-Q

delay of SR(X) and setup time of RR(X), respectively. tsK is the clock skew and tj is the

jitter associated with the clock on either side of the nominal clock edge. tRcu is the delay

associated with the RCU. Note that (8.1) involves only timing values related to the

interfacing registers. Relation (8.2) shows that the period of CLK2 is not a function of the

clock skew, hence, the clock skew can completely be absorbed in the interfacing

registers. Once MinDelay and M/n are obtained, the offset that gives minimum latency

can be calculated using relation (8.3), where the definition of offset is same as defined

earlier for Figure 8.2 in section 8.1.4.

191

8.1.6 Simulation Results of the Design Example

Clock-scheduling for a M/N ratio of 11/5, shown in Figure 8.2, was simulated to

validate the scheduling algorithm. The state diagrams of the sender and receiver state

machines are shown in Figure 8.5. The sender state machine has three states, each state

changes after 11 CLK1 pulses. Each state sends a particular control signal to the switch

that determines the output pattern of CLK1 phases. Similarly, the receiver state machine

has five states. The number of states is chosen based upon the utilized and skipped clock

edges for the clock-scheduling shown in Figure 8.2a. Each state sends a different control

signal to the switches and changes the output pattern of CLK2 phases accordingly.

/statelA

After 4
pulses

After 3 pulses
/s ta te3 / \
I 010 J

Figure 8.5. Sender State Machine (Left) and Receiver State Machine (Right)

192

500
1 .

E> output_of_counter(2:0) 0

• outSR0_INRR0(2:0) 0

• outSR1_INRR1(2:0) 0

• outSR2_INRR2{2:0) 0

> out_RX0(2:0) 0

i> out_RX1(2:0) 0

1> out RX2(2:0)

00
i i i i

1 2 3 4

I 1

5 6

1 4

2 5

100000
1 1 1

7 0 1

7

2 3

2

i i

4 5 6

4

i i

7 0 1

7

0 3 5 0

3 6

1 4

2

7

5

0 3

1

150000
i i i

2 3 A

2

5 6

5

i i

7 0

7

i i

1 2 3

2

3 6 0

4 6 1

2 4 7

0 3

2

5 0

6 1 6

4 7 1

200C

4 5

5

3

4

5 7 2 5

3 6

1 4

0

1

3

.4

reset

Figure 8.6. Simulation Results for Functional Verification of the design propsed in Figure 8.1

Simulation results, shown in Figure 8.6, validate the functionality of the design. The

control signals, generated by the state machines (not shown in Figure 8.6), change the

output pattern for each cycle. It is demonstrated in Figure 8.6 that, after every 11 sender-

clock (clocksen) cycles, the clock-scheduling scheme changes. This change appears on

the output pattern when outSROINRRO latches a count value of '4 ' for the second time.

This phase adjustment is propagated to the output signals. In Figure 8.6, it can be seen that

out_RX2 signal latches the count value ' 1' (the fourth count value on this data line from

the left) for a longer duration. This is to accommodate state switching in RSM, leading to

a periodic clock-scheduling in the proposed phase adjustment technique. Overall, it is seen

that the data generated at a faster rate (with a 5-time-unit period) is completely and safely

transferred to the slower clock domain (11-time-unit period), without slowing down the

faster module.

193

8.2 Dynamic Clock-scheduling Methodology

This section extends the static clock-scheduling algorithm to accommodate dynamic

phase variations due to run time variation in delays. Here, a dynamic clock-scheduling

algorithm is proposed and a complete methodology is described for communication

between modules working at rational frequencies (ratio of coprime numbers) with a

varying phase difference between the communicating modules. The design was

successfully synthesized using Xilinx's Virtex-II Pro FPGA technology.

8.2.1 Motivation for Proposing a Dynamic Clock-scheduling

Methodology

As we move deeper into the DSM era, power and heat management are becoming key

issues across most application segments [1]. In particular, high-speed applications are

more affected due to the non-uniform delays generated across chips by dynamic thermal

variations, hence some modifications in static clock-scheduling algorithms are required to

accommodate non-uniform delays. For example in [86], it was shown that for every 20°C

increase in temperature, the Elmore delay for the long global interconnects increases by

approximately 5%-6%. Assuming a 25 °C nominal temperature, this translates into 30%-

35% delay variation between the nominal and peak temperatures in integrated circuit

implemented with 90-nm CMOS. In order to mitigate the effects of on-chip temperature

variations on delay, several solutions have been proposed in the literature (discussed in

detail in Chapter 2). For example, in multiprocessor architectures, stop and go [96]

194

policies are the most commonly used to reduce peak temperature. In such policies, the

state of the core needs to be saved in memory before powering down. Also, a significant

current is drawn when the core is "awaken" again. Also it is common to observe non

uniform load in these MPSoC due to irregular "stop" and "go" for different processors in

different points in time. This leads to larger temperature variations which then translate

into varying delay during run time hence causing varying clock skew.

From the above discussion it is obvious that an extension to the clock-scheduling

scheme for modules having rational frequency ratio of coprime numbers is required to

handle this run time delay variations due to thermal gradients. Therefore, in the

subsequent sections a dynamic clock-scheduling algorithm is described which allows

dynamic clock phase changes, depending on runtime clock skew variations that arise from

thermal gradients. The method described in Section 8.1 follows a relatively pessimistic

approach of worst-case design that results in performance penalty. This is particularly true

if the worst-case scenario is rarely encountered. In addition, designs using a priori

information are not adaptable to real-time changes in clock skew that can occur due to

run-time temperature variations and may lead to perturbations especially for the systems

with continuous data flow.

8.2.2 Dynamic Clock-scheduling Algorithm

Keeping the same assumption as described in Section 8.1.3, the proposed dynamic

clock skew scheduling method embeds an algorithm to map clock phases from the sender

to the receiver domain. It operates by examining several possible phase variations. This

section describes the proposed algorithm that maps different clock phases of the two clock

195

domains, to allow a reliable communication between them. The following algorithm

serves two purposes: first, it maps the sender and receiver clock phase edges and secondly,

it checks whether the dynamic clock-scheduling will provide any performance

improvement compared to the worst-case design techniques. Figure 8.7 describes this

algorithm, where MaxDifference is the maximum time difference between two mapped

clock edges for a particular minimum delay tolerance constraint (Min_Delay_Tolerance).

The variables /'/ and / are dummy variables. AverageJatency is the average time duration

for the receiver to receive data after being transmitted by the sender for a particular value

of Min_DelayJFolerance.

In order for the reader to better understand the proposed algorithm, the following

example is given, based on the algorithm given in Figure 8.7. Let M = 11 and N=5, which

leads to n = 3. Let MinDelayJTolerance = 4, then during the first iteration of the

algorithm, MaxJDifference = 4, // = 1, / = 1. Following this, the first IF condition is true

since (i-ii)N is equal to 0, which is less than (M/n)i that results in a value of 3.66. Then,

the second IF condition evaluates to false as 3.66 is less than 4. Before reiterating the inner

FOR loop, /; is incremented to 2. A complete run of this algorithm produces the following

values for the variable Min_Delay_Tolerance (shown by arrows in Figure 8.8) with

duration of 4 and 5 time units, with 5 being the worst-case scenario. The results are

included within closed brackets denoted by (xi,...Xj)4 and (xi,...Xi)s, respectively. It

should be noted that the Average Jatency shows that the worst-case design will lead to a

poor latency.

Sender_Clock = {(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50)4, (0, 5, 10, 15, 20, 25, 30, 35, 40,

45, 50)5}

196

ReceiverClock = {(7.32, 11, 14.66, 22, 25.66, 29.32, 36.66, 40.32, 44, 51.32, 55)4, (7.32,

11, 18.32, 22, 25.66, 33, 36.66, 40.32, 47.66, 51.32, 55)5}

AverageLatency = {(5.67)4, (6.67)5}

for Min_Delay_Tolerance = 1 :N (discrete integer values)
Max_Difference = Min_Delay_Tolerance
il = 1

for i = 1 : (Nn)
if { (i - i l) N < (M / n) i } then

if {(M/n)i — (i — i 1) N } > Min_Delay_Tolerance then
" The sender data of (i — i 1)N can be latched at
(M/N)i: Hence an arrow can be drawn from Sender to

corresponding receiver clock edge (as shown in
Figures 8.2 and 8.8)

if {Max_Difference < ((M/n)i - (i - i 1) N)} then
MaxDif fe rence = {(M/n)i - (i - i 1) N }

else
end

else
il = i l+1

end
else

il = i l + l
end

end
Average_latency[Min_Delay_Tolerance] = (Min_Delay_Tolerance +

Max_Difference)/2
end

Figure 8.7. Algorithm for Dynamic Clock Phase Mapping

8.2.3 Implementation of Clock-scheduling For Variable Skew

Tolerance

In this section, the means of transforming the worst-case design scheme of Section 8.1

to the dynamically skew tolerant design scheme are presented. It is assumed that the skew

is slowly varying and the switch to a new scheduling scheme occurs after the current

scheduling cycle finishes thus, this approach does not allow the scheduling to switch to a

197

different delay tolerance value (shown as Min_Delay_Tolerance in Figure 8.7) in the

middle of a scheduling cycle. Figure 8.8 depicts the clock phase mapping of the sender

and receiver clocks for the values given by the example at the end of Section 8.2.2 (delay

tolerance of 4 and 5 time units). Figure 8.8 is divided into three different sections. The top

and bottom sections show the static clock-scheduling following the algorithm developed,

depending on different worst-case minimum-delay requirements of the systems. The

middle section of Figure 8.8 depicts how the system may adapt dynamically to changes

brought to meet minimum delay requirements. The hardware implementation to

accommodate such a technique requires a Phase Margin (PM) signal that indicates phase

mismatches between the two clock phases of the communicating IPs, and hence,

determines the change in minimum delay tolerance. This signal is an additional input

signal to RCU of Figure 8.1 and is not shown in that figure. At the block level, this is the

only difference between the two implementations. In the example depicted in Figure 8.2,

the PM signal indicates a warning that the minimum delay tolerance has to change from 4

ns to 5 ns. The PM signal is checked at the beginning of each clock-scheduling cycle,

which is after every M-N time units (55 time units in this example). Therefore, the PM

signal indicates the overall changes in phase within a scheduling cycle. If any system

experiences faster phase shifts, then this information has to be checked more frequently,

this case will be the subject of future work.

198

Figure 8.8. Clock Phase Mapping (Magnifying the switching process)

8.2.4 Hardware Implementation of Dynamic Clock-scheduling

Methodology

As stated earlier, at the block level, this solution is very similar to that of Figure 8.1

except for an additional signal in RCU, which is named as PM signal. The PM signal is

checked at the end of the current scheduling cycle to decide whether switching to a new

phase scheme is needed, depending, for example, on a slowly varying skew as mentioned

in Section 8.2.3. As the emphasis of this thesis is on the interfacing techniques, therefore

the generation of the PM signal is not treated in this chapter (a work on the development

of a design to obtain a warning on phase variations was developed as a precursor of this

thesis and provided in Appendix, this work was also published [30]). The main

199

architecture of the Sender Control Unit (SCU) and Receiver Control Unit (RCU) remains

the same as shown in Figure 8.3 and Figure 8.4, respectively. The main difference is the

implementation of state machine of the RCU. The following steps are followed, in order to

obtain the state diagram, shown in Figure 8.9, of the receiver state machine that

accommodates phase variations dynamically.

Step 1: All possible clock edge vectors under all possible minimum delay tolerance values

are obtained using the algorithm proposed in Figure 8.7.

Step 2: Utilizing the vectors obtained in step 1, generate a list of selected and discarded

clock edges (e.g. the circled edges in Figure 8.8 are the discarded ones).

Step 3: Assign the used clock edges to the RR(X) in sequence.

Step4: Check the discarded edges and allocate them to registers where these edges will

not lead to any fault (utilizing the knowledge of clock-scheduling).

StepS: Check the PM signal at the start of every clock-scheduling cycle. Decide which of

the minimum delay tolerance values is best suited for the upcoming scheduling

cycle (denoted as Initial State in Figure 8.9); this is done within the state machine.

Step 6: Repeat Step 5 at the beginning of every clock-scheduling cycle.

200

Figure 8.9. State Diagram for RCU

8.2.5 Simulation Results

The dynamic clock-scheduling algorithm provided in Figure 8.7 was first implemented

in MATLAB, and the clock-scheduling data graph was obtained as shown in Figure 8.8.

Let us consider a case where the minimum and maximum delay tolerances are set to 2 ns

and 5 ns, respectively. According to Table 8.1the best case resulting latency is 2.67 ns and

the worst-case is 6.67 ns. If the system switches between the two extreme scenarios with

some probability, then the resulting latency is reported in Table 8.1. As can been seen

from that table, up to 60% improvement in latency is provided with the proposed solution,

compared to the worst-case scenario.

The proposed design was implemented using the clock-scheduling shown in Figure

8.8 and the state diagram of the receiver state machine (within RCU) shown in Figure

8.9. The design was synthesized using the Xilinx ISE suite for Virtex-11-Pro technology.

201

Back-annotated simulations were performed with ModelSim using an SDF (Standard

Delay File) file generated by the Xilinx Implementation tools.

TABLE 8. 1. Latency improvement comparison

Best to Worst-case Ratio

AverageJLatency (ns)

% Improvement

Best Case

2.67

60

10:90

3.07

54

30:70

3.87

42

50:50

4.67

30

70:30

5.47

18

90:10

6.27

6

Worst-case

6.67

0

Derived_CLK21f]_

CLK1JT

CLK2]

OUTJFTX 15~1

OUT SR1 4

0UT_SR2 3J5

OUT SR3 3

PM

0UT_RR1 J^

OUT RR2 3

0UT_RR3 " g j

i

UUl
TJT
n

n n
p

p

ib

. . .

ruir
TTL

n
nn

i°
i1

i '
i°

s
I ! i

20C

r i m
TJX

n

12
P

f

Il_
{ M M !

ns

uin
m

n

p

H

I3

I4

n MI

ITU"
TJL

n n
^ L
16

"T~

15

JL

fLTLr
TIT

n
n n

i°
i1

i '
. i°
e

i

H I II II I I . 1

24C

jimijintwi
TJ ih j rh j r

i\ h
pnHnn
|2 I 15

|3i :ie

Jim

n
r n

uru
TJX

10 l | 2

in 13
* f 5 i

IH i 17 I H

I i [
!

i.. .if i PI. . e
• P 16 „ _ _ l l —

T K F I1

i l II M I i 1 ' ' 1 I I I 1

! ns 280 ns

Figure 8.10. Back-annotated Simulation Results of the synthesis of our adaptive interfacing scheme
(Xilinx Virtex-II-P FPGA is used for synthesis)

Figure 8.10 shows the back-annotated simulation results that verified the functionality

of the design. In this simulation, the faster module (IP TX) is running at 200 MHz, while

the slower module (IP RX) receives data with a 90.9 MHz clock. In Figure 8.10, it is

shown that depending on the PM signal status, the state machine switches between

different optimal clock phase mappings. The PM signal changes value depending on the

minimum delay tolerance value. For the simulations, the delay tolerance values are set to

202

4 ns and 5 ns, for PM equal to 1 and 0, respectively. It is seen that after each change of

state in the PM signal, the successive clock-scheduling cycle started working with the

new scheduling scheme, and transparently start latching the data. The different sequence

of delays, between consecutive selected and unselected phases are evident through the

width variation of each count value. This can be observed in Figure 8.10, for example

with signal OUTRR3, where between 200 and 240 ns of simulation time, the register

holds the value ' 1 ' for a shorter duration than the value '4 ' . As the data is completely

reproduced at the output_RX(X), this simulation confirms that the scheduling scheme is

seamless and that the functional verification was successful.

8.3 Summary and Discussions

In this chapter, a novel design technique is proposed for interfacing multiple clock

domains having clock frequencies expressed by ratio of coprime numbers. The

introduction of a wider bus allows the slower module to handle safely the fast data without

reducing the speed of the fast module. The previous chapter provided detailed illustration

of clock skew absorption due to interfacing registers. Similar mathematical relations are

obtained in this chapter for these interfaces (see Eq. 8.1 to 8.3), which demonstrates that

the minimum time period of the terminating modules are not dependent on the clock skew.

In the second section of this chapter, it is established that, in modern DSM

technologies, the new SoC architectures (e.g. MPSoC) are more vulnerable to dynamic

thermal variations. These variations affect the timing relations among the IP modules in

203

real time. The modified clock-scheduling technique adjusts dynamically to slow phase

variations in real-time.

Complete design methodologies, with clock-scheduling algorithms, are elaborated. A

functional verification of these methodologies is also provided. The dynamic clock-

scheduling scheme is functionally verified through back-annotated simulation results,

using Xilinx Virtex II Pro technology. The results prove the validity of the design at the

most error prone locations in the timing diagram. A further advantage of this design

scheme is an overall improvement in performance of up to 60%, for the illustrated

example, as compared to the worst-case static scheduling scheme.

Conceptually this methodology is similar to the dual-port memory technique [62].

However, the major difference between the two methodologies is that the proposed

technique provides a fine control mechanism for safely reading and writing the data. This

technique requires only registers hence it does not require the memory space and avoids

long memory access times. In comparison to FIFO based schemes [25], [26], [78], our

scheme does not impose separate synchronization requirement and FIFO controlling

protocols. Furthermore, our design technique allows the faster module to communicate

with the slower module without slowing down the faster modules, an attribute not easily

attainable using FIFO based or dual port memory techniques.

204

Chapter 9: Conclusions and Future
Work

9.1 Conclusions

In this thesis, we advocated that the optimal choice of inter-module communication

method in MCD is context dependent. A designer can choose, based on the timing

constraints and design requirements, what interfacing techniques best suit a particular

design context. This work provided a new dimension to the design challenges associated

to both synchronous and asynchronous interfacing methodologies with respect to process

variations and other non-idealities that lead to timing uncertainties in modern DSM

technologies.

In the context of the asynchronous paradigm, we characterized the crosstalk glitch

propagation effect and proved that these glitches may lead to system malfunction under

normal operating conditions. We proposed a pioneering work that provides a framework

to the digital designer to analyze the crosstalk glitch propagation possibilities at the logic

abstraction level. As our approach studies the effects on the constituent elements of the

asynchronous interface, which are logic elements, our crosstalk glitch propagation

205

modeling technique is broadly applicable to a wide set of asynchronous design techniques.

One of the benefits of this modeling approach is to identify the vulnerable primary input

vectors and initial conditions, which can propagate the crosstalk glitches and lead to

potential system malfunction. Once we know the vulnerable primary input vectors and/or

initial conditions then, using the knowledge of the protocol used, we explain how to

examine whether such a scenario is filtered out by the protocol or not. If it is not filtered

out, then such a vector should be monitored. We applied this technique to representative

circuits of two widely used asynchronous circuit design schemes, and we obtained the

vectors for which the asynchronous interfaces are vulnerable to propagate glitches.

Motivated to introduce a mechanism to block glitch propagation if such conditions are

bound to occur, we investigated further for a solution. Leveraging our crosstalk glitch

propagation modeling approach, we suggested the introduction of auxiliary signals to the

specific logic elements to prevent glitches from propagating. We proposed a crosstalk

glitch gating solution that quenches crosstalk glitch propagation by blocking the glitches

for a particular duration of time. A systematic methodology is presented to implement

this technique. It is seen that this technique results in a complete removal of crosstalk

glitch propagation. Two case studies, on representative interfaces of most widely used

asynchronous protocols, are discussed and it is shown that our approach is broadly

applicable to many asynchronous interface methodologies.

After making a significant contribution to the asynchronous design paradigm, we

shifted our attention to the synchronous design paradigm. Here, we addressed the issue of

timing non-idealities due to process variations in synchronous design paradigm. An all-

digital skew-tolerant design scheme for high performance communication was proposed.

206

This design technique addresses several different cases including mesochronous design

schemes, where the clock frequencies of two clock domains are the same but where the

phase varies. Also, our design scheme is applicable if the two modules have an integer

frequency ratio. We provided a comprehensive mathematical analysis of all the possible

timing constraint scenarios. This mathematical analysis makes our design readily available

to be embedded in any EDA tool library. This design scheme was implemented in a Xilinx

Virtex II Pro FPGA using the Xilinx ISE design suite 9.2. Results for the hardware

implementations are in compliance with the theory.

We enhanced the above mentioned methodology to accommodate communications

between the two modules whose frequency ratio is a coprime number. Another extension

of this methodology is proposed to accommodate dynamic phase variations that are

expected to occur in modern DSM Multi-Processor SoCs due to thermal variations in the

wake of sudden activation of a few (or even, many) processors from a dormant to an

active state and vice versa. We provided a detailed algorithm to establish the clock-

scheduling mechanism and proposed design guide lines which can be useful to design

such a class of interface for many coprime frequency ratios. It was proven through

mathematical relations that our proposed design scheme is more tolerant to clock skew

than conventional design schemes. Furthermore, it was also mathematically formulated

that this technique absorbs the clock skew in the interfacing registers, which in turn let the

terminating modules work at relaxed constraints independent of the clock skew term.

Another especial feature of such interfaces is that they allow a faster module to

communicate with a receiver module without slowing down the faster module. Such a

design approach is especially beneficial for SERDES (Serializer and Deserializer), an

207

intended application for our design group, and for burst data transfers. We proved the

functionality of the design using back-annotated simulations using the Xilinx Virtex II Pro

technology. Through one of the experiments (to implement the proposed technique to

interface four times faster module to slower module at the physical hardware level), it is

shown that this design technique allows the faster terminating module to communicate,

without slowing down, at 350 MHz., under severe clock skew constraint. The frequency

achieved is the maximum operating frequency of the given FPGA (Xilinx's Virtex-II Pro

XC2VP30-7FF896), when it is made subject to severe timing constraint of more than 12

ns (this constraint is the maximum possible delay that can be applied in the

aforementioned FPGA technology). This proved the fact that our design in fact weathers

the clock skew quite efficiently without losing on performance. In another experiment, to

verify our design technique for modules with rational frequency ratio of coprime numbers,

it is shown that a faster module, running at 200 MHz, safely communicates, without

slowing down, with a slower module which has a frequency of 83.33 MHz. Rational

frequency ratio between the two frequencies was 5 to 11.

It can be concluded from this thesis that there is no fixed inter-module interfacing

solution that fits to all the design scenarios in SoCs with MCDs. Instead designers must

choose an interfacing methodology that suits the best for their particular design context,

from a pool of solutions. Our thesis provided major contributions in identifying the

upcoming challenges of modern DSM technologies that can potentially deter the

performance of these interfaces. We provided novel design techniques in both design

domains to address these issues. With high performance systems in growing demand, due

to unprecedented advancements in the electronic industry in recent years, our design

208

solutions can play a major role in coping with the forthcoming issues of high performance

and reliable system development.

9.2 Future Work

Asynchronous Paradigm: We intend to lead the proposed crosstalk glitch propagation

modeling to the next level to make it a part of a design automation toolset. Another

intended area of research is to extend this modeling approach for certain unpredictable

scenarios. Such unpredictable scenarios will make this technique tolerant to extrinsic

crosstalk effects, which may be due to soft errors, transition in external circuits, power

surge etc.

Synchronous Paradigm: A novel implementation of a phase detection scheme was

recently proposed by our group, which stems out of this research. Preliminary results are

promising, further research is underway for its jitter and performance analysis. This phase

detection will become part of a large framework that is intended as a solution to detect

phase variations at run time and to dynamically adjust the clock phases of our proposed

interfacing mechanism. This framework will allow communication among multi­

processor SoCs in MCD with dynamically varying phases.

Another future direction of research is to extend the proposed interfacing

methodologies to accommodate point-to-multipoint communications and GALS based

Network-on-Chip (NoC) architectures.

209

REFERENCES

[1] Semiconductor Industry Association, "International technology roadmap for

semiconductors," Executive Summary 2007, available at

http://www.itrs.net/Links/2007ITRS/ExecSum2007.pdf

[2] E. G. Friedman, "Clock distribution networks in synchronous digital integrated

circuits," in Proceedings of the IEEE, Vol. 89, No. 5, May 2001, pp. 665-92.

[3] H. Bakoglu, "Circuits, Interconnections and Packaging for VLSI", Reading MA:

Addison-Wesley, 1990.

[4] S. R. Hasan, Y. Savaria, "Crosstalk Effects in Event-Driven Self-Timed Circuits

Designed With 90nm CMOS Technology," in IEEE International Symposium on

Circuits and Systems, May 2007, ISCAS 2007, pp. 629-632.

[5] P. Zarkesh-Ha, "Global Interconnect Modeling for a Gigascale System-on-a-

Chip," Ph.D. thesis, Georgia Institute of Technology, February 2001. available at

http://www.ece.gatech.edu/research/labs/gsigroup/publications/Dissertation_Pay

man.pdf.

[6] J. M. Rabaey, A. Chandrakasan, B. Nikolic, "Digitial Integrated Circuits; A

Design Perspective: Second Edition," Prentice Hall Electronics and VLSI Series,

2003.

[7] Mark De Clercq and Radu Negulescu, "1.1-GDI/s Transmission between Pausible

Clock Domains," in Proceedings of IEEE International Symposium on Circuits

and Systems, ISCAS 2002, Vol. 2, pp. II-768-II-771, 2002.

210

http://www.itrs.net/Links/2007ITRS/ExecSum2007.pdf
http://www.ece.gatech.edu/research/labs/gsigroup/publications/Dissertation_Pay

[8] J. Muttersbach, T. Villiger, W. Fichtner, "Practical Design of Globally-

Asynchronous Locally-Synchronous systems," in Proceedings of International

Symposium on Advanced Research in Asynchronous Circuits and Systems, April

2000, pp. 52-59.

[9] S. Moore, G. Taylor, R. Mullins, P. Robinson, "Point to point GALS

interconnect," in Eighth IEEE International Symposium on Asynchronous

Circuits and Systems, ASYNC 2002, pp. 69-75.

[10] R. Dobkin, R. Ginosar, C.P. Sotiriou, "Data synchronization issues in GALS

SoCs," in tenth IEEE International Symposium on Asynchronous Circuits and

Systems, ASYNC 2004, pp. 170-179.

[11] R. Mullins, S. Moore, "Demystifying Data Driven and Pausible Clocking

Scheme," in thirteenth IEEE International Symposium on Asynchronous Circuits

and Systems, ASYNC 2007, March 2007, pp. 175-185.

[12] J. Bainbridge, S. Furber, "Chain: a delay-insensitive chip area interconnect,"

Micro IEEE, Vol. 22, Issue 5, September October 2002, pp. 16-23.

[13] ARM, Technical Specification: AMBA Specification, Doc No: ARMIHI-0011A,

Issued: May 2001.

[14] IBM, Technical Specification: 32-bit Processor Local Bus - Architecture

Specification, Doc NO: SA-14-2531-01, Issued May 2001.

[15] HyperTransport Technology Consortium, Technical Specification: Hypertransport

I/O Link Specification, Doc NO: HTC2001021-0009-0022, Issued: Aug. 2003.

[16] W. J. Dally, and B. Towles, "Route Packets not Wires: On-Chip Interconnection

Networks," in Proceeding of Design Automation Conference, 2001, DAC 2001.

211

[17] D. Chapiro, "Globally-Asynchronous Locally-Synchronous Systems," Ph.D.

thesis, Stanford University, Oct. 1984.

[18] The Advanced Processor Technolgies Group, University of Manchester,

http://intranet.cs.man.ac.uk/apt/

[19] W. J. Bainbridge, "Asynchronous System-on-Chip Interconnect," Ph.D. thesis,

Department of Computer Science, University of Manchester, UK, March 2000,

ftp://ftp.cs.man.ac.uk/pub/amulet/theses/bainbridge_phd.pdf

[20] D. E. Calbaza, Y. Savaria, "A direct digital period sysnthesis circuit," IEEE

Journal of Solid-State Circuits, IEEE Journal of Solid-State Circuits, Vol. 37,

Issue 8, August 2002, pp. 1039-1045.

[21] R. Clauberg, P. Buchmann, A. Herkersdorf, D. J. Webb, "Design methodology for

a large communication chip," in IEEE Design & Test of Computers,

Vol. 17, Issue 3, July-September 2000, pp. 86-94.

[22] T. Singh, A. Taubin, "A Highly Scalable GALS Crossbar Using Token Ring

Arbitration," in IEEE Design & Test of Computers, Vol. 24, Issue 5, September-

October 2007, pp. 464-472.

[23] A. Chakraborty, and M. R. Greenstreet, "Efficient Self-Timed Interfaces for

Crossing Clock Domains", in Ninth IEEE International Symposium on

Asynchronous Circuits and Systems, ASYNC 2003, pp. 78-88.

[24] S. Balasubramanian, N. Natarajan, O. Franza, C. Gianos, "Deterministic low-

latency data transfer across non-integral ratio clock domains",

in 19th International Conference on VLSI Design, VLSID2006). Held jointly

212

http://intranet.cs.man.ac.uk/apt/
ftp://ftp.cs.man.ac.uk/pub/amulet/theses/bainbridge_phd.pdf

with 5th International Conference on Embedded Systems and Design, January,

2006, 5 pp.

[25] M. Singh, M. Theobald, "Generalized latency-insensitive systems for single-clock

and multi-clock architectures", in the Proceedings of Design, Automation and

Test in Europe Conference and Exhibition, DATE 2004, February 2004, Vol. 2,

pp. 1008-1013.

[26] T. Chelcea., S. M. Nowick, "Robust-Interfaces for Mixed-timing Systems ",

IEEE Transaction on Very Large Scale Integration (VLSI), Vol. 12, Issue 8,

August, 2004, pp. 857-873.

[27] D. J. William, and J. W. Poulton, "Digital Systems Engineering." Cambridge

University Press, 1998

[28] F. Mu, C. Svensson, "Self-tested self-synchronization circuit for mesochronous

clocking," IEEE Transaction on Circuits and Systems II: Analog and Digital

Signal Processing, Vol. 48, Issue 2, Feb. 2001 pp. 129-140.

[29] I. Soderquist, "Globally updated mesochronous design style," IEEE Journal of

Solid State Circuits, Vol. 38, Issue 7, July 2003 pp. 1242-1249.

[30] S. R. Hasan, Y. Savaria, "Metastability Tolerant Mesochronous Synchronization,"

in IEEE MidWest Symposium on Circuits and Systems, Aug. 2007, MWSCAS

2007, pp 13-16.

[31] M . Kihara, "Digital clocks for synchronization and communications," Boston :

Artech House, Chapter 11, c2003.

213

[32] D. E. Calbaza, Y. Savaria, "A direct digital period sysnthesis circuit," IEEE

Journal of Solid-State Circuits, IEEE Journal of Solid-State Circuits, Vol. 37,

Issue 8, Aug. 2002, pp. 1039-1045.

[33] F. R. Boyer, H. G. Epassa, Y. Savaria, "Embedded power-aware cycle by cycle

variable speed processor," IEE Proceedings on Computers and Digital

Techniques, Vol. 153, Issue 4, 3 July 2006, pp. 283-290.

[34] L. F. G. Sarmenta, G. A. Pratt, S. A. Ward, "Rational clocking [digital systems

design]," in the Proceedings on IEEE International Conference on Computer

Design: VLSI in Computers and Processors, 1995. ICCD-1995.

Oct. 1995, pp. 271-278

[35] J. Mekie, S. Chakraborty, G. Venkataramani, P. S. Thiagarajan, D. K. Sharma,

"Interface design for rationally clocked GALS systems," 12th IEEE International

Symposium on Asynchronous Circuits and Systems, March 2006, ASYNC 2006,

12 pp.

[36] K. Y. Yun, and R. P. Donohue, "Pausible clocking: A First step toward

heterogeneous systems," in Proc. of International Conference on Computer

Design, Oct. 1996, ICCD 1996, pp. 118-123.

[37] I. Sutherland, and S. Fairbanks, "GasP: a minimal FIFO control," in 7th

International Symposium on Asynchronous Circuits and Systems, March 2001,

ASYNC 2001, pp. 46-53.

[38] J. Mekie, S. Chakraborty, and D. K. Sharma, "Evaluation of pausible clocking for

interfacing high speed IP cores in GALS framework," in the Proceedings of 17th

International Conference on VLSI Design, 2004. pp. 559-564.

214

[39] GALS @ ETH Zurich, http://www.iis.ee.ethz.ch/async/

[40] S. Dasgupta, A. Yakovlev, "Comparative analysis of GALS clocking schemes,"

in 1ET Journal of Computers & Digital Techniques, Vol. 1, Issue 2, March 2007,

pp. 59-69.

[41] P. Teehan, M. Greenstreet, G. Lemieux, "A Survey and Taxonomy of GALS

Design Styles," in IEEE Design & Test of Computers

Vol. 24, Issue 5, September-October 2007, pp. 418-428.

[42] J. Kessels, A. Peeters, P. Wielage, and S. Kim, "Clock Synchronization Through

Handshake Signalling," in Proceedings of Intematironal Symposium of

Asynchronous Circuits and Systems, April 2002, ASYNC 2002, pp. 59-68.

[43] D. S. Bormann, and P. Y. K. Cheung, "Asynchronous Wrapper for Heterogeneous

Systems," in Proceedings of ICCD-1997, pp. 307-314.

[44] A. Upadhyay, S. R. Hasan, M. Nekili, "A Novel Asynchronous Wrapper Using 1-

of-4 Data Encoding And Single Track Handshaking," in 2nd IEEE North-East

Workshop on Circuit and Systems , June 2004, NEWCAS 2004, pp. 205-208.

[45] Sparso, and S. Furber, "Principles of Asynchronous Circuit Design.", Kluwer

academic publishers, Boston, 2001.

[46] A. J. Martin, and M. Nystrom, "Asynchronous techniques for system-on-chip

design," in Proc. of the IEEE , Vol. 94, Issue 6, June 2006, pp. 1089-1120.

[47] F. K. Gurkaynak, S. Oetiker, H. Kaeslin, N. Felber, and W. Fichtner, "GALS at

ETH Zurich: Success or Failure ?," in the Proceedings of the Twelfth IEEE

International Symposium on Asynchronous Circuits and Systems, Grenoble

France, March 2006, ASYNC 2006, pp. 150-159.

215

http://www.iis.ee.ethz.ch/async/

[48] L. P. Carloni, and K. L. McMillan, A. Saldanha, A. L. Sangiovanni-Vincentelli,

"A methodology for correct-by-construction latency insensitive design," in

IEEE/ACM International Conference on Computer-Aided Design, Nov. 1999, pp.

309-315.

[49] A. Iyer, and D. Marculescu, "Power and performance evaluation of globally

asynchronous locally synchronous processors," in the Proceedings of 29th Annual

International Symposium on Computer Architecture, May 2002, pp. 158-168.

[50] J.N. Seizovic, "Pipeline Synchronization," in the Proceedings of International

Symposium of Advanced Research in Asynchronous Circuits and Systems,

(ASYNC-1994), IEEE CS Press, 1994, pp. 87-96.

[51] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli,

"A methodology for correct-by-construction latency insensitive design," in the

IEEE/ACM International Conference on Computer-Aided Design, November

1999, pp. 309-315.

[52] R. Ginosar and R. Kol, "Adaptive Synchronizartion," IEEE International

Conference on Computer Design, Oct. 1998, ICCD 1998, pp. 188-189.

[53] D. E. Calbaza, and Y. Savaria, "Direct digital frequency synthesis of low-jitter

clocks," IEEE Journal of Solid-State Circuits, Vol. 36, Issue 3, March 2001, pp.

570-572.

[54] D. E. Calbaza, I. Cordos, N. Seth-Smith, and Y. Savaria, "An ADPLL circuit

using a DDPS for genlock applications", Proceding of the 2004 International

Symposium on Circuits and Systems, 2004, , Vol. 4, 23-26 May 2004, ISCAS

2004, pp. IV-569-72.

216

[55] W. J. Bainbridge, and S. B. Furber, "Delay insensitive system-on-chip

interconnect using l-of-4 data encoding", in the Seventh International Symposium

on Asynchronous Circuits and Systems, 2001, , March 2001, ASYNC 2001, pp.

118-126.

[56] I.E. Sutherland, "Micropipelines," Communications of the ACM, Vol. 32, No.6,

June 1989, pp. 720-738.

[57] A. Kapoor and N. Jayakumar., "Novel clock distribution and dynamic de-skewing

methodology," November 2004, ICCAD-2004, pp. 626-631.

[58] M. Mori, H. Chen, B. Yao, and C. Cheng, "A multiple level network approach for

clock skew minimization with process variations," in Design Automation

Conference, January 2004, DATE 2004, pp. 263-268.

[59] A. L. Fisher, and H. T. Kung, "Synchronizing Large VLSI Processor Arrays,"

IEEE Transactions on Computers, Vol. C-34, No. 8, August 1985, pp. 734-740.

[60] M. Nekili, G. Bois, and Y. Savaria, "Pipelined H-trees for high-speed clocking of

large integrated systems in presence of process variations," IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, Vol. 5, Issue 2, June 1997 pp.

161-174.

[61] B. P. Wong, A. Mittal, Y. Cao, and G. Starr, "Nano-CMOS Circuit and Physical

Design." Wiley-Interscience: A John Wiley and Sons, Inc., Publication, 2005.

[62] N. H. E. Weste, and D. Harris, "CMOS VLSI Design: A circuit and systems

perspective." third edition, Pearson: Addison Wesley, 2005.

217

[63] Department BEW, Mixed Signal Technology Development, IBM

Microelectronics Division "CMOS8RF (CMRF8SF) Design Manual", Reviewed

2006. ES # 57P9006.

[64] STMicroelectronics Design Manual for CMOS90nm technology, 2005.

[65] K. Y. Yun, and D. L. Dill, "Automatic synthesis of extended burst-mode circuits:

part I (specification and hazard-free implementations)," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 18, No. 2, Feb.

1999, pp 101-117.

[66] K. Y. Yun and D. L. Dill, "Automatic synthesis of extended burst-mode circuits:

part II (automatic synthesis)," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 18, No. 2, Feb. 1999, pp. 118-132.

[67] W. J. Bainbridge, W.B. Toms, D. A. Edwards, S. B. Furber, "Delay-insensitive,

point-to-point interconnect using m-of-n codes," Proceeding of Ninth

International Symposium of Asynchronous Circuits and Systems, May 2003,

ASYNC 2003, pp. 132-140.

[68] E. G. Jung, B. S. Choi, Y. G. Won, and D. I. Lee, "Handshake protocol using

return-to-zero data encoding for high performance asynchronous bus," in IEE

Proceedings of Computers and Digital Techniques, Vol. 150, Issue 4, July 2003

pp. 245-251.

[69] E. G. Jung, J. G. Lee, K. S. Jhang, and D. S. Har, "Differential value encoding

for delay insensitive handshake protocol," IEICE Transactions on Information and

Systems, Vol. E88, No. 7, July, 2005, pp. 1437-1444.

218

[70] M. R. Becer (Adv. Tools Group, Austin, TX, USA), D. Blaauw, V. Zolotov, R.

Panda, and I. N. Hajj, "Analysis of noise avoidance techniques in DSM

interconnects using a complete crosstalk noise model," Proceedings of Design,

Automation and Test in Europe Conference and Exhibition, 2002, DATE 2002,

pp. 456-63.

[71] K. S. Chung, T. Kim, and C. L. Liu, "G-vector: a new model for glitch analysis in

logic circuits," Journal of VLSI Signal Processing Systems for Signal, Image, and

Video Technology, Vol. 27, No. 3, March, 2001, pp. 235-251.

[72] L. Hyungwoo, S. Hakgun, and K. Juho, "Glitch elimination by gate freezing, gate

sizing and buffer insertion for low power optimization circuit," Industrial

Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE Vol.

3, November, 2004, pp. 2126-2131.

[73] M. Abramovici, M. A. Breuer, A. D. Friedman, "Digital Systems Teststing and

Testable Designs." IEEE Press, 1990.

[74] Khosrow Golshan (Conexant Systems, Inc.), "PHYSICAL DESIGN

ESSENTIALS An ASIC Design Implementation Perspective", Springer, 2006.

[75] R. Mullins, S. Moore, "Demystifying Data-Driven and Pausible Clocking

Schemes," in 'IEEE International Symposium on Asynchronous Circuits and

Systems , March 2007, ASYNC 2007, pp. 175-185.

[76] A. Edman, C. Svensson, "Timing closure through a globally synchronous, timing

partitioned design methodology," in Proceedings of the 41st Design Automation

Conference, 2004, DAC 2004, pp. 71-74.

219

[77] P. Caputa, C. Svensson, "An on-chip delay- and skew-insensitive multicycle

communication scheme," in IEEE International Conference of Technical Papers

on Solid-State Circuits, February, 2006, ISSC 2006, pp. 1765-1774.

[78] A. Edman, C. Svensson, "Synchronous latency-insensitive design for multiple

clock domain," in Proceedings of IEEE international SOC Conference,

September, 2005, pp. 83-86.

[79] W. J. Dally and J. W. Poulton, "Digital Systems Engineering." Cambridge

University Press, 1998.

[80] H. T. P. Nguyen, "Conception d'un module de synchronisation pour 1'integration

a l'echelle de la tranche de routeurs de communication." Masters' Thesis,

Department de genie electique, Ecole Polytechnique de Montreal, Montreal, QC,

Canada, December 2005.

[81] S. R. Hasan, Y. Savaria and Mohamed Nekili, "Split H-tree Design Method for

High-Performance GALS Systems," in 4th IEEE NorthEast Workshop on Circuit

and Systems, June 2006, NEWCAS 2006, pp. 161-164, 2006.

[82] T. Chelcea, S.M. Nowick, "Robust interfaces for mixed-timing systems with

application to latency-insensitive protocols," in IEEE Proceedings of Design

Automation Conference, 2001, DAC2001, pp. 21-26, 2001.

[83] M. R. Greenstreet, "Implementing a STARI chip," in IEEE International

Conference on Computer Design: VLSI in Computers and Processors, Oct. 1995,

ICCD95,pp. 3 8 - 4 3 .

[84] S. R. Hasan, N. Belanger, Y. Savaria, "All Digital Skew Tolerant Synchronous

Interfacing Methods for High-Performance Point-to-Point Communication in

220

DSM SoCs." Technical Report, EPM-RT-2008-10, Department de genie

electrique, Ecole Polytechnique de Montreal, Montreal, QC, Canada, December

2008.

[85] S. Im and K. Banerjee, "Full chip thermal analysis of planar (2-D) and vertically

integrated (3-D) high-performance ICs," in Proc. Int. Electron Device Meeting,

2000, pp. 727-730.

[86] A. M. Ajami, K. Banerjee, and M. Pedram, "Modeling and Analysis of

Nonuniform Substrate Temperature Effects on Global ULSI Interconnects," in

IEEE transcations on CAD of Integrated Circuits and Systems, Vol. 24, No.6,

June 2005, pp. 849-861.

[87] J. C. Ku and Yehea Ismail, "On the Scaling of Temperature-Dependence," in

IEEE Transactions on CAD of Integrated Circuits and Systems, Vol. 26, No. 10,

Oct. 2007, pp. 1882-1888.

[88] U. Y. Ogras, R. Marculescu, P. Choudhary, D. Marculescu, "Voltage-Frequency

Island Partitioning for GALS-based Networks-on-Chip," in Design Automation

Conference, DAC-2007, June 2007, pp. 110-115.

[89] Pinhong Chen; D.A. Kirkpatrick, K. Keutzer, "Miller factor for gate-level

coupling delay calculation," IEEE/ACM conference on Computer Aided Design,

Nov. 2000, ICCAD 2000, pp. 68-74.

[90] A.B. Kahng, S. Muddu, E. Sarto, "On switch factor based analysis of coupled RC

interconnects," Proceedings of 37th Design Automation Conference, June 2000,

DAC 2000, pp. 79-84.

221

[91] A. Katoch, (Philips Res. Labs., Eindhoven, Netherlands), M. Meijer, S.K. Jain,

"Active noise cancellation using aggressor-aware clamping circuit for robust on-

chip communication," Proceedings of 18th International Conference on VLSI

Design, 2005, pp. 325-329.

[92] Jiun-Sheng Huang, Shang-Wei Tu, Jing-Yang Jou, "On-chip bus encoding for LC

cross-talk reduction," in International Symposium on VLSI Design, Automation

and Test, April 2005, VLSI-TSA-DAT 2005, pp. 233 - 236.

[93] S. R. Hasan, N. Belanger, Y. Savaria, "All-digital skew-tolerant interfacing

method for systems with rational frequency ratios among Multiple Clock

Domains: Leveraging a priori timing information," 1st Microsystems and

Nanoelectronics Research Conference, Oct. 2008, MNRC-2008, pp. 129 - 132.

[94] M. Bubois, Y. Savaria, D. Haccoun, N. Belanger, "Low-power configurable and

generic shift register hardware realisations for convolutional encoders and

decoders," in IEE Proceedings on Circuits Devices and Systems, Vol. 153, No. 3,

June 2006, pp. 207-213.

[95] J.P. Roth, "Diagonosis of Automata Failures: A Calculus and a Method," IBM

Journal of Research and Development, Vol. 10, No. 4, July 1966, pp. 278-291.

[96] D. Brooks and M. Martonosi, "Dynamic Thermal Management for High-

Performance Microprocessors," in Proceedings of Seventh International

Symposium on High Performance Computer Architecture, 2001, pp. 171 -182.

[97] A. Upadhayay, S. R. Hasan, M. Nekili, "A Novel Asynchronous Wrapper using 1-

nd

Of-4 data encoding and single-track handshaking," in 2 North East Workshop on

Circuits and Systems, June 2004, NEWCAS 2004, pp. 205-208.

222

[98] S. R. Hasan, B. Pontikakis, Y. Savaria, "An All-Digital Skew-Adaptive Clock-

scheduling Algorithm for Multiprocessor Systems on Chips (MPSoCs),"

in IEEE International Symposium on Circuits and Systems, May 2009, ISCAS

2009, Taipei, Taiwan.

[99] Synopsys, Design Compiler User guide, Version V-2004.06, June 2004.

[100] Synopsys, PrimeTime Tutorial, Version V-2004.06, June 2004.

[101] Xilinx's Virtex-II Pro, Platform FPGA Handbook, UG012 (v2.0), October 14,

2002.

[102] S. R. Hasan, N. Belanger, Y. Savaria, M. O. Ahmad "All-digital skew-tolerant

interfacing method for systems with rational frequency ratios among Multiple

Clock Domains: Leveraging a priori timing information," Submitted in Elsevier

Journal of VLSI Integration.

[103] S. R. Hasan, N. Belanger, Y. Savaria, M. O. Ahmad, "Crosstalk glitch

propagation modeling for Asynchronous interfaces in Globally Asynchronous

Locally Synchronous Systems," accepted for publication in IEEE Transaction of

Circuits and Systems Part I (TCAS-I).

[104] S. R. Hasan, N. Belanger, Y. Savaria, M. O. Ahmad, "Crosstalk glitch gating: A

solution for designing glitch tolerant asynchronous handshake scheme for GALS

systems", under revision in IEEE Transaction of Circuits and Systems Part 1

(TCAS-I).

[105] R. Ho, K. W. Mai, M. A. Horowitz, "The future of wires," in the Proceeding of

the IEEE, Vol. 89, No. 4, April 2001, pp. 490-504.

223

[106] G. Birtwistle, K. S. Stevens, "The Family of 4-phase Latch Protocols," in 14th

IEEE International Symposium on Asynchronous Circuits and Systems, 2008.

ASYNC 2008. April 2008, pp. 71-82.

[107] E. Amini, M. Najibi, Z. Jeddi, H. Pedram, "FPGA Implementation of Gated Clock

based Globally Asynchronous Locally Synchronous Wrapper Circuits," in

International Symposium on Signals, Circuits and Systems July 2007 ISSCS

2007. pp. 1-4.

[108] W. J. Bainbridge, S. J. Salisbury, "Glitch Sensitivity and Defense of Quasi Delay-

Insensitive Network-on-Chip Links" in 15th IEEE Symposium on

Asynchronous Circuits and Systems, May 2009. ASYNC 2009, pp. 35-44.

[109] P. Mahoney, E. Fetzer, B. Doyle, S. Naffziger, " Clock Distribution on a Dual-

Core Multi-Threaded Itanium "-Family Processor," in IEEE International

Solid-State Circuits Conference, 2005. Digest of Technical Papers, Feburary

2005, Vol. 1, ISSCC 2005, pp^292 - 599.

[110] K. J. Kuhn, " Moore's Law Past 32nm: Future Challenges in Device Scaling," in

13th Internaational Workshop on Computational Electronics, May, 2009,

IWCE'09,pp . l -6 .

[I l l] J. R. Powell, " The Quantum Limit to Moore's Law," in IEEE Proceedings,

Vol. 96, No. 8, August, 2008, pp. 1247 - 1248.

224

Appendix: Metastability Tolerant
Mesochronous Synchronization

This appendix presents a methodology to obtain mesochronous synchronization and, in

the process, establishes a methodology to estimate phase variations. This is especially

helpful for SoCs where the clocks of the communicating modules change their phases in

real time, as the case elaborated in Section 8.2 of the thesis. This work also presents a new

synchronization scheme for mesochronous communication. This design has better

metastability tolerance compared to state-of-the-art synchronizers. It has low latency and

is only composed of standard digital components. This solution avoids the prevalent

assumption, in many contemporary synchronizing techniques, of solving the metastability

in half a clock cycle. The new design achieves latency as low as one clock cycle for a

500 MHz system clock, under the 180nm TSMC technology. A proof of concept

simulation is also performed to validate the proposed design methodology.

A.l Limitations of Available Mesochronous Synchronizers

Clock distribution is becoming increasingly difficult in DSM technologies. Various

timing constraints, including skew budget due to process variations, put a limit on the

225

fastest speed a chip can work at [81]. A split H-tree design methodology that alleviates

this problem is discussed in Chapter 3 of this thesis, which shows that each of the split

halves of the H-tree can individually work at a faster frequency. On the other hand, these

halves may constitute a mesochronous system. In such a system, the clock frequency is the

same, but the phases of the domains may differ by a random quantity subject to parametric

variations. Thus, interfaces are required to communicate between mesochronous regions.

Several mesochronous interfacing designs are available in the literature, such as the

delay-line synchronizer [52], and the clock edge synchronizer [28]. The reported solution

with the highest performance is a self-testable self synchronization (STSS) design [28]. In

some of these circuits, it is assumed that metastability is resolved in half a clock cycle.

This constraint can restrict the maximum speed of an interface. This sets a need for

architectures that provide more freedom in the timing budget of mesochronous systems.

The proposed design utilizes a priori timing information of the synchronous system. A

priori knowledge of frequencies helps developing the sampling scheme, such that at most,

one sample may become metastable. These samples are analyzed using an algorithm to

detect the phase difference between the remote and local clocks. Selection of the proper

phase of the local clock, which is most in-synch with the remote clock, is performed by

the Decision Maker (DM), the hardware implementation of this algorithm. This

synchronizer is easy to implement, yet requires lower latency than existing solutions,

while it alleviates the design from the severe constraint of resolving the metastability in

half a clock cycle.

The rest of this appendix is organized as follows. Section A.2 explains the architecture

of the low latency synchronizer. Section A.3 presents two different sampling techniques

226

used with the method. Section A.4 describes a proposed decision making algorithm and its

hardware implementation. Section A.5 presents simulation results of two key modules:

The Sampler and the DM. Finally, Section 6 provides a summary of this appendix.

A.2 Low Latency Synchronizers

In this work, a new mesochronous synchronizing scheme is proposed. Figure A.l

shows its basic block diagram, and explains the general principle of the design. The

system has two modes, synchronization mode and normal mode, under the control of a

state machine. A sender module sends the clock and data signals to a receiver module.

Once the system enters the synchronization mode, a control signal from the state machine

sends the signal to the synchronizer to synchronize the remote clock with the reference

local clock. In the mean time, the sender data is stored in the buffer module. The

synchronization mode starts periodically at a predefined time interval. This interval is

chosen by the designer based on the a priori timing information about the statistical

process variations, environmental variations and noise, jitter, setup and hold time etc. In

the normal mode, data is received by the receiver module using the in-synch local clock.

Figure A.2, shows the various components of the synchronizer block. A remote clock

signal is sampled, at least five times (five is a possible solution chosen as a starting point)

by the bank of DFFs under the control of a set of equally delayed local clocks. The

sampling time interval is calculated based on the knowledge of the timing parameters.

These parameters include a forbidden zone (tfZ), the time interval during which, if a DFF is

clocked, it cannot guarantee a metastable free output. Other parameters are the time

227

period, the frequency of the clock, and the number of samples. Two different sampling

techniques are discussed in Section A.3.

Remote
Module

Working
at

Frequency
F

CONTROL SIGNAL

STATE
MACHINE

LOCAL CLK

DATA BUFFER DATA

LOCAL_CLK

REMOTE_CLK

— •

BANK
OF
DFF

DECISION!
MAKER

iDECODER

SYNCHRONIZER

Local
Module

Working
at

Frequency
T

IN SYNC CLK

Figure A. 1. Low latency Synchronizer System

Local Cloc

T*I_
o

O
.22 "o
E
o>
en

t
g*

Bank of DFF

f.T i f " — —_•• -.-.-.T.4 »

DECISION
MAKER

LU
X

CD

-o
O
O
a>

Q

o
,&. a>

CO

Figure A.2. Synchronizer Block Diagram

These sampled signals are provided to a decision making combinational block that

determines the most in-synch delayed version of the local clock with the remote clock.

The DM module feeds the signal to the f2(losA//los2>"i to HogiV/log2] line decoder. The

output of the decoder serves as a select signal for the multiplexer. This multiplexer,

228

through the select signal, passes the delayed clock that samples the remote clock signal

with the best phase margin.

A.3 Sampling Technique

In this section, two sampling techniques are discussed. These techniques can be

implemented in hardware using the two blocks labelled Delayed Clock and Bank of DFF,

as shown in Figure A.2. The key requirement in such designs is to avoid having more than

one metastable output value in the sampled vector. It can be seen in the example of Figure

A.3 that, if the separation between consecutive samples of the remote clock signal is more

than the forbidden time duration, then there will never be more than one metastable output

for any given remote clock cycle period. Recall that the sampling time interval

corresponds to the time interval between two consecutive rising clock edges, of the locally

delayed clock. The resulting sampling intervals are shown in Figure A.3, where for

illustration, Deltal leads to a metastable output, while Delta2, Delta3, Delta4, and Delta5

will give valid outputs.

Such sampling technique requires further careful design optimization in order to make

sure that no two edges of the remote clock fall on the tfz in the same sampling cycle. In

Figure A.3, in order to prevent Delta4 from falling on the tfZ, two different techniques can

be adopted. One possibility is to make sure that Delta4 and Delta3 are late and early

enough, respectively, to avoid the falling edge tfz. This can be done by proper delay

adjustment in the transient generator, as discussed in the 1st technique for delayed clock

generator. An alternative method is to avoid this timing condition by making sure that the

229

next edge of the remote clock falls in the safe region. This requires an edge detection

mechanism and proper duty cycle adjustment, this is discussed further in the 2nd technique

of the next section.

Remote
Clock

-T/2.

+ve Edges of Delayed
Local Clock

Delta 1

2 f t t t
Delta3 Delta5

Delta2 Delta4 Delta 1
Figure A.3 Sampling Technique

Delayed Clock Generator

This block of the design generates, as the name suggests, delayed local clocks. These

clock signals sample the incoming remote clock signal. The sampling period is decided

upon the a priori knowledge of the time period, and the tfz of the DFF. Two techniques

can be used for this sampling as described next.

First Technique: Figure A.3 shows the sampling technique used in this work. The

sampling time interval, which is denoted by SR in Figure A.3, is calculated beforehand

based on a worst-case timing analysis. This timing analysis requires previous knowledge

of tf2. The bounds on SR are calculated as follows. For the case where the number of

\th samples is odd, the ((N-l)/2) sample should respect the following worst-case inequality:

230

_ ^ + ^ _ ^ > ^ l * 5 s ->s„ <T -2t* (1)
2 2 2 2 " TV - 1

where T is the clock cycle of the local (or remote) clock, and N is the number of

samples per clock cycle. Similarly, the ((N+l)/2)th sample should respect the following

condition

^ +
 T-+ ^ < ^ ± * SR -> SR > (T + 2'*) (2)

2 2 2 2 * (N + 1 J

Rearranging inequalities (1) and (2) leads to the following

T + 21 h T - It h (X\

N + 1 * N - 1 .

The above analysis is valid only if tfZ < SR. Such a sampling technique guarantees that,

in this mesochronous design, there will be at most one metastable output.

Second Technique: Another design technique to generate delayed clock is based on an

edge detection mechanism. This technique generates a pulse, using a rising edge detector,

which controls the pulse width. This pulse width, according to the DM requirement,

should possess a duty cycle such that a minimum of two locally-delayed clocked DFFs

sample each of the two logic levels, 1 and 0. Furthermore, the duty cycle should guarantee

that the two consecutive edges of the remote clock will not both fall in the tfz of the local

delayed clocked DFFs. Inequalities (4), (5), and (6) express the constraints on the

minimum and maximum edge-detect pulse-width duration or EDPW.

EDPW>2SR + tfz (4)

EDPW<3SR-tfz (5)

Combining inequalities (4) and (5) leads to the following inequalities,

2SR + tfi< EDpW < 3SR - tfz (6)

A similar analysis is required when there is an even number of sampling registers. The

optimum choice of even or odd number of samples, along with the total number of

231

samples, requires further detailed analysis and is not dealt in this work. The rest of this

work has been designed based on the assumption that the number of samples is odd.

BankofDFFs

Figure A.4 shows a bank of DFFs. The input signal to all of the flip-flops is the same,

i.e. the remote clock. The transition generator generates delayed clocks based on

inequalities (1) to (3). The output of DFFs labelled Al to AN can have at most one

metastable output, and it is the responsibility of the DM to filter metastability in the

system.

A.4 Decision Maker (DM)

The decision maker (DM) is the most critical design element of this solution. The DM,

through its combinational logic, selects a delayed clock, which provides metastability free

output. DM implements a combinational logic that selects a single phase from the set of

delayed clocks (deltal to delta5 in Figure A.3). Although, through the sampling technique

specified in Section A.3, it is guaranteed that metastability can occur at most once in the

entire duration of each sampling cycle, metastability may be due to a rising or a falling

edge of the clock. The DM is designed to check both the rising and falling edge

concurrently. It is mandatory for a robust implementation that the selection criterion

leading to the use of each delayed version of the local clock, based on a set of samples, be

unique. The following analysis describes the functionality of DM.

232

R
E
M
O
T
E

- I
C
L
O

c
K

L O C A L
C L O C K

Figure A.4. Bank of DFFs

The following discussion assumes that the number of samples per period is odd and is

equal to 5. Let Ai to A5 be the input to the DM as shown in Figure A.4. It is assumed that

there is no more than one metastable value, and as was explained earlier, there are two

possibilities for the metastable input, when one is present. Either metastability occurs due

to rising edge (0 -> 1) coinciding with the tfz, or the falling edge (l->0) occurring at tfz.

Tables A. 1 and A.2 show the truth tables converting sampled vectors to decision, for the

rising and falling edge detection cases respectively, for this specific context of five

samples. It can be noticed that Tables A.l and A.2 encompass all the possible sets of

events in this context: five samples and a maximum of one metastable sample. For

illustration purposes, a specific case from the Table A.l is explained. As shown in

233

Table A. 1, case 1 contains the logic value XI100. This leads to the Boolean form,

A2A3A4A5. If this function is true, then it selects A2 as the sampling pulse. Note that, in

Table A.l, each case has a unique Boolean function, and all are mutually exclusive.

Table A.l. Decision Maker's Trut
Case

1
2
3
4
5

Al
X
0
0
1
1

A2
1
X
0
0
1

A3
1
1
X
0
0

A4
0
1
1
X
0

Table A.2. Decision Maker's Trut
Case

6
7
8
9
10

Al

X
1
1
0
0

A2

0
X
1
1
0

A3

0
0
X
1
1

A4

1
0
0
X
1

l Tab
A5
0
0
1
1
X

1 Tab
A5

1
1
0
0
X

e (Rising Edge)
Decision

A2
A3
A4
A5
Al

e (Falling Edge)
Decision Rule
X=l X=0
A5
Al
A2
A3
A4

A4
A5
Al
A2
A3

In order for the Boolean functions, derived from Table A.l, to cover all the possible

events, they should provide the correct result for the cases of Table A.2. To illustrate the

effectiveness of the Boolean function acquired through Table A.l, an example is

demonstrated. It is again assumed that case 1 is true. If this case is true due to the rising

edge of the remote clock, it selects A2 as the most in-synch sampling edge. At the same

time, it is also possible that Boolean function A2A3A4A5 (XI100) is activated due to the

aliasing in Table A.2. Cases 8 and 9 are the aliases for XI100, when X=l and X=0,

respectively. The robustness of the design is still protected as it can be seen that, in both

cases, A2 is still a valid output. Thus, the Boolean function A2A3A4A5 covers these aliases

as well. Due to the cyclic property of the clock samples, such an analysis will lead to a

unique solution for all the five sampling signals, which are input to the DM. Note that one

234

may be tempted to conclude that since XI100, which is case 1, and 11X00, which is

case 8, are both leading to select A2, then it is possible to implement X1X00 as a Boolean

function for A2, and similarly, for the rest of the sampling signals. However, a closer

inspection shows that such Boolean functions lead to some irresolvable aliasing. For

example, it can be shown that X1X00 would lead to irresolvable aliasing with 0X1X0 and

1X00X.

A.5 Simulation Results

The validation of the design is accomplished by performing HSpice simulations of the

bank of DFFs and DM, two of the five blocks shown in Figure A.2. The pre requisite of

this simulation is to generate delayed local clocks following the condition mentioned in

inequality (3). The parameters of this inequality consist of T, tfZ, and N. Parameter tfz is

obtained through parametric analysis, using HSpice for a TSPC based DFF [6], under

TSMC's 180nm technology. The value of tfz was measured to be approximately 90 psec

for a load of 250 fF. To consider the effects of process variations and other noise sources,

tfz is assumed to be 180 psec. Inserting the value of tfz in inequality(3), and solving

through Matlab, it is found that, for a T of 2 ns and N=5, SR may vary between 393 ps and

410 ps. In the following simulations, SR is kept at 400 ps.

Proof-of-concept simulation results are shown in Figures A.5 to A.8. Sampling signals

A1 to A5 correspond to the five sampling signals out of the bank of DFFs in Figure A.5,

under the condition that falling edge is falling on the tfZ. It is shown that output A3 is in a

metastable condition, which corresponds to logic value set 11X00 or case 8 in Table A.2.

235

The corresponding select signal from the DM is shown in Figure A.7. It can be seen in this

figure that initially, when A3=0, the DM has selected Ai, since the condition related to

case 5 is valid. Later, when the remote clock is delayed further, A3 =1, and, in such cases,

the first row in Table A.l becomes valid and, as a result, A2 is selected. Similarly,

Figure A.6 demonstrates the output of the bank of DFFs under the condition that rising

edge happens on tfz and Ai is experiencing metastability. Figure A.8 exhibits the

simulation results of DM, showing that A2 is selected. This selection signal corresponds to

case 1 in Table A.l, i.e., the logic value set is XI100, as can be seen in Figure A.6.

— i 0 0 m

1 ,©125

— 1 0 0 m

T . S I S

— 1 0 0 m

1 B 1 2 i S

1 . 7 9 1 0

1 . 8 1 0 0

1 ^ Q S E f

T . 9 0

A5

1
A4

1
Output A3 is metastable

h
A2

A1

Eac
Remote clock delayed by 75n to 1n

1 OS&r-ri
(ZS~& •4-.<3r~i

± f m e
Figure A.5. Outputs from the Bank of DFFs (Falling edge)

The proposed design does not assume that metastability can be resolved in half a clock

cycle. Figures A.5 and A.7 demonstrate metastability in A3 and Ai, respectively. It is also

shown in these figures that the metastability took more than half a clock cycle to get

resolved, for a 500 MHz clock frequency. The latency of the proposed design is dependent

236

on the combinational logic, and therefore, with proper optimization of the circuits, it can

result in less than one clock cycle latency. It can be seen from Figure A.7 and A. 8 that

even for the worst-case, the latency of the DM is less than half a clock cycle of a 500 MHz

system clock. Considering typical technology delays of decoders and multiplexers, this

design can work at an overall latency smaller than one clock cycle at 500 MHz with

TSMC's 180nm CMOS technology.

1.90

- 1 0 0 m

1.90

— 100m

1.8100

1.7910

1.8100

1.7920

1.90

— 100m

1.90

— 100m

A5

H
A4

bz
A3

J U

A2
A.

Output A1 is metastable

Remote Clock delayed by 1.094nto 1.125n

• • • •

1.0n 2.0n 3.0n

time

" V :

- * -ng ' t i l 1

4.0n

Figure A.6. Outputs from the Bank of DFFs (Rising edge)

237

A.6 Summary

This WOrk proposes a new synchronizer scheme for mesochronous communication in

integrated systems. Overall, the proposed mesochronous synchronizer is more tolerant to

metastability than state-of-the-art designs. It has a comparable hardware cost and

typically produces close to one clock cycle latency for 500 MHz. system clock, when

implemented with the 180nm TSMC CMOS technology. This solution avoids the

prevalent assumption, made in many contemporary synchronizing techniques, of solving

the metastability in half a clock cycle. Two different sampling techniques are proposed,

and a new DM algorithm is suggested. A proof of concept simulation is performed that

shows the functionality of this proposed synchronizer, and its tolerance to metastability

B . 0 r n

— S . 0 m

2 . 0 r - r i

— 2 . . B m

. 2 . 0 m

— 2 . 0 m

1 0 0 m

• 2 , £ >

— -I -S3

A5 is selected

A4 is selected

E if —
A3 is selected

A2 is selected

A1 is selected

Remote clock delayed by .75n to 1n

1 0 0 m

Figure A.7. Selecting singnal from DM (Falling edge on tfz)

238

2.0m

-2.0m I

A5 is selected

-1 / * * " » ^

2 .0m

- 2 . 0 m I

5 .0m

- 4 . 0 m

2 . 0

A4 is selected

A3 is selected

A2 is selected

1.B P - r '

6.0m

- 6 .0m

A1 is selected

Remote clock delayed by 1.094n to 1.125n
1.9

-100m j r " 1 1 • — i i > i • •-

1.0n 2.0n 3.0n 4 .0n

time
Figure A.8. Selecting signal from DM (Rising edge on tf2)

