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ABSTRACT

Essays on Time Series Econometrics and Health Economics
Ye Tao, Ph.D.

Concordia University, 2009

This thesis contains two different topics that investigate issues in tiine series econo-
metrics and applied health economics.

The first chapter (joint work wi‘th Nikolay Gospodinov) proposes a bootstrap unit
root test in models with GARCH(1,1) errors and establishes its asymptotic validity
under mild moment and distributional restrictions. While the proposed bootstrap test
for a unit root shares the power enhancing properties of its asymptotic counterpart
(Ling and Li, 2003), it corrects the substantial size distortions of the asymptotic test
that occur for strongly heteroskedastic processes. The simulation results demonstrate
the excellent finite-sample properties of the bootstrap unit root test for a wide range
of GARCH specifications.

Both the second and third chapters study the obesity epidemic in Canada in recent
years. Chapter 2 focuses on changes in obesity prevalence of Canadian adults, while
chapter 3 focuses on their BMI shift pattern among different BMI categories.

By applying the quantile regression to three health surveys conducted from 1978
to 2004, chapter 2 explores the effects of some widely used demographic. geographic,
and socioeconomic factors, as well as lifestyle, on the body mass index (BMI). The
results of this study show that, changes of BMI that are attributable to these factors
differs at different points of the BMI distribution, and the importance of any given

factor changes over time. The epidemic of obesity in recent years is more closely
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related to lifestyle and socioeconomic factors than demographic factors. By applying
the Markov chain analysis to the BMI for individuals from the longitudinal National
Population Healthy Survey (NPHS), chapter 3 explores how the pattern of weight of
Canadian individuals has shifted among six categories of BMI during the 1994/95-
2006/07 period. Two policy implications are suggested by this study: first, the effort
to prevent the occurrence of new obese cases seems to be much more effective than
the effort to reduce the number of existing obese people, and second, health policies
for reducing obesit,y- should focus more on the physically inactive people and provide

incentives for them to be more physically active.
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Introduction

This thesis contains two different topics that investigate issues in time series econo-
metrics and health economics. The first chapter focuses on a bootstrap unit root test
in models with GARCH(1,1) errors, and both the second and third chapters study
the obesity epidemic in Canada in recent years using econometric methods such as
quantile regression and Markov Chain analysis.

Autoregressive time series with a unit root is a very important subject in the
econometrics literature. Nelson and Plosser (1982) found that most U.S. macroeco-
nomic time series could be characterized as a univariate unit root process. Moreover,
financial time series, such as stock price and foreign exchange rates. also exhibit
properties of unit root processes. While the Dickey-Fuller test (DF) for unit root is
extremely popular in applied work, its low power and size distortion in the presence
of conditional heteroskedasticity is widely documented.

A strand of literature that emerged recently (Ling and Li, 1998, 2003; Ling, Li
and McAleer, 2003; Seo, 1999) derives the asymptotic distributions of unit root tests
with GARCH errors and demonstrates the power gains of incorporating the GARCH
structure into the testing procedure. The form of the asymptotic distribution of
the unit root test in this case is a mixture of a Dickey-Fuller (DF) and a standard
normal distribution with a mixing coefficient that depends on the degree of conditional

heteroskedasticity.



Despite the non-trivial power gains of the unit root tests with GARCH errors
(see, for example, Sco, 1999), the applied work with these tests has been very lim-
ited. There are several possible reasons why empirical researchers may find these tests
not to be particularly appealing. First, they require nonlinear (maximum likelihood)
estimation as opposed to OLS estimation for the Dickey-Fuller tests. More impor-
tantly, the asymptotic distribution depends on nuisance parameters which involves
additional computation for obtaining critical vélues. Finally, as we show later in the
paper (see also Seo, 1999). the tests based on asymptotic critical values suffer from
substantial size distortions especially for some GARCH parameter configurations that
are typically documented in empirical studies with financial time series data.

The first chapter proposes a bootstrap unit root test in models with GARCH(1.1)
errors and establishes its asymptotic validity under mild moment and distributional
restrictions. While the proposed bootstrap test for a unit root shares the power en-
hancing properties of its asymptotic counterpart, it offers a number of important ad-
vantages. In particular, the bootstrap procedure does not require explicit estimation
of nuisance parameters that enter the distribution of the test statistic and corrects
the substantial size distortions of the asymptotic test that occur for strongly het-
eroskedastic processes. The simulation results demonstrate the excellent finite-sample
properties of the bootstrap unit root test for a wide range of GARCH specifications.

As in the U.S. and many other developed countries, obesity is becoming a severe
social problem in Canada. The prevalence of obesity among adults aged 18 or older in
Canada has been increasing significantly since the end of 1970s, from 13.8% in 1978 /79

to 23% in 2004 (Tjepkema, 2006). Almost all studies of the impact of obesity reveal a
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strong positive relationship between excess weight and diseases such as cardiovascular
disease, diabetes and hypertension. Obesity is also believed to be responsible for the
increased prevalence of psychological disorders, such as depression (Wadden et al.,
2002). As a person’s weight jumps to a high level of obesity. the risk of having these
diseases increases dramatically (Allison et al., 1999; Engeland et al., 2003; Flegal et
al., 2005). Sturm (2002) states that obesity outranks both smoking and drinking in
its deleterious effects on health and health costs. He argues that obesity has roughly
the same association with chronic health conditions as does twenty years of aging, and
this greatly exceeds the associations of smoking or problem drinking. In Canada, the
total direct medical cost attributable to the obesity was estimated over $1.8 billion
in 1997. It corresponded to 2.4%: of the total health care expenditures for all diseases
in Canada in 1997 (Birmingham et al., 1999). If the indirect cost of obesity such
as production loss due to obesity is included, the above number is even higher. In
the U.S., the obesity-related conditions in 2008 account for 9.1 percent of all medical
spending, up from 6.5 percent in 1998. During that time, the medical costs of obesity
almost doubled and have risen from $ 78.5 billion to $147 billion (Finkelstein et al.,
2009).

The second chapter explores the influences of some widely used demographic,
geographic, and socioeconomic factors, as well as lifestyle, on the body mass index
(BMI). By applying the quantile regression to three health surveys conducted from
1978 to 2004, a period in which the prevalence of obesity in Canada was stable at first
and almost doubled thereafter, this study attempts to detect two kinds of changes:

changes of BMI that are attributable to factors such as age, resident region, physical



activity and family income at different points of the BMI distribution. and changes
in the mportance of these factors over time. The result of the study shows that,
the influence of factors on BMI differs at different points in the BMI distribution;
moreover. the importance of any given factor changes over time. The epidemic of
obesity in recent years is more closely related to lifestyle and socioeconomic factors
than demographic factors. During this period. the role of education has shifted from
the weakest factor to the strongest factor affecting BMI. This in turn. implies that
the relationship between the capacity to avoid obesity and education is strong. On
the other hand, working status is the least important factor related to the BMI for
both men and women. This not only indicates the dominance of sedentary work and
the continually decreasing expenditure of energy in the workplace. but also reveals
that physical activity is the main way for people to expend energy. The fact that
age becomes less important at higher quantiles of the BMI distribution suggests that
a change in the age structure of Canadians is not contributing much to the obesity
epidemic in Canada.

Movements among different BMI categories could provide very important infor-
mation about the obesity epidemic and the shift patterns of different groups. This
information is useful for health care, health policies and other health related issues.
For example, since each category of the BMI reflects a different level of health risk
and movements among different BMI categories imply changes in health risk. The
information of movements among different BMI categories could be used to forecast
the prevalence of some diseases such as cardiovascular disease, hypertension and di-

abetes II that mainly resulted from obesity, as well as the demand for health care



and other medical resources related to theses diseases. More importantly, if the shift
patterns of different groups are obtained, more pertinent and effective policies that
prevent obesity could be designed.

Chapter 3 studies how the pattern of weight of Canadian individuals has shifted
among six categories of BMI during the 1994/95-2006/07 period, and seeks to de-
termine the relationship between this pattern and the obesity epidemic over the last
twelve vears. By applying the Markov chain analysis to the BMI for individuals from
the longitudinal National Population Healthy Survev (NPHS), the BMI shift patterns
of Canadian adults is identified and estimated. The results reveal that: (i) although
men and wormen differ in the BMI shift pattern, their BAI shift patterns throughout
the period exhibit a positive trend, thus confirming that the prevalence of obesity
in Canada is increasing; (ii) the BMI shifts are not stationary for both men and
women; however, the BMI shifts for physically moderately active men and women are
stationary. Two policy recommendations emerge naturally from the results of this
study. First, the findings suggest that the eflort to prevent the occurrence of new
obese cases seems to be much more effective than the effort to reduce the number
of existing obese people. Second, since people who are inactive in physical activity
account for the biggest portion of Canadian population and their obesity prevalence
is much higher than that of the physically active and moderate groups, health policies
for reducing obesity should focus more on the inactive people and provide incentives

for them to be more physically active. Using the estimated BMI shifts for physically



moderately active men and women, it turns out that if all inactive people are encour-
aged to become moderately active, the obesity prevalence in Canada can be confined

below 25% in the long run.



CHAPTER 1
Bootstrap Unit Root Tests in Models with GARCH(1,1)

Errors

(joint with Nikolay Gospodinov)

1.1. Introduction

The simultancous presence of high persistence and conditional heteroskedastic-
ity is a common characteristic of many economic time series. The stark differences
between the long-run behavior and implications of nonstationary and stationary
processes led to the development of a large class of unit root tests with good size
and power properties. While the limiting theory for possibly unit root processes has
been established under fairly general conditions, including some types of time-varying
volatility, the explicit modeling of the higher-order dynamics is often expected to im-
prove the efficiency of the conditional mean estimates and the power of the tests.
For instance, a strand of literature that emerged recently (Ling and Li, 1998, 2003;
Ling, Li and McAleer, 2003; Seo, 1999) derives the asymptotic distributions of unit
root tests with GARCH errors and demonstrates the power gains of incorporating
the GARCH structure into the testing procedure. The form of the asymptotic dis-
tribution of the unit root test in this case is a mixture of a Dickey-Fuller (DF) and

a standard normal distribution with a mixing coefficient that depends on the degree



of conditional heteroskedasticity. As the degree of conditional heteroskedasticity in-
creases (i.e.. the sum of the GARCH coefficients approaches one). the standard normal
distribution carries more weight and the corresponding smaller critical values give rise
to a more powerful testing procedure. Note that the Dickey-Fuller distribution is still
valid in the presence of GARCH errors but it is conservative and provides an upper
bound for the .critica.l values.

Despite the non—triviai power gains of the unit root tests with GARCH CITors
(see,. for example. Seo, 1999), the a.pplied work with tﬁese tests has béen very .lim-
ited. There are several possible reasons why empirical researchers may ﬁnd these tests
not to be particularly appealing. First, they require nonlinear (imaximum likelihood)
estimation as opposed to OLS estimation for the Dickey-Fuller tests. More impor-
tantly, the asymptotic distribution depends on nuisance parameters which involves
additional computation for obtaming critical values. Finally. as we show later in the
paper (see also Seo, 1999), the tests based on asymptotic critical values suffer from
substantial size distortions especially for some GARCH parameter configurations that
are typically documented in empirical studies with financial time series data.

In this chapter we propose a bootstrap method for approximating the finite-sample
distributions of unit root tests with GARCH(1.1) errors and establish its asymptotic
validity. We extend the results of Basawa et al. (1989, 1991), Ferretti and Romo
(1996), Heimann and Kreiss (1996) and Park (2003), among others, to unit root mod-
els with conditional heteroskedasticity estimated by maximun likelihood (ML). The
implementation of the proposed bootstrap procedure is straightforward and is valid

under some fairly weak conditions. In particular, we follow Ling and Li (2003) and



derive the consistency of the bootstrap distribution assuming finite second moments
and symmetry of the errors. This allows for highly persistent GARCH specifications
(with sum of the GARCH parameters arbitrarily close to one) that are commonly
estimated in the empirical finance literature. Some related bootstrap results are de-
rived in Gospodinov (2008) in the context of testing for nonlinearity in models with
a unit root and GARCH errors.

The finite-sample results demonstrate the excellent size and power properties of
the proposed bootstrap test.. While ‘the tests based on asymptétic critical values
tend to overreject (in some situations. up to 40-50% at 5% significance level). the
bootstrap test is always very close to its nominal size regardless of the degree of
conditional heteroskedasticity. Furthermore, the power of the bootstrap test that
incorporates the GARCH structure of the model exceeds the size-adjusted power of
the standard DF test by a substantial margin when the conditional heteroskedasticity
is strong.

The properties of the proposed bootstrap test prove to be of great practical impor-
tance for identifying the mean reverting behavior in processes with GARCH structure.
In our empirical analysis of several U.S. interest rate processes. we show that the DF
test does not provide any evidence against the null of a unit root which has impor-
tant implications about the long-run properties of the data. In contrast, the bootstrap
DF-GARCH test tends to reject convincingly the unit root hypothesis due to its su-
perior power properties. This lends support to the méan reverting specification as an

underlying process for interest rate dynainics in many economic and finance models.



The rest of the chapter is organized as follows. The main model and notation are
introduced in Section 2. Section 3 describes the proposed bootstrap procedure and
derives its asymptotic validity. Section 4 presents Monte Carlo simulation experiment
that assesses the finite-sample performance of the asymptotic and bootstrap tests.
Section 5 concludes. The proofs of all results in the paper are relegated to the

Appendix.

1.2. Model and Notation

Consider the first-order AR process with GARCH(1,1) errors

(11) Zt :(it+yt

Yo = QY1 + &t

&t = \/}T’t"h

ht =W + O'?f?_l + ﬁh‘t—l"

where ¢ = 1, d; is a deterministic component and 7, ~ #d(0.1). This model can
be generalized to an AR(p) model A(L)(1 — ¢L)y, with a (p — 1) lag polynomial
A(L) with roots that lie outside the unit circle and higher-order GARCH processes.
For simplicity, we present the results for the first-order model (1.1) but the limiting
representations and the bootstrap procedure can be extended in a straightforward
manner (but with more cumbersome notation) to higher-order processes.

Let § = (w,a,3) denote the vector of the unknown GARCH parameters. The
parameter of interest is ¢ and the estimation is performed on the raw, demeaned or

detrended data depending on whether d; = 0, d; = p or d; = o + i1 t, respectively.
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The Gaussian quasi-likelihood function of this model is given by

.
(12 Lr(6.0) = 2 D" l(o.0).

N

where 1,(¢,0) = —3Inh, — 55t We follow Ling and Li (2003) and assume that the

following conditions are satisfied.

ASSUMPTION 1 Assume that

(a) n, ~1d(0.1), E(n?) =0, E(n}) = k < o for all t;

b)) ¥ ={{(wa.3):0<w <w<<w..0<oy<a<a,l< i< i<
Bu.a+ 8 < 1}

(¢) yo =0 and hg is initialized from its invariant measure.

Assumption 1 imposes some very weak moment and distributional conditions on
the error term. The standardized errors are assumed to be symmetric 17d random
variables with a finite fourth moment. The assumed symmetric distribution of 7,
may appear restrictive but this allows us to weaken the moment requirements on
the error term e, (see Ling and Li, 2003). In particular, the limiting results and
the validity of the bootstrap procedure are derived assuming the existtence of finite
second moment of ¢; which is satisfied under fairly general conditions on the GARCH
parameters. More specifically. the conditions in part (b) ensure that F(e}) < oo
and the processes {h,} and {&;} are strictly stationary, ergodic and F-mixing with
exponential decay (Carrasco and Chen, 2002; Francq and Zakoian, 2006) and allow
for strong conditional heteroskedasticity that is typically present in financial data.

Part (c) specifies the initialization of the conditional mean and variance functions.

11



Assuming i to be fixed at a different value than zero or to be 0,(T"?) does not
affect the limiting results derived below. Similarly, the asymptotic distributions are
invariant to the assumption on the initial condition of i (Lee and Hansen, 1994; Ling
and Li. 2003).

By the block diagonality of the Hessian matrix (Bollerslev, 1986; Ling, Li and
McAleer, 2003), the conditional mean and variance parameters can be estimated
separately without any efficiency loss. Let dLs = (ZZ:I T )“1(23;1 YY1 ) denote
the OLS estimator of <b and note that T((ELS —1) = O,(1) under Assumption 1. The
parameter vector ¢ can be estimated from the OLS residuals &, = ¢ — ZﬁLsyt_l and
the corresponding estimates 8 are asymptotically equivalent to the estimates obtained
from the true &;. Then, for some preliminary T-consistent estimator (; the one-step

QMLE estimator of ¢ is given by

t=1 a®2 o~ t=1 ()d) .
Q=0 Q=0
and (Ling and Li, 2003)
TG o 1ia%(¢.,5) B o(s.9)| W
OMLT T AT LT g T ¢ o
t=1 =1 t=1 o=1

The OLS estimator g’o'\LS can be used as an initial preliminary estimator. Then, the
iterative estimator that updates the estimates of § and $A1L until convergence 1s
asymptotically equivalent to the full MLE.

Let

T T
tors=1 = (D _yi )T Y &) Hous — 1)
t=1 t=1

12



and

12
0?1 (0. 0) ~
tori=1 = ‘i Z i)(f’z } (prrr — 1)

Oo=¢arL.0=6

be the t-statistics of Hy : ¢ = 1 for the OLS and ML estimators, respectively. Let
also = signify weak convergence, D[0,1] denote the space of real valued functions
defined on the interval [0,1] that are right-continuous at each point in [0,1] and have
finite left limits, and B;(r) be a standard Brownian motion on D[0, 1]. The following

lemma is a restatement of some results in Ling and Li (2003) and Seo (1999).

LEMMA 1 Suppose that ¢ = 1 and Assumption 1 holds. Then, as T — >

(fg Bf(/")dfr) 1/2 :

By (r)dBs(
(1-4) tmm:l = \/; fO 1 1 1/2 V91-p § )
(fo By(r)d )

where p = 1/oVK, E(h) = 0%, K = E(1/h)+(k—1)a?> i, 32*-VE(2 , /h2), F =
E(1/hy) + 202552, 320V E(e2 , /h?) and € is a standard normal random variable

distributed independently of Bi(r).
Proor See Ling and Li (2003) and Seo (1999).

The results in Lemma 1 are presented for the case with no deterministic terms, i.e.

d; = 0. The limiting representations for d; = pg and d; = o + ;¢ can be obtained

13



by replacing By(r) in (1.3) and (1.4) by its demeaned version By (r) — “fol B (s)ds and
its detrended version By (r [0 (4—-65)B1(s)ds—r ]0 6)B1(s)ds. respectively.

Several interesting results emerge from the limiting representations in Lemma 1.
The asymptotic distribution of #4,,, -1 is a scaled mixture of a Dickey-Fuller and a
standard normal distribution with a mixing coefficient that depends on the degree
of conditional heteroskedasticity and non-normality of the errors. In the case of nor-
mally distributed errors (K = F), the Dickey-Fuller distribution provides an upper
bound for the critical values of t,,,, —;. As the degree of conditional heteroskedastic-
ity increases.! more weight is assigned fo the standard normal distribution and the
corresponding sialler critical values increase the power of the test.

Another version of the test standardizes (oA"M 1 — 1) with the robust variance co-
variance matrix (Bollerslev and Wooldridge, 1992)

Ll(o0)] [ - (0 (o 9) L (6.9)]

t=1 t=1

evaluated at the ML estimates of ¢ and 4. whose limiting distribution is given by
p%%{%% + \/f——pig . This test 1s expected to have more robust size properties
L B2(r)dr
with possibly non-normally distributed errors although at the cost of moderate power
losses for Gaussian errors.
Despite its potential for ;1on-trivial power improvements, the test in (1.4) has

the unappealing property that its asymptotic distribution is non-pivotal and depends

on nuisance parameters. In principle, one could tabulate critical values for the test

'Boswijk (2001) derives an approximate expression of p in terms of the GARCH parameters as

p \/ pes a(l 3ia-3))((11 -4 J)r2 7y Then, it is easy to see that high persistence in the conditional variance

{a + [ near one) is typically associated with low values of p.

14



tows L:n/ﬁ / K on a grid of values for p (Seo, 1999). V\;here the nuisance parameters
are estimated from the data. although this makes the testing procedure somewhat
cumbersome. More importantly. the nuisance parameters involve infinite sums and
estimates of o, 3, x and h that enter in a highly nonlinear fashion which could
impair the precision with which these quantities are computed. As we demonstrate
below, this may lead to severe size distortions_of the tests even for very large sample
sizes. The bootstrap method that we propose in this paper proves to be very useful
for approximating the fi_nite—sample distribution of ¢,,,, =1 as it é.voids the explicit
calculation of the nuisance parameters. In addition to the substantially improved size
‘properties of the unit root test, the straightforward implementation of the bootstrap
offers practical advantages and can be easily extended to processes that accommodate

more general seral correlation and conditional heteroskedasticity structure.

1.3. Bootstrap Approximation

In this section, we propose a bootstrap method for approximating the finite-sample
distribution of the unit root test t,,, —1. We start by discussing the bootstrap proce-
dures based on resampling the symmetrized residuals and generating repeated samples
under the null of a unit root. In proving the asymptotic validity of this bootstrap
approximation, we first verify if the bootstrap samples satisfy the conditions of As-
sumption 1 and if the effect Iof the initial conditions is asymptotically negligible.
Then, we develop a bootstrap invariance principle with conditionally heteroskedastic
errors and establish the weak convergence of the bootstrap statistic to the limiting

distribution in Lemma 1.
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1.3.1. Description of Bootstrap Pfocedure

Let {z1.22. ..., zr} be a sequence of T observations generated by model (1.1). Sup-
pose that the deterministic component is removed by an OLS regression of {z} on a
constant or on a constant and a linear trend and let {y;. yé., ....yr} denote the resid-
uals fromn these regressions. As argued above, the conditional mean and variance
parameters of (1.1) can be estimated separately. Let 5= (2 Q. §), denote the ML
estimates of the GARCH parameters, {iAu} be the conditional variance computed re-
cursivelv from these estimates for some initial value by and cAﬁ_\ 1 denote the one-step
or iterated MLE of ¢ introduced in the previous section.

Define the residuals £, = y; — 3 amLYi—1- While these residuals could also be con-
structed imposing the null of a unit root (¢ = 1), we follow Paparoditis and Poli-
tis (2003) and compute the residuals using the MLE of o which helps to retain
the important characteristics of the data and improve the power of the unit root
test. We then construct the recentered standardized residuals as 7, = &/ \/i -
71 Zszl s/ Ei for t = 1,2, ..., T with empirical distribution function denoted by
Fr(n) = T71 Zle I(m, < 7)) that is used for resampling. Since the underlying dis-
tribution of 7, is assumed to be symmetric (Assumption 1, part (a)), we need to
ensure that the empirical distribution from which the bootstrap samples are drawn is
also symmetric. For this reason, we construct the collection {£7;. 4+, .... 57} and
resample with replacement from its (symmetrized) empirical distribution function

F3¥™(7) to obtain the sequence {n; : t = 0,..., 7} (Jing. 1995).
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The bootstrap procedure for approximating the distribution of #,,,, ., takes the
following steps. First, draw a random sample {n}, 7...n%} from V" (y)) with re-

placement and for initial conditions A and yg, construct a bootstrap sample recur-

sively as

hi =0+ (8 +an2)hi_,

Y = Y1+ Vhin

The (possibly demeaned/detrended) bootstrap sample {y;, v5 . ......y3-} is first used
to get the bootstrap QMLE estimates 6* = (w*, o*. 3%) from &} =y} — 0] ¢y ;. where
ore = OOyt )t (Zt":l yiyi 1 ). Then, the one-step bootstrap QMLE of o is
obtained as

T R -1 T -
~, O*; (6,6%) ol (¢.6%)
,A,L-é—[z—«-—%g [paen)
oode Loz

t=1 h=ch* O=0*

where (:* 15 a pr(e]iminary consistent estimate, typically ¢7¢. The iterative boot-
strap estimator can be computed by updating the estimates of 6* and ¢}, until

convergence. The estimators 0* and ¢j};; are finally used to calculate the Hessian

[— T Pl99) and the t-statistic of a unit root

o0 P=dhyy,0=0"

1/2

T ‘

. o2 (8.6 .

Ql\jLzl = {_ Z _—ﬁ}a(@—g—l} (¢A1L - 1)'
t=1

d=¢}d=0"
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This ajlgorithm is repeated B times® and each time the bootstrap unit root statistic
t% .= is computed. Let P* denote the distribution of (y}.vs, ..., y;) conditional on
the sample (y1. yo. ... yr) and G3-(z) = P*(t},  _; < z) be the bootstrap distribution
of 1}, -, Bootstrap critical values can be obtained by taking the corresponding
quantile of G%(z) and bootstrap p-values of the unit root test are constructed as

- B " :
B ! Zj:l [(t¢_,\”:1 < t@;’\lL:I)'J

1.3.2. Asymptotic Validity of the Bootstrap Approximation

This section analyzes the asymptotic properties of the symmetrized-residual boot-
strap procedure. We first demonstrate that the bootstrap samples also satisfy the
conditions of Assumption 1. We also show that the initial values used for generat-
ing bootstrap samples do not affect the asymptotic distribution of the test statistic.
We then establish the bootstrap invariance principle for partial sums of processes
with GARCH errors and prove the weak convergence of the bootstrap unit root test
statistic to the asymptotic distribution (1.4) in Lemma 1.

From the properties of the MLE estimator § and the constraints imposed in the
estimation of the GARCH parameters, it is easy to verify that part (b) of Assumption
1 still holds for the bootstrap data generating process. As a result, we focus on
establishing if the bootstrap samples satisfy the conditions of parts (a) and (c) of

Assumption 1.

2See, for example, Davidson and MacKinnon (2000) for guidance in selecting the number of bootstrap
replications.

3GAUSS and MATLAB codes for implementing the bootstrap procedure are available from the
authors upon request.
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Let dy(.) denote the Mallows metric’ of degree 2, defined as
do(Fyx, Fy) = inf (E |X — Z*)"*

over all joint distributions for the random variables X and Z with marginal distri-
butions Fy and Fy. Also, let F3¥™(n) denote the empirical distribution function of
the symmetrized recentered residuals {+m;. £, ..., 277} and F be the true distrib-
ution of the standardized errors 7,. We use the Mallows metric dy to show that the
symmetrized empirical distribution fun.ction of the recentered standardized residuals
provides a good approximation to the true distribution function and the bootstrap

errors satisfy the conditions for establishing the bootstrap invariance principle.

LEMMA 2. Let E* and Var* refer to the expected value and variance of P*, {n;}L_,
be drawn with replacement from F. 2 (n) and suppose that Assumption 1 holds. Then,
(a) da (l?,;ym? F) —0asT — oc,
(b) E{}) = 0.
(c) Var*(e}) = 0® as T — oc,
(d) E*(e)* =0.

PROOF. See Appendix.

The bootstrap sequences {h;} and {£}} are constructed for some initial values A}

and ng. Auxiliary Lemma 2 in Appendix A.1 establishes that if 5 is drawn from

F7¥™(n) and hy is initialized from its invariant measure, the bootstrap sequences
4For the properties of the Mallows metric, see Section 8 in Bickel and Friedman (1981).
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{h;} and {e;} are strictly stationary and ergodic. Furthermore, Auxiliary Lemma
3 in Appendix A.1 shows that the expected difference (under P*) of partial sums
constructed from sequences that start from infinite past and finite past tend to zero
as T — o0.
The following lemma demonstrates that different initial values of h; have no as-
ymptotic effect on the bootstrap procedure.
LEMMA 3. Define the processes & = A&} + /\2[% —%(l - 1) 2;11 ﬁkflsj_k] and
Sirey = T2 er for {0 < < 1}, where X = (A1, \o) is a constant vector with
AN £ 0. Let hiy, and h, are two different initial values of hi and (hiy, hiy). (5. 25)
and (£, &},) are bootstrap sequences corresponding to these initial values, respectively.
Then, under Assumption 1 and as T — oo,
(a) E* iy = his| — 0.
(b) E*|efy — il — 0.
e L&
VT 1221 & T T Z_:l 2

() B _ o).

S(l) _ 5(2)

(d) E*|Siy = Sy

[Tr} IT'I
Ny 1 . 2 *
O (T'7?), where S[(T)r] = ﬁ t_Zl £h and S[(T)r] =7 t_zl Soa-

PRrROOF. See Appendix.

Finally, we show that the bootstrap delivers consistent estimates of the nuisance

parameters that enter the limiting distribution of the unit root test.

LEMMA 4. Under Assumption 1 and as T — oc,
(a) E*(hi) — E(hy),

(b) E* (1/h;) — E(1/h1).
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(¢) K* = K.

(d) F* - F.

PRrROOF. See Appendix.

Now we can establish the bootstrap invariance principle for partial sums of GARCH

processes.

LEMMA 5. Under Assumption 1.

o~

() e |
. £y Loy Y i1 % . .
TRy S Ty e (=) D | = A(). Waln)]
t=1 t=1 L ¢

=1

for all r € [0, 1], conditionally on the sample (y1, ¥, .... yr), where [Wyi(r), Wy(r)] is a

bivariate Brounian motion in D|0. 1] x D|0, 1] with mean zero and covariance matriz

E(hy) 1
Q=r , where K 1is defined in Lemma 1.
1 K

PRrROOF. See Appendix.

The results in Lemmas 2 to 5 provide sufficient conditions for the asymptotic
validity of the bootstrap procedure. The next theorem shows that the bootstrap
approximation to the distribution of the t,,,, -1 test converges weakly to the limiting
distribution in Lemma 1 which implies that the bootstrap is first-order asymptotically

correct.
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THEOREM 1. Under Assumption 1 and the null hypothesis Hy : 0 = 1. for any x € R

and ¢ > 0.

VII‘im Pr {Sllp |P*(t5,, =1 < @) = Pltoy,=1 < )| > e} =(

where P(t,,,, =1 < 1) is the limiting distribution (1.4) of the t,,,, -1 test in Lemma

1.

PRrROOF. See Appendix.

The result in Theorem 1 implies that the critical and p-values for the unit root test
with GARCH errors can be approximated by bootstrap that avoids the explicit esti-
mation of nuisance parameters. An interesting extensioﬁ that is beyond of the scope
of this paper is to investigate the power of the bootstrap test under the alternative
and show that it converges to the power function of the asymptotic test as in Swensen
(2003). Also. while establishing the higher-order accuracy of the bootstrap might be
interesting, the bootstrap is not expected to offer any asymptotic refinements since
the test statistic is not pivotal.

The next section shows that the asymptotic distribution (1.4) provides a very
poor approximation to the finite-sample distribution of the unit root test when the
degree of conditional heteroskedasticity is high. This seems to be due to the imprecise
estimation of the nuisance parameters as the conditional heteroskedasticity 1s close
to an integrated GARCH process. In contrast, the size of the bootstrap-based test
is near the nominal level across all GARCH parameterizations without any adverse

effects on the power.



1.4. Numerical Illustrations

1.4.1. Monte Carlo Simulation

This section reports the results from a Monte Carlo experiment that assesses the size
and power properties of the asymptotic and bootstrap unit root tests in models with

GARCH errors. Repeated sample paths are generated from the following model

(1.5) U = QY1+ &
& = \/}Ttm

hy =w+ae;_; + 3.

where 1, ~ iidN (0.1).> The sample size is T = 200 and the number of Monte Carlo
replications is 2,000.

The autoregressive parameter ¢ takes values of 1 and 0.92 in evaluating the size
and the power of the unit root test. respectively. We also normalize the unconditional
variance to be one by setting w = 1 — a — 3. The performance of the tests is evalu-
ated for different degrees of conditional heteroskedasticity that cover the conditional
homoskedastic case (o + 3 = 0) and some highly persistent GARCH specifications
(a3 = 0.999). We consider specifications that are typicall}.f estimated from financial
data (for example, (o = 0.399, 8 = 0.6) and (a = 0.199.3 = 0.8)) as well as spec-

ifications (large o and small 3, for instance) that are not frequently encountered in

 Additional results fot ¢- and y2-distributed errors are available from the authors upon request. The
asymmetric errors are used to investigate the sensitivity of the tests to the symmetry condition in
Assumption 1.
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economic applications. It should be noted that while all specifications satisfy the mo-
ment condition Fz? < oc, most of the considered GARCH parameterizations render
E&} infinite.

We investigate the empirical size and power performance of the asymptotic test
based on the OLS estimator (ASY — DF), the DF test with critical values approx-
imated by the wild bootstrap (BOOT — DF’), the asymptotic test based on the
ML estimator of the GARCH model (ASY — GARCH) and its bootstrap analog
(BOOT — GARCH) discussed in Section 3. All tests are constructed using demeaned
data which is equivalent to including an intercept in the estimated models. In the
ML estimation of the GARCH parameters, we impose the restriction a + 7 < 1.

The GARCH bootstrap generates samples under the null of a unit root by resam-
pling the centered, svminetrized standardized residuals. These samples are used to
approximate the distribution of the unit root test with 199 bootstrap replications that
delivers the corresponding bootstrap critical values. The asymptotic critical values
for the test based on the OLS estimator are obtained from the Dickey-Fuller tables.
For the asymptotic test based on the ML estimator with GARCH errors, we use the
true values of a, 3 and k to obtain the values of the nuisance parameters F, I and
p (by truncating the infinite sums at a large integer value) and then interpolate the
appropriate critical values from Table 3 in Seo (1999). -

The empirical rejection probabilities under the null of a unit root at 1%, 5% and
10% nominal levels are reported in Table 1.1. The asymptotic DF test is well sized
in the conditionally homoskedastic case and slightly overrejects for low to moderate

degrees of conditional heteroskedasticity. As the GARCH persistence approaches the
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unit boundary, the size distortions of the DF test are substantial (see also Valkanov,
2005) and are bigger when a exceeds 3. Several recent papers (Beare, 2008: Cavaliere
and Taylor, 2008) have proposed modified unit root test procedures that are robust
to the presence of certain types of conditional heteroskedasticity.® Here. we consider
the wild bootstrap approach of Cavaliere and Taylor (2008) who extend the results
of Gongalves and Kilian (2004, 2007) to nonstationary volatility models with a unit
root. The second column of Table 1 presents the results based on the wild bootstrap
method. The wild bootstrap reduces the size distortions of the asymptotic DF test
but there are still some relative large overrejections when the sum of the GARCH
parameters is near unity. This reflects the stronger moment requirements on the
errors that are needed for establishing the validity of the wild bootstrap (Cavaliere
and Taylor, 2008).

The results for the ASY — GARCH test t,,,, =1 are reported in the third column
of Table 1.1. While the size distvort.ions of this test are smaller than those of the
DF test, there are still fairly large despite the fact that the ASY — GARCH test
is designed to handle explicitly the presence of conditional heteroskedasticity. Sub-
stantial overrejections occur when the GARCH specification borders an integrated
GARCH process. Our numerical experiments suggest that these overrejections are

due to imprecise estimation of some nuisance parameters as o + 3 is close to one.

5Some other popular methods for size correction may not be valid or appropriate in our context.
For example. using a robust variance covariance matrix tends to reduce the size distortions (Kim
and Schmidt, 1993) but the consistency of this procedure for nonstationary processes has not been
formally established. Also, while the resampling scheme that incorporates the GARCH structure of
the model can certainly be used for the DF test, it is not obvious why one would employ it for this
test and not for the more powerful test based on the ML estimator.
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In order to illustrate this point, we present in Table 2 the values of the estixﬁa.ted
nuisance parameters o2 = E(h;). E(1/h;) and K (which is equal to F for normal
errors) for several GARCH parameterizations and truncation value & = 3,000. 000.
The table shows that when a + 3 = 0.9. regardless of which combination of o and /3
is chosen, the computed values of o2 are very close to the true value of 1. However,
when a + 3 = 0.99, the estimates of ¢ start to deviate significantly from 1 and tend
to be biased towards 0. The difference becomes even more extreme for o + 3 = 0.999
and large values of a. The accuracy of the approximation of ¢ is an indicator of the
accuracy of the estimates of E(1/h;) which in turn affects the estimates of IK and the
mixing parameter p.

In contrast to the large size distortions of the asymptotic tests. the bootstrap
controls the size of the unit root test with GARCH errors uniformly across all GARCH
specifications and nominal levels. This impressive performance of the bootstrap unit
root test is achieved despite the small mumnber of bootstrap replications. Overall. our
bootstrap procedure proves to be very effective for correcting the overrejections of
the ASY — GARCH test.

Table 1.3 reports the empirical power of the unit root tests with simulated data
from model (1.5) with ¢ = 0.92. The rejection probabilities for the asymptotic tests
(ASY — DF and ASY — GARCH) is size-adjusted power whereas the power of the
bootstrap test (BOOT — GARCH) is raw power. One interesting observation that
emerges from the results is that the DI test is not able to detect any deviations
from the null hypothesis when the conditional heteroskedasticity is very strong. For

example, if (o = 0.6, 7 = 0.399) and (a = 0.8, 8 = 0.199), the size-adjusted power of
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the DF test is only 6.70% and 7.12% at 10% nominal level. Fven for the parameteri-
zation (o = 0.399, 3 = 0.6) that is more often encountered in financial applications,
the power is 9.55% at 10% nominal level.

The tests that incorporate the GARCH structure of the model suffer only a small
power loss in the conditionally homoskedastic case and offer power gains at 10% nom-
inal level of 16-34 percentage points (when the conditional heteroskedasticity is not
very strong) to more than 85 percentage points (for fhe highly persistent GARCH
specifications). These extreme power improvements, combined with the size correc-
tion property of the bootstrap méthod. illustrate the potential of the MI-based tests
to detect the mean reversion in processes with strong conditional heteroskedasticity.
The raw power of the bootstrap test is very close, albeit slightly below, the (typically
infeasible in practice) size-adjusted power of ASY — GARCH. Davidson and MacK-
innon (2006) analyze the discrepancy that arisés between the rejection probabilities
of the bootstrap test and the size-adjusted power of the asymptotic test and suggest

possible ways of minimizing it.

1.4.2. Testing for Unit Root in U.S. Interest Rates

The correct specification of the dynamics of interest rates plays an important role in
derivative pricing, hedging and term structure modeling. For example, most diffusion
models of spot interest rate that are used for bond valuation impose a mean reverting
behavior on the underlying process. Yet, unit root tests for post-war U.S. interest
rates rarely reject the null of nonstationarity which requires that this nonstationarity
is taken into account in modeling and long-run forecasting of interest rates. This

empirical finding not only creates some tension between the dynamics of interest
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rates in theoretical finance and the specification .‘adopted in practice but it also may
cause substantial size distortions in testing the parameters in term structure models
(Elliott, 1998).

While the conditional heteroskedasticity is a widely documented characteristic of
interest rates, the unit root tests typically do not incorporate explicitly the strong
GARCH effect into the testing procedure. We re-examine the possibility of a mean re-
version in U.S. interest rates using the bootstrap test proposed in this paper. The data
employed in the analysis include the Federal Funds rate. 3-month Treasury bill rate
(secondary market). 1-. 5- and 10-year Treasury bond yields (constant maturity) and
the default premium constructed as the difference between the Aaa and Baa corporate
bond yields. The series are annualized rates at monthly frequency covering the period
July 1954 - November 2008 and are downloaded from Table H.15 of the Federal Re-
serve Statistical Release (http://www.federalreserve.gov/releases/hl5/data.htm).
The dynamics of the five interest rates and the default premium are plotted in Figures
1.1 and 1.2, respectively. The graphs show that all series exhibit high persistence over
the sample period. The short-term interest rates appear to be more volatile than the
long-term rates and the dynamics become smoother as the time to maturity increases.

The results from the Dickey-Fuller and the GARCH-based unit root tests are
reported in Table 1.4. Since the interest rates do not exhibit any trending behavior,
we consider a model that includes an intercept but not a linear trend. The values of
the DF statistic for all interest rate processes do not exceed the asymptotic critical
values at 5% and 10% significance level (-2.86 and -2.57, respectively). The bootstrap

p-values of the DF tests (computed with data generated from the bootstrap procedure



described in Section 3) are between 0.36 and 0.64 and provide no evidence against the
null of a unit root. The results from our bootstrap test with GARCH errors stand in
sharp contrast with this finding. The bootstrap p-values of the BOOT — GARCH
test indicate that the null of a unit root can be rejected at 5% significance level
for all interest rates except for the 10-year yield whose bootstrap p-value is 0.068.
The last two columns in Table 1.4 confirm the high persistence in the conditional
heteroskedasticity of intef&et rates. Incorporating the pronounced GARCH effect
into the testing procedure appears to deliver the substantial power gains documented
in the previous section. This rejection of the unit root hypothesis also lends empirical
support to the mean reverting diffusion specification that is typically used in financial

economics to describe the dynamics of short-term interest rates.

1.5. Conclusion

This paper proposes a bootstrap test for a unit root in processes with GARCH
errors and shows its asymptotic validity under very weak moment and distributional
assumptions. The proposed method offers several important advantages over the
existing tests that do not exploit the information in the conditional variance and its
asymptotic counterpart. First, the test delivers impressive power gains by explicitly
incorporating the GARCH structure of the errors, especially for highly persistent
GARCH specifications with power improvements over the DF-type tests. While the
asymptotic counterpart of the test requires the computation of nuisance parameters
and suffers from relatively large size distortions. the proposed bootstrap procedure
is straightforward to implement and appears to control the size uniformly over all

possible GARCH specifications that guarantee the existence of second moments of the
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errors. Finally. whilé generalizing the asymptotic theory to more complicated setups
would be quite involved, our bootstrap method can be easilv adapted to models with
a lag length that goes to infinity at certain rate. asymmetric errors and dher types
of conditional heteroskedasticity (other models from the GARCH class. stochastic

volatility model etc).
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Table 1.1. Empirical size (in %) of unit root tests.

ASY - DF ASY - GARCH | BOOT —~ GARCH

1% 5% 10% | 1% 5% 10% | 1% 5% 10%

a=0,3=0 1.00 505 935|135 540 10.06]1.05 535 9.85
a=0573=04 | 320 1016 1546|1.95 8.05 15.71[1.00 5.05 10.51
o=0253=07 | 285 870 1421|215 7.75 15.21|1.10 5.10 9.50
o =0.399.3=0.6]29.61 43.17 50.58|9.35 26.41 39.82|1.40 4.95 10.05
a=0199,3=08|13.51 25.66 35.07|9.15 29.16 42.72|1.00 495 9.95
o=07.3=025 | 480 1171 17.71]2.65 1141 21.61|1.00 4.70 10.00
a=0.6.3=10399|31.83 4595 53.55|891 24.02 37.04|1.50 551 10.11

a=08.3=0.199|31.43 4064 47.05|7.81 2202 3383090 470 991

Notes: The empirical size is computed from 2,000 Monte Carlo replications with

data generated from model (1.5) with ¢ = 1 and T = 200.
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Table 1.2. Values of the nuisance parameters E(h,), E(h;) and A computed with

truncation value & = 3. 000, 000.

w o« 3 o+j3 E(h) EQ/h) K

0.1 01 08 09  1.0001 1.0853 1.1333
01 03 06 09 099138 1.6085 1.8705
0.1 05 04 09 099008 2457  3.1214
0.0l 0.1 089 0.99 096559 1.8322 1.9721
0.01 0.3 069 099 094684 68752 82567
001 05 049 099 069926 15051  19.623
0.001 0.1 0.899 0.999 0.71754 89415  9.6827
0.001 0.3 0.699 0.999 023821 59.192  71.376

0.001 0.5 0.499 0.999 0.12345 141.01  184.42
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Table 1.3. Empirical power (in %) of unit root tests.

ASY - DF ASY - GARCH | BOOT — GARCH

1% 5% 10% | 1% 5% 10% | 1% 5% 10%

a=0,8=0 31.17 68.83 85.89|25.41 66.68 84.44)|24.66 63.93 31.19
a=0508=04 1591 48.72 67.68 |56.93 87.54 94.70 | 52.83 86.34 93.50
a=0257=07 |15.61 49.62 72.49 3302 73.74 88.6429.36 70.79 87.04
a=0399.3=06| 0.15 235 9.55 {2221 63.68 76.19|28.71 61.28 73.39
a=0199,3=08{ 035 9.60 27.71}11.31 55.43 73.29 17,36 93.18 71.49
a=07,53=025 | 650 42.17 63.4374.54 94.45 97.30|68.43 91.70 96.50
a=06.8=03991] 0.10. 1.35 6.70 |33.57 76.19 83.44|46.52 73.94 &2.64

a=10383=0.199) 0.00 220 7.12 |70.63 39.00 92.63|63.39 84.61 90.30

Notes: The empirical power is computed from 2,000 Monte Carlo replications with
data generated from model (1.5) with ¢ = 0.92 and T" = 200. The power reported for
the asymptotic tests (ASY — DF and ASY - GARCH) is size-adjusted power and

the power for the bootstrap test (BOOT — GARCH) is raw power.
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Table 1.4. Unit root tests for U.S. interest rates.

DF BOOT - GARCH

)
o

test p— valuel| test p—wvalue

Fed funds rate  |-2.052  0.359 |-5.382 0.000 0.328 0.671

3-month rate -1.994 0.370 -3.582 0.008 0.279 0.720

1-year rate -1.957 0370 |-3.020 0.023 0.273 0.724
5-year rate -1.629  0.541 | -2.979 0.032 0.170 0.829
10-year rate 1578 0552 |-2.662 0.068 0.155 0.844

default premium | -1.329  0.641 | -4.650 0.014 0.338 0.661

Notes: The p-values of both tests are bootstrap p-values. where the bootstrap
samples are generated using the estimated GARCH parameters (last two columns in

the table). The number of bootstrap replications is 1,999.
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Figure 1. U.S. interest rates.
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CHAPTER 2

Changes in Obesity Prevalence in Canada

2.1. Introduction

As in the U.S. and many other developed countries, obesity is becoming a severe
social problem in Canada. The prevalence of obesity an.long adults aged 18 or older
in Canada has been increasing signiﬁcantly.since end of 1970s. from 13.8% in 1978/ 79
to 23% in 2004 (Tjepkema. 2006). Almost all studies of the impact of obesity reveal
a strong positive relationship between excess weight and diseases such as cardiovas-
cular disease, diabetes and hypertension. Obesity is also a reason for the increased
prevalence of psychological disorders, such as depression (Wadden et al., 2002). As
a person’s weight jumps to a high level of obesity, the risk of having these diseases
increases dramatically (Allison et al.. 1999; Engeland et al.. 2003: Flegal et al., 2005).
Sturm (2002) states that obesity outranks both smoking and drinking in its deleteri-
ous effects on health and health costs. He argues that obesity has roughly the same
association with chronic health conditions as does twenty years of aging. and this
greatly exceeds the associaﬁon;s of smoking or problem drinking.

Obesity is a condition of excessive body fat which results from a chronic energy
imbalance whereby energy intake exceeds energy expenditure (Katzmarzyk, 2002).
Bleichet et al. (2007) estimate the relative contribution of caloric intake and physical
activity in the developed countries, including Canada, and show that rising obesity

is primarily the result of consuming more calories. For example, in 1970, an average



Canadian consumed less than 3000 calories per day: however. average energyv intake
after 2000 is above 3500 calories.

It is certain that changes in the environment affect human energy intake and phys-
ical activity (Hill et al., 2003), and these changes are the direct causes of the obesity
epidemic. Bleichet et al. (2007) argue that increase in caloric intake is associated with
technological innovations that have resulted in reduced food prices, as well as chang-
ing sociodemographic factors. such as increased urbanization and increased female
labor force participation. Nonetheless, while changes in the environment increase the
possibility of conswming more food, theyv are just the preconditions for an obesity
epidemic. It is individual reactions to changes in the environment that determine
who will gain weight. and people with different personal characteristics may respond
differently to changes in the environment.

By comparing the average body mass index (BMI) and saving rates among dif-
ferent countries. Komlos et al. (2004) state that the trend in obesity is related to an
increase in time preference. By applying a large set of indicators for the individual
discount rate from a Dutch survey, Borghans and Golsteyn (2005) suggest that the
increase in the average discount rate may be a contributing factor in the rise in BMI
in the Netherlands. Although there are many disagreements in the measurement of
time preference, these studies imply that responses to changes in the environment
lead to the overconsumption of food and the adoption of a sedentary lifestyle. Ac-
tually, obesity is the common result of environmental change and personal reactions

to it. Given the difficulty and the dispute in the measurement of time preference
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and other types of preferences. this study only relates demographic. geogrlaphic and
socioeconomic characteristics. as well as characteristics in lifestyle. to their BML

People’s demographic characteristics such as age and race are closely related to
their weight. In general, weight increases with age (Baum II and Ruhm, 2007). For
both men and women, the prevalence of obesity is significantly different among age
groups. It is low among young adults and high among the middle-aged and older
people. In Canada, obesity was less than 12% for young adults Between the age of
18 to 24, and peaked at around 30% among 45 to 64-year-olds in 2004 (Tjepkema,
2006).

Various studies show that the prevalence of overweight and obesity varies across
Canadian provinces. For example. the prevalence of obesity is higher for adults in the
Atlantic provinces than the rest of Canada (Heart and Stroke Foundation of Canada,
1999) and the same result was also found among children (Williams et al.. 2003).
In 2004. the obesity rate for men was significantly above the national level (22.9%)
in Newfoundland and Labrador (33.3%) and Manitoba (30.4%). The women’s rate
surpassed the national figure (23.2%) in Newfoundland and Labrador (34.5%), Nova
Scotia (30.3%) and Saskatchewan (32.9%) (Tjepkema. 2006).

Baum IT and Ruhm (2007) show that weight is inversely related to socioeconomic
status for Americans. In Canada, Tjepkema (2006) argues that " the likelihood
of being obese varied by marital status for women, in contrast. the percentages of
married, widowed, separated. divorced and never-married men who were obese did not
differ significantly. Men aged 25 to 64 with no more than secondary school graduation

had significantly higher obesity rates, compared with men who were postsecondary
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graduates. Among women, those with less than secondary gréduation were more likely
than postsecondary graduates to be obese. Men in lower-middle income households
were less likely to be obese than those in the highest income households. For women.
those in middle and upper-middle income households had a significantly elevated
likelihood of being obese, compared with women in the highest income households".

Seven factors are selected to reflect people’s body mass index in this study. These
are resident region, age, marital status. education, working status, family income
~ and physical activity index which is chosen as a personal characteristic of lifestyle.
Among these, six factors othef than physical activity are selected with the intention
of reflecting their influence on both individuals” energy intake and expenditure. while
physical activity is selected as the main way to expend energy.

Studies of the distribution of obesity continually confirm that the BMI has been
increasing more over time at the higher than at the lower values, and this implies obe-
sity and severe obesity have increased much faster than median body weight (Ruhm,
2007). In Canada. from 1978/1979 to 2004, the prevalence of overweight people rose
from 35.4% to 36.1%., the prevalence of obesity class I rose from 10.5% to 15.2%. How-
ever, Class II more than doubled, from 2.3% to 5.1% and Class III tripled. from 0.9%
to 2.7%, much higher than the increase in overweight and obesity class I (Tjepkema.
2006).

These differences across the BMI distribution suggest that a linear regression is
not a suitable tool for the analysis of obesity, because it only yields a summary
for the averages of distributions, conditional on a set of covariates. Thus linear

regression supplies a rather incomplete picture for a set of conditional distributions
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(Mosteller et at..1977). A quantile regl'essiofx, on the other hand, provides a more
comprehensive framework for describing changes in the conditional distributions. The
major advantage is that the quantile regression can extract the trends in different
sections of the set of distributions. Buchinsky (1994) uses this method to study
changes in the U.S. wage structure from 1963 to 1987 and provides a range of estimates
on the return to schooling and experience at different points of the wage distribution.
Ruhm (2007) uses the quantile regréssion tb project the prevalence of obesity in the
U.S. a‘nd. the projected BMi prevalence rate for 2001 is surprisingly close to the a‘ct..ual
rate in 1999-2004. | |

In order to study the obesity epidemic in Canada in recent years, this chapter
analyzes the influence of personal factors on BMI along two dimensions: quantiles of
the BMI distribution and time. By using quantile regression techniques, this chapter
explores the influence of each of the selected seven factors on the body mass index
(BMI) at different points of the BMI distribution, and attempts to detect changes
in the BMI that are attributable to them. By applying the quantile regression to
three health surveys that were conducted from 1978 to 2004, in which the prevalence
of obesity was stable at first and almost doubled thereafter, this study attempts to
expose changes in the importance of these factors on the BMI over time. Although
Ruhm also uses the quantile regression to study obesity, he only relates people’s BMI
to their race and age and the main aim of his study is predicting the future of obesity
prevalence in the United States. Because he applies quantile regression to integrate

data from several surveys conducted at different years, the factors’ influence on BMI
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is averaged over time'. This étndy relates the BMI to more types of personal char-
acteristics and applies quantile regression to data from different surveys respectively.
This allows changes in the influence of the factors on the BMI along the BMI dis-
tribution and over time. Such procedure allows the identification of factors that are
closely related to the development of the obesity epidemic in recent years.

By using quantile regression techniques, in conjunction with a backward elimi-
nation method, the fesults indicate that, between 1978 and 2004, age, region and
marital status are important determinants of men’s and women’s BMI, especially for
the low quantiles. The influence of marital status on the BMI appears to weaken as
the quantile increases. Although the mfluence of region and age on the BMI also tend
to be lower as the quantile increases, in general, their effects are still strong. Since
1994, working status has rarely been an important factor. Over the same period, at
higher quantiles, education and physical activity become the main determinants of
the BMI, the more education the lower the BMI, the more physical activity the less
the BMI: specifically, education plays the most important role in reducing men’s BMI
and physical activity plays the most important role in reducing women’s BMI at the
higher quantiles. In this study, men and women are analyzed separately (as in most
studies on obesity). Based on the estimation of the quantile regression, the paper
also provides a prediction of the future prevalence of obesity in Canada. While the
analysis in this paper is based on quantile regression, some linear regression results

are also included for comparison.

n his study, Ruhm merges several cross-sectional surveys conducted in different vears as one data
set.



The rest of this paper is organized as follows. Section 2 describes the available
data and defines the variables. and Section 3 introduces the model used. Section
4 reports the estimation results for the distribution of BMI. Section 5 analyzes the
importance of factors to the BMI and their evolution. Section 6 suggests a method
of prediction and uses it for predicting the BMI in 2007 and 2014, and Section 7

summmarizes the conclusions.

2.2. Data

The data used in this research come from three hea‘lt.h surveys conducted by Statis-
tics Canada between 1978 to 2004. These are the Canada Health Survev conducted in
1978/1979, the National P(ﬁ;)ulati011 Health Survey (Cycle 1) conducted in 1994/1995
and the Canadian Community Health Survey (Cycle 2.2, Nutrition) conducted in
2004.

The Canada Health Survey (CHS) was proposed as a means of obtaining in-
formation required for planning and evaluating health policies and programs. This
survey covered the non-institutionalized Canadian population, excluding residents of
the Territories, Indian Reserves and remote areas as defined by the Canadian Labour
Force Survey. In total, these exclusions comprise less than 3% of the entire Canadian
population. The National Population Health Survey (NPHS) is designed to collect
information relating to the health of the Canadian population. The target population
of the NPHS includes household residents in all provinces, with the principal exclu-
sion of populations on Indian Reserves, Canadian Forces Bases and some remote

areas in Quebec and Ontario. The Canadian Community Health Survey (CCHS)
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collects information relating to health status, health care utilization and health de-
terminants for the Canadian population. Thé CCHS (Cycle 2.2) collected responses
from persons of all ages, living in privately ogcupied dwellings in the ten provinces.
Excluded from the sampling frame were individuals living in the three Territories, on
Indian Reserves and on Crown Lands, institutional residents, full-time members of
the Canadian Forces, and residents of certain remote regions.

The BMI is ca‘lc.ulated as the weight in kilograins divided by height in meters
squared. According to the sta.nda.rd. for obesity designed by WHO (Wérld Health
Organization, 1997). the BMI for adults is classified into six categories: underweight is
defined as BAM I < 18.5: normal as 18.5 < BA T < 25: overweight as 25 < BAT < 30;
obese I as 30 < BAII < 35; obese Il as 35 < BAII < 40: and obese 1l as BAIT > 40.

The BMI from the CHS (1978/1979) and the CCHS (2004, Nutrition) are derived
from the interviewer-measured height and weight. while the BMI from the NPHS
(1994/1995) is self-reported or proxy-reported. Studies on BMI continually acknowl-
edge that a self-reported BMI is not reliable because a large part of respondents, es-
pecially respondents with heavier weight, tend to understate their weight or overstate
their height?. However, the first cycle of NPHS (1994/1995) was conducted primarily
through pérsonal interviews at a selected dwelling. and so understated weight and
overstated height were effectively controlled. As a result, the data used in this paper

will be considered reliable.

2 According to the 2004 CCHS, 23.1% of Canadians aged 18 or older were obese, this is significantly
higher than estimates derived from self-reported data collected in 2003, which yield an obesity rate
of 15.2%.



The data for males and females are analyzed separately as in most studies on obe-
sity. In both linear and quantile regressions. the dependent variable is the BMI, and
the covariates are dummy variables corresponding to the following factors: respon-
dents’ resident region, age. marital status, education. working status, family income
and physical activity index. These dummy variables reflect the characteristics that
we are interested in, insofar as they have a relationship with the BMI. The data used
inclﬁde only respondents who were 20 to 64 years old when the survey was conducted.
Pregnant women and .immigra.nts who have lived in Canada for less than 10 years pridr
to the survey are excluded. Observations with missing data for any of the va.riables
described below are dropped from the analysis. This process yvielded a sample of 2733
respondents for the CHS (1978/1979), a sample of 11006 respondents for the NPHS
(1994/1995) and a sample of 7613 respondents from the CCHS (2004, Nutrition).

The respondents’ resident regions are divided into five areas: Atlantic provinces,
Quebec. Ontario. Prairie provinces and British Columbia. In the quantile regression,
the omitted part (the reference group) is British Columbia so coefficients for respon-
dents’ resident regions may be interpreted relative to this province. The respondents’
age in years is categorized into three groups: 20-34, 35-49 and 50-64. The omitted
category is the 20-34 years group. However, the age groups obtained from the CCHS
(2004, Nutrition) are 19-35. 36-50 and 51-65 because of the different method of cate-
gorization for age group adopted by this survey. It produces different content in the
age-group dummy variables from the same dummy variables based on the other two

surveys. However, since there is only a small difference in the categorization of age
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group between CCHS and the other two surveys, the errors that result from it are ig-
nored. Marital status is put into three categories, single. married or common law and
widowed /separated/divorced. Education is classified by the highest education level
that a respondent completed. Three classes are formed: less than secondary gradua-
tion, secondary graduation to some post-secondary, and post-secondary graduation,
but less than sccondary graduation is omitted. Job status describes a respondent’s
working status during the last 12 months, which include: currently working; not cur-
rently working but had a job during the last 12 months; and not wdrking during the
last 12 months. The omitted category is: not working during last 12 months. A
respondent’s family income is divided into 5 categories: lowest: lower middle; mid-
dle: upper middle; and. highest level. The omitted category is the lowest category.
Although the criterion for income categorization changed over time, it is put into 5
categories in all the three survevs. Hence. the same income categories in different
surveys are interpreted as representing the same socioeconomic groups. The physical
activity index categorizes respondents as being: active, moderate, or inactive based
on total daily energy expenditure values (kcal/kg/day). Active is defined as the av-
eraged energy expenditure above 3.0 kcal/kg/day, moderate as between 1.5 and 3.0
kcal/kg/day and inactive as below 1.5 kcal/kg/day®. The omitted category is the in-
active group. Table 2.1 lists each factor and all its categories. The adopted notation
for all dummy variables is listed in the last column of T'able 21

Besides the categorization of age between the first two surveys and the last survey

are slightly different, there are also two other limitations of our data. First, pregnancy

3This approach is consistent with other studies, such as the Campbell’s Survey and the Ontario
Health Survey.
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status was not asked in the CHS (1978/79), however, pregnant women in the NPHS
(1994) and CCHS (2004) were dropped. Second. in the CHS (1978/79), working
status was categorized as employed. unemployed and not in the labor force, whereas
it was categorized as currently working. not currently working but had a job during
last 12 months, and not working during last 12 months three categories in the other
two surveys. Although these differences in the categorization of data may cause some
bias in the reéults, the view taken is that such biases are relatively small and do not
significantly affect the general picture that emerges. This view is supported by the
fact that many results of this study are consistent with the 1'()81.11?5 of many previous

studies.

2.3. Model

The quantile regression model used in this paper is given by
(2.1) bmi; = Xzf/% + z9; with Quanty (bmi; | X;) = X;ﬁg (i=1....n)

where 3y and X; are k x 1 vectors, and z;; = 1. Quanty (bmi; | Xi)_ denotes the
6th conditional quantile of the body mass index given X. Speciﬁcally, in this paper
X, = (1,reg;, age', mars;, ed;, ws,. incql. pai}) where reg;, = (reg!,reg?, reg?, reg?),
age; = (age?, aged), mars; = (mars?. mars?), ed, = (ed?, ed?), ws; = (ws?, ws?),

. . é . . . |4 4 . - - -
incq, = (incg?,incg?, incqt. incq?) and pai; = (pai?, pai?). The corresponding linear

regression model is

(2.2) bmi; = X,84¢ (i=1,..,n)
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and we choose the ordinary least squares model as a counterpart of the quantile
regression model.

In the above regression models, there are 18 covariates. plus an intercept. For
each covariate, the coeflicient can be interpreted as the impact of a onc-unit change
in the covariate on the BMI, holding other covariates fixed. This gives the difference
in BMI between the group represented by the covariate and the group represented by
the omitted category from the same factor at the th percentile of the distribution,
holding all other factors fixed. For example, the coefficient for pai? at the 50th quantile
represents the difference in BMI between the active group and the inactive group at
50th percentile of the distribution, holding the other covariates fixed. The intercept
of the model could be mterpreted as the conditional quantile function (mean for
linear regression) of the BMI of a single male or female who lives in British Columbia
at age between 20-34 with less than secondary graduation education. who has not
worked during the last 12 months, has the lowest family income and is identified as
an inactive person. British Columbia as well as the lowest category of each the factor
are chosen to represent the base group because first, the prevalence of obesity in
British Columbia is relative low and second, we want to observe the relative changes

in the BMI as people get older, richer, more educated and active.

2.4. Estimation

OLS estimation and estimation of the quantile regression at each of 6 quantiles,
10th, 25th, 50th, 75th, 90th and 99th percentiles based on data for both male and

female from CHS1978, NPHS1994 and CCHSN2004 are presented in Table 2.2 to
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Table 2.7. Table 2.2. Table 2.3 and Table 2.4 report estimation results for males and
the other three contain estimation results for females.

The OLS estimation is significantly different from the quantile regression estima-
tion for most covariates at most of the quantiles. particularly at the high quantiles.
If we use the estimation from OLS to represent the relation between the factors and
the BMI for people in this range of the BMI distribution, the conclusion would be
totally unreliable. Essentially, OLS treats every observation in the sample equally, it
only reflects the rela.tiohship between the dependent variable (BMI) and independent
variables at the average le.vel and does not reveal specific information at different
parts of the distribution. In the rest of the paper. the focus is only on the quantile
regression.

As Table 2.2 to T'able 2.7 show, the parameter estimates from the quantile regres-
sion vary from one quantile to another. Noticeably, the quantile regression estimates
at the median are significantly different from the OLS estimates for most of the co-
variates and imply some asymmetry or skewness in the conditional density of the
BMI. In the next section we analyze the contribution of each covariate for both males

and females in the three survey periods, 1978, 1994 and 2004.

2.4.1. Estimation Results

2.4.1.1. Males. Table 2.2, Table 2.3 and Table 2.4 present the results for men for
the 1998, 1994 and 2004 surveys, respectively. T'able 2.2 shows that the coefficients on
regh (k=1,2,3,4), age! (I = 2,3), mars? and incg} are positive, and the coefficient
on covariate ed? is negative at each quantile; the estimated coefficients on the other

covariates are positive at some quantiles and negative at others. The coefficients of
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reg!. regt, age?, age? and mars? are significantly different from 0 at most quantiles.
We may interpret that these covariates have significant impact on BMI at the different
quantiles of the conditional distribution of BMI. In summary. in 1978/79. men’s’
weight has the following characteristics. (a) On average. men who live in Atlantic
and Prairie provinces weigh more than men who live in British Columbia. Compare
to British Columbia. it is more likely for men to be obese in those two regions. (b)
Age is a major factor that affects the BMI. In general. men in the second and third
age groups weigh moré than those in the first group. (¢) Compared to singles, married
men are more likely to be overweight or obese. (d) Looking at the coefficients on ed.
ws? and incg?, their negative values at most quantiles suggest that these covariates
generally reduce men’s weight *. However, the coefficients on these covariates are
mostly insignificant. Next, we discuss the results for 1999.

Table 2.3 reveals that the estimated coefficients on reg!. age! (I = 2, 3) are positive
at each quantile; the coefficients on mars? (m = 2. 3) and incg} ave positive except for
a few quantiles, the coefficients on ed? and ed? are negative at each quantile and the
estimated coefficients on other covariates are positive at some quantiles and negative
at others. The variables age!l (I =2,3), mars? and ed? appear to be significant at
most quantiles except for the high or low quantiles and the other variables tend
to have an insignificant effect on BMI. This implies that, in 1994, age is a major
factor that affects BMI at quantiles smaller than the 90th percentile. Married men

weigh more than singles at quantiles less than 90th percent. Men who had completed

{From the quantile estimation at higher quantile such 75, 90 and 99 quantiles, the estimated co-
efficients for pai} are also negative, implying that active physical activity reduces men’s weight.
However. as for ws?, these coefficients tend to be insignificant.
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post secondary education weigh less than those who had not completed secondary
education. The estimated coefficients on ed? suggest that men who had completed
secondary education weigh less than those who had not. although these effects are
statistically insignificant. We now turn our attention to the results from the most
recent survey in 2004.

Table 2.4 shows that the estimated coefficients on reg? . age! (I = 2,3), and incg?,
incq?, incg? are positive, and the coefficients on covariates ed} (n = 2, 3),‘ ws? and
pai? are negative at each quantile; the estimated coefficients are positive for reg}
and mars™ (m = 2.3) and negative for pai? at most quantiles except one quantiles.
Compare to the surveys in 1978 and 1999, the most important (:ha.nges in 2004 survey
are the variables ed? (n = 2.3) tend to be statistically significant and the coefficients
of resident areas, reg¥. become insignificant. Specifically, the estimation results imply
that. in 2004: (a) the influence of resident area to men’s weight becomes weak; ()
age is still a major factor thét affects BMI, but its influence is uncertain for men with
heavy weight; (¢) men who had completed secondary or even some post-secondary
education and who had completed all of post-secondary education weigh less than
those who had not completed secondary education, but its influence is uncertain for
men with big weight; (d) for obese men, physical activity is negatively related to their
BMI; those who were active or medium in physical activity are more likely to have
a lower BMI than were the inactive ones; and (e) men with family income at the
middle, upper middle and highest levels tend to have more weight than men with

family income at the lower middle and lowest levels.
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2.4.1.2. Females. Table 2.5, Table 2.6 and Table 2.7 report the quantile estima-
tion results for women for 1978, 1994 and 2004 surveys, respectively. Table 2.5 shows
the estimated coefficients on covariates reg}, reg?. agel (I = 2,3), mars? and incg} are
positive. and the coefficients on covariate ed?, ws? are negative at each quantile; the
coefficients on reg?, regt and ws? are positive, and the coefficients on ed?, incq?and
incg? are negative except for one quantile; the estimated coefficients on reg!, age?,
age? are significantly different from 0 at most quantiles; the variables ed? and pai?
appear to be significant at high quantiles. In 1978/79, wormen’s BMI has the following
characteristics: (a) on average, women \ifho live in the Atlantic provinces weigh more
than women who live in British Columbia; () age is a major factor that affects BMI.
Women in the second and third age groups weigh more than those in the first group;
(¢) women who have completed post-secondary education weigh less than those with
less than secondary education in the obese level; and (d) for obese women, those who
were active in physical activity are more likely to have a lower BNI than the inactive
ones. The positive coefficients for reg? mars? and incg? and the negative coefficients
for ws?, incg?and incg? at most quantiles mean that these covariates tend to increase
and decrease women’s weight, respectively. However, their impacts on BMI are not
statistically significant.

Table 2.6 shows the estimated coefficients on reg}, reg?, reg?. age! (1 = 2,3) and
mars?™ (m = 2,3) are positive and the coefficients on ed?, ws?, incg?, incgand
incqand pail are negative at each quantile; the coefficients on covariate ws?, incg?
and pai? are negative except one quantile. The coefficients on reg!, reg? and age!

(I =2,3) are significantly different 0 at the most quantiles; the variables mars”
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(m = 2.3) and incg? and pai? appear to be signiﬁcént at low quantiles and high
quantiles, respectively. This means that, in 1994, age was still a major factor affecting
the weight of most women, except for the heavist women. For women with normal
weight. those who were married weigh more than those who were single. For over
weight and obese women. those with family income at the highest level weigh less
than those with family income at the lowest level and those who were physically
active weigh less than the inactive ones. The variables incg?, incq?, pai?, ed¥and ws?
tend to reduce wémen’s weight at é.lmost every quantile. However, their impact on
BMI is not statistically signiﬁcant.

Table 2.7 shows the estimated coefficients on age! (I = 2,3) are positive and the
coefficients on ed} (n = 2. 3) are negative at each quantile; the coefficients on mars?
(mn = 2. 3) are positive at all quantiles less than 90th quantile and the coefficients on
pai? are negative from 25th to 99th quantile. The coefficients on age! (I = 2.3) and
ed! (n = 2,3) are significant different from 0 at almost all quantiles. The variables
pai® are significant at high quantiles and the impact of reg; (k=1,2.3.4) on BMI
are not statistically significant at each quantiles. This imi)lies that, in 2004: (a) age
is still a major fa‘c.tor that affects BMI, but its influence is uncertain for heavy people;
(b) women with high education tend to weigh less than those with low education;
(c)-for obese women, physical activity is negatively related to their BMI, those who
were active in physical activity are more likely to have a lower BMI than the inactive
ones; and (d) the impact of the resident’s region on women’s BMI become weak and

insignificant.
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The above results confirm findings of other previous study on obesity, moreover,
instead of estimating an average change of BMI which contributes to each factor, this
study can detect the contribution of each factor at any point of the BMI distribution.
The foregoing is the estimation of BMI distribution for 1978, 1994 and 2004. and
the nature of the BMI distribution in these years are well captured by this estimated

distribution.

2.4.2. Estimation of the Distribution of BMI

By using quantile regression, the conditional distribution and density function for
both males and females were estimated from 1978 to 2004. In order to get a clear
refinement of the distribution, 99 quantiles from the 1st to the 99th quantile were
set. First. the coefficients for all covariates at each quantile were estimated. Second,
a weighted average for each covariate was calculated. In the last step. the estimation

of BMI at #th quantile was produced by the following formula:
(2.3) bmig = X Be, where X' is weighted average of X.

Figure 2.1 and Figure 2.2 plot the distribution functions for both men and women
fronj 1978 to 2004. These figures show that. for both men and women, the difference
of BMI distributions is very small between 1978 and 1994, but increases substantially
between 1994 and 2004. This confirms what Tjepkema (2006) found in his research.
The BMI distribution in 2004 is always below its 1978 and 1994 counterparts and
the range of the distribution is extended to the right dramatically. Figure 2.3 and

Figure 2.4 present the density functions for each BMI distribution for both men and
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women. From these t\\f().ﬁgures. it is very clear that density in 2004 is below the 1978
and 1994 densitics for values of BMI less than 28 (approximation). However, after
that pomt. the density in 2004 is above the 1978 and 1994 densities almost everywhere
and exhibits a very long right tail. This implies that the probability of the union of
normal and overweight decreases, while the probability of being obese increases.
Table 2.8 lists the percentage distribution of BMI in 1978, 1994 and 2004 estimated
for each year. This table also includes the percentage distribution of BMI in 1978 and
2004 that was reported in Tjepkema (2006). We find that our percentage distribution
of BMI is close to that of Tjepkema (2006) between the Normal to Obese I categories.
There are big differences at the extreme ends of both sides. However. i both of our
estimation and Tjepkema’s (2006) results, the data for the underweight and Obese
111 .(:ategories should be interpreted with caution. One factor which might explain
part of the difference in the percentage distribution of the BMI between this research
and Tjepkema (2006) is the selection of the sample. In this research. the sample is
formed by respondents aged from 20 to 64 while it is formed by respondents aged

from 18 to 64 in the research of Tjepkema (2006).

2.5. Importance of Factors and Its Evolution

To identify those factors which have the largest impact on the BMI is a major ob-
jective of this research. However, because each factor includes at least two covariates,
it is hard to compare the influence of factors to the BMI by relying on the estimation
of each covariate. In addition, there are two other problems. First, the estimation of
some coefficients at some quantiles are not so small, but statistical significances are

low. Second, the influence of a covariate is generated not only by its coefficient, but
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also by the covariate itself. For example, in the case that a dummy variable has lots
of zeros. the value of its coefficient hardly affects the dependent variable (BMI), even
if it is significantly high. In order to solve these problems and make the analysis more
accurate, we need to employ more powerful tool.

A method called backward elimination is now used to solve the problems just
described above. Backward elimination is a method which uses the amount of variance
a variable adds to the complete model (all remaining variables) as the criterion for
exclusion from the model. In this method, thé full model (with all variables included)
is first computed. Then each variable is removed from the model alternatively, and
the variable that causes the least reduction in accounted variance by its removal is the
first to be eliminated. This process continues until all remaining variables contribute
a significant amount of variance reduction to the final model. Obviously, the variable
that is removed first has the weakest influence on the dependent variable and the
variables that are kept at the end have the strongest influence on the dependent
variable. Instead of applying backward elimination to variables, in this paper. this
technique was applied to the factors® selected for the model.

Backward elimination was applied at seven quantiles, 10,25, 50, 75. 90, 95 and 99
percent for both males and females from CHS1978, NPHS1994 and CCHSN2004. The
backward elimination used in this paper can be described as follows.

(a) By model (1), the estimated BMI for the full model is bmi; = X 5y.

In this paper we use seven factors, region, age, marital status, education, working status, family
income and physical activities which may relate to BMI, and each of them contains at least two
covariates. When one factor is eliminated from the model, it means all the covariates that are
included in this factor are eliminated.



(b) Remove all the covariates corresponding to factor & from the model and rees-
timate the new simplified model. then the estimated BMI for the new model can be
obtained, denoted as bini® = X¥' 3, (k=1.2, ... 7).

(c) Calculate " | (bmi; — bini} )2 for each k. and compare their value. Suppose
Sy (bmi; — bmz'*?)2 is the smallest one, then the third factor or factor marital status
is the first factor removed from the full model and new model is formed.

(d) Treat t.ile newly formed model as the full modél and continue this process until
there is only one factor left.

Table 2.9 and Table 2.10 report the results from this procedure. Table 2.9 is for
male and Table 2.10 is for female. It is easy to find that some results from these
two tables confirm what is found in Table 2.2 to Table 2.7. however. some important
information, especially the order of the importance of the factors to BMI, which was
disclosed in T'able 2.9 and T'able 2.10 cannot be obtained from Table 2.2 to Table 2.7.
The findings from Table 2.9 and Table 2.10 can be suminarized as follows.

In general, in 1978, age, region and marital status are the most important factors
that influence the BMI of men at the low quantiles, but as the quantile increases,
family income, working status and physical activities become the most important
factors that influence the BMI, and the influence of age and region weakens. Edu-
cation is the weakest factor to the men’s BMI at all quantiles except 99th quantile
and working status weakly relate to their BMI at the quantiles less than 75 peréent
at that time. In 1994, age, region and marital status are still the most important
factors that influence the BMI of men at the low quantiles. As the quantile increases,

education becomes the most important factor that influences men’s BMI and marital
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status is the weakest factor. Also. the influence of region becomes strong and the
influence of age weakens. Physical activity is the weakest factor for men at the low
quantiles and remains weak as the quantile increase. In 2004; marital status. family
income and age are the most important factors that influence the BMI of men at
the low quantiles. As the quantile increase, education and physical activity become
the most important factors which influence men’s BMI. In the following context, the
importance of factors on BMI for women and its evolution are discussed.

In 1978, a.gé is the most important factor that influences the BMI of women,
except at the highest quantile. Region and working status are important only at
very low quantiles. As the quantile increases. the influence of family income and
physical activities on women’s BMI also increases. and physical activity even become
the most important factor among all the factors at the 99th quantile. Education is
the weakest factor on women’'s BAMI at all quantiles and marital status is the second
weakest factor except at the 99th quantile. In 1994, age is still the most important
factor for women at all quantiles less than the 90th percentile. Although the influence
of region decreases after the 90th quantile, it is always an important contributor to
women’s BMI. As the quantile increase, the influence of family income and physical
activity also increase and become the two most important factors at high quantiles.
Education is always a weak factor for women at all quantiles in 1994. In 2004, as-
in 1994, age, region and marital status are the most important factors that influence
women’s BMI at the very low quantiles. As the quantile increases, the influence of
physical activity and education on the women’s BMI increase and physical activity

becomes the most important factor after 75th quantile. In 2004, working status is

58



the weakest contributor to the BMI of women at all quantiles except the 99th and
marital status is the second weakest factor except at the lowest quantiles.

From 1978 to 2004, age. region and marital status are always important factors
for both men and women’s BMI. The influence of marital status to the BMI becomes
pretty weak as the quantile increases. Although the influence of age to the BMI
also becomes weak as the quantile increases. in general, its influence is still strong.
Since 1994, working status is rarely an important factor, during the same period,
the influence of income on BMI increases for men and decreases for women. For
overweight and obese men and women. the importance of educé'tion and physical
activity increases over the period 1978 to 2004: specifically, educa.ti(n} plays the most
important role in men's BMI and physical activity plays the most important role in

women’s BMI at the high quantiles.

2.6. Prediction in BM1

Causes of the difference in the BMI distribution between two adjacent surveys may
usefully be analyzed by decomposing each quantile into three distinct components,
using estimates from the quantile regressions. Let T" and ¢ represent the years when
the surveys were conducted, T > t, and X denotes the weighted éverage of X in (2.1),

then, at the §th quantile (8 = 1,2, ...,99).
(2.4)  bmil — bmit = (XT' - X) B+ X' (87— BY) + (XT’ - XY (35 - %)

In equation (2.4), a change in the BMI distribution, at each quantile #. has been

decomposed into (z) a change in the structure of factors (X™" — X*) 8§; (iz) a change
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in the function of factors, X" (13{ — B§); (ii) a change in the interaction of function
and structure, (X7 — X") (37 — 35)- These three factors are refers to hereinafter
as simply structure, function and interaction. By using the decomposition (2.4) at
each of the 99 quantiles. a decomposed shift in the BMI distribution may be formed.
Because the change in this distribution is much greater between 1994 and 2004 than
it was between 1978 and 1994, the main focus will be on decomposition of the former;
this may then be compared with decomposition of the letter. In this way, the reasons
for the significant shift in the BMI distribution in recent years may be explored.
Actual computation reveals that, between 1994 and 2004, the influence caused by
function. XV (B9* — 351). is positive and dominant at almost all quantiles, for each of
males and females, accounting for most of the changes in the BMI distributions. The
exceptions are: two quantiles less than the Tth quantile for males and the 2nd quantile
for females. The influence of structure, ()_(04' - 1?94') 33%, is consistently negative
for both males and females. save for two low quantiles for females. Interaction.
(X’M — XY (B9 — 391). has a positive effect for males but a negative effect for
females at most quantiles. The dominance of function in determining the change in
the BMI distribution may be seen by looking at its percentage contribution to the
whole change. For males. from the 16th to the 44th quantiles. function accounts
for from 62% to 86%, or on average 74%, of the total change and for most of the
rest of the quantﬂes function contributes a little over 90% of the total change. For
females, the contribution of function is even more dominant. For all quantiles, except
the second to the 13th, the contribution of function represents 110% to 117% of the

totals, because the combined influence of structure and interaction is negative. When
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the combined influence is positive, that is, from the second to the 13th quantile. the
contribution of function ranges from 60% to 90%, with an average of 77%, of the total
change in the BMI distribution. These results are presented graphically in Figure
2.5 and Figure 2.6.

Turning now to changes in the BMI distribution between 1978 and 1994, the
result are presented graphically in Figure 2.7 and Figure 2.8. Generally speaking,
there is no dominant cause among structure, function and interaction for males and
for females. Comparing the decomposition by quantiles between 1978-1994 and 1994-
2004, there is no significant difference a.ttributable to structure and interaction. These
two decomposition parts are in the same range during the two periods and, hence. so
is their combined influence. But there is a huge difference caused by the change in
function. For most quantiles, these differences increased tenfold in the second period
(see Figure 2.9 and Figure 2.10).

The decomposition by quantiles from 1978 to 2004, has two important properties
which have implications for predicting the BMI distribution beyond 2004: () the
significant shift in the BMI distribution during 1978 to 2004 was caused principally
by change of function from 1994 to 2004; (b) the changes due to the combined effects
of structure and interaction have been comparatively small and stable throughout the
whole period from 1978 to 2004. The situation described by (a) and (b) above may
be cast in symbols based on equation (2.4). Let 7 represent the next period ahead of

T ,ie. T <7 in (2.4), then at quantile §

(2.5) bmiy — bmiy = X (85 — B; ) + adjustment,
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whereupon
(2.6) bmiy = bmiy + X' (35 — 87 ) + adjustment.

Given this background, two predictions will be made for 2007 and 2014, subject to
two assumptions: (A1) the BMI evolution in the next decade beginning 2005 will
be the same as in the decade preceding 2005; (A2) changes in the BMI distributidn
occurs evenly through time. Under the two assumptions, the prediction of the BMI

at the 6th quantile in year 7 becomes, from (2.6)
(2.7) bmiy = bmig' + X (35 — 89") + adjustment

in which 7 = 2007 or 2014. Under the assumption Al and A2, 3; — 35" may be
estimated as (39" — 39%) * (7 — 2004)/9.5, 9.5 being the length of time, in years,
from the middle of the survey NPHS1994/95 to survey CCHSN2004. The coefficients
applied to the prediction for 2007 and 2014 are those obtained for the decomposition
analysis, based equation (2.4), for 1994 and 2004. If the combined influence caused
by the changes in structure and interaction is considered, the prediction bias denoted
as adjustment in (2.7) may be reduced. The bias could be expressed as the product
of the effect of function, X* (35 — Bo4), and average quotients that combined effects
of structure and interaction, (X' — X") gf+ (X" — X") (5] — ), to the effect of
function in different sections of the BMI distribution. However, the quotients used
for the prediction of this paper are those obtained from the decomposition analysis
at each quantile for the period from 1994/95 to 2004. The predicted percentage

distributions for the BMI in 2007 and 2014 are given in T'able 2.11 and the predicted
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distributions are displayed graphically in Figure 2.11 and Figure 2.12 for men and

women, respectively.

2.7. Conclusion

The analysis of this paper has applied quantile regression to determine the quanti-
tative influence of several observable factors at different points on the Canadian BMI
distribution, using data from three distinct Canadian surveys undertaken in 1978,
1994 and 2004. The results obtained strongly suggest that the epidemic of obesity in
Canada is mainly developed during the period 1994 to 2004. This epidemic is more
closely related to lifestyle and sociocconomic factors than demographic factors®. Edu-
cational achievement has a negative impact, that is to say, the higher the educational
level a person achieved, the lower the likelihood that person will be obese. The role
of the education has shifted over the years from the weakest to the strongest factor
affecting the BMI. This, in turn, implies that the relationship between the capacity to
avoid obesity and education is strong. Among the seven factors in this study, being
physically inactive is the most important reason for women to be obese. On the other
hand. working status is the least imnportant factor related to the B‘;\’H for both men
and women. This not only indicates the dominance of sedentary work and continu-
ally decreasing expenditure of energy in the workplace, but also reveals that physical
activity is the main way for people to expend energy. The fact that age becomes less
important in affecting the BMI at higher quantiles indicates that a change in the age

structure of Canadians is not a reason for the obesity epidemic in Canada.

6Jeuier and Tappy (1999) argue that genetic changes are not the cause of increased obesity over
such a short period of time. Rather, changes in the energy balance are key; consuming more calories
than are expended leads to weight gain.
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A decomposition by quantiles has been introduced, in (2.4), in an effort to éxplore
the development over time of the Canadian BMI distribution. especially in the fu-
ture. The calculation reveals that. after 1994, the component of most importance in
changing the BMI distribution has been the function of factors, that is, the changing
intensity with which factors impinge on BMI. Structural changes, that is, changes in
the factors themselves. and the interaction of structure and function are of trivial
importance. To put the matter technically: in a quantile regression analysis of the
BMI by cross-sections over time, the most significant changes have been those in the
coeflicients, not changes in the variables or chénges in the interaction between the

two.
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Table 2.1: Definition of the Variables

Factors Covariates Notation

Atlantic Provinces reg’

Quebec reg’
Region

Ontario reg’

Prairie Provinces reg 4

351049 age_g’
Age _

50 10 64 age g’

Married mars®
Marital Status

Widowed/Separated/Divorced mars’

Secondary to Some Post Secondary  ed?
Education

Post Secondary ed 3

Currently Working ws?
Working Status

Not Currently Working ws’

Lower Middle Level il'l(:_q2

Middle Level inc_q’
Family Income

Upper Middle Level inc_q*

Highest Level inc_q’

Moderate pai2
Physical Activities

Active pai3



Table 2.2: Estimate of the influence to BMI at the mean and some quantiles (CHS1978_Male)

Coef. OLS Quantiles
7 10th 25th 50th 75th 90th 99th
regI 1.238 (451)  .7T19(371) 1.759(.293) 1.327(406) 957(417) 1.48(.845) 3.033(901)
reg2 538 (.467) 653(370) 248 (.308) .524 (417)  .132(421) 944 (.941) 2.740(342)
reg3 951 (.464) 283(.342)  1321(277) .859(394) .746(421) B18(906) 4.54(507)
reg4 1.058 (409) .972(344) 149(273) 1.061(383) .935(.398) 1.489(86) 3.48(.568)
age_g2 1.075(.383) 1.905(228) 1.522(.216) 1.682(324) .596(.351) 179 (.7) 1.232 (.442)
age_g3 1347 (422) 1.045(281) 1.62(231) 216(353) .794(37) 1.387(763) .135(334)
mars2 1.239(.378)  .346(.325)  .638(.242) 1.036(375) 1.786(361) 2.111(.676) .79(.321)
marsS  917(787)  -146 418() 233(448) .013(802) 2.565 (53‘7) S41(1L157) 1.525(1.047)
ed’® -322(335) -.163(242) -136(202) -254(303) -T715(314) -216(628) -818(.501)
ws? -.206 (.33) -817(377)  -16(263) .094(503) -0978(473) -2.958 (.845) -2.005(.325)
ws’ -361 (669) -894(426) -211(.326) -.175(603) .0720(.559) -2.13(1.084) 1.625(339)
inc_q2 001 (771)  -113(435) -417(336) -078(.355) -.0558 (.716) 2.053 (1.286) -834(.261)
in(:_q3 55 (.644) 174 (454) 0016 (.32)  .899(.551) 1.169(.684) 2.178(978) .432(.514)
inc_q" -211(613) -0513(511)  .164(32) -.106 (556) '-.311 (.658) 1.525.861() .37(591)
inc_q5 -387 (581)  .535(457) -.141(336) -.107(546) -808(.636) .532(.725) -1.359(.408)
pai2 778 (.460) 1.105(.288) .945(247) .809(378) .632(404) -919(.755) 5.114(.382)
pai3 207 (.356) 687 (244) 36 (.202) 6(295)  -358(305) -1.402(.632) -143(.454)
cons 23.3(774) 1991(609) 20.7(450) 2235(649) 25.65(.73) 29.68(1.351) 32.14(.599)
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Table 2.3: Estimate of the influence to BMI at the mean and some quantiles (NPHS1994_Male)

Coef. OLS Quantiles
10th . 25th 50th 75th 90th 99th
reg' 656 (219) 55(.245) 3(267)  529(2359) 912(236)  .8(559) 1.092(1.875)
reg’ -377(23) -733(258)  -8(282) -358(246) -.1(239)  -3(580) .046(1.79)
reg’ 442(203)  -.033 (234). -033(253) 386(221) .837(216) .8(511) 1219 (1.606)
reg4 2303 (.220) -15(250) -.1667(278) .357(237)  .8(230) 2(.543)  1.304(1.790)
age g’ .760(.155) 7 C171) 708 (.198) 786 (167)  T25(156)  .6(355)  1.781(1.35)
age_g3 1.3(.19) 1.166(222) 1408(229) 1471(2) 963 (193)  .9(448) 1462 (1.351)
mars®>  718(.174) 9(193) 95 (.206) 9(176)  987(166) -.1(394) -.181(1.392)
marss 141 (.239) 467 (.262) 567(28) 286 (246) .162(246)  -6(573) 392 (2.3)
edz -.265 (.190) .1(208) -.108 (208) -.057(.184) -513(18) -5(429) -1.3(1.464)
ed3 -.877(.188) -283(.202) -592(.211) -.886(.185) -1.5(181) -1.1(422) -1.55(1289)
WSZ 143 (251) 483 (.273) 37(.274) 1(231)  -.062(.228)  -9(.521) -1.573(2.001)
ws’ 009(320)  -067(345) -2(358)  2(297) -062(298) -8(662) -292(2.561)
inc_q2 169 (.369) -083 (351) .292(394) .557(349) -237(350) -3(.776) -4542.631()
il’lc__q3 388 (319) A33(305)  .767(330) .886(292) -.175(295) -5(674) -288 (l.§58)
inc_q* .596(316) 567(3) 808(33)  .929(29) .125(294)  .3(673) -.158(1.918)
inc_q5 603 (.340) 367(330) 883 (367) 136(323) -075(321) -36(743) -812(2.213)
pai2 -.0141 (.166) 3 (.186) 225(.197) -.0857(.169) -275(165) -2(386) -431(1.517)
pai’ S173(163)  317(189)  .125(203) -0143(175) -488(17) -9 (405) -1.246(1.526)
cons 24.66 (416)  19.87(421) 21.76(449) 23.72(387) 27.43(38) 31.7(904) 36.96(2.921)
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Table 2.4: Estimate of the influence to BMI at the mean and some quantiles (CCHSN2004_Male)

Coef. OLS Quantiles
10th 25th 50th 75th 90th 99th
reg] 125(.538) A72(.585)  AS8(236) .139(429) -474(559) .0486 (1.166) 2.828 (1.945)
reg2 -832(529)  024(509) -286(232) -1.045(438) -1.039(.578) -471(1.151) -.099 (1.944)
reg3 -24(518) -03(.512)  -204(213) -465(412) -312(538) .543(1.163) 1.6(1.681)
reg4 - 483 (.515) 132(.505)  .198(.226) 507 (415)  .07(528) .789(1.102) 3.718(2.333)
age_g2 -+ 973 (.413) 79(351) 838 .(.166) 616 (.319) .728(429) 641 (.?81) 2929 (1.31)
age_g3 1.503 (435) 1418 (376) 1476(17) .968(.329) 1409(467) 1.438(997) 4.561(1.259)
mars? 696 (.419) 132(309) 1.164(.148) 1.602(.299) .334(.421) -051(883) -3.289(1.708)
mars’  322(.743) 288 (599)  .752(228) 549 (485)  .406(.63) .646(1.453) -3.552(2.299)
ed? -989(575)  -422(386) -.616(.195) -1.09(378) -1.018(.489) -3.02(1.273) 1.797(1.616)
ed’ -1.329(526)  -872(366) -416(174) -1.085(329) -1.391(448) -4.144(1.28) -918(1.6)
ws’ -767(578)  .012(371) -334(199) -84(464) -1.932(671) .487(987) -.604(1.531)
ws’ -744(594)  -436(421) -85(210) -917(.482) -1.183(.688) -05(986) -.149(1.631)
inc_q2 -282(1.152) -168(.892) -1.574(411) -1.105(919) .97(925) 1.264(1.655) 3.756(3.597)
in(:___q3 1.977(883) ~ 1.016 (.681) 1974 (394) 1499 (704) 2.776 (.871) 3.177 (1.602) 3.298(3.169)
inc_q4 1.789(.785)  1.314(.638) 1482(376) 1285(.65) 2.859(.733) 2.077(1.352) .6773.248()
inc_q5 2344 (805) 1.804(.646) 2.36(386) 1.731(.676) 3.31(788) 2594(1.446) .995(3.047)
pai2 -LO56 (361) -296 (349) -646 (167) -572(294) -1.393(.366) -2.713 (.765) -3.179(1.217)
pai3 -886 (411)  .022(.354) -082(.153) -367(3) -1.693(389) -2.15(972) -3.722(1.257)
cons 26.76 (1.005) 20.16 (.905) 22.17(446) 26.23 (.804) 30.05 (1.015) 34.71 (2.047)

39.73(3.274)
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Table 2.5:

Estimate of the influence to BMI at the mean and some quantiles (CHS1978_Female)

Coef. OLS Quantiles
10th 25th 50th 75th 90th 99th
reg1 1.625 (451)  .632(.357) 1.064 (413) 1.515(.561) 2.582(510) 2.483(981) 4.183(3.1)
regz 1.341 (.475) 5(.35) A422(432)  725(.58)  2.354(.528) 2.853(1.028) .926(1.8388)
reg3 1.279 (432)  427(.338)  .224(407) 1.224(561) 2093.5() 2.613(1.027) -.804 (1.593)
reg4 554 (4) -0752(362) -.046(394) .501(53) .936(468) 1.092(926) -329(1.729)
age_g2 2.077 (.393) 822 (.297)  L771(33) 1.787 441 () 1.702(396) 3.761(.825) 1.063(1.18)
age__g3 3.512(438) 2.212(289) 3.096(345) 3.682(477) 4.082(453) 3.867(.983) 2.964(.726)
mars® 615 (425) 93 (376) 251 (462)  347(.562)  986(523) 1.032(912) 1.552(971)
mars’  .0614(641)  042(488)  238(582) -268(742) .688(684) .102(1388) -876(984)
ed’ -.97 (.359) 28(265)  -415(354) -.884(.457) -1.471(396) -2.259(.760) -2.262 (.818)
ws? -562 (403)  -.67(.265)  -443(325) -377(419) -1.054(391) -1.13(913) -.193 (1.145)
ws> A29(576)  -133(422) 0297 (517) .942(.633) 206 (.56) 344 (1.282) .89 (.797)
il’lC__q2 -.994 (.585) 3(.382) -048 (462) -.503 (.628) -1.632(.577) -2.12(1.267) -.012(.887)
inc_q3 LIS (561) 397 (.326) -01(46)  -484(.644) -2.307(.615) -2.723(1.23) .5363(1.87)
in(:_q4 -208 (619)  171(.367)  .118(478) .295(.652) -.817(615) 1.006(1.273) 2.222(.831)
inc_q5 -1.225(.605) 406 (.334) -189(513) -876(.663) -1.549(6) -2.589(1.26) -.02(1.219)
pai2 -.472 (.446) 39(294) 245(354) -428(466) -.383(448) -1.66(987) -3391(82)
pai3 -406 (387)  337(.259)  .092(32) -231(418) -351(379) -2.224(.827) -2.96(1.124)
cons 2311 (718) 1856 (.527) 20.21(632) 22.16(.859) 25.2(.779) 28.96(1.613) 36.5(1.781)
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Table 2.6; Estimate of the influence to BMI at the mean and some quantiles (NPHS1994_Female)

Coef. OLS Quantiles

10th 25th 50th 75th 90th 99th
regl 1.377 (.259) 5(.262) .8 (265) 1.287(.303) 2.455(412) 1.775(.594) 1.133(1.518)
l’f:g2 - 121 (258) -344(274) -367(270) -226(312) -.025(424) .025(613) 1.367(1.685)

reg3 907 (.243) 172 (251) 25 (.233) 705 (.288)  1.523(.393) 1.675(568) 1.933(1.337)
reg4 1.146 (251)  467(255)  .583(261) .976(.301) 1959(413) 17(59)  2.167(1.511)
za[ge__g2 878 (.191) 367 (.175) 767 (175)  .889(.209) 132(296) 975 (.444) 067 (1.‘1 53)
age_ﬂg3 1.789(215) 1.172(.208) 1.817(205) 2.268(.246) 2.259(342) 135(493) -067(1.184)
mars® 687 (228) 739 (230 8(222) 679 (249)  293(.342) .8(.503) A4(1.301)

mars®  67(274) 672(273)  .65(268) .T13(306) 419(415) 1.25(586) 1.133(1.516)

ed? -163(229)  .083(205)  -.1(204) -411(244) -19(352)  .15(493) -367(1.448)
ed?® -524(232)  -017(221)  -25(218) -3589(256)  -8(36) -475(514) -9(1.394)
ws? ~A75(199)  -011(181) -167(.182) -168(22) -99(3I3) -1.3(447) -433(1.105)
ws? S515(333)  -.567(294) -317(291) -247(346) -871(306) -45(755)  .2(1.685)

inc_q2 -302 (401)  .067(.324) -2().328  -084(408) -38(559) -8(832) -333(2.08)

il’l(:_q3 -.698 (374) -.306 (.33) -45(315) -T716(383) -6(519) -145(769) -933(1.922)
inc_q4 -662 (373)  -072(324) -267(314) -589(385) -634(.520) -1.425(781) -1.433(1.882)
inc_q5 -1184 ((412) -106 (367) -367 355() -1.089(442) -1.459(.601) -255(91) -2.933(1.894)
pai2 =205 (.192)  006(177) -167(\178) -05(209) -464(293) -325(454) -1567(1.158)

pai' -917 (1196)  -.044 (.198) -.267(.2) -747(24)  -1206(35) -1.95(497) -3.367(1.09)

cons 242 (.456) 18.82 (.459) 20.58 (424) 23.09(49) 26.71(.657) 31.33(949) 37.93(2.596)




Table 2.7: Estimate of the influence to BMI at the mean and some quantiles (CCHSN2004_Female)

Coef. OLS Quantiles
10th 25th 50th 75th 90th 99th

regl 1.146 (639) 794 (269) 1.483(.334) 405(364) 1.219(.702) 2.325(1.324) -1.716(6.61)
reg’ S412(T11)  -211(259)  .49(347)  -715(389) -1.224(.788) -1.59 (1.427) -992 (6.573)
reg’ - 101 (601)  -404(.255) .347(341) -235(354) .052(.686) -1.482(1.21) -347(6.822)
reg* 708(.602)  666(252) 1.163(.329) .265(361) -.0432(.692) -025(1.228) 2.302(7.52)
age g’ 1.728(511) 1055(201) .877(271) 2025(292) 1705 (634) .3.02(')(.998) 2336 (3.772)
age g’ 1854(509) 1.449(195) 1.772(278) 2.335(295) 1962(645) 3.66(1.051) .742(4.951)
mar52 232 (.464) 182 (162)  1.017(.264)  4(292) 49 (.634)  -2.367(.938) -461(3.293)
mar53 682 (.641) 1.269 (.189)  1.57(310)  .775(.390) 1.423(925) -2316(1.3) .369(5.481)
ed? S1.198 (706) 116 (.149) -985(282) -2.04(352) -1.434(.758) -2.808(1.41) -072(3.974)
ed’® S1.928(631) -195(148) -1.238(27) -2.72(333) -1.448(.729) -3.65 (1.313) -.717 (3.333)
WSz -687(.587)  -021(.165) -02(287) -17(308) -872(609) .33(1.093) -2.392(5.53)
ws® -786(589) 0764 (.178) .333(304)  .155(340) -813(.677) -.808 (1.126) -5.195 (4.89)
inc q° 254(876)  -19(315) -1.705(353) 61(716) -457(1.239) 3313 (1.879) 3.057 (3.986)
inc_q’ 1.071(771)  474(239) -575(508) .82(687) 1378(1.196) 3.661 (1.681) 4.881(4.053)
in(:_q4 1.069 (.717)  .886(.248) -683(499) 99(.681) .753(1.165) 3.431(1.642) 5.552(4.231)
in(:__q5 601 (.833) 61(259) -968(.535) 405(.710) 347 (1.221) 2.279(1.807) 5.598 (5.345)
paiz -.599 (.459) 324 (.137) 07(24)  -245(267) -1.558(.535) -1.175(964) -1.47 (2.66)
pai’ -1.889(419) 14 (167)  -348(274) -1.205(.302) -2.672(.590) -4.188 (.891) -9.198 (3.81)
cons 26.99(1.038) 18.50(.352) 22.12(.547) 25.7(.73) 30.32(1.39) 36.63(2.247) 46.5(5.896)




Table 2.8: Percentage Distribution of BMI

Year Sex Under weight  Normal Overweight  Obese [ Obese I Obese 111
Male 0 48% 40.7% 10.3% 1% Y
1978 Female 4.1% 56.9% 28.7% 8.4% 1.9% %
Male 0 41% 46.8% 10.7% 1,5% %
1994 Female 2.5% 57.8% 27.7% 9.6% 2.4% %
Male 0 32.4% 41.1% 18.6% 6.5% 1.4%
2004 Female 2% 43.5% 30.6% 13.6% 5.8% 4.5%
. Male 1.3 44.6% 42.5% 9.5% F F
1978 Female 3.4% 52% 28.7% 11.5% 2.9% 1.5%
. Male 14 33.6% 42% 16.5% 4.8% 1.6%
2004 Female 25% 44.1% 30.2% 14% 5.5% 3.8%

The data of 1978‘ and 2004‘

=}

N

are adopted from Table 2 of Tjepkema (2006)



Table 2.9: Ranking of Factors by Degree of Importance -—Male

Quantite 1978/79 1994/95 2004

t 2 3 4 5 6 74t 2 3 4 5 6 7|1 2 3 4 5 6 7
10 A R P I MWEJA RMWI E P|{A I ME R W P
25 A R M PI WEJA MR E I WPIA I MP R W E
50 A R M I P WEJA ME R I WPIMR E 1l A W P
75 M 1 P A R WEJ|E MR A P Il WIA P W WE R M
90 I W M P AR EJE R A1 P WM|E P R R A M W
95 I W P MARE}E R A P MI!I WIE P R A1l W M
99 P R 1 W A E MIE R W A P I M|IR E P I A M W

A:age Riregion M: marital status

W: working status E: education P: physical activity

1: family income



Table 2.10: Ranking of Factors by Degree of Importance -—Female

Quantile 1978/79 1994/95 2004
1 2 3 4 5 6 711 2 3 4 5 6 7 1 2 3 4 6 7
10 A R W P I M EJA R M W | E P A R 1 E P w
25 A R W P I M E|A R M W | P E A R E P P W
50 A 1 R P W M EJ|A R 1 M P E WI}lA E R 1 M W
75 A W R I P M E{A R W P 1 E M {P A R W M W
90 A 1 P R W M EJA I R P W M E P R E R M W
95 A 1 P W R M E|(I P R A M W E P E 1 A M W
99 P R A M W I E{P I R E M W A|P W R I M E
Arage Riregion M:marital status W:working status E: education P: physical activity [ famnily income
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Table 2.11: Predicted Percentage Distributions of BMI

Sex Male Female

Year 20074 2007°  2014° | 2007 2007 20147
Under weight 1.2% 0 0 3.9% 1.1% 1.8%
Normal 38.4% 28.8% 23.5% 50.2% 41% 36%
Overweight 39.3% 40.5% 38.8% 257% 31.8% 30.5%
Obese 1 13.3% 20.8% 21.8% 9.8% 15.7% 17.4%
Obese 11 2.7% 72% 10.5% 3.4% 5.9% 6.5%
Obese 11 1.2% 2.7% 5.4% 1.8% 5.6% 9.6%

A denote estimation from Statistics Canada (CANSIM, Table 105-4009) and P denote the predicted percentage distribution

of BMI from this study. Our prediction is for people aged 20 and 64, while estimation from Statistics Canada is for people

aged 18 and over.



Figure 2.1
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Figure 2.3

Density Function of BMI
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Figure 2.4
Density Function of BMI
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Figure 2.5

Decomposition
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Figure 2.7

Decomposition of Difference of BMI Distribution
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Figure 2.9

Comparison of Decomposition over Two Periods
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Figure 2.11

Prediction of Distribution of BMI
Male 2007 and 2014
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CHAPTER 3
The Pattern of Shifts in the BMI for Canadian Adults,

1994-2007
3.1. Introduction

The BMI is defined as weight in kilograms divided by the corresponding‘ height in
meters squared. According to the standard for obesity defined by the WHO (World
Health Organization, 1997). the BMI for adults is classified into six categories: un-
derweight, normal, overweight, obese I, obese II and obese 11 . Each category of the
BMI represents a different level of health risk (Flegal et al.. 2005). Although under-
weight is also frequently associated with poor health, the sharp increase of obesity
in many countries in the last two decades has attracted much attention in research.
policy making and the health industry. An obesity epidemic implies that the number
of people who shift from normal and overweight to the obese categories over time
exceeds the number of people whose shift in the opposite direction over the same
time.

Movements between different BMI categories could provide very important infor-
mation on the obesity problem such as the characteristics of shift patterns among
different groups, the spectrum of transition probabilities, and the long-run dynamic

equilibrium. This information should prove useful, not only for health care and other

lUnderweight is defined as BMI < 18.5, normal as 18.5 < BM I < 25, overweight as 25 < BM I <
30, obese I as 30 < BMI < 35, obese II as 35 < BAMI < 40 and obese 11l as BM T > 40.
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health related issues, but also for designing more efficient policies for containing and
mitigating the obesity problem. For example, better understanding of the obesity de-
terminants and dynamics would prove valuable for predicting the prevalence of some
diseases such as cardiovascular disease, hypertension and diabetes I, and evaluating
the demand for health care and other medical resources related to these diseases.
Despite its important economic and policy implications, there are only a few papers
thaf study the patterns of the shift from one BMI category to another. In this study,
we explore the dynémic characteristics of the BMI shift? of Canadian adults from
the longitudinal National Population Health Survey (NPHS) using Markov Chain
analysis.

Markov Chain analysis has a long history in economics. In an early application
of this method, Adelman et al. (1958) investigated trends in the concentration and
mobility of firms in the U.S. iron and steel industry. Salkin et al.(1975) predicted
the population of the western United States by studying the structure of population
movements. These early studies assume stationarity. which requires that the transi-
tion probability from one state or category to another is constant over time. In order
to build the model on a solid footing and to reflect better the dynamics of the actual
process, time varying or nonstationary Markov Chains have also been used in studies
of social mobility and industry concentration. For example, Zepeda (1995) employed
aggregate time varying Markov chain methods to examine the size distributions of

dairy farms.

2In this paper, the BMI shift is defined as movements among different categories of the BMI.
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Whether the BMI shift process is stationary has important implications for future
trends in obesity. In particular, stationary shifts in the BMI distribution can generate
more reliable predictions of obesity prevalence in the long run. These predictions can
then be used to evaluate the impact of obesity on society and the economy. On the
other hand. if the BMI shift is not stationary, factors that affect people’s weight are
not balanced and their influence on weight varies over time. Hence, measures for
obesity prevention and control should be adjusted accordingly.

Studies of obesity show that, before the early of 1990s, the prevalence of obesity
in Canada has changed slowly, but 1t has increased dramatically during the 1990s
and 2000s. This fact may imply that the BMI shift (or. more precisely. the transition
probability matrix corresponding to the BMI shift) before and after 1990s, is not
stationary. While this hypothesis can be tested using aggregate data on the prevalence
of each category of BMI, it seems more interesting to study the stationarity of the
BMI shift since the beginmng of the 1990s, when the obesity prevalence in Canada
has exhibited substantial increases (Tjepkema, 2006).

Based on micro-level biennial data from the longitudinal NPHS survey from
1994/95 to 2006/07. this study shows that men and women have different patterns of
BMI shift. However, the shift patterns for both groups in all two-year periods exhibit
a-common positive trend, 1.e. people who move to higher categories of BMI are more
than those who move to lower categories. Stationary tests show that for men and for
women, BMI shifts are not stationary over this period. By conjecturing that people
who have different lifestyles may differ in shift patterns, the Markov chain method

is also applied to subgroups of men and women based on their activity level. More
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specifically. these subgroups are formed by men and women who are active, moderate
and inactive in physical activity. The results of the stationary test for these subgroups
show that. for both men and women, the BMI shifts of the active and inactive groups
are nonstationary but the BMI shifts of the moderate group are stationary. Further-
more, the BMI shifts for the moderate group are ergodic, which is to say there exist
1Imique steady states of BMI for men and for women who are moderate in physical
activity. According to the estimates of the transition probability matrices of these
two moderate groups. in the steady state, the obesity prevalence'fér men who are
moderate in physical activity is 29.61%, while for women who are at the same level
of physical activity. obesity prevalence is 23.37%".

These results offer some interesting policy recommendations. While it may be
difficult to induce people who are physically inactive to become fully active, it might
be feasible to encourage them to switch from being inactive to moderately active.
This could be achieved by walking 30 to 60 minutes a day, or taking an hour-long
exercise class three times a week (Gilmour, 2007). If all inactive people succeed in this
transformation and if the obesity prevalence for active and moderate groups remains
unchanged, the obesity prevalence in Canada could be contained below 25% in the

long run®.

3The empirical results of this study reveal that the stationary hypothesis for the moderate group is
strongly supported for both men and women.

1This prediction is based on the reasonable assumption that the obesity prevalence for the moderate
group is less than that for the inactive group but higher than prevalence for the active group.
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3.2. Data Description

The data used in this study are from household component of the longitudinal
NPHS. The NPHS is conducted every two years starting in 1994/1995. The first three
cycles (1994/1995. 1996/1997 and 1998/1999) were both cross-sectional and longitu-
dinal. From Cvcle 4 (2000/2001) onwards, the survey became strictly longitudinal
(collecting health information from the same individuals in each cycle).

The NPHS was designed to provide measures of the level. trend and distribution
of the health status of the population, collect data on the economic, social, demo-
eraphic. occupational and environmental correlates of health, and provide informa-
tion on a panel of people, who are followed over time, to reflect the dynamic process
of health and illness. The data were collected primarily through computer-assisted
personal interviews in 1994/1995 and primarily through computer-assisted telephone
interviews thereafter. Telephone interviews comprised over 96% of all interviews in
1996/1997 and 1998/1999; over 98% in 2000/2001 and 2002 / 2003; and more than 99%
in 2004/2005 and 2006/2007. The survey does not cover members of the Canadian
Forces. people living on Indian reserves or in some remote areas.

The NPHS longitudinal sample includes 17.276 persons of all ages in 1994/1995.
These same persons are set to be interviewed every two years over a period of 18
years, i.e. 10 cycles. This study collects data from all seven conducted and released
cycles of the NPHS from 1994/1995 to 2006/2007. These seven cycles form six two-
vear periods, and each of them is between two consecutive cycles. This study focuses

mainly on the respondents’ BMI shift from 1994/1995 to 2006/2007 and compares
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the shifts in each two-vear period. Two vears is a long enough period to allow adults’
weight changes from one category of BMI to another.

Although the NPHS longitudinal sample includes persons of all ages, this study
considers only respondents from 18 to 64 years old at each cycle from the first cvcle
to the sixth cycle of the survey. This means that, for each cycle from the second to
the sixth, our data set adds some new candidates who are 18 or 19 and drops some
old candidates who are 65 or 66. The reasons for limiting respondents from 18 to 64
years old at each cyclé are: ﬁfst, we are mainly interested in the BMI shift Ipatterns
of adults; second. we want to observe Canadians’ BMI shift patterns among groui)s
with the same age structure in different periods; and third, compared to children and
teenagers younger than 18 and elderly people older than 64, people aged 18 to 64
are stable in their height. and their BMI changes are mainly due to changes in their
weight. On the other hand. if we trace all respondents in all seven cycles, then, at each
cycle after the second cycle. there are always some respondents who are taken out of
the survey because of nonresponse or death which makes the number of respondents at
later periods decrease dramatically. Up to the seventh cycle. there is a high percentage
leakage of respondents. This may cause serious structural problems when we compare
the shift patterns in different periods. In addition. if we trace all respondents in all
seven cycles, the respondents’ age increases two years at each periods, and there is
a 12-year difference in age structure between the sample in the first period and the
sample in the last period. Besides keeping the age structure unchanged, our data

collecting method has another advantage since it allows the respondents who drop
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out of the sample in early periods to return back to the S‘d]'Il})lO later, as long as they
participate in any two consecutive cycles.

By using the proposed data collecting method, this study includes 8935 respon-
dents in the first period and 8316, 7995, 7514, 6967 and 6437 respondents in the
second to sixth periods, respectively. However, respondents in each sample are not
treated equally. In order to make the sample at each period to reflect the struc-
ture of the population, same individual may be assigned different weights in different
periods®.

NPHS (-:ontains the only longitudinal health survey that has beén conducted for
more than 12 vears in Canada. Since the data in the survev are self-reported, the
BMI based on the self-reported weight and height is generally expected to be underes-
timated. Nevertheless, the estimated probability transition matrices in this study are
highlv consistent with some previously reported findings that are based on measured
data. This observation suggests that the usefulness of the results is not compromised
by the self-reported nature of the data. Of course, future research on quantifying the
magnitude and the importance of the bias arising from underreporting seems nec-
essary in order to assess how the obesity prevalence estimates and predictions are

affected.

3.3. Markov chain Model

Let p! denote the proportion of people who belong to category i of the BMI at

cycle t of the survey and let pi; be the probability of moving to the BMI in category

5In this study, both the number of repondents and weight corresponding to them are used to describe
their BMI shift.
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j at cycle t. given being in category i of the BMI at cycle (f — 1). Then. it follows

that
(Ptl\ (Ptn Doy Pa Pu Pis P}n\ (ptl_]
Ph Py Phy Ph P D D | | Y
(3.1) | P _ Pis Phs Py P P35 Pes Py
P4 Pla Pha Py Pas Pas Doy | | P4
P5 Pis Dhs Dhs Dsa Dss D | | P

\P% / \Ptiﬁ Phs Phe D1 Des D / ps ! /

where 7 = 1,2.3,4,5.6 represents the six categories of BMI - underweight. normal.
overweight, obese I. obese II and obese III, respectively. Note that in the above
probability transition matrix of elements p};. Z?:l pi; = 1. for all ..

Based on the relationship between the BMI states in different cycles of the survey,
maximumn likelihood estimation can be used to obtain estimates of the probability
transition matrix of BMI shift between two survey cycles. If n' respondents are
interviewed in both cycles (t — 1) and ¢ of the survey, and if n! is the number of
respondents in BMI category i at cycle (t — 1), then Zle nt = n'. Moreover, if n};
denotes the number of respondents whose BMI state shifts from category 7 to category
j from cycle t — 1 to cycle ¢, then Z?:l ng; = n;.

Assuming that everyone’s BMI status is independent, the probability of the above

BMI transition of the respondents across all cycles can be written as

(3:2) L = I 10y (pl) "™

1=
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and the log maximum likelihood function is given by

7 6 6
(3.3) logL=">"%"% nllogp,;.

t=2 i=1 j=1

Using (3.3), the ML estimate of p{; can be obtained in a straightforward manner

as

£

n:-
(3.4) Py= 7 forij=12_.6

(2

The independence of the transitions in different periods implies that probability tran-
sition matrix in each period is only determined by the information from that period.
More specifically. the estimate of p; depends only on nj; and n} and the probability
transition matrix from cycle (¢ — 1) to cycle ¢ can be obtained from these estimates.
Intuitively, if there are n; out of n} respondents who shift from category i to category

3 when moving from cycle (¢ — 1) to cycle ¢, the probability for this shift should be

The likelihood function in (3.3) is valid under the assumption that each observa-
tion has the same weight. This is typically not the case for survey data where different
observations or respondents have different weights and should not be treated equally.
In order to account for this fact, weight information should be incorporated into the
model. Instead of using the number of respondents in the sample, each observations’

weight is used to reassign the frequency that each respondent appears in the sample.

SFrom log L = Z?:] S =1 1) log pfj and pg = 1— Z;zl Pij, the first order condition can be written

AlogL _ my  Mi—2i_y Mj ng M=oy i . Sy .
as sl =g L od=t Y (for or S = ——=4=1 " Since the right side is same for each 7.
R A e S CAR S SHRy P g 7

R
it follows that :j = ?—; for j,1 = 1,2,3,4,5, which implies that pf; = 22 for i, j =1,2,3,4,5,6.
i ok i
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If n' respondents are interviewed in both cycles (¢ —-1) and t of the survey, and wfj‘_
is the sum of weights of all respondents whose BMI status shifts from category 7 to
category j from cycle (t — 1) to cycle ¢, we can regard n'w;j' as the number of re-
spondents whose BMI shifts from category i to category j from cycle (t — 1) to cycle

t. The likelihood function under this setting can be expressed as

t

(3.5) L= HZ:2ﬂg=1H?‘=1 (Pﬁj _)n o

The corresponding log maximum likelihood function is

7 6 6

(3.6) log L = Z Z Z n'w;; log pi;

t=2 i=1 j=1
and the ML estimate of p;j' can be written as

t
—— 9 fori,j=12 6.
6 ; et

w

(3.7) f’fij =

3.4. Estimate Results

The probability transition matrix for the six periods described in the data section
are estimated by applying the Markov chain method to NPHS longitudinal data.
Table 3.1 to Table 3.6 report the estimated probability transition matrices for all the
six periods. Each table contains probability transition matrices for the whole sample
and subsamples for men and women.

From the probability transition matrices, it is easy to see that, except for uﬁ—

derweight people, people in the other five categories are more likely to stay in their
"For each period or t, Zle Zj:’:] wl?j =1.
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own categories®. Although most peoble with normal weight are still normal after 2
years, more than 90% of the people who left this group become overweight or obese.
For overweight people, the possibility of becoming obese is not very different from
that of going to normal or underweight; their differences are less than 1.5% in most
of the periods. In addition, in three of the six periods, more overweight people be-
come obese, and in the other three periods, more overweight people become normal
or underweight. Obese people who left their categories, regardless of their obese cat-
egory, are more likely to shift to the lower categories of BMI. However, because the
proportion of normal and overweight people is much higher than the proportion of
obese people”, the number of people who transfer from the normal or overweight cat-
egories to the obese categories is much more than people who move in the opposite
direction. Hence, the prevalence of obesity keeps increasing during the period under
investigation.

For both nﬁen and women, the normal and overweight categories are the most
stable categories; however, if we observe men and women in these two categories
separately, their tendencies for staying in and leaving their original categories are
different. Normal weight women are more likely to preserve their BMI status than
normal weight men; in contrast, overweight men are more likely to remain in their
BMI category than overweight women. Furthermore, overweight women are more
likely to go back to normal weight than overweight men and overweight men are
more likely to be obese than overweight women'’. Compared to men who are in
8Normal and overweight people are most stable in their weight with more than 81% normal-weight
people and 75% overweight people do not change their categories.

9The proportion of people in the lower obese category is higher than that in the higher obese category.
10A1} these conclusions on BMI shift are obtained from two-year-period shifts.
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obese classes I and II; women who belong to these categories are more likely to be
more obese; however, compared to men who are in obese class I1I, women in this
category are more likely to go back to lower obese classes.

With these BMI shifts, what BMI distribution can we expect in the next period?
If we look at the BMI percentage distribution at the beginning of each period in T'able
3.7, it is easy to see that, for bot-h men and women, the prevalence of normal weight
declines over time, while the preV'alenqe of each obesity category continually increases.
Because overweight men are more likely to be obese than overweight women, men have
higher prevalence to be in obese class I than women. Women in obese classes T and
IT are more likely to be more obese than men in these two classes and the women’s

group has a higher prevalence to be in obese class II and III than men.

3.5. Future Obesity Prevalence in Canada

Studies of obesity show that prior to the beginning of 1990s’, the prevalence
of obesity in Canada changes slowly; in contrast, after 1990s’, obesity prevalence
increases dramatically (Tjepkema, 2006). This fact may imply that the BMI shift
differs in the periods before and after 1990, and the BMI shifts after 1990 reflect the
BMI shift patterns of the obesity epidemic in Canada.

How worse could the obesity prevalence be if the current BMI shift were sustained?
WiIll the prevalence of obesity continuously increase? Answers to these questions have
very important implications for the economy; for example, how many resources need
to be allocated to the treatment of obesity-related illness and how much output would
the economy lose because of the absence from work due to the increasing prevalence

of obesity.
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The answer to the first question is meaningful only in the short run. To predict
obesity prevalence in the short run (ten years, for instance) it is convenient and
reasonable to assume that the BMI shift will remain unchanged. even if it is actually
a nonstationary process. This setup is often used in the application of the Markov
chain analysis in the literature. Based on the assumption that the BMI probability
transition matrices for men and women are unchanged in the ten vears from 2006.
.the percentage distribution éf BMI for men and women in 2008, 2010, 2012, 2014 and
2016 are given in Table 3.8'. |

The prediction reported in T'able 3.8 shows that in 2016 the Canadian men’s and
women's obesity prevalence would reach 32.2% and 25.2% respectively. In the next
10 vears, the prevalence of all three obese classes will keep increasing for both men
and women while the prevalence of normal weight will keep decreasing. For women,
the prevalence of overweight will also continually increase in this period; however, for
men. the prevalence increases initially but then starts to decrease.

Will the prevalence of obesity continuously increase? This question concerns obe-
sity prevalence in the long run. If a Markov chain is ergodic, then there exists a
steady state or an equilibrium and the equilibrium distribution is unique and inde-
pendent of the initial configuration (see Chapter 11 in Hamilton, 1994). Although
nonstationary Markov chains can also be ergodic, the small number of observations

makes 1t difficult to evaluate whether the system is ergodic or not. In contrast, if we

UThe prediction is based on the estimated probability transition matrix from 2004/05 to 2006/07
and the initial BMI percentage distribution in 2006.
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know that a Markov chain is stationary. as long as its probability transition matrix

is irreducible and aperiodic'?, it is ergodic.

3.5.1. Stationarity Test and Obesity Prevalence in The Long Run

Is the BMII shift in Canada stationary after 19907 To answer this question, the
stationarity of the BMI shift is tested using the test that was proposed by Anderson
and Goodman (1957). The test is based on estimates of the six probability transition
matrices in the pe‘riod from 1994/95 to 2006 /07 for men, women and the whole sample.

Suppose that the probability transition matrices are stationary over the survey
period from 1994/95 to 2006/07. and p;; denotes the probability of an individual’s
BMI moving from category i to category j. Then the null hypothesis can be written
as Hy : pl; = piy (t = 2,3, .7)". Under the null h}«;pothesis, the likelihood function

(3.5) takes the modified form
(3-8) L= HZ:QH?ZIH?:I (psj )"

and the estimates corresponding to this new likelihood function are given by

(3.9) R

121f one of the eigenvalues of the probability transition matrix is unity and the remaning eigenvalues
are less than one, then the Markov chain is ergodic.

13In order to make the notation consistent, pi; that starts with (2) represents the transitional
probability between cycle ¢t — 1 and cycle ¢.
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The estimate p;j is constructed as the ratio of the total munber of respondents whose

BMI shifts from category i to category j (3., = 2"n‘w;j') and the total number of

respondents whose BMI is i at the beginning of each period (3, = 19", = 2"n'w;kt).
Following Anderson and Goodman (1957), the stationary test for the BMI shift

has the form

(310) ZZZ”W p1] pl] /pz] Z\z

1=1 t=2 j3=1

If the null hypothesis is true, x? and x? are distributed as chi-square with (T —
2)[m(m — 1)] and (I" — 2)(im — 1) degrees of freedom. respectively, where T is the
number of cvcles of the survev. and m is the number of states. The test statistics
(3.10) covers the whole period from 1994/1995 to 2006/2007 and T and m are equal
to 7 and 6, respectively'?

Table 3.9 presents the results of the stationary tests for men, women and their
combined sample over the six periods. The results of the stationary tests show that
the BMI shifts appear to be nonstationary. The BMI shift patterns for men and the
combined sample tend to be more unstable than those for women. Since it is difficult
to verify if the BMI shifts are ergodic when they are nonstationary, this means that
the future prevalence of obesity obtained from the man’s and women’s nonstationary
BMI shifts would be unreliable. -

It is natural to think that people with different characteristics may have different
BMI shift patterns which might help us to identify subgroups with stationary BMI
HTests for stationarity over several periods can be tested in the same way. For example, if we want

to test the stationarity over the second to the fourth period, we just need to change ¢ in both (3.9)
and (3.10) from 3 to 5.



shifts. For example. lack of exercise and energy expense is believed to be one of the
direct causes that leads to obesity. As a result, it seems reasonable to assuine that
people who differ in physical activity may also differ in their BMI shift. Using levels
of the energy expense. people can be categorized as active, moderate and inactive
in physical activity!”. Taking a closer look at these three subgroups separately for
men and women. we find that. for the overweight and obese men and women. the
more active they are. in physical activity. the more likely they are to move to the
lower BMI categories. The stationary tests corresponding to these subgroupsvshow
that, for both men and women, the BMI shifts of the active.', and inactive subgroups
are nonstationary: however. the BMI shifts of the moderate subgroups are station-
ary'®. Furthermore. the probability transition matrices of the BMI shift for these
two moderate subgroups are nrreducible and aperiodic; hence, their BMI shifts are
ergodic. This implies that there exist unique steady states for men and women who
are moderate in physical activity. The BMI percentage steady-state distribution for
these subgroups are given in Table 3.11. At steady state, the obesity prevalence for
men who are physically moderately active is 29.61%, while for women who are also
physically moderately active. it is 23.37%.

Both previous studies and our analysis of the longitudinal NPHS data indicate
that, for both men and women, obesity prevalence is negatively related to their physi-

cal activity index (T'ables 3.12 and 3.13). Based on this fact, it is reasonable to assume

15 Acoording to the difinition that was adopted by NPHS, active in physical activity is defined as
using 3 or more kilocalories per kilogram of body weight per day; moderately active is defined as
using 1.5 to less than 3 kilocalories per kilogram of body weight per day: inactive is defined as using
less than 1.5 kilocalories per kilogram of body weight per day.

167gple 3.10 presents the results of the stationary tests for the active, moderate and inactive men,
women and their combined sample over the six periods.
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that, in the long run, even men or women who are physically moderately active would
reach their steady state and their obesity prevalence would still be higher than that
of the active group and lower than that of the inactive group. Hence, in the long
run, the obesity prevalence for active Canadian men and women can be kept below
29.61% and 23.37%, respectively, while obesity prevalence for inactive Canadian men
and women is expected to be higher.

People who are inactive in physical activity account for the biggest portion of
the Canadian population. Close to half (48%)'0f C.anadians.a.ged 12 or older (12.7
million people) were inactive in their leisure time in 2005 (Gilmour. 2007). This
means that obesity prevalence in Canada is predominantly influenced by physically
inactive people.

A policy recommendation that naturally emerges from these findings is to encour-
age or provide incentives to inactive obese people to become moderately physically
active. This could be achieved by walking 30 to 60 minutes a day, or taking an
hour-long exercise class three times a week. If these people could become moderately
active, then obesity prevalence could be decreased gradually. We could evaluate this
effect by applying the BMI shift pattern of moderate group to the inactive group.
More specifically, the estimated probability transition matrices (which do not reject
the stationary hypothesis) are used for the inactive group BMI distribution at the
initial year, 1994/95. Applying the formula (3.1) recursively, the BMI percentage
distributions at each of the following periods are given in T'able 3.14 for men and
Table 3.15 for women. In order to verify if physical activity is negatively related to

\obesity prevalence, the probability transition matrices of moderate groups are also
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applied to the active groups and the resulting BMI distributions are also reported in
Table 3.14 and Table 3.15. Comparing these calibrated BMI percentage distributions
to the actual BMI distributions in T'able 3.12 and T'able 3.13. it is easy to see that for
the inactive group the calculated obesity prevalence is always lower than their actual
counterpart in the periods following 1998/99. For example. if women who were phys-
ically inactive in 1994 could become physically moderately active. then their obesity
prevalence in 2004 would decrease by more than 2%. In contrast. the calculated obe-
sity prevalence for the active group is higher than its actual counterpart in most of
the subsequent periods which lends Vsupport to the hypothesis that the relationship
between physical activity and obesity prevalence is negative.

From these results, we can conclude that imposing the moderate group’s shift pat-
tern will slow down the increase of obesity prevalence of the inactive group although
its obesity prevalence would still increase. If they are successfully shifted from inac-
tive to moderately active. their obesity prevalence would approach that of moderate
people in the long run. Given the low obesity prevalence of the active group and
the difference in obesity prevalence between moderate men and women. the obesity
prevalence among Canadian adults could be confined to around 25% in the long run
as long as all inactive Canadian adults become moderately active.

In this paper, only BMI shift patterns for active, moderate and inactive subgroups
are studied'”. However, this method could be applied to any other subgroups which
are formed using a different categorization such as race, age. resident region, and

socioeconornic status such as family income and education.

17The respondents included in this study are between 18 to 64 years old.
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3.6. Discussion

It is often acknowledged that self-reported BMI is not reliable because a large
part of respondents, especially heavy respondents, tend to understate their weight or
overstate their height. For example, Gorber et al. (2007) found that, in the Canadian
Community Health Survey, the proportion of respondents reporting being obese was
estimated to be 18% for those who were interviewed in person compared with an
estimate of only 13% for those who were asked the same questions by phone. In
NPHS, height ana weight are self-reported and they are obtained by phone. While this
may induce some biases in the estimation results, the obtained probability transition
matrices are fairly consistent with some previous findings that are based on measured
data.

The probability transition matrices from this study show that woinen with nor-
mal weight are more likely to keep their BMI status than normal weight men while
overweight men are more likely to keep their BMI status than overweight women.
Further. overweight women are more likely to go back to normal weight than over-
weight men, and overweight men are more likely to become obese than overweight
women. Finally, women who are in obese class I and class II are more likely to become
more obese than men who belong to the same categories. This is highly consistent
with the previous findings on the BMI distribution of the Canadian population which
can be summarized as follows: (i) normal-weight women are a higher percentage than
normal-weight men; (ii) men who are in the overweight and obese class I categories

are a higher percentage than women in these two categories; and (iii) women have a
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higher prevalence in obese classes II and III than men'®. Why is the BMI shift based
on the understated BMI still consistent with the objectively measured tendency in
the BMI distribution? A possible explanation is that overweight and obese people
use similar rates to underreport their weight and over-report their height, and these
rates are stable over time. Although the estimate of the BMI shift may not yield
an exact estimation of the BMI distribution, it does reflect the relative movements
across the different BMI categories.

Stationary tests show that the BMI shifts for the active and inactive groups are
nonstationary but the BMI shift for the moderate group is stationary. This result
still holds when the categories of BMI ave reduced to four categories which are not
obese, obese class I. obese class I and obese class III. Compared to the moderate
group, people in the active group do not easily keep active at the same level all the
time, especially those who are very active in physical activity. When there is an
unexpected change in their life or in the environment, these people may reduce their
physical activities dramatically while their food consumption do not change much. In
other words, the BMI of these people are more sensitive to unexpected changes than
people in the moderate and inactive groups. The stationary tests for both active men
and women show that \3 is the component that leads to significantly rejections of the
null hypothesis'®. This means that, in the active group, people with normal weight
are the most unstable subgroup in terms of BMI shift and their mutableness is the

main source of the nonstationarity of the BMI shift for the active group. This result

18See Table 2 of Tjepkema (2006). The results in the table show that, in 2004, the prevalence of
normal weight, overweight, obese class 1, 2 and 3 for man are 33.6%, 42%, 16.5%. 4.8% and 1.6%,
respectively, while the cooresponding percentages for women are 44.1%, 30.2%, 14%, 5.5% and 3.8%.
19 A5 mentioned above, under the null hypothesis, x2 (i = 1,2,3,4,5,6) in the stationarity test (3.10)
are distributed as chi-square with (T — 2)(m — 1) degrees of freedom.
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supports the previous interpretation of the nonstationarity for active group w-hich is
that people who are very physically active are unstable in their BMI shift.

A closer inspection of the stationary test for physically inactive people reveals
that x2is the largest part and 3 is the second largest part that contribute to the
nonstationarity of BMI shift for the inactive group. This implies that, in the inactive
group, overweight and normal weight people are the most unstable subgroups in terms
of BMI shift. This finding may be difficult to rationalize but one possible reason is
that inactive people who are in the overweight and normal categories are sensitive to
changes in their weight. They may often struggle with their food intake and live in a
process of frequent transformation of diet control and indulging in eating which leads
to irregular changes in their weight.

In fact, even the stationary test results for the moderate group show that, \3
for men and 33 for women contribute most to the significant rejections of the null
hypothesis. This indicates that the BMI shift of normal and overweight people is the
main source of the changes in the BMI distribution. This means that, as a strategy
to address the obesity epidemic, effort to prevent the occurrence of new obese cases
is much more effective and important than effort to reduce the number of existing

obese people.

3.7. Conclusion

By applying the Markov chain method to the seven cycles of the longitudinal
National Population Health Survey (NPHS), this study investigates the BMI shift
patterns of Canadian adults aged 18 to 64 during the period 1994/95 - 2006/07

which is characterized by a dramatic increase of obesity prevalence. The estimated
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probability transition matrices indicate that men and women are different in BMI
shift patterns. However, the shift patterns for both groups in all periods exhibit a
common positive trend. i.e., the people who move to higher categories of BMI are more
than those who move to lower categories. Stationary tests show that for both men
and women, BMI shifts are not stationary over this period. Interestingly though, the
BMI shifts of moderately active subgroups of both men and women are stationary and
ergodic. Based on the estimated probability tramsitién matrices for the moderately
active groups, the obesity prevalence at stéady state. (long run) is predicted to be
29.61% for men and 23.37% for women.

Some of the main findings can be summarized as follows. First, women with
normal weight and overweight men have the highest probability to remain in their
BMI category. Second, because the proportion of normal and overweight people is
much higher than the proportion of obese people, the number of people who move
from the normal or overweight categories to the obese category is much more than
people moving in the opposite direction. Hence, the prevalence of obesity keeps
increasing over tume. Finally, the stationary tests show that the BMI shift of normal
and overweight people is the main source of the changes in the BMI shift and the
effort to prevent the occurrence of new obese cases would prove much more effective
than the effort to reduce the number of existing obese people.

People who are physically inactive account for the biggest portion of the Canadian
population. Compared with people who are physically active or moderate, the obesity
prevalence for this group is substantially higher. Hence, obesity prevalence in Canada

is most closely associated with physically inactive people. Health policies that aim at
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dealing with the obesity problem should focus Iﬁore on physically inactive people and
design incentives that would encourage them to become moderately or fully physically
active. Our calculations show that if all inactive people become moderately active,
assuming that obesity prevalence for active and moderate groups remains unchanged,

obesity prevalence in Canada could be confined below 25% in the long run.
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Table 3.1: Probability Transition Matrix 1994/95 to 1996/97

Whole
Underweight  Normal Overweight  Obese I Obese Obese
i 141
Underweight 43.43% 1.55% 0.01% 0.01% 0 0
Normal 54.97% 83.93% 13.1% 2.56% 0.92% 1.14%
Overweight 1.13% 13.85% 78.25% 24.16% 2.67% 1.96%
Obese I 0.19% 0.64% 8.29% 64.51%  33.85% 6.89%
Obese II 0.28% 0.02% 0.28% 82%  49.98%  30.08%
Obese 111 0 0.01% 0.07% 0.56% 12.58%  59.93%
Men
Underweight  Normal Overweight Obese I Obese Obese
n m
Underweight 51.83% 0.8% 0 0 0 0
Normal 45.73% 80.17% 11.3% 2.07% 0 0
Overweight ‘ 2.44% 18.27% 81.07% 2750%  3.08% 0
Obese I 0 0.76% 7.53% 64.36%  32.55% 1.7%
Obese i 0 0.01% 0.11% 56.91% 53.05%  25.61%
Obese 11X 0 0 0 0.37%  11.32%  72.69%
Women
Underweight  Normal Overweight Obese I Obese Obese
11 181
Underweight 41.95% 2.13% 0.03% 0.02% 0 0
Normal 56.6% 86.834% 16.42% 3.17% 1.62% 1.78%
Overweight 0.89% 10.43% 73.09% 19.9% 2.36% 3.07%
Obese 1 023% 0.56% 9.68% 64.71%  34.86% 9.83%
Obese H 0.33% 0.04% 0.59% 114%  47.61% 32.6%
Obese 11 0 0.01% 0.19% 0.8% 13.54% 52.7%
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Table 3.2: Probability Transition Matrix 1996/97 to 1998/99

Whole
Underweight Normal Overweight  Obese | Obese II :.::csc
Underweight 51.18% 1.17% 0.04% 0 0 0
Normal 48.54% 82.94% 12.92% 1.72% 0.38% 0
Overweight 0.28% 15.52% 75.52% 20.92% 3.04% 2.82%
Obese | 0 0.20% 11.25% 65.07% 27.15% 71.13%
Obese I 0 0.07% 0.26% 11.33% 59.45%  18.55%
Obese T 0 0.11% 0.01% 0.1% 9.98% 71.5%
Men
Underweight Normal Overweight Obese I  Obese II ::;)cse
Underweight 39.94% 0.7% 0.03% 0 0 0
Normal 60.06% 77.61% 11.58% 1.72% 0.25% 0
Overweight 0 21.41% 78.28% 21.58% 3% (]
Obese I 0 02% 9.94% 64.58%  28.86%  10.36%
‘Obese 11 0 0 0.16% 11.62%  56.81%  13.29%
Obese 111 0 0.08% 0 0.49% 11.07%  76.34%
‘Women
Underweight  Normal Overweight Obese I  Obese I :ﬁ)ese
Underweight 54.5% 1.52% 0.03% 0 0 0
Normal 45.13% 86.97% 15.45% 1.73% 0.44% 0
Overweight 0.37% 11.07% 70.3% 20.07%  30.66% 4.77%
Obese 1 % 021% 13.72% 65.7% 26.95% 4.88%
Obese 11 % 0.1% 0.46% 10.95%  61.09%  2222%
Obese 111 % 0.12% 0.03% 1.55% 931% 68.13%
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Table 3.3: Probability Transition Matrix 1998/99 to 20600/01

Whole

Underweight  Normal Overweight  Obese I Obese H ::i)ese
Underweight 44.87% 195% 0.29% 0.46% 0 0
Normal 53.83% 81.1% 11.96% 1.94% 1.24% 1.48%
Overweight 1.29% 16.24% 75.35% 24% 1.09% 3%
Obese 1 0 0.39% 11.57% 63.32% 23.05%  171%
Obese 11 0 0.24% 0.66% 9.51% 56.59% 13.8%
Obese HI 0 0.08% 0.15% 0.76% 18.03% 73.95%

Men

Underweight  Normal Overweight Obese I Obese 11 ::ll)ese
Underweight 13.06% 1.56% 0.35% 0.44% 0 0
Normal 81.4% 77.19% 9.62% 1.79% 1.75% 0
Overweight 5.54% 20.41% 78.98% 23.66% 0.37% 4.55%
Obese 1 0 0.48% 10.23% 64.75%  2417% 4.04%
Obese 11 0 0.36% 0.66% 8.96% 64.23% 6.14%
Obese 111 0 0 0.15% 0.39% 9.47% 85.28%

Women

Underweight  Normal Overweight Obese I Obese 11 ::;)ese
Underweight 54.62% 2.22% 0.18% 0.5% 0 0
Normal 45.38% 83.83% 16.34% 2.13% 0.86% 2.44%
Overweight 0 13.33% 68.55% 24,42% 1.63% 2%
Obese 1 0 0.33% 14.1% 61.56% 22.1% 10.17%
Obese I 0 0.15% 0.66% 10.18% 50.74%  18.74%
Obese 11 0 0.14% 0.13% 1.22% 2457%  66.65%




Table 3.4: Probability Transition Matrix 2000/01 to 2002/03

Whole

Underweight Normal  Overweight Obesel Obese 11 ::l;ese
Underweight 40.83% 1.67% 0.17% 0 0 0
Normal 50.3% 81.54% 11.14% 1.54% 0.68% 5.4%
Overweight 4.75% 15.75% 75.99% 20.47% 4.8% 4.29%
Obese 1 3.22% 0.6% 1.75% 66.41% 27.62%  3.26%
Obese H 0.9% 0.34% 0.89% 10.6% 47.99% 19.3%
Obese II 0 0.11% 0.07% 0.97% 1891%  67.76%

Men

Underweight  Normal Overweight Obesel  Obese 11 :::)ese
Underweight 28.42% 1.25% 0.25% 0 0 0
Normal 51.08% 77.23% 10% 0.88% 0 531%
Overweight 15.4% 19.87% 77.23% 20.28% 5.27% 7.24%
Obese | 497% 0.55% 12.12% 69.13%  32.14% 4.96%
Obese I 0.13% 0.83% 0.39% 9.23% 4807%  13.23%
Obese II1 0 0.26% 0 0.48% 1452%  69.25%

Womcen

Underweight  Normal Overweight Obesel  Obese I z:)ese
Underweight 46.09% 1.95% 0 0 0 0
Normal 50% 84.52% 13.3% 2.37% 1.35% 5.44%
Overweight 0.23% 12.89% 73.61% 20.7% 4.34% 2.7%
Obese 1 2.48% 0.63% 11.03% 63.02%  23.21% 2.34%
Obese 11 1.24% 0 1.84% 12.32% 47.92% 22.57%
Obese HI 0 0 0.2%" 1.58% 23.18%  66.95%
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Table 3.5: Probability Transition Matrix 2002/03 to 2004/05

Whole

Underweight  Normal Overweight  Obese 1 Obese I1 Obese
Underweight 39.58% 1.39% 0.03% 0 0 0
Normal 59.63% 82.48% 13.06% 1.14% 0.86%  1.22%
Overweight 0.79% 15.47% 76.05% 19.41% 255%  1.69%
Obese 1 0 5.61% 10.3% 68.2% 33.03%  8.59%
Obese 11 0 0.34% 0.32% 10.1% 50.72% 15.72%
Obese 1T 0 0.1% 0.23% 1.13% 12.84%  72.77%

Men

Underweight  Normal Overweight Obesel  Obese Il :::)ese
Underweight | 36.34% 1.19% 0 0. 0 0
Normal 62.25% 77.3% 9.08% 1.3% 0.64% 1.23%
Overweight 1.42% 20.73% 82.04% 18.71% 0.98% 0
Obese I 0 0.69% 8.68% 72.75%  29.01% 3.46%
Obese 11 0 0 0.1% 6.79% 36.38% 19.1%
Obese III 0 0.09% 0.11% 0.46% 13% 76.22%

Women

Underweight  Normal Overweight Obesel  Obese 11 :::)cse
Underweight 40.49% 1.53% 0.08% 0 0 0
Normal 58.9% 86.15% 20.02% 0.9% 1.07% 1.21%
Overweight 0.61% 11.74% 65.64% 20.57% 4.06% 2.45%
Obese 1 0 0.47% 13.13% 61.14%  36.89%  1091%
Obese 11 0 0 0.7% 15.23%  45.29% 14.2%
Obese I 0 % 0.4% 2.16% 12.68%  71.22%
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Table 3.6: Probability Transition Matrix 2004/05 to 2006/07

Whole

Underweight Normal Overweight Obesel Obesell :Z:)ese
Underweight 46.84% 0.99% 0.29% 0 0 0
Normal 44.32% 81.99% 10% 1.03% 0 1.11%
Overweight 8.84% 15.88% 78.28% 17.54% 1.75% 2.23%
Obese 1 0 0.99% 10.87% 69.83% 22.95% 8.7%
Obese II 0 0.07% 0.26% 10.91% 59.66% 23.65%
Obese 11 0 0.08% 0.27% 0.68% 15.68% 64.31%

Men

Underweight Normal Overweight Obesel Obese Il :::)ese
Underweight 14.31% 0.78% 0.35% 0 0 0
Normal 51.29% 77.5% 6.34% 1.21% 0 0
Overweight 34.4% 20.42% 82.79% 15.83% 0.21% 4.57%
Obese 1 0 1.23% 10.07% 72.8% 26.31% 9.42%
Obese 11 0 0.06% 0.32% 9.85% 61.54% 3.61%
Obese 111 0 Y 0.13% 0.3% 11.94% 82.4%

Women

Underweight Normal Overweight Obesel Obese Il ;:;)ese
Underweight 58.09% 1.13% 0.18% 0 0 0
Normal 41,91% 85.15% 17.46% 0.74% 0 1.82%
Overweight 0 12.69% 69.14% 20.35% 3% 0.72%
Obese 1 0 0.81% 12.51% 64.96% 20.1% 8.25%
Obese I1 0 0.08% 0.12% 12.66% 58.05% 36.56%
Obese HI 0 0.14% 0.6% 1.29% 18.86% 52.66%
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Table 3.7: Percentage distribution of BMI at the beginning of each period

Whole

Underweight Normal  Overweight Obesel  Obesell Obese I
1994/1995 2.11% 49.36% 35.88% 09.72% 1.99% 0.93%
199671997 L77% 4831% 36.69% 10.05% 2.23% 0.94%
1998/1999 1.61% 46.88% 3627% 11.38% 2.89% 0.96%
2000/1001 1.91% 44.78% 36.13% 12.37% 331% 1.5%
2002/2003 1.54% 42.7% 36.75% 13.83% 3.4% 1.77%
2004/2005 1.46% 42.42% 36.6% 14.2% 3.4% 1.92%

Men
199471995 0.61% 41.62% 44.92% 10.52% 1.67% 0.65%
1996/1997 0.78% 39.93% 46.08% 10.82% 1.64% 0.74%
1998/1999 0.73% 37.62% 46.20% 12.27% 2.45% 0.74%
2000/1001 1.10% 35.48% 45.95% 13.28% 3.16% 1.02%
2002/2003 0.65% 34.04% 44.87% 16.17% 3.2% 1.06%
2004/2005 0.07% 32.70% 45.78% 16.49% 2.92% 1.40%
Women

1994/1995 3.72% 57.68% 26.17% 8.86% 2.34% 1.23%
1996/1997 2.85% 57.40% 26.51% 921% 2.86% 1.16%
1998/1999 2.52% 56.61% 25.86% 10.44% 3.36% 1.20%
2000/1001 2.78% 54.711% 25.63% 11.38% 3.46% 2.02%
2002/2003 251% 52.09% 27.94% 11.30% 3.62% 2.55%
2004/2005 2.34% 53.62% 26.02% 11.56% 3.95% 2.51%
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Table 3.8: Prediction of Percentage distribution of BMI

Men

Underweight Normal  Overweight Obesel  Obesell  Obese Il
2006 0.52% 28.8% 45.71% 17.92% 3.64% 1.61%
2008 0.47% 25.81% 4831% 19.3% 4.23% 1.88%
2010 0.44% 23.54% 48.58% 20.52% 4.74% 2.18%
2012 0.42% 21.8% 48.54% 21.58% 5.19% 2.48%
2014 0.04% 20.44% 48.32% 22.46% 5.58% 2.8%
2016 0.39% 19.38% 48.02% 23.2% 5.91% 3.1%

Women

2006 - 201% 51.31% 27.28% 12.2% 4.75% 245%
2008 1.8% 49.43% 28.01% 12.91% 5.27% 2.58%
2010 1.66% 4787%  28.44% 13.56% 5.71% 2.76%
2012 - 1.55% - 46.57% 28.69% 14.13% 6.11% 2.94%
2014 .1.48% 45.47% 28.82% 14.62% 6.48% 3.12%
2016 1.43% 44.53% 28.89% 15.03% 6.83% 3.29%
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Table 3.9: Test for Stationary Hypothesis

Men Women Whole

X 283.11 23249 322,01

p value 0.01% 0.01% 0.01%
H, R R R

R denotes rejection of stationary hypothesis.
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Table 3.10: Test for Stationary Hypothesis (Subgroups)

Active Moderate Inactive -
Men Women Whole Men Women Whole Men Women Whole
}[1250 222.39 190.72 248.73 155.92 156.85 189.93 256.42 217.72 305.83
P 0.01% 138% 0.01% 35.35% 33.43% 1.52% 0.01% 0.03% 0.01%
value
H, R R R A A R R R R

A denotes acceptance of stationary hypothesis while R denotes rejection of it.
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Table 3.11: Percentage distribution of BMI at steady state (Moderate subgroups)

Underweight Normal Overweight  Obese I Obese II Obese HI
Men 0.12% 18.68% 51.59% 23.8% 431% 1.5%
Women 1.08% 42.46% 33.09% 15.09% 5.52% 2.76%

The results are just for men and women who are moderate in physical activity



Table 3.12: Percentage distribution of BMI at the beginning of each period (Men)

Active
Underweight Normal  Overweight Obesel Obesell Obese H1
1994/1995 0.1% 40.6% 47.8% 10.2% 0.8% 0.5%
1996/1997 0.4% 43 % 46% 87% 1.9% 0
1998/1999 0.4% 40.4% 47% 10.7% 1% 0.4%
2000/1001 1.7% 34.8% 49.3% 11.6% 2% 0.6%
2002/2003 0.5% 39.7% 44.6% 13.4% 1.1% 0.7%
2004/2005 0.8% 32.6% 48.2% 15.7% 1.8% 0.9%
Moderate
1994/1995 0.4% 37.8% 49.6% 9.9% 1.9% 0.4%
1996/1997 0.6% 36.6% 50.2% 10.7% 1% 0.9%
1998/1999 0.9% 36.3% 48.1% 12.1% 2.6% 0
2000/1001 0.5% 34.8% 48.3% 13.3% 2.2% 0.9%
2002/2003 0.6% 312% 466% 18% 24% 1.1%
2004/2005 0.9% 33.4% 45.9% 16.5% 1.5% 1.8%
Inactive

1994/1995 0.9% 43.8% 41.8% 10.7% 1.9% 0.8%
1996/1997 0.1% 40.5% 44.1% 11.4% 1.9% 1%
1998/1999 0.8% 37.2% 45% 12.7% 3% 1.2%
2000/1001 1.1% 35.8% 43.2% 14.5% 4.2% 1.2%
2002/2003 0.6% 32.3% 44.3% 16.8% 47% 1.3%
2004/2005 0.4% 32% 44.5% 17.1% 4.5% 1.6%
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Table 3.13: Percentage distribution of BMI at the beginning of each period (Women)

Active
Underweight Normal Overweight Obesel Obese Il Obese 111
1994/1995 4% 64.6% - 23.4% 6.4% 1.2% 0.3%
1996/1997 2.1% 615 % 26.7% 6.6% 2.4% 0.6%
1998/1999 22% 66.3% 21.9% 7.8% 1.7% 0.2%
2000/1001 2.3% 61% 23.7% 95% 2.8% 0.8%
2002/2003 2.7% 61.7% 22.1% 8.7% 3.9% 0.9%
2004/2005 1.8% 60.4% 23.2% 10.5% 2.9% 1.3%
Moderate
1994/1995 2.8% 61.8% 25% 72% 22% 0.1%
1996/1997 2.7% 62.1% 23.6% 8.4% 2.7% 0.6%
1998/1999 17% 58.1% 27.1% 10.7% 1.5% 0.1%
2000/1001 23% 55.8% 28% 9.6% 2.7% L7%
2002/2003 2.4% 51.5% 31.7% 11.3% 2% 1.1%
2004/2005 2.5% 55.3% 28% 10.2% 2.9% 1.1%
Inactive

1994/1995 4% 54.3% 27.3% 10.2% 2.7% 1.5%
1996/1997 3.2% 54.1% 27.9% 10.1% 3.1% 1.6%
1998/1999 3% 53.4% 26.4% 11.2% 4.4% 1.6%
2000/1001 32% 51.5% 25.3% 13.1% 4.3% 2.6%
2002/2003 2.5% 48.1% 28.2% 12.8% 44% 3.9%
2004/2005 2.6% 49.7% 26.4% 12.1% 5.2% 4%




Table 3.14: BMI Percentage distribution by taking moderate shift pattern (Men)

Active
Underweight Normal Overweight  Obesel  Obese i Obese HI

1996/1997 0.24% 3494 % 50.54% 12.55% 1.24% 0.49%
1998/1999 0.22% 30.98% 51.99% 14.63% 1.67% 0.51%
2000/1001 0.19% 28.09% 52.712% 16.39% 2.05% 0.56%
2002/2003 0.18% 25.94% 53.02% 17.84% 2.4% 0.62%
2004/2005 0.16% 24.33% 53.1% 19.01% 2.7% 0.70%
2006/2007 0.15% 23.11% 53.04% 19.96% 2.97% 0.77%

Inactive
1996/1997 0.31% 37.45% 46.67% 12.79% 1.98% 0.8%
1998/1999 0.24% 32.61% 49.5% 14.7% 2.14% 0.8%
2000/1001 0:21% 29.13% 51.09% 16.38% 237% 0.82%
2002/2003 0.18% 26.61% 31.96% 17.8% 261% 0.84%
2004/2005 0.17% 24.75% 52.39% 18.97% 2.85% 0.88%
2006/2007 0.16% 23.37% 52.56% 19.92% 3.07% 0.92%
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Table 3.15: BMI Percentage distribution by taking moderate shift pattern (women)

Active
_ Underweight Normal Overweight  Obese I  Obese II Obese III
1996/1997 2.59% 6121 % 26.87% 709%  158% 0.65%
1998/1999 1.95% 58.04% 29.07% 8.02% 1.99% 0.91%
2000/1001 1.64% 535.37% 30.46% 8.98% 2.38% 1.14%
2002/2003 1.48% 53.16% 31.35% 9.87% 2.76% 1.34%
2004/2005 1.38% 51.36% 31.92% 10.65% 3.12% 1.52%
200672007 1.31% 49.89% 32.29% 11.33% 3.44% 1.68%
Inactive
1996/1997 2.44% 53.16% 29.23% 10.43% 3.13% 1.6%
1998/1999 1.78% 51.58 % 30.55% 10.93% 3.42% 1.71%
- 2000/1001 1.48% . 50.1% 31.42% 11.48% 3.67% 1.82%
2002/2003 1.34% 48.81% 31.98% 12% 3.9% 1.93%
2004/2005 1.26% 47.75% 32.34% 12.46% 4.11% 2.03%
2006/2007 1.22% 46.87% 32.58% 12.86% 4.29% 2.13%
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Concluding Remarks

This thesis contains two different topics which study issues on time series econo-
metrics and health economics respectively.

The first chapter proposes a bootstrap test for a unit root in processes with
GARCH errors and shows 1ts aéymptotic validity under very weak moment and distri-
butional assumptions. The proposed method offers several important advantages over
the existing tests that do not exploit the information in the conditional variance and
its asymptotic counterpart. First, the test delivers impressive power gains by explic-
itly incorporating the GARCH structure of the errors, especially for highly persistent
GARCH specifications with power improvements over the DF-type tests. While the
asymptotic counterpart of the test requires the computation of nuisance parameters
and suffers from relatively large size distortions, the proposed bootstrap procedure is
straightforward to implement and appears to control the size uniformly over all pos-
sible GARCH specifications that guarantee the existence of second moments of the
errors. Finally, while generalizing the asymptotic theory to more complicated setups
would be quite involved, our bootstrap method can be easily adapted to models with
a lag length that goes to infinity at certain rate, asymmetric errors and other types
of conditional heteroskedasticity.

Chapter 2 has applied quantile regression to determine the quantitative influence

of several observable factors at different points on the Canadian BMI distribution,



using data from three distinct Canadian surveys undertaken in 1978, 1994 and 2004.
The results obtained strongly suggest that the epidemic of obesity in Canada is mainly
developed during the period 1994 to 2004. This epidemic is more closely related to
lifestyle and socioeconomic factors than demographic factors. Educational achieve-
ment has a negative impact., that is to say, the higher the educational level a person has
achieved, the lower the likelihood that person will be obese. The role of the education

has shifted over the years from the Wea.kést to the strongest factor affecting the BMI.
This, in turn, iInpliéS that the relationship between the capacity to avoid obesity and
education is strong. Among the seven factors in this study. being physically inz.l.ctive'
is the most important reason for women to be obese. On the other hand, working
status is the least important factor related to the BMI for both men and women.
This not only indicates the dominance of sedentary work and continually decreasing
expenditure of energy in the workplace, but also reveals that physical activity is the
main way for people to expend energy. The fact that age becomes less important
in affecting the BMI at higher quantiles indicates that a change in the age structure
of Canadians is not a reason for the obesity epidemic in Canada. A decomposition
by quantiles has been introduced, in an effort to explore the development over time
of the Canadian BMI distribution, especially in the future. The calculation reveals
that, after 1994, the component of most importance in changing the BMI distribution
has been the function of factors, that is, the changing intensity with which factors
impinge on BMI. Structural changes, that is, changes in the factors themselves, and
the interaction of structure and function are of trivial importance. To put the matter

technically: in a quantile regression analysis of the BMI by cross-sections over time,
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the most significant changes have been those in the coefficients. not changes in the
variables or changes in the interaction between the two.

Chapter 3 investigates the BMI shift patterns of Canadian adults aged 18 to 64 by
applying the Markov chain method to the seven cycles of the longitudinal National
Population Health Survey (NPHS, 1994/95 - 2006/07). The estimated probability
transition matrices indicate that men and women are differenf in BMI shift patterns.
However, the shift patterns for both groups in all periods exhibit a common posi-
tive trend. Stationary tests show that for both men and women, BMI shifts are not
stationary over this period. Interestingly though, the BMI shifts of moderate active
subgroups of both men and women are stationary and ergodic. Some of the main find-
ing can be sumarized as follows. First, women with normal weight and overweight
men have the highest probability to remain in their BMI category. Second, because
the proportion of normal and overweight people is much higher than the propor-
tion of obese people. the number of people who move from the normal or overweight
categories to the obese category is much more than people moving in the opposite
direction. Hence, the prevalence of obesity keeps increasing over time. Finally. the
stationary tests show that the BMI shift of normal and overweight people is the main
source of the changes in the BMI shift and the effort to prevent the occurrence of new
obese cases would prove much more effective than the effort to reduce the number of
existing obese people. People who are inactive in physical activity account for the
biggest portion of the Canadian population. Compared with people who are active or
moderate in their physical activity, the obesity prevalence for this group is substan-

tially higher. Hence, the obesity prevalence in Canada is most closely associated with
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the physically inactive people. Health policies that aim at dealing with the obesity
problem should focus more on the physically inactive people and design incentives
that would encourage them to become moderately or fully physically active. Our
calculations show that if all inactive people become moderately active. assuming that
the obesity prevalence for active and moderate groups remains unchanged, the obesity

prevalence in Canada could be confined below 25% in the long run.
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Appendix
A.1 Mathematical Proofs and Auxiliary Lemmas of Chapter 1

(1) Auxiliary Lemmas
Auxiliary Lemma 1
Under Assumption 1.
(a) hy — hy = 0, (1) + O(3")
(b) 7 =0, (1).

ProoF. For proof of part («), see Gospodinov (2008). For part (b) note that

- o~ . 52 52 . .
where v = min{w, &} > 0. Since E (—‘;) = % and =2 0, it 1s easy to show that

52 .
E=0,0).

Auxiliary Lemma 2

Let hf =w [1 + Y e, IE (&n;’fi + ,3)] and €; =} \/&3 {1 + 3 (d’?’)t*fi + 3)]
and suppose that 03 is drawn from Fi'™(n) and the sequence {h}} is initialized
from its invariant measure. Then, {h;} and {e}} are strictly stationary and ergodic

processes.

Proo¥r. The proof follows directly from Theorem 2 in Nelson (1990).

130



Auxiliary Lemma 3

* £; a e 1 Ak—1_x ' . e
Let gt = )\15t + /\Z[E — E 7? — 1)21:1 ;311 1:t—k] and ‘ft = )\lgt 4 )\2[W _

a (g1 o Ak—1_x N Ty - T
E(E’:—t — )Y, 8 e ). and denote Sy, = \71? £:1] & and S[,Tr} = ?}? Zlel :

for {0 <r <1}. Then, E*

S — S[,Tr]’ — 0.

Proor. The proof is similar to the proof of (4.6) in Lemma 4.2 in Ling and Li

(2003). More specifically,

% | 1 1 * )‘2 5:2 ~ - Ak—1 _*
E™ Sy — Sy SﬁZE hj*(h;* -1) (0'2,3 €tk
t=1 k=t
< L%E ﬁ(572 - ){E* dié"‘" ik
VT hi " hy = h}
< L%E* Az (7}*2—1)‘E* diék 15k
- VT Vag — h}
[TT] oo
<y (D)
I3 \=
L
- O(ﬁtfz)HOaST—aoo,
T t=1

where ¢ 1s a constant.

Lemmas and Theorems

Proof of Lemma 2

part (a)
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For-any n € R.

27
sym . 1
(3.11) Fr"" (n) = 57 ;:1 I(n; <n)
1 < 1 <
57 ?:] i <)+ 5 ?:1 (=m < n)

= % (Fr(n) + (1 — Fr(-m))]

(3.12) — % Fm+A—=F(=n)]=F@) asT — oo

-

- 2 - 2
and by the symmetry of F. Because d, is a metric. d, (F;y'”T F ) <d, (F;ym., F ;-y'"‘)
dy (F3¥™, F)? and dy (F¥". F)* — 0 from (3.11) and Bickel and Freedman (1981).

Next,

(313) do(F7"™ F{™) < E* [y —

1< 3 1 )
) N v = )2 il n.
(3.14) <= § 305 =) + § (m; —m;)" +3 (TZ'72>

. —1/2 T T [~ 2 T 2 (7172 1/2\?
since T2 370 s = Op(1) and %Zj:l (mj — ;)" = —76:2]':] T];; (h‘j/ - h‘j/ ) — 0

from the results in Aujdliary Lemma A1 (see also Pascual et al., 2000).

part (b)
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Note that the & moment of the symmetrized residuals {n;, 2. ..., 7T, =71, =72, -, — T
T, / 7 1 ;1

is given by (277)7! [23:1(?70}“ + }:;r:](—ﬁt)"} =TS (@) if p > 1 is even and

0 if p is odd. Then, since {n;} is an iid sample from the symmetrized empirical

distribution function of the recentered standardized residuals, £*(7;) = 0 and hence

E*(gf)=0.

part (c)

Because E*(gf) = 0 and 7 are iid conditionally on the sample, Var*(e;) =

E*(e)? = E*(h})E*(£)? and
t

N

&

7

Py

F\i

1~ )1
(3.15) Vart(s) = (?th> ( >

t=1

)

First. from part (a) of Auxiliary Lemma 1 and Z;ril Bt = 0,(1), it follows that
that 337 @t — he) = 0,(1) and LS he B E(hy).

ini i 3 1 T =2 P o han
Combining this result with = >, 7y — 1, we have
Foooxfw\ P2
Vart(s;) > 0" as T — oc.

part (d)

Finally, since E*(n;})? = 0 by construction, 5} are iid conditionally on the sample,

and = S hy = O,(1), we obtain that E*(¢})* = 0.

Proof of Lemma 3

part (a)
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By recursive substitution,

~ ~ %2 Iy
hy =@ +aeg;” | + phi_,

=W+w (am s 3) + (az}, . +ﬁ) (&7)2“3.-_, +/§) +
t-1 k- t

=w[l + (m;, .+ 5’) + H (anﬁi + [)’) hg-
k=1 1=1 =1

If the two candidate initial values are h{; and hg,, then the difference between the

- corresponding sequences hf; and hj, is given by

t
|hiy — hia| = ;H ((/\\711‘ i+ 5) lho1 — hiol
i=1

and

E™ |hjy — hiy| = & |hgy — heo| £

fes2)

~\ T
=G [hiy — hiol (&+53) -

using that E*(n;)2 — 1. Since & + 3 < 1 by construction, E* |h, ~hf| — 0 as
t — oc.

part (b)

Rewrite |\/hf; — \/his] as

h,2
h* + /Ry
hiy — hiy

o~

200

*
hi

IA
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Then.
B ey — =il = E [ (| Vi = Vi) I
< E (\———fh” h“‘ [ )
1 * * * *
= ‘Q‘fE \hiy — hiol E'fny |
1 » ~ AN * *
= 5 Ihiy = hinl (&4 8) E* |

1 * * ~ 2\ ¢ * *
= §Ih01 —hozi (01+53) E ‘T’tl

using that E*(n;)? — 1. Since E* |nf| < oc and a + 3 < 1. Elef, — 2] — 0 as

t — ocC.
part (c)

Note that

1 T 1 AT
< ﬁgéml ~ hinl (6 +8) E ]

— {h hovl E* ’?t (

\-U)

5)
, 1hm-h021E*xnti“(é 5"
2VT ( +3)

U ofh Bl Bl (]
=T 1—(d+;§)n - ﬁ)

part (d)
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The two partial sums have the following form

[Tr] [Tr]

Taking expectations under P* of the difference yields

. [T (rr, .
E* s, — s 1 —E* P T 10 Y e G
[pr] {,- = Zl I3 tzi \/7 z:; h:] h;kg
/\ d {Tr] %2 t—1 %2 t—-1 %
200 oy <1 k-1 t k1 <2 Ak—1~t—k2
+ 20 F LN 3 (R )Y gt ek
VT ; hiy ,E:; hiy hi, ; hi,
T’] %
. * “’tl <2
—vE Zt £ ~f7}+ Z e
\ (3 {Tr} | =1 . t—1
+ 2 (77 ) :3k~1“t~‘kl B (77*2 N 1) 3A 1Ct *Az
s Z N
[11
— ____E* Iv ek "tl . "t()
Z 0o f Z hiy - hiy
/\ [Tr

= )\1]1 'Jr‘ )\QIQ + )\2&]3.
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From part (¢) we know I; = O (T'U'z). Furthermore.

[Tr]
1 £y g 1
= =By T2 —— |
vT tzzl hiy  hi W Vi t
[Tr] = "
< LE* Vhia = VI i
- * * i
VT - hi s
< —=F }( hiy — ht*l) = —=E) leh b
wvT t=1 \[f t=1
1 L 1
< | E* :* _ 5* — O o
< s Yk -l =0 ()
and
1 {T7] t-1 - t-1 .
13 —_ E:: Blp—l'i—kl . ‘ék\lvt—lf'z E* (‘,7*2 _ 1)
\/Tg k=1 hiy Lz:; hi . ‘
C {Tr} t—1 % t—1
_ v E kal“t—kl _ k=17 t k2
VT ; — hy, Z h*
, AT} -1 x I
< 3""1E* Sk szm
- VT 1‘2:; k=1 iy ity
zr: JA 1 htz( g k1 — Si- i>) + 2 g (), —hyy)
— hiihis
[Tr] t—-1 * % % * *
Z 31. L (Ei—kl _ thl\:‘z) + E St—k2 (?rz: h‘tl)
t=1 k=1 htl hilh’tQ
[Tr] t-1 . x N .
. C Sk—1 * (5t k1~ —t k--z) * | C1-k2 (ht?. - htl)
= — B E * + B | ek
VT i hiy \/hTQ hii/ B
RSN s { E (et — ea)] + — = (877") (i —hiy)
= ﬁ L L t—k1 “t—k2 (1\)\/(; 2 7 Y41
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[Tr] t—1

oM I CHEE I e (G
Tr] t-1 —
< ——szk (o iy — ol (a4 5) E Il
t 1 k=1

Loy ey o A
+\/§(;ﬁ 2)0’0{h01~l102](a'+;.)’)}

* * * {T, -1
_ E* l’h‘c V’m - hoz‘

AP I I (a+ +3)

=1 k=1

POl IS S (07) (o)

t=1 k=1
_ Ex ;| C ]/]}51 - hg?lTl 4 C’ihbl ’l’ovl
2% NG&

1.

where C = E|(n* — 1)}.
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The terms T; and T are both of order O (T7/?) since

Tr} ¢
[Tr] t-1 N

T = \/LT >3t (a+d)

i=1 k=1

) N\ [|Trj+1
1 1-— (C\‘ + 3)

S A(=n)VT 1 (a+3)

1 ] 1
<3(1~7’) [1~(d+3)}ﬁ:()<ﬁ)

and

=
T
L

me g2 2 () (a+9)
1[r1A fttﬁl_b;:
:ﬁ;(a+ﬁ) ;52
a1 (Tr) ot g
—ﬁt:1(a+;3) 15

A
[
I
—~~
O
+
<o
N’
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Then. it follows that I3 = O (T~'/?) and combining this with /; = O (T~'/?) and
IL,=0 (T"l""’?): we obtain that E* lS{(}l} — S{;?l‘ =0 (Tvl/‘l)_

Proof of Lemma 4

part (a)

As in part (a) of Auxiliary Lemma 1 and part (c) of Lemia 2. we can show that
hi — hy = 0,(1) + O(3") and %Zthl (h; — h¢) = 0,(1) which implies that E*(h}) —?
E(hy). |

part (b)

2

Since both £7 and A} are stationary and ergodic (Auxiliary Lemma 2). % and —}:%_‘—
; .

i

are also stationary and ergodic. Using

B (U/h) = 3 2+ 0,(1)

we have

= M
T
11
< - hy — h;
wa T;(t 1)

f
§>{ -
M| -
M»a
E"

|
R3] -
¢
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1
= — |Eh, — E*(R}) + 0,(1)| = 0,(1) as T — <.

part (¢)
T T
From part (b) we already have that |4 3 4~ — 7 3 4| = 0p(1). Next,
t=1 t=1 *
1
*2 2 2
TZ% o _th-—k/ht
t=1
L T
# * _ 2
— |7 D (2 /m — i/h)
=1
= 1 - hie?, — h%e;
T~ hihy?
T 2 %2 *2 .2
_ lzht% e hiEl Hhisl - hPEL,
T hih;?

T 19/ 4 5 2\
e Z hi (Et?—k - 5t~k) + (B — 17?) Ctz_k

21 %2
hih;

t=1
T * *
< L (e —ein) Z(h: —hi?) e
= T - h;z T th*Q
T 2
1 22 (A + A7) (he — 7)1
Tw? ;(”—’“ i) TG ; hehy he

50 11

__Tﬁ.z(h* )(ht—h)
F—k-1)

MCRL] Tzht_ Zh*l

w?
1 * * ) P (UJ -+ @ B—(kﬁl)
= LB ) - B ) o) + D

IA
&
Sl -
M-
|>“t\:|
|
[y
L
Il ]
L

IA
&) m
ol B
o
%
End

|
-
7~
H{‘)
?LN
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Then.

T o T
1 1 1 1 o or1 1 ,
- K" < |= Z —_— = Z 1|+ | kK Z;’j’z(l‘_l) (_— Zs?_k/hf + o,,(l))
r t=1 he T t=1 hi k=1 r =1
oC 1 T
- wat ) B (—f Do+ o,,u)) |
k=1 t=1
11 1<~ >
=\F 2 g 2t |(e® = w@) Y BV B /h)
1=1 ¢ t=1 ¢ k=1
D 1 T [o¢] 1 T .
+ e (Z B (Lm0, )) -3 g (?th , h))t
k=1 t=1 k=1 =1
+ 0,(1)

= K|+ IKO’Z — k'@ Ky + k' 6% K5

The first term K7 is 0,(1) (see part (b) above) and from the results of Lemma 2

and the properties of the MLE, it follows that |ra? — £*G?| = 0,(1). Furthermore,

Ky

oc T o0 T

= Z SR (1 Z VL] ) Z (TZ ( GRS U) /hd)
k=1 t=1 k=1 t—1

< iﬁﬂkwl) 3= (1) + i( i (ﬂz(k DR 1)) 3 k- 1))
k=1 = =1

IA
gk
<
|

) /32 (k-1) 1)

Z(H )
< 2 (k-2) 22\ (k=3)

HE(G(E 6 )
k=1 :

+0,(1)

1| (8
< = — B ) (k=X £ o,(1)
A
: 1— )‘T_l T-1
= 0p(1) im (————+ (T = 1) X" 77) + 0,(1) = 0,(1),
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where A = 32/3 < 1. Therefore, |K — K*| = 0,(1) as T — cc.

part (d)

We can use similar arguments as in part (c) to prove F* —P F.

Proof of Lemma 5

The structure of the proof for T-Y/ 2 (Trl ¢+ = TV, (r) is similar to the proof of
Lemma 3 in Gospodinov (2()08) for two-parameter partial sum processes. To estab-
lish the invariance principle for the partial sum process W7, — T2 ZEL’I} e, we
néed to show that. conditionally on the sample, ‘”‘”.[1}‘7-} = Wi(r) by demonstrating
the convergence of the finite-dimensional distributions and verifying the tightness

condition.

Let. for any 0 <7,y <715 < 1,

{Try]
* 7% 17 _ —-1/2 Lk
Yie= ”/{TTA-] - [Treoa] — Y Z ot

t:[Trk—ll

and Z7,, = {Y{ . Yo n Y with Yy = W pand 0 < <o < <0 <
rm < 1for m > 1. Similarly, let Wip,y = T2 ﬁi’il e, Yrp = T2 Ziir[;]rk_l] £
and ZT.m = {YvT\l., ey YTJ'., YT,m} with YT_1 = "V[Trl]-
m 2\ 1/2
From the definition of the Mallows metric. do( Zr.n, Z7.,,) = inf (E*}:__1 |Yr: — qu’il“)

conditionally on the sample, where the infimum is taken over all pairs (1, ;) with
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marginals F' and f}"’" as in Miguel and Olave (1999). Then,

(JQ(ZTJH-? Z;"',m)Q < ZE*(YT-i - YF1)2
=1
m [Tr4)

1 . _%\2
=T‘Z Z E(“:t"ct)

=1 t:ITTi-l]

“Z Z E*(vhim — Vhin + (Vhe — VR)n)

using that hf = hy +0,(1), E*(h;) % ¢% and h; is independent of (77, /,;. ...). Since
the infimum in the Mallows metric definition is always attained (Bickel and Freedman,

1981) and do( F7¥™, F7#™)? — 0 from part (@) of Lemma 2.
(21 Zp,)? < do(FR™ F2™)? = 0 as T — oo,

Finally, because the Mallows metric convergence implies convergence in distribu-
tion and (Wipr, . Wirrgs v W) = (Wilr), . Wa(ri), ... Wi(ry,)) for any

m-tuples 0 < < ...<r<..<r,<l.m>1,

(”’[}n] 5 aens ‘V[}_ri] g eees ‘!‘/’{;’rm]) => (1’1”1 (7'1 ) g eees "’Vl (7'1')? eees ""/‘1 (Tm))

conditionally on (y;. ..., yr) and for almost all sample paths (yi, ya, ...). This establishes

the weak convergence of the finite-dimensional distributions.
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To establish the tightness of Y'V{?}r], it suffices to show that for almost all sample

paths and all e > 0

lim supP* { sup ‘!‘i%"[*T,,,] — I-T/"'[},r]l > E} =0

T—o0 |r’—r|<v

asv — 0for0<r<7v <1

By Chebyshev’s inequality,

2
Exiwe - W '
T ey = Wi (' =)
P {!IV[TW"} - I‘[Tr] 2 6} S 62 — 62
using that
{TrinT+]
* q7* I —1 * _*\2

This completes the proof of T2 5™ 2 — 117 (r).

] . . R o g O ~.
For obtaining the limit of T—1/2 [+ [ L (1 'r]t*z)ﬁ; 2321 B ler ] , we use
't

t=1 F St—-j
t

similar arguments as in the proof of Lemma 4.2 in Ling and Li (2003). Define the
process Sy = T2 ST ¢, where & = Mg} + )\2[% — %(% — ) A e ]

First. we show that & is a martingale difference sequence with respect to F;, where

F; is a o-field generated by {n;, n;_;....}-
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Taking expectations under P* of SZ, we have

i=1 1 i=1 j=1
1 7 7 ~% & %2 oC
— * 2 % _x ~ V_]_____‘ l_ Lflrsr
= 20 D E N ddesi [ - (5 1)y 3]
i=1 j=1 J J k=1
FanslE - Sy Sy
VRS T pr b £ i
- Gy e - LG 0y A
2 hr R AR RN A ¥ - Ik
1 T T
— 1 3 4
*TZZ CORLL 4 Al M+ A3
=1 J:
If i £ j and ¢ > ). then
E* (1L) = B ( E (ki *nfn;‘) = E*(n) E* ( h;h;n;) =0

and

7 J f] k=1
* £ d 5".’ - - *
=E {\/h?m = G =008 %HJ}
7 7 " k=1

using that £ (nf) = 0.
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Also.

e A 2 <
() = B d et - Yt g1
( 1.7) { .7[h;l= h:lr(h:: ); j z—l.]
cre* ~*2 o ere*
= Fr {22 A — k—1%j%i-k
[ e 0 )k};l‘g ht

P <y p = oy p i—k
— ‘—O‘E ( h* - 1) Z 3’\ 1. Jh*
k=1 K

< Sret
— *E* *9 = 1 ; k—-lcj i—k
a (n; ) Z 3 i
L k=1 ]
= —GE (g —1)E* B"_lajai‘k —0asT — ¢
(% — 1) ; 7
and
E* (14) - E* [iz*_ _ _Cl(i o 1) i[_‘jk—lrf ][i _ i(i . 1) i ék’_lf* ,}
Y hi  hih} SRR T Tk
¢ 2 k=1 7 2 i I\I=1
~% ok (‘i :‘_2 > ’
EE A Qe Ay e | gF e,
h? [h; hs by ) Z ]
k=1
& e > =¥ i 5"?2 > :
. E* Rl S I 1 ]\——1:* . Rl ' R ok —1 _x ,
[h:( h)'k )z d 1.—1»][,1*5 h,*( h* 1) [3 CJ I ]
t k=1 7 J J k’:l
i E* [(:\ (52‘2 1) iék——l * ]{E; é’ 6;2 1 - Ak’—l *
=B G il — gy~ L]
t t k=1 7 o) I\'=1
5*2 o ok ok -
— __E* ~ i 1 Sk—1%j-i-k
{6l -0y 5
t k=1 L)
9 5*2 ~*2 oc o . »k’ :: . * y
A 1 1 Ty 1 ahk—-1ok -1 7% J—
DI S
k=1 =) J
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k=1
X . Radiias ~ - sl*_keik,

— Qg = Dt - 1) Yy A )
k=1 "=y LI

from Lemma 2.

Combining the above results imply that

1 n
§ E* (A3 Il+/\ Mol + Mol + NI + 0, (1)
7

—Z)\ZE* e +9/\1)\2E< >
n hy

o2 L2 rEL L, ey
+ M\E” (er(i ( ' —1) 3HE=h ];:._f>]+0,,(1)

L]

—Z{/\ E* (£7) + 200 E* (1)

n;’ A2 (x4 2 S F2k=1) e e

) QR (gt = 1)y BV h*2)1}+op()
k=1

+ N[E”
== Z {Xfa*" + 22X A2 + A3 (E(l/h + K@ Z 320 e (*ﬁdh?)) + 0(1)}
e k=1
+0,(1) -
= Ao + 200 + A (E (1/h}) + k*a* i FUEDE* (12, /h;‘2)> + 0, (1)
k=1

S AN < ooas T — oo,
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where 0% = E* (¢}%) = E* (h}).
: . A, 2
Note that E* (gﬂf{;l) = A2h; + 2200 + A (% + K" (% Y o 31”‘15:—&) ) as
T — oc. Since =7 is strictly stationary and ergodic and from Lemma 2, it follows
that E* (&]F;,) = 0 and & is a strictly stationary and ergodic martingale difference

sequence. Then, from the ergodic theorem, [E*(S2]™! [% SSTE” ({}’!ﬁ;)} — 1 as.

Furthermore. it implies that {¢*} is uniformly integrable and for any ¢ > 0

,
(3.16) 5 Y E[EI(E > 07e)] »0as T — oc.

o5
T ;=

2 T 2
where 65 = £7* [(Zt:l §t> } . Also,

1 ; 1

2 2772 2 272 2
— max & = — max | (ef < oje) +ET(ES > o7€
U% Ogingl (f% 0<i<T [Sz ( t = YT ) gz (Sz 1 )}
1 2 27(e2 2 1 272 2
< — max [ore + E1(E > ore)] = e+ — max GI(& > ore)
03 0<i<T 02 0<i<T

T
1 L ,
et Y EUHE > dre)
9T o1

and F (0}2 maXo<i<r 5,2) — 0 from (3.16) and since € is arbitrary small. Then, from
Markov’s inequality,
1

— max |[§] — 0as T — oc.
or 0<:<T

Therefore, the conditions for the FCLT for martingale difference sequences are satis-
fied (Theorem 4.1 in Hall and Heyde, 1980; Theorem 27.14 in Davidson, 1994) and

from T-1/2 g’? g7 = Wi(r) and Lemma 4,

S[T‘r] = ”YQ(T‘)
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Proof of Theorem 1
Recall that

T o 17t T . .
. &l (¢.9") ol (¢.9°)
,ML:,@-{Z——é@T— B Z*—%‘— .
=" ‘ o=~

t=1 t=1

and

T e . o1} T -,
i _ |1 I} (¢,97) 19 (0.0%)
T(dhir — 1)7— - [Tj Z 07 | T Z 96 N

t=1 t=1

Following Ling and Li (2003). the first two derivatives of the likelihood for obser-

vation t with respect to ¢ can be expressed as

'1‘ S [
R D I R N
B I XA RO XA
@:

t=1

*

T : - T t LD
1 O (00,67 .. . 1 _ex? s NEro
_ { t (@. )} — T~2 yt*:’l {_* +2a'2 z* } 232(1—1)»’:*_;} + 07,(1)
t t
o=1 j=1

2 2
? =1 ¢ t=1 ¢ h
T 1 2t 42
ey | () v e ()
e hy h; o hy*
+ 0,(1).

From Lemmas 4 and 5 and the continuous mapping theorem

T
1 < 9l (&,6%) - .
{?E 56 } —l:>/0 Wi (r)dWy(r)

t=1
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and

1 = 8l ($,6%) T
-[T_ZZ—_()—@T—} :>F/0 Wi(r)dr.

t=1 o=

Thus.

T ot (6.0%)] L)ty (r)
e

‘ (pp — 1) = 5-
Y ML G 1/2
@ d=¢hs F (jol ‘1.'1(‘I‘>2(l’l">

t=1

Define Wi(r) = oB1(r), p = 1/ovVK and Wa(r) = VK[pBi(r) + /1 — p?By(r)},
where B, (r) and By(r) are two independent standard Brownian motions. Substituting -

for TWi(r) and Wy(r) in the above expression, we obtain

1/2

Ol )" I ! T ! T 2
{Azé)zl,(cﬁ-o )} G —1) = \/g o BUMBT) s [y Bi(r)aB (;).2

YD) 1/2
t=1 0 6=0%, (fgl Bf('r)d‘r) (fol Bi(r)dr

_ ~1/2
Noting that (fol Bf('r)d'r) fol Biy(r)dBs(r) is distributed as a standard normal

random variable vields the desired result.
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