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ABSTRACT

Micro Cantilever Based Rheology of Liquids

Ramin Motamedi, Ph.D.
Concordia University, 2009

In this work the objective was to extract the properties of high viscosity liquids using

the vibrational response of the micro cantilevers utilized in the atomic force microscopes

(AFM). Such an aim could not be achieved using thermal excitation of the cantilever

because the energy given to the cantilever in this method is not enough to allow it to have

a recognizable response. Instead we proposed the frequency sweep and step excitation

techniques and we proved that they can be used to overcome such a limitation. These two

methods are considered as two specific types of the acoustic excitation technique. The

application of acoustic excitation to the cantilever in liquid resulted in many spurious

peaks in the response, which make it impossible to identify the original cantilever

response. Therefore, the first step of this study was to understand the real factors leading

to this effect and to improve the design of the fluid cell. After achieving such a goal, we

focused on the extraction of the fluid properties by comparing the theoretical analysis

with the experimentally obtained results. During our study we implemented the

previously established theory for the frequency sweep and we managed to develop the

theory for the step excitation technique by ourselves. We proved that although both

methods are successful in analysing high viscosity liquids, the step excitation technique

was better than the frequency sweep method mainly in having an exact theoretical

solution rather than a solution in the form of a series. This enabled us to increase the
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accuracy of the theoretically obtained results by diminishing the truncation error. In

addition, for determination of the fluid properties from the frequency sweep data, three

different methods were proposed. These were to determine the properties of the fluids

through the whole frequency range using the phase response or the amplitude response or

by using both responses at each excitation frequency. Finally, we explained how to

extend our work in order to serve for the studies being made on the non-Newtonian fluids

and we also mentioned few guidelines to help in focusing such efforts to achieve the best

results expected.
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Chapter 1

Introduction and Literature Review

The atomic force microscope (AFM) was invented in 1986 by Gerd Binnig et al1. It

originated from the scanning tunnelling microscope (STM) which was a Nobel Prize

winning invention in physics. With the help of the AFM. the surface of samples can be

imaged with a resolution on the order of fractions of nanometers which is 1000 times

more than any optical diffraction limit. The AFM was originally designed based on its

operation in contact mode meaning that the height image of the sample can be obtained

by monitoring and calibrating the deflection of the micro-cantilever as it moves on the

sample surface. The cantilever deflection is typically measured by optical or by electrical

means. Because of the destructive effect of this mode on the surface of soft samples, the

next generation of the AFMs had the tapping mode, also called the dynamic mode. In this

mode, the micro-cantilever is excited such that it oscillates at a frequency close to its

primary natural frequency and by monitoring the amplitude of vibration, as the cantilever

scans the sample surface, the height image is produced.

Besides imaging, many other applications have been developed for the AFM since its

invention.- In this project we focused on one of these applications which is the

measurement of rheological properties of fluids on the micro scale. This chapter is

dedicated to the previously related works in this field and provides background for

understanding the rest of the work. The content of this part is structured as follows. First,

we describe different applications of AFM. After that some common techniques for
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exciting the AFM cantilevers were explained. Then it is followed by introducing the

difficulties of the acoustic excitation, which is our preferred excitation method, in a liquid

environment. The development in modeling of cantilever frequency response is presented

next, and finally, we focus on the microcantilever based rheological measurements as one

of the recent applications of the AFM.

1.1) Different applications of AFM

Although the AFM was originally designed for the purpose of imaging surfaces, its

high sensitivity in detecting forces, on the order of picoNewtons, made it applicable for

the measurement of atomic interaction forces, magnetic forces, electric forces, friction

forces, and also in the investigation of mechanical properties and structures of soft

materials at the nanometer scale. In contrast to the STM, that can be used only for

conductive surfaces, the AFM enables the scientists to investigate and scan, in atomic

scale, both conductive and isolative surfaces of samples ranging from metallic and

inorganic materials to polymeric and biological materials. Introducing the tapping

(dynamic) mode for AFM and the invention of some accessories, including the fluid cell,

also expanded the applicability of the instrument for imaging of more delicate materials

in their natural environment 34. In the tapping mode, lateral forces which can cause

scratches and the removal of weakly attached molecules on the surface are reduced

considerably. Beside force measurement and imaging, many other applications were

developed in which the AFM can be used as a sensor. For example, its use as a

temperature sensor, gas sensor, spectrometer, calorimeter, environmental sensor,
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microbalance, stress detector, or even as an electrochemical electrode were just a few

applications that Berger et aP reviewed in detail.

One of the applications of AFM that has received a lot of attention recently, is

measuring the rheological properties of fluids6'7. The physics behind this application is
that the oscillatory behavior of the AFM cantilevers depends strongly on the properties of

the medium in which they are vibrating. For example, the resonant frequencies and

quality factors (i.e. the sharpness of the peaks) in the frequency response of the cantilever

reduce in liquids compared to those of the cantilever in air. Therefore, by observing these

changes in vibrational characteristic of the cantilever, one can determine the properties of

the fluid. The important advantages of this technique are, primarily, the small quantity of

the fluid (on the order of micro litre) and the relatively compact apparatus required for

the measurement, secondarily, local measurements of non-homogenous fluids, and

finally, in some cases faster measurement of rheological properties compared to the

conventional methods. However, the use of the AFM in dynamic mode is challenging in

liquid media because of the complex hydrodynamic force acting on the cantilever. Also

several factors that originate from the design of the cantilever holder significantly affect

the frequency response. Therefore, understanding the influence of each of these factors is

necessary for the reliable operation of the AFM in liquid media. This issue comprises part

of the current work however the main focus is the extension of this technique for high

viscosity Newtonian fluids and the investigation of the applicability of this method for

non-Newtonian fluids.



1.2) Different techniques for cantilever excitation

For the various applications of the AFM, there are many different techniques to excite

the micro-cantilever. Since the main differences in these techniques are due to the types

of driving force, the response of the cantilever strongly depends on the chosen excitation

technique, especially when it is used in a liquid environment. The three major types are

thermal excitation, magnetic excitation and acoustic excitation, which are shown

schematically in Figure 1.1 and explained briefly in the following paragraphs.

In thermal excitation ' (Figure 1.1 a), the cantilever response is the result of random

collisions due to the Brownian motion of the surrounding fluid molecules. In this

technique, the cantilever is excited directly and consequently a smooth vibration

response, related only to the properties of the cantilever and the fluid, is observed.

Moreover, this technique provides the smallest possible oscillation at a given temperature

which is useful in imaging of very smooth surfaces. But knowing that the thermal driving

force is stochastic in nature, we comprehend that this method is not helpful in

determining any information concerning the cantilever phase response, and for example it

cannot be used to measure any surface mechanical properties. However, the main

applications of this technique are to estimate the cantilever resonant frequency and to

measure the rheological properties of low viscosity Newtonian fluids.

Another direct excitation method is the magnetic excitation technique - (Figure

1.1 b), which provides a smooth vibration response as well. For such a technique, a

micro-cantilever is magnetized either by attaching a magnetic particle to it or by coating

it with a magnetic material , then it is stimulated by an external varying magnetic field.

This gives one the flexibility of using many types of cantilevers in many different

4



Z
Magnetic
particle

f ©
VoltageSolenoid coil©©W

[ r X

ba

Positive VoltageNegative Voltage

&
Piezoelectric J fc

Cantilever Piezoe ectnc

O

Cantilever baseC)

Figure 1.1 Schematic of the major excitation techniques, a) thermal noise b) magnetic
excitation c) acoustic excitation.

environments. However such coating changes the cantilever vibration properties.

Moreover, the vibration properties of the cantilever can be affected also by the changes in

its mass as the magnetized cantilever absorbs some magnetic particles from the

surrounding environment over time. Finally, the fluid will be heated as a result of using

the magnetic field which affects the fluid's rheological properties.

In the case of acoustic excitation4 (Figure 1.1 c), the cantilever is excited through

movement of its base by a piezoelectric actuator. This is an indirect method, meaning that

the driving force is applied to the cantilever indirectly through its base. The actuator is

usually placed directly under the cantilever chip in the tip holder that is used in air or

vacuum, while it is usually located away from the cantilever base in the fluid cell which

is used for liquid media. As will be explained in detail later on, the response of the

5



cantilever to acoustic excitation in a liquid environment contains many spurious peaks

which do not correspond to the natural frequencies of the cantilever and are rather related

to the design of the fluid cell.

In addition to the techniques mentioned above, there are several other excitation

techniques of minor importance which are clarified in Figure 1.2. For example, Schereret

al! proposed a technique (Figure 1.2 a) that uses electrostatic forces for cantilever

actuation. In this method, an electric field is applied between the AFM cantilever tip and

a sharpened steel electrode. Such a technique allows the exertion of a point force on the

cantilever and the freedom of choosing any arbitrary function for the applied force.

Moreover, the response of the cantilever, which was measured using a laser Doppler

vibrometer (LDV), proved to show no extra spurious peaks. However, this technique can

only be used for a conductive cantilever that is immersed in a non conductive medium

such as a dielectric liquid or gas. These disadvantages were resolved by the acoustic

radiation pressure method (Figure 1.2 b), proposed by Degertekin et al14. This is done by,

applying a localized force via a pressure wave, focused on the cantilever tip, produced by

a micro machined acoustic transducer. This technique is mainly used for characterizing

the cantilever and measuring its frequency response while giving an additional flexibility

to be applied to many cantilevers of arbitrary shape and material. Another technique was

introduced by Buguin et al ? (Figure 1 .2 c), which resembles the previously introduced

magnetic excitation technique in its method of operation only. Here the AFM cantilever

is forced to oscillate by passing an AC current through it while putting it in a permanent

magnetic field, and as a result, the resulting Lorenz forces cause the cantilever to vibrate.

This method has the additional advantage of its cantilever being in a pure unmodified

6
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state, unlike the magnetic excitation where the cantilever had to be coated by magnetic

material or a magnetic glued particle. However, the cantilever again must also be

conductive and this method is only limited to the V shaped cantilevers because they can
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provide a closed circuit. The photothermal technique (Figure 1.2 d) is an additional

method that was introduced by Ratcliff et al 6, where they used a modulated laser on a

metal coated cantilever which allowed for bending because of different thermal

expansion coefficients of the metal and the core material. The regular optical system of

the AFM was used in order to measure the cantilever vibrations. But again such a

technique was restricted to bi-material cantilevers only . Last but not least, was the

technique introduced by Volkov et al (Figure 1 .2 e), which used fluid force, in the

vicinity of the cantilever, as its excitation method. Such a technique uses two different

cantilevers, one passive and the other active. The piezo on the active cantilever is used to

drive the fluid in vicinity of the passive cantilever whose vibration is continuously

monitored. In this way, it was shown that many of the spurious peaks appearing in the

acoustic excitation method no longer exist. Moreover, cantilevers of many materials,

types and shapes can be used.

1.3) Spurious peaks in frequency response of acoustic excitation

Among the three main excitation techniques, acoustic excitation is thought to be the

preferable one although the thermal and magnetic driving methods produce smoother

cantilever responses. This is mainly because the cantilever used for this technique does

not need any modification and special coating and its amplitude of vibration is big

enough for different application of the AFM. Moreover, the later two techniques require

additional hardware such as a signal conditioner, a data acquisition system, special

cantilevers, and a magnetic field system making the two techniques more complex and

8



costly. However the most important disadvantage of acoustic excitation, as mentioned

before, is that the response of the cantilever in a liquid environment usually contains

many spurious peaks which do not correspond to the natural frequencies of the cantilever

(see Figure 1.3). Therefore many investigations have been carried on to understand the

nature of these redundant peaks and to improve the acoustic excitation technique41219"24.

0.8

% 0.6
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ZS

-#—*
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20 40 60
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80 100

Figure 1.3 Typical response of a cantilever in liquid environment within a fluid cell.

Putman et al , who were the pioneers in introducing tapping mode atomic force

microscopy in liquid media, were faced with these extra frequency peaks for the first

time. They realized that any changes in the liquid cell system, such as changing its

geometry, its material, the working liquid, and more importantly the amount of liquid,

affect the positions and amplitudes of the resonances. Schaffer et al19 observed

experimentally the same frequency response dependency upon the fluid cell system's
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geometrica] and material design issues. Based on their observations of the responses of

different cantilevers in the same liquid environment, Schaffer et al19 proposed the

hypothesis that "the cantilever response spectrum is the product of a fluid drive spectrum,

which depends only on the cantilever module and fluid, and the thermal noise spectrum,

which depends only on the cantilever and fluid". Their hypothesis was supported by

measuring the fluid drive spectra of three different cantilevers in the same environment

and showing that their shapes are very similar. Moreover, they showed experimentally

that the mode shapes of the vibrating cantilever are independent of the fluid drive

spectrum and depend only on the vibrational characteristics of the cantilever in the fluid.

Other researchers, who used different types of AFMs and fluid cells which in some cases

were made in-house, also reported the appearance of spurious peaks12202'. For example,
77

Xu et al used an Agilent AFM with a modified fluid cell in order to apply different

types of excitations to the micro cantilevers and measure their responses under identical

conditions. For acoustic excitation, they also observed the spurious peaks in the response

of the cantilever and based on their theory, which will be explained in the next section,

they determined the fluid drive spectrum. Xu et al22 reached a similar conclusion as

Schaffer et al in that the response of cantilever in acoustic excitation is the result of two

mechanisms: a) structure-born excitation and b) fluid-born excitation. The first

mechanism is ideal acoustic excitation but when combined with the other mechanism,

spurious peaks are observed in the cantilever response. Also, it was shown that Schaffer

et al's method1 for determination of the fluid-born excitation is as a special case in the
analysis of Xu et al because Schaffer et al1 approximated the structure-born excitation
with the thermal noise of the cantilever.
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Even in other instruments with similar concept and mechanism for excitation of their

cantilever, these redundant peaks appeared. Kirstein et al2 observed such extra peaks in

the frequency response of a circular cantilever in an in-house built near field optical

microscope. They proved that these peaks are related to vibrations of some parts in the

instrument. This was done by comparing the responses of a single cantilever in two

different media, air and water, and observing the existence of some peaks at the same

frequencies for both responses.

Although the effects of the various design problems on the cantilever response were

previously recognized, the exact relationships were not understood and the early

improvements of the frequency response based on control of these factors had not been

considered. Instead efforts were focused on other approaches. Tamayo et al2j mixed the
standard driving signal with a feedback signal from the cantilever response such that they

could increase the quality factor of the cantile\'er oscillations by up to three orders of

magnitude. However their technique is very sensitive to viscosity variations and is,

therefore, limited by small temperature fluctuations. Rogers et al24 used another

approach. They attached a piezoelectric microactuator over the axial surface of a

microcantilever and insolated it from the conductive liquid medium using a

fluoropolymer coating. In this way they could excite the microcantilever by applying a

direct force, resulting in the disappearance of redundant peaks. However, this technique

is no longer standard acoustic excitation and like the magnetic coated cantilevers, the

vibrational properties and bending angle of their cantilevers are changed.

Because of the particular design of commercial fluid cells, it is impossible to apply

ideal acoustic excitation to the cantilever resulting in an even more complicated
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frequency response. As a part of this project, we apply some simple modifications to a

widely used commercial fluid cell from Veeco2"^ (MTFML model) in an effort to

approximate ideal acoustic excitation and in this way investigate the frequency response

of the cantilever in this cell without fluid born excitation and certain design related

aspects. We will show that the vibration of the fluid cell body is the most significant

disturbance in the observed frequency response.

In the next section, the development in the theory of cantilever frequency response

will be summarized in order to provide a proper background for understanding the

modeling used in the results and the other experimental parts.

1.4) Modeling of cantilever vibration in viscous fluids

The theoretical response of a vibrating AFM cantilever in vacuum is well known2627.

However, the vibrational characteristics of such a cantilever will change considerably

when it is immersed in a viscous fluid. Since the sensitivity of the AFM depends directly

on the oscillatory behaviour of the cantilever, it is important to understand such

phenomena.

The vibration of any solid body results in a flow in the surrounding fluid by dragging

the fluid as it moves. This increases the effective mass of the moving body and as a result

its resonance frequency decreases. The effective mass of such a body includes its actual

mass and the mass of the moving fluid which is called the induced mass. In

hydrodynamics the induced mass is referred to sometimes as the added mass or the

virtual mass" .On the other hand, the moving fluid contributes some damping effects
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to the oscillatory behaviour of the body resulting in a decrease in its amplitude of

oscillation. Solving the Navier-Stokes equations and continuity equation along with the

equation of motion of the vibrating body in the fluid is vital in order to study such a

phenomenon. Also for a long time it was of great interest to solve these equations to

analyze practical applications, at the macroscale, such as for the design of ships or under

water structures. These bodies were generally simulated using simple geometries such as

a transversally oscillating cylinder28 or a sphere oscillating along its diameter30 in a
viscous fluid.

Concerning the modeling of the oscillatory behavior of AFM cantilever beams when

immersed in a fluid, two main theoretical approaches have been used: (1) the simple

model of equivalent spring-mass-damper system and (2) the "hydrodynamic' functions

methods. The development of these techniques will be explained in detail in the

following paragraphs.

In 1992, Butt et aljl implemented a simplified model of a cantilever system to
evaluate the scan speed limit for cantilevers in various fluids. This was achieved by

assuming a massless cantilever with a spring constant of k and a mass point of m at its

free end. Moreover, for the cantilever, they assumed a damping force that is proportional

to the velocity of the free end with a proportionality constant d. In order to find this

constant, they simulated the mass by a sphere of radius R. Based on the Stoke's law, the

applied drag force on a moving sphere which is immersed in a fluid is:

dyFd = 6p Rf/ — Equation (1.1)
dt

where // is the viscosity of the fluid and y is the displacement of the sphere. Based on

this, the damping coefficient d is equal to 6p Rfi . In this way, they could couple the
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damping effect of the surrounding fluid with the response of the cantilever. Their

approach was improved by Chen et alJ" by considering two different cases of damping,

first in gases and second in liquids. For gases, the Reynolds number is small, typically in

the order of 10" , and as a result the drag force is proportional to the velocity of the

sphere. Hence like Butt et al, they used the Stoke's law in their modeling. However, for

liquids the typical values of density and viscosity are 1000 and 100 times greater than

gases respectively, and the resonant frequency of the cantilever usually shifts three to five

times less than in gases and as a result, the Reynolds number in liquids is not as small as

that for gases. Therefore, the applied drag force could be found from:

F11=- p??? ^- + 3p?2^2µ?? ^- Equation (1 .2)
where ? is the density of the liquid and ? is the angular frequency of the sphere

oscillation. In Equation (1.2), the first term of the drag force is proportional to the

acceleration and defines the added mass. In this model, beside the radius of the sphere,

another parameter was defined that depends on the size of the cantilever. These

geometrical parameters are constant for each cantilever and once they are determined, by

fitting the model to a set of experimental resonance peak data, they can be used to predict

the behavior of the cantilever in other fluids. With this method, the cantilever beam is

modeled as a one-dimensional simple harmonic oscillator and only the first mode of

vibration can be predicted. Chen et al·'" also used a variational method, for the equation of

motion of the cantilever, to approximate the higher modes of vibration from the first
IT

mode. Later on, this work was verified experimentally by Oden et al . They

implemented their study on several cantilevers of two shapes, V-shaped and rectangular

cantilevers, while oscillating in different fluids, such as air and glycerol/water mixtures.
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These fluids were chosen to cover a wide range of viscosities. Their experimental results

demonstrated a good agreement with the theoretical model for low viscosity liquids but

the theory was incapable of predicting the experimental values for higher viscosity

liquids.

An apparently more realistic model for the oscillatory behavior of cantilever beams in

viscous fluids was proposed by Kokubun et alj4. They modeled the cantilever by a string
of spheres of radius R equal to one half of the width of the cantilever, and they

approximated the applied drag force at each point of the cantilever by that on a sphere

which vibrates with the same amplitude of the cantilever. Their method consists of a very

complicated analysis in order to predict the frequency response of the cantilevers;

however after determining the frequency response, calculating the resonant frequency

and the quality factor at each mode of vibration are straight forward. Similar to the

method proposed by Chen et al32, again in this method we need to find some physical
parameters by fitting the model to the experimental values. Hirai et alJÍ verified this

model by achieving a good agreement with the experimental results for the peak

amplitudes at resonant frequencies; however they discovered that this model is

overestimating the value of the applied drag force.

In an additional attempt to determine the higher modes of vibration, Salapaka et al

used a more accurate method that is not based on the sphere approach but instead

employed the multi mode model directly for the analysis of the oscillatory behavior of the

cantilever. Again this method requires finding an experimental parameter from the first

mode of vibration which was then utilized to find higher modes of vibration. They also

applied the same assumption of the damping force being proportional to the velocity of
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the cantilever in their technique, which limits the usage of this technique only for gases,

which usually have low Reynolds number. This was proved experimentally for air during

their study.

The key point for the equivalent spring-mass-damper or simply the sphere approach is

to find the equivalent sphere radius or some other physical parameters from experimental

values of the fundamental mode of vibration. These parameters are essential for

predicting the behavior of the cantilever at higher modes of vibrations. The dependency

of the radius of the equivalent sphere upon the cantilever geometrical parameters and the

nature of the material used has been studied by many researchers ' ' ' ' , however the

results obtained were inconsistent. Therefore, it could be concluded that it is impossible

to evaluate the radius of the equivalent sphere before determining the fitting parameters.

Although this method has been utilized in many research works, it proved to be

misleading when the cantilever size or geometry is changed. In contrast to this approach,

the real geometry of the cantilever is being used for modeling of its oscillatory behaviour

in the hydrodynamic function approach. The hydrodynamic function method allows

multimode analysis of the cantilever and as a result there is no need for experimental

parameters to investigate the higher harmonics. The development of this approach is

described next.

The simplest model which uses the actual geometry and dimensions of the cantilever

was proposed by Weigert et al41. In their model, the resonant frequency of the cantilever

was predicted by replacing the actual mass of the cantilever with its effective mass in the

analysis of undamped cantilever vibration. For evaluation of the added mass at each

mode of vibration, the mass of moving fluid (induced mass) is approximated with the
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mass of the fluid in double cones around the nodes of vibration in vacuum. The height of

the double cone is the same as the width of the cantilever and its maximum radius is

equal to half of the distance between two neighbouring nodes, which is related to the

wavelength of the nth mode (Figure 1 .4). They verified their model by experimentally
determining the resonant frequencies of two dimensionally different rectangular

cantilevers in air and water and found satisfactory results up to the 7l mode of vibration.

However the discrepancy between theoretical and experimental results increases at the

higher modes. Since the mass of moving fluid was not determined through solving of the

Navier-Stokes equations in this model, the effect of the viscosity of the fluid cannot be

taken into account.

y./.X
X 5th mode shape^\^
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Cantilever

Figure 1 .4 A schematic drawing of a cantilever, with a rectangular cross section, while

oscillating in a medium at the 5th mode of vibration.
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Elmer et al determined theoretically the shift in the resonant frequencies of

rectangular cantile\'ers in the same way as Weigert et a] using the concept of virtual

mass. However, Elmer et al evaluated the \'irtual mass in a more logically accepted

manner. The virtual mass was calculated by solving the hydrodynamic equations for the

flow around the cantilever. Many assumptions were made to simplify the problem;

mostly important are the assumptions of the fluid being invisid and the length of the

cantilever being infinite (2D flow around the cantilever). As a result of these

assumptions, the drag force on the cantilever will only be due to the pressure difference

between the upper and lower surface of the cantilever. This allowed for the determination

of the pressure field around the cantilever through solving a simplified form of the

Navier-Stokes equations, in which the viscous terms are neglected, namely the Euler

equations. In order to find the accuracy of the model, they performed a series of

experiments with different cantilevers immersed in different fluids. It was concluded that

there was a systematic error in their proposed model. Moreover, the accuracy of their

model was limited to the higher modes of vibration. The authors thought that the reason

comes from the approximation of 2D flow induced a large error in the results for the first

few modes however Maali et al4j proved that in the higher modes of vibrations the third

component of the flow is even more important than in the lower modes. Instead, the main

reason seems to be the importance of the viscous dissipative effect on the lower modes of

vibration which is neglected in this invisid model. Nonetheless their model was still more

accurate than Weigert et al' s model ', in the prediction of the resonant frequencies, as
was proven mathematically and experimentally.
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The effect of viscosity on the cantilever response was considered in the modeling of

Kirstein et al . Since the motion of the surrounding fluid is not instantaneous and has a

phase shift comparing to the movement of the cantilever, they divided the applied drag

force on the cantilever into two parts: one part is in phase with the motion of the

cantilever and the second part is out of phase. The first part, which can also be considered

in phase with the cantilever acceleration, is the inertial force; while the second part which

has the same phase as the velocity of the cantilever is the damping force. In order to

evaluate these forces, they defined two parameters: the added mass coefficient, C1n, and

the fluid damping coefficient, Cv. These coefficients relate those forces to the

acceleration and the velocity of the cantilever, respectively, and also link them to the

volume of the fluid that moves with the cantilever. The coefficients were determined

through solving the Navier-Stokes equations for the general case of a cylindric cross

section cantilever with diameter D which is confined concentrically by a cylindrical

vessel of diameter D0 that is filled with the fluid, as shown in Figure 1.5. It was found

that these coefficients are dependent upon the Reynolds number. Then the problem was

simplified for two practical cases of high Reynolds number and an infinite viscous fluid

which is the case for the vibration of the cantilevers in fluid cells. It should be mentioned

that the analysis of cylindric cross section is important because it is the typical shape of

cantilevers used for scanning near-field optical microscopes. However for the case of

AFM cantilevers, the cross section is usually rectangular. For this case, Kirstein et al20

highlighted two approaches for determining the coefficients. The first can be made

through carrying out the analysis for a cantilever with an elliptical cross section in an

elliptical coordinate system instead of the cylindrical one and the coefficients for the
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rectangular cantilever will be approximated by the ones for a very flat elliptic cantilever.

The other approach, which was verified roughly by the results of other researchers32'42,
was based upon modifying and rescaling of the Reynolds number as well as the

parameters of Cm and Cv according to the new cantilever geometry.

Viscous Fluid

/ \
/

D ?

r
\ 7
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Cantilever

Figure 1 .5 A schematic drawing of a cylindrical tube of viscous fluid surrounding

concentrically a vibrating cylindrical cantilever

After evaluating the inertial and damping forces, they were implemented them in the

governing equation for the cantilever vibration from which two equations for the shifted

resonant frequencies and the quality factors of the cantilever in the fluid were derived. In

these equations the most important parameter is the Reynolds number which depends on

the frequency of the oscillation itself. Therefore these equations are implicit in terms of

the resonant frequency and hence an iterative approach should be implemented to solve

for the resonant frequency. The comparison of the theoretical and experimental results for

this model indicated an accurate estimation of both resonant frequency and quality factor
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for lower modes of vibration within an error of 1 % and a systematic error for the higher

modes which increases with mode number. The trend of this error with respect to the

mode number is in contrast with the one generated by the models of Weigert et al and

Elmer et al. This can be considered as an advantage of Kirstein et al's model because

eventually in practice the lower modes of vibration are more important. In addition, this

model can also be used to predict the quality factors, which describe the broadening of

the resonant peaks.

Interestingly at the same time as Kirstein et ar} presented their work, one of the

fundamental contributions in this field was made by Sader who derived the general

theoretical model for the frequency response of cantilever beams immersed in viscous

fluids. In his model, the cantilever can have an arbitrary cross section, which should be

uniform along its entire length. Also, it can be excited by any chosen driving force and

the surrounding fluid can have any value for the density and the viscosity. This theory

was developed mainly based upon the assumptions that the ratio of length to nominal

width of the cantilever is very large and in addition the amplitude of vibration is much

smaller than any of the cantilever's characteristic lengths. As a consequence of these

assumptions, the resulting flow can be approximated by a 2D flow around the cantilever.

Moreover, the nonlinear terms in the Navier-Stokes equations can be neglected, so that

the hydrodynamic drag force can be considered to be a linear function of the cantilever

displacement. Based upon the last conclusion, Sader used the following parametric

equation to represent the applied drag force at point ? on the length of the cantilever:

Fw™(v!») = f ??2?%?^) Equation (1 .3)
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where ? is the density of the fluid, ? and Y are the frequency and amplitude of

cantilever oscillation respectively. V^ is the hydrodynamic function and b is the width

of the cantilever. The hydrodynamic function is a dimensionless function that represents

the effect of the cross section shape and can be obtained either analytically or numerically

from solving the Navier-Stokes equations for the flow. Because the cross section of

cantilevers in most practical situations is either circular or rectangular. Sader9 presented
the hydrodynamic functions for these two cases. He defined the hydrodynamic function

analytically for the case of the circular cross section using previously obtained theoretical

results for the drag force on a transversally oscillating cylinder28. Then he proposed a

numerically obtained correction function O.(?), which should be multiplied to the

hydrodynamic function of the circular cross section to rescale the values properly, for the

rectangular cross section as shown in the following equation:

rm., (?) = O{?) ? r„(r (?) Equation (1.4)

After that. Sader implemented the equation for the hydrodynamic drag force in the

governing equation of the cantilever deflection. By applying the appropriate boundary

conditions and also with the help of the theory of Green's function, he found the general

solution for the cantilever deflection at each point of its length and at each frequency of

excitation. Then, he simplified his model for the special case of thermal driving force

because of the frequent use of this type of excitation in AFM applications. For this case,

another formula was also derived for the inclination of the cantilever beam because, in

most AFMs, the optical system measures the inclination of the cantilever rather than its

deflection.
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Sader also investigated the validity of approximating the thermal frequency response

with the simple harmonic oscillation (SHO) model in the neighbourhood of a resonant

peak, which is a technique that was used in many experimental cases. He showed that this

approximation is reasonable only in the case of small dissipative effects in the fluid. Then

he derived two formulas, based on his theoretical model, for expressing the resonant

frequency and quality factor of the frequency response for the case of small dissipative
effects in the fluid.

His theoretical model was validated experimentally by Chon et al44 through a series of

experiments with several rectangular cantilevers that had different aspect ratios and were

immersed in different fluids. They showed qualitatively that the effect of viscosity can

not be neglected in the analysis of AFM cantilevers. This was done by measuring the

frequency responses of a cantilever in acetone and 1-butanol. These fluids have almost

the same density but their viscosities differ by an order of magnitude. As a result of this

difference in the viscosity, both the resonant frequencies and the breadths of their peaks

were different. This result is in contrast with the one reported by Chu et al4'"1 for the
vibration of macro scale cantilever beams in viscous fluids. Such a distinction can be

explained by focusing on the difference between the relative importance of fluid damping

in the macro and micro scales. Where during macro scale analysis, the fluid damping is

negligible compared to the interna] losses of the cantilever, it is significant in the case of

the micro scale.

Chon et al44 also checked the sensitivity of the Sader s model to the uniformity of the
cantilever cross section and the material properties. For this purpose, they chose two sets

of cantilevers, one that had very precise geometries and uniform material properties and
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the other did not. These two sets were called calibrated and practical cantilevers

respectively. Comparison of their experimental results with the Sader's theoretical model

indicated that the sensitivity of the model to the uniformity of geometrical and material

properties is small and therefore the model can be used for practical cantilevers as long as

the aspect ratio of the cantilever is large.

Although Sader's theory was significantly improved over previous models of

oscillatory behavior of AFM cantilever in fluid, his model is restricted to the assumption

of 2D flow of an incompressible fluid around the cantilever. To satisfy this assumption,

the distance between two adjacent nodes of vibration should greatly exceed the nominal

width of the cantilever. Therefore, for a cantilever with a finite length, his model is

limited practically for prediction of the fundamental resonant frequency and its first few

harmonics. In the higher modes of vibration the axial flow, which is the 3rd component of
the flow, is not negligible compared to the other components of the flow, and as a result,

the model introduces a considerable error in prediction of the experimental frequency

response. This was proved experimentally by Maali et al4j who investigated the

oscillatory behavior of an AFM cantilever immersed in air and water up to the 81'1 mode
of vibration. Beside the experimental results, they also showed the effect of the axial flow

by solving the 3D Navier-Stokes equations numerically for the oscillation of the

cantilever in a viscous fluid. In this case, the numerically predicted viscous damping

coefficient and the added mass were closer in value to the experimentally determined

results.

It should be emphasized that all the above mentioned models are for flexural vibration

of the cantilever, while the cantilever can exhibit longitudinal and torsional vibrations
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also. For the case of longitudinal vibration, almost none of the commercial AFMs are

capable of measuring the related deformations. Therefore, there has not been any need to

model the behaviour of the cantilever for this type of vibration. For the case of torsional

vibration, regular AFMs can determine the amount of deflection angle at each point of

the cantilever; so Green et al extended Saders approach for this type of vibration.

Similarly, they solved the elastomechanical governing equation for the deflection angle

of the cantilever at the same time with the Navier-Stokes equations for the fluid. They

also specified the torsional hydrodynamic function for both circular and rectangular

cantilevers that can be used to evaluate the hydrodynamic torque on the cantilever. They

found that the modal frequencies for torsional vibration are much higher than for flexural

vibration. Their model could not predict the cantilever behaviour at higher modes of

vibration very well due again to the assumption of 2D flow around the cantilever.

Regarding this inaccuracy, Eysden et al47 improved their models by finding
analytically more realistic hydrodynamic functions that take into account the 3D flow

around the cantilever. These hydrodynamic functions depend not only upon the Reynolds

number of the system but also upon the vibration modes. However, the final formulas

obtained for these functions are very complicated and numerical values are presented to

facilitate their usage.

It should be mentioned that despite of the discrepancy of Sader's model with

experimental results at higher modes of vibration, this model is well accepted and widely

used among the researchers in this field for many reasons. First it provides the whole

frequency response of the cantilever and does not need a priori information about the

experimental results. Second, in most of the AFM applications and related investigations,
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only the fundamental resonant frequency or at most its first few harmonics are needed.

Third, the simplicity of his model and its accuracy are well balanced, and finally, the

measurement system of regular AFMs provides more reliable data for flexura] vibration

than for torsional vibration. Here we focus on Sader's model and determine accurately its

applicability limits.

More recently, in another attempt to model the oscillatory behaviour of the cantilever
77

in viscous fluids, Xu and Raman derived simple formulas based on transfer functions to

describe the response of the AFM cantilevers to thermal, magnetic and ideal acoustic

excitations as they were defined in section 1 .2 (Acoustic excitation is ideal when the base

of the cantilever is moved in a controlled manner). The hydrodynamic function used for

their analysis is that of Sader . Comparing these theoretical responses in the neighbouring

of fundamental resonant frequency indicated that although their peak frequencies are

close to each other, the peak frequency of the ideal acoustic excitation is slightly higher

than that of the thermal excitation and also that the peak frequency of the magnetic

excitation is slightly smaller than that of the thermal excitation. Moreover, they studied

experimentally the responses of the cantilever to these excitation techniques in liquid

media using an Agilent AFM and fluid cell. The system of the AFM was modified in a

way that the switching between three excitation techniques could be done without

changing the cantilever position and the laser alignment. Therefore their frequency

responses could be compared under identical conditions. The experimental results for

thermal and magnetic excitations showed that Xu et al' s theoretical models can

excellently predict the oscillatory behaviour of the cantilever in the region of the first

mode of vibration. This includes the predictions of their peak frequencies and also the
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non-zero amplitude of vibration for the magnetic excitation at very low frequencies. In

the case of the acoustic excitation, they observed many spurious peaks in the response of

the cantilever, which as mentioned before are not related to the true dynamics of the

cantilever, and therefore they could not verify their model for this case very well. The

only thing that followed their model was the zeroing trend of oscillation amplitude at

very low frequencies. Finally regarding their model, it should be mentioned that the

achieved accuracy was not very surprising because the hydrodynamic function, which

was used in their analysis, only evaluates the drag force at the first few modes of

vibration accurately.

Beside the above mentioned investigations regarding the frequency responses and

vibrational characteristics, some studies have been carried on the other aspects of the

cantilever oscillatory behavior in viscous fluids. For example, Green et al48 examined the
frequency response of a cantilever vibrating in the vicinity of a solid surface. The result

of their study is practically important while doing experiments with liquids. This is

because in practice for liquids we usually use the fluid cell which holds the cantilever just

below its glassy surface. It was found that for a rectangular cantilever, the effect of

approaching the cantilever to the surface is a broadening and shifting of the resonant peak

to a lower frequency. However for most gases and fluids with typical properties that

make the Reynolds number (defined as Re = pb2covac I ?µ where b is the width of the

cantilever, ? is the density of the fluid, // is the viscosity of the fluid and corac is the

resonant frequency of the cantilever in vacuum) greater than one. if the distance between

the cantilever beam and the solid surface is greater than the cantilever width then its
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frequency response is unaffected and the models for the unbounded cantilevers can be

applied here.

In another study, Jai et al.4C showed that for cantilevers having low quality factors, the

displacement of the cantilever base is comparable to the cantilever oscillation amplitude

in the acoustic excitation technique. Consequently, for this type of excitation, the free end

of the cantilever has a movement equal to the summation of the base displacement and

the cantilever oscillation amplitude.

As an overview on the development of the theoretical models of cantilever oscillatory

behavior in viscous fluids, it can be noticed that the very early studies of this subject

matter were focused on the determination of the cantilever vibrational characteristics

such as resonant frequency. However, after achieving these goals over time, the direction

of these studies were turned to the estimation of the whole range of frequency response of
the cantilever for different methods of excitation.

1.5) Measurements of Theological properties using AFM cantilevers

The fact that immersing a micro cantilever in a fluid changes its oscillatory behaviour

led many researchers to evaluate the vibrational characteristics of cantilever beams based

on the knowledge of both their material and geometrical properties as well as the

surrounding fluid properties, as summarized in the previous sections. From another point

of view, determining the fluid properties by observing the changes in vibrational

behaviour is another application for the AFM which was firstly introduced by Oden et
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alJ . The determination of the fluid properties by this method is useful in many fields

such as microfluidic systems because only a small amount of fluid, in the order of

microliters, is required.

The microcantilever based rheological measurement technique was originally

developed in order to determine the viscosity of liquids only. The initial efforts in this

area were based on very simple and quite inaccurate models as the development was

taking place in parallel with the development of models of the vibrational behaviour of

the cantilever. For example Oden et al3j and Ahmed et alM) used the simple one
dimensional sphere model, which was developed by Chen et alj2, during their studies of

the viscosity of water / glycerol solutions and other liquids. During their studies they

actually did not extract the viscosity of such liquids directly; instead they compared both

experimental and theoretical resonant frequencies of a thermally excited AFM cantilever

for the tested liquids. In this way, they found the sensitivity of the technique for different

viscosities and Oden et al33 showed that one cantilever can be used to measure a broad

range of viscosity from 10"2 up to 102 mPa.s. Furthermore. Ahmed et aP0 proved that
such a method can be used for online measurement of fluids' viscosities during a

chemical reaction or at the physical state of a biological system. This was done by

monitoring the change of the cantilever resonant frequency over time for the hydrolysis

of herring sperm DNA. Later on, Bergaud et al21 used the more precise hydrodynamic
function model of Sader for the viscosity measurements. Five different composite

cantilever beams, that had silicon cores and a thin gold coating, were excited acoustically

in water and ethanol using an in-house made AFM. They developed a MATLAB code to

extract the viscosity of the tested liquids from the experimentally obtained resonant
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frequency. Because Sader's model is more accurate for the lower modes of vibration,

they used only the first and second resonant frequencies in their computations. The

calculated viscosities were compared with the real viscosities of the liquids and the

maximum error was around 25 percent. They also mentioned that any inaccuracy in the

determination of the resonant frequency or the properties of the cantilever will be

magnified considerably in the final result. Therefore the use of well characterised

cantilevers and calibrating the whole AFM system before doing the experiment were

highly recommended. Finally, it was noted that the applicability of this technique is in the

limit of low dissipative effect otherwise there will be no resonant peak in the frequency

response as was shown experimentally for silicone oil.

The next step in development of this technique was determining both viscosity and

density of the fluid simultaneously which was achieved for the first time by Boskovic et

al . Their method was applicable for both gases and liquids having a wider range of

viscosities and densities. Boskovic et al6 managed to determine these properties through

the following procedure. First, they evaluated the resonant frequency ?,, and the quality

factor Q of the resonance through fitting the formula for the amplitude frequency

response of simple harmonic oscillation (SHO) to the neighbourhood of the resonant

peak. Then the viscosity and density were determined by solving simultaneously the two

equations for ?? and Q which were derived by Sader9 from his theoretical model. The

technique was verified by performing a series of experiments using a single micro

cantilever which was thermally excited and immersed in different gases and liquids with

known properties. Again because of the considerations regarding the accuracy of Sader's

model, only the frequency responses around the fundamental resonant frequency were
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used in the calculations. They achieved good agreement, with a maximum error less than

14%. It was shown that even fluids with similar properties could be recognized by this

method however since the validity of the model used in this technique is in the limit of

small damping and dissipative effect (Q>1), highly viscous fluids can not be studied.

Their method was also used by Hennemeyer et al7 to determine the properties of sugar
solutions and then the results were compared with the real values for the verification of

the technique. Hennemeyer et al7 also found that a very slow steady flow around the
cantilever does not change its frequency response. This indicated that the micro

cantilevers can be used as an online rheological measuring tool during production
processes too.

In the previous method, the determination of viscosity and density was based on two

vibrational characteristics, the resonant frequency and the quality factor which could be

evaluated if the resonant peak appears in the frequency response. Therefore, the

applicability of the method is limited for low viscosity fluids. Recently, Belmiloud et al31

proposed a different approach which is not restricted to the resonance phenomena. In

their method, the phase frequency response was measured as well as the amplitude

frequency response. Having these two measured values, Belmiloud et al evaluated the

inertial (added mass) and the dissipative (damping coefficient) parts of the applied drag

force at each frequency. These terms were determined analytically based on the

knowledge of the fluid and the cantilever properties by other researchers previously. By

equalling the experimentally and theoretically obtained values of added mass and

damping coefficient and then solving them simultaneously, they could predict the

viscosity and density of the fluid at each frequency. In this method, there is no restriction
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for the viscosity of the fluid because, even without the appearance of resonance, the

frequency responses of the cantilever are different in distinct fluids. Their method was

experimentally (less than %1) verified by extracting the viscosity and density of silicone

oils (viscosities ranging from 10 to 30000 cP) using a magnetically excited cantilever. In

their experiments, no resonant peak was observed for fluids with the viscosity greater

than 100 cP because of the large dissipative effects. The calculated values for viscosities

were in good agreement with the known values and also showed the frequency

independent behaviour of Newtonian fluids. However for densities, the inaccuracy of the

values was explained by the inability of the theoretical model to estimate small inertial

effects for high viscosity fluids (low Reynolds number). Later on, Belmiloud et al52

extended their method for viscoelastic fluids which exhibit frequency dependency in their

properties. An educated guess of G - ??? was assumed for the shear modulus of the

fluid in order to replace the viscosity in the hydrodynamic function. Knowing that

G = G' + iG", they derived two equations which relate the fluid's storage and loss

modulus to the added mass and the damping coefficient at each frequency. They followed

their theory with some qualitative experiments in order to show the frequency

dependency of fluid properties in the frequency response of the cantilever. It was

observed that the cantilever had a resonant frequency, even in a compact gel, because of

its low viscosity at high frequencies. Although the estimation of the drag force based on

the assumption of G = ico?] is not valid in terms of a proper constitutive equation, their

approach and results were encouraging to expand this technique for rheological

measurements with complex fluids.
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It should be noted that all the above methods require knowledge about the dimensions,

material properties and vacuum resonant frequency of the cantilever. The accuracy of

these data directly determines the accuracy of the viscosity measurements. The suppliers

of AFM micro cantilevers usually provide only nominal dimensions and a range for the

resonant frequency and spring constant of the cantilevers. Consequently, many

investigations have been conducted on the calibration of the cantilevers53,54,55.

Unfortunately, these methods are too complicated and very time consuming. Moreover,

the chance of breaking the cantilever is high during these calibration processes. As a

result of these difficulties, some attempts were made to assess the required information

from the oscillation of the cantilever in a reference fluid with known properties. In this

regard, Boskovic et al6 rearranged the Sader's formulas for coR and Q to obtain the
vacuum resonant frequency ??a?. and the mass per unit length // of the cantilever. Air

was chosen as the reference fluid and ?? and Q were determined experimentally and

then inserted into the equations in order to get ??a? and // , however the width of the

cantilever was still needed for the rest of calculations.

In another attempt, Papi et af6 approximated the vacuum resonant frequency with the
resonant frequency of the cantilever in air, as it was shown that the difference between

these two is less than few percent44. Also they used a simple analytical approximation for
the hydrodynamic function which was proposed by Maali et al43. Combining these
approximations with the Sader's formula for the resonant frequency, Papi et al derived an

equation for the viscosity of the fluid in terms of the resonant frequencies of the

cantilever in the fluid and air as well as two other parameters of a and ß which include

all the geometrical and material properties of the cantilever. Their experimental results



showed that, for different cantilevers and fluids, the variation of a is considerable while

for ß is not. They proposed to use a reference fluid to find a and a fixed value for ß

based on the average of their experiments. Later on. Papi et af7, in another study, used

the same approach for the old simple model of sphere and in this way they also could

relate the sphere's equivalent parameters to the geometrical and material parameters of

the cantilever. Although their method could be easily extended for determination of both

viscosity and density, it seems that their technique is based on many approximations and

can not grantee good accuracy for all situations.

As a general comment, one common source of error in methods that are based on the

resonance phenomena is that the experimental resonant frequency is determined at the

point of maximum amplitude of vibration irregardless of the technique for excitation of

the cantilever. As it was mentioned in the previous section, Xu et al22 showed that, for

liquids, the frequency of maximum oscillation in thermal excitation is slightly greater
than the magnetic excitation and also less than the acoustic excitation. Therefore, the

more precise way of determining the rheological properties is through considering the

theoretical response of the cantilever based on the type of excitation. Moreover in this

way, the rheological study of the fluids will not be restricted to the low viscosity fluids

that let the appearance of resonant peak in the cantilever frequency response. In this

study, we focus mainly on the acoustic excitation technique because of its vast use among

the AFM users. After recognizing the disturbing factors in the frequency response of the

cantilever in acoustic excitation and improving the design of the fluid cell in this respect,

we applied this technique for the measurements of high viscosity Newtonian fluids and

compared the results, wherever it was possible, with the results of thermal noise
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technique. Then it was shown that this method can be extended for polymer solutions

which are non-Newtonian liquids and different approaches were suggested for deriving

theoretical models to predict the frequency response of the cantilever.

In the next chapter, the required theories for the analysis of the experimental results

are provided.
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Chapter 2

Theory

In this chapter, we present the mathematical models for oscillatory behavior of the

AFM cantilever immersed in a viscous fluid and excited by Brownian motion of

surrounding fluid (thermal noise), sinusoidal excitation of the cantilever base (frequency

sweep) and step excitation of the cantilever base. To this end, we construct the governing
equation of the cantilever deflection in section 2.1. After that, the applied hydrodynamic
drag force on the cantilever is derived and in section 2.3 we derive the model for these

excitation techniques. The following assumptions have been used through these analyses.

It should be mentioned that in most of practical cases, the following criterions are
satisfied by AFM cantilevers.

(1) The cantilever has a uniform cross section over its entire length;

(2) The cantilever is made from an isotropic linearly elastic material and its internal

friction is negligible;

(3) The ratio of length to width of the cantilever is very large;

(4) The amplitude of vibration of the cantilever is very small;

(5) The surrounding fluid is incompressible and Newtonian;

(6) All torsional effects in the cantilever are negligible.
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2.1) Transverse vibration of a cantilever

The cantilever used in the AFM is a beam with one end fixed and the other end free

that vibrates transversally. Vibrational analysis of such beam is a classical problem which

can be found in many vibration textbooks26,27. Because of its importance in our
theoretical derivations, such analysis is presented next.

Figure 2.1 shows a free-body diagram of an element of length dx with internal,
external and inertial forces and moments on it. The balance conditions for forces and

moments in the ? direction for this element are:

S F=O:

S M = O

— dx-pcA dx —j- + F(x,t) dx = 0 Equation (2.1)
ox dt

T, . dM ,V dx + ?«0
dx Equation (2.2)

where ? is the cantilever deflection, E is Young's modulus of the cantilever, / is the

moment of inertial of the cantilever, pc is the density of the cantilever, L is the length of

the cantilever, A is the cross section area of the cantilever, F is the external applied force
per unit length, ? is the spatial coordinate along the length of the cantilever, and t is time

F(xj)
pcA dx ^j - F(xj)dx

AAAAAAAAAAAAAAAA

X M
M + dx

L

dx

">

É
o

Figure 2.1 Free-body diagram of an element of length dx.
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Substituting Equation (2.2) into Equation (2.1) and using the flexura] theory

M = El(d2y/dx2), we obtain:
Ql ( ?2.?

dx2
EI

dx'
+ P1. A dt2 F(x,t) Equation (2.3)

In the case of an isotropic elastic beam with a uniform cross section over its entire

length, the flexural rigidity EI does not vary with x, therefore, Equation (2.3) can be
simplified to:

EI^U + PeA ^ = F(x,<)dx« dt' Equation (2.4)

In Equation (2.4), the external applied force F{xl) consists of two parts; one part is the

hydrodynamic force Fhydro(xl) due to the relative motion of the surrounding fluid and the

other part is driving force Fdn, l} that causes the oscillation of the cantilever. Thus, we
can write:

EI 3^ + P, Adx4 Hl
d2y r,__¿_ _ r +Fp. 2 hytlm(xj) "·" rdrive{x,i) Equation (2.5)

This is the governing equation for the deflection of the cantilever. For the AFM

cantilevers, the boundary conditions of this equation usually are:

At fixed end (x=0):
j; = 0
dy
dx

= 0 Equation (2.6)

At free end (x=L):
M = O

V = O

dx2

Ox3

= 0

= 0
Equation (2.7)
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Our goal is to derive the theoretical response of the AFM cantilever to thermal and

acoustic excitations. For such an analysis, the modal functions of undamped free

vibration (F^x ^ = 0) of the cantilever are useful. This is mainly because of the particular

format of the hydrodynamic and driving forces which will be explained in the next

sections. For the case of free vibration, the governing equation of cantilever deflection is

simplified to:

&y A d2y—t + ?,? —-ôx4 L dt-EI~- + pcA -^y = O Equation (2.8)

This is a partial differential equation which can be solved using the separable variable

method; that is, we assume:

? = f)f(?) Equation (2.9)

Implementing the Equation (2.9) into Equation (2.8) will result in two ordinary

differential equations in the form of:

f""-??f = 0 Equation (2.10)

c + û>2c = 0 Equation (2.11)
where ? and ? have the following relation with the other parameters:

EI(O = A2J Equation (2.12)
V PcA

We are interested in solving Equation (2.10) because it defines the modal shape of the

cantilever. The general solution for this differential equation is in the form of:

f = Ax sin Ax + A2 cos Ax + A3 sinh Xx + A4 cosh Ax Equation (2. 1 3)

It is more convenient to write this equation in the following equivalent form:
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f = ?,' (cos Ax + cosh Ax) + A'2 (cos Ax -cosh Ax)
Equation (2.14)+ A\ (sin Ax + sinh Ax)+ ^ (sin Ax - sinh Ax)

Now the boundary conditions should be applied. From the first two conditions, we

conclude that A[ = A\ = 0 and the remaining two conditions will lead to the following
equation for A :

cosAZcoshAZ + l = 0 Equation (2.15)

This equation has infinite number of roots which can be calculated numerically. The
first six positive roots, which are related to the first six mode of vibration, are

summarized in Table 2.1. For the larger roots, the approximate values of the following
equation may also be used:

?, L 1
? \p Equation (2.16)

Each of these roots defines one mode shape for the cantilever. Figure 2.2 shows the
first three mode shapes for cantilever vibration.

--------- 1st mode
— — 2nd mode

- - - · 3rd mode

Figure 2.2 The first three mode shapes for a beam with one end fixed and other end
free.
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These roots also determine the resonant frequencies at each mode of vibration. Using
Equation (2.12):

f.-^-? El

2p 2n^\pcA

and, for example for the fundamental resonant frequency, we have:

Equation (2.17)

/i
2p

1.875 El 3.515 El

' pcA 2p ^pcAÜ Equation (2.18)

It should be also mentioned that the functions f? have the orthogonality property, that is:

,L (w)
0 [V V ^ J) o 0

'Ä*a,L (i = j)
ß (i * J) Equation (2.19)

where ^can be any constant however in the analysis of cantilever vibration, it is

common that the value of a, is determined based on normalizing the function f? in the

way that ^ (Z,) = 1 . Also the parameter ß, , defined in the Equation (2.20), is important.

ß,L = \f,?? Equation (2.20)

In Appendix A (pages 164-165), a MATLAB code for determination of a, and /?, is
presented and in Table 2.1, their values for the first six modes of vibration are

summarized.

Mode number, /
?, L

CC;

P,

1

1.8751

0.25000

0.39150

4.694

0.25003

-0.21701

7.855

0.24990

0.12721

10.996

0.24980

-0.09086

14.137

0.25008

0.07074

17.279

0.24989

-0.05785

Table 2.1 The values of some important parameters of cantilever vibration for the first six
modes of vibration
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The final issue. of this section is transferring the governing equation for the deflection

of the cantilever and its boundary conditions from the time domain to the frequency
domain. This is done by taking the Fourier transform of Equations (2.5), (2.6) and (2.7)
giving:

d'Y, . )?1~0^~^??%\'?) = Fw*,M + K^M Equation (2.21)dx

and

Y ^dY_
*=o dx

d2Y
dx'

x=0

T?

, dxx=l.

= 0 Equation (2.22)
X=I.

where ? is the radial frequency and the symbol ' ? ' denotes the transformed function.

2.2) Hydrodynamic drag force

No matter what type of excitation technique is used, the vibration of an AFM

cantilever in any medium other than vacuum results in a drag force on the cantilever.

Therefore, in order to continue our analysis, we need to have a general mathematical

form for this hydrodynamic force. Here, we follow the approach of Sader9 who scaled the

hydrodynamic drag force for a circular cross section beam to a rectangular one.

Based on the third assumption that was mentioned at the beginning of this chapter,
the hydrodynamic drag force on each point of the cantilever can be approximated by the
hydrodynamic force that would be applied on an infinitely long rigid beam that oscillates

transversely with the same amplitude, ?(tµ, in the fluid. The reason is that, for such a
situation, the variation of the velocity field along the length of the beam is less than over
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the cross section plane. Therefore the 3D problem can be simplified to 2D. For a circular

cylinder beam oscillating transversely with amplitude much smaller than its diameter (see

Figure 2.3), the hydrodynamic drag force was first calculated by Stokes in 1851 . Because

of its importance, his theory is presented first.

U = U0 cos ??

Figure 2.3 A circular cylinder oscillating transversely along a diameter

Let us assume that the velocity of such a beam is:

u = U0COS(Ot = U0eial Equation (2.23)

and because of the particular geometry of the beam, we write the momentum equations

for the surrounding fluid in the cylindrical coordinate system:

^ + v ^r ^edVr vl = 1 F | ¿V (
dt dr r d? r pf dr pf

v2v -^_A^
r r r2 d??

---------r V„ 1 1 = 1
f -> 2 5v, va

dt r dr r d? Pj rde P/
V¿va +? r2 d? r2

Equation (2.24)

In Equation (2.24), vr and ?? are radial and tangential components of the fluid

velocity, pf and pf are the density and viscosity of the fluid and V2 is defined as:
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2 d2 1 d 1 d2V¿ s + ¦ Equation (2.25)ôr2 r dr ' r2 d?2

For such a moving body, the boundary conditions of the fluid are zero velocity at

infinity and the beam velocity on the cylinder, that is:

At infinity

At the cylinder

Iv I =0I/·—»co

"?>1,- = 0 Equation (2.26)

= Uneia,cos0Vr\rJ2
2

ve\._d =-Uoe"*sin0
Equation (2.27)

Because the amplitude of vibration is small, the nonlinear terms in the momentum

equations can be neglected. Therefore:

dt

dt

1 dp µ?(
+ ¦

1 f Mf_
Pt rde pr

V2v

y2va +

r r

2 dv

2 d?
Equation (2.28)

2 Pd?
S?
r1)

In order to solve these differential equations, we can define the stream function in the

cylindrical coordinate system as:

v.. =

Vn =-

1 d?
r d?

d?
~dr~

Equation (2.29)

and by eliminating the pressure term from the momentum equations, we find the
following equation for the stream function:

V Pfd"
µ, dt

V2^ = O Equation (2.30)
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This equation has the solution of:

?=??+?2

where ?] and ?2 satisfy the following equations:

VV1=O
(
? .Ele. ?2=0

Equation (2.31)

Equation (2.32)

Equation (2.33)

Solving the above equations will result in the following functions for ?? and ?2 :

y/, =- e'?'???

V2=BK, r U-
\.?,?

?

/"/

Equation (2.34).
e'"' sino

where ? = V- 1 and the coefficients of A and B are obtained by applying the boundary
conditions giving:

A = -*U.

B

1 + - 2Ki(JiRe)
yfiRe K0(JiRe)

2Un

Equation (2.35)

Equation (2.36)V/Re K0(JiRe)
In the above equations, the functions K0 and K1 are modified Bessel functions of the

third kind and Re is the Reynolds number which for this geometry is defined as follows:

pfcoD2Re =
?µ,

Equation (2.37)

The applied hydrodynamic drag force on the beam per unit length can be calculated
from the following equation using the stress tensor:
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p2p
Fhyjrn = — \{?? cos ? ~ P,? sin ?) ?? Equation (2.38)

where prr and pr8 are defined as:

Prr =-P + 2/V ^T
or

?,ß = µ,
d(vA löv,

K dry
\

+ --

Equation (2.39)

The following expression for Fhdro is then obtained

pF,**,, = ~~?, D2 U0 i? ?a?{?)ß'?' Equation (2.40)

where G„>£.(?>) is called the hydrodynamic function for the circular beam and defined as:

Equation (2.41)G (A ?, ^,(V/Re)
VzRe K0 (V/ Re)

It should be mentioned that because of the consistency with the definition of the
Fourier transform which is:

X = jx e -,?' dt Equation (2.42)

it is more convenient to consider a velocity having a time dependency of exp(- ???) for

the circular beam. In this case, the determined hydrodynamic function is the conjugate of
Equation (2.41), which is:

arc{ú)) = 1 + ,_ \\ ¡ . ? J \ Equation (2.43)V/ ReAT0 (-/V/ Re)
Knowing that the displacement of the beam is the integral of its velocity, we can

write:
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y = Vu dt= \U0 e'°" dt = -^- e'°" Equation (2.44)

And by comparing the above equation with Equation (2.40), the hydrodynamic drag force
can be written in the form of:

Fnyam = f Pf D2 ^ G„„. (?) y Equation (2.45)
Therefore if we stay within the region of validity of our assumptions, for the vibration

of an elastic circular beam, the hydrodynamic drag force on point ? of the beam and at the

frequency ? will be:

Kma») =^Pf °>2?>???? Equation (2.46)
Such an approach can be used for any geometry but an analytical result is not always

guaranteed. For a rectangular cross section beam, Sader9 used the same formula as

Equation (2.46) for the applied hydrodynamic drag force on the beam but he substituted

the width of the cantilever, b, instead of the diameter of the cylinder, D, and also scaled

the hydrodynamic function of the circular cross section, Ga?(?), to the rectangular one,

G?a\?) > by using a correction factor as indicated in the following equations:

Km*\») = f Pf ?2 b2 G- M %>) Equation (2.47)
G,«, M = O(ß>) ? G\„. [?) Equation (2.48)

For determination of this correction factor, Sader9 solved the Navier-Stokes equations
for the surrounding fluid of the rectangular cross section beam numerically and then he

performed a nonlinear least-squares fit to the ratio of the numerically obtained

hydrodynamic function data of a rectangular beam to the analytically obtained
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hydrodynamic function of a circular beam. The resultant expression for O.(?), which is
valid for the Reynolds range of [10"6,104], is:

O(?) = QRe(û))+ /' O??? (?) Equation (2.49)
where

and

O?e (¿y) = (0.913242 -0.48274 t + 0.46842 r2- 0.12886 t3
+ 0.044055 ?4 -0.0035117 t5 +0.00069085 ?6)
? (I - 0.56964 t + 0.48690 t2 - 0.1 3444 t3
+ 0.045155 ?4 -0.0035862 ?5 + 0.00069085 t6)"1

O??, (?) =(-0.024 134- 0.029256 r + 0.016294 t2
-0.00010961 t3 + 0.000064577 ?4 -0.0000445 10 t5)
?(1- 0.59702 t + 0.55 1 82 t2 - 0.1 8357 t3
+ 0.079156t4 -0.014369 t5 +0.0028361 t6)"1

and in the above equations t and Re are defined as:

r = log10(Re)

Re P1 œb2
A µ,

Equation (2.50)

Equation (2.51)

Equation (2.52)

Equation (2.53)

2.3) Different types and kinematics of excitation

2.3.1) Thermal noise

The driving force for the thermally excited cantilever is the result of collisions of

surrounding fluid molecules to the cantilever or the Brownian motion of the fluid.

Because of the random nature of Brownian motion, it is obvious that the magnitude of
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this force is independent of the position on the length of the cantilever. However Paul et
co

al showed that this force is frequency dependant and its spectral density is not white.

They determined its magnitude based on the fluctuation-dissipation theorem, that is:

FB{a) = AK B T \-pt O2Ur1111 re»V4 J
Equation (2.54)

where Kn is the Boltzmann' s constant, Tis the absolute temperature, and T1111 rec/ (?)

indicates the imaginary part of the hydrodynamic function Yrccl (?) .

Following the approach made by Xu et al22 for the theoretical response of a thermally
excited cantilever, we could write the governing equation of the cantilever deflection as
follows:

EI
d'Y,M

dx

For the boundary conditions of:

- pcAúJ'Y,.) - F {?,?) + Fn . Equation (2.55)

Y _dY_
=o dx

O2Y
dx2

d'Y
X=L

dx'
= 0 Equation (2.56)

.V=/.

the general solution for this equation is in the form of:

i=\
Equation (2.57)

where the mode shapes of f^?) are defined in section 2.1. We are going to derive an

equation for the coefficients of C,(cy). By substituting Equations (2.47), (2.54) and (2.57)

in to Equation (2.55), we have:

Y^El C^T'-pMC, f)
(=1

= S\^?/ ?2 b* r- c> F* )+4K» H^vVr1n, rec,
Equation (2.58)

/=l
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Keeping in mind the orthogonality properties of f#,(x), the following equation can be

obtained by multiplying the above equation by f. (?) and integrating over the length of
the cantilever:

C,{?) 4Ì%/è2ì<yrimre[,(iy)xAZV4 J

?ß? EI ?* xa,L-?2
, —r Equation (2.59)
pcA + -pfb2Yrca{co) ?a,.?V . 4 ¦ J

where cc¡, ßi and X1 are defined in Equations (2.15), (2.19) and (2.20) and their values

for the first six modes of vibration are summarized in Table 2.1. Using Equation (2.59),

we can find the coefficients of C1 (?) at a given absolute temperature of T and

consequently, the cantilever deflection can be determined using Equation (2.57).

However, in most of AFMs, the measured value is the inclination of the cantilever rather

than its deflection. Therefore in this case, the theoretical response would be the

deferential of the Equation (2.57) respect to ? that is:

U\<») x^ ^, / \ af, (?)= S C> ?)^^1 Equation (2.60)5
dx ?~? ' v ' dx

where both C¡{?) and f^x) are now known. In Appendix C (pages 169-170), a

MATLAB code for producing the theoretical response of a thermally excited cantilever

based on the given material and geometrical properties of both the cantilever and the

surrounding fluid is presented and Figure 2.4 shows a typical theoretical response of such

a cantilever. For this figure, it is assumed that the cantilever's material is silicon and its

length, width and the thickness are 400, 30 and 2 µ?? respectively. Also it is assumed

that the cantilever is immersed in water.
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Figure 2.4 Theoretical response of a silicon cantilever which is excited thermally. The
dimensions of the cantilever are 400x30x2 µp? and the surrounding fluid is water.
The response is normalized by the magnitude of the first mode peak.

2.3.2) Frequency sweep

The frequency sweep is in fact an acoustic excitation technique in which the base of

the cantilever has the controlled motion of:

yh(,\- ?,? COSiO0I1 Equation (2.61)

where the angular frequency of ?0 will change in the range of [?,,6)2] in ? steps and at
each step will stay constant for t seconds. Also because the amplitude of vibration in

acoustic excitation is much larger than the thermal excitation, the effect of Brownian

driving force can be neglected compared to the hydrodynamic damping force here.

Keeping this information in mind and following Xu et al's22 approach, the governing
equation for the cantilever deflection and its boundary conditions become:

51



El JV) 5 y[*j). + ? A —"-?1- = F1dx4 dt2 hydro{xj) Equation (2.62)

y\,

dy
dx

? - >?(')

d2y
x=0 dx

d3y
X=I. OX'

Equation (2.63)
0

In the above equations, the y(x () is the absolute motion of the cantilever, however in the

AFM, as mentioned before, the measured value is the slope of the cantilever. If we define

the relative motion of the cantilever to the movement of its base as w(x ^, that is:

W1'm -y(x,i)-yh(,) Equation (2.64)

then the slope of the cantilever for both of these quantities is the same, that is:

dw.M dy(x,> Equation (2.65)
dx dx

Therefore we can write the governing equation of the cantilever in terms of its relative

motion, in the frequency domain, as:

EI
d4W,

dx4 - PA <?%??\ = KmxW) + PA ^t,?,(?) Equation (2.66)

and the boundary conditions become:

W
dW

=o dx
x=0

d2W
'^xT

d3W

C = /.
dx2

= 0 Equation (2.67)
X=I.

In Equation (2.66), it is clear that the effect of considering a non-inertial reference

frame which moves with the base of the cantilever is the appearance of an inertial term as

an external driving force in governing equation. The solution for this differential equation

is again in the form of:
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#(,i.) = £c.M¿M Equation (2.68)

and having the same approach as thermal noise, we obtain the following equation for the

coefficients of C1 (?) in terms of general form of Yh (?) :

?
4 I

El ?* xa,L-ú)¿ PcA + ^Pfb2rm^)
Equation (2.69)

?a, L

Knowing that the Fourier transform of yh {l) = AFS cos O0/ is:
1Yb W = T- afs ?d(? -?0)+d(? + ?0 )]4p

then the coefficient of C1 (?0 ) at the frequency of excitation will be:

Equation (2.70)

1 f^t \ ?t?° p<A + ^prb2 r™> ^0 ) XP>L
A':s ''EI ?* Xa1I-U)02 \pcA + ~Pl b2 G?,? \*<*iL\ 4 ;

Equation (2.71)

Equation (2.72)

Now the inclination of the cantilever can be determined from:

dx ~t dx

In Appendix D (pages 171-172), a MATLAB code for producing the theoretical
response of a cantilever for the case of the frequency sweep based on the given material
and geometrical properties of both the cantilever and the surrounding fluid is presented
and Figure 2.5 shows a typical theoretical response of such a cantilever. The assumed
properties of the cantilever and the surrounding fluid are the same as in Figure 2.4.
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Figure 2.5 Theoretical response of a silicon cantilever which is excited with a
frequency sweep. The dimensions of the cantilever are 400x30x2 µp? and the
surrounding fluid is water. The response is normalized by the magnitude of the first
mode peak.

2.33) Step excitation

Like the frequency sweep, the step excitation is an acoustic excitation technique too;

but here, the base of the cantilever has the motion of:

0
?(<) = '

1SE

/<0

/>'0
Equation (2.73)

For this type of boundary condition usually the Laplace transform technique is being

used but because we do not have any general formula for the hydrodynamic drag force of

a cantilever that moves arbitrarily, this method is not applicable. Therefore, the specific

form of the hydrodynamic drag force forced us to use the Fourier transform technique
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here as well. As no solution for the step excitation was available in the literature, the

following derivations represent one of the contributions of this thesis.

Two methods can be applied to solve the problem: (1) using a non-inertial reference

frame or relative movement of the cantilever end to its base, which is the same approach

that was used in modeling the frequency sweep and (2) using an inertial reference frame

or absolute movement of the cantilever end.

In the first method, we can use the same derivation as the one used for the frequency

sweep but we have to substitute the following equation, as the Fourier transform of

Heaviside step function, instead of Yh(co) in Equation (2.69):

FW=T^-- Equation (2.74)

Consequently, we have the following equation for C¡{?) at all non-zero frequencies:

-ico
V 4 )

El ?\ ? a, L - ?2 pcA + - p, b2 Vrccl {?)
V 4 J

Equation (2.75)
? or. Z,

It should be mentioned that for the case of frequency sweep, the value of Yh{co),

which is the Fourier transform of cosine functions, is zero at all frequencies except the

frequency of excitation and as a result, the coefficient of C,(<y) is zero at all frequencies

except the excitation frequency. Therefore the curve obtained for the theoretical response

of a frequency sweep consists of the values of these non-zeros at each frequency of

excitation, co0 . In other words, the presented curve in Figure 2.5 was constructed with the

non-zeros points of many Fourier transforms curves each of which is related to one
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frequency of excitation. However, the obtained curve for the case of the step excitation is
the Fourier transform of the cantilever response itself.

Moving to the second method, we are considering both the inertial reference frame
and the absolute motion of the cantilever. As a result, we are solving the following

differential equation for the vibration of the cantilever in the frequency domain:

d'Y,.
dx' - B(»)YM - ° Equation (2.76)

where

?(?) = ^.
?

?,vac,\ \

p? tb2
4pJ -> M Equation (2.77)

In the above equation, <yvac , is the fundamental resonant frequency of the cantilever in

vacuum and has the following relation with the cantilever characteristics:

«vac,, = ?

The boundary conditions in this situation are:

1) Y

2)

3)

4)

EI

= 3M *

dY_
dx

d2Y

= 0
x=0

dx2

O3Y

= 0
x=L

Ox3
= 0

x=L

and the general solution for the Equation (2.76) is in the form of:

Equation (2.78)

Equation (2.79)

56



\\?) = A (cos ?{?)? + cosh BMx)+ A2 (cos ?(?)? - cosh ?{?)?) ^^ (2 g())+ yi3 (sin £((tl)x + sinh £(?))?)+ A (sin ?{?)? - sinh 5(?)?)
Applying the first and second boundary conditions gives:

A =fw__L
' 87G 2? Equation (2.81)

A3=O '

and from the third and fourth boundary conditions we will have:

A2 = -A, S™(B{a,)L)S'mh(BML)
\ + cos(BML)cosh(B(fo)L)

= A sin(^(w)l)cosh(%)jL)+cos(%)Z,)sinh(g(ll,)Z,)
' l + cos(BML)cosh(BML)

Equation (2.82)

^4 ^i

Therefore by plugging the coefficient ofAi, A2, A3 and A4 in Equation (2.80), we can find
the theoretical deflection of the cantilever in the frequency domain. Again because the

measured response in the AFM is the inclination of the cantilever, the associated,

theoretical value can be obtained by differentiating Equation (2.80) respect to ? that is:

dY( ' ) ? \~L = A^ BM {- sin BMx + sinh ?(?)?)dx

+ A2 BM (- sin BMx - sinh B{o))x) Equation (2.83)
+ ^3#w(c°s BMx + cosh ?(?)?)
+ A BM(cos BMx - cosh B(a)x)

It should be mentioned that the second method does not provide any equations for the

individual modes of vibration but instead, it provides the exact solution and therefore

does not carry any truncation error which always accompanies the solutions that are in

the form of series. Figure 2.6 shows the theoretical response of a cantilever, which has

the same properties as the cantilevers in Figure 2.4 and 2.5 including the surrounding
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Figure 2.6 Theoretical responses of a silicon cantilever to step excitation, a) In the
frequency domain and b) in the time domain. The dimensions of the cantilever are
400 ? 30 ? 2 µt? and the surrounding fluid is water. The responses are normalized by
the magnitude of the first peak.
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fluid, to step excitation in both the frequency domain and the time domain. The results

for the time domain is obtained numerically using inverse fast Fourier transform. In

Appendix E (pages 173-177), a MATLAB code for producing the theoretical response of

a cantilever to step excitation is presented.
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Chapter 3

Experimental setup, sample preparation and signal

processing

3.1) Experimental setup

Figure 3.1 shows the schematic of the experimental setup used in this project. A

Digital Instruments Nanoscope III Multimode AFM was used for our experiments.

Because the software of the instrument is designed only for the purposes of imaging and

force measurements, our control on the input and output of the system was very limited.

As a result, the system was modified from its normal configuration by adding a Signal

Access Module (SAM) in order to have a direct access to signals between AFM head and

controller. Among all of these signals only two of them are useful for our purpose; one is

for the excitation of the cantilever (input signal) and the other one is for the vibrational

response of the cantilever (output signal).

The input signal was produced by using a signal generator that gave the possibility of

producing a signal with a variety of functions and the output signal was recorded using a

data acquisition hardware. Both of these devices were controlled by the LabVIEW

software59. Also this software was used for most of analysis of the data.

Another modification in the system of the AFM was building a new stand for the

AFM head. The shape and the supporting mechanism for the AFM head of the new stand
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are similar to the original stand but its wall and top surface were made from transparent

material which allowed us to track the laser spot for the alignment of the beam on the

cantilever while the head was seated and the fluid was manipulated in the system. Also

the top surface was coated with Teflon to provide a hydrophobic surface and prevent

spreading of the fluid.

The final modification in the system of the AFM was for the tipholder which will be

discussed in detail in chapter 4. In the following, a brief explanation about the principal

of the AFM and also the specifications of the signal generator, data acquisition hardware

and cantilevers, which were used in this project, are presented.

^k
--?

î
-H Controller

O ?
AFM Computer

AFM HeadS,T
s.

mmmSignal Generator
^*

SigaajTJ Accesss
¦*=#·

Modal
mm

Mû
Data Acquisition<i^

\V.
Si

LabVIEW
AFM Stand

Figure 3.1 Schematic of experimental setup
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3.1.1) Atomic Force Microscope (AFM)

As it was mentioned before, the AFM was originally invented for imaging purposes

with resolution in the order of nanometers. The principal of the AFM simply consists of

performing two operations at the same time. The first one is the scanning of the surface

of the sample in the X and Y directions, using a cantilever with a sharp tip at its free end,

and the second process is the measuring of the movement of the cantilever free end in the

Z direction. These operations result in the representation of the complete topography of

the sample surface. Concerning the scanning operation, there are generally two imagining

modes; the static mode (also called contact mode) and a variety of dynamic or non-

contact modes. In the dynamic modes, the cantilever oscillates at or close to its

fundamental resonant frequency. There are many techniques developed for cantilever

excitation, which were explained in details in chapter 1. Our AFM uses the acoustic

excitation technique which is appropriate for our particular application.

Moving to the measuring of the cantilever movement, techniques such as optical

interferometry, capacitive sensing, laser deflection and piezoresistive AFM cantilevers

are developed. Among these techniques laser deflection, as is used in our AFM, is the

most accurate. In this technique as shown in Figure 3.2, laser light from a solid state
diode is reflected off the back of the cantilever and collected by a position sensitive

detector (PSD) consisting of four closely spaced photodiodes whose output is collected

by a differential amplifier. As a consequence of the angular displacement of the

cantilever one photodiode gathers more light than the other photodiode, and this results in

the production of an output signal that is proportional to the deflection of the cantilever.
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Such a signal is produced from the difference between the photodiode signals when

normalized by their sum. The accuracy of such a method allows measurement of

deflections down to <1Â and is limited by thermal noise.

Fixed Mirror Laser diode

Adjustable
Mirror

Photodetector

Voltage

Piezoelectric driver

Cantilever

Figure 3.2 Optical system of the AFM

3.1.2) Signal generator

The piezo drive signal is generated using a signal generator from National

Instruments that can be installed as a PCI board in nearly any up to date computer (see

Figure 3.3). It has the ability to generate a signal with arbitrary function waveforms, but

for few specific function waveforms, such as for the sine, square, triangle, noise, ramp

and DC offset, it is already built-in inside the hardware. The signal generated using this

device can have a voltage up to 10 volts peak-to-peak with a maximum frequency of 20

MHz. Its characteristics involve a 14 bit resolution and up to 100 MS/s of sample rate.

Although it originally comes with its own software (NI FGEN soft front panel), it is
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better controlled using the LabVIEW software when it is being used with the other

electronic devices such as the data acquisition hardware. Finally, it is factory calibrated

and also has onboard calibrator references that account for environmental effects on DC

gain, offset and timing error. In our project for frequency sweep and step excitations we

used the sine and square wave forms respectively. For the thermal noise no signal was

applied to the piezo and the cantilever vibration observed was due to the Brownian

motion of the surrounding fluid.
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Figure 3.3 PCI-5402 - Signal Generator

3.1.3) Data Acquisition (DAQ)

The response signal from the photo detector was recorded using data acquisition

hardware from National Instruments (see Figure 3.4) and similar to our signal generator it

can be installed as a PCI board in nearly any up to date computer. This device has the

ability of digitizing four signals simultaneously with a maximum sample rate up to 3

mega samples per second for each channel. It is also characterized by a 14 bit resolution
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where a better input resolution can obtained through selecting one of its four different

input voltage ranges. Like the signal generator, it comes with its own software, but it is

better operated with LabVIEW software in our case. Finally, it should be mentioned that

both the signal generator and the data acquisition hardware were synchronized using a

RTSI cable in order to have a direct control on the triggering of the devices when we are

programming them in LabVIEW.

i

^m

Figure 3.4 PCI-6I32 - Multifunction DAQ (S series)

3.1.4) Cantilever material and dimensional properties

In general, most cantilevers that are available in the market are fabricated in two

different methods. The cantilevers produced by the first method, called practical

cantilevers, are made from low pressure chemical vapour deposition (LPCVD) of silicon

nitrate which is coated with a layer of gold to improve its reflectivity. The second type,

called calibrated cantilevers, is made from undoped and uncoated single crystal silicon
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through a micromachining process. Because of the complexity in the fabrication process

of theses cantilevers, they are more expensive than the practical cantilevers.

Calibrated cantilevers have very precise dimensions and geometry and uniform

material properties which are in accordance with the assumptions of the theory described

in chapter 2. Moreover, the manufacturers of these cantilevers provide their dimensions

with very precise tolerance (except for the thickness). In contrast, for the practical

cantilevers, the manufacturers only provide the nominal values for the dimensions and as

a result the user has to either accept huge errors in his results or measure the precise

dimensions by himself using other techniques such as electron microscopy.

In this project, whenever the comparison between the experimental results and the

theory was intended, calibrated cantilevers were used. For the qualitative experiments,

which do not need the information about the cantilever's geometrical and material

properties, practical cantilevers were used. For the calibrated cantilevers, the models used

were the CLFC-NOBO tipless cantilevers from Veeco with the dimensions are indicated

in Figure 3.5. Furthermore, these cantilevers, as mentioned earlier, are silicon with a

modulus of 1.7x10" Pa and a density of 2300 kg/m3. For practical cantilevers, their
model and dimensions are mentioned in the text wherever they have been used.

^^^H Length Width Thickness^H|H (MTi) (µ??) (/./m)
Long 397 29 1.8-2.2

Medium ™ 29 1.8-2.2
Short 97 29 1.8-2.2

Figure 3.5 CLFC-NOBO tipless cantilever from Veeco
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Finally, the thickness of the calibrated cantilevers can be estimated from the resonant

frequency of the cantilever under vacuum; however we used the resonant frequency of
the cantilever in air as an approximation. It was reported that the error for such an

approximation is less than 2% ' ' .

3.2) Sample preparation

In this project, both of Newtonian and non-Newtonian fluids were used in order to

test the applicability of the proposed technique. The stress-strain rate behaviour of

Newtonian fluids can be described simply by a constant parameter of viscosity. For this

type of fluid, ethanol60 and some solutions of glycerine6'- water were chosen. The
advantage of choosing glycerine-water solutions was providing a wide range of viscosity.

Figures 3.6 and 3.7 show the density and viscosity of glycerine-water solutions in terms

of their concentration at 26 0C. These graphs were generated from the more

comprehensive information released by Dow Chemical Company62'63 on density and
viscosity of the aqueous glycerine at different temperature and concentration (see

Appendix F, pages 178-179)
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Figure 3.6 Density of glycerin-water solution in terms of its concentration at
temperature of 26 0C
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Figure 3.7 Viscosity of glycerin-water solution in terms of its concentration at
temperature of 26 0C
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These solutions were prepared by simply mixing water and glycerine according to the

required weight fraction. Because of the possibility of change of concentration over time,

fresh solutions were prepared for each series of tests and were kept in closed containers.

Also in order to prevent any formation of bubbles around the cantilever during the

experiment, the solutions were degassed by heating the closed container up to 70 0C and

quickly cooling it right before the execution of the experiment. In Table 3.1, the

properties of ethanol and the selected concentrations of the glycerine-water solutions are

summarized.

Fluids Ethanol 0%
GW

25%
GW

50%
GW

60%
GW

75%
GW

80%
GW

.100%
GW

Density
(kg/m3) 785 997 1058 1123 1151 1191 1205 1257

Viscosity
(mPa.s)

1.08 0.88 1.82 4.93 8.634 26.92 44.38 931.2

Table 3.1 Properties of Newtonian fluids at 26 0C which were examined in this
project.

In contrast to Newtonian fluids, non-Newtonian fluids such as polymer solutions

exhibit complex behaviour as stress or strain is applied to them. They have both viscous

and elastic properties. For this group, solutions of polystyrene64 (PS) in diethyl
phthalate65 (DEP) were chosen because of the wide range of viscosity and elasticity that
they can provide. The procedure for preparation of these solutions is as follows. First, for

different concentrations of PS solutions, the required amount of PS and DEP were placed

in a labelled container. Then the container along with its contents was weighed and its

weight was recorded. In order to accelerate the dissolution of the PS in the DEP,

dichloromethane66 was added as a co-solvent. Next the container was sealed and stirred at

room temperature for two days in order to have well-mixed and transparent solutions.
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After that the seals were removed and the mixtures were exposed to the air in order for

co-solvent to evaporate. The containers were weighed every day to check the amount of

co-solvent left in the mixtures. After a few weeks, no change in the weight of containers

was observed and their final weights became almost the same as their weights before

adding the co-solvent. At this point, it was concluded that the dichloromethane was

completely evaporated and the solutions were ready for the experiments.

The rheological properties of the solutions were measured using a rotational

rheometer67 at different temperatures and after that by applying the time-temperature

superposition principle, their master curves were generated at 25 0C. Figures 3.8, 3.9,

3.10 and 3.11 show these master curves for the selected concentrations of the PS/DEP

solutions and in Table 3.2, their densities and zero shear viscosities are summarized. It

should be mentioned that pure DEP is a Newtonian fluid but because of consistency with

the PS solutions, it is categorized in this group. Also the non-Newtonian behaviour of the

5% PS/DEP solution was out of the measuring range of the instrument and as a result, we

only bring the value of its zero shear viscosity in Table 3.2. Finally the values of shifting

factors ar and bj, used to generate the master curve for each concentration, are tabulated

in Appendix G (pages 1 80-1 81)

Concentration
(wt %)

0%
PS/DEP

5%
PS/DEP

8.5%
PS/DEP

12%
PS/DEP

16%
PS/DEP

25%
PS/DEP

Density
(kg/m3) 1120 1116.3 1113.7 1111.1 1108.2 1101.6

Zero shear
viscosity
(mPa.s)

13 138 524 1747 631 99887

Table 3.2 Properties of non-Newtonian fluids at 25 0C which were examined in this
project.
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Figure 3.8 Linear Viscoelastic Properties for 8.5% PS solution, 25 0C
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Figure 3.9 Linear Viscoelastic Properties for 12% PS solution, 25 0C
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3.3) Signal processing

As it was mentioned before, the signal generator and the data acquisition hardware

were controlled by the LabVIEW software. Also, this software was used for analysing the

recorded data. In the following paragraphs we explain more about the code and

parameters used for controlling both the hardware elements. Figure 3.12 illustrates the

algorithm used in the code. It should be mentioned that the LabVIEW is a graphical

programming language and it is used to generate a virtual instrument. The front panel of

Start

Signal
Generator

i«·

DAQ
Hardware

Filtering

Vector

Averaging

Step Excitation

End

Signal
Generator

W\M

DAQ
Hardware

Filtering
I

Windowing
Ï

FFT

Frequency Sweep

Signal
Generator

(no signal)

DAQ
Hardware

Filtering

I
Windowing

FFT

RMS
Averaging

Thermal noise

Figure 3.12 The algorithm of the LabVIEW code written for controlling the signal
generator and the DAQ hardware and also for analyzing the recorded data
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the virtual instrument for this project is shown in Figure 3.13 and the code is presented in

Appendix H (pages 182-187).

In general, the three types of experiments that were performed in this project were the

frequency sweep, the step excitation and the thermal noise. The general structure for the

algorithm of the written LabVIEW code was determined based upon performing these

three tests subsequently for each sample. However, as it will be explained in chapter 4,

we have to change the tip holder for the thermal noise test. Therefore for each segment of

the code, which is related to one test, an on/off key was incorporated in order to activate

or deactivate the segment whenever it is required. Moreover, in all the tests the signal

generator and the data acquisition hardware were programmed in such a way that they

were triggered at the same time and worked together in parallel and also they were

allowed to have different control parameters for each test.

For the frequency sweep test, the signal generator produces a sinusoidal signal whose

frequency can change over a defined range in several steps. Therefore for this test, the

applied signal to the piezo has three controlling parameters of start frequency, end

frequency and the number of steps, in addition to its amplitude. For all the fluids, a

frequency range of 0 to 60 kHz was selected because in such a range at least the first
mode of vibration of all cantilevers could be observed. Concerning the number of steps,

600 steps were chosen in order to have the proper frequency resolution.

The signal applied to the piezo for the step excitation test, should be in the form of a

Heaviside function, however for simplicity, the available predefined square waveform

was selected and its frequency was adjusted in such a way that only the rising part of the

signal, which is in the form of a Heaviside function, is applied to the piezo. Moreover,
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an initial phase was added to the driving signal in order to excite the piezo after the

overshooting effect of the filtering process on the response signal. Finally, due to the

passive nature of the thermal excitation experiments, no signal was applied to the piezo

while performing these tests.

Moving to the selected controlling parameters of the data acquisition hardware, the

most important point in digitizing or sampling of an analogue signal is the selection of

the sampling rate. It is vital because it determines the correct capturing of the signal

shape and all its frequencies. Based upon the sampling theorem, in order to reconstruct

the frequency content of the signal, the sampling rate should be more than twice the

highest frequency contained in the signal. However in practice, in order to recognize

frequencies and the amplitude of the signal, it is recommended to digitize signals at least

with a frequency 10 times of the highest frequency of the signal. The maximum sampling

rate for our data acquisition hardware is 3MHz but, the processing and hard drive

recording speed of the computer, were the actual limiting factors for the sampling rate.

Therefore, taking all factors into consideration, a sampling rate of 1 MHz was chosen for

all the tests, which was more than enough to observe and construct the signal in the

selected range of frequency for all the cantilevers in the liquids.

The other aspect of signal digitizing is the duration of the sampling or the number of

recorded samples. This is important in determining the frequency resolution in the result

of the fast Fourier transform (FFT) of the data. Hence, the duration of 0.1s is chosen, and

with the sampling rate of 1 MHz, the frequency resolution of 10 Hz or 0.01 kHz was

achieved. These parameters mentioned here were used for controlling the DAQ hardware
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and were identical for all the tests. In the following paragraphs we will illustrate the

process for analyzing the experimental data for each type of test.
First for the frequency sweep, a list of frequencies was defined for the signal

generator to excite the cantilever base at those frequencies. At the same time, the

cantilever response was recorded and then the high-pass filtering, windowing and FFT

processes were applied on the recorded data. Using the result of the FFT, the amplitude

and phase of vibration at the frequency of excitation were determined. Such a process

was performed for all the listed excitation frequencies. Then from all of these results, two

graphs showing the vibration amplitudes and phases in terms of the excitation frequencies

were plotted. The high pass filtering process was performed in order to remove the DC

offset of the signal and for this purpose a Butterworth filter of order three was used. The

cut-off frequency of this filter was set to 500 HZ to also remove the noises which were

observed at lower frequencies in the response. A Hanning window was the type of

windowing process performed in order to minimize the spectral leakage of the FFT

process.

Second for the step excitation, both the application of the signal to the piezo and the

recording of the cantilever response were again done simultaneously. The process of

filtering was done on the recorded data and after that the vector averaging was performed

for one thousand sets of data. The filtering process was the same as for the frequency

sweep experiment.

Finally for the thermal excitation we only used the data acquisition hardware to

record the response of the cantilever due to the Brownian motion of the surrounding fluid

and no signal was applied to the piezo. In this case, filtering, windowing and FFT were
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performed on the recorded data with the same parameters and function as used before for

the frequency sweep and step excitation. Then RMS averaging was performed on one
thousand sets of data that were obtained from the FFT process. It should be mentioned

that the effect of RMS and vector averaging on the experimental data will be explained in

detail in chapter 5.
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Chapter 4

Critical issues in the design of fluid cells and tip holders

Figure 4.1 shows the schematic of a commercial fluid cell which can be used for

tapping mode, force modulation, and contact mode experiments in liquids. The main

purpose of using the fluid cell is to insulate and separate the piezoelectric actuator from

conductive fluids. In this cell which is made of glass, the microcantilever chip (1) is

placed in- a small groove close to the middle of the bottom of the fluid cell and is "fixed to

the cell by a clip and a spring (2). A silicone rubber o-ring is placed in the circular groove

(3) around the cantilever to provide an enclosed fluid environment between the fluid cell

and the scanner. Two channels (4) make the exchange of the enclosed liquid possible.

The piezoelectric material used to excite the cantilever is located above one of supporting

holes (5) and its wires pass through the fluid cell to the connecting chip (6). In this way,

the whole electronic system is completely insulated from the fluid.

With this type of design, the entire fluid cell is vibrated in order to excite the

cantilever (except for the thermal excitation experiments). This is in contrast to the

regular tip holders used in air or vacuum, in which the piezoelectric actuator is located

directly under the cantilever base causing only the cantilever to oscillate (see Figure 4.2).

Although, these types of designs of fluid cells and tip holders are acceptable for many

AFM applications, they introduce perturbations in the cantilever response in some

application and processes, such as tuning of the cantilever, which deal with a range of

79



frequency in the dynamic AFM mode. This is because of some problems in the design of

fluid cells and tip holders, which we discuss in detail in this chapter.

We begin our illustration with three problems that are related to the design of the fluid

cell. After that we shift to a drawback with the regular tip holder in terms of the

supporting mechanism of the piezo element.

Section A-A

Figure 4.1 Schematic of a fluid cell from Veeco1 (MTFML model). In this picture, (1)
is the cantilever, (2) is the clip and spring, (3) is the circular groove for o-ring, (4) are
the inlet and outlet channels for exchanging liquids, (5) is the moving support, (6) is
the connecting chip, and (7) is the fixed support.
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Section A-A

Figure 4.2 Schematic of a regular tip holder from Veeco1 (MMMC model). In this
picture, (1) is the cantilever, (2) is the clip and spring, (3) is the pin, (4) is the screw of
the clip, (5) is the piezo element, (6) is the connecting chip, (7) are the supports and
(8) is the handle.
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4.1) The holding mechanism of the cantilever chip in the fluid cell

The first problem with the design of this fluid cell is its holding clip because first of

all, its spring is not strong enough to secure the cantilever base tightly, and secondly it

does not necessarily hold the cantilever such that its axis is perpendicular to the clip rod.

Since the surface of the cantilever chip is sloped, any configuration other than

perpendicular results in only a single point of contact, reducing the overall stability of the

connection. Thirdly, the other end of the clip, which is above the fluid cell, can easily be

moved or rotated during handling and mounting of the fluid cell on the AFM head thus

changing the connection between the clip and the cantilever base. Moreover this can

result in displacement of the cantilever chip in its groove and consequent misalignment of

the laser beam from the AFM head. This is especially important because when the

cantilever base moves to another position in its groove it creates a new vibrational system

with a different frequency response. Therefore, the clip and spring system does not allow

for reproducible experiments as shown in Figure 4.3. For these experiments the cantilever

model used was the NSC12/tipless/Cr-Au from MikroMasch which is a practical

cantilever and has nominal dimensions of 350 µp? in length, 35 pm in width and a

thickness of 2 pm. The fundamental resonant frequency of this cantilever in water is

about 20 kHz. The position of this peak is unaffected by the cantilever chip location but

its amplitude is significantly affected. We note that when attempting to study the

rheological properties of fluids, both the shape and the location of the primary peak are

important. Also, for the other system resonances in Figure 4.3, neither the position nor

the amplitude of the peaks is constant and instead they strongly depend on the position
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Figure 4.3 Frequency responses with different cantilever base and clip positions (in
water)

of the clip and cantilever.

This problem was solved by removing the clip and gluing the cantilever base to the

fluid cell using silicone glue . As a result of this modification, some redundant peaks

associated with the clip and spring were eliminated from the frequency response of the

system and the reproducibility of the experiments was improved. It should be mentioned

that the problem of irreproducibility is not completely solved because the positioning of

the fluid cell in the AFM head and also the force applied by the grip over the cell can not

be exactly repeated manually. However, these are having relatively minor effects and by

gluing the cantilever base to the fluid cell, we can improve the repeatability of the

frequency response considerably. Figure 4.4 demonstrates the improvement in

repeatability in the frequency response of a cantilever when glued to the fluid cell. For
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these experiments another practical cantilever was used, namely the NSC12/tipless/Cr-Au

from MikroMasch, which had nominal dimensions of 250 pm in length, 35 pm in width

and a thickness of 2 µ?t?. Such a change of cantilevers was needed due to the fragile

nature of the cantilevers and the inability to repeat the same experiment again after the

fluid cell was modified.
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Figure 4.4 Repeatability of the frequency response of a cantilever when glued to the
fluid cell (in water)

4.2) The fluid-borne excitation

The second problem arising from the design of the fluid cell is that it causes an

unsteady, free surface flow of the fluid trapped between the cell and scanner (See Figure

4.5a). As mentioned previously, the piezoelectric actuator excites the cantilever through

the movement of its base via vibration of the entire fluid cell. The large moving surface
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of the fluid cell also generates an unsteady flow in the fluid which affects the vibration of

the cantilever and is in fact another source of excitation for the cantilever. This means

that the cantilever is excited not only by the movement of its base (structure-borne

excitation), but also by the unsteady fluid motion (fluid-borne excitation) resulting in

additional resonance peaks in the frequency response (see Figure 4.6). The same problem

was encountered by Xu and Raman22 who used a different type of commercial fluid cell
from Agilent.

© © ®

Section A-A Section A-A
(a) (b)

Figure 4.5 Cross section of the fluid cell defined in Figure 2 (a) before modification
and (b) after modification. In this picture, (1) is the scanner, (2) is the o-ring, and (3) is
the reservoir.

This problem can be solved by making a small fluid reservoir from glass and gluing it

into the o-ring groove of the fluid cell as shown in Figure 4.5b. The reservoir can be

filled and emptied using the inlet and outlet channels of the fluid cell. If the reservoir is

filled completely with liquid, then the fluid inside the reservoir has almost the same

velocity as the fluid cell. In other words, the relative motion of the fluid due to excitation

of the fluid cell is very small and does not affect the vibration of the cantilever. Many of

the spurious peaks in the frequency response of the cantilever then shrink. Figure 4.6

shows the frequency responses of a cantilever in a %50 glycerin-water solution with and
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without the reservoir attached to the fluid cell. It should be emphasized that the fluid cell

must be completely filled and free of bubbles and in order to accomplish this, the fluid

must be degassed before filling the reservoir. For these experiments the long cantilever

described in section 3.1.4 was used. The installation of the reservoir causes a shrinkage in

the redundant peaks at 7. 9 and 27 kHz frequencies as shown by arrows on Figure 4.6.
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Figure 4.6 Frequency responses of the cantilever in 50% glycerin-water solution
before (black line) and after (gray line) installing the reservoir. The cantilever is
glued to the fluid cell

4.3) The location of piezo element

The last and most important problem with this fluid cell design is that the measured

vibration response is the combination of the cantilever vibration and the fluid cell

vibration. The response of the fluid cell itself to the excitation is frequency dependent and

not the same as the movement of the piezoelectric actuator. This means that the driving
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motion experienced by the cantilever is not the ideal constant amplitude sine wave.

Therefore the presence of fluid cell and anything else between the piezoelement and the

cantilever base make it impossible to measure the real frequency response of the

cantilever.

In order to experimentally verify the above theory, we measured the response of a

silicon microcantilever in three different solutions of glycerin and water using the

modified fluid cell. Also after filling the reservoir, the inlet and outlet channels were

blocked to prevent any evaporation. In this way we can be sure that fluid borne excitation

of the cantilever is negligible. For this experiment, we used the medium cantilever

described in section 3.1 .4 and the properties of the surrounding liquids are summarized in

Table 3.1. Figure 4.7a shows the cantilever responses observed by the AFM optics. The

drive amplitude in all the experiments with liquids was the same and constant. Although

the shapes of these responses are different, their peaks are at the same frequencies. On the

other hand, Figure 4.7b shows the theoretical responses of such a cantilever in these

liquids based on the theory presented in chapter 2, section 2.3.2. For the theoretical

response, the cantilever base was forced with a displacement amplitude of one at all

frequencies, AFS = 1 .

Comparing Figures 4.7a and 4.7b, one can find no similarity between the theoretical

and experimental responses of the cantilever. However, when the experimental response

in each liquid is divided by its ideal acoustic theoretical response, the results are the same

for all liquids. These results, shown on Figure 4.8, are the response of the fluid cell at the

cantilever base to the excitation from the piezoelement. These responses are similar

because the vibrational characteristics of the fluid cell are mainly dependent upon the
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Figure 4.7 Cantilever response in three solutions of glycerin and water; a) measured
by AFM optics, b) determined theoretically

elasticity and mass of the fluid cell. And in our case the fluid mainly changes the mass of

the fluid cell. However, since the densities of the fluids studied here are very close and
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Figure 4.8 Fluid cell frequency responses when containing solutions of glycerin and
water

since the volume of the reservoir is small, the total mass variation is negligible and

therefore, the vibrational characteristics of the fluid cell are expected to be independent of

the fluid it contains.

Based on the results shown on Figures 4.7 and 4.8, the experimental response to a

specific excitation, l(co0) , in the absence of fluid born excitation, can be written in the

form of:

^exp (*K ) = ?c (XK )x TF (?0 )x ?(?0 ) Equation (4.1)
where Tf{g>0) is defined as an experimentally obtained function that transfers l{co0) to

the frequency response of the fluid cell itself, G(.(?|? j is the transfer function for the
ideal damped response of the cantilever. Equation (2.71), and together their product

represents the experimental response of the cantilever^ (x|û>0). Note that the cantilever
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is excited by the function ??<:(?0) = ??.(?0)? ?(?0) illustrating that ideal acoustic

excitation can only be achieved if the fluid cell is designed such that T1. (?0) is constant.

To verify this, experiments were conducted using the long cantilever described in section

3.1.4 and the same fluid cell in 75% glycerin-water solution. The fluid cell transfer

functions are identical for both cantilevers as illustrated in Figure 4.9.

Equation (4.1) can also be used to understand that the liquid damped dynamics of the

cantilever, rc(x|iy0), act to amplify the dynamics of the fluid cell. When the cell is filled

with air or another gas the damped cantilever response contains only sharp resonance

peaks at higher frequencies and thus acts to filter out the dynamics of the cell itself.

The results presented here prove that with this type of fluid cell the frequency

response is dominated by the dynamics of the cell itself rather than the cantilever. This

Q.
E
(U
?
OT
c
O
Q.
OT
?

o
TS

LL

Medium

0 10 15 20 25

Frequency (kHz)

30 35 40

Figure 4.9 Fluid cell frequency responses obtained from excitation of two different
cantilevers in 75% glycerin-water solution.
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problem can only be solved by placing the peizoelectric actuator directly under the

cantilever base as in the regular tip holders. Therefore, a regular commercial cantilever

holder was modified to improve the acoustic excitation of cantilevers in liquids. The

piezoelectric element was insulated by a thin film of Teflon and also a small piece of

microscope glass was installed to cover the liquid just above the cantilever and the

piezoelectric element. This glass and the glassy surface of AFM stand were also coated

with Teflon in order to make them hydrophobic allowing the droplet to be contained by

surface forces. In chapter 5, the experimental results obtained with this modified holder

and also their comparison with the theoretical predictions are presented.

4.4) Supporting and gluing the piezo to the tip holder

So far we showed that there should not be any distance between the piezo and the

cantilever base, meaning that the piezo must be located directly under the cantilever base.

What we are expecting from the piezo is to produce a controlled movement for the

cantilever base. For such a purpose, beside the voltage that we are applying to the piezo,

the type of mechanism, that is being used to support the piezo to the body of the tip

holder, is also important. Concerning the applied voltage, the signal generator that we

used is very accurate and we have excellent control over the whole process. Moving to

supporting the piezo, there are two common mechanisms used, which are shown in

Figure 4.10. One of these mechanisms is to glue the piezo directly to the body of the tip

holder and the second is to use a pair of clamps to hold the piezo on two pivots that are

extended from the tip holder body. The gluing mechanism is usually used for tip holders
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Figure 4.10 Two common mechanisms for supporting the piezo; a) gluing and b)
clamping. In this picture, (1) is the stainless steel body of the tip holder, (2) is the
cantilever seat, (3) is the piezo element, (4) are the clamps and (5) is the clamp's
screw.

that have a small piezoelement while the clamping mechanism is used for holders having

a large piezoelement. in the form of a bar that is employed to produce a large force. Each

of these mechanisms has advantages and disadvantages which are discussed in the

following paragraphs.

The advantage of the first mechanism for the piezo support is that the cantilever base

movement is exactly equal to the expansion and contraction of the piezo as long as the

piezo is attached to the tip holder body perfectly. However, over time these connections

can be loosened for many reasons such as degradation of the glue or through washing of

the tip holder with different solvents when changing the experimental fluid. Such

loosening affects the noise floor, when we are using the AFM for thermal excitations,
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causing a large increase in the value of the noise floor to the extent that sometimes the

response of the cantilever can no longer be recognized (see Figure 4.11). Moreover, the

noise floor values are neither stable nor repeatable and can also be frequency dependent.

In contrast, in the other excitation techniques namely the frequency sweep and step

excitation where we apply a signal to the piezo, the effect of changes in the noise floor on

the cantilever response is not visible because for these cases the magnitude of the

cantilever response is much greater than the magnitude of the noise floor.

In the clamping mechanism, the piezo is attached and kept tight to the body of the tip

holder. Therefore in the thermal excitation a small, constant and repeatable value for the

noise floor is observed. On the other hand in the frequency sweep and step excitation, the

signal applied to the piezo causes its expansion and contraction and also the vibration of
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Figure 4.1 1 The effect of utilizing different mechanism of supporting the piezo on the
thermal noise response of long cantilever which was immersed in water.
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the piezo bar itself. This vibration is due to the large ratio of the length to the thickness of

the piezo and also due to the free space underneath the piezo element because of the

specific type of support used in this mechanism. Therefore the cantilever base, in this

case, does not have a controlled movement and as a result in the cantilever response

many spurious peaks appear.

In conclusion, for the frequency sweep and step excitation the gluing mechanism is

preferred, while for the thermal noise the clamping mechanism is recommended.

Moreover, we must emphasise that the critical design issues mentioned in this chapter

refer to certain very commonly used fluid cells and tip holders which are manufactured

by Veeco. However, there are several other manufacturers for the AFM and its

accessories, such as Agilent and Nanotec companies, who employ different designs for

the AFM which might not have such problems.
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Chapter 5

Experimental results for different excitation techniques

The structure of this chapter, which presents the results of all experiments, consists of

three parts. In the first part, we present the results of preliminary experiments such as

averaging and reproducibility of the data. The second part focuses on the discussion of

the experimental results for the Newtonian fluids and their comparison with theory for

the different excitation techniques. Moreover two different approaches for extracting the

properties of the fluids from the experimental data are proposed and the possible sources

of errors are discussed. Finally in the third part, preliminary results for the non-

Newtonian fluids are presented and potential approaches for extending the AFM

cantilever techniques are introduced.

5.1) Averaging of data

Averaging is an important tool in signal processing and is usually used to reduce the

noise effects. In spectral analysis, there are many types of averaging in which vector

averaging and RMS averaging are the most important.

The vector average is simply the arithmetic mean of each of the real and imaginary

parts of the FFT vector of the time domain data and consequently, its results are also

complex numbers. Equation (5.1) shows the meaning of vector averaging

mathematically:
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Yk = (X)k =XR + i X1 Equation (5.1)
In this equation, Xk and Yk are the klh instance of the input spectrum X and its averaged
output Y respectively. Because the FFT is a linear transform, this kind of averaging is

equivalent to the FFT of averaged data recorded in the time domain. As shown in Figure

5.1, vector averaging reduces the effects of white noise on the signal in the time domain.

It also lowers the noise floor in the frequency domain. For this type of averaging, the

3

3-
(D
(fl
C
O
Q.
(O
? ;t_ ¡.

? I'
>

c
as
O

1 step!

jjuft.a .1

I OO steps .

2500 steps

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time (s)

Figure 5. 1 The effect of vector averaging on data records for step excitation of 50%
glycerin-water solution in time domain
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signal recording should be started at a consistent point in the periodic signal or in other

words it must be triggered.

Recording of a signal starting at inconsistent points in a periodic signal results in

phase noise in the FFT spectrum (see Figure 5.2). For this case, the RMS averaging can

be used to reduce the effects of phase noise. The RMS averaging is the square root of

averaged power spectra and returns a real spectrum. It can be expressed mathematically

in the form of:

Yk = ^X conj{x))J Equation (5.2)

*?-.**!;.¦' j. h Ml I ¡? ? y!ili
il , j

1 set!

ihliÉtiJyJaisilliii
¡§|^iHHM|Ì

3

-2-
(D
U)
C
O
Q.
OT
F

(D
>

C
(O
O feW«S«^^

2500 sets!

20 10040 60

Frequency (kHz)

Figure 5.2 The effect of RMS on averaging data records for thermal noise of 50%
glycerin-water solution in frequency domain
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Because the power spectrum is the square of the magnitude of FFT spectrum and also

the magnitude of FFT spectrum is independent of time shifts, RMS averaging eliminates

any effect of phase variations or time dependency on the results however it can not

reduce the noise floor.

In thermal noise, the signal is the result of the stochastic impact of fluid molecules to

the cantilever and consequently it is not possible to start data acquisition at specific point

in the periodic signal. On the other hand for the case of step excitation, data acquiring can

be started exactly at the time of excitation and so triggering the signal is easy. Based on

this, the appropriate method for thermal noise is RMS averaging and for step excitation is

vector averaging. It should also be mentioned that after damping of the cantilever

response to step excitation, the rest of the signal is thermal noise and although data

acquisition was triggered for this case, vector averaging does not work properly for this

part as Figure 5.3 shows on the previous page.

5.2) Checking the concentration changes over time

One important issue that can affect the interpretation of the experimental data is the

change of concentration of the glycerine-water solutions over time. The reason for this

change is that the liquid on the modified tip holder (see Figure 5.4) has an interface with

the surrounding air and the water can be either evaporated from the solution or absorbed

from the air because of humidity. The rate of each of these phenomena is not known

however the overall changes can be investigated by observing the response of a cantilever

in the solution over time. Three solutions of 25%, 50% and 75% glycerine-water were
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chosen and the thermal noise signals were recorded every 10 minutes in each. The

responses for the fresh solutions and after one and half hour are shown in Figures 5.5, 5.6
and 5.7.

Glass Cantilever holder

Piezo

Glassy surface of
AFM head stand

Cantilever

Figure 5.4 The schematic of the modified cantilever holder which shows the interface
between the examined fluid and the surrounding air.
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Figure 5.5 Thermal noise responses of a cantilever in 25% glycerin-water solution
over time
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Regarding to these figures, it should be mentioned that the peaks for the first two
modes of vibration can be observed in the responses. The first modes, which have higher

amplitudes, have frequencies less than 10 kHz and the second modes have frequencies
between 10 and 50 kHz. As the glycerine concentration increases, the frequencies of

these peaks decrease such that for 75% solution the first mode peak is about to disappear.

Also the amplitude of the second mode decreases and becomes the same as the noise

floor with increasing concentration. The other issue is the existence of some sharp peaks

at very low frequencies and at around 33 and 50 kHz. These peaks appeared for all of the

solutions at the same frequencies; therefore they are independent of fluid properties and

are rather related to environmental or system noises. A more comprehensive discussion

of the behaviour of the cantilever in thermal excitation is presented in section 5.6.

An analysis of the nature of the concentration change over time was done based on

the shift of the first resonant frequency. From the previous figures, it can be noticed that

the resonant frequencies decrease slightly as time passes. This indicates that some water

evaporates from the solution over time. The other issue is the magnitude of the frequency
shift for the different solutions after one and half hour. These shifts are 5 and 33 percent

for 25% and 50% glycerine-water solutions respectively and almost zero for the 75%

solution. The small frequency shift for 25% solution can be understood by considering

that the properties of solutions at this concentration do not change significantly with a

small change in concentration (see Figures 3.6 and 3.7). For the 75% solution, the lack of

shift of frequency is likely due to the very low rate of evaporation at this concentration

which means that one and half hour probably is not enough for a noticeable change in the

properties of the fluid. However for the 50% glycerine-water solution the shift is
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considerable and indicates that the change of concentration over time can be a potential

source of error in interpretation of the experimental data. Therefore experiments with this

solution should be done as quickly as possible. In this project, doing all necessary tests

for one sample takes typically 20 minutes. In order to have an approximation of the

frequency shift for our experiment for the worst case of 50% glycerine, we looked at the

response of the cantilever, over shorter periods (see Figure 5.8). It was found that the

amount of frequency shift is almost linear with respect to time in the first 90 minutes as

shown in Figure 5.9. From these results we could expect a frequency shift of around 7

percent for the 50% glycerine-water solution after 20 minutes of testing.
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over time
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Figure 5.9 Resonant frequency shift because of concentration change over time for
%50% glycerin-water solution.

5.3) Reproducibility of the experiments respect to both FS and SE

Reproducibility is one of the main principles of any scientific experiment. It can only

be achieved under identical experimental conditions. We discussed in chapter 4 several

factors that affected the reproducibility of the experiments with the fluid cell. Some of

these factors included the change in the location of the laser spot on the cantilever beam

as a result of laser realignment, the alteration in the route of the reflected laser beam

because of the readjustment of the intermediate mirrors and the relocation of the

cantilever chip on its seat. Such factors again hold for the modified tip holder and reduce

reproducibility. Among the three above mentioned factors, the first mainly affects the

shape of the cantilever response, which is the summation of all its modes of vibrations the

effect of which depend on the position of the laser spot on the cantilever. This can be

easily understood from Figure 5.10 where the inclination of the cantilever at each mode
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Figure 5.10 The inclination of the cantilever for the first modes of vibration.

of vibration is drawn. A small change in the location of the laser beam, along the length

of the cantilever and near its free end, causes a severe change on the observed response

especially at higher modes of vibration. The other factors do not affect the shape of the

cantilever response instead they tend to scale the magnitude of vibration uniformly.

The method available for the alignment of the laser beam at the free end of the

cantilever is not precise, as it depends upon the operator identifying the shadow of the

cantilever. However, we tried to keep the same approach for aligning the laser on all the

cantilevers in order to perform our experiments at the same condition. Moreover, we kept

the settings of the optical system of the AFM the same for each fluid during the different

types of experiments performed. All of which lead to obtaining reproducible results and

meaningful comparisons between the data for different experiments. Furthermore, in

order to compare the experimental results with the theory, the responses were normalized
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mainly by the magnitude of the first mode peak and in this way the effects of the other

factors and the need for calibration of the system were removed.

5.4) Linearity with respect to the drive amplitude for FS and SE

As a part of our initial experimentation, we investigated the effect of different drive

amplitudes on the responses of the cantilever in the frequency sweep and step excitations.

This was done for all of the fluids and without exception, it was observed that when the

recorded response is divided by the value of drive amplitude, the results were the same.

This means that the response of the cantilever has a linear relation with the drive

amplitude at least over the studied range of voltage, (see for example Figures 5.1 1, 5.12,

5.13 and 5.14). For Newtonian fluids, such behaviour was expected in terms of the

displacement of the cantilever base and the deflection or inclination of any point on the

cantilever, as shown mathematically in chapter 2. However, in the AFM the input to the

system is the voltage signal that is applied to the piezo element located underneath the

cantilever base. Also the output of the system is the voltage produced by the photo

detector that receives the reflection of the laser beam from the cantilever. Therefore, it

can be concluded that the rest of the system which converts the voltage to the

displacement and vice versa is linear also; these include the signal generator, the piezo

element, the photo detector and the data acquisition hardware. For the non Newtonian

fluids, the observed linearity in the results indicates that the experiments were carried out

in the linear viscoelastic region of the fluid, meaning that the properties of the fluid are
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independent upon the applied deformation and the rate of deformation. The unusual

cantilever behaviour in the frequency sweep excitation will be discussed in section 5.6.
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Figure 5.1 1 Linearity with respect to the drive amplitude for the frequency sweep test.
For this test the long cantilever was immersed in water.
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Figure 5.12 Linearity with respect to the drive amplitude for the step excitation test.
For this test the long cantilever was immersed in glycerin.
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5.5) Confirmation of linear viscoelasticity by examining higher harmonics

In this section, we are again verifying the linearity of the polymer solution behaviour

through a different type of experiment. For the standard oscillatory shear flow, there are

some theories that predict the behaviour of the fluid and determine whether it is in the

linear or nonlinear region. Knowing that the cantilever under study has an oscillatory

movement which is some how similar to the standard oscillatory shear flow, we designed

few experiments to use the standard oscillatory shear flow theories in order to verify the

linearity of the non-Newtonian fluids. In this regards we are following the approach

mentioned by Giacomin and Dealy .

In the standard oscillatory shear flow, a uniform sinusoidal strain with the frequency

of ? and the amplitude of ?? is applied to the fluid as shown in the following equation:

?^ = /0sin(£y/) Equation (5.3)
For polymeric liquids, when the amplitude of this oscillatory strain is small, the linear

viscoelastic properties could be observed in the fluid. In other words, the stress response

of the fluid will be a sinusoidal function with the same frequency but shifted in phase.

Also the amplitude of the stress would be proportional to the amplitude of the strain as

illustrated in the following equation:

(J^ = Gj ?0 sm{cot + d) Equation (5.4)
In this equation, d and Gd are called the mechanical loss angle and the dynamic modulus

respectively. Therefore in the small amplitude oscillatory shear (SAOS) these two

quantities are only function of the frequency and are independent of yo that is G1, (?) and

d(?).
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In the case of large amplitude oscillatory shear, nonlinear viscoelastic behaviour will

be exhibited by the polymeric fluids. In the nonlinear regime, the stress response is not

sinusoidal but can be represented as a summation of an unlimited number of sinusoidal

functions, where their frequencies are the odd harmonics of the strain frequency. This is

described mathematically as:
OO

s(?)= ^Vm-sin(míy/ + ¿>m) Equation (5.5)
m~\.odd

In the above equation both am and 5m can be functions of both frequency and strain

amplitude, that is am {fù, Y0) and Sm (?,?0).

Based on these theories, we designed a set of experiments which are explained in the

following few lines. First we excited the cantilever base at a specific frequency, and then

the response of the cantilever was recorded. After that, the Fourier transform of this

response was calculated and from its result it was checked whether the higher harmonics

of the excitation frequency could be observed or not. It should be mentioned that, for this

experiment, we used the tip holder with the large piezo bar that is suitable for the thermal

noise excitation as was explained in chapter 4. This was done because it provided less

noise floor than the other tip holder and also it made it possible to observe smaller peaks

for the harmonics. These experiments were performed for both Newtonian and polymeric

fluids and their results were compared to verify the linearity of the polymeric solution.

For Newtonian fluids, air, water and 75% glycerine-water solution were used. For the

polymeric fluids, 5% and 16% polysterene-DEP solutions were used. Also for the

excitations, three different frequencies of 7, 12 and 22 kHz were chosen. These

frequencies were carefully chosen based on the sampling theory and also on the sampling
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rate used for digitizing the signal, in order to capture higher vibration harmonics up to the

fifth harmonic. Moreover, for the purpose of generality of the results, the frequencies

were selected in order not to be multiples of each other. We chose different amplitudes of

vibration, ranging from 0.1 to 10 volts.

Figure 5.15 shows the responses of the cantilever at different frequencies for different

drive amplitudes in air. It was noticed that for high drive amplitudes, peaks at the

harmonics of the excitation frequency appeared in the frequency response for both the

odd and even harmonics. However for low drive amplitudes, only a peak for a

fundamental excitation frequency was observed. If we consider the previous theory for

this case, no harmonics should be observed in the response of the cantilever because air is

a Newtonian fluid. However, such behaviour was also observed by Revenko et al , who

excited the cantilever both magnetically and acoustically. They attributed the existence of

such peaks to the inherent nonlinearity of the photodiode detector and the electronics of

the microscope, which was used to measure the cantilever position. They also concluded

that these peaks were not related to the motion of the cantilever because they appeared

for both types of magnetic and acoustic excitations. Nevertheless, we still performed

these experiments for water and the other solutions, including the polymeric fluids. Again

we observed the harmonic peaks at high driving amplitudes only, as illustrated in Figures

5.16 and 5.17 for water and 16% PS solution. In this case, since there was no difference

in behaviour between the polymeric and the Newtonian fluids, we could not consider this

behaviour as an evidence of nonlinearity and it was concluded that we are still in the

linear region.
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Monitoring the obtained values for the harmonics, there was no clear relationship

between their magnitudes and the excitation frequencies. Moreover, there was no

tendency between the magnitudes of the harmonics and the harmonic's number.

However, it was noticed that there is a linear relationship between the magnitudes of

these peaks and the driving amplitudes above 1 V, as for example shown in Figure 5.18

for 16% PS solution. It was also consistent with the previously obtained results for the

linearity of the frequency sweep response, because the frequency sweep response was the

magnitudes of the fundamental peaks in the defined range of frequency sweep. It should

also be explained that the concluded linearity for the higher harmonics was based on a

few driving amplitudes, mainly two, and was not as strong as the linearity of the

fundamental peaks. We should also mention that such linearity for the magnitude of the

peaks was observed for all the fluids.
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Figure 5.18 Linear relationship between the magnitudes of the peaks, located at
excitation frequency and its harmonics, and the driving amplitudes for 16% PS
solution
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5.6) Discussion of the experimental results

In this section, we interpret the cantilever behaviour in response to thermal noise,

frequency sweep and step excitation, mentioning all the advantages and disadvantages

regarding each technique. During our discussion we often refer to the viscosity of the

fluids as low, moderate or high viscosity.. To be more precise we associate viscosity of

water with the low viscosity, the viscosity of 75% glycerine-water solution with the

moderate viscosity and the viscosity of pure glycerine with the high viscosity.

Starting with thermal excitation, Figure 5.19 shows the theoretical and experimental

results for the amplitude response of the long cantilever immersed in water. The results
are normalized with the value of the averaged noise floor. The figure also shows the

theoretical results while adding the effect of the noise floor which was done using the
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Figure 5.19 Thermal noise for long cantilever immersed in water
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following equation:

W**. = 4YL + ALe Equation (5.6)
As it can be seen on this figure and in general for this type of excitation, if the

investigated range of frequency is large enough to let us see a few modes of vibration, we

can notice that the magnitude of the peaks for the lower modes of vibration are greater

than the magnitude of the peaks for the higher modes of vibration. For example, the

magnitude of the peak for the second mode of vibration is smaller than that for the first

mode and larger than the magnitude of the peak for the third one.

The other issue is the effect of cantilever length and fluid viscosity on the cantilever

vibration. For the assessment of the length variation, we need to compare the responses of

two different cantilevers while immersed in the same fluid. However for investigating the

effect of viscosity change, the comparison between the responses of one cantilever that is

immersed in two different fluids is required. Figures 5.20 and 5.21 show the responses of

medium cantilever immersed in water and the response of long cantilever immersed in

50% glycerine-water solution respectively. The comparison between Figures 5.19 and

5.20 indicates that the effect of utilizing a longer cantilever is the decrease of the

resonance frequency of the cantilever at each mode of vibration. Also using a longer

cantilever causes the peak to be sharper and larger in magnitude. On the other hand, the

viscosity variation effect can be observed by comparing Figures 5.19 and 5.21. These

figures show that the increase of fluid viscosity causes broadening of the peaks and a

decrease in the frequencies of the modal peaks. This is because when the viscosity of the

fluid increases, the damping effect and the added mass increases.
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While keeping all the above mentioned factors in mind, it should be mentioned that

the main advantage for the thermal excitation technique is the smooth response of the

cantilever. This is mainly because there is no moving part in the AFM head except the

cantilever in response to the thermal excitation. However, for such a technique there are

two experimental limitations. First, we always observe a noise floor in the response the

magnitude of which depends upon some environmental factors such as electrical noises,

building vibrations and the surrounding sound noises. This noise limits the application of

this technique to fluids in which a considerable part of the cantilever response is larger

than the noise floor; in other words, when we have a large ratio of signal to noise. For

example in Figure 5.19, the response around the first mode is more useful for the analysis

than the response around the second mode. The second limitation is related to the

filtering of the digitized signal. As it was mentioned in chapter 3, we performed a high-

pass filtering with a cut-off frequency of 500 Hz for removing the DC value of the

recorded signal. However, the effect of filtering on the results can be observed up to 2-3

kHz on the results. This causes the first peak for the response of the long cantilever, when

immersed in a moderate or high viscosity fluid, to become useless because it is very close

to the zero and as a result, it is altered by the filtering process. Also in such a situation,

the second mode of vibration is also not usually visible. Therefore the the thermal noise

response, in this case, does not show any features related to the properties of the fluid and

the cantilever. On the other hand, when using shorter cantilevers we do not encounter any

problems with the filtering process, because of the increase of the resonant frequency, but

the magnitude of the model peaks are nearer to the noise floor.
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As a result of these phenomena the applicability of this technique is limited to

utilizing the long cantilever for the low viscosity fluid. This is because, for the other

situations, the magnitude of the driving force due to the impact of the fluid molecules

exhibiting Brownian motion is not enough to have a response greater than the noise floor.

We can increase the amount of this force by increasing the temperature, however in this

way the properties of the fluid will change. Therefore we need to provide the energy for

the vibration of the cantilever in another way. This can be solved using the frequency

sweep excitation or step excitation techniques which are explained next.

In the frequency sweep excitation, we can provide considerable amount of energy to

cantilever by moving its base. As a result we can observe a response for the cantilever

which has shorter length or is immersed in a higher viscosity medium. Figures 5.22 and

5.23 show the theoretical and experimental results for the amplitude and the phase of

long cantilever vibration when it is immersed in water. Such graphs for the other fluids

and cantilever are presented in Appendix I (pages 1 88-195).

Looking to the amplitude responses in this type of excitation, the general effects of

variation of cantilever length and fluid viscosity on the frequency of the model peaks are

similar to those observed in thermal noise. However, the higher modes of vibration have

larger amplitudes than the lower modes of vibration for the range of low to moderate

viscosities. This means that if a long cantilever is utilized in a moderate viscosity

medium, although the usefulness of the first mode of vibration diminishes because of the

interference with the effect of the filtering process, we can still use the response around

the higher modes of vibration in our analysis. This is an advantage in comparison to the

thermal noise, in which the ratio of signal to noise floor for the higher modes is not large.
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On the other hand, the response of the cantilever for high viscosity fluids does not contain

peaks and the variation of its shape becomes independent of fluid properties. In this case

using a shorter cantilever could be helpful because all the peaks can be observed at higher

frequencies. Therefore the applicable range of viscosity will increase in this type of

excitation compared to the thermal noise type.

Looking again at the amplitude response in Figure 5.22, it can be noticed that there is

a big deviation from the theoretical response between 40 and 60 kHz of frequency and

also there are some noises at lower frequencies. In order to understand the reason for the

deviation in behaviour in the above mentioned frequency range, the results of amplitude

responses of several long cantilevers, which are all immersed in water, were compared
and this is illustrated in Figure 5.24. It was observed that these responses are

approximately similar in frequencies less than 40 kHz but have very different behaviour
between 40 and 60 kHz. The small difference between the responses in first part of

frequency range is related to the small differences of the cantilever thickness and scaling

factor but this reason cannot be used for explaining the large deviation in the response

between 40 and 60 kHz. It is more reasonable to relate this deviation to the environmental

noises detected in this frequency range that were also observed in the thermal noise

response as explained in section 5.2. Therefore, from now on we will only consider the

response of the cantilever for frequencies less than 40 kHz in our analysis. As illustrated

in Figure 5.22, there are also some small noises in the amplitude responses in the first

part of frequency range. The peak around 37 kHz is related to the resonant frequency of

the cantilever chip which was also observed by Han et al10. Based on this justification,
the other peaks might be also related to the vibrations of the other moving parts in the
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Figure 5.24 Comparison of the amplitude responses of several long cantilevers, which
are all immersed in water

cantilever holder, such as the spring and clip in the holder. It should be mentioned that in

order to get a very smooth response in this type of excitation, a very well designed holder

is required that considers all of these vibrational aspects. Such optimization could be

considered as future work for this project.

Referring to the phase response in Figure 5.23, it should be mentioned that the phase

results are the inverse tangent of the ratio of the imaginary parts to the real parts of the

Fourier transform results at each frequency. In general, the value of an inverse tangent is

between p and -p, as shown in the figure. In this case when, for example, the phase of the

cantilever response is going to be less than -p, a 2p will be added to it and the rest of the

results continue starting from the value of p. This causes all the data to lie between p and

-p but a discontinuity in the results will appear. In order to remove these discontinuities
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an unwrapping process was performed on the experimentally and theoretically obtained

results so in this way we have a better view of the data. The result of such process on the

data in Figure 5.23 is presented in the following figure.

Experiment

Theory

Frequency {kHz)

Figure 5.25 Unwrapped phase response for long cantilever immersed in water

The other issue concerning the phase response is the presence of a phase drift (see

Figure5.26) that the AFM machine exhibits without having any laser beam reaching the

photo detector, which could be measured by removing the cantilever or unplugging the
laser cable of the AFM head. The amount of this phase drift is not constant and depends

upon the frequency of the driving signal. Moreover, for different drive amplitudes the

shape of the phase drifts are the same but for low drive amplitudes they are much nosier.

Basically, all drive amplitudes used for these experiments are much more than the values

that are used normally for the imaging processes. As a result of using such high drive
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Frequency (kHz)

Figure 5.26 Unwrapped phase drift of the AFM for drive amplitude of 10 (V)

amplitudes, some issues regarding the grounding in the electronics of the AFM will

happen, which could also be coupled with a capacitance effect. This will lead to

noticeable reading of phase without a laser spot on the photo detector. So in order to see

the results of the cantilever only, we subtract this imbedded drift and prevent it from

affecting the output data, as shown in Figure 5.27. It should be mentioned that the

difference between the theoretical and experimental result in this figure is around p/2

which is related to the implementation of sine instead of cosine or vice versa in the code

used for the theoretical modeling.

Focusing on interpreting the experimental data from the physical point of view, it can

be noticed that the phase response also shows the presence of different modes of

vibration but in a different manner compared to the amplitude response. The amplitude
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Figure 5.27 Unwrapped phase response which the effect of phase drift is removed. The
long cantilever was used for this result and the surrounding fluid is water.

response exhibits such modes by the appearance of peaks, while the phase response

displays them in the form of a significant decrease in the value of the phase, as shown in

Figures 5.22 and 5.27 respectively. Moreover, for different modes of vibration, the

amount of change in the value of the phase are the same for the phase response but for the

amplitude response, as mentioned earlier, the higher modes have higher amplitudes.

Furthermore, the effects of the cantilever length and fluid viscosity on the phase

response are similar to those effects on the amplitude response. More precisely, we can

observe that when the viscosity of the surrounding fluid increases or when a shorter

cantilever is used, the resulting change in the value of the phase response occurs over a

wider range of frequency and similarly the peaks in the amplitude response become

broader and smoother. In addition, the value of frequency at which the peaks occur, in the
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amplitude response, and the significant decrease occurs in the phase response, is shifted

to a lower value as the viscosity of the fluid or the length of the cantilever increases.

It should be mentioned that the noises appear in the phase response exactly at the

same frequency as the noises in the amplitude response. However, the effects of these

noises are a little different for both responses. For the phase response, the noise peaks

cover a much narrower frequency band and deviate from the main trend only downwards;

however, for the noises on the amplitude response, their effect is observed over a much

broader frequency band and they are also found in both the upward and downward

directions. This makes it easier to locate the noises and remove them from the data in the

phase response as compared to the amplitude response. The phase response at the low

frequency range of less than 3 kHz should also be neglected because the filtering process

affects the phase response also.

In conclusion, both the amplitude and phase responses have the same information

regarding the properties of the cantilever and its surrounding fluid. However the phase

response is preferable for analyzing because the noises in this kind of response can be

recognized and removed more effectively.

Moving to the last excitation technique, namely the step excitation, Figure 5.28 shows

the response of long cantilever, immersed in water, in both the frequency and time
domains. Similar results for the other cantilever and fluids are presented in Appendix J

(pages 196-201). For this type of excitation, the response of the cantilever in the

frequency domain is somehow similar to the thermal noise resposne. That is, the

amplitude of the peak for the second mode is smaller than that of the first mode but

greater than the third one. Moreover, the effects of changing the cantilever length and
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fluid viscosity, on the cantilever response, are similar to the ones described for frequency

sweep and thermal noise. However, because of the large energy of excitation, the

amplitude of vibration is much more than the value of noise floor and as a result it

allowed us to observe the higher modes of vibration, up to the fifth. It was not feasible to

observe them with thermal noise under the experimental conditions of our instrument.

Regarding the response of the cantilever in the time domain, it should be mentioned

that it was constructed numerically using the inverse fast Fourier transform. In order to

have such response for the same duration and resolution of the experimental response,

that is the duration of 0.1 s with a resolution of 10"6 s, we calculated the cantilever

response in the frequency domain up to 500 kHz with the resolution of 0.01 kHz using

Equation (2.83). Then the results were transformed to the time domain using the IFFT in

MATLAB. The results of this transformation were complex numbers and it should be

admitted that we could not find any physical meaning for the imaginary parts so far.

Nonetheless, the real parts predict the main features of the experimental response rather

well. The main problem with the cantilever response, in the time domain, is that the effect

of the filtering process on the results is difficult to identify. Therefore, in total the

frequency domain is preferred for analysing the results.

By comparing between the frequency sweep excitation and the step excitation, we

conclude that the later technique has three advantages. The main advantage is that we

have an exact solution for the theoretical response rather than a solution in the form of a

series. Therefore it does not have any truncation error regarding the series. The second

advantage of this type of excitation is that the response around the first mode, which can

be predicted more accurately by the theory than the higher modes, has higher magnitude
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than the other features in the data. And finally, obtaining the total response takes less

time in step excitation. The reason for the latest advantage is that in the frequency sweep

excitation, the resolution of the data in frequency depends on the number and range of

discrete frequencies used to drive the cantilever. Therefore, it is necessary to increase the

number of measurement points and the overall measurement time in order to broaden the

frequency range without reducing the resolution. However this is not the case for the step

excitation because the range of the frequency and its resolutions depend on the sampling

rate and duration for digitizing the signal which make the total acquisition time less.

5.7) Discussion on the theoretical results

As it was explained in the previous section, the higher modes of vibration affect the

frequency response at lower frequencies when the viscosity of the solution or the length
of the cantilever increases. On the other hand, the theoretical model for the applied drag

force on the cantilever is not accurate for higher modes of vibration. The reason for this

inaccuracy is that this model was derived based on the assumption of 2D flow for the

surrounding fluid. But as mentioned in chapter 1, because of the considerable axial flow,

this assumption is violated for the higher modes of vibration. Therefore, the main

inconsistency between the theoretical and experimental results can be explained in this

way for the long cantilever when it is immersed in high viscosity fluids.

The other issue, regarding the theoretical models for the different excitation

techniques, is related to truncation in the series solutions. As we know, the theoretical

response of the cantilever is the summation of all its modes of vibration. But the question
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is "how many modes of vibration is required to represent the theoretical response in the
selected range of frequency with a small truncation error?". In order to answer such a

question, we compared several simulations of the frequency sweep excitation that were

obtained by applying different numbers of modes in the calculation. The result of such

analysis is presented in Appendix K (pages 202-209). This comparison allowed some

conclusions. First, the effect of the number of modes included on the phase response is

less than on the amplitude response. Second, for the medium cantilever, the response is
mainly around the first mode of vibration for all solutions. Moreover applying the 1 st and

2n modes is enough for representing the theoretical response in the range of 0 to 60 kHz
except for pure glycerin which needs at least the first 4 modes. Finally, for the long
cantilever, two modes of vibration can be observed for low concentration solutions and

the effect of higher modes will appear as the concentration increases until the pure
glycerin which even 9 modes of vibration are not enough for representing its theoretical

response in the selected range of frequency.

It should be mentioned that, although for most cases using 4 modes of vibration was

enough to represent the theoretical response; we implemented 9 modes of vibration for all

cases when we wanted to obtain the theoretical responses for comparison with the

experimental results. The reason for this was that in general using more numbers of

modes introduces less error than not using them.
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5.8) Finding the properties of Newtonian fluids from their FS experimental data

Two different approaches were applied in order to determine the properties of

Newtonian fluids from the frequency sweep data. In general, the first one considers the

whole frequency range and the viscosity and density are determined by finding the best

fit of the theoretical response to either the amplitude or the phase experimental results. In

the second approach, these properties are calculated at each frequency using the

experimental values of both the amplitude and phase at that frequency. In the following

paragraphs, the details of each approach and the results obtained are explained.
For the first approach, a MATLAB code was written to find the best fit between the

theoretical and experimental results by implementing the nonlinear least-square

regression criteria (see Appendix L, pages 210-219). The structure of this code was

divided in two parts based on the type of the experimental data used. The first part, which

uses the experimental amplitude response, determines the viscosity, density and the

scaling factor for the best theoretical response. The reason for using the scaling factor in

the calculation of this part was the lack of calibration coefficients for both the input and

the output signals, which relate them to the movement of the base and the free end of the

cantilever respectively. Similarly, a phase shift factor is determined in the second part of

the code, which uses the phase response. In this case, the reason for implementing the

phase shift factor is to account for the unknown value that by which the unwrapping

process can shift the whole experimental phase response. It should also be mentioned that

the noises in the experimental results were excluded from the experimental data for all

the calculations. This was done by considering the noises observed on the phase repose
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diagram as our reference and excluding them from both the phase and amplitude

responses, as illustrated in Figure 5.29.

The measured densities and viscosities are compared with their real values in Figures

5.30 and 5.31 respectively, at each concentration of glycerine-water solution for the long

and medium cantilevers. The errors in these measured values are shown in Figure 5.32.

By observing the error bars in Figure 5.32, one can notice three general different trends

for the error, which are explained in the following pages.

The first trend is the increase of error as the concentration increases. The main reason

for this, as mentioned earlier in the previous section, is related to the inaccuracy of the

theoretical model for higher modes of vibration. This is because as the concentration of

the glycerine-water solution increases, the viscosity increases and as a result we observe

the effect of higher modes on the response. However there are some practical sources of

errors too. It is well known that the properties of highly concentrated glycerine-water

solutions, mainly their viscosities, strongly depend upon the fluid's temperature and also

upon the accuracy of concentration of the prepared solution. In other words a small

change in these two factors leads to a huge change in the properties of the solutions.

Moreover, this dependency is significantly increased as the solutions become more

concentrated. Consequently few sources of errors could occur. One of them could be the

imprecise assumption of room temperature for the real value of the properties. The

assumed room temperature was 260C, which was almost the averaged temperature around

the fluid; however this temperature was varying between 250C and 27.50C. Such variation

gives misleading results and is a source of error. Another source of error is the local

heating of the fluid around the cantilever. The given energy to the base of the cantilever
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in this type of excitation dissipates through the fluid. Moreover the laser beam aligned on

the cantilever tip heats the fluid in that region. These two factors increase the temperature

of the nearby fluid and cause some deviations in the results from what are expected. It

should be mentioned that the later factor was also reported by Hennemeyer et al7.

Looking to the results indicates that most of the measured properties are less than their

real values. This could also be a sign that the actual temperature of the fluid is higher than

the assumed room temperature. Based on the determined viscosity from the phase

response, it was found that the local heating causes an average increase of 3 0C in the

temperature of the fluid surrounding the cantilever. Finally, any inaccuracy during the

preparation of the correct concentration for the solutions could cause an error in the

results. However, this source of error is less likely to occur because we used a very

precise balance with 1 mg precision and for each concentration 25 g of solution were

prepared, which increased the overall accuracy.

The second trend in the errors is related to the length of the cantilever. As the length

of the cantilever increases, the effect of the higher modes will be observed on the

response. Since the theoretical model for higher modes is inaccurate, the error of the

result increases when we utilize the longer cantilever.

Lastly, the third trend in the errors is linked to the utilization of either the amplitude

or phase response. It is noticed that using the phase response results in less error than

when the amplitude response is implemented. First, this is because the noises affect the

phase response less than the amplitude response and as a result, recognizing and deleting

the noise from the experimental data is easier in the phase response. Second, this is also

due to the fact that the theoretical response for the amplitude response is scaled while the
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phase response is shifted. Based on the least square residual criterion of nlinfit command

in the MATLAB code, the determined properties from the amplitude response have likely

more error, if the scaling factor has an error. In other words, if both the scaling factor and

the phase shifting factor had the same error value, the effect of the scaling factor error on

the calculated properties is larger than the effect of the phase shifting factor error on the

properties.

In conclusion, for the determination of the fluid's properties from the whole response,

the results of phase responses are more reliable because their fitted curves represent both

the values of experimental data and their trends while the fitted curves for the amplitude

response just represent the trends and not the values of the experimental data.

Shifting to the second approach for the determination of the Newtonian fluids'

properties, both the amplitude and the phase values must be employed at each frequency

in order to obtain the properties. The major problem concerning this approach is the

existence of more unknown variables than the known ones. At each frequency these

unknowns are density, viscosity, the scaling factor for the amplitude response and the

shifting phase factor for the phase response. So in order to solve such a problem, we

define a reference frequency and we normalize both experimental and theoretical

responses for the amplitude for the whole frequency range and we shift both experimental

and theoretical phase response to zero, using their values at the reference frequency.

Implementing such a technique, we are able to get rid of the unknown scaling factor and

phase shift, this is shown mathematically in the following equations:

140



'M Am^L· Amp-U„ Equation (5.7)
???,µ) Phase I - Phase „ Phase „,„„I - Phase „ = 0exp|@f expl@fref -I I· the°l@f theol@f,c.

Moreover, in order to find the density and viscosity at each frequency, the above

equations should be solved together. In order to find these properties, this algorithm was

developed in a MATLAB code, which is shown in Appendix M (pages 220-225). The

results obtained by this code are presented for the long cantilever immersed in water in

Figure 5.33 and the results for the rest of the fluids and medium cantilever are shown in

Appendix N (pages 226-233).

From these figures, it is obvious that the results are very sensitive to the noise and the

trend in amplitude and phase responses. Also it was noted that the selection of reference

frequency is very critical because it can change the results dramatically. In general, it was

observed that the measured density has a smaller error than that the measured viscosity

and wherever the amplitude of vibration is small, compared to the whole response,

(mainly at low frequencies for medium cantilever and low viscosity fluids) the estimation

of the properties has a larger error. Furthermore, the error around the reference frequency

was found to be larger than the other parts, which is because of the sensitivity of the

approach to the selected value.

At the end of this section it should be mentioned that for these types of experiments

there are also three more general sources of error. The first one is the change in the

concentration of the solutions over time that was explained in detail in section 5.2. And

second, for the calculations of the theoretical model, the movement of free end of the

cantilever was accounted, but in practice the laser cannot be exactly aligned at the free
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end. As a result, the response of the cantilever at the higher modes, which depends more

on the location of the laser (see Figure 5.10), cannot be predicted very well. Also because

of the thickness of the laser beam, this error is increased for shorter cantilevers. Finally

the third one is related to the uncertainty in estimation of the cantilever thickness using its

resonant frequency in air.

5.9) Extending the micro cantilever based rheometry to non-Newtonian fluids

The second approach of the previous section gives the capability of measuring the

fluid properties at each frequency of vibration. Such a capability, in spite of not being

important for Newtonian fluids, opens a new application for the AFM to measure the

properties of non-Newtonian fluids because of the dependency of their properties on the

excitation frequency. However to utilize such an application for a non-Newtonian

solution, the concentration of the solution should be more than the overlap concentration,

C * , in order to have a uniform fluid and to allow us to measure the bulk properties.

Moreover, in the case of the solution concentration being less than C * , it should be

confirmed that the smallest dimension of the cantilever is much larger than the average

distance between the polymer chains in the solution, otherwise the measured properties

will not represent the bulk properties of the fluid. For the solutions of PS/DEP, diethyl

phthalate is considered as a good solvent. However if we assume a theta solvent for the

polystyrene, the values of overlap concentration, C * , and the radius of gyration, R , are

0.43 g/mL and 1 1 nm respectively, which are obtained using the following equation70:
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In the above equation, Mw is the weight averaged molecular weight, TV^ is the

Avogadro's number, ? is the number of monomers in the chain, / is the carbon-carbon

bond length and C00 is the characteristic ratio. In our study, the calculated value of C* is

greater than the concentration of all PS/DEP solutions used, however based on the

calculated R , the averaged distance between two chains for the lowest concentration,

that is %5 PS/DEP solution, is around 20 nm which is much smaller than the 2 µpa

thickness. of the cantilever used. Therefore, overly even for a theta solvent, which is

associated with higher C * and smaller Rg compared to a good solvent, we are always on

the safe side.

Moving to the experimental results obtained for the non-Newtonian fluids, it should

be mentioned that in the cantilever response we can observe that the viscosity decreases

as the frequency increases. This is consistent with what was illustrated in the results

obtained from the rotational rheometer and presented in chapter 3. For example in Figure

5.34, the responses of the long cantilever, which is immersed in water, %16 PS/DEP

solution and pure glycerine, are compared. The zero shear viscosity of the %16 PS/DEP

solution is around 6300 mPa.s, which is much higher than the viscosity of pure glycerine,

which is around 900 mPa.s. However, as it can be noticed the frequency of the first peak

for the %16 PS/DEP solution is more than that of the first peak for pure glycerine and

less than that for water. This shows that at this range of frequency the viscosity of the

polymer solution is in between the viscosities of water and glycerine, which is expected

because the viscosity of this solution varies between 600 and 100 mPa.s, for the
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cantilever immersed in %16 PS/DEP solution as a non-Newtonian fluid and immersed
in water and pure glycerine as two Newtonian fluids.

frequency range of 2 to 50 kHz, as shown in Figure 3.10. Also, the decrease of viscosity

can be recognized by observing that as the frequency increases the curvature of the

cantilever response in the %16 PS/DEP solution becomes similar to the curvature of the

cantilever response while immersed in water. Such cantilever behaviour at high

frequencies can be explained by knowing that the PS solution behaves as a low viscosity

fluid because of its high elastic properties at those frequencies. This allows the fluid to

store a part of the cantilever energy when it is moving forward, which in its turn helps in
the backward movement of the cantilever by releasing that energy. The experimental

results obtained for the rest of non-Newtonian fluids are presented in Appendix O (pages

234-235).

145



Unfortunately the theory of chapter 2 is not useful for these non-Newtonian fluids for

one main reason that is related to the assumptions used for the derivations of

hydrodynamic drag force. Indeed, the hydrodynamic force was derived from the Navier-

Stokes equations, which are the momentum equations after implementing the Newtonian

constitutive equation. Such a constitutive equation generally is not valid for non-

Newtonian fluids and as a result the presented theory in chapter 2 is not applicable here.

It should be mentioned that basically there is not a general constitutive equation for all

non-Newtonian fluids. So far some constitutive equations have been proposed for

different kinds of non Newtonian fluids which in most cases have very complicated

mathematical formula. As a result, implementing them in the momentum equations and

using them for driving the hydrodynamic force most probably will not result in an exact

analytical solution. In practice some researchers apply educated assumptions instead of

the viscosity term in the equations to make it appropriate for the non Newtonian fluid.

However, in most of the cases the equation does not obey the conservation of momentum

and if the resultant formula works, it should be considered as an empirical equation.

Going further in depth in developing the theory for non Newtonian is considered as the

future work of this study, nonetheless we will explain few suggestions as the potential

methods for approaching such a problem.

The first suggestion is to use the Generalized Newtonian constitutive equation. In

such an equation, the viscosity of the fluid is considered as a function of the strain rate,

and based on the Cox-Merz rule this viscosity is equal to viscosity which is a function

of frequency and its frequency is equal to the strain rate. Using the obtained results of the

rotational rheometer for %16 PS/DEP (see Figure 3.10), we calculated the theoretical
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responses of both long and medium cantilevers through the implementation of this

suggestion. The results are shown in Figures 5.35 and 5.36. Referring to these figures, it

can be seen that the theoretical results for the long cantilever showed a big deviation from

the experimental results while the medium cantilever showed a surprisingly good

agreement between experimental and theoretical results. The deviation that occurred in

the results of the long cantilever was mainly due to the fact that the theory does not work

very well for the long cantilevers when immersed in high viscous fluids, as explained in

section 5.7. However, the agreement in results of the medium cantilever indicates the

applicability of such suggestion for non-Newtonian fluids. It should be mentioned that

this theory might be improved considerably if we applied a more accurate formula for the

hydrodynamic force. Also the confirmation and applicability of this suggestion with the

other solutions is left as a future work of this study.

It should be mentioned that the result of implementing this suggestion for extraction

of the properties is exactly the same as the second approach of last section with the

difference that for Newtonian fluids the average of properties over the frequency range is

desired but for non-Newtonian fluids the results at each frequency is required. Moreover

it can be assumed that the density of the fluid is known and as a result the amplitude and

phase responses can be used separately for the determination of the viscosity. In this case

it is expected that the phase response gives the property with less error.

The second suggestion would be to utilize the imaginary shear modulus of

G* =???\ proposed by Belmiloud et al52. By substituting this function instead of the

viscosity term in the hydrodynamic function and knowing that G* =G' + iG" , we can

derive two equations in terms of loss and storage modulus for the amplitude and phase
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responses of the cantilever. Now by equalizing them with the experimentally obtained

amplitude and phase responses, we can determine the G' and G" at each frequency,

which are the most important properties of non-Newtonian fluids. It should be mentioned

that for this method, the density of the fluid should be considered as a constant known

value.

Last but not least is to make use of the following hydrodynamic function derived by
Frater72:

r ? \ , AKAa^Re)Tarc ?>)=\- „ / ^\ G rzr-\...i r=-\ Equation (5.9)K, (aVRe)+.(aVRe)^;(aVRe)
where

a2= i 1 + ????
1 + ???2 j

Equation (5.10)

and the constants of I1 and A2 are defined in the specific constitutive equation up on

which the hydrodynamic function is derived. It should be mentioned that in order to

utilize this hydrodynamic function, we must first check that the non-Newtonian fluids,

which are to be tested, obey that constitutive equation.

At the end, the advantage of using the micro cantilever rheometer is that we can

easily reach to the frequencies that are way beyond the limit of the available conventional

rheometers. Moreover, this technique can solve the problem of inertia that we always had

at high frequencies with the rotary rheometers. Finally even if the required range of

frequency can be obtained by the conventional rheometers using the time-temperature

super position principle, measuring the properties with this technique is still much faster.

And as a result, more reliable results can be obtained for the cases that the fluid

properties change over time.
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Chapter 6

Conclusions, contributions and future works

6.1) Conclusions

In this thesis, an investigation has been made concerning the implementation of the

atomic force microscope (AFM) for measuring the rheological properties of fluids,

mainly liquids of high viscosity. Our analysis was divided into two parts. The first part

involved a study of a few critical experimental issues, such as the one related to the fluid

cell design. This evolved because the measured response had many unwanted peaks,

which are not related to the actual cantilever response. We found that the regular fluid

cell, that is widely used and provided commercially by the AFM manufacturers, is of

poor quality in design. The main reason for this is that the piezo that is used to generate

the displacement in this fluid cell is located on one of the fluid cell legs and in order to

have ideal acoustic excitation it should be positioned exactly underneath the cantilever

base. If it is not, in the response of the cantilever we will observe the interference of the

vibration of the fluid cell with the vibration of the cantilever. There are also some issues

of minor importance such as the large moving surface of the fluid cell, which generates a

flow that also affects the cantilever response, and the specific design of the holding clip.

Based on these draw backs, a regular tip holder, which is originally designed to be used

in air, was modified to be suitable for working with liquids. Moreover, a study on two

different mechanisms for piezo attachment to regular tip holders was done. It was found
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that for the acoustic excitation experiments the tip holder, whose piezo is glued to its

body, is suitable. As for the thermal noise experiment, the clamped piezo was found to

give the response with the least noise.

In the second part of the thesis, we utilized the modified tip holder to obtain the

responses of the different cantilevers in different fluids using thermal noise, frequency

sweep and step excitations. The reason that the thermal noise method could not be used

for high viscosity liquids is the existence of a noise floor which does not allow for the

observation of the cantilever response. However, the frequency sweep and step

excitations were offered to overcome this limitation. The theory for the frequency sweep

was previously developed but the theory for step excitation was developed in this thesis.

Although we showed that both frequency sweep and step excitation could be used for

experimenting with high viscosity liquids, we proved that the step excitation theory had

an advantage over the frequency sweep theory. This advantage was having an exact

solution rather than a truncated series solution like the frequency sweep. We compared

the theoretical results with the experimental results and possible experimental and

theoretical sources of error were explained. For the theory, the main source of error was

the assumption of 2D flow around the cantilever which is violated at the higher modes of

vibration which is observed at low frequencies for high viscosity fluids. As for the

experimental work, the main source of error was found to be the local heating of the fluid

by the laser beam and viscous dissipation.

In addition, two approaches for the extraction of fluid properties from the

experimental frequency sweep data were offered. One. approach was based on the

extraction of the properties from the whole range of frequency and the other one was to
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determine these properties at each frequency of excitation. And finally since now we

could find the properties of the fluid at each excitation frequency and also since the non-

Newtonian fluids have properties that are frequency dependent, we applied this technique

for some non-Newtonian fluids. The preliminary results were presented and the potential

approaches for extending the AFM cantilever techniques are introduced as the future

work.

6.2) Contributions

As a result of our study, there are three main contributions to such a field of work.

First we managed to identify the key elements in the fluid cell design. These included the

holding mechanism of cantilever chip in the fluid cell, the understanding of the fluid-

borne excitation, the supporting of the piezo to the tip holder and most importantly the

positioning of the piezo element, which must be directly located underneath of the

cantilever. Second, we developed a technique that can be used for extracting the

properties of the liquids from the frequency sweep data, which extended the applicability

of the micro cantilever based rheometry to higher viscosity Newtonian liquids. We

proposed three choices for such an extraction. The first two choices are to extract the

properties from the whole frequency range of either the amplitude response or the phase

response. And the third choice is to use both the amplitude and phase responses for the

determination of the fluid properties at each frequency of excitation. Among the three

previously mentioned extraction methods, the determination of properties from the phase

response gave the closest results to the real values and therefore it was considered as the
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most accurate method. Last but not least, we introduced the step excitation as a new

method that can be used to excite the cantilever. We succeeded in producing a theoretical

response for the cantilever that is excited acoustically by the step movement of its base.

The main advantage for such theoretical analysis was that we have an exact solution for

the theoretical response rather than a solution that is in series form and in this way the

truncation error is eliminated completely.

6.3) Future work

Most of the intended future work of our study was already mentioned in detail in the

text. They are summarized along with some other suggestions, in the following

paragraphs.

Primary concerning the fluid cell design, we have to mention that although the main

factor of the fluid cell design was determined in this work, still in order to get a very

smooth response in the acoustic excitation, a very well designed holder is required so that

it considers all the vibrational aspects of the holder. Therefore, the optimization and

improvement of such a design to overcome this design limitation can be considered as a

future work of our study.

The other topic is related to the inaccuracy of the theoretical models for predicting the

cantilever response around its higher mode of vibration, while it is immersed in a

Newtonian fluid. This inaccuracy is the result of implementing the 2D flow assumption

for the surrounding fluid in the derivation of the hydrodynamic force. However recently,

Eysden et al47 developed an analytical model for the hydrodynamic force which considers
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the axial flow as well. Therefore, implementing such a model in the governing equation

of the cantilever deflection and then comparing the obtained results with the experimental

response of the cantilever can be considered as the second recommendation for the future

work.

Thirdly, in this work, we introduced the step excitation as a better alternative for the

frequency sweep excitation. The theory for this type of excitation was developed and the

results were compared with the experimental data. However the extraction of the fluid

properties from experimental data for this type of excitation was left as a future work.

Last but not least, we proposed to extend the usage of the micro cantilever based

rheometry for the non-Newtonian fluids because of the potential advantages that this

technique offers in comparison to the traditional rheometers. Preliminary results were

obtained for such continuation and some suggestions for developing the required theory

were explained in chapter 5.
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Appendix A
MATLAB code for the modal shapes and the a and ß parameters:

clc; clear all; close all;

L=IO;
delta_x=0.00001*L;x=[0:delta_x:L]:

landa(l)= 1.8751 /L; landa(2)=4.694/L; landa(3)=7.855/L; landa(4)=10.996/L; landa(5)=14.137/L;
landa(6)=17.279/L;

% deflection %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
X I =(cos(landa( 1 )*x)-cosh(landa( 1 )*x)-
((cos(landa( 1 )*L)+cosh(landa( 1 )*L))/(sin(landa( 1 )* L)+sinh(landa( 1 )*L)))*(sin(landa( 1 )*xj- .
sinh(landa(l)*x)));
X2=(cos(landa(2)*x)-cosh(!anda(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(landa(2)*L)+sinh(landa(2)*L)))*(sin(landa(2)*x)-
sinh(landa(2)*x)));
X3=(cos(landa(3)*x)-cosh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))*(sin(landa(3)*x)-
sinh(landa(3)*x)));
X4=(cos(landa(4)*x)-cosh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(sin(landa(4)*x)-
sinh(landa(4)*x)));
X5=(cos(landa(5)*x)-cosh(landa(5)*x)-
((cos(landa(5)*L)+cosh(landa(5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L)))*(sin(landa(5)*x)-
sinh(landa(5)*x)));
X6=(cos(landa(6)*x)-cosh(landa(6)*x)-
((cos(landa(6)*L)+cosh(landa(6)*L))/(sin(landa(6)*L)+sinh(landa(6)*L)))*(sin(landa(6)*x)-
sinh(landa(6)*x)));

X I I =landa( 1 )*((-sin(landa( 1 )*x)-sinh(landa( 1 )*x)-
((cos(landa( 1 )*L)+cosh(landa( 1 )*L))/(sin(landa( 1 )*L)+sinh(landa(l )*L)))*(cos(landa(l )*x)-
cosh(landa(l)*x))));
X 1 2=landa(2)*((-sin(landa(2)*x)-sinh(landa(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(landa(2)*L)+sinh(landa(2)*L)))*(cos(landa(2)*x)-
cosh(landa(2)*x))));
X13=landa(3)*((-sin(Ianda(3)*x)-sinh(landa(3)*x)-
((cos(Ianda(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))*(cos(landa(3)*x)-
cosh(landa(3)*x))));
X14=landa(4)*((-sin(landa(4)*x)-sinh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(cos(landa(4)*x)-
cosh(landa(4)*x))));
X15=landa(5)*((-sin(landa(5)*x)-sinh(landa(5)*x)-
((cos(landa(5)*L)+cosh(landa(5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L)))*(cos(landa(5)*x)-
cosh(landa(5)*x))));
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X 1 6=landa(6)*((-sin(landa(6)*x)-sinh(landa(6)*x)-
((cos(landa(6)*L)+cosh(landa(6)*L))/(sin(landa(6)*L)+sinh(landa(6)*L)))*(cos(landa(6)*x)-
cosh(landa(6)*x))));

% normalization %%%%%%%%%%%%%^%%%%%%%%%%%%%%%%%%%%%%%%%%
Xll=(Xll/Xl(length(Xl)));
X 1 2=(X 1 2/X2(length(X2)));
X13=(X13/X3(length(X3)));
X 1 4=(X 1 4/X4(length(X4)));
X 1 5=(X 1 5/X5(length(X5)));
X 1 6=(X 1 6/X6(length(X6))):
Xl=(Xl/Xl('ength(Xl)));
X2=(X2/X2(length(X2)));
X3=(X3/X3(length(X3)));
X4=(X4/X4(length(X4)));
X5=(X5/X5(length(X5)));
X6=(X6/X6(length(X6)));

% alpha & beta %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
alpha( I)=SUm(Xl .*X 1 )*deIta_x/L; beta(l)=sum(X 1 )*delta_x/L;
alpha(2)=sum(X2.*X2)*delta_x/L;beta(2)=surn(X2)*delta_x/L;
alpha(3)=sum(X3.*X3)*delta_x/L;beta(3)=sum(X3)*delta_x/L;
alpha(4)=sum(X4.*X4)*delta_x/L;beta(4)=sum(X4)*delta_x/L;
alpha(5)=sum(X5.*X5)*deIta_x/L;beta(5)=sum(X5)*delta_x/L;
alpha(6)=sum(X6.*X6)*delta_x/L;beta(6)=sum(X6)*delta_x/L;

figure; hold on; plot(x;(Xl),'.-b'); plot(x,(X2),'.-g'); plot(x,(X3),'.-r');
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Appendix B
Maple code for detail derivation of hydrodynamic drag force and hydrodynamic function:

> restart ; In (e) : =l;nu := rou/rho;
> with ( linaio) :

ln(e):=l

> V[r@R] :=U [0] *?? (I*omeqa*t} *cos (the ta) ;
> V[theta@R] :=-U [0] *eA (I*omega*t) *sin (theta) ;
>psi [1] :=ß? (I*omega*t) /r*sin (theta) ;
> psi [2] :=BesselK (1, r*sqrt (Pomega/nu) ) *eA (I*omega*t) *sin (
theta) ;

?,
e sin(9)

? ? pi?. :=BesselKJ 1./·?/2 VV µ
(CD//) . „e sm(ö)

> A: =simplif y (subs (r=R, de t (array ( [ [R*v [r@R] , dir f (psi
theta) ] , [-V [theta @R] , dif f (psi [2] , r) ] 1 ) ) /det (array ([ [diff (
psi [1] , theta) , dif f (psi [ 2 1 , theta) ] , [diff (psi [ 1 ] , r) , dif f (psi
2],r)]]))));
> B: =simplif y (subs ( r=R, det (array ( [ [
r@R] ] , [diff (psi

(psi [Ij , theta) , R*V[
] , r) , -V[theta@R] ] ] ) ) /det (array ( [ [diff (

psi [1] ,theta) , diff (psi [2] ,theta) I , [dif f (psi [ 1] , r) , dif f (psi
2 ], r )]])))) ;

WsselKfo.^/^U^ + 2BessdKÍl,^/^X' \l µ J V µ V ? µ .UoR
A:=- v_ i_

MVT)VT
2Un

B=-

J^Besseli^O, R^l !?-
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> psi : = simplify ( A*psi [il -fB' si [2] )
(?//) .? := - Un e sin( Q)I-R2 BesselW O, R

-IR BesselK) 1 , RA I ^^~
v / µ

V ? ? /

+ 2 BesselKJ

oj ? 7) / ? ? 7

/

/ ? ? 7l.r yj r
V

BesselKJ 0,7^^L/^rµ A µ
> V [ r] : =simplify (di ff (psi, thêta) /r ) ;
>V[ thêta : = s imp ± ? r y (-dut \ ? s ? , ri ; ;

(»">.. — ( n2D_JAD /?£? /??/
µ J'Y ' µKr :=-^0e cos(0)| -T?2 BesselKJ 0,7?

2 7? BesselKJ !./< G?7?~7?
? ""'V µ ,

BesselKJ 0, R ?

+ 2 BesselKJ 1,??/ ? ? I
? µ

? ? 7

??/ ? /? ? / 2
µ

Ke:=C/0 e Sm(O)^ µ Ir1 ? ?/ BesselKJ 0, r ? / ? ? /
VV µ

?R2 BesselKJ 0, ? ? /^ | ?/^ - 2 7? BesselKJ 1,7? J 0^? ? µ y
/??/? ^

? µ

+ 2BesselK| \,r*¡ µ 7 / r2 ? ? BesselKJ 0,7? /? ?/

>p:=int ( rho* (nu* (di ff (V [_r ] , * $ * (r,2))+diff(V[_r],r)/r + diff
V[_r] , ^$* (theta,2) ) / ir^^Vl^r]/ (??2) -2 + di fi (V[_theta]
,theta) / (rA2) )-diff (V[ r],t)),r);

P -? ?/ ? e(w//) cos(0) R2 Besseixf 0, 7? , /^ ! , /^ 7\ ' 'V µ
2 7p t/„ ? e^"7' cos(O) 7? BesselKJ 1. 7?? / °^~0 \ ' ? µ

BesselH 0,7? /??7^| /copi
?/~µ~"? µ

> P [_r_r] :=simplify (subs (r=R, -p-¡-2*mu*dif f (V !__r] , r) } } ;
> P [_r_theta] :=simplify (subs (r=R,mu* (r*diff(V[_theta]/r,r)
+diff (V[_r] ,theta) /r) ) ) ;

P :=-JpUfíaeall)cos(Q)o

7? BesselKJ
V.

~ ^ /???? /? pi ^ ^ „/. _ G&??0, 7? ? / -^- ? / —— + 2 BesselKJ 1, 7? ? ¡ ——µ J ? - ?/ µ
BesselKJ 0, 7? ? /I ? ? I ? ¡ ? ? I

? µ ; µ-
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r thêta

21 U0 e ? ' ;) sin( ? ) ? ? BesselKj 1 , R * / ~-?—
? µ

> t':=simplify (R*L*int ( P [_r_r] *cos (theta) -P [
(theta), theta=0. .2*Pi) ) ;

? ? t t? 1?,/)-/ R L ? U ? e p
/

F =
4Besseira \,R ? ?/ + /? BesselW 0, R

theta] *sin

? pi ^ Mí
V µ

/BesselKkiU^W—\ ' - ? µ J V µ
> HD[_omega] :=simplify (F/ (-I*omega*ü [0] *ß? ( I* omega *t ) ) / (mu/
nu^Pi^R^-L) ) ;

/??7?4BesselH U
//D :=

?

µ
+ R Besselld 0, R ¡ ? ? I ? /??/

µ Jv µ
iíBesselM 0,Ra1 ?) ? / ? /??/
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Appendix C
MATLAB code for producing the theoretical response of the thermal excitation:

clc; clear all; close all;

% cantilever properties %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
L=400e-6;
b=30e-6;
h=2e-6;
A=b*h;I=b*hA3/12;
ro_c=2330;
E=170e9;

% fluid properties %%°/o%%%yo%%%?'o%0/o%%%%0/o%%%0/o%%%?'¿%0/o%%%%%°/o%%0/o%?4
• ro_f=997;

eta_f=0.8628e-3;

% mode shapes and related parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%
delta_x=0.00001 *L; x=[0:delta_x:L];

landa(l)=1.8751/L; Ianda(2)=4.694/L; landa(3)=7.855/L; landa(4)=10.996/L;

X 1 =(cos(landa( 1 )*x)-cosh(landa( 1 )*x)-
((cos(landa( 1 )*L)+cosh(landa( 1 )*L))/(sin(landa( 1 )*L)+sinh(landa( 1 )*L)))*(sin(landa(l )*x)-
sinh(landa(l)*x)));
X2=(cos(landa(2)*x)-cosh(landa(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(landa(2)*L)+sinh(landa(2)*L)))*(sin(landa(2)*x)-
sinh(landa(2)*x)));
X3=(cos(landa(3)*x)-cosh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))*(sin(landa(3)*x)-
sinh(landa(3)*x)));
X4=(cos(landa(4)*x)-cosh(landa(4)*x)-
((cos(landa(4)*L)+cosh(Ianda(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(sin(landa(4)*x)-
sinh(landa(4)*x)));

Xl 1 =landa(l )*((-sin(landa(l )*x)-sinh(landa( 1 )*x)-
((cos(landa( 1 )*L)+cosh(landa( 1 )*L))/(sin(landa( 1 )*L)+sinh(landa( 1 )*L)))*(cos(landa( 1 )*x)-
cosh(landa(l)*x))));
X 1 2=landa(2)*((-sin(landa(2)*x)-sinh(landa(2) *x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(landa(2)*L)+sinh(landa(2)*L)))*(cos(landa(2)*x)-
cosh(landa(2)*x))));
X 1 3=landa(3)*((-sin(landa(3)*x)-sinh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))*(cos(landa(3)*x)-
cosh(landa(3)*x))));
X 1 4=landa(4)*((-sin(landa(4)*x)-sinh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(cos(landa(4)*x)-
cosh(landa(4)*x))));
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Xl I=(Xl l/Xl(length(Xl)));
X 1 2=(X 1 2/X2(length(X2)));
X 1 3=(X 1 3/X3(length(X3)));
X 1 4=(X 1 4/X4(length(X4)));
Xl=(Xl/Xl(length(Xl)));
X2=(X2/X2(length(X2)));
X3=(X3/X3(length(X3)));
X4=(X4/X4(length(X4)));

alpha( 1 )=sum(X 1 . *X 1 )*deita_x/L; beta( 1 )=sum(X 1 )*de!ta_x/L;
a]pha(2)=sum(X2.*X2)*delta_x/L; beta(2)=sum(X2)*delta x/L;
alpha(3)=sum(X3.*X3)*delta_x/L;beta(3)=sum(X3)*delta x/L;
alpha(4)=sum(X4.*X4)*delta_x/L;beta(4)=sum(X4)*delta_x/L;

% theoretical response of thermal noise %%%%%%%%%%%%%%%%%%%%%%%%%%%%
f=[0.01:0.01:60];
omega=2*pi*f*1000;

Re = @(X) ro_f*X*bA2/4/eta_f;
GAMA_circ = @(X)l+(4*i*besselk(lX-i*sqrt(ime(X)))))7(sqrt(i*Re(X)).*besselk(0,(-i*sqrt(i*Re(X)))));
tao = @(X)log 10(Re(X));
OMEGA_r=@(X)(0.91324-0.48274*(tao(X))+0.46842*(tao(X)).A2-
0.12886*(tao(X)).A3+0.044055*(tao(X)).A4-0.0035117*(tao(X)).A5+0.00069085*(tao(X)).A6)/(l-
0.56964*(tao(X))+0.48690*(tao(X)).A2-0.13444*(tao(X)).A3+0.045155*(tao(X)).A4-
0.0035862*(tao(X)).A5+0.00069085*(tao(X)).A6);
OMEGAJ =@(X)(-0.024134-0.029256*(tao(X))+0.016294*(tao(X)).A2-
0.0001 096 1 *(tao(X)).A3+0.000064577*(tao(X)).A4-0.0000445 1 0*(tao(X)).A5)/( 1 -
0.597020*(tao(X))+0.55 1 820*(tao(X)).A2-0. 1 8357000*(tao(X)).A3+0.0791 56000*(tao(X)).A4-
0.014369000*(tao(X)).A5+0.0028361*(tao(X)).A6);
OMEGA = @(X)OMEGA_r(X) + OMEGA ¡(X)*i;
GAMA_rect = @(X)OMEGA(X) .* GAMAcirc(X);

THEl=(4*(pi/4*ro__f*bA2*(omega).*imag(GAMA_rect(omega)))*beta(l)*L)./(E*I*(landa(l))A4*alpha(l)
*L-(omega.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect(omega))*alpha(l)*L);
THE2=(4*(pi/4*ro_f*bA2*(omega).*imag(GAMA_rect(omega)))*beta(2)*L)./(E*l*(landa(2))A4*alpha(2)
*L-(omega.A2).*(ro_c*A+pi/4*ro PbA2*GAMA_rect(omega))*alpha(2)*L);
THE3=(4*(pi/4*ro_f*bA2*(omega).*imag(GAMA_rect(omega)))*beta(3)*L)./(E*I*(landa(3))A4*alpha(3)
*L-(omega.A2).*(ro c*A+pi/4*ro_f*bA2*GAMA rect(omega))*alpha(3)*L);
THE4=(4*(pi/4*ro_f*bA2*(omega).*imag(GAMA_rect(ornega)))*beta(4)*L)./(E*I*(landa(4))A4*alpha(4)
*L-(omega.A2).*(ro_c*A+pi/4*ro_f*bA2*GAMA_rect(omega))*alpha(4)*L);

THE_response=f(abs(THE 1 *X 1 1 (length(X 1 1 ))+THE2*X 1 2(length(X 1 2))+THE3 *X 1 3(length(X 1 3))+THE
4*X14(length(X14))))·];
figure; plot(f,THE_response,'-.r);
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Appendix D
MATLAB code for producing the theoretical response of the frequency sweep excitation:

clc; clear all; close all;

% cantilever properties %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
L=400e-6;
b=30e-6;
h=2e-6;

A=b*h;I=b*hA3/12;
ro_c=2330;
E=170e9;
% fluid properties %%%%%%%%%%0/0%%<í <>%%%%%%%%%%%%%%%%%%%%%%%%%
ro_f=997; . -
eta_f=0.8628e-3;

% mode shapes and related parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%
delta_x=0.00001*L;x=[0:delta_x:L];

landa(l)=1.8751/L; landa(2)=4.694/L; landa(3)=7.855/L; landa(4)=10.996/L;

X I =(cos(landa( 1 )*x)-cosh(Ianda( 1 )*x>
((cos(landa( 1 )*L)+cosh(landa( 1 )*L))/(sin(landa( 1 )*L)+sinh(landa( 1 )*L)))*(sin(landa( 1 )*x)-
sinh(landa(l)*x)));
X2=(cos(landa(2)*x)-cosh(landa(2)*x)-
((cos(landa(2)*L)+cosh(ianda(2)*L))/(sin(landa(2)*L)+sinh(landa(2)*L)))*(sin(Ianda(2)*x)-
sinh(landa(2)*x)));
X3=(cos(landa(3)*x)-cosh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))*(sin(landa(3)*x)-
sinh(landa(3)*x)));
X4=(cos(landa(4)*x)-cosh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(sin(landa(4)*x)-
sinh(landa(4)*x)));

X I I =landa( 1 )*((-sin(landa( 1 )*x)-sinh(!anda( 1 )*x>
((cos(landa(l)*L)+cosh(landa(l)*L))/(sin(landa(l)*L)+sinh(landa(l)*L)))*(cos(landa(l)*x)-
cosh(landa(l)*x))));
X 1 2=landa(2)*((-sin(landa(2)*x)-sinh(landa(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(landa(2)*L)+sinh(landa(2)*L)))*(cos(landa(2)*x)-
cosh(Ianda(2)*x))));
X 1 3=landa(3)*((-sin(landa(3)*x)-sinh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))*(cos(landa(3)*x)-
cosh(landa(3)*x))));
X 1 4=landa(4)*((-sin(landa(4)*x)-sinh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(cos(landa(4)*x)-
cosh(landa(4)*x))));
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X 1 1 =(X 1 1 /X ] (length(X 1 )));
X 1 2=(X 1 2/X2(length(X2)));
X 1 3=(X 1 3/X3(length(X3)));
X14=(X14/X4(length(X4)));
Xl=(Xl/Xl(length(Xl)));
X2=(X2/X2(length(X2)));
X3=(X3/X3(Iength(X3)));
X4=(X4/X4(length(X4)));

alpha(])=sum(Xl.*Xl)*delta_x/L; beta(l)=sum(Xl)*de!ta_x/L;
alpha(2)=sum(X2.*X2)*delta_x/L;beta(2)=sum(X2)*delta_x/L;
alpha(3)=sum(X3.*X3)*delta_x/L; beta(3)=sum(X3)*delta_x/L;
alpha(4)=sum(X4.*X4)*delta_x/L;beta(4)=sum(X4)*delta_x/L;

% theoretical response of frequency sweep %%%%%%%%%%%%%%%%%%%%%%%%%%
f=[0.01:0.01:60];
omega=2*pi*f*1000;

Re = @(X) ro__f*X*bA2/4/eta_f;
GAMA_circ = @(X)l+(4*i*besselk(l,(-i*sqrt(i*Re(X)))))./(sqrt(i*Re(X)).*besselk(0,(-i*sqrt(i*Re(X)))));
tao = @(X)log 10(Re(X));
OMEGA_r=@(X)(0.91324-0.48274*(tao(X))+0.46842*(tao(X)).A2-
0.12886*(tao(X)).A3+0.044055*(tao(X)).A4-0.0035117*(tao(X)).A5+0.00069085*(tao(X)).A6)/(l-
0.56964*(tao(X))+0.48690*(tao(X)).A2-0.13444*(tao(X)).A3+0.045155*(tao(X)).A4-
0.0035862*(tao(X)).A5+0.00069085*(tao(X)).A6);
OMEGA_i=@(X)(-0.024134-0.029256*(tao(X))+0.016294*(tao(X)).A2-
0.00010961*(tao(X)).A3+0.000064577*(tao(X)).A4-0.000044510*(tao(X)).A5)/(l-
0.597020*(tao(X))+0.551820*(tao(X)).A2-0.18357000*(tao(X)).A3+0.079156000*(tao(X)).A4-
0.014369000*(tao(X)).A5+0.0028361*(tao(X)).A6);
OMEGA = @(X)OMEGA_r(X) + OMEGA_i(X)*i;
GAMA__rect = @(X)OMEGA(X) .* GAMAcirc(X);

ACO]=((omega.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect(omega))*beta(l)*L)./(E*I*(Ianda(l))A4*alpha(
l)*L-(omega.A2).*(ro_c*A+pi/4*ro_f*bA2*GAMA_rect(omega))*alpha(l)*L);
AC02=((omega.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect(omega))*beta(2)*L)./(E*I*(landa(2))A4*alpha(
2)*L-(omega.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect(omega))*alpha(2)*L);
AC03=((omega.A2).*(ro_c*A+pi/4*ro_f*bA2*GAMA rect(omega))*beta(3)*L)V(E*I*(landa(3))A4*alpha(
3)*L-(omega.A2).*(roc*A+pi/4*ro_f*bA2*GAMA rect(omega))*alpha(3)*L);
AC04=((omega.A2).*(ro_c*A+pi/4*ro_ftbA2*GAMA_rect(omega))*beta(4)*L)./(E*I*(landa(4))A4*alpha(
4)*L-(omega.A2).*(ro_c*A+pi/4*ro_f|tbA2*GAMA_rect(omega))*a]pha(4)*L);

ACO_response=[(abs(AC01 *X1 l(length(Xl l))+AC02*X12(length(X12))+AC03*X13(Iength(X13))+A
C04*X14(Iength(X14))))'];
figure; p]ot(f,ACO_jesponse,'-'");
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Appendix E
MATLAB code for producing the theoretical response of a cantilever to step excitation

and also for finding the damped resonant frequency and decaying coefficient:

c 1 c ; clear ail; ? c 1 o s e all;

cantilever= ' i onq ' ; cantilever_N=l ;
L=4 00e-6;
b=30e-6;
h=2e-6;

A=b*h; I=b*h"3/12;
ro_c=2 330; ¦ . "
E=170e9;
w_vac=(1.8751/L) "2+sqrt (E*I/ro_c/A) ;

ro_f=997;
eta_f=0.8628e-3;

OeItS-X=O-OOOOl+L; ?= [ 0 : delta_x: L] ;

landa(l)=ì.8751/L; landa (2 ) =4 . 694 /L; landa ( 3) = 7 . 855/L;
landa(4)=10. 996/L; landa (5) =14 . 137/L; landa ( 6) =17 . 27 9/L;
landa (7) =(7-0. 5) *pi/L; landa ( 8 ) = ( 8-0 . 5 ) *pi/L; landa ( 9) = ( 9-0 . 5) +pi/L;
landa (10) =(10- 0.5) *pi/L; landa (11)= ( 1 1-0 . 5) *pi/L; landa (12)=(12-
0.5)*pi/L;

Xl=(COS (landa (1) *x) -cosh (landa (1) *x) -
( (eos (landa (I)+L) +cosh (landa (1) *L) ) / (sin (landa (I)+L) +sinn (landa (1) +L) ) )

+ (sin (landa (1) +x) -sinh (landa (1) +x) ) ) ;
X2=(cos (landa (2) +x) -cosh (landa (2) +x)-
( (cos (landa (2 )+L) +cosh (landa (2)+L) ) / (sin (landa (2) +L) +sinh (landa (2) +L) ) )
* (sin (landa (2) +x) -sinh (landa (2 ) *x) ) ) ;
X3=(cos (landa (3) +x) -cosh (landa (3) +x) -
((cos (landa (3) *L) +cosh (landa (3) +L) ) / (sin (landa (3) +L) +sinh (landa ( 3) +L) ) )

+ (sin (landa (3) +x) -sinh (landa (3) +x) ) ) ;
X4= (cos (landa (4 ) +x) -cosh (landa (4) *x) -

( (cos (landa (4) +L) +cosh (landa (4) +L) ) / (sin (landa (4) +L)+sinh (landa (4) +L) ) )
* (sin (landa (4) +x) -sinh (landa ( 4 ) +x) ) ) ;
X5= (cos (landa (5) *x) -cosh (landa (5) *x) -
( (cos (landa (5) +L) +cosh (landa (5) +L) ) / (sin ( landa (5) +L) +sinh (landa (5) *L) ) )
* (sin (landa (5) +x) -sinh (landa (5) +x) ) ) ;
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6)*x)-
*L) ) / (sin (landa ( 6) +L) +sinh (landa (6) *L) ) )
*x) ) ) ;
7)+x)-
*L) ) / (sin (landa (7)*L) +sinh (landa (7) + L) ) )
*x) ) ) ;
8)*x)-
*L) ) / (sin (landa (8) *L) +sinh (landa (8) +L) ) )
+x) ) ) ;
9) *x)-
*L))/ (sin (landa (9) +L) +sinh (landa (9) *L) ) )
+x) ) ) ;

-sinh (landa ( 1 ) +x) -
+L) ) / (sin (landa (1) *L) +sinh (landa (1) *L) ) )
+x) ) ));
-sinhflanda (2) *x)-
*L) ) / (sin (landa (2) +L) +sinh (landa (2) *L) ) )
+x) ) ) ) ;
-sinh(landa(3)*x)-
*L))/ (sin (landa (3) +L) +sinh (landa (3) *L) ) )
*x)) ) );
-sinh (landa (4 ) +x) -
*L) ) / (sin (landa (4) +L) +sinh (landa ( 4 ) +L) ) )
+?) ) ) ) ;
-sinh (landa (5) *x) -
*L) ) / (sin (landa (5) *L) +sinh (landa (5)*L) ) )
*x) ) ));
-sinh (landa (6) *x) -
*L) ) / (sin (landa (6) *L) +sinh (landa ( 6) *L) ) )
*x))));
-sinh (landa (7) *x) -
*L) ) / (sin (landa (7) *L) +sinh (landa ( 7 ) *L) ) )
*x) ) ) );
-sinhflanda (8) *x)-
*L))/ (sin (landa (8) +L) +sinh (landa ( 8 ) +L) ) )
*x) ) ) );
-sinhflanda (9) *x)-
*L) ) / (sin (landa (9) *L) +sinhflanda (9) *L) ) )
*x)) ) );
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X8=(X8/X8 ( length (X8) ) ) ;
X9=(X9/X9 (length (X9) ) ) ;

alpha (l)=sum (Xl. *X1) *delta_x/L; beta (l)=sum(Xl) *delta_x/L;
alpha (2 ) = sum (X2 . *X2) *delta_x/L; beta (2)=sum (X2) *delta_x/L;
alpha(3)=sum(X3.*X3) *delta_x/L; beta (3) =sum (X3) *delta_x/L;
alpha (4)=sum(X4 . *X4 ) *delta_x/L; beta (4)=sum(X4) *delta_x/L;
alpha (5)=sum (X5.*X5) *delta_x'/L; beta (5)=sum(X5) *delta_x/L;
alpha ( 6) =sum (X6 . *X6 ) *delta_x/L; beta ( 6 ) =sum (X6) *delta__x/L;
alpha(7)=sum(X7.*X7) *delta_x/L; beta ( 7 ) =sum (X7 ) *delta_x/L;
alpha(8)=sum(X8.*X8) *delta_x/L; beta (8)=sum(X8) *delta_x/L;
alpha(9)=sum(X9.*X9) *delta_x/L; beta ( 9 ) =sum (X9 ) *delta_x/L;

clear Xl X2 X3 X 4 X 5 X 6 X7 X8 X9;

f=[0. 01:0.01:500] ;
omega=2*pi*f*1000;

Re = @(X) ro_f*X*bA2/4/eta_f ;
GAMA_circ = 0 (X) 1+ ( 4*i*besselk ( 1 , ( -
i*sqrt (i*Re(X) ) ) ) ) ./ (sqrt (i*Re(X) ) . *besselk ( 0, (-i*sqrt ( i*Re (X) ) ) ) ) ;
tao = 0 (X)loglO(Re(X) ) ;
OMEGA_r =@ (X) (0.9132 4-0.48274* (tao(X) )+0. 46842* (tao (X)) . A2-
0.1288 6* (tao (X) ) .A3+0. 044055* (tao (X) ) . ?4-
0. 0035 117* (tao (X)). "5 + 0.000690 85* (tao (X)). "6)/ (?-
?. 5 6964* (tao (X) ) +0.48690* (tao (X)). ?2-
0.1344 4* (tao (X) ) . A3 + 0 . 04 5155* (tao (X) ) . A4-
0.00358 62* (tao (X) ) . A 5+0 . 00069085* (tao (X) ) . A6) ;
OMEGA_i =@(X) (-0.024134-0.02 9256* (tao (X) ) +0.0162 94* (tao (X) ) . A2-
0.00010961* (tao (X) ) . A3+0. 000064577* (tao (X) ) . A4-
0.00004 4 510* (tao (X) ). A5) /( 1-0 . 597020* (tao (X) ) +0.55182 0* (tao (X) ) . A2-
0. 18 357 000* (tao (X)). ? 3 + 0.07915 6000* (tao (X)). A4-
0.014369000* (tao (X)) .A5 + 0. 0028361* (tao (X)) . A6) ;
OMEGA = @ (X)OMEGA_r (X) + OMEGA_i (X) *i ;
GAMA_rect = 0(X)OMEGA(X) .* GAMA_circ (X) ;

ACOl= ( (omega. A2) . * (ro_c*A+pi /4 *ro_f *bA2*GAMA_rect (omega) ) *beta (1) *L) . / (
E* I* (landa (1) ) "4* alpha (1) *L-
( omega. A2) . * (ro_c*A+pi/4 *ro_f *bA2*GAMA_rect (omega) ) * alpha (1 ) *L) ;

AC02=( (omega. A2) . * (ro_c*A+pi/4 *ro_f *bA2*GAMA_rect (omega) ) *beta (2) *L) . / (
E* I* (landa (2) ) A4*alpha (2) *L-
( omega. A2) . * (ro_c*A+pi/4 *ro_f *bA2*GAMA_rect (omega) ) *alpha (2) *L) ;

AC03=( (omega. A2) .* (ro__c*A+pi/4*ro_f *bA2*GAMA_rect (omega) ) *beta (3) *L) ./ (
E*I* (landa (3) ) A4*alpha ( 3) *L-
( omega. A2) . * (ro_c*A+pi/4 *ro_f *bA2*GAMA_rect (omega) ) *alpha (3) *L) ;

AC04=( (omega. A2) .* (ro_c*A+pi/4 *ro_f-*bA2*GAMA_rect (omega) ) *beta(4) *L)-. / (
E*I* (landa (4) ) A4*alpha ( 4 ) *L-
( omega. A2) .* (ro_c*A+pi/4*ro_f *bA2*GAMA_rect (omega) ) *alpha (4) *L) ;
AC05=( (omega. A2) .* (ro_c*A+pi/4*ro_f *bA2*GAMA_rect (omega) ) *beta (5) *L) ./ (
E* I* (landa (5) ) A4*alpha (5) *L-
( omega. A2) .* (ro_c*A+pi/4 *ro_f *bA2*GAMA_rect (omega) ) *alpha (5) *L) ;
AC06=( (omega. ?2) . * (ro__c*A+pi/4 *ro_f *bA2*GAMA_rect (omega) ) *beta (6) *L) ./ (
E*I* (landa (6) ) A4*alpha (6) *L-
( omega. A2) .* (ro_c*A+pi/4 *ro_f *bA2*GAMA_rect (omega) ) *alpha (6) *L) ;

AC07=( (omega. A2) . * (ro_c*A+pi/4 *ro_f *bA2*GAMA_rect (omega) ) *beta (7) *L) . / (
E*I* (landa(7) ) A4*alpha (7) *L-
( omega. A2) .* (ro_c*A+pi/4*ro_f *bA2*GAMA_rect (omega) ) * alpha (7) *L) ;
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) *beta (8) *L) ./ (AC08=( (omega . A2) . * (ro_c*A+pi/4*ro_f *bA2*GAMA_rect (omega
E*I* (landa(8) ) A4*alpha (8)*L-
(omega. ?2) . * (ro_c*A+pi/4 *ro_f *bA2*GAMA_rect (omega) ) *alpha (8)

AC09=( (omega . ?2) . * ( ro_c*A+pi/4 *ro_f *bA2*GAMA_rect (omega) ) *bé
E* I* (landa (9) ) ~4*alpha (9) *L-
(omega . ?2) . * (ro_c*A+pi/4 *ro_f *bA2*GAMA_rect (omega) ) *alpha (9) *L) ;
AC0_response9= [ (-
i. /omega) . * (ACOl *X 11 (length (XIl) )+AC02*X12 (length (X 12) )+AC03*X13
(X13) ) +AC04*X14 (length (Xl 4) )+AC05*X15 (length (Xl 5) ) +AC06*X16 (leng
)+AC07*X17 (length (Xl 7) }+AC08*X18 (length (Xl 8) ) +AC09*X1 9 ( length (Xl

*L);
ta(9)*L) ./

( length
th(X16)
9) ))] ';

for ppp=l : length (ACO_response9)
YY_x_omega (ppp, 1 ) =AC0_response9 (ppp) ;
YY_x_omega (2*length (AC0_response9) -ppp+1, 1 ) =AC0_respcnse9 (ppp)

end

y_x_time=if f t ( YY_x__oraega ) ;

t=[le-6:le-6:0. 1] ' ;

figure;
subplot (2,1,1); plot (f , abs (ACO_response9) , ' k ' ) ; xlabel ( ' 1
(kHz)'); ylabel( 'Amplitude' ) ;
subplot (2, 1, 2) ; plot (t, real (y_x_time) ,' k ') ; xlabel (' i
ylabel ( 'Amplitude ' ) ;

%#ái##jt#4i##si###as##|}# Inerti;?.! reference frame ##ii##H3i
% # # # it if # ii if « ii & # ii # f, # # # # # if it ii # if it # # it it fi # if # ii 4) # # ii # # # l # if # Ji # # # l # # a A .;
landa(l)=1.8751/L;

ii. * a # Ji Ji í. i¡ ? ,i- #. ?

f= [O. 01:0. 01:500]; omega=2*pi*f *1000;

Re = @(X) ro_f*X*b~2/4/eta_f;
GAMA_circ = @ (X) 1+ ( 4 *i*besselk ( 1 , ( -
i*sqrt (i*Re(X) ) ) ) ) ./(sqrt (i*Re(X) ) . *besselk(0, (-i*sqrt ( i *Re (X ) ) ) ) ) ;
tao = @ (X)loglO (Re (X) ) ;
0MEGA_r =@ (X) (0. 91324-0.4 827 4* (tao(X))+0.4 68 42*(tao(X)} ."2-
0.1288 6* (tao (X) ) . ?3+0 . 04 4 055* (tao (X) ) . ?4-
0.0035117* (tao (X) ) . ?5+0. 0006908 5* (tao (X) ) . ?6) / (?-
?. 56964* (tao (X)) +0.48690* (tao (X)). ?2-
0. 13444* (tao (X)). A 3+0. 0451 55* (tao (X)). ?4-
0.00358 62* (tao (X) ) . ?5 + 0 . 00069085* (tao (X) ) .?6) ;
OMEGA_i =@ (X) (-0.024 134 -0.029256* (tao (X) ) +0.016294* (tao (X) ) . ?2-
0.00010 961* (tao (X) ) . ?3+0 . 000064 577* (tao (X) ) . A4-
0.00004 4 510* (t ao (X)). A5)/ (1-0. 5 97 020* (tao (X)) +0.551820* (tao (X)). ?2-
0.18357 000* (tao (X) ) ."3 + 0.079156000* (tao (X) ) .M-
0.014 369000* (tao (X) ) . A5 + 0 . 0028361* (tao (X) ) .?6) ;
OMEGA = @ (X)OMEGA_r (X) + 0MEGA_i (X) *i ;
GAMA_rect = 6(X)OMEGA(X) .* GAMA_circ (X) ;

B_omega=landa (1) . *sqrt (omega/w_vac) . * (1+ (pi*ro_f *bA2) / (4*ro_c*A) *GAMA_r
ect (omega) ) .? (1/4 ) ;

Al=dirac (omega) / (8*pi) -i . / (2*omega) ;
A2=-

Al .* (sin(B_omega*L) . *sinh (B__omega*L) ) . / (1+cos (B_omega*L) . *cosh (B_omega^
L));
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A3=0;
A4=A1 . * (sin (B_omega*L) . *cosh (B_omega*L) +cos (B_omega*L) . *sinh (B_omega*L)
) ./(1 + cos (B_omega*L) . *cosh (B_omega*L) ) ;
Y_x_omega=B_omega . * (Al . * (-sin (B_omega*L) +sinh (B_omega*L) ) +A2 . * (-
sin (B_omega*L) -
sinh (B_omega*L) ) +A3 . * (cos (B_omega*L) +cosh (B_omega*L) ) +A4 . * (cos (B_omega*
L) -cosh (B_omega*L) ) ) ;

for ppp=l : length (Y_x_omega)
YY_x_omega (ppp, 1 ) =Y_x_omega (ppp) ;
YY_x_omega (2*length ( Y_x_omega) -ppp+1 , 1 ) =Y_x_omega (ppp) ?

end

y_x__time=ifft (YY_x_omega) ;

t=[le-6:le-6:0.1] ';

figure;
subplot (2, 1, 1) ; plot ( f , abs ( Y_x_omega) , ' k ' ) ; xlabel (' Frequency (kHz)');
ylabel ( 'Amplitud« ' ) ;
subplot (2, 1, 2) ; plot (t , real (y_x_time) ,' k ') ; xlabel ( ' time [s) ' ) ;
ylabel ( 'Amplitude ' ) ;
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Appendix F
Properties of glycerin-water solutions at different temperatures and concentrations:

Viscosity of aqueous glycerin solutions in mPa s:

Glycerin
(wt%)

Temperature (°C)
10 20 30 40 50 60 70 80 90

0
10
20
30
40
50
60
65
67
70
75
80
85
90
91
92
93
94
95
96
97
98
99
100

1 792

2.44

3.44

5.14

8.25

146

29.9

457

55.5

76

132

255

540

1310

1590

1950

2400

2930

3690

4600

5770

7370

9420

12070

1.308

1.74

241

3.49

5.37

9.01

17.4

25.3

29.9

38.8

65.2

116

223

498

592

729

860

1040

1270

1580

1950

2460

3090

3900

1.005

1.31

1.76

2.5

3.72

6

10.8

152

17.7

225

35.5

60.1

109

219

259

310

367

437

523

624

765

939

1150

1410

0.8007

1.03

1.35

1.87

272

421

7.19

9.85

11.3

14.1

21.2

339

58

109

127

147

172

202

237

281

340

409

500

612

0.656

0826

1.07

1.46

2.07

3.1

5.08

6.8

7.73

94

136

208

33.5

60

68.1

78.3

89

105

121

142

166

196

235

284

0.5494

0.68

0.879

1.16

1.62

2.37

3.76

4.89

5.5

6.61

9.25

13.6

21.2

355

39.8

44.8

51.5

58.4

67

77.8

88.9

104

122

142

0.4688

0.575

0.731

0.956

1.3

1.86

2.85

3.66

4.09

4.86

6.61

9.42

142

22.5

25.1

28

31.6

35.4

39.9

45.4

51.9

59.8

69.1

81.3

0.4061

0.5

0635

0816

1.09

1.53

2.29

2.91

3.23

378

5.01

6.94

10

155

17.1

19

21.2

236

26.4

29.7

33.6

38.5

43.6

50.6

03565

0.69

0.918

1.25

1.84

2.28

2.5

2.9

3.8

5.13

728

11

11.9

13.1

14.4

15.8

17.5

19.6

21.9

24.8

27.8

31.9

0.3165

0.763

1.05

1.52

1.86

2.03

2.34

3

4.03

5.52

7.93

8.62

9.46

10.3

11.2

12.4

13.6

15.1

17

19

21.3
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Density of aqueous glycerin solutions in g/cm

Glycerin
(wt%) 15

Temperature
15.5

(0C)
20 25 30

Glycerin
(wt%) 15

Temperature
15.5

(0C)
20 25

100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

1.26415

1.2616

1.259

1 25645

1 .25385

1.2513

1 .24865

1 246

1.2434

1.24075

1.2381

1.23545

1 2328

1.23015

1.2275

1.22485

1 2222

1 21955

1.2169

1.21425

1.2116

1 20885

1.2061

1.20335

1.2006

1.19785

1.1951

1.19235

1 18965

1.1869

1.18415

1.18135

1.1786

1.17585

1.17305

1.1703

1.16755

1.1648

1.162

1.15925

1.1565

1.1537

1.15095

1.14815

1.14535

1.1426

1.1398

1.13705

1.13425

1.1315

1.26381

1.26125

1,25865

1.2561

1.2535

1.25095

1.2483

1.24565

1.24305

1.2404

1.23775

1.2351

1.23245

1.2298

1.2271

1.22445

1.2218

1.21915

1.2165

1.21385

1.2112

1 20845

1.2057

1.203

120025

1.1975

1.1948

1.19205:

1.1893

1.18655

1.18385

1.18105

1 1783

1 17555

1.17275

1.17

1.16725

1.16445

1.1617

1.15895

1 15615

1.1534

1.15065

1.14785

1.1451

1.1423

1.13955

1.1368

1.134

1.13125

1.26108

1.2585

1.2559

1.25335

.1.2508

1.24825

1.2456

1.243

1.24035

1.2377

1.2351

1.23245

1.22975

1.2271

1.22445

1 2218

1.21915

1.2165

1.2138

1.21115

1.2085

1.20575

1.20305

1.2003

1.1976

1.19485

1.19215

1.1894

1.1867

1.18395

1.18125

1.1785

1.17575

1.173

1.17025

1.1675

1.16475

1.16205

1.1593

1.15655

1.1538

1.15105

1.1483

1.14555

1.1428

1.14005

1.1373

1.13455

1.1318

1.12905

1.25802

1.25545

1 2529

1.2503

1.2477

1 24515

1 2425

1.23985

1.23725

1.2346

1.232

1 .22935

1.22665

1 224

1 22135

1.2187

1.21605

1.2134

1.21075

1.2081

1.20545

1 20275

1 .20005

1.19735

1.19465

1 19195

1.18925

1.1865

1.1838

1.1811

1.1784

1 17565

1.17295

1.1702

1 16745

1.16475

1.162

1.15925

1.15655

.1.1538

1.15105

1 14835

1.1456

1.14285

1.14015

1.1374

1 13465

1.13195

1.1292

1.1265

1.25495

1 25235

1.24975

1.2471

1.2445

1.2419

1 2393

1 2367

1 2341

1.2315

1.2289

1.22625

1 2236

1.22095

1.2183

1.21565

1.213

1.21035

1.2077

1 20505

1 2024

1.1997

1 19705

1.19435

1.1917

1 189

1.18635

1.18365

1 181

1.1783

1.17565

1.1729

1.1702

1.16745

1.1647

1.16195

1.15925

1.1565

1.15375

1.151

1 1483

1.14555

1 14285

1.1401

1.1374

1.1347

1.13195

1.12925

1.1265

1 1238

50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

1.1287

1.126

1.12325

1.12055

1.1178

1.1151

1.11235

1.1096

1.1069

1 10415

1.10145

1.09875

1,09605

1.0934

1.0907

1.088

1 .0853

1.08265

1.07995

1.07725

1.07455

1.07195

1.06935

1.0667

1.0641

1.0615

1.05885

1.05625

1.05365

1.051

1 .0484

1.0459

1.04335

1.04085

1.03835

1.0358

1.0333

1.0308

1.0283

1.02575

1.02325

1.02085

1.0184

1 016

1.0136

1.0112

1.00875

1.00635

1.00395

1 00155

0.99913

1.12845

1.12575

1.12305

1 1203

1 1176

1.1149

1.11215

1 10945

1.1067

1 104

1.1013

1.0986

1.0959

1.0932

1 0905

1 0878

1.08515

1,08245

1 .07975

1.07705

1 .07435

1,07175

1.06915

1.06655

1.0639

1 0613

1.0587

1 .0561

1 .0535

1 0509

1 .04825

1.04575

1 04325

1 .04075

1.03825

1.0357

1.0332

1.0307

1 0282

1 02565

1 02315

1 02075

1.01835

1.0159

1.0135

1.0111

1.0087

1.0063

1 .00385

1.00145

0.99905

1.1263

1.1236

1.1209

1.1182

1.1155

1.1128

1.1101

1 1074

1.1047

1.102

1.0993

1.09665

1.094

1 09135

1.08865

1.086

1.08335

1.0807

1.078

1.07535

1.0727

1.0701

1.06755

1.06495

1.0624

1.0598

1.0572

1.05465

1.05205

1.0495

1.0469

1.0444

1.04195

1 03945

1.03695

1 0345

1.032

1.02955

1.02705

1.02455

1.0221

1.0197

1.0173

1.01495

1.01255

1.01015

1.0078

1.0054

1 003

1 0006

0.99823

1.12375

1.1211

1.1184

1.11575

1.1131

1.1104

1.10775

1.1051

1.1024

1.09975

1.0971

1.09445

1.0918

1.08915

1.08655

1 .0839

1.08125

1.0786

1.076

1.07335

1.0707

1.06815

1.0656

1.06305

1 06055

1.058

1.05545

1.0529

1.05035

1.0478

1.04525

1.0428

1.04035

1.0379

1.03545

1.033

1.03055

1.02805

1.0256

1.02315

1.0207

1.01835

1.016

1.0136

1.01125

1.0089

1 00655

1.00415

1.0018

0.99945

0.99708
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Appendix G
The values of shining factors aj and br, used to generate the master curve for each

concentration

Concentration (wt %)
8.5%

PS/DEP
12%

PS/DEP
16%

PS/DEP
25%

PS/DEP

aT (-45 0C) 27413.61

bT (-45 0C) 0.588842

Concentration (wt %)
8.5%

PS/DEP
12%

PS/DEP
16%

PS/DEP
25%

PS/DEP

aT (-30 0C) 441.2482

bT (-30 0C) 0.767568

Concentration (wt %)
8.5%

PS/DEP
12%

PS/DEP
16%

PS/DEP
25%

PS/DEP

aT (-25 0C) 175.6454

bT (-25 0C) 0.537061
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Concentration (wt %)
8.5%

PS/DEP
12%

PS/DEP
16%

PS/DEP
25%

PS/DEP

aT (-20 0C) 191.8246

bT (-20 0C) 0.868963

Concentration (wt %)
8.5%

PS/DEP
12%

PS/DEP
16%

PS/DEP
25%

PS/DEP

aT(-15°C) 36.43693 40.71392

bT(-15°C) 0.609097 0.77645.8

Concentration (wt %)
8.5%

PS/DEP
12%

PS/DEP
16%

PS/DEP
25%

PS/DEP

aT(5°C) 5.052725 4.73894 4.562384 7.345386

bT(5°C) 0.686828 0.853523 0.905225

Concentration (wt %)
8.5%

PS/DEP
12%

PS/DEP
16%

PS/DEP
25%

PS/DEP

aT(15°C> 1.94798 2.443513

bT(15°C) 0.968404 0.968404

* No experiment was performed for 8.5% PS/DEP at 25 0C, however the zero shear
viscosity at this temperature was determined using the exponential Arrhenius relation.
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Appendix H
LabVIEW code written for controlling the SG and DAQ hardwares and also for analyzing the recorded data.
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** The false cases for all the frames are empty.
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Appendix I
Amplitude and phase responses for frequency sweep excitation. The best fit for
theoretical response with known properties (Theory), with unknown properties for
amplitude response (amp base) and with unknown properties for amplitude response
(phase base) are also presented:
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Appendix J
Experimental and theoretical responses of the cantilevers in the time and frequency
domain. The amplitudes are normalized with the magnitude of the first peak:
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Appendix K
The effect of using different number of modes on the calculation of theoretical response:
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Appendix L
MATLAB code for determining the fluid's properties using the whole frequency range:

% this code needs the tiles in these folders;
% CoUP - CaUP
% CoUP-CaUP NDP

Hio ? ffO

O O
JO ? UOtt

clc; clear all; close all

cutoff_freq=40;
amps=' amp 8';

%#####################fi####3# cantilever properties timMìim#ffiimm*nìm?m#

cantilever='íong';
L=397e-6;
b=29e-6;
h=2.33e-6;

% cantilever^'medium';
%L=197e-6;
% b=29e-6;
% h=2.255e-6;

A=b*h;I=b*hA3/12;
ro_c=2330;
E=170e9;
?, \ac-(l 8751'Lr2*sqrt(C*l/ro_c/A)
0C
"« ? U lu ???? rtiCv
O0 , .

fluid_cel=['air ';'Ethanol ';'vvater ';'%25 Glycerine ';'%>() Glycerine ';'%60 Glycerine ';'%75
Glycerine ';'%80 Glycerine V0ZoK)O Glycerine'];
filename_cel=['FS_air_ ';'FS ethanol ';'FS GWOO VFS_GW25_ ÏFS GW50
';'FS_GW60_ ';'FS_GW75_ *;'FS_GW80_. ';'FS__GW100_ '];
fluid_ce]=cellstr(fluid_cel);
filename_cel=ceHstr(fílename_cel);

%<G> (2) (3) (4) (5) (6) (7) (8) (9)
%air ethanol water %25 %50 %60 %75 0ZoSO 0ZoIOO

g_roJ"_cel=[ 1.184 785 997 1058 1123 1151 1191 1205 1257 ];
g_eta_f_cel=[ 0.018 1.078 0.88242 1.818 4.926 8.634 26.92 44.38 931.2 ]*le-3;
g_scal_cel=[ 1 111111 1 1 ]*le5;
g_angl_cel=[ 0 000000 00];
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%MMnMvmMmMimiiii#iì# mode shapes and related parameters

deIta_x=0.00001*L;x=[0:delta x:L];

landa(l)=1.8751/L; Ianda(2)=4.694/L; landa(3)=7.855/L; landa(4)=10.996/L;
landa(5)=14.137/L; landa(6)=17.279/L;
landa(7)=(7-0.5)*pi/L; landa(8)=(8-0.5)*pi/L; landa(9)=(9-0.5)*pi/L; Ianda(10)=(10-0.5)*pi/L;
]anda(l l)=(ll-0.5)*pi/L; landa(12)=(12-0.5)*pi/L;

X I =(cos(landa( 1 )*x)-cosh(landa( 1 )*x)-
((cos(!anda(l )*L)+cosh(landa( 1 )*L))/(sin(landa( 1 )*L)+sinh(landa( 1 )*L)))*(sin(Ianda(l )*x)-
sinh(]anda(l)*x)));
X2=(cos(landa(2)*x)-cosh(landa(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(landa(2)*L)+sinh(landa(2)*L)))*(sin(landa(2)*x)-
sinh(landa(2)*x)));
X3=(cos(landa(3)*x)-cosh(landa(3)*x)-
((cos(]anda(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(landa(3)*L)))*(sin(Ianda(3)*x>
sinh(landa(3)*x)));
X4=(cos(landa(4)*x)-cosh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(sin(landa(4)*x)-
sinh(landa(4)*x)));
X5=(cos(landa(5)*x)-cosh(landa(5)*x)-
((cos(]anda(5)*L)+cosh(landa(5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L)))*(sin(landa(5)*x)-
sinh(Ianda(5)*x)));
X6=(cos(landa(6)*x)-cosh(landa(6)*x)-
((cos(landa(6)*L)+cosh(landa(6)*L))/(sin(landa(6)*L)+sinh(landa(6)*L)))*(sin(landa(6)*x)-
sinh(landa(6)*x)));
X7=(cos(landa(7)*x)-cosh(landa(7)*x)-
((cos(Ianda(7)*L)+cosh(]anda(7)*L))/(sin(landa(7)*L)+sinh(landa(7)*L)))*(sin(landa(7)*x)-
sinh(landa(7)*x)));
X8=(cos(landa(8)*x)-cosh(landa(8)*x)-
((cos(landa(8)*L)+cosh(]anda(8)*L))/(sin(landa(8)*L)+sinh(landa(8)*L)))*(sin(landa(8)*x)-
sinh(landa(8)*x)));
X9=(cos(landa(9)*x)-cosh(landa(9)*x)-
((cos(landa(9)*L)+cosh(landa(9)*L))/(sin(landa(9)*L)+sinh(landa(9)*L)))*(sin(landa(9)*x)-
sinh(landa(9)*x)));

X I I - landa( 1 )*((-sin(landa( 1 )*x)-sinh(landa( 1 )*x>
((cos(Ianda(l)*L)+cosh(landa(l)*L))/(sin(landa(l)*L)+sinh(landa(l)*L)))*(cos(landa(l)*x)-
cosh(landa(])*x))));
X12=landa(2)*((-sin(landa(2)*x)-sinh(landa(2)*x>
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(landa(2)*L)+sinh(Ianda(2)*L)))*(cos(landa(2)*x)-
cosh(landa(2)*x))));
X13=landa(3)*((-sin(landa(3)*x)-sinh(landa(3)*x)-
((cos(Ianda(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(]anda(3)*L)))*(cos(landa(3)*x)-
cosh(landa(3)*x))));
X14=landa(4)*((-sin(landa(4)*x)-sinh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(cos(landa(4)*x)-
cosh(landa(4)*x))));
X 1 5=landa(5)*((-sin(landa(5)*x)-sinh(landa(5)*x)-
((cos(landa(5)*L)+cosh(]anda(5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L)))*(cos(landa(5)*x)-
cosh(landa(5)*x))));
X 1 6=landa(6)*((-sin(Ianda(6)*x)-sinh(landa(6)*x)-
((cos(landa(6)*L)+cosh(landa(6)*L))/(sin(landa(6)*L)+sinh(landa(6)*L)))*(cos(landa(6)*x)-
cosh(landa(6)*x))));
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X17=landa(7)*((-sin(!anda(7)*x)-sinh(]anda(7)*x)-
((cos(landa(7)*L)+cosh(landa(7)*L))/(sin(landa(7)*L)+sinh(landa(7)*L)))*(cos(]anda(7)*x)-
cosh(landa(7)*x))));
X 1 8=landa(8)*((-sin(landa(8)*x)-sinh(landa(8)*x)-
((cos(landa(8)*L)+cosh(landa(8)*L))/(sin(landa(8)*L)+sinh(landa(8)*L)))*(cos(landa(8)*x>
cosh(landa(8)*x))));
X 1 9=Ianda(9)*((-sin(landa(9)*x)-sinh(ianda(9)*x)-
((cos(landa(9)*L)+cosh(landa(9)*L))/(sin(landa(9)*L)+sinh(landa(9)*L)))*(cos(landa(9)*x)-
cosh(landa(9)*x))));

Xl I=(Xl l/X1(length(Xl)));
X 1 2=(X 12/X2(length(X2)));
X 1 3=(X 1 3/X3(length(X3)));
X14=(X14/X4(length(X4)));
X 1 5=(X 1 5/X5(length(X5)));
X 1 6=(X 1 6/X6(length(X6)));
X 1 7=(X 1 7/X7(length(X7)));
X 1 8=(X 1 8/X8(length(X8)));
X 1 9=(X 1 9/X9(length(X9)));
Xl=(Xl/Xl(length(Xl)));
X2=(X2/X2(length(X2)));
X3=(X3/X3(length(X3)));
X4=(X4/X4(length(X4)));
X5=(X5/X5(length(X5)));
X6=(X6/X6(length(X6)));
X7=(X7/X7(length(X7)));
X8=(X8/X8(length(X8)));
X9=(X9/X9(length(X9)));

alpha( 1 )=sum(X 1 . *X 1 )*deIta_x/L ; beta( 1 )=sum(X 1 )*delta_x/L;
alpha(2)=sum(X2.*X2)*deIta_x/L;beta(2)=sum(X2)*delta_x/L;
alpha(3)=sum(X3.*X3)*delta_x/L;beta(3)=sum(X3)*delta_x/L;
alpha(4)=sum(X4.*X4)*delta_x/L;beta(4)=sum(X4)*delta_x/L;
alpha(5)=sum(X5.*X5)*delta_x/L;beta(5)=sum(X5)*deIta_x/L;
alpha(6)=sum(X6.*X6)*delta_x/L;beta(6)=sum(X6)*delta_x/L;
alpha(7)=sum(X7.*X7)*delta_x/L;beta(7)=sum(X7)*delta_x/L;
alpha(8)=sum(X8.*X8)*delta_x/L;beta(8)=sum(X8)*delta_x/L;
alpha(9)=sum(X9.*X9)*deIta_x/L;beta(9)=sum(X9)*delta_x/L;

clear dell, x\ Xl X2 V X4 ? s \( X" ?8 X<->
0V
o0 , i , , Í ( i
%. J
for fluid_N=2:2
tic
fIuid=char(fluid_ce](fluid_N))
filename=char(fiIename_ce](fluid_N));
g_ro_f=g_ro_f_cel(fluid_N);
g_eta_f=g_eta_f_cel(fluid_N);
g_scal=g_scal_cel(fIuid_N);
g_angl=g_angl_cel(fluid_N);

finding the proper fitting parameters o! modified fue0/-HO

?

%%%%%%%%%°%%%%Yifi'0%%%%%%%%%%%°<% data management %%%%%%%%%% O /O /O /0 '? /0 /O 'O /Ci /O /0 /0 , O '0 /0 /U
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fìlename_NDP=[fìlename cantilever amps 'CoIIP - CaUP NDP.dat'];
exp_data=load(fiIename_NDP);
indices = find(cutoff_freq<exp_data(:,l) & exp_data(:,l)<=100); exp_data(indices,:)=[];
f_3=exp_data(:,l )'; exp_amp=exp data(:,2); exp_ang=exp data(:,3);
omega_3=2*pi*f_3*1000; omega2_3=omega_3.A2;
clear filename NDP exp data. indices;

% finding the best seal & angl %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
g_Tb=(gIro_f!b)/(ro_c*h); "..
g_Reb=(g_ro_Pw_vac*bA2)/(4*g_eta_f);
Ya_0=[g_scal];
Yp_0=[g_angl];

Re = @(X,Xf) X*Xf/w_vac;
GAMA_circ = @(X,Xf)l+(4*i*besse]k(l.(-i*sqrt(i*Re(X,Xf)))))/(sqrt(i*Re(X,Xf))-*besse]k(0,(-
i*sqrt(i*Re(X,Xf)))));
tao = @(X,Xf)Iogl 0(Re(X5Xf));
OMEGA_r=@(X,Xf)(0.91324-0.48274*(tao(X,X0)+0.46842*(tao(X,Xf)).A2-
0.12886*(tao(X,Xf)).A3+0.044055*(tao(X,X0)-A4-
0.00351 17*(tao(X,Xf)).A5+0.00069085*(tao(X,Xf))A6)/(l-0.56964*(tao(X,Xi))+0.48690*(tao(X,Xf)).A2-
0.13444*(tao(X,Xf))-A3+0.045155*(tao(X,X0).A4-
0.0035862*(tao(X,Xf))-A5+0.00069085*(tao(X,Xf)).A6);
OMEGAJ =@(X,Xf)(-0.024 1 34-0.029256*(tao(X,Xf))+0.0 1 6294*(tao(X,Xf))-A2-
0.000 10961 *(tao(X,Xf)).A3+0.000064577*(tao(X,Xf)).A4-0.000044510*(tao(X,X0)-A5)/(l-
0.597020*(tao(X,Xf))+0.55 1 820*(tao(X,Xf)).A2-
0.18357000*(tao(X,Xf)).A3+0.079156000*(tao(X,Xf)).A4-
0.014369000*(tao(X,Xf)).A5+0.0028361*(tao(X,Xf)).A6);
OMEGA = @(X,Xf)OMEGA_r(X,Xf) + OMEGAj(X,Xf)*i;
GAMArect = @(X,Xf)OMEGA(X,Xf) .* GAMA_circ(X,Xf);
AC01=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(l))./(w_vacA2*(landa(l)/landa(
]))A4*alpha(l>omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),X0)*alpha(l));
AC02=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(2))./(w_vacA2*(landa(2)/landa(
l))A4*alpha(2)-omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2);X0)*alpha(2));
AC03=@(X,Xf)(omega2_3.*(l+(pi*X(iy4)*GAMA_rect(X(2),Xf))*beta(3))./(w_vacA2*(landa(3)/landa(
l))A4*alpha(3)-omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2);Xf))*alpha(3));
AC04=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(4))./(w_vacA2*(landa(4)/landa(
l))A4*alpha(4)-ornega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(4));
AC05=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA rect(X(2),Xf))*beta(5))./(w_vacA2*(landa(5)/landa(
1 ))A4*alpha(5)-omega2_3. *( 1 +(pi*X( 1 )/4)*G AMA_rect(X(2),Xf))*alpha(5));
AC06=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(6))./(w_vacA2*(landa(6)/landa(
1 ))A4*alpha(6)-omega2_3. *( 1 +(pi*X( 1 )/4)*G AMA_rect(X(2),Xf))*alpha(6));
AC07=@(X,Xi)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(7)):/(w_vacA2*(landa(7)/landa(
l))A4*alpha(7)-omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(7));
ACO8=@(X,X0(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(8))./(w_vacA2*(landa(8)/landa(
l))A4*alpha(8)-omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2);Xf))*alpha(8));
AC09=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(9))./(w_vacA2*(landa(9)/landa(
1 ))A4*alpha(9)-omega2_3.*( 1 +(pi*X( 1 )/4)*G AM A_rect(X(2),Xf))*alpha(9));
ACO_response9=@(X,Xf)
[ACO 1 (X,Xf)*X 1 1 (length(X 1 1 ))+AC02(X,Xf)*X 1 2(length(X 1 2))+AC03(X,Xf)*X 1 3(length(X 1 3))+AC
04(X,Xf)*X 1 4(length(X 1 4))+AC05(X,Xf)*X 1 5(length(X 1 5))+AC06(X,Xf)*X 1 6(length(X 1 6))+AC07(
X,Xf)*X 1 7(length(X 1 7))+AC08(X,Xf)*X 1 8(length(X 1 8))+AC09(X,Xf)*X 1 9(length(X 1 9))]';
AAA=@(X,Xf) abs(ACO_response9([g_Tb g_Reb],Xf))/X;
BBB=@(X,Xf)angle(ACO_response9(X,Xf));
CCC=@(X,Xf)unwrap(BBB([g Tbg_Reb],Xf))-X;
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[Ya,ra,Ja] = nlinfit(omega_3,exp_amp,AAA,Ya_0); clear ra Ja;
[Yp,rp,Jp] = nlinfit(omega_3,exp_ang,CCC,Yp_0); clear rp Jp;

scal_best=Ya;
angl_best=Yp;
clear g Tb g Rcb Ya OYp OYaYpReGAMA cire iao OMEGA r OMEGA i OMEGA GAMA rect
ACOÏAC02 AC03 ACO-4 AC05 AC06 ACÓ? AC08 AC09 ACO response^ AAA BBB CCC;

% finding the best ro and eta for amplitude and phase responses %%%%%%%%%%%%%%%
g_Tb=(gjO_f*b)/(ro_c*h);
g_Reb=(g_ro_f*w_vac*bA2)/(4*g_etaJ);
Ya_0=[g_Tb g_Reb scalbest] ;
Yp_0=[g_Tb g_Reb anglbest];

Re = @(X,Xf) X*Xf/w_vac;
GAMA_circ = @(X,Xf)l+(4*i*besselk(l,(-i*sqrt(i*Re(X?Xf)))))-/(sqrt(i*Re(X,Xf)).*besselk(0,(-
i*sqrt(i*Re(X,XO))));
tao = @(X,Xf)Iogl 0(Re(X5Xf));
?????_G=@(?,??)(0.91324-0.48274*(?3?(?,??))+0.46842*(?3?(?,??)).?2-
0.12886*(tao(X,Xf)).A3+0.044055*(tao(X,Xf)).A4-
0.00351 17*(tao(X,Xf))-A5+0.00069085*(tao(X!Xf)).^6)/(l-0.56964*(tao(X,X0)+0.48690*(tao(X,Xf)).A2-
0.13444*(tao(X,Xf))A3+0.045155*(tao(X,Xf))A4-
0.0035862*(tao(X,Xf)).A5+0.00069085*(tao(X,Xf)).A6);
OMEGAJ =@(X,Xf)(-0.024134-0.029256*(tao(X,Xf))+0.016294*(tao(X,Xf)).A2-
0.0001 096 1 *(tao(X,Xf)).A3+0.000064577*(tao(X,Xf)).A4-0.0000445 1 0*(tao(X,Xf))-A5)/( 1 -
0.597020*(tao(X,Xf))+0.55 1 820*(tao(X,Xf)).A2-
0. 1 8357000*(tao(X,Xf)).A3+0.0791 56000*(tao(X,Xf)).A4-
0.014369000*(tao(X,Xf)).A5+0.0028361*(tao(X,Xf)).A6);
OMEGA = @(X,Xf)OMEGA_r(X;Xf) + OMEGA_i(X,Xf)*i;
GAMArect = @(X,Xf)OMEGA(X,Xf) .* GAMA_circ(X,Xf);
AC01=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(l))./(w_vacA2*(landa(l)/landa(
l))A4*alpha(l)-omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(l));
AC02=@(X,Xf)(omega2 3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(2))./(w_vacA2*(landa(2)/landa(
l))A4*alpha(2)-omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(2));
AC03=@(X,Xf>(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(3))./(w_vacA2*(landa(3)/landa(
l))A4*alpha(3)-omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(3)):
AC04=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),XO)*beta(4))./(w_vacA2*(landa(4)/landa(
l))A4*alpha(4)-omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(4));
AC05=@(X,Xf)(omega2_3.*(]+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(5))./(w_vacA2*(landa(5)/landa(
l))A4*alpha(5)-omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(5));
AC06=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(6))./(w_vacA2*(landa(6)/landa(
l))A4*alpha(6)-omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(6));
AC07=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),XO)*beta(7))./(w_vacA2*(landa(7)/landa(
1 ))A4*alpha(7)-omega2_3 . *( 1 +(pi*X( 1 )/4)*G AMA_rect(X(2),Xf))*alpha(7));
AC08=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(8))./(w_vacA2*(landa(8)/landa(
l))A4*alpha(8)-omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(8));
AC09=@(X,Xf)(omega2_3.*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(9))./(w_vacA2*(landa(9)/landa(
1 ))A4*alpha(9)-omega2_3. *( 1 +(pi*X( 1 )/4)*GAMA_rect(X(2),Xf))*alpha(9));
ACO_response9=@(X,Xf)
[ACO 1 (X,Xf)*X 1 1 (length(X 1 1 ))+AC02(X,Xf)*X 1 2(length(X 1 2))+AC03(X,Xf)*X 1 3(length(X 1 3))+AC
04(X;Xf)*X 1 4(length(X 1 4))+AC05(X,Xf)*X 1 5(length(X 1 5))+AC06(X,Xf)*X 1 6(length(X 1 6))+AC07(
X,Xf)*X 1 7(length(X 1 7))+AC08(X,Xf)*X 1 8(length(X 1 8))+AC09(X,Xf)*X 1 9(length(X 1 9))]';
AAA=@(X,Xf) abs(ACO_response9(X(l :2),Xi))/X(3);
BBB=@(X,Xf)angle(ACO_response9(X,Xf));
CCC=@(X,Xf)unwrap(BBB(X( 1 :2),Xf))-X(3);
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[Ya,ra,Ja] = n]infit(omega_3,exp_amp,AAA,Ya_0); clear ? a Ja;
[Yp,rp,Jp] = nlinfit(omega_3,exp_ang,CCC,Yp_0); clear rp Jp;

Tb_a=Ya(l); Reb_a=Ya(2); scal=Ya(3);
Tb_p=Yp(I); Reb_p=Yp(2); angI=Yp(3);

ro_a_f=Tb_a*ro_c*h/b; eta_aJf=(ro_a_f*w_vac*bA2)/(4*Reb_a);
ro_p_f=Tb_p*ro_c*h/b; eta_p_f=(ro_p_f*w_vac*bA2)/(4*Reb_p);

errorjro_a=(rc>_a_f-g_r(>_f)/g_ro_f* ' 00; error_eta_a=(eta_a_f-g_eta_f)/g_eta_P 1 00;
error_ro_p=(ro_p_f-g_ro_f)/g_ro_f* 1 00; error_eta_p=(eta p_f-g_eta_f)/g_efa_P 1 00;

error_scal=(scal-scal_best)/scal_best* 1 00;
error_angl=(angl-angl_best)/angl_best* 1 00;

format short e;
eta_ro_scal=[eta_a_f erroretaa roaferrorroa seal errorscal];
eta_ro_angl=[eta_p_f error_eta_p ro_p_f error_ro_p angl errorangl];
summary_of_fitting_pararnaers(fluid_N,:)=[eta_ro_scaI scalbest eta_ro_angl anglbest];

clear g Tb g Reb Ya C)Yp OYaYpReGAMA cire iao OMEGA r OMEGA i OMEGA GAMA reel
ACOÎ"aC02 AC03 AC04 AC05 AC06 AC07 AC08 AC09 ACO response^ AAA BBB CCC;
clear Tb a Tb ? Reb a Reb ? error ro a error ro ? error seal error angl error eta a error eta p;
clear f 3 omega 3 omega2 3 exp amp exp ang eta ro seal eta ro angl;
ft -' .i.LLi.il l.¡ 'J.J.L.Í1.U iS-l-l -U-ii ii 4J -: ; -Li-H U .US-i -!-L-Il U .U-'-i.U.U .i.; .: Ì..U.L1 U i i ??. í¡. U ü.;.¡ .i.i.:.i.li ¿i .- : .¡¡.i: U U -: '¦ :: ii H-I' '¦'¦ : L Li H j : -Lili U :: :L Lili 11 i- -i ¡i H U ¡: : : li il"?? Ji.j.;.lT. 11 11. j.;.-.Z ti Zl ii.X;..;.* T.Î. 2j.ii-.¡S. IT. 'Z ZÍ.jj.j.:.'.I. í.i. i t.lS. .;.'.'.!. 11 i i.I.¡. .;.:.". Il il.j.;..;.T. 1.1 ¿i.i£.:-..tt *.!. 11 i.:..í.:. '.'. Ti Ii i :..*.' :.* ti Ti JS T.T 7.1 Tl H SS T! ¡7 Zi IISS. Zt Z7 ¡i Il S:. TL Ii Ii iSSS. :.I, UfT 7í r ; TTtTT!;- ¡ ? : G TT t. ! ¦ í .' *? ir fr , . .- TT Tl 7 ! ¦ : ? TT TT ? ¦ : T IT Tf ? . , ; ; r TT .' : / . , .- TT TT ? ¦ ; TT Tr .' . . , ; TT Tr ; . ; : G f r r* / · ; : ; G TT TT ! ¦ !! Tt *t 77 ? ' :'¦ TT TT t ? ? r ¡V Tt TV· ¦ ¦ ¡

%###?/########? determining the theoretical amplitude and phase responses imeiiimmm
/Vt; "· :j TTTH , ¦! G; GG t; ¦ ¦' ¦ ¦ GG Tl Tl t: ;* :'· GG ; rr: ,".: fr G* +-' ¦ "G "G TrTr ;-: ?¦? GG G.' ¦' - -" fr ?? Tt rr : !¦ t? TT ir ·.¦¦:¦ :¦;¦ ;t TT Trrr r; r-t «;¦¦»¦;¦¦;¦:¦ rr rr *¦>¦¦:;;: "Vf f? ?·¦;'? G? ;.'.'; ¦ ¦ ,? rf 7. - "¦;¦:¦

f_4=[l:1000]/10;omega_4=2*pi*f_4*1000;

% determining the best theoretical response %%%%%%%%%%%%%%%%%%%%%%%%%%
ro_f=g_ro_f;
eta_f=g_eta_f;
scal_t=scal_best;
angl_t=angl_best;

Re = @(X) ro_f*X*bA2/4/eta_f;
GAMA_circ = @(X)l+(4*i*besselk(l,(-i*sqrt(i*Re(X)))))./(sqrt(i*Re(X)).*besselk(0)(-i*sqrt(i*Re(X)))));
tao = @(X)log 10(Re(X));
OMEGAr =@(X)(0.91324-0.48274*(tao(X))+0.46842*(tao(X)).A2-
0.12886*(tao(X)).A3+0.044055*(tao(X)).A4-0.0035117*(tao(X))A5+0.00069085*(tao(X)).A6)/(l-
0.56964*(tao(X))+0.48690*(tao(X)).A2-0.13444*(tao(X)).A3+0.045155*(tao(X)).A4-
0.0035862*(tao(X)).A5+0.00069085*(tao(X)).A6);
OMEGAi =@(X)(-0.024 1 34-0.029256*(tao(X))+0.0 1 6294*(tao(X)). A2-
0.00010961 *(tao(X)).A3+0.000064577*(tao(X)).A4-0.000044510*(tao(X)).A5)/(l-
0.597020*(tao(X))+0.55 1 820*(tao(X)).A2-0. 1 8357000*(tao(X)).A3+0.0791 56000*(tao(X)).A4-
0.0 1 4369000*(tao(X)).A5+0.002836 1 *(tao(X)).A6);
OMEGA = @(X)OMEGA_r(X) + OMEGA_i(X)*i;
GAMArect = @(X)OMEGA(X) .* GAMAcirc(X);
GAMA_rect_value=GAMA_rect(omega_4);
AC01=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(l)*L)./(E*I*(landa(l))A4*alpha
(l)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_f*bA2*GAMA_rect_value)*alpha(l)*L);
AC02=((omega_4.A2).*(ro_c*A+pi/4*ro_f*bA2*GAMA_rect_value)*beta(2)*L)./(E*I*(landa(2))A4*alpha
(2)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_f*bA2*GAMA_rect_value)*alpha(2)*L);
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AC03=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_vaIue)*beta(3)*L)./(E*I*(landa(3))A4*a!pha
(3)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_fì:bA2*GAMA_rect_value)*alpha(3)*L);
AC04=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(4)*L)./(E*I*(landa(4))A4*a]pha
(4)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(4)*L);
AC05=((omega_4.A2).*(ro_c*A+pi/4*ro_fiibA2*GAMA_rect_vaIue)*beta(5)*L)./(E*I*(landa(5))A4*alpha
(5)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_fibA2*GAMA_rect_value)*alpha(5)*L);
AC06=((omega_4.A2).*(ro_c*A+pi/4*ro_f,ibA2*GAMA_rect_value)*beta(6)*L)./(E*I*(landa(6))A4*alpha
(6)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(6)*L);
AC07=((omega_4.A2).*(ro_c*A+pi/4*ro_f|,bA2*GAMA_rect_value)*beta(7)*L)./(E*I*(landa(7))A4*alpha
(7)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_f:bA2*GAMA_rect_value)*alpha(7)*L);
AC08=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(8)*L)./(E*I*(landa(8))A4*alpha
(8)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_f|:bA2*GAMA_rect_value)*alpha(8)*L);
AC09=((omega_4.A2).*(ro_c*A+pi/4*ro_f,bA2*GAMA_rect_value)*beta(9)*L)./(E*I*(landa(9))A4*a]pha
(9)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_f*bA2*GAMA_rect_value)*alpha(9)*L);
ACO_response9=[AC01*X11(length(XIl))+AC02*X12.(length(X12))+AC03*X13(length(X13))+AC04
*X 1 4(length(X 1 4))+AC05 *X 1 5(length(X 1 5))+AC06*X 1 6(length(X 1 6))+AC07*X 1 7(length(X 1 7))+AC
08*X 1 8(length(X 1 8))+AC09*X 1 9(length(X 1 9))]';
AAA_t=abs(ACO_response9)/scal_t; CCC_t=unwrap(angle(ACO_response9))-angl_t;
clear ro f'eta fscal t angl IReGAMA circ tao OMEGA r OMEGA ¡ OMEGA GAMA rect
GAMA rect value AGO 1 AC02 AC03 AC04 AG05 AG06 AGO? AC08 AC09 AGO response9;.

% determining the best theoretical response for the amplitude %%%%%%%%%%%%%%%%%
ro f=ro_a_f;
eta_f=eta_a_f;
scal_a=scal;
angl_a=angl;

Re = @(X) ro_f*X*bA2/4/eta_f;
GAMA_circ = @(X)l+(4*i*besselk(lX-i*sqrt(i*Re(X)))))./(sqrt(i*Re(X)).*besselk(0,(-i*sqrt(i*Re(X)))));
tao = @(X)log 10(Re(X));
OMEGAr =@(X)(0.9 1 324-0.48274*(tao(X))+0.46842*(tao(X)).A2-
0.12886*(tao(X)).A3+0.044055*(tao(X)).A4-0.0035117*(tao(X)).A5+0.00069085*(tao(X)).A6)/(l-
0.56964*(tao(X))+0.48690*(tao(X)).A2-0.13444*(tao(X)).A3+0.045155*(tao(X)).A4-
0.0035862*(tao(X)).A5+0.00069085*(tao(X))A6);
OMEGAi =@(X)(-0.024 1 34-0.029256*(tao(X))+0.0 1 6294*(tao(X)). A2-
0.00010961 *(tao(X)).A3+0.000064577*(tao(X)).A4-0.000044510*(tao(X)).A5)/(l-
0.597020*(tao(X))+0.55 1 820*(tao(X)).A2-0. 1 8357000*(tao(X)).A3+0.079 1 56000*(tao(X)).A4-
0.014369000*(tao(X)).A5+0.0028361 *(tao(X)).A6);
OMEGA = @(X)OMEGA_r(X) + OMEGA_i(X)*i;
GAMA_rect = @(X)OMEGA(X) .* GAMAcirc(X);
GAMA_rect_value=GAMA_rect(omega_4);
AC01=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(l)*L)./(E*I*(landa(l))A4*alpha
(l)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(l)*L);
AC02=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(2)*L)./(E*I*(landa(2))A4*alpha
(2)*L<omega_4.A2).*(ro_c*A+pi/4*roJ>bA2*GAMA_rectjvalue)*aIpha(2)*L);
AC03=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(3)*L)./(E*I*(landa(3))A4*alpha
(3)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(3)*L);
AC04=((omega_4.A2).*(ro_c*A+pi/4*ro_f*bA2*GAMA_rect_value)*beta(4)*L)./(E*l*(landa(4))A4*alpha
(4)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(4)*L);
AC05=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(5)*L)./(E*I*(landa(5))A4*alpha
(5)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(5)*L);
AC06=((omega_4.A2).*(ro_c*A+pi/4*ro_f*bA2*GAMA_rect_value)*beta(6)*L)./(E*I*(landa(6))A4*alpha
(6)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(6)*L);
AC07=((omega_4.A2).*(ro_c*A+pi/4*ro_f*bA2*GAMA_rect_value)*beta(7)*L)./(E*l*(landa(7))A4*alpha
(7)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_f,:bA2*GAMA_rect_value)*alpha(7)*L);
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AC08=((omega_4.A2).*(ro_c*A+pi/4*ro_f:bA2*GAMA_rect_value)*beta(8)*L)./(E*I*(]anda(8))A4*alpha
(8)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(8)*L);
AC09=((omega_4.A2).*(ro_c*A+pi/4*ro_f*bA2*GAMA_rect_value)*beta(9)*L)./(E*I*(landa(9))A4*alpha
(9)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_vaiue)*alpha(9)*E);
ACO_response9=[AC01 *X 1 1 (length(X 1 1 ))+AC02*X 1 2(length(X 1 2))+AC03*X 1 3(length(X 1 3))+AC04
*X 1 4(length(X 1 4))+AC05 *X 1 5(length(X 1 5))+AC06*X 1 6(length(X ] 6))+AC07*X 1 7(length(X 1 7))+AC
08*X 1 8(length(X 1 8))+AC09*X 1 9(length(X 1 9))]';
AAA_a=abs(ACO_response9)/scal_a; CCC_a=unwrap(angle(ACO_response9))-angI_a;
clear ro feta fscal a ang! a Re GAVIA cire tao OMEGA r OMEGA i OMEGA GAMA reel
GAMAj-ect value ACOl ÄC02 AC03 AC04 AGO? ACÖ6 AGO? AC08 AC09 ACO response9;

% determining the best theoretical response for the phase %%%%%%%%%%%%%%%%%%%
ro_f=ro_p_f;
eta_f=eta_p_f;
scal_p=scal;
angl_p=angl;

Re = @(X) ro_PX*bA2/4/eta_f;
GAMA_circ = @(X)l+(4*i*besselk(lX-i*sqrt(i*Re(X)))))./(sqrt(i*Re(X)).*besselk(0,(-i*sqrt(i*Re(X)))));
tao = @(X)log 10(Re(X));
OMEGA_r=@(X)(0.91324-0.48274*(tao(X))+0.46842*(tao(X)).A2-
0.12886*(tao(X)).A3+0.044055*(tao(X)).A4-0.0035117*(tao(X)).A5+0.00069085*(tao(X)).A6)/(l-
0.56964*(tao(X))+0.48690*(tao(X))A2-0.13444*(tao(X)).A3+0.045155*(tao(X)).A4-
0.0035862*(tao(X)).A5+0.00069085*(tao(X))A6);
OMEGAj =@(X)(-0.024134-0.029256*(tao(X))+0.016294*(tao(X)).A2-
0.00010961 *(tao(X)).A3+0.000064577*(tao(X)).A4-0.000044510*(tao(X)).A5)/(l-
0.597020*(tao(X))+0.55 1 820*(tao(X)).A2-0. 1 8357000*(tao(X)).A3+0.0791 56000*(tao(X)).A4-
0.014369000*(tao(X)).A5+0.0028361*(tao(X)).A6);
OMEGA = @(X)OMEGA_r(X) + OMEGAJ(X)* i;
GAMA_rect = @(X)OMEGA(X) .* GAMA_circ(X);
GAMA_rect_value=GAMA_rect(omega_4);
AC01=((omega_4.A2).*(ro_c*A+pi/4*ro_f,;bA2*GAMA_rect_value)*beta(l)*L)./(E*I*(landa(l))A4*alpha
(l)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(l)*L);
AC02=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(2)*L)./(E*I*(landa(2))A4*alpha
(2)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(2)*L);
AC03=((omega_4.A2).*(ro_c*A+pi/4*ro_f!:bA2*GAMA_rect_value)*beta(3)*L)./(E*I*(landa(3))A4*alpha
(3)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_va]ue)*alpha(3)*L);
AC04=((omega_4.A2).*(ro_c*A+pi/4*ro PbA2*GAMA_rect_value)*beta(4)*L)./(E*I*(landa(4))A4*alpha
(4)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(4)*L);
AC05=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(5)*L)./(E*l*(landa(5))A4*alpha(5)*L-(omegal4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(5)*L);
AC06=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(6)*L)./(E*l*(landa(6))A4*alpha
(6)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(6)*L);
AC07=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(7)*L)./(E*P(landa(7))A4*alpha
(7)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(7)*L);
AC08=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(8)*L)./(E*P(landa(8))A4*alpha
(8)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(8)*L);
AC09=((omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*beta(9)*L)./(E*I*(landa(9))A4*alpha
(9)*L-(omega_4.A2).*(ro_c*A+pi/4*ro_PbA2*GAMA_rect_value)*alpha(9)*L);
ACO_response9=[ACOl *X 11 (length(X 1 1 ))+AC02 *X 1 2(length(X 1 2))+AC03 *X 1 3(length(X 1 3))+AC04
*X 1 4(length(X 14))+AC05*X 1 5(length(X 1 5))+AC06*X 1 6(length(X 1 6))+AC07*X 1 7(length(X 1 7))+AC
08*X 1 8(length(X 1 8))+AC09*X 1 9(length(X 1 9))]';
AAA_p=abs(ACO_response9)/scaljp; CCC_p=unwrap(angle(ACO_response9))-angl_p;
clear ro feta fscal pang] ? Re GAMA cire tao OMEGA r OMEGA i OMEGA GAMA rect
GAMA rect value ACOÏ AC02 AC03 AC04 AC05 AC06 ACÓ? AC08 AC09 AGO response9;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%",datamanas2emen!%%%%%,^%l^%%%l^%,vo'^%'%'^^/^u»^^)>^)%»^'v(;^.;;/;,0'^^,%^;/;v:'o(«)'^O
ü

filename ORI=[filename cantilever amps ' CoUP - CaUP.dat'J
filename_NDP=[fi]ename cantilever amps ' CoUP - CaIIP NDP.dat'];

exp_data_ORI=load(filename_ORI);
exp_data_NDP=load(filename_NDP);

for qqq=l:length(exp_data_ORI)
indices_ORl(qqq, 1 )=find(f_4==exp_data_ORI(qqq,1 ));

end
clear qqq;
for qqq=l:length(exp_data NDP)

indices_NDP(qqq, 1 )=find(f_4==exp_data_NDP(qqq, I ));
end

clear qqq f 4 omega 4 filename ORl filename NDP;

% Figure 1 %^,%%%%%%%%%%%%%%%%%^o%°'b^í»^>%^í!^!%%%%lií.%%%^,^)0'b%%%^^
FigJNDP=[exp_data_NDP(:,l) exp_data_NDP(:,2) AAAt(indicesNDP) AAAa(indicesNDP)
AAA_p(indices_NDP) exp_data_NDP(:,3) CCC_t(indices_NDP) CCC„a(indices_NDP)
CCC_p(indices_NDP)];
indices = find(cutoff_freq<Fig_NDP(:,l) & Fig_NDP(:,l)<=100); Fig_NDP(indices,:)=[]; clear indices;

figure;
subplot(2, 1,1);
plot(Fig_NDP(:,l),Fig_NDP(:,2),'k,,'LineWidth',2); hold on;
plot(Fig_NDP(:,l),Fig_NDP(:,3);gVLineVVidth',3);
plot(Fig_NDP(:,l),Fig_NDP(:,4),':r,'LineVVidth',3);
title([fluid ' - ' cantilever]); Iegend('Expertmental',TheoryVAnip baseVLocaiion'.'Best'); hold off;

subplot(2,l,2);
plot(Fig_NDP(:,l),Fig_NDP(:,6),'k','LineWidlh',2); hold on;
plot(Fig_NDP(:,l),Fig_NDP(:,7),'g','LineWidth',3);
plot(Fig_NDP(:,l),Fig_NDP(:,9),':b','LineVVidth',3);
legend('ExperrmentalVTheor\-"','Phase base'/Location'/Best'); hold off;

% Figure 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Fig_ÒRI=[exp_data_ORI(:,l) exp_data_0RI(:,2) AAAj(indices_ORI) AAAa(indicesORI)
AAA_p(indices_OR]) exp_data_0RI(:,3) CCCt(indicesORl) CCCa(indicesORI)
CCC_p(indices_ORI)];
indices = find(cutoff_freq<Fig_ORJ(:,l) & Fig_ORI(:,l)<=100); Fig_ORI(indices,:)=[]; clear indices;

figure;
subplot(2,l,l);
plot(Fig_ORI(:;l),Fig_ORI(:,2);k','LineWidth',2); hold on;
plot(Fig_ORI(:,l),Fig_ORI(:,3),'gVI,ineWidth',3);
plot(Fig_OR](:,l),Fig_ORI(:,4),':r';LineWidth',3);
title([fluid ' - ' cantilever]); legend('Expertmenta !','Theory',' Amp base','Location','Besi'); hold off;

subplot(2,l,2);
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plot(Fig_OR](:,l),Fig_ORI(:,6),'kVLineWidtli',2); hold on;
plot(Fig_ORI(:,l),Fig_ORI(:,7),'g'),LineWidth,,3);
plot(FigJDRI(:J)JigjDRl(:,9)/:byUneWidtn',3);
legend('F;xpertmentar,'Theory', 'Phase base','I-ocationVBest'); hold off;

beep

clear seal best seal angl best angl ro ? f ro a f eta ? f eta
clear indices ORI indices NDP fluid filename g ro f g eta f
clear exp data NDP ex ? data ORI Fig NDP Fig ORI
clear AAA a ??? ? AAA t CCC a CCC ? CCC t

toc
end
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Appendix M
MATLAB code for determining the fluid's properties at each frequency of excitation:

Vo this code needs the files in these folders:
V0 CoUP-CaUP NDP

U.11 iO s i
O f

JO í tFÏ ?/ í/fO

¿???:? j «¡ii í í íIOí

ele; clear all; close all; format compact

cutoff_freq=40;
amps- amp 8';
%#####?? imnmmmmmmm;immnmmm¡immimhuimu¡mmíímmmmi?nmm
mmmimmmmMitmmimm cantilever properties mm¿iimn¿mmmmimm

cantilever='long'; cantileverN=] ;
L=397e-6;
b=29e-6;
h=2.33e-6;

% cantilever- 'medium'; cantilever N=2;
%L=l97e-6:
% b=29e-6:
%h=2.255e-6;

A=b*h; I=b*hA3/12;
ro_c=2330;
E=170e9;
w vac=(1.8751/L)A2*sqrt(E*I/iO_c/A);

1 ' ? ' ? op». ' »?

fluid_cel=['air '¡'Ethanol '¡'water ';'%25 Glycerine ';'%50 Glycerine ';'%60 Glycerine
';*%75 Glycerine ';'%80 Glycerine ';'%100 Glycerine'];
filenameÓ_cel=['FS air ' ';'FS eihanol ';'FS GWOO ';'FS GW25 ';'FS GW50
';'FS GW60 ';'FS GW75 ';'FS GW80 ';'FS GWIOO '];
fluid_cel=cellstr(fluid_cel);
fi]enameO_ce]=ceHstr(fi]enameO_cel):

0Zo(I) (2) (3) (4) (5) (6) (7) (8Ì (9)
»/»air ethanol water %25 %50 %60 %75 %80 %100

g_ro_f_cel=[ 1.184 785 997 1058 1123 1151 1191 1205 1257 ];
g_eta_f_cel=[ 0.018 1.078 0.88242 1.818 4.926 8.634 26.92 44.38 931.2 ]*le-3;

f_ref_cel(l,:)=[22 8 7.5 7 6 5 5 5 5 ];
f_ref_ceI(2,:)-[ 80 16 16 16 10 10 10 9 8 ];

f J
t
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%##M»iiMmiiiiimiíU#^Mit mode shapes and related parameters ????~#t????

delta_x=0.00001 *L; x=[0:delta_x:L];

landa(l)=1.8751/L; landa(2)=4.694/L; landa(3)=7.855/L; landa(4)=10.996/L;
landa(5)= 1 4. 1 37/L; landa(6)= 1 7.279/L;
Ianda(7)=(7-0.5)*pi/L; landa(8)=(8-0.5)*pi/L; landa(9)=(9-0.5)*pi/L; landa(10)=(10-0.5)*pi/L;
landa(l I)=(I l-0.5)*pi/L; landa(12)=(12-0.5)*pi/L;

X 1 =(cos(landa( 1 )*x)-cosh(landa( 1 )*x)-
((cos(landa( 1 )* L)+cosh(landa( 1 )*L))/(s
sinh(landa(l)*x)));
X2=(cos(landa(2)*x)-cosh(landa(2)*x)-
((eos(]anda(2)*L)+cosh(landa(2)*L))/(s
sinh(landa(2)*x)));
X3=(cos(landa(3)*x)-cosh(Ianda(3)*x)-
((cos(landa(3)*L)+cosh(Ianda(3)*L))/(s
sinh(landa(3)*x)));
X4=(ços(landa(4)*x)-cosh(landa(4)*x)-
((cos(landa(4)*L)+cosh(!anda(4)*L))/(s
sinh(landa(4)*x)));
X5=(cos(landa(5)*x)-cosh(landa(5)*x)-
((cös(Ianda(5)*L)+cosh(landa(5)*L))/(s
sinh(landa(5)*x)));
X6=(cos(landa(6)*x)-cosh(landa(6)*x)-
((cos(landa(6)*L)+cosh(landa(6)*L))/(s
sinh(Ianda(6)*x)));
X7=(cos(landa(7)*x)-cosh(landa(7)*x)-
((cos(landa(7)*L)+cosh(landa(7)*L))/(s
sinh(landa(7)*x)));
X8=(cos(landa(8)*x)-cosh(landa(8)*x)-
((cos(landa(8)*L)+cosh(landa(8)*L))/(s
sinh(landa(8)*x)));
X9=(cos(landa(9)*x)-cosh(landa(9)*x)-
((cos(landa(9)*L)+cosh(landa(9)*L))/(s
sinh(landa(9)*x)));

n(landa( 1 )*L)+sinh(landa( 1 )*L)))*(sin(landa( 1 )*x)-

n(Ianda(2)*L)+sinh()anda(2)*L)))*(sin(landa(2)*x)-

n(Ianda(3)*L)+sinh(landa(3)*L)))*(sin(landa(3)*x)-

n(landa(4)*L)+sinh(Ianda(4)*L)))*(sin(!anda(4)*x)-

n(landa(5)*L)+sinh(landa(5)*L)))*(sin(landa(5)*x>

n(landa(6)*L)+sinh(landa(6)*L)))*(sin(landa(6)*x)-

n(landa(7)*L)+sinh(landa(7)*L)))*(sin(landa(7)*x)-

n(landa(8)*L)+sinh(Ianda(8)*L)))*(sin(landa(8)*x)-

n(landa(9)*L)+sinh(landa(9)*L)))*(sin(landa(9)*x)-

Xll=landa(l)*((-sin(landa(1)*x)-sinh(landa(l)*x)-
((cos(landa( 1 )*L)+cosh(landa( 1 )*L))/(sin(landa( 1 )*L)+sinh(landa( 1 )*L)))*(cos(landa( 1 )*x)-
cosh(landa(l)*x))));
X 1 2=landa(2)*((-sin(landa(2)*x)-sinh(landa(2)*x)-
((cos(landa(2)*L)+cosh(landa(2)*L))/(sin(landa(2)*L)+sinh(landa(2)*L)))*(cos(landa(2)*x)-
cosh(landa(2)*x))));
X13=landa(3)*((-sin(landa(3)*x)-sinh(landa(3)*x)-
((cos(landa(3)*L)+cosh(landa(3)*L))/(sin(landa(3)*L)+sinh(Ianda(3)*L)))*(cos(landa(3)*x)-
cosh(landa(3)*x))));
X 1 4=landa(4)*((-sin(landa(4)*x)-sinh(landa(4)*x)-
((cos(landa(4)*L)+cosh(landa(4)*L))/(sin(landa(4)*L)+sinh(landa(4)*L)))*(cos(landa(4)*x)-
cosh(landa(4)*x))));
X15=landa(5)*((-sin(Ianda(5)*x)-sinh(landa(5)*x)-
((cos(landa(5)*L)+cosh(landa(5)*L))/(sin(landa(5)*L)+sinh(landa(5)*L)))*(cos(landa(5)*x)-
cosh(landa(5)*x))));
X 1 6=landa(6)*((-sin(landa(6)*x)-sinh(landa(6)*x>
((cos(landa(6)*L)+cosh(landa(6)*L))/(sin(Ianda(6)*L)+sinh(]anda(6)*L)))*(cos(!anda(6)*x)-
cosh(landa(6)*x))));
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X 1 7=landa(7)*((-sin(]anda(7)*x)-sinh(landa(7)*x>
((cos(landa(7)*L)+cosh(Ianda(7)*L))/(sin(landa(7)*L)+sinh(landa(7)*L)))*(cos(landa(7)*x)-
cosh(landa(7)*x))));
X18=landa(8)*((-sin(landa(8)*x)-sinh(landa(8)*x>
((cos(landa(8)*L)+cosh(landa(8)*L))/(sin(landa(8)*L)+sinh(Ianda(8)*L)))*(cos(landa(8)*x)-
cosh(landa(8)*x))));
X19=Ianda(9)*((-sin(landa(9)*x)-sinh(1anda(9)*x)-
((cos(landa(9)*L)+cosh(Ianda(9)*L))/(sin(]anda(9)*L)+sinh(landa(9)*L)))*(cos(landa(9)*x)-
cosh(landa(9)*x))));

XIl=(Xl l/Xl(length(Xl)));
X 1 2=(X 1 2/X2(length(X2)));
XB=(Xl 3/X3(length(X3)));
X 1 4=(X 1 4/X4(length(X4)));
X15=(X15/X5(length(X5)));
X16=(X16/X6(length(X6)));
X 1 7=(X 1 7/X7(length(X7)));
X18=(X18/X8(length(X8)));
X 1 9=(X 1 9/X9(length(X9)));
Xl=(Xl/Xl(length(Xl))); ·'.
X2=(X2/X2(length(X2)));
X3=(X3/X3(length(X3)));
X4=(X4/X4(length(X4)));
X5=(X5/X5(length(X5)));
X6=(X6/X6(length(X6)));
X7=(X7/X7(length(X7)));
X8=(X8/X8(length(X8)));
X9=(X9/X9(length(X9)));

alpha(l)=sum(Xl.*Xl)*delta_x/L;beta(l
alpha(2)=sum(X2.*X2)*delta_x/L;beta(2
alpha(3)=sum(X3.*X3)*delta_x/L;beta(3
alpha(4)=sum(X4.*X4)*delta_x/L;beta(4
alpha(5)=sum(X5.*X5)*delta_x/L;beta(5
alpha(6)=sum(X6.*X6)*delta_x/L;beta(6
alpha(7)=sum(X7.*X7)*delta_x/L;beta(7
alpha(8)=sum(X8.*X8)*delta x/L; beta(8
alpha(9)=sum(X9. *X9)*delta_x/L; beta(9

clear delta ? ? Xi X2 X 3 X4 X5 Xo X7 X8 X9.

forfluid_N=2:9
tic
fluid=char(fluid_ce!(fluid_N))
filenameO=char(illenameO_cel(fluid_N));
g_ro_r=g_ro_f_cel(fluid_N);
g_eta_f=g_eta_f_cel(flu i d_N) ;
f_ref=f_ref_cel(canti]ever_N.fluid_N);
% data management %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
filename=[filenameO cantilever amps ' CoUP - CaUP NDP.dat'];
exp_data=load(fi leñame);
indices = find(cutoff_freq<exp_data(:,l) & exp_data(:,l)<=100); exp_data(indices,:)=[];

(=sum(Xl)*delta_x/L:
l=sum(X2)*delta_x/L:
>=sum(X3)*delta_x/L:
t=sum(X4)*delta_x/L
(=sum(X5)*delta_x/L
l=sum(X6)*delta_x/L
l=sum(X7)*delta_x/L
l=sum(X8)*delta x/L:
l=sum(X9)*delta x/L:
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f=exp_data(:,l); i_ref = find(f==f_ref); f(i_ref)=[]; omega_ref=2*pi*f_ref*1000;
omega=2*pi*f*1000;
exp_amp=exp_data(:,2); amp_ref=exp_amp(i_ref); exp_amp(i_ref)=[];
exp_ang=exp_data(:,3); ang_ref=exp_ang(i_ref); exp_ang(i_ref)=[];

clear filename exp data indices i reff reí";
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
g_Tb=(g_ro_f*b)/(ro_c*h);
g_Reb=(g_ro_Pw_vac*bA2)/(4*g_eta_f);

fori_f=l:length(f)

Y_0=[g_Tb g_Reb];

Re = @(X,Xf) X*Xf/w_vac;
GAMA_circ = @(X,X01+(4*i*besseIk(l.(-i*sqrt(i*Re(X,Xf)))))./(sqrt(i*Re(X,Xf))-*besselk(0,(-

i*sqrt(i*Re(X,Xf)))));
tao = @(X,Xf)logl 0(Re(X,X0);
OMEGA_r=@(X,Xf)(0.91324-0.48274*(tao(X,Xf))+0.46842*(tao(X,Xf)).A2-

0.12886*(tao(X,X0).A3+0.044055*(tao(X,Xf)).A4-
0.00351 17*(tao(X,Xf)).A5+0.00069085*(tao(X,Xi)).A6)/(l-0:56964*(tao(X,Xf))+0.48690*(tao(X;X0).A2-
0. 1 3444*(tao(X,Xf))-A3+0.045 1 55*(tao(X,Xf))-A4-
0.0035862*(tao(X,Xf))A5+0.00069085*(tao(X,Xf)).A6);

OMEGA_i=@(X,Xf)(-0.024134-0.029256*(tao(X,Xf))+0.016294*(tao(X,X0).A2-
0.00010961 *(tao(X,Xf)).A3+0.000064577*(tao(X,Xf)).A4-0.000044510*(tao(X,Xf)).A5)/(l-
0.597020*(tao(X,Xf))+0.55 1 820*(tao(X,Xf)). A2-
0.18357000*(tao(X;Kf)).A3+0.079156000*(tao(X,Xf)).A4-
0.014369000*(tao(X,Xf)).A5+0.0028361*(tao(X,Xf)).A6);

OMEGA = @(X,Xf)OMEGA_r(X,Xf) + OMEGA_i(X,Xf)*i;
GAMArect = @(X,Xf)OMEGA(X,Xf) .* GAMA_circ(X,Xf);

ACOl=@(X,X0(XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(l))/(w_vacA2*(larida(l)/landa(]))A4*
alpha(l)-XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(l));

AC02=@(X,Xf)(XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(2))/(w_vacA2*(Ianda(2)/landa(l))A4*
alpha(2)-XfA2*(l+(pi*X(l)/4)*GAMA„rect(X(2),Xf))*alpha(2));

AC03=@(X,Xf)(XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(3))/(w_vacA2*(landa(3)/landa(l))A4*
alpha(3)-XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(3));

ACO4=@(X,X0(XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(4))/(w_vacA2*(landa(4)/landa(l))A4*
alpha(4)-XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(4));

AÇ05=@(X,Xf)(XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(5))/(w_vacA2*(landa(5)/landa(I))A4*
alpha(5)-XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(5));

AC06=@(X!Xf)(XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xi))*beta(6))/(w_vacA2*(landa(6)/landa(l))A4*
alpha(6)-XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(6));

AC07=@(X,Xf)(XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*beta(7))/(w_vacA2*(landa(7)/landa(l))A4*
alpha(7)-XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(7));

AC08=@(X,Xf)(XfA2*( 1 +(pi*X(l )/4)*GAMA_rect(X(2),Xf))*beta(8))/(w_vacA2*(landa(8)/landa( 1 ))A4*
alpha(8)-XfA2*(l+(pi*X(l)/4)*GAMA_rect(X(2),Xf))*alpha(8));
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AC09=@(X,Xf)(XfA2*(l+(pi*X(l)/4)*GAlVIA_rect(X(2),Xf))*beta(9))/(w_vacA2*(Ianda(9)/landa(1))A4*
alpha(9)-XfA2*( 1 +(pi*X(1 )/4)*G AMA_rect(X(2),Xf))*alpha(9));

ACO_response9=@(X,Xf)
[ACOl (X,Xf)*X 1 1 (length(X 1 1 ))+AC02(X,Xf)*X 1 2(length(X 1 2))+AC03(X,Xf)*X 1 3(length(X 1 3))+AC
04(X,Xf)*X 1 4(length(X 1 4))+AC05(X,Xf)*X 1 5(length(X 1 5))+AC06(X,Xf)*X 1 6(Iength(X 1 6))+AC07(
X,Xf)*X 1 7(length(X 1 7))+AC08(X,Xf)*X 1 8(length(X 1 8))+AC09(X,Xf)*X 1 9(length(X 1 9))]';

AAA=@(X,Xf)abs(ACOj-esponse9(X,Xf));
BBB=@(X,Xf)angle(ACO_response9(X,Xf));
CCC=@(X,Xf)unwrap(BBB(X,Xf));

root_function=@(X)[AAA(X,omega(iJ)yAAA(X,omega_ref);CCC(X,omega(i_f))-
CCC(X,omega_ref)]-[exp_amp(i_f)/amp_ref; exp_ang(i_f)-ang_ref];

options = optimset('MaxFunEvals',200,'!Vlaxlter', 1 00,'TolFun', 1 e-1 0,'ToIX', 1 e-8);
[Y,fval,exitflag,output] = fsoIve(root_function,YO,options);

i_f
M_Tb(i_f, I)=Y(I);
M_Reb(i_f,I)=Y(2);
control(i_f,:)=[exitfIag output.funcCount output.iterations fval(l) fval(2)];

clear Y 0 Re GAMA circ tao OMEGA r OMECA i OMEGA GAMA rect ACOl AC02 AC03 AC04
AC05 AC06 AC07 AC08 AC09 ACO response9 AAA BBB CCC root function options Y fval exitflag
output;

end

clear i f g Tb g Reb omega exp amp exp ana omega ref amp ref'ang ref
O ?/O f

savin" resultsG i. T.0

/ ori ? rr-p?t? ff f ; t-- ? ^?-iwn ? f f ?t -? ? rt rrtr-r ?? ? t; —r[ ? > i i—¦:¦ .·-; ;t ri ifrrry fi üf i- iy- rr ; * fi if ri ;<- rtiìr; i; ? <i irr-/- ir ?r ü i-iiy;- ;¦? ii-itrr ;?¦ ì

M_ro_f=M_Tb*ro_c*h/b;
M_eta_f=(M_ro_f*w_vac*bA2)./(4*M_Reb);
M_error_ro=(M_ro_f-g_ro_f)/g_ro_P 1 00;
M_error_eta=(M_eta_f-g_eta_f)/g_eta f* 1 00;

ro_eta_control=[f Mrof Merrorro M etaf Merroreta control];

filename_save=[filenameO cantilever amps '__Co'UP - CaUP NDPjo età control. dai'];
save(filename_save,'ro età control'.'-ascii');

clear M_ro f M età f M Tb M Reb M error ro M error eta control filename save

%#î?###î?###3###*«?î####??####?/###« figures mmmmimmmmmmmmmmmm
/Ufi ??:"'· ¦ < il T: 17 J· * : .-* r j t- ¦ ¦ ¦¦ : t 1111 ¦ ¦ ¡' :? ?! li ¦ ¦ ¡ ; Tt li ¦' ¦ : : : ti : ¦ ' ¦ ¦ -, .:";:¦¦¦: ''IiH-- GG G? ti T! ¦" ·¦ G: ? ? ¦¦:¦:¦¦;; ;' : ?G7-;~ : i G? I'll : : ¦ ¦ -G (¦>¦>?¦¦¦¦:¦?;¦ ?r fi *;'""·"¦" ¡?;Tf '

figure;
subpIot(2,2,l); hold on;
plot(ro_eta_control(:,l),g_ro_Pones(length(f)),'g','Line\V'idth',2);
plot(ro_eta_control(:,l),mean(ro_eta_control(:,2))*ones(length(r)),'rVl.ioeWidth',2);
plot(ro_eta_control(:,l),ro_eta_control(:;2);.k','l ineWidth',2);
legend('KnownVAverageVMeasured':i.ocation','Best'); title(['Density of fluid ' - ' cantilever]); hold off;

subplot(2,2,2); hold on;
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plot(ro_eta_control(:,l),g_eta_f*ones(length(f))/g','L¡neW'idtli',2);
plot(ro_eta_control(:,]),mean(ro_eta_contro](:,4))*ones(length(f)),'r','L¡neWidth',2);
plot(ro_eta_control(:J),ro_eta_control(:,4)/.k7Line\Vidth',2);
Iegend('KnownVAverageVMeasured','L-ucation','Besi"'); title(['Viscosity of fluid ' - ' cantilever]); hold off;

subplot(2,2,3); hold on;
plot(ro_eta_control(:,l),mean(roda_control(:,3))*ones(length(f)),'rVLineWidíh',2);
plot(ro_eta_controI(:,l),ro_eta_control(:,3),'.kVL¡neWidlh',2);
legend('Average','EnOr','LocationVBest'); title('Densiiy error); hold off;

subpIot(2,2,4); hold on;
plot(ro_eta_control(:,l),mean(ro_eta_control(:,5))*ones(length(f)),'rVl ineWidth',2);
plot(ro_eta_control(:,l),ro_eta_control(:,5),'.k', I...ine\Vidth',2);
legend('Average','ErrorVLocationVBesl'); title('Viscosit:y error'); hold off;
0AnUUi ' Xt it ~tZ Tliï

TT ? G TT ; T.. ~

clear f fluid filenameO g_ro_f g_eta fro eia control
toe
end
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Appendix N
The effect of using different number of modes on the calculation of theoretical response:
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Appendix O
The responses of long and medium cantilevers in the non-Newtonian fluids:
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Micro Cantilever Based Rheology of Liquids
Ramin Motamedi, Ph.D.

Concordia University, 2009

I've been examining PhD theses in Mechanical Engineering generally, and in
rheology in particular, since 1986. I've been doing so the Rheology Research Center at
the University of Wisconsin since 1994. Motamedi's thesis stands out. The high quality
of his Chapter 2 "Theory" earns him my respect as an engineer and as a scholar. Chapter
1 fearlessly introduces the rather formidable problems associated with interpreting the
response of a tiny vibrating beams immersed in a fluid, and in terms of the density and
rheology of this surrounding fluid. Chapter 2 then skillfully ploughs through the many
problems with which others have grappled and capably arrives at a novel improvement to
existing methods for the measuring the Newtonian viscosity of tiny quantities of precious
liquids. Figure 5.31 is a substantial contribution to experimental engineering science. He
has also capably mapped out the future for his research area, by preparing the extension
of his work to tiny quantities of precious non-Newtonian fluids. The thesis leaves the
reader yearning for the next student's installment of future work.

This thesis easily matches the highest quality theses defended in my own Mechanical
Engineering Department at the University of Wisconsin. I would also place it among the
top 5% of the theses defended in rheology, all disciplines, at the University of Wisconsin.

Typographical Errors

1 . Page 1 : "Noble" should be "Nobel".
2. Page 3: "reviewed in details." should be "reviewed in detail."
3. Page 2 1 : "this error respect" should be "this error with respect".
4. Page 33: "Combing" should be "Combining".
5. Page 54: "Furrier" should be "Fourier".
6. Page 77: "spectra leakage" should be "spectral leakage".
7. Page 146: "Cox-Mertz" should be "Cox-Merz". Also, include the Cox-Merz

reference here.
8. Page 1 54: "et al" should be "et al.". Correct throughout.


