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A B S T R A C T 

Essays on T ime Series Econometr ics and Heal th Economics 

Ye Tao, Ph.D. 

Concordia University, 2009 

This thesis contains two different topics that investigate issues in time series econo-

metrics and applied health economics. 

The first chapter (joint, work with Nikolay Gospodinov) proposes a bootstrap unit 

root, test in models with GARCH(l . l ) errors and establishes its asymptotic validity 

under mild moment arid distributional restrictions. While the proposed bootstrap test 

for a unit root shares the power enhancing properties of its asymptotic counterpart 

(Ling and Li. 2003). it corrects the substantial size distortions of the asymptotic test 

tha t occur for strongly heteroskedastic processes. The simulation results demonstrate 

the excellent finite-sample properties of the bootstrap unit root test for a wide range 

of GARCH specifications. 

Both the second and third chapters study the obesity epidemic in Canada in recent 

years. Chapter 2 focuses on changes in obesity prevalence of Canadian adults, while 

chapter 3 focuses on their BMI shift pattern among different BMI categories. 

By applying the quantile regression to three health surveys conducted from 1978 

to 2004, chapter 2 explores the effects of some widely used demographic, geographic, 

and socioeconomic factors, as well as lifestyle, on the body mass index (BMI). The 

results of this study show that,, changes of BMI that are attributable to these factors 

differs at different points of the BMI distribution, and the importance of any given 

factor changes over time. The epidemic of obesity in recent years is more closely 
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related to lifestyle arid socioeconomic factors than demographic factors. By applying 

the Markov chain analysis to the BMI for individuals from the longitudinal National 

Population Healthy Survey (NPHS), chapter 3 explores how the pattern of weight of 

Canadian individuals has shifted among six categories of BMI during the 1994/95-

2006/07 period. Two policy implications are suggested by this study: first, the effort 

to prevent the occurrence of new obese cases seems to be much more effective than 

the effort to reduce the number of existing obese people, and second, health policies 

for reducing obesity should focus more on the physically inactive people and provide 

incentives for them to be more physically active. 
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Introduction 

This thesis contains two different topics that investigate issues in time series econo-

metrics and health economics. The first chapter focuses on a bootstrap unit root test 

in models with GARCH(l . l ) errors, and both the second and third chapters study 

the obesity epidemic in Canada in recent years using econometric methods such as 

quantile regression and Markov Chain analysis. 

Autoregressive time series with a unit root is a very important subject in the 

econometrics literature. Nelson and Plosser (1982) found that most U.S. macroeco-

nomic time series could be characterized as a univariate unit root process. Moreover, 

financial time series, such as stock price and foreign exchange rates, also exhibit 

properties of unit root processes. While the Dickev-Fuller test (DF) for unit root is 

extremely popular in applied work, its low power and size distortion in the presence 

of conditional heteroskedasticity is widely documented. 

A strand of literature that emerged recently (Ling and Li, 1998, 2003; Ling, Li 

and McAleer, 2003: Seo, 1999) derives the asymptotic distributions of unit root tests 

with GARCH errors and demonstrates the power gains of incorporating the GARCH 

structure into the testing procedure. The form of the asymptotic distribution of 

the unit root test in this case is a mixture of a Dickev-Fuller (DF) and a standard 

normal distribution with a mixing coefficient that depends on the degr ee of conditional 

heteroskedasticity. 
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Despite the non-trivial power gains of the unit root tests with GARCH errors 

(see. for example. Seo. 1999), the applied work with these tests has been very lim-

ited. There are several possible reasons why empirical researchers may find these tests 

not to be particularly appealing. First, they require nonlinear (maximum likelihood) 

estimation as opposed to OLS estimation for the Dickey-Fuller tests. More impor-

tantly, the asymptotic distribution depends on nuisance parameters which involves 

additional computation for obtaining critical values. Finally, as we show later in the 

paper (see also Seo, 1999), the tests based on asymptotic critical values suffer from 

substantial size distortions especially for some GARCH parameter configurations that 

are typically documented in empirical studies with financial time series data. 

The first chapter proposes a bootstrap unit root test in models with GARCH(l . l ) 

errors and establishes its asymptotic validity under mild moment and distributional 

restrictions. While the proposed bootstrap test for a unit root shares the power en-

hancing properties of its asymptotic counterpart, it offers a number of important ad-

vantages. In particular, the bootstrap procedure does not require explicit estimation 

of nuisance parameters that enter the distribution of the test statistic and corrects 

the substantial size distortions of the asymptotic test that occur for strongly het-

eroskedastic processes. The simulation results demonstrate the excellent finite-sample 

properties of the bootstrap unit root test for a wide range of GARCH specifications. 

As in the U.S. and many other developed countries, obesity is becoming a severe 

social problem in Canada. The prevalence of obesity among adults aged 18 or older in 

Canada has been increasing significantly since the end of 1970s, from 13.8% in 1978/79 

to 23% in 2004 (Tjepkema, 2006). Almost all studies of the impact of obesity reveal a 
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strong positive relationship between excess weight and diseases such as cardiovascular 

disease, diabetes and hypertension. Obesity is also believed to be responsible for the 

increased prevalence of psychological disorders, such as depression (Wadden et al., 

2002). As a person's weight jumps to a high level of obesity, the risk of having these 

diseases increases dramatically (Allison et al., 1999; Engeland et al., 2003; Flegal et 

al., 2005). Sturm (2002) states that obesity outranks both smoking and drinking in 

its deleterious effects on health and health costs. He argues that obesity has roughly 

the same association with chronic health conditions as does twenty years of aging, and 

this greatly exceeds the associations of smoking or problem drinking. In Canada, the 

total direct medical cost attributable to the obesity was estimated over $1.8 billion 

in 1997. It corresponded to 2.4% of the total health care expenditures for all diseases 

in Canada in 1997 (Birmingham et al., 1999). If the indirect cost of obesity such 

as production loss due to obesity is included, the above number is even higher. In 

the U.S., the obesity-related conditions in 2008 account for 9.1 percent of all medical 

spending, up from 6.5 percent in 1998. During that time, the medical costs of obesity 

almost doubled and have risen from $ 78.5 billion to $147 billion (Finkelstein et al., 

2009). 

The second chapter explores the influences of some widely used demographic, 

geographic, and socioeconomic factors, as well as lifestyle, on the body mass index 

(BMI). By applying the quantile regression to three health surveys conducted from 

1978 to 2004, a period in which the prevalence of obesity in Canada was stable at first 

and almost, doubled thereafter, this study attempts to detect two kinds of changes: 

changes of BMI that are attributable to factors such as age, resident region, physical 
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activity and family income at different points of the BMI distribution, and changes 

in the importance of these factors over time. The result of the study shows that, 

the influence of factors on BMI differs at different points in the BMI distribution: 

moreover, the importance of any given factor changes over time. The epidemic of 

obesity in recent years is more closely related to lifestyle and socioeconomic factors 

than demographic factors. During this period, the role of education has shifted from 

the weakest factor to the strongest factor affecting BMI. This in turn, implies that 

the relationship between the capacity to avoid obesity and education is strong. On 

the other hand, working status is the least important factor related to the BMI for 

both men and women. This not only indicates the dominance of sedentary work and 

the continually decreasing expenditure of energy in the workplace, but also reveals 

that physical activity is the main way for people to expend energy. The fact, that 

age becomes less important at higher quantiles of the BMI distribution suggests that 

a change in the age structure of Canadians is not contributing much to the obesity 

epidemic in Canada. 

Movements among different BMI categories could provide very important infor-

mation about the obesity epidemic and the shift patterns of different groups. This 

information is useful for health care, health policies and other health related issues. 

For example, since each category of the BMI reflects a different level of health risk 

and movements among different BMI categories imply changes in health risk. The 

information of movements among different BMI categories could be used to forecast 

the prevalence of some diseases such as cardiovascular disease, hypertension and di-

abetes II that mainly resulted from obesity, as well as the demand for health care 
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and other medical resources related to theses diseases. More importantly, if the shift 

patterns of different groups are obtained, more pertinent and effective policies that 

prevent obesity could be designed. 

Chapter 3 studies how the pattern of weight of Canadian individuals has shifted 

among six categories of BMI during the 1994/95-2006/07 period, and seeks to de-

termine the relationship between this pattern and the obesity epidemic over the last 

twelve years. By applying the Markov chain analysis to the BMI for individuals from 

the longitudinal National Population Healthy Survey (NPHS), the BMI shift, patterns 

of Canadian adults is identified and estimated. The results reveal that: (i) although 

men and women differ in the BMI shift pattern, their BMI shift patterns throughout 

the period exhibit a positive trend, thus confirming that the prevalence of obesity 

in Canada is increasing; (ii) the BMI shifts are not stationary for both men and 

women: however, the BMI shifts for physically moderately active men and women are 

stationary. Two policy recommendations emerge naturally from the results of this 

study. First, the findings suggest that the effort to prevent the occurrence of new 

obese cases seems to be much more effective than the effort to reduce the number 

of existing obese people. Second, since people who are inactive in physical activity 

account for the biggest portion of Canadian population and their obesity prevalence 

is much higher than that of the physically active and moderate groups, health policies 

for reducing obesity should focus more on the inactive people and provide incentives 

for them to be more physically active. Using the estimated BMI shifts for physically 
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moderately active men and women, it turns out that if all inactive people are encour-

aged to become moderately active, the obesity prevalence in Canada can be confined 

below 25% in the long run. 
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CHAPTER 1 

Boots trap Unit Root Tests in Models with GARCH(1,1) 

Errors 

(joint with Nikolay Gospodinov) 

1.1. Introduction 

The simultaneous presence of high persistence and conditional heteroskedastic-

ity is a common characteristic of many economic time series. The stark differences 

between the long-run behavior and implications of nonstationary and stationary 

processes led to the development of a large class of unit root tests with good size 

and power properties. While the limiting theory for possibly unit root processes has 

been established under fairly general conditions, including some types of time-varying 

volatility, the explicit modeling of the higher-order dynamics is often expected to im-

prove the efficiency of the conditional mean estimates and the power of the tests. 

For instance, a strand of literature that emerged recently (Ling and Li, 1998, 2003; 

Ling, Li and McAleer, 2003: Seo, 1999) derives the asymptotic distributions of unit 

root tests with GARCH errors and demonstrates the power gains of incorporating 

the GARCH structure into the testing procedure. The form of the asymptotic dis-

tribution of the unit root test in this case is a mixture of a Dickev-Fuller (DF) and 

a standard normal distribution with a mixing coefficient that depends on the degree 



of conditional heteroskedasticity. As the degree of conditional heteroskedasticitv in-

creases (i.e., the sum of the GARCH coefficients approaches one), the standard normal 

distribution carries more weight and the corresponding smaller critical values give rise 

to a more powerful testing procedure. Note that the Dickey-Fuller distribution is still 

valid in the presence of GARCH errors but it is conservative and provides an upper 

bound for the critical values. 

Despite the non-trivial power gains of the unit root tests with GARCH errors 

(see, for example. Seo. 1999), the applied work with these tests has been very lim-

ited. There are several possible reasons why empirical researchers may find these tests 

not to be particularly appealing. First, they require nonlinear (maximum likelihood) 

estimation as opposed to OLS estimation for the Dickey-Fuller tests. More impor-

tantly, the asymptotic distribution depends on nuisance parameters which involves 

additional computation for obtaining critical values. Finally, as we show later in the 

paper (see also Seo. 1999), the tests based on asymptotic critical values suffer from 

substantial size distortions especially for some GARCH parameter configurations that 

are typically documented in empirical studies with financial time series data. 

In this chapter we propose a bootstrap method for approximating the finite-sample 

distributions of unit root tests with GARCH(l.l) errors and establish its asymptotic 

validity. We extend the results of Basawa et al (1989, 1991), Ferretti and Romo 

(1996), Heimann and Kreiss (1996) and Park (2003), among others, to unit root mod-

els with conditional heteroskedasticity estimated by maximum likelihood (ML). The 

implementation of the proposed bootstrap procedure is straightforward and is valid 

under some fairly weak conditions. In particular, we follow Ling and Li (2003) and 
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derive the consistency of the bootstrap distribution assuming finite second moments 

and symmetry of the errors. This allows for highly persistent GARCII specifications 

(with sum of the GARCH parameters arbitrarily close to one) that are commonly 

estimated in the empirical finance literature. Some related bootstrap results are de-

rived in Gospodinov (2008) in the context of testing for nonlinearity in models with 

a unit root and GARCH errors. 

The finite-sample results demonstrate the excellent size and power properties of 

the proposed bootstrap test. While the tests based on asymptotic critical values 

tend to overreject (in some situations, up to 40-50% at 5% significance level), the 

bootstrap test is always very close to its nominal size regardless of the degree of 

conditional heteroskedasticity. Furthermore, the power of the bootstrap test that 

incorporates the GARCH structure of the model exceeds the size-adjusted power of 

the standard DF test by a substantial margin when the conditional heteroskedasticity 

is strong. 

The properties of the proposed bootstrap test prove to be of great practical impor-

tance for identifying the mean reverting behavior in processes with GARCH structure. 

In our empirical analysis of several U.S. interest rate processes, we show that the DF 

test does not provide any evidence against the null of a unit root which has impor-

tant implications about the long-run properties of the data. In contrast , the bootstrap 

DF-GARCH test tends to reject convincingly the unit root hypothesis due to its su-

perior power properties. This lends support to the mean reverting specification as an 

underlying process for interest rate dynamics in many economic and finance models. 
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The rest of the chapter is organized as follows. The main model and notation are 

introduced in Section 2. Section 3 describes the proposed bootstrap procedure and 

derives its asymptotic validity. Section 4 presents Monte Carlo simulation experiment 

that assesses the finite-sample performance of the asymptotic and bootstrap tests. 

Section 5 concludes. The proofs of all results in the paper are relegated to the 

Appendix. 

1.2. Model and Notat ion 

Consider the first-order AR process with GARCH(l . l ) errors 

(1.1) — dt + 2/f 

yt = <t>yt-1 + cf 

= yfhtnt 

ht~uj + Qt^j + (3ht-1, 

where <p = 1. d, is a deterministic component and ~ iid(0.1). This model can 

be generalized to an AR(p) model .4(1)(1 — <pL)yt with a (p — 1) lag polynomial 

A(L) with roots that lie outside the unit circle and higher-order GARCH processes. 

For simplicity, we present the results for the first-order model (1.1) but the limiting 

representations and the bootstrap procedure can be extended in a straightforward 

manner (but with more cumbersome notation) to higher-order processes. 

Let 5 = (w,a,/3) denote the vector of the unknown GARCH parameters. The 

parameter of interest is <j> and the estimation is performed on the raw, demeaned or 

detrended data, depending on whether dt =- 0. d, = //q or dt = //() -f /iXf, respectively. 
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The Gaussian quasi-likelihood function of this model is given by 

I r 

(1-2) Lr io .d) - r Y , I<(<>.<)). 
t=1 

2 

where lt((/>,S) = — | l n / i t — We follow Ling and Li (2003) and assume that the 

following conditions are satisfied. 

A S S U M P T I O N 1 Assume that 

(a) 771 ~ Hd{ 0, 1), E(rj?) = 0. E{rft) =K< oc for all t: 

(b) # = {(oj .a .3) : 0 < cci < u: < lju..O < a( < a < a „ ,0 < 3i < 3 < 

,i„.a t > • 1}: 

(c) yo = 0 and ho is initialized from its invariant measure. 

Assumption 1 imposes some very weak moment and distributional conditions on 

the error term. The standardized errors are assumed to be symmetric rid random 

variables with a finite fourth moment. The assumed symmetric distribution of rjt 

may appear restrictive but this allows us to weaken the moment requirements on 

the error term et (see Ling and Li, 2003). In particular, the limiting results and 

the validity of the bootstrap procedure are derived assuming the existence of finite 

second moment of e, which is satisfied under fairly general conditions on the GARCH 

parameters. More specifically, the conditions in part (b) ensure that E(ef) < oo 

and the processes {//., } and {c t} are strictly stationary, ergodic and 0-mixing with 

exponential decay (Carrasco and Chen, 2002: Francq and Zakoian, 2006) and allow 

for strong conditional heteroskedasticity that is typically present in financial data. 

Part (c) specifies the initialization of the conditional mean and variance functions. 
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Assuming y0 to be fixed at a different value than zero or to be op(T1'2) does not 

affect the limiting results derived below. Similarly, the asymptotic distributions are 

invariant to the assumption on the initial condition of h (Lee and Hansen, 1994; Ling 

and Li. 2003). 

By the block diagonality of the Hessian matrix (Bollerslev, 1986; Ling, Li and 

McAleer. 2003), the conditional mean and variance parameters can be estimated 

separately without any efficiency loss. Let <pLS = (Yl! i Vt-i )~MX]f=i VtUt-I ) denote 

the OLS estimator of d> and note that T(&is — 1) = O p ( l ) under Assumption 1. The 

parameter vector 6 can be estimated from the OLS residuals e, = yt — (pLsVt-I and 

the corresponding estimates 5 are asymptotically equivalent to the estimates obtained 

from the t rue et. Then, for some preliminary '/'-consist ent estimator 4>, the one-step 

QMLE estimator of d> is given by 

<?ML = 9 
i' d% 0.5 

E 
(=i deb2 

t=1 do 

and (Ling and Li, 2003) 

ML " I ) J2 X v 
t= 1 

d \ (0.6) 
dd 2 

6=1 

1 T 

j1 ^Ly 
t=1 

dlt (<f>,5) 
d<p 

op{1). 

The OLS estimator <pis can be used as an initial preliminary estimator. Then, the 

iterative estimator that updates the estimates of 8 and <}>ml until convergence is 

asymptotically equivalent to the full MLE. 

Let 

t=1 t=1 
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and 

( 4>ml ~ 1) 

be the f-statistics of : ( / ; = ! for the OLS and ML estimators, respectively. Let 

also signify weak convergence. D[0,1] denote the space of real valued functions 

defined on the interval [0,1] that are right-continuous at each point in [0,1] and have 

finite left limits, and Bx(r) be a standard Brownian motion on D[0,1]. The following 

lemma is a restatement of some results in Ling and Li (2003) and Seo (1999). 

L E M M A 1 Suppose that o = 1 and Assumption 1 holds. Then, as T —OC 

where p = l/ay/K, E(ht) = a2, K = E{l/ht)+(K-l)a2 ,/AA- n,.;^ p = 

E(l/ht) + 2a2 and £ is a standard normal random variable 

distributed independently of By (r). 

P R O O F See Ling and Li ( 2 0 0 3 ) and Seo ( 1 9 9 9 ) . 

The results in Lemma 1 are presented for the case with no deterministic terms, i.e. 

dt = 0. The limiting representations for dt = /to and d, = /<0 + pAt can be obtained 

( 1 . 3 ) 

( 1 . 4 ) 
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by replacing Bx(r) in (1.3) and (1.4) by its demeaned version Bx(r) ~ f(' Bx(s)ds and 

its detrended version Bx(r) — — 6sjBx(s)ds — 12s — 6)Bi(s)ds. respectively. 

Several interesting results emerge from the limiting representations in Lemma 1. 

The asymptotic distribution of ^AJL=i is a scaled mixture of a Dickey-Fuller and a 

standard normal distribution with a mixing coefficient that depends on the degree 

of conditional heteroskedasticity and non-normality of the errors. In the case of nor-

mally distributed errors (K = F), the Dickey-Fuller distribution provides an upper 

bound for the critical values of As the degree of conditional heteroskedastic-

ity increases.1 more weight is assigned to the standard normal distribution and the 

corresponding smaller critical values increase the power of the test. 

Another version of the test standardizes {©ml ~ 1) with the robust variance co-

variance matrix (Bollerslev and Wooldridge. 1992) 

E If I, (<>. d ! E 
t=i 

dh (<?: S) 
dd E 

t=I 

d \ ( < M ) 
dd>2 

evaluated at the ML estimates of <j> and (). whose limiting distribution is given by 

p fo This test is expected to have more robust size properties 
(Jo BK r)d '-)' 

with possibly non-normallv distributed errors although at the cost of moderate power 

losses for Gaussian errors. 

Despite its potential for non-trivial power improvements, the test in (1.4) has 

the unappealing property that its asymptotic distribution is non-pivotal and depends 

on nuisance parameters. In principle, one could tabulate critical values for the test 

' Boswijk (2001) derives an approximate expression of p in terms of the GARCH parameters as 

p x ^ J ^ ! 1 + 2 a T h e n , it is easy to see that high persistence in the conditional variance 

(a + [3 near one) is typically associated with low values of p. 



toX I l=i\J FjK on a grid of values for p (Seo, 1999). where the nuisance parameters 

are estimated from the data, although this makes the testing procedure somewhat 

cumbersome. More importantly, the nuisance parameters involve infinite sums and 

estimates of a . •3, /. and h that enter in a highly nonlinear fashion which could 

impair the precision with which these quantities are computed. As we demonstrate 

below, this may lead to severe size distortions of the tests even for very large sample 

sizes. The bootstrap method that we propose in this paper proves to be very useful 

for approximating the finite-sample distribution of t?A/i.=1 as it avoids the explicit 

calculation of the nuisance parameters. In addition to the substantially improved size 

properties of the unit root test, the straightforward implementation of the bootstrap 

offers practical advantages and can be easily extended to processes that accommodate 

more general serai correlation and conditional heteroskedasticity structure. 

1.3. Boots trap Approximation 

In this section, we propose a bootstrap method for approximating the finite-sample 

distribution of the unit root test / 0 u f . i. We start by discussing the bootstrap proce-

dures based on resampling the symmetrized residuals and generating repeated samples 

under the null of a unit root. In proving the asymptotic validity of this bootstrap 

approximation, we first verify if the bootstrap samples satisfy the conditions of As-

sumption 1 and if the effect of the initial conditions is asymptotically negligible. 

Then, we develop a bootstrap invariance principle with conditionally heteroskedastic 

errors and establish the weak convergence of the bootstrap statistic to the limiting 

distribution in Lemma 1. 
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1.3.1. Descr ipt ion of B o o t s t r a p Procedure 

Let {z^. z2. - z-r\ be a sequence of T observations generated by model (1.1). Sup-

pose that the deterministic component is removed by an OLS regression of {zt} on a 

const ant or on a constant and a linear trend and let { >/[. yo, • yx} denote the resid-

uals horn these regressions. As argued above, the conditional mean and variance 

parameters of (1.1) can be estimated separately. Let 5 = (q . a . denote the ML 

estimates of the GARCH parameters, {//,} be the conditional variance computed re-

cursively from these estimates for some initial value h0 and 6,ml denote the one-step 

or iterated MLE of 0 introduced in the previous section. 

Define the residuals e t — yt — (pMLVt-i- While these residuals could also be con-

structed imposing the null of a unit root (<p ~ 1). we follow Paparoditis and Poli-

tis (2003) and compute the residuals using the MLE of o which helps to retain 

the important characteristics of the data and improve the power of the unit root 

test. We then construct the recentered standardized residuals as 7jt = st/ \J~h, -

7' 5 J^ i l i f° r t ~ ...,T with empirical distribution function denoted by 

Ft{i]) = T~l Y?t=i Hvt < ']) fha t is used for resampling. Since the underlying dis-

tribution of r/i is assumed to be symmetric (Assumption 1, part (a)), we need to 

ensure that the empirical distribution from which the bootstrap samples are drawn is 

also symmetric. For this reason, we construct the collection {±//i. ±7/2; ••-- ±J?r} and 

resample with replacement from its (symmetrized) empirical distribution function 

F,jyr"(ri) to obtain the sequence {??; : t = 0, ..., T} (Jing. 1995). 



The bootstrap procedure for approximating the distribution of t0 x i l ^i takes the 

following steps. First, draw a random sample {//[, if2. ...r/f} from Ff""{i]) with re-

placement and for initial conditions //,*, and y^, construct a bootstrap sample recur-

sive I v as 

h*t =Z + (0 + aVf_l)h, t-1 

Vt = yU + y/Knl 

The (possibly demeaned/detrended) bootstrap sample {y\, y*,, y f} is first used 

to get the bootstrap QMLE estimates S* = (u*.a*. /?*) from e*t = y j - <.•}..././,' where 

(Pls = (zLtli Vt-i ) _ 1 Vt Ut i )• Then, the one-step bootstrap QMLE of o is 

obtained as 

d>* ML 6* -
^ d2i*(d>j*) 

t=1 dS1 E 
t=i 

where 4>* is a preliminary consistent estimate, typically <f>*LS. The iterative boot-

strap estimator can be computed by updating the estimates of 6* and q>*ML until 

convergence. The estimators 8* and (p\[L are finally used to calculate the Hessian 

E L 
T 02/(*(<M) 
t = i d02 

-1 

<!>-<<> M l ,6=S* 
and the f-statistic of a unit root 

t E 
4=1 

n * $) 
d<p2 

1/2 

(<f>*ML ~ 1)" 
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This algorithm is repeated B times2 and each time the bootstrap unit root statistic 

is computed. Let P* denote the distribution of (yl.y^ ..... yf) conditional on 

the sample {y\, 1/2- •-•• yr) and Gj-(x) = P*(t$htL=1 < x) be the bootstrap distribution 

of Bootstrap critical values can be obtained by taking the corresponding 

quantile of Gf (x) and bootstrap p-values of the unit root test are constructed as 

1.3.2. A s y m p t o t i c Validity of the Boot s t rap Approximation 

This section analyzes the asymptotic properties of the symmetrized-residual boot-

s trap procedure. We first demonstrate that the bootstrap samples also satisfy the 

conditions of Assumption 1. We also show that the initial values used for generat-

ing bootstrap samples do not affect the asymptotic distribution of the test statistic. 

We then establish the bootstrap invariance principle for partial sums of processes 

with GARCH errors and prove the weak convergence of the bootstrap unit root test 

statistic to the asymptotic distribution (1.4) in Lemma 1. 

From the properties of the MLE estimator 5 and the constraints imposed in the 

estimation of the GARCH parameters, it is easy to verify that part (b) of Assumption 

1 still holds for the bootstrap data, generating process. As a result, we focus on 

establishing if the bootstrap samples satisfy the conditions of parts (a) and (c) of 

Assumption 1. 

"See. for example, Davidson and MacKinnon (2000) for guidance in selecting the number of bootstrap 
replications. 
3 GAUSS 

and MATLAB codes for implementing the bootstrap procedure are available from the 
au thors upon request. 
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Let d'2(.) denote the Mallows metric4 of degree 2, defined as 

d2{Fx,Fz) = inf (E \X - Z f ) m 

over all joint distributions for the random variables X and Z with marginal distri-

butions Fx and Fz. Also, let F^y,n(r]) denote the empirical distribution function of 

the symmetrized recentered residuals {±rji, zb/72, -fcr// } and F be the true distrib-

ution of the standardized errors rjt. We use the Mallows metric do to show that the 

symmetrized empirical distribution function of the recentered standardized residuals 

provides a good approximation to the true distribution function and the bootstrap 

errors satisfy the conditions for establishing the bootstrap invariance principle. 

L E M M A 2 . Let E* and Var* refer to the expected value and variance of P*, }/LJ 

be drawn with replacement from Fjym(i]) and suppose that Assumption 1 holds. Then. 

(a) d2 ( F f m , f ) -~> 0 as T oc, 

(b) E(s't) = 0. 

(c) Var*(si) = a2 as T —> oc. 

(d) E*(s*tf = 0. 

P R O O F . See Appendix. 

The bootstrap sequences {h*} and } are constructed for some initial values /J(* 

and i]o- Auxiliary Lemma 2 in Appendix A.l establishes that if rjy is drawn from 

F^ym(q) and l)J is initialized from its invariant measure, the bootstrap sequences 

'For the properties of the Mallows metric, see Section 8 in Bickel and Friedman (1981). 
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and {z*L} are strictly stationary and ergodic. Furthermore. Auxiliary Lemma 

3 in Appendix A.l shows that the expected difference (under P*) of partial sums 

constructed from sequences that start from infinite past and finite past tend to zero 

as T — c o . 

The following lemma demonstrates that different initial values of have no as-

ymptotic effect on the bootstrap procedure. 

LEMMA 3 . Define the •processes Q = A J ^ + A - 7^(7^- ~ 1) I ] ; - 1 ] ft 1 nk~\r 't-k J and 

S[Tr] = T"1/2 YltJi for {0 < r < 1}. where X — (Xj, A2) is a constant vector with 

XX' i=- 0. Let /iqj and h.Q2 are two different initial values of h*t and {h*tl,hl2)- {^n-^h) 

and (f *j, £4*2) are bootstrap sequences corresponding to these initial values, respectively. 

Then, under Assumption 1 and as 7 -•> co, 

(a) E* - h*2 j 0, 

(b) E* =r* _ I ~tl ~t'2\ 0, 

(c) E* 
T 1 V^ 

vT ^ 0 i l 
i=1 

T 1 y 
vT f-> = O (T-1/2) . 

(d) E* o(l) <j(2) 
°[7Y] °[Tr] = 0 ( : T - V'2): where L E & ™d s\2) ~ 1 

v r t=1 '[Tr\ vT 

PROOF. See Appendix . 

Finally, we show that the bootstrap delivers consistent estimates of the nuisance 

parameters that enter the limiting distribution of the unit root test. 

L E M M A 4. Under Assumption 1 and as T —• oc. 

(a) E*(h*t) - E{ht), 

(b) E* (1 jh*t) E{l/ht): 
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(c) I<* K. 

(d) F* F. 

PROOF. See Appendix . 

Now we can establish the bootstrap iiivariance principle for partial sums of GARCH 

processes. 

L E M M A 5 . Under Assumption 1. 

[•Tr] [Tr] 

T - ^ e l T - ^ Y l 
t=i t=i t f J = 1 

[Wi(r),W'2(r)] 

for all r € [0,1], conditionally on the sample (yx. y<>,.... yr), where [11 (/'). 11'•>(/ )] is a 

bivariate Brownian motion in D[0. 1] x D\0.1] ivith mean zero and covariance matrix f \ 
E(ht) 1 

{} - r , where K is defined in Lemma 1. 

\ 1 K 

PROOF. See Appendix. 

The results in Lemmas 2 to 5 provide sufficient conditions for the asymptotic 

validity of the bootstrap procedure. The next theorem shows that the bootstrap 

approximation to the distribution of the test converges weakly to the limiting 

distribution in Lemma 1 which implies that the bootstrap is first-order asymptotically 

correct. 
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T H E O R E M 1. Under Assumption 1 and the null hypothesis Hq : o = 1. for any 

and t > 0. 

where P{t0vL=i < -r) is the limiting distribution (1-4) of the t^KfL=i test in Lemma 

1. 

PROOF. See Appendix . 

The result in Theorem 1 implies that the critical and p-values for the unit root test 

with GARCH errors can be approximated by bootstrap that avoids the explicit esti-

mation of nuisance parameters. An interesting extension that is beyond of the scope 

of this paper is to investigate the power of the bootstrap test under the alternative 

and show that it converges to the power function of the asymptotic test as in Swensen 

(2003). Also, while establishing the higher-order accuracy of the bootstrap might be 

interesting, the bootstrap is not expected to offer any asymptotic refinements since 

the test statistic is not pivotal. 

The next section shows that the asymptotic distribution (1.4) provides a very-

poor approximation to the finite-sample distribution of the unit root test when the 

degree of conditional heteroskedasticity is high. This seems to be due to the imprecise 

estimation of the nuisance parameters as the conditional heteroskedasticity is close 

to an integrated GARCH process. In contrast, the size of the bootstrap-based test 

is near the nominal level across all GARCH parameterizations without any adverse 

effects on the power. 
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1.4. Numerical Il lustrations 

1.4.1. M o n t e Carlo Simulation 

This section reports the results from a Monte Carlo experiment that assesses the size 

and power properties of the asymptotic and bootstrap unit, root tests in models with 

GARCH errors. Repeated sample paths are generated from the following model 

(1.5) yi = <i>yi-\ + et 

£t = \/htVt 

ht = io + aej__ j + 3h(-\. 

where r]t ~ iidN (0,1) .r> The sample size is T = 200 and the number of Monte Carlo 

replications is 2.000. 

The autoregressive parameter <b takes values of 1 and 0.92 in evaluating the size 

and the power of the unit root test, respectively. We also normalize the unconditional 

variance to be one by setting u = 1 — a — 3. The performance of the tests is evalu-

ated for different degrees of conditional heteroskedasticity that cover the conditional 

homoskedastic case (a + 3 = 0) and some highly persistent GARCH specifications 

(a-+/3 = 0.999). We consider specifications that are typically estimated from financial 

data (for example, (a = 0.399, ,8 = 0.6) and (a = 0.199.3 = 0.8)) as well as spec-

ifications (large a and small 3. for instance) that are not frequently encountered in 

'^Additional results fot. t- and x2-distr ibuted errors are available from the authors upon request. The 
asymmetric errors are used to investigate the sensitivity of the tests to the symmetry condition in 
Assumption 1. 
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economic applications. It should be noted that while all specifications satisfy the mo-

ment condition Ee'f < oc, most of the considered GARCH parameterizations render 

Eel infinite. 

We investigate the empirical size and power performance of the asymptotic test 

based on the OLS estimator ( A S Y — DF), the DF test with critical values approx-

imated by the wild bootstrap (BOOT — DF). the asymptotic test based on the 

ML estimator of the GARCH model (ASY - GARCH) and its bootstrap analog 

(BOOT — G ARC H) discussed in Section 3. All tests are constructed using demeaned 

data which is equivalent to including an intercept in the estimated models. In the 

ML estimation of the GARCH parameters, we impose the restriction a + i3 < 1. 

The GARCH bootstrap generates samples under the null of a unit root by resam-

pling the centered, symmetrized standardized residuals. These samples are used to 

approximate the distribution of the unit root test with 199 bootstrap replications that 

delivers the corresponding bootstrap critical values. The asymptotic critical values 

for the test based on the OLS estimator are obtained from the Dickey-Fuller tables. 

For the asymptotic test based on the ML estimator with GARCH errors, we use the 

true values of a, 3 and k to obtain the values of the nuisance parameters F, K and 

p (by truncating the infinite sums at a large integer value) and then interpolate the 

appropriate critical values from Table 3 in Seo (1999). 

The empirical rejection probabilities under the null of a unit root at 1%. 5% and 

10% nominal levels are reported in Table 1.1. The asymptotic DF test is well sized 

in the conditionally homoskedastic case and slightly overrejects for low to moderate 

degrees of conditional heteroskedasticity. As the GARCH persistence approaches the 
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unit boundary, the size distortions of the DF test are substantial (see also Valkanov, 

2005) and are bigger when a exceeds 8. Several recent papers (Beare, 2008: Cavaliere 

and Taylor, 2008) have proposed modified unit root test procedures that are robust 

to the presence of certain types of conditional heteroskedasticity.6 Here, we consider 

the wild bootstrap approach of Cavaliere and Taylor (2008) who extend the results 

of Goncalves and Kilian (2004, 2007) to nonstationary volatility models with a unit 

root. The second column of Table 1 presents the results based on the wild bootstrap 

method. The wild bootstrap reduces the size distortions of the asymptotic DF test 

but there are still some relative large overrejections when the sum of the GARCH 

parameters is near unity. This reflects the stronger moment requirements on the 

errors that are needed for establishing the validity of the wild bootstrap (Cavaliere 

and Taylor, 2008). 

The results for the ASY — GARCH test f©.ut=i are reported in the third column 

of Table 1.1. While the size distortions of this test are smaller than those of the 

DF test, there are still fairly large despite the fact that the AS)' — GARCH test 

is designed to handle explicitly the presence of conditional heteroskedasticity. Sub-

stantial overrejections occur when the GARCH specification borders an integrated 

GARCH process. Our numerical experiments suggest that these overrejections are 

due to imprecise estimation of some nuisance parameters as a >j is close to one. 

' 'Some other popular methods for size correction may not be valid or appropriate in our context. 
For example, using a robust variance covariance matrix tends to reduce the size distortions (Kim 
and Schmidt, 1993) but the consistency of this procedure for nonstationary processes has not been 
formally established. Also, while the resampling scheme that incorporates the GARCH structure of 
the model can certainly be used for the D F test, it is not obvious why one would employ it for this 
test and not for the more powerful test based on the ML estimator. 
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In order to illustrate this point, we present in Table 2 the values of the estimated 

nuisance parameters a2 = E(ht). E(l/ht) and K (which is equal to F for normal 

errors) for several GARCH parameterizations and truncation value k = 3,000.000. 

The table shows that when c> + (3 = 0.9, regardless of which combination of a arid (3 

is chosen, the computed values of a 2 are very close to the true value of 1. However, 

when q + f3 = 0.99, the estimates of a2 start to deviate significantly from 1 and tend 

to be biased towards 0. The difference becomes even more extreme for a + j3 = 0.999 

and large values of a . The accuracy of the approximation of a 1 is an indicator of the 

accuracy of the estimates of E(l/ht) which in turn affects the estimates of K and the 

mixing parameter p. 

In contrast to the large size distortions of the asymptotic tests, the bootstrap 

controls the size of the unit root test with GARCH errors uniformly across all GARCH 

specifications and nominal levels. This impressive performance of the bootstrap unit 

root test is achieved despite the small number of bootstrap replications. Overall, our 

bootstrap procedure proves to be very effective for correcting the overr eject ions of 

the ASY - GARCH test-

Table 1.3 reports the empirical power of the unit root tests with simulated data 

from model (1.5) with 0 = 0.92. The rejection probabilities for the asymptotic tests 

(ASY — DF and ASY — GARCH) is size-adjusted power whereas the power of the 

bootstrap test (BOOT — GARCH) is raw power. One interesting observation that 

emerges from the results is that the DF test is not able to detect any deviations 

from the null hypothesis when the conditional heteroskedasticity is very strong. For 

example, if (a = 0.6. = 0.399) and (a =• 0.8, j3 = 0.199), the size-adjusted power of 
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the DF test is only 6.709c and 7.12% at 10% nominal level. Even for the parameteri-

zation (a = 0.399. 8 = 0.6) that is more often encountered in financial applications, 

the power is 9.55% at 10% nominal level. 

The tests that incorporate the GARCH structure of the model suffer only a small 

power loss in the conditionally homoskedastic case and offer power gains at 10% nom-

inal level of 16-34 percentage points (when the conditional heteroskedasticity is not 

very strong) to more than 85 percentage points (for the highly persistent GARCH 

specifications). These extreme power improvements, combined with the size correc-

tion property of the bootstrap method, illustrate the potential of the ML-based tests 

to detect the mean reversion in processes with strong conditional heteroskedasticity. 

The raw power of the bootstrap test is very close, albeit slightly below, the (typically 

infeasible in practice) size-adjusted power of ASY — GARCH. Davidson and MacK-

innon (2006) analyze the discrepancy that arises between the rejection probabilities 

of the bootstrap test and the size-adjusted power of the asymptotic test and suggest 

possible ways of minimizing it. 

1.4.2. Test ing for Unit R o o t in U.S. Interest Rates 

The correct specification of the dynamics of interest rates plays an important role in 

derivative pricing, hedging and term structure modeling. For example, most diffusion 

models of spot interest rate that are used for bond valuation impose a mean reverting 

behavior on the underlying process. Yet, unit root tests for post-war U.S. interest 

rates rarely reject the null of nonstationarity which requires that this nonstationarity 

is taken into account in modeling and long-run forecasting of interest rates. This 

empirical finding not only creates some tension between the dynamics of interest 



rates in theoretical finance and the specification adopted in practice but it also may 

cause substantial size distortions in testing the parameters in term structure models 

(Elliott, 1998). 

While the conditional heteroskedasticity is a widely documented characteristic of 

interest rates, the unit root tests typically do not incorporate explicitly the strong 

GARCH effect into the testing procedure. We re-examine the possibility of a mean re-

version in U.S. interest rates using the bootstrap test proposed in this paper. The data 

employed in the analysis include the Federal Funds rate, 3-month Treasury bill rate 

(secondary market), 1-. 5- and 10-year Treasury bond yields (constant maturity) and 

the default premium constructed as the difference between the Aaa and Baa corporate 

bond yields. The series are annualized rates at monthly frequency covering the period 

July 1954 - November 2008 and are downloaded from Table H.15 of the Federal Re-

serve Statistical Release ( h t t p : //www. f e d e r a l r e s e r v e . g o v / r e l e a s e s / h l 5 / d a t a . htm). 

The dynamics of the five interest rates and the default premium are plotted in Figures 

1.1 and 1.2, respectively. The graphs show that all series exhibit high persistence over 

the sample period. The short-term interest rates appear to be more volatile than the 

long-term rates and the dynamics become smoother as the time to maturity increases. 

The results from the Dickey-Fuller and the GARCH-based unit root tests are 

reported in Table 1.4. Since the interest rates do not exhibit any trending behavior, 

we consider a model tha t includes an intercept but not a linear trend. The values of 

the DF statistic for all interest rate processes do not exceed the asymptotic critical 

values at 5% and 10% significance level (-2.86 and -2.57, respectively). The bootstrap 

p-values of the DF tests (computed with data generated from the bootstrap procedure 
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described in Section 3) are between 0.36 and 0.64 and provide no evidence against the 

null of a unit root. The results from our bootstrap test with GARCH errors stand in 

sharp contrast with this finding. The bootstrap p-values of the BOOT — GARCH 

test indicate that the null of a unit root can be rejected at 5% significance level 

for all interest rates except for the 10-vear yield whose bootstrap //-value is 0.068. 

The last two columns in Table 1.4 confirm the high persistence in the conditional 

heteroskedasticity of interest rates. Incorporating the pronounced GARCH effect 

into the testing procedure appears to deliver the substantial power gains documented 

in the previous section. This rejection of the unit root hypothesis also lends empirical 

support to the mean reverting diffusion specification that is typically used in financial 

economics to describe the dynamics of short-term interest rates. 

1.5. Conclusion 

This paper proposes a bootstrap test for a unit root in processes with GARCH 

errors and shows its asymptotic validity under very weak moment and distributional 

assumptions. The proposed method offers several important advantages over the 

existing tests that do not exploit the information in the conditional variance and its 

asymptotic counterpart. First, the test delivers impressive power gains by explicitly 

incorporating the GARCH structure of the errors, especially for highly persistent 

GARCH specifications with power improvements over the DF-type tests. While the 

asymptotic counterpart of the test requires the computation of nuisance parameters 

and suffers from relatively large size distortions, the proposed bootstrap procedure 

is straightforward to implement and appears to control the size uniformly over all 

possible GARCH specifications that guarantee the existence of second moments of the 
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errors. Finally, while generalizing the asymptotic theory to more complicated setups 

would be quite involved, our bootstrap method can be easily adapted to models with 

a lag length that goes to infinity at certain rate, asymmetric errors and other types 

of conditional heteroskedasticity (other models from the GARCH class, stochastic 

volatility model etc). 
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Table 1.1. Empirical size (in %) of unit root tests. 

ASY ~ DF ASY -GARCH BOOT - GARCH 

1% 5% 10% 1% 5% 10% 1% 5% 10% 

a 0 ; J 0 1.00 5.05 9.35 1.35 5.40 10.06 1.05 5.35 9.85 

a = 0.5. / • 0.4 3.20 10.16 15.46 1.95 8.05 15.71 1.00 5.05 10.51 

a = 0.25. j3 = 0.7 2.85 8.70 14.21 2.15 7.75 15.21 1.10 5.10 9.50 

a = 0.399, p = 0.6 29.61 43.17 50.58 9.35 26.41 39.82 1.40 4.95 10.05 

a = 0.199,8 = 0.8 13.51 25.66 35.07 9.15 29.16 42.72 1.00 4.95 9.95 

a = 0.7.(3 = 0.25 4.80 11.71 17.71 2.65 11.41 21.61 1.00 4.70 10.00 

O' = 0.6. i3 = 0.399 31.83 45.95 53.55 8.91 24.02 37.04 1.50 5.51 10.11 

Q' = 0 .8 ,3 = 0.199 31.43 40.64 47.05 7.81 22.02 33.83 0.90 4.70 9.91 

Notes: The empirical size is computed from 2.000 Monte Carlo replications with 

data generated from model (1.5) with <p — 1 and T = 200. 
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Table 1.2. Values of the nuisance parameters E(ht). E(h.t) and K computed with 

truncation value k = 3. 000,000. 

UJ Q ,3 a + j3 E(ht) E(l/ht) K 

0.1 0.1 0.8 0.9 1.0001 1.0853 1.1333 

0.1 0.3 0.6 0.9 0.99138 1.6085 1.8705 

0.1 0.5 0.4 0.9 0.99008 2.457 3.1214 

0.01 0.1 0.89 0.99 0.96559 1.8322 1.9721 

0.01 0.3 0.69 0.99 0.94684 6.8752 8.2567 

0.01 0.5 0.49 0.99 0.69926 15.051 19.623 

0.001 0.1 0.899 0.999 0.71754 8.9415 9.6827 

0.001 0.3 0.699 0.999 0.23821 59.192 71.376 

0.001 0.5 0.499 0.999 0.12845 141.01 184.42 
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Table 1.3. Empirical power (in %) of unit root tests. 

ASY - DF ASY -GARCH BOO! 1 - GARCH 

1% 5% 10% 1% 5% 10% 1% 5% 10% 

a = 0,13 = 0 31.17 68.83 85.89 25.41 66.68 84.44 24.66 63.93 81.19 

a = 0.5 ,f3 = 0.4 15.91 48.72 67.68 56.93 87.54 94.70 52.83 86.34 93.50 

a = 0.25, (3 = = 0.7 15.61 49.62 72.49 33.02 73.74 88.64 29.36 70.79 87.04 

a = 0.399, /3 = 0.6 0.15 2.35 9.55 22.21 63.68 76.19 28.71 61.28 73.39 

a = 0.199, 3 = 0.8 0.35 9.60 27.71 11.31 55.43 73.29 17.36 53.18 71.49 

a = 0.7, 3 = 0.25 6.50 42.17 63.43 74.54 94.45 97.30 68.43 91.70 96.50 

a = 0.6,3 = 0.399 0.10 1.35 6.70 38.57 76.19 83.44 46.52 73.94 82.64 

a = 0.8, $ = 0.199 0.00 2.20 7.12 70.63 89.00 92.63 63.39 84.61 90.30 

Notes: The empirical power is computed from 2.000 Monte Carlo replications with 

data generated from model (1-5) with o = 0.92 and T = 200. The power reported for 

the asymptotic tests ( A S Y — DF and ASY — GARCH) is size-adjusted power and 

the power for the bootstrap test ( B O O T — GARCH) is raw power. 
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Table 1.4. Unit root tests for U.S. interest rates. 

DF BOOT -GARCH a /3 

test p — value test p — value 

Fed funds rate -2.052 0.359 -5.382 0.000 0.328 0.671 

3-month rate -1.994 0.370 -3.582 0.008 0.279 0.720 

1-year rate -1.957 0.370 -3.020 0.023 0.273 0.724 

5-year rate -1.629 0.541 -2.979 0.032 0.170 0.829 

10-year rate -1.578 0.552 -2.662 0.068 0.155 0.844 

default premium -1.329 0.641 -4.650 0.014 0.338 0.661 

Notes: The p-values of both tests are bootstrap p-values. where the bootstrap 

samples are generated using the estimated GARCH parameters (last two columns in 

the table). The number of bootstrap replications is 1.999. 
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Figure 1. U.S. interest rates. 
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Figure 2. U.S. default premium (Baa corporate bond yield - Aaa corporate bond yield). 
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CHAPTER 2 

Changes in Obesity Prevalence in Canada 

2.1. Introduction 

As in the U.S. and many other developed countries, obesity is becoming a severe 

social problem in Canada. The prevalence of obesity among adults aged 18 or older 

in Canada lias been increasing significantly since end of 1970s, from 13.8% in 1978/79 

to 23% in 2004 (Tjepkema. 2006). Almost all studies of the impact of obesity reveal 

a strong positive relationship between excess weight and diseases such as cardiovas-

cular disease, diabetes and hypertension. Obesity is also a reason for the increased 

prevalence of psychological disorders, such as depression (Wadden et al., 2002). As 

a person's weight jumps to a high level of obesity, the risk of having these diseases 

increases dramatically (Allison et al.. 1999: Engeland et al.. 2003: Flegal et al., 2005). 

Sturm (2002) states that obesity outranks both smoking and chinking in its deleteri-

ous effects on health and health costs. He argues that obesity has roughly the same 

association with chronic health conditions as does twenty years of aging, and this 

greatly exceeds the associations of smoking or problem drinking. 

Obesity is a condition of excessive body fat which results from a chronic energy 

imbalance whereby energy intake exceeds energy expenditure (Katzmarzyk, 2002). 

Bleichet et al. (2007) estimate the relative contribution of caloric intake and physical 

activity in the developed countries, including Canada, and show that rising obesity 

is primarily the result of consuming more calories. For example, in 1970, an average 
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Canadian consumed iess than 3000 calories per day; however, average energy intake 

after 2000 is above 3500 calories. 

It is certain that changes in the environment affect human energy intake and phys-

ical activity (Hill et al.. 2003). and these changes are the direct causes of the obesity 

epidemic. Bleichet et al. (2007) argue that increase in caloric intake is associated with 

technological innovations that have resulted in reduced food prices, as well as chang-

ing sociodemographic: factors, such as increased urbanization and increased female 

labor force participation. Nonetheless, while changes in the environment increase the 

possibility of consuming more food, they are just the preconditions for an obesity 

epidemic. It is individual reactions to changes in the environment that determine 

who will gain weight, and people with different personal characteristics may respond 

differently to changes in the environment. 

By comparing the average body mass index (BMI) and saving rates among dif-

ferent countries. Komlos et al. (2004) state that the trend in obesity is related to an 

increase in time preference. By applying a large set of indicators for the individual 

discount rate from a Dutch survey, Borghans and Golstevn (2005) suggest that the 

increase in the average discount rate may be a contributing factor in the rise in BMI 

in the Netherlands. Although there are many disagreements in the measurement of 

time preference, these studies imply that responses to changes in the environment 

lead to the overconsumption of food and the adoption of a sedentary lifestyle. Ac-

tually, obesity is the common result of environmental change and personal reactions 

to it. Given the difficulty and the dispute in the measurement of time preference 
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and other types of preferences, this study only relates demographic, geographic and 

socioeconomic characteristics, as well as characteristics in lifestyle, to their BMI. 

People s demographic characteristics such as age and race are closely related to 

their weight. In general, weight increases with age (Baum II and Ruhm. 2007). For 

both men and women, the prevalence of obesity is significantly different among age 

groups. It is low among young adults and high among the middle-aged and older 

people. In Canada, obesity was less than 12% for young adults between the age of 

18 to 24, and peaked at around 30% among 45 to 64-year-olds in 2004 (Tjepkema, 

2006). 

Various studies show that the prevalence of overweight and obesity varies across 

Canadian provinces. For example, the prevalence of obesity is higher for adults in the 

Atlantic provinces than the rest of Canada (Heart and Stroke Foundation of Canada, 

1999) and the same result was also found among children (Williams et al.. 2003). 

In 2004, the obesity rate for men was significantly above the national level (22.9%) 

in Newfoundland and Labrador (33.3%) and Manitoba (30.4% ). The women's rate 

surpassed the national figure (23.2%) in Newfoundland and Labrador (34.5%), Nova 

Scotia (30.3%,) and Saskatchewan (32.9%) (Tjepkema. 2006). 

Baum II and Ruhm (2007) show that weight is inversely related to socioeconomic 

status for Americans. In Canada, Tjepkema (2006) argues that " the likelihood 

of being obese varied by marital status for women, in contrast, the percentages of 

married, widowed, separated, divorced and never-married men who were obese did not 

differ significantly. Men aged 25 to 64 with no more than secondary school graduation 

had significantly higher obesity rates, compared with men who were post-secondary 
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graduates. Among women, those with less than secondary graduation were more likely 

than postsecondary graduates to be obese. Men in lower-middle income households 

were less likely to be obese than t hose in the highest income households. For women, 

those in middle and upper-middle income households had a significantly elevated 

likelihood of being obese, compared with women in the highest income households". 

Seven factors are selected to reflect people's body mass index in this study. These 

are resident region, age, marital status, education, working status, family income 

and physical activity index which is chosen as a personal characteristic of lifestyle. 

Among these, six factors other than physical activity are selected with the intention 

of reflecting their influence on both individuals' energy intake and expenditure, while 

physical activity is selected as the main way to expend energy. 

Studies of the distribution of obesity continually confirm that the BMI has been 

increasing more over time at the higher than at the lower values, and this implies obe-

sity and severe obesity have increased much faster than median body weight (Ruhni, 

2007). In Canada, from 1978/1979 to 2004, the prevalence of overweight people rose 

from 35.4% to 36.1% , the prevalence of obesity class I rose from 10.5% to 15.2%. How-

ever, Class II more than doubled, from 2.3% to 5.1% and Class III tripled, from 0.9% 

to 2.7%, much higher than the increase in overwreight and obesity class I (Tjepkema, 

2006). 

These differences across the BMI distribution suggest that a linear regression is 

not a suitable tool for the analysis of obesity, because it only yields a summary 

for the averages of distributions, conditional on a set of covariates. Thus linear 

regression supplies a rather incomplete picture for a set of conditional distributions 
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(Mosteller et at..1977). A quantile regression, on the other hand, provides a more 

comprehensive framework for describing changes in the conditional distributions. The 

major advantage is that the quantile regression can extract the trends in different 

sections of the set of distributions. Buchinskv (1994) uses this method to study 

changes in the U.S. wage structure from 1963 to 1987 and provides a range of estimates 

on the return to schooling and experience at different points of the wage distribution. 

Ruhm (2007) uses the quantile regression to project the prevalence of obesity in the 

U.S. and the projected BMI prevalence rate for 2001 is surprisingly close to the actual 

rate in 1999-2004. 

In order to study the obesity epidemic in Canada in recent, years, this chapter 

analyzes the influence of personal factors on BMI along two dimensions: quantiles of 

the BMI distribution and time. By using quantile regression techniques, this chapter 

explores the influence of each of the selected seven factors on the body mass index 

(BMI) at different points of the BMI distribution, and attempts to detect changes 

in the BMI that are attributable to them. By applying the quantile regression to 

three health surveys that were conducted from 1978 to 2004, in which the prevalence 

of obesity was stable at first and almost doubled thereafter, this study attempts to 

expose changes in the importance of these factors on the BMI over time. Although 

Ruhm also uses the quantile regression to study obesity, he only relates people's BMI 

to their race and age and the main aim of his study is predicting the future of obesity 

prevalence in the United States. Because he applies quantile regression to integrate 

data from several surveys conducted at different years, the factors" influence on BMI 
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is averaged over time1. This study relates the BMI to more types of personal char-

acteristics and applies quantile regression to data from different surveys respectively. 

This allows changes in the influence of the factors on the BMI along the BMI dis-

tribution and over time. Such procedure allows the identification of factors that are 

closely related to the development of the obesity epidemic in recent years. 

By using quantile regression techniques, in conjunction with a backward elimi-

nation method, the results indicate that , between 1978 and 2004, age, region and 

marital status are important determinants of men's and women's BMI, especially for 

the low quantiles. The influence of marital status on the BMI appears to weaken as 

the quantile increases. Although the influence of region and age on the BMI also tend 

to be lower as the quantile increases, in general, their effects are still strong. Since 

1994, working status has rarely been an important factor. Over the same period, at 

higher quant iles. education and physical activity become the main determinants of 

the BMI. the more education the lower the BMI, the more physical activity the less 

the BMI: specifically, education plays the most important role in reducing men's BMI 

and physical activity plays the most important role in reducing women's BMI at the 

higher quantiles. In this study, men and women are analyzed separately (as in most 

studies on obesity). Based on the estimation of the quantile regression, the paper 

also provides a prediction of the future prevalence of obesity in Canada. While the 

analysis in this paper is based on quantile regression, some linear regression results 

are also included for comparison. 

1In his study, Ruhm merges several cross-sectional surveys conducted in different years as one data 
set. 
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The rest of this paper is organized as follows. Section 2 describes the available 

data and defines the variables, and Section 3 introduces the model used. Section 

4 reports the estimation results for the distribution of BMI. Section 5 analyzes the 

importance of factors to the BMI and their evolution. Section 6 suggests a method 

of prediction and uses it for predicting the BMI in 2007 and 2014, and Section 7 

summarizes the conclusions. 

2.2. D a t a 

The data used in this research come from three health surveys conducted by Statis-

tics Canada between 1978 to 2004. These are the Canada Health Survey conducted in 

1978/1979, the National Population Health Survey (Cycle 1) conducted in 1994/1995 

and the Canadian Community Health Survey (Cycle 2.2, Nutrition) conducted in 

2004. 

The Canada Health Survey (CHS) was proposed as a means of obtaining in-

formation required for planning and evaluating health policies and programs. This 

survey covered the non-institutionalized Canadian population, excluding residents of 

the Territories, Indian Reserves and remote areas as defined by the Canadian Labour 

Force Survey. In total, these exclusions comprise less than 3% of the entire Canadian 

population. The National Population Health Survey (NPHS) is designed to collect 

information relating to the health of the Canadian population. The target population 

of the NPHS includes household residents in all provinces, with the principal exclu-

sion of populations on Indian Reserves, Canadian Forces Bases and some remote 

areas in Quebec and Ontario. The Canadian Community Health Survey (CCHS) 



collects information relating to health status, health care utilization and health de-

terminants for the Canadian population. The CCHS (Cycle 2.2) collected responses 

from persons of all ages, living in privately occupied dwellings in the ten provinces. 

Excluded from the sampling frame were individuals living in the three Territories, on 

Indian Reserves and on Crown Lands, institutional residents, full-time members of 

the Canadian Forces, and residents of certain remote regions. 

The BMI is calculated as the weight in kilograms divided by height in meters 

squared. According to the standard for obesity designed by WHO (World Health 

Organization, 1997), the BMI for adults is classified into six categories: underweight is 

defined as BMI < 18.5; normal as 18.5 < BMI < 25: overweight as 2-5 < BMI < 30; 

obese I as 30 < BMI < 35; obese II as 35 < BMI < 40: and obese III as BMI > 40. 

The BMI from the CHS (1978/1979) and the CCHS (2004. Nutrition) are derived 

from the interviewer-measured height and weight, while the BMI from the NPHS 

(1994/1995) is self-reported or proxy-reported. Studies on BMI continually acknowl-

edge that a self-reported BMI is not reliable because a large part of respondents, es-

pecially respondents with heavier weight, tend to understate their weight or overstate 

their height2. However, the first cycle of NPHS (1994/1995) was conducted primarily 

through personal interviews at a selected dwelling, and so understated weight and 

overstated-height, were effectively controlled. As a result , the data used in this paper 

will be considered reliable. 

2According to the 2004 CCHS, 23.1% of Canadians aged 18 or older were obese, this is significantly 
higher than estimates derived from self-reported da ta collected in 2003, which yield an obesity rate 
of 15.2%. 



The data for males and females are analyzed separately as in most studies on obe-

sity. In both linear and quantile regressions, the dependent variable is the BMI. and 

the covariates are dummy variables corresponding to the following factors: respon-

dents' resident region, age. marital status, education, working status, family income 

and physical activity index. These dummy variables reflect the characteristics that 

we are interested in. insofar as they have a relationship with the BMI. The data used 

include only respondents who were 20 to 64 years old when the survey was conducted. 

Pregnant women and immigrants who have lived in Canada for less than 10 years prior 

to the survey are excluded. Observations with missing data for any of the variables 

described below are dropped from the analysis. This process yielded a sample of 2733 

respondents for the CHS (1978/1979), a sample of 11006 respondents for the NPHS 

(1994/1995) and a sample of 7613 respondents from the CCHS (2004, Nutrition). 

The respondents' resident regions are divided into five areas: Atlantic provinces, 

Quebec. Ontario. Prairie provinces and British Columbia. In the quantile regression, 

the omitted part (the reference group) is British Columbia so coefficients for respon-

dents' resident regions may be interpreted relative to this province. The respondents' 

age in years is categorized into three groups: 20-34, 35-49 and 50-64. The omitted 

category is the 20-34 years group. However, the age groups obtained from the CCHS 

(2004, Nutrition) are 19-35, 36-50 and 51-65 because of the different method of cate-

gorization for age group adopted by this survey. It produces different content in the 

age-group dummy variables from the same dummy variables based on the other two 

surveys. However, since there is only a small difference in the categorization of age 
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group between CCHS and the other two surveys, the errors that result from it are ig-

nored. Marital status is put into three categories, single, married or common law and 

widowed/separated/divorced. Education is classified by the highest education level 

that a respondent completed. Three classes are formed: less than secondary gradua-

tion, secondary graduation to some post-secondary, and post-secondary graduation, 

but less than secondary graduation is omitted. Job status describes a respondent's 

working status during the last 12 months, which include: currently working; not cur-

rently working but had a job during the last 12 months; and not working during the 

last 12 months. The omitted category is: not working during last 12 months. A 

respondent's family income is divided into 5 categories: lowest; lower middle; mid-

dle: upper middle; and. highest level. The omitted category is the lowest category. 

Although the cr iterion for income categorization changed over time, it is put into 5 

categories in all the three s u r v e y s . Hence, the same income categories in different 

surveys are interpreted as representing the same socioeconomic groups. The physical 

activity index categorizes respondents as being: active, moderate, or inactive based 

on total daily energy expenditure values (kcal/kg/dav). Active is defined as the av-

eraged energy expenditure above 3.0 kcal/kg/dav, moderate as between 1.5 and 3.0 

kcal/kg/day and inactive as below 1.5 kcal/kg/dav3 . The omitted category is the in-

active group. Table 2.1 lists each factor and all its categories. The adopted notation 

for all dummy variables is listed in the last column of Table. 2.1. 

Besides the categorizat ion of age between the first two surveys and the last survey 

are slightly different, there are also two other limitations of our data. First, pregnancy 

Tliis approach is consistent with other studies, such as the Campbell 's Survey and the Ontario 
Health Survey. 



status was not asked in the CHS (1978/79), however, pregnant women in the NPHS 

(1994) and CCHS (2004) were dropped. Second, in the CHS (1978/79), working 

status was categorized as employed, unemployed and not in the labor force, whereas 

it was categorized as currently working, not currently working but had a job during 

last 12 months, and not working during last 12 months three categories in the other 

two surveys. Although these differences in the categorization of data may cause some 

bias in the results, the view taken is that such biases are relatively small and do not 

significantly affect the general picture that emerges. This view is supported by the 

fact that many results of this study are consistent with the results of many previous 

studies. 

2.3. M ode l 

The quantile regression model used in this paper is given bv 

(2.1) bmii — X'tfie + £oi with Quant g (brni, | = Xij.% (i = 1,.... n) 

where 3e and X, are k x 1 vectors, and xn = 1. Quanta (bnii, \ Xi) denotes the 

0th conditional quantile of the body mass index given X. Specifically, in this paper 

X'i = (1, reg{, age\, mars\, ed!i% ws\, inctf^pafy where re g[ — (regf, reg-, regf, regf), 

age'i = (agef, age?), mars\ = (mars], mars]), ea( = (edj, edf). ws\ — (ws2,wsf), 

incq\ = (incqf,incqf,incqf.incqf) and pai\ = (patf,pai?). The corresponding linear 

regression model is 

(2.2) b?ni; = Xt,3 + ei (i = 1,...,n) 



and we choose the ordinary least squares model as a counterpart of the quantile 

regression model. 

In the above regression models, there are 18 covariates. plus an intercept. For 

each covariate, the coefficient can be interpreted as the impact of a one-unit change 

in the covariate on the BMI, holding other covariates fixed. This gives the difference 

in BMI between the group represented by the covariate and the group represented by 

the omitted category from the same factor at the 6>tli percentile of the distribution, 

holding all other factors fixed. For example, the coefficient for pai* at the 50th quantile 

represents the difference in BMI between the active group and the inactive group at 

50th percentile of the distribution, holding the other covariates fixed. The intercept 

of the model could be interpreted as the conditional quantile function (mean for 

linear regression) of the BMI of a single male or female who lives in British Columbia 

at age between '20-34 with less than secondary graduation education, who has not 

worked during the last 12 months, has the lowest family income and is identified as 

an inactive person. British Columbia as well as the lowest category of each the factor 

are chosen to represent the base group because first, the prevalence of obesity in 

British Columbia, is relative low and second, we want to observe the relative changes 

in the BMI as people get older, richer, more educated and active. 

2.4. Est imation 

OLS estimation and estimation of the quantile regression at each of 6 quantiles, 

10th, 25th, 50th, 7ht,h, 90th and 99th percentiles based on data for both male and 

female from CHS1978, NPHS1994 and CCHSN2004 are presented in Table 2.2 to 
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Table 2.7. Table 2.2. Table 2.3 and Table 2.4 report estimation results for males and 

the other three contain estimation results for females. 

The OLS estimation is significantly different from the quantile regression estima-

tion for most covariates at most of the quantiles. particularly at. the high quant iles. 

If we use the estimation from OLS to represent the relation between the factors and 

the BMI for people in this range of the BMI distribution, the conclusion would be 

totally unreliable. Essentially, OLS treats every observation in the sample equally, it-

only reflects the relationship between the dependent variable (BMI) and independent 

variables at the average level and does not reveal specific information at different 

parts of the distribution. In the rest of the paper, the focus is only on the quantile 

regression. 

As Table 2.2 to Table 2.7 show, the parameter estimates from the quantile regres-

sion vary from one quantile to another. Noticeably, the quantile regression estimates 

at the median are significantly different from the OLS estimates for most of the co-

variates arid imply some asymmetry or skewness in the conditional density of the 

BMI. In the next section we analyze the contribution of each covariate for both males 

and females in the three survey periods, 1978, 1994 and 2004. 

2.4.1. Est imation Resul ts 

2.4.1.1. Males. Table 2.2, Table 2.3 and Table 2.4 present the results for men for 

the 1998, 1994 and 2004 surveys, respectively. Table 2.2 shows that the coefficients on 

re9i (k ~ 1-2,3,4), age\ (I = 2, 3), marsf and incqf are positive, and the coefficient 

on covariate cd- is negative at each quantile; the estimated coefficients on the other 

covariates are positive at some quantiles and negative at others. The coefficients of 



reg}. regf, age2, agej and mar si are significantly different from 0 at most quantiles. 

We may interpret that these covariates have significant impact 011 BMI at the different 

quantiles of the conditional distribution of BMI. In summary, in 1978/79. men's' 

weight has the following characteristics, (a) On average, men who live in Atlantic 

and Prairie provinces weigh more than men who live in British Columbia. Compare 

to British Columbia, it is more likely for men to be obese in those two regions. (6) 

Age is a major factor that affects the BMI. In general, men in the second and third 

age groups weigh more than those in the first group, (c) Compared to singles, married 

men are more likely to be overweight or obese, (d) Looking at the coefficients on edf. 

ws1 and incq2, their negative values at most quantiles suggest that these covariates 

generally reduce men's weight 4. However, the coefficients 011 these covariates are 

mostly insignificant. Next, we discuss the results for 1999. 

Table 2.3 reveals that the estimated coefficients 011 reg}. age\ (I = 2, 3) are positive 

at each quantile; the coefficients on mars'" (m = 2. 3) and incq.f are positive except for 

a few quantiles, the coefficients on eel2 and edf are negative at each quantile and the 

estimated coefficients on other covariates are positive at some quantiles and negative 

at others. The variables age1) (I = 2,3), mars2 and < (!'} appear to be significant at 

most quantiles except for the high or low quantiles and the other variables tend 

to have an insignificant effect on BMI. This implies that, in 1994, age is a major 

factor that, affects BMI at quantiles smaller than the 90th percentile. Married men 

weigh more than singles at quantiles less than 90th percent. Men who had completed 

'l-Yoni the quantile es t imat ion at higher quantile such 75, 90 and 99 quantiles, the est imated co-
efficients for pai? are also negative, implying t h a t active physical activity reduces men's weight. 
However, as for wsJ. these coefficients tend to be insignificant. 
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post secondary education weigh less than those who had not completed secondary 

education. The estimated coefficients on edj suggest that men who had completed 

secondary education weigh less than those who had not. although these effects are 

statistically insignificant. We now turn our attention to the results from the most 

recent survey in 2004. 

Table 2.4 shows that the estimated coefficients on regf . age[ (I - 2. 3), and incqf, 

incqf, incqf are positive, and the coefficients on covariates ed" (n = 2,3), wsf and 

paif are negative at each quantile; the estimated coefficients are positive for reg} 

and mars1-1 (m = 2. 3) and negative for pai] at most quantiles except one quantiles. 

Compare to the surveys in 1978 and 1999, the most important changes in 2004 survey-

are the variables ed" (?? = 2. 3) tend to be statistically significant and the coefficients 

of resident areas, reg\, become insignificant. Specifically, the estimation results imply 

that , in 2004: (a) the influence of resident area to men's weight becomes weak; (b) 

age is still a major factor that affects BMI, but its influence is uncertain for men with 

heavy weight: (c) men who had completed secondary or even some post-secondary 

education and who had completed all of post-secondary education weigh less than 

those who had not completed secondary education, but its influence is uncertain for 

men with big weight; (d) for obese men. physical activity is negatively related to their 

BMI; those who were active or medium in physical activity are more likely to have 

a lower BMI than were the inactive ones; and (e) men with family income at the 

middle, upper middle and highest levels tend to have more weight than men with 

family income at the lower middle and lowest levels. 
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2.4.1.2. Females. Table 2.5, Table 2.6 and Table 2.7 report the quantile estima-

tion results for women for 1978, 1994 and 2004 surveys, respectively. Table 2.5 shows 

the estimated coefficients on covariates reg\, regf. age\ (I = 2, 3). rnarsf and incqf are 

positive, and the coefficients on covariate edf, wsf are negative at each quantile; the 

coefficients on regf. regf and wsf are positive, and the coefficients on edf, incqf and 

incqf are negative except for one quantile; the estimated coefficients on regf, agef, 

agef are significantly different from 0 at most quantiles; the variables edf and paif 

appear to be significant at high quantiles. In 1978/79, women's BMI has the following 

characteristics: (a) on average, women who live in the Atlantic provinces weigh more 

than women who live in British Columbia; (6) age is a major factor that affects BMI. 

Women in the second and third age groups weigh more than those in the first group; 

(c) women who have completed post-secondary education weigh less than those with 

less than secondary education in the obese level; and (d) for obese women, those who 

were active in physical activity are more likely to have a lower BMI than the inactive 

ones. The positive coefficients for regf marsf and incqf and the negative coefficients 

for wsf. incqf and incqf at most quantiles mean that these covariates tend to increase 

and decrease women's weight, respectively. However, their impacts on BMI are not 

stat ist i cally significant. 

Table 2.6 shows the estimated coefficients on regf, regf, regf. age[ (I = 2,3) and 

mars'" (m = 2,3) are positive and the coefficients on edf, wsf, incqf, incqf and 

incqf and paif are negative at each quantile; the coefficients on covariate wsf, incqf 

and paif are negative except one quantile. The coefficients on regf, regf and age\ 

(.I = 2,3) are significantly different 0 at the most quantiles; the variables marsf1 
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(m = 2. 3) and in erf' and paif appear to be significant at low quantiles and high 

quantiles. respectively. This means that , in 1994, age was still a major factor affecting 

the weight of most women, except for the heavist women. For women with normal 

weight, those who were married weigh more than those who were single. For over 

weight and obese women, those with family income at the highest level weigh less 

than those with family income at the lowest level and those who were physically 

active weigh less than the inactive ones. The variables i/najj. mcqf, pai'}, edfand wsj 

tend to reduce women's weight at almost every quantile. However, their impact on 

BMI is not statistically significant. 

Table 2.7 shows the estimated coefficients on age[ (I = 2,3) are positive and the 

coefficients on ed" (n = 2.3) are negative at each quantile; the coefficients on mars"1 

(m = 2. 3) are positive at all quantiles less than 90th quantile and the coefficients on 

pai '' are negative from 25th to 99th quantile. The coefficients on age[ (I = 2.3) and 

ed" (n = 2, 3) are significant different from 0 at almost all quantiles. The variables 

paif are significant at high quantiles and the impact of reg] (k = 1 ,2 .3 .4) on BMI 

are not statistically significant at each quantiles. This implies that , in 2004: (a) age 

is still a major factor tha t affects BMI, but its influence is uncertain for heavy people; 

(b) women with high education tend to weigh less than those with low education; 

(c)-for obese women, physical activity is negatively related to their BMI, those who 

were active in physical activity are more likely to have a lower BMI than the inactive 

ones; and (d) the impact of the resident's region on women's BMI become weak and 

insignificant. 
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The above results confirm findings of other previous study on obesity, moreover, 

instead of estimating an average change of BMI which contributes to each factor, this 

study can detect the contribution of each factor at any point of the BMI distribution. 

The foregoing is the estimation of BMI distribution for 1978, 1994 and 2004, and 

the nature of the BMI distribution in these years are well captured by this estimated 

distribution. 

2.4.2. Est imat ion of t h e Distr ibut ion of B M I 

By using quantile regression, the conditional distribution and density function for 

both males and females were estimated from 1978 to 2004. In order to get a clear 

refinement of the distribution, 99 quantiles from the 1st to the 99th quantile were 

set. First, the coefficients for all covariates at each quantile were estimated. Second, 

a weighted average for each covariate was calculated. In the last step, the estimation 

of BMI at 6th quantile was produced by the following formula: 

(2.3) bmig = X where X is weighted average of X. 

Figure 2.1 and Figure 2.2 plot the distribution functions for both men and women 

from 1978 to 2004. These figures show that , for both men and women, the difference 

of BMI distributions is very small between 1978 and 1994, but increases substantially 

between 1994 and 2004. This confirms what Tjepkema (2006) found in his research. 

The BMI distribution in 2004 is always below its 1978 and 1994 counterparts and 

the range of the distribution is extended to the right dramatically. Figure 2.3 and 

Figure 2.4 present the density functions for each BMI distribution for both men and 



women. From these two figures, it is very clear that density in 2004 is below the 1978 

and 1994 densities for values of BMI less than 28 (approximation). However, after 

that point, the density in 2004 is above the 1978 and 1994 densities almost everywhere 

and exhibits a very long right tail. This implies that the probability of the union of 

normal and overweight decreases, while the probability of being obese increases. 

Table 2.8 lists the percentage distribution of BMI in 1978, 1994 and 2004 estimated 

for each year. This table also includes the percentage distribution of BMI in 1978 and 

2004 that was reported in Tjepkema (2006). We find that our percentage distribution 

of BMI is close to that of Tjepkema (2006) between the Normal to Obese I categories. 

There are big differences at the extreme ends of both sides. However, in both of our 

estimation and Tjepkema's (2006) results, the data for the underweight and Obese 

III categories should be interpreted with caution. One factor which might explain 

part of the difference in the percentage distribution of the BMI between this research 

and Tjepkema (2006) is the selection of the sample. In this research, the sample is 

formed by respondents aged from 20 to 64 while it is formed by respondents aged 

from 18 to 64 in the research of Tjepkema (2006). 

2.5. Importance of Factors and Its Evolution 

To identify those factors which have the largest impact on the BMI is a major ob-

jective of this research. However, because each factor includes at least two covariates, 

it is hard to compare the influence of factors to the BMI by relying on the est imation 

of each covariate. In addition, there are two other problems. First, the estimation of 

some coefficients at, some quantiles are not so small, but statistical significances are 

low. Second, the influence of a covariate is generated not only by its coefficient, but 



also by the covariate itself. For example, in the case that a dummy variable has lots 

of zeros, the value of its coefficient hardly affects the dependent variable (BMI). even 

if it is significantly high. In order to solve these problems and make the analysis more 

accurate, we need to employ more powerful tool. 

A method called backward elimination is now used to solve the problems just 

described above. Backward elimination is a method which uses the amount of variance 

a variable adds to the complete model (all remaining variables) as the criterion for 

exclusion from the model. In this method, the full model (with all variables included) 

is first computed. Then each variable is removed from the model alternatively, and 

the variable that causes the least reduction in accounted variance by its removal is tire 

first to be eliminated. This process continues until all remaining variables contribute 

a significant amount of variance reduction to the final model. Obviously, the variable 

that is removed first has the weakest influence on the dependent variable and the 

variables that are kept at the end have the strongest influence on the dependent 

variable. Instead of applying backward elimination to variables, in this paper, this 

technique was applied to the factors' selected for the model. 

Backward elimination was applied at seven quantiles. 10,25,50,75.90,95 and 99 

percent for both males and females from CHS1978, NPHS1994 and CCHSN2004. The 

backward elimination used in this paper can be described as follows. 

(a) By model (1), the estimated BMI for the full model is bmi, = X'^Sq. 

5In this paper we use seven factors, region, age. marital status, education, working status, family 
income and physical activities which may relate to BMI, and each of them contains at least two 
covariates. When one factor is eliminated from the model, it means all the covariates that are 
included in this factor are eliminated. 
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(b) Remove all the covariates corresponding to factor k from the model and rees-

t imate the new simplified model, then the estimated BMI for the new model can be 

obtained, denoted as brni^ = X f 30 (k = 1.2..... 7). 

(c) Calculate (brnii — bnii1-)' for each k. and compare their value. Suppose 

[bmii — brnx- f is the smallest one, then the third factor or factor marital status 

is the first factor removed from the full model and new model is formed. 

(d) Treat the newly formed model as the full model and continue this process until 

there is only one factor left. 

Table 2.9 and Table 2.10 report the results from this procedure. Table 2.9 is for 

male and Table 2.10 is for female. It is easy to find that some results from these 

two tables confirm what is found in Table 2.2 to Table 2.7. however, some important 

information, especially the order of the importance of the factors to BMI, which was 

disclosed in Table 2.9 and Table 2.10 cannot be obtained from Table 2.2 to Table 2.7. 

The findings from Table 2.9 and Table 2.10 can be summarized as follows. 

In general, in 1978, age, region and marital s tatus are the most important factors 

that influence the BMI of men at the low quantiles, but as the quantile increases, 

family income, working s ta tus and physical activities become the most important 

factors tha t influence the BMI, and the influence of age and region weakens. Edu-

cation is the weakest factor to the men's BMI at all quantiles except 99th quantile 

and working status weakly relate to their BMI at the quantiles less than 75 percent 

at tha t time. In 1994, age, region and marital status are still the most important 

factors tha t influence the BMI of men at the low quantiles. As the quantile increases, 

education becomes the most important factor tha t influences men's BMI and marital 
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status is the weakest factor. Also, the influence of region becomes strong and the 

influence of age weakens. Physical activity is the weakest factor for men at the low 

quantiles and remains weak as the quantile increase. In 2004. marital status, family 

income and age are the most important factors that influence the BMI of men at 

the low quantiles. As the quantile increase, education and physical activity become 

the most important factors which influence men's BMI. In the following context, the 

importance of factors on BMI for women and its evolution are discussed. 

In 1978, age is the most important factor that influences the BMI of women, 

except at the highest quantile. Region and working status are important only at 

very low quantiles. As the quantile increases, the influence of family income and 

physical activities on women's BMI also increases, and physical activity even become 

the most important factor among all the factors at the 99th quantile. Education is 

the weakest factor on women's BMI at all quantiles and marital status is the second 

weakest factor except at the 99th quantile. In 1994, age is still the most important 

factor for women at all quantiles less than the 90/.// percentile. Although the influence 

of region decreases after the 90th quantile, it is always an important contributor to 

women's BMI. As the quantile increase, the influence of family income and physical 

activity also increase and become the two most important factors at high quantiles. 

Education is always a weak factor for women at all quantiles in 1994. In 2004, as-

in 1994, age, region and marital status are the most important factors that influence 

women's BMI at the very low quantiles. As the quantile increases, the influence of 

physical activity and education on the women's BMI increase and physical activity 

becomes the most important factor after 75th quantile. In 2004, working status is 
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the weakest contributor to the BMI of women at all quantiles except the 99th and 

marital status is the second weakest factor except at the lowest quantiles. 

From 1978 to '2004. age. region and marital status are always important factors 

for both men and women's BMI. The influence of marital status to the BMI becomes 

pretty weak as the quantile increases. Although the influence of age to the BMI 

also becomes weak as the quantile increases, in general, its influence is still strong. 

Since 1994. working status is rarely an important factor, during the same period, 

the influence of income on BMI increases for men and decreases for women. For 

overweight and obese men and women, the importance of education and physical 

activity increases over the period 1978 to 2004: specifically, education plays the most 

important role in men's BMI and physical activity plays the most important role in 

women's BMI at the high quantiles. 

2.6. Predict ion in B M I 

Causes of the difference in the BMI distribution between two adjacent surveys may 

usefully be analyzed by decomposing each quantile into three distinct components, 

using estimates from the quantile regressions. Let T and t represent the years when 

the surveys were conducted, T > t, and X denotes the weighted average of A' in (2.1), 

then, at the 6th quantile (0 = 1,2, ...,99). 

(2.4) bmfg - bro,« = (XT' - X*') & + a:*' ,%) I (XT' - X ' ) ( 4 -

In equation (2.4), a change in the BMI distribution, at each quantile 0. has been 

decomposed into (i) a change in the structure of factors (XT' — A' ' ) (ii) a change 



in the function of factors. X1' (0$ — ; (n) a change in the interaction of function 

and structure. ( X r - X1') (j3j - These tliree factors are refers to hereinafter 

as simply structure, function and interaction. By using the decomposition (2.4) at 

each of the 99 quantiles. a decomposed shift in the BMI distribution may be formed. 

Because the change in this distribution is much greater between 1994 and 2004 than 

it was between 1978 and 1994, the main focus will be on decomposition of the former; 

this may then be compared with decomposition of the letter. In this way, the reasons 

for the significant shift in the BMI distribution in recent years may be explored. 

Actual computation reveals that, between 1994 and 2004, the influence caused by 

function, X9 4 ' — ;3g4). is positive and dominant at almost all quantiles. for each of 

males and females, accounting for most of the changes in the BMI distributions. The 

exceptions are: two quantiles less than the 7th quantile for males and the 2nd quantile 

for females. The influence of structure, (X04 ' — X9 4 ) ffi, is consistently negative 

for both males and females, save for two low quantiles for females. Interaction, 

(X0 4 ' — X 9 4 ' ) (;3g4 — .)'•,"). has a positive effect for males but a negative effect for 

females at most quantiles. The dominance of function in determining the change in 

the BMI distribution may be seen by looking at its percentage contribution to the 

whole change. For males, from the 16///. to the 11/// quantiles, function accounts 

for from 62% to 86%, or on average 74%, of the total change and for most of the 

rest of the quantiles function contributes a little over 90% of the total change. For 

females, the contribution of function is even more dominant. For all quantiles, except 

the second to the 13th, the contribution of function represents 110% to 117% of the 

totals, because the combined influence of structure and interaction is negative. When 
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the combined influence is positive, that is, from the second to the 13th quantile. the 

contribution of function ranges from 60% to 90%, with an average of 77%, of the total 

change in the BMI distribution. These results are presented graphically in Figure 

2.5 and Figure 2.6. 

Turning now to changes in the BMI distribution between 1978 and 1994, the 

result are presented graphically in Figure 2.7 and Figure 2.8. Generally speaking, 

there is no dominant cause among structure, function and interaction for males and 

for females. Comparing the decomposition by quantiles between 1978-1994 and 1994-

2004, there is no significant difference attributable to structure and interaction. These 

two decomposition parts are in the same range during the two periods and, hence, so 

is their combined influence. But there is a huge difference caused by the change in 

function. For most quantiles, these differences increased tenfold in the second period 

(see Figure 2.9 and Figure 2.10). 

The decomposition by quantiles from 1978 to 2004, has two important properties 

which have implications for predicting the BMI distribution beyond 2004: (a) the 

significant shift in the BMI distribution during 1978 to 2004 was caused principally 

by change of function from 1994 to 2004: (b) the changes due to the combined effects 

of stmcture and interaction have been comparatively small and stable throughout the 

whole period from 1978 to 2004. The situation described by (a) and (b) above may 

be cast in symbols based on equation (2.4). Let r represent the next period ahead of 

T , i.e. T < T in (2.4), then at quantile 9 

(2.5) bmiT
e - bmi7

0 = X1' - fij) + adjustment, 
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whereupon 

(2.6) bmi'0 — btnij + X1 ( f y — /3j) + adjustment T ,T 

Given this background, two predictions will be made for 2007 and 2014, subject to 

two assumptions: (-41) the BMI evolution in the next decade beginning 200-5 will 

be the same as in the decade preceding 2005; (.42) changes in the BMI distribution 

occurs evenly through time. Under the two assumptions, the prediction of the BMI 

at the 9th quantile in year r becomes, from (2.6) 

in which r = 2007 or 2014. Under the assumption .41 and .42, 3g — pg4 may be 

estimated as - f ) * (r - 2004)/9.5, 9.5 being the length of time, in years, 

from the middle of t he survey NPHS1994/95 to survey CCHSN2004. The coefficients 

applied to the prediction for 2007 and 2014 are those obtained for the decomposition 

analysis, based equation (2.4), for 1994 and 2004. If the combined influence caused 

by the changes in structure and interaction is considered, the prediction bias denoted 

as adjustment in (2.7) may be reduced. The bias could be expressed as the product 

of the effect of function. X0 4 ' (j3g — ,8g4), and average quotients that combined effects 

of structure and interaction. (XT' — X1') 3g + (XT' - .-?'') (/?J — pg), to the effect of 

function in different sections of the BMI distribution. However, the quotients used 

for the prediction of this paper are those obtained from the decomposition analysis 

at each quantile for the period from 1994/95 to 2004. The predicted percentage 

distributions for the BMI in 2007 and 2014 are given in Table 2.11 and the predicted 

(2.7) bmiT
g = bmrT + x°4' ipo - + adjustment 
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distributions are displayed graphically in Figure 2.11 and Figure 2.12 for men and 

women, respectively. 

2.7. Conc lus ion 

The analysis of this paper has applied quantile regression to determine the quanti-

tative influence of several observable factors at different points on the Canadian BMI 

distribution, using data from three distinct Canadian surveys undertaken in 1978, 

1994 and 2004. The results obtained strongly suggest that the epidemic of obesity in 

Canada is mainly developed during the period 1994 to 2004. This epidemic is more 

closely related to lifestyle and socioeconomic factors than demographic factors0. Edu-

cational achievement has a negative impact, that is to say, the higher the educational 

level a person achieved, the lower the likelihood that person will be obese. The role 

of the education has shifted over the years from the weakest to the strongest factor 

affecting the BMI. This, in turn, implies that the relationship between the capacity to 

avoid obesity and education is strong. Among the seven factors in this study, being 

physically inactive is the most important reason for women to be obese. On the other 

hand, working status is the least important factor related to the BMI for both men 

and women. This not only indicates the dominance of sedentary work and continu-

ally decreasing expenditure of energy in the workplace, but also reveals that physical 

activity is the main way for people to expend energy. The fact that age becomes less 

important in affecting the BMI at higher quantiles indicates that a change in the age 

structure of Canadians is not a reason for the obesity epidemic in Canada. 

^Jeuier and Tappy (1999) argue that genetic changes are not the cause of increased obesity over 
such a short period of time. Rather , changes in the energy balance are key; consuming more calories 
than are expended leads to weight gain. 
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A decomposition by quantiles lias been introduced, in (2.4). in an effort to explore 

the development over time of the Canadian BMI distribution, especially in the fu-

ture. The calculation reveals that, after 1994, the component of most importance in 

changing the BMI distribution has been the function of factors, that is, the changing 

intensity with which factors impinge on BMI. Structural changes, that is, changes in 

the factors themselves, and the interaction of structure and function are of trivial 

importance. To put the matter technically: in a quantile regression analysis of the 

BMI by cross-sections over time, the most significant changes have been those in the 

coefficients, not changes in the variables or changes in the interaction between the 

two. 
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Table 2.1: Definition of the Variables 

Factors Covariates Notation 

Region 

Atlantic Provinces 

Quebec 

Ontario 

Prairie Provinces 

reg 

r eg 

r eg 

r eg 

Age 

35 to 49 

50 to 64 

a g e _ g 

a g e g 

Marital Status 

Married m a r s 

Widowed/Separated/Divorced m a r s 

Education 

Secondary to Some Post Secondary e d 2 

Post Secondary e d ' 

Working Status 

Currently Working 

Not Currently Working 

WS 

WS 

Familv Income 

Lower Middle Level 

Middle Level 

Upper Middle Level 

Highest Level 

i n c q " 

i n c q 3 

i n c q 4 

i n c q 3 

Physical Activities 

Moderate 

Active 

p a r 

pa i 
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Table 2.7: Estimate of the influence to BMI at the mean and some quantiles (CCHSN2004JFemale) 

Coef. O L S Quantiles 

10th 25th 50th 75th 90th 99th 

r e g ' 1.238 (.451) .719( 371) 1.759 (.293) 1.327 (.406) .957( 417) 1.48 (.845) 3.033 (.901) 

r e g 2 .538 (.467) .653( 370) .248 ( 308) .524( 417) .132 (.421) .944 (.941) 2.740 (.342) 

r e g 3 .951 (.464) .283 (.342) 1 321 (277) .859(394) .746(.421) .818(906) 4.54(507) 

r e g 4 1.058 (.409) .972 ( 344) 1.49 ( 273) 1.061 (.383) .935 ( 398) 1.489 ( 86) 3.48 ( 568) 

a g e _ g 2 1.075 (.383) 1.905 (.228) 1 522 (.216) 1.682 (.324) .596( 351) .179( 7) 1 232( 442) 

a g e _ g 3 1.347 (.422) 1.045 (.281) 1.62( 231) 2.16 (.353) .794( 37) 1.387 (.763) .135 ( 334) 

m a r s 2 1.239 (.378) ,346(.325) .638(.242) 1.036(375) 1.786 (.361) 2.111 (.676) .79 (.321) 

m a r s 3 .917(787) -.146.418 0 .233 (.448) .013 (.802) 2.565 (.537) .541 (1.157) 1.525 (1.047) 

e d 3 - 322 (.335) -.163 ( 242) -.136 (.202) -.254( 303) -.715 ( 314) -.216( 628) -.818( 501) 

w s 2 -.206 (.53) -.817( 377) -.16( 263) .094( 503) -.0978 ( 475) -2.958 (.845) -2.005 (.325) 

WS3 -.361 (.669) -.894 (.426) -.211 (.326) -.175 (.603) .0720 (.559) -2.13 (1.084) 1.625 (.339) 

i n c _ q 2 .001 (771) -.113 (.435) -.417(336) -.078(555) -.0558 (.716) 2.053 (1.286) -.834(261) 

i n c _ q 3 .55 (.644) .174( 454) .0016( 32) .899( 551) 1.169 (.684) 2.178 (.978) .432( 514) 

i n c _ q 4 -.211 (613) -.0513(511) .164(32) -.106(556) -.311 (658) 1.525 .861 () .37(591) 

i n c q 5 -.387 (.581) .535( 457) -.141 ( 336) -.107 (.546) -.808 ( 636) .552( 725) -1.359( 408) 

p a i 2 .778(460) 1.105(288) .945 (247) .809(378) .632(404) -.919( 755) 5.114(382) 

p a i 3 .207 (.356) .687( 244) .36( 202) .6( 295) -.358 ( 305) -1.402 (.632) - 143 ( 454) 

Cons 23.3 (.774) 19.91 (.609) 20.7 (.450) 22.35 (649) 25.65 ( 73) 29.68(1.351) 32.14 (.599) 
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Table 2.7: Estimate of the influence to BMI at the mean and some quantiles (CCHSN2004JFemale) 

Coe£ OLS Quantiles 

10th 25th 50th 75th 90th 99th 

reg 1 656(219) .55(245) .3 (267) .529(2359) .912(236) .8(559) 1.092(1.875) 

r e g 2 -.377 (.23) -.733 (.258) -.8 (.282) -.358 (.246) -.1 (.239) -.3 (.580) .046 (1.79) 

r e g 3 .442(203) -.033 (234) -.033 (.253) .386(221) ,837(.216) _8 (.511) 1.219 (1.606) 

r e g 4 .303 (.220) -.15( 250) -.1667( 278) .357(237) .8( 230) .2 (.543) 1.304(1.790) 

a g e g 2 .760( 155) .7( 171) .708( 198) .786(167) .725( 156) .6(355) 1.781 (1.35) 

a g e g 3 1.3 ( 19) 1 166 (222) 1.408 (229) 1.471 (.2) .963(193) .9 (448) 1.462(1.351) 

m a r s 2 718(174) .9( 193) .95 (206) .9( 176) .987(166) -.1 (394) -.181 (1.392) 

m a r s 3 .141 (239) .467(262) .567(28) .286(246) 162(.246) -.6(573) .392(2.3) 

e d 2 - 265 ( 190) .1 (208) -.108(208) -.057(184) -.513 (.18) -.5(429) -1.3 (1.464) 

e d 3 - 877( 188) -.283(202) -.592 (.211) -.886(185) -1.5(181) -1.1 ( 422) -1.55 (1 289) 

WS2 .143( 251) .483(273) .37 (.274) .1 (.231) -.062(228) -.9 (.521) -1.573 (2.001) 

w s
3 .009( 320) -.067(345) -.2(358) .2(297) -.062(298) -.8 (.662) -.292(2.561) 

i n c q 2 .169 ( 369) -.083 (.351) .292 (394) .557(349) -.237(350) -.3 (.776) -.454 2.631 0 

inc q 3 .388 (319) .433(305) .767(330) .886( 292) -.175(295) -.5(674) -.288 (1.658) 

i n c _ q 4 .596(316) .567(3) .808(33) .929 (29) .125 (294) .3 ( 673) -.158(1.918) 

i n c q 5 .603(340) .567(330) .883(367) 136(323) -.075(321) -36(743) -.812(2.213) 

p a i 2 -.0141 ( 166) .3( 186) .225 ( 197) -.0857( 169) -.275 (165) -.2(386) -.431 (1.517) 

p a i 3 -.173 ( 163) .317( 189) .125(203) -.0143(175) -.488 ( 17) -.9(405) -1.246(1.526) 

c o n s 24.66(416) 19.87 (.421) 21.76 (.449) 23.72(387) 27.43(38) 31.7(904) 36.96(2.921) 
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Table 2.7: Estimate of the influence to BMI at the mean and some quantiles (CCHSN2004JFemale) 

Cocf OLS Quantiles Cocf OLS 

10 th 25th 50th 75th 90th 99th 

reg' .125 (.538) .472 (.585) .458 (.236) . 1 3 9 ( 4 2 9 ) -.474 (.559) .0486(1.166) 2.828(1.945) 

reg2 -.832 (.529) .024 (.509) -.286 (.232) -1.045 (.438) -1.039 (.578) -.471 (1.151) -.099(1.944) 

reg3 -.24 (.518) -.03 (.512) - .204(213) -.465 (.412) - . 312(538) .543(1.163) 1.6(1.681) 

4 reg .483 (.515) .132 (.505) .198 (226) .507 (.415) .07 (528 ) .789(1.102) 3.718(2.333) 

age_g2 .973 (.413) .79 ( .351) ,838(166) . 6 1 6 ( 3 1 9 ) .728 (.429) .641 (.981) 2.929(1.31) 

age_g3 1.503 (.435) 1.418 (.376) 1.476 (.17) .968 (.329) 1.409 (.467) 1.438 (.997) 4 561 (1.259) 

mars2 696 (.419) 1.32 (.309) 1.164 (.148) 1 .602(299) .534 (.421) -.051 (.885) -3.289(1.708) 

mars' .322 (.743) .288 (.599) .752 (.228) .549 (.485) .406 (.63) .646(1.453) -3.552 (2.299) 

ed2 -.989 (.575) -.422 (.386) - .616(195) - 1 . 0 9 ( 3 7 8 ) -1 .018(489) -3.02(1.273) 1.797(1.616) 

ed3 -1.329 (.526) -.872 (.366) - .416(174) -1.085 (.329) -1.391 (.448) -4.144(1.28) -.918(1.6) 

ws2 -.767 (.578) .012 (.371) -.534 (.199) -.84 ( 464) -1.932 (.671) .487 (.987) -.604(1.531) 

W S 3 -.744 (.594) - . 4 3 6 ( 4 2 1 ) -.85 (.210) - . 9 1 7 ( 4 8 2 ) -1.183 (.688) -.05 (.986) -.149(1.631) 

i n c q 2 -.282 (1.152) -.168 (.892) -1.574 (.411) -1.105 (.919) .97 (.925) 1.264(1.655) 3.756(3.597) 

inc_qJ 1.977 (.883) • 1 . 016 (681 ) 1.974 ( 394) 1.499 ( 704) 2.776 (.871) 3.177(1.602) 3.298 (3.169) 

i n c q 4 1.789 (.785) 1.314 (.638) 1.482(376) 1.285 ( 65) 2.859 (.733) 2.077(1.352) .677 3.248 () 

i n c q 5 2.344 (.805) 1.804 (.646) 2 .36(386) 1.731 (.676) 3.31 (.788) 2.594(1.446) .995 (3.047) 

pai2 -1.056 (.361) -.296 (.349) -.646 (.167) -.572 (.294) -1.393 (.366) -2.713 (.765) -3.179(1.217) 

paiJ - 886 (.411) .022 (.354) -.082 (.153) - . 3 6 7 ( 3 ) -1.693 (.389) -2.15 (.972) -3.722 (1.257) 

cons 26.76(1.005) 20.16 (.905) 22.17 (.446) 26.23 (.804) 30.05 (1.015) 34.71 (2.047) 39.73 (3.274) 
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Table 2.7: Estimate of the influence to BMI at the mean and some quantiles (CCHSN2004JFemale) 

Coef. OLS Quanti les 

10 th 25th 50th 75th 90th 99th 

r e g ' 1.625 (.451) .632 (.357) 1 064(413) 1.515 (.561) 2.582 (.510) 2.483 (.981) 4.183 (3.1) 

r e g 2 1.341 (.475) .5 (.35) .422 ( 432) .725 (.58) 2.354 (.528) 2.853(1.028) .926(1.888) 

r e g 3 1.279 (.432) .427 (.338) .224 (.407) 1.224 (.561) 2.093 .5 () 2.613(1.027) -.804(1.593) 

4 r e g .554 (.4) -.0752 (.362) -.046 ( 394) .501 (.53) .936 (.468) 1.092 (.926) -.329(1.729) 

a g e g 2 2.077 (.393) .822 (.297) 1.771 (.33) 1.787.441 0 1.702 (.396) 3.761 (.825) 1 063(1.18) 

a g e _ g 3 3.512 (.438) 2.212 (.289) 3 096 (.345) 3.682 (.477) 4.082 (.453) 3.867 (.983) 2.964 (.726) 

m a r s 2 .615 (.425) .193 (.376) .251 (.462) .347 (.562) .986 (.523) 1.032 (.912) 1.552 (.971) 

m a r s 3 .0614(641) .042 (.488) .238( 582) -.268 (.742) .688 (.684) .102 (1.388) - 876 (.984) 

ed3 -.97 (.359) .28 (.265) -.415 (.354) -.884 (.457) -1.471 (.396) -2.259 (.760) -2 262 (.818) 

? 
w s " -.562 (.403) -.67 (.265) -.443 (.325) -.377 (.419) -I 054 (.391) -1.13 (.913) -.193 (1.145) 

ws3 .429 (.576) -.133 (.422) .0297( 517) .942 (.633) .206 (.56) .344(1.282) 89 (.797) 

inc jq2 -.994 (.585) .3 (.382) -.048 (462) -.503 (.628) -1.632 (.577) -2.12(1.267) -.012 ( 887) 

i n c q 3 -1.15 (.561) .397 (.326) -.01 (.46) -.484 (.644) -2.307 (.615) -2.723 (1 23) .563 (1.87) 

i n c q 4 -.208 (.619) .171 (.367) .118 ( 478) .295 (.652) -.817 (.615) 1.006(1.273) 2.222 (.831) 

i n c q 5 -1.225 (.605) .406 (.334) -.189 (.513) -.876 (.663) -1.549 (.6) -2.589(1.26) -.02(1.219) 

pai2 -.472 (.446) .39 (.294) .245 (.354) -.428 (.466) -.383 (.448) -1.66(987) -3.391 (.82) 

pai3 -.406 (.387) .337 (.259) .092 (.32) -.231 (.418) -.351 (.379) -2.224 (.827) -2.96(1.124) 

cons 23.11 (.718) 18.56 (.527) 20.21 (.632) 22.16( 859) 25.2 (.779) 28.96(1.613) 36.5(1.781) 
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Table 2.7: Estimate of the influence to BMI at the mean and some quantiles (CCHSN2004JFemale) 

Coef. OLS Quantiles 

10th 25th 50th 75th 90lh 99th 

r eg 1 1.377 (.259) .5 (.262) .8 (.265) 1.287 (.303) 2.455 (.412) 1.775 (.594) I 133 (1 518) 

r e g 2 -.121 (.258) -.344 (.274) -.367 (.270) -.226(312) -.025 (.424) .025 (.613) 1.367(1.685) 

r e g 3 .907 (.243) .172 (.251) .25 (.253) .705 (.288) 1.523 (.393) 1.675 ( 568) 1.933(1.337) 

4 r e g 1.146 (.251) .467 (.255) .583 (.261) .976 (.301) 1.959 (.413) 17(59) 2.167(1.511) 

a g e _ .g2 .878 (.191) .367 ( 175) .767(175) .889 (.209) 1.32(296) .975 (.444) .067(1.153) 

a g e .g3 1.789(215) 1.172 ( 208) 1.817 (.205) 2.268 (.246) 2.259 (.342) 1 35(493) -.067 (1 184) 

m a r s 2 .687 (.228) .739(231) .8 (.222) .679 (.249) .293 (.342) .8 (.503) .4(1.301) 

mars ' 1 .67 (.274) .672 (.273) .65 (.268) .713 (.306) .419(415) 1.25 (.586) 1 133(1.516) 

e d 2 -.163 (.229) .083 (205) -.1 (.204) -.411 (.244) -.19 (.352) .15(493) -.367(1.448) 

e d 3 -.524 (.232) -.017 (.221) -.25 (.218) -.589( 256) -.8 (.36) -.475 (.514) -.9(1.394) 

w s 2 -.475 (.199) -.011 (181) -.167 (.182) -.168 (.22) -.99(313) -1.3 (.447) -.433 (1.105) 

w s J -.515 (.333) -.567 (.294) -.317(291) -.247 (.346) -.871 (.506) -.45 (.755) .2(1.685) 

i nc .q2 -.302 (.401) .067 (.324) -.2 ().328 -.084 (.408) -.38 (.559) -.8 ( 832) -.533 (2.08) 

inc q 3 -.698 (.374) -.306 (.33) -.45 (.315) -.716( 383) -.6 (.519) -1.45 (.769) -.933 (1.922) 

i n c .q 4 -.662 (.373) -.072 (.324) -.267 (.314) -.589 (.385) -.634 (.520) -1.425 (.781) -1.433(1.882) 

inc_ .q 5 -1 184(412) -.106( 367) -.367 .355 () -1.089 (.442) -1.459 (.601) -2 55(91) -2.933(1.894) 

p a i 2 -205 (.192) .006 (177) -.167 (.178) -.05 (.209) -.464 (.293) -.325 (.454) -1 567(1.158) 

pai" -.917 (.196) -.044 ( 198) -.267 (.2) -.747 (.24) -1.206 (.35) -1.95 (.497) -3.367(1.09) 

c o n s 24.2 (.456) 18.82 (.459) 20.58 (.424) 23.09 (.49) 26.71 (.657) 31.33(949) 37.93 (2.596) 
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Table 2.7: Estimate of the influence to B M I at the mean and some quantiles (CCHSN2004JFemale) 

Coef. OLS Quantiles 

10th 25th 50th 75th 90th 99th 

reg1 1.146 (.639) .794 (.269) 1.483 ( 3 3 4 ) .405 (.364) 1.219 (.702) 2.325(1.324) -1 .716(6 61) 

reg2 -.412 (.711) -.211 (.259) .49 (.347) - .715(389) -1 .224(788) -1.59(1.427) -.992 (6.573) 

reg3 -.101 (.601) -.404 (.255) 3 4 7 ( 3 4 1 ) -.235 (.354) .052 (.686) -1.482(1.21) -.347 (6.822) 

4 reg .708 (.602) .666 (.252) 1.163 (.329) .265 (.361) -.0432 (.692) -.025 (1.228) 2.302 (7.52) 

a g e g 2 1.728 (.511) 1.055 (.201) .877 (.271) 2 025 (.292) 1.705 (.634) 3.020 (.998) 2.336(3.772) 

a g e g 3 1 854 (.509) 1.449 (.195) 1.772 (.278) 2.335 (.295) 1.962 (.645) 3.66(1.051) .742 (4.951) 

mars2 .232 (.464) .182 (.162) 1 . 017 (264 ) .4 (.292) .49 (.634) -2367 (.938) -.461 (3.293) 

mars3 682 (641 ) 1.269 (.189) 1 .57 (310) .775 (.390) 1 .423(925) -2 .316(13) .569(5.481) 

ed2 -1.198 (.706) .116 (.149) -.985 (.282) -2.04 (.352) -1.434 (.758) -2 808(1.41) -.072 (3.974) 

ed3 -1.928 (.631) -.195 (.148) - 1 . 2 3 8 ( 2 7 ) -2.72 (.335) -1.448 (.729) -3.65 (1.313) -.717 (3.333) 

ws2 -.687 (.587) -.021 (.165) -.02 ( 287) - 1 7 ( 3 0 8 ) -.872 (.609) .33 (1.093) -2.592 (5.53) 

wsJ -.786 (.589) .0764 (.178) 3 3 3 (.304) .155(340) -.813 (.677) -.808(1.126) -5.195(4.89) 

i n c q 2 .254 (.876) - 19 (.315) -1.705 (.553) -61 (.716) - .457(1.239) 3.313(1.879) 3.057(3.986) 

inc_q3 1.071 (.771) .474 (.239) -.575 (.508) .82 (.687) 1.378 (1.196) 3.661 (1.681) 4.881 (4.053) 

i n c q 4 1.069 (.717) . 8 8 6 ( 2 4 8 ) - 683 (.499) .99 (.681) .753 (1.165) 3.431 (1.642) 5.552 (4.231) 

i n c q 5 .601 (.833) .61 (.259) -.968 (.535) .405(710) .347(1.221) 2.279(1.807) 5.598(5.345) 

pai2 -.599 (.459) .324 (,137) .07 (.24) -.245 (.267) -1.558 (.535) -1.175 (.964) -1.47 (2.66) 

pai3 -1.889 ( 419) .14 (.167) -.348 (.274) -1.205 ( 3 0 2 ) -2.672 (.590) -4.188( 89!) -9 198 (3 .81) 

cons 26.99(1.038) 18.50 (.352) 22.12 (.547) 25.7 (.75) 30.32 (1.39) 36.63 (2.247) 46.5 (5.896) 
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Table 2.8: Percentage Distribution of B M I 

Y e a r S e x Under weight Normal Overweigh t Obese I Obese II Obese III 

Male 0 48% 40.7% 10.3% 1% % 
1978 

Female 4 .1% 56.9% 28 .7% 8.4% 1.9% % 

Male 0 4 1 % 46 .8% 10.7% 1,5% % 
1994 

1,5% 

Female 2 .5% 57.8% 27 .7% 9.6% 2 .4% % 

Male 0 32.4% 41 .1% 18.6% 6.5% 1.4% 
2004 

Female 2% 43.5% 30 .6% 13.6% 5.8% 4.5% 

Male 1.3 44.6% 42 .5% 9.5% F F 
1978* 1978* 

Female 3 .4% 52% 28 .7% 11.5% 2.9% 1.5% 

Male 1.4 33.6% 42% 16.5% 4 .8% 1.6% 
2004* 2004* 

Female 2 .5% 44.1% 30 .2% 14% 5.5% 3.8% 

The data of 1978 and 2004* are adopted from Table 2 of Tjepkema (2006) 
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Table 2.9: Ranking of Factors by Degree of Importance — M a l e 

Quanti le 
1978/79 1994/95 2004 

Quanti le 
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

10 A R P I M W E A R M W I E P A I M E R W P 

25 A R M P I W E A M R E I W P A I M P R W E 

50 A R M I P W E A M E R I W P M R E I A W P 

75 M I P A R W E E M R A P 1 W A P W W E R M 

90 I W M P A R E E R A I P w M E P R R A M W 

95 I W P M A R E E R A P M 1 W E P R A 1 W M 

99 P R I W A E M E R W A P I M R E P I A M W 

A: age R: region M: marital status W: working status E: education P: physical activity I: family income 

73 



Table 2.10: Ranking of Factors by Degree of Importance —Female 

Quantile 
1978/79 1994/95 2004 Quantile 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

10 A R W P I M E A R M W I E P A R I E E P W 

25 A R w P I M E A R M w I P E A R E P I P W 

50 A I R P w M E A R I M P E W A E R I I M W 

75 A W R I p M E A R vv P I E M P A R W I M w 

90 A I P R w M E A 1 R P W M E P R E R I M w 
95 A 1 P W R M E 1 P R A M W E P E 1 A A M w 

99 P R A M W I E P I R E M w A P W R I A M E 

A: age R: region M: marital status W: working status E: education P: physical activity I: family income 
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Table 2.11: Predicted Percentage Distributions o f BMI 

Sex Male Female 

Year 2007-4 2 0 0 7 p 2014 p 2007-4 2007p 2014p 

Under weight 1.2% 0 0 3.9% 1.1% 1.8% 
Normal 38.4% 28.8% 23.5% 50.2% 41% 36% 

Overweight 39.3% 40.5% 38.8% 25.7% 31.8% 30.5% 

Obese I 13.3% 20.8% 21.8% 9.8% 15.7% 17.4% 

Obese II 2.7% 7.2% 10.5% 3.4% 5.9% 6.5% 
Obese III 1.2% 2.7% 5.4% 1.8% 5.6% 9.6% 

A denote estimation from Statistics Canada (CANSIM, Table 105-4009) and P denote the predicted percentage distribution 

of BMI from this study. Our prediction is for people aged 20 and 64, while estimation from Statistics Canada is for people 

aged 18 and over. 
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Figure 2.11 

Distribution of Body Mass Index 
Male 1978 to 2004 

cdf78 cdf94 
— cdf04 

This research is based on respondents aged from 20 to 64 
Data from CHS 1978 NPHS 1994 and CCHS 2004 Nutrition 

Figure 2.2 

Distribution of Body Mass Index 
Female 1978 to 2004 

BMI 

cdf78 cdf94 
cdf04 

This research is based on respondents aged from 20 to 64 

Prediction is based on data from NPHS 1994 and CCHS 2004 Nutrition 
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Figure 2.3 

Density Function of BMI 
Male 

BMI 

kdensity m78 kdensity m94 
kdensity m04 

This research is based on respondents aged from 20 to 64 

Data from CHS 1978 NPHS 1994 and CCHS 2004-Nutrition 

Figure 2.4 

Density Function of BMI 
Female 

BMI 

kdensity f78 kdensity f94 
kdensity f04 

This research is based on respondents aged from 20 to 64 

Data from CHS 1978 NPHS 1994 and CCHS 2004-Nutrition 



Figure 2.9 

Decomposition of Difference of BMI Distribution 
Dif ference between 1994-2004 Male 

Quantile 

inter influ_94-04_m ———— cf_inf!u_94-04_m 
cs_influ_94-04_m — — comb_influ_94-04_m 

titer mflu' intersedonal influenc d_hflu. irflwm* cavs«d by change of functbn of variables 

csjnflu. influence caused by diange of stfuQueo* vahabtes comb_irtfci: combination of both ntersectionalirfluenco and influence caur^d by charges of structure of variables 

Figure 2.6 

Decomposition of Difference of BMI Distribution 
Difference between 1994-2004 Female 

Quantile 

inter influ_94-04_f cf_influ_94-04_f 
cs_influ_94-04_f comb_influ_94-04_f 

inter i/rfUi irtersectonal nfkienc d j r f l u irfluence caused by change of function of variables 

cs_influ~ influence caused by cfcange of amcture of variables combnflu corr*ma$o« of both mteisectiofiai influence and influence caused by changes of structure of vanabtes 
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Figure 2.7 

Decomposition of Difference of BMI Distribution 
Dif ference between 1978 and 1994 Male 

0 20 40 60 80 100 
Quantile 

inter influ_78-94_m — — — cf_influ_78-94_m 
— cs_influ_78-94_m ——- comb_influ_78-94_m 

irtei irflu; rtereeeSionaf inftience cf_rtfLi: influence caused by change of funcfion gf variables 
cs_tnBu: irilueocs o w e d by change of structure ofvariabtes cnr&mation of both <n»r sectional influence and krftuence caused by changes of sBucSire of variables 

Figure 2.8 

Decomposition of Difference of BMI Distribution 
Difference between 1978-1994 Female 

0 20 40 60 80 100 
Quantile 

inter influ_78-94_f cf_inf!u_78-94_f 
cs_influ_78-94_f — comb_influ_78-94_f 
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cs_ntfv influence caused by change o» sMjOure of variables ccmb_if*lu: conjunction c* both ntersectional irftience and influence cause<5 by changes of structore of variables 



Figure 2.9 
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Comparison of Decomposition over Two Periods 
Dif ference between 1978-1994 & 1994-2004 Male 
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cf_influ: influence caused fay change of function of variables 

comb_influ: combination of both intersectiona! influence and influence caused by changes of structure of variables 

Figure 2.10 

Comparison of Decomposition over Two Periods 
Dif ference between 1978-1994 & 1994-2004 Female 

Quantile 

cf_influ_78-94_f — — — cf_influ_94-04_f 
comb_influ_78-94_f combjnflu_94-04_f 

c f jn f lu : influence caused by change of function of variables 

combjnf lu: combination of both inter sectional influence and influence caused by changes of structure of variables 
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Figure 2.11 

Prediction of Distribution of BMI 
Male 2007 and 2014 

BMI 

cdf04 cdf07 
cdf14 

This research is based on respondents aged from 20 to 64 
Prediction is based on data from NPHS 1994 and CCHS 2004 Nutrition 

Figure 2.12 

Prediction of Distribution of BMI 
Female 2007 and 2014 

BMI 

cdf04 cdf07 
cdf14 

This research is based on respondents aged from 20 to 64 

Prediction is based on data from NPHS 1994 and CCHS 2004 Nutrition 
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CHAPTER 3 

The Pattern of Shifts in the BMI for Canadian Adults, 

1994-2007 

3.1. Introduction 

The BMI is defined as weight in kilograms divided by the corresponding height in 

meters squared. According to the standard for obesity defined by the WHO (World 

Health Organization. 1997). the BMI for adults is classified into six categories: un-

derweight. normal, overweight, obese I. obese II and obese III 1. Each category of the 

BMI represents a different level of health risk (Flegal et a l . 2005). Although under-

weight is also frequently associated with poor health, the sharp increase of obesity 

in many countries in the last two decades has attracted much attention in research, 

policy making and the health industry. An obesity epidemic implies that the number 

of people who shift from normal and overweight to the obese categories over time 

exceeds the number of people whose shift in the opposite direction over the same 

time. 

Movements between different BMI categories could provide very important infor-

mation on the obesity problem such as the characteristics of shift patterns among 

different groups, the spectrum of transition probabilities, and the long-run dynamic 

equilibrium. This information should prove useful, not only for health care and other 

Underweigh t is defined as BMI < 18.5, normal as 18.5 < BMI < 25, overweight as 25 < BMI < 
30, obese I as 30 < BMI < 35, obese II as 35 < BMI < 40 and obese III as BMI > 40. 
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health related issues, but also for designing more efficient policies for containing and 

mitigating the obesity problem. For example, better understanding of the obesity de-

terminants and dynamics would prove valuable for predicting the prevalence of some 

diseases such as cardiovascular disease, hypertension and diabetes II, and evaluating 

the demand for health care and other medical resources related to these diseases. 

Despite its important economic and policy implications, there are only a few papers 

tha t study the patterns of the shift from one BMI category to another. In this study, 

we explore the dynamic characteristics of the BMI shift2 of Canadian adults from 

the longitudinal National Population Health Survey (NPHS) using Markov Chain 

analysis. 

Markov Chain analysis has a long history in economics. In an early application 

of this method, Adelman et al. (1958) investigated trends in the concentration and 

mobility of firms in the U.S. iron and steel industry. Salkin et al.(1975) predicted 

the population of the western United States by studying the structure of population 

movements. These early studies assume stationarity. which requires that the transi-

tion probability from one state or category to another is constant over time. In order 

to build the model on a solid footing and to reflect better the dynamics of the actual 

process, time varying or nonstationary Markov Chains have also been used in studies 

of social mobility and industry concentration. For example, Zepeda (1995) employed 

aggregate time varying Markov chain methods to examine the size distributions of 

dairy farms. 

2 In this paper, the BMI shift is defined as movements among different categories of the BMI. 
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Whether the BMI shift process is stationary has important implications for future 

trends in obesity. In particular, stationary shifts in the BMI distribution can generate 

more reliable predictions of obesity prevalence in the long run. These predictions can 

then be used to evaluate the impact of obesity on society and the economy. On the 

other hand, if the BMI shift is not stationary, factors that affect people's weight are 

not balanced and their influence on weight varies over time. Hence, measures for 

obesity prevention and control should be adjusted accordingly. 

Studies of obesity show that, before the early of 1990s, the prevalence of obesity 

in Canada has changed slowly, but it has increased dramatically during the 1990s 

and 2000s. This fact may imply that the BMI shift (or. more precisely, the transition 

probability matrix corresponding to the BMI shift) before and after 1990s, is not 

stationary. While this hypothesis can be tested using aggregate data on the prevalence 

of each category of BMI. it seems more interesting to study the stationarity of the 

BMI shift since the beginning of the 1990s, when the obesity prevalence in Canada 

has exhibited substantial increases (Tjepkema, 2006). 

Based on micro-level biennial data from the longitudinal NPHS survey from 

1994/95 to 2006/07. this study shows that men and women have different patterns of 

BMI shift. However, the shift patterns for both groups in all two-year periods exhibit 

a-common positive trend, i.e. people who move to higher categories of BMI are more 

than those who move to lower categories. Stationary tests show that for men and for 

women, BMI shifts are not stationary over this period. By conjecturing that people 

who have different lifestyles may differ in shift patterns, the Markov chain method 

is also applied to subgroups of men and women based on their activity level. More 
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specifically, these subgroups are formed by men and women who are active, moderate 

and inactive in physical activity. The results of the stationary test for these subgroups 

show that , for both men and women, the BMI shifts of the active and inactive groups 

are nonstationary but the BMI shifts of the moderate group are stationary. Further-

more, the BMI shifts for the moderate group are ergodic, which is to say there exist 

unique steady states of BMI for men and for women who are moderate in physical 

activity. According to the estimates of the transition probability matrices of these 

two moderate groups, in the steady state, the obesity prevalence for men who are 

moderate in physical activity is 29.61%, while for women who are at the same level 

of physical activity, obesity prevalence is 23.37%3. 

These results offer some interesting policy recommendations. While it may be 

difficult to induce people who are physically inactive to become fully active, it might 

be feasible to encourage them to switch from being inactive to moderately active. 

This could be achieved bv walking 30 to 60 minutes a day. or taking an hour-long 

exercise class three times a week (Gilmour, 2007). If all inactive people succeed in this 

transformation and if the obesity prevalence for active and moderate groups remains 

unchanged, the obesity prevalence in Canada could be contained below 25% in the 

long run4. 

3 T h e empirical results of this study reveal that the stationary hypothesis for the moderate group is 
strongly supported for both men and women. 
4 This prediction is based on the reasonable assumption that the obesity prevalence for the moderate 
group is less than that for the inactive group but higher than prevalence for the active group. 
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3.2. D a t a Description 

The data used in tills study are from household component of the longitudinal 

NPHS. The NPHS is conducted every two years starting in 1994/1995. The first three 

cycles (1994/1995. 199(3/1997 and 1998/1999) were both cross-sectional and longitu-

dinal. From Cycle 4 (2000/2001) onwards, the survey became strictly longitudinal 

(collecting health information from the same individuals in each cycle). 

The NPHS was designed to provide measures of the level, trend and distribution 

of the health status of the population, collect data on the economic, social, demo-

graphic. occupational and environmental correlates of health, and provide informa-

tion on a panel of people, who are followed over time, to reflect the dynamic process 

of health and illness. The data were collected primarily through computer-assisted 

personal interviews in 1994/1995 and primarily through computer-assisted telephone 

interviews thereafter. Telephone interviews comprised over 96% of all interviews in 

1996/1997 and 1998/1999; over 98% in 2000/2001 and 2002/2003: and more than 99% 

in 2004/2005 and 2006/2007. The survey does not cover members of the Canadian 

Forces, people living on Indian reserves or in some remote areas. 

The NPHS longitudinal sample includes 17,276 persons of all ages in 1994/1995. 

These same persons are set to be interviewed every two years over a period of 18 

years, i.e. 10 cycles. This study collects data from all seven conducted and released 

cycles of the NPHS from 1994/1995 to 2006/2007. These seven cycles form six t w o 

year periods, and each of them is between two consecutive cycles. This study focuses 

mainly on the respondents' BMI shift from 1994/1995 to 2006/2007 and compares 
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the shifts in each two-year period. Two years is a long enough period to allow adults' 

weight changes from one category of BMI to another. 

Although the NPHS longitudinal sample includes persons of all ages, this study 

considers only respondents from 18 to 64 years old at each cycle from the first cycle 

to the sixth cycle of the survey. This means that, for each cycle from the second to 

the sixth, our data set adds some new candidates who are 18 or 19 and drops some 

old candidates who are 65 or 66. The reasons for limiting respondents from 18 to 64 

years old at each cycle are: first, we are mainly interested in the BMI shift patterns 

of adults: second, we want to observe Canadians' BMI shift patterns among groups 

with the same age structure in different periods: and third, compared to children and 

teenagers younger than 18 and elderly people older than 64, people aged 18 to 64 

are stable in their height, and their BMI changes are mainly due to changes in their 

weight. On the other hand, if we trace all respondents in all seven cycles, then, at each 

cycle after the second cycle, there are always some respondents who are taken out of 

the survey because of nonresponse or death which makes the number of respondents at 

later periods decrease dramatically. Up to the seventh cycle, there is a high percent age 

leakage of respondents. This may cause serious structural problems wrhen we compare 

the shift patterns in different periods. In addition, if we trace all respondents in all 

seven cycles, the respondents' age increases two years at each periods, and there is 

a 12-year difference in age structure between the sample in the first period and the 

sample in the last period. Besides keeping the age structure unchanged, our data 

collecting method has another advantage since it allows the respondents who drop 
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out of the sample in early periods to return back to the sample later, as long as they 

participate in any two consecutive cycles. 

By using the proposed data collecting method, this study includes 8935 respon-

dents in the first period and 8316, 7995. 7514, 6967 and 6437 respondents in the 

second to sixth periods, respectively. However, respondents in each sample are not 

treated equally. In order to make the sample at each period to reflect the struc-

ture of the population, same individual may be assigned different weights in different 

periods5. 

NPHS contains the only longitudinal health survey that has been conducted for 

more than 12 years in Canada. Since the data in the survey are self-reported, the 

BMI based on the self-reported weight and height is generally expected to be underes-

timated. Nevertheless, the estimated probability transition matrices in this study are 

highly consistent with some previously reported findings that are based on measured 

data. This observation suggests that the usefulness of the results is not compromised 

by the self-reported nature of the data. Of course, future research on quantifying the 

magnitude and the importance of the bias arising from underreporting seems nec-

essary in order to assess how the obesity prevalence estimates and predictions are 

affected. 

3.3. Markov chain Model 

Let p\ denote the proportion of people who belong to category i of the BMI at 

cycle t of the survey and let be the probability of moving to the BMI in category 

J In this study, both the number of repondents and weight corresponding to them are used to describe 
their BMI shift. 



j at cycle t. given being in category i of the BMI at cycle (t — 1). Then, it follows 

that 

(3.1) 

/ t \ 
P i 

Pf
5 

p\ 

Pi 

W 

f t t t , \ l-Pn P21 Pzi Pi* Pk Pgi PI 

P l 2 P22 P32 P2A P 2 5 P&2 P2 

P1.3 Pxi p'ia Pu Ptt /4s /'.', 

Pl4 P24 P'm P44 P45 P64 P4 

P i 5 P 2 5 P 3 5 P54 P55 P e s Pi 

\Pl6 P 2 6 P 3 6 P 6 4 P 6 5 Pfjfi ^ 

where i = 1 ,2 ,3 ,4 ,5 .6 represents the six categories of BMI - mderweight. normal. 

overweight, obese I. obese II and obese III, respectively- Note that in the above 

probability transition matrix of elements p\ -. p\j = 1- for all 1. 

Based on the relationship between the BMI states in different cycles of the survey, 

maximum likelihood estimation can be used to obtain estimates of the probability 

transition matrix of BMI shift between two survey cycles. If ril respondents are 

interviewed in both cycles (t — 1) and t of the survey, and if n\ is the number of 

respondents in BMI category i at cycle (t — 1), then 1 n \ = 7 7^Moreover, if n\-

denotes the number of respondents whose BMI state shifts from category i to category 

j from cycle t — 1 to cycle t, then 74j = n i-

Assuming that everyone's BMI status is independent , the probability of the above 

BMI transition of the respondents across all cycles can be written as 

(3.2) l = n j = 2 n? = 1 n5 = 1 ( ^ p 
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and the log maximum likelihood function is given by 

7 6 6 

(3.3) = 
t=2 ;:=i j=i 

Using (3.3), the ML estimate of p\- can be obtained in a straightforward manner 

as6 

VL 
(3.4) 4 = for Lj = 1.2,....6. 

The independence of the transitions in different periods implies that probability tran-

sition matrix in each period is only determined by the information from that period. 

More specifically, the estimate of p\j depends only on • and n\ and the probability 

transition matrix from cycle (t — 1) to cycle I can be obtained from these estimates. 

Intuitively, if there are //' out of n\ respondents who shift from category / to category 

j when moving from cycle (t — 1) to cycle t, the probability for this shift should be 

nl
 • I 

The likelihood function in (3.3) is valid under the assumption that each observa-

tion has the same weight . This is typically not the case for survey data where different 

observations or respondents have different weights and should not be treated equally. 

In order to account for this fact, weight information should be incorporated into the 

model. Instead of using the number of respondents in the sample, each observations' 

weight is used to reassign the frequency that each respondent appears in the sample. 

' 'From log L = S j L i nij Pij a i l f i Pie = 1 — i Piji the order condition can be written 

as d^sk = Hp _ "/ ' " " = 0 for or ^ = Since the right side is same for each j. 

il follows that = for j,l = 1 ,2 ,3 ,4 ,5 , which implies that = ^f for i, j = 1 ,2 ,3 .4 ,5 ,6 . 
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If nl respondents are interviewed in both cycles (t — 1) and t of the survey, and uj\-' 

is the sum of weights of all respondents whose BMI status shifts from category i to 

category j from cycle (t — 1) to cycle t. we can regard rfuif as the number of re-

spondents whose BMI shifts from category i to category j from cycle (t — 1) to cycle 

t. The likelihood function under this setting can be expressed as 

(3 .5 ) l = n t
7

= 2 n f = 1 n 5 = 1 (p\3 . 

The corresponding log maximum likelihood function is 

7 6 6 (3.6) lo§I = EEE "H-
f = 2 i = 1 j = l 

and the ML estimate of p,f can be written as 

(3-7) p',:i ^ lor/ . . , 1.2 6. 

3.4. Est imate Results 

The probability transition matrix for the six periods described in the data section 

are estimated by applying the Markov chain method to NPHS longitudinal data. 

Table 3.1 to Table 3.6 report the estimated probability transition matrices for all the 

six periods. Each table contains probability transition matrices for the whole sample 

and subsamples for men and women. 

From the probability transition matrices, it is easy to see that, except for un-

derweight people, people in the other five categories are more likely to stay in their 

'For each period or t. Y^l-- \ i ^h = 1-
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own categories8. Although most people with normal weight are still normal after 2 

years, more than 90% of the people who left this group become overweight or obese. 

For overweight people, the possibility of becoming obese is not very different from 

that of going to normal or underweight; their differences are less than 1.5% in most 

of the periods. In addition, in three of the six periods, more overweight people be-

come obese, and in the other three periods, more overweight people become normal 

or underweight. Obese people who left their categories, regardless of their obese cat-

egory, are more likely to shift to the lower categories of BMI. However, because the 

proportion of normal and overweight people is much higher than the proportion of 

obese people9, the number of people who transfer from the normal or overweight cat-

egories to the obese categories is much more than people who move in the opposite 

direction. Hence, the prevalence of obesity keeps increasing during the period under 

investigation. 

For both men and women, the normal and overweight categories are the most 

stable categories; however, if we observe men and women in these two categories 

separately, their tendencies for staying in and leaving their original categories are 

different. Normal weight women are more likely to preserve their BMI status than 

normal weight men; in contrast, overweight men are more likely to remain in their 

BMI category than overweight women. Furthermore, overweight women are more 

likely to go back to normal weight than overweight men and overweight men are 

more likely to be obese than overweight women10. Compared to men who are in 

^Normal and overweight people are most stable in their weight with more than 81% normal-weight 
people and 75% overweight people do not change their categories. 
y The proportion of people in the lower obese category is higher than that in the higher obese category. 
10A11 these conclusions on BMI shift are obtained from two-year-period shifts. 



obese classes I and II. women who belong to these categories are more likely to be 

more obese; however, compared to men who are in obese class III. women in this 

category are more likely to go back to lower obese classes. 

With these BMI shifts, what BMI distribution can we expect in the next period? 

If we look at the BMI percentage distribution at the beginning of each period in Table 

3.7, it is easy to see that , for both men and women, the prevalence of normal weight 

declines over time, while the prevalence of each obesity category continually increases. 

Because overweight men are more likely to be obese than overweight women, men have 

higher prevalence to be in obese class I than women. Women in obese classes I and 

II are more likely to be more obese than men in these two classes and the women's 

group has a higher prevalence to be in obese class II and III than men. 

3.5. Future Obesity Prevalence in Canada 

Studies of obesity show that prior to the beginning of 1990s', the prevalence 

of obesity in Canada changes slowly; in contrast, after 1990s', obesity prevalence 

increases dramatically (Tjepkema, 2006). This fact may imply that the BMI shift 

differs in the periods before and after 1990, and the BMI shifts after 1990 reflect the 

BMI shift patterns of the obesity epidemic in Canada. 

How worse could the obesity prevalence be if the current BMI shift were sustained? 

Will the prevalence of obesity continuously increase? Answers to these questions have 

very important implications for the economy; for example, how many resources need 

to be allocated to the treatment of obesity-related illness and how much output would 

the economy lose because of the absence from work due to the increasing prevalence 

of obesity. 



The answer to the first question is meaningful only in the short run. To predict 

obesity prevalence in the short run (ten years, for instance) it is convenient and 

reasonable to assume that the BMI shift will remain unchanged, even if it is actually 

a nonstationary process. This setup is often used in the application of the Markov 

chain analysis in the literature. Based on the assumption that the BMI probability 

transition matrices for men and women are unchanged in the ten years from 2006. 

the percentage distribution of BMI for men and women in 2008. 2010, 2012. 2014 and 

2016 are given in Table 3.811. 

The prediction reported in Table 3.8 shows that in 2016 the Canadian men's and 

women's obesity prevalence would reach 32.2% and 25.2% respectively. In the next 

10 years, the prevalence of all three obese classes will keep increasing for both men 

and women while the prevalence of normal weight will keep decreasing. For women, 

the prevalence of overweight will also continually increase in this period; however, for 

men. the prevalence increases initially but then starts to decrease. 

Will the prevalence of obesity continuously increase? This question concerns obe-

sity prevalence in the long run. If a Markov chain is ergodic, then there exists a 

steady state or an equilibrium and the equilibrium distribution is unique and inde-

pendent of the initial configuration (see Chapter 11 in Hamilton, 1994). Although 

- nonstationary Markov chains can also be ergodic, the small number of observations 

makes it difficult to evaluate whether the system is ergodic or not. In contrast, if we 

1 ' The prediction is based on the estimated probability transition matrix from 2004/05 to 2006/07 
and the initial BMI percentage distribution in 2006. 
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know that a Markov chain is stationary, as long as its probability transition matrix 

is irreducible and aperiodic12, it is ergodie. 

3.5.1. Stat ionarity Test and Obes i ty Prevalence in T h e Long R u n 

Is the BMI shift in Canada stationary after 1990? To answer this question, the 

stationarity of the BMI shift is tested using the test that was proposed by Anderson 

and Goodman (1957). The test is based on estimates of the six probability transition 

matrices in the period from 1994/95 to 2006/07 for men, women and the whole sample. 

Suppose that the probability transition matrices are stationary over the survey 

period from 1994/95 to 2006/07. and plJ denotes the probability of an individual's 

BMI moving from category i to category j. Then the null hypothesis can be written 

as //0 : p\j = p^ (t = 2,3, . . 7 ) ' U n d e r the null hypothesis, the likelihood function 

(3.5) takes the modified form 

(3.8) L = n L 2 n t 1 n « = 1 ( P l J ) n H 

and the estimates corresponding to this new likelihood function are given by 

V ' 9 nluj'-t 
(3.9) ptJ ~ " 

Ylk=l Xw'= 2 T,luJ'ih 

12If one of the eigenvalues of the probability transition matrix is unity and the remaning eigenvalues 
are less than one, then the Markov chain is ergodie. 
1 3 In order to make the notation consistent, that s tarts with (2) represents the transitional 
probability between cycle t — 1 and cycle t. 
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The estimate p, j is constructed as the ratio of the total number of respondents whose 

BMI shifts from category i to category j — 27ntuijt) and the total number of 

respondents whose BMI is i at the beginning of each period = l 6 Ylt ~ 2' ntujikl). 

Following Anderson and Goodman (1957), the stationary test for the BMI shift 

has the form 

6 7 6 6 

( 3 . 1 0 ) R = E E E ",J<MJ - PUF/VU = XI • 
(=1 t=2 j = l i=1 

If the null hypothesis is true, x2 ; m <l x'j a r e distributed as chi-square with (T — 

2 ) j m ( m — 1)] and (T — 2)(m — 1) degrees of freedom, respectively, where T is the 

number of cycles of the survey, and m is the number of states. The test statistics 

(3.10) covers the whole period from 1994/1995 to 2006/2007 and T and m are equal 

to 7 and 6, respectively'4. 

Table 3.9 presents the results of the stationary tests for men, women and their 

combined sample over the six periods. The results of the stationary tests show that 

the BMI shifts appear to be nonstationary. The BMI shift patterns for men and the 

combined sample tend to be more unstable than those for women. Since it is difficult 

to verify if the BMI shifts are ergodic when they are nonstationary, this means that 

the future prevalence of obesity obtained from the man's and women's nonstationary 

BMI shifts would be unreliable. 

It is natural to think that people with different characteristics may have different 

BMI shift patterns which might help us to identify subgroups with stationary BMI 

1 'Tests for s ta t ionar i ty over several periods can be tested in the same way. For example, if we want 
to test the s ta t ionar i ty over the second t o the fourth period, we just need to change t in both (3.9) 
and (3.10) f rom 3 to 5. 
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shifts. For example, lack of exercise and energy expense is believed to be one of the 

direct causes that leads to obesity. As a result, it seems reasonable to assume that 

people who differ in physical activity may also differ in their BMI shift. Using levels 

of the energy expense, people can be categorized as active, moderate and inactive 

in physical activity1 ' . Taking a closer look at these three subgroups separately for 

men and women, we find that , for the overweight and obese men and women, the 

more active they are in physical activity, the more likely they are to move to the 

lower BMI categories. The stationary tests corresponding to these subgroups show 

that , for both men and women, the BMI shifts of the active and inactive subgroups 

are nonstationary: however, the BMI shifts of the moderate subgroups are station-

ary10. Furthermore, the probability transition matrices of the BMI shift for these 

two moderate subgroups are irreducible and aperiodic; hence, their BMI shifts are 

ergodie. This implies that there exist unique steady states for men and women who 

are moderate in physical activity. The BMI percentage steady-state distribution for 

these subgroups are given in Table 3.11. At steady state, the obesity prevalence for 

men who are physically moderately active is 29.61%, while for women who are also 

physically moderately active, it is 23.37%. 

Both previous studies and our analysis of the longitudinal NPHS data indicate 

that , for both men and women, obesity prevalence is negatively related to their physi-

cal activity index (Tables 3.12 and 3.13). Based on this fact, it is reasonable to assume 

' '^According to the difinition tha t was adopted by NPHS, active in physical activity is defined as 
using 3 or more kilocalories per kilogram of body weight per day; moderately active is defined as 
using 1.5 to less than 3 kilocalories per kilogram of body weight per day; inactive is defined as using 
less than 1.5 kilocalories per kilogram of body weight per day. 
1 ('7 able 3.10 presents the results of the stationary tests for the active, moderate and inactive men, 
women and their combined sample over the six periods. 
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that , in the long run. even men or women who are physically moderately active would 

reach their steady state and their obesity prevalence would still be higher than that 

of the active group and lower than that of the inactive group. Hence, in the long 

run, the obesity prevalence for active Canadian men and women can be kept below 

29.61% and 23.37%, respectively, while obesity prevalence for inactive Canadian men 

and women is expected to be higher. 

People who are inactive in physical activity account for the biggest portion of 

the Canadian population. Close to half (48%) of Canadians aged 12 or older (12.7 

million people) were inactive in their leisure time in 2005 (Gilmour. 2007). This 

means that obesity prevalence in Canada is predominantly influenced by physically 

inactive people. 

A policy recommendation that naturally emerges from these findings is to encour-

age or provide incentives to inactive obese people to become moderately physically 

active. This could be achieved by walking 30 to 60 minutes a day, or taking an 

hour-long exercise class three times a week. If these people could become moderately 

active, then obesity prevalence could be decreased gradually. We could evaluate this 

effect by applying the BMI shift pattern of moderate group to the inactive group. 

More specifically, the estimated probability transition matrices (which do not reject 

the stationary hypothesis) are used for the inactive group BMI distribution at the 

initial year. 1994/95. Applying the formula (3.1) recursively, the BMI percentage 

distributions at each of the following periods are given in Table 3.14 for men and 

Table 3.15 for women. In order to verify if physical activity is negatively related to 

\obesity prevalence, the probability transition matrices of moderate groups are also 
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applied to the active groups and the resulting BMI distributions are also reported in 

Table 3.14 and Table 3.15. Comparing these calibrated BMI percentage distributions 

to the actual BMI distributions in Table 3.12 and Table 3.13. it is easy to see that for 

the inactive group the calculated obesity prevalence is always lower than their actual 

counterpart in the periods following 1998/99. For example, if women who were phys-

ically inactive in 1994 could become physically moderately active, then their obesity 

prevalence in 2004 would decrease by more than 2%. In contrast, the calculated obe-

sity prevalence for the active group is higher than its actual counterpart in most of 

the subsequent periods which lends support to the hypothesis that the relationship 

between physical activity and obesity prevalence is negative. 

From these results, we can conclude that- imposing the moderate group's shift pat-

tern will slow down the increase of obesity prevalence of the inactive group although 

its obesity prevalence would still increase. If they are successfully shifted from inac-

tive to moderately active, their obesity prevalence would approach that of moderate 

people in the long run. Given the low obesity prevalence of the active group and 

the difference in obesity prevalence between moderate men and women, the obesity 

prevalence among Canadian adults could be confined to around 25% in the long run 

as long as all inactive Canadian adults become moderately active. 

In this paper, only BMI shift patterns for active, moderate and inactive subgroups 

are studied1 ' . However, this method could be applied to any other subgroups which 

are formed using a different categorization such as race, age, resident region, and 

socioeconomic status such as family income and education. 

1 7 The respondents included in this study are between 18 to 64 years old. 
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3.6. Discuss ion 

It is often acknowledged that self-reported BMI is not reliable because a large 

part of respondents, especially heavy respondents, tend to understate their weight or 

overstate their height. For example, Gorber et al. (2007) found that, in the Canadian 

Community Health Survey, the proportion of respondents reporting being obese was 

estimated to be 18% for those who were interviewed in person compared with an 

estimate of only 13% for those who were asked the same questions by phone. In 

NPHS, height and weight are self-reported and they are obtained by phone. While this 

may induce some biases in the estimation results, the obtained probability transition 

matrices are fairly consistent with some previous findings that are based on measured 

data. 

The probability transition matrices from this study show that women with nor-

mal weight are more likely to keep their BMI status than normal weight men while 

overweight men are more likely to keep their BMI status than overweight women. 

Further, overweight women are more likely to go back to normal weight than over-

weight men, and overweight men are more likely to become obese than overweight 

women. Finally, women who are in obese class I and class II are more likely to become 

more obese than men who belong to the same categories. This is highly consistent 

with the previous findings on the BMI distribution of the Canadian population which 

can be summarized as follows: (i) normal-weight women are a higher percentage than 

normal-weight, men: (ii) men who are in the overweight and obese class I categories 

are a higher percentage than women in these two categories; and (iii) women have a 
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higher prevalence in obese classes II and III than men18. Why is the BMI shift based 

on the understated BMI still consistent with the objectively measured tendency 111 

the BMI distribution? A possible explanation is that overweight and obese people 

use similar rates to underreport their weight and over-report, their height, and these 

rates are stable over time. Although the estimate of the BMI shift may not yield 

an exact estimation of the BMI distribution, it does reflect the relative movements 

across the different BMI categories. 

Stationary tests show that the BMI shifts for the active and inactive groups are 

nonstationary but the BMI shift for the moderate group is stationary. This result 

still holds when the categories of BMI are reduced to four categories which are not 

obese, obese class I. obese class II and obese class III. Compared to the moderate 

group, people in the active group do not easily keep active at the same level all the 

time, especially those who are very active in physical activity. When there is an 

unexpected change in their life or in the environment, these people may reduce their 

physical activities dramatically while their food consumption do not change much. In 

other words, the BMI of these people are more sensitive to unexpected changes than 

people in the moderate and inactive groups. The stationary tests for both active men 

and women show that is the component that leads to significantly rejections of the 

null hypothesis19. This means that, in the active group, people with normal weight 

are the most unstable subgroup in terms of BMI shift and their mutableness is the 

main source of the nonstationarity of the BMI shift for the active group. This result 

1 8See Table 2 of Tjepkema (2006). The results in the table show that , in 2004, the prevalence of 
normal weight, overweight, obese class 1, 2 and 3 for man are 33.6%. 42%, 16.5%. 4.8% and 1.6%, 
respectively, while the cooresponding percentages for women are 44.1%, 30.2%, 14%, 5.5% and 3.8%. 
19AS mentioned above, under the null hypothesis, \ f (i = 1 ,2 ,3 ,4 .5 ,6) in the stationarity test (3.10) 
are distributed as chi-square with (T — 2)(m — 1) degrees of freedom. 
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supports the previous interpretation of the nonstationarity for active group which is 

that people who are very physically active are unstable in their BMI shift. 

A closer inspection of the stationary test for physically inactive people reveals 

that x ! is t h e largest part and is the second largest part that contribute to the 

nonstationarity of BMI shift for the inactive group. This implies that, in the inactive 

group, overweight and normal weight people are the most unstable subgroups in terms 

of BMI shift. This finding may be difficult to rationalize but one possible reason is 

that inactive people who are in the overweight and normal categories are sensitive to 

changes in their weight. They may often struggle with their food intake and live in a 

process of frequent transformation of diet control and indulging in eating which leads 

to irregular changes in their weight. 

In fact, even the stationary test results for the moderate group show that , 

for men and for women contribute most to the significant rejections of the null 

hypothesis. This indicates that the BMI shift of normal and overweight people is the 

main source of the changes in the BMI distribution. This means that, as a strategy 

to address the obesity epidemic, effort to prevent the occurrence of new obese cases 

is much more effective and important than effort to reduce the number of existing 

obese people. 

3.7. Conc lus ion 

By applying the Markov chain method to the seven cycles of the longitudinal 

National Population Health Survey (NPHS), this study investigates the BMI shift 

patterns of Canadian adults aged 18 to 64 during the period 1994/95 - 2006/07 

which is characterized by a dramatic increase of obesity prevalence. The estimated 
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probability transition matrices indicate that men and women are different in BMI 

shift patterns. However, the shift patterns for both groups in all periods exhibit a 

common positive trend, i.e.. the people who move to higher categories of BMI are more 

than those who move to lower categories. Stationary tests show that for both men 

and women, BMI shifts are not stationary over this period. Interestingly though, the 

BMI shifts of moderately active subgroups of both men and women are stationary arid 

ergodic. Based on the estimated probability transition matrices for the moderately 

active groups, the obesity prevalence at steady state (long run) is predicted to be 

29.61% for men and 23.37% for women. 

Some of the main findings can be summarized as follows. First, women with 

normal weight and overweight men have the highest probability to remain in their 

BMI category. Second, because the proportion of normal and overweight people is 

much higher than the proportion of obese people, the number of people who move 

from the normal or overweight categories to the obese category is much more than 

people moving in the opposite direction. Hence, the prevalence of obesity keeps 

increasing over time. Finally, the stationary tests show that the BMI shift of normal 

and overweight people is the main source of the changes in the BMI shift and the 

effort to prevent the occurrence of new obese cases would prove much more effective 

than the effort to reduce the number of existing obese people. 

People who are physically inactive account for the biggest portion of the Canadian 

population. Compared with people who are physically active or moderate, the obesity 

prevalence for this group is substantially higher. Hence, obesity prevalence in Canada 

is most closely associated with physically inactive people. Health policies that aim at 
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dealing with the obesity problem should focus more on physically inactive people and 

design incentives that would e n c o u r a g e them to become moderately or fully physically 

active. Our calculations show that if all inactive people become moderately active, 

assuming that obesity prevalence for active and moderate groups remains unchanged, 

obesity prevalence in Canada could be confined below 25% in the long run. 
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Table 3.1: Probabil i ty Transi t ion Mat r ix 1994/95 to 1996/97 

Whole 

Underweight Normal Overweight Obese I 
Obese 

II 

Obese 

I I I 

Underweight 43.43% 1.55% 0.01% 0.01% 0 0 

N o r m a l 54.97% 83.93% 13.1% 2.56% 0.92% 1.14% 

Overweight 1.13% 13.85% 78.25% 24.16% 2.67% 1.96% 

Obese I 0.19% 0.64% 8.29% 64 51% 33.85% 6.89% 

Obese II 0.28% 0.02% 0.28% 8.2% 49.98% 30.08% 

Obese III 0 0.01% 0.07% 0.56% 12.58% 59.93% 

Men 

Underweight Normal Overweight Obese I 
Obese 

II 

Obese 

I I I 

Underweight 51.83% 0.8% 0 0 0 0 

N o r m a l 45.73% 80.17% 11.3% 2.07% 0 0 

Overweight 2.44% 18.27% 81.07% 27.50% 3.08% 0 

Obese I 0 0.76% 7.53% 64.36% 32.55% 1.7% 

Obese II 0 0.01% 0.11% 56.91% 53.05% 25.61% 

Obese III 0 0 0 0.37% 11.32% 72.69% 

Women 

Underweight Normal Overweight Obese I 
Obese 

II 

Obese 

I I I 

Underweight 41.95% 2.13% 0.03% 0.02% 0 0 

N o r m a l 56.6% 86.84% 16.42% 3.17% 1.62% 1.78% 

Overweight 0.89% 10.43% 73.09% 19.9% 2.36% 3.07% 

Obese I 0.23% 0.56% 9.68% 64.71% 34.86% 9.83% 

Obese II 0.33% 0.04% 0.59% 11.4% 47.61% 32.6% 

Obese III 0 0.01% 0.19% 0.8% 13.54% 52.7% 
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Table 3.1: Probabi l i ty Transit ion M a t r i x 1994/95 to 1996/97 

Whole 

Underweigh t Norma l Overwe igh t Obese I Obese II 
Obese 

III 
Underweight 51.18% 1.17% 0.04% 0 0 0 

Norma l 48.54% 82.94% 12.92% 1.72% 0.38% 0 

Overweight 0.28% 15.52% 75.52% 20.92% 3.04% 2.82% 

Obese I 0 0.20% 11.25% 65.07% 27.15% 7.13% 

Obese II 0 0.07% 0.26% 11.33% 59.45% 18.55% 

Obese III 0 0.11% 0.01% 0.1% 9.98% 71.5% 

Men 

Underweigh t Normal Overwe igh t Obese I Obese I I 
Obese 

III 
Underweight 39.94% 0.7% 0.03% 0 0 0 

Norma l 60.06% 77.61% 11.58% 1.72% 0.25% 0 

Overweight 0 21.41% 78.28% 21.58% 3% 0 

Obese I 0 0.2% 9 .94% 64.58% 28.86% 10.36% 

Obese II 0 0 0 .16% 11.62% 56.81% 13.29% 

Obese III 0 0.08% 0 0.49% 11.07% 76.34% 

W o m e n 

Underweigh t Norma l Overwe igh t Obese I Obese II 
Obese 

III 
Underweight 54.5% 1.52% 0.03% 0 0 0 

Normal 45.13% 86.97% 15.45% 1.73% 0.44% 0 

Overweight 0.37% 11.07% 70.3% 20.07% 30.66% 4.77% 

Obese I % 0.21% 13.72% 65.7% 26.95% 4.88% 

Obese II % 0.1% 0 .46% 10.95% 61.09% 22.22% 

Obese III % 0.12% 0.03% 1.55% 9.31% 68.13% 
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Table 3.1: Probabi l i ty Transi t ion Ma t r i x 1994/95 to 1996/97 

Whole 

Underweight Norma l Overweight Obese I Obese II 
Obese 

III 

Underwe igh t 44.87% 1.95% 0.29% 0.46% 0 0 

N o r m a l 53.83% 81.1% 11.96% 1.94% 1 24% 1.48% 

Overweigh t 1.29% 16.24% 75.35% 24% 1.09% 3% 

Obese I 0 0.39% 11.57% 63.32% 23.05% 7.77% 

Obese II 0 0.24% 0.66% 9.51% 56.59% 13 8% 

Obese III 0 0.08% 0.15% 0.76% 18.03% 73.95% 

Men 

Underweight N o r m a l Overweight Obese I Obese II 
Obese 

III 

Underwe igh t 13.06% 1.56% 0.35% 0.44% 0 0 

N o r m a l 81.4% 77.19% 9.62% 1.79% 1.75% 0 

Overweight 5.54% 20.41% 78.98% 23.66% 0.37% 4.55% 

Obese I 0 0.48% 10.23% 64.75% 24.17% 4 0 4 % 

Obese II 0 0.36% 0.66% 8.96% 64.23% 6.14% 

Obese III 0 0 0.15% 0.39% 9.47% 85.28% 

Women 

Underweight Norma l Overweight Obese I Obese II 
Obese 

III 

Underweigh t 54.62% 2.22% 0.18% 0.5% 0 0 

Norma l 45.38% 83.83% 16.34% 2.13% 0.86% 2.44% 

Overweight 0 13.33% 68.55% 24,42% 1.63% 2% 

Obese I 0 0.33% 14.1% 61.56% 22.1% !0 17% 

Obese H 0 0.15% 0.66% 10.18% 50.74% 18 74% 

Obese III 0 0.14% 0.13% 1.22% 24.57% 66.65% 
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Table 3.1: Probabil i ty Transi t ion M a t r i x 1994/95 to 1996/97 

Whole 

Underweight N o r m a l Overweight Obese I Obese II 
Obese 

III 

Underwe igh t 40.83% 1.67% 0.17% 0 0 0 

N o r m a l 50.3% 81.54% 11.14% 1.54% 0.68% 5.4% 

Overweigh t 4.75% 15.75% 75.99% 20.47% 4.8% 4.29% 

Obese I 3.22% 0.6% 11.75% 66.41% 27.62% 3.26% 

Obese II 0.9% 0.34% 0.89% 10.6% 47.99% 19.3% 

Obese III 0 0 .11% 0.07% 0.97% 18.91% 67.76% 

Men 

Underweight N o r m a l Overweight Obese I Obese 11 
Obese 

III 

Underwe igh t 28.42% 1.25% 0.25% 0 0 0 

N o r m a l 51.08% 77.23% 10% 0.88% 0 5.31% 

Overweigh t 15.4% 19.87% 77.23% 20.28% 5.27% 7.24% 

Obese I 4.97% 0.55% 12.12% 69.13% 32.14% 4.96% 

Obese II 0.13% 0.83% 0.39% 9.23% 48.07% 13.23% 

Obese III 0 0 .26% 0 0.48% 14.52% 69.25% 

Women 

Underweight N o r m a l Overweight Obese I Obese II 
Obese 

III 

Underwe igh t 46.09% 1.95% 0 0 0 0 

Norma l 50% 84.52% 13.3% 2.37% 1.35% 5.44% 

Overweigh t 0.23% 12.89% 73.61% 20.7% 4.34% 2.7% 

Obese 1 2.48% 0.63% 11.05% 63.02% 23.21% 2.34% 

Obese II 1.24% 0 1.84% 12.32% 47.92% 22.57% 

Obese III 0 0 0.2%" 1.58% 23.18% 66.95% 
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Table 3.1: Probabil i ty Transit ion Mat r i x 1994/95 to 1996/97 

Whole 

Underweight Normal Overweigh t Obese I Obese II 
Obese 

I I I 

Underweight 39.58% 1.39% 0.03% 0 0 0 

N o r m a l 59.63% 82.48% 13.06% 1.14% 0.86% 1.22% 

Overweight 0.79% 15.47% 76.05% 19.41% 2.55% 1.69% 

Obese I 0 5.61% 10.3% 68 2% 33.03% 8.59% 

Obese II 0 0.34% 0.32% 10.1% 50.72% 15.72% 

Obese III 0 0.1% 0.23% 1.13% 12.84% 72.77% 

Men 

Underweight Normal Overweight Obese I Obese II 
Obese 

I I I 

Underweight 36.34% 1.19% 0 0 0 0 

N o r m a l 62.25% 77.3% 9.08% 1.3% 0.64% 1.23% 

Overweigh t 1.42% 20.73% 82.04% 18.71% 0.98% 0 

Obese I 0 0.69% 8.68% 72.75% 29.01% 3.46% 

Obese II 0 0 0.1% 6.79% 56 38% 19 1% 

Obese III 0 0.09% 0.11% 0.46% 13% 76.22% 

Women 

Underweight Normal Overweight Obese I Obese II 
Obese 

III 

Underweight 40.49% 1.53% 0.08% 0 0 0 

N o r m a l 58.9% 86.15% 20.02% 0.9% 1.07% 1.21% 

Overweight 0 61% 11.74% 65.64% 20.57% 4.06% 2.45% 

Obese I 0 0.47% 13.13% 61.14% 36.89% 10.91% 

Obese II 0 0 0.7% 15.23% 45.29% 14.2% 

Obese III 0 a/ /B 0.4% 2.16% 12.68% 71.22% 
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Table 3.1: Probabi l i ty Transition Mat r i x 1994/95 to 1996/97 

Whole 

Underwe igh t Normal Overweigh t Obese I Obese II 
Obese 

III 

Underweigh t 46.84% 0.99% 0.29% 0 0 0 

Normal 44 .32% 81.99% 10% 1.03% 0 1 11% 

Overweight 8 .84% 15.88% 78.28% 17.54% 1.75% 2.23% 

Obese I 0 0.99% 10.87% 69.83% 22.95% 8.7% 

Obese II 0 0.07% 0.26% 10.91% 59.66% 23.65% 

Obese III 0 0.08% 0.27% 0.68% 15.68% 64.31% 

Men 

Underwe igh t Norma l Overweight Obese I Obese II 
Obese 

III 

Underweight 14.31% 0.78% 0.35% 0 0 0 

Normal 51.29% 77.5% 6 3 4 % 1.21% 0 0 

Overweigh t 34 .4% 20.42% 82.79% 15.83% 0.21% 4.57% 

Obese I 0 1.23% 10.07% 72.8% 26.31% 9.42% 

Obese II 0 0.06% 0.32% 9.85% 61.54% 3.61% 

Obese III 0 % 0.13% 0.3% 11.94% 82.4% 

Women 

Underweigh t Normal Overweight Obese I Obese II 
Obese 

III 

Underweight 58.09% 1.13% 0.18% 0 0 0 

Normal 41,91% 85.15% 17.46% 0.74% 0 1.82% 

Overweight 0 12.69% 69.14% 20.35% 3% 0.72% 

Obese I 0 0.81% 12.51% 64 96% 20.1% 8 2 5 % 

Obese II 0 0.08% 0.12% 12.66% 58.05% 36.56% 

Obese III 0 0.14% 0.6% 1.29% 18.86% 52.66% 
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Table 3.13: Percentage distr ibut ion of B M I at the beginning of each period (Women) 

Whole 

Underweight Normal Overweight Obese I Obese II Obese III 

1994/1995 2 .11% 49.36% 35.88% 09.72% 1.99% 0.93% 

1996/1997 1.77% 48.31% 36.69% 1 0 0 5 % 2.23% 0.94% 

1998/1999 1.61% 46.88% 36.27% 11.38% 2.89% 0.96% 

2000/1001 1.91% 44.78% 36.13% 12 37% 3.31% 1.5% 

2002/2003 1.54% 42.7% 36.75% 13.83% 3.4% 1.77% 

2004/2005 1.46% 42.42% 36.6% 14.2% 3.4% 1.92% 

Men 

1994/1995 0.61% 41.62% 44.92% 10.52% 1.67% 0.65% 

1996/1997 0.78% 39.93% 46.08% 10.82% 1.64% 0.74% 

1998/1999 0.73% 37.62% 46.20% 12.27% 2.45% 0.74% 

2000/1001 1.10% 35.48% 45.95% 13.28% 3.16% 1.02% 

2002/2003 0.65% 34.04% 44.87% 16.17% 3.2% 1.06% 

2004/2005 0.07% 32.70% 45.78% 16.49% 2.92% 1.40% 

Women 

1994/1995 3.72% 57.68% 26.17% 8.86% 2.34% 1.23% 

1996/1997 2.85% 57.40% 26.51% 9 21% 2.86% 1.16% 

1998/1999 2.52% 56.61% 25.86% 10.44% 3.36% 1.20% 

2000/1001 2.78% 54.71% 25.63% 11.38% 3.46% 2.02% 

2002/2003 2.51% 52.09% 27.94% 11.30% 3.62% 2.55% 

2004/2005 2.34% 53.62% 26.02% 11.56% 3.95% 2.51% 
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Table 3.8: Prediction of Percentage distr ibut ion o f B M I 

Men 

Underweight Normal Overweight Obese I Obese 11 Obese III 

2006 0.52% 28.8% 45.71% 17.92% 3.64% 1.61% 

2008 0.47% 25.81% 48.31% 19.3% 4.23% 1.88% 

2010 0.44% 23.54% 48.58% 20.52% 4.74% 2.18% 

2012 0.42% 21.8% 48.54% 21.58% 5.19% 2.48% 

2014 0.04% 20.44% 48.32% 22.46% 5.58% 2.8% 

2016 0.39% 19.38% 48.02% 23.2% 5.91% 3.1% 

Women 

2006 2.01% 51.31% 27.28% 12.2% 4.75% 2.45% 

2008 1.8% 49.43% 28.01% 12.91% 5.27% 2.58% 

2010 1.66% 47.87% 28.44% 13.56% 5.71% 2.76% 

2012 1.55% 46.57% 28.69% 14.13% 6.11% 2.94% 

2014 1.48% 45.47% 28.82% 14.62% 6.48% 3.12% 

2016 1.43% 44.53% 28 89% 15.03% 6.83% 3.29% 
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T a b l e 3 . 9 : Test f o r S t a t i o n a r y H y p o t h e s i s 

M e n W o m e n Whole 

JC150 283 .11 232.49 322.01 

p va lue 0 0 1 % 0 .01% 0.01% 

Ho R R R 

R denotes rejection o f stationary hypothesis. 
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T a b l e 3 .10: Tes t f o r S t a t i o n a r y H y p o t h e s i s ( S u b g r o u p s ) 

Active Moderate Inactive 

Men Women Whole Men Women Whole Men Women Whole 

Zi50 222.39 190.72 248.73 155.92 156.85 189.93 256.42 217.72 305.83 

P 

value 
0.01% 1 38% 0.01% 35.35% 33.43% 1.52% 0.01% 0.03% 0.01% 

H0 R R R A A R R R R 

A denotes acceptance of stationary hypothesis while R denotes rejection of i t 
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T a b l e 3.11: Percentage d i s t r i b u t i o n o f B M I at steady state ( M o d e r a t e subgroups) 

Underweight Normal Overweight Obese I Obese II Obese III 

Men 0.12% 18.68% 51.59% 23.8% 4.31% 1.5% 

W o m e n 1.08% 42.46% 33.09% 15.09% 5.52% 2.76% 

The results are just for men and women who are moderate in physical activity 
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T a b l e 3 .13: Percentage d i s t r i b u t i o n o f B M I a t t he b e g i n n i n g o f each p e r i o d (Women) 

Active 

Underweight Normal Overweight Obese I Obese II Obese HI 

1994/1995 0.1% 40.6% 47.8% 10.2% 0.8% 0.5% 

1996/1997 0.4% 4 3 % 46% 8.7% 1.9% 0 

1998/1999 0.4% 40.4% 47% 10.7% 1% 0.4% 

2000/1001 1.7% 34.8% 49.3% 11.6% 2% 0.6% 

2002/2003 0.5% 39.7% 44.6% 13.4% 1.1% 0.7% 

2004/2005 0.8% 32.6% 48.2% 15.7% 1.8% 0.9% 

Moderate 

1994/1995 0.4% 37.8% 49.6% 9.9% 1.9% 0.4% 

1996/1997 0.6% 36.6 % 50.2% 10.7% 1% 0.9% 

1998/1999 0.9% 36.3% 48.1% 12.1% 2.6% 0 

2000/1001 0.5% 34.8% 48.3% 13.3% 2.2% 0.9% 

2002/2003 0.6% 31.2% 46.6% 18% 2.4% 1.1% 

2004/2005 0.9% 33.4% 45.9% 16.5% 1.5% 1.8% 

Inactive 

1994/1995 0.9% 43.8% 41.8% 10.7% 1.9% 0.8% 

1996/1997 0.1% 40.5 % 44.1% 114% 1.9% 1% 

1998/1999 0.8% 37.2% 45% 12.7% 3% 1.2% 

2000/1001 1.1% 35.8% 43.2% 14.5% 4.2% 1.2% 

2002/2003 0.6% 32.3% 44.3% 16.8% 4.7% 1.3% 

2004/2005 0.4% 32% 44.5% 17.1% 4.5% 1 .6% 
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T a b l e 3 .13 : Percen tage d i s t r i b u t i o n o f B M I a t t he b e g i n n i n g o f each p e r i o d ( W o m e n ) 

Active 

Underweight Normal Overweight Obese I Obese 11 Obese III 

1994/1995 4 % 64.6% • 23.4% 6.4% 1.2% 0.3% 

1996/1997 2.1% 6 1 . 5 % 26.7% 6.6% 2.4% 0.6% 

1998/1999 2.2% 66.3% 21.9% 7.8% 1.7% 0.2% 

2000/1001 2.3% 61% 23.7% 9.5% 2.8% 0.8% 

2002/2003 2.7% 61.7% 22.1% 8.7% 3.9% 0.9% 

2004/2005 1.8% 6 0 4 % 23.2% 10.5% 2.9% 1.3% 

Moderate 

1994/1995 2.8% 61.8% 25% 7.2% 2.2% 0.1% 

1996/1997 2.7% 62.1 % 23.6% 8.4% 2.7% 0.6% 

1998/1999 1.7% 58 1% 27.1% 10.7% 1.5% 0.1% 

2000/1001 2.3% 55.8% 28% 9.6% 2.7% 1.7% 

2002/2003 2.4% 51.5% 31.7% 11.3% 2% 1.1% 

2004/2005 2.5% 55.3% 28% 10.2% 2.9% 1.1% 

Inactive 

1994/1995 4% 54.3% 27.3% 10.2% 2.7% 1.5% 

1996/1997 3.2% 54.1 % 27.9% 10.1% 3.1% 1.6% 

1998/1999 3 % 53.4% 26.4% 11.2% 4.4% 1.6% 

2000/1001 3.2% 51.5% 25.3% 13.1% 4.3% 2.6% 

2002/2003 2.5% 48.1% 28.2% 12.8% 4.4% 3.9% 

2004/2005 2.6% 49.7% 26.4% 12.1% 5.2% 4% 
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Table 3.14: B M I Percentage d is t r ibut ion by taking moderate shift pattern (Men) 

Active 

Underweight Normal Overweight Obese I Obese II Obese III 

1996/1997 0.24% 34.94 % 50.54% 12.55% 1.24% 0.49% 

1998/1999 0.22% 30.98% 51.99% 14.63% 1.67% 0.51% 

2000/1001 0.19% 28.09% 52.72% 16.39% 2.05% 0.56% 

2002/2003 0.18% 25.94% 53.02% 17.84% 2.4% 0.62% 

2004/2005 0.16% 24.33% 53.1% 19.01% 2.7% 0.70% 

2006/2007 0.15% 23.11% 53.04% 19.96% 2.97% 0.77% 

Inactive 

1996/1997 0.31% 37.45% 46.67% 12.79% 1.98% 0.8% 

1998/1999 0.24% 32.61 % 49.5% 14.7% 2.14% 0.8% 

2000/1001 0.21% 29.13% 51.09% 16.38% 2.37% 0.82% 

2002/2003 0.18% 26.61% 51.96% 17.8% 2.61% 0.84% 

2004/2005 0.17% 24.75% 52.39% 18.97% 2.85% 0.88% 

2006/2007 0.16% 23.37% 52.56% 19.92% 3.07% 0.92% 
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Table 3.15: B M I Percentage distr ibut ion by tak ing moderate shift pattern (women) 

Active 

Underweight Normal Overweight Obese I Obese II Obese III 

1996/1997 2.59% 61.21 % 26.87% 7.09% 1.58% 0.65% 

1998/1999 1.95% 58.04% 29.07% 8.02% 1.99% 0.91% 

2000/1001 1.64% 55.37% 30.46% 8.98% 2.38% 1.14% 

2002/2003 1.48% 53.16% 31.35% 9.87% 2.76% 1.34% 

2004/2005 1.38% 51.36% 31.92% 10.65% 3.12% 1.52% 

2006/2007 1.31% 49.89% 32.29% 11.33% 3.44% 1.68% 

Inactive 

1996/1997 2.44% 53.16% 29.23% 10.43% 3.13% 1.6% 

1998/1999 1.78% 5 1 . 5 8 % 30.55% 10.93% 3.42% 1.71% 

2000/1001 1.48% 50 1% 31.42% 11.48% 3.67% 1.82% 

2002/2003 1.34% 48.81% 31.98% 12% 3.9% 1.93% 

2004/2005 1.26% 47.75% 32.34% 12.46% 4.11% 2.03% 

2006/2007 1.22% 46.87% 32 58% 12.86% 4.29% 2.13% 
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Concluding Remarks 

This thesis contains two different topics which study issues on time series econo-

metrics and health economics respectively. 

The first chapter proposes a bootstrap test for a unit root in processes with 

GARCH errors and shows its asymptotic validity under very weak moment and distri-

butional assumptions. The proposed method offers several important advantages over 

the existing tests that do not exploit the information in the conditional variance and 

its asymptotic counterpart. First, the test delivers impressive power gains by explic-

itly incorporating the GARCH structure of the errors, especially for highly persistent 

GARCH specifications with power improvements over the DF-type tests. While the 

asymptotic counterpart of the test requires the computation of nuisance parameters 

and suffers from relatively large size distortions, the proposed bootstrap procedure is 

straightforward to implement and appears to control the size uniformly over all pos-

sible GARCH specifications that guarantee the existence of second moments of the 

errors. Finally, while generalizing the asymptotic theory to more complicated setups 

would be quite involved, our bootstrap method can be easily adapted to models with 

a lag length that goes to infinity at certain rate, asymmetric errors and other types 

of conditional heteroskedasticity. 

Chapter 2 has applied quantile regression to determine the quantitative influence 

of several observable factors at different points on the Canadian BMI distribution, 



using data from three distinct Canadian surveys undertaken in 1978. 1994 and 2004. 

The results obtained strongly suggest that the epidemic of obesity in Canada is mainly 

developed during the period 1994 to 2004. This epidemic is more closely related to 

lifestyle and socioeconomic factors than demographic factors. Educational achieve-

ment has a negative impact, that is to say, the higher the educational level a person has 

achieved, the lower the likelihood that person will be obese. The role of the education 

has shifted over the years from the weakest to the strongest factor affecting the BMI. 

This, in turn, implies that the relationship between the capacity to avoid obesity and 

education is strong. Among the seven factors in this study, being physically inactive 

is the most important reason for women to be obese. On the other hand, working 

status is the least important factor related to the BMI for both men and women. 

This not only indicates the dominance of sedentary work and continually decreasing 

expenditure of energy in the workplace, but also reveals that physical activity is the 

main way for people to expend energy. The fact that age becomes less important 

in affecting the BMI at higher quantiles indicates that a change in the age structure 

of Canadians is not a reason for the obesity epidemic in Canada. A decomposition 

by quantiles has been introduced, in an effort to explore the development over time 

of the Canadian BMI distribution, especially in the future. The calculation reveals 

that , after 1994, the component of most importance in changing the BMI distribution 

has been the function of factors, that is, the changing intensity with which factors 

impinge on BMI. Structural changes, that is, changes in the factors themselves, and 

the interaction of structure and function are of trivial importance. To put the matter 

technically: in a quantile regression analysis of the BMI by cross-sections over time, 
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the most significant changes have been those in the coefficients, not changes in the 

variables or changes in the interaction between the two. 

Chapter 3 investigates the BMI shift patterns of Canadian adults aged 18 to 64 by 

applying the Markov chain method to the seven cycles of the longitudinal National 

Population Health Survey (NPJIS. 1994/95 - 2006/07). The estimated probability 

transition matrices indicate that men and women are different in BMI shift patterns. 

However, the shift patterns for both groups in all periods exhibit a common posi-

tive trend. Stationary tests show that for both men and women, BMI shifts are not 

stationary over this period. Interestingly though, the BMI shifts of moderate active 

subgroups of both men and women are stationary and ergodie. Some of the main find-

ing can be summarized as follows. First, women with normal weight and overweight 

men have the highest probability to remain in their BMI category. Second, because 

the proportion of normal and overweight people is much higher than the propor-

tion of obese people, the number of people who move from the normal or overweight 

categories to the obese category is much more than people moving in the opposite 

direction. Hence, the prevalence of obesity keeps increasing over time. Finally, the 

stationary tests show that the BMI shift of normal and overweight people is the main 

source of the changes in the BMI shift and the effort to prevent the occurrence of new-

obese cases would prove much more effective than the effort to reduce the number of 

existing obese people. People who are inactive in physical activity account for the 

biggest portion of the Canadian population. Compared with people who are active or 

moderate in their physical activity, the obesity prevalence for this group is substan-

tially higher. Hence, the obesity prevalence in Canada is most closely associated with 
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the physically inactive people. Health policies that aim at dealing with the obesity 

problem should focus more on the physically inactive people and design incentives 

that would encourage them to become moderately or fully physically active. Our 

calculations show that if all inactive people become moderately active, assuming that 

the obesity prevalence for active and moderate groups remains unchanged, the obesity 

prevalence in Canada could be confined below 25% in the long run. 
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Appendix 

A . l Mathematical Proofs and Auxi l iary Lemmas of Chapter 1 

(1) Auxiliary Lemmas 

Auxil iary L e m m a 1 

Under Assumption 1. 

(a) ht-ht = op(l) + 0(i3t) 

PROOF. For proof of part (a) , see Gospodinov (2008). For part (b) note that 

-2 „2 _2 

htht ^^ l'2 

where 7 = min-fw.a}} > 0. Since E ( - 5 ) = and -^t- > 0. it is easv to show that ' 1 J \,J Y htht — " 

Op( 1). htht P V > 

Auxil iary Lemma 2 

• 

Let ht=Q 1 + £fc=i nr=1 (aijft + .:'*)] and e*t = y^Q [l + 1 (™lflt + /*)' 

and suppose that ?/q is drawn from F^m{rj) and the sequence {/it*} is initialized 

from its invariant measure. Then, {h^} and {c^} are strictly stationary and ergodic 

processes. 

PROOF. The proof follows directly from Theorem 2 in Nelson (1990). 
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• 

Auxil iary L e m m a 3 

Let & = Xtf + A2[| - - and = A^ + X ^ ~ 

- J. and denote %r] = j- TJS 6 and S'[Tr] = ^ EH £ 

for {0 < r < 1}. Then, E* S\Tr] - •S'frr] 0. 

PROOF. The proof is similar t o t h e proof of (4.6) in Lemma 4.2 in Ling and Li 

(2003). More specifically 

[Tr] 

V 1 t=1 * * V T R 
-t-fc 

[Tr] 

i = l 

[Tr] 
< 

t=i 

\ - * 2 

h* K h* ' 

, 

E* a - i - f c 

fc=< 

\ /ao " 1) 

< 
VT 

[Tr] / oc \ 

(=1 \fc=t / 
[Tr] 

a - l - k 

k=t 

{ p ' ) ^ 0 as r ^ oo, 

where c is a constant. 

Lemmas and Theorems 

P r o o f of L e m m a 2 

• 

part (a) 

• 1 3 1 



For any rj G K, 

27' 

(3.11) = 
2 T 

1 

2T 

1 

i=l 
r 

i=l j=l 

= ^ M + U - ^ r H / ) ) ] 

(3.12) [F(7?) + ( 1 - F ( - ? ? ) ) ] = F(,7) as T oo 

and by the symmetry of F . Because d2 is a metric. d2 (f^™, f ) < d2 (F^yrn. Fjym^j2-

d'i (F-ym\ F)2 and </•.. (F-f"". l-'f 0 from (3.11) and Bickel and Freedman (1981). 

Next.. 

(3.13) d2(F^ym, Ffm)'2 < E* % -

(3.14) 

E 
i=l 

T 

E 
i=i 

r 

i=i 

r 

I 

T 

1 r 

- n3 - E ̂  l 
r 

r 

i=l 

1 T 1 T fa - - 7, E fa - - T E 
i=l i=l 

3 ft- - + (% - T)j)2 I 3 ^ E 

6 T 3 f T \ 2 

i=l V i=i / 

since F - / 2 ^ m = 0 p ( l ) and f E J 1 , fa - m f = f E " , ^ - ^ 

from the results in Auxiliary Lemma A l (see also Pascual et al, 2000). 

part (b) 
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Note that, the kth moment of the symmetrized residuals {rji,-r)2, ••-, r]r, — —ifi- •-•,—7r} 

is given by ( 2 [ e L I ^ ) " + E ' L ( ~ V t ) k } = Z l M Y ' if P > 1 * even and 

0 if p is odd. Then, since {?/f*} is an iid sample from the symmetrized empirical 

distribution function of the recentered standardized residuals, = 0 and hence 

E*(e*t) = 0. 

part (c) 

Because E*(e*t) = 0 and i f t are rid conditionally on the sample, Var*(e*t) = 

E*{e*tf = E*(h*t)E*{H)2 and 

(3.15) Var*(e*t) T t=1 
nl 

t=1 

First, from part, (a) of Auxiliary Lemma 1 and E L I — Op(1), it follows that 

tha t E f = i (ht - ht) = op(l) and i E ? = A ^ E(ht). 

Combining this result with ~ E L I vf ^ • w e ' i a v c 

Var*(e*t) a1 as T —+ oc. 

part (d) 

Finally, since E*(rtf):i = 0 by construction, ??* are rid conditionally on the sample, 

and L E f = 1 ^ = Op(l), we obtain tha t E*(e*tf = 0. 

• 
P r o o f of Lemma 3 

part (a) 
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By recursive substitution, 

h*t = Q + ftc^j + j 

CO 

UJ 

+ q (m/;2 , + + a) ( s / / ; ^ + 3 ) +p) + - -

t- i fc 

t 1 + e n + + q n + 5 ) /io-
fe=l i=l i=l 

If the two candidate initial values are h ^ and /IQ2, then the difference between the 

corresponding sequences h*n and h*., is given by 

- h;,\ = £ J ] (antli + ./) - h*m| 
i=i 

and 

£» \h'n - = 2\h'm - h-mI E™ IK3*-
t=i 

+ 3 

= £ j Si - ^02! ( s + 3 ) 

using that E*(r]l)2 —>• 1. Since a + 3 < 1 by construction, E* jh*tl — /ij2| 0 as 

t —> oo. 

part (b) 

Rewrite j -y/^i ~ \ f K i | a s 

/>* — h* "a t2 

< 
h* — h* an t2 

2 Q 
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Then. 

~'t 1 ~t2 = E fori 

< E' 

1 

Ki ~ Kt 
k*l 2S 

E*\h;,-h*t2\E\,ft\ 

l l K i - K i l f a + d)1 E*\v;\ 

= | I^Si - ^Sal ( « + 

using that. E*(r$)2 1. Since E* |?/;1 < oc and a + / ? < L E\s*n - e*2| 0 as 

t oc. 

part (c) 

Note that 

E* 
1 

VT ; E ^ E 
i=i i=1 

< 

< 

VT E F 
i\ ~ C»'2I 

i = l 

T 
1 A 1 a 

2 VT E M ' 
i=i 

1 - ( a + 4 ) 
r+i 

< 

2VT l - ( d + 3 ) 

1 1/^1 
2VT - (d I 

O 
1 

v f 

part (d) 
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The two partial sums have the following form 

c(l) 
D [ 7 > ] 

q ( 2 ) 

I Tr] i Tr] t-1 

x I f t=i v t=i (1 

a 

a "<i "ti t = 1 
J ) 

[TV] [7>] t-1 

x> VTiz 

a 

t=i 

'-a 
hh hh hh C ^ - i ) ^ - 1 ^ ) } 

k=I 

Taking expectations under P* of the difference yields 

S. ( i ) 
[Tr] ^[/r] s\ (2) A [Tr] 

^ E I5 '1 ~ £*t:21 

[Tr] 

t=l 
[TV] 

<=1 

( = 1 

[Tr] 
Ai 

_*2 f"1 

( f - ' iE? 
ct-k 1 

£ n gr2 
ft* h* nt\ nt 2 

, - * 2 (-1 

' a /i ti t'2 

VT -ti cr2 9 + 
[ r r ] 

< = 1 

[rr] 

VT 

( r f -

t=i 

-i ^t-fci 

h*n h;2 

k=1 

1 
'<1*2 

n 
k~lct~k2 

Kl 

A 
VT 

A2a 

[7V] 

^ • E i -
A, 

[r, 

t=1 
[Tr] + E^-

v -1 t = l 

<1 

( - 1 

-1 ^t—k'2 

k=1 fc=l i2 

At/ i + A2/2 + A2dJ3. 
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From part (c) we know Jx =0 (T 1 / 2 ) . Furthermore. 

I? 
1 

[Tr] 

< 

< 

VT 

1 

VT 

l 

i=1 
[Tr] 

— * — * 

f l l _ ZH. 
h * h * nti "n 

\T, 

VT ^=l vf> 
Vt 

ri 

i'2 
Vt 

t=1 

[Tr] 

< 

qVT 

I 

KI- VKA4 

1 Tr) 

t=1 

T 

V T UJ 
cf2l 

f=l 

U,' VT 

arid 

1 

VT 

c 

[Tr] 

E * * 
<=1 

[Trl 

t - 1 t-1 

E - ' ^ - E ^ 

VT 

c 

E e 
( = 1 

, irr] t-1 

t\ 

'tl 

k= I 

t-1 
t — lc'2 

E * | (> f - 1)| 

k=i i>h 

V 1 t,=\ k=1 

Ct-U ci—A'2 
'n 

c 

v f 

c 

P>] /-I 

E E ^ ' 
t=i fc=i 
[?>] (-1 

(eUi-sUj+et-v (hh-Vi) 
h* h* allnt 2 

v -1 f = i k =1 

n irr] t-1 

< C 

fc=l 
[Tr] t - 1 

+ £/* 

h* h* nt\nt2 

- k2 (J'h ~~ Ki) 

1 i I - 1 r i i 

EE^ 1 _ 1 + I(r ){K'~ 
V T t = 1 fe=1' 
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c [Tr] t-1 

LU 
t - t i -< u 2 ) S + ^ 

fc=i 
P > ] i - 1 

w v 1 it=i 

1 / „ 

E* 

E* \rft\C\h*0l-h*0.2\ 
{Tr} t-1 

2 Q V r 

f-A-

t=i fc=i 
[Tr] t - 1 

[T-2. 

where C = E\(r]f- 1)|. 
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The terms 'I) and T-, are both of order 0 (T 1,/2) since 

and 

, \Tr] t-1 
a + 

t - k 

t=1 A;=l 

1 |7V1 ' - 1 

3 Vt (=1 fe=1 ^ + ^ 

1 K l - r * 

i 
a 

< 
[rr] t 

E (d+0) 
1 1 d 1 ' 

, I7V]+1 

< 

•'(I r)VT | 

1 1 

•) jl ( o ! , - . VT o 

, P>1 t - 1 

v t=i fc=i 
[rr] 

a- + 3 

i ljf rJ < ' - 1 

v 1 t=i k=i t=i 
[Tr] 

I f ^ V l 
[Tr] 

< E M ) 

< o 
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Then, it follows that IA = 0 (T~1 / 2) and combining this with /, = O ( r ~ 1 / 2 ) and 

/ , = O (7 1 - ) . we obtain that E* S\fr] - SfJJ., = O (T~1 / 2) . 

• 
Proof of Lemma 4 

part (a) 

As in part (a) of Auxiliary-Lemma 1 and part (c) of Lemma 2. we can show that 

h*t - ht = op( 1) + 0(i3l) and £ £ f = i (ht ~ ht) = M 1 ) which implies that E*{h;) ^ 

part (b) 

Since both z* and h*t are stationary and ergodie (Auxiliary Lemma 2). ^ and 

are also stationary and ergodie. Using 

t=i 

we have 

T 

t=I 1 

T 
L y L 

T 

- y - T4-i\h't h, t=l 

1 ^ ht ~ K 
htk 

< 
ujuj 

1 
OJQ 

^ E (ht - h;) T 

1 
T 

t=I 
T 

t=i i=i 
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COLO 
|Eht - E*(h*t) + op(l)| = op(l) as T oc. 

part (c) 

From part (b) we already have that j 1 V1 _L 
T 2-J ht T 2-s h* t-1 t=l 

= Op(1)- Next, 

j E v'-ijh't2 - 7f, y^^i-k/i' 
<=i t=i 

f - A - J t ) j E G V f t . 
«=1 

T 2s 
>t~t-k. ,Lt t—k 

t=l m -

T , 1,2,-2 , 1.2̂ 2 z,*2,-2 

T t=i h]hf 

1 T h~ ( V * 2 _ -t y-t-fc -t-fc 
r t=i h2

thf 

< 

< 

T f^-2 

< 

r 

i 

1 
£2 

1 

t=l hf 
1 
T t=1 h\hf 

(=1 
r 

+ 
Tui 

t=1 
T 

.2 
t—k 

t=1 
T 

r 

E (/it + ) (/?,t — /?t*) £~t_k 

hth t'h ht 

T — ' 1 1 

M t=l N 

T 
2 
t-fc 

t=i 

TQ h* ht 
+ r - (ftt - K) 

R T 

T t=1 t=i 

= 4\E* (&) - E (*?-.-) + + (fa; + g^"(fc"1} (/*,) - E* (h*t) + 0,(1)1 CO COCO2 

= r ( f c - V l ) as T —> 00. 
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Then. 

\K-K*\ < f t * t i t b i t 1-1 1 t=i 1 k=i \ t=i / 

t=i / 
I , T 1 \ 1 1 v—v 1 

t=i t=i 4 

/ oc 

+ 
k=1 

* - 2 K a E ^ f E ^ / t f + o p ( i ) - E e2 i k-
\k=1 \ t=1 } fc=l 

1 
T 

T 
* 2 
t 

t=1 

+ oP(l). 

/\'l + Ktt2 — K*Q:2 K'2 + K*d2K3 

The first term K\ is op( l) (see part (b) above) and from the results of Lemma 2 

and the properties of the MLE. it follows that |KQ2 — k*ct2| = op( 1). Furthermore, 

K* ( l 
E T E i A - M - ^ - j h t ) + E £ E - ^ 2 ( f c - 1 ) ) < 
jfc=l V t=1 / fc=l \ t=l 

< 

< 

fc=l 
oc 

fc=i 

1 
+ -

• UJ 

oc / ^ T 

E ^ E ( ^ ( f c _ 1 ) - p2 { k~1 ]) 
k=i \ t=i 

o p ( l ) + 
OJ ECrev""-^-' 

1 
cD 

1 
< — CO 

E (t-^J IT) +(T) ^ + t r v ^ A w w 
+ o p ( l ) 

V ( L - i3 ) (fc - l)A(fc~2' «P( i ) 

= op( l ) lim ( V ^ T " + ( r " 1 } A r _ 1 ) + = 

T—>oc I — A 
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where A = j32/8 < 1. Therefore, \K - I<*\ = op( 1) as T oc. 

part (d) 

We can vise similar arguments as in part (c) to prove F* F. 

• 
Proof of L e m m a 5 

The structure of the proof for T~l/2 V => II i ( r) is similar to the proof of 

Lemma 3 in Gospodinov (2008) for two-parameter partial sum processes. To estab-

lish the invariance principle for the partial sum process Wp>] = T" 1 / 2 E l = i £ t- w e 

need to show that , conditionally on the sample, U'.'/r, => H'i(r) by demonstrating 

the convergence of the finite-dimensional distributions and verifying the tightness 

condition. 

Let, for any 0 < Vk-1 < J'k < 1, 

I Trk] 
YTM = l]/[Trk} - = r~1/2 £ £t 

t = [Trk-l] 

and Z*Tm = {>/:, >'/, >7.,,-} witli Y f A = W{Tri] and 0 < r t < ... < r, < ... < 

rm < 1 for m > 1. Similarly, let W[Tr] = T'^YZUU Yr.k = T" 1 / 2 l ^ t 

and ZTju = {Yja. ...,YT.i, ^7><} with YTA = W[Tri]. 

From the definition of the Mallows metric, d2{Zr^n: Z f m ) = inf 1 \YT.I - Yf.i 

conditionally on the sample, where the infimum is taken over all pairs {r]t-Jlt) with 
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marginals F and F-r
ym as in Miguel and Olave (1999). Then, 

712 

d2(Zr,„, z j . j ' < - y ; j 2 

i=1 
. m [^r,] 

4 £ E 
i=l t=[Tr!_1] 

m [rr,-] 
= E - y/htti + (y/ht- y/i&TH? 

i=l t=[Tr,-_i] 

2 lTr'"l 

t=i 

using that h*t = h, + op(l) , E*(h*t) a2 and h*t is independent of (77̂ . ?7t*+I,...). Since 

the infimurn in the Mallows metric definition is always attained (Bickel and Freedman, 

1981) and d2{F*ym • F*y'm)2 -»• 0 from part (a) of Lemma 2. 

<l-r/.,,„. /.I,,, f < d2(F?m, F r f 0 as T - 00. 

Finally, because the Mallows metric convergence implies convergence in distribu-

tion and (W (Tr ij, .... Wpy,], PV"[rrmJ) (Wd(n), H<'"i(rt-),..., Ib'i(rm)) for any 

m-tuples 0 < rx < ... < r;- < ... < r rn < 1. m > 1, 

( I l^ r i ] , . . . , H .71.. . . , \Y[r,.J - > (H-,(,-,)•.... \\\(r,)...., U'|(/•„,)) 

conditionally on ..., yT) and for almost all sample pat Irs (1/1, ...). This establishes 

the weak convergence of the finite-dimensional distributions. 
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To establish the tightness of U *, r . it suffices to show that for almost all sample 

paths and all e > 0 

l imsupP* <j sup j 11 '= / ' ' ! " W[Tr\ I > e } :: 0 
T—>oo I Ir' —rl<i> 

as // -» 0 for 0 < r < r ' < 1. 

By Chebyshev's inequality, 

P* - >4 < 
E* N • _ TI* V \ [Tr/] I» [T r] (r' - r) 

using that 

[ T r ] A [ ' T V ] 

><" i n ' i W t a v i ! : 7 ' E E * i & ) 2 } 
t=i 

= (r A r') as T —* oc. 

This completes the proof of T"1'2 => H',(/•)• 

For obtaining the limit of T 1//2 Y^i'- a 
Q 

h: ht 
- 1 _ * ci—i , we use 

similar arguments as in the proof of Lemma 4.2 in Ling and Li (2003). Define the 

process Spy, = T"V 2 £ [ 2 where & = A , ^ + A 2 [ | - - 1) E t i / ^ U J -

First, we show that is a martingale difference sequence with respect to JF*. where 

.F* is a cr-field generated by {if,, ...}. 
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Taking expectations under P* of Sf,. we have 

;=i j=i J J J fc=i 

fc=l 

* ^ * 2 ^ £ O C " 

+ ~ -

 1] <4 - - E ^ - J ) 
n* ni "> fc=l n i n5 fc=l 

R T W'J + + + • 

i=i j=i 

If / j a n d i > j . t h e n 

^ ( 4 ) = O ^ i ) = E" - E* W) E* [slh]h)v]) = 0 

a n d 

using t h a t E* (77*) = 0. 
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Also. 

E* = E* 

= E* 

Ah* 

-aE* 

= -aE* 

K 
oo * 

(til _ 

i ) j r 3 t - i £ " ' e U 

k=1 

(nf - i) E j 

TT "LH h* 

r i) > 4 1 

1 k=i ! 

ok-1cj°i-k 

k=\ h* 

<»/•;• i) / • . " E J 

00 -* fc-l 

/, = ! h* 
-> 0 a s '/' - - x. 

and 

* 2 - * 2 o c o c , £ * , £ * , 

- ^ - i K ^ - D E E ^ " 1 ^ ! ) -
^ ni fc=!*'=! ? J 
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/•."{'MO/;--' • / 
A—1 

— Q l{(nf - i ) fo; 2 - i) E E P - 1 ? ' - 1 ' ^ ^ 

k=1 

k' = 1 
]} 

0 as T oc 

from Lemma 2. 

Combining the above results imply that 

e * ( s ' t ) = - E E * + A i A 2 ^ + A i A 2 ^ + ^ + ( 1 ) 

2 = 1 

1 = 1 

•* E [ A ' i ^ ( c f ) + 2AJA2£ 

*2 \ 2 oc 

it=i 

{sf)+2\,\2E* ( i f ) 
i=\ 

+ + A2E* (rj? - 2rjf2 + l)2 £ )]} + oP (1) 
/t=i hf2 

r> •' 
i = l 

AJCR*2 + 2 A T A 2 + A2
2 ( E ( 1 / H * ) + K*O 2 E V ' E > ( E F - J H F ) + O ( 1 ) 

k=1 

: A 2 c t* 2 + 2 A i A 2 + A 2 ( e (1 IK) + k*q2 E i]E> {etk/K2) ) + ^ (1) 

-> A Q*A < OO as T -> OO. 

fc=i 
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where <x*2 = E* ( e f ) = E* (h*t). 

Note that E* ( ^ - i ) = X\K + 2AA2 + A2 U + k* > ' * , ) as 

T —y oc. Since s* is strictly stationary and ergodic and from Lemma 2. it follows 

that E* {^tl^t-i) = 0 and £t is a strictly stationary and ergodic martingale difference 

sequence. Then, from the ergodic theorem, [ F ^ ] " 1 £ E i = 1 E * { ( f ^ t - i ) 

Furthermore,: it implies that {£2} is uniformly integrable and for any e > 0 

1 a.s. 

(3.16) T [ £ / ( £ > <4e)] - 0 as T oc. 
1 1 = 1 

where cr| = E* 
T c V ( = 1 M J Also. 

1 
- r max £ = max, \ e i i -: < a le ) + > a h ) } 

/*T I 7 L J <jf 0<i<T af 0<i<T 

^ -2 + s f ^ > 4 e ) ] = € + max > 4 < 0 a f o<;<r Oj 0<i<T 

<7 7- . 
? ' = 1 

and E ( a T
2 maxo<i<r ) 

Markov's inequality, 

0 from (3.16) and since e is arbitrary small. Then, from 

— max —y 0 as T —» 00. 
aT 0<i<T 

Therefore, the conditions for the FCLT for martingale difference sequences are satis-

fied (Theorem 4.1 in Hall and Heyde, 1980; Theorem 27.14 in Davidson, 1994) and 

from T~ 1 / 2 X S e* (r) and Lemma 4, 

-S, [Tr] w2(r). 
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• 

Proof of Theorem 1 

Recall that 

t=1 dS2 

1 - 1 T 1 1 OLt [0, 0 ) 
^ dS 

- 4>=<i>* _t=1 0=0 

and 

- 1 ) = - "•2 2—J 
6=1 

1 f dl* (o. 6*) 
T ^ 00 

• t = l 6 = 1 
T 2 ^ ()<r t=1 -

Following Ling and Li (2003). the first two derivatives of the likelihood for obser-

vation t with respect to 0 can be expressed as 

1 J^ai*t{<f>,5*) 

t= 1 
dd 

< ? = i 

i f * 

t=1 

•2, ° ,/ i ; ' , ! ( ! n'f) > 
J = i 

Op(l) 

T 2 d(j)2 

t=1 v t=i 
f,* k* h*-lt 111 J=I 

i= l 

o?)(l) 

1) r* / c<-
/tf2 

From Lemmas 4 and 5 and the continuous mapping theorem 

f U\(r)d\\-,(r) 
J 0 

1 J^dl*{d>,$*) 
d<t> 

0=1 

• 1 5 0 



and 

T t=i dS2 F / li ,(r)7/r. 

Thus. 

£ (J2i; {6. 

t=1 d<p2 

1/2 

('<P*ML ~ ! ) 
1 , / ; ; i r , (rWir : ;{r) 

Define U',(/•) = oB^r), p = 1/ay/K and W2(r) = y/h'lpB^r) + y/l - p2B,(r)\: 

where Bi(r) and B2(r) are two independent standard Brownian motions. Substituting 

for Wi(r) and I l ' ^ r ) in the above expression, we obtain 

T 

(=i 

('/••/; (o. ,)') 

OS2 

1/2 

{<P*ML~l) 
Jo1 Bi{r)clB2(r) 

( f o Bi(r)dr) 
tr + V 1 " P 

£ B1{r)dB2(r) ,2 JO 

( f o m(r)dr) 
1/2 

Noting tha t ( / J £?2(r)dr j fQ Bi(r)dB2(r) is distributed as a standard normal 

random variable vields the desired result. 

• 
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