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ABSTRACT
Micro Cantilever Based Rheology of Liquids

Ramin Motamedi, Ph.D.
Concordia University, 2009

In this work the objective was to extract the properties of high viscosity liquids using
the vib‘rational response of the micro cantilevers utilized in the atomic force microscopes
(AFM). Such an aim could not be achieved using thermal excitation of the cantilever
because the energy given to the cantilever inAtjhi's. method is not enough to allow it to have
a recognizable response. Instead we proposed the frequency sweep and step excitation
techniques and we proved that they can be used to overcome such a limitation. These two
methods are considered as two specific types _of the acoustic excitation technique. The
application of acoustic excitation to the cantﬂever in liquid resulted in many spurious
peaks in the response, which make it imposs:ible to identify the original cantilever
response. Therefore, the first step of this'study was to understand the real factors leading
to this effect and to improve the design of the ﬂuf_id cell. After achieving such a goal, we
focused on the extraction of the fluid properties by coimparing the theoretical analysis
with the experimentally obtained results. Duﬁng our study we implemented the
previously established theory for the frequency sweep and we managed to develop the
theory for the step excitation technique by ourselves. We proved that although both
methods are successful in analysing high viscosity liquids, the step excitation technique
was better than fhe frequency sweep method mainly in having an exact theoretical

solution rather than a solution in the form of a series. This enabled us to increase the

il



accuracy of the theoretically obtained results by diminishing the truncation error. In
addition, for determination of the fluid properties from the frequency sweep data, three
different methods were proposed. These were to determine the properties of the fluids
through the whole frequency range using the phase response or th¢ amplitude response or
by using both responses at each excitation frequency. Finally, we e*blained how to
extend our work in order to serve for the studies being made on thénon-Newtonian fluids
and we also mentioned few guidelines to help in focusing such effbfts to achieve the best

results expected.
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Chapter 1

Introduction and Literature Review

The atomic force microscope (AFM) was invented in 1986 by Gerd Binnig et .al.'. It
originated from the scanning tunnelling microscope (STM) which was a Nobel Prize
winning invention in physics. With the help of the AFM. the surface of samples can be
imaged with a resolution on the order of fractions of nanometers which is 1000 times
mofe than any optical diffraction limit. The AFM wés ériginally designed based on its
operation in contact mode meaning that the height irﬁage of the sample can be obtained
by monitoring and calibrating the deflection of the miéro—cantilever as it moves on the
sample surface. The cantilever deflection is typically mgasured by optical or by electrical
means. Because of the destructive effect of this mode on the surface of soft samples, the
next generation of the AFMs had the tapping mode, also célled the dynamic mode. In this
mode. the micro-cantilever is excited such that it oscillates at a frequency close to its
primary natural frequency and by monitoring the amplhudé of vibration. as the cantilever
scans the sample surface. the height image is produced.

Besides imaging. many other applications have been déve]oped for the AFM since its
invention- In this project we focused on one of these applications which is the
measurement of rheological properties of fluids on the micro scale. This chapter is
dedicated to the previously related works in this field and provides background for
understanding the rest of the work. The content of this part is structured as follows. First,

we describe different applications of AFM. After that some common techniques for



exciting the AFM cantilevers were explained. Then it is followed by introducing the
difficulties of the acoustic excitation, which is our preferred excitation method, in a liquid
environment. The development in modeling of cantilever frequency response is presented
next, and finally. we focus on the microcantilever based rheological measurements as one

of the recent applications of the AFM.
1.1) Different applications of AFM

A]though the AFM was originally designed for the purpose of imaging s_urfabes, its
~high sensitivity in detecting forces, on the order of picoNewtons, made it apbpl'ice;ble for
the measurement of atomic interaction forces, magnetic forces, electric fo-rces; friction
forces, and also in the investigation of mechanical properties and structurés of soft
materials at the nanometer scale. In contrast to the STM, that can be uséd only for
conductive surfaces. the AFM enables the scientists to investigate and scan, in- atomic
scale. both conductive and isolative surfaces of samples ranging from metallic and
inorganic mat.erials to polymeric and biological materials. Introducing the tapping
(dynamic) mode for AFM and the invention of some accessories, including the ﬂi_iid cell,
also expanded the applicability of the instrument for imaging of more delicate materials
in their natural environment®>*. In the tapping mode, lateral forces which can cause
scratches and the removal of \x;'eakly attached molecules on the surface are reduced
considerably. Beside force measurement and imaging. many other applications were

developed in which the AFM can be used as a sensor. For example, its use as a

temperature sSensor, gas sensor, spectrometer, calorimeter, environmental sensor,



microbalance, stress detector, or even as an electrochemical electrode were just a few
applications that Berger et al” reviewed in detail.

One of the applications of AFM that has received a lot of attention recently, is
measuring the rheological properties of fluids®’. The physics behind this application is
that the oscillatory behavior of the AFM cantilevers depends strongly on the properties of
the medium in which they are vibrating. For example, the resonant frequencies and
quality factors (i.e. the sharpness of the peaks) in the frequency response of the cantilever
reduce in liquids compared to those of the cantilever in air. Therefore. by observing these
changes in vibrational characteristic of the cantilever, one can determine the properties of
the fluid. The important advantages of this technique are, primarily, the small quantity of
the fluid (on the order of micro litre) and the relatively compact apparatus required for
the measurement, secondarily, local measurements of non-homogenous fluids, and
finally, in some cases faster measurement of rheological properties compared to the
conventional methods. However, the use of the AFM in dynamic mode is challenging in
liquid media because of the complex hydrodynamic force acting on the cantilever. Also
several factors that originate from the design of the cantilever holder significantly affect
the frequency response. Therefore. understanding the influence of each of these factors is
necessary for the reliable operation of the AFM in liquid media. This issue comprises part
of the current work however the main focus is the extension of this technique for high

viscosity Newtonian fluids and the investigation of the applicability of this method for

non-Newtonian fluids.
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1.2) Different techniques for cantilever excitation

For the various applications of the AFM, there are many different techniques to excite
the micro-cantilever. Since the main differences in these techniques are due to the types
of driving force. the response of the cantilever strongly depends on the chosen excitation
technique, especially when it is used in a liquid environment. The three major types are

“thermal excitation, magnetic excitation and acoustic excitation, which are shown
schematically in Figure 1.1 and explained briefly in the following paragraphs.

In thermal excitation®® (Figure 1.1 a), the cantilever response 1s the result of random
collisions due to the Brownian motion of the surrounding fluid molecules. In this
technique, the cantilever is excited directly and consequently a smooth vibration
response, related only to the properties of the cantilever and the fluid. is observed.
Moreover, this technique provides the smallest possible oscillation at a given temperature
which is useful in imaging of very smooth surfaces. But knowing that the thermal driving
force is stochastic in nature, we comprehend that this method is not helpful in
determining any information concerning the cantilever phase response, and for example it
cannot be used to measure any surface mechanical properties. However. the main
applications of this technique are to estimate the cantilever resonant frequency and to
measure the rheological properties of low viscosity Newtonian fluids.

101112 ,pe
= (Figure

Another direct excitation method is the magnetic excitation technique
1.1 b), which provides a smooth vibration response as well. For such a technique, a
micro-cantilever is magnetized either by attaching a magnetic particle'' to it or by coating

it with a magnetic material'?, then it is stimulated by an external varying magnetic field.

This gives one the flexibility of using many types of cantilevers in many different
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Figure 1.1 Schematic of the major excitation techniques. a) thermal noise b) magnetic
excitation c¢) acoustic excitation.

environments. However such coating changes the cantilever vibration properties.
Moreover, the vibration properties of the cantilever can be affected also by the changes in
ijts mass as the magnetized cantilever absorbs some magnetic particles from the
surrounding environment over time. Finally, the fluid will be heated as a result of using
the magnetic field which affects the fluid’s rheological properties.

In the case of acoustic excitation® (Figure 1.1 c), the cantilever is excited through
movement of its base by a piezoelectric actuator. This is an indirect method, meaning that
the driving force is applied to the cantilever indirectly through its base. The actuator is
usually placed directly under the cantilever chip in the tip holder that is used in air or
vacuum, while it is usually located away from the cantilever base in the fluid cell which

is used for liquid media. As will be explained in detail later on, the response of the



cantilever to acoustic excitation in a liquid environment contains many spurious peaks
which do not correspond to the natural frequencies of the cantilever and are rather related
to the design of the fluid cell.

In addition to the techniques mentioned above, there are several other excitation
techniques of minor importance which are clarified in Figure 1.2. For example, Scherer et
al’’? proposéd -a technique (Figure 1.2 a) t_hat uses electrostatic forces for cantilever
actuation. In this method, an electric field is applied between the AFM cantilever tip and
a sharpened steel electrode. Such a technique allows the exertion of a point force on the
cantilever and the freedom of choosing any arbitrary function for the applied force.
Moreover, the response of the cantilever, which was measured using a laser Doppler
vibrometer (LDV), proved to show no extra spurious peaks. However, this technique can
only be used for a conductive cantilever that is immersed in a non conductive medium
such as a dielectric liquid or gas. These disadvantages were resolved by the acoustic
radiation pressure method (Figure 1.2 b), proposed by Degertekin et al'*. This is done by.
applving a localized force via a pressure wave, focused on the cantilever tip, produced by
a micro machined acoustic transducer. This technique is mainly used for characterizing
the cantilever and measuring its frequency response while giving an additional flexibility
to be applied to many cantilevers of arbitrary shape and material. Another technique was
introduced by Buguin et al'® (Figure 1.2 ¢), which resembles the previously introduced
magnetic excitation technique in its method of operation only. Here the AFM cantilever
is forced to oscillate by passing an AC current through it while putting it in a permanent
magnetic field, and as a result, the resulting Lorenz forces cause the cantilever to vibrate.

This method has the additional advantage of its cantilever being in a pure unmodified
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state, unlike the magnetic excitation where the cantilever had to be coated by magnetic

material or a magnetic glued particle. However, the cantilever again must also be

conductive and this method is only limited to the V shaped cantilevers because they can



provide a closed circuit. The photothermal technique (Figure 1.2 d) is an additional
method that was introduced by Ratcliff et al'®, where they used a modulated laser on a
metal coated cantilever which allowed for bending because of different thermal
expansion coefﬁciems of the metal and the core material. The regular optical system of
the AFM was used m order to measure the cantilever vibrations. But again such .a
technique was restricted to bi-material cantilevers only'”. Last but not least, was the_
technique intro.dl'v)cevd by Volkov et al'® (Figure 1.2 e). which used fluid force, in the
vicinity of the cqntilever, as its excitation method. Such a technique uses two different
cantilevers, oné_pass',ive and the other active. The piezo on the active cantilever is used to
drive the fluid in ;/icinity of the passive cantilever whose vibration is continuously
monitored. In .this>way, it was shown that many of the spurious peaks appearing in the
acoustic excitation method no longer exist. Moreover. cantilevers of many materials,

types and shapes can be used.
1.3) Spurious peaks in frequency response of acoustic excitation

Among the thre¢ main excitation techniques, acoustic excitation is thought to be the
preferable one although the thermal and magnetic driving methods produce smoother
cantilever responseé. This is mainly because the cantilever used for this technique does
not need any modification and special coating and its amplitude of vibration is big
enough for different application of the AFM. Moreover, the later two techniques require
additional hardware such as a signal conditioner, a data acquisition system, special

cantilevers, and a magnetic field system making the two techniques more complex and



costly. However the most important disadvantage of acoustic excitation, as mentioned
before. is that tﬁe response of the cantilever in a liquid environment usually contains
many spurious peaks which do not correspond to the natural frequencies of the cantilever
(see Figure 1.3). Therefore many inve_tstigations have been carried on to understand the

nature of these redundant peaks and to improve the acoustic excitation technique4"2"9'24.
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Figure 1.3 Typical response of a cantilever in liquid environment within a fluid cell.

Putman et al’, who were the pioneers in introducing tapping mode atomic force
microscopy in liquid media, were faced with these extra frequency peaks for the first
time. They realized that any changes in the liquid cell system, such as changing its
geometry, its material, the working liquid, and more importantly the amount of liquid,
affect the positions and amplitudes of the resonances. Schaffer et al'’ observed

experimentally the same frequency response dependency upon the fluid cell system’s



geometrical and material design issues. Based on their observations of the responses of
different cantilevers in the same liquid environment, Schaffer et al'’ proposed fhe
hypothesis that “the cantilever response spectrum is the product of a fluid drive spectrum,
which depends only on the cantilever mo.dule and fluid, and the thermal noise spectrum,
which depends only on the cantilever and fluid”. Their hypothe;is was supported by
measuring the fluid drive spectra of three different cantilevers in the same environment
and showing that their shapes are very similar. Moreover, they showed experimentally
that the mode shapes of the vibrating cantilever are independent of the fluid drive
spectrum and depend only on the vibrational characteristics of the cantilever in the fluid.
Other researchers, who used different types of AFMs and ﬂuid beils which in some cases
were made in-house, also reported the appearance of spurioﬁs peaks'>?%?' For example,
Xu et al*® used an Agilent AFM with a modified fluid cell in order to apply different
types of excitations to the micro cantilevers and measure thebi-r‘, responses under identical
conditions. For acoustic excitation, they also observed the spurious peaks in the response
of the cantilever and based on their theory, which will be explained in the next section,
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they determined the fluid drive spectrum. Xu et al™ reached a similar conclusion as

1'” in that the response of cantilever in acoustic excitation is the result of two

Schaffer et a
mechanisms: a) structure-born excitation and b) fluid-born excitation. The first
mechanism is ideal acoustic excitation but when combined with the other mechanism,
spurious peaks are obsefved in the cantilever response. Also. it was shown that Schaffer
et al’s method'® for detérmination of the fluid—born excitation is as a special case in the

analysis of Xu et al*® because Schaffer et a]'gapproximated the structure-born excitation

with the thermal noise of the cantilever.
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Even in other instruments with similar concept and mechanism for excitation of their
cantilever, these redundant peaks appeared. Kirstein et al” observed such extra peaks in
the frequency response of a circular cantilever in an in-house built near field optical
micrqscope. They proved that these peaks are related to vibrations of some parts in the
instrument. This was done by comparing the responses of a single cantilever ip two
different media, air and water, and observing the existence of some peaks at the same
frequencies for both responses.

Although the effects of the various design problems on the cantilever response were
previously recognized, the exact relationships were not understood and the " early
improvements of the frequency response based on control of these factors had notAbéen\
considered. Instead efforts were focused on other approaches. Tamayo et al” mixed-the
standard driving signal with a feedback signal from the cantilever response such that fhey
could increase the quality factor of the cantilever oscillations by up to three ordéré of
magnitude. However their technique is very sensitive to viscosity variations and 18,
therefore. limited by small temperature fluctuations. Rogers et al*' used another
approach. They attached a piezoelectric microactuator over the axial surface of a
microcantilever and insolated it from the conductive liquid medium using a
fluoropolymer coating. In this way they could excite the microcantilever by applying a
direct force, fesulting in the disappearance of redundant peaks. However, this technique
1s no longer standard acoustic excitation and like the magnetic coated cantilevers, the
vibrational properties and bending angle of their cantilevers are changed.

Because of the particular design of commercial fluid cells, it is impossible to apply

ideal acoustic excitation to the cantilever resulting in an even more complicated

I



frequency response. As a part of this project, we apply some simple rﬁodiﬁcations to a
widely used commercial fluid cell from Veeco™ (MTFML model) in an effort to
approximate ideal acoustic excitation and in this way investigate the frequency responsé
of the cantilever in this cell without fluid born excitation and certain design related
aspects. We will show that the vibration of the fluid cell body is the most significant
disturbance in the observed frequency response. |

In the next section. the development in the theory of cantilever frequency response

will be summarized in order to provide a proper background for understanding the

‘modeling used in the results and the other experimental parts.

1.4) Modeling of cantilever vibration in viscous fluids

The theoretical response of a vibrating AFM cantilever in vacuum is well known?*?’.
However, the vibrational characteristics of such a cantilever will change considerably
when it is immersed in a viscous fluid. Since the sensitivity of the AFM depends directly
on the oscillatory behaviour of the cantilever. it is important to understand such
phenomena.

The vibration of any solid body results in a flow in the surrounding fluid by dragging
the fluid as it moves. This increases the effective mass of the moving body and as a result
its resonance frequency decreases. The effective mass of such a body includes its actual
mass and the mass of the moving fluid which is called the induced mass. In

hydrodynamics the induced mass is referred to sometimes as the added mass or the

virtual mass**2*?°. On the other hand, the moving fluid contributes some damping effects
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to the oscillatory behaviour of the body resulting in a decrease in its amplitude of
oscillation. Solving the Navier-.Stokes equations and continuity equation along with the
equation of motion of the vibrating body in the fluid is vital in order to study such a
phenomenon. Also for a long time it was of great interest to solve these equations to
analyze practical applications, at the macroscale, such as for the design of ships or under
water structures. These bodies were generally simulated using simple geometries such as
a transversally oscillating cylinder’® or a sphere oscillating along its diameter’® in a
viscous fluid.

Concerning the modeling of the oscillatory behavior of AFM cantilever beams when
immersed in a fluid, two main theoretical approaches have been used: (1) the simple
model of equivalent spring-mass-damper system and (2) the ‘‘hydrodynamic’ functions
methods. The development of these techniques will be explained in detail in the
following paragraphs.

In 1992, Butt et al’’ implemented a simplified model of a cantilever system to
evaluate the scan speed limit for cantilevers in various fluids. This was achieved by
assuming a massless cantilever with a spring constant of & and a mass point of m at its
free end. Moreover, for the cantilever, they assumed a damping force that is proportional
to the velocity of the free end with a proportionality constant d. In order to ﬁnd this
constant, they simulated the mass by a sphere of rédius R. Based on the Stoke’s law, the

applied drag force on a moving sphere which is immersed in a fluid is:

dy

F,=6r R'U;t. Equation (1.1)

where u is the viscosity of the fluid and y is the displacement of the sphere. Based on

this, the damping coefficient d is equal to 67 Ru . In this way, they could couple the



damping effect of the surrounding fluid with the response of the cantilever. Their
approach was improved by Chen et al>> by considering two different cases of damping,
first in gases and second in liquids. For gases, the Reynolds number is small, typically in
the order of 107, and as a result the drag force is proportional to the velocity of the
sphere. Hence like Butt et al, they used the Stoke’s law in their modeling. However, for
liquids the typical values of d_ensity and viscosity are 1000 and 100 times greater than
gases respectively, and the resonant frequency of the cantilever usually shifts three to five
times less than in gases and as a result. the Reynolds number in liquids 1s not as small as

that for gases. Therefore, the applied drag force could be found from:

2
Fy =2 20r 22 L 3ar? 200 Y Equation (1.2)
3 dr’ dt

where p is the density of the liquid and @ is the angular frequency of the sphere
oscillation. In Equation (1.2), the first term of the drag force is proportional to the
acceleration and defines the added mass. In this model, beside the radius of the sphere,
another parameter was defined that depends on the size of the cantilever. These
geometrical parameters are constant for each cantilever and once they are determined, by
fitting the model to a set of experimental resonance peak data, they can be used to predict
the behavior of the cantilever in other fluids. With this method, the cantilever beam is
modeled as a one-dimensional simple harmonic oscillator and only the first mode of
vibration can be predicted. Chen et al’” also used a variational method, for the equation of
motion of the cantilever, to approximate the higher modes of vibration from the first
mode. Later on, this work was verified experimentally by Oden et al*’. They
implemented their study on several cantilevers of two shapes, V-shaped and rectangular

cantilevers, while oscillating in different fluids, such as air and glyvcerol/water mixtures.
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These fluids were chosen to cover a wide range of viscosities. Their experimental results
demonstrated a good agreement with the theoretical model for low viscosity liquids but
the theory was incapable of predicting the experimental values for higher viscosity
liquids.

An apparently more realistic model for the oscillatory behavior of cantilever beams in
viscous fluids was proposed by Kokubu‘n et al**. The)_f modeled the cantilever by a string
of spheres of radius R equal to one half of the width of the cantilever, and they
approximated the applied drag force at each point of the cantilever by that on a sphere
which vibrates with the same amplitude of the cantilever. Their method consists of a very
complicated analysis in order to predict the frequency response of the cantilevers;
however after determining the frequency response, calculating the resonant frequency
and the quality factor at each mode of vibration are straight forward. Similar to the
method proposed by Chen et al’?, again in this method we need to find some physical
parameters by fitting the model to the experimental values. Hirai et al®® verified this
model by achieving a good agreement with the experimental results for the peak
amplitudes at resonant frequencies; however they discovered that this model is
overestimating the value of the applied drag force.

In an additional attempt to determine the higher modes of vibration, Salapaka et al*®
used a more accurate method that is not based on the spheré approach but i_nstead
employed the multi mode model directly for the analysis of the oscillatory behavior of the
cantilever. Again this method requires finding an experimental parameter from the first

mode of vibration which was then utilized to find higher modes of vibration. They also

applied the same assumption of the damping force being proportional to the velocity of
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the cantilever in their technique, which limits the usage of this technique only for gases,
which usually have low Reynolds number. This was proved experimentally for air during
their study.

The key point for the equivalent spring-mass-damper or simply the sphere approach is
to fmd the equivalent sphere radius or some other physical parameters from experimental
“values of the fundamental mode of vibration. These parameters are essential for
' ﬁre_dicting the behavior of the cantilever at higher modes of vibrations. The dependency
Qf the radius of the equivalent sphere upon the cantilever geometrical Iparameters and the
: - nature of the material used has been studied by many researchers®**"?%3%4% however the
r:GSl.lltS obtained were inconsistent. Therefore, it could be concluded that it is impossible
td evaluate the radius of the equivalent sphere before determining the fitting parameters.
Although this method has been utilized in many research works, it proved to be
‘.mis]eading when the cantilever size or geometry is changed. In contrast to this approach,
the.real geometry of the cantilever is being used for modeling of its oscillatory behaviour
in the hydrodynamic function approach. The hydrodynamic function method allows
multimode analysis of the cantilever and as a result there is no need for experimental
pafameters to investigate the higher harmonics. The development of this approach is
described next.

.The simplest model which uses the actual geometry and dimensions of the cantilever
was proposed by Weigert et al*'. In their model, the resonant frequency of the cantilever
was predicted by replacing the actual mass of the cantilever with its effective mass in the
analysis of undamped cantilever vibration. For evaluation of the added mass at each

mode of vibration, the mass of moving fluid (induced mass) is approximated with the
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mass of the fluid in double cones around the nodes of vibration in vacuum. The height of
the double cone is the same as the width of the cantilever and its maximum radius is
equal to half of the distance between two neighbouring nodes, which is related to the
wavelength of the n" mode (Figure 1.4). They verified their model by experimentally
determining the resonant frequencies of two dimensionally different rectangular
cantilevers in air and ;:vater and found satisfactory results up to the 7" mode of vibration.
However the discrepéﬁcy- between theoretical and experimental results increases at the
higher modes. Since the mass of moving fluid was not determined through solving of the
Navier-Stokes equati@né in this model, the effect of the viscosity of the fluid cannot be

taken into account.

\\
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Figure 1.4 A schematic drawing of a cantilever, with a rectangular cross section, while

oscillating in a medium at the 5™ mode of vibration.
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Elmer et al*? determined theoretically the shift in the resonant frequencies of
rectangular cantilevers in the same way as Weigert et al*' using the concept of virtual
mass. However, Elmer et al evaluated the virtual mass in a more logically accepted
manner. The virtual mass was calculated by solving the hydrodynamic equations for the
flow around the cantilever. Many assumptiéﬁs were made to simplify the problem;
mostly important are the assumptions of the fluid being mvisid and the length of the
cantilever being infinite (2D flow around the cantilever). As a result of these
assumptions, the drag force on the cantilever will only be due to the pressure difference
between the upper and lower surface of'the' cantilever. This allowed for the determination
of the pressure field around the cantilbev:er. through solving a simplified form of the
Navier-Stokes equations, in which thé viécous terms are neglected, namely the Euler
equations. In order to find the accuraéy of the model, they performed a series of
experiments with different cantilevers irﬁfnersed in different fluids. It was concluded that
there was a systematic error in their propesed model. Moreover. the accuracy of their
model was limited to the higher modes of vibration. The authors thought that the reason
comes from the approximation of 2D flow induced a large error in the results for the first
few modes however Maali et al** proved thét in the higher modes of vibrations the third
component of the flow is even more important than in the lower modes. Instead, the main
reason seems to be the importance of the viécous dissipative effect on the lJower modes of
vibration which is neglected in this invisid model. Nonetheless their model was still more
accurate than Weigert et al’s model®', in the prediction of the resonant frequencies, as

was proven mathematically and experimentally.
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The effect of viscosity on the cantilever response was considered in the modeling of
Kirstein et al’’. Since the motion of the surrounding fluid is not instantaneous and has a
phase shift comparing to the movement of the cantilever. they divided the applied drag
force on the cantilever into two parts: one part is in phase with the motion of the
cantilever and the second part is out of phase. The first }.:;éirt, which can also be considered
in phase with the cantilever acceleration. is the inertial force; while the second part which
has the same phase as the velocity of the cantiie\:/er_ is the damping force. In order to
evaluate these forces, they defined two parameters(: the added mass coefficient, C,,, and
the fluid damping coefficient, C,. These cdgfﬁcients relate those forces to the
acceleration and the velocity of the cantilever, vr‘es:pehctively, and also link them to the
volume of the fluid that moves with the cantil-ever». The coefficients were determined
through solving the Navier-Stokes equations for the general case of a cylindric cross
section cantilever with diameter D which is cobnfmed concentrically by a cylindrical
vessel of diameter D) that is filled with the fluid, as shown in Figure 1.5. It was found
that these coefficients are dependent upon the Reynolds number. Then the problem was
simplified for two practical cases of high Reynolds number and én infinite viscous fluid
which is the case for the vibration of the cantilevers in fluid cells. It should be mentioned
that the analysis of cylindric cross section is important because it is the typical shape of
cantilevers used for scanning near-field optical micfoscopes. However for the case of

AFM cantilevers, the cross section is usually rectangular. For this case. Kirstein et al*

highlighted two approaches for determining the coefficients. The first can be made
through carrying out the analysis for a cantilever with an elliptical cross section in an

elliptical coordinate system instead of the cylindrical one and the coefficients for the
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rectangular cantilever will be approximated by the ones for a very flat elliptic cantilever.
The other approach, which was verified roughly by the results of other researchers®>*2,

was based upon modifying and rescaling of the Reynolds number as well as the

parameters of C,, and C, according to the new cantilever geometry.

Viscous Fluid

A
Cylindrical
Cantilever

Figure 1.5 A schematic drawing of a cylindrical tube of viscous fluid surrounding

concentrically a vibrating cylindrical cantilever

After evaluating the inertial and damping forces, they were implemente,d them in the
governing equation for the cantilever vibration from which two equations for the shifted
resonant frequencies and the quality factors of the cantilever in the fluid were derived. In
these equations the most important parameter is the Reynolds number which depends on
the frequency of the oscillation itself. Therefore these equations are implicit in terms of
the resonant frequency and hence an iterative approach should be implemented to solve
for the resonant frequency. The comparison of the theoretical and experimental results for

this model indicated an accurate estimation of both resonant frequency and quality factor
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for lower modes of vibration within an error of 1% and a systematic error for the higher
modes which increases with mode number. The trend of this error with respect to the
mode number is in contrast with the one generated by the models of Weigert et al and
Elmer et al. This can be considered as an adyantage of Kirstein et al’s model because _
eventually in practice the lower modes of vibration are more important. In addition, this
model can also be used to predict the quality factors. which describe the broadening of
the resonant peaks.

Interestingly at the same time as Kirstein et al* presented their work. one of the
fundamental contributions in this field was made by Sader’ who derived the general -
theoretical model for the frequency response of cantilever beams immersed in viscous -
fluids. In his model, the cantilever can have an arbitrary cross section, which should be
uniform along its entire length. Also, it can be excited by any chosen driving force and
the surrounding fluid can have any value for the density and the viscosity. This theory
was developed mainly based upon the assumptions that the ratio of length to nominal
width of the cantilever 1s very large and in addition the amplitude of vibration is much
smaller than any of the cantilever’s characteristic lengths. As a consequence of these
assumptions, the resulting flow can be approximated by a 2D flow around the cantilever.
Moreover. the nonlinear terms in the Navier-Stokes equations can be neglected, so that
the hydrodynamic drag force can be considered to be a linear function of the cantilever

displacement. Based upon the last conclusion, Sader’ used the following parametric

equation to represent the applied drag force at point x on the length of the cantilever:

= %pwszw)’( Equation (1.3)

E) vdro{xlm ) xe )

21



where p is the density of the fluid, @ and Y are the frequency and amplitude of

cantilever oscillation respectively, I, is the hydrodynamic function and b is the width

of the cantilever. The hydrodynamic function is a dimensionless function that represents
the effect of the cross section shape and can be obtained eithef analytically or numerically
from solving the Navier-Stokes equations for the flow. Because the cross section of
cantilevers in most practical situations is either circular or rectangular, Sader’ presented
the hydrodynamic functions for these two caseé. He deﬂned the hydrodynamic function
analytically for the case of the circular cross section using pre\fiqusjy obtained theoretical
results for thé drag force on a transversally oscillating cylinder’®. Then he proposed a

numerically obtained correction function (w), which should be multiplied to the
hydrodynamic function of the circular cross section to rescale the values properly, for the
rectangular cross section as shown in the following equation:
I . (a)) = Q(c)) <D, (a)) Equation (1.4)
After that, Sader implemented the equation for the hydrodynamic drag force in the
governing equation of the cantilever deflection. By applying the appropriate boundary
conditions and also with the help of the theory of Green’s function, he found the general
solution for the cantilever deflection at each point of its length and at each frequency of
excitation. Then, he simplified his model for the special case of thermal driving force
because of the frequent use of this type of excitation in AFM applications. For this case,
another formula was also derived for the inclination of the cantilever beam because, in
most AFMs. the optical svstem measures the inclination of the cantilever rather than its

deflection.
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Sader’ also investigated the validity of approximating the thermal frequency response
with the simple harmonic oscillation (SHO) model in the neighbourhéod of a resonant
peak, which 1s a technique that was used in many experiménta] cases. He showed that this
approximation is reasonable only in the case of small dissipative effects in the fluid. Then
he derived two formulas, based on his theoretical model, for expressing the resonant
frequen.cy and quality factor of the frequency response for the case of small dissipative
effects in the fluid.

His theoretical model was validated experimentally by Chon et al*? through a series of
experiments with several rectangular cantilevers that had different aspect ratios and were
immersed in different fluids. They showed qualitatively that the effect of viscosity can
not be neglected in the analysis of AFM cantilevers. This was done by measuring the
frequency responses of a cantilever in acetone and 1-butanol. These fluids have almost
the same density but their viscosities differ by an order of magnitude. As a result of this
difference in the \fiscqsity, both the resonant frequencies and the breadths of their peaks
were different. This result is in contrast with the one reported by Chu et al** for the
vibration of macro scale cantilever beams in viscous fluids. Such a distinction can be
explained by focusing on the difference between the relative importance of fluid damping
in the macro and micro scales. Where during macro scale analysis, the fluid damping is
negligible compared to the internal losses of the cantilever, it is significant in the case of
the micro scale.

Chon et al** also checked the sensitivity of the Sader’s model to the uniformity of the

cantilever cross section and the material properties. For this purpose, they chose two sets

of cantilevers, one that had very precise geometries and uniform material properties and



the other did not. These two sets were called calibrated and practical cantilevers
respectively. Comparison of their experimental results with the Sader’s theoretical model
indicated that the sensitivity of the model to the uniformity of geometrical and material
properties 1s small and therefore the model can be used for practical cantilevers as long as
the aspect ratio of the cantilever is large.

Although Sader’s theory was significantly improved over previous models of
oscillatory behavior of AFM cantilever in fluid, his mode] is restricted to the assumption
of 2D flow of an incompressible fluid around the cantilever. To satisfy this assumption,
the distance between two adjacent nodes of vibration should greatly exceed the nominal
width of the cantilever. Therefore, for a cantilever with a finite length, his model is
limited practically for prediction of the fundamental resonant frequency and its first few
harmonics. In the higher modes of vibration the axial flow, which is the 3™ component of
the flow, is not negligible compared to the other components of the flow, and as a result,
the model introduces a considerable error in prediction of the experimental frequency
résponse. This was proved experimentally by Maali et al*® who investigated the
oscillatory behavior of an AFM cantilever immersed in air and water up to the 8" mode
of vibration. Beside the experimental results, they also showed the effect of the axial flow
by solving the 3D Navier-Stokes equations numerically for the oscillation of the
cantilever in a viscous fluid. In this case, the numerically predicted viscous damping
coefficient and the added mass were closer in value to the experimentally determined
results.

It should be emphasized that all the above mentioned models are for flexural vibration

of the cantilever, while the cantilever can exhibit longitudinal and torsional vibrations
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also. For the cése of longitudinal vibration. almost none of the commercial AFMs are
capable of measuring the related deformations. Therefore. there has not been any need to
model the behaviour of the cantilever for this type of vibration. For the case of torsional
vibration, regular AFMs can determine the amount of deflection angle at each point of
the cantilever; so Green et al*® extended Sader’s approach for this type of vibration.
Similarly, they so]vgd the elastomechanical governing equation for the deflection angle
of the cantilever at the same time with the Navier-Stokes equations for the fluid. They
also specified the torsional hydrodynamic function for both circular and rectangular
cantilevers that can be used to evaluate the hydrodynamic torque on the cantilever. They
found that the modal frequencies for torsional vibration are much higher than for flexural
vibration. Their model could not predict the cantilever behaviour at higher modes of
vibration very well due again to the assumption of 2D flow around the cantilever.

Regarding this inaccuracy, Eysden et al'’ improved their models by finding
analytically more realistic hydrodynamic functions that take into account the 3D flow
around the cantilever. These hydrodynamic functions depend not only upon the Revnolds
number of the system but also ‘upon the vibration modes. However. the final formulas
obtained for these functions are very complicated and numerical values are presented to
facilitate their usage.

It should be mentioned that despite of the discrepancy of Sader’s model with
experimental results at higher modes of vibration, this model is well accepted and widely
used among the researchers in this field for many reasons. First it provides the whole
frequency response of the cantilever and does not need a priori information about the

experimental results. Second, in most of the AFM applications and related investigations,
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only the fundamental resonant frequency or at most its first few harmonics are needed.
Third, the simplicity of his model and its accuracy are well balanced, and finally, the
measurement system of regular AFMs provides more reliable data for flexural vibration
than for torsional vibration. Here we focus on Sader’s model and determine accurately its
applicability limits.

More recently, in another attempt to model the oscillatory behaviour of the cantilever
in viscous fluids, Xu and Raman?? derived simple formulas baéed on transfer functions to
describe the response of the AFM cantilevers to thermal, magnetic and ideal acoustic
excitations as they were defined in section 1.2 (Acoustic excitation is ideal when the base
of the cantilever is moved in a controlled manner). The hydrodynamic function used for
their analysis is that of Sader’. Comparing these theoretical responses in the neighbouring
of fundamental resonant frequency indicated that although their peak frequencies are
close to each other, the peak frequency of the ideal acoustic excitation is slightly higher
than that of the thermal excitation and also that the peak frequency of the magnetic
excitation is slightly smaller than that of the thermal excitation. Moreover, they studied
experimentally the responses of the cantilever to these excitation techniques in liciuid
media using an Agilent AFM and fluid cell. The system of the AFM was modified in a
way that the switching between three excitation techniques could be done without
changing the cantilever position and the laser alignment. Therefore their frequency
responses could be compﬁred under identical conditions. The experimental results for
thermal and magnetic excitations showed that Xu et al’s theoretical models can
excellently predict the oscillatory behaviour of the cantilever in the region of the first

mode of vibration. This includes the predictions of their peak frequencies and also the

26



non-zero amplitude of vibration for the magnetic excitation at very low frequencies. In

the case of the acoustic excitation. they observed many spurious peaks in the response of
the cantilever, which as mentioned before are not related to the true dynamics of the

cantilever, and therefore they could not verify their model for this case very well. The

only thing that followed their model was the zeroing trend of oscillation amplitude at
very low frequencies. Finally regarding their model, it should be mentioned that the

achieved accuracy was not very surprising because the hydrodynamic function, which

was used in their analysis, only evaluates the drag force at the first few modes of
vibration accurately.

Beside the above mentioned investigations regarding the frequency responses and
vibrational characteristics, some studies have been carried on the other aspects of the
cantilever oscillatory behavior in viscous fluids. For example, Green et al*® examined the
frequency response of a cantilever vibrating in the vicinity. of a solid surface. The result
of their study is practically important while doing experiments with liquids. This is
because in practice for liquids we usually use the fluid cell which holds the cantilever just
below its glassy surface. It was found that for a rectangular cantilever, the effect of
approaching the cantilever to the surface is a broadening and shifting of the resonant peak

to a lower frequency. However for most gases and fluids with typical properties that

make the Reynolds number (defined as Re = pb’w,, /4. where b is the width of the

cantilever, p is the density of the fluid. g is the viscosity of the fluid and w,, is the

resonant frequency of the cantilever in vacuum) greater than one, if the distance between

the cantilever beam and the solid surface is greater than the cantilever width then its
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frequency response is unaffected and the models for the unbounded cantilevers can be
applied heré.

In another study, Jai et al.*” showed that for cantilevers having low quality factors, the
displacgment of the cantilever base is comparable to the cantilever oscillation amplitude
in the acoustié.éxcitation technique. Consequently, for this type of excitation, the free end
of the cantilever has a movement equal to the summation of the base displacement and

the cantilever oscillation amplitude.

As ah_ overview on the development of the theoretical models of cantilever oscillatory
behavior in ;/iscous fluids, it can be noticed that the very early studies of this subject
matter.wefe focused on the determination of the cantilever vibrational characteristics
such as resonant frequency. However, after achieving these goals over time, the direction
of these Ast’_udies were turned to the estimation of the whole range of frequency response of

the cantilever for different methods of excitation.
1.5) Measurements of rheological properties using AFM cantilevers

The fact that immersing a micro cantilever in a fluid changes its oscillatory behaviour
led many reéearchers to evaluate the vibrational characteristics of cantilever beams based
on the knowledge of both their material and geometrical properties as well as the
surrounding fluid properties. as summarized in the previous sections. From another point
of view., determining the fluid properties by observing the changes in vibrational

behaviour is another application for the AFM which was firstly introduced by Oden et
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al®>. The determination of the fluid properties by this method is useful in many fields
such as microfluidic systems bécause only a small amount of fluid. in the order of
microliters, is required.

The microcantileyer based rheological measurement technique was originally
developed in order to detef?ﬁine the viscosity of liquids only. The initial efforts in this
area were based on \?ery simple and quite inaccurate models as the development was
taking place in parallel with the development of models of the vibrational behaviour of
the cantilever. For example Oden et al’> and Ahmed et al™® used the simple one
dimensional sphere r'n_odel; which was developed by Chen et al*?, during their studies of
the viscosity of water / élycerol solutions and other liquids. During their studies they
actually did not extréct the viscosity of such liQuids directly; instead they compared both
experimental and theoretical resonant frequencies of a thermally excited AFM cantilever
for the tested liquids. In this way, they found the sensitivity of the technique for different
viscosities and Oden et al’® showed that one cantilever can be used to measure a broad
range of viscosity from 10'2 up to 10° mPa.s. Furthermore. Ahmed et al™ proved that
such a method can be used for online measurement of fluids’ viscosities during a
chemical reaction or at "'ihe physical state of a biological system. This was done by
monitoring the change of the cantilever resonant frequency over time for the hydrolysis
of herring sperm DNA. Later on, Bergaud et al’' used the more precise hydrodynamic
function model of Sader’ for the viscosity measurements. Five different composite
cantilever beams, that had silicon cores and a thin gold coating, were excited acoustically
in water and ethanol using an in-house made AFM. They developed a MATLAB code to

extract the viscosity of the tested liquids from the experimentally obtained resonant
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frequency. Because Sader’s model is more accurate for the lower modes of vibration,
they used only the first and second resonant frequencies in their computations. The
calculaf[ed viscosities were compared with the real viscosities of the liquids and the
maximum error was around 25 percent. They also mentioned that any inaccuracy in the
determination of the resonant frequency or the properties of the cantilever will be
magnified considerably in the final result. Therefore the use of well characterised
cantilevers and calibrating the whole AFM system before doing the experiment were
highly recommended. Finally, it was not;d that the applicability of this technique is in the
limit of low dissipative effect otherwiée there will be no resonant peak in the frequency
response as was shown experimentally fof silicone oil.

The next step in development of ihis -technique was determining both viscosity and
density of the fluid simultaneously which was achieved for the first time by Boskovic et
al®. Their method was applicable for‘b'_oth gases and liquids having a wider range of
viscosities and densities. Boskovic et al® managed to determine these properties through
the following procedure. First, they evaluated the resonant frequency a},‘, and the quality

factor O of the resonance through fitting the formula for the amplitude frequency

response of simple harmonic oscillation (_SHO) to the neighbourhood of the resonant
peak. Then the viscosity and density were _determined by solving simultaneously the two
equations for w, and Q which were derived by Sader’ from his theoretical model. The
technique was verified by performing a series of experiments using a single micro
cantilever which was thermally excited and immersed in different gases and liquids with
known properties. Again because of the considerations regarding the accuracy of Sader’s

model, only the frequency responses around the fundamental resonant frequency were
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used in the calculations. They achieved good agreement, with a maximum error less than
14%. It was shown that even fluids with similar properties could be recognized by this
method however since the validity of the model used in this technique is in the limit of
small damping and dissipative effect (Q>1), highly viscous fluids can not be studied.
Their method was also used by Hennemeyer et al’ to determine the properties of sugar
solutions and then the results were compared with the real values for the verification of
the technique. Hennemeyer et al’ also found that a very slow steady flow around the
cantilever does not change its frequency response. This indicated that the micro
cantilevers can be used as an online rheol‘ogicai measuring tool during production
processes t0o.

In the previous method, the determination vof .Viscosity and density was based on two
vibrational characteristics, the resonant frequenéy and the quality factor which could be
evaluated if the resonant peak appears in ihe frequency response. Therefore, the
applicability of the method is limited for low viscosity fluids. Recently, Belmiloud et al®*
proposed a different approach which is not restricted to the resonance phenomena. In
thetr method. the phase frequency response was- measured as well as the amplitude
frequency response. Having these two measured yalues, Belmiloud et al evaluated the
inertial (added mass) and the dissipative (damping coefficient) parts of the applied drag
force at each frequency. These terms were détermined analytically based on the
knéwledge of the fluid and the cantilever properties by other researchers previously. By
equalling the experimentally and theoretically obtained values of added mass and

damping coefficient and then solving them simultaneously, they could predict the

viscosity and density of the fluid at each frequency. In this method, there is no restriction

31



for the viscosity of the fluid because, even without the appearance of resonance, the
frequency responses of the cantilever are different in distinct fluids. Their method was
experimentally (less than %1) verified by extracting the viscosity and density of silicone
oils (viscosities ranging from Id to 30000 cP) using a magnetically excited cantilever. In
their experiments, no resoﬁant peak was observed for fluids with the viscésity greater
than 100 cP bécause of the large dissipative effects. The calculated values for viscosities
were in good agreement with the known values and also showed the frequency
independent behaviour of Newtonian fluids. However fqr densities, the inaccuracy of the
values Wés explained by the inability of the theoretical model to esti'matev small inertial
effects for high viscosity fluids (low Reynolds number). Later on,-‘Bjelr~niloud et al”
extended their method for viscoelastic fluids which exhibit frequency .dep.endency in their
properties. An educated guess of G =iwn was assumed for the sheaf modulus of the
fluid in order to replace the viscosity in the hydrodynamic function. Knowing that
G =G"+iG", they derived two equations which relate the fluid’s storage and loss
modulus to the added mass and the damping coefficient at each frequency. They followed
their theory with some qualitative experiments in order to show the frequency
dependency of fluid properties in the frequency response of the canﬁlever. It was
observed that the cantilever had a resonant frequency, even in a compact gel, because of
its low viscosity at high frequencies. Although the estimation of the drag force based on
the assumption of G =iw7n is not valid in terms of a proper constitutive equation, their
approach and results were encouraging to expand this technique for rheological

measurements with complex fluids.
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It should be noted that all the above methods require knowledge about the dimensions,
material properties and vacuum resonant frequency of the cantilever. The accuracy of
these data directly determines the accuracyvof the viscosity measurements. The suppliers
of AFM micro cantilevers usually provide only nominal dimensions and a range for the
resonant frequency and spring constant of the cantilevers. Consequently, many
investigations have been conducted on the calibration of the cantilevers™’**
Unfortunately, these methods are too comp]icated and very time consuming. Moreover,
the chance of breaking the cantilever is high during these calibration processes. As a ‘
result of these difficulties, some attempts were made to assess the required informatioﬁ»_

from the oscillation of the cantilever in a reference fluid with known properties. In this‘
regard, Boskovic et al® rearranged the Sader’s formulas for @, and Q to obtain the -
vacuum resonant frequency @, and the mass per unit length x of the cantilever. Air

was chosen as the reference fluid and @, and Q were determined experimentally and
then inserted into the equations in order to get ®,, and ., however the width of the

cantilever was still needed for the rest of calculations.

In another attempt, Papi ct al™® approximated the vacuum resonant frequency with the
resonant frequency of the cantilever in air, as it was shown that the difference between
these two is less than few percent™. Also they used a simple analytical approximation for
the hydrodynamic function which was proposed by Maali et al**. Combining these
approximations with the Sader’s forfnula for the resonant frequency, Papi et al derived an
equation for the viscosity of the fluid in terms of the resonant frequencies of the
cantilever in the fluid and air as well as two other parameters of ¢ and B which include

all the geometrical and material properties of the cantilever. Their experimental results

|98}
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showed that, for different cantilevers and fluids, the variation of & is considerable while
for B is not. They proposed to use a reference fluid to find & and a fixed value for g
based on the average éf their ekperimems. Later on, Papi et 3157, in another study, used
the same approéch for the old simple model of sphere and in this way they also could
relate the sphere’s equivalent parameters to the geometrical and material parameters of
the cantilever. Although their method could be easily extended for determination of both
viscosity and density, it seems that their technique is based on many approximations and
can not grantee good accuracy for all situations.

As a general comment, one common source of error in methods that are based on the
resonance phenomena is that the experimental resonant frequency is determined at the
point of maximum amplitude of vibration irregardless of the technique for excitation of
the cantilever. As it was mentioned in the previous section, Xu et al*? showed that, for
liquids. the frequency of maximum oscillation in thermal excitation is slightly greater
than the magnetic excitation and also less than the acoustic excitation. Therefore, the
more precise way of determining the rheological properties is through considering the
theoretical response of the cantilever based on the type of excitation. Moreover in this
way, the rheological study of the fluids will not be restricted to the low viscosity fluids
that let the appearance of resonant peak in the cantilever frequency response. In this
study, we focus mainly on the acoustic excitation»technique because of its vast use among
the AFM users. After recognizing the disturbing factors in the frequency response of the
cantilever in acoustic excitation and improving the design of the fluid cell in this respect,
we applied this technique for the measurements of high viscosity Newtonian fluids and

compared the results, wherever it was possible, with the results of thermal noise



technique. Then it was shown that this method can be extended for polymer solutions
which are non-Newtonian liquids and different approaches were suggested for deriving
theoretical models to predict the frequency response of the cantilever.

In the next chapter, the required theories for the analysis of the experimental results

are provided.
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Chapter 2

Theory

In this chapter, we present the mathematical models for oscillatory behavior of the
AFM cantilever immersed in a viscous fluid and excited by Brownian motion of
surrounding fluid (thermal noise), sinusoidal excitation of the cantilever base (frequency
sweep) and step excitation of the cantilever base. To this end, we construct the governing
equation of the cantilever deflection in section 2.1. After that, the applied hydrodynamic
drag force on the cantilever is derived and in section 2.3 we derive the model for these
excitation techniques. The following assumptions have been used through these analyses.
It should be mentioned that in most of practical cases, the following criterions are
satisfied by AFM cantilevers.

(1) The cantilever has a uniform cross section over its entire length;

(2) The cantilever is made from an isotropic linearly elastic material and its internal
friction is negligible;

(3) The ratio of length to width of the cantilever is very large;

(4) The amplitude of vibration of the cantilever is very small;

(5) The surrounding fluid is incompressible and Newtonian;

(6) All torsional effects in the cantilever are negligible.
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2.1) Transverse vibration of a cantilever

The cantilever used in the AFM is a beam with one end fixed and the other end free
that vibrates transversally. Vibrational analysis of such beam is a classical problem which

26,27 C .
. Because of its importance in our

can be found in many vibration textbooks
theoretical derivations, such analysis is presented next.
Figure 2.1 shows a free-body diagram of an element of length dx with internal,

external and inertial forces and moments on it. The balance conditions for forces and

moments in the y direction for this element are:

2
X F, =0: —a—de—p(,A dx a—2y+F(x,t) dx=0  Equation (2.1)
ox or
X M=0: -4uh+%1azo Equation (2.2)
X

where y is the cantilever deflection, £ is Young’s modulus of the cantilever, 7 is the
moment of inertial of the cantilever, p, is the density of the cantilever, L is the length of

the cantilever, 4 is the cross section area of the cantilever, F is the external applied force

per unit length, x is the spatial coordinate along the length of the cantilever. and 7 is time.

F (x,l)

A O O

- [

Figure 2.1 Free-body diagram of an element of length d¥.
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Substituting Equation (2.2) into Equation (2.1) and using the flexural theory
M = El(azy/axz), we obtain:

2 2
i~[E] QJ +pA 2L = F(x,1) Equation (2.3)

o’ o’
In the case of an isotropic elastic beam with a uniform cross section over its entire
length, the flexural rigidity £/ does not vary with x, therefore, Equation (2.3) can be »

simplified to:

4

A2
Elay+pA °J

x o

F(x,1) Equation (2.4)

In Equation (2.4), the external applied force F{,,y consists of two parts; one part is the

hydrodynamic force F,

yaro(zs) QUE to the relative motion of the surrounding fluid and the

other part is driving force F,,, , that causes the oscillation of the cantilever. Thus, we

can write:

4 2
E] Zx")‘/ + pLA % = thdra(.\',/) + Fdrivu(,\',l) Equation (25)

This is the governing equation for the deflection of the cantilever. For the AFM

cantilevers, the boundary conditions of this equation usually are:

y=0
At fixed end (x=0): . dy 0 Equation (2.6)
‘ ox
( 2
M=0 = 2 20
At free end (x=L): o Equation (2.7)
o a
r=0 = 22-9
ox
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Our goal is to derive the theoretical response of the AFM cantilever to thermal and
-acoustic excitations. For such an analysis, the modal functions of undamped free

vibration ( F{, ) = 0) of the cantilever are useful. This is mainly because of the particular

format of the hydrodynamic and driving forces which will be explained in the next
sections. For the case of free vibration, the governing equation of cantilever deflection is

simplified to:

4 2
oy, pd LY g Equation (2.8)

El
ot ot?

This is a partial differential equation which can be solved using the separable variable
method; that is, we assume:
y =cl(t) g(x) Equation (2.9)
Implementing the Equation (2.9) into Equation (2.8) will result in two ordinary
differential equations in the form of:
" - A'g=0 Equation (2.10)
E+w’c=0 Equation (2.11)
where 4 and @ have the following relation with the other parameters:

o= 28 Equation (2.12)

oA
We are interested in solving Equation (2.10) because it defines the modal shape of the
cantilever. The general solution for this differential equation is in the form of:

¢=AsinAx+ 4, cos Ax + Ay sinh Ax+ A, coshAx  Equation (2.13)

It is more convenient to write this equation in the following equivalent form:
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¢ = A!(cos Ax + cosh Ax)+ A (cos Ax — cosh 2x)
+ Aj (sin Ax + sinh Ax) + 4 (sin Ax — sinh Ax)

Equation (2.14)

Now the boundary conditions should be applied. From the first two conditions, we

conclude that A4/ = 4; =0 and the remaining two conditions will lead to the following
equéﬁon for A:

cosALcoshAL+1=0 ~Equation (2.15)

»This equation has infinite number of roots which can be calculated numerically. The

first six positive roots, which are related to the first six mode of vibration, are

~. summarized in Table 2.1. For the larger roots, the approximate values of the following

' e'_qliation may also be used:
1 .
AL~ (1 - —Z—)n Equation (2.16)

Each of these roots defines one mode shape for the cantilever. Figure 2.2 shows the

first three mode shapes for cantilever vibration.

1st mode
- == 2Nd mode
- = = . 3rd mode

Figure 2.2 The first three mode shapes for a beam with one end fixed and other end
free.
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These roots also determine the resonant frequencies at each mode of vibration. Using
Equation (2.12):

o, A |EI
fi=5o= —

=— Equation (2.17
27 27\ p.A a (217)

and, for example for the fundamental resonant frequency, we have:

o )
Y :L[1‘875) EI _3.515 | EI : Equation (2.18)
_ 2\ L. p.A 27 \ p AL o

It should be also mentioned that the functions ¢, have the orthogonality property, that is:

a,L (i=j)

! ~ 7)o PP SR Voo AN () _
6[¢,-¢,-dx—{0 (l.%j) & Of¢,¢_,dx—0j¢,- ¢v,.dx—{ s Equation (2.19)

0 (i =
where a,can be any constant however in the analysis of cantilever vibration, it is
common that the value of @; is determined based on normalizing the function ¢, in the

way that ¢, (L): 1. Also the parameter f,, defined in the Equation (2.20), is important.
!
B L= I¢,dx Equation (2.20)
0

In Appendix A (pages 164-165), a MATLAB code for determination of «, and f, is

presented and in Table 2.1, their values for the first six modes of vibration are

summarized.
Mode number, i 1 2 3 4 5 6
AL 1.8751 4.694 7.855 _ 10.996 14.137 17.279
o, 0.25000 | 0.25003 | 0.24990 | 0.24980 | 0.25008 | 0.24989
B, 0.39150 | -0.21701 | 0.12721 | -0.09086 | 0.07074 | -0.05785

Table 2.1 The values of some important parameters of cantilever vibration for the first six
modes of vibration
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The final issue.of this section is transferring the governing equation for the deflection
of the cantilever and its boundary conditions from the time domain to the frequency
domain. This is done by taking the Fourier transform of Equations (2.5), (2.6) and 2.7)
giving:

o

Eld }/("'|”)) 2)’}
75136/4(0 (

A A

Equation (2.21)

Xlw) = Fh_wlrn(.vgtu) + F:lrivu(x!w)
and

_arl o @y

= = = =0 Equation (2.22
x=0 6x_x= o’ o’ a ( )

x=/

0

x=1

where @ is the radial frequency and the symbol "’ denotes the transformed function.

2.2) Hydrodynamic drag force

No matter what type of e>.<c:i.tation technique is used, the vibration of an AFM
cantilever in any medium other than vacuum results in a drag force on the cantilever.
Therefore, in order to continue our analysis, we need to have a general mathematical
form for this hydrodynamic force. Here, we follow the approach of Sader’ whé scaled the
hydrodynamic drag force for a circﬁlar cross section beam to a rectangular one.

Based on the third assumption that was mentioned at the beginning of this chapter,
the hydrodynamic drag force on each point of the cantilever can be approximated by the

hydrodynamic force that would be applied on an infinitely long rigid beam that oscillates

transversely with the same amplitude, )7(x|a)), in the fluid. The reason is that, for such a

situation, the variation of the velocity field along the length of the beam is less than over
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the cross section plane. Therefore the 3D problem can be simplified to 2D. For a circular
cylinder beam oscillating transversely with amplitude much smaller than its diameter (see

Figure 2.3), the hydrodynamic drag force was first calculated by Stokes in 1851. Because

of its importance, his theory is presented first.

u=U,coswt

Figure 2.3 A circular cylinder oscillating transversely along a diameter

Let us assume that the velocity of such a beam is:

u=U,coswt=U " Equation (2.23)
and because of the particular geometry of the beam, we write the momentum equations

for the surrounding fluid in the cylindrical coordinate system:

o "o r o9 r pyor  p;

o, avr+l’g%_"_§__i_5g+ﬂ(vzv’ v, 28\/3)

a "o rag r  p,rof p,

Equation (2.24)
ov, +V_é‘v6 +Z€8v0 A i—@i+ﬁ[vzv9 2 Ov, vgj

In Equation (2.24), v, and v, are radial and tangential components of the fluid

velocity, p, and u, are the density and viscosity of the fluid and V? is defined as:



9 19 1 &
=— +

V= +— —
or* ror r? oo’

Equation (2.25)

For such a moving body, the boundary conditions of the fluid are zero velocity at

infinity and the beam velocity on the cylinder, that is:

Vr ) =
At infinity { IHW Equation (2.26)
Oly 5 = ’
v,| _p=Use™ cosf A
At the cylinder : Equation (2.27)

Vol _p =-U,e’ sin@
2

Because the amplitude of vibration is small, the nonlinear terms in the momentum

equations can be neglected. Therefore:

o, _ la—p+ﬂ(vzv, v, 2 avé,)
ot pyor p,

Equation (2.28)

L e, 200 )
ot p, 100 p,

In order to solve these differential equations, we can define the stream function in the

cylindrical coordinate system as:
Equation (2.29)

and by eliminating the pressure term from the momentum equations, we find the

following equation for the stream function:

[vz - ﬂﬁ]vzw =0 Equation (2.30)

K, Ot
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This equation has the solution of:
v=y, +y, Equation (2.31)

where /| and v, satisfy the following equations:

Vig, =0 Equation (2.32)
[W —%é@;}wz =0 Equation (2.33)
I/ . o

Solving the above equations will result in the following functions for v, and y,:

w, == ¢ sin@

Equation (2.34). -
. p.fa) it .
v, =BK,|r_|i e smné ‘ -
Hy o

where i =+v~1 and the coefficients of 4 and B are obtained by applying the boundary

~ I

conditions giving:

4=y |1 2KWiRe) Equation (2.35)
4 VviRe K,(ViRe)

. 2U,
ViRe K,(+/iRe)

B Equation (2.36)

In the above equations, the functions Ky and K, are modified Bessel functions of the

third kind and Re is the Reynolds number which for this geometry is defined as follows:

p 0D’
4/1/

Re =

Equation (2.37)

The applied hydrodynamic drag force on the beam per unit length can be calculated

from the following equation using the stress tensor:
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2z
= —? j(prr cosé - p,, sinF)do Equation (2.38)

0

F,

hydro

where p, and p,, are defined as:

J Equation (2.39)

The following expression for F, , is then obtained:

V4

4 (w)e™ Equation (2.40)

F hydro = p ! D ? UO la) rcir(:

where T, () is called the hydrodynamic function for the circular beam and defined as:

cre

4K, (JiRe)
I' |o)=1+
urc(a)) m&(m)

Equation (2.41)

It should be mentioned that because of the consistency with the definition of the

Fourter transform which is:
X = jx e dr Equation (2.42)

it is more convenient to consider a velocity having a time dependency of exp(— ia)l) for

the circular beam. In this case, the determined hydrodynamic function is the conjugate of

Equation (2.41), which is:

4iK,i—i iRe)

L (0)=1+ ViReK,|-i/iRe)

Equation (2.43)

Knowing that the displacement of the beam is the integral of its velocity, we can

write:
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: U )
y=[udt = on e dt = j e’ Equation (2.44)

And by comparing the above equation with Equation (2.40), the hydrodynamic drag force

can be written in the form of:

= % p, D* 0T, (0)y Equation (2.45)

2
hydro

Therefore if we stay within the region of validity of our assumptions, for the vibration
of an elastic circular beam, the hydrodynamic drag force on point x of the beam and at the

frequency @ will be:

A

/4 Ees .
Fratia) = Pr @* D (@)Y, Equation (2.46)

Such an approach can be used for any geometry but an analytical result is not always
guaranteed. For a rectangular cross section beam, Sader’ used the same formula as
Equation (2.46) for the applied hydrodynamic drag force on the beam but he substituted

the width of the cantilever, b, instead of the diameter of the cylinder, D, and also scaled
the hydrodynamic function of the circular cross section, T', (), to the rectangular one,

¢

T,.(), by using a correction factor as indicated in the following equations:

ﬁ/u.-‘-/,-n(,\-gw) = % Py w’ b’ | (0)) }7(_‘;0)) Equation (2.47)
D (a)) = Qo) T, (o) Equation (2.48)

For determination of this correction factor, Sader’ solved the Navier-Stokes equations
for the surroundihg fluid of the rectangular cross section beam numerically and then he
performed a nonlinear least-squares fit to the ratio of the numerically obtained

hydrodynamic function data of a rectangular beam to the analytically obtained
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hydrodynamic function of a circular beam. The resultant expression for Q(a)), which is

valid for the Reynolds range of [107,10%), is:

Q(a)) =, (0)+iQ, (w) Equation (2.49)
where
Q.. (0)=(0.913242-0.48274 7 + 0.46842 r* - 0.12886 7°
+0.044055 7% —0.0035117 7° +0.00069085 7°) ,
Equation (2.50)
x(1-0.56964 7 +0.48690 77 -0.13444 7°
+0.0451557" - 0.0035862 7° + 0.00069085 7°)"
and

Q, (0)=(-0.024134-0.029256 7 +0.016294 1
-0.00010961 7* + 0.000064577 r* -0.000044510 %)
x(1-0.597027+0.5518272-0.183577°
+0.079156 7% -0.014369 7° + 0.00283617°)™'

Equation (2.51)

and in the above equations 7 and Re are defined as:

= log,,(Re) Equation (2.52)

p, b’

Re = Equation (2.53)

4pu,
2.3) Different types and kinematics of excitation
2.3.1) Thermal noise
The driving force for the thermally excited cantilever is the result of collisions of

surrounding fluid molecules to the cantilever or the Brownian motion of the fluid.

Because of the random nature of Brownian motion, it is obvious that the magnitude of

48



this force 1s independent of the position on the length of the cantilever. However Paul et

al’® showed that this force is frequency dependant and its spectral density is not white.

They determined its magnitude based on the ﬂuctuation—dissipationbtheorem, that is:
F,(0)=4K, 7(4 p,b’ ) o T, . (o) Equation (2.54)

where K, is the Boltzmann’s constant, T is the absolute temperature, andl, ()

indicates the imaginary part of the hydrodynamic functionT,,_, ().

Following the approach made by Xu et al*? for the theoretical response of a thermally
excited cantilever, we could write the governing equation of the cantilever deflection as

follows:
Equation (2.55)

For the boundary conditions of:

oY 87| .
= = = =0 Equation (2.56
=0 Oy ox? ox* d ( )
x=0 x=/[ x=/
the general solution for this equation is in the form of:
Z C( a))¢ Equation (2.57)

i=

where the mode shapes of ¢, (x) are defined in section 2.1. We are going to derive an
equation for the coefficients of C, (a)) By substituting Equations (2.47), (2.54) and (2.57)

in to Equation (2.55), we have:

(B C g~ p.A0’C,g)
Py Equation (2.58)

© (7 T
= Z(Z p‘/» (()2 b2 rrecl Ci ¢jj+4KB T(Zp_/’bz)a)r]m rect

i=}
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Keeping in mind the orthogonality properties of ¢, (x), the following equation can be
obtained by multiplying the above equation by 9, (r) and integrating over the length of

the cantilever:

o2 o0 Joli, ) p

C(») _ 4

U

s T

Equation (2.59)
El 2} xa,L — »° (pL,A +%p/. b*T,, (a,)jx a,l

where «,, f, and A, are defined in Equations (2.15), (2.19) and (2.20) and their values

for the first six modes of vibration are summarized in Table 2.1. Using Equation (2.59),

we can find the coefficients of C,(w) at a given absolute temperature of T and

consequently, the cantilever deflection can be determined using Equation (2.57).
However, in most of AFMs, the measured value is the inclination of the cantilever rather
than its deflection. Therefore in this case, the theoretical response would be the

deferential of the Equation (2.57) respect to x that is:

0%, )
(xlo) _ dg,(x) ,
- ,z:l C, (a))——dx Equation (2.60)

where both C,(a)) and ¢5,(x) are now known. In Appendix C (pages 169-170), a-

MATLAB code for producing the theoretical response of a thermally excited cantilever
based on the given material and geometrical properties of both the cantilever and the
sﬁrrounding fluid is presented and Figure 2.4 shows a typical theoretical response of such
a cantilever. For this figure, it is assumed that the cantilever’s material is silicon and its

length, width and the thickness are 400, 30 and 2 gom respectively. Also it is assumed

that the cantilever is immersed in water.
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Figure 2.4 Theoretical response of a silicon cantilever which is excited thermally. The
dimensions of the cantilever are 400x30x2 gm and the surrounding fluid is water.

The response is normalized by the magnitude of the first mode peak.

2.3.2) Frequency sweep
The frequency sweep is in fact an acoustic excitation technique in which the base of

the cantilever has the controlled motion of:

Vb ) = Aps COS @1 Equation (2.61)

where the angular frequency of @, will change in the range of [a), ,a)2] in n steps and at

each step will stay constant for 7 seconds. Also because the amplitude of vibration in
acoustic excitation is much larger than the thermal excitation, the effect of Brownian
driving force can be neglected compared to the hydrodynamic damping force here.
Keeping this information in mind and following Xu et al’s? approach, the governing

equation for the cantilever deflection and its boundary conditions become:

51



4

0 0?
y(x,/) " y y(x,[) _

El P p. 57wl Equation (2.62)
yx:O :yb(’)
ay 8%y 3’y Equation (2.63)
ax x=0 axz x=1 ax3 x=/

* In the above equations, the Y(xs) 18 the absolute motion of the cantilever, however in the

'AFM, as mentioned before, the measured value is the slope of the cantilever. If we define

the relative motion of the cantilever to the movement of its base as wy, ), that is:
W) = Yies) = Vaot) Equation (2.64)
then the slope of the cantilever for both of these quantities is the same, that is:

5‘%,,) _ a)’(,‘,x)

Equation (2.65
B e q (2.65)

- Therefore we can write the governing equation of the cantilever in terms of its relative

motion, in the frequency domain, as:

~

4

E]c—i—@—p AW,
dx S

4

A

=F

hydro

o) (o) + LAY, Equation (2.66)

and the boundary conditions become:

A

_ow
x=0— ax

oW

_ oW |

P =0 Equation (2.67)

x=0 x=1 x=4,

In Equation (2.66), it is clear that the effect of considering a non-inertial reference
frame which moves with the base of the cantilever is the appearance of an inertial term as

an external driving force in governing equation. The solution for this differential equation

is again in the form of:
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W(X|w) = Z C (o) g,(x) Equation (2.68)

i=1

and having the same approach as thermal noise, we obtain the following equation for the

coefficients of C,(w) in terms of general form of Y, (w):

T
o) @ (pL.A + P10 T (w))x AL |
' = Equation (2.69)

Yh(w) " El /1:‘ Xa,L _a)Z (pLA—*—% p_/' bz Iﬂrc('/ (a)))xalL

Knowing that the Fourier transform of y, () = A5 cos @y is:
s .
7, (0)= Z—AFS [6(0 - w,)+ (00 + @, )] Equation (2.70)
: 7

then the coefficient of C,(w, ) at the frequency of excitation will be:

ia)g (pLA+% pf b2 rrec{(a)O))xﬁiL
= Equation (2.71)
EI X' xa,L -} (p(,A-FZ- P, b’ T, loy )jxa,L

CI (a)O ) '
Apg

Now the inclination of the cantilever can be determined from:

GWW‘, i dé.(x .
# :; C"(w‘)) (};(( ) Equation (2.72)

In Appendix D (péges 171-172), a MATLAB code for producing the theoretical
response of a cantilever for the case of the frequency sweep based on the given material
and geometrical properties of both the cantilever and the surrounding fluid is presented
and Figure 2.5 shows a typical theoretical response of such a cantilever. The assumed

properties of the cantilever and the surrounding fluid are the same as in Figure 2.4.
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Figure 2.5 Theoretical response of a silicon cantilever which is excited with a
frequency sweep. The dimensions of the cantilever are 400x30x2 gm and the

surrounding fluid is water. The response is normalized by the magnitude of the first
mode peak.

2.3.3) Step excitation
Like the frequency sweep, the step excitation is an acoustic excitation technique too;

but here, the base of the cantilever has the motion of:

0 1<0
= . Equation (2.73
Y (1) {ASE 50 q (2.73)

For this type of boundary condition usually the Laplace transform technique is being
used but because we do not have any general formula for the hydrodynamic drag force of
a cantilever that moves arbitrarily, this method is not applicable. Therefore, the specific

form of the hydrodynamic drag force forced us to use the Fourier transform technique
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here as well. As no solution for the step excitation was available in the literature, the
following derivations represent one of the contributions of this thesis.

Two methods can be applied to solve the problem: (1) using a non-inertial reference
frame or relative movement of the cantilever end to its base, which is the same approach
that was used in modeling the frequency sweep and (2‘j.using an inertial reference frame
or absolute movement of the cantilever end.

In the first method, we can use the same derivétiqn as the one used for the frequency

sweep but we have to substitute the following equation, as the Fourier transform of

Heaviside step function, instead of f,,(a)) in Equ:a_tiOn.(2.69):

Sy i
Fy=-9_1 Equation (2.74)
dr. @

Consequently, we have the following equation for C : (a)) at all non-zero frequencies:

- i (AA +% p, b7 T, (w)jx BL
_ — Equation (2.75)
El /1? X aiL - a)?— (pLA +% ,0_/' b2 rr'ct'l (a))}x a,L

It should be mentioned that for the case of frequency sweep, the value of ﬁ,(w),

which is the Fourier transform of cosine functions, is zero at all frequencies except the

frequency of excitation and as a result, the coefficient of C, (w) is zero at all frequencies

except the excitation frequency. Therefore the curve obtained for the theoretical response
of a frequency sweep consists of the values of these non-zeros at each frequency of

excitation, @, . In other words, the presented curve in Figure 2.5 was constructed with the

non-zeros points of many Fourier transforms curves each of which is related to one
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frequency of excitation. However, the obtained curve for the case of the step excitation is
the Fourier transform of the cantilever response itself.

Movihg t(; the second method, we are considering both the inertial reference frame
and the absolute motion of the cantilever. As a result, we are solvi_ng the following

differential equation for the vibration of the cantilever in the frequency domain:

B
@'

!

x]w)' ~

4
- Bu)Yy

)= 0 : ‘Equation (2.76)

where

I 7o b’ 4 o _
B = © W+ 2L " Equation (2.77
(0) Al\la)mc’]( 4,0 4 rect (w) R q ( )

s

In the above equation, @, ; is the fundamental resonant frequency of the cantilever in

~ vacuum and has the following relation with the cantilever characteristics:

El h :
O, = A Equation (2.78)
’ p.A .
The boundary conditions in this situation are:
H Y = Ow) 1
x=0 47 «w
2) a . 0
ox o
) 5_2i i Equation (2.79)
o’
x=L
o’y
4) — =0
) o’ .

and the general solution for the Equation (2.76) is in the form of:
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Y, = Alcos B, \x +cosh B x)+ 4,lcos B, x — cosh By, yx
(x|a)) 1( {w) (o) ) 2( () {es) ) Equation (280)

.+ A3 (Sil'l B(w)x + Slnh B((U)X)'F A4 (Sin B(w)x —sinh B(m)x)

Applying the first and second boundary conditions gives:

Ow) _
R ) .
' 87 2w Equation (2.81)
4,=0 |

and from the third and fourth boundary conditions we will have:

sin(B(w)L)sinh(B(w)L)
1+ cos(B(w)L)cosh(B(m)L)

4, =4,

Equation (2.82) o
sin(By, L )eosh(By,L )+ cos(B,,L )sinh(B,,L) I
1+ cos(B(w)L)cosh(B(w)L)

Ay =4

Therefore by plugging the coefficient of 4;, 4 5, A3 and A, in Equation (2.80), we can find
the theoretical deflection of the cantilever in the frequency domain. Again because the
measured response in the AFM is the inclination of the cantilever, the associated

theoretical value can be obtained by differentiating Equation (2.80) respect to x that is:

~

oY

.r“w)

= A,By,(~sin B,x +sinh Bx)
A4 ’

+ 4,B,,(-sin B,)x ~sinh B,x) Equation (2.83)
+ 4, B(w)(cos By,)x +cosh B(w)x)
+ A4 B(m)(COS B(w)x —cosh B(w)X)

It should be mentioned that the second method does not provide any equations for the
individual modes of vibration but instead, it provides the exact solution and therefore
does not carry any truncation error which always accompanies the solutions that are in
the form of series. Figure 2.6 shows the theoretical response of a cantilever, which has

the same properties as the cantilevers in Figure 2.4 and 2.5 including the surrounding

57



Normalized cantilever inclination

J 10 20 3G 4C 5C 60

Frequency (kHz)

0.0005 , 0.g01

Normalized cantilever inclination

b) . time (s)

Figure 2.6 Theoretical responses of a silicon cantilever to step excitation. a) In the
frequency domain and b) in the time domain. The dimensions of the cantilever are
400%x30x2 pm and the surrounding fluid is water. The responses are normalized by

the magnitude of the first peak.
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fluid, to step excitation in both the frequency domain and the time domain. The results
for the time domain is obtained numerically using inverse fast Fourier transform. In
Appendix E (pages 173-177), a MATLAB code for producing the theoretical response of

a cantilever to step excitation is presented.
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Chapter 3

Experimental setup, sample preparation and signal

processing

3.1) Experimental setup

Figure 3.1 shows the schematic of the experimental setup used in this project. A
Digital Instruménts Nanoscope III Multimode AFM was used for our experiments.
Because the software of the instrument is designed only for the purposes of imaging and
force measurements, our control on the input and output of the system was very limited.
As a result, the system was modified from its normal configuration by adding a Signal
Access Module (SAM) in order to have a direct access to signals between AFM head and
controller. Among all of these signals only two of them are useful for our purpose; one is
for the excitation of the cantilever (input signal) and the other one is for the vibrational
response of the cantilever (output signal).

The input signal was produced by using a signal generator that gave the possibility of
producing a signal with a variety of functions and the output signal was recorded usiflg a
data acquisition hardware. Both of these devices were controlled by the LabVIEW .
software>". Also this software was used for most of analysis of the data.

Another modification in the system of the AFM was building a new stand for the

AFM head. The shape and the supporting mechanism for the AFM head of the new stand
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are similar to the original stand but its wall and top surface were made from transparent
material which allowed us to track the laser spot for the alignment of the beam on the
cantilever while the head was seated and the fluid was manipulated in the system. Also
the top surface was coated with Teflon to provide a hydrophobic surface and prevent
spreading of the fluid.

The final modification in the system of the AFM was for the tipholder which will be
discussed in detail in chapter 4. In the following, a brief explanation about the principal
of the AFM and also the specifications of the signal generator, data acquisition hardware

and cantilevers, which were used in this project, are presented.

= w=p| Controller

AFM Computer

Signal Generator

LabVIEW

AFM Stand

Figure 3.1 Schematic of experimental setup
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3.1.1) Atomic Force Microscope (AFM)

As it was mentioned before, the AFM was originally invented for imaging purposes
with resolution in the order of nanometers. The principal of the AFM simply consists of
performing two operations at the same time. The first one is the scanning of the surface
of the sample in the X and Y directions, _using a cantilever with a sharp tip at its free end,
and the second process is the measuring of the movement of the cantilever free end in the
Z direction. These operations result in the representation of the complete topography of
the sample surface. Concerning the scanning operation, there are generally two imagining
modes; the static mode (also called contact mode) and a variety of dynamic or non-
contact modes. In the dynamic modes, the cantilever oscillates at or close to its
fundamental resonant frequency. There are many techniques developed for cantilever
excitation, which were explained in details in chapter 1. Our AFM uses the acoustic
excitation technique which is appropriate for our particular application.

Moving to the measuring of the cantilever movement, techniques such as optical
interferometry, capacitive sensing, laser deflection and piezoresistive AFM cantilevers
are developed. Among these techniques laser deflection, as is used in our AFM, is the
most accurate. In this technique as shown in Figure 3.2, laser light from a solid state
diode is reflected off the back of the cantilever and collected by a position sensitive
detector (PSD) consisting of four closely spaced photodiodes whose output is collected
by a differential amplifier. As a consequence of the angular displacement of the
cantilever one photodiode gathers more light than the other photodiode, and this fesults in

the production of an output signal that is proportional to the deflection of the cantilever.
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Such a signal is produced from the difference between the photodiode signals when
normalized by their sum. The accuracy of such a method allows measurement of

deflections down to <1A and is limited by thermal noise.

Fixed Mirror Laser diode

Voltage

Adjustable
Mirror

Photodetector

Piezoelectric driver

Cantilever

Figure 3.2 Optical system of the AFM

3.1.2) Signal generator

The piezo drive signal is generaled using a signal generator from National
Instruments that can be installed as a PCI board in nearly any up to date computer (see
Figure 3.3). It has the ability to generate a signal with arbitrary function waveforms, but
for few specific function waveforms, such as for the sine, square, triangle, noise, ramp
and DC offset, it is already built-in inside the hardware. The signal generated using this
device can have a voltage up to 10 volts peak-to-peak with a maximum frequency of 20
MHz. Its characteristics involve a 14 bit resolution and up to 100 MS/s of sample rate.

Although it originally comes with its own software (NI FGEN soft front panel), it is
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better controlled using the LabVIEW software when it is being used with the other
electronic devices such as the data acquisition hardware. Finally, it is factory calibrated
and also has onboard calibrator references that account for environmental effects on DC
gaj_r_l, offset and timing error. In our project for frequency sweep and step excitations we
used the sine and square wave forms respectively. For the thermal noise no signal was
~ applied to the piezo and the cantilever vibration observed was due to the Brownian

motion of the surrounding fluid.

Figure 3.3 PCI-5402 - Signal Generator

3.1.3) Data Acquisition (DAQ)

The response signal from the photo detector was recorded using data acquisition
hardware from National Instruments (see Figure 3.4) and similar to our signal generator it
can be installed as a PCI board in nearly any up to date computer. This device has the
ability of digitizing four signals simultaneously with a maximum sample rate up to 3

mega samples per second for each channel. It is also characterized by a 14 bit resolution
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where a better input resolution can obtained through selecting one of its four different
input voltage ranges. Like the signal generator, it comes with its own software, but it is
better operated with LabVIEW software in our case. Finally, it should be mentioned that
both the signal generator and the data acquisition hardware were synchronized using a
RTSI cable in order to have a direct control on the triggering of the devices when we are

programming them in LabVIEW.

Figure 3.4 PCI-6132 - Multifunction DAQ (S series)

3.1.4) Cantilever material and dimensional properties

In general, most cantilevers that are available in the market are fabricated in two
different methods. The cantilevers produced by the first method, called practical
cantilevers, are made from low pressure chemical vapour deposition (LPCVD) of silicon
nitrate which is coated with a layer of gold to improve its reflectivity. The second type,

called calibrated cantilevers, is made from undoped and uncoated single crystal silicon
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through a micromachining process. Because of the complexity in the fabrication process
of theses cantilevers, they are more expensive than the practical cantilevers.

Calibrated cantilevers have very precise dimensions and geometry and uniform
material properties which are in accordance with the assumptions of the theory described
in chapter 2. Moreover, thémanufacturers of these cantilevers provide their dimensions
with very precise tolerance (except for the thickness). In contrast, for the practical
cantilevers, the manufécturers only provide the nominal values for the dimensions and as
a result the user has to either accept huge errors in his results or measure the precise
dimensions by himsélf using other techniques such as electron microscopy.

In this project, Whénéver the comparison between the experimental results and the
theory was intendea, célibrated cantilevers were used. For the qualitative experiments,
which do not need fhe information about the cantile\‘/er’s geometrical and material
properties, practical éahtilevers were used. For the calibrated cantilevers, the models used
were the CLFC-NOBO tipless cantilevers from Veeco with the dimensions are indicated
in Figure 3.5. Furthermore, these cantilevers, as mentioned earlier, are silicon with a
modulus of 1.7x10"" Pa and a density of 2300 kg/m’. For practical cantilevers, their

model and dimensions are mentioned in the text wherever they have been used.

Length Width Thickness
(rem) (14m) (f4m)
Long 397 29 18-22
Medium 197 29 1.8-22
Short 97 29 1.8-22
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%

Finally, the thickness of the calibrated cantilevers can be estimated from the resonant
frequency of the cantilever under vacuum; however we used the resonant frequency of
the cantilever in air as an approximation. It was reported that the error for such an

approximation is less than 20421313957,
3.2) Sample preparation

In this project, both of Newtonian and non-Newtonian fluids were used in order to
test the applicability of the proposed téchnique. The stress-strain rate behaviour of
Newtonian fluids can be described simply by a constant parameter of viscosity. For this

1° and some solutions of glycerine6]- water were chosen. The

type of fluid, ethano
advantage of choosingvglycerine-water solutions was providing a wide range of viscosity.
Figures 3.6 and 3.7 show the density and Qiscosity of glycerine-water solutions in terms
of their concentration at 26 °C. These graphs were generated from the more

6263 on density and

comprehensive information released by Dow Chemical Company
viscosity of the aqueous glycerine at different temperature and concentration (see

Appendix F, pages 178-179)
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Figure 3.6 Density of glycerin-water solution in terms of its concentration at
temperature of 26 °C '

Viscosity (mPa.s)
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Figure 3.7 Viscosity of glycerin-water solution in terms of its concentration at
temperature of 26 °C
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These solutions were prepared by simply mixing water and glycerine according to the
required weight fraction. Because of the possibility of change of concentration over time,
fresh solutions were prepared for each series of tests and were kept in closed containers.
Also in order to prevent any formation of bubbles around the cantilevey during  the
experiment, the solutions were degassed by heating the closed container up to 70 °C and
quickly cooling it right before the execution of the experiment. In Table 3.1, the
properties of ethanol and the selected concentrations of the glycerine-waterSOIutiohs are

summarized.

0% | 25% | 50% | 60% | 75% | 80% | 100%

Fluids | Ethanol | 5y, 1 Gw | 6w | 6w | 6w | 6w | 6w

Density

(kg/my 785 997 | 1058 | 1123 | 1151 | 1191 | 1205 | 1257
Viscosity | 0.88 1.82 493 | 8634 | 2692 | 4438 | 9312
(mPa.s)

Table 3.1 Properties of Newtonian fluids at 26 °C which were examined in this
project.

In contrast to Newtonian fluids, non-Newtonian fluids such as polymer solutions
exhibit complex behaviour as stress or strain is applied to them. They have both viscous
and elastic properties. For this group, solutions of polystyrene® (PS) in': diethyl
phthalatef’5 (DEP) were chosen because of the wide range of viscosity and elasticity that
they can provide. The procedure for preparation of these solutions is as follows. 'First, for
different concentrations of PS sc;lutions, the required amount of PS and DEP were placed
in a labelled container. Then the container along with its contents was weighed and its
weight was recorded. In order to accelerate the dissolution of the PS in the DEP,

dichloromethane®® was added as a co-solvent. Next the container was sealed and stirred at

room temperature for two days in order to have well-mixed and transparent solutions.
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After that the seals were removed and the mixtures were exposed to the air in order for
co-solvent to evaporate. The containers were weighed every day to check the amount of
co-solvent left in the mixtures. After a few weeks, no change in the weight of containers
was observed and_ their final weights became almost the same as their weights before
adding the co-solvent. At this point, it was concluded that the dichloromethane was
completely evaporéted and the solutions were ready for the experiments.

The ‘rheologic"al'. properties of the solutions were measured using a rotational
rheometer®” at diffgrent temperatures and after that by applying the time-temperature
superposition prinqiple; their master curves were generated at 25 °C. Figures 3.8, 3.9,
3.10 and 3.11 show :th;:se master curves for the selectéd concentrations of the PS/DEP
solutions and in ’.I‘ablie 3.2, their densities and zero shear viscosities are summarized. It
should be mentioned that pure DEP is a Newtonian fluid but because of consisfency with
the PS solutions, it. is categorized in this group. Also the non-Newtonian behaviour of the
5% PS/DEP solution was out of the measuring range of the instrument and as a result, we
only bring the value of its zero shear viscosity in Table 3.2. Finally the values of shifting
factors at and br, used to generate the master curve for each concentration, are tabulated

in Appendix G (pages 180-1 81)

Concentration 0% 5% 8.5% 12% 16% 25%
(wt %) PS/DEP | PS/DEP | PS/DEP | PS/DEP | PS/DEP | PS/DEP
Density
(kg/m’) 1120 1116.3 1113.7 1111.1 1108.2 1101.6

Zero shear
viscosity 13 138 524 1747 6311 99887
(mPa.s)

Table 3.2 Properties of non-Newtonian fluids at 25

project.
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Figure 3.8 Linear Viscoelastic Properties for 8.5% PS solution, 25 °C
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Figure 3.9 Linear Viscoelastic Properties for 12% PS solution, 25 °C
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Figure 3.11 Linear Viscoelastic Properties for 25% PS solution, 25 °C
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3.3) Signal processing

As it was mentioned before, the signal generator and the data acquisition hardware
were controlled by the LabVIEW software. Also, this software was usg_d for analysing the
recorded data. In the following paragraphs we explain more about the code and
parameters used for controlling both the hardware elements. Figure 3.12 illustrates the
algorithm used in the code. It should be mentioned that the LébVIEW is a graphical

programming language and it is used to generate a virtual instrument. The front panel of

 Generator | |- | Hardware

.

. Filtering

- Windowing

Signal DAQ - S—

Generator Hardware

Frequency SWéep

“
b= |
Vector -
Averaging Signal DAQ

Generator Hardware

Step Excitation v :
T R Filtering

(no signal)

RMS
Averaging

Thermal noise

Figure 3.12 The algorithm of the LabVIEW code written for controlling the signal
generator and the DAQ hardware and also for analyzing the recorded data
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the virtual instrument for this project is shown in Figure 3.13 and the code is presented in
Appendix H (pages 182-187).

In general, the three types of experiments that were performed in this project were the
frequency sweep, the step excitation and the thermal noise. The g‘eneral structure for the
algorithm of the written LabVIEW code was determined based upon performing these
three tests subsequently for each sample. However, as it will be explained in chapteri4,
we have to change the tip holder for the thermal noise test. Therefore for each segment:o‘f
the code, which is related to one test, an on/off key was incorporated in order to activate
or deactivate the segment whenever it is required. Moreover, in all the tests the sighal- '
generator and the data acquisition hardware were programmed in such a way that théyi
were triggered at the same time and worked together in parallel and also they V\}ere'
allowed to have different control parameters for each test.

For the frequency sweep test, the signal generator produces a sinusoidal signal whose
frequency can change over a defined range in several steps. Therefore for this test, the ..
applied signal to the piezo has three contrclling paraméters of start frequency, end
frequency and the number of steps, in addition to its amplitude. For all the fluids, a .
frequency range of 0 to 60 kHz was selected because in such a range at least the first
mode of vibration of all cantilevers could be observed. Concerning the number of steps,
600 steps were chosen in order to have the proper frequency resolution.

The signal applied to the piezo for the-step excitation test, should be in the form of a
Heaviside function, however for simplicity, the available predefined square waveform

was selected and its frequency was adjusted in such a way that only the rising part of the

signal, which is in the form of a Heaviside function, is applied to the piezo. Moreover,
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an initial phase was added to the driving signal in order to excite the piezo after the
overshooting effect of the filtering process on the response signal. Finally, due to the
passive nature of the thermal excitation experiments, no signal was applied to the piezo
while performing these tests.

Moving to the selected controlling parameters of the data acquisition hardware, the
most important point in digitizing or sampling of an analogue signal is the selection of
the sampling rate. It is vital because it determines the correct capturing of the signal
shape and all its frequencies. Based upon the sampling theorem, in order to reconstruct
the frequency content of the signal, the sampling rate should be more than twice the
highest frequency contained in the signal. However in practice, in order to recognize
frequencies and the amplitude of the signal, it is recommended to digitize signals at least
with a frequency 10 times of the highest frequency of the signal. The maximum sampling
rate for our data acquisition hardware is 3MHz but, the processing and hard drive
recording speed of the computer, were the actual limiting factors for the sampling rate.
Therefore, taking all factors into consideration, a sampling rate of 1 MHz was chosen for
all the tests, which was more than enough to observe and construct the signal in the
selected range of frequency for all the cantilevers in the liquids.

The other aspect of signal digitizing is the duration of the sampling or the number of
recorded samples. This is important in determining the frequency resolution in the result
of the fast Fourier transform (FFT) of the data. Hence, the duration of 0.1s is chosen, and

with the sampling rate of 1 MHz, the frequency resolution of 10 Hz or 0.01 kHz was

achieved. These parameters mentioned here were used for controlling the DAQ hardware
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and were identical for all the tests. In the fcllowing paragraphs we will illustrate the
process for analyzing the experimental data for each type of test.

First for the frequency sweep, a list of frequencies was defined for the signal
generator to excite the cantilever base at those frequencies. At the same time, the
cantilever response was recorded and then the high-pass filtering, windowing and FFT
processes were applied on the regorded data. Using the result of the FFT, the aﬁplitude
and phase of vibration at the frequency of excitation were determined. Such a process
was performed for all the listed excitation frequencies. Then from all of these results, two
graphs showing the vibration amplitudes and phases in terms of the excitation frequencies
were plotted. The high pass filtering process was performed in order to remove the DC
offset of the signal and for this purpose a Butterworth filter of order three was used. The
cut-off frequency of this filter was set to 500 HZ to also remove the noises which were
observed at lower frequencies in the response. A Hanning window was the type of
windowing process performed in order to minimize the spectral leakage of the FFT
process.

Second for the step excitation, both the application of the signal to the piezo and the
recording of the cantilever response were again done simultaneously. The process of
filtering was done on the recorded data and after that the vector averaging was performed
for one thousand. sets of data. The filtering process was the same as for the frequency
sweep experiment.

Finally for the thermal excitation we only used the data acquisition hardware to
record the response of the cantilever due to the Brownian motion of the surrounding fluid

and no signal was applied to the piezo. In this case, filtering, windowing and FFT were
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performed on the recorded data with the same parameters and function as used before for
the frequency sweep and step excitation. Then RMS averaging was performed on one
thousand sets of data that were obtained from the FFT process. It should be mentioned
that the effect of RMS and vector averaging on the experimental data will be explained in

detail in chapter 5.
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Chapter 4

Critical issues in the design of fluid cells and tip holders

Figure 4.1 shows the schematic of a commercial fluid cell which can be used for
tapping mode, force modulation, and contact mode experiments in liquids. The main
purpose of using the fluid cell is to insulate and separate the piezoelectric actuator from
conductive fluids. In this cell which is made of glass, the microcantilever chip (1) is
place.:vd}in a small groove close to the middle of the bottom of the fluid cell and is fixed to
the'.celi»by a clip and a spring (2). A silicone rubber o-ring is placed in the circular groove
(3) around the cantilever to provide an enclosed fluid environment between the fluid cell
and the scanner. Two channels (4) make the exchange of the enclosed liquid possible.
The piezoelectric material used to excite the cantilever is located above one of supporting
holes (5) and its wires pass through the fluid cell to the connecting chip (6). In this way,
the whole electronic system is completely insulated from the fluid.

With;this type of design, the entire fluid cell is vibrated in order to excite the
cantilever (except for the thermal excitation experiments). This is in contrast to the
regular fip holders used in air or vacuum, in which the piezoelectric actuator is located
directly under the cantilever base causing only the cantilever to oscillate (see Figure 4.2).
Although, these types of designs of fluid cells and tip holders are acceptable for many
AFM applications, they introduce perturbations in the cantilever response in some

application and processes, such as tuning of the cantilever, which deal with a range of
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frequency in the dynamic AFM mode. This is because of some problems in the design of
fluid cells and tip holders, which we discuss in detail in this chapter.

We begin our illustration with three problems that are related to the design of the fluid
cell. After that we shift to a drawback with the regular tip holder ‘in terms of the

supporting mechanism of the piezo element.

Section A-A

Figure 4.1 Schematic of a fluid cell from Veeco' (MTFML model). In this picture, (1)
is the cantilever, (2) is the clip and spring, (3) is the circular groove for o-ring, (4) are
the inlet and outlet channels for exchanging liquids, (5) is the moving support, (6) is
the connecting chip, and (7) i5 the fixed support.

@ )
Section A-A

by

®

Figure 4.2 Schematic of a regular tip holder from Veeco' (MMMC model). In this
picture, (1) is the cantilever, (2) is the clip and spring, (3) is the pin, (4) is the screw of
the clip, (5) is the piezo element, (6) is the connecting chip, (7) are the supports and
(8) is the handle.
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4.1) The holding mechanism of the cantilever chip in the fluid cell

The first problem with the design of this fluid cell is its holding clip because first of
| all, its spring is not strong enough to secure the cantilever base tightly, and secondly it
does not necessarily hold the cantilever such that i;s axis“is perpendicular to the clip rod.
Since the surface of the cantilever chip is slbped, any configuration other than
perpendicular results in only a single point of contact, reducing the overall stability of the
connection. Thirdly, the other end of the clip, which is above the fluid cell, can easily be
moved or rotated during handling and mounting 6f thei fluid cell on the AFM head thus
changing the connection between the clip and thé éa;ltilever base. Moreover this can
result in displacement of the cantilever chip in its grooAve and consequent misalignment of
the laser beam from the AFM head. This is espécially important because when the
cantilever base moves to another position in its groéV.e it creates a new vibrational system
with a different frequency response. Therefore, the clip and spring system does not allow
for reproducible experiments as shown in Figure 4.3. For these experiments the cantilever
model used was the NSCI12/tipless/Cr-Au from MikroMasch which is a practical
cantilever and has nominal dimensions of 350 pm m length, 35 pm in width and a
thickness of 2 ym. The fundamental resonant frequency of this cantilever in water is
about 20 kHz. The position of this peak is unaffected by the cantilever chip location but
its amplitude is significantly affected. We note that when attempting to study the
rheological properties of fluids, both the shape and the location of the primary peak are
important. Also, for the other system resonances in Figure 4.3, neither the position nor

the amplitude of the peaks is constant and instead they strongly depend on the position
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Experiment 1

- Experiment 2
----- Experiment 3

Cantilever response amp. (a.u.)
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Frequency (kHz)

Figure 4.3 Frequency responses with different cantilever base and clip positions (in
water) : :

of the clip and cantilever.

This problem was solved by removing the clip and gluing the cantilever base to the
fluid cell using silicone glue®®. As a result of this modification, some redundant peaks
associated with the clip and spring were eliminated from the frequency response of the
system and the reproducibility of the experiments was improved. It should be mentioned
that the problem of irreproducibility is not completely solved because the positioning of
the fluid cell in the AFM head and also the force applied by the grip over the cell can not
be exactly repeated manually. However, these are having relatively minor effects and by
gluing the cantilever base to the fluid cell, we can improve the repeatability of the
frequency response considerably. Figure 4.4 demonstrates the improvement in

repeatability in the frequency response of a cantilever when glued to the fluid cell. For

82



these experiments another practical cantilever was used, namely the NSC12/tipless/Cr-Au
from MikroMasch, which had nominal dimensions of 250 pm in length, 35 um in width
and a thickness of 2 pm. Such a change of cantilevers was needed due to the fragile
nature of the cantilevers and the inability to repeat the same experiment again after the

fluid cell was modified.

—— Experiment 1
- Experiment 2
A ---- Experiment 3

Cantilever response amp. (a.u.)

0 20 40 60 80 100
Frequency (kHz)

Figure 4.4 Repeatability of the frequency response of a cantilever when glued to the
fluid cell (in water)

4.2) The fluid-borne excitation

The second problem arising from the design of the fluid cell is that it causes an
unsteady, free surface flow of the fluid trapped between the cell and scanner (See Figure
4.5a). As mentioned previously, the piezoelectric actuator excites the cantilever through

the movement of its base via vibration of the entire fluid cell. The large moving surface
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of the fluid cell also generates an unsteady flow in the fluid which affects the vibration of
the cantilever and is in fact another source of excitation for the cantilever. This means
that the cantilever is excited not only by the movement of its base (structure-borne
excitation), but also by the unsteady fluid motion (fluid-borne excitation) resulting in
additional resonance peaks in the frequency response (see Figure 4.6). The same problem
was encountered by Xu and Raman® who used a different type of commercial fluid cell

from Agilent.

Section A-A Section A-A

(@) (b)
Figure 4.5 Cross section of the fluid cell defined in Figure 2 (a) before modification

and (b) after modification. In this picture, (1) is the scanner, (2) is the o-ring, and (3) is
the reservoir.

This problem can be solved by making a small fluid reservoir from glass and gluing it
into the o-ring groove of the fluid cell as shown in Figure 4.5b. The reservoir can be
filled and emptied using the inlet and outlet channels of the fluid cell. If the reservoir is
filled completely with liquid, then the fluid inside the reservoir has almost the same
velocity as the fluid cell. In other words, the relative motion of the fluid due to excitation
of the fluid cell is very small and does not affect the vibration of the cantilever. Many of
the spurious peaks in the frequency response of the cantilever then shrink. Figure 4.6

shows the frequency responses of a cantilever in a %50 glycerin-water solution with and
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without the reservoir attached to the fluid cell. It should be emphasized that the fluid cell
must be corﬁpletely filled and free of bubbles and in order to accomplish this, the fluid
must be degassed before filling the reservoir. For these experiments the long cantilever
described in section 3.1.4 was used. The installation of the reservoir causes a shrinkage in

the redundant peaks at 7, 9 and 27 kHz frequencies as shown by arrows on Figure 4.6.

Reduced peaks

Cantilever response amp. (a.u.)

0 5 10 15 20 25 30 35 40
Frequency (kHz)

Figure 4.6 Frequency responses of the cantilever in 50% glycerin-water solution
before (black line) and after (gray line) installing the reservoir. The cantilever is
glued to the fluid cell.

4.3) The location of piezo element
The last and most important problem with this fluid cell design is that the measured
vibration response is the combination of the cantilever vibration and the fluid cell

vibration. The response of the fluid cell itself to the excitation is frequency dependent and

not the same as the movement of the piezoelectric actuator. This means that the driving
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motion experienced by the cantilever is not the ideal constant amplitude sine wave.
Therefore the presence of fluid cell and anything else between the piezoelement and the
cantilever base make it impossible to measure the real frequency response of the
cantilever.

In order to experimentally verify the above theory, we measured the responée of a
silicon microcantilever in three different solutions of gly'cerin and water using the
modified fluid cell. Also after filling the reservoir, the inlet and outlet channels were
blocked to prevent any evaporation. In this way we can be sure that fluid borne excitation
of the cantilever is negligible. For this experiment, we used the medium cantilever
described in section 3.1.4 and the properties of the surrounding liquids are summarized in
Table 31 Figure 4.7a shows the cantilever responses observed by the AFM optics. The
drive amplitude in all the experiments with liquids was the same and constant. Although
the shapes of these responses are different, their peaks are at the same frequencies. On the
other hand, Figure 4.7b shows the theoretical responses of such a cantilever in these
liquids based on the theory presented in chapter 2, section 2.3.2. For the theoretical
response, the cantilever base was forced with a displacement amplitude of one at all
frequencies, A4, =1.

Comparing Figures 4.7a and 4.7b, one can find no similarity between the theoretical
and experimental responses of the cantilever. However, when the experimental response
in each liquid is divided by its ideal acoustic theoretical response, the results are the same
for all liquids. These results, shown on Figure 4.8, are the response of the fluid cell at the
cantilever base to the excitation from the piezoelement. These responses are similar

because the vibrational characteristics of the fluid cell are mainly dependent upon the
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Figure 4.7 Cantilever response in three solutions of glycerin and water; a) measured
by AFM optics, b) determined theoretically

elasticity and mass of the fluid cell. And in our case the fluid mainly changes the mass of

the fluid cell. However, since the densities of the fluids studied here are very close and
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Figure 4.8 Fluid cell frequency responses when containing solutions of glycerin and
water

since the volume of the reservoir is small, the total mass variation is negligible and
therefore, the vibrational characteristics of the fluid cell are expected to be independent of
the fluid it contains.

Based on the results shown on Figures 4.7 and 4.8, the experimental response to a

speciﬁc excitation, J (a)o) , in the absence of fluid born excitation, can be written in the
form‘of:

W e (x]a)o ) =T (x|a)0 )x T (o, )x H{w,) Equation (4.1)
where T.(w,) is defined as an experimentally obtained function that transfers /(w,) to
the frequency response of the‘ fluid cell itself, T(f(xla) 0) is the transfer function for the

ideal damped response of the cantilever, Equation (2.71), and together their product

represents the experimental response of the cantilever W, (x|a)0 ) Note that the cantilever
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is excited by the function A (w,)=7,(w,)xI(w,) illustrating that ideal acoustic
excitation can only be achieved if the fluid cell is designed such that 7, (a)o) 1s constant.

To verify this, experiments were conducted using the long cantilever described in section
3.1.4 and the same fluid cell in 75% glycerin-water solution. The fluid cell transfer
functions are identical for both cantilevers as illustrated in Figure 4.9.-

Equation (4.1) can also be used to understand that the liquid damped dynamics of the

cantilever, 7. (x|a)0 ), act to amplify the dynamics of the fluid cell. When the cell is filled

with air or another gas the damped cantilever response contains only sharp resonance
peaks at higher frequencies and thus acts to filter out the dynamics of the cell itself.
The results presented here prove that with this type of fluid cell the frequency

response is dominated by the dynamics of the cell itself rather than the cantilever. This

0.7
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0.5 -
o4+ Iy e Long
0.3 { |
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0 5 10 15 20 25 30 35 40
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Figure 4.9 Fluid cell frequency responses obtained from excitation of two different
cantilevers in 75% glycerin-water solution.
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problem can only be solved by placing the peizoelectric actuator directly under the
cantilever base as in the regular tip holderé. Therefore, a regular commercial cantilever
holder was modified to improve the acoustic excitation of cantilevers in liquids. The
piezoelectric element was insulated by a thin film of Teflon and also a small piece of
microscope glass was installed to c;ver the liquid just above the cantilever and the
piezoelectric element. This glasé and the glassy surface of AFM stand were also coated
with Teflon in order to make them hydrophobic allowing the droplet to be contained by
surface forces. In chapter 5, the experimental results obtained with this modified holder

and also their comparison with ihe theoretical predictions are presented.
4.4) Supporting and gluing the piezo to the tip holder

So far we showed that therév should not be any distance between the piezo and the
cantilever base, meaning that the piezo must be located directly under the cantilever base.
What we are expecting from the piezo is to produce a controlled movement for the
cantilever base. For such a purpose, beside the voltage that we are applying to the piezo,
the type of mechanism, that is beihg used to support the piezo to the body of the tip
holder, is also important. Concerning the applied voltage, the signal generator that we
used is very accurate and we have excellent control over the whole process. Moving to
supporting the piezo, there are two common mechanisms used, which are shown in
Figure 4.10. One of these mechanisms is to glue the piezo directly to the body of the tip
holder and the second is to use a pair of clamps to hold the piezo on two pivots that are

extended from the tip holder body. The gluing mechanism is usually used for tip holders
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Figure 4.10 Two common mechanisms for supporting the piezo; a) gluing and b)
clamping. In this picture, (1) is the stainless steel body of the tip holder, (2) is the
cantilever seat, (3) is the piezo element, (4) are the clamps and (5) is the clamp’s
SCrew.

that have a small piezoelement while the clamping mechanism is used for holders having
a large piezoelement, in the form of a bar that is employed to produce a large force. Each
of these mechanisms has advantages énd disadvantages which are discussed in the
following paragraphs.

The advantage of the first mechanism for the piezo support is that the cantilever base
movement is exactly equal to the expansion and contraction of the piezo as long as the
piezo is attached to the tip holder body perfectly. However, over time these connections
can be loosened for many reasons such as degradation of the glue or through washing of
the tip holder with different solvents when changing the experimental fluid. Such

loosening affects the noise floor, when we are using the AFM for thermal excitations,
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causing a large increase in the value of the noise floor to the extent that sometimes the-
response of the cantilever can no longer be recognized (see Figure 4.11). Moreover, the
noise floor values are neither stable nor repeatable and can also be frequency dependent.
In contrast, in the other excitation techniques namely the frelq.uency sweep and step
excitation where we apply a signal to the piezo, the effect of changes in the noise floor on
the cantilever response is not visible because for these cases the magnitude of the
cantilever ‘response is much greater than the magnitude of fhé noise floor.

In the clamping mechanism, the piezo is attached and kept tight to the body of the tip
holder. Therefore in the thermal excitation a small, constz;ﬁt and repeatable value for the
noise floor is observed. On the other hand in the frequency sweep and step excitation, the

signal applied to the piezo causes its expansion and contraction and also the vibration of

— Clamped piezo

- (3lued piezo

0.0002 A |

Ampiitude (V)

0.0001 1

Frequency (kHz)

Figure 4.11 The effect of utilizing different mechanism of supporting the piezo on the
thermal noise response of long cantilever which was immersed in water.
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the piezo bar itself. This vibration is due to the large ratio of the length to the thickness of
the piezo and also due to the free space underneath the piezo element because of the
specific type of support used in this mechanism. Therefore the cantilever base, in this
case, does not have a controlled movement and as a result in the cantilever response
many spurious peaks appear. |

In conclusion, for the frequency sweep and step excitation the‘gluing mechanism is
preferred, while for the thermal noise the clamping mechanism is recommended.
Moreover, we must emphasise that the critical design issues mentioned in this chapter
refer to certain very commonly used fluid cells and tip holders wﬁi_ch’ afe manufactured
by Veeco. However, there are several other manufacturers fof ihé AFM and its
accessories, such as Agilent and Nanotec companies, who employ different designs for

the AFM which might not have such problems.
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Chapter 5

Experimental results for different excitation techniques

The structure of this chapter, which presents the results of all experiments, consists of

three parts. In the first part, we present the results of preliminary experiments such as -

averaging and reproducibility of the data. The second part focuses on the discussion of
the experimental results for the Newtonian fluids and their comparison with theory for
the different excitation techniques. Moreover two different approaches for extracting the
properties of the fluids from the experimental data are proposed and the possible sources -
of errors are discussed. Finally in the third part, preliminary results for the non-
Newtonian fluids are presented and potential approaches for extending the AFM

cantilever techniques are introduced.
5.1) Averaging of data

Averaging is an important tool in signal processing and is usually used to reduce the
noise effects. In spectral analysis, there are many types of averaging in which vector
averaging and RMS averaging are the most important.

The vector average is simply the arithmetic mean of each of the real and imaginary
parts of the FFT vector of the time domain data and consequently, its results are also
complex numbers. Equation (5.1) shows the meaning of vector averaging

mathematically:

94



Y, :<X>k =)7R+i)_(—, Equation (5.1)

In this equation, X; and Y; are the k™ instance of the input spectrum X and its averaged

output Y respectively. Because the FFT is a linear transform, this kind of averaging is

equivalent to the FFT of averaged data recorded in the time domain. As shown in Figure

5.1, vector averaging reduces the effects of white noise on the signal in the time domain.

It also lowers the noise floor in the frequency domain. For this type of averaging, the

Cantilever response (a.u.)
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Figure 5.1 The effect of vector averaging on data records for step excitation of 50%
glycerin-water solution in time domain
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signal recording should be started at a consistent point in the periodic signal or in other
words it must be triggered.

Recording of a signal starting at inconsistent points in a periodic signal results in
phase noise in the FFT spectrum (see Figure 5.2). For this case, the RMS averaging can
be used to reduce the effects of phase noise. The RMS averaging is the square root of
averaged power spectra and returns a real spectrum. It can be expressed mathematically

in the form of:

Y, = \/(<X conj(X ))k) Equation (5.2)

{
§
i

Cantilever response (a.u.)
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Figure 5.2 The effect of RMS on averaging data records for thermal noise of 50%
glycerin-water solution in frequency domain
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Figures 5.3 Vector averaging (a) and RMS averaging (b) for the damped part of step
excitation for 50% glycerin-water solution
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Because the power spectrum is the square of the magnitude of FFT spectrum and also
the magnitude of FFT spectrum is independent of time shifts, RMS averaging eliminates
any effect of phase variations or time dependency on the results however it can not
reduce the noise floor.

In thermal noise, the signal is the result of the stochastic impact of fluid molecules to
the cantilever and consequently it _is not possible to start data acquisition at specific point
in the periodic signal. On the other hand for the case of step excitatbion, data acquiring can
be started exactly at the time of excitation and so triggering the signal is easy. Based on
this, fhe appropriate method for thermal noise is RMS averaging and for step excitation is
vector averaging. It should also be mentioned that after damping of the cantilever
response to step excitation, the rest of the signal is thermal noise and although data
acquisition was triggered for this case, vector averaging does not work properly for this

part as Figure 5.3 shows on the previous page.

5.2) Checking the concentration changes over time

One impqrtant issue that can affect the interpretation of the experimental data is the
change of concentration of the glycerine-water solutions over time. The reason for this
change is that the liquid on the modified tip holder (see Figure 5.4) has an interface with
the surrounding air and the water can be either evaporated from the solution or absorbed
from the air because of humidity. The rate of each of these phenomena is not known
however the overall changes can be investigated by observing the response of a cantilever

in the solution over time. Three solutions of 25%, 50% and 75% glycerine-water were
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chosen and the thermal noise signals were recorded every 10 minutes in each. The
responses for the fresh solutions and after one and half hour are shown in Figures 5.5, 5.6

and 5.7.

Glass Cantllever holder

<\ _~ Cantilever
Fluid =~ [

/ Glassy surface of
AFM head stand
_
Figure 5.4 The schematic of the modified cantilever holder which shows the interface
between the examined fluid and the surrounding air.
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Figure 5.6 Thermal noise responses of a cantilever in 50% glycerin-water solution
over time
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Figure 5.7 Thermal noise responses of a cantilever in 75% glycerin-water solution
over time
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Regarding to these figures, it should be mentioned that the peaks for the first two
modes of vibration can be observed in the responses. The first modes, which have higher
amplitudes, have frequencies less than 10 kHz and the second modes have frequencies
between 10 and 50 kHz. As the glycerine concentration increases, the frequencies of
these peaks decrease such that for 75% solution the first mode peak is about to disappear.
Also the amplitude of the second mode decreases and becomes the same as the noise
floor with increasing concentration. The other issue is the existence of some sharp peaks
at very low frequencies and at around 33 and 50 kHz. These peaks appeared for all of the
solutions at the same frequencies; therefore they are independent of fluid properties and
are rather related to environmental or system noises. A more comprehensive discussion
of the behaviour of the cantilever in thermal excitation is presented in section 5.6.

An analysis of the nature of the concentration change over time was done based on
the shift of the first resonant frequency. From the previous figures, it can be noticed that
the resonant frequencies decrease slightly as time passes. This indicates that some water
evaporates from the solution over time. The other issue is the magnitude of the frequency
shift for the different solutions after one and half hour. These shifts are 5 and 33 percent
for 25% and 50% glycerine-water solutions respectively and almost zero for the 75%
solution. The small frequency shift for 25% solution can be understood by considering
that the properties of solutions at this concentration do not change significantly with a
small change in concentration (see Figures 3.6 and 3.7). For the 75% solution, the lack of
shift of frequency is likely due to the very low rate of evaporation at this concentration '
which means that one and half hour probably is not enough for a noticeable change in the

properties of the fluid. However for the 50% glycerine-water solution the shift is
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considerable and indicates that the change of concentration over time can be a potential
source of error in interpretation of the experimental data. Therefore experiments with this
solution should be done as quickly as possible. In this project, doing all necessary tests
for one sample takes typically 20 minutes. In order to have an approximation of the
" frequency shift for our experiment for the worst case of 50% glycerine, we looked at the
response of the cantilever. over shorter periods (see Figure 5.8). It was found that the
amount of frequency shift is almost linear with respect to time in the first 90 minutes as
shown in Figure 5.9. From these results we could expect a frequehcy shift of around 7

ercent for the 50% glycerine-water solution after 20 minutes of testing.
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Figure 5.8 Thermal noise responses of a cantilever in 50% glycerin-water solution -
over time
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Figure 5.9 Resonant frequency shift because of concentration change over time for
%50% glycerin-water solution.

5.3) Reproducibilit‘y of the experiments respect to both FS and SE

Reproducibility is one of the main principles of any scientific experiment. It can only
be achieved under identical experimental conditions. We discussed in chapter 4 several
factors that affected the reproducibility of the experiments with the fluid cell. Some of
these factors included the change in the location of the laser spot on the cantilever beam
as a result of laser realignment, the alteration in the route of the reflected laser beam
because of the readjustment of the intermediate mirrors and the relocation of the
cantilever chip on its seat. Such factors again hold for the modified tip holder and reduce
reproducibility. Among the three above mentioned factors, the first mainly affects the
shape of the cantilever response, which is the summation of all its modes of vibrations the
effect of which depend on the position of the laser spot on the cantilever. This can be

easily understood from Figure 5.10 where the inclination of the cantilever at each mode
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: Figure 5.10 The inclination of the cantilever for the first modes of vibration.

:of vibration is drawn. A small change in the location of the laser beam, along ‘the length
- of the cantilever and near its free end, causes a severe change on the observed response
Iespecially at higher modes of vibration. The other factors do not affect the shape of the |
céﬁtilever response instead they tend to scale the magnitude of vibration uniformly.

The method available for the alignment of the laser beam at the free end of the
cantilever is not precise, as it depends upon the operator identifying the shadow of the
cantilever. However, we tried to keep the same approach for aligning the laser on all the
céntilevers in order to perform our experimentsb at the same condition. Moreover, we kept
the settings of the optical system of the AFM the same for each fluid during the different
types of experiments performed. All of which lead to obtaining reproducible results and
meaningful comparisons between the data for different experiments. Furthermore, in

order to compare the experimental results with the theory, the responses were normalized
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mainly by the magnitude of the first mode peak and in this way the effects of the other

factors and the need for calibration of the system were removed.
5.4) Linearity with respect to the drive amplitude for FS and SE

As a part of our initial experimentation, we investigated the effect of different drive
amplitudes on the résﬁonses of the cantilever in the frequency sweep and step excitations.
This was done for allvof the fluids and without exception, it was observed that when the
recorded response is_ divided by the value of drive amplitude, the results were the same.
This means that the :reéponse of the cantilever has a linear relation with the drive.
amplitude at least <A)ver- the studied range of voltage, (see for exémple Figures 5.11, 5.12,
5.13 and 5.14). For Newtonian fluids, such behaviour was expected in terms of the
displacement of the- cantilever base and the deflection or inclination of any point on the
cantilever, as shown mathematically in chapter 2. However, in the AFM the input to the
system is the voltage signal that is applied to the piezo element located underneath the
cantilever base. Also the output of the system is the voltage produced by the photo
detector that receives tﬁe reflection of the laser beam from the cantilever. Therefore, it
can be concluded that the rest of fhe system which converts the voltage to the
displacement and vice versa is linear also; these include the signal generator, the piezo
element, the photo detector and the data acquisition hardware. For the non Newtonian
fluids, the observed linearity in the results indicates that the experiments were carried out

in the linear viscoelastic region of the fluid, meaning that the properties of the fluid are
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independent upon the applied deformation and the rate of deformation. The unusual

cantilever behaviour in the frequency sweep excitation will be discussed in section 5.6.
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Figure 5.11 Linearity with respect to the drive amplitude for the frequency sweep test.
For this test the long cantilever was immersed in water.
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Figure 5.12 Linearity with respect to the drive amplitude for the step excitation test.
For this test the long cantilever was immersed in glycerin.
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Figure 5.13 Linearity with respect to the drive amplitude for the frequency sweep test.
For this test the long cantilever was immersed in 16% PS/DEP.
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Figure 5.14 Linearity with respect to the drive amplitude for the step excitation test.
For this test the long cantilever was immersed in 8.5% PS/DEP.
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5.5) Confirmation of linear viscoelasticity by examining higher harmonics

In this section, we are again verifying the linearity of the polymer solution behaviour
through a different type of experiment. For the standard oscillatory shear flow, there are
some theories that predict the behaviour of the fluid and determine whether it is in the
linear or nonlir_xear region. Knowing that the cantilever under study has an oscillatory
movement which is some how similar to the standard oscillatory shear flow, we designed
few experiments to use the standard oscillatory shear flow theories in order to verify the
linearity éf the non-Newtonian fluids. In this regards we are following the approach
mentioned by Giacomin and Dealy®.

In the standard oscillatory shear flow, a uniform sinusoidal strain with the frequency
of ® and the amplitude of yy is applied to the fluid as shown in the following equation:

Y= 7o sin(a)t) Equation (5.3)

For polymeric liquids, when the amplitude of this oscillatory strain is small, the linear
viscoelastic properties could be observed in the fluid. In other words, the stress response
of the fluid will be a sinusoidal function with the same frequency but shifted in phase.
Also the amplifude of the stress would be proportional to the amplitude of the strain as
illustrated in the following equation:

o =0, 7 sin(ot +6) Equation (5.4)
In this equation, d and G, are called the mechanical loss angle and the dynamic modulus

respectively. Therefore in the small amplitude oscillatory shear (SAOS) these two

quantities are only function of the frequency and are independent of y, that is G,(») and

5(w).
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In the case of large amplitude oscillatory shear, nonlinear viscoelastic behaviour will
be exhibited by the polymeric fluids. In the nonlinear regime, the stress response is not
sinusoidal but can be represented as a summation of an unlimited number of sinusoidal
functions, where their frequencies are the odd harmonics of the strain frequency. This is

described mathematically as:

O‘([) = iam-sin(ma)t +6,) Equation (5.5)

m=1,odd

In the above equation both o, and &, can be functions of both frequency and strain
“amplitude, that is &, (@, yo) and o, (a),}/o).

Based on these theories, we designed a set of experiments which are explained in the
following few lines. First we excited the cantilever base at a specific frequency, and then
the response of the cantilever was recorded. After that, the Fourier transform of this
response was calculated and from its result it was checked whether the higher harmonics
of the excitation frequency could be observed or not. It should be mentioned that, for this
experiment, we used the tip holder with the large piezo bar that is suitable for the thermal
noise excitation as was explained in chapter 4. This was done becauée it provided less
noise floor than the other tip holder and also it made it possible to observe smaller peaks
for the harmonics. These experiments were performed for both Newtonian and polymeric
fluids and their results were compared to verify the linearity of the polymeric solution.
For Newtonian fluids, air, water and 75% glycerine-water solution were used. For the
polymeric fluids, 5% ahd 16% polysterene-DEP solutions were used. Also for the
excitations, three different frequencies of 7, 12 and 22 kHz were chosen. These

frequencies were carefully chosen based on the sampling theory and also on the sampling
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rate used for digitizing the signal, in order to capture higher vibration harmonics up to the
fifth harmonic. Moreover, for the purpose of generality of the results, the frequencies
were selected in order not to be multiples of each other. We chose different amplitudes of
vibration, ranging from 0.1 to 10 volts.

Figure 5.15 shows the responses of the cantilever at different frequencies for different
drive amplitudes in air. It was no‘ticed that for high drive amplitudes, peaks at the
harmonics of the excitation frequency appeared in the frequency response for both the
odd and even harmonics. However for low drive amplitudes, only a peak for a
fundamental excitation frequency was observed. If we consider the previous theory for
this case, no harmonics should be observed in the response of the cantilever because air is
a Newtonian fluid. However, such behaviour was also observed by Revenko et al'?, who
excited the cantilever both magnetically and acoustically. They attributed the existence of
such peaks to the inberent nonlinearity of the photodiode detector and the electronics of
the microscope, which was used to measure the cantiléver position. They also concluded
that these peaks were not related to the motion of the cantilever because they appeared
for both types of magnetic and acoustic excitations. Nevertheless, we still performed
these experiments for water and the other solutions, including the polymeric fluids. Again
we observed the harmonic peaks at high driving amplitudes only, as illustrated in Figures
5.16 and 5.17 for water and 16% PS solution. In this case, since there was no difference
in behaviour between the polymeric and the Newtonian fluids, we could not consider this
behaviour as an evidence of nonlinearity and it was concluded that we are still in the

linear region.
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Figure 5.15 Appearance of peaks at harmonics of excitation frequency for long
cantilever surrounded by air. Excitation frequencies are: a) 7 kHz, b) 12 kHz, c) 22
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Figure 5.16 Appearance of peaks at harmonic frequency of excitation frequency for
long cantilever immersed in water. Excitation frequencies are: a) 7 kHz, b) 12 kHz, c)
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Figure 5.17 Appearance of peaks at harmonic frequency of excitation frequency for
long cantilever immersed in 16% PS solution. Excitation frequencies are: a) 7 kHz, b)
12 kHz, ¢) 22 kHz
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Monitoring the obtained values for the harmonics, there was no clear relationship
between their magnitudes and the excitation frequencies. Moreover, there was no
tendency between the magnitudes of the harmonics and the harmonic’s number.
However, it was noticed that there is a linear relationship between the magnitudes of
these peaks and the driving amplitudes above 1 V, as for example shown in Figure 5.18
for 16% PS solution. It was also consistent with the previously obtained results for the
linearity of the frequency sweep response, becauée the frequency sweep response was the
magnitudes of the fundamental peaks in the defined range of frequency sweep. It should
also be explained that the concluded linearity for the higher harmonics was based on a
few dﬁving amplitudes, mainly two, and was not as strong as the linearity of the
fundamental peaks. We should also mention that such linearity for the magnitude of the

peaks was observed for all the fluids.
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Figure 5.18 Linear relationship between the magnitudes of the peaks, located at
excitation frequency and its barmonics, and the driving amplitudes for 16% PS
solution '
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5.6) Discussion of the experimental results

In this section, we interpret the cantilever behaviour in response to thermal noise,
frequency sweep and step excitation, mentioning all the advantages and. disadvantages
regarding each technique. During our discussion we often refer to the viscosity of the
fluids as low, moderate or high viscosity.. To be more precise we associate viscosity of
water with the low viscosity, the viscosity of 75% glycerine-water solution with the
moderate viscosity and the viscosity of pure glycerine with the high viscosity.

Starting with thermal excitation, Figure 5.19 shows the theoretical and experimental
results for the amplitude response of the long cantilever immersed in water. The results
are normalized with the value of the averaged noise floor. The figure also shows the

theoretical results while adding the effect of the noise floor which was done using the
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Figure 5.19 Thermal noise for long cantilever immersed in water
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following equation:

),lher_)—noi.\'e = \) Yll::en + Ar?oi.\'c Equation (56)

As it can be seen on this figure and in general for this type of excitation, if the
~investigated range of 'frequency is large enough to let us see a few modes of vibration, we
caﬁ notice that the magnitude of the peaks for the lower modes of vibration are greater
than the magnitude of the peaks for the higher modes of vibration. For example, the
magnitude of the peak for the second mode of vibration is smaller than that for the first
mode and larger than the magnitude of the peak for the third one.

The other issue is the effect of cantilever length and fluid viscosity on the cantilever
vibrétion. For the assessment of the length variation, we need to compare the responses of
two different cantilevers while immersed in the same fluid. However for investigating the
effect of viscosity change, the comparison between the responses of one cantilever that is
immersed in two different fluids is required. Figures 5.20 and 5.21 show the responses of
medium cantilever immersed in water and the response of long cantilever immersed in
50% glycerine-water solution respectively. The comparison between Figures 5.19 and
5.20 indicates that the effect of utilizing a longer cantilever is the decrease of the
resonance frequency of the cantilever at each mode of vibration. Also using a longer
cantilever causes the peak to be sharper and larger in magnitude. On the other hand, the
viscosity variation effect can be observed by comparing Figures 5.19 and 5.21. These
figures show that the increase of fluid viscosity causes broadening of the peaks and a
decrease in the frequencies of the modal peaks. This is because when the viscosity of the

fluid increases, the damping effect and the added mass increases.
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Figure 5.21 Thermal noise for long cantilever immersed in 50% glycerine-water
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While keeping all the above mentioned factors in mind, it should be mentioned that
the main advantage for the thermal excitation technique is the smooth response of the
cantilever. This is mainly because there is no moving part in the AFM head except the
cantilever in response to the thermal excitation. However, for such a technique there are
two experimental limitations. First, we always ébsewe a noise floor in the response the
magnitude of which depends upon some environmental factors such as electrical noises,
building vibrations and the surrounding sound noises. This noise limits the application of
this technique to fluids in which a considerable part of the cantilever response is larger
than the noise floor; in other words, whe‘h_ we have a large ratio of signal to noise. For
example in Figure 5.19, the response aroun‘d thc;, first mode is more useful for the anélysis
than the response around the second rﬁodé. The second limitation is related to the
filtering of the digitized signal. As 1t was rﬁentioned in chapter 3, we performed a high-
pass filtering with a cut-off frequency of 500 Hz for rerrioving the DC value of the
recorded signal. However, the effect of filtering on the results can be observed up to 2-3
kHz on the results. This causes the first peak for the response of the long cantilever, when
immersed in a moderate or high viscosity fluid; to become useless because it is very close
to the zero and as a result, it is altered by the jﬁltering process. Also in such a situation,
the second mode of vibration is also not usually visible. Therefore the the thermal noise
response, in this case, does not show any features related to the properties of the fluid and
the cantilever. On the other hand, when using shorter cantilevers we do not encounter any
problems with the filtering process, because of the incréase of the resonant frequency, but

the magnitude of the model peaks are nearer to the noise floor.
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As a result of these phenomena the applicability of this technique is limited to
utilizing the long cantilever for the low viscosity fluid. This is because, for the other
situations, the magnitude of the drjving force due to the impact of the fluid molecules
exhibiting Brownian motion is not enough to have a response greater than the noise floor.
We can increase the amount of this force by increasing the temperaturé! however in this
way the properties of the fluid will vchange. Therefore we need to provide the energy for
the vibration of the cantilever in another way. This can be solVea using the frequency
sweep excitation or step excitation techniques which are explained next.

In the frequency sweep excitation, we can provide considerable-afnount of energy to
cantilever by moving its base. As a result we can observe a respohs:c for the cantilever
which has shorter length or is immersed in a higher viscosity rﬁediﬁm. Figures 5.22 and
5.23 show the theoretical and experimental results for the amplifude and the phase of
long cantilever vibration when it is immersed in water. Such gréphs for the other fluids
and cantilever are presented in Appendix I (pages 188-195).

Looking to the amplitude responses in this type of excitation, the general effects of
variation of cantilever length and fluid viscésity on the frequency of the model peaks are
similar to those observed in thermal noise. However, the higher modés of vibration have
- larger amplitudes than the lower modes of vibration for the range of low to moderate
viscosities. This means that if a long cantilever is utilized in a moderate viscosity
medium, although the usefulness of the first mode of g/ibration diminishes because of the
interference with the effect of the filtering process, we can still use the.response around

the higher modes of vibration in our analysis. This is an advantage in comparison to the

thermal noise, in which the ratio of signal to noise floor for the higher modes is not large.
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On the other hand, the response of the cantilever for high viscosity fluids does not contain
peaks and the variation of its shape becomes independent of fluid properties. In this case
using a shorter cantilever could be helpful because all the peaks can be observed at higher
frequencies. Therefore the applicable range of viscosity will increase in this type of
excitation compared to the thermal noise type.

Looking again at the amplitude response in Figure 5.22, it can be noticed that there is
a big deviation from the theoretical response between 40 and 60 kHz of frequency and
also there are some noises at lower frequencies. In order to understand the reason for the
deviation in behaviour in the above mentioned frequency range, the results of amplitude
responses of several long cantilevers, which are all immersed in water, were compéred
and this is illustrated in Figure 5.24. It was observed that these responses are
approximately similar in frequencies less than 40 kHz but have very different behaviour
between 40 and 60 kHz. The small difference between the responses in first part of
frequency range is related to the small differences of the cantilever thickness and scaling
factor but this reason cannot be used for explaining the large deviation in the response
between 40 and 60 kHz. It is more reasonable to relate this deviation to the environmental
noises detected in this frequency range that were also observed in the thermal noise
response as explained in section 5.2. Therefore, from now on we will only consider the
response of th¢ cantilever for frequencies less than 40 kHz in our anélysis. As illustrated
in Figure 5.22, there are also some small noises in the amplitude responses in the first
part of frequency range. The peak around 37 kHz is related to the resonant frequency of

the cantilever chip which was also observed by Han et al'’. Based on this justification,

the other peaks might be also related to the vibrations of the other moving parts in the
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Figure 5.24 Comparison of the amplitude responses of several long cantilevers, which
are all immersed in water

cantilever holder, such as the spring and clip in the holder. It should be mentioned that in
order to get a very smooth response in this type of e)icitation, a very well designed holder
is required that considers all of these vibrational aspects. Such optimization could be
considered as future work for this project.

Referring to the phase response in Figure 5.23, it should be mentioned that the phase
results are the inverse tangent of the ratio of the imaginary parts to the real parts of the
Fourier transform results at each frequency. In general, the value of an inverse tangent is
between 7 and -, as shown in the figure. In this case when, for example, the phase of the
cantilever response is going to be less than -, a 2 will be added to it and the rest of the
results continue starting from the value of . This causes all the data to lie between © and

—x but a discontinuity in the results will appear: In order to remove these discontinuities
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an unwrapping process was performed on the experimentally and theoretically obtained
results so in this way we have a better view of the data. The result of such process on the

data in Figure 5.23 is presented in the following figure.

Unwraped Phase (rad)
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Frequency (kHz)

Figure 5.25 Unwrapped phase response for long cantilever immersed in water

The other issue concerning the phase response is the presence of a phase drift (see
Figure5.26) that the AFM machine exhibits without having any laser beam reaching the
photo detector, which could be measured by removing the cantilever or unplugging the
laser cable of the AFM head. The amount of this phase drift is not constant and depends
upon the frequency of the driving signal. Moreover, for different drive amplitudes the
shape of the phase drifts are the same but for low drive amplitudes they are much nosier.
Basically, all drive amplitudes used for these experiments are much more than the values

that are used normally for the imaging processes. As a result of using such high drive
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Figure 5.26 Unwrapped phase drift of the AFM for drive amplitude of 10 (V)

amplitudes, some issues regarding the grounding in the electronics of the AFM will
happen, which could also be coupled with a capacitance effect. This will lead to
noticeable reading of phase without a laser spot on the photo detector. So in order to see
the results of the cantilever only, we subtract this imbedded drift and prevent it from
affecting the output data, as shown in Figure 5.27. It should be mentioned that the
difference between the theoretical and experimental result in this figure is around n/2
which is related to the implementation of sine instead of cosine or vice versa in the code
used for the theoretical modeling.

Focusing on interpreting the experimental data from the physical point of view, it can
be noticed that the phase response also shows the presence of different modes of

vibration but in a different manner compared to the amplitude response. The amplitude
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Figure 5.27 Unwrapped phase response which the effect of phase drift is removed. The
long cantilever was used for this result and the surrounding fluid is water.

responsé exhibits such modes by the appearance of peaks, while the phase response
displays them in the form of a significant decrease in the value of the phase, as shown in
Figures 522 and 5.27 respectively. Moreover, for different modes of vibration, the
amount of change in the value of the phase are the same for the phase response but for the
amplitudé response, as mentioned earlier, the higher modes have higher amplitudes.
Furthérmore, the effects of the cantilever length and fluid viscosity on the phase
response are similar to those effects on the amplitude response. More precisely, we can
observev that when the viscosity of the surrounding fluid increases or when a shorter
cantilever is used, the resulting change in the value of the phase response occurs over a
wider range of frequency and similarly the peaks in the amplitude response become

broader and smoother. In addition, the value of frequency at which the peaks occur, in the
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amplitude response, and the significant decrease occurs in the phase response, is shifted
to a lower value as the viscosity of the fluid or the length of the cantilever increases.

It should be mentioned that the noises appear in the phase response exactly at the
same frequency as the noi.ses in the amplitude response. However, the effects of these
noises are a little different for b&h responses. For the phase response, the noise peaks
cover a much narrower frequency band and deviate from the main trend only downwards;
however, for the noises on the amplitude response, their effect is observed over a much
broader frequency band and they are also found in both the upward and downward
directions. This makes it éasier to locate the noises and remove them from the data in the
phase response as comparvedf tc; the amplitude response. The phase response at the low
frequency range of less tﬁan.j kHz should also be neglected because the filtering process
affects the phase response also.

In conclusion, both thé amplitude and phase responses have the same information
regarding the properties of the cantilever and its surrounding fluid. However the phase
response is preferable for analyzing because the noises in this kind of response can be
recognized and removed more effectively.

Moving to the last excitatidn technique, namely the step excitation, Figure 5.28 shows
the response of long cantilever, immersed in Water, in both the frequency and time
domains. Similar results for tfle other cantilever and fluids are presented in Appendix J
(pages 196-201). For this type of excitation, the response of the cantilever in the
frequency domain is somehow similar to the thermal noise resposne. That is, the
amplitude of the peak for the second mode is smaller than that of the first rﬁode but

greater than the third one. Moreover, the effects of changing the cantilever length and
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excitation (a) in the frequency domain and (b) in the time domain.
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fluid viscosity, on the cantilever re.sponse, are similar to the ones described for frequency
sweep and thermal noise. However, because of the large energy of excitation, the
amplitude of vibration is much more than the value of noise floor and as a result it
allowed us to observe the higher modes of vibration, up to the fifth. It was_not feasible to
observe them with thermal noise under the experimental conditions of our instrurﬁént.

Regarding the response of the cantilever in the time domain, it should be mentioned
that it was constructed numerically using the inverse fast Fourier transfo?n%. In order to
have such response for the same duration and resolution of the experimental response,
that is ihe duration of 0.1 s with a resolution of 10° s, we calcu]ated..the cantilever
response in the frequency domain up to 500 kHz with the resolution of 001 ~kHz using
Equation (2.83). Then the results were transformed to the time domain us-ingAthe IFFT in
MATLAB. The results of this transformation were complex numbers and it should be
admitted that we could not find any physical meaning for the imaginafy ‘parts so far.
Nonetheless, the real parts predict the main features of the experimental response rather
well. The main problem with the cantilever response, in the time domain, 1s that thé effect
of the filtering process on the results is difficult to identify. Therefore, in total the
frequency domain is preferred for analysing the results.

By comparing between the frequency sweep excitation and the step excitation, we
conclude that the later technique has three advantages. The main advantagé is that we
have an exact solution for the theoretical response rather than a solution in the form of a
series. Therefore it does not have any truncation error regarding the series. The second

advantage of this type of excitation is that the response around the first mode, which can

be predicted more accurately by the theory than the higher modes, has higher magnitude
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than the other features in the data. And finally, obtaining the total response takes less
time in step excitation. The reason for the latest advantage is that in the frequency sweep
excitation, the resolution of the data in frequency depends on the number and range of
discrete frequencies used to drive the cantilever. Therefore, it is necessary to increase the
number of measurement points and the overall measurement time in order to broaden the
frequency range without reducing the resolution. However this is not the case for the step
excitation because the range of the frequency and its resolutions depend on the sampling

rate and duration for digitizing the signal which make the total acquisition time less.
5.7) Discussion on the theoretical results

As it was explained in the previous section, the higher modes of vibration affect the
frequency response at lower frequencies when the viscosity of the solution or the length
of the cantilever increases. On the other hand, the theoretical model for the applied drag
force on the cantilever is not accurate for higher modes of vibration. The reason for this
inaccuracy is that this model was derived based on the assumption of 2D flow for the
surrounding fluid. But as mentioned in chapter 1, because of the considerable axial flow,
this assumption is violated for the higher modes éf vibration. Therefore, the main
inconsistency between the theoretical and experimental results can be explained in this
way for the long cantilever when it is immersed in high viscosity fluids.

The other issue, regarding the theoretical models for the different excitation

techniques, is related to truncation in the series solutions. As we know, the theoretical

response of the cantilever is the summation of all its modes of vibration. But the question
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is “how many modes of vibration is required to represent the theoretical response in the
selected range of frequency with a small truncation error?”. In ordér to answer such a
question, we compared several simulations of the frequency sweep excitation that were
obtained by applying different numbers of modes in the calculation. The result of such
analysis is presented in Appendix K (pages 202-209). This comparison allowed some
| conclusions. First, the effect of the number of modes included on the phase response is
less than on the amplitude response. Second, for the medium cantilever, the response is
mainly around the first mode of vibration for all solutions. Moreover applying the 1% and
2" modes is enough for representing the theoretical response in the range of 0 to 60 kHz
except for pure glycerin which needs at least the first 4 modes. Finally, for the long
cantilever, two modes of vibration can be observed for low concentration solutions and
the effect of higher modes will appear as the concentration increases until the pure
glycerin which even 9 modes of vibration are not enough for representing its theoretical
response in the selected range of frequency.

It should be mentioned that, although for most cases using 4 modes of vibration was
enough to represent the theoretical response; we implemented 9 modes of vibration for all
cases when we wanted to obtain the theoretical responses for comparison with the
experimental results. The reason for this was that in general using more numbers of

modes introduces less error than not using them.
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5.8) Finding the properties of Newtonian fluids from their FS experimental data

Two different approaches were applied in order to determine the properties of
Newtonian fluids from the frequeﬁcy sweep data. In general, the first one considefs the
whole frequency range and the viscosity and density are determined by finding the best
fit of the theoretical response to either the amplitude or the phase experimental results. In
the second approach, these properties are calculated at each frequency using the
experimental values of both the amplitude and phése at that frequency. In the following
paragraphs, the details of each approach and the results obtained are explained.

For the first approach, a MATLAB code was written to find the best fit between the
theoretical and experimental results by implementing the nonlinear least-square
regression criteria (see Appendix L, pages 210-219). The structure of this code was
divided in two parts based on the type of the experimental data used. The first part, which
uses the experimental amplitude response, determines the viscosity, density and the
scaling factor for the best theoretical response. The reason for using the scaling factor in
the calculation of this part was the lack of calibration coefficients for bothb the input and
the output signals, which relate them to the movement of the base and the free end of the
cantilever respectively. Similarly, a phase shift factor is determined in the second part of
the codé, which uses the phase response. In this case, the reason for implementing the
phase shift factor is to account for the unknown value that by which the unwrapping
process can shift the whole experimental vphase response. It should also be mentioned fhat
the noises in the experimental results were excluded from the experimental data for all

the calculations. This was done by considering the noises observed on the phase repose
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diagram as our reference and excluding them from both the phase and amplitude
responses, as illustrated in Figure 5.29.

The measured densities and viscosities are compared with their real values in Figures
-5.30 and 5.31 respectively, at each concentration of glycerine-water solution for the long
and medium cantilevers. The errors in ihese measured Qalues are shown in Figure 5.32.
By observing the error bars in Figure 5.32, one can notice three general different trends
for the error, which are explained in the following pages.

The first trend‘is the increase of error as the concentration increases. The main reason
for this, as mentioned earlier in the previous section, is related to the inaccuracy of the
theoretical model for higher modes of vibration. This is because as the concentration of
the glycerine-water solution increases, the viscosity increases and as a result we observe
the effect of higher modes on the response. However there are some practical sources of
errors too. It is well known that the properties of highly concentrated glycerine-water
solutions, mainly their viscosities, strongly depend upon the fluid’s temperature and also
upon the accuracy of concentration of the prepared solution. In other words a small
change in these two factors leads to a huge change in the properties of the solutions.
Moreover, this dependency is significantly increased as the solutions become more
concentrated. Consequently few sources of errors could occur. One of them could be the
imprecise assumption of room temperature for the real value of the properties. The
assumed room temperature was 26°C, which was almost the averaged temperature around
the fluid; however this temperature was varying between 25°C and 27.5°C. Such variation
gives misleading results and is a source of error. Another source of error is the local

heating of the fluid around the cantilever. The given energy to the base of the cantilever
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in this type of excitation dissipates through the fluid. Moreover the laser beam aligned on
the cantilever tip heats the fluid in that region. These two factors increase the temperature
of the nearby fluid and cause some deviations in the results from what are expected. It
should be mentioned that the later factor was also reported by Hennemeyer et a]7_.
Looking to the results indicates that most of the measured properties are less than their
real values. This could also be a sign that the actual temperature of the fluid is higher than
the assumed room temperature. Based on the determined viscosity from the phase
response, it was found that the local heating causes an average increase of 3 °C in the _
temperature of the fluid surrounding the cantilever. Finally, any inaccuracy during th"eA
preparation of the correct concentration for the solutions could cause an error in the
results. However, this source of error is less likely to occur because we used a very
precise balance with 1 mg precision and for each concentration 25 g of solution were
prepared, which increased the overall accuracy.

The second trend in the errors is related to the length of the cantilever. As the length
" of the cantilever increases, th¢ effect of the higher modes will be observed on the
response. Since the theoretical model for higher modes is inaccurate, the error of the
result increases when we utilize the longer cantilever.

Lastly, the third trend in the errors is linked to the utilization of either the amplitude
or phase response. It is noticed that using the phase response results in less error than‘
when the amplitude response is implemented. First, this is because the noises affect the
phase response less than the amplitude response and as a result, recognizing and deleting

the noise from the experimental data is easier in the phase response. Second, this is also

due to the fact that the theoretical response for the amplitude response is scaled while the

139



phase response is shifted. Based on the least square residual criterion of nlinfit command
in the MATLAB code, the determined properties from the amplitude response have likely
more error, if the scaling factor has an error. In other words, if both the scaling factor and
the phase shifting factor had the same error value, the effect of the scaling factor error on
the calculated properties is larger than the effect of the phase shifting factor error on the
properties.’

In conclusion, for ‘the determination of the fluid’s properties from the whole response,
the results of phase responses are more reliable because their fitted curves represent both
the values of experimental data and their trends while the fitted curves for the amplitude
response just represent the trends and not the values of the experimental data.

Shifting to the second approach for the determination of the Newtonian fluids’
properties, both the amplitude and the phase values must be employed at each frequency
in order to obtain the properties. The major problem concerning this approach is the
existence of more unknown variables than the known ones. At each frequency these
unknowns are density, viscosity, the scaling factor for the amplitude response and the
shifting phase factor for the phase response. So in order to solve such a problem, we
define a reference frequency and we normalize both experimental and theoretical
responses for the amplitude for the whole frequency range and we shift both experimental
and theoretical phase response to zero, using their values at the reference frequency.

Implementing such a technique, we are able to get rid of the unknown scaling factor and

phase shift, this is shown mathematically in the following equations:
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Moreover, in order to find the density and viscosity at. each frequency, the above
equations should be solved together. In order to find these properties, this algorithm was
developed_in a MATLAB code, which is shown in Appendix M (pages 220-225). The
results obtained by this code are presented for the long cantilever immersed in water in
Figure 5.33 and the results for the rest of the fluids and medium cantilever are shown in
Appendix N (pages 226-233).

From these figures, it is obvious that the results are very sensitive to the noise and the
trend in amplitude and phase responses. Also it was noted that the selection of reference
frequency is very critical because it can change the results dramatically. In general, it was
observed that the measured density has a smaller error than that the measured viscosity
and wherever the amplitude of vibration is small, compared to the whole response,
(mainly at low freque‘ncies for medium cantilever and low viscosity fluids) the estimation
of the properties has a larger error. Furthermore, the error around the reference frequency
was found to be larger than the other parts, which is because of the sensitivity of the
approach to the selected value.

At the end of this section it should be mentioned that for these types of experiments
there are also three more general sources of error. The first one is the change in the
concentration of the solutions over time that was explained in detail in section 5.2. And
second, for the calculations of the theoretical model, the movement of free end of the

cantilever was accounted, but in practice the laser cannot be exactly aligned at the free
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end. As a result, the response of the cantilever at the higher modés, which depends more
on the Jocation of the laser (see Figure 5.10), cannot be predicted very well. Also because
of the thickness of the laser beam, this error is increased for shorter cantilevers. Finally
the third one is related to the uncertainty in estimation of the cantilever thickness using its

resonant frequency in air.
5.9) Extending the micro cantilever based rheometry to non-Newtonian fluids

The second approach of the previous section gives the capability of measuring the
fluid properties at each frequency of vibration. Such a capability, in spite of not being
important for Newtonian fluids, opens a new application for the AFM to measure the
properties of non-Newtonian fluids because of the dependency of their properties on the
excitation frequency. However to utilize such an application for a non-Newtonian
solution, the concentration of the solution should be more than the overlap concentration,
C*, in order to have a uniform fluid and to allow us to measure the bulk properties.
Moreover, in the case of the solution concentration being less than C*, it should be
confirmed that the smallest dimension of the cantilever is much larger than the average
distance between the polymer chains in the solution, otherwise the measured properties
will not represent the bulk properties of the fluid. For the solutions of PS/DEP, diethyl
phthalate is considered as a good solvent. However if we assume a theta solvent for the

polystyrene, the values of overlap concentration, C*, and the radius of gyration, R, are

0.43 g/mL and 11 nm respectively, which are obtained using the following equation’’:



a
*
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i
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W [ = ] ul Equation (5.8)

J6 N,

In the above equation, M, is the weight averaged molecular weight, N, is the

Avogadro’s number, »n is the number of monomers in the chain, / is the carbon-carbon
bond length and C_ is the characteristic ratio. In our study, the calculated value of C* is
greater than the concentration of all PS/DEP solutions used, however based on the

calculated R, the averaged distance between two chains for the lowest concentration,

that 1s" %5 PS/DEP solution, is around 20 nm which is much smaller than the 2 um

thickness_of the cantilever used. Therefore, overly even for a theta solvent, which is

associated with higher C* and smaller R, compared to a good solvent, we are always on

the safé side.

Moving to the experimental results obtained for the non-Newtonian fluids, it should
be méhtioned that in the cantilever response we can observe that the viscosity decreases
as the fréquency increases. This is consistent with what was illustrated in the results
obtained from the rotational rheometer and presented in chapter 3. For example in Figure
5.34, the responses of the long cantilever, which is immersed in water, %16 PS/DEP
solution and pure glycerine, are compared. The zero shear viscosity of the %16 PS/DEP
solution IS around 6300 mPa.s, which 1s much higher than the viscosity of pure glycerine,
which is around 900 mPa.s. However, as it can be noticed the frequency of the first peak
for the %16 PS/DEP solution is more than that of the first peak for pure glycerine and
less than that for water. This shows that at this range of frequency the viscosity of the
polymer solution is in between the viscosities of water and glycerine, which is expected

because the viscosity of this solution varies between 600 and 100 mPa.s, for the
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Figure 5.34 The comparison between the frequency sweep responses of the long

cantilever immersed in %16 PS/DEP solution as a non-Newtonian fluid and immersed
in water and pure glycerine as two Newtonian fluids.

frequency range of 2 to 50 kHz, as shown in Figure 3.10. Also, the decrease of viscosity
can be recognized by observing that as the frequency increases the curvature of the
cantilever response in the %16 PS/DEP solution becomes similar to the curvature of the
" cantilever response while immersed in water. Such cantilever behaviour at high
frequencies can be explained b}% knowing that the PS solution behaves as a low viscosity
fluid because of its high elastié properties at those frequencies. This allows the fluid to
store a part of the cantilever energy when it is moving forward, which in ité turn helps in
the backward movement of the cantilever by releasing that energy. The experimental
results obtained for the rest of non-Newtonian fluids are presented in Appendix O (pages

234-235).
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Unfortunately the theory of chapter 2 is not useful for these non-Newtonian fluids for
one main reason that is related to the assumptions used for the derivations of
hydrodynamic drag force. Indeed, the hydrodynamic force was derived from the Navier-
Stokes equations, which are the momentum equatipns after implementing the Newtonian
constitutive equation. Such a constitutive equation génerally is not valid for non-
Newtonian fluids and as a result the presented theory in chapter 2 is not applicable here.
It should be mentioned that basically there is not: a: general constitutive equation for all
non-Newtonian fluids. So far some constitutive »equations have been proposed for
different kinds of non Newtonian fluids which -'i_n most cases have very complicated
mathematical formula. As a result, implementing thén; in the momentum equations and
using them for driving the hydrodynamic force ﬁost Vprobably will not result in an exact
analytical solution. In practice some researchers apply educated assumptions instead of
the viscosity term in the equations to make it appropriate for the non Newtonian fluid.
However, in most of the cases the equation does not obey the conservation of momentum
and if the resultant formula works, it should be considered as an empirical equation.
Going further in depth in developing the theory for non Newtonian is considered as the
future work of this study, nonetheless we will explaii_i few suggestions as the potential
methods for approaching such a problem.

The first suggestion is to use the Generalized Néwtonian constitutive equation. In
such a-n equation, the viscosity of the fluid is considered as a function of the strain rate,
and based on the Cox-Merz’' rule this viscosity is equal to viscosity which is a function

of frequency and its frequency is equal to the strain rate. Using the obtained results of the

rotational rheometer for %16 PS/DEP (see Figure 3.10), we calculated the theoretical
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responses of both long and medium cantilevers through the implementation of this
suggestion. The results are shown in Figures 5.35 and 5.36. Referring to these figures, it
can be seen thét the theoretical results for the long cantilever showed a big deviation from
the experimental results while the medium cantilever showed a surprisingly good
agreement between experimental and theoretical results. The deviation that occurred in
the results of the long cantilever was mainly due to the fact that the theory does not work
very well for the long cantilevers when immersed in high viscous fluids, as explained in
section 5.7. However, the agreement in results of the medium cantilever indicates the
applicability of such suggestion for non-Newtonian fluids. It should be mentioned that
this theory might be improved considerably if we applied a more accurate formula for the
hydrodynamic force. Also the confirmation and applicability of this suggestion with the
other solutions is left as a future work of this study.

It should be mentioned that the result of implementing this suggestion for extraction
of the properties is exactly the same as the second approach of last section with the
difference that for Newtonian fluids the average of properties over the frequency range is
desired but for non-Newtonian fluids the results at each frequency is required. Moreover
it can be assumed that the density of the fluid is known and as a result the amplitude and
phase responses can be used separately for the determination of the viscosity. In this case
it is expected that the phase response gives the property with less error.

The second suggestion would be to utilize the imaginary shear modulus of

G' =iwn", proposed by Belmiloud et al’>. By substituting this function instead of the

viscosity term in the hydrodynamic function and knowing that G* =G'+iG", we can

derive two equations in terms of loss and storage modulus for the amplitude and phase
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responses of the cantilever. Now by equalizing them with the experimentally obtained
amplitude and phase responses, we can determine the G' and G" at each frequency,
which are the most important properties of non-Newtonian fluids. It should be mentioned
that for this method, the density of the fluid should be considered as a constant known
value.

Last but not least is to make use of the following hydrodynamic function derived by

Frater'%:
4K (aw/Re) .
r, (o)=1- ! Equation (5.9
) R TR K dRe)  auton (59
where
ol = I(MJ Equation (5.10)
1+iwd,

and the constants of 4, and A, are defined in the specific constitutive equation up on

which the hydrodynamic function is derived. It should be mentioned that in order to
utilize this hydrodynamic function, we must first check that the non-Newtonian fluids,
which are to be tested, obey that constitutive equation.

At the end, the advantage of using the micro cantilever rheometer is that we can
easily reach to the frequencies that are way beyond the limit of the available conventional
rheometers. Moreover, this technique can solve the problem of inertia that we always had
at high frequencies with the rotary rheometers. Finally even if the required range of
frequency can be obtained by the conventional rheometers using the time-temperature
super position principle, measuring the properties with this technique is still much faster.
And as a result, more reliable results can be obtained for the cases that the fluid

properties change over time.
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Chapter 6

Conclusions, contributions and future works

6.1) Conclusions

In this thesis, an investigation has been made concerning the implementation of the
atomic force microscope (AFM) for measuring the rheological properties of fluids,
mainly liquids of high viscosity. Our analysis was divided into two parts. The first part
involved a study bf a few critical experimental issues, such as the one related to the fluid
cell design. This evolved because the measured response had many unwanted peaks,
which are not related to the actual cantilever response. We found that the regular fluid
cell, that is widely used and provided commercially by the AFM manufacturers, is of
poor quality in design. The main reason for this is that the piezo that is used to generate
the displacement in this fluid cell is located on one of the fluid cell legs and in order to
have ideal acoustic excitation it should be positioned exactly underneath the cantilever
base. If it is not, in the response of the cantilever we will observe the interference of the
vibration of the fluid cell with the vibration of the cantilever. There are also some issues
of minor importance such as the large moving surface of the fluid cell, which generates a
flow that also affects the cantilever response, and the specific design of thé holding clip.
Based on these draw backs, a regular tip holder, which is originally designed to be used
in air, was modified to be suitable for working with liquids. Moreover, a study on two

different mechanisms for piezo attachment to regular tip holders was done. It was found
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that for the acoustic excitation experiments the tip holder, whose piezo is glued to its
body, is suitable. As for the thenﬁal noise experiment, the clamped piezo was found to
give the response with the least noise.

In the second part of the thesis, we utilized the modified tip holder to obtain the
fésponses of the different cantilevers in different fluids using thermal noise, frequency
sweep and step excitations. The reason that the thermal noise method could not be used

for high viscosity liquids is the existence of a noise floor which does not allow for the
observation of the cantilever response. However, the frequency sweep and step
“excitations were offered to overcome this limitation. The theory for the frequency sweep
‘was previously developed but the theory for step excitation was developed in this thesis.
Although we showed that both frequency sweep and step excitation could be used for
experimenting with high viscosity liquids, we proved that the step excitation theory had
an advantage over the frequency sweep theory. This advantage was having an exact
. solution rather than a truncated series solution like the frequency sweep. We compared
the theoretical results with the experimental results and possible experimental and
- theoretical sources of error were explained. For the theory, the main source of error was
the assumption of 2D flow around the cantilever which is violated at the higher modes of
. vibration which is observed at low frequencies for high viscosity fluids. As for the
experimental work, the main source of error was found to be the local heating of the fluid
by the laser beam and viscous dissipation.
In addition, two approaches for the extraction of fluid properties from the
experimental frequency sweep data were offered. One.approach was based on the

extraction of the properties from the whole range of frequency and the other one was to
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determine these properties at each frequency of excitation. And finally since now we
could find the properties of the fluid at each excitation frequency and also since the non-
Newtonian fluids have properties that are frequency dependent, we applied this technique
for some non-Newtonian fluids. The preliminary results were presented and the potential
approaches for extenaing the AFM cantilever techniques are introduced as the future

work. -
6.2) Contributions

Asa resulf of ciur~ study, there are three main contributions to such a field of work.
First we managed to identify the key elements in the fluid cell design. These included the
holding mechanism of cantilever chip in the fluid cell, the understanding of the fluid-
borne excitation.,. the suppdrting of the piezo to the tip holder and most importantly the
positioning of the -piezo element, which must be directly located underneath of the
cantilever. Second, we developed a technique that can be used for extracting the
properties of the liquids from the frequency sweep data, which extended the applicability
of the micro cantil'c\/er based rheometry to higher viscosity Newtonian liquids. We
proposed three choices for such an extraction. The first two choices are to extract the
properties from the Awhole frequency range of either the amplitude response or the phase
response. And the third choice is to use both the amplitude and phase responses for the
determination of the fluid properties at each frequency of excitation. Among the three
previously mentioned extraction methods, the determination of properties from the phase

response gave the closest results to the real values and therefore it was considered as the
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most accurate method. Last but not least, we introduced the step excitation as a new
method that can be used to excite the cantilever. We succeeded in producing a theoretical
response fdr the cantilever that is excited acoustically by the step movement of its base.
The main advantage for such theoretiqal analysis was that we have an exact solution for
the th¢oretica1 responseb rather than a solutiéﬁ thai is in series form and in this way the

truncation error is eliminated completely.
6.3) Future work

Most of the intended future work of ou; study was already mentioned in detail in the
~text. They are summarized along rwith some other suggestions, in the following
paragraphs.

Primary. concerning the fluid cell dé_sign, we have to mention that although the main
factor of the fluid cell design was determined in this work, still in order to get a very
smooth response in the acoustic excitation, a very well designed holder is required so that
it considers all the vibrational aspects of the holder. Therefore, the optimization and
improvement of such a design to overcomé this design limitation can be considered as a
future work of our study.

The other topic is related to the inaccuracy of the theoretical models for predicting the
cantilever response around its higher mode of vibration, while it is immersed in a
Newtonian fluid. This inaccuracy is the result of implementing the 2D flow assumption
for the surrounding fluid in the derivation of the hydrodynamic force. However recently,

Eysden et al’ developed an analytical model for the hydrodynamic force which considers
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‘the axial flow as well. Therefore, implémenting such a model in the governing equation
of the cantilever deflection and then comparing the obtained results with the experimental
response of fhe cantilever can be considered as the second recommendation for the future
work.

Thirdly, in this work, we introduced the step excitation as a be&er alternative for the
ffequency sweep excitation. The theory for this type of excitation was developed and the
results were compared with the experimental data. Howevef t.heA extraction of the fluid
properties from experimental data for this type of excitation was left as a future work.

Last but not least, we proposed to extend the usage of -the micro cantilever based
rheometry for the non-Newtonian fluids because of the poierjtiél advantages that this
technique offers in comparison to the traditional rheometérs., Preliminary results were
obtained for such continuation and some suggestions for deve‘loping the required theory

were explained in chapter 5.
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Appendix A

MATLAB code for the modal shapes and the ¢ and S parameters:

clc; clear all; close ali;

L=10;
delta_ x=0.00001*L; x=[0:delta_x:L];

landa(1)=1.8751/L; landa(2)=4.694/L; landa(3)=7.855/L; landa(4)=10.996/L; landa(5)=14.137/L;
landa(6)=17.279/L;

9% deflection %6%%%%6%6%%6%0%6%0%0%%%6%0%0%% 6% %6%6%0 %% 0% % %0% %% 02 6 96 %6% 6% % 6% 00 00/ $0%0%
X 1=(cos(landa(1)*x)-cosh(landa(1)*x)- ’
((cos(landa(1)*L)+cosh(landa(1)*L))/(sin(landa(1)*L)+sinh(landa(1)*L)))*(sin(landa(] )*x)
sinh(landa(1)*x)));

X2=(cos(landa(2)*x)-cosh(landa(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sm(]anda(Z)*L)+smh(landa(2)*L)))*(sm(landa(2)*x)
sinh(landa(2)*x)));

X3=(cos(landa(3)*x)-cosh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sm(Ianda(3)*L)+smh(landa(o)*L)))*(sm(landa(3)*x)
sinh(landa(3)*x)));

X4=(cos(landa(4)*x)-cosh{landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sm(landa(4)*L)+smh(]anda(4)*L)))*(sm(landa(4)*x)—-
sinh(landa(4)*x)));

X5=(cos(landa(5)*x)-cosh(landa(5)*x)-
((cos(landa(5)*L)+cosh(landa(5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L)))* (sm(landa(S)*x)
sinh(landa(5)*x)));

X6=(cos(landa(6)*x)-cosh(landa(6)*x)-
{(cos(landa(6)*L)+cosh(landa(6)*L))/(sin(fanda(6)*L)+sinh(landa(6)*L)))*(sin(landa(6)*x)-
sinh(landa(6)*x)));

a inclination %6%%%6%%%%% %% 0% 6957 08 0% 6% 6% %% 0% %% %o /(10’0( 5% 0% %00 684905 654 %6 % 60%° % %%
X]l =landa(1)*((-sin(landa(1)*x)-sinh(landa(1)*x)- '
((cos(landa(1)*L)+cosh(landa(1)*L))/(sin(landa(1)*L)+sinh(Janda(1)*L)))*(cos(landa(1)*x)-
cosh(landa(1)*x))));

X 12=landa(2)*((-sin(landa(2)*x)-sinh(landa(2)*x)-
((cos(]anda(Z)*L)+cosh(landa(2)*L))/(sm(Ianda(2)*L)+smh(landa(2)*L)))*(cos(]anda(Z)*x)
cosh(landa(2)*x))));

X13=landa(3)*((-sin(landa(3)*x)-sinh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L}))*(cos(landa(3)*x)-
cosh(landa(3)*x))));

X 14=landa(4)*((-sin(landa(4)*x)-sinh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(cos(landa(4)*x)-
cosh(landa(4)*x))));

X15=landa(5)*((-sin(landa(5)*x)- smh(]anda())*x)
((cos(landa(5)*L)+cosh(landa(5)*L))/(sin{landa(5)*L)+sinh(landa(5)*L)))*(cos(landa(5)*x)-
cosh(landa(5)*x))));
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X16=landa(6)*((-sin(landa(6)*x)-sinh(landa(6)*x)-
((cos(landa(6)*L)+cosh(landa(6)*L.))/(sin(landa(6)*L)+sinh(landa(6)*L.)))*(cos(landa(6)*x)-
cosh(landa(6)*x))));

% normalization %6%%%6%6%6%%%6%0%%6%4%6%0%0%6% 6%
X11=(X11/X1(length(X1))):
X12=(X12/X2(length(X2))):
X13=(X13/X3(length(X3)));
X14=(X14/X4(length(X4))):
X15=(X15/X5(ength(X5))):
X16=(X16/X6(length(X6))):
X1=(X1/X1{length(X1)));

X2=(X2/X2(length(X2)));

X3=(X3/X3(length(X3)));

X4=(X4/X4(length(X4)));

X5=(X5/X5(length(X5)));

X6=(X6/X6(length(X6)));

o ‘o , Lo, 0 B D D 00 .
%0%0%0%6%0%%% 6% % %600 % % 624026 %% % %% Y

% alpha & beta %%%%0%6%%6%%6%6%%% 0% 0% 650 %6902 %0%0 %% %% %% %% %% 0% % % 0% %% 0 e Yo%
alpha(l)=sum(X1.¥X1)*delta_x/L; beta(1)=sum(X1)*delta_x/L;
alpha(2)=sum(X2.*X2)*delta_x/L; beta(2)=sum(X2)*delta_x/L;
alpha(3)=sum(X3.*X3)*delta_x/L; beta(3)=sum(X3)*delta_x/L;
alpha(4)=sum(X4.*X4)*delta_x/L; beta(4)=sum(X4)*delta_x/L;
alpha(5)=sum(XS5.*X5)*delta_x/L; beta(5)=sum(X5)*delta_x/L;
alpha(6)=sum(X6.*¥X6)*delta_x/L; beta(6)=sum(X6)*delta_x/L;

figure; hold on; plot(x,(X1),".-b"); plot(x,(X2),"-2); plot(x,(X3),".-r');
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Appendix B

Maple code for detail derivation of hydrodynamic drag force and hydrodynamic function:

>VIr@R}:=U[0l*e” (I*omega*t) *cos (theta);
>Vitheta@R]:=-Uid]*e”{(I*omega*t)*s
>psilll:=e”(I*c

=3
{1
€0
jal)
o
S
[
%.,
n
o]
ot
s
I¢i]
a
~

>psif2]:=BesselK(l,r*sgrt(I*omega/nu))*e” (I*omega*t) *sin/

- i =

theta);
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‘Appendix C

MATLAB code for producing the theoretical response of the thermal excitation:

clc; clear all; close all;

% cantilever properties %% %0%%:%6%%%%0%%6% %5090 %02 6% % %% 0% %% %6 %% %00 6% % %%

L=400e-6;

b=30e-6,
~h=2e-6;

A=b*h; I=b*h"3/12;

ro_c=2330;

E=170e9;

% fluid properties %%0%6%%%6%%6%6% 6% %% %0565 6%467%%%6%%%0%0%4%6%6%0 %0 %0 %% %0 %1% %% 0 %% %

“ro_f=997,;
eta_=0.8628e-3;

% mode shapes and related parameters %%6%6%6°%6%%%0%%%%0% %% %6%4%6%6%0%%%6%6%0%% %%

delta_x=0.00001*L; x=[0:delta_x:L];
landa(1)=1.8751/L; landa(2)=4.694/L; landa(3)=7.855/L; landa(4)=10.996/L;

X1=(cos(landa(1)*x)-cosh(landa(])*x)-

((cos(landa(1 )*L)+cosh(landa( 1)*L))/(sin(landa(1)*L)+sinh(landa(1)*L)))*(sin(Janda(1)*x)-

- sinh(landa(1)*x)));

X2=(cos(landa(2)*x)-cosh(landa(2)*x)-

((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(}anda(2)*L)+sinh(landa(2)*L)))*(sin(landa(2)*x)-

sinh(landa(2)*x)));

X3=(cos(landa(3)*x)-cosh(landa(3)*x)-

" ((cos(landa(3)*L)+cosh(landa(3)*L))/(sin{landa(3)*L)+sinh(landa(3)*L)))*(sin(landa(3)*x)-

- sinh(landa(3)*x)));

X4=(cos(landa(4)*x)-cosh(landa(4)*x)-

" ((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(sin(landa(4)*x)-
sinh(landa(4)*x)));

X11=landa(1)*((-sin(landa(1)*x)-sinh(landa(1)*x)-
((cos(landa(1)*L)+cosh(landa(1)*L}))/(sin(fanda(1)*L)+sinh(landa(1)*L)))*(cos(landa(1)*x)-
cosh(landa(1)*x))));

X12=landa(2)*((-sin(landa(2)*x)-sinh(landa(2)*x)-
((cos(landa(2)*L)+cosh(]anda(2)*L))/(sm(landa(Z)*L)+smh(landa(2)*L)))*(cos(landa(2)*x)-
cosh(landa(2)*x))));

X13=landa(3)*((-sin{landa(3)*x)-sinh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)*sinh(landa(3)*L)))*(cos(landa(3)*x)-
cosh(landa(3)*x))));

X14=landa(4)*((-sin(landa(4)*x)-sinh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(cos(landa(4)*x)-
cosh(landa(4)*x))));
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X11=(X11/X1(length(X1)));
X12=(X12/X2(length(X2)));
X13=(X13/X3(length(X3)));
X14=(X14/X4(length(X4)));
X1=(X1/X1(length(X1)));
X2=(X2/X2(length(X2)));
X3=(X3/X3(length(X3)));
X4=(X4/X4(length(X4)));

alpha(1)=sum(X1.*X] Y*delta_x/L; beta(1)=sum(X1)*delta_x/L;
alpha(2)=sum(X2.*X2)*delta_x/L; beta(2)=sum(X2)*delta_x/L;
alpha(3)=sum(X3.*X3)*delta_x/L; beta(3)=sum(X3)*delta_x/L;
alpha(4)=sum(X4.*X4)*delta_x/L; beta(4)=sum(X4)*delta_x/L;

%% theoretical response of thermal noise %6%6%%6%%%0%%0% 19%6% 096209 %% %% %6 %009 %% %%
=[0.01:0.01:60];
omega=2*pi*f*1000;

b

Re = @(X) ro_f*X*b"2/4/eta_f;

GAMA_circ = @(X)1+(4*i*besselk(1,(-i*sgrt(i*Re(X)))))./(sqrt(i*Re(X)).*besselk(0,(-i*sqrt(i*Re(X)))));
tao = @(X)log10(Re(X))

OMEGA _r=@(X)(0.91324-0.48274*(tao(X))+0.46842*(tao(X))."2-
0.12886*(tao(X)).~3-+0.044055*(tao(X)).”4-0.0035117*(tao(X)).”5+0.00069085*(tao(X))."6)/(1-
0.56964*(tao(X))+0.48690*(tao(X))."2-0.13444*(tao(X)).”3+0.045155*(tao(X))."4-
0.0035862*(tao(X)).~5+0.00069085*(tao(X)).”6);

OMEGA_i =@(X)(-0.024134-0.029256*(tao(X))+0.016294*(tao(X))."2-
0.00010961*(tao(X)).”3+0.000064577*(tao(X)).”4-0.000044510*(tao(X)).”5)/(1-
0.597020*(tao(X))+0.551820*(tao(X))."2-0.18357000*(tao(X)).”3+0.079156000*(tao(X))."4-
0.014369000*(tao(X)).~5+0.0028361*(tao(X))."6);

OMEGA = @(X)OMEGA _r(X) + OMEGA_i(X)*i;

GAMA rect = @(X)OMEGA(X) .* GAMA_circe(X);

THE 1=(4*(pi/4*ro_f*b"2*(omega).*imag(GAMA _rect(omega)))*beta(1)*L)./(E*I*(landa(1))"4*alpha(1)
*L-(omega.”2).*(ro_c*A+pi/d*ro f*b"2*GAMA_rect(omega))*alpha(l1)*L);
THE2=(4*(pi/4*ro_f*b"2*(omega).*imag(GAMA _rect(omega)))*beta(2)*L)./(E*I*(landa(2))"4*alpha(2)
*L-(omega."2).*(ro_c*A+pi/d¥ro_f*b"2*GAMA_rect(omega))*alpha(2)*L);
THE3=(4*(pi/4*ro_f*b"2*(omega). *imag(GAMA _rect(omega)))*beta(3)*L)./(E*I*(landa(3))"4*alpha(3)
*L-(omega.”2).*(ro_c*A+pi/d*ro_f*b"2*GAMA_rect{omega))*alpha(3)*L);
THE4=(4*(pi/4*ro_f*b"2*(omega).*imag(GAMA _rect(omega)))*beta(4)*L)./(E*¥I*(landa(4))"4*alpha(4)
*L-(omega.”2).*(ro_c*A+pi/d*ro_f*b"2*GAMA _rect(omega))*alpha(4)*L);

THE_response=[(abs(THE] *X11(length(X11)+THE2*X12(length(X 12))+THE3*X13(length(X13))+ THE

4*X14(length(X14))'L;
figure; plot(f,THE response,’-.r');
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Appendix D

MATLAB code for producing the theoretical response of the frequency sweep excitation:

cle; clear all; close ali;

% cantilever Properl‘ies 8494%6%0%% 0% %6620 %62 5%0%% 6% %0 %% 0% %% 6% 60 000 % 6% 60w %% 6 % 6% 6% Y
L=400¢-6;

b=30e-6;

h=2e-6;

A=b*h; I=b*h"3/12;
ro_c*2 30;
E=170e9;
% fluid properties %6%%%6%%%%%%%%" a0 e e Vel 600 6% 0% %% 6% 6 %60 6
ro_f=997;
eta f=0.8628e-3;
% mode shapes and related parameters %%0%% a%% %0%%% 6% %% 0% 070265 0% % 6% %%%6%09 %% % %

delta_x=0.00001*L; x=[0:delta_x:L];
landa(1)=1.8751/L; landa(2)=4.694/L; landa(3)=7.855/L; landa(4)=10.996/L;

X1=(cos(landa(1)*x)-cosh(landa(1)*x)-

({(cos(landa(1)*L)+cosh(landa(1)*L))/(sin(landa(! )*L)+smh(landa(l Y*L)))*(sin(landa(1)*x)-
sinh(landa(1)*x)));

X2=(cos(landa(2)*x)-cosh(landa(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L.))/(sin(landa(2)*L)+sinh(landa(2)*L)))*(sin(landa(2)*x)-
sinh(landa(2)*x)));

X3=(cos(landa(3)*x)-cosh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))*(sin(landa(3)*x)-
sinh(landa(3)*x)));

X4=(cos(landa(4)*x)-cosh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L.)))*(sin(landa(4)*x)-
sinh(landa(4)*x)));

X11=landa(1)*((-sin(}anda(1)*x)-sinh(landa(1)*x)-
({cos(landa(1)*L)+cosh(landa(1)*L))/(sin(landa(1)*L)+sinh(landa(1)*L)))*(cos(landa(1)*x)-
cosh(landa(1)*x))));

X12=landa(2)*((-sin(landa(2)*x)-sinh(landa(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(Janda(2)*L)+sinh(landa(2)*L)))*(cos(landa(2)*x)-
cosh(landa(2)*x))));

X13=landa(3)*((-sin(landa(3)*x)-sinh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))* (cos(]anda(3)*x)
cosh(landa(3)*x))));

X14=landa(4)*((-sin(landa(4)*x)- smh(landa(4)*x)
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin{landa(4)*L)+sinh(landa(4)*L)))*(cos(landa(4)*x)-
cosh(landa(4)*x)})));
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X11=(X11/X1(length(X1)));
X12=(X12/X2(length(X2)));
X13=(X13/X3(length(X3)));
X14=(X14/X4(length(X4)));
X1=(X1/X1(length(X1)));
X2=(X2/X2(length(X2)));
X3=(X3/X3(length(X3)));
X4=(X4/X4(length(X4)));

alpha(1)=sum(X1.*X1)*delta_x/L; beta(l)=sum(X1)*delta_x/L;
alpha(2)=sum(X2.*X2)*delta x/L; beta(2)=sum(X2)*delta_x/L;
alpha(3)=sum(X3.*X3)*delta_x/L; beta(3)=sum(X3)*delta_x/L;
alpha(4)=sum(X4.*X4)*delta_x/L; beta(4)=sum(X4)*delta_x/L;

Qs PREER A

090% 0% 0% %0 0% % 0% %% 6% %% % 84%6%6%%

% theoretical response of frequency sweep %%0%% 0% 0%%6%0% 0% %% %%
f=[0.01:0.01:60]; '

omega=2*pi*{*1000;

Re = @(X) ro_f*X*b"2/4/eta_f;

GAMA_circ = @(X)1+(4*i*besselk(1,(-i*sqrt(i*Re(X))))). /(sqn(l*Re(X)) *besselk(O( 1*sqrt(i*Re(X)))));
tao = @(X)loglO(Re(X))

OMEGA r =@(X)(0.91324-0.48274*(tao(X))+0.46842*(tao(X))."2- .
0.12886*(tao(X)).”3+0.044055*(tao(X)).”4-0.0035117*(tao(X)).”5+0.00069085*(tao(X))."6)/(1-
0.56964*(tao(X))+0.48690*(tao(X)).~2-0.13444*(tao(X))."3+0.0451 55*(ta0(X)) ~4-
0.0035862*(tao(X))."5+0.00069085*(tao(X)).”6);

OMEGA i =@(X)(-0.024134-0.029256*(tao(X))+0.016294*(tao(X))."2- -
0.00010961*(tao(X)).”3+0.000064577*(tao(X)).”4-0.000044510*(tao(X))."5)/(1-
0.597020*(tao(X))+0.551820*(tao(X))."2-0.18357000*(tao(X)).”3+0.0791 56000*(tao(X)) -
0.014369000*(ta0(X)).~5+0.0028361*(tao(X))."6);

OMEGA = @(X)OMEGA_r(X) + OMEGA_i(X)*i;

GAMA rect = @(X)OMEGA(X) .* GAMA_circ(X);

ACOI=((omega.”2).*(ro_c*A+pi/d*ro_f*b"2*GAMA_rect(omega))*beta(1)*L)./(E*I*(landa(1))"4*alpha(
1)*L-(omega.”2).*(ro_c*A+pi/4*ro_*b2*GAMA rect(omega))*alpha(1)*L);
ACO2=((omega."2).*(ro_c*A+pi/4*ro b "2*GAMA _rect(omega))*beta(2)*L)./(E*I*(landa(2))"4*alpha(
2)*L-(omega.”2).*(ro_c*A+pi/4*ro_f*b"2*GAMA _rect(omega))*alpha(2)*L);
ACO3=((omega.”2).*(ro_c*A+pi/4*ro_f*b"2*GAMA_rect(omega))*beta(3)*L)./(E*1*(landa(3))"4*alpha(
3)*L-(omega.”2).*(ro_c*A+pi/4*ro_f*b"2*GAMA _rect(omega))*alpha(3)*L);
ACO4=((omega.”2).*(ro_c*A+pi/4*ro_f*b"2*GAMA _rect(omega))*beta(4)*L)./(E*1*(landa(4))"4*alpha(
4)*L-(omega.”2).*(ro_c*A+pi/4*ro_f*b"2*GAMA_rect(omega))*alpha(4)*L);

ACO response=[(abs(ACO1*X11(length(X 11))+ACO2*X 12(length(X 12))+ACO3*X 13(length(X 13))+A

CO4*X14(length(X14)N'L;
figure; plot(f,ACO_response,-.r');
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Appendix E

MATLAB code for producing the theoretical response of a cantilever to step excitation

and also for finding the damped resonant frequency and decaying coefficient:

clc; clear ail;

cantilever=": cantilever N=1;
L=400e-6;
b=30e-6;

h=2e-6;

A=b*h; I=b*h"3/12;

ro c=2330;

E=170e9;

w vac=(1.8751/L)" 2*sqrt(E*I/ro c/A);

ro_%¥997;
eta f=0.8628e-3;
3 ' %

delta x=0.00001*L; x=[{0:delta x:LJ};

landa(1)=1.8751/L; landa (2)=4.6%4/L; landa(3)=7.855/L;

landa(4)=10.996/L; landa(5)=14 137/L landa(6)=17.279/L;

landa(7)=(7-0.5%)*pi/L; landa(8)=(8- *pi/L; landa(9)=(9-0.5)*pi/L;

landa(10)=(10-0.5)*pi/L; 1landa(ll)= (11—0.5)*pi/L; landa(12)=(12-

0.5)*pi/L:

X1l=(cos{landa(l)*x)-cosh{landa{l)*x)~

({cos(landa (1) *L)+cosh(landa(1)*L))/(sin(landa(l)*L)+sinh(landa(1)*L}}}

*(sin(landa (1) *x)-sinh(landa(l1)*x)));

X2=(cos(landa(2)*x}-cosh(landa(2)*x) - _

((cos(landa(2)*L)+cosh(landa(2)*L))/{(sin(landa(2)*L)+sinh(landa(2)*L)))

*(sin{landa(2) *x)-sinh(landa(2)*x)) ).,

X3=(cos(landa(3)*x)-cosh(landa(3)*x)-

{({(cos(landa({3)*L)+cosh{landa (3)*L))/{(sin{landa(3)*L)+sinh(landa(3)*L)))

*(sin(landa (3) *x) - 51nh(landa(3)*x))),

X4=(cos{landa(4)*x)-cosh(landa(4)*x)-

((cos{landa )*L +cosh(landa(4) L))/ (sin{(landa(4)*L)+sinh(landa(4)*L})))

*(sin(landa(4)*x)-sinh(landa{(4)*x))):

X5=(cos(landa(5)*x) cosh{landa(5)*x) -

{{cos(landa (5)*L)+cosh(landa{5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L)))
)1

*L
*(sin{landa(5)*x)-sinh(landa (5)*x

’
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=(X1/X1 (length{

X6={cos{landa (6)*x)-cosh(landa(6)*x)~
({(cos(landa(6)*L)+cosh(landa(6)*L))/(sin{landa(6)*L)+sinh(landa(6)*L)))
*(sin(landa (6) *x)-sinh(landa(6)*x))});

X7={(cos (landa(7)*x)~-cosh{(landa(7)*x) -

- ((cos(landa(7)*L)+cosh(landa (7)*L))/(sin(landa(7)*L)+sinh(landa(7})*L)))
*(sin{landa(7)*x) - 51nh(landa(7)*x)));

X8=(cos(landa (8)*x)~cosh(landa(8)*x) -

{(cos{landa(8)*L) +cosh(landa( y*L) )/ (sin(landa(8)*L)+sinh(landa(8)*L)}))
*(sin(landa(8)*x)~-sinh(landa(8)*x)));

X9=(cos (landa(9)*x)~-cosh(landa (9)*x)~-
({cos(landa(9)*L)+cosh(landa(9)*L))/(sin{landa (9)*L)+sinh(landa(9)*L)))
*({sin(landa(9)*x)-sinh{(landa(9)*x))};
X1ll=landa(l)*((-sin{landa(l)*x)-sinh(landa(1l)*x)-

{{cos(landa (1) *L)+cosh{landa(1)*L))/(sin(landa(l)*L)+sinh{(landa(l)*L}}))
*(cos(landa(l)*x)~-cosh(landa(l)*x)))):

X12=landa (2)* ((-sin{landa(2)*x)-sinh(landa(2) *x) -
((cos(landa{2)*L)+cosh(landa(2)*L) )/ ( 51n(landa(2)*L)+sinh(landa(2)*L)))
*(cos(landa(2)*x)-cosh(landa(2)*x))})

X13=landa (3)*((-sin(landa(3)* x)—51nh(landa(3) X)) -
((cos(landa{3)*L)+cosh{landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L}})
*(cos(landa(3)*x)-cosh(landa(3)*x)))});
X14=1landa(4)*({-sin(landa(4)*x)-sinh{landa (4) *x) -
({cos(landa(4)*L)+cosh{(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))
*{(cos{(landa(4)*x)-cosh(landa(4)*x))));

X15=1anda (5) *((-sin(landa(5)*x)-sinh(landa {(5) *x) -
((cos{landa(5)*L)+cosh(landa(5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L)))
*{cos{landa(5)*x)-cosh(landa(5)*x))));

Xlo6=landa (6)* ((-sin({landa(6)*x)-sinh(landa(6)*x) -
((cos(landa(6)*L)+cosh(landa (6)*L))/ (sin({landa(6)*L)+sinh(landa (6)*L})))
*(cos(landa (6)*x)-cosh(landa{6)*x))));

X17=landa (7)*{(-sin(landa(7)*x)-sinh(landa(7)*x) -
({cos(landa(7)*L)+cosh(landa(7)*L))/(sin({landa{7)*L)+sinh(landa(7)*L)})
*(cos({landa(7)*x)~-cosh(landa (7)*x))) ),

X18=landa (8)*{(-sin(landa(8)*x)-sinh(landa(8) *x)-

((cos (landa(8)*L)+cosh(landa(8)*L))/(sin(landa(8)*L)+sinh{landa(8)*L)})
*(cos(landa (8)*x)-cosh{landa(8)*x)))}):
X19=landa(9)*{(~-sin(landa(9)*x)-sinh(landa (9)*x) -
((cos(landa(9)*L)+cosh(landa(9)*L))/(sin(landa{9)*L)+sinh{(landa(9)*L)))
* (cos(landa (9) *x)~-cosh(landa (9)*x))));

X11=(X11/X1(length(X1)));

X12=(X12/X2 (length(X2)));

X13=(X13/X3(length(X3)));

X14=(X14/X4 (length Y

X15=(X15/X5(length )Y -

X16=(X16/X6(length ))

X17=(X17/X7(length ));

X18=(X18/X8 (length )Y

X19=(X19/X9(length V)

(

=(X2/X2 (length (
=(X3/X3 (length(
=(X4 /X4 (length (
=(X5/X5 (length (
=(X6/X6 (length{
=(X7/X7 (length/(
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X8=(X8/X8 (length(X8))):

X9=(X8/X9(length(X9)));

alpha(l)=sum(X1l.*X1)*delta x/L; beta(l)=sum
alpha(2)=sum(X2.*X2) *delta x/L; beta(2)=sum
alpha(3)=sum{X3.*X3)*delta x/L; beta(3)=sum
alpha (4)=sum(X4.*X4)*delta x/L; beta(4)=sum
alpha(5)=sum(X5.*X5)*delta_x/L; beta(d)=sum
alpha (6)=sum(X6.*X6) *delta x/L; beta(6)=sum
alpha(7)=sum(X7.*X7)*delta x/L; beta(7)=sum
alpha(8)=sum(X8.*X8)*delta x/L; beta(8)=sum
alpha(9)=sum(X9.*X9) *delta x/L; beta(9)=sum

f= [O Ol 0. Ol 500]

X5 Y6 N7 K8 KT
- F

frea

’

omega=2*pi*£*1000;

Re = Q@ (X) ro_f*X*b”2/4/eta f;

GAMA circ = @(X)1
i*sgrt (i*Re(X)}))

+{(4*i*besselk (1, (-

)./ (sgrt (i*Re (X)) .*besselk (0, (-i*sgrt (i

tao = @{X)loglO(Re(X));

OMEGA r =@(X) (0.91324-0.48274* (tao(X))+0.46842* (tao(X)).

.12886* (tao (X)
.0035117* (tao (X)
.13444* (tao(

.0035862* (tao

OO O OO

)

~3+0.044055* (tao (X))} .4~
) ."5+0.00062085* (tao (X))

~"3+0.045155* (tac (X)) .4~

).
(X
.56964* (tao(X))+0.48690* (tao (X)) . 2~
X)) .
(X

) .75+0.00069085* (tao (X)) ."6
OMEGA i =@(X) (-0.024134-0.029256* (tao(X))+0.016294* (tao (X)) .
0.00010961* (tao (X
0.000044510* (tao (X
0.18357000* (tao (X
0.014369000* (tao (X

)).”3+0.000064577* (tao (X
Yy ."5)/(1-0. 597020*(tao
Y} .73+0.079156000* (tao
}).75+0.0028361* (tao( )

OMEGA = @ (X)OMEGA r(X) + OMEGA i(X)*1i;

GAMA rect = @(X)OMEGA (X)

ACOl=( (omega.”"2).*

E*I*(landa (1)) "4~
(omega.”2) .*

ACO2=( (omega."2).*

E*I* (landa(2))"4*
(omega.”2).*
ACO3=((omega."2).

.* GAMA circ(X);

alpha (1) *L-

alpha(2)*L-

E*I*(landa(3))"4*alpha(3)*L-

(omega.”2) .

ACO4={( (omega.”"2).*

E*I* (landa(4))"~4*alpha(4)*L-

(omega.”2).*

ACO5=( (omega.”"2) .*

E*I* (landa(5))"4~*
(omega.”2).*
ACO6={ (omega."2).

E*I*(landa(6)) 4+
(omega.”2).
ACO7=((omega."2).

alpha(5)*L-

X))+
}

.06y / (1~

)i
). ”4-

.A4—

(ro _c*A+pi/d*ro f*b"2*GAMA_ rect (cmega

(ro c*A+pi/4*ro f*b"2*GAMA rect (omega))*alpha(l
(ro _c*A+pi/d*ro_f*b"2*GAMA rect (omega)) *beta(2)*L)

(ro C*A+pi/4*ro f*b"2*GAMA rect (omega))*alpha (2
*(ro _c*A+pi/4*ro_f*b"2*GAMA rect (omega)) *beta(3)

*(ro c*Atpi/4*ro f*b"2*GAMA_rect (omega))*
(ro_c*A+pi/4*ro_f*bAZ*GAMA_rect(omega))*beta(4)*L%./\

(ro c*A+pi/4*ro f*b"2*GAMA_ rect (omega))*
(ro c*A+pi/4*ro f*b"2*GAMA rect (omega))*beta(5)*L)

(ro_c*A+pi/4*ro f*b"2*GAMA rect (omega))

(X1)*delta x/L;
(X2)*delta x/L;
{X3)*delta x/L;
(X4)*delta x/L;
{X5)*delta =/L;
(X6)*delta x/L;
(X7)*delta x/L;
(X8) *delta x/L;
(X9)*delta x/L;

.551820* (tao (X)) .

)) *beta(l)

*alpha(5)*L);

X100

~D—

*1,)

*1,)

*(ro_c*A+ 2/4*ro f*b"2*GAMA rect (omega)) *beta(6)*L)
p _ -

alpha{6)*L-

E*I* (landa(7))~4*alpha(7)*L~-

(omega.”2) .*
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ACOB={( (omega.”2) .* (ro_c*A+pi/4*ro f*b"2*GAMA rect (omega))*beta(8)*L)./{
E*I*(landa(8))"4*alpha (8)*L-

(omega.”2).* (ro_c*A+pi/d4*ro f*b"2*GAMA rect (omega})*alpha(8)*L);
ACO9=((omega.A2).*(ro_c*A+pi/4*ro”f*bA2*GAMA_rect(omega))*beta(9)*L)./(
E*I* (landa(9))~4*alpha(9)*L-

(omega.”2).* (ro_c*A+pi/4*ro f*b"2*GAMA rect (omega)) *alpha(9)*L);
ACO_response9={ (-

i./omega).* (ACO1*X11(length(X11))+AC02*X12(length(X12))+AC03*X13(length
(X13))+AC0O4*X14 (length (X14) )+AC0O5*X15(length(X15))+AC06*X16(length(X16)
y+ACO7*X17 (length (X17) ) +AC08*X18 (length (X18))+AC0O9*X19(length(X19}))]1"';

for ppp=1l:length(ACO response9)

YY x omega (ppp, 1)=ACO_response9 (ppp) ;

YY x omega(2*length (ACO response9)-ppp+l,1)=ACO_respcnse%(ppp);
end

y X _time=ifft(YY x omega);
t=[le-6:1e-6:0.1]";

figure; v

subplot(2 1,1); plot(f,abs(ACO response9}, 'k'); xlabel('¥
{kHz}"'); ylabel( Amplitude');

subplot (2, 1 2); plot(t real(y x tlme) k') xlabel ('
ylabel(" ')

landa(1)=1.8751/L;
f=(0.01:0.01:500]; omega=2*pi*£*1000;

Re = @(X) ro f*X*b"2/4/eta_f;

GAMA circ = 8(X)1+(4*i*besselk(l, (-

i*sgrt (i*Re(X)))) )./ (sqrt (i*Re (X)) .*besselk (0, (-i*sgrt (i*Re(X)))));
tao = @(X)loglO(Re(X));

OMEGA r =Q@({X) (0.91324-0.48274* (tao(X))+0.46842*(tao (X)) ."2-
0.12886* (tao(X)).”3+0.044055* (tao(X)). 4~

0.0035117* {(tac(X)).”5+0.00069085* (tao(X))."6)/(1-

0.56904* (tao (X))+0.48690* (tao (X))." "2~

0.13444*(tao (X)) ."340.045155* (tao(X))."4-

0.0035862* (tao (X)) .”5+0.00069085* (tao(X))."6);

OMEGA i =@(X) (-0.024134-0.029256* (tao(X)}+0.016294* (tao(X))."2-
0.00010961* (tao (X)) .”3+0.000064577* (tao (X)) .4~

0.000044510* (tao(X)).”5)/(1-0.597020* (tao(X))+0.551820* (tao(X))."2-
0.18357000* (tao(X)).”3+40.079156000* (tac(X)). A4~

0.014369000* (tao(X))."5+0.0028361* (tao(X))."6);

OMEGA = @(X)OMEGA_I(X) + OMEGA_i(X) i

GAMA rect = @ (X)OMEGA (X) .* GAMA_circ(X);

B omega=landa(l).*sqrt (omega/w_vac).*(l+{pi*ro_f*b"2)/(4*ro_c*A) *GAMA_ r
ect (omega) ). (1/4);

Al=dirac({omega)/ (8*pi)-i./ (2*omega);

A2=-

Al.* (sin(B _omega*L).*sinh(B_omega*L))./(l+cos(B_omega*L).*cosh(B_omega*
L));
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A3=0;
A4=A1.*(sin(B_omega*L).*cosh(B_omega*L)+cos(B_omega*L).*sinh(B_omega*L)
)./ (l+cos (B _omega*L).*cosh(B_omega*Ll));
Y_x_omega=B_omega.*(A1.*(—sin(B_omega*L)+sihh(B_omega*L))+A2.*(—

sin(B _omega*L}-

sinh(B_omega*L))+A3.* (cos(B_omega*L)+cosh(B_omega*L})+A4.* (cos (B_omega*
L)-cosh (B _omega*L)));

for ppp=1l:length(Y x omega)

YY_x_omega (ppp, 1) =Y_x_omega (ppp) ;

YY x omega(2*length(Y_x_omega)-ppp+l, 1))=Y x_omega(ppp);
end

y x time=ifft (YY x omega);
t=[le-6:1e-6:0.11";

figure;

subplot {2,1,1}); plot(f,akbs(Y x ocmega), '%'); xlabel(
ylabel ('"Amplitude');

subplot (2,1,2); plot(t,real(y x time),'k"); xlabel('time {s;');
ylabel ('Amplitude’);
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Appendix F

Properties of glycerin-water solutions at different temperatures and concentrations:

Viscosity of aqueous glycerin solutions in mPa s:

Glycerin ’ Temperature (°C)
(Wt%) [0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
) 0 1.792 1.308 | 1.005 | 058007 | 0656 | 0.5494 | 04688 | 0.4061 | 03565 | 0.3165 | 0.2838
10 2.44 1.74 1.31 1.03 0.826 0.68 0.575 05 - - -
20 3.44 2.41 176 1.35 1.07 0.879 | 0731 0.635 - - -
30 5.14 3.49 25 1.87 1.46 1.16 0.956 0.816 0.69 - -
40 825 537 372 272 2.07 1.62 1.3 1.09 0.918 0.763 0.668
. 50 146 9.01 6 421 3.1 237 1.86 1.53 1.25 1.05 0.91
60 29.9 17.4 10.8 7.19 5.08 376 2385 2.29 1.84 1.52 1.28
65 457 253 152 9.85 6.8 4.89 366 2.91 228 1.86 1.55
67 55.5 29.9 17.7 11.3 7.73 5.5 4.09 323 25 2.03 1.68
70 76 388 225 141 | 94 6.61 486 378 29 234 1.93
75 132 65.2 35.5 21.2 136 9.25 6.61 5.01 38 3 243
80 255 116 60.1 339 208 136 9.42 6.94 513 403 318
85 540 223 109 58 335 21.2 14.2 10 7.28 552 4.24
90 1310 498 219 109 60 355 225 155 1 7.93 6
91 1590 592 259 127 68.1 39.8 251 17.1 11.9 862 6.4
92 1950 729 310 147 78.3 448 28 19 13.1 9.46 6.82
93 2400 860 367 172 89 515 316 21.2 14.4 10.3 7.54
04 2930 1040 437 202 105 58.4 354 236 15.8 11.2 8.19
95 3690 1270 523 237 121 67 39.9 26.4 175 12.4 9.08
96 4600 1580 624 281 | 142 77.8 45.4 287 19.6 136 10.1
97 5770 1950 765 340 166 88.9 51.9 336 219 15.1 10.9
98 7370 2460 939 409 196 104 59.8 38.5 248 17 12.2
99 9420 3090 1150 500 235 122 69.1 436 27.8 19 13.3
100 12070 3900 1410 612 284 142 81.3 50.6 319 21.3 14.8

178



Density of aqueous glycerin solutions in glem’:

Glycerin Temperature (°C) Glycerin Temperature (°C)

(wt%) 15 15.5 20 25 30 (wt%) 15 15.5 20 25" 30
100 1.26415 1.26381 1.26108 | 1.25802 | 1.25495 50 1.1287 1.12845 1.1263 1.12375 1.1211
99 1.2616 1.26125 1.2585 | 1.25545 | 125235 49 1126 1.12575 1.1236 1.1211 1.11845
g8 1.259 1.25865 1.2559 12529 | 1.24975 48 1.12325 1.12305 1.1209 1.1184 1.1158
97 1.25645 1.2561 125335 | 12503 1.2471 47 1.12055 1.1203 1.1182 1.11575 11132
96 1.25385 12535 ..1.2508 12477 1.2445 46 1.1178 1.1176 1.1155 1.1131 1.11085
95 1.2513 1.25095 124825 | 124515 | 1.2419 45 1.1151 1.1149 1.1128 1.1104 110795
94 1.24865 1.2483 1.2456 12425 1.2393 44 111235 1.11215 1.1101 110775 1.1053
93 1.246 1.24565 1.243 123985 | 12367 43 1.1096 1.10945 11074 1.1051 1.10265
92 1.2434 1.24305 124035 | 123725 | 1.2341 42 1.1069 1.1067 1.1047 1.1024 1.10005
91 1.24075 12404 1.2377 1.2346 1.2315 41 1.10415 1.104 1.102 1.09975 1.0974
a0 1.2381 123775 1.2351 1.232 1.2289 40 1.10145 1.1013 1.0993 1.0971 1.09475
89 1.23545 12351 | 123245 | 122935 | 122625 39 1.09875 1.0986 1.09665 | 1.09445 | 1.09215
88 1.2328 1.23245 1.22975 | 1.22665 | 1.2236 38 1.09605 1.0959 1.094 1.0918 1.08955
87 1.23015 1.2298 1.2271 1224 1.22095 37 1.0934 1.0932 109135 | 1.08915 1.0869
86 1.2275 12271 .} 122445 | 122135 | 1.2183 36 1.0907 1.0805 1.08865 | 1.08655 1.0843
85 1.22485 14,22_445’ 12218 1.2187 1.21565 35 1.088 1.0878 1.086 1.0839 1.08165
84 12222 12218 .| 1.21915 | 1.21605 1.213 34 1.0853 1.08515 108335 | 108125 | 1.07905
83 1.21955 121915 1.2165 1.2134 | 1.21035 33 1.08265 1.08245 1.0807 1.0786 1.07645
82 1.2169 _1.2165 12138 | 121075 | 1.2077 32 1.07995 1.07975 1.078 1.076 1.0738
81 1.21425 121385 121115 | 1.2081 | 1.20505 31 1.07725 1.07705 107535 | 1.07335 1.0712
80 1.2116 12112 1.2085 | 1.20545 | 12024 30 1.07455 1.07435 1.0727 1.0707 1.06855
79 1.20885 1.20845 120575 | 1.20275 | 1.1997 29 1.07195 1.07175 1.0701 1.06815 1.06605
78 1.2061 1.2057 1.20305 | 1.20005 | 1.19705 28 1.06935 1.06915 1.06755 1.0656 1.06355
77 1.20335 1.203 12003 | 1.18735 | 1.19435 27 1.0867 1.06655 106495 | 1.06305 | 1.06105
76 1.20086 1.20025 1.1976 | 1.19465 | 1.1917 26 1.0641 1.0639 1.0624 106055 | 1.05855
75 1.19785 1.1975 1.19485 | 119195 1189 25 1.0615 10613 1.0598 1.058 1.05605
74 11951 1.1948 119215 | 118925 | 1.18635 24 1.05885 1.0587 1.0572 1.05545 1.0535
73 1.19235 119205 ©| 1.1894 1.1865 | 1.18365 23 1.05625 1.0561 1.05465 1.0529 1.051
72 1.18965 1.1893 1.1867 1.1838 1.181 22 1.05365 1.0535 1.05205 1.05035 1.0485
71 1.1869 1.18655 1.18395 | 11811 11783 21 1.051 1.0509 1.0495 1.0478 1046
70 1.18415 1.18385 1.18125 | 1.1784 | 1.17565 20 1.0484 1.04825 1.0469 1.04525 1.0435
69 1.18135 1.18105 11785 | 117565 | 11729 19 1.0459 1.04575 1.0444 1.0428 1.04105
68 1.1786 14783 | 117575 | 117295 | 11702 18 1.04335 1.04325 1.04195 | 1.04035 1.0386
67 1.17585 117555 .| 1.173 11702 | 1.16745 17 1.04085 1.04075 1.03945 1.0379 1.03615
66 1.17305 117275 117025 | 116745 | 1.1647 16 1.03835 1.03825 1.03695 1.03545 1.0337
65 1.1703 147} 11675 | 116475 | 1.16195 15 1.0358 1.0357 1.0345 1.033 1.0313
64 1.16755 1.16725 1.16475 1.162 1.15925 14 1.0333 1.0332 1.032 1.03055 1.02885
63 1.1648 1.16445 _' 116205 | 115925 | 1.1565 13 1.0308 1.0307 1.02955 1.02805 1.0264
62 1.162 1.1617 1.1593 | 115655 | 1.15375 12 1.0283 1.0282 1.02705 1.0256 1.02395
61 1.15925 1.15895 1.16655 | 1.1538 1.151 11 1.02575 1.02565 1.02455 1.02315 1.0215
60 1.1565 1.15615 1.1538 | 1.15105 | 11483 10 1.02325 102315 1.0221 1.0207 1.01905
59 1.1537 11534 115105 | 114835 | 114555 9 1.02085 1.02075 1.0197 1.01835 1.0167
58 1.15095 1.15065 1.1483 1.1456 | 1.14285 8 1.0184 1.01835 1.0173 1.016 1.0144
57 1.14815 1.14785 1.14555 | 1.14285 | 1.1401 7 1.016 1.0159 1.01485 1.0136 1.01205
56 1.14535 1.1451 1.1428 | 1.14015 | 1.1374 6 1.0136 1.0135 1.01255 1.01125 1.0097
55 11426 1.1423 114005 | 1.1374 1.1347 5 1.0112 1.0111 1.01015 1.0088 100735
54 1.1398 1.13955 11373 | 113465 | 1.13195 4 1.00875 1.0087 1.0078 1.00655 | 1.00505
53 1.13705 1.1368 113455 | 113195 | 1.12925 3 1.00835 1.0063 1.0054 1.00415 1.0027
52 1.13425 1.134 1.1318 11292 1.1265 2 1.00395 1.00385 1.003 1.0018 1.00035
51 1.1315 1.13128 142905 | 1.1265 11238 1 1.00155 1.00145 1.0006 0.99945 0.998
0 099913 0.99905 099823 | 099708 | 099568
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Appendix G

The values of shifting factors ar and by, used to generate the master curve for each

concentration

. 85% | . 12% 16% 25%
4]
Concentration (Wt %) | poypp | - ps/DEP | PS/DEP | PS/DEP
ar (-45 °C) - - 27413.61 -
br (-45 °C) - - 0.588842 -
. 8.5% 12% 16% 25%
0
Concentration (W %) | pomypp | ps/DEP | PS/DEP | PS/DEP
ar (-30 °C) - - 441.2482
bt (-30 °C) - - 0.767568 -
. | 85% 12% 16% 25%
0,
Concentration (Wt%) | pomypp | ps/DEP | PS/DEP | PS/DEP
at (-25 °C) 175.6454 - - -
br (-25 °C) 0.537061 - - -
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. 8.5% 12% 16% 25%
[i]
Concentration (W %) | ponpEp | pS/DEP | PS/DEP | PS/DEP
ar (-20 °C) - - - 191.8246
br (-20 °C) - - - © 0.868963
. 8.5% 12% 16% 25%
0 !
Concentration (W) | pghEp | PS/DEP | PS/DEP | PS/DEP
ar (-15 °C) - 36.43693 40.71392 -
br (-15 °C) - 0.609097 0.776458 -
. 8.5% 12% 16% 25%
[1)
Concentration (Wt%) | pomep | pS/DEP | PS/DEP | PS/DEP
ar (5 °C) 5.052725 | 4.73894 4562384 . | 7.345386
br (5 °C) 5 0686828 | 0853523 | 0.905225
. 8.5% 12% 16% 25%
0
Concentration (Wt%) | pg/pEp | PS/DEP | PS/DEP- | PS/DEP
ar (15 °C)- - - 1.94798 2.443513
br (15 °C) - - 0.968404 0.968404

* No experiment was performed for 8.5% PS/DEP at 25 °C, however the zero shear
viscosity at this temperature was determined using the exponential Arrhenius relation.
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Appendix H

LabVIEW code written for controlling the SG and DAQ hardwares and also for analyzing the recorded data.

SR

| A
tLsrE

o

Sanples to

Sample

ST

% Dev LRTSIO |

Read [EZH——

Rate : - »

i

Maxinum

value.s ¥

Yalue - ¥

{sample mode [Continuous Samples h—,

Fiysical Charmel

/G ¥

I

Frequency tkH2)
B>

1000 .

Digital Edge

VBB OO O OHD

ARmRRRRARERLS nee
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pass B e s e i s e

A A

I Dev1RTS

Samples o

Sample Rate 2 ’

sample mode fCantinuous Samples w-——- -

»

T X
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cgoopogoeoaonoopnnao00ono00o000n00o00o00c0o0pDnn n_DDDn_n_DDDDDDDUUDDDDDDDDDDDDDD_AN_u”:

Thermal Excitation *

u Trug

00D oaOpR 000000 000¢C

format {5e.6F 3

...... N ::SE.;;:. U I
B []
- - e P | UV - - W tr)
H '
1. m
{ IV H
_ [EP. D |
Samples to Read 3 {1657 Ko - s T e e ,lfmié..,.,!.ii_
Sample Rate 2 & b ) ] = [ n !
sample mode fContinuous Samplas Vi~ —
N £
Minimum valug 3 > ¥ L3

Ve
%
W

i
hry A e - e mANAA RS A S A e n e e NI RSO 1 [CTCORY ., | APPSO AN
Al Voltage 4= _wmau_m Clack 4= 4 Analog 10 0F
1Chan MSam

EDDDDDDDD‘DUDDDDD-DDDDD-DU-D-D-UDD-D.-Dn_n_n_-DDD-n_Dn_-DUUDDDD-DDD-UD-DDDDDDD:DD
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Anaiog 10 DEL
1Chan MSamn

i Y .

1L

15

i

Graphd 4| [Graph4 3

o o
RSN . M,l..; el

£
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Haenning| -2 —U H

9| 2 :

i

i

i

|

R e ha R AL R R A AR AR AR SRS S RSN S AL RAIN SRS CS B RSN AT RS m RS |V mn s ks st p g Smag e s a

'

** The false cases for all the frames are empty.
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Appendix |

Amplitude and phase responses for frequency sweep excitation. The best fit for
theoretical response with known properties (Theory), with unknown properties for
amplitude response (amp base) and with unknown properties for amplitude response

(phase base) are also presented:
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Appendix J

Experimental and theoretical responses of the cantilevers in the time and frequency
domain. The amplitudes are normalized with the magnitude of the first peak:
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Appendix K

The effect of using different number of modes on the calculation of theoretical response:
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Appendix L

MATLAB code for determining the fluid’s properties using the whole frequency range:

% this code needs the files in these folders:

% - ColUP - Calip
% ColP - CaliP NDP

tilever properties

cantilever="long'";
L=397e-6;
b=29¢-6;
h=2.33e-6;

Y% cantilever="medium’;
% 1.=197e-6;

Y% b=29e-6;

=2 235e-0,

Y%

A=b*h; I=b*h"3/12;
ro_c=2330;
E=170e9;

fluid_cel=["air *'Ethanol water 1925 Glycerine ;930 Giveerine 'J9060 Glycerine 'Y%75
Glycerine ;%80 Glycerine ';}'%100 Glycerine'];
filename _cel=[FS air_ FS ethanol_ FS_GWO00_  FS_GW25_ WFS GW30
VES GWe0 YFS GWTS UFS_GWR0O. UFS_GWI00. L
fluid_cel=celistr(fluid_cel);
filename_cel=cellstr(filename_cel);

%Wl ) B3 M B ©® D B O
%air  ethanol water %25 0250 860 %73 2480 %100
gro f cel=[1.184 785 997 1058 1123 1151 1191 1205 1257 };

g eta f cel=[0.018 1.078 0.88242 1.818 4.926 8.634 2692 4438 9312 [*le-3;

g _scal cel=[ 1 1 1 1 1 1 1 i 1 J*1es;
g angl cel={ 0 0 0 0 0 0 0 0 0 IR

Yo
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“of

delta_x

=0.00001*L; x=

{O:delta x:L];

landa(1)=1.8751/L;  landa(2)=4.694/L;  landa(3)=7.855/L;  landa(4)=10.996/L;
landa(5)=14.137/L.  landa(6)=17.279/L;

landa(7)=(7-0.5)*pi/L: landa(8)=(8-0.5)*pi/L; landa(9)=(9-0.5)*pi/L; landa(10)=(10-0.5)*pi/L;

landa(11)=(11-0.5)*pi/L; landa(12)=(12-0.5)*pi/L:

X1=(cos(landa(1)*x)-cosh(landa(1)*x)-
((cos(landa(1)*L)+cosh(landa(1)*L))/(sin(landa(1)*L)+sinh(landa(1)*L)))*(sin(landa(1)*x)-
sinh(landa(1)*x)));

X2=(cos(landa(2)*x)-cosh(landa(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(Janda(2)*L)+sinh(landa(2)*L)))*(sin(landa(2)*x)-
sinh(landa(2)*x)));

X3=(cos(landa(3)*x)-cosh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))*(sin(landa(3)*x)-
sinh(landa(3)*x)));

X4=(cos(landa(4)*x)-cosh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(sin(landa(4)*x)-
sinh(landa(4)*x))):

X5=(cos(landa(5)*x)-cosh(landa(5)*x)-
((cos(landa(5)*L)+cosh(landa(5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L)))*(sin(landa(5)*x)-
sinh(landa(5)*x)));

X6=(cos(landa(6)*x)-cosh(landa(6)*x)-
((cos(landa(6)*L)+cosh(landa(6)*L))/(sin(landa(6)*L)+sinh(landa(6)*L)))*(sin(landa(6)*x)-
sinh(landa(6)*x)));

X7=(cos(landa(7)*x)-cosh(landa(7)*x)-
((cos(landa(7)*L)+cosh(landa(7)*L))/(sin(landa(7)*L)+sinh(landa(7)*L)))*(sin(landa(7)*x)-
sinh(landa(7)*x))):

X8=(cos(landa(8)*x)-cosh(landa(8)*x)-
((cos(landa(8)*L)+cosh(landa(8)*L))/(sin(landa(8)*L)+sinh(landa(8)*L)))*(sin(landa(8)*x)-
sinh(landa(8)*x)));

X9=(cos(landa(9)*x)-cosh(landa(9)*x)-
{(cos(landa(9)*L)+cosh(landa(9)*L))/(sin{landa(9)*L)+sinh(landa(9)*L)))*(sin(landa(9)*x)-
sinh(landa(9)*x)));

X11=landa(1)*((-sin(landa( 1 )*x})-sinh(landa({1)*x)-
({cos(landa(1)*L)+cosh(landa(1)*L))/(sin(landa(1)*L)+sinh(landa(1)*L)))*(cos(Janda(1)*x)-
cosh(landa(1)*x))));

X12=landa(2)*((-sin(landa(2)*x)-sinh(landa(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(landa(2)*L)+sinh(Janda(2)*L)))*(cos(landa(2)*x)-
cosh(landa(2)*x)))); ‘
X13=landa(3)*((-sin(landa(3)*x)-sinh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))*(cos(landa(3)*x)-
cosh(landa(3)*x))));

X14=landa(4)*((-sin(landa(4)*x)-sinh{}landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(cos(landa(4)*x)-
cosh(landa(4)*x))));

X15=landa(5)*((-sin(landa(5)*x)-sinh(landa(5)*x)-
((cos(landa(5)*L)+cosh(landa(5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L})))*(cos(landa(5)*x)-
cosh(landa(5)*x))));

X 16=landa(6)*((-sin(landa(6)*x)-sinh(landa(6)*x)-
((cos(landa(6)*L)+cosh(landa(6)*L))/(sin(landa(6)*L)+sinh(landa(6)*L)))*(cos(landa(6)*x)-
cosh(landa(6)*x))));
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X 17=landa(7)*((-sin(landa(7)*x)-sinh(landa(7)*x)-
((cos(landa(7)*L)+cosh(landa(7)*L))/(sin(landa(7)*L)+sinh(landa(7)*L)))*(cos(landa(7)*x)-
cosh(landa(7)*x))));

X18=landa(8)*((-sin(landa(8)*x)-sinh(landa(8)*x)-
((cos(landa(8)*L)+cosh(landa(8)*L))/(sin(landa(8)*L)+sinh(landa(8)*L)))*(cos(landa(8)*x)-
cosh(landa(8)*x))));

X 19=Ilanda(9)*((-sin(landa(9)*x)-sinh(landa(9)*x)-
((cos(landa(9)*L)+cosh(landa(9)*L))/(sin(landa(9)*L)+sinh(landa(9)*L)))*(cos(landa(9)*x)-
cosh(landa(9)*x))));

X11=(X11/X1(length(X1)));
X12=(X12/X2(length(X2)));
X13=(X13/X3(length(X3)));
X14=(X14/X4(length(X4)));
X15=(X15/X5(length(X5)));

- X16=(X16/X6(length(X6)));
X17=(X17/X7(length(X7)));
X18=(X18/X8(length(X8)));

- X19=(X19/X9(length(X9)));
X1=(X1/X1(length(X1)));
X2=(X2/X2(length(X2)));

" X3=(X3/X3(length(X3)));
X4=(X4/X4(length(X4)));
X5=(X5/X5(length(X5)));
X6=(X6/X6(length(X6)));
X7=(X7/XT(length(X7)));
X8=(X8/X8(length(X8))):
X9=(X9/X9(length(X9)));

alpha(1)=sum(X1.*X1)*delta_x/L; beta(1)=sum(X1)*delta x/L;
alpha(2)=sum(X2.*X2)*delta_x/L; beta(2)=sum(X2)*delta_x/L;
- alpha(3)=sum(X3.*X3)*delta_x/L; beta(3)=sum(X3)*delta_x/L;
alpha(4)=sum(X4.*X4)*delta x/L; beta(4)=sum(X4)*delta_x/L;
alpha(5)=sum(X5.*X5)*delta_x/L; beta(5)=sum(X5)*delta_x/L;
alpha(6)=sum(X6.*X6)*delta_x/L; beta(6)=sum(X6)*delta_x/L;
alpha(7)=sum(X7.¥*X7)*delta_x/L; beta(7)=sum(X7)*delta_x/L;
" alpha(8)=sum(X8.*X8)*delta x/L; beta(8)=sum(X8)*delta_x/L;

alpha(9)=sum(X9.*X9)*delta_x/L; beta(9)=sum(X9)*delta_x/L;

' clear delta x x X] X2 X3 X4 XS X6 X7 X8 XS

for ﬂu1d N 2 2

tic

fluid=char(fluid_cel(fluid N))
filename=char(filename_cel(fluid_N));
g ro f=g ro f cel(fluid N);

g eta f=g eta f cel(fluid N);

g scal=g scal cel(fluid N);

g angl g angl cel(fluid_N);

ﬂ.lmng thL proper fi fn ng parameters of modmed f1l

1) ( ] ’ /.
% dutd management ! 684699968 0% % 6% 0% %6% 0 %0 6% e%%0 %6 %6 %% 9 %468

[ 3 Q
94%5%0%%% 0% %% %% 6% 0% 0% %0 %
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filename NDP=[filename cantilever amps ' CoUP - CaliP NDP.dat'l;
exp_data=load(filename NDP);

indices = find(cutoff freq<exp data(:,1) & exp_data(;,1)<=100); exp_data(indices,:)=[];
f 3=exp data(:,1)"; exp_amp=exp data(:,2); exp_ang=exp_data(:,3);

omega 3=2*pi*f 3*1000; omega2 3=omega 3.°2;

clear filename NDP exp data.indices;

% finding the best scal & angl %%%%%%%6%0%%%6%0%0%6%6%0%0%%%6%4%0%%6%6 %070 %0 %% %% %%
g Tb=(g_ro f*b)/(ro c*h); .

g Reb=(g_ro_f*w_vac*b”2)/(4*g eta f);

Ya 0=[g_ scal};

Yp_0=[g_angl];

Re = @(X,Xf) X*Xf/w _vac;

GAMA_circ = @(X,Xf)1+(4*i*besselk(1.(-i*sqrt(i*Re(X,X)))))./(sqrt(i*Re(X,X1)). *besselk(0,(-
i*sqri(i*Re(X,X1))))); ’

tao = @(X,XNlog10(Re(X,X1));

OMEGA r=@(X,X)(0.91324-0.48274*(tao( X ,X{))+0.46842*(tao(X,X{))."2-

0.12886*(tao(X, X1)).”3+0.044055*(tao(X, Xf))."4-
0.0035117*(tac(X,X1)).~5+0.00069085*(tao(X,X1)).76)/(1-0.56964*(tao(X,Xf))+0.48690*(tao(X,Xf))."2-
0.13444*(tao(X,X1)).73+0.045155*(tao(X, Xf))."4-
0.0035862*(tao(X,X1)).~5+0.00069085*(tao(X,X{))."6);

OMEGA _i =@(X,X£)(-0.024134-0.029256*(tao(X,Xf))+0.016294*(tao(X,Xf))."2-
0.00010961*(tao(X,X1)).”3+0.000064577*(tao( X, X1)).”4-0.000044510*(tao(X,Xf)).~5)/(1-
0.597020*(tao(X,X))+0.551820*(tao(X,Xf))."2-
0.18357000*(tao(X,X1)).”3+0.079156000*(tao( X, Xf))."4-

0.014369000*(tao(X,Xf))."5+0.0028361 *(tao(X,Xf))."6);

OMEGA = @(X, XHIOMEGA_r(X,Xf) + OMEGA _i(X,Xf)*i;

GAMA rect = @(X, X IOMEGA(X,Xf) .* GAMA_circ(X,Xf);

ACOI=@(X,Xf)(omega2 3.*(1+(pi*X(1)/4)*GAMA rect(X(2),Xf))*beta(1))./(w_vac”2*(landa(1)/landa(
1))™4*alpha(1)-omega2 3.*(1+(pi*X(1)/4)*GAMA rect(X(2).Xf))*alpha(1));
ACO2=@(X,Xf)(omega2: 3.¥(1-+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(2))./(w_vac"2*(landa(2)/landa(
1)"4*alpha(2)-omega2 3.*(1+(pi*X(1)/4)*GAMA rect(X(2),Xf))*alpha(2));
ACO3=@(X,Xf)(omega2 3.*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(3))./(w_vac"2*(landa(3)/landa(
1))™4*alpha(3)-omega2 3.*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*alpha(3));
ACO4=@(X,Xf)(omega2 3. *(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(4))./(w_vac"2*(landa(4)/landa(
1)) 4*alpha(4)-omega2 3.*(1+(pi*X(1)/4)*GAMA rect(X(2),Xf))*alpha(4));
ACOS=@(X,Xf)(omega2_3.*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(5))./(w_vac”2*(landa(5)/landa(
1))*alpha(5)-omega2 3. *(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*alpha(5));
ACO6=@(X,Xf)(omega2 3. *(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(6))./(w_vac"2*(landa(6)/landa(
1)) *alpha(6)-omega2 3. *(1+(pi*X(1)/4)* GAMA_rect(X(2),Xf))*alpha(6));
ACO7=@(X,Xf)(omega2 3.*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(7))./(w_vac”2*(landa(7)/1landa(
1))*4*alpha(7)-omega2_3.*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*alpha(7)),
ACO8=@(X,Xf)(omega2_3.*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(8))./(w_vac"2*(landa(8)/landa(
1))4*alpha(8)-omega2 3. *(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*alpha(8));

ACO9=@(X,Xf)(omega2 3.*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(9))./(w_vac"2*(landa(9)/landa(
1))*4*alpha(9)-omega2_3.*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*alpha(9)),

ACO_response9=@(X.Xf) '
[ACO1(X,X)*X11(length(X11))*ACO2(X.Xf)*X12(length(X12))+ACO3(X,X)*X13(length(X13)+AC
04(X,XDH*X14(length(X14))+ACO5(X, XH)*X 15(length(X 15))+ACO6(X, X )*X16(length(X16))+ACO7(
X, XH*X17(length(X17)+ACO8(X,X)*X 1 8(length(X18))+ACOIX, X)*X19(length(X19))]’;
AAA=@(X,Xf) abs(ACO_response9(fg_Tb g_Reb],Xf))/X;
BBB=@(X,Xf)angle(ACO_response9(X,Xf));

CCC=@(X,Xfunwrap(BBB({g_Tb g _Reb],Xf))-X;
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[Ya,ra,Ja] = nlinfit(omega 3,exp_amp,AAA,Ya_0); clear ra Ja;
[Yp,rp,Jp] = nlinfit(omega 3,exp_ang,CCC,Yp_0); clear rp Ip;

scal_best=Ya;
angl | best Yp,

/\CO] ALOZ ACO3 ACO4 ACO5 ACO6 A( 07 ACO8 ’\C ()Q /\CO __ViLsp(m%C) AA \ 3BB (‘( (

% finding the best re and eta for amplitude and phase responses %6%%%%%%0%0%6%6%: % %%

g_Tb (g_ro_f*b)/(ro_c*h);

g Reb=(g_ro f*w vac*b"2)/(4*g_eta_f);
Ya 0=[g Tb g Reb scal best];

Yp O=fg_Tbg Rebangl best];

Re = @(X,Xf) X*Xf/w_vac;

GAMA circ = @(X, X1 +(4*i*besselk(1,(-i*sqrt(i*Re(X,XDH))))./(sqrt(i*Re(X,Xf)). *besselk(0,(-
i*sqri(i*Re(X,X1)))));

tao = @(X,XNlogl 0O(Re(X,X1));

OMEGA _r =@(X,X)(0.91324-0.48274*(tao(X, Xf))+0 46842*(tao(X,Xf)).”2-

0. ]2886*(tao(X X0).~3+0.044055*(tao(X, Xf))."4-

0.00351 1 7*(tao(X,X1)).~5+0.00069085*(tao(X,X1)).~6)/(1-0.56964 *(tao(X, X ))+0.48690*(tao(X,X{))."2-
0.13444*(tao(X,X1)).~3+0.045155*(tao(X, Xf))."4-
0.0035862*(tao(X,X£)).~5+0.00069085*(tao(X,X1))."6);

OMEGA_i =@(X,Xf)(-0.024134-0.029256*(tao(X,X1))+0.016294*(tao(X,X{))."2-
0.00010961*(tao(X,X1)).~3+0.000064577*(tao(X,X{))."4-0.000044510*(tao(X,X1))."5)/(1-
0.597020*(tao(X,X£))+0.551820*(tao(X,X1))."2-
0.18357000*(tao(X,X{))."3+0.079156000*(tao(X,Xf))."4-
0.014369000*(tao(X,X1)).”5+0.0028361*(tao(X,X{))."6);

OMEGA = @(X,Xf)OMEGA_r(X,Xf) + OMEGA_i(X,Xf)*i;

GAMA_rect = @(X,XH)OMEGA(X,Xf) .* GAMA_circ(X,Xf);

ACO1I=@(X, Xf)(omega2 3.*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(1))./(w_vac"2*(landa(1)/landa(
1))**alpha(1)-omega2 3. *(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*alpha(1));

ACO2=@(X,Xf)omega2 3. *(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*beta(2))./(w_vac"2*(landa(2)/landa(
D)) 4*alpha(2)-omega2 3. *(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*alpha(2));
ACO3=@(X,Xf)(omega2_3.*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(3))./(w_ vacA2*(landa(3)/]anda(
1)y 4*alpha(3)-omega2 3 *(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*alpha(3));
ACO4=@(X,XN(omega2_3.*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*beta(4))./(w_vac”2*(landa(4)/landa(
1))4*alpha(4)-omega2 3. *(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*alpha(4));
ACO5S=@(X,Xf)(omega2 3.*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*beta(5))./(w_vac"2*(landa(5)/landa(
1))*4*alpha(5)-omega2_3.*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf)*alpha(5));
ACO6=@(X,Xf)(omega2_3.*(1+H(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(6))./(w_vac"2*(landa(6)/landa(
1)) *alpha(6)-omega2_3.*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*alpha(6));
ACO7=@(X,Xf)(omega2 3.*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*beta(7))./(w_vac"2*(landa(7)/landa(
1)) *alpha(7)-omega2_3.*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*alpha(7));

ACO8=@(X,Xf)(omega2 3.*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*beta(8))./(w_vac"2*(landa(8)/landa(
1)) *alpha(8)-omega2 3.*(1+(pi*X(1)4)*GAMA_rect(X(2),Xf))*alpha(8));

ACO9=@(X,Xf)(omega2 3.*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(9))./(w_vac"2*(landa(9)/landa(
1))4*alpha(9)-omega2_3.*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*alpha(9));

ACO_response9=@(X,Xf)

[ACOI(X,XH*X11(length(X 1 )}HACO2(X,X1)*X12(length(X12))+ACO3(X,Xf)*X13(length(X13))+AC
O4(X, XEy*X14(length(X 14))+ACO5(X,Xf)*X 15(length(X 1 5)+ACO6(X, X H)* X 16(length(X16))+ACO7(
X, XDH*X17(length(X17))+ACO8(X, X)*X18(length(X18))+ACONX, XH)* X 19(length(X19))}’;
AAA=@(X,Xf) abs(ACO _response9(X(1:2).X1))/X(3);

BBB=@(X,Xf)angle(ACO _responsed(X,Xf));

CCC=@(X,XfHunwrap(BBB(X(1:2),X1))-X(3);

214



[Ya,ra,Ja] = nlinfit(omega_3,exp_amp,AAA,Ya_0); clear ra Ja;
[Yp,rp,dp] = nlinfit(omega_3,exp_ang,CCC,Yp_0); clear rp Jp;

Tb_a=Ya(l); Reb_a=Ya(2); scal=Ya(3);
Tb_p=Yp(1); Reb_p=Yp(2); angl=Yp(3);

ro_a f=Tb a*ro_c*h/b; eta_a f=(ro a f*w vac*b"2)/(4*Reb_a);
ro_p =Tb p*ro c*h/b; eta p f=(ro p_f*w_vac*b”2)/(4*Reb_p);

error_ro_a=(ro_a f-g ro f)/g ro f*100; error_eta_a=(eta a f-g eta f)/g eta f*100;
error_ro_p=(ro p f-g ro f)/g ro f*100; error eta p=(eta p f-g eta f)/g eta f*100;

error_scal=(scal-scal_best)/scal _best*100;
error_angl=(angl-angl best)/ang! best*100;

format short e;

eta_ro_scal=[eta_a ferror eta aro a ferror ro ascal error_scall;
eta_ro_angl=[eta_p ferror eta pro p ferror ro p angl error_angl]; .
summary_of fitting_paramaers(fluid N,:}=[eta_ro_scal scal_best eta_ro angl angl best];

clearg Tbg RebYa 0Yp 0Ya Yp Re GAMA circ tao OMEGA r OMEG A 1OMEGA GAMA rect
ACO1 ACOQ ACO3 AC()4 A(‘OS /\(‘06 ’\(‘07 /\C‘(')‘% \CO‘) AC‘O u.»p'on%‘) /\A/\ BBB CCC

ining the theoretical amplitude and phaser

determ

SDONSCS

f 4 [1:1000]/10; omega 4 =2*pi*{ 4*1000;

%% determining the best theoretical response %6%6%%%%0%%%6%%%% %% %% %% 0% %% %% %%
ro f=g ro f;

eta f=g eta f;

scal t=scal_best;

angl t=angl best;

Re = @(X) ro_f*X*b"2/4/eta_f;

GAMA circ = @(X)1+(4*1*besselk(1,(-1*sqrt(i*Re(X)))))./(sqrt(i*Re(X)). *besselk(O( i*sagrt(i*Re(X))));
tao = @(X)log10(Re(X));

OMEGA_r =@(X)(0.91324-0.48274*(tao(X))+0.46842*(tao(X))."2- ‘
0.12886*(tao(X)).”3+0.044055*(tao(X)). 4-0.0035 1 1 7*(tao(X)).~5+0.00069085*(tao(X))."6 /(1 -
0.56964*(tao(X))+0.48690* (tao(X))."2-0.13444*(tao(X))."3+0.045155*(tao(X))."4-
0.0035862*(tao(X))."5+0.00069085*(tao(X))."6);

OMEGA_i =@(X)(-0.024134-0.029256*(tao(X))+0.016294*(tao(X))."2-
0.00010961*(tao(X)).”3+0.000064577*(tao(X))."4-0.000044510* (tao(X))."5)/(1-
0.597020*(tao(X))+0.551820*(tao(X)}).”2-0.18357000*%(tao(X)).”3+0.079156000*(tao(X))."4-
0.014369000*(tao(X)).~5+0.0028361 *(tao(X))."6);

OMEGA = @(X)OMEGA_r(X) + OMEGA _i(X)*i;

GAMA rect = @(X)OMEGA(X) .* GAMA_cire(X);

GAMA rect_value=GAMA rect(omega 4);

ACOl1=((omega 4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA rect_value)*beta(1)*L)./(E*I1*(Janda(1))"4*alpha
(1)*L-(omega_4.72).*(ro_c*A+pi/d*ro f*b"2*GAMA _rect_value)*alpha(1)*L);

ACO2=((omega 4.72).*(ro_c*A+pi/4*ro f*b"2*GAMA rect_value)*beta(2)*L)./(E*1*(landa(2)) 4 *alpha
(2)*L-(omega_4.72).*(ro_c*A+pi/4*ro_t*b"2*GAMA _rect_value)*alpha(2)*L);
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ACO3=((omega 4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA _rect_value)*beta(3)*L)./(E*1*(landa(3))"4*alpha
(3)*L-(omega 4.72).*(ro_c*A+pi/4*ro_*b"2*GAMA_rect_value)*alpha(3)*L);
ACO4=((omega 4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA _rect_value)*beta(4)*L)./(E*1*(landa(4))"4*alpha
(4)*L-(omega_4.72).*(ro_c*A+pi/4*ro_f¥*b2*GAMA rect_value)*alpha(4)*L);
ACO5=((omega 4.72).*(ro_c*A+pi/4*ro_*b2*GAMA _rect_value)*beta(5)*L)./(E*¥I*(landa(5))"4*alpha
(5)*L-(omega_4.72).*(ro_c*A+pi/4*ro_f*b " 2*GAMA _rect_value)*alpha(5)*L);
ACO6=((omega 4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA_rect_value)*beta(6)*L)./(E*1*(landa(6)) 4 *alpha
(6)*L-(omega_4.2).*(ro_c*A+pi/4*ro_f¥*b"2*GAMA rect_value)*alpha(6)*L);

ACO7=((omega_4."2).*(ro_c*A+pi/4*ro_f*b"2*GAMA _rect_value)*beta(7)*L).A(E*I*(landa(7))*4*alpha

(7)*L-(omega_4.72).*(ro_c*A+pi/4*ro_f*b"2*GAMA rect_value)*alpha(7)*L);
ACO8=((omega_4.72).*(ro_c*A-+pi/4*ro_f*b"2*GAMA rect value)*beta(8)*L). /(E*I*(]anda(8))/\4*alpha
(8)*L-(omega 4.72).*(ro_c*A+pi/4*ro_*b"2*GAMA rect value)*alpha(8)*L);
ACO9=((omega_4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA rect value)*beta(9)*L). /(E*l*(landa(9))’\4*alpha
(9)*L-(omega 4.72).*(ro_c*A+pi/4*ro_f*b"2*GAMA rect value)*alpha(9)*L);

ACO response9=[ACO1*X11(length(X11))+ACO2*X12(length(X12))+ACO3*X13(length(X1 3))+ACO4
*X14(length(X14))+ACO5*X15(length(X 15))+ACO6* X 16(length(X16))+ACO7*X17(length(X17))+AC -
08*X18(length(X18))+ACO93*X 19(length(X19))]';

AAA t=abs(ACO response9)/scal t; CCC_t=unwrap(angle(ACO__ response9)) angl t;

clear ro_feta fscal tangl t Re GAMA circ tao OMEGA r OMEGA 1 OMEGA GAMA. rect

GAM f\m_.rectﬂ_\'alue ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACQO _response9;.

%% determining the best theoretical response for the amplitude %6%9%%:%0%5%6%0%%6%0%% %6 %% %
ro_f=ro _a f;

eta f=eta a f;

scal_a=scal,

angl a=angl;

Re = @(X) ro_f*X*b"2/4/eta_f;
GAMA _circ = @(X)1+(4*i*besselk(1,(-i*sqrt(i*Re(X)))))./(sqrt(i*Re(X)). *besselk(0,(-i sqrt(l*Re(X))))),
tao = @(X)logl 0(Re(X));
OMEGA r =@(X)(0.91324-0.48274*(tao(X))+0.46842*(tao(X))."2-
0.12886*(tao(X)).”3+0.044055*(tao(X)).”4-0.00351 1 7*(tao(X)).~5+0.00069085 *(tao(X)).”6)/(1-
0.56964%(tao(X))+0.48690*(tao(X)).”2-0.13444*(tao(X)).”3+0.045155*(tao(X ))."4-
0.0035862*(tao(X)).”5+0.00069085*(tao(X)).n6);
OMEGA i =@(X)(-0.024134-0.029256*(tao(X))+0.016294*(tao(X)).”2-
0.0001096 1 *(tao(X)).”3+0.000064577*(tao(X))."4-0.000044510*(tao(X)).”5)/(1-

- 0.597020*(tao(X))+0.551820*(tao(X))."2-0.18357000*(tao(X)).”3+0.079156000*(tao(X))."4-
0.014369000*(tao(X)).”5+0.0028361*(tao(X))."6);
OMEGA = @(X)OMEGA _r(X) + OMEGA_i(X)*i;
GAMA rect = @(X)OMEGA(X) .* GAMA_circe(X);
GAMA rect_value=GAMA rect(omega 4);
ACOI=((omega 4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA rect_value)*beta(1)*L)./(E*I*(landa(1))*4*alpha
(1)*L-(omega 4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA rect value)*alpha(1)*L); '
ACO2=((omega_4.2).*(ro_c*A+pi/d*ro_f¥*b"2*GAMA rect_value)*beta(2)*L)./(E*I*(landa(2))"4*alpha
(2)*L-(omega_4.72).*(ro_c*A+pi/4*ro_ PHA2*GAMA _rect_value)*alpha(2)*L);
ACO3=((omega 4.72).*(ro_c*A+pi/d4*ro_f*b"2*GAMA _rect_value)*beta(3)*L)./(E*I*(landa(3))"4*alpha
(3)*L-(omega_4.72).*(ro_c*A+pi/d4*ro_f*b"2*GAMA _rect_value)*alpha(3)*L); _
ACO4=((omega 4.°2).*(ro_c*A+pi/d*ro_f*b"2*GAMA rect_value)*beta(4)*L)./(E*I*(landa(4))"4*alpha
(4)*L-(omega 4.72).*(ro_c*A+pi/4*ro_f*b"2*GAMA _rect_value)*alpha(4)*L);
ACO5=((omega 4.2).*(ro_c*A+pi/4*ro_f*b"2*GAMA rect_value)*beta(5)*L)./(E*I*(landa(5))"4*alpha
(5)*L-(omega 4.72).*(ro_c*A+pi/4*ro_f*b"2*GAMA_rect_value)*alpha(5)*L);
ACO6=((omega_4.72).*(ro_c*A+pi/4*ro_f*b"2*GAMA_rect_value)*beta(6)*L)./(E*I*(Janda(6))"4*alpha
(6)*L-(omega_4.72).*(ro_c*A+pi/4*ro_f*b"2*GAMA_rect_value)*alpha(6)*L),
ACO7=((omega_4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA_rect_value)*beta(7)*L)./(E*I*(landa(7))"4*alpha
(7)*L-(omega_4.°2).*(ro_c*A+pi/d*ro_f*b"2*GAMA_rect_value)*alpha(7)*L);
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ACO8=((omega_4.°2).*(ro_c*A+pi/d*ro_f*b"2*GAMA _rect_value)*beta(8)*L)./(E*1*(landa(8))"4*alpha
(8)*L-(omega 4."2).*(ro_c*A+pi/4*ro f*b"2*GAMA rect_value)*alpha(8)*L);

ACOY9=((omega 4.72).*(ro_c*A+pi/d*ro b 2*GAMA _rect_value)*beta(9)*L)./(E*1*(landa(9)) 4*alpha
(9)*L-(omega_4.2).*(ro_c*A+pi/d*ro_f*b"2*GAMA _rect_value)*alpha(9)*L);
ACO_response9=[ACO1*X11(length(X11))+ACO2*X12(length(X12))+ACO3*X13(length(X 13))+ACO4
*X14(length(X14))+ACO5*X15(length(X15))+ACO6*X16(length(X16))+ACO7*X17(length(X I 7))+AC
08*X18(length(X18))+AC0O9*X19(length(X19)]"

AAA a=abs(ACO response9)/scal_a; CCC_a=unwrap(angle(ACO_ response9)) angl a;

clearlo fcta !\Ldl a dn«vi a Rc (’]AV \ LilL fao 0\11 G \ r ()\A} (rA 1 ()‘\ﬂ ()/\ G \‘\1}\ rect

% determining the best theoretical response for the ph( se Y626%%%0% 020900 %% 6% %0865 90% 6% e %0
ro_f=ro_p f;

eta f=eta p f;

scal_p=scal;

angl p=angl;

Re = @(X) ro_f¥*X*b"2/4/eta_f;

GAMA _circ = @(X)1+(4*i*besselk(1.(-i*sqrt(i*Re(X)))))./(sqrt(i*Re(X)). *besselk(0,(-i*sqrt(i*Re(X)))));
tao = @(X)log1 0(Re(X));

OMEGA r =@(X)(0.91324-0.48274*(tao(X))+0.46842*(tao(X))."2-
0.12886*(tao(X)).”3+0.044055*(tao(X)).”4-0.0035117*(tao(X)).~5+0.00069085*(tao(X)).”6)/(1 -
0.56964*(tao(X))+0.48690*(tao(X)).”2-0.13444*(tao(X)).”3+0.0451 55 *(tao(X))."4-
0.0035862*(tao(X))."5+0.00069085*(tao(X))."6);

OMEGA i =@(X)(-0.024134-0.029256*(tao(X))+0.016294*(tao(X))."2-
0.00010961*(tao(X)).~3+0.000064577*(tao(X))."4-0.000044510*(tao(X)).~5)/(1-
0.597020*(tao(X))+0.551820*(tao(X)).”2-0.18357000*(tao( X)).”3+0.079156000*(tao(X))."4-
0.014369000*(tao(X)).~5+0.0028361 *(tao(X))."6);

OMEGA = @(X)OMEGA _r(X) + OMEGA_i(X)*i;

GAMA rect = @(X)OMEGA(X) .* GAMA_cire(X);

GAMA rect value=GAMA rect(omega_4);

ACOl1=((omega_4."2).*(ro_c*A+pi/d*ro_f*b"2*GAMA rect_value)*beta(1)*L)./(E*I*(landa(1))"4*alpha
(1)*L-(omega_4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA rect value)*alpha(1)*L);
ACO2=((omega_4.72).*(ro_c*A+pi/4*ro_f*b"2*GAMA_rect_value)*beta(2)*L)./(E*1*(landa(2))"4*alpha
(2)*L-(omega_4.72).*(ro_c*A+pi/4*ro_f*b"2*GAMA rect value)*alpha(2)*L);

ACO3=((omega 4.72).*(ro_c*A+pi/4*ro_f*b"2*GAMA rect_value)*beta(3)*L)./(E*I*(landa(3))"4*alpha
(3)*L-(omega_4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA rect_value)*alpha(3)*L);
ACO4=({omega_4.”2).*(ro_c*A-+pi/d*ro f*b"2*GAMA rect value)*beta(4)*L)./(E*I*(landa(4)) 4*alpha
(4)*L-(omega_4.72).*(ro_c*A-+pi/d*ro f*b"2*GAMA rect value)*alpha(4)*L):

ACO5=((omega 4.72).*(ro_c*A-+pi/d*ro_f*b"2*GAMA rect_value)*beta(5)*L)./(E*I*(landa(5))"4*alpha
(5)*L-(omega_4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA_rect_value)*alpha(5)*L);

ACO6=((omega 4.2).*(ro_c*A+pi/d*ro f*b"2*GAMA rect_value)*beta(6)*L)./(E*1*(landa(6))"4*alpha
(6)*L-(omega_4.72).*(ro_c*A+pi/d*ro_{*b"2*GAMA_rect value)*alpha(6)*L);
ACO7=((omega_4.72).*(ro_c*A+pi/d*ro_f*b"2*GAMA _rect_value)*beta(7)*L)./(E*I*(landa(7))"4*alpha
(7)*L-(omega_4.72).*(ro_c*A+pi/d*ro_ *b"2*GAMA rect value)*alpha(7)*L);

ACO8=((omega 4.72).*(ro_c*A-+pi/d*ro_f*b"2*GAMA _rect_value)*beta(8)*L)./(E*I*(landa(8))"4*alpha
(8)*L-(omega 4.72).*(ro_c*A-+pi/d*ro f*b"2*GAMA_rect_value)*alpha(8)*L);
ACO9=((omega_4.72).*(ro_c*A+pi/4*ro_f*b"2*GAMA _rect_value)*beta(9)*L)./(E*I*(landa(9))"4*alpha
(9)*L-(omega_ 4.72).*(ro_c*A+pi/d4*ro_f*b"2*GAMA _rect_value)*alpha(9)*L);

ACO response9=[ACO1*X11(length(X11))+ACO2*X12(length(X12))+ACO3*X13(length(X13))+ACO4
*X 14(length(X14))+ACO5*X 15(length(X15))+ACO6* X 16(length(X 16))+ACO7*X17(length(X17)}+AC
08*X 18(length(X18))+ACO9*X19(length(X19))]';

AAA _p abs(ACO response9)/sca] J, CCC p unwrap(ang]e(ACO response9)) ang] _p,
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Y
2020%0%0%%6%6%6%0

- data mangoe { 0,0 : x
% data management %%6%%%%% %Y 0"’00/00’00 2%62000%%%6% %62 6%%0 %% %0 %% 500 %%

filename ORI=[filename cantilever amps '_ColP - CaliP.dat'};

filename NDP={filename cantilever amps ' ColUP - Cal/P_NDP.dat']:

08/,

exp_data_ORI=load(filename ORI);
exp_data NDP=load(filename_NDP);

for qqq=1:length(exp data_ORI)

indices OR}(gqq,1)=find(f_4==exp_data ORI(qqq 1))
end
clear qqq;
for gqqq=1:length(exp_data NDP)

indices NDP(qqq,1)=find(f 4==exp_data_NDP(qqq,1));
end

7€ 0 A 13 /. () 4] )
o Figure T %6%%%0%%%6%%%6% %% 6%%5%6% 6% %% 69 % %09 20%0%%%%%0% %6268 0% %% %% %%

Flg_NDP [exp_data NDP(:,1) exp data NDP(:,2) AAA t(indices NDP) AAA_a(indices_NDP)
AAA p(indices NDP) exp _data NDP(:,3) CCC_t(indices NDP) CCC_a(indices_NDP)
CCC_p(indices NDP)];

19%008.69%%%

indices = find(cutoff freq<Fig_NDP(:,1) & Fig NDP(:;,1)<=100); Fig_NDP(indices,:)=[]; clear indices;

figure;

subplot(2,1,1);

plot(Fig NDP(:,1),Fig NDP(:,2),’k’,'LineWidth',2); hold on;

plot(Fig NDP(:,1),Fig NDP(:,3),’ g’,‘L ineWidth',3);

plot(Fig NDP(:,1),Fig NDP(:,4),s",'LineWidth',3);

title([fluid * - * cantilever}); legend(’ fxpcrtmemﬂi "Theory','Amp base’,'Location’, Best'); hold off;

subplot(2,1,2);

plot(Fig NDP(:,1),Fig NDP(:,6),’k’,'L.ine Width',2); hold on;
plot(Fig NDP(:,1),Fig NDP(: 7),C,’ LineWidth',3);

plot(Fig NDP(:,1),Fig NDP(:,9),:b",'Line Width',3);
legend('Expertmental’, Theory', P‘uhc hase''Location’, Best’); hold off;

o A 0,07
% Figure 2 %0%%%%0%%%%%%6%0%%%%6%0%0% 090 %%6%% %% %0%%0%46%6% 0% %6%0%9%% 6% 6% 0% 0% %6%%

Fig ORI=[exp_data ORI(:,1) exp data_ORI(:,2) AAA_t(indices_ORI) AAA_a(indices_ORI)

AAA p(indices ORI) exp data ORI(:,3) CCC t(indices_ORI) CCC_a(indices_ORI)
CCC_p(indices_ORD];

indices = find(cutoff _freq<Fig_ ORI(:;,1) & Fig_ORI(:,1)<=100); Fig_ORI(indices,:)=[]; clear indices;

figure;

subplot(2,1,1);

plot(Fig_ORI(:,1),Fig_ORI(:,2),'k', LineWidth',2); hold on;

plot(Fig_ ORI(:,1),Fig_ORI(:,3)," g‘,l ineWidth',3);

plot(Fig_ORI(:,1),Fig ORI(:,4),"r', LineWidth'3);

title([fluid * - ' cantilever]); legend('Fxpertmental’, Theory’, Amp base','Location’,'Besi"); hold off;

subplot(2,1,2);
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plot(Fig_ ORI(:,1),Fig_ORI(:,6),'k’,'LineWidth',2); hold on;
plot(Fig_ORI(:,1),Fig_ORI(:;,7),'2','Line Width',3);
plot(Fig_ORI(:,1),Fig ORI(:,9),"b','Line Width',3);
legend('Expertmental’,' Theory', Phase base’,'Location’,'Best”); hold off;

beep

clear indices ORI indices NDP fluid filename g ro f g eta ¥ ¢ scal g angl

toc
end
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Appendix M

MATLAB code for determining the fluid’s properties at each frequency of excitation:

%% this code needs the files in these folders:
o _CollP - CaliP_ NDP

cle; clear all; close all; format compact;

cutoff_freq=40;

cant

i

cantilever="long’; cantilever_N=1;
L=397¢-6;

b=29e-6;

h=2.33e-6;

A=b*h; I=b*h"3/12;
ro_c=2330;
E=170e9;

fluid_cel=["air "'Ethanol 'water 2025 Glyeerine ;%650 Glycerine ;%660 Glycerine
'1'%%75 Glycerine ;%80 Glycerine ';'%6100 Glycerine'];
filename0 cel=['FS air ~ }'FS ethanol 7FS GWO00 SFS GW25 0 YFS GWS0
SFS GW60  L'FS GWT7S 0 SFS GWE80. BFS GWI00. ),
fluid_cel=cellstr(fluid_cel);
filename0_cel=celistr(filename0_cel);

%(1y (@) (3) 4 5y (® N (8) {9)
Seair  ethanol water %623 %50 %60  9%75 980 %100
g ro f cel=[1.184 785 997 1058 1123 1151 1191 1205 1257 J;
g eta f cel=[0.018 1.078 0.88242 1.818 4.926 8634 2692 4438 931.2 ]*le-3;
f ref cel(1,:))=[22 8 7.5 7 6 5 5 5 5 1;
f ref cel2,)=[ 80 16 16 16 10 10 10 9 8 IN
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0’07“

delta x=0.00001*L; x=[0:delta_x:L];

landa(1)=1.8751/L; landa(2)=4.694/L; landa(3)=7.855/L; landa(4)=10.996/L,
landa(5)=14.137/L,; landa(6)=17.279/L;

landa(7)=(7-0.5)*pi/L; landa(8)=(8-0.5)*pi/L; landa(9)=(9-0.5)*pi/L; landa(10)=(10-0.5)*pi/L;

landa(11)=(11-0.5)*pi/L; landa(12)=(12-0.5)*pi/L;

X1=(cos(landa(1)*x)-cosh(landa(1)*x)-
((cos(landa(1)*L)+cosh(landa(1)*L))/(sin(landa(1)*L)+sinh(landa(1)*L)))*(sin(landa(1)*x)-
sinh(landa(1)*x)));
X2=(cos(landa(2)*x)-cosh(landa(2)*x)- ‘
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(landa(2)*L)+sinh(Janda(2)*L)))*(sin(landa(2)*x)-
'sinh(landa(2)*x)));
X3=(cos(landa(3)*x)-cosh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L))) *(sin(landa(3)*x)-
sinh(landa(3)*x)));

X4=(cos(landa(4)*x)-cosh(landa(4)*x)-

" ((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L.))) *(sin(landa(4)*x)-
sinh(landa(4)*x)));
X5=(cos(landa(5)*x)-cosh(landa(5)*x)-
((cos(landa(5)*L)+cosh(landa(5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L)))*(sin(landa(5)*x)-

" sinh(landa(5)*x)));
X6=(cos(landa(6)*x)-cosh(landa(6)*x)-
((cos(landa(6)*L)+cosh(landa(6)*L))/(sin(landa(6)*L)+sinh(landa(6)*L)))*(sin(landa(6)*x)-
sinh(landa(6)*x)));
X7=(cos(landa(7)*x)-cosh(landa(7)*x)-
((cos(landa(7)*L)+cosh(landa(7)*L))/(sin(landa(7)*L)+sinh(landa(7)*L)))*(sin(landa(7)*x)-
sinh(landa(7)*x)));
X8=(cos(landa(8)*x)-cosh(landa(8)*x)-
((cos(landa(8)*L)+cosh(landa(8)*L))/(sin(landa(8)*L)+sinh(landa(8)*L)))*(sin(Jlanda(8)*x)-
sinh(landa(8)*x)));
X9=(cos(landa(9)*x)-cosh(landa(9)*x)-
((cos(landa(9)*L)+cosh(landa(9)*L))/(sin(landa(9)*L)+sinh(landa(9)*L)))*(sin(landa(9)*x)-
sinh(landa(9)*x)));

X11=landa(1)*{(-sin(Janda(1)*x)-sinh(landa(1)*x)-
((cos(landa(1)*L)+cosh(landa(1)*L))/(sin(ianda{1)*L)+sinh(landa(1)*L)))*(cos(landa(l )*x)-
cosh(landa(1)*x)))); '
X12=landa(2)*((-sin(landa(2)*x)-sinh(landa(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(landa(2)*L)+sinh(landa(2)*1)))*(cos(landa(2)*x)-
cosh(landa(2)*x))));

X13=landa(3)*((-sin(landa(3)*x)-sinh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))*(cos(landa(3)*x)-
cosh(landa(3)*x))));

X14=landa(4)*((-sin(landa(4)*x)-sinh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(cos(landa(4)*x)-
cosh(landa(4)*x))));

X15=landa(5)*((-sin(landa(5)*x)-sinh(landa(5)*x)-
((cos(landa(5)*L)+cosh(landa(5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L)))*(cos(landa(5)*x)-
cosh(landa(5)*x)))):

X16=landa(6)*((-sin(landa(6)*x)-sinh(landa(6)*x)-
((cos(landa(6)*L)+cosh(landa(6)*L))/(sin(landa(6)*L)+sinh(landa(6)*L)))*(cos(landa(6)*x)-
cosh(landa(6)*x))));
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X17=landa(7)*((-sin(landa(7)*x)-sinh(landa(7)*x)-
((cos(landa(7)*L)+cosh(landa(7)*L))/(sin(landa(7)*L)+sinh(landa(7)*L)))*(cos(landa(7)*x)-
cosh(landa(7)*x))));

X18=landa(8)*((-sin(landa(8)*x)-sinh(landa(8)*x)-
((cos(landa(8)*L)+cosh(landa(8)*L))/(sin(landa(8)*L)+sinh(landa(8)*L}))*(cos(landa(8)*x)-
cosh(landa(8)*x))));

X19=landa(9)*((-sin(landa(9)*x)-sinh(landa(9)*x)-
((cos(landa(9)*L)+cosh(landa(9)*L))/(sin(landa(9)*L)+sinh(tanda(9)* L)))*(cos(landa(9)*x)-
cosh(landa(9)*x))));

X11=(X11/X1(Jlength(X1)));
X12=(X12/X2(length(X2))); .
X13=(X13/X3(length(X3)));
X14=(X14/X4(length(X4))); - -
X15=(X15/X5(length(X5)));” -
X16=(X16/X6(length(X6)));
X17=(X17/X7(length(X7)));
X18=(X18/X8(length(X8)));
X19=(X19/X9(length(X9)));
X1=(X1/X1(length(X1))); -
X2=(X2/X2(length(X2)));
X3=(X3/X3(length(X3)));
X4=(X4/X4(length(X4)));
X5=(X5/X5(length(X5))); -
X6=(X6/X6(length(X6)));
X7=(X7/X7(length(X7)));
X8=(X8/X8(length(X8)));
X9=(X9/X9(length(X9)));

alpha(1)=sum(X1.¥*X1)*delta x/L; beta(1)=sum(X1)*delta_x/L;
alpha(2)=sum(X2.*X2)*delta_x/L; beta(2)=sum(X2)*delta_x/L;
alpha(3)=sum(X3.*X3)*delta_x/L:; beta(3)=sum(X3)*delta_x/L;
alpha(4)=sum(X4.*X4)*delta_x/L; beta(4)=sum(X4)*delta_x/L;
alpha(5)=sum(X5.*XS5)*delta_x/L; beta(5)=sum(X5)*delta_x/L;
alpha(6)=sum(X6.*X6)*delta x/L; beta(6)=sum(X6)*delta_x/L;
alpha(7)=sum(X7.*X7)*delta_x/L; beta(7)=sum(X7)*delta_x/L;
alpha(8)=sum(X8.*X8)*delta x/L; beta(8)=sum(X8)*delta_x/L;
alpha(9)=sum(X9.*X9)*delta_x/L; beta(9)=sum(X9)*dela_x/L;

clear delta x x X1 X2 X3 X4 X5 X6 X7 X8 X9,

O/

for fluid N=2:9

tic

fluid=char(fluid_cel(fluid N))
filenameO=char(filename0_cel(fluid_N));
g ro f=g ro f cel(fluid_N);

g eta f=g eta f cel(fluid_N);

f ref=f ref cel(cantilever N.fluid N);

% data management %%6%%6%6%%%6%20%0%0%%6 %% %% % %% % %400 %0% 6% %0 %

00 s By
Yo% %% %0%6%

exp_data=load(filename);
indices = find(cutoff freq<exp data(:,1) & exp_data(:,1)<=100); exp_data(indices,:)={];
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f=exp_data(:,1); i_ref = find(f==f ref); f(i_ref)=[]; omega ref=2*pi*f ref*1000;
omega=2*pi*f*1000;

exp_amp=exp_data(:,2); amp_ref=exp_amp(i_ref); exp_amp(i_ref)=[];
exp_ang=exp_data(:,3); ang_ref=exp_ang(i_ref); exp_ang(i_ref)=[];

clear filename exp data indices i ref f ref;
%% %% %% 6% %% 0% 0% %626 % 6% ()’oq’u“ 52690%6%0%6%67 6% % %626 %% %0 %626 %%6% %

g Tb=(g_ro_f*b)/(ro_c*h);
g Reb=(g ro f*w_vac*b”™2)/(4*g eta f);

/0 0,7 Qs G70,
2490 4

6% %% 6% %6% 6% %

fori_f=1:length(f)
Y 0=[g Tb g Reb};

Re = @(X Xf) X*Xf/w_vac;

GAMA circ = @(X,XN1+(4*i*besselk(].(-1*sqri(i*Re(X, Xf))))) H(sqrt(i*Re(X, X1)). *besselk(0,(-
1*sqrt(i*Re(X, XD)N));

tao = @(X,XNlogl 0(Re(X,X1));

OMEGA_r =@(X,X)(0.91324-0.48274*(tao(X,X1))+0.46842*(tao(X,X1))."2-

0. 12886*(tao(X Xf)).73+0.044055*(tao(X,Xf))."4-
0.0035117*(tao(X,X1)).~5+0.00069085*(tao(X,X{)).~6)/(1-0:56964 *(tao(X,X1))+0.48690*(tao( X, Xf))."2-
0.13444*(tao(X,X1)).”3+0.045155*(tao(X,Xf))."4- ,
0.0035862*(tao(X,X1)).~5+0.00069085*(tao(X, X1)).”6);

OMEGA _i =@(X,X£)(-0.024134-0.029256*(tao(X,X1))+0.016294*(tao(X,Xf))."2-
0.00010961*(tao(X, X£)).~3+0.000064577*(tao(X,X1)). /\4 0.000044510*(tao(X,Xf))."5)/(1-
0.597020*(tao(X,X))+0.551820*(tao(X, Xf))."2-
0.18357000*(tao(X,Xf)).~3+0.079156000*(tao(X,Xf))."4-
0.014369000*(tao(X,X1)).~5+0.0028361 *(tao(X,X{)).76);

OMEGA = @(X,Xf))OMEGA_r(X,Xf) + OMEGA_i(X,Xf)*i;

GAMA_rect = @(X, XHHIOMEGA(X.Xf) .* GAMA_circ(X,Xf);

ACOT=@(X,XH(XF2*(1+(pi* X(1 )/4)*GAMA_rect(X(Z),Xﬂ)*beta(1 N/(w_vac™2*(landa(1)/landa(1))"4*
alpha(1)-Xf2*(1+(pi*X(1Y/4)*GAMA _rect(X(2),Xf))*alpha(1));

ACO2=@(X, XH(XF2*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf)*beta(2))/(w_vac*2*(landa(2)/landa(1))"4*
alpha(2)-Xf2*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*alpha(2));

ACO3=@(X, X N(XF2*(1+(pi*X(1)/4)*GAMA_rect(X(2),X))*beta(3))/(w_vac’2*(landa(3)/landa( 1)) 4*
alpha(3)-Xf2*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*alpha(3));

ACO4=@(X, XX 2*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(4))/(w_vac’2*(landa(4)/landa(1))"4*
alpha(4)-XP2*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*alpha(4));

A_COS:‘@(X,Xf)(Xf’\Z*( 1+(pi*X(1)/4)*GAMA _rect(X(2),X))*beta(5))/(w_vac*2*(landa(5)/landa(1))"4*
alpha(5)-Xf2*(1 H(pi*X(1)/4)* GAMA _rect(X(2),Xf))*alpha(5));

ACO6=@(X, XHXF2*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*beta(6))/(w_vac”2*(landa(6)/landa(1))"4*
alpha(6)-X£2*(1+(pi*X(1/4)*GAMA _rect(X(2),X))*alpha(6));

ACOT=@(X, XX F2*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*beta(7))/(w_vac"2*(landa(7)/landa(1))"4*
alpha(7)-Xf°2*(1+(pi*X(1)/4)*GAMA _rect(X(2),Xf))*alpha(7));

ACO$=@(X,XH(XF2*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*beta(8))/(w_vac2*(landa(8)/landa(1))"4*
alpha(8)-Xf*2*(1+(pi* X(1)/4)*GAMA _rect(X(2),Xf)*alpha(8));

223



ACO=@( X, XX 2*(1+(pi*X(1)/4)*GAMA_rect(X(2),Xf))*beta(9))/(w_vac”2*(landa(9)/1anda(1))"4*
alpha(9)-X2*(1+(p1*X(1)/4)*GAMA _rect(X(2),Xf))*alpha(9));

ACO response9=@(X,Xf)
[ACONX,XDN*X11(length(X11))+ACO2(X,X)*X12(length(X12))+ACO3(X,X)*X13(length(X13)+AC
O4(X, XN*X 14(length(X14))+ACO5(X, Xf)* X 15(length(X15))+ACO6(X, X)* X 16(length(X16))+ACO7(
X X)*X17(length(X17))+*ACO8(X, XH)*X18(length(X18))+ACOIHX, X)*X19(length(X19)T;

AAA=@(X,Xf) abs(ACO_response9(X,Xf));

BBB=@(X,Xfangle(ACO_response9(X,Xf));

CCC=@(X.XfHunwrap(BBB(X,X1));

root_function=@(X)[AAA(X,omega(i_f))/AAA(X,omega_ref); CCC(X,omega(i_'f))-
CCC(X,omega_ref)}-lexp_amp(i_f)famp ref; exp_ang(i_f)-ang_ref];

options = optimset('"MaxFunEvals',200,'Maxlter100, TolFun',1e-10,Tol X", 1e-8);
[Y,.fval,exitflag,output] = fsolve(root_function,Y _0,options);

af
M_Tb(_f,1)=Y(1);
M Reb(i_f,1)=Y(2);
control(i_f,:)=[exitflag output.funcCount output.iterations fval(1) fval(2)];

ACOS ACO6 ACO7 ACO8 ACO9 ACO _response9 AAA BBB CCC root_function options Y fval exitflag

mp exp_ang omega refamp _refang ref

M ro f=M Tb*ro _c*h/b;
M_eta_f=(M _ro f*w_vac*b”2)./(4*M_Reb);
M error ro=(M _ro_f-g ro_f)/g_ro f*100;

M error_eta=(M _eta_f-g eta f)/g eta f*100;

ro_eta_control=[f M ro fM error ro M eta f M _error_eta control};

filename_save={filename0 cantilever amps ' CoUP - CallP NDP ro eta_control.dat’];
save(filename_save,ro eta control’,-ascit’);

learM ro M ecta M ThM RebM error ro error eta control filename save

0
7

PR

&
o~

figure;
subplot(2,2,1); hold on;

plot(ro_eta _control(:,1),g_ro_f¥*ones(length(f)),'s’,'Line Width',2);
plot(ro_eta_control(:,1),mean(ro_eta_control(:,2))*ones(length(f)),"r', Line Width',2);
plot(ro_eta_control(:,1),ro_eta_control(:,2), k', Line Width',2);
legend('Known',' Average’, Measured','Location','Best); title(['Density of * fluid * - ' cantilever]); hold off;

subplot(2,2,2); hold on;
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plot(ro_eta _control(:,1),g eta f*ones(length(f)).'s’,' ] ineWidth',2);
plot(ro_eta_control(:,1),mean(ro_eta_control(:,4))*ones(length(f)),r,'L.ine Width',2);
plot(ro_eta_control(:,1),ro_eta_control(:,4), k', Line Width',2);
legend('Known',' Average’, Measured', Location', Best); title(['Viscosity of ' fluid * - " cantilever]); hold off;

subpiot(2,2,3); hold on;
plot(ro_eta_control(:,1),mean(ro_eta_control(:,3))*ones(length(f),r','Line Widtly',2);
plot(ro_eta_control(:,1),ro_eta_control(:,3), k', L.ine Width',2);
legend(‘Average','Error','Location’, Best); title('Density error’); hold off;

subplot(2,2,4); hold on;
plot(ro_eta_control(:,1),mean(ro_eta_control(:,5))*ones(iength(f)),'r','L.ine Width',2);
plot(ro_eta_control(:,1),ro_eta_control(:,5), k", Line Width' 2);

legend('Average', Error','Location',; Best); title(' Viscosity error’); hold off;
o, . g .

ameQ g ro g eta fro eta control
toc
end
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Appendix N

The effect of using different number of modes on the calculation of theoretical response:
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Appendix O

The responses of long and medium cantilevers in the non-Newtonian fluids:
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I’ve been examining PhD theses in Mechanical Engineering generally, and in
rheology in particular, since 1986. I’ve been doing so the Rheology Research Center at
the University of Wisconsin since 1994. Motamedi’s thesis stands out. The high quality
of his Chapter 2 “Theory” earns him my respect as an engineer and as a scholar. Chapter
1 fearlessly introduces the rather formidable problems associated with interpreting the
response of a tiny vibrating beams immersed in a fluid, and in terms of the density and
rheology of this surrounding fluid. Chapter 2 then skillfully ploughs through the many
problems with which others have grappled and capably arrives at a novel improvement to
existing methods for the measuring the Newtonian viscosity of tiny quantities of precious
liquids. Figure 5.31 is a substantial contribution to experimental engineering science. He
has also capably mapped out the future for his research area, by preparing the extension
of his work to tiny quantities of precious non-Newtonian fluids. The thesis leaves the
reader yearning for the next student’s installment of future work.

This thesis easily matches the highest quality theses defended in my own Mechanical
Engineering Department at the University of Wisconsin. I would also place it among the
top 5% of the theses defended in rheology, all disciplines, at the University of Wisconsin.

Typographical Errors

1. Page 1: “Noble” should be “Nobel”.

2. Page 3: “reviewed in details.” should be “reviewed in detail.”

3. Page 21: “this error respect” should be “this error with respect”.

4. Page 33: “Combing” should be “Combining”.

5. Page 54: “Furrier” should be “Fourier”.

6. Page 77: “spectra leakage” should be “spectral leakage”.

7. Page 146: “Cox-Mertz” should be “Cox-Merz”. Also, include the Cox-Merz
reference here.

8. Page 154: “et al” should be “et al.”. Correct throughout.



