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Abstract. Álvarez et al. (Information Sciences, Vol. 179, Issue 12, 2009)

proposed a new key exchange scheme where the secret key is obtained by

multiplying powers of block upper triangular matrices whose elements are

defined over Zp. In this note, we show that breaking this system with

security parameters (r, s, p) is equivalent to solving a set of 3(r + s)2

linear equations with 2(r+s)2 unknowns in Zp, which renders this system

insecure for all the suggested practical choices of the security parameters.
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1 Introduction

Public-key cryptography [6] provides key exchange mechanisms in which secret

keys can be exchanged between users over insecure communication channels.

These key exchange mechanisms are usually based on number theory problems

such as the discrete logarithm problem (DLP) [5], integer factorization [10] and

elliptic curve DLP [4]. However, such systems require a large number of arith-

metic operations, which makes them hard to implement in most resource con-

strained applications. To overcome this problem, key exchange protocols based

on efficient matrix algebra have been proposed (e.g., see [12]). Odoni et al. [8]

introduced the discrete logarithm problem for matrices over Fq and proposed a



Diffie-Hellman key exchange protocol based on matrices. Menezes and Wu [7]

reduced the discrete logarithm problem for matrices to some discrete logarithm

problems over small extensions of Fq.

Recently, Álvarez et al. [2] proposed a key exchange scheme utilizing the

non-abelian group of block upper triangular matrices (see also [1, 3]). Álvarez et

al. claimed that one of the main advantages of this scheme is the absence of big

prime numbers, which yields faster arithmetic operations and avoids the need

for primality testing. Moreover, they also claimed that the proposed scheme is

very efficient since it employs fast exponentiation algorithms for this type of ma-

trices. In particular, by analyzing the order of the non-abelian group generated

by these matrices as a function of the security parameters (r, s, p), as well as the

implementation efficiency of these schemes, Álvarez et al. concluded that their

system with security parameters (r = 2, s = 89, p = 2903) has better perfor-

mance than the Diffie-Hellman scheme with a similar level of security (key size

of approximately 1024 bits).

In [11], Vasco et al. showed that breaking the Álvarez scheme can be reduced

to solving a small set of discrete logarithm problems in an extension of the base

field. Consequently, Vasco et al. concluded that the Álvarez scheme does not

offer any computational advantage over the original Diffe-Hellman key exchange

scheme. While the presented results in [11] challenges the efficiency claims made

by Álvarez et al. [2] by showing that working with the proposed non-abelian

group of block upper triangular matrices does not offer a computational advan-

tage over working in the base field, these results do not present a practical attack

on the Álvarez scheme for the recommended size of the security parameters (see

table 3 in [2]).
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In this note, we show that breaking this scheme is equivalent to solving

a set of 3(r + s)2 consistent linear equations with 2(r + s)2 unknowns in Zp,

which renders this system insecure for the suggested practical choices of the

above security parameters. The rest of this note is organized as follows. In the

next section, we briefly describe some details of the Álvarez et al. key exchange

scheme. The proposed attack is described in section 4. Finally, section 5 presents

our conclusions.

2 Description of the Álvarez et al. key exchange scheme

For completeness, in this section, we briefly review the relevant definitions and

details of the Álvarez et al. key exchange scheme. For further details, the reader

is referred to [2].

Let Matr×s(Zp) denote the set of matrices of size r × s with elements in

Zp where p is a prime number. Let Glr(Zp) denote the general linear group of

invertible matrices of sizes r × r, also with elements in Zp.

Let Θ =

{[
A X

0 B

]
: A ∈ Glr(Zp), B ∈ Gls(Zp), X ∈ Matr×s(Zp)

}
.

If M ∈ Θ and h ≥ 0 then Mh =

[
Ah X(h)

0 Bh

]
where

X(h) =

{
0 if h = 0∑h

i=1 Ah−iXBi−1 if h ≥ 1

}
.

Let M1 =

[
A1 X1

0 B1

]
and M2 =

[
A2 X2

0 B2

]
be two elements of the set Θ with

order m1 and m2, respectively.

For x, y ∈ N, we define

Axy = Ax
1Ay

2

Bxy = Bx
1 By

2

Cxy = Ax
1X

(y)
2 + X

(x)
1 By

2
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The Álvarez et al. key exchange scheme can be summarized as follows [2]:

1. Alice and Bob agree on a prime p and two matrices M1, M2 ∈ Θ with large

orders m1 and m2, respectively.

2. Alice generates two random private keys1 l, m ∈ N such that 1 ≤ l ≤ m1−1,

1 ≤ m ≤ m2 − 1, and computes Alm, Blm, Clm constructing

C =

[
Alm Clm

0 Blm

]

3. Alice sends C to Bob.

4. Bob generates two random private keys v, w ∈ N such that 1 ≤ v ≤ m1 − 1,

1 ≤ w ≤ m2 − 1, and computes Avw, Bvw, Cvw constructing

D =

[
Avw Cvw

0 Bvw

]

5. Bob sends D to Alice.

6. The public keys of Alice and Bob are respectively the matrices C and D.

7. Alice computes Ka = Al
1AvwX

(m)
2 + Al

1CvwBm
2 + X

(l)
1 BvwBm

2 . It should be

noted that Ka is the upper right r × s matrix in

Ma = M l
1DMm

2 =

[
Aa Ka

0 Ba

]
. (1)

8. Bob computes Kb = Av
1AlmX

(w)
2 + Av

1ClmBw
2 + X

(v)
1 BlmBw

2 . Similarly, we

have

Mb = Mv
1 CMw

2 =

[
Ab Kb

0 Bb

]
. (2)

Finally, Alice and Bob share the key K = Ka = Kb.
1 In [2], the symbols r, s were mistakenly used to simultaneously refer to both the

security parameters and the secret exponents chosen by Alice, in step 2 of the key

exchange algorithm. In this submission, to avoid any possible confusion, we use r, s

to refer to the system parameters and l, m to refer to the secret exponents chosen

by Alice.
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3 The proposed attack

The above construction for M1 and M2 is used to guarantee a large order of the

non-abelian group generated by these matrices and to attain a fast exponenti-

ation algorithm for this type of matrices. On the other hand, our attack does

not depend on the particular method by which the matrices M1 and M2 are

constructed. From the analysis provided in [2], we have

C = M l
1M

m
2 ,

D = Mv
1 Mw

2 .

Thus, despite the apparent complexity of the above key exchange scheme, when

analyzing its security, one can simply view it as follows:

1. Alice and Bob agree on a prime p and two matrices M1, M2 ∈ Θ.

2. Alice sends C = M l
1M

m
2 to Bob.

3. Bob sends D = Mv
1 Mw

2 to Alice.

4. Both Alice and Bob calculate M l+v
1 Mw+m

2 and extract the secret key from

it (see equations (1), (2)).

In what follows, we show that, given the public matrices C and D, the at-

tacker can easily recover the secret key.

Lemma 1. Let W1 and W2 be two invertible matrices of dimension (r + s) ×

(r + s) that satisfy

W1M1 = M1W1 (3)

W2M2 = M2W2 (4)

D = W1W2 (5)

5



Then we have

M l+v
1 Mw+m

2 = W1CW2.

Proof. Using mathematical induction, it is easy to show that W1M1 = M1W1

and W2M1 = M2W2 implies that W1M
l
1 = M l

1W1 and W2M
m
2 = Mm

2 W2,

respectively. The rest of the proof follows by noting that

W1CW2 = W1M
l
1M

m
2 W2

= M l
1W1W2M

m
2

= M l
1DMm

2 .

¤

The above lemma shows that while the attacker may not be able to recover

the secrets chosen by Alice and Bob, i.e., l, v, w, m, or the associated matrices

M l
1,M

v
1 , Mw

2 ,Mm
2 , the attacker can still recover the overall secret key agreed

upon between Alice and Bob if she is able to find any W1 and W2 that satisfy

the above set of equations. This seemingly nonlinear system of equations can be

easily linearized as follows:

¿From equation (3), we have

W1M1 = M1W1 ⇐⇒ W1M1W
−1
1 = M1

⇐⇒ M1W
−1
1 = W−1

1 M1

The attacker can easily solve a linear system of equations for W−1
1 and W2 by

replacing equation (3) by M1W
−1
1 = W−1

1 M1 and equation (5) by W−1
1 D = W2.

In other words, the attacker solves the system of equations given by

W−1
1 M1 = M1W

−1
1

W2M2 = M2W2

W−1
1 D = W2,

(6)

which corresponds to solving a set of 3(r + s)2 linear equations with 2(r + s)2

unknowns, corresponding to the elements of W−1
1 and W2 over Zp.
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The following lemma shows that the attacker is always able to find a valid

solution for (6).

Lemma 2. The linear system of equations defined in (6) is consistent.

Proof. The proof follows directly by noting that W1 = Mv
1 and W2 = Mw

2 is a

valid solution for this system of equations.

Remark 1. A closer look at the Álvarez scheme reveals that it resembles the com-

pletely wrong and insecure implementation of the Diffe-Hellman key exchange in

which Alice and Bob agree on g(x+y) = gx × gy instead of gxy = (gx)y = (gy)x,

and hence it should be completely abandoned. It is also interesting to note that

the claimed efficiency of this system is also a direct consequence of this mis-

take; the system uses matrix multiplication (e.g., see step 4 of the algorithm

description in section 3) instead of matrix exponentiation.

The following toy example illustrates the idea of the attack.

Example 1. Let p = 37, r = 2, s = 3, l = 11, m = 32, v = 17, w = 39,

M1 =




3 31 24 12 13

9 24 28 20 26

0 0 9 16 14

0 0 25 17 2

0 0 23 12 30




,M2 =




7 14 18 12 4

22 16 15 12 6

0 0 29 36 8

0 0 33 15 35

0 0 5 24 5




Alice calculates C = M l
1M

m
2 =




31 14 31 19 31

35 10 10 32 21

0 0 36 8 30

0 0 9 18 10

0 0 27 5 11




and sends it to Bob.

7



Bob calculates D = Mv
1 Mw

2 =




7 25 32 23 21

16 28 18 15 32

0 0 33 12 17

0 0 16 25 20

0 0 33 18 14




and sends it to Alice.

Thus we have

Ma = Mb = M l+v
1 Mm+w

2 =




2 15 33 18 26

14 2 3 27 16

0 0 28 1 5

0 0 17 18 14

0 0 11 13 5




and the secret calculated by Alice and Bob is given by


33 18 26

3 27 16


 .

It is easy to verify that

W2 =




5 14 24 21 19

22 14 32 29 12

0 0 4 20 21

0 0 26 8 0

0 0 11 10 10




and W−1
1 =




20 17 2 20 31

30 16 34 31 24

0 0 9 4 6

0 0 36 10 16

0 0 34 1 32




=⇒ W1 =




19 33 31 31 13

6 33 18 21 18

0 0 22 16 11

0 0 30 9 13

0 0 15 7 18




is one valid solution to the systems of equations given by (6), from which the

attacker calculates

W1CW2 =




2 15 33 18 26

14 2 3 27 16

0 0 28 1 5

0 0 17 18 14

0 0 11 13 5




= Ma = Mb.

It is obvious that the secret key is given by the upper right r× s = 2× 3 matrix

of W1CW2.
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4 Conclusions

The key exchange scheme proposed by Álvarez et al. is insecure for all suggested

practical choices of the security parameters (r, s, p). As mentioned above, our

attack does not depend on the particular method by which the involved matrices

are generated, and hence the idea of linearization used in this paper can be

applied to a wider class of similar key exchange schemes.

Several key exchange algorithms based on matrices have been proposed. How-

ever, to the authors’ knowledge, almost all practical proposals have been broken

(e.g., see [9, 13]) due to the inherent linearity of the underlying matrices’ oper-

ations. Designing a secure key exchange algorithm based on matrices or other

non-commutative finite groups/rings with efficient operations remains a very

interesting and challenging research problem.
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2. R. Álvarez, L. Tortosa, J. Vicent, and A. Zamora, Analysis and design of a secure

key exchange scheme, Information Sciences, 179 (2009) 2014-2021.
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