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Abstract

A Stop Operator-Based Prandtl-Ishlinskii Model For Compensation Of Smart
Actuator Hysteresis Effects

Omar Aljanaideh

The positioning and tracking performance of smart materials actuators is strongly

limited due to the presence of hysteresis nonlinearity. The hysteresis of smart actuators,

employed in micro-positioning tasks, is known to cause oscillations in the open-loop

system's responses, and poor tracking performance and potential instabilities of the close-

loop system. Considerable efforts are thus being made continuously to seek effective

compensation of hysteresis effects in real-time applications. In this dissertation research,

a stop operator-based-Prandtl-Ishlinskii model (SOPI) is proposed as a feedforward

compensator for the hysteresis nonlinearities in smart actuators. The complementary

properties of the proposed stop operator-based model in relation to the most widely used

play operator-based Prandtl-Ishlinskii model are illustrated and applied to realize the

desired compensation. It is shown that the stop operator-based model yields hysteresis

loops in the clockwise direction, opposite to that of the piezoceramic micro-positioning

actuators. It is further proven that the stop operator-based model exhibits concave initial

loading behavior, while the play operator-based model, used to characterize the hysteresis

behavior, follows a convex initial loading relation between the output and the input. On

the basis of these complementary properties, it is hypothesized that a stop operator-based

Prandtl-Ishlinskii model may serve as an effective compensator for known hysteresis

nonlinearity that is described by a play operator-based model. The proposed stop

operator-based model is subsequently implemented as a feedforward compensator in
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conjunction with the play operator-based model describing a known hysteresis
nonlinearity. The effectiveness of the proposed compensator is demonstrated through
simulation and experimental results attained with a piezoceramic micro-positioning stage.

Both the simulation and the experimental results show that the proposed stop operator-

based model can serve as an effective feedforward hysteresis compensator. A

methodology for identifying the stop operator-based model parameters is proposed using

those of a known play operator hysteresis model. Relations between the stop and play

operator based-model parameters are also derived in the order to facilitate parameter

identification. Furthermore, the relation between the stop operator based Prandtl-

Ishlinskii model and the inverse Prandtl-Ishlinskii model, which has been proven

effective hysteresis compensator, is demonstrated.
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Chapter 1
Introduction and literature review

1.1 Introduction

Although classical actuators (electromagnetic, hydraulic and pneumatic) are widely

used in the industry, new technologies based on physically different principles have

emerged during the past two decades for applications requiring miniaturization in size,

fast response and high resolution. Smart materials have been employed to meet these

demands for micro-positioning and actuation. Such materials are able to change their

physical properties such as stiffness in response to external effects like stress or electric

fields. Piezoceramic materials are among the most common materials which are widely

being used in micro-actuators. Such smart materials actuators, however, exhibit strong

nonlinearities between the input and the output associated with material hysteresis and

saturation.

Hysteresis is invariably observed in smart materials due to deformation, in magnetism,

and even in biological systems [1,2,3]. Piezoceramic actuators used in micropositioning

and vibration control exhibit hysteresis nonlinearities between the input voltage and the

output displacement [4,5,6,7]. These nonlinearities can be presented by counter-

clockwise hysteresis loops, and are known to cause oscillations in the responses of the

open-loop systems, and poor tracking performance and potential instabilities in the

closed-loop systems [8]. Considerable efforts have thus been made towards design of

controllers for compensation of hysteresis effects. The majority of the reported

compensation methods could be classified in two broad categories: model-based [9] and
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inverse model-based control methods [8,10,12,13]. The model-based hysteresis

compensation methods employ hysteresis models of the actuator to design nonlinear

controllers such as robust adaptive and energy-based control systems [1 1,14].

The inverse model-based hysteresis compensation methods employ a cascade of a

hysteresis model and its inverse together with a controller to compensate for the

hysteresis effects [4]. Such methods can yield more effective compensation of hysteresis

effects in an efficient manner compared to the model-based compensation methods.

Furthermore, the inverse-model based methods can compensate for broad range of

hysteresis nonlinearity. These methods, however, necessitate formulation of an inverse of

the hysteresis model, which is often a challenging task. Considerable efforts have been

made in deriving either numerical or analytical inverse of the operator-based

phenomenological hysteresis models, which is implemented as a feedforward hysteresis

compensator in conjunction with a relatively simpler controller.

The reported studies on both the model and the inverse model-based compensation

methods have mostly employed operator-based phenomenological hysteresis models such

as Preisach [14] and Prandtl-Ishlinskii [11] models. The majority of the operator-based

hysteresis models, with the exception of the Prandtl-Ishlinskii model, however, are not

analytically invertible. Consequently, a number of studies have employed numerically-

derived inversions of the Preisach and Krasnosel'skii-Pokrovskii models [4,10,15,16],

which may be considered valid in the vicinity of conditions or ranges used in defining the

inverse.

Alternatively, the Prandtl-Ishlinskii hysteresis model [17] offers a unique property

associated with its play and stop operators that may be explored to achieve hysteresis

2



compensation in a more efficient manner. The stop operator model exhibits

complementary property in the relation to the direction of hysteresis loops of the play

operator [17]. In this dissertation, it is hypothesized that the stop operator-based Prandtl-

Ishlinskii (SOPI) model could serve as an effective feedforward compensator to

compensate the hysteresis nonlinearity described by the play operator-based Prandtl-

Ishlinskii (POPI) model, although a (SOPI) model cannot characterize the hysteresis of a

smart actuator. This dissertation research presents the formulation of a stop-operator

based Prandtl-Ishlinskii model to achieve hysteresis compensation. Essential

relationships between the play and stop operator-based models are formulated to facilitate

identification of the proposed stop operator-based model from the known hysteresis

model. The effectiveness of the proposed stop operator-based compensator is

demonstrated through various simulation examples and experiments on a piezoceramic

actuator.

1.2 Literature review

Compensation of hysteresis in smart actuator systems involves: characterization

and modeling of hysteresis in smart actuators, and developments in compensation

algorithms and controllers. The reported relevant studies in each of these domains are

reviewed to build essential background knowledge and to formulate the scope of this

dissertation research. The reviewed studies are systematically grouped under different

relevant topics and summarized in the following subsections.
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1 .2. 1 HYSTERESIS NONLINEARITIES OF SMART MATERIAL ACTUATORS

The hysteresis properties of different materials and smart actuators have been

characterized through experimental means in order to enhance an understanding of the

essential properties and to seek methods for modeling this phenomenon. Although the

experimentally measured hysteresis properties of ferromagnetic materials have been

extensively reported [4,18], the properties of piezoceramic actuators have been reported

in a few recent studies [3,19]. The ferromagnetic materials and smart actuators generally

exhibit major and minor loops in the output-input characteristics together with output

saturation nonlinearity. Figure 1.1 illustrates typical hysteresis nonlinearity of

ferromagnetic materials between the applied electric field and the response flux density

[18]. The piezoceramic and shape memory alloy (SMA) actuators also exhibit similar

hysteresis nonlinearity. The essential hysteresis properties can be generally summarized

as follows:

1 . The relation between the output and the input is causal, and the output depends on the
past and current value of the input;

2. The output tends to saturate as the input exceeds certain limit;

3. The output is monotone continuous and it increases or decreases with increasing or
decreasing input;

4. Major loops in the output-input characteristics are obtained when the input is
increased to a maximum value, and decreased to a minimum value. The hysteresis
minor loops are obtained under relatively small variations in the input;

5. The width of the hysteresis loop is referred to the coercivity of the material, which
increases as the amplitude of the input is increased. The coercivity generally
approaches its maximum value near zero input.
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Many studies have experimentally characterized the hysteresis in smart material

actuators in order to enhance an understanding of the hysteresis properties, particular the

effects of various contributing factors such as the rate and the magnitude of the input.

These studies have reported hysteresis properties of piezoceramic, shape memory alloy

(SMA) and magnetostrictive actuators [14,21].

2
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Figure 1.1: Measured hysteresis properties of a ferromagnetic material [18].

The characterizations of hysteresis properties of piezoceramic actuators through

measurements and modeling have been the focus on many studies due to their various

potential applications in micro-positioning tasks. These studies show that piezoceramic

actuators exhibit strong hysteresis effects between the input voltage and the measured

output displacement, while the hysteresis loops are generally symmetric about the input

and the output [3]. It has also been shown that such hysteresis is known to cause

inaccuracy and oscillations in the system response, and potential instability of the closed

loops system [8].
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Ge and Jouaneh [3] performed measurements to characterize the hysteresis

properties of a piezoceramic actuator. The actuator used in the study provided a nominal

displacement of 20 µp? under an excitation of 1000 V and a capacitive sensor with a

resolution of 2.5 irai was used to measure the displacement response of the actuator. The

measurements were performed under sinusoidal voltage input of amplitude of 800 Vat

two distinct frequencies (0.1 and 100 Hz). The study concluded that both the excitations

yield similar hysteresis suggesting negligible effect of the rate of input. In similar

manner, Hu and Ben Mrad [20] measured the hysteresis of a piezoceramic actuator

(nominal displacement = 3000 nm) under an input voltage of 100 V at different

frequencies. The study concluded that the width of the measured voltage-displacement

loop was nearly 15% of the maximum actuator expansion under a very low frequency

input, and increased under higher frequency inputs. Yu et al. [19] measured the hysteresis

properties of piezoceramic patches and SMA coupled with a cantilever beam. The study

was performed to characterize the minor hysteresis loops and wiping out properties of the

beam coupled with the actuator. The results showed strong hysteresis nonlinearities and

the wiping out property.

The hysteresis properties of magnetostrictive actuators and shape memory alloys

(SMA) have also been investigated in many studies [10,21,22]. Unlike the piezoceramic

material actuators, the magnetostrictive actuators, consisting of ferromagnetic materials

such as Terfenol-D, exhibit asymmetric hysteresis loops between the input and the

output, as shown in Figure 1.2. Shape memory alloys (SMA) such as nickel-titanium,

exhibit a saturation of the output displacement with increasing input temperature, as

shown in Figure 1.3. The hysteresis properties of SMA have been measured by varying

6



the input temperature in the materials and the displacement output. These materials show

capability to recover strain (up to 10%) without permanent deformation [14].

8 30

-0.5 0 0.5

Input current (A)
Figure 1.2: Output-input hysteresis of a magnetostrictive actuator illustrating
asymmetry [21].

i
?

200 -150 -100 -50 0 50 100
Input Temperature

150 200

Figure 1.3: The minor and major hysteresis properties of a SMA actuator illustrating
output saturation [14].
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1.2.2 HYSTERESISMODELS

A large number of analytical models have been proposed to characterize the

hysteresis properties of smart actuators. The primary goal of these models is to predict

the hysteresis behavior of materials and smart actuators in order to study the effects of

hysteresis and facilitate the design of controllers and hysteresis compensation. These

models may be generally classified into physics based models [4,9,23] and

phenomenological models [17,18,24]. The physics based models are built on the physical

measures such as energy or displacement. The physics based models generally require

knowledge of the physical system and the phenomenon which may be quite complex for

many materials considering the strong hysteresis nonlinearity. Moreover, the physics-

based models are considered applicable for a particular material or actuator, while their

inverse may not be attainable for hysteresis compensation [4,23]. The phenomenological

models, on the other hand characterize the hysteresis properties on the basis of known

input-output characteristics. The phenomenological models can be further classified into

differential equation-based phenomenological models such as: Duhem model [25] and

Bouc-Wen model [25]; and the operator-based hysteresis models such as: Preisach model

[18], Prandtl-Ishlinskii model [17] and Krasnosel'skii-Pokrovskii model [28]. The

differential equation-based models comprise nonlinear differential equation for

describing the input-output relations. Such models, however, exhibit several limitations

for control system design applications [25], and pose considerable challenges in

parameters identification. Moreover, these models are not invertible and cannot be

applied for effective hysteresis compensation [25]. The operator based Preisach and

Krasnosel'skii-Pokrovskii models have been most widely used to characterize the

8



hysteresis behavior of smart actuators. These models are briefly described below, while

the Prandtl-Ishlinskii model is described in greater details in chapter 2.

Preisach model

The first attempt to characterize hysteresis was carried out by Preisach in 1 939. The

Preisach model [18] has been widely used in modeling a wide range of hysteresis

phenomenon in electromagnetic materials and smart actuators. In [18], Mayergoyz

describes the mathematical properties and formulation of the Preisach model. The

Preisach model employs an infinite set of relay operators Yap , while the output of the

model is derived from a superposition of a set of the relay operators. For a given input

v(/) eCm [0, T], the output of the relay operator ?aß [v](0 is given by:

+1 if v{t)>a

^M(O = ] -i if v(i) </? (1.1)
/^M(O) if v(t)<a&v(t)>j3

where v(t) is the input, and the constants a and ß define the switching or the threshold

values of the input corresponding to upward and downward shifting of the output,

respectively, as shown in Figure 1 .4.

In the above formulation ?aß [v](0) is given by:

^M(O) =
+ 1 if v(0) > a
-1 if v(0)</? (1.2)
? if v(0) <a& v(0) >/?

The above operator forms the building block for the Preisach model, where the

output of the operator is either +1 or -1 depending on the value of the current input. The

9



output Switches from -1 to +1 when the current input is larger than« , and from +1 to -1

when the current input is less than/?. The operator thus exhibits strong discontinuities

near v(t)=a and ?(0=ß, while the output is limited to either 1 or -1 .

?a,ß

-4 ?

ß

+1

¦*> ?

Figure 1 .4: Preisach hysteresis operator.

The Preisach hysteresis model is formulated upon integration of the operators ?aß and

expressed as:

y(t)= \\µ{a,ß)?aß[?]{?)?a?ß
a>ß

(1.3)

where µ(a,ß) represents the weightings of the relay operators also known as the density

function, which are generally identified from the measured data of a particular material

or actuator. The function µ{a,ß) is integrable and positive.

In [18], Mayergoyz further defines two essential properties of the Preisach model:

(i) the wiping out property; and (ii) the congruent minor loop property. These are the

necessary and sufficient conditions for existence of a Preisach model. The wiping out

10



property states that extrema of the input can remove the effects of a previous extrema,

essentially the memory of the model will be wiped out. The congruent minor-loop

property states that at any point on the minor loop, the output variation from the previous

extremum will be identical for both inputs and the minor loops will have the same shape.

Furthermore, the two minor loops are considered to be equivalent only if they are

generated by identical monotonically varying inputs.

The reported studies have proposed different forms of the classical Preisach

model for characterizing hysteresis in various systems such as piezoceramic [3],

magneto-restrictive [20,21,27,29] and SMA actuators [14,30,31]. Ge and Jouaneh [3]

modified the classic Preisach operator with output threshold of either '-G or '+G to an

alternate Preisach operator with threshold or switching values of ?' or '+G considering

the unidirectional dipoles polarization of the piezoceramic materials. A few studies have

proposed alternate density functions to accurately characterize the hysteresis behavior of

different actuators [2,18,19]. For instance, Hughes and Wen [2] applied the Preisach

model for characterizing the hysteresis of piezoceramic and SMA actuators by integrating

a density function in the form of a second-order polynomial. The study verified wiping

out and the minor loops properties for both the actuators by applying a decaying

sinusoidal input. A few studies have also proposed dynamic density functions in the

Preisach model to describe rate dependent hysteresis effects of smart actuators [10,19].

The validity of such models has been demonstrated by illustrating good agreements

between the measured hysteresis properties and the model responses to inputs at different

frequencies [19,20].
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Krasnosel'skii-Pokrovskii model

The Krasnosel'skii-Pokrovskii operator is a hysteresis operator that is derived

from the Preisach hysteresis operator [16,24,28]. This operator is constructed from two

different functions that are bounded by two piecewise Lipschitz continuous functions. A

ridge function d (?) is used to formulate the Krasnosel'skii-Pokrovskii operator, which is

given by:

S(V):

-1 for v(0 <0

I + M) for o<v(0<« (14)
1 for v(t) > a

where a >0 is a constant, as shown in the output-input characteristics of the operator in

Figure 1.5. For a given input v(t)eC [0, T], the output of the Krasnosel'skii-Pokrovskii

operator is expressed as:

M(t) =
max(M(0,o(v(t)-a)) for v(t)>v(t_)
t???(?(0,d(?(?)-ß)) for v(t)<v(t_)

M(t_) for v(i) = v(0

where M(X) is the output, and a and ß are constants similar to those defined for the

Preisach relay operator. The Krasnosel'skii-Pokrovskii operator maps C [0, T] to C [0, T]

[28]. Unlike the Preisach operator, the K-P operator exhibits finite slope as seen in Figure

1.5, which suggests that the operator is Lipschitz continuous. The output of the

Krasnosel'skii-Pokrovskii model, ?[?](0, is expressed by [28]:

??(0= \\p(a,ß)M[v](t)dadß (] 6)
a>ß

where p(a, ß) is an integrable positive density function.
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Banks et al. [32] investigated the properties of the Krasnosel'skii-Pokrovskii

model for characterizing hysteresis nonlinearities in smart actuators, particularly SMA

actuators. Another study implemented Krasnosel'skii-Pokrovskii operators instead of the

Preisach relay operators in the Preisach model for characterizing hysteresis nonlinearities

of a piezoceramic actuator [16].

f-

Figure 1.5: Krasnosel'skii-Pokrovskii operator.

Prandtl-Ishlinskii model

The Prandtl-Ishlinskii model [17] is constructed using either play or stop

operators. Unlike the discontinuous relay operators in the Preisach model, the play and

stop operators are continuous hysteresis operators, which are characterized by an input ?

and the threshold value. The hysteresis properties of smart actuators have been invariably

characterized using integration of the play operators in the Prandtl-Ishlinskii model

[12,39], while the application of the stop operator has been limited to hysteresis of

materials in a few earlier studies [17]. Ge [33] investigated the play operator under

different input signals (sinusoidal and arbitrary) at low frequencies, applied a linearizing

algorithm to compensate for play operator nonlinearity in tracking control simulation.
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Janocha and Kühnen [35] characterize the hysteresis of piezoceramic actuator using play

operator based Prandtl-Ishlinskii model and compensated the hysteresis effects using

inverse Prandtl-Ishlinskii model, which was constructed numerically, Krejci and Kühnen

[12] applied the Prandtl-Ishlinskii model and an analytical inverse of the Prandtl-

Ishlinskii model to characterize and compensate hysteresis nonlinearities of a

piezoceramic actuator. While the stop operator has been proposed in the literature to

characterize elastic-plastic behavior in continuum mechanics [17], the stop operator

based Prandtl-Ishlinskii model could not be used in characterizing hysteresis in smart

actuators since it exhibits clockwise hysteresis loops in the input-output curves.

Alternatively, this model could be used as a feedforward compensator in open loop

system to compensate for hysteresis nonlinearities. The Prandtl-Ishlinskii models with

play and stop operators are described in the subsequent chapter.

1.2.3 HYSTERESISCOMPENSATION

The hysteresis nonlinearities in smart actuators have been associated with

oscillations and poor tracking performance of micro-positioning devices employing smart

actuators. Numerous efforts have thus been made to design controllers for compensating

the nonlinear hysteresis effects in smart actuators and to enhance the tracking

performance [7,10,12,22]. Although a number of controller syntheses have been proposed

to reduce the error due to hysteresis effects in smart actuators, continued efforts are being

made to seek more effective and efficient hysteresis compensation methods. The

proposed compensation algorithms could be classified in two broad categories based

upon the approach, namely: non-inverse and inverse based methods, which are briefly

described below.
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Non-inverse based control methods

Compensation of hysteresis nonlinearities has been carried out in many studies

without considering the inverse of the hysteresis models, although the hysteresis may be

characterized by a hysteresis model. A number of control methods have been proposed to

compensate for smart actuators hysteresis such as robust adaptive [11], energy-based

[14], and sliding model control systems [36]. In [11], Su et al. proposed an adaptive

controller that is employed to control a nonlinear system preceded by unknown Prandtl-

Ishlinskii hysteresis nonlinearities. In this study, the proposed controller leading to the

desired output and the global stability was presented. Gorbet et al. [14] proposed a

control approach based on energy to control a SMA actuator, which showed hysteresis

nonlinearities. The study employed the Preisach model, and verified the energy properties

and the state space of the model. The minimum energy states were recommended to

formulate the controller synthesis and the passivity was established for the relationship

between the input and the time rate of the Preisach model output on the basis of the

energy. The results demonstrated the effectiveness of the method in compensating the

hysteresis of the SMA actuator. Liaw et al. [36] proposed a sliding mode adaptive

controller to control the hysteresis of a piezoceramic actuator. The piezoceramic actuator

was characterized using an electromechanical, analytically expressed by a second-order-

differential equation. The study demonstrated that the proposed sliding model controller

can effectively compensate for the hysteresis nonlinearities of the piezoceramic actuator.
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Inverse model based control methods

The inverse model-based hysteresis compensation methods employ the inverse of

the hysteresis model as a feedforward compensator in a cascade arrangement of the

hysteresis model and its inverse. These methods are considered to be more effective and

convenient for real-time compensation and control [10,12,37]. The inverse model-based

compensation, however, necessitates the formulation of the hysteresis model inverse,

which is often a challenge task. An open-loop inverse model-based compensation

method, shown in Figure 1 .6, has been widely proposed in the literature to reduce the

effects of hysteresis. In this figure, u is the control input, IT1 is an inverse hysteresis
model, ? represents a hysteresis model and v* is the desired output. This method is
pioneered by Tao and Kokotovic [8], and involves the formulation of the inverse model

of the hysteretic system. Their study developed a control algorithm to compensate the

hysteresis nonlinearities of a system comprising a linear plant proceeded by a hysteresis

block representing a hysteretic actuator. An adaptive hysteresis inverse compensator was

cascaded together with the hysteresis system to mitigate the effects of hysteresis.

Inverse feedforward
Compensator

Hysteretic system

Figure 1.6: Open loop inverse control system.

The implementation of an inverse-model based compensation, however, may

involve complexities associated with formulations of the inverse. The Preisach and
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Krasnosel'skii-Pokrovskii models are not analytically invertible. Different numerical

methods have thus been developed to obtain inversions of these models. Ge and Jouaneh

[7] used the inverse Preisach model, desired using a numerical algorithm, as a

feedforward compensator coupled with a PID feedback control system to reduce the

hysteresis nonlinearities in a piezoceramic actuator. A numerical inverse of the

Krasnosel'skii-Pokrovskii model was applied by Galinaitis [16] in an open-loop control

system to compensate hysteresis of a piezoceramic actuator. In this study, the

compensation of the hysteresis nonlinearities was demonstrated for three different

sinusoidal inputs at a frequency of 0.05 Hz. In a similar manner, Song et al. [62]

proposed a modified Preisach model to characterize and to compensate the hysteresis

nonlinearities in a piezoceramic actuator with PD-lag and PD-lead controllers together

with the inverse of the modified model in a closed loop control system. Reduction in the

hysteresis nonlinearity was demonstrated experimentally for major and minor hysteresis

loops under low excitation frequencies (0.5 Hz). Tan and Baras [10] applied an inverse

Preisach model, which was obtained numerically, in an adaptive control system to

compensate the hysteresis nonlinearities of a magnetostrictive actuator. Janocha and

Kühnen [35] compensated the hysteresis effects of a piezoceramic actuator using the

inverse Prandtl-Ishlinskii model, which was constructed numerically, in an open loop

control system.

Unlike the Preisach and Krasnosel'skii-Pokrovskii models, the Prandtl-Ishlinskii

model offers a unique advantage, since its inverse can be obtained analytically. Krejci

and Kühnen [12] applied the analytical inverse of the Prandtl-Ishlinskii model as a

feedforward compensator for mitigating the hysteresis nonlinearities. A recent study has
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proposed a generalized Prandtl-Ishlinskii model and its analytical inverse to compensate
for rate dependent and asymmetric hysteresis nonlinearities in a class alls of smart

actuators [40]. This model also offers another unique property associated with its play

and stop operators that may be explored to achieve hysteresis compensation in a more
efficient manner. The Prandtl-Ishlinskii model can be constructed using either the play or

stop hysteresis operators, while the reported hysteresis models are invariably based on the

play operator, which exhibits counter-clockwise hysteresis loops. These Prandtl-Ishlinskii

models have been extensively used to characterize hysteresis properties of piezoceramic

actuators, which are symmetric about the input [12,48]. The Prandtl-Ishlinskii model

based on the stop operator, on the other hand, exhibits clockwise hysteresis loops, which

is attributed to the stop operator [17].

1.3 Scope and objectives

The smart actuators employed in micropositioning applications exhibit

oscillations in the response and poor tracking performance, which have been attributed to

their strong hysteresis nonlinearities. The compensation of such hysteresis effects through

adequate controller designs is thus considered an important task. Although various non-

inverse and inverse model based compensation methods have been proposed to

effectively compensate for the hysteresis nonlinearity. While the non-inverse model

based methods require complex controller design, the vast majority of the inverse model

based methods rely on approximate numerical inverse of the hysteresis model. In this

dissertation, it is hypothesized that the stop-operator based Prandtl-Ishlinskii model,

owing to its complementary property with respect to the classical play-operator based

model, could serve as effective hysteresis compensation when applied in a feedforward
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manner. Although the Prandtl-Ishlinskii models for characterizing hysteresis nonlinearity

of smart actuators have been invariably formulated using the play operator, a few studies

on materials hysteresis characterization have employed the stop operator. The stop

operator based model exhibits hysteresis loops in the clockwise direction opposite to that

of the play operator based model. This complementary property of the stop and play

operators may be utilized to achieve hysteresis compensation through implementation of

a cascade arrangement of the composition of play operator based hysteresis model with

stop-operator based model in an open loop manner. Furthermore, the continuous nature of
the Prandtl-Ishlinskii model and availability of its exact inverse could help identify

essential relations for identify the parameters of the stop operator based model.

The primary objective of this dissertation research is thus formulated to explore the above

stated hypothesis for achieving compensation of hysteresis nonlinearity in smart actuators

the specific objectives of the dissertation research are:

- Formulate a stop operator based Prandtl-Ishlinskii model and investigate its properties,

particularly the complementary property with the play operator;

- Investigate the hysteresis compensation effectiveness of the stop operator based Prandtl-

Ishlinskii model through simulations and in the laboratory for a piezoceramic micro

actuators; and

- Formulate relations methodology for identifying the parameters of the stop operator-

based model using the known hysteresis of a particular smart actuator.

In this dissertation research, a stop operator based Prandtl-Ishlinskii hysteresis model

is formulated on the basis of known hysteresis properties of a smart actuator. For this

purpose, the widely-documented play operator based Prandtl-Ishlinskii hysteresis model is
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used to characterize the hysteresis of the smart actuator. The well-known play-operator

based Prandtl-Ishlinskii model is formulated, thus presented in Chapter 2, where the model

parameters are identified using the laboratory-measured data acquired for a piezoceramic

actuator. The resulting play operator based model is subsequently applied to develop the

stop operator based model for compensation of hysteresis effects.

1.4 Organization of the thesis

This dissertation research is organized in four chapters. Chapter 2 presents the play

and stop operator based Prandtl-Ishlinskii models in details, including the mathematical

properties and physical behaviors of these operators. The play and stop operator based

Prandtl-Ishlinskii models are formulated to investigate their input-output properties and

their complementary property. Furthermore, the shape functions are employed for both

the models to investigate the behavior of the stop and play operator-based models. In

Chapter 3, experimentally-measured hysteresis properties of a piezoceramic actuator are

utilized to demonstrate the validity of the play operator based Prandtl-Ishlinskii model

for characterizing the hysteresis nonlinearities of the piezoceramic actuator. Chapter 4

presents the formulation of the stop operator based Prandtl-Ishlinskii model and its

implementation as a feedforward compensator to compensate the hysteresis effects. The

effectiveness of the model is investigated through simulations and also through

experiments conducted on a piezoceramic actuator. A methodology to identify the

parameters of the stop operator-based model is presented and the relationships between

the parameters of the stop-operator and the inverse model parameters are explored. The

major conclusions and the recommendations for further works are finally summarized in

chapter 5.
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Chapter 2
Play and Stop Operator Based Prandtl-Ishlinskii Models

2.1 Introduction

A large number of phenomenological models have been proposed to characterize

the hysteresis properties of smart actuators and ferromagnetic materials. The most cited

phenomelogical models include: the Preisach, Krasnosel'skii-Pokrovskii and Prandtl-

Ishlinskii models. Unlike the Prandtl-Ishlinskii and Krasnosel'skii-Pokrovskii models, the

Prandtl-Ishlinskii model exhibits continuous character, and thus offers a unique

advantage in deriving the model inverse analytically that may be applied for hysteresis

compensation [12]. Although the classic is limited to symmetric and unbounded

hysteresis properties, alternate terms of the Prandtl-Ishlinskii have recently proposed for

predict of asymmetric and bounded hysteresis [39]. The Prandtl-Ishlinskii model offers a

unique property that could be vital for realizing real-time compensation of the hysteresis.

This property is associated with the complementary nature of play and stop operators,

which could be utilized to achieve hysteresis compensation in more sufficient manner

through composition of the POPI and SOPI models. The Prandtl-Ishlinskii model can be

constructed using either the play or stop hysteresis operators, although the reported

hysteresis models of smart actuators are invariably based on the play operator, which

exhibit counter-clockwise hysteresis loops symmetric about the input [12,39]. The

Prandtl-Ishlinskii model based on the stop operator has also been reported to characterize

hysteresis of materials which exhibit clockwise hysteresis loops [17]. This

complementary property of the play and stop operators of the Prandtl-Ishlinskii model is
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thus explored to seek compensation of nonlinearity hysteresis effects of smart actuator. In

this chapter, the properties of play and stop operators are discussed and the corresponding

Prandtl-Ishlinskii models are formulated. The concept of shape function is further

implemented to derive the models.

2.2 Play operator based Prandtl-Ishlinskii (POPI) model

Similar to the Preisach model, as described in section 1.2, the Prandtl-Ishlinskii

model is constructed using either play or stop operators. Unlike the discontinuous relay

operator in the Preisach model, the play and stop operator are continuous hysteresis

operators which are characterized by the input ? and the thresholds r and s, respectively

[17]. The classical Prandtl-Ishlinskii model can be formulated upon integration of either

the play or stop operators. The models derived on the basis of the play and stop operators,

however, exhibit different hysteresis properties which are introduced below for both play

and stop operators. This is attributed to the properties of the play and stop hysteresis

operators, which are presented in the following subsections.

2.2.1 PLAY OPERATOR

The play hysteresis operator is a continuous, rate independent and symmetric

operator. This operator has been thoroughly described in [17]. Figure 2.2 illustrates the

input-output characteristics of the play operator, as a function of the threshold r which is

a positive constant. The threshold r determines the shape and the nature of the hysteresis

nonlinearity. The input-output characteristics of the hysteresis operator have been related

to different physical phenomena such as backlash in gear mechanisms. Consider a pair of

gears with certain clearance (rg-a) between the meshing teeth with motion of the driving

22



gear, ? is the input (driving gear) to the driver gear which its output is ? (Figure 2.1). The

output corresponding to backward motion of the driving gear (towards to left in Figure

2.1) is mapped by the path C-D in the output-input curve shown in Figure 2.2, provided

in the driving gear motion is limited to (ro-a). As the input motion ? exceeds the

clearance (ro-a), both gears move together and map the path D-A. The output maps the

path A-B as the driving gear reverse its direction and its motion is limited to (ro-a). the

output is mapped by the path B-C as the input motion exceeds the clearance. The

resulting output-input Figure 2.2 are described by the play operator with threshold r,

representing the clearance (ro-a).

driving gear

a
<—?

/
driven gear

Figure 2.1 : A gear mechanism illustrating the play operator behavior.

From Figure 2.2, it is evident the output is linearly related to input during the

segments B-C and D-A. The play operator describes the input-output relationships by a

unity slope, while the output along the paths B-C and ?-? follows a given direction. On

the other hand, the outputs during the paths D-C and A-B will remain constant,

irrespective of the changes in the input, while the output may follow both the directions.
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> ?

Figure 2.2: Input-output relationship of the play operator.

Analytically, for an input v(0 e CJO, J], where Cm represents the space of

piecewise monotone continuous functions, such that the function ? is a monotone in the

sub-intervals [U, tì+ì], the output of the play operator z(f) is analytically expressed as

[p.24,17]:

(2.1)
?(0) = ?(?(0))
z(0 = /,(v(0, Z(O) 0<i<N-\
^r[v](0 = z(0

Where for t0=0 < t\ < ... < iN = T, and Fr[v] is the operator; represents the number of sub-

intervals in time; anafr(v)\ 5R->5R is defined as [p.25,17]:

fr(v,z) = max{ ? - r ,min{v + r,z}} (2.2)

In the above definition, the argument of the operator Fr is written in square brackets to

indicate the functional dependence, since it maps one function to another function. Some

of the key properties of the play hysteresis operator are briefly described below:
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• Rate-independence: The play operator Fr[v] is a rate-independent hysteresis
operator, suchthat [p.33,17] :

Fr[v]oB=Fr[voB] (2-3)
where B is a continuous increasing function, B:[0, T], satisfying 5(O)=O and B(T)=T.

• Lipschitz-continuity: For a given input v(t) and threshold r > 0, the output of the
play operator (2.1) can be extended to Lipschitz continuous [p.47,17].

• Memory effects: The play operator is a hysteresis operator with nonlocal-memory
effect, where the output of the operator depends on the current value of input as well
as the past values of the output [17].

The output-input characteristics of the play operator are mathematically described by
two continuous functions. The ascending path B-C of the output-input curve in Figure 2.2

is expressed mathematically by v(t)-r, while the descending path D-A can be expressed
mathematically v(t)+r. The maximum and the minimum values of outputs of the play
operator are directly dependent on the input v. Furthermore, the output ? approaches zero
in two cases, as observed in Figure 2.2 and Equation (2.1):

• z=0 for v(t)=r, in the ascending path B-C.

• z=0 for v(t)=-r, in the descending path D-A.

2.2.2 PLAY OPERATOR BASED PRANDTL-ISHLINSKII (POPI) MODEL

The Prandtl-Ishlinskii model utilizes the play operator Fr[v]{t) to describe a

relationship between the output F[?](?) and input v(r), such that:
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R

n(t) = F[?](0 = qv(t) + \p(r)Fr [v](t)dr (2 4)
where n(f) is the output of the Prandtl-Ishlinskii model, p(r) is a density function which

satisfiesj?(V)>0, and q is a positive constant q>0 . Both p(r) and g are generally

identified from the experimental data for a particular material or smart actuator.

The Prandtl-Ishlinskii model with the density function maps Cm[/0,oo) into C'Jt0, oo),

and the density function p(r) tends to vanish for greater values of r. The upper limit of

integration is thus generally assumed as i?=co where the choice of +00 is just a matter of
convenience [p.28,17] . Owing to the continuous property play operators, the POPI model

can be implemented using only a few play hysteresis operators [12]. The output of the
POPI model can be numerically derived from:

"(0 = E^)F-MW (2.5)
7=1

where Jp is the number of the hysteresis operators considered, and Tj(J=I,.., N) is the
threshold values of the /h operator.

Example 2.1: Properties of the play operator and the POPI model

Consider an input of the form v(0=12sin(47tf) over the interval t e [0,8] to the Prandtl-

Ishlinskii model that presented in Equations (2.4) and (2.5) the characteristics of the

POPI model are obtained by consideration integration of only five play operators with

threshold values ? =[1.6, 3.2, 4.8, 6.4, 8.0] a density function of the following form was
chosen to obtain the model response:

?(?) = 2e-0Arj (2.6)
The simulations were performed assuming q=l .4 and Af=O-Ol s.
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Figure 2.3(a) illustrates the outputs of the three of the operators O)=I. 6, 4.8, 8), which
variation in the density function with r is illustrated in Figure 2.3 (b). The results clearly

show that the width of the output-input relation of the play operator is directly dependent

upon r , and that p{r) vanishes as r increases. Figure 2.3 (c) illustrates the output-input
characteristics of the POPI model, desired from Equation (2.5), using Jp. The results

show output-input major hysteresis loop attributed to the output of the play hysteresis
operators, shown in Figure 2.3 (a). Furthermore, the hysteresis loops of the play operator-
based Prandtl-Ishlinskii (POPI) model, presented in Figure 2.3 (c), exhibits a
counterclockwise direction.

15^- ¦ ... ¦ ¦ ¦ ¦ 1 18
G=1.6
r=4.8

S 1.6r=8.0

Öß

J5 1.2
dû
(L)

1
10

0.8 8461.615010
Input Threshold r

a) b
80

60

40

20

Pn 0

O -20
40

60

80' 15101015

Input
(e)

Figure 2.3: (a) Input-output relations of the play operators with different threshold values;
(b) Variation in the density function with threshold r and ;(c) the output-input characteristics
of the play operator based Prandtl-Ishlinskii (POPI) model under v(/) = 12sin(47tf).
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2.3 Stop operator based Prandtl-Ishlinskii (SOPI) model

Although the hysteresis properties of smart materials actuators have been

invariably characterized by the POPI model, the Prandtl-Ishlinskii hysteresis model may

also be constructed using the stop operator. A few studies have considered the stop

operator-based Prandtl-Ishlinskii model for describing hysteresis nonlinearity of materials

[17]. Unlike POPI model, the output-input characteristics of the SOPI model exhibits

clockwise hysteresis loops. This is attributable to the properties of the stop operator,

which is discussed in the following subsections.

2.3.1 STOPOPERATOR

A stop operator proposed to characterize the elastic-plastic behavior in continuum

mechanics [p.25,17]. The output-input relationship of a stop operator is illustrated in

Figure 2.4, which could be interpreted by the elastic-plastic stress-strain relation of a

material, from the figure, it may be deduced that the strain ? is linearly related to stress w
according to the Hook's law. Provided that the applied stress w is less than yield stress s

of the material. The strain tends to remain constant as the stress w approaches or exceeds

the yield stress. In the stop operator, the yield stress 5 is referred to output-input relations

of a stop operator as the threshold similar to the play operator.
w

-> ?

Figure 2.4: Stop operator.
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Analytically, for an inputv(0 e Cm[0,71, where Cn, represents the space of

piecewise monotone continuous function, such that the function ? is monotone over the

sub-intervals [ti, f¡+i], the output of the stop hysteresis stop operator w(t) can be

analytically expressed as [p26, 17]:

w(0) = e, (v(0))
w(0 = es (v(i) - v(t¡ ) + wit, )}, 0 < / < N - 1
¿,[VX/) = "*')

Where io=0 < /j < ... < fa = T , Es [v] is operator, and:

es (v) = min{max-^5, v} ,s} (2·8)
where -5 and s are the negative and the positive values of the threshold of the stop

operator, respectively.

Some key properties of the stop hysteresis operator are briefly described below:

• Rate-independence: The stop operator Es[v] is a rate-independent hysteresis
operator, such that [p. 33, 17] :

Es[v]oB=Es[voB] (2.9)

where B is a continuous increasing function, B:[0, T], satisfying 5(0)=0 and B(T)=T.

• Lipschitz-continuity: For a given input v(t) and threshold s > 0, the output of the

stop operator (2.8) can be extended to Lipschitz continuous [p.47, 17].

• Memory effects: The stop operator is a hysteresis operator with nonlocal-memory

effect, where the output of the operator depends not only on the current value of input

but also on the past values of the output [17].
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2.3.2 STOP OPERATOR-BASED PRANDTL-ISHLINSKII (SOPI) MODEL

The stop operator-based Prandtl-Ishlinskii (SOPI) model is formulated upon

integration of stop operators .E5 [v] to describe a relationship between the output G[?](?)

and the input v(f), such that :

s

m(t) = T[v](t) = ¡g(s)Es[v](t)ds
o

where m{t) is the output of the SOPI model and g(s) is the density function, which is

positive and integrable. Owing to the continuous property of the stop operator, the SOPI

model can be implemented using only a few stop hysteresis operators as in the case of the

POPI model [12]. The output of the SOPI model can be numerically obtained from:

iKO = £*('>)Vv](O (2.11)
where Js is the number of the hysteresis stop operators considered. The key prosperities

of the stop operator and the stop operator based model are demonstrated through the

following simulation example.

Example 2.2: Properties of the stop operator and the SOPI model

Consider an input of the form v(/)=4sin(47tf) over the interval / e [0,5] to the

Prandtl-Ishlinskii model presented in Equation (2.11). The characteristics of the SOPI

model are obtained by integration of only five stop operators with threshold values sj

=[0.8, 1.6, 2.4, 3.2 , 4.0]. A density function of the following form was chosen to obtain
the model response:
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g(Sj)=OAe -OAs1 (2.12)

The simulations were performed assuming ??=0.01 s. Figure 2.5(a) illustrates the

outputs of the three of the operators (á}=0.8, 1.6, 2.4), while the variation in the density

function with 5 is illustrated in Figure 2.5 (b). The results clearly show that the width of

the output-input relation of the stop operator is directly dependent upon s, and that g(s)

vanishes as s increases. Figure 2.5 (c) illustrates the output-input characteristics of the

SOPI model, derived from Equation (2.11), using Js=5. The results show output-input

major hysteresis loop attributed to the output of the stop hysteresis operators, shown in

Figure 2.5 (a). Furthermore, the hysteresis loop of the stop operator-based Prandtl-

Ishlinskii (SOPI) model, presented in Figure 2.5 (c), exhibits a. clockwise direction.

------- S=OB

•a °·08

1.6 2.4 3.2
Threshold s

(b)

4 4.5
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Figure 2.5: (a) Input-output relations of the stop operator with different threshold values;
(b) variation in the density function with the threshold s; and(c) Input-output
characteristics of the stop operator based Prandtl-Ishlinskii (SOPI) model based under
v(0 = 4sin(27tf).

2.4 Relationship between the play and stop operators

In general the play and the stop operators are characterized by input v, the

thresholds r and s respectively. A relationship between the play and stop operators could

be formulated using the definitions of the operators, given by:

/P(v) = max{ ? - r ,min{ v + r,z}} (2.13)

es(v) = min{max{-s,v},s} (2.14)

Considering identical values of the thresholds s - r , the two operators may be related,

such that [p.26, 17]:

? - fr(v, z) = ? - max{v - r ,min{v + r,z}}
= min{r,max{-r,v - z}} (215)
= er(v-z),

32



for any piecewise monotone input v, it can it has been shown that :

TV[V](O)+ Er[v](0)=fMO),0)+er(y(0)) : for t e[t„tM] (2.16)

K M(O + Er [v](0 = fr (V(O5 Fr [v](f, )) + er (v(0 - v(tt ) + Er [v](f, ))
= /r(v(0,^[v](/,.)) + er(v(0-/v[v](i/)) (2.17)
= v(0

Equation (2.17) is referred to the complementary property of the stop and play
operators. Appendix A summarized proof for the complementary property. The
complementary property could be established only for the special case s=r. this relation,
however, would not be valid for the general case, s ^r

2.5 Model formulation using shape function

The complementary property of the stop and play operators, illustrated in Equation
(2.17), cannot be directly applied for compensations of hysteresis effects, which would
involve the composition of the SOPI and POPI models. Moreover, the stated
complementary property is considered valid only when the play and stop operators have
identical threshold values. Alternatively, the shape functions of the output-input

characteristics of the play and stop operator-based models may be explored to achieve a
unity value of their composition.

In this section, the shape function concept is thus introduced for alternative
formulations of the POPI and SOPI models. The shape function is essential for

identifying the shapes of the hysteresis loops. Shape functions of the hysteresis models
generally indicate the direction of the input-output hysteresis curves, which can be shown



to be complementary for the SOPI and POPI models. The initial loading curves for the

POPI and SOPI models are employed in order to illustrate follow employed in order to

illustrate that the input-output curves of POPI and SOPI models follow counterclockwise

and clockwise paths, respectively. The initial loading curve is defined when the initial

state of the Prandtl-Ishlinskii model is zero and when the input increases monotonically.

The shape function for the SOPI model has been defined using the shape function of the

stop operator y/e and the density function g(s), as [p.92, 17]:

ee(x)=lg{s)y,e{x)ds (2.18)
where 9e is the shape function of input variation ? for the Prandtl-Ishlinskii model based

on the stop operator, and ?e: 5R -» 9Î is a continuous and odd function, expressed as [p.92,

17]:

OO

Vt(x)=\g(<i)dq (2.19)
S

substituting for ?e?? (2.19) yields:

?e O) = ^g(q)dqds (2.20)

Then second derivative of the shape function in (2.20) with respect to the input variation

x, yields:

0e"(x) = g(«>)-g(x) i221)

considering that the density function g(oo)—? O, the above reduces to the density function:
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T??) = Six) (2.22)

Owing to the positive density function, the above suggests that the shape function

?e is a concave function. Furthermore, the shape function yields clockwise hysteresis

loops. It can thus be concluded that the hysteresis loops given by the SOPI model would

be concave clockwise loops.

In a similar manner, the shape function of the POPI model can be formulated using the

shape function of the play operator ?/ and thee density function p{r), as [17]:

Of (x) = [p(r)Wf (x)dr (2.23)

where y/f'.W -> 91 , is a continuous and odd function defined as [p. 87, 17]:

y/j- (x) = sgn(x) max(jx| - r,0) (2.24)

The shape function of the POPI model has also been expressed as [p. 88, 17]:

Of (x) = p(0)x + ^p{r)(x - r)dr (2.25)

The second derivative of the above shape function Of with respect to ? reduces to the

density function p(r) as in the case of the SOPI model [p. 88, 17]:

? /'(X) = P(X) (2.26)
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Owing to the positive density function, the above suggests that the shape function 6f (x)

is a convex function. Upon substituting (2.26) in (2.25), the output of the POPI model can

be derived in terms of the shape function ¿fy-as:

OO

F[?](0 = 0/(O)v + ¡0f"(r)Fr[v](t)dr (2.27)
o

Owing to the convex shape function, the hysteresis loops resulting from the POPI model

(2.27) would be counter clockwise convex loops.

The concept of the initial loading curve and the properties of the shape function of the
POPI and SOPI models are illustrated through follow simulation examples.

Example 2.3: Shape function of the POPI model

Consider the POPI model, presented in section 2.2.2, subject to a harmonic input,

v(0=12sin(47t0 over the interval ? e [0,2] . Further, consider a density function of the

form p(Tj) = 2e'0lr\ and integration of five play operators with threshold values, ? = 1.6
3.2, 4.8, 6.4 and 8, and the outputs of the resulting POPI model are obtained through

simulations using Ar=0.0001 s. The initial loading curve of this model is illustrated in

Figure 2.6 the POPI model can be formulated using the shape function of the play

operator ?/ and the density function p(r) as in eqn. (2.23).

Example 2.4: Shape function of the SOPI model

Consider the SOPI model, presented in section 2.3.2, subject to a harmonic input,

v(0=4sin(47t0 over the interval / e [0,2] . Further, consider a density function of the

form g{sj) = 2e'0is\ and integration of five stop operators with threshold values, sj = 0.8,
1.6, 2.4, 3.2 and 4.0, and the outputs of the resulting SOPI model are obtained through
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simulations using ??=0.0001 s. The initial loading curve of this model is illustrated in

Figure 2.7.

Figure 2.6: Input-output characteristics of initial loading curve y/f (2.25).

Figure 2.6 illustrates that the shape function of the POPI model is convex, Owing

to the convex shape function the hysteresis loops resulting from the POPI model would

be counter clockwise loops when the model integrates the play operator at different

threshold values, while Figure 2.7 illustrates that the shape function of SOPI model is

concave,

O 0.2

4.0

Figure 2.7: Input-output characteristics of initial loading curve ^e(2.19).
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Owing to the concave shape function the hysteresis loops resulting from the SOPI

model would be clockwise loops when the model integrates the stop operator at different

threshold values. This result demonstrates that a composition between the SOPI and

POPI models yields identity in input-output curves, this property will be utilized to

compensate for hysteresis nonlinearities in POPI model.

2.6 Summary

The continuous play and stop hysteresis operators are defined and integrated to

formulate Prandtl-Ishlinskii models. The properties of the operators and the models are

illustrated through simple simulation examples, and the complementary property of the

models based on stop and play operators is discussed for their identical threshold values.

The concept of the shape function is further utilized to illustrate the shapes and directions

of the initial loading curves of the stop- and play- operator based models. It is shown that

the Prandtl-Ishlinskii based on play operator produces hysteresis loops with

counterclockwise direction, while Prandtl-Ishlinskii model based on the stop operator

yields loops with clockwise direction. Furthermore, the initial loading curves of the play

and stop operator based models exhibit convex and concave shapes, respectively. Since

the play operator based Prandtl-Ishlinskii model shows a counter clockwise direction in

the input-output curves it will be implemented in chapter 3 to characterize the hysteresis

nonlinearities of a piezoceramic actuator. The stop operator based Prandtl-Ishlinskii

model with clockwise hysteresis loops will be investigated in chapter 4 to reduce the

hysteresis effects in the piezoceramic actuator.
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Chapter 3

Hysteresis Modeling of a Piezoceramic Actuator

3.1 Introduction

Piezoceramic actuators are increasingly being used in various applications

micromachining [5,38,49,50], positioning in hard-disk drives and optical-memory

devices [5,20,51], alignment of optical fibers [42,43,52,50,53] testing of microelectronic

components and nanoscale metrology [44,14,54,58], micromachines [45,46,55], shape

control in antennas [33], and biomedical testing [56]. Piezoceramic actuators offer

nanometer resolution, high stiffness, and fast response when subject to a varying

electrical field.

The Piezoceramic actuators, however, exhibit hysteresis nonlinearities between the

applied input voltage and the output displacement. These effects could cause inaccuracies

and oscillations in the system response, and could lead to instability of the closed loop

system [3,19,44,53,57]. Considerable efforts have been made to characterize the

hysteresis properties of the piezoceramic actuators in order to seek methods for

enhancement of micropositioning precision and tracking performance. These have been

resulted in a number of phenomenological models for describing the hysteresis

nonlinearities of piezoceramic actuators. The Preisach model has been the most widely

used model for describing the output-input hysteresis of piezoceramic actuators [2,3,20].

For instance, Hughes and Wen [2] proposed a Preisach model comprising a second-order

density function to model the hysteresis nonlinearities of piezoceramic and SMA
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actuators. Ge and Jouaneh [3] characterized the hysteresis in a piezoceramic actuator

using modified relay operators with threshold values of 0 and +1 in the Preisach model.

Alternatively, Galinaities [16] used the Krasnosel'skii-Pokrovskii operator instead of the

relay operator in the Preisach model to characterize and to compensate the hysteresis

effects of a piezoceramic actuator. A few studies have employed Prandtl-Ishlinskii model

to characterize the hysteresis nonlinearities in a piezoceramic actuator [39,48]. These

studies have generally shown that the phenomenological models can accurately describe

the hysteresis properties of smart actuators, while the model parameters are identified

using the measured properties of the particular actuator. Among the most widely used

phenomenological models such as Preisach, Krasnosel'skii-Pokrovskii and Prandtl-

Ishlinskii, the Prandtl-Ishlinskii model offers a unique advantage that is beneficial for

hysteresis compensation. Unlike the other models, the Prandtl-Ishlinskii model is

analytically invertible. Its analytical inverse may thus be conveniently applied to seek

hysteresis compensation. In this chapter, the measurements of the output-input

characteristics of a piezoceramic actuator in the laboratory are described, and the

measured data are presented to illustrate the hysteresis nonlinearities of the actuator. The

parameters of the play operator-based Prandtl-Ishlinskii model are identified using the

measured data and the model validity is demonstrated under harmonic input voltage.

3.2 Experimental characterization of hysteresis of a piezoceramic
actuator

A piezoceramic actuator, P-753.31C manufactured by Physik Instrumente

Company was considered for measurements of the hysteresis properties. The actuator

provided maximum displacement of 100 µp? from its static equilibrium position. The
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actuator integrated a capacitive sensor for measurements of the actuator displacement

response with sensitivity of 1 µ??/V. The natural frequency of the piezoceramic actuator

was specified by the manufacturer as 2.9 KHz. The excitation module voltage to the

actuator was applied through a voltage amplifier (LVPZT, E-505), with a fixed gain of

10. The excitation voltage to the actuator ranged from 0 to 100 V.

The measurements of the actuator displacement response were performed in the

laboratory under three different excitations. These included: (i) a harmonic excitation at a

low frequency of 1 Hz, v(0=40sin(27rt); (ii) a harmonic excitation at a higher frequency

of 5 Hz, v(0=40sin(107rt); and a complex harmonic excitation, v(í)=5sin(7i:í)+35sin(27i0·

The first two excitations were selected to identify the major loop output-input property of

the actuator at two different frequencies, while the complex harmonic excitation was

chosen to measure the major as well as minor hysteresis loops. Each excitation signal was

synthesized in the ControlDesk platform and applied to the input amplifier. The actuator

displacement response signal was acquired in the dSpace ControlDesk together with the

input signal. Figure 3.1 illustrates the schematic of the measurement setup. The measured

signals were subsequently analyzed to characterize the hysteresis properties of the

actuator.

3.2.1 EXPERIMENTALRESULTS

The time histories of the measured displacement responses in µ?? of the actuator

under the selected three excitations are illustrated in Figure 3.2. The figure also shows the

time histories of the applied voltage input in V. The results show very good agreements

between the applied voltage and the measured displacement, which is attributed to unity

sensitivity of the actuator and the displacement transducer (1 µp?/V).
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Figure 3.1 : A schematic representation of the experimental setup.

The results, however, clearly show the phase difference between the input and the

output, which is attributable to the actuator hysteresis. This is evident from the output-

input characteristics of the actuator, shown in Figure 3.3. Figure 3.3 (a) and 3.3 (b)

illustrate the major hysteresis loops relating the displacement response to the harmonic

input voltages at 1 and 5 Hz excitation frequencies, respectively. The major as well as

minor hysteresis loops are evident in Figure 3.3 (c) corresponding to the complex

harmonic excitation. The experimental results clearly show the presence of hysteresis

nonlinearities between the input voltage and the resulting output displacement.

Figure 3.3(a) presents that the major loop hysteresis is quantified by the peak

hysteresis H and normalized with respect to peak-to-peak output M, Figure 3.4 (a), 3.4 (b),
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3.4(c) illustrate the time-histories of the percent error between the input voltage and the

measured displacement responses, respectively, corresponding to the three inputs;

Time (s)

-3O

0.4 0.5

Time (s)
(b)

0.8

Time (s)
(e)

Figure 3.2: Time histories of the input voltage and output displacement responses of the
piezoceramic actuator under different harmonic inputs (—?— , output displacement;-——,
input voltage): (a) v(i)=40sin(2u0; (b) v(t)=40sin(\0nt); and (c) v(0=
5sin(7i?)+35sin(27t/).
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Figure 3.3: Measured input-output characteristics of the piezoceramic actuator under different
sinusoidal inputs: (a) v(0=40sin(27rt); (b) v(r)=40sin(10^); and (c) v(i)=5sin(u0+35sin(2^).

The results showed peak displacement percent errors of 14.65, 15.44 and 16.18

%, respectively, under the three inputs v(0=40sin(27i0, v(i)=40sin(107r0, and

v(í)=5sin(7t/)+35sin(27tí). Table 3.1 summarizes peak error magnitudes and peak percent

error under the three inputs.
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v(0=40sin(107t/); and(c) v(0=5sin(^)+35sin(2^)·
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Table 3.1 : The peak percent positioning error of the piezoceramic actuator.

... Peak percent positioning Peak positioning errorInput signal v(0 em)r(%) (µ??)
v(0=40sin(27t0 14.65 5.86

v(0=40sin(107tf) 15.44 6.17

v(0=5sin(7cO+35sin(2;tO 16.18 6.47

3.2.2 MODELING HYSTERESIS NONLINEARITIES OF THE PIEZOCERAMIC
ACTUATOR USING THE PRANDTL-ISHLINSKII MODEL

The hysteresis nonlinearity of the piezoceramic actuator could be accurately

describing by the play operator based Prandtl-Ishlinskii model. The resulting model may

be applied to seek a controller design for compensating the hysteresis-induced position

error of the piezoceramic actuator. In this section, the Prandtl-Ishlinskii model based on

the play operator (POPI), presented in section 2.2.2, is used to characterize the hysteresis

of the piezoceramic actuator using the laboratory-measured output-input characteristics.

The model is formulated using the density function of the following form:

p{r¡)=a, e' ß'r> (3 ^
where a¡ and ß? are positive constants. The threshold function of the play operator is

chosen as a linearly increasing function, such that:

rj=°J; j=h 2, 3, ...,Jp (3.2)

where CF is a positive constant.
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The parameters of the POPI model identified from the measured data. For this

purpose, an error function of the position response of the model and the measured

response is formulated and minimized. The error function is formulated as the error sum

square, given by:

M

a ?)=S[F( v(0) -uof (3.3)
/=1

where F(?(/)) is the output of the Prandtl-Ishlinskii model under input

v(í)=5sin(7t0+35sin(27tí), Y1Af) is the measured displacement of the piezoceramic actuator

and M is the number of data points considered. O is the error function for the major as

well as minor hysteresis loops and X is the parameters vector given by: {X} - { a¡, ßi, q,

and s;}. The above error minimization problem was solved using MATLAB

optimization toolbox, subjected to the following constrains:

q,a,,ßi, st>0

The solution of the minimization problem were obtained for many different values of

the starting vector and JP=10. The resulting errors mere examined to seek the minima. The

solutions obtained for the different starting vectors, however, converged to very similar

values of the model parameters, suggesting the global minimum. The resulting model

parameters identified using the piezoceramic actuator data are presented in Table 3.2. The

threshold values of operators and the corresponding density function are presented in

Table 3.3. Figure 3.5 (a) shows the input-output characteristics of five of the play

operators constructed under the input v(0=40sin(107i:/), while Figure 3.5 (b) shows the

variations in the density function values with the increasing threshold values. The results
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show that the density function diminishes with increasing threshold value, while the

width of the output-input of the play operator increases with r.

Table 3.2: Identified parameters of the Prandtl-Ishlinskii model based on the play
operator.

Parameter Value
ar 3.548
a, 0.097
ß? 0.034
q 0.650

Table 3.3: Variations in the values of the thresholds and density function of the play
operator based- Prandtl-Ishlinskii model.

Play operator Threshold, r, Density function value, p(r¿)number ,j
1 3.5475 0.0860
2 7.0950 0.0762
3 10.6425 0.0674
4 14.1900 0.0597
5 17.7375 0.0529
6 21.2850 0.0468
7 24.8325 0.0414
8 28.3800 0.0367
9 31.9275 0.0325
10 35.4750 0.0287

3.3 Model validation

The validity of the play operator based Prandtl-Ishlinskii model is investigated by

comparing the model responses with the laboratory-measured data of the piezoceramic

actuator under the chosen input voltages. Figure 3.6 illustrates comparisons of the

Prandtl-Ishlinskii based play operator model with the measured data obtained under the

three excitations considered in the laboratory measurements.
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Figure 3.5: (a) Input-output characteristics of the play operators with different threshold
values; and (b) Variations in the density function with the thresholds.

The results clearly suggest that the model can effectively predict the major as well

as minor hysteresis loops properties of the piezoceramic actuator. Figure 3.6 (a) and 3.6

(b) illustrate a comparison of the major loops under v(t)—40sin(2nft) at two different

frequencies of 1 and 5 Hz. Figure 3.6 (c) illustrates comparison between the measured

and model responses in major and minor hysteresis loops. The results suggest reasonably

good agreements between the model and measured responses under the inputs

considered, although slight errors between the responses are also evident.

The effectiveness of the Prandtl-Ishlinskii model in predicting the hysteresis

responses of the piezoceramic actuator can also be seen from comparisons of the time-

histories displacement responses of the model and the measured displacement, as shown

in Figure 3.7 (a), 3.7(b) and 3.7(c). The figures present the comparisons of the model

responses with the measured data for both simple and complex harmonic inputs

considered in the simulation and laboratory measurements. The results show very good
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agreements between the measured and model responses under all the three inputs. Slight

errors, however, also occurred near the responses peaks. The errors between the

measured data and the model displacement responses were computed in the domain and

expressed as percent of the peak-to-peak displacement response corresponding to each

input. Figure 3.8 (a), 3.8 (b), 3.8(c) illustrate the time-histories of the percent error

between the model and measured displacement responses, respectively, corresponding to

the three inputs; the results showed peak displacement errors of 1 .44, 1 .40, and 1 .96 µp?,

respectively, under the three inputs v(i)=40sin(27tf), v(t)=40sin(l0nt), and

v(t)=5sin(7rt)+35sin(27rt). These correspond to peak errors of approximately 3.5% under

the pure harmonic inputs and approximately 4.9% under the complex harmonic input.

Table 3.4 summarizes peak error magnitudes, peak percent error and the percent norm

error under the three inputs. From the results, it can be concluded that the Prandtl-

Ishlinskii model based on the play operator can accurately design the hysteresis

nonlinearities of the piezoceramic actuator.

Table 3.4: Summary of errors between the measured responses and the outputs of the
play operator based Prandtl-Ishlinskii under the inputs considered.

harmonic input, harmonic input, Complex harmonic input,
or type v(Q=40sin(27t/) v(Q=40sin(107tt) v(0=5sin(7cQ+35sin(27iQ

Maximum 1.44 1.40 1.96
?p?G(µp?)

Percent of 3.60 3.51 4.90
maximum error (%)

Percent of Norm 2.35 2.86 3.43error (%) ____^=^=_________
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Figure 3.6: Comparisons between the measured displacement responses with the results
derived from the Prandtl-Ishlinskii model under different sinusoidal inputs: (a)
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51



Time (s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)
(b)

Time (s)

Figure 3.7 : Comparisons of time histroies of measured displacement responses and the
ouptuts of the play operator-based Prandtl-Ishlinskii model under different sinusoidal
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Figure 3.8 : Time-histories of percent displacement error under the three inputs: (a)
v(0=40sin(27t0; (b) v(í)=40sin(107tí); and(c) v(0=5sin(^)+35sin(2n0-
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3.4 Summary

Hysteresis properties of a piezoceramic actuator are characterized in the laboratory

under harmonic inputs at two different frequencies. The measured data revealed strong

hysteresis nonlinearities in the measured responses. The magnitude of hysteresis

increased with excitation magnitude, while the effect of excitation frequency was

observed to be small for the frequencies considered. The measured data was used to

identify the parameters of the Prandtl-Ishlinskii model based on play operator through

minimization of a sum squared function of error between the model and measured

responses. The validity of the model structured using a total of 10 play operators was

examined under different harmonic signals. Comparison of the model responses with the

experimental data revealed very good agreements in both major as well as minor

hysteresis loops under inputs at the selected frequencies. The peak prediction errors in the

displacement response were in the order of 3.5% under harmonic excitations at 1 and 5

Hz, and nearly 4.9% under a complex harmonic input. The validated Prandtl-Ishlinskii

model based on the play operator is used in conjunction with the stop operator based

model in the following chapter to seek hysteresis compensation
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Chapter 4

Compensation of Hysteresis Nonlinearities of a
Piezoceramic Actuator

4.1 Introduction

The positioning accuracy of the piezoceramic actuators is limited due to the

presence of hysteresis nonlinearities between the input voltage and the output

displacement. The hysteresis nonlinearities of a piezoceramic actuator have been widely

characterized and various control system design and synthesis have been proposed to

reduce the effects hysteresis nonlinearities to enhance the tracking performance of the

piezoceramic actuators [3,19,20,44]. The hysteresis compensation methods based on the
inverse of the hysteresis model, applied as a feed-forward compensator in the open-loop

and closed-loop control systems, have been widely proposed to compensate the effects of

hysteresis nonlinearities of a piezoceramic actuator [2,7,20]. These studies have

employed the inverse of the Preisach, Krasnosel'skii-Pokrovskii and Prandtl-Ishlinskii

models to compensate for the hysteresis nonlinearities of the piezoceramic actuators. Ping

and Ge [7] applied the inverse Preisach model as a feedforward compensator with a PID

controller to reduce the hysteresis effects of a piezoceramic actuator. Galinaities [ 1 6]

proposed the Krasnosel'skii-Pokrovskii operator instead of the relay operator in the

Preisach model to characterize and to compensate the hysteresis effects of a piezoceramic

actuator. Song et al. [62], in a similar manner, applied the inverse Preisach model in

conjunction with a lag-lead controller for compensation of hysteresis effects in a

piezoceramic actuator. The above studies have applied the numerical inversions of the
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Preisach and KrasnosePskii-Pokrovskii models to seek hysteresis compensation. The

numerical inversions represent an approximation and may lead to certain error.

Moreover, a numerical inverse is considered valid only in the vicinity of the conditions

used in deriving the inverse. Alternatively, an exact inverse of the Prandtl-Ishlinskii may

be derived analytically, although its application in hysteresis compensation has been

explored in only a few studies [40]. Janocha and Kühnen [35] compensate for the

hysteresis effects of a piezoceramic actuator. The inverse Prandtl-Ishlinskii model,

employed in the study, however, was constructed numerically. Krejci and Kühnen [12]

applied the Prandtl-Ishlinskii model to characterize and compensate hysteresis

nonlinearities of a piezoceramic actuator. A few recent studies have applied the exact

analytical inverse of the Prandtl-Ishlinskii model in compensating the hysteresis effects

of a clan of smart actuators under varying sets of inputs [39,40].

In this chapter the compensation of the hysteresis nonlinearities is carried out by

implementing the stop operator based Prandtl-Ishlinskii model as a feedforward

compensator. This compensator is constructed using the parameters of play operator

based Prandtl-Ishlinskii model presented in Chapter 3.

4.2 Compensation methodology

In this section, the stop operator based Prandtl-Ishlinskii model G is introduced as

a feedforward compensator for the purpose of mitigating the hysteresis nonlinearities

described by the play operator based Prandtl-Ishlinskii model F, presented in chapter 3.

The hysteresis between the applied input and the output displacement in the piezoceramic

actuator revealed counter clockwise loops in input-output curves. Similar counter
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clockwise hysteresis loops have also been observed for a clan of smart actuators such as

magnetostrictive actuators exhibiting current-to-displacement hysteresis loops [21], and

the input temperature and the output displacement hysteresis loops of the SMA [14].

Such hysteresis effects may be offset by the SOPI model, where the output reveals loops

in the clockwise direction, as illustrated in chapter 2. The hysteresis compensation

effectiveness of the SOPI model is thus investigated by introducing it as a feedforward

compensator preceding the actuator hysteresis described by the POPI model, as shown in

Figure 4.1. The concept of a compensator for the hysteretic system is defined from: a

system Y is referred to as a compensator ofa system X such that the series connection of

Y and X would yield an identity transformation starting from initial states y0 and X0,

irrespectively, of Y and X.

Given a desired input trajectory v(t) and an initial condition F(0) for the play

operator-based Prandtl-Ishlinskii model F, the stop operator-based Prandtl-Ishlinskii

model G generates z(t) as the input to the POPI model F. The objective is to obtain an

identity mapping, i.e., F ? G «I, between the desired input v{t) and the actual output u(t) ,

such that :

M(O = F ? G [v](0 (4.1)

where ?' denotes the composition between both the models. In other words, the

hysteresis nonlinearities of the play operator based Prandtl-Ishlinskii model with

thresholds ? and density function p{rj) can be compensated via the stop operator based

Prandtl-Ishlinskii model with thresholds sj and density function g{sj). For the desired

input values vq, v¡, v2, ..., vm, and given thresholds rg, r¡, r¿, ..., rn and density function
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values p{r0\p(ri), p(r2), .... p{r„) of the play operator based Prandtl-Ishlinskii model, the
stop operator based Prandtl-Ishlinskii model of thresholds so, s¡, S2, .... Sn and density
function values g(s0), gißi), gis2), .... g(s„) can be applied to compensate the hysteresis of
the POPI model. The application of the SOPI model, however, requires the identification

of its parameters, sj and g(sj). Unlike the POPI model whose parameters could be
identified from the measured hysteresis properties, the identification of SOPI model

parameters could be more challenging. The suitability of the SOPI model compensator

for reducing the hysteresis effects is initially explored using assumed model parameters.
The simulation results are discussed in the following section to illustrate its potential

applicability as a feedforward compensator.

SOPI model POPI model

Figure 4. 1 : Illustration of hysteresis compensation via stop operator based Prandtl-
Ishlinskii model.

4.3 Hysteresis Compensation Effectiveness of SOPI model

The following two subsections present the effectiveness of the SOPI model as a

compensator for the hysteresis described by the POPI model. The first subsection utilizes

the SOPI model using arbitrary parameters, while subsection 4.3.2 utilizes the SOPI

model as a compensator on the basis of known POPI model parameters.
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4.3.1 HYSTERESIS COMPENSATION USING SOPÌ MODEL WITH
PARAMETERS IDENTICAL TO THAT OF THE POPI MODEL

Simulations are performed to evaluate the effectiveness of the SOPI model as a

feedforward compensator for the hysteresis, which is characterized using the POPI

model. A simulation example is considered to illustrate the feasibility of the SOPI model

as a compensator. The example considers identical threshold and density functions of the

SOPI and POPI models, such that:

n=sr°aJ· 7=0.1.2, ....,J (4.2)

P(rj)=g(sj)= aae^ =aae^ (4.3)

where sa, aa and ßa are arbitrary positive constants and J=JS=JP is the number of the

hysteresis operators considered in the model.

The simulation parameters for the numerical example were taken as: q;=0.5;

aa=0.1; /?a=0.03; T=2s; and Af=OOOl. Both models were formulated using a total of 20

operators (/=20), while the solutions were attained under the input v(í)=10sin(27tí).

Figure 4.2 (a) and (b) illustrate the hysteresis loops between the input and the outputs of

the SOPI and the POPI models, G and F, respectively. The input-output characteristics of

the SOPI model exhibits clockwise hysteresis loop, as shown in Figure 4.2 (a) which is

attributed to the property of the stop operator. The POPI model, on the other hand,

exhibits counter clockwise hysteresis loops, as seen in Figure 4.2 (b), which is

attributable to the property of the play operator. From the results, it is further seen that the

initial loading curve of the POPI is convex, while that of the SOPI model is concave.

Consequently, the POPI model may be used to characterize hysteresis nonlinearities,

while the SOPI model could be applied to mitigate the hysteresis effects.
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Figure 4.2: Input-output characteristics of: (a) the SOPI model; and (b) the POPI model
under v(0=10sin(27i0.

Subsequent simulations are performed by introducing the SOPI model as a

feedforward compensator as shown in Figure 4.1. The output of the SOPI model G[?](?),

shown in Figure 4.2 (a), is applied as the input signal to the POPI model, i.e. F[G[?]](/)·

The resulting output of the compensation is shown in Figure 4.3 (c) together with the

input-output responses of the SOPI and POPI models. The results suggest that application

of the SOPI model helps reducing the hysteresis in the output significantly, although the

SOPI model was based on arbitrary parameters. This is attributable to the opposing

direction of the hysteresis loops of the SOPI model when compared to that of the POPI

model.

4.3.2 HYSTERESIS COMPENSATION EFFECTIVENESS OF THE IDENTIFIED
SOPI MODEL

The compensation ability of the SOPI model compensator could be considerably

enhanced through identification of appropriate model parameters on the basis of the

known POPI model. In this study, an error minimization problem is formulated and
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solved to identify the parameters of the SOPI model that could serve as a feedforward

compensator of the hysteresis effects.

Oioto
G ? F ?]F

5

0

1010 10

10V1010?? 10 10

a

Figure 4.3: Compensation of hysteresis nonlinearities described by a POPI model output
F[?](?) presented in Figure 4.2(b) using the SOPI model T[v](t) presented in Figure
4.2(a).

A minimization function is formulated as the sum of squares of errors between the

composition of the outputs of the POPI model F and the SOPI model G, and the input v(i)

such that:

M

A(O) = S [F o TJv](O-V(O]2 (4.4)
I = ]

where ? is the objective function of sum of squared errors to be minimized, Q is the

parameters vector, M is the number of data points considered in the error minimization

and rc is the SOPI model which it's parameters identified on the basis of known POPI

model. The SOPI model is constructed using the following forms of the threshold and

density functions:

sj = °sj ; J = 1.2,..., js
(4·5)

g(s,) = a2e Pvi\ 7=1,2,..., Js
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The parameters vector is thus defined as:

{Q}=[as, a2, ß2]

The minimization problem is solved subjected to following inequality constrains

on the SOPI model parameters a2 > 0, ß2>0 and as > O , while the POPI model

parameters were taken as those in the previous subsection when the POPI parameters

were identical to those of SOPI.

The minimization problem was solved using the MATLAB optimization toolbox

under an input v(í)=10sin(27tí) over the interval T=2s and ??=0.001. A total of 2000 data

points were considered to compute the minimization function. Solutions were attained for

a number of starting values of the parameters vector, which converged to very similar

parameter values. The resulting parameters of the SOPI model G?, were obtained as: as

=0.7097, a2 -0.1903, and /J2 =0.1102.

The SOPI model was subsequently used as a feedforward compensator for the

hysteresis defined by the POPI model, Figure 4.4 illustrates the compensation of POPI

model hysteresis nonlinearity using the SOPI model Tc. The results in the figure clearly

show significantly larger reduction in the hysteresis of the output-input curves attained

through composition of the two models, compared to that obtained through application of

the arbitrary SOPI model (Figure 4.3).
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Figure 4.4: The output-input characterization of the SOPÌ model G?, identified from the
known POPI model F, and the compensated output under input v(¿)=10sin(27r/).
The hysteresis compensation effectiveness of the SOPI model as a feedforward

The hysteresis compensation effectiveness of the SOPI model as feedforward

compensator is further evaluated from the error in compensated output. As an example

Figure 4.5 illustrates the time histories of the percent error of the output of the POPI

model (without compensation), output using the arbitrary SOPI model feedforward

compensator (Figure 4.3) and the output using the identified SOPI model G?[?](/) Figure

4.4. The error variations are presented under the input v(/)= 10sin(27t0· The results show

peak position error in the order 22% in the absence of a compensator, 14% with the

arbitrary SOPI model compensator and only 4% with the identified SOPI model

compensator.
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Figure 4.5: The time history of percent error in actuator displacement response with and
without the SOPI model feedforward compensator: without feedforward compensator
(dotted line); with arbitrary SOPI model G compensator (dashed line); with identified
SOPI model T0 compensator (solid line).

63



This procedure can be utilized to compensate for the hysteresis nonlinearity of

POPI model which has been formulated in chapter 3 to model the hysteresis of

Piezoceramic actuator, this POPI model has the following parameters : ar =3.548

a, =0.097, and ßx =0.034, according to these known POPI model parameters, the

SOPI model parameters which capable to compensate this POPI model hysteresis could

be identified through Equation (4.4), the SOPI model is constructed using the same forms

of the threshold and density functions described in (4.5), and the minimization problem

was solved using the MATLAB optimization toolbox under an input

v(/)=5sin(7r/)+35sin(27r/) over the interval T=4s and ??=0.005. A total of 800 data points

were considered to compute the minimization function. Solutions were attained for a

number of starting values of the parameters vector, which converged to very similar

parameter values. The resulting parameters of the SOPI model (rc), are shown in Table

4.1, all values of threshold and density function are tabulated in Table 3.2.

The Outputs of the SOPI and POPI models were evaluated under different

harmonic inputs of different frequencies and magnitudes together with compensated

output to examine the effectiveness of the compensator. These included: (i)

v(0=40sin(27r0; (U) v(0=40sin(107i0; (iü) v(0=15sin^0+25sin(2u/); (iv)

v(0=5sin(7c0+35sin(27i0; and (v) v(0=20sin(tó)+20sin(4^). Figure 4.6 (a) through (e)

illustrate the outputs of the SOPI and POPI models and the compensated output under

different inputs considered in the study. The results clearly show effective mitigation of

the hysteresis effects through the proposed feedforward compensator, when the SOPI

model is identified from the known hysteresis nonlinearity, irrespective of the input

considered. Furthermore, the SOPI model compensator can also suppress the minor
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hysteresis loops obtained under the complex harmonic inputs such as

v(0=l 5sin(7rt)+25sin(27i0 as shown in Figure 4.6(d), v(t)=5sin(nt)+35sm(2nt) as shown in

Figure 4.6 (e) and v(i)=20sin(7i0+20sin(47tf) as shown in Figure 4.6(f).

Table 4.1 : Parameters of the Prandtl-Ishlinskii model based on the stop operator (SOPI)
identified through solution of the minimization problem.

Parameter Value

0.2
ß2

9.8722
0.1683
0.0058

Table 4.2: The values of the thresholds and density function of the stop operator based
Prandtl-Ishlinskii model.

Stop operator number/ The threshold, sj The density function value g(sj)
1

2

3

4

5

6

7

8

9

10

9.8722

19.7444

29.6166

39.4888

49.3610

59.2332

69.1054

78.9776

88.8498

98.7220

0.1590

0.1502

0.1419

0.1340

0.1266

0.1196

0.1130

0.1067

0.1008

0.0952
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Figure 4.6: The output-input characterization of the SOPÌ model T0, identified from the
known POPI model F, and the compensated output under different inputs (a)
v(0=40sin(27t0; (b) v(f)=40sin(10jcf); (c) v(í)=15sin(7tí)+25sin(27tí); (d)
v(0=5sin(7tf)+35sin(27tf); and (e) v(í)=20sin(^)+20sin(4íi/).

4.4 Experimental verifications

The effectiveness of the stop operator based Prandtl-Ishlinskii model in

compensating the hysteresis effects is further investigated through laboratory

experiments. The experiments were performed to compensate the major and minor loops

hysteresis nonlinearities of the piezoceramic actuator (P-753.31C). The measurements of

the actuator displacement response were performed in the laboratory under three different

excitations. These included: (i) a harmonic excitation at a low frequency of 1 Hz,

v(0=40sin(27rt); (ii) a harmonic excitation at a higher frequency of 5 Hz,

v(0=40sin(107rt); and a complex harmonic excitation, v(0=5sin(^)+35jin(2^). The first

two excitations were selected to identify the compensation effectiveness of major loop

output-input property of the actuator at two different frequencies, while the complex

harmonic excitation was chosen to verify the compensator effectiveness for major as well

as minor hysteresis loops.

The SOPI model identified from the known hysteresis nonlinearity was formulated

in the SIMULINK platform. Each excitation signal was synthesized in the ControlDesk

10 20 30 40 500 -40 -30 -20 -IO

30t
2ol·

.,0
-20l·

0 -40 -30 -20 -10 0 10 20 30 <

V

(e)
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platform and applied to the SOPI model. The output of SOPI model was subsequently

applied to the input amplifier of the piezoceramic actuator through the output board and

D/A. the actuator displacement response signal was then acquired in the dSpace

ControlDesk using A/D together with the input signal. Figure 4.7 illustrates the schematic

of the measurement setup, where the actuator hardware represents the known hysteresis

and the SOPI model in SIMULINK serves as the feedforward compensator, the acquired

signals were subsequently analyzed to identify, assess the SOPI model effectiveness in

compensating the hysteresis in piezoceramic actuator under the selected inputs.

dSpace Control Desk

?

Data Acquisition
card

Excitation voltaee

SOPI Model (rc)

Interface

{^7}

D/A

J ^

Hardware

Piezo nano-

positioning stage
(P-753.31C)_

Amplifier LVPZT
(E-505)

J

Figure 4.7: Experimental setup for compensation of hysteresis nonlinearities of the
piezoceramic actuator using stop operator-based Prandtl-Ishlinskii (SOPI) model as a
feed forward compensator.

The measured output-input characteristics of the piezoceramic actuator with stop

operator based Prandtl-Ishlinskii model are illustrated in Figure 4.8 for the three selected

inputs. The results show that the stop operator based Prandtl-Ishlinskii model can
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effectively suppress the hysteresis effect, irrespective of the input applied, although some
deviations are also evident. These deviations may in-part be attributed to the prediction

errors of the POPI model, as seen in Figure 3.6, used to characterize the hysteresis

nonlinearity and thereby define the SOPI model. The results confirm that the stop

operator based Prandtl-Ishlinskii model can be effectively used as a feedforward

compensator for the piezoceramic actuator.

-40 -30 -20 -10 0 10 20 30 40 50

Input
(a)

-50 40 -30 -20 -10 0

Input
(b)

10 20 30 40 50

¦50 -40 -30 -20-10 0 10 20 30 40 50

Input
(c)

Figure 4.8: Input-output characteristics of the piezoceramic stage with SOPI model under the
input: (a) v(0=40sin(27c/); O) v(0=40sin(107i0; and (c) v(/)=5sin(7t0+35sin(27i0·

The time histories of the positioning error of the piezoceramic actuator with and

without the SOPI model feedforward compensator are further evaluated from both the

simulation and the experimental data. The position error is expressed as a percent of the
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peak position response. Figure 4.9 presents comparisons of the percent position errors

with the SOPI model compensator obtained from simulations and experimental data

under the selected inputs. The figure also illustrates the measured position error in the

absence of the compensator. The results show peak position error in the 15-16% range,

when the displacement output is measured in the absence of the compensator. The peak

error in the measure responses reduces to only 4-7% when the SOPI model is

implemented as the feedforward compensator, irrespective of the input considered. The

corresponding simulation results show peak errors in the order of 2.5%. Table 4.3

summarizes the peak percent errors obtained from the measure data and the simulation

results under the selected inputs, the results show only small differences between the

error obtained from measurements and simulations.

4.5 Relations between the SOPI and POPI models

In this section essential relations between the stop and play operator-based Prandtl-

Ishlinskii models are identified in order to facilitate identifications of the SOPI model

parameters on the basis of a known POPI model. Furthermore, a SOPI model may be

directly related to the inverse Prandtl-Ishlinskii model, which has been shown to be an

effective feedforward hysteresis compensator [12, 40]. In this section, the parameters of

SOPI and POPI models are evaluated to identify approximate relations between them on

the basis of observed trends. The inverse of POPI model is also formulated using the

proposed POPI model and compared with the proposed SOPI model.
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Figure 4.9: Time histories of the percent position error under different sinusoidal inputs
with and without SOPI model compensator: (a) v(Y)=40sin(27iO; (b) v(0=40sin(l(kO; and
(c) v(t)=5sin(nt)+35sm(2nt). (Solid line, with feedforward SOPI model compensator-
simulation); (dashed line, with feedforward SOPI model compensator- experrimentally);
and (dotted line, without feedforward SOPI model compensator- experrimentally).

Table 4.3: Peak position error (peak percent error).

40sin(27tQ
Input, v(0

4QsJn(IOnQ 5sin(7t/)+35sin(27if)
Experimental
Simulation

2.05(5.12%)
0.90 (2.26%)

1.57(3.94%)
0.90 (2.26%)

2.68 (6.7 %)
1.18(2.95%)
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4.5.1 RELATIONS BETWEEN THE SOPÌ AND POPI MODELS

Consider the POPI model parameters, which have been identified for

characterization of the hysteresis properties of the piezoceramic actuator considered in

subsection 3.2.2. Further, consider the SOPI model derived on the basis of this POPI

model, which was presented in section 4.3. The variations in Sj and g(sj) with ? and p(r,·),

respectively, are examined to identify approximate relations. Figure 4.10 illustrates the

variations in Sj and ?, and those in g(jy) and p(r7) with considering J5 - Jp = 1 0.
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0

Sj = 2.782 Tj
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0.1 -

0.05 -
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g(sj) = -5.458(p(0))2 + 1.7280*r/)) + 0.05
RM).999

o 10 20

(a)

30 40g(Sj) 0 0.02 0.04 0.06 0.08 0.1

p (rj)
(b)

Figure 4.10: Variation in (a) the thresholds of the SOPI model with those of POPI model;
and (b) the density function values of the SOPI model and those of the POPI model.

The results suggest nearly linear variations in sj with ?, which is attributable to the

definitions of the threshold values, such that:

'>=t:> (4.6)

The variations in Figure 4.10 (a) yields a linear relation (R =1) of the following form:

Sj =2.782 /·,.; j = l,...,Js (4.7)
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where Sj defines the approximate threshold values of the stop operators derived from the

observed variations. The constant 2.782 is identical to the ratio <Tjar .The variations in

g(sj) with/?(r,) can yield the following relation as appear in Figure 4.10 (b) (R = 0.999):

S(Sj) = SASS(P(Kj))2 +1.728Q>(ry)) + 0.05 (4.8)
where g(s . ) defines the density function of the stop operator in the basis of observed

variations. Using the above relations, the output of the SOPI model of a known POPI

model, such that:

T[V](O = S ^Sj)Ej1[V](O (4.9)

Table 4.4: The thresholds and the density function values of SOPI models G andrc.

j Sj Sj g(Sj) g(Sj)
1 9.8727 9.8722 0.1582 0.1590
2 19.7454 19.7444 0.1500 0.1502
3 29.6181 29.6166 0.1417 0.1419
4 39.4908 39.4888 0.1337 0.1340
5 49.3635 49.3610 0.1261 0.1266
6 59.2362 59.2332 0.1189 0.1196
7 69.1088 69.1054 0.1122 0.1130
8 78.9815 78.9776 0.1061 0.1067
9 88.8542 88.8498 0.1004 0.1008
10 98.7269 98.7220 0.0951 0.0952

The SOPI model G (4.9) which has the threshold and density function values

tabulated in Table 4.4, can be utilized as an effective compensator to compensate for

hysteresis nonlinearity of POPI model as illustrated in Figure 4.11, the figure presents

comparisons for compensation hysteresis using both SOPI models G and fc under
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selected input v(/)=40sin(27tf). Furthermore, Figure 4.12 illustrates comparisons of the

percent position errors with the both models, consequently, SOPI model G which has

been formulated using relations (4.7),(4.8) and (4.9) can be used as an effective

compensator for hysteresis nonlinearity of POPI model.
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Figure 4. 1 1 : Compensation of hysteresis nonlinearities described by a POPI model
output F[?] presented in (b) and (e), using: (a) the SOPI model output G presented in
(a), and the proposed SOPI model Tc model presented in (d).
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Figure 4. 1 2:The time history of percent error of compensation error with SOPI models G
and Fc . ( . ,with G model; & with G model).
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4.5.2 COMPARISON OF THE INVERSE OF POPI AND SOPI MODELS

A number of studies have successfully implemented inverse hysteresis models as

feedforward compensators to seek compensation of the hysteresis nonlinearities. For

instance, Ge and Jouneh [7] and Song et al. [62] derived and implemented inverse

Preisach models to compensate for hysteresis effects and to enhance the tracking

performance of a piezoceramic actuator. Owing to the discontinuous nature of the relay

operators used in the Preisach model, the inverse hysteresis model in these studies where
evaluated via numerical means. Unlike the Preisach and Krasnosel'skii-Pokrovskii

models, the Prandtl-Ishlinskii model offers a unique advantage, since its inverse can be

obtained analytically. Krejci and Kühnen [12] successfully applied the analytical inverse

of the Prandtl-Ishlinskii model as a feedforward controller to compensate the hysteresis

nonlinearities of a piezoceramic actuator. In this section, the inverse Prandtl-Ishlinskii

model is briefly described and its output is compared to the proposed SOPI model, to

prove the effectiveness of the SOPI model as an alternative approach for the hysteresis

compensation.

The output of the inverse Prandtl-Ishlinskii model F"1 is analytically expressed as [12]:

H

F"' [V](O = <T'v(0+ ¡p(h)Fh[v)(t)dh
o

where F/,[v] is the play operator of the inverse Prandtl-Ishlinskii model, and q is a

constant which is inverse of the constant q of the Prandtl-Ishlinskii model such that:

q-1=- (4.11)
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In the inverse model, h and ph are the threshold and the density functions, respectively,

where ph assumes a negative value. These have been related to those of the Prandtl-
Ishlinskii model, ? and p(r¡), in the following manners [12]:

hj=qrj+YJPi{rj-ri)
m (4.12)

P%) = j PJ H
(9 + S?)(^ + Sa) (4.13)

1=1 i=l

Using Equations (4.11), (4.12) and (4.13) the thresholds and density function
values of the inverse of Prandtl-Ishlinskii model could be obtained to define the inverse

model on the basis of the known POPI model. The output of the inverse Prandtl-Ishlinskii

model may be obtained numerically from:

Jh

F_1[?](0 = Y4P^j )Fhj [v](0 (4.14)
7=1

where ? is the number of operators used in the solution. The output of the SOPI

model Tc obtained under an input v(0=40sin(27tf) is compared with that of the inverse

Prandtl-Ishlinskii model under the same input, (Figure 4.13) to illustrate the similarity in

the outputs of both the models. The results show that both the models yield clockwise

loops of the output-input characteristics, opposite to the direction of the observed

hysteresis in the piezoceramic actuator. Furthermore, the outputs of the two models show

very good agreement. The time-history of the error between the outputs of the two

models is further evaluated and expressed as percent of the peak output in Figure 4.14. It
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is evident that the peak error between the two models' outputs is in the order of 3%. It

can thus be concluded that the proposed SOPI model is directly comparable with the

analytically derived inverse of the Prandtl-Ishlinskii model.

3

f
O

-50 40 -30 -20 -10 0 10 20 30 40 50

Figure 4.13: Comparison of the input-output responses of the inverse POPI F and SOPÌ
models rc under a sinusoidal input: v(i)=40sin(27cf), ( ,inverse POPI model F"1;

., SOPI model Tc).

Time (s)
Figure 4.14: Time-history of the percent error between the inverse of POPI and the SOPI
models output.

Figures 4.13 and 4.14 confirm that using SOPI model compensation effects are sit

the same level comparing with the inverse of POPI model, thus it can be used as an

effective alternative compensator for hysteresis nonlinearity.
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4.6 Summary

The stop operator-based Prandtl-Ishlinskii model is used as a feedforward
compensator for compensating model the hysteresis nonlinearity of a piezoceramic

actuator. Owing to its complementary property, the hysteresis compensation effectiveness

of the proposed SOPI model feedforward compensator is demonstrated through

simulation examples and experimental results. In order to compensate the hysteresis

effects, the parameters of the SOPI model are identified from the POPI model describing

the hysteresis of the actuator. The simulation results suggest that the feedforward

compensator based on the SOPI model yields nearly perfect compensation of the

hysteresis nonlinearity effects. The laboratory experiment conducted to evaluate real-time

compensation effectiveness of the SOPI model for a piezoceramic actuator revealed peak

displacement error in the order of 5.12% for simple harmonic and for complex harmonic

it was 6.7%, which was partially attributed to characterization error of the POPI model
used to define the SOPI model.

Essential relations between the POPI and the SOPI models could also be identified

from the observed variations in the thresholds and the density function values, and their

definitions. Furthermore, the SOPI model has been verified using the inverse of POPI

model: The output of the SOPI model is nearly identical to that of the inverse POPI

model, while both the models exhibit hysteresis loops in the clockwise direction in the

input-output curves. The peak error between the outputs of the two models was found to
be in the order of 3%.
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Chapter 5
Major Conclusions and Major Contributions

5.1 Major contributions

The hysteresis nonlinearities have been invariably observed in smart materials
actuators such as piezoceramic and magnetostrictive actuators. Such hysteresis
nonlinearities are known to cause oscillations in the responses of the open-loop systems,

and poor tracking performance and potential instabilities in the closed-loop systems. This
dissertation research has proposed a feedforward compensator on the basis of the stop

operator-based Prandtl-Ishlinskii (SOPI) model to compensate for hysteresis
nonlinearities using their complementary properties. The major contributions of this
dissertation are summarized below:

(i) A stop operator based Prandtl-Ishlinskii model has been proposed to compensate for
hysteresis nonlinearities;

(ii) The complementary properties of the stop operator based model in the relation to the
play operator based model have been proven through simulations and considerations
of the initial loading curves;

(iii) The compensation effectiveness of the stop operator based Prandti-Ishlinskii model
has been demonstrated through simulations and in the laboratory for a piezoceramic
actuator; and

(iv) A methodology to identify the parameters of the SOPI model on the basis of known
POPI model is proposed to facilitate the identification of the SOPI model
compensator.
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5.2 Major conclusions

The dissertation research has proposed a stop operator-based Prandtl-Ishlinskii

model feedforward compensator for compensation of hysteresis nonlinearity in smart
actuators. The conclusions drawn from the dissertation research are summarized below:

(i) Piezoceramic actuator exhibits notable hysteresis between the input voltage and the
output displacement, which is symmetric about the output. The measured input-output
characteristics revealed major as well as minor hysteresis loops, while the peak
position error due to hysteresis was in the order of peak error of 16% in the output of
the piezoceramic actuator.

(ii) Play operator based Prandtl-Ishlinskii (POPI) model can effectively characterize the
hysteresis nonlinearity of a piezoceramic actuator between the applied voltage and the
measured output displacement. The peak error in the displacement response of the
model was in the order of 3.5% when compared to the measured responses under
harmonic excitations at 1 and 5 Hz, and nearly 4.9% under a complex harmonic input.

(iii) The shape function which describes the hysteresis loops of the Prandtl-Ishlinskii
model was used to explore the properties of the play and stop operator-based Prandtl-
Ishlinskii hysteresis loops. Form the results it could be seen that the shape function of
the POPI model is convex while that of the SOPI model is concave.

(iv) The output-input characteristics of the play operator-based Prandtl-Ishlinskii model
(POPI) revealed counterclockwise loops, while the stop operator-based Prandtl-
Ishlinskii (SOPI) model showed clockwise hysteresis loops. Consequently, the stop
operator based Prandtl-Ishlinskii (SOPI) model could be utilized to compensate the
hysteresis nonlinearities of the POPI model. Compensation errors in the displacement
response were approximately 2.25% under harmonic excitations at 1 and 5 Hz, and
nearly 2.95% under the complex harmonic input.
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(?) The application of the SOPI model as a feedforward compensator resulted in
significant reduction in the position error due to hysteresis effects, even when the
SOPI model parameters are arbitrarily selected. This is attributable to the
complementary properties of the stop and the play operators. Furthermore, the SOPI
models shows a better effectiveness in compensating when it's parameters identified
on basis ofknown POPI model parameters.

(vi) The effectiveness of the proposed SOPI model compensator in real-time was further
demonstrated through laboratory measurements on a piezoceramic micropositioning
stage. The results showed peak position errors in the order of 6.7% under different
harmonic inputs. This error is partly attributable to the characterization error of the
POPI model that is used to identify the SOPI model.

5.3 Recommendations for future work

This dissertation research is considered as preliminary effort in exploring the

hypothesis that the complementary properties of the stop operator-based Prandtl-

Ishlinskii (SOPI) model may be applied to compensate the hysteresis nonlinearity in a

smart actuator. The simulation and experimental results presented not only support the

hypothesis but also demonstrate superior potential of the proposed SOPI model

compensator. Far more efforts, however, are desirable to explore these potentials for real-

time hysteresis compensation of a wide range of smart material actuators. Some of the
recommended further efforts are listed below:

- Explore the shape function formulation in an attempt to analytically identify
parameters of the stop operator-based-model.
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- Explore a generalized stop operator and its properties to seek potential compensation
of asymmetric hysteresis properties such as those observed in the magnetostrictive
and shape memory alloy actuators.

- Attempts should be made to develop a generalized dynamic stop operator-based
model using rate-dependent threshold and density functions, so as to seek hysteresis
compensation at high rates of inputs.
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Appendix A

The mathematical proof of complementary property

This appendix summarizes the proof of the complementary property of the stop

and play operators using two different approaches. The first approach considers the play
operator to derive a relation with the stop operator, while the second approach utilizes the

stop operator formulation to derive a relation with the play operator.

Approach I

Consider the play operator defined in (2. 1 3):

fr(y, z) - max{v-r ,min{v + r, z}} (A.l)

The above relation could be rewritten as:

? - fr (v, z) = ?- max {v-r , min {? + r, ?) } (A.2)

The order of minima and maxima may be attained to yield

v-/r(v,z) = v + min{-(v-r ),max{-(v+r),-(z)}} (A.3)
which may be further simplified to:

? -/, (v,z) = v + min{r- v, max { -v -r,-z}} .^„

The right-hand side of the above equation can be rewritten as:

? - fr (v, z) min{( r - v) + v, max {( -v - r) + v, (-z) + v} }

The above equation further reduces to:
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v-/r(v,z)min{r,rnax{-r,v-z}} ,^.

From the definition of the stop operator, in (2.8) and r=s, the relationship between the

play and stop operator is obtained as:

v- fr (v, z) = er(v- z) ^A ^
Approach II

Consider the stop operator defined in (2.13):

es (v) = min {maxfy, v} , s)

For complementary property s=r, the above equation could be rewritten as:

v(0 - er (v) = v(0 - min {max {-r, v(f) - v(t¡ ) + E{t¡ )},r) (A 9)

The order of minima and maxima may be attained to yield:

v(0 - er (v) = v(0 + max KO, min H-r),-{v(t) - v{ti ) + E(t¡ ))}} (A. 1 0)

Which may be further simplified to:

v(0 - er (v) = v(0 + max fr, min ^,-v(0 + v(if ) + E{t¡ )}} (A. 1 1 )

The right-hand side of the above equation can be rewritten as:

v(0 - er (0 = max KO - r, min KO + r, v(í,· ) + E(ti)}} (??2)

? - er (?) = fr (?, v(íf ) + E{tt )) (A ! 3)
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