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ABSTRACT

Studying Biomolecular Interactions using Atomic Force Microscopy
Carolin Madwar

Many biological systems involve mechanical interactions and specific molecular

recognition events that are essential for their function. Single molecule force

spectroscopy (SMFS) is a powerful and versatile atomic force microscopy (AFM)-based

technique, which allows probing such interactions at the single molecule level, with

piconewton sensitivity, thereby illuminating their dynamics as well as their structural and

mechanical properties. A fundamental requirement in these studies is the immobilization

of biomolecules between the AFM probe and the sample surface, preferably by a long

flexible molecular spacer, such as poly(ethylene glycol) (PEG). The goal of this project is

to investigate the binding interactions in four distinct biomolecular systems at the single

molecule level, using SMFS. A new amination strategy was used to attach a novel

bifunctional PEG spacer containing amine- and thiol-reactive termini. Biomolecules

under investigation were tethered to AFM tips by formation of covalent linkages to this

versatile spacer. Various tests, including surface plasmon resonance and a UV-based

enzyme assay, were carried out to evaluate and confirm AFM tip functionalization.

SMFS of biotin/streptavidin yielded an average unbinding force of 59 pN at 4000 pN/s

loading rate. SMFS of concanavalin A/mannose yielded an average unbinding force of 50

pN at loading rate of 6000 pN/s. SMFS of a de novo heterodimeric E/K coiled/coil

yielded an average unbinding force of 41 pN at 7000 pN/s loading rate with a koff rate

calculated to be 15.8 s"1. SMFS of these biomolecular systems were not only successful

and informative, but also provide exciting directions towards future applications.
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Chapter 1. General Introduction

1.1. Single Molecule Techniques

Many biological reactions are too complex to be fully understood through the use of

conventional ensemble techniques. At the most fundamental level, all biological reactions

take place via the action of single enzymes, DNA molecules, or RNA molecules.

Studying one biomolecule at a time, or performing single molecule studies, can provide
1 2

us with amazingly clear and often unforeseen views of these molecules in action. '

The use of single molecule techniques to study biological processes and address

biomolecular interactions is a relatively new venture, which started less than 25 years

ago, and has been growing tremendously since then. The two main categories are: (?)

fluorescence imaging and spectroscopy, and (/'/) force-based manipulation and detection.

The work presented herein is based on the use of Single Molecule Force Spectroscopy

(SMFS), an Atomic Force Microscopy (AFM)-based force technique, in order to address,
detect and measure biomolecular interactions.

Investigating the mechanisms that govern biological interactions and understanding the

strength of biomolecular linkages are challenging tasks in both molecular as well as

structural biology. Such biomolecular interactions are mainly governed by multiple weak

non-covalent bonds that take place within defined regions of the interacting bio-

partners.3"5 In recent years, a number of techniques were developed to explore such
interactions, including the surface force apparatus, pipette suction, magnetic beads,

flow chamber apparatus,9 optical traps and tweezers10'" and AFM-based techniques.1 ''
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The techniques using optical and magnetic tweezers have proven to be unique tools for

force microscopy due to their sensitivity. However, in addition to their small force range

(no more than 200 pN), from a biological perspective these techniques are limited by the

need to artificially attach a micron-sized handle with which to apply a significant force

without altering the behaviour of the system under investigation. In addition, visible and

ultraviolet radiation carry sufficient energy to disrupt nearly all types of bonds if directly

absorbed and is therefore a limitation to many forms of optical imaging.14 On the other
hand, beside the ability to access higher forces (up to 100000 pN), AFM-based SMFS has

many advantages.12'15 Sample requirements are relatively simple and measurements can
be performed under both ambient and liquid environments, thereby providing an

excellent opportunity to probe biomolecular interactions at the single molecule level, as

will be explored in the following chapters.

The AFM is mainly used in two different modes, one as an imaging tool and the other as

a force probe. The latter is the technique known as SMFS. In either mode, AFM is an

ideal and powerful tool for probing and directly measuring interactions within a wide

range of molecular systems. With nanometer spatial resolution and piconewton force

sensitivity, the AFM not only produces nanometer to micron scale images of surface

topography, adhesion, friction and many others, but also detects and directly measures

intra- and intermolecular forces precisely at the single molecule level. " ' These

features make the AFM a unique instrument for elucidating new aspects in material and
macromolecule studies and render its force mode as an essential characterization tool for

fields ranging from biology to materials science. This field is amazingly dynamic, and

technical developments enabling novel experiments and significant improvements of new
2



as well as existing approaches, provide biochemists, chemists as well as physicists a

source of continuing excitement and inspiration.

1.2. Single Molecule Force Spectroscopy

This chapter provides a brief overview of the main principles behind AFM, focusing on

the technique of SMFS. It also describes examples of its applications for probing the

mechanical properties of various biomacromolecules.

A typical AFM instrument consists of: (J) a tip-cantilever assembly, which acts as the

probe that interacts with the sample surface, (U) a piezoelectric scanner, which provides

three dimensional positioning with high resolution, and (iii) a position-sensitive

photodiode detector, which measures the probe displacement and translates it into a
10

readable output (Figure 1).

Laser

Photodiode

Canti ever

Tip

Sample

V
Piezo Scanner

Figure 1. Schematic diagram of the AFM microscope
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The AFM tip-cantilever assemblies are typically made of silicon or silicon nitride and can

have either single- or V-shaped beams, as shown in Figure 2. The cantilevers differ in

their dimensions, spring constants, as well as their resonance frequencies, which is often

critical for their chosen applications.19

HvAvHR2 mm

Figure 2. Optical microscope image (reflection mode) of AFM cantilevers and tips: one substrate has
different cantilevers, with nominal spring constants of 0.02, 0.01, 0.03, 0.10, 0.50 N/m (from left to right).
Note the presence of the pyramidal tips at the end of each cantilever

The tip, with a radius of curvature in the nanometer range19, can scan the sample in
different ways. For imaging, the AFM tip scans the sample surface in a raster fashion,

and may do so in: (/) contact, (//) tapping (also known as intermittent-contact) or (//'/')

non-contact mode (Figure 3 a, b, c, respectively). In contact mode, the tip is scanned over

the sample surface while monitoring the cantilever's motion with a photodiode detector.

At each point, a constant deflection is maintained between the cantilever and the sample

by vertically moving the scanner via a feedback mechanism. The distance the scanner

moves is then used to form the topographic image of the surface. Operating in this mode

allows for molecular resolution images with high scan speeds, however the forces that the

tip exerts when touching the surface could damage features especially for soft biological

samples. Tapping mode™, on the other hand, operates by scanning the tip of an

oscillating cantilever across the sample surface, while maintaining constant oscillation

4



amplitude. In this case the tip lightly taps on the surface during scanning, contacting the
surface only at the bottom of its swing. The advantage of this mode is the high lateral
resolution obtained on most surfaces as well as the fact that there is less force exerted on

the sample. In the non-contact mode, the tip does not contact the sample surface at all and
is therefore the least intrusive of the three modes. In this case, the oscillating cantilever

interacts with the surface only through long range forces, such as van der Waals
90 91

interactions, thus decreasing the amplitude of oscillation. '

a) b) c)

Figure 3. Different modes of AFM: (a) Contact mode, (b) Tapping mode™, and (c) Non-contact mode
In either of these modes, the AFM operates in the three dimensions: x, y, and z, and the

probe displacement is converted by the position-sensitive photodiode detector into a
topographic image, with molecular and sometimes atomic resolution. However, when
operating only in the z-direction, the cantilever's deflection can be can be converted to
force values, and the AFM can be used to measure interaction forces with piconewton

sensitivity. Depending on the cantilever's stiffness, manifested as its spring constant (kc ,

0.1 - 100 N/m range),22 and the AFM instrumental deflection sensitivity (ca. 0.1 Â),
minimal forces in the femto- to nanonewton range can be measured. This means that the

AFM can theoretically measure molecular interactions as weak as van der Waals

interactions (< 10"12 N) and also as strong as covalent bonds (10"7 N).23 Practically, the
sensitivity of AFM is affected by the cantilever's thermal vibrations as well as its optical
and electronic noise. These limit the minimal forces measured in fluids to about 10 pN at



room temperature.22 The piconewton range accessible using AFM-based SMFS is in fact
difficult to fathom; for example, the force required to lift a weight of 1 gram is nearly 10

billion piconewtons (i.e. (1 x 10'3 kg) X (9.8 m/s2) = 9.8 x 1(T3 N; ca. 10 X 109 pN).

In the AFM force mode commonly known as SMFS, force-distance curves (i.e. force

curves) are generated when monitoring the cantilever's deflection as a function of the tip-
surface separation (Figure 4). A typical experiment starts with the cantilever far from the
surface where there is no deflection since there are no forces acting on the tip. The

approach curve (Figure 4, red) is developed by moving the cantilever towards the sample
surface until contact is established and then further extending the cantilever towards the

surface allowing interactions to take place. The retract curve (Figure 4, blue) is then
obtained when the cantilever is withdrawn from the surface until tip contact with the

surface is lost. During this approach-retract cycle, the deflection of the cantilever in the z-
12

direction changes as exemplified in the force curve.

?
a.

(O
o
t_
o

U-

\

Tip-surface separation (nm)

Figure 4. Features of a typical force-distance curve

Initially there are no forces acting on the tip and therefore the cantilever remains
undisturbed (Figure 4, part 1). However, upon contact (Figure 4, part 2) and further



extension into the surface (Figure 4, part 3), interactions between functional groups on

the tip and the sample surface can develop (Figure 4, part 4) before the tips is retracted

and detached from the surface (Figure 4, part 5). The interaction forces are represented by

peak(s) on the retract curve and can be calculated by converting the cantilever deflection

(i.e. peak height) to force using the cantilever's spring constant.17 Due to the presence of
capillary interactions between the tip and the sample surface under ambient conditions, a

large adhesion force (nanonewton range) represented by a large interaction peak at the

start of the force curve results. Since most (bio)molecular interactions of interest are in

the piconewton range, adhesion forces are usually eliminated by performing AFM-force

based experiments in fluid environment.24

In addition to imaging, AFM can measure forces between as well as within molecules.

Figure 5 shows some of the various applications of AFM-SMSF to single macromolecule

manipulations. These include the detection and mechanical characterization of DNA,

proteins, polysaccharides, synthetic polymers, as well as supramolecular interactions. In
addition, the interactions between two molecular partners or simply between two

chemical groups can also be measured. When studying polymers using SMFS, one can

obtain parameters such as Kuhn length, persistence length as well as segment elasticity.

When studying the interaction between molecular partners, the force required to break

this interaction, commonly known as the rupture force, can be obtained under varying

conditions.

7



?*?"~~?
f.

i

b) ?·«" q\ Polysaccharide

Polymer

, WrW

ß) NTA/His,, ? Antibody/antigen

Figure 5. Examples of SMFS applications: (a) Force-induced melting of complementary DNA strands (5'-
G-G-C-T-C-C-C-T-T-C-T-A-C-C-A-C-T-G-A-C-A-T-C-G-C-A-A-C-G-G-3' and complementary strand),
displaying stretching followed by unbinding,25 (b) Force-induced unfolding of titin, displaying a saw-tooth
pattern characteristic for multi-domain proteins,26 (c) force-induced conformational transitions in
polysaccharides (dextran, a-(l,6)-D-glycopyranose), showing a characteristic chair-to-boat transition of
pyranose ring,27 (d) Force-induced stretching of synthetic polymers (PEG) in water, displaying entropie and
enthalpic elasticity,28 (e) Force-induced rupture of a supramolecular interaction (HiS6-Ni2+-NTA), showing
the complex unbinding force peak,29 (f) Force-induced rupture of an antigen-antibody interaction (anti-
sendai antibodies to sendai-epitopes), showing the complex unbinding force peaks30

1.3. Chemical Force Spectroscopy

The AFM-based force technique has opened new horizons for measuring the strength of

biomolecular interactions because of its ability to sense forces that develop between the

end of its probe and the sample surface with an extremely high degree of sensitivity as

well as specificity.31 The concept of chemically modifying AFM tips in order to develop
probes that contain certain chemical functionalities and thereby becoming sensitive to

specific molecular interactions was first introduced in 1994. In this approach, which was

termed Chemical Force Spectroscopy (CFS), C. Lieber and coworkers functionalized

AFM probes with methyl as well as carboxyl groups and used them for mapping the
spatial arrangement of surfaces by specifically interacting with similar groups on the
surface.32 A few years later, a major advance in CFS was achieved by developing AFM
probes functionalized with carbon nanotubes.33 Nanotube functionalized probes were
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indeed a breakthrough in the field of CFS; their chemical sensitivity towards surface

composition, along with their flexibility, high aspect ratio and small effective radius
allowed chemically-sensitive imaging of patterned surfaces. All together, this led to the

development of chemical imaging contrast in CFS experiments, a field that would make

AFM-force spectroscopy a versatile surface analysis tool.34 More importantly in the
context of this work, nanotube functionalized probes have also been used in measuring

specific ligand-receptor interactions, particularly when biotin was covalently bound to

nanotube tips and streptavidin immobilized on biotin surfaces (Figure 6).

Tf
^^W^£ ^»^^ ^^m^|

Figure 6. Schematic representation of a nanotube functionalized AFM tip, where the terminal end of the
nanotube was coupled to biotin in order to become sensitive towards streptavidin surfaces

Since then, the concept of chemically modifying (i.e. functionalizing) AFM tips by the

covalent attachment of molecules (including biological macromolecules) has proven to be

an excellent tool in probing and measuring forces between a tip and a sample. Measuring

the strength of biomolecular interactions between bio-partners is possible if they are

immobilized between the AFM probe and the sample surface. In a simplified description,

approaching the tip to the sample allows the interaction(s) to take place and then

retracting the tip away from the sample breaks the interaction(s). The height of the peak

on the retract curve represents the magnitude of the rupture force required to break the

molecular interaction between the bio-partners. Following this methodology, CFS has

been used to probe a wide variety of both biological and chemical interactions, such as
9



antibody-antigen3'35 lectin-carbohydrate pairs36'37'38 complementary DNA strands,39
supramolecular polymer chains,40 gold and self-assembled monolayers.

This chapter gives a basic introduction to AFM-tip functionalization strategies, including

different chemical methods to add functional groups to the AFM tip as well as methods

developed to attach molecular spacers when required (either on the tip or the sample

surface). Most of the examples presented here focus on the application of amine-

terminated functional groups on the AFM tip surface. There are many well-developed

surface functionalization methodologies that can be applied towards AFM tip

functionalization and the reader is directed to a comprehensive review article by Ebner et

al.42 In all cases, tip functionalization chemistry requires meticulous care to obtain

favourable and reproducible results.

1.3.1. AFM Probe Cleaning

As mentioned earlier, AFM tips are usually made of silicon nitride (Si3N4), which

oxidizes to form a layer of silicon dioxide (S1O2) under ambient conditions. Most

cleaning procedures involve the use of oxidative conditions to produce a continuous

uniform silanol layer on the surface (Si-OH).42 A number of chemical reactions may then
be used convert the hydroxyl groups to other functionalities in order to subsequently

attach molecules of interest. The presence of a uniform contamination-free silanol layer is

essential for successful coupling reactions, therefore it is of critical importance to clean

the surface of AFM tips prior to their functionalization. Commercial AFM tips are often

contaminated with derivatives of poly(dimethylsiloxane) present in the Gel-Pak

adhesive in tip storage containers.43 An effective way to remove polysiloxanes involves
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the careful use of piranha solution (H2SO4ZH2O2, 70:30 (v/v)). However, one must also

consider that such harsh chemical treatment can damage the tip and also the gold

reflective surface of the cantilever thereby decreasing the deflection sensitivity. The use

of oxygen plasma or UV-generated ozone is an attractive method for cleaning AFM tips

by removing organic and other oxidizable surface contaminants that might be present.

After cleaning, the tips should be stored in such a way as to avoid contamination from

volatile organics or polymer-based containers (i.e. in glass petri dishes under vacuum). It

is highly recommended for the tips to be used immediately after cleaning to minimize
undesirable contamination.

1.3.2. AFM Tip Pre-Functionalization

After tip cleaning, processes of silanization, esterification or metal deposition are carried
out in order to attach functional organic groups to the tip's silanol surface layer (i.e. 'pre-

functionalization'). As mentioned earlier, an additional layer of molecular spacers (e.g.

poly (ethylene glycol)) can be subsequently added (i.e. 'functionlaization').

Silanization of AFM tips involves the use of organosilane reagents which attach to the

silanol surface groups by Si-O-Si bonds. Organosilanes used for tip pre-functionalization

typically have the chemical formula, RSi(OR' )3, where, R' is an alkyl chain and R

contains a reactive group that will be used for subsequent functionalization.

Aminosilanes where the R group is an aminoalkyl chain are mostly used, however in

other cases organosilanes that contain thiol, vinyl and alkoxyl groups may also be used,

depending on the chemical nature of the next species to be attached.31 The most common
method used for tip functionalization is aminosilanization, which is usually carried out

11



using either (3-aminopropyl) triethoxysilane (APTES) or (3-aminopropyl)

trimethoxysilane (APTMS) (Figure 7).

H2N.

Si

OH OH OH OH OH «/¿\, OH
—-L J 1 ^_ H2N(CH;)3Si(OC2H5)3 ^ I 111 ,^^

Figure 7. Pre-fiinctionalization of AFM tips using 3-aminopropyltriethoxysilane (APTES)

Other aminosilanes were found to be much less efficient and are used very rarely.42 The
ethoxy/methoxy groups must be hydrolyzed for the reaction to take place, and in the case

of APTES or APTMS, the amino group serves as the base needed to catalyze the

hydrolysis step. However, the disadvantage of this 'autocatalytic' hydrolysis is that such

aminosilanes are very likely to polymerize into networks when dissolved in the reaction

solvent or even during storage, unless water is completely excluded.42 Therefore
aminosilanes are usually stored under argon and preferably used fresh after distillation.

The aminosilanization reaction is carried out in the vapour phase in order to promote the

formation of uniform aminosilane layer. In addition, the process must be carried out

under nitrogen, again in order to avoid the polymerization of the organosilane reagents on

the AFM tip surface. Finally, the aminosinalized tips should be used directly or shortly

after preparation in order to avoid surface hydrolysis, as well as contamination. This

process is somewhat time consuming but is well-established, characterized and has been

proven to be useful for a variety of applications.4

Another process by which surface silanol groups of AFM tips are pre-functionalized is

esterification. In this reaction, alcohols are used to add a new organic functional group to

12



the AFM tip surface. Esterfication is a simple condensation reaction that can be easily
applied to silica surfaces.44 However, activation of the silanol groups on the surface is
required prior to their reaction with alcohols. This is usually achieved by treating the
cleaned AFM tip surface with tertrachlorosilane (SiCl4) and diethylamine (Et2NH). The

resulting Si(NEt2)4 is thought to aminate/activate the silanol surface groups thereby
making their reaction with alcohol much faster.23 The esterification reaction developed
for functionalizing AFM tips with amino groups similarly involves the use of
ethanolamine hydrochloride in order to activate the silanol functionality (Figure 8).

T ©
Cl H3N

OH OH OH OH OH OH 0 OH

J fjj H2N(CH2)2OH.HCI> ! :i— + ??0

Figure 8. Pre-fiinctionalization of AFM tips using ethanolamine hydrochloride

The same principles developed for using ethanolamine hydrochloride may be applied
with other types of alcohols in pre-functionalizing the AFM tips. Of course, each system
will require specific reaction conditions (temperature, incubation time, reagent

concentrations, etc.) in order to obtain optimal pre-functionalization. For example, when

using ethanolamine hydrochloride, the reaction usually involves the use of molecular
sieves in order to remove the water generated during the reaction and takes place in a

non-volatile solvent dimethyl sulfoxide (DMSO) since the process requires about 15

hours.35 This reaction appears to be simpler compared to the use of aminosilanes,

however applications have shown a number of distinct disadvantages for the
esterification method with ethanolamine. The experimental results in different studies

13



detected rupture lengths 10-20 nm longer than expected. This was attributed to the fact

that short polymers are being formed on the tip in the presence of ethanolamine and

DMSO, with the possible involvement of oxygen.42 This unsupported conclusion
connects to the other disadvantage of the reaction, which is its unknown and somewhat

vague chemical mechanism. Studies have shown the reaction to require very high
temperature when using other types of alcohols and initiated doubts about the mechanism

described above.45 Despite the disadvantages, the esterfication method is used for force

applications and is found to be convenient for measuring unbinding forces.

Another method for functionalizing AFM tips does not involve chemically modifying the

surface groups, but rather coating the surface with metal. A consequence of metal

deposition in comparison to other AFM tip functionalization methods is that it not only

changes the chemical reactivity of the surface but also its mechanical, thermal, optical

and resistive properties.46 Vapor deposition is the most common method used for coating
AFM tips with a variety of metals, including aluminium, gold, nickel, chromium and

platinum. The vapor deposition process involves heating the metal (source material) until
it evaporates and condenses on the desired surface. All the different evaporation methods

follow this principle and mostly differ in the heating method used. When metal

deposition is achieved by thermal (resistive) evaporation, the source material is

incorporated within a high melting point container, which once heated by electrical
current causes the metal to evaporate. The required low pressure environment inside the

chamber allows the metal atoms to evaporate freely until they condense uniformly on the

tip surface. This process is performed under high vacuum conditions in order to prevent

the metal vapor from reacting with any residual gas molecules or contaminants that may
14



be present within the chamber.46 Although the presence of a metal layer on the AFM chip
surface may decrease the cantilever flexibility, which is undesirable in certain situations,

it has been useful for a variety of applications. In particular, the thermal evaporation of

gold has been applied in many studies for AFM tip pre-functionalization to subsequently
add an additional functionality of interest using thiol chemistry.39,47'48 An example of
animating AFM tips using amino-self assembled monolayers (SAMs) is given in Figure
9.49

Silicon nitride tip surface

Gold
NH2 NH2 NH2 NH2

S SS S
III

C4H12N2S.2HCI w mm

Silicon nitride tip surface Cystamine dihydrochloride Amino-functionalized tip

Figure 9. Pre-functionalization of AFM tips using gold coating: cystamine dihydrochloride is used to form
amino-SAMs by the formation of gold-sulfur bonds49

In general, the pre-functionalization of AFM tips with any of the described methods
(silanization, esterfication or metal coating) is only a required initial step that is typically
followed by a final functionalization procedure. These may include the addition of self-
assembled monolayers,39'50 polymers,51"53 or even biological molecules. ' ' In the
following section, the attachment of molecular spacers to AFM tips will be discussed, in
particular polyethylene glycol) (PEG) and their use as spacers in force applications.
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1.3.3. AFM Tip Functionalization

Polymers, such as PEG, may be used in AFM tip functionalization to serve as molecular

spacers between the AFM tip and the substrate surface (Figure 10).

OH
?

Figure 10. Structure of poly(ethylene glycol)

In general, the spacers used are functionalized (i.e. terminated with a reactive functional

group) at both ends. One end of the spacer conjugates to the AFM tip surface and the
other end either contains the functional group of interest or another reactive functional

group that can be further conjugated to a biomolecule, for example. This linking distance

allows the interacting functionalities to freely re-orient and properly interact with their

complementary entities between the AFM tip and the substrate surface. The majority of

SMFS applications have shown PEG linkers that are 6 - 10 nm in length (which contain

18-30 monomer units) to be sufficient for this purpose. The presence of spacers on the

AFM tip also allows a higher degree of control on the number of biomolecules that can

be attached to the probe. In most cases, a high ratio of mono- to bifunctionalized spacers

is used to minimize the number of biomolecules present at the tip surface. As shown in

Figure 1 1, the advantages of using long flexible molecular spacers are mainly to increase

the chance of detecting single molecule events as well as to prevent the detection of non-

specific adhesion interactions (such as van der Waals, electrostatic and hydrophobic

forces) that may develop between the two surfaces when in close contact.

HO
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Figure 11. Advantages of using molecular spacers in AFM tip functionalization: (a) In the absence of a
spacer, non-specific interactions occur at the same tip-surface separation as specific interactions, making it
difficult to distinguish the interactions of interest, (b) In the presence of a spacer, the specific interactions
occur at a distance from the surface, separate from the non-specific interactions, facilitating the analysis of
interactions of interest

Spacer attachment to AFM tips requires the use of functionalization methods as

previously described. The attachment is achieved through chemical reaction between

functionalized polymers and pre-functionalized AFM tips (i.e. through silanization,

esterfication or metal coating). In some studies, PEG molecules containing thiol-reactive

functional groups (e.g. maleimide, pyridyl disulfide and vinylsulfone) were attached to

thiol- SAMs on gold-coated AFM tips by a thioether bond (Figure 12).57'58 Although the
gold-thiol interaction is very strong (20 - 35 kcal/mol),46 coating AFM tips (and
cantilevers) with a metal layer causes an increase in their stiffness as mentioned earlier,
therefore this method is used more for attachment of PEG molecules to gold-coated

substrates rather than AFM tips.42
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Figure 12. Attachment of PEG spacers to thiol-functionalized AFM tips: gold coating AFM tips, followed
by the formation of thiol-SAMs with 5% dithiol and 95% mercaptohexanol allows for the attachment of
maleimidie-PEG by a thioether bond.57'58
PEG molecules functionalized with amine-reactive functional groups may be attached to

aminated AFM tips. As described earlier, the addition of amine functionality to the AFM
tip surface may be achieved through silanization (i.e. using APTES), ' esterfìcation (i.e.
using ethanolamine),60 or gold coating (i.e. followed by formation of amino-SAMs).
PEG molecules functionalized with the highly reactive ester iV-hydroxysuccinimide

(NHS) are typically attached to aminated AFM tips via a stable amide linkage (Figure
13). In fact, this is arguably the most common method for attaching PEG molecules to
AFM tips.42

N-O-C-PEG
O

H Il
-N— C-PEG

NHS-PEG

Figure 13. Attachment of PEG spacers to amino-functionalized AFM tips: reaction of NHS with amino
groups on the AFM tip surface allow for the attachment of NHS-PEG by amide bond formation

The syntheses of homo- and heterobifunctional PEG molecules, containing the NHS
functionality at one end and another reactive group at the other end have been extensively
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described in the literature for AFM tip functionalization.34'61 Examples of bifunctional
PEGs are shown in Figure 14.

PEG

2

NH
I
PEG

cT-o

Figure 14. Examples of homo- and heterobifunctional PEG spacers used in this study: (1) NHS-PEG-
biotin, (2) NHS-PEG-NHS, (3) NHS-PEG-PDP

The general chemistry of tethering biomolecules to AFM tips via these three bifunctional
PEG spacers is shown in Figure 15.
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Figure 15. Tethering biomolecules to AFM tips via bifunctional PEG spacers: (a) tethering biotin to AFM
tips using NHS-PEG-biotin, (b) tethering proteins to AFM tips using NHS-PEG-NHS, which forms amide
bonds with amino groups, and (c) tethering proteins to AFM tips using NHS-PEG-PDP, which forms
disulfide bonds with thiol groups. In all cases the PEG spacers are attached to aminated AFM tips by amide
linkages to their NHS end
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As mentioned earlier, the PEG spacer attached to the AFM tip could directly carry the

functionality of interest. PEG molecules functionalized with biotin (Biotin-PEG-NHS)
have been attached to animated AFM tips in order to study their interaction with avidin

surfaces (Figure 15, a).61,62 Similarly, fluorescein was attached to AFM tips using
fluorescein-PEG-NHS in order to address the interaction with several mutant forms of

fluorescein-antibodies.63,64 The reactions involved in attaching other biomolecules to the

PEG spacer depend on the type of their exposed and available functional groups. In the
case of proteins, surface amino acids such as cysteine and lysine are widely used for their
attachment to functionalized PEG on AFM tips. Lysine residues, which are abundant in

proteins, contain an amine functionality and can therefore be coupled to aminated AFM
tips via the homobifunctional spacer NHS-PEG-NHS (Figure 15, b).48'54 One drawback
for this reaction is the fact that NHS esters are very likely to hydrolyze under aqueous

conditions65 especially at high pH.66 The incubation time for the reaction of the remaining
NHS group with the protein in buffer is therefore extremely critical and may dramatically
affect the coupling efficiency. In some studies, the hydrolyzed carboxyl groups were
reactivated using NHS/EDC (l-ethyl-3-[3-dimethylaminopropyl]carbodiimide
hydrochloride) in order to overcome this instability problem.67'68 Another consideration
for the use of homobifunctional linkers, including NHS-PEG-NHS, is the fact that they

may loop and bind twice to the aminated AFM tip. Although this might affect the
efficiency of coupling to the amino group of the protein, it might also be useful for
lowering the protein density on the surface thereby promoting single molecule events.
Using short bifunctional spacers is a possible way to avoid such situations, since they can
only link very closely spaced amino groups on the surface (Figure 16).
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Figure 16. Use of short homobifunctional linkers to tether biomolecules to AFM tips: attachment of linker
to aminated AFM tips by an amide linkage to one NHS end, followed by tethering of lysine-NTA by an
amide linkage to the other NHS end. The short length of the linker prevents it from looping and binding
twice to the tip69

Proteins may also be attached to functionalized PEG spacers through reactions of their

exposed cysteine residues. Thiol-reactive groups such as maleimides, vinyl sulfones and
pyridyldithiopropionate (Figure 17) can react with surface-exposed cysteines and have
been shown to effectively couple to proteins. '
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Figure 17. Examples of thiol-reactive groups: (1) maleimide, (2) vinyl sulfone, and (3)
pyridyldithiopropionate

Most often, the coupling of thiol-containing biomolecules including proteins to aminated

AFM tips has been achieved using the 3-(2-pyridyldithio)propionyl group (PDP) of the
bifunctional PDP-PEG-NHS (Figure 15, c).60'73'74 The coupling efficiency, especially for
antibodies, was found to be much higher when using PDP-PEG-NHS compared to other

bifunctionalized PEG spacers (e.g. aldehyde-PEG-NHS).73 A disadvantage of the PDP
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group to link proteins to AFM tips is the requirement of a free thiol group (i.e. an

exposed cysteine residue). However, thiol residues can be introduced in proteins using
reagents such as N-succinimdyl-3-(acetylthio)propionate (SATP) or

T\ 7S 7ft
pyridyldithiopropionic acid hydrazine. ' '

In summary, a multitude of PEG spacers with different functional groups and polymer
lengths have been used in AFM tip functionalization with biomolecules. The examples
presented in this chapter represent a small percentage of the work that has been done in
this research field and were chosen based on their relevance to this thesis.

1.4. Experimental Considerations

The main objective of this chapter is to point out some experimental considerations
required for performing force spectroscopy measurements. These include the choice of
AFM cantilevers, spring constant calibration and the use of mathematical models to

analyze and interpret the resulting SMFS data.

1.4.1. AFM Cantilever Choice

When conducting SMFS experiments, the choice of AFM cantilevers depends on the type

of biological molecules being studied and the magnitude of forces applied as well as
measured. Two important properties of AFM cantilevers that influence this choice are: (0

77

the cantilever's spring constant, kc (pN/nm) and (//) its resonant frequency, f0 (Hz).

When measuring small forces on soft biological samples such as those involved in the
folding of proteins, soft cantilevers having low spring constants (kc < 10 pN/nm) are the

most suitable. AFM tips with spring constant as low as 3 pN/nm are commercially
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available.78 Their main drawbacks are their high cost and the fact that they are extremely

delicate (e.g. they can break even upon immersion in solution). Additionally, in force
measurements it is important to take into account the cantilever's thermal noise due to

Brownian motion, as it is the major source of experimental noise. Shorter cantilevers give

a better signal to noise ratio, in the low-frequency bandwidth (0 - 1000 Hz) at which
most force measurements are collected.22 Cantilevers as short as 60 µ?? are commercially

22 78
available and are practical for force applications requiring low-noise measurements. '

For practical reasons, most force measurement studies make use of cantilevers with a
spring constant, kc, of 10 - 20 pN/nm and even some as high as 100 - 160 pN/nm. In

our hands, a cantilever with a spring constant of 10 pN/nm has peak-to-peak noise as low

as 5 pN with a signal-to-noise ratio of ca. 3. Therefore, forces as small as 15 pN, which is
at the low end of the interaction forces reported for most biomolecular systems (20 - 240

pN) can be measured.16 The use of cantilevers with extremely low spring constants is
typically not required.79

1.4.2. Spring Constant Calibration

Another issue concerning cantilever spring constants is the absolute need for their

calibration for each force experiment. Almost all AFM-based SMFS studies have shown

the measured spring constant values to be quite different from the nominal values

supplied by the manufacturers and the variation is sometimes as high as 50%. A number
of different methods have been developed to calibrate the spring constant of AFM

cantilevers,17 and the 'thermal noise' method is the most commonly used. Table 1
80summarizes some of these methods and their main source of measurement uncertainty.
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Table 1. Different methods for calculating the AFM cantilever spring constant

Method Equation Uncertainty Main
(%) source of

error
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Cantilever
thickness

Elastic
modulus of
Si3N4

Si density

Deflection
sensitivity

Particle
diameter

Cantilever
width

Deflection
sensitivity

3E is the elastic modulus of the cantilever, w is width, / is thickness and L is length.

b b is the width at the base of the "V" in V-shaped cantilevers, 0 is half the angle between the
two legs, wis the width of the legs measured parallel to the front edge of the substrate and L is
the length of the cantilever measured straight out to the apex from the substrate.

c /0 is the resonant frequency of the cantilever, ? is density of the cantilever, W is width, L is
length and E is elastic modulus.
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d kr4 is the spring constant of a reference cantilever, Sref is the deflection sensitivity measured on
the reference cantilever and Shard is the deflection sensitivity measured on a hard surface. koJf is
the spring constant measured offset from the end of the cantilever, L is length and ??, is the
distance that the tip is offset from the end of the reference cantilever.

e M1 is an additional mass applied to the end of the cantilever, /0 is the resonance frequency of
the original cantilever and/ is that after the addition of one mass. MeJf is the effective mass of a
particle added to the tip of the cantilever, Mmeas is the measured mass of the particle, L is the
length of the cantilever and AL is the distance that the particle is offset from the tip of the
cantilever.

f pf is the density of the fluid in which the measurement is taken, r\f is the viscosity ofthat fluid,
Q is the quality factor of the cantilever oscillation, and G, is the imaginary component of the
hydrodynamic function, which is a function of the Reynolds number, Re . f0 is the resonant
frequency of the cantilever, w is width and L is length.

g kB is the Boltzmann's constant, T is the temperature, Z is the degree of cantilever bending
determined using the power spectral density analysis, D is the height of the tip, L is length.

As seen in Table 1, each method makes use of specific parameters that require certain

estimates and assumptions and carry with them corresponding errors and uncertainties.

The thermal noise method, described below, was used for AFM cantilever spring constant

calibration in this research, however, it should be noted that there is no standard method

for calibration. The thermal noise method is based on the energy equipartition theorem,

which, when the cantilever system is modeled as a simple harmonic oscillator, states that

the average potential of the cantilever, %kcZ2 , due to its thermal (i.e. Brownian) motion
is equal its thermal energy, %k¿T. Therefore the cantilever's spring constant calibration

requires the determination ofZ2(Zis the amplitude of the cantilever's random oscillation
at thermal equilibrium; Equation I).22

25



VL kcZ2 = %kj =*kc=^4- Equation 1 ./? /z j.

In commercial AFM instruments, Z is determined by performing what is known as a

'power spectral density' analysis of the cantilever's oscillation at thermal equilibrium

(Figure 18).
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Figure 18. Power spectral density analysis of an AFM cantilever's thermal noise

In practice, the power density spectral analysis first determines the sensitivity, S, of the
photodiode voltage, V (volts), which is generated by the laser beam tracing the
cantilever's movement, and then relates it to the degree of cantilever bending, Z(nm),

since S-V/Z . In the power spectral density analysis, V is not evaluated in the time

domain, but rather the frequency domain through a Fourier transformation of the time

signal (i.e. V(t)). The advantage of such frequency-type analyses is the possibility of

eliminating most of the external noise sources from the measurement. These could either

appear at specific frequencies, which can be distinguished from the cantilever's

resonance frequency, or are mostly broadband noise (such as white noise) which can be
baseline corrected.

Measurement
Fit
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Note that the equation reported in Table 1 is not simply kc =kBT/Z2, and the correction

comes mainly from two later realizations. First, the assumption that the cantilever's

oscillatory mode can be described as a simple harmonic oscillator is not necessarily
correct since cantilevers do not behave as ideal springs. Second, the cantilever's

displacement, which is measured using a reflected laser spot on the position-sensitive

photodiode detector is different from the actual displacement, which depends on the

bending of the cantilever and the angular changes in the cantilever's position. These

factors alone contribute a degree of uncertainty of ca. 10% when calibrating the spring

constant using the thermal noise method.22 In addition, calibration uncertainty can also
arise from using different solutions and experimental conditions and in these cases, the

change in spring constant may or may not be negligible which reinforces the need for

calibration in each experiment. It is generally accepted that the variation in spring
99 7Q

constant determination using the thermal noise method can be as high as 20%. '

The rest of this chapter provides a brief overview of polymer mechanical properties (in

particular those for PEG), in light of basic models for entropie and enthalpic elasticity.
This discussion is relevant to the methods of analyzing, interpreting as well as

discriminating the resulting data in force measurements.

1.4.3. Fitting Equations

Applying an external force to a polymer molecule causes each of its monomeric

components to align in the force direction, thereby decreasing the overall configurational

entropy. The polymer, in response, develops tension in an effort to restore its random

configuration. Such a response classifies polymers as 'entropie springs'. The elastic
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behaviour of polymers may then be described using mathematical models, as exemplified

in Figure 19. As implied from its name, one model describes the polymer as a freely

jointed chain (FJC) consisting of orientationally independent, rigid, inextensible Kuhn

segments (1K) (Figure 19, b).81 On the other hand, the worm-like chain model (WLC)
describes the polymer as an elastic rod, whose stiffness is characterized by the persistence

length (/?), which is the shortest distance over which the polymer keeps its original

orientation (Figure 1 9, a) 82,83

a) JL
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Figure 19. The worm-like chain (a) and freely-jointed chain (b) models of polymer elasticity
These models can be further extended to account for the intrinsic enthaplic elasticity of

the polymer's monomeric components.84 For example, the stretching of PEG under an
applied force can be described using the FJC model; however this model becomes

inadequate under certain circumstances. An extended freely jointed chain model (e-FJC)
was developed to describe the stretching of PEG due to monomer entropie elasticity as
well as to account for its conformational transitions.28 In aqueous solution, the PEG

strand can exist in one of two conformations, either trans-trans-gauche (ttg) or trans-
it



trans-trans (ttt) with a specific difference in Gibbs free energy (AG) and a length

difference (AL) (Figure 20). The all-trans extended conformational segment is less
favourable in the absence of strain, however under an applied external stretching force

the equilibrium shifts away from the shorter helical ttg conformational segment and

towards the extended ttt planar state. Hydrogen-bonding with water plays an essential
role in the above-described conformational transition 28

Figure 20. Force induced PEG conformational changes in aqueous solution: (a) extended ethylene glycol
monomer {trans) and (b) helical ethylene glycol monomer {gauche). Hydrogen bonding with water
molecules (indicated by dashed lines) plays an important role in the stabilization of PEG conformational
transition between the two states in aqueous solution under applied force

The general form for the e-FJC model of polymer stretching is given in Equation 2.

x(F) = 4 .JFL/ \ kBT/coth( Abt)- b/fik + Ns — Equation 2.

In Equation 2, Ns is the number of segments and Ks is the segment elasticity. Due to the
conformational transitions described above, this equation does not fully describe PEG

stretching in aqueous solution. To resolve this issue, one must calculate the total contour

length (Lc) of the stretched PEG from the lengths of both of its segments, helical (ttg)
and planar (ttt):

c planar planar helical helical Equation 3.
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Where L refers to the segment length of each conformation and N refers to the number

of segments existing in that particular conformation. The values of S??a?? and Lplanar for

PEG in aqueous solution are 2.80 Â and 3.58 À, respectively.28 If Nhelical and Nplanar were
also fixed values independent of the applied force then the contour length describes the
distance between the two polymer ends attached between the AFM tip and the surface
thus determining the overall extension length of the force curve. However, the ratio of the
total number of monomers is dependent on the force and described as:

NKencai = ^G(F)Ik11T Equation 4.
N

planar

where:

AG(F) = AG0 - F(LpUmar - Lhelica) Equation 5.

In this equation, AG(F) , the difference in free energy between the two conformations, is
the force-dependent parameter and AG0 , the energy difference at zero applied force, is
fixed at 7.45 kJ/mol.28 Combining the previous equations (Equations 2, 4 and 5), the
extension-force relation describing PEG in aqueous solution (e-FJCpEo) is then given by:

t i-i\ » il planar *-?

Stretching models are used in force measurement data analysis when PEG is used as the
spacing linker. For example, when PEG is used as the linker tethering biomolecules
between an AFM tip and a sample surface, the e-FJC model is used to fit the resulting
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force curves. The fitting parameters thus obtained (i.e. Kuhn length, contour length and

segment elasticity) are used to evaluate the force curves. If these values correspond well
with the literature values for PEG (LK ca. 7 Â, Lc depends on the length of PEG used

and Ks ca. 150 N/m)28 then the force curves indeed represent PEG stretching and this
particular event can be used for subsequent data analysis. When the force measurements
are carried out in order to address the unbinding of molecular bio-partners, the events of

interest are rupture forces which are extracted from the selected force curves (after
fitting).

1.4.4. Histograms

To have confidence in single-molecule studies, one must collect hundreds, if not

thousands, of events. In the case of SMFS for studying the unbinding of molecular bio-

partners, one must use a systematic method to evaluate the collected rupture forces.
Calculating the mean force is an approximation that most probably is incorrect since the
mean of a distribution is a function of all data, with equal probability. However, within

one force experiment, there may be measurements that do not represent the ideal
interaction between single molecules and including these values in calculating a mean

can sometimes lead to incorrect conclusions. In order to avoid such error, with each

rupture force value being a sample within a continuous distribution, a histogram is
created placing each of the force values in a class, or bin of fixed size. The question
becomes what bin size to choose. Various methods have been proposed for bin size

oc

selection and application of a theoretical study of synthetic data showed Scott's rule,
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described by Equation 7, to be very accurate and useful for both Gaussian as well as non-
Gaussian distributions.

hN = 3?9s?~% Equation 7.

In this equation, s is the estimate of the standard deviation among the collected data, N
is the number data points used to construct the histogram and hN is the calculated bin
width.

1.4.5. Binding Kinetic Parameters

Over the past decade, the field of SMFS has advanced not only in theory, but also in
experimental practice and data analyses. Developments have shown the possibility of
measuring kinetic parameters for biomolecular interactions, including dissociation rates
and change of energy over transition states.87"89 When studying biomolecular interactions
using SMFS, force is applied to binding partners by tethering one member of the
interacting pair to the AFM tip and the other to a surface, and then extending and
detaching the pair. According to the theory, introduced by Bell90 and expanded upon by
Evans and Ritchie,87 measuring the rupture force of the biomolecular interaction at

variable probe loading velocities allows defining their kinetic parameters, specifically the

dissociation rate koff and the distance between the binding complex and the transition
state jc^ . The equation that links these parameters together is given by:

<¦* KoY /
/ =^ln

y^off^B' j
k T+ -2— I ? ? Equation 8 .
Xp
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In this equation, ? is the loading rate which is the product of the probe velocity (nm/s)

and the spring constant (pN/nm) and /* is the most probable rupture force estimated

from the histogram of a set of measurements performed at a specific probe velocity.

Plotting /* versus the logarithm of the loading rate lnr, displays a linear relationship

from which the koff can be estimated from the intercept of the vertical axis (i.e. when

InOy)-O) where ?ß can be estimated from the slope.91'92 The dissociation rate koff is
related to the lifetime t0 of the complex (t0 = k~#), and provides information on the

specificity of the interaction. It is important to keep in mind that a linear relationship

between the logarithm of the loading rate and the unbinding force is characteristic only

for a single-energy barrier interactions in the thermally activated regime. In addition, the

velocity at which the force can be varied is limited by the mechanics of the SMFS

instrument, usually between 10 and 5000 nm/sec, before thermal drift or hydrodynamics

become significant.86

A procedure for the determination of the association rate ¿„„was also described in the

literature, which allows for calculating the association constant (Ka = kon/koff) providing

information on the affinity of the interacting bio-partners.

SMFS measurements probe single biomolecular interactions, which means that thermal

fluctuations can significantly affect the strength of rupture forces. Noy and co-workers

studied the effect of temperature dependence on tip-sample interaction strength and

developed a quantitative interpretation, as described in Equation 9.
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xß xß xß

Where td represents the inverse of the diffusion-limited frequency and xp is the distance

to the transition state. The first two terms in Equation 9 represent the enthalpic and

entropie energy contributions to the interaction strength, respectively, and the third

represents the thermal motion contribution. This means that the first two terms represent

a true energy-barrier contribution whereas the third term represents what can be
considered as 'thermal weakening' of the binding strength between two interacting

species where thermal fluctuations help the system cross over the activation barrier thus

breaking at a lower rupture force. This explains why at higher temperature and/or higher

loading rates unbinding forces appear to be lower.

In summary, chemically modifying probes and surfaces opens the door for SMFS

measurements to reveal new exciting information regarding the strength and the kinetics

of biomolecular interactions. In addition, this approach allows one to address the

influence of different environmental factors on the strength of these interactions. In

general, considerations in both experimentation and data analysis must be taken into

account in order to accurately apply the theory.

1.5. Summary and Goals

The main goal of the present study is to address a variety of biomolecular interactions

using the outlined principles of SMFS. In particular, the technique was used to

investigate the binding in four types of biomolecular interactions: (/) the DNA double

kBT
rycDXß

Equation 9.

34



helix, (U) the biotin/streptavidin interaction, (/'/'/) the concanavalin A/mannose interaction

and (Zv) the two coils in a synthetic E/K-coiled-coil system.

Biomolecular interactions are governed by a complex collection of intermolecular and

interfacial forces forming specific non-covalent contacts. The four systems chosen for

this investigation represent distinct types of biomolecular interactions, which are

controlled by the chemical and physical structures of the biomolecules and are highly

influenced by their environment. In order to investigate their binding interactions by

SMFS, the immobilization of these biomolecules between the AFM tip and a surface is

required. The surface chemistry by which the different biomolecules are covalently

coupled to AFM tips is described in Chapter 2. The fundamental requirement for using

molecular spacers when functionalizing AFM tips with biomolecules is achieved by

using a family of bifunctional PEG spacers. The synthesis, characterization and

chemistry for attaching these versatile PEG molecules are also described in Chapter 2.

Specific recognition and binding between the biomolecules in each of the above

mentioned systems is measured by carrying out force measurements as described in the

previous sections. Each of the following chapters will include a brief introduction for the

particular biomolecular system under investigation as well as a detailed description of the

experimental set up that was used, followed by a discussion of the data analysis and

results (Chapter 3 - Single molecule force spectroscopy of DNA, Chapter 4 - Single

molecule force spectroscopy of biotin/streptavidin, Chapter 5 - Single molecule force

spectroscopy of concanavalin A/mannose & Chapter 6 - Single molecule force

spectroscopy of the E/K coiled-coil).
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Chapter 2. Experimental

2.1. Materials

2-Thiopyridone, 3-mercaptopropionic acid, triethanolamine, ?,?-dimethylglycine,
pyridine, dicyclohexylurea, triethylamine, triethanolamine, dimethyl formamide,
pyridine, iV,iV;iV',^'-tetramethyl-0-(iV-succinimidyl)-uronium tetrafluroborate, Tween -
20, streptavidin, d-biotin, and concanavalin A (Cctnavalia ensiformis, Jack Bean, Type
VI), were all purchased from Sigma-Aldrich Chemicals (Canada Ltd.) and used as
received. Lambda ONA/Eco 911 {Bst EII) Marker 15 was purchased from Fermentas

(Canada). 0-phenylenediamine»2HCl, used for UV-assays, was purchased from Fluka
(Canada). Ultra pure silica gel (particle size: 40 - 60 urn; pore diameter: 60 À), used for
column chromatography, was obtained from Silicycle (Canada). Silica gel plates (0.25

mm) were purchased from Sigma-Aldrich Chemicals (Canada Ltd.) VECTABOND™
reagent, used for surface animation, was purchased from Vector Laboratories (Canada),
and aliquots (50 \ÚJ) were stored at -20 0C until used. NHS-PEG3500-Biotin and NH2-
PEG3500-COOH«HC1 polymers were purchased from JenKem Technology (USA).

CH3O-PEG750-NHS, CH3O-PEG5000-NHS and NHS-PEG6000-NHS polymers were

purchased from Rapp polymère GmbH (Germany). HS-PEG3400-Biotin was purchased
from Nanocs Inc. (USA). Hellmanex, used for cleaning glass surfaces, was purchased
from Sigma-Aldrich (Canada Ltd.). Chromium pellets (57 X 3.2 mm) were purchased
from Ted Pella Inc. (USA) and gold (1 g bullion, 999.9 purity) was from Istanbul Gold
Refinery (Turkey). Substrates used to prepare functionalized surfaces include glass
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microscope slides (Bio Nuclear Diagnostics Inc., Canada), muscovite mica sheets (Ted

Pella Inc., USA) and silicon wafers (Wafer World Inc., West Palm Beach, FL).

Additional materials required to conduct ConA force experiments (PEG20000,

perfluorophenylazide-disulfide and perfluorophenylazide-mannose) were generously

supplied by Dr. Olof Ramström (KTH Royal Institute of Technology, Sweden). M

K-coil surfaces95, cysteine-tagged ?-coil peptide (5 heptad repeats)96, epidermal growth
factor (EGF), epidermal growth factor receptor (EGFr),97 carboxymethylated dextran
(CM4) sensor chips and the amine coupling kit (NHS, EDC, and ethanolamine) used for

the SPR assay were generously provided by Prof. G. De Crescenzo (École Polytechnique
de Montréal, Canada). Cysteine-tagged K-coil peptide (5 heptad repeats)98 was
generously provided by Prof. P. Davies (Queens University, Canada).

Other common chemicals used in this work were either purchased from Sigma-Aldrich

Chemicals (Canada Ltd.) or Fisher Scientific (Canada).

2.2. Instruments and Techniques

A UV-ozone oven (UVO-Cleaner, Model No. 342, Might Company Ine, USA) was used

for cleaning AFM tips. AFM imaging was carried out using a Digital Instruments'

Nanoscope Ilia (Santa Barbara, CA, USA) operating with NanoScope version 6.13r

software. Single molecule force experiments were carried out using an Asylum Research

MFP-ID (USA) operating with IgorPro version 4.0.9.0 software, or a Digital

Instrument's AFM equipped with the PicoForce control module. Silicon nitride NP-20

probes were used for AFM imaging and silicon nitride triangular Microlever Probes

MLCT-AUNM were used for single molecule force experiments; both were purchased
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from Veeco Probes (Santa Barbara, CA, USA). Analysis of the SMFS results was carried

out using Hooke software," IGOR Pro version 5.0.4.8 software and Microsoft Excel
2007. Histograms were prepared using OriginPro 8 software. Gold-coating was carried
out using a Polaron E 6300 Bench Top Thermal Evaporator equipped with a Cressington
crystal balance thickness monitor (USA). Surface plasmon resonance (SPR) experiments
were carried out at Prof. G. De Crescenzo' s laboratory (École Polytechnique de

Montréal, Canada) using a Biacore 3000 instrument (GE Healthcare, Baie d'Urfe, QC).
Thickness measurements of silicon surfaces were carried out in the De Crescenzo lab

using an automatic M2000 ellipsometer (J.A. Woollam Co. Inc., Lincoln, NE). Contact
angle measurements on the same surfaces were carried out using a FTA200 Dynamic
Contact Angle Analyzer (First Ten Angstrom Inc., Portsmouth, VA). For all synthesized
materials, the recorded Rf values were determined by a standard TLC procedure eluting

with the specified solvents. 300 MHz 1H-NMR spectra were recorded at room

temperature on a Inova Varian 300 spectrometer (Cary, NC, USA). The residual proton

signals of the deuterated solvent were used as internal standards (CDCb: d (1H) = 7.27
ppm). The following notation is used for the 1H-NMR splitting patterns: singlet (s),
doublet (d), triplet (t), mutiplet (m) and broad signal (bs). 1H coupling constants are given
in Hz and the values are for three-bond coupling protons. UV irradiation was achieved

using a Rayonet photochemical reactor equipped with 300 nm lamps (Southern New
England Ultraviolet Company, Middletown, Connecticut, USA). UV quantitative assays
were carried out using a Varian Cary 1 UV-Vis Spectrophotometer (Cary, NC, USA).
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2.3. Buffers and Aqueous Reagents

All buffers were prepared using Milli-Q water and were sterilized through a 0.2 µ? filter
(Millipore) prior to use.

Table 2. List of buffers

Buffer Components PH
A 10OmMNaH2PO4 60
B 600 rnM NaH2PO4 60
C 10OmMH3PO4 2.0
D 50 mM NaCl, 1 mM EDTA 7.5
E 10OmMNa2B4O7 8.5
F 10OmM(PO4)"3** 7.0
G 100 mM CH3COONa, 1 M NaCl 4.5
H 50 mM NaH2PO4, 100 mM NaCl, ImM EDTA 7.5
I 25 mM (PO4)-3** 8.0
J 25 mM (PO4)-3** 5.0
K 10 mM Tris, 150 mM NaCl, ImM EDTA 8.0
L 50 mM C5H7O5COOH 5.5
M 50 mM DMG, 1 00 mM NaCl, 1 .0 mM CaCl2 and 1 .0 mM MnCl2 6.0
HBS 20 mM HEPES, 1 50 mM NaCl 7.4
PBS 5 mM NaH2PO4, 1 50 mM NaCl 7.4
PBT 0.5% Tween®-20 in PBS 7.4

* pH was adjusted using either NaOH (aq.) or HCl (aq.)

** Prepared by adding the appropriate amounts OfNaH2PO4 and Na2HPO4
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2.4. Synthesis

2,2'-dithiodipyridine, 3-(2-pyridyldithio)-propionic acid, o-succinimidyl-3-(2-pyridyl)-
dithiopropionate, as well as N-hydroxysuccinimate-poly(ethyleneglycol)-3-(2-
pyridyldithio)-propionate73 were synthesized according to literature procedures as
described below.

CTS N
2-thiopyridone (2,2'-DTDP)

2,2'-DTDP: 2-thiopyridone (22.4 g, 200 mmol) was dissolved in water (600 mL) and
cooled to 15 0C. The cooling bath was removed and a mixture of water (155 mL) and

30% H2O2 (155 mL) was gradually added and stirring was continued for a period of 30
minutes. At 0, 15 and 30 minutes, 200 µ? aliquots of the reaction mixture were diluted

with 20 mL of Buffer A and the insoluble product was filtered. The reaction was

followed by monitoring the absorbance at 343 run reflecting the presence of 2-
thiopyridone (^43 = 8080 M-1Cm"1). The reaction was stopped when the absorbance no
longer changed (Abs = 0.19 A.U.). Subsequently, the solution was cooled to -4°C and the
precipitated product was collected by filtration and then washed with ice-cold water (50
mL). Drying under vacuum overnight yielded 2,2'-DTDP (19.2 g, 87 mmol, 87%); Rf =
0.86 (silica; CHCl3/MeOH/H20 (70:30:4).
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/N S.s/^AOH

3-(2-pyridyldithio)-propionic acid (PDP-OH)

PDP-OH: In a 500 mL 3-neck flask, 2,2'-DTDP (15 g, 68 mmol) was dissolved in

ethanol (100 mL). Subsequently, 37% HCl (20 mL) and water (100 mL) were slowly
added with stirring. The flask and the attached addition funnel were flushed with argon.
Ethanol (20 mL) and 3-mercaptopropionic acid (4.74 mL, 55 mmol) were mixed in the
addition funnel under argon and this solution was added slowly to the 2,2'-DTDP

solution with vigorous stirring. After 15, 30 and 40 minutes, 10 µ? aliquots were
withdrawn and mixed with Buffer B (10 mL) and filtered from insoluble material. The

reaction was followed by monitoring the absorbance at 343 nm, which reflected the

presence of 2-thiopyridone (?343 = 8080 M"'cm"'). The reaction was stopped after 40
minutes when the absorbance no longer changed (Abs =1.1 A.U.). The volume was

reduced under vacuum to 25 mL keeping the rotatory evaporator bath temperature below

20 °C. Afterwards, chloroform (50 mL) was added to this solution and the pH was

gradually raised to 7.5 with 15% Na2CO3 (ca. 100 mL). The mixture was then transferred
into a separatory funnel, the organic layer was collected and the aqueous layer was
further extracted with chloroform (6 ? 20 mL). The combined organic phase was taken to

dryness and unreacted 2,2'-DTDP (ca. 5 g) was recovered. The pH of the aqueous phase
was lowered to 2.5 using concentrated HCl at which point the product, PDP-OH, begins

to precipitate. The PDP-OH was subsequently extracted with chloroform (6 ? 50 mL), the
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organic phase was dried over sodium sulfate (ca. 5 g) and filtered. The filtrate was taken
to dryness, yielding crude PDP-OH (5.8 g, 27.1 mmol) which contained 3,3'-
dithiopropionic acid as a by-product (detected by H NMR).

The crude PDP-OH (1.4 g, 6.54 mmol) was purified by flash chromatography on silica
(100 g, 44 mm column diameter, ca. 30 mL/min) using dichloromethane/methanol (95:5)
as eluent (ca. 1.5 L was used for both column packing and elution). Pooled fractions (ca.
50 mL) yielded pure PDP-OH (1.2 g, 5.61 mmol, 86%); Rf= 0.35 (silica; CH2Cl2:MeOH
(95:5)); 1H-NMR (300 MHz, CDCl3): d = 2.80 (t, J= 7 Hz, 2H: CJf2-COOH), 3.07 (t, J =
7 Hz, 2H: S-S-CH2), 7.13-7.22 (m, IH: H5 of the pyridyl group), 7.64-7.72 (m, 2H: H3
and A4 of the pyridyl group), 8.50-8.51 (m, IH: H6 of the pyridyl group), 11.8 (br s, IH:
COOH).

O
O

ö

0-succinimidyl 3-(2-pyridyl)-dithiopropionate (SPDP)

SPDP: PDP-OH (1.0 g, 4.7 mmol) and NHS (0.80 g, 7.0 mmol) were dissolved in dry
THF (15 mL) at room temperature. The solution was cooled to 0 "C and DCC (1.44 g, 7.0
mmol) was added. Precipitation of a white product (dicyclohexyl urea) was observed.
The mixture was stirred for 1 hour at 0 °C and overnight at room temperature. The

precipitate was then removed by filtration and the filtrate was taken to dryness under
vacuum. The solid residue was recrystallized from isopropanol; the SPDP crystals were

kept on ice for 4 hours and then at -20 "C for 3 days. White crystals (1.06 g, 3.4 mmol)
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were collected by filtration, washed with cold isopropanol and dried. SPDP (0.5 g, 1.61
mmol) was then applied on a silica column (100 g, 44 mm column diameter, ca. 30
mL/min) using dichloromethane/methanol (95:5) as eluent {ca. 1.5 L was used for both
column packing and elution). Pooled fractions {ca. 50 mL) yielded pure SPDP (0.41 g,
1.32 mmol, 82%); R1= 0.6 (silica; CH2Cl2MeOH (95:5)); 1H-NMR (300 MHz, CDCl3):
d = 2.81 (s, 4H: NHS residue), 3.02-3.14 (m, 4H: S-S-CH2-CH2-COOU), 7.05-7.13 (m,
IH: HS of the pyridyl group), 7.60-7.75 (m, 2H: H3 and H4 of the pyridyl group), 8.47
(d, J= 4.7 Hz, IH: H6 of the pyridyl group).

UU* ?' Jn OH

3-(2-pyridyldithio)-propionate - polyethylene glycol)- caroboxylic acid
(PDP-PEG3500-COOH)

PDP-PEG3500-COOH: NH2-PEG3500-COOH»HC1 (0.50 g, 140 µ????) was dissolved

in 6 M NaCl (20 mL), and the pH of the resulting solution was adjusted to 7.5 with 1.25
M NaOH (90 µ?). The solution was then extracted with chloroform (5x15 mL) and the
combined organic layer was dried over sodium sulfate {ca. 2 g) and filtered. The filtrate
was taken to dryness yielding NH2-PEG3500-COOH (0.46 g, 130 µp???). To a solution of
NH2-PEG3500-COOH (0.40 g, 110 µ????) in chloroform (4.5 mL), SPDP (0.06 g, 180
µp???) was added under argon. The reaction was initiated by adding excess TEA (60 µ?)
and monitored by TLC. After 4 hours, the solvent was removed and the solid residue was
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redissolved in water (200 mL, pH pre-adjusted to 2.0 using dilute phosphoric acid). The
solution was transferred into 50 mL Falcon tubes and centrifuged (10 minutes, 4000

RPM, 1800 gmax) in order to remove insoluble material. The supernatant was filtered
through a 0.45 urn filter and the pH of the filtrate was increased to 7.7 using
triethanolamine. This solution was washed with ethyl acetate (3 ? 120 mL) and the

resulting aqueous layer was stirred under argon for 3 hours at room temperature in order
to hydrolyze unreacted SPDP. The aqueous solution was extracted with chloroform (5 ?
100 mL) and the collected organic phase was subsequently washed with Buffer C (3 ?
120 mL), dried over sodium sulfate (ca. 2 g), and taken to dryness. The resulting solid
residue was dried under vacuum overnight yielding PDP-PEG3500-COOH (0.16 g, 43.3

Mmol, 31%); R/ = 0.8 (silica; CHCl3/MeOH/H20 (70:30:4)); 1H-NMR (300 MHz,
CDCl3): d = 2.60 (t, J= 7.1 Hz, 2H: NH-CO-CTZ2-CH2-S-S), 3.10 (t, J= 7.2 Hz, 2H: NH-
CO-CH2-CiZ2-S-S), 3.64 (PEG), 7.05-7.15 (m, IH: HS of the pyridyl group), 7.57-7.66
(m, 2H: H3 and H4 of the pyridyl group), 8.45-8.51 (m, IH: H6 of the pyridyl group).

O

3-(2-pyridyldithio)-propionate - polyethylene glycol)- JV-hydroxy succinimate
PDP-PEG3500-NHS

PDP-PEG3500-NHS: PDP-PEG3500-NHS (0.15 g, 40.6 Mmol) was dissolved in DMF

(1 mL) under argon and then pyridine (1 mL) was added while stirring. TSTU (0.19 g,
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64.5 µ????e?) was dissolved in DMF (1 mL) and then added dropwise to the PDP-
PEG3500-NHS solution. The reaction mixture was allowed to stir for 2 hours. After this

time, most of the pyridine was removed by rotary evaporation without heating. In order to
remove the DMF, the solution was frozen in liquid nitrogen and left under vacuum

overnight. The obtained white solid was dissolved in a mixture of chloroform (50 mL)
and methanol (10 mL), and insoluble material was filtered out. More chloroform (30 mL)
was added and then Buffer D (2 ? 50 mL) was used to extract the solution. The combined

organic layers were washed with water (3 ? 20 mL), dried over sodium sulfate (ca. 1 g)
and filtered. The filtrate was taken to dryness under vacuum yielding pure PDP-

PEG3500-NHS (0.14 g, 35. 6 µp???, 87% yield); R1 = 0.7 (silica; CHCl3/MeOH/H20
(70:30:4)); 1H-NMR (300 MHz, CDCl3): d = 2.56 (t, J = 7.1 Hz, 2H: NH-CO-CH2-CH2-
S-S), 2.82 (s, 4H, CO-CH2-CH2-CO in NHS residue), 3.04 (t, J = 7.2 Hz, 2H: NH-CO-
CH2-CH2-S-S), 3.64 (PEG), 7.03-7.13 (m, IH: HS of the pyridyl group), 7.61-7.65 (m,
2H: H3 and H4 of the pyridyl group), 8.45-8.46 (m, IH: H6 of the pyridyl group).

2.5. Surface Plasmon Resonance Assays

SPR assays were conducted at 25 0C, and all immobilization steps were performed at a
flow rate of 5 µ?/p??, using PBT as running buffer. Cysteine-tagged K-coil peptides
were immobilized on CM4 sensorchips according to the following procedure. First, the

carboxylic groups on the sensorchip surface were activated by injecting a 50 µ?, mixture
of NHS (0.05 M) and EDC (0.2 M) in Buffer E. Afterwards, the NHS esters were
converted into amine groups by reacting them with 50 µ?, ethylenediamine (1 M). The
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remaining unreacted NHS ester groups were blocked by injecting 50 µ? ethanolamine (1
M). The amine groups available on the sensorchip surface were then reacted with the
NHS of the PEG spacer by injecting PDP-PEG3500-NHS (3 ? of 1000 nM) in HBS. The
PDP groups were then available to react with the cysteine-tagged K-coil peptides (5000
nM) in Buffer F. Finally, 150 µ?. of freshly prepared cysteine solution (50 mM) in Buffer
G was injected in order to block any unreacted PDP sites.

Injecting ?-coil tagged EGF protein (100 nM) allowed for immobilization onto these
sensorchips through the E/K coiled-coil interaction. EGFr (5 nM) was then injected to
amplify the SPR signal. Regeneration of the sensorchip surface and removal of the
immobilized proteins was achieved by injecting 50 \iL of Gdn«HCl (5 M; 100 µ?/p??).
Finally EGFr was injected once again as a control.

2.6. Tip Functionalization

New silicon nitride cantilevers were cleaned in an ozone oven for 30 minutes prior to

functionalization. Cantilevers were aminated by immersion in a solution containing 50

µ?, VECTABOND™ reagent in acetone (2.5 mL). The amination was allowed to take
place for 10 minutes after which time the tips were removed and dipped immediately in
chloroform (hereafter referred to as being rinsed). Residual solvent was removed from
the tips by allowing the substrate to carefully come into contact with a clean piece of
filter paper (hereafter referred to as being dried). Subsequent functionalization was
carried out as explained below. All functionalized tips were passivated by using a
methoxy-terminated polymer (CH3O-PEG750-NHS). All functionalized tips were stored
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in buffer solution at 4 0C for no more than 3 to 4 days and best results were obtained

when functionalized tips were used within several hours of their preparation.

2.6.1. Biotin-Functionalized AFM tips

For functionalization with biotin, the aminated tips were incubated in a chloroform

solution containing biotin-PEG3400-NHS (1 mg/mL), CH3O-PEG750-NHS (250

mg/mL) and TEA (0.5% vol.%) for 1 hour. Subsequently, the tips were rinsed

extensively with chloroform (3x10 minutes) to remove any unbound polymer. The tips

were carefully dried and rinsed with PBS (10 minutes). Functionalization with biotin was

also achieved when the aminated tips were incubated in a chloroform solution containing

PDP-PEG3500-NHS (1 mg/mL), CH3O-PEG750-NHS (250 mg/mL) and TEA (0.5% vol.

%) for 1 hour. Then, the tips were rinsed extensively with chloroform (3x10 minutes)

and then with Buffer H (10 minutes). The tips were then incubated in a solution of the

same buffer containing biotin-PEG3400-SH (1 mg/mL) for 1 hour. Finally, the tips were

washed extensively with Buffer H (3 ? 10 minutes), dried and then rinsed with PBS (10

minutes).

2.6.2. E-coil-Functionalized AFM tips

For functionalization with ?-coil, the aminated tips were incubated in a chloroform

solution containing PDP-PEG3500-NHS (1 mg/mL), CH3O-PEG750-NHS (250 mg/mL)

and TEA (0.5% vol. %) for 1 hour. After which the tips were rinsed extensively with

chloroform (3 ? 10 minutes), dried and then rinsed with Buffer H (10 minutes).

Afterwards the tips were incubated in a solution of the same buffer containing ?-coil (ca.

10 µ?) for 1 hour. Again, the tips were washed extensively with Buffer H (3 ? 10
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minutes), dried and then rinsed immediately with PBS followed by Milli-Q water (10
minutes each).

2.6.3. ConA-Functionalized AFM Tips

For functionalization with ConA, the animated tips were incubated in a chloroform

solution containing NHS-PEG6000-NHS (1 mg/mL), CH3OPEG750-NHS (250 mg/mL)
and TEA (0.5% vol.%) for 1 hour. Subsequently, the tips were rinsed extensively with
chloroform (3 ? 10 minutes), dried and then rinsed immediately with Buffer I (10
minutes). Afterwards the tips were incubated in a solution of the same buffer containing
ConA (2 mg/mL) for 1 hour. Again the tips were washed briefly with Buffer I (10
minutes), and then with Buffer J (3 ? 10 minutes), in order to remove excess ConA.

2.6.4. Control AFM tips

For control experiments, the aminated AFM tips were incubated in a chloroform solution
containing CH3O-PEG5000-NHS (1 mg/mL) and TEA (0.5% vol.%) for 1 hour. After
which, the tips were rinsed in chloroform (3x10 minutes) and dried.

2.7. Functionalized Surfaces

2.7.1. DNA-Functionalized Surfaces

A stock solution of lambda DNA/£co91I (BstEll) digest (length distribution 117 - 8454

basepairs) was first diluted using Buffer K to a final concentration of 100 µg/mL. A drop
of this solution was spotted on a clean gold-coated glass slide and allowed to incubate for
24 hours in a closed container. The gold surface was then rinsed with a stream of the

same buffer (5 minutes) and immediately used for force measurements.
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2.7.2. Streptavidin-Functionalized Surfaces

A streptavidin stock solution (1 mg/mL) was prepared in PBS and aliquots (10 µ?) were
stored at -20 °C. Prior to use, the stock solution was diluted by adding Milli-Q water (90

µ?) to reach a final concentration of 0.1 mg/mL. A drop of this solution was then added

to a freshly cleaved mica surface for 15 minutes. The mica substrate was then rinsed with

a stream of 10% PBS (3x10 minutes) and used immediately for force measurements.

2.7.3. K-coil-Functionalized Surfaces

K-coil surfaces were prepared by Dr. Benoit Liberelle in Prof. G. De Crescenzo's group.

Silicon surfaces were first aminosilanized using APTES and then cysteine-tagged K-coil

peptides were immobilized onto the APTES-coated surfaces using a LC-SPDP spacer.
95,100 YJ16 j£_cojj surfaces were stored at room temperature in a petri dish and cleaned

before and after their use by immersion in Milli-Q water (5x5 minutes) and then drying

with a stream of nitrogen.

2.7.4. Mannose-Functionalized surfaces

A clean gold-coated glass surface was immersed into a CH2CI2 solution of PFPA-

disulfide (14 mM) at room temperature in the dark overnight. Afterwards, the surface was

rinsed with CH2Cl2 (10 minutes) in order to remove excess PFPA-disulfide, and dried

with a stream of nitrogen. The PFPA-coated gold surface was immersed into a

chloroform solution containing PEG20000 (90 mg/mL) for a period of 30 minutes, after

which it was removed and dried with a stream of nitrogen. The surface was then

subjected to UV irradiation at 300 nm for 7 minutes. The resulting surface was then

sonicated in Milli-Q water (3x10 minutes) in order to remove unbound polymer, and
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then dried with a stream of nitrogen. The PEG-coated glass surfaces were either used

immediately for subsequent functionalization or stored in a closed glass container. For
functionalization with mannose, the surface was immersed in a methanol solution

containing PFPA-mannose (10 mM) for 5 minutes in the dark, and then removed and

dried with a stream of nitrogen. The surface was then subjected to UV irradiation at 300
nm for 7 minutes. Afterwards, the surface was rinsed extensively with a stream of

methanol (3x10 minutes) in order to remove non-covalently bound mannose, and then

dried with a stream of nitrogen. The mannose-coated surface was either used directly for

force measurements or stored in a closed glass container for no longer than one week.

2.8. Gold Coating

Prior to gold coating, glass microscope slide were cleaned thoroughly, as described in

Section 2.14.1. Using thermal evaporation, the clean glass slides were then pre-coated

with 5 nm of chromium followed by 30 nm of gold (for the DNA substrates) or 75 nm of

gold (for the ConA substrates). The slides were used immediately for functionalization or
stored in a covered container. In the latter case, these slides were cleaned according to the

procedure described in Section 2.14.3 prior to further functionalization.

2.9. Contact Angle and Ellipsometry Measurements

All contact angle and dry thickness measurements of K-coil surfaces were performed by
Dr. Benoit Liberelle.95
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2.10. Functionalization of Silicon Chips/Tips

Silicon wafers were cut into small chips (5x5 mm2), and then cleaned as described in
section 2.14.4. The cleaned chips were aminated using the same animation procedure

described to functionalize AFM tips. Briefly, the chips/tips were first immersed in

acetone then in a solution containing VECTABOND™ reagent (50 µ?) in acetone (2.5

mL). The animation was allowed to take place for 10 minutes after which time the

chips/tips were removed and immediately rinsed with chloroform. The chips/tips were

then functionalized as follows: the first group of chips/tips were incubated in a

chloroform solution containing Biotin-PEG3400-NHS (1 mg/mL) and triethylamine

(0.5% vol.%) for 1 hour. Afterwards, the chips/tips were rinsed with chloroform (3x10

minutes) in order to remove any unbound polymer and were then dried. The second

group of chips/tips were incubated in a chloroform solution containing PDP-PEG3500-

NHS (1 mg/mL) and TEA (0.5% vol. %) for 1 hour. Afterwards the chips/tips were

rinsed with chloroform (3 ? 10 minutes) and then with Buffer H (10 minutes). The

chips/tips were subsequently incubated in a solution of the same buffer containing biotin-

PEG3400-SH (1 mg/mL) for 1 hour. Again the chips/tips were rinsed with Buffer H (3 ?

10 minutes) and dried. After functionalization with biotin, both groups of chips/tips were

rinsed with PBS, followed by PBT (10 minutes each). The chips/tips were then covered

with a drop of PBT solution containing ExtrAvidin®-peroxidase (EAP; 10 µg/mL). For
tip functionalization, the EAP solution was placed exclusively at the cantilever-end of the

substrate. After a period of 15 minutes, the chips/tips were rinsed with PBT (3 ? 10

minutes). As a control for non-specific binding, a third group of chips/tips were directly

incubated in the EAP solution without prior functionalization with the PEG spacer.
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Another group of control chips/tips was prepared by immersing the functionalized chips
in EAP solution pre-blocked with ¿/-biotin (80 µg/mL in PBT).

The functionalization efficiency was then tested through a quantitative UV assay where a

cuvette was filled with the assay mixture (3 mL of 0.8 mg/mL o-phenylenediamine«2HCl

(OPD) in Buffer L, to which 30 µ? of 3% H2O2 was added with mixing). All
functionalized chips/tips were immersed into the assay mixture and the absorbance at 490

nm was recorded every minute until no changes were observed.

2.11. AFM Imaging

AFM imaging (Tapping mode) was performed in air, using silicon nitride NP-20 tips. A
fresh AFM tip was used for each new surface/sample scanned. Image flattening was the

only processing used in AFM images.

2.12. Force Measurements (SMFS)

Single molecule force experiments were carried out using an Asylum Research MFP-ID
(USA) operating with IgorPro version 8 software or a Digital Instruments' AFM

equipped with the PicoForce control module. Silicon nitride triangular Microlever
MLCT-AUNM tips from Vecoo (USA) with nomical spring constants of 0.01 - 0.03 N/m

were used. The effective spring constant of the cantilever used (C cantilever) was

determined at the beginning of each experiment using the thermal noise method from the
integral of the resonance peak in the power spectral density plot.86 In each experiment,
several thousand force curves were collected and saved for subsequent analyses. The
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cantilever tip was positioned at different areas on the surface, and at least 50 curves were

collected at each point.

2.12.1. SMFS of ds-DNA

All measurements were performed at room temperature in Buffer K. Upon manual

approach of the probe to the sample surface, force curves were collected with a 0.5 - 1.5

nN relative trigger, 1 s surface dwell time and a probe velocity of 200 nm/s.

2.1 2.2. SMFS of Biotin/Streptavidin

The first set of SMFS measurements for the biotin/steptavidin system was performed

using the Digital Instruments' AFM equipped with the PicoForce control module. In
these experiments, the vertical velocity was set to 200 nm/s, the z-range was set to 100
nm, the maximum deflection force was set to 50 pN, and the delay time to 2 s. The

remaining measurements were performed using the Asylum Research MFP-ID (USA),

applying the same experimental settings. All biotin/streptavidin force measurements were
carried out in 10% PBS.

2.12.3. SMFS of E/K Coiled-Coil

All measurements were performed at room temperature in PBS. Upon manual approach

of the probe to the sample surface, force curves were collected with a 200 pN relative
trigger, 1 s surface dwell time and probe velocities of 400, 800, 1200 and 1600 nm/s.
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2.12.4. SMFS of ConA/Mannose

All measurements were performed at room temperature in Buffer M. Upon manual

approach of the probe to the sample surface, force curves were collected with a 200 pN
relative trigger, 1 s surface dwell time and a probe velocity of 400 nm/s.

2.13. Data Analysis

Data analysis was performed using Hooke software", IGOR Pro version 5.0.4.8 software
and Microsoft Excel 2007. Force curves exhibiting typical tether stretching events were

identified. The individual rupture events were fit with a simplified extended freely jointed

chain model (e-FJCPEo), as described below to extract the tether Kuhn length and the
maximum rupture distance.

The e-FJC model describing PEG stretching in aqueous solutions is given by Equation 6:

^planar , '-'helical/ rix »ri f/tufKu neucai ?

XC ) - W| +??/*,G + j + e-t,GlkBT + A -#)- kj_
FL

+ N-
K,

Equation 6.

From the slope of the curve at the high-force region, the segmental elasticity £swas

measured to be equal to ca. 150 N/m. Taking into account the number of segments in the
PEG chains used in the experiments, calculated according to Table 3
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Table 3) and the relatively low rupture forces obtained (ca. 100 pN), the last term in
Equation 6 adds no more than ca. 0.05 nm to the overall extension at maximum applied
load and was therefore removed in the data analyses. In this case, considering the

maximum rupture distance (4>max) to be the number of total segments (N) multiplied by

the length of the extended polymer (Lplamr), a simplified version of the e-FJCPEo

equation can be written as:1

X(F)-K
1 ^helical 1 \

*\G(F)lkBT + 1 Lplanar e-AG(F)/Asr+1
coth

FL kBT\
\kBT FlK Equation 10.

This model was applied to fit the force curves with two free parameters: the maximum
rupture distance Lcmax(i.e. maximum polymer length) and the Kuhn length. The Kuhn

length was set as the free parameter to obtain the best fit to the data near the rupture
force. The force curves with tether Kuhn lengths and maximum rupture distances in

agreement with literature values (LK = 7Â and Icmax estimated according to Table 3)

were selected for subsequent analyses. The rupture forces as well as distances were

binned into histograms prepared using OriginPro version 8 software. A Gaussian fit was

applied to each histogram in order to determine the most probable events. The quality of
the fit was defined by the standard deviation. This value was used to represent error bars

in force versus applied loading rate curves. The dependency of force on loading rate was

used to calculate the kinetic binding parameters according to Equation 8:

/
• kaT In k„T
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Table 3. Estimated maximum rupture distances for PEG

Polymer Mw Polydispersity Mn Number of Contour(Da) (Da) monomers length* (nm)
Biotin-PEG5000-NHS 5147 1.03 5301 120 40
Biotin-PEG3400-SH 3400 ?/? N/A 77 26

NHS-PEG3500-PDP 3555 1.03 3662 80 27
* The maximum rupture distance (i.e. length of PEG chain in its full extended state) is estimated
using the monomer unit length of 3.36 Â and average weight of 44 g/mol. The effect of
polydispersity on the average molecular weight (and therefore number of monomers) was also
taken into account according to: polydispersity = MjMn and number of monomers

= Mn I^monomer ·

2.14. Cleaning Procedure

Piranha solution was prepared by carefully adding 3 parts concentrated sulfuric acid to 1

part 30% hydrogen peroxide, by volume. The RCA cleaning solution was prepared by
carefully adding 5 parts of Milli-Q water to 1 part 30% ammonium hydroxide and 1 part
30% hydrogen peroxide, by volume. Extreme care was taken in preparing and using these
solutions as they are very reactive.

2.14.1. Glassware Cleaning Procedure

All glassware (including microscope slides) was first rinsed with acetone and then
sonicated for 30 min in 2% Hellmanex solution at 50 °C. The glassware was rinsed with

Milli-Q water (5 x), and was subsequently incubated for 30 minutes in the RCA cleaning
solution at 50 0C. The glassware was then rinsed again with Milli-Q water (5 x) and dried
in an oven prior to immediate use. In the case of glass slides, they were sometimes stored
in Milli-Q water for no longer than 5 days prior to use.
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2.14.2. AFM Tip Cleaning Procedure

Prior to their functionalization, AFM tips were cleaned in the UV-ozone oven for 45

minutes in order to remove any organic and other oxidizable surface contaminants. The
exact time for this cleaning process depends on the power of the instruments used.

2.14.3. Gold-coated Surface Cleaning Procedure

Gold-coated surfaces were incubated in the RCA cleaning solution at 80 0C for 5

minutes. The surfaces were then rinsed with Milli-Q water (5 x) and dried under a stream

of nitrogen.

2.14.4. Silicon Chip Cleaning Procedure

Silicon chips were first immersed in a 1:1 mixture of concentrated HCl in MeOH for 30
minutes. The chips were then rinsed with Milli-Q water (5 x) and dried. Afterwards, the
chips were immersed in concentrated H2SO4 for 30 minutes before rinsing once again
with Milli-Q water (5 x) and dried under a stream of nitrogen. The chips were either used
immediately or stored in Milli-Q water for no longer than 1 hour.
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Chapter 3. Single Molecule Force Spectroscopy of DNA
The mechanical properties of DNA have always attracted the interest of both biologists as
well as physicists because the intramolecular forces that control the DNA structure are
fundamental to life processes. Experiments where single molecules of double-stranded
DNA (dsDNA) or single-stranded DNA (ssDNA) are stretched, and the resulting forces
measured, have yielded new information regarding the physical, chemical and biological
properties of this essential biomolecule.

The structure of the right-handed DNA double helix, revealed by Watson and Crick in
1953, is arguably the most classical model for intramolecular interactions controlling
structure (Figure 21). Hydrogen bonding between the complementary base pairs of the
two DNA strands in combination with favourable hydrophobic effects create a stable

structure over a wide range of environmental conditions. At the same time, electrostatic

repulsion between the negatively-charged phosphate-sugar backbone determines the
width and twist of the double-helix. Steric hindrance between the sugar residues favour a

twisted stacking, where particular sequences and conditions can result in either A- or Z-
DNA conformations instead of the most common B-form (Figure 21).
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Figure 21. Structures of A, B and Z DNA conformations (from left to right)
Watson and Crick's seminal discovery significantly changed the view of cellular

processes including DNA replication and cell division, and ever since, it became clear
that a deep understanding of its biological interactions is essential for understanding its
functions. Despite its pseudo-random sequence of four different nucleo-bases, DNA is
remarkably stable and uniform, acting as an optimal genetic storage carrier. Yet, it is
capable of being processed by enzymes (such as topoisomerases, polymerases, helicases,
translocases, etc.) through tension and torsion, suggesting the relationship of its
mechanical integrity to its function. DNA is therefore an ideal candidate for force-based
techniques for probing its structural properties and interactions. Single molecule force
studies of DNA started about 15 years ago using several techniques including:

AFM104'105, magnetic tweezers,8 and optical tweezers.84 In all these experiments, one end
of the DNA molecule is fixed and the other end is extended under force (Figure 22).
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Figure 22. Single molecule force measurements of DNA stretching using (a) optical tweezers, (b) magnetic
tweezers, and (c) AFM102

This wide range of experiments started in 1992, where the force-extension of dsDNA was

addressed using magnetic beads and a salt concentration dependence of its persistence

length was demonstrated.8 A few years later, the Bustamante group used dual beam
optical tweezers to access higher forces and complemented their earlier work by

revealing a structural transition that takes place in dsDNA at forces higher than 60 pN
where the natural B-DNA form overstretches about 1 .7 times its contour length.84 Since

the two DNA strands only separate at forces higher than 100 pN, this transition was not

attributed to dissociation but rather conversion to another conformation (S-DNA) where

the dsDNA overstretches and unwinds; the base pairs unstack but remain hydrogen

bonded.106 More studies showed that a less cooperative conformational transition was

observed at 1 10 pN when the dsDNA is attached to beads and not free to rotate.107 Figure
23 shows the force-induced melting profile for dsDNA when torsionally constrained or

relaxed. While trying to unravel the mystery of DNA overstretching, three more forms, in

addition to S-DNA, were encountered: a Pauling-like form (P-DNA), a left-handed

helical form (Z-DNA) and a supercoiled sc-P form. It is no coincidence that these

unusual conformations may have significant biological relevance. It is indeed speculated

that S-DNA may be biologically important, since it would allow easier access to the

basepairs for transcription purposes.
60



\
\ Torsionally
\ relaxed DNA
? " -

\ Torsionally
\ constrained DNA

Extension

\ !
\

Figure 23. Schematic diagram of DNA force-induced melting transitions: (blue curve) when the DNA is
attached by both strands and is therefore torsionally constrained (unable to rotate), and (red curve) when it
is torsionally relaxed (able to rotate)108

The application of new theoretical models and molecular dynamics simulations has

revealed new insights about the molecular details of the overstretching B to S

transition.109110 Furthermore, the significance of the twist within the double helix

structure has been investigated, both theoretically as well as experimentally. ' For

example, experiments on unzipping single lambda DNA demonstrated a relation between

the unzipping forces and the average basepair content (GC and AT) of the unzipped

portion of the molecule.113 Unzipping synthetic poly(GC) and poly(AT) fragments
showed sequence-dependent base pairing forces, where dsDNA fragments with GC

content show the overstretching transition about 40 pN higher than those with AT

content, an observation consistent with the melting temperature difference measured for

these fragments.104

In the present study, the principles of SMFS were applied to study the mechanical

properties of overstretching dsDNA. The DNA system was chosen as it is very-well

studied and easy to prepare. In order to study the DNA overstretching transitions, which

only occur at the single molecule level, very low concentrations (100 µg/mL) of lambda-

digest dsDNA were allowed to adsorb on a gold surface, without the need for any special
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functionalization steps. An individual dsDNA strand was then adsorbed to the AFM tip

by applying a force of ca. 1 nN and a delay time of 1 s. During the retraction cycle of the

SMFS measurement, the dsDNA strand is stretched between the tip and the surface and

from the deflection of the AFM cantilever, the forces involved in the stretching process

can be determined. In fact, this same simple approach has been previously shown to be

applicable to study the stability of DNA as a function of temperature, ionic strength and

sequence. ,04>105 An example of the force curves obtained in experiments where lambda-
digest DNA is stretched between the AFM tip and a gold substrate is shown in Figure 24.
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Figure 24. Representative force curves of single molecule force spectroscopy measurements of lambda-
DNA (approach is shown in red and retract in blue). Note the different rupture lengths which highlight the
distribution in tethering length of the DNA strands between the tip and the surface

The previously-described dsDNA transition was indeed detected when the force reached

a threshold in the range of ca. 50 - 100 pN. The observed constant-force plateau

represents the B to S overstretching transition, which is followed by a more drastic

increase in force represented by the rupture peak where the two DNA stands finally
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separate or desorb. The force distribution for the overstretching transition, calculated
from the plateau height for more than 150 force curves, is shown in Figure 25. Most of
the overstretching transition forces appear to be centered about 62 pN. The variable

plateau lengths can be attributed to: (i) the length distribution of the lambda-DNA used,
and (//') the different attachment points of the lambda-DNA on the tip and the surface. In

all cases, the detected events occur at a distance far from the surface, supporting the fact

that they represent single DNA molecules bridging the AFM tip and the substrate surface,
rather than non-specific adhesion.
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Figure 25. Force distribution histogram for SMFS of lambda-DNA

It is important to note that there are several scenarios that can be envisaged under these

circumstances. For example, the dsDNA molecule can attach to the substrate through one

strand only and attach to the AFM tip at the complementary strand (i.e. the molecule is
attached between the AFM tip and the substrate with either both of its 3' ends or both of

its 5' ends). In this case, the connection will be lost once the double helix melts and two

strands separate from one another. However, if the molecule attaches through only one of
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its strands, then melting may or may not lead to detachment from between the AFM tip
and the substrate depending on the possibility of single strand disengagement. Finally, if
the dsDNA attaches through both of its strands, and after melting the single strands do

not detach, then the complete conversion to ssDNA is not possible.

The experiments presented here did not aim to analyze the mechanisms by which DNA
undergoes conformational transitions under force, but rather to demonstrate our use of
AFM for measuring events at the single molecule level. The fact that the DNA system is
very well-studied and experimentally straightforward allowed us a gentle introduction
into the field of SMFS, including basic data analysis procedures.
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Chapter 4. Single Molecule Force Spectroscopy of

Biotin/Streptavidin

All living systems employ both strong as well as weak chemical interactions in order to

carry out their functions. Strong covalent bonds are involved in mostly static associations,
where enzymes and a source of energy are required for their formation and destruction. In

contrast, weak non-covalent interactions (i.e. hydrogen bonds, van der Waals

interactions, ion-dipole forces, etc.) are transitory and more adequate for associations that

require rapid formation and dissociation. Although one individual weak bond might not
be sufficient, in terms of strength as well as lifetime, for most biological processes, a

collection of these cooperative interactions allow the formation of stable, highly specific

intra- and intermolecular associations within, for example, proteins and nucleic acids and

enzymes with their substrates. Such molecular recognition interactions underlie the
spatial architecture and dynamic properties within these biological systems. ' ' Many

biophysical studies have been applied to address biomolecular interactions and, as
discussed in Chapter 1, single molecule force-based measurements have allowed the

exploration of the biophysical properties governing the interactions within and between
biological molecules.

The interaction of biotin with avidin, as well as streptavidin, has been the focus of a large

number of force measurement studies, including SMFS.6'"5"120 Chicken avidin and

bacterial streptavidin are homotetrameric proteins, having one binding site within each
subunit for biotin (vitamin H) (Figure 26). Multiple non-covalent bonds are involved in
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the binding of biotin to these proteins, including van de Waals interactions with aromatic
• 121 122 123

side chains as well as multiple hydrogen bonding. ' '
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Figure 26. Schematic representation of avidin, streptavidin and biotin: (a) Chemical structurent biotin, (b)Avidin bound to biotin, and (c) streptavidin bound to biotin. Structures prepared using Pymol

The basis for choosing the biotin/(strept)avidin system as a model for studying receptor-
ligand interactions originates from its unique structural and functional features: (i) high
binding affinity as well as specificity (dissociation constant of 10" - 10" M), (if)
symmetric features of the (strept)avidin homotetramer enabling its orientation-specific
immobilization where biotin binding sites on one side of the tetrameter can be used for
immobilization leaving the binding sites on the other side available for investigation,
122,126,127 ^ me extreme stability of the streptavidin tertiary structure,12 and (iv) the
presence of a reactive carboxyl group in biotin gives a handle for a variety of

• 12immobilization chemistries.

Investigating biomolecular interactions in the biotin/(strept)avidin system using SMFS
has been performed by several groups. 3,62,117,119,120,128-133 The first reported SMFS study
of the biotin/avidin interaction yielded unbinding forces of ca. 160 pN.11 More SMFS
experiments on this system described an energy landscape where there are many nearly
isoenergetic minima in the complex dissociation resulting in a variety of possible
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unbinding paths and unbinding force values (Table 4).134 Comparison with experiments
performed on mutant forms of the proteins or synthetic derivatives of biotin was used to
elucidate the characteristics of this biomolecular interaction.31 19 Recent measurements

where the loading rate was varied 8 orders of magnitude revealed a detailed picture of

unbinding forces ranging from 5 pN to 200 pN.135 The unbinding force of biotin/avidin
was found to be ca. 20 pN higher than that of biotin/streptavidin, when the operating

loading rate was less than 1700 pN/s.136 A variety of experimental protocols that were
used to address the biotin/(strept)avidin interaction are summarized in Table 4.
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Table 4. Experimental protocols for measuring the unbinding force between biotin and (strept)avidin12
Molecular partners Experimental protocol

Biotin/avidin Biotinylated BSA adsorbed on
Biotin/streptavidin137 t¡P> with subsequent avidin or

streptavidin
adsorption/biotinylated surface

Control
experiments

Unbinding
force (pN)

Addition of biotin
derivatives

ca. 160-260

biotin or
derivatives/avidin 117

Biotin derivatives immobilized
on surface/biotinylated BSA
adsorbed on tip and incubated
with avidin

Addition of free
biotin or avidin

ca. 160

Biotin/streptavidin138

Biotin/streptavidin
site-directed
mutants119

Biotinylated BSA adsorbed on
glass beads (glued to cantilevers)
and mica surface/surface further
incubated with streptavidin

Biotinylated BSA adsorbed on tip
and mica surface/surface further
incubated with wild-type or
mutant streptavidin

Biotinylated BSA
surface (without
streptavidin) or
streptavidin surface
pre-blocked with
biotin

Addition of free
biotin

ca. 340

100 -450 (for
the different
mutants)

Biotin/antibiotin
antibody (Ab)3

Biotin/streptavidin33

Biotinylated BSA covalently
bound to tip via linker/Ab
covalently bound to surface via
linker (also reverse
configuration)

Biotin covalently bound to
nanotube tips/streptavidin linked
to surface by biotin groups

Non-biotinylated ca. 110
BSA on tip.
addition of biotin
and streptavidin ,
use of non-specific
Ab on surface

Use of unmodified ca. 200
nanotube tips or
addition of free
biotin

Biotin/avidin or
streptavidin134

Biotin covalently attached via
linkers to glass beads and
surfaces/avidin was further
adsorbed to both, such that free
biotin groups were still available
for binding

Use of linkers that
do not bind biotin
or addition of free
biotin

5-250
(depending on
loading rate
from 0.05 -
60000 pN/s)
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In the present study, the biotin/streptavidin system was chosen as a model study in order
to apply the principles of SMFS in addressing a biomolecular interaction and to test the
efficacy of the AFM tip functionalization strategy used herein. The strong and well-
studied binding between biotin and streptavidin, as well as the simplicity of sample
preparation with commercially available components were the main reasons behind this
choice. The experimental protocol used in this study involved using biotin-functionalized
tips and a surface on which streptavidin is adsorbed (Figure 27). Immobilization of
streptavidin on mica surfaces was achieved by simply incubating streptavidin at very low
concentration (0.1 mg/mL) for short periods of time (ca. 15 minutes), in order to
minimize surface coverage, followed by extensive washing in order to remove unbound
streptavidin. For AFM tip functionalization, heterbifunctional PEG spacers containing
NHS at one end, which forms stable amide linkages with animated AFM tips, were used.
The other extremity of the PEG spacers either contained biotin (NHS-PEG-biotin)

(Figure 27) or the 3-(2-pyridyldithio)propionyl group (PDP), which was subsequently
linked to another bifunctional PEG spacer (SH-PEG-Biotin) through a disulfide linkage

to the thiol group (Figure 29). The latter procedure was carried out in order to test the
compatibility of the PDP group for functionalization as well as to optimize the
experimental conditions required for its attachment. In addition, comparisons between the
force results obtained in the different experimental protocols allow testing the reliability

of the technique. In either case, the functionalization chemistry carried out specifically
attempts to limit the number of active ligands (i.e. biotin) on the AFM tip by using an
excess of mono-functionalized PEG spacer. Although the tip is coated with PEG, only
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those carrying biotin will yield specific and meaningful binding events in the force
curves.

Figure 27. Schematic representation of experimental set up carried out for SMFS of biotin/streptavidin
using NHS-PEG-Biotin tether

?.
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¥

Figure 28. Schematic representation of experimental set up carried out for SMFS of biotin/streptavidin
using NHS-PEG-PDP and SH-PEG-Biotin tethers

Interaction forces between single biotin-streptavidin pairs were then measured by SMFS
using biotin-functionalized tips and streptavidin-bound mica surfaces. In each force-
distance measurement, the biotin-tip was approached to the streptavidin surface and
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subsequently retracted. During the approach-retract cycle, the cantilever's deflection, x,
which can be directly converted into force, /, using Hooke's law (/ = **), was

continuously measured and plotted as a function of tip-surface separation. The tip first
approaches the surface, the cantilever deflection remains constant, due to the absence of
forces acting upon it, until it comes into contact with the surface. Further extension into
the surface, coupled with a 1 -second delay time, allow the interactions between biotin (on
the tip) and streptavidin (on the surface) to be established. Subsequent tip retraction
allows the cantilever to relax, however with further retraction it starts to bend towards the

surface under the influence of attractive forces (i.e. between biotin and streptavidin),

which increase with increasing distance until rupture when biotin finally detaches from

streptavidin and the cantilever returns to its original position.

The shape of the non-linear rupture peak is determined by the elastic properties of the
tethering PEG polymer, whereas the height of the rupture peak is governed by the
strength of the biotin-streptavidin interaction at a particular loading rate. When the biotin
on the tip does not form an interaction with the streptavidin on the surface, a recognition
event (i.e. the rupture peak) is absent and both curves (approach and retract) look the
same. This is often the case, since the probability of observing single molecule events is

very low. However, once events are observed, both the shape and the height of the peak
must be taken into account when evaluating the force data. One way to confirm that the

observed rupture peaks indeed represent biotin/streptavidin dissociation is to block the
interaction with free biotin in the buffer medium. The result of this will be the

disappearance of most, if not all, of the specific recognition events and only occasional
non-specific adhesion events might be observed. Another control experiment involves the
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use of mono-functionalized PEG that do not contain the biotin moiety. Again, this

experiment demonstrates the specificity of biotin-streptavidin binding and reinforces the
reliability of the force results.

Four representative force curves obtained when NHS-PEG-biotin was used in AFM tip
functionalization are shown in Figure 29. The rupture events occur far from the surface,

which confirms that they represent specific binding interactions rather than non-specific
adhesion interactions which would typically appear close to the surface. This highlights

the importance of using molecular spacers in order to distinguish specific recognition
events. The distance at which the rupture occurs (i.e. rupture distance) corresponds to the

length of stretched PEG under the applied force. Therefore the use of a polymer spacer
improves the fidelity of the force measurement by uncoupling the non-specific
interactions from specific interactions using distance (i.e. polymer length). The force
curves shown in Figure 29 are normalized to the main rupture peak, and the consistency
of their shape highlights that they represent the rupture of the same interaction, in this
case the rupture of biotin from streptavidin.
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Figure 29. Representative force curves of single molecule force spectroscopy measurements of
biotin/streptavidin (approach is shown in red and retract in blue; Set 1)

In the experiment described above, ca. 1000 force curves were collected. Featureless
curves (ca. 70%) were then filtered out and the remaining curves (ca. 300) that contained
one, or sometimes multiple recognition events, were used for subsequent analysis. As
described in Chapter 1, the FJC model was used to fit the rupture peaks in the selected
curves (Figure 30, c) and only 10% of the total collected data remained after this second
screening process, and were used for determining the unbinding force between biotin and
streptavidin. These were the curves where the Kuhn length was between 0.3 and 1.1 nm,
and the maximum rupture distance was less than 50 nm. The average Kuhn length of
PEG was determined to be 0.75 ± 0.09 nm, which is in agreement to the reported value of

0.7 nm.28
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Experimental parameters:
Loading rate = 3300 pN/s

Experimental results:
Unbinding force = 57 ± 12 pN
Kuhn length (lK) = 0.75 ± 0.09 nm
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Figure 30. Analysis of biotin/streptavidin SMFS (Set 1): (a) Force distribution histogram, (b) rupture
distance histogram, (c) example of fit curve, and (d) experimental details and results

The distribution histogram of the rupture distance, where the applied loading rate was

3300 pN/s, is shown in Figure 30, a. The most probable rupture distance was found to be

38 ± 6 nm by applying a Gaussian fit. The variability in rupture distance can be attributed

to: (0 the polydispersity of the PEG polymers and more importantly, (/'/) the different

attachment locations of the PEG spacers on the AFM tip. Despite this variability, the

measured most probable rupture distance is indeed found to be consistent with the PEG

contour length of ca. 40 nm. Therefore, the rupture length at which the unbinding force

appears provides a means to further discriminate single-molecule rupture events. In other
words, events appearing at rupture distances that are much more than the contour length

of the PEG used, are not included in constructing the unbinding force histogram.

74



The same filtered curves were used for calculating the most probable unbinding force.

The histogram of the unbinding forces between biotin and streptavidin, measured at a

loading rate of 3300 pN/s, is shown in Figure 30, b. The distribution was analyzed using

a Gaussian fit to obtain the most probable unbinding force, in this case determined to be

57 ± 12 pN. Variations in the measured rupture force can be attributed to: (/) non-optimal

binding between biotin and streptavidin, which results in lower forces, and (//) multiple

interactions occurring between biotin and streptavidin, which may or may not rupture

simultaneously and do not necessarily scale additively, which results in higher forces.

There is often a misconception that only one molecule is attached to the AFM tip,

however in reality this is definitely not the case. Because of this, a single detected event

might actually represent simultaneous rupture of more than one interaction.101

Examples of the force curves obtained when NHS-PEG-PED followed by SH-PEG-biotin

were used in tandem for AFM tip functionalization are shown in Figure 3 1 . Once again,

the rupture events occur far from the surface, which confirms that they represent specific

binding events rather than non-specific interactions. In some of the force curves, non-

specific adhesion peaks were detected, however these only appear close to the surface. In

one experiment, ca. 5000 force curves were collected and filtered as described earlier.

After fitting using the e-FJCpEG model, only 120 curves {ca. 2.5%) remained for

subsequent quantitative analysis (Figure 32, c). In these curves the average Kuhn length

of PEG was 0.60 ± 0.09 nm which is in agreement to the reported value of 0.7 nm.
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Figure 31. Representative force curves of single molecule force spectroscopy measurements of
biotin/streptavidin (approach is shown in red and retract in blue; Set 2)
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Experimental parameters:
Loading rate = 4420 pN/s

Experimental results:
Unbinding force = 61 ± 21 pN
Kuhn length (lK) = 1.01 ± 0.09 nm

Figure 32. Analysis of biotin/streptavidin SMFS (Set 2): (a) Force distribution histogram, (b) rupture
distance histogram, (c) example of fit curve, and (d) experimental details and results
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The distribution histogram of the rupture distance of these force curves, where the

applied loading rate was 4420 pN/s, is shown Figure 32, a. The most probable rupture

distance was found to be 110 ± 23 nm by applying a Gaussian fit. The measured most

probable rupture distance was found to be consistent with the combined contour length of

both PEGs used (ca. 53 nm). Once again, the measured rupture length aided in the

discrimination of events that correspond to the interaction between biotin and

streptavidin. The histogram constructed from this set of data, measured at a loading rate

of 4420 pN/s, is shown in Figure 32, b. The distribution was analyzed using a Gaussian

fit to give a most probable unbinding force of 61 ± 21 pN. Variations in the measured

rupture force can be expected as discussed above.

The most probable unbinding force for the rupture of the biotin/streptavidin interaction

measured with the two different experimental protocols is the same within experimental

error. The fact that the obtained results in both experiments are the same confirms the

credibility of the technique and verifies the applicability of the PDP group in AFM tip

functionalization. The success of this NHS-PEG-PDP spacer confirms its application in
TX

tethering a variety of thiol-containing biomolecules to the AFM tip or the surface.

77



Chapter 5. Single Molecule Force Spectroscopy of

Concanavalin A/Mannose

Protein-carbohydrate interactions are of great interest as they play a crucial role in a

variety of molecular recognition events involved in biological processes, ranging from

cell-cell recognition in viral/bacterial infections, signal transduction, glycoprotein

transport, inflammation, organogenesis, and fertilization.139140 In addition, these
interactions have also been shown to be directly involved in the growth and metastasis of

malignant cancer cells.141'142 Interestingly, the interactions between single carbohydrate
ligands with proteins are typically quite weak, and therefore difficult to study.143'144
However, nature has found a solution for the weak affinity problem by creating multiple

concurrent interactions between the carbohydrate sequences that are clustered on cell

surfaces, with their protein receptors that have multiple binding sites, resulting in

remarkably high binding affinities.145 In efforts to unravel their highly-significant
biological role and to develop new strategies to fight diseases, addressing the

mechanisms involved in protein-carbohydrate recognition is essential and widely

studied. Measuring protein-carbohydrate interactions at the single molecule level using

force spectroscopy is of particular interest for a number of reasons: (/) the interactions

between these molecules often undergo mechanical stress leading to conformational

changes that highly influence their binding properties, particularly amenable to force-

based techniques,146'147 (/'/) ensemble techniques measure thousands, if not millions of
interactions at the same time, and report single averaged values, within which important
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aspects of the interactions are often obscured. SMFS offers a solution to overcome this

challenge and provides a means to address carbohydrate-protein interactions at their most

fundamental level.147

In this study, the interaction force between concanavalin A (ConA) and mannose is

investigated. ConA belongs to a family of proteins, known as lectins, which recognize

and specifically bind different types of carbohydrate sequences. Examples of the sugar

moieties recognized by lectins include monosaccharides (e.g. mannose, glucose,

galactose, iV-acetyl-glucosamine, fucose) and disaccharides (e.g. lactose, cellobiose).

Due to their high binding affinity to specific sugar moieties, lectins have been employed

in various types of bioassays for studying carbohydrate recognition processes in

mitogenic assays, characterization of malignant cells, and purification of glycoproteins,

glycolipids and proteoglycans.148"150

ConA is a lectin that specifically binds a-mannosyl groups found in sugars, glycoproteins

and glycolipids. Extracted from the jack bean Canavalia ensiformis, ConA is the first

commercially-available lectin that is widely used in biological as well as biochemical

applications to characterize and purify sugar-containing entities. Besides being a

lymphocyte mitogen, and a stimulant of several metalloproteinases, Con A is thought to

be involved in mediating the interactions between a-mannosyl oligosaccharides on HIV

viruses and human T lymphocyte cells. ' 5 '

The crystallographic structure of this well-characterized carbohydrate-binding protein is

shown in Figure 33. With 237 amino acids and two metal binding sites (Ca and Mn ),

ConA forms mainly two anti-parallel ß-sheets, one made up of seven strands and the
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other of six. The seven-stranded pleated sheet contributes extensively to interactions

among the monomer subunits to form dimers as well as tetramers. In each subunit there is

a binding site for the sugar adjacent to the metal atoms.152 Similar to other sugar-binding
proteins, ConA binds the saccharide with hydrogen bonds to almost all of its hydroxyl

groups.153 Nitrogen atoms from the amino acids asparagine, leucine, tyrosine, arginine
and aspartic acid are involved in binding the saccharide. Aromatic residues, specifically

tyrosine, also contribute to the binding through van der Waals interactions.154 Although
not directly involved in the binding, the metal ions, specifically Ca2+, facilitate the
binding by organizing the amino acid residues into their required positions in the sugar-

binding site, causing ConA to stiffen around the metal ions upon binding.155'15

?
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Figure 33. Structure of ConA tetramer bound to mannose. Structure prepared using Pymol124

Force spectroscopy studies investigating the interaction between ConA and mannose

have been previously reported. 36'48-l57>49 Earlier studies reported varying rupture forces:
one study measured forces between 75 and 200 pN157 and another measured a rupture
force of 96 ± 55 pN for the single ConA/mannose interaction when the applied loading

rate was 4000 pN/s.49 The variability of these results can be attributed to: (/) different
loading rates, and (//) the polyvalent nature of the ConA/mannose interaction. In a more
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recent study, it was confirmed that the rupture force for multiple carbohydrate
interactions with ConA are larger than the rupture for a single interaction and do not

necessarily scale additively. By analyzing the tether's stiffness, which is influenced by
the multiplicity of the interaction, rupture forces of 46, 68, 85 pN at a loading rate of
10000 pN/s, were attributed to the monovalent, divalent, and trivalent interactions of
ConA with mannose, respectively.

In this study, the interaction between ConA and its ligand mannose was addressed using
SMFS. For this purpose, ConA was attached to the AFM tip and mannose was
immobilized on a surface. After establishing contact between the two functionalized

surfaces, the force required to break the contact yields the ConA/mannose interaction

strength. Similar to previous work, the use of a homobifuncitonal PEG spacer,
specifically NHS-PEG-NHS, allowed the immobilization of ConA and the spatial
differentiation of non-specific interactions. The NHS moiety binds ConA by forming

amide linkages to its terminal amino groups or surface-exposed lysine residues (Figure
34). As described earlier, the chosen functionalization chemistry limits the number of
active proteins (i.e. ConA) attached to the AFM tip by using excess of the
monofunctionalized PEG, specifically CH3O-PEG-NHS. In addition, the possibility of

homobifunctional NHS-PEG-NHS looping and binding twice to the AFM tips can help

passivate much of the tip surface thereby effectively reducing the number of NHS groups
available for binding ConA. Also, in order to avoid measuring multiple ConA/mannose

interactions, experiments were carried out at pH values lower than 7 (i.e. DMG buffer pH
6), since ConA exists as a dimer at this pH.158 Upon their preparation, the ConA-
functionalized AFM tips were extensively rinsed with phosphate buffer at pH 8 and then
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at pH 5, in order to remove excess unbound tetrameric ConA.48 In some of the earlier
studies, force experiments were performed in the presence of ConA in the buffer medium

assuming that the excess proteins will effectively block most of the interactions.

Although this certainly reduces the number of interaction events detected, it does not

necessarily guarantee detecting single ConA/mannose rupture events.

O ™ ™ O

Figure 34. Schematic representation of experimental set up carried out for SMFS of ConA/mannose using
NHS-PEG-NHS tether

Recently, a considerable number of different functionalization chemistries have been

described for attaching both naturally-occurring as well as chemically-synthesized

carbohydrate entities to hard substrates (e.g. glass, mica or gold).159"161 Examples include:
(0 non-covalent attachment of biotinylated carbohydrates to streptavidin-functionalized

dextran matrices,162 (//') covalent attachment of amino-modified carbohydrates to

commercial carboxylated surfaces using conventional EDC/NHS chemistry, (iii)

covalent attachment of thiolated-carbohydrates to gold-coated surfaces using alkanethiol

self-assembled monolayers (SAMs),164'165 and (Zv) covalent attachment of thiolated-
carbohydrates to gold-coated surfaces using bifunctionalized PEG spacers. '
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A new and versatile strategy, involving the photochemistry of arylazides, was applied in

order to immobilize carbohydrates on surfaces.166 The present study employs this newly
described photochemistry for the attachment of modified-mannose to gold-coated

surfaces, which has not been used previously for SMFS studies. The method was

originally developed to generate ultra-thin polymer films on silicon or gold-coated

surfaces for applications including sensors or devices operating under fluidic

conditions.167 The covalent attachment is based on the photochemistry of

perflurophenylazides (PFPAs) (Figure 35). When PFPAs are exposed to UV irradiation,

their azide functionality gets converted into a nitrene. This highly reactive perflurophenyl

nitrene can then insert into any neighbouring C-H or N-H bond.

R£R"
R. ',R" NH

H F\A^F

D-^R ^O R X) R ^O

Figure 35. Photochemistry of PFPA

For example a PFPA-modified carbohydrate can be attached to virtually any organic

surface with a simple photochemical protocol. The only caveat being that the molecule of

interest cannot be sensitive to the wavelength of UV irradiation used. The PFPA

photochemical method has indeed been popular for surface modification and introducing

functional groups into fullerenes, proteins, polymers as well as carbohydrates. ' ' '

173 The synthesis of a series of functionalized PFPAs for the development of PEG-
modified carbohydrate microarrays has been described by Zhichao et al. The

carbohydrate surfaces were then used to study their interactions with different lectins,
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including ConA, using the quartz crystal microbalance (QCM) technique. 4'166,17
Following their approach, mannose immobilization on gold-coated glass surfaces was

achieved using the same PFPA reagents (Figure 36). The method involves three steps: (/)

a SAM of PFPA is formed on the gold-coated surface by incubation with disulfide-PFPA,

(/*/) a thin PEG layer is covalently attached to the surface using the PFPA photochemistry,

and (///) PFPA-derivatized mannose is attached to this surface via UV irradiation.

O F
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Figure 36. Experimental protocol for mannose immobilization on surfaces using PFPA chemistry

Due to the high-reactivity of PFPAs under UV light exposure, the surface modification

chemistry becomes rather simple and quick with only one key requirement, i.e.

synthesizing the functionalized-PFPAs. The synthetic routes for PFPA-disulfide and
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PFPA-mannose which were used in preparing mannose-functionalized surfaces are

described in Figure 37 and Figure 38.
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Figure 37. Synthesis of PFPA-disulfide used in mannose surface immobilization
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Figure 38. Synthesis of PFPA-mannose used in mannose surface immobilization

SMFS experiments were carried out to measure the interaction strength between the

ConA-functionalized AFM tips and the mannose-derivatized surface. The same
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experimental approach described for the biotin/streptavidin system (Chapter 4) was used

(Figure 34). Examples of the collected force curves are given in Figure 39.
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Figure 39. Representative force curves of single molecule force spectroscopy measurements of
ConA/mannose (approach is shown in red and retract in blue; Set 1)

A subset of selected force curves, showing rupture events, were fit with the e-FJCpEG

model in order to determine if the events were due to breaking the interaction between

PEG-attached partners. The analysis process was performed on two different sets of data,

using two different AFM tips and two different mannose-surfaces, in order to confirm the

reliability of the technique. In the first set of experiments (Figure 40), ca. 5000 force

curves were collected and only ca. 300 curves (ca. 6%) were accepted for fitting analysis

resulting in a final count of 240 force curves (ca. 5%) to be used in calculating the most

probable rupture force between ConA and mannose. The average Kuhn length of PEG

was 0.56 ± 0.09 nm , which is in agreement to the reported value of 0.7 nm.
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Figure 40. Analysis of ConA/mannose SMFS (Set 1): (a) Force distribution histogram, (b) rupture distance
histogram, (c) example of fit curve, and (d) experimental details and results

Long PEG spacers (20000 MW; ca. 470 nm) were used in functionalizing the surface

with mannose, in addition to the PEG spacer (ca. 27 nm) used in attaching ConA to the

AFM tip. Considering that the photo-activated PFPA molecules can insert into any C-H

bond, varying tether distances are expected throughout the entire surface, with a

maximum of ca. 500 nm (i.e. the combined lengths of both PEG polymers used). This

variation manifests itself in the rupture distance histogram as a random distribution. In

this case, the rupture distance was not used as a discriminating factor in filtering the force

curves. The curves were filtered based only on the Kuhn length value calculated from the

e-FJCpEG fit. The distribution of unbinding forces of accepted curves were analyzed using

a Gaussian fit resulting in a most probable unbinding force of 43 ± 16 pN, when the
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measurement was performed with a loading rate of 5480 pN/s. As discussed previously,

variations in the measured rupture force can be due to improper or multiple interactions.

The same experimental parameters were applied in acquiring the second set of data
(Figure 41 and Figure 42). Similarly, ca. 5% of the collected force curves remained after
fitting. The average Kuhn length of PEG was 0.87 ± 0.05 ran , which is in agreement to
the reported value of 0.7 nm.28 The rupture distance distribution obtained in this
experiment displays similar results to the first set of data. The rupture force distribution
in this case yielded a most probable unbinding force of 57 ± 20 pN, when the
measurement was performed with a loading rate of 6960 pN/s. This result is also

comparable to that obtained from the first set of experiments within experimental error,
and also taking into consideration the change in loading rate due to the use of a different
AFM tip/cantilever. In both cases, the results are in agreement with the previously
reported rupture force for the ConA/mannose interaction.
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Figure 41. Representative force curves of single molecule force spectroscopy measurements of
ConA/mannose (approach is shown in red and retract in blue; Set 2)
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Experimental parameters:
Loading rate = 6960 pN/s

Experimental results:
Unbinding force = 57 ± 20 pN
Kuhn length (lK) = 0.87 ± 0.05 nm

Figure 42. Analysis of ConA/mannose SMFS (Set 2): (a) Force distribution histogram, (b) rupture distance
histogram, (c) example of fit curve, and (d) experimental details and results

This new carbohydrate immobilization technique, based on the use of photo-reactive

PFPAs proved to be applicable and useful for force experiments. This method is

especially attractive for SMFS applications because it allows the attachment of sugar

molecules to the surface through long polymer spacers. Furthermore, the versatility of

PFPA derivatives makes them useful for attaching a wide variety of biomolecules and

polymers to surfaces. In addition, surface patterning may also be achieved by

functionalizing different areas with different biomolecules, which would be interesting to

study using force mapping, which is a combination of SMFS and AFM imaging.
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Chapter 6. Single Molecule Force Spectroscopy of the

E/K Coiled-Coil

6.1. Studying the E/K coiled-coil Interaction using SMFS

Coiled-coil interactions are structural association motifs ubiquitous in a variety of

important proteins (including fibrous proteins,175 intermediate filaments,176 as well as
DNA binding proteins177), where two (and up to seven178) identical or different a-helices
wrap around each other in a parallel or antiparallel fashion adopting some sort of 'super

coil' as exemplified in Figure 43.

Figure 43. Structure of tropomyosin: a well-known example of dimeric coiled-coil. Structure prepared
using Pymol124

In addition to their significance in understanding supramolecular organizations among

proteins and designing new tertiary structures such as hydrogels,179 coiled-coils are
advantageous to many capture techniques and biosensor applications in therapeutic,

diagnostic as well as purification systems.95'97'180'181 The structural features required for
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the formation and specific binding in coiled-coils are discussed below in light of a

relatively new designed synthetic dimerization motif, known as the E/K coiled-coil.

The existence of coiled-coils was first predicted in 1953, by Crick when analyzing the X-

ray diffraction pattern of a-keratin.182 He proposed that, similar to a two-stranded rope,
the coiled-coil consists of two a-helices folded around each other with, most probably,

hydrophobic interactions primarily driving their self-assembly. In his classical analysis,

Crick speculated that at the interface between the two a-helices, non-polar side chains of
one strand stack in-between those of the opposite strand in a 'knobs-into-holes ' fashion

resulting in super-coiled a-helical ribbons. It was nearly 20 years later that the amino acid

sequence of the first coiled-coil in tropomyosin was identified, to reveal the existence of

a seven-residue repeating motif {a-b-c-d-e-f-g)„ where positions a and d were found to be

usually hydrophobic amino acid residues, such as leucine, isoleucine, valine and

alanine.183 Indeed, this repeat motif was later shown to be continuous throughout the

entire polypeptide chain of tropomyosin. More studies, starting with the infamous leucine

zipper sequence, where there is a continuous presence of leucine residues at position d,

confirmed Crick's speculations and verified the hydrophobic core to be necessary for the

formation and stability of a coiled-coil dimer.184 In addition, it was found that there is a
particular preference for certain combinations of hydrophobic residues in the coiled-coil

core. For example, ß-branched non-polar amino acid residues, such as isoleucine and
valine were found to contribute more to the core stability when present at position a

compared to d. This is mainly due to the fact that the two positions are not exactly the
same in terms of their relative orientation to the coiled-coil axis: side chains at position a

point away from the coils interface whereas those at position d point towards it. This
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explains how certain side chains, in either position, might stabilize or destabilize the

close packing of the core.185 Similarly, the presence of large hydrophobic groups, such as
aromatic amino acids can disrupt the close packing within the hydrophobic core and

1 Rf*destabilize the coiled-coil.

Beyond the role of core hydrophobic residues as the main driving force for their

assembly, coiled-coils also employ intra- as well as inter-strand electrostatic interactions

in order to tune their overall stability. Polar and charged amino acid residues, which are

frequently found in positions e and g, are involved in the electrostatic interactions which
I R7 1 SR

highly contribute to the conformational selectivity of coiled-coils. ' Interestingly,

polar amino acid residues may contribute to the overall hydrophobicity of the core by

interacting hydrophobically, with the non-polar residues at the coiled-coil interface,

through their side chain methylene groups and thereby shielding the hydrophobic core

from unfavourable solvent exposure.189 More importantly, inter-chain salt bridges
between oppositely charged amino acid residues can highly stabilize the coiled-coil

binding. It must be noted, however, that the contribution of such electrostatic interactions

is highly dependent on the coils local environment and are especially effective when the
I RO

surroundings have lower dielectric constant (e.g. near the hydrophobic interface). In

addition, the preference of attractive over repulsive interactions can play an important

role in controlling the binding specificity in coiled-coils, i.e. the extent of homodimer vs

heterodimer formation in model de novo designs.187 Although polar and charged residues
can destabilize close packing if present in the a or d positions, they can highly stabilize

the overall coiled-coil structure when present at the e and g positions. It can be concluded
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that both, hydrophobicity and side chain packing in the hydrophobic core, as well as
electrostatic interactions are interdependent and contribute to the stability of coiled-coils.

A synthetic heterodimeric coiled-coil, known as the E/K coiled-coil, was designed based
on the following structural features: (/) choosing amino acids that complement the
formation of helical structures, (?) placing complementary non-polar amino acids at

positions a and d for the formation of a stable hydrophobic core, (///') placing oppositely
charged amino acids at positions e and g to favor the formation of heterodimeric coiled-
coils, (Jv) adding charged amino acids at position /to increase the solubility and balance
the net charge of each coil, and (v) realizing the most appropriate chain length for the
desired applications.184,190 The synthetic design of the E/K coiled-coil (Figure 44) was
chosen to satisfy all the previously-mentioned requirements for a stable heterodimer, at
neutral pH, that can be used as a capture technique in a variety of applications.
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Figure 44. Helical wheel diagram for the E/K. coiled-coil: the ?-coil is shown in red and the K-coil is
shown in red

In this design, the non-polar amino acids, valine (V) and leucine (L) (positions a and d,
respectively) were chosen to form the hydrophibic core of the E/K coiled-coil since: (/)
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they are frequently found in natural as well as synthetic coiled-coil cores, especially

dimers,190 and (//) their combination is expected to form a weaker hydrophobic core,

compared to that formed from all-leucine or even isoleucine and leucine, which is

particularly desirable in this situation. If the interactions of the hydrophobic core are too

strong, oligomerization and homodimerization can compete with heterodimerzation,

especially when the contribution of electrostatic interactions is negatively influenced by

the surrounding environment.191,192

Charged amino acids, specifically glutamate (E) or lysine (K) were chosen for both

positions e and g in the ?-coil and the K-coil, respectively. These residues were selected

as they are commonly observed in these positions in natural coiled-coil structures.

Inter-chain salt bridges between ionized glutamate and lysine residues (i.e. position e of

the ?-coil with position g of the K-coil at neutral pH) significantly add to the stability of

the coiled-coil structure.194 In addition, interactions between methylene groups in their
side chains with the partially exposed hydrophobic interface contribute to the core

stability, by shielding water molecules as explained earlier. However, their most

important feature is their ability to encourage the formation of heterodimers over

homodimers by favouring attractive interactions between oppositely-charged residues in

the different coils.194

The effect of chain length on the overall E/K coiled-coil stability was also taken into

account when designing the peptides. In fact, varying lengths of both E and K peptides

(three to five heptads) were synthesized and their kinetic as well as thermodynamic

interaction constants were determined using surface plasmon resonance (SPR). In
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addition to SPR, the association and dissociation behaviour of the 5-heptad E/K coiled-

coil system has been addressed using a variety of physical characterization techniques.

96,195,196 -pj^ estimated dissociation constants for this coiled-coil all indicate the

remarkably high affinity between the two coils, exemplified with a fast association and

slow dissociation (i.e. low equilibrium dissociation constant; Table 5).

Table 5. Summary of equilibrium dissociation and rate constants in the E/K coiled-coil system

Method ^(XlO-6M)
Gdn»HCl denaturation1 3.53 ± 0.44
Dilution study2 2.45 ± 0.71
BIAcore™ biosensor3 0.50 ± 0. 1 3

1 Equilbrium dissociation constant, K , estimated from Gdn»HCl denaturation data using the
relationship AG - -RTInK , where AG is the free energy of unfolding, R is the gas constant, and
T is the temperature in Kelvin.

2 Equilibrium dissociation constant estimated from protein dilution experiments as monitored by
CD spectroscopy.

3 Dissociation constant, K , calculated from a BIAcore™ biosensor study using the relationship
Kd= koff ¡kon where kon and koff are the individual on and off rate constants.
In all studies, the interaction in the 5-heptad E/K coiled-coil system was found to follow a

simple association mechanism where the unfolded individual coils (i.e. random coils) join

together forming a fully-folded dimer (i.e. coiled-coil heterodimer) with no apparent

intermediates. The fact that the individual coils exist as random coils when present on

their own confirm the requirement of hydrophobic (from a and d residues) as well as

electrostatic (from e and g residues) interactions for their proper folding into a-helices

that heterodimerize.184
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The strong binding between the E and K coils and the overall stability of their

heterodimeric system encouraged their utility as a capture or immobilization technique

for biosensor applications as well as purification systems.1 4 In either case, one of the
peptides is co-expressed with a biomolecule of interest and the other is immobilized on

the sensorchip/column surface. Due to their highly specific binding, the coiled-

functionalized surface recognizes its partner and captures it. The formation of stable and

strong E/K coiled-coil interactions effectively retains the biomolecular asembly on the

surface. In fact the use and applicability of E/K heterodimeric coiled-coils for such

purposes have been proven by a number of research groups. '

In the present study, the interaction strength between the E and K coils was addressed

using SMFS. In this approach, one of the coils is attached to the AFM tip and the other to

a surface (Figure 44). Force-distance curves are developed when the coil-functionalized

AFM tip is approached to the complementary coil-functionalized surface. In this manner

the coils are allowed to fold and self assemble into the coiled-coil structure. Subsequently

retracting the tip will cause the two coils to break apart. As explained previously, changes

in the cantilever's deflection during the force measurement can be directly converted into

force using Hooke's law, and the stability of the E/K coiled-coil system can be expressed

in terms of unbinding force values. More interestingly, performing the force

measurement at varying probe velocities (i.e. dynamic force spectroscopy) allows

measuring the dissociation rate constant koff (according to Equation 8) and exploring the

force-induced energy landscape in this system at the single molecule level. The use of

single molecule techniques such as SMFS will contribute significantly to the previous

ensemble studies that have been employed to investigate the E/K coiled-coil heterodimer.
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Although the E/K coiled-coil system has not been previously studied using SMFS, the

technique has been applied to study the unfolding of other synthetic as well as natural

coiled-coils. The high complexity of protein unfolding was a key motivation for the Rief

group to study the mechanical unfolding of coiled-coils as a relatively simple yet

physiologically relevant model system.197"201 In one of their AFM-based force studies, the
unfolding process of a leucine zipper sequence was investigated (Figure 45). In this

experimental approach, the coiled-coil sequence was co-expressed with an actin cross-

linker protein, whose force-induced unfolding has been well-characterized. The

rationale behind using actin was 2-fold: (z) it provided a means for immobilizing the

coiled-coil between the AFM tip and the surface, and (U) it provided a characteristic

internal reference on the force-distance curves to identify events corresponding to the

coiled-coil unfolding. Moreover, the insertion of a disulfide linkage at the proper site in

the coiled-coil sequence allowed the force-induced unzipping to occur in one direction

only.

Coiled-coil

Extension

» ? · 197Figure 45. Example of SMFS of coiled-coils: leucine zipper conjugated to actin

A specific unzipping pattern for the leucine coiled-coil was observed with unbinding

forces of ca. 9 to 15 pN. An equilibrium model previously used to describe force-induced

DNA unzipping was applied to the coiled-coil system in order to calculate the energy
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required for unfolding.113 It is important to highlight that such partially unzipped
conformations accessed by the SMFS approach are very likely masked when applying

conventional ensemble techniques.

Another experimental approach used to study the force-induced dissociation of the same

leucine zipper using SMFS was carried out by Dietz et al, where the coiled-coil sequence
IQQ

was co-expressed with the Ig27 domain of titin acting as an internal reference protein.

As presented in Figure 46, the titin domain is expressed with one coil at each of its ends.

The homodimeric coiled-coil interaction leads to the formation of a linear coiled-coil-

linked poly(protein) chain, whose force-induced unfolding has been previously studied

and is well-characterized.26'204"206'128

Figure 46. Example of SMFS of coiled-coils: poly(protein) chain consisting of leucine zipper coiled-coils
• · 198conjugated to titin

In addition to the saw tooth pattern well-known for titin unfolding, overstretching as well

as unzipping events were observed at forces lower than 30 pN, which was expected for

the mechanically-induced dissociation of the studied coiled-coil. ' From the

previously-reported free folding energy for the coiled-coil dissociation, and the measured

increase in length (due to either overstretching or unzipping) the work involved in each

force-induced event can be calculated. In addition, fitting the force-distance data to a

simple two-state equilibrium model allowed calculation of the number of coiled-coils

included within the (poly)peptide chain construct.
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Another example of SMFS studies on the mechanical properties of coiled-coils is the

force-induced stretching of myosin, the essential protein for muscle assembly and

contraction.207 Single molecules of myosin coiled-coils were passively adsorbed on gold-
coated surfaces and subsequently stretched by approaching the AFM tip to the surface,

picking up a myosin molecule (at random points of the coiled-coil) and then retracting the

tip thus stretching the attached coiled-coils. The resulting force curves displayed coiled-

coil stretching events, recognized by a rise (R), a plateau (P), as well as an additional

exponential phase (E) caused by stretching the hinges present within the myosin coiled-

coil rods. The coiled-coil detaches, after stretching, at forces around 200 pN (Figure 47).

Myosin
coiled-coil

R

PEV
Extension

Figure 47. Example of SMFS of coiled-coils: myosin207

Since the R and P phases are not usually observed in the force-induced stretching of non-

coiled-coil proteins, they are thought to be caused by specific conformational changes

that take place within the coiled-coil structure during stretching. The E phase, on the

other hand, is a typical protein unfolding event that can be fit using the WLC model,

typically used in describing polypeptide chain stretching force peaks. This analysis

allows measuring the persistence length of the polypeptide chain, as well as its contour

length.207
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The experimental protocol adopted in this study for investigating the E/K coiled-coil

interaction includes: (/) immobilizing a cysteine-terminated ?-coil on the AFM tip

surface using NHS-PEG-PDP, and (U) immobilizing a cysteine-terminated K-coil on the

surface using the commercially-available linker LC-SPDP (Figure 49). Unlike the

previously described experimental protocols, the approach followed in this study does not

involve fusing the coiled-coil with another reference protein. During the force

experiment, all observed unbinding events correspond to the coiled-coil force-induced

dissociation. In addition, unlike the myosin force experiment, it involves the attachment

of the coiled-coil between the tip and the surface using specific functionalization

chemistry, thus increasing the probability of detecting single molecule events.

AFM tip functionalization chemistry, similar to that described for the biotin/streptavidin

system, involved aminating the surface in order to attach the NHS-PEG-PDP spacer by a

stable amide linkage to the NHS group (Figure 48). The PDP group at the other end of

the PEG spacer was used to attach the cysteine-terminated ?-coil by disulfide bond

formation. The PEG spacer is used to: (/) avoid detecting non-specific interactions by

increasing the distance between the AFM tip and the surface, and (H) help distinguish the

coiled-coil dissociation events using the PEG stretching signature. The surface

functionalization chemistry is quite similar to that followed for the AFM tip, except that:

(/) the silicon surfaces were aminated using APTES, and (H) the commercial LC-SPDP

linker does not have a PEG chain.
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Figure 48. Schematic representation of experimental set up carried out for SMFS of E/K coiled-coils using
NHS-PEG-PDP tether

The presence of a cysteine residue at the C-terminus of each peptide allowed their

covalent attachment to either the tip or the surface by the formation of a strong disulfide

bond, with the required anti-parallel orientation. Both cysteine-terminated peptides were

prepared by solid phase synthesis. The K-coil functionalized surfaces were prepared by

Dr. B. Liberelle in the De Crescenzo laboratory, as described in Figure 49.95
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Figure 49. Immobilization of K-coil on silicon surfaces

The prepared surfaces were characterized by contact angle as well as ellipsometry

measurements, and at each functionalization step showed variations in both the

hydrophobicity as well as thickness thus confirming changes at the surface. However,

such techniques do not give information about the surface functional groups, but rather

their properties. AFM surface imaging allowed examining the surface coverage as well as

its homogeneity. An example of a K-coil functionalized surface examined by different

characterization methods is given in Figure 50. K-coil layers were successfully

immobilized on the silicon surface, as indicated by the change in ellipsometric and water

contact angle measurements. Although the changes are subtle, the key finding here is that

102



the surfaces are uniform and homogenous, which is exemplified in the AFM topography

images.

1
APTES APTES + K-COiI

Sample Roughness
(nm)

Dry thickness
(nm)

Contact angle
(water)

APTES 0.2 0.8 52°

APTES + K-coil 0.3 2.2 66°

Figure 50. Characterization of K-coil surfaces using AFM, water-contact angle as well as ellipsometric
measurements

The adequacy of the designed force experiment and its applicability to study the E/K-

coiled coil interaction was evaluated using SPR. (For a detailed description, refer to

Section 4.1 in Appendix I). In this assay, cysteine-terminated K-coil peptides were

covalently immobilized on aminated CM4 sensor chips using either LC-SPDP or PDP-

PEG-NHS, in order to examine both surface, as well as AFM tip functionalization

strategies. The ability of immobilized K-coil to capture an ?-coil conjugated protein,

epidermal growth factor (EGF), via the E/K coiled-coil interaction was then examined by

observing the change in signal on the sensogram. The SPR experiments confirmed the

efficiency and stability of the functionalization chemistry and also demonstrated the

stability of ?-coiled EGF/K-coil complexes. In addition, the reversibility of the coils'
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binding was exemplified by using guanidinium hydrochloride which promotes the
dissociation of the coiled-coil complex without affecting the surface chemistry or the

coils ability to re-fold and associate. This was further verified by the fact that additional

?-coiled EGF was captured by the surface K-coils resulting in a similar change in signal

to the that originally observed. The observed SPR signal changes for K-coil surfaces

prepared using LC-SPDP or NHS-PEG-PDP were found to be analogous, confirming the

reliability of the results as well as the technique.95 In addition, mock surfaces on which
cysteine residues, rather than cysteine-K-coil peptides, were attached but did not yield

any detectable changes on the sensogram when subjected to the same conditions,

confirming the specificity of the measured binding signals. The SPR results clearly

validated the efficiency of the functionalization chemistry developed to immobilize the

coil peptides and confirmed the suitability of the design for studying their binding

interactions. The results also demonstrated the stability and specificity of E/K coiled-coil

interactions and their usefulness as a capture technique for other biomolecular systems.

SMFS experiments using ?-coil functionalized AFM tips and K-coil functionalized
surfaces were carried out in order to investigate the strength of the E/K coiled-coil

interaction. The resulting force curves display rupture events, similar to those observed

for unbinding ligand-receptor complexes (e.g. biotin/streptavidin and ConA/mannose)

(Figure 51). The peaks occur at a distance far from the surface, which confirms that they

represent specific binding interactions and once again highlight the importance of the

PEG spacer. Occasionally some non-specific adhesion interactions were detected but

were still easy to distinguish as they only appear close to the surface.
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Figure 51. Representative force curves of single molecule force spectroscopy measurements of E/K coiled-
coil (approach is shown in red and retract in blue; Set 1)

In one experiment, ca. 5000 force curves were collected, from which ca. 90% were

featureless. The remaining ca. 500 curves contained one or sometimes multiple

unbinding events and were therefore used for subsequent analysis. As described in earlier

chapters, the shape of the peaks is governed by the elastic properties of the PEG tether

and fitting the selected curves with the e-FJCpEG model allowed eliminating events that

are not caused by PEG-linked bimolecules. Fitting parameters, Kuhn length and

maximum rupture distance, were used to evaluate the filtered curves yielding ca. 1% of

all collected data to be used in calculating the most probable unbinding force in the E/K

coiled-coil system. The average PEG Kuhn length was determined to be 0.51 ± 0.20 nm,

which is in agreement to the reported value of 0.7 nm.

The distribution histograms for both the rupture distance, as well as the rupture force

calculated from the 41 force curves, when the experiment was carried out at an applied

loading rate of 7240 pN/s, are shown in Figure 52. The most probable rupture distance

was found to be 22 ± 10 nm by applying a Gaussian fit. A wide distribution of rupture
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distances was observed resulting in a large standard deviation value, however this does

not affect the credibility of the results in any way. As mentioned earlier the different

rupture distance values can be caused by the polydispersity of the PEG polymers and

more importantly by the different attachment locations of the PEG spacers on the AFM

tip. The measured most probable rupture distance was, however, found to be consistent

with the PEG contour length of ca. 27 nm. When the force distribution was analyzed

with a Gaussian fit, the most probable unbinding force was found to be 46 ± 7 pN.

Although there might be a contribution of multiple interactions, this unbinding force

value suggests a stronger binding in the E/K coiled-coil system, compared with other

coiled-coil systems studied with SMFS. In order to confirm the obtained results, another

set of SMFS measurements were analyzed in the same manner. From a total of ca. 5000

collected force curves, only ca. 2% remained after fitting analysis. The average PEG

Kuhn length was found to be 0.92 ± 0.1 lnm, which is in agreement to the reported value

of0.7nm.28
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d)
Experimental parameters:
Loading rate = 7240 pN/s

Experimental results:
Unbinding force = 46 ± 7 pN
Kuhn length (lK) = 0.51 ± 0.20 nm

Figure 52. Analysis of E/K coiled-coil SMFS (Set 1): (a) Force distribution histogram, (b) rupture distance
histogram, (c) example of fit curve, and (d) experimental details and results

250 nm

Figure 53. Representative force curves of single molecule force spectroscopy measurements of E/K coiled-
coil (approach is shown in red and retract in blue; Set 2)
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The distribution histograms for both the rupture distance, as well as the rupture force

calculated from the 100 force curves, when the experiment was carried out at a loading

rate of 6920 pN/s, are shown in Figure 54. The most probable rupture distance was found

to be 18 ± 4 nm by applying a Gaussian fit, which is consistent with the PEG contour

length of 27 nm. When the force distribution was analyzed using a Gaussian fit, the most

probable unbinding force was found to be 36 ± 12 pN. This value is more in line with

reported unbinding forces for other coiled-coil systems described above. ' Possible
reasons for the force variation between the two sets of measurements for the E/K coiled-

coil are: (/') the different loading rate at which the two experiments were performed, and

(/'/) the difference in the total number of events used in constructing the histograms. This

later point suggests that the second set of data should be more reliable.

a)

0 5 10 15 ¿0 25 30 35 40 43
Rupture Distance (nm)

b)

0 20 40 60 80 It» 120 140

Rupture Force (pN)

c) d)
Experimental parameters:
Loading rate = 6920 pN/s

Experimental results:
Unbinding force = 36 ± 12 pN
Kuhn length (lK) = 0.92 ± 0.11 nm

Figure 54. Analysis of E/K coiled-coil SMFS (Set 2): (a) Force distribution histogram, (b) rupture distance
histogram, (c) example of fit curve, and (d) experimental details and results
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In order to validate the force measurements, control AFM tips were prepared by using

only a mono-functionalized PEG spacer (CH3O-PEG-NHS), which cannot bind the E-

coil. Similarly, control surfaces were prepared following the same procedure used for

surface functionalization, except for the last step where cysteine, rather than cysteine-

terminated K-coil, was attached. Under the same experimental condition, SMFS

experiments performed using control tips and/or control surfaces showed force curves

without repeatable specific rupture events, except for non-specific adhesion peaks

detected at the surface.

Dynamic force spectroscopy of the E/K coiled-coil interaction was obtained by varying

the force loading rate. This was achieved by changing the probe velocity while

performing the force measurement, without changing any other experimental parameters.

The histograms of the unbinding forces for the E/K coiled-coil interaction measured at

different loading rates are shown in Figure 55. Analyzing the distributions using a

Gaussian fit allowed the determination of the most probable unbinding forces. These

values were plotted as a function of loading rate and the resulting relationship is shown in

Figure 56. As explained in Chapter 1, the measured unbinding forces are not only a

fundamental property of the interacting partners, but also depend of the loading rate that

is applied to the system. At sufficiently low loading rates, the system is being pulled apart

slowly and therefore there is enough time for thermal fluctuations to help the system

overcome the transition state energy barrier resulting in smaller unbinding forces. '
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Figure 55. Force distribution histograms for SMFS of E/K coiled-coil at probe velocities of (a) 200 nm/s,
(b) 400 nm/s, and (c) 800 nm/s
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Figure 56. Dynamic force spectroscopy of E/K. coiled-coil
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The dissociation rate constant koff estimated from the intercept of the vertical axis {i.e.

when In(Jy) = O) was found to be 15.8 s"1. Other dynamic force spectroscopy studies
reported a wide range of koff values ranging from 10"6 to 150 s"1. In comparison, the
koff value measured for the E/K coiled-coil is therefore considered to represent a strong

interaction. Although this value should not be directly compared to binding parameters

determined using conventional techniques, it is clearly related. It is important to keep in

mind that this relationship is characteristic only for a single-energy barrier in the

thermally activated regime, which has been confirmed for the E/K coiled-coil system.

Assessing the strength of E/K coiled-coil binding allows extending the range of their

application as a capture technique for SMFS measurements. As mentioned earlier, studies

have shown the usefulness of the E/K coiled-coil as a research tool to detect and purify as

well as analyze other biomolecular systems, by a versatile number of techniques.

Similarly, the E/K coiled-coil interaction can serve to immobilize biomolecules between

the AFM tip and a surface in order to study them by SMFS. In fact, in this work the E-

coil has been genetically conjugated to a number of protein entities {e.g. the epidermal

growth factor, EGF and the calpain small subunit, 21k) in order to use the E/K coiled-coil

interaction to attach them to surfaces for SMFS measurements.
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6.2. Applications of the E/K coiled-coil in Single Molecule

Force Spectroscopy

6.2.1. Epidermal Growth Factor and Receptor

Epidermal growth factor (EGF) plays a number important roles, and it performs its

biological function by binding to its cellular receptor, EGFr, which initiates a complex

cascades of intracellular events including the phospohorylation of other proteins resulting

in a broad spectrum of phenotypic responses such as the regulation of cellular growth as

well as their proliferation and differentiation.209 The structure of EGF bound to its

cellular receptor EGFr is shown in Figure 57.2I°

Figure 57. Structure of EGF (red) bound to its receptor EGFr (blue). Structure prepared using Pymol

EGF is a small protein (6045 Daltons) containing 53 amino acids, which is found in many

human tissues including the salivary glands. Once released, EGF is recruited by its

receptor (EGFr), which is present in the cell membrane, causing EGFr dimerization with

other receptors. The receptor is composed of two globular extracellular domains that bind

EGF and two cysteine-rich intracellular domains.210 A number of aggressive types of
cancer have been found to have overactive signaling through the EGF system, therefore

an understanding of the mechanism underlying the EGF interaction with its cellular
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receptor is of critical importance. In particular, addressing the mechanical properties of

this binding at the single molecule level might be quite relevant to its function, since
99

many cellular recognition processes are initiated under stress or shear force.

In order to study the EGF system using SMFS, both the protein as well as its receptor

must be immobilized between the AFM tip and the surface. The E/K coiled-coil system

may be used as a capture technique for such measurements (Figure 58).

MfEGFr
V ?-coiled EGF
Il K-coil

Figure 58. Experimental design for SMFS of EGF/EGFr using E/K coiled-coil as tether

As mentioned earlier, the ability of K-coil immobilized peptides to capture the E-coiled

EGF conjugate has been previously examined by means of SPR. 95"97 Following a similar
approach, ?-coiled EGF can be immobilized on K-coil-functionalized surfaces for SMFS

studies. In this design, a biotinylated EGFr can be immobilized on biotinylated AFM tips

using the biotin/streptavidin interaction. The EGFr could also be attached using homo-

bifunctional PEG spacers containing NHS groups, similar to the previously described

ConA AFM tip functionalization.

6.2.2. Calpain Ca2+-Binding Domain

The caplain calcium binding domain (21k) is another protein that has been conjugated to

the ?-coil in order to be immobilized between the AFM tip and a surface for SMFS
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measurements. Calpains are a family of calcium-dependent cytosolic cysteine proteases
"} 1 1

that have been identified in organisms ranging from mammals to bacteria. In response

to calcium signalling, these enzymes catalyze the proteolysis of numerous substrates

linked to processes including cell motility, apoptosis, cell differentiation and cell-cycle

regulation.212 Abnormal changes in calpain activity, caused by defects in calcium
homeostasis or mutations in calpain genes are linked to a number of pathologies,

including cancer, Type II diabetes, muscular dystrophy, Alzheimer's disease, as well as

other neurological disorders. 2"·213 The two best-characterized members of the family are
calpains 1 and 2 (also known as µ- and m-, respectively). They are heterodimers of a

large catalytic subunit (80 kDa) and a small regulatory subunit (28 kDa).214 A schematic
representation of the human m-calpain is shown in Figure 59.
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Figure 59. Structure of m-caplain (domains di - dVI, the calcium-binding domain is coloured in orange)
Structure prepared using Pymol'24

As an initial step in understanding the function, regulation and activation of calpains by

calcium, the C-terminal portion of the 21 kDa rat calpain small subunit (domain VI) has

been cloned, expressed, purified and crystallized.216 Gel permeation chromatography,
sedimentation equilibrium centrifugation as well as laser light-scattering experiments
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have shown 21k to exist as a dimer with a predicted molecular weight of 42 kDa. Figure

60 shows the calpain small subunit homodimer (21k) bound to calcium.

to*· '
?

V

Figure 60. Structure of 21k homodimer bound to calcium. Structures prepared using Pymol'24
Just as the fifth EF-hand of domain VI in the small subunit is the association site to

domain IV in the large subunit, it is also believed that the fifth EF-hand of domain VI is
the site of its dimerization in the homodimer.217 In order to address the dimerization

interactions in the 21k homodimer at the single molecule level by means of SMFS, they

must be immobilized between the AFM tip and a surface. Co-expression with either the E

or the K-coil is an attractive immobilization technique that was attempted in this study.

The specific experimental design for this study requires the conjugation of 21k with the
?-coil in order to use the E/K coiled-coil interaction to capture the 21k dimer between the

tip and a surface (Figure 60). In efforts to achieve this goal, a straight forward procedure

of plasmid construction, bacterial transformation followed by PCR amplification was

used to design the 21k dimer protein with the ?-coil attached to its N-terminus. Upon

purification of the expressed conjugate by column chromatography, it was characterized

by conventional gel electrophoresis in order to assess its purity and molecular weight. In

addition, analytical ultracentriguation (AUC) sedimentation velocity experiments were
carried out to confirm that the ?-coiled 21k exists in the dimeric form, as designed. In

order to capture the ?-coiled 21k, K-coil will be immobilized on both the AFM tip and
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the surface, following the same strategy as described previously (Figure 61). The

molecular spacer NHS-PEG-PDP provides an ideal tool for attaching a cysteine-

terminated K-coil, in this case at the C-terminus, to allow the required coiled-coil anti-

parallel heterodimerization. SMFS measurements will provide information on the binding

stability within the 21k system as well as the applicability of the E/K coiled-coil system

as an immobilization technique in this domain.

K-coil S

E-coiied 21k X

K-coil

Figure 61. Experimental design for SMFS of 21k homodimer using E/K. coiled-coil as tether

The specific binding affinity, unique specificity, high stability, as well as appropriate size

make the E/K coiled-coil system an ideal candidate as an immobilization tool for many

techniques, including SMFS. The results described in this study suggest strong binding

within the E/K coiled-coil system, compared with other natural coiled-coils. In order to

use the E/K coiled-coil system as an SMFS technique, their binding must be stronger than

that of the biopartners being investigated. If necessary, the design of other more

applicable de novo coiled-coils can be initiated to widen the scope of the coiled-coil as a

capture tool for SMFS.
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Chapter 7. Conclusions and Future Directions

The main goal of this thesis was to apply single molecule force spectroscopy (SMFS) to

address, detect and measure biomolecular interactions. Carrying out force measurements

at the single molecule level is indeed relevant for many biological systems. Many

biomolecular interactions, including pathogen-host infections, antibody-antigen

recognition, as well as cellular adhesion, are initiated under shear stress or an applied

force. The molecular binding in these, and many other biological systems, has commonly

been investigated using ensemble techniques where the interacting biomolecules are free

in solution, or directly fixed to a solid substrate. However, under physiological

conditions, many of these biomolecules are tethered, to cellular membranes for example,
and their interactions occur under non-equilibrium conditions and within limited

interaction volumes. In such cases, the biomolecules may undergo restricted motion,

which could affect their recognition capability and their kinetic response. Although

conventional ensemble techniques have yielded valuable insight into molecular

recognition interactions, it is often more relevant to address these interactions using

force-based techniques at the single molecule level, which offers the advantage of

eliminating spatial and temporal averaging that can obscure significant binding details,

including transient phenomena, rare events, population heterogeneity and crowding
effects.

Studying biomolecular interactions using the AFM-based force technique, has indeed

revealed new insight into the chemistry, biology, and physics of biological systems. In

117



this study, the potential of force spectroscopy is realized by investigating various types of

biomolecular interactions in different systems, namely the DNA double helix,

biotin/streptavidin, concanavalin A/mannose and the two coils in a synthetic E/K coiled-

coil. Using the AFM to conduct force measurements at the single molecule level in these

systems required their immobilization between the AFM tip and a surface, which was

achieved by: (/') generating amino groups on the silicon nitride tip surface, (//') attaching a

heterobifunctional PEG spacer via an amide linkage to its NHS end, and (//'/) covalently

linking biomolecules to its other end. Molecular spacers effectively aid in distinguishing

the interactions of interest from the wide range of non-specific interactions between the

tip and the sample, which occur when the tip and the sample surface are in close

proximity. The rupture of such non-specific adhesion is large (nN range) and could easily

mask the rupture force of single biomolecular interactions (typically in the pN range).

SMFS measurements carried out in this study confirmed the efficacy of PEG as the

spacing tether. In all resulting data, the rupture events were detected at a distance further

out from the surface facilitating their analysis. It is important to highlight that all the

force curves represented for the different biomolecular systems under investigation were

quite similar, and often identical, which is of no coincidence since they all represent the

forced-induced stretching of the PEG spacer prior to the bio-partners rupture. The fact

that the shape of the resulting force curve is governed by the elastic properties of the

polymer tether greatly facilitates their analysis. The use of fitting mathematical models,

that describe the non-linear elastic behaviour of tether chains under applied force help

discriminate rupture events that correspond to tethered biomolecules, thereby further

eliminating any events that do not represent the interaction of interest. The fitting process
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is necessary and very advantageous for analyzing force curves in tethered systems, as

exemplified in the force data presented herein. In all cases, thousands of force curves

were collected within the SMFS experiments and only a small fraction (often as low as

1%) were used in the final quantitative analyses. In fact the experimental conditions in all

cases aimed towards lowering the number of interacting molecules immobilized between

the tip and the AFM surface in order to increase the probability of detecting single, rather

than multiple, interactions. Therefore, the low frequency of rupture events that correctly

correspond to the molecular interaction of interest is expected and indeed desirable.

Applying the above mentioned principles allowed for measuring specific interaction

forces within the different biomolecular systems at the single molecule level. SMFS of

dsDNA displayed the previously-reported conformational transitions that takes place

upon stretching and unwinding the double helix. SMFS of biotin/streptavidin yielded

unbinding forces that are consistent with the literature thereby confirming the credibility

of our results as well as the fidelity of this technique. SMFS of concanavalin A/mannose

was also consistent with previous studies and further reinforced the applied methodology.

Dynamic force spectroscopy, where the energy landscape of a complex is explored by

measuring unbinding forces at different loading rates may also allow measuring kinetic

parameters for the concanavalin A/mannose interaction. In addition, the use of new

immobilization techniques, namely the versatile PFPA photochemistry allows extending

this force study to a large library of lectin-carbohydrate interactions, and possibly to other

biomolecular systems. A future experiment involves microcontact printing where

patterned surfaces can be developed using various PFPA-derivatized carbohydrates.

Force mapping, which combines AFM imaging with force measurements can then be
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used to investigate these patterned multi-carbohydrate surfaces. SMFS of the E/K coiled-

coil revealed their strong binding, as previously observed using various techniques.

However, it must be noted that the experimental protocol developed for tethering the E/K

coiled-coil involved immobilizing each individual coil on either the AFM tip or the

surface. Unlike the binding partners in each of the abovementioned biomolecular

systems, the E and K coils must properly fold and wrap around each other, which might

be demanding at the level of this experimental design. Although the details of the

interaction, in this specific design, are not fully established, dynamic force spectroscopy

allowed measuring an apparent kinetic unbinding rate constant for the E/K coiled-coil

system. The obtained value was again in agreement with a strong binding interaction and

therefore encourages the use of this system as a capture technique for other biological

systems in SMFS studies. SMFS measurements can provide information regarding the

binding strength in this system as well as stability under different environmental

conditions. For example, the E/K coiled-coil binding affinity is expected to change as a

function of pH due to its effects on the ionic charges essential for the E/K coiled-coil

heterodimer formation. Following the experimental approach of dynamic force

spectroscopy, one can perform a series of SMFS measurements while varying the buffer

pH. This should yield information regarding the importance of ionic interactions and the

extent of their contribution to the overall stability of the coiled-coil structures. SMFS of

the different biomolecular systems were not only successful and informative, but also

promising for a variety of future applications. Advances in the field SMFS will open

avenues for exploring biomolecular interactions at the single molecule level,

complementing ensemble methods currently used.
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Appendix: Experimental Details

1. Tip Functionalization Strategy

In general, standard tip functionalization method followed in this study involves three
main steps (Figure Al): (i) generating amino groups (-NH2) on the silicon nitride (Si3N4)
tip, (//') attaching a heterobifunctional PEG spacer, with JV-hydroxysuccinimate group
(NHS) at one end, to the aminated tip with an amide linkage, and (Hi) covalent linking of
a biomolecule to the free end of the PEG spacer. The biomolecules used either contained

a thiol (-SH) group and were attached to PEG containing a 3-(2-pyridyldithio)propionyl
group (PDP) by disulfide bond formation, or contained an amino (-NH2) group and were
attached to PEG containing a second NHS group by amide bond formation. In some

cases, the PEG used already contained the biomolecule (i.e., ¿-biotin) thus eliminating
the need for Step (Ui). It is worthwhile mentioning that, in our hands, the success rate in
tip functionalization experiments was as low as 30%.
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Figure Al. AFM tip functionalization strategy: (a) Surface amination, (b) Attaching PEG spacer to the
aminated surface via an amide linkage to its NHS end, and (c) The different functional groups present at the
other end of PEG, to which biomolecules can be tethered. A high excess of monofunctionalized PEG is
used in order to block most of the tip surface, thereby decreasing the surface coverage.

It's important to mention that before functionalization, AFM tips were exposed to oxygen
in the presence of high-intensity ultraviolet (UV) radiation, which efficiently removes
contamination via ozone oxidation.

With respect to the first step in tip functionalization, amination is achieved by applying
VECTABOND™ reagent to clean Si3N4 tips. VECTABOND™ is commonly used to fix
tissue sections and cell preparations to glass slides and coverslips (i.e. silicon-based

surfaces), by chemically modifying these materials.1 Recently, this reagent has been
shown to effectively aminate AFM tip surfaces in a very short time period (not more than
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10 minutes).2 The aminated tips were used directly for subsequent functionalization in
order to avoid undesirable contamination.

2. Synthesis of PDP-PEG-NHS

Most of the PEG spacers used in the second functionalization step (Figure Al, c) were

commercially available with the exception of PDP-PEG-NHS. The synthesis of this

versatile heterobifunctional spacer was carried out as outlined in Figure 2. The starting

material NH2-PEG-COOH was first acylated using the crosslinker o-succinimidyl 3-(2-

pyridyl)-dithiopropionate (SPDP) to give PDP-PEG-COOH, and then the carboxyl group

was activated as an NHS ester yielding the final product, PDP-PEG-NHS.

o

H2NL W /^ IJD
0 "Tn ^ OH

NH2-PEG-COOH
O

srop F???O O N—'

O

OH
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O
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O'
O

PDP-PEG-NHS

Figure A2. Synthesis of PDP-PEG-NHS
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This previously-reported procedure was reproduced successfully, however hydrolyzed
SPDP was a by-product. Gel filtration was found to give variable results in purifying the
desired product.3 Instead, a multi-step extraction procedure was developed, as described
in Section 2.4 of the experimental chapter, and was shown to effectively remove such
impurities in a reproducible manner.4 In addition, converting the intermediate PDP-PEG-
COOH into the NHS ester was achieved using N,N,N',N'-tetramethyl-0-(N-

succinimidyl)-uroniumtetrafluroborate (TSTU) instead of the conventional NHS/DCC
method.5 The advantages of this method are the faster reactivity of this reagent and the
ease of by-product removal. PDP-PEG-NHS was purified by simply dissolving in
chloroform, washing with buffer at neutral pH, applying a drying agent and evaporating
the chloroform phase, which is much easier compared to removing the dicyclohexylurea
(DCU) by-product.

3. Synthesis of SPDP

O-succinimidyl 3-(2-pyridyl)-dithiopropionate (SPDP) is a heterobifunctional cross-
linking reagent containing one NHS ester group and one 2-pyridyldisulfide group (PDS),
resembling the spacer NHS-PEG-PDP. The NHS ester reacts with amino groups to give
stable amide bonds, while the PDS group reacts with thiols to form disulfide bonds

(Figure A3, A4).

KJ °
SPDP

Figure A3. Structure of o-succinimidyl 3-(2-pyridyl)-dithiopropionate (SPDP)

132



a) ox o O

V ""S^ ^^ OH + HO-NR-NH2
. O ^ O

'VS^s^^o'NY + R"SH " R-s-s^^o'NY
o o

? NH

Figure A4. Reactions of SPDP with (a) amino-, and (b) thiol- reactive groups

As mentioned earlier, this reagent was used to introduce the PDS group into NH2-PEG-

COOH by converting the amino end into a PDP moiety. According to the original
procedure, reported by Carlsson et al., SPDP is formed by a two-step procedure: (/) 2,2'-
DTDP is reacted with 3-mercaptopropionic acid to give PDP-OH, (/'/) NHS with DCC are

then added to introduce the NHS ester moiety.6 2,2'-DTDP was synthesized by the

oxidation of 2-thiopyridone (2-TP) using hydrogen peroxide (H2O2) in water (Figure

A5).4 2,2'-DTDP is insoluble at neutral pH and immediately precipitates upon formation
and can be collected by simple gravity filtration. In order to avoid further oxidation of

2,2'-DTDP the reaction mixture was kept at low temperature (ca. 10 - 15 0C) and was

carried out for a short time period (ca. 30 minutes).

^-S H2O2 t fA'«
2-TP 2,2'-DTDP

Figure A5. Synthesis of 2,2'-dithiodupyridine (2,2'-DTDP)

2,2'-DTDP was then subjected to disulfide exchange with 3-mercaptopropionic acid to

give PDP-OH (Figure A6). The product formed contained a large amount of 3,3'-
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dithiopropionic acid (HOOC-CH2-Ch2-S-S-CH2-CH2-COOH), which is formed when
PDP-OH further reacts with 3-mercaptopropionic acid, despite the use of excess 2,2'-

DTDP.'

-V'S-V + HS OH
2,2'-DTDP 3-mercaptoprop¡on¡c acid

HCl / H2O / ethanol

H

N^.^A,V^ S OH

PDP-OH

Figure A6. Synthesis of 3-(2-pyridyldithio)-propionic acid (PDP-OH)
Purification of crude PDP-OH by column chromatography, as suggested by Carlsson et

al, yields only 40% of pure product. In the procedure followed herein, the slow addition
of 3-mercaptopropionic acid along with the use of strong acidic conditions, known to
disfavour disulfide exchange reactions, were used in efforts to reduce the side product
formation.4 In addition, the released 2-TP was re-oxidized to 2,2'-DTDP and a multi-step

extraction procedure was carried out in order to purify PDP-OH (from 2,2'-DTDP as well
as HOOC-Ch2-CH2-S-S-CH2-CH2-COOH).7 PDP-OH is much more soluble in aqueous
solution and therefore it was first extracted from chloroform at neutral pH. Since 2-TP

has similar solubility in water and chloroform, its conversion to 2,2'-DTDP, which

completely partitions into the chloroform phase, was indeed useful. In order to remove
the remaining impurity HOOC-CH2-CH2-S-S-CH2-CH2-COOh, the pH was lowered to
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ca. 2.5, at which point PDP-OH separates into the chloroform phase. Silica
chromatography was sufficient to remove any side-products that might have been present
in the chloroform phase. After purification, PDP-OH was converted to SPDP (Figure A7)
by the addition of NHS and DCC as described in earlier studies,7 except for using
isopropanol rather than 70% ethanol for re-crystallization, which was carried out to
reduce the extent of hydrolysis (Figure A8). The obtained white crystals were stable at -
25 0C for more than 3 months.

o

U °

Figure A7. Synthesis of SPDP from PDP-OH

^xX) h*° .. -vv^H *S ^-^ O
O

Figure A8. Hydrolysis of SPDP

4. Tip Functionalization Assays

The characterization of AFM tips, after their functionalization (with the PEG spacer

followed by the biomolecule of interest) is difficult and limited because of their
extremely small size. At the moment, there is no single independent method for
determining the number of functional biomolecules on an AFM tip. Therefore in SMFS
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studies, multiple control experiments are necessary for high confidence results. These

include blocking the measured interactions by adding free ligand in the solution or

measuring interactions with non-functionalized tips or samples expected to not have any

binding properties.8

In this work, SMFS control studies were complemented with parallel macroscopic

experiments by means of surface plasmon resonance (SPR) as well as a UV-based assay.

The efficiency of the developed tip functionalization technique and the suitability of the

synthesized spacer were examined using both techniques as follows.

4.1. SPR Assays

Surface plasmon resonance (SPR) is a technique that enables the quantification of

interaction dynamics (including molecular binding and recognition) by detecting changes

in refractive index at the surface of a sensorchip. As described in Figure A9, the incident

light (typically in the visible or infrared region) impinges at the interface between the

gold-coated sensorchip and the biomedium in contact with it, at specific angles

corresponding to the excitation of the surface plasmon electromagnetic waves.

Light-source Detector

^r Polarized Reflected^F
light light

Prism

Functionalize
d sensor chip

Flov/v channi·!

WW

Figure A9. A schematic representation of surface plasmon resonance experiment
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SPR penetrates only near the vicinity of the sensor chip surface, and the optical

reflectivity in this thin region is highly sensitive to thickness changes. Thickness and

mass changes, due to biomolecular binding, alter the refractive index thereby shifting the

SPR angle. In a typical SPR experiment, the change in resonant angle is monitored in real

time by plotting the resonance signal versus time.9

The efficiency of synthesized PDP-PEG-NHS and the adequacy of the chemical strategy

involved in the AFM tip functionalization procedure (described in the beginning of this

appendix) were evaluated by using SPR (Figure AlO).
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Carboxymethylated dextran sensorchips (CM4) were first aminated, as described in

section 2.5, to mimic the AFM tip surface after treatment with VECTABOND™.

Cysteine-terminated K-coil peptides were covalently immobilized on the aminated

surface using the synthesized PDP-PEG-NHS spacer. As described earlier, the NHS

moiety couples to the surface amino group with a stable amide linkage and the PDP

moiety forms a strong disulfide bond with the K-coil cysteine residue. After their oriented

coupling, the K-coils present on the sensorchip surfaces were then used to immobilize the

?-coil conjugated protein, epidermal growth factor (EGF) via the E/K coiled-coil

interaction. SPR experiments not only confirmed the efficiency of the functionalization

chemistry but also demonstrated the stability of ?-coiled EGF/K-coil complexes: (/) there

was no observed dissociation during the subsequent buffer injection, and (if) a subsequent

injection of the EGF receptor (EGFr) caused another signal increase and confirmed

binding to the complex. In order to confirm that the observed signal change was due to

specific EGFr binding, guanidinium hydrochloride (Gdn«HCl) was injected to promote

the dissociation of the E/K coiled-coil complex, and indeed upon subsequent addition of

EGFr no binding was observed. At this stage, the ?-coiled EGF was injected one more

time and only then did the subsequent injection of EGFr result in a signal change due to

specific binding. This finding further confirmed that the addition of Gdn»HCl promotes

the coiled-coil dissociation without affecting the surface chemistry, the stability of the

surface-immobilized K-coils or their subsequent ability to capture ?-coiled conjugated

proteins. Mock surfaces (where K-coil peptides were not coupled to the surface) were

exposed to the same conditions and no changes were observed. In addition, signal

changes upon ?-coiled EGF and EGFr injections were analogous to those observed when
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the K-coil had been coupled using the commercial LC-SPDP spacer.10 Altogether, the
SPR results clearly validate the efficiency of the functionalization chemistry developed to
immobilize biomolecules on surfaces and confirm the suitability of synthesized PDP-

PEG-NHS for such a purpose.

4.2. Marker Enzyme UV-based Assay

In order to further demonstrate the efficiency of the functionalization procedure used in

this work, a UV-based study was carried out on both AFM tips as well as silicon chips
functionalized exactly in the same manner as those prepared for SMFS measurements.

As detailed in Section 2.10, the tips/chips were first animated using VECTABOND™

and then reacted with bifunctional PEG spacers: (/) NHS-PEG-biotin, or (//) NHS-PEG-

PDP followed by SH-PEG-biotin. The tips/chips-bound biotin were then quantified using
(K)

a commercially-available conjugate of avidin and a marker enzyme (i.e. ExtrAvidin -
peroxidase). As described in Figure Al 1, the amount of ExtrAvidin-peroxidase bound to
biotin-functionalized tips/chips was estimated from its enzymatic activity (i.e. color
production) in a solution containing the substrate o-phenylenediamine»2HCl (OPD).

Functionalized AFM tip

aminated AFM tip

NHS-PEG- PDP

SH-PE6- Biotin

ExtrAvidin* Peroxidase

LJ

o-phenylene diamine
dihydrochioride

(+ H2O2)

NH2

2 H2O2 + 2 h J J—\i#^ peroxidase

NH2

I II + 4H2O
490 nm

Figure Al 1. Marker enzyme UV assay
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The increase in absorbance at 490 nm (A490) demonstrated the presence of ExtrAvidin -

peroxidase bound to biotin-functionalized tips/chips, which was not observed for control
experiments where functionalized tips/chips were incubated in ExtrAvidin®-peroxidase
pre-blocked with d-biotin or the spacers were not attached (Figure Al 2). Therefore, the
measured A490 cannot be attributed to passive adsorption of ExtrAvidin®-peroxidase but
rather to specific binding with biotin functionalized on the tips/chips surface.

a)

b)
80

Time (min) 20 40 60 80

Figure A12. Marker enzyme reaction progress (absorbance vs time): (a) Functionalized chips, and (b)
Functionalized tips with NHS-PEG-biotin (red), NHS-PEG-PDP followed by SH-PEG-biotin (green) or
without any spacer (blue).

It is worthwhile mentioning that after labelling with ExtrAvidin®-peroxidase, the
tips/chips were extensively rinsed with buffer (again, similar to the procedure carried out
in tip functionalization for SMFS) in order to remove non-specifically bound marker
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enzyme. In addition, 0.5% Tween®-20 was added to all buffers to help minimize the
extent of non-specific binding.

In conclusion, marker enzyme UV-based assay simulated the functionalization strategy
described for AFM tips and examined its efficiency at the macroscopic level. The results
proved that the developed functionalization technique to be successful and indeed useful
for the specific attachment of biomolecules.

5. Data Analysis Software

Analyzing force curves is an extremely critical process in SMFS studies. As explained
previously, hundreds, and more often thousands, of curves are collected in a typical
SMFS experiment. Many of the collected curves do not contain useful information: (/') the
(bio)molecules on the tip did not interact with those on the substrate resulting in no
events on the curve, or (//) multiple interactions occurred resulting in complicated or not-

clearly defined events. In almost all cases, only a small fraction of the force curves are
used in the final quantitative analysis. There is no doubt that manual sorting (i.e. opening,
viewing, saving or deleting) through thousands of data files in order to choose the useful
curves is an extremely tedious and daunting task. Furthermore, this would introduce
undesirable personal bias to the process. Therefore, the use of data analysis software is
not only an attractive, but a necessary solution.

There are a number of computer-based programs specifically designed to analyze SMFS
data. An example of which is the free online-available software Hooke, developed by
Sandal et a/..11 The Hooke program automatically scans through large sets of force curve
files, filters the ones that have events, with user-defined parameters and then allows
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fitting those events (i.e. peaks) to a mathematical model of choice. In this study the

Hooke program was used for data analysis with the incorporation of major improvements

performed by Dr. Rolf Schmidt at Concordia University. Mainly, the command line
interface (CLI) operating system of Hooke was changed into a graphical user interface

(GUI), which helped simplify the work significantly. For example, in order to perform a

function, one has to only click an icon rather than type out a text command in a separate

window, which allows easier access to functions as well as simplifies multitasking. In

addition, an export function was added in order to allow exporting the results into

OriginPro software for further analysis (i.e. constructing histograms). Figure Al 3

describes the process by which Hooke operates on a typical SMFS set of data.

ISm

Figure A13. Description of the Hooke analysis procedure

It's worthwhile mentioning that although it might be unpleasant to manually filter

through force curve files, in some cases it does become necessary and indeed more
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effective to screen through the data and evaluate them visually to appreciate the nuances

of the curves. However, the software algorithm is still helpful by, for example, lowering

the number of curves to screen from thousands to most likely hundreds. In addition, the

operation of Hooke was tested by comparing data sets that were filtered manually with
those carried out using the software. It was concluded that the Hooke software renders the
data analysis process much simpler and productive, especially the improved version.
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