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Abstract. B. Wang and Y. Hu (Computers and Mathematics with Ap-
plications, Volume 59, Issue 1, 2010) proposed a knapsack-type public-
key cryptosystem by introducing an easy quadratic compact knapsack
problem and then using the Chinese remainder theorem to disguise the
easy knapsack instant. In this paper, we present a heuristic stereotyped
message attack that allows the cryptanalyst to recover the plaintext mes-
sage when partial information about the original message is known. In
particular, as shown by our experiments, for the proposed system param-
eter n = 100 which corresponds to a block length of 400 bits, exposing
60% of the plaintext allows the cryptanalyst to recover the remaining
160 bits of the message with a success probability of about 90% in about
2 hours.
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1 Introduction

Knapsack-based cryptosystems [1] [2] were among the first public-key systems

to be invented. Their seemingly NP-completeness nature and their high encryp-

tion/decryption speed made them very attractive. However, it was soon realized

that the underlying knapsacks often have a low density [3] and hence they are

vulnerable to lattice reduction attacks [4] [5].

In [6], B. Wang and Y. Hu proposed a knapsack-type public-key cryptosystem

by introducing an easy quadratic compact knapsack problem and then using the

Chinese remainder theorem to disguise the easy knapsack instant into a seem-

ingly hard one. The authors showed that their cryptosystem achieves a high

knapsack density [3] under the re-linearization attack model. Furthermore, by



showing that the underlying compact knapsack problem always has exponen-

tially many solutions, they argued that it is computationally infeasible for the

attacker to find all the solutions among which the attacker expects to pick out

the plaintext. They also provided some analysis that shows that the proposed

cryptosystem is secure against brute-force attacks and some known key-recovery

attacks including simultaneous Diophantine approximation attacks and orthog-

onal lattice attacks [7].

In this paper, we present a heuristic attack against this system. Our attack

allows the cryptanalyst to recover the plaintext message if part of it is exposed.

Practically, this attack is applicable for situations where the encrypted messages

have a specific structure (also referred to as stereotyped messages [8] [9] [10]).

For example, the plaintext message that sends a daily session key may have

the form “The secret for August 14, 2010 is ∗ ∗ ∗∗” where the actual secret is

unknown. Similarly, a message that sends an account registration confirmation

may have the form “Your login name is ∗ ∗ ∗∗ and your password is ∗ ∗ ∗∗”.

The rest of the paper is organized as follows. A brief review of the relevant

properties of the quadratic compact knapsack scheme is given in the next section.

Our attack is described in section 3 and the computational experimental results

that confirm its effectiveness are presented in section 4.

2 Description of the quadratic compact knapsack Scheme

In this section, we briefly review the features of the quadratic compact knap-

sack public key system that are relevant to our attack. Further details about the

encryption and decryption operations as well as the key setup can be found in [6].

The plaintext message is encoded such that M = (m1, · · · ,mn) and mi ∈
{0, 1, · · · 15} is encoded in 4 bits. Then the ciphertext is calculated as

c =
n∑

i=1

fim
2
i , (1)

where F = (f1, · · · , fn)tr is the system public key generated by the key

generation algorithm and tr denotes the transpose operation. For the purpose
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of our cryptanalysis, the details of the key generation algorithm are irrelevant

and we only need to note that, given the system parameters’ specification in

[6], fi ≈ 2252 n2 (60.86)n−1. It is clear that exhaustive search for the plaintext

message would require 16n = 24n steps. A better meet-in-the middle attack [2]

[3] requires n16n/2 steps.

While the encryption operation as defined by (1) is a nonlinear function in

the plaintext vector, the attacker can obtain a linear function just by setting

yi = m2
i and then try to attack the linearized version given by

c =
n∑

i=1

fiyi, 0 ≤ yi ≤ 225. (2)

However, in [6], it was shown that the density of the above system is given by

d ≈ ndlog2226e
log2(2253n360.86n−1)

(3)

which is, for practical values of n, high enough to prevent low density attacks.

Furthermore, this class of attacks is very unlikely to succeed in finding the orig-

inal message M because many other vectors in the corresponding attack lattice

are shorter than M [6].

The suggested security parameter for this system (n = 100) corresponds

to a public-key size of about 6157 bits, and knapsack density of about 1.27

which is sufficiently high to prevent low density attacks. Furthermore, according

to the analysis presented in [6], because of the non injectivity property of the

system, the low-density subset-sum attack can find the valid plaintext only with

probability ≈ 1
2151 .

3 The proposed attack

A lattice L is a discrete additive subgroup of Rm. In particular any subgroup

of Zm is a lattice and such lattices are called integer lattices. In other words, a

lattice consists of all integral linear combinations of a set of linearly independent

vectors, i.e.,
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L =

{
d∑

i=1

aibi|ai ∈ Z
}

,

where the bi’s are linearly independent over Rm. Such a set of vectors bi’s

is called a lattice basis. All the bases have the same number, d = dim(L), of

elements, called the dimension or rank of the lattice.

Given an integer lattice basis as input, the goal of the lattice basis reduction

algorithm is, to find a basis with short, nearly orthogonal vectors. Although

determining the shortest basis is possibly an NP-complete problem, algorithms

such as the LLL algorithm [5] can find a short basis in polynomial time with

guaranteed worst-case performance. The reader is referred to [4], [13] for basic

background of lattices in Zm and various applications of lattice reduction in

cryptography. Throughout the rest of this section, we describe the details of our

proposed attack.

While there exists no efficient algorithm for solving a general quadratic Dio-

phantine equations [11], [12], the specific constraints imposed on the solution

space, i.e., the fact that mi ∈ {0, 1, · · · 15}, allows us to develop a heuristic algo-

rithm to recover the plaintext message if part of M, say, M
′
= (mii ,mi2 · · ·mil

),

is known.

It should be noted that for the traditional knapsack systems, partial exposure

of the message can be utilized, almost in a trivial way, to reduce the dimensions of

the lattice used in attacking these systems. However, for the quadratic knapsack

system under consideration, utilizing the knowledge of M
′

to directly attack

a smaller instance of the knapsack in the form of Eq. (1) using the traditional

lattice reduction based attack (where the unknown vector would be of length n−l

instead of n) does not allow us to recover the remaining unknown coordinates of

M since, as explained in [6], the unknown vector is very likely to be larger than

the basis of the reduced lattice. Our proposed attack proceeds in the following

steps:
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1. Formulate an initial basis B as follows

B =
(

In×n −d1 × F
01×n −d1 × c

)
, (4)

where I denotes the identity matrix, and c denotes the ciphertext corre-

sponding to the partially exposed message. Choosing the constant d1 large

enough [13] ensures that the reduced (row) basis corresponding to B will be

in the form

B̂ =
(

An×n 0n×1

x1×n d1

)
. (5)

Remark 1. Let Y denote the vector (m2
1, · · ·m2

n). The structure of B and

B̂ implies that Y can be presented as an integer linear combination of the

rows of A. On the other hand, because of the properties of the reduced basis

B̂, the rows of the matrix A are short and nearly orthogonal. Furthermore,

since the vector Y is also relatively short, one expects that it is likely to be

presented as a small integer linear combination of the rows of A, i.e., one

expects that Y can be presented as

Y = s×A (6)

where s is a relatively short integer vector. Given M, one can recover s by

solving a set of linear equations. However, since only partial information

about M is assumed to be known to the attacker, the number of possi-

ble solutions that one has to examine in order to find s is expected to be

exponentially large. In order to overcome this problem, we use the lattice

reduction algorithm one more time to find s.

2. Let M
′
= (mi1 ,mi2 · · ·mil

) denote the exposed l components of M (which

are not necessarily contiguous) and let A
′

be the n × l matrix constructed

from the l columns of A corresponding to the known coefficients in M, i.e.,

A
′
[i][j] = A[i][ij ], i = 1, · · ·n, j = 1, · · · l. Form the basis

C =

(
In×n −d2 ×A

′
n×l

01×n −d2 ×Y
′
1×l

)
(7)
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where Y
′

= (m2
ii
,m2

i2
· · ·m2

il
). Again, the proper choice of the constant d2

[13] ensures that the reduced basis corresponding to B will be in the form

Ĉ =
(

S(n+1−l)×n 0(n+1−l)×l

zl×n −d2 ×Πl×l

)
(8)

where Π is a permutation matrix. The 0(n+1−l)×l on the top right corner of

Ĉ grantees that the first l columns of each row of S ×A is equal to Y
′

or

an integer multiple of it.

3. Check if any of the rows of the matrix S×A satisfies the constraints on the

message M, i.e, with elements in the form of m2
j ,mj ∈ {1, · · · 15}. If such a

condition is satisfied, let s denote the corresponding row in S and declare

s×A as the original plaintext message, otherwise return (FAILURE).

The above steps are illustrated using the same example that the authors in

[6] gave to support their argument about the security of their proposed system.

Example 1. Let

F = (11983552636085612996, 10999467547886443030, 15792325467390277628,
10445813110882639381, 9252643203486974008, 17826100034189837380,
1136144594347297305, 1012216192024971939, 10263527667452230037)tr,

M = (3, 7, 15, 8, 6, 9, 11, 13, 10), and c = 7980531210038881739482. Following the

steps of our attack, the initial basis B is given by

B =




1 0 0 0 0 0 0 0 0 −d1 × f1

0 1 0 0 0 0 0 0 0 −d1 × f2

0 0 1 0 0 0 0 0 0 −d1 × f3

0 0 0 1 0 0 0 0 0 −d1 × f4

0 0 0 0 1 0 0 0 0 −d1 × f5

0 0 0 0 0 1 0 0 0 −d1 × f6

0 0 0 0 0 0 1 0 0 −d1 × f7

0 0 0 0 0 0 0 1 0 −d1 × f8

0 0 0 0 0 0 0 0 1 −d1 × f9

0 0 0 0 0 0 0 0 0 −d1 × c




For d1 = 100000, the reduced basis matrix corresponding to B is given by
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B̂ =




0 31 31 −20 19 −45 −13 −1 2 0
0 −31 31 20 −4 −32 −15 −10 27 0
−68 34 17 −26 23 10 5 −4 5 0
0 31 31 42 −43 −47 2 −5 −3 0
0 0 0 31 62 −32 3 −2 −32 0
0 31 −93 73 20 −18 −111 1 61 0
−77 −77 −84 −81 −99 −87 −5 −188 −134 0
1648 1349 2229 933 789 2862 −1590 −3755 −444 0
2785 2846 −2315 519 2199 −508 7169 −7420 6456 0
−1135 −1117 304 −334 −816 −297 −1933 2839 −1863 100000




Without loss of generality, assume that the first four coordinates of M are

known to the attacker. Then, with d2 = 10000, we form the basis

C =




1 0 0 0 0 0 0 0 0 −d2A[1][1] −d2A[1][2] −d2A[1][3] −d2A[1][4]
0 1 0 0 0 0 0 0 0 −d2A[2][1] −d2A[2][2] −d2A[2][3] −d2A[2][4]
0 0 1 0 0 0 0 0 0 −d2A[3][1] −d2A[3][2] −d2A[3][3] −d2A[3][3]
0 0 0 1 0 0 0 0 0 −d2A[4][1] −d2A[4][2] −d2A[4][3] −d2A[4][4]
0 0 0 0 1 0 0 0 0 −d2A[5][1] −d2A[5][2] −d2A[5][3] −d2A[5][4]
0 0 0 0 0 1 0 0 0 −d2A[6][1] −d2A[6][2] −d2A[6][3] −d2A[6][4]
0 0 0 0 0 0 1 0 0 −d2A[7][1] −d2A[7][2] −d2A[7][3] −d2A[7][4]
0 0 0 0 0 0 0 1 0 −d2A[8][1] −d2A[8][2] −d2A[8][3] −d2A[8][4]
0 0 0 0 0 0 0 0 1 −d2A[9][1] −d2A[9][2] −d2A[9][3] −d2A[9][4]
0 0 0 0 0 0 0 0 0 −d2m

2
1 −d2m

2
2 −d2m

2
3 −d2m

2
4




=




1 0 0 0 0 0 0 0 0 0 −310000 −310000 200000
0 1 0 0 0 0 0 0 0 0 310000 −310000 −200000
0 0 1 0 0 0 0 0 0 680000 −340000 −170000 260000
0 0 0 1 0 0 0 0 0 0 310000 310000 420000
0 0 0 0 1 0 0 0 0 0 0 0 −310000
0 0 0 0 0 1 0 0 0 0 −310000 930000 −730000
0 0 0 0 0 0 1 0 0 770000 770000 840000 810000
0 0 0 0 0 0 0 1 0 −16480000 −13490000 −22290000 −9330000
0 0 0 0 0 0 0 0 1 11350000 11170000 −3040000 3340000
0 0 0 0 0 0 0 0 0 −90000 −490000 −2250000 −640000




Then the reduced basis corresponding to C is given by
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Ĉ =




1 0 0 1 2 0 0 0 0 0 0 0 0
1 -1 -1 1 0 1 1 0 0 0 0 0 0
2 2 0 1 −1 1 0 0 0 0 0 0 0

270 22 232 −596 164 181 402 81 70 0 0 0 0
300 −123 −547 −111 −94 −342 −518 −88 −55 0 0 0 0
−302 806 −985 −147 225 −633 906 −198 −271 0 0 0 0
28 −194 −21 229 −127 −22 −447 −12 14 −d2 0 0 0
−87 394 −349 −233 160 −216 582 −62 −102 0 0 −d2 0
−233 158 −67 215 9 −57 166 −32 −50 0 −d2 0 0
181 −106 172 −242 31 124 1 51 59 0 0 0 −d2




Finally we have S×A =




0 0 0 0 186 −62 −9 0 −59
-9 -49 -225 -64 -36 -81 -121 -169 -100
0 0 0 0 31 −93 −172 −14 154

−1665 −9065 −41625 −11840 50590 −66675 125289 535710 162787
8541 46501 213525 60736 94651 386466 −422351 183495 −147024
−17505 −95305 −437625 −124480 23027 −265575 608468 −190273 372141




It is clear that the second row of the matrix above corresponds to the original

message M and the second row in S corresponds to s = (1,−1,−1, 1, 0, 1, 1, 0, 0)

in (6). One should also note that M might be recovered even if less than four

coordinates of it were exposed to the attacker. For example, knowing M′ =

(m2, m3,m4) allows the recovery of the rest of M using the same procedure

above.

4 Computational Experiments

The structure of the basis C used in the second step of the attack implies that

the attack fails only in situations corresponding to the cases where there are

at least (n + 1 − l) vectors in the form wi = vi × A, i = 1, · · · , n + 1 − l,

whose first l coordinates are given by Y
′

or an integer multiple of it and vi is

shorter than s. Consequently, the vector s will not show in the reduced basis Ĉ.

Because of the heuristic nature of the lattice reduction algorithm, determining

an analytical expression for the probability of this event, and consequently the

failure probability of our attack, seems to be an intractable problem. However, it
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is intuitively expected that increasing l should improve the probability of success

(i.e., as l → n, prob(success) → 1) since the existence probability of such short

vectors, wi, i = 1, · · · , n + 1 − l, with such constraints on its first l coordinates

should diminish as l increases.

In this section, we provide some experimental results that confirm the effec-

tiveness of our proposed attack. The performance of our attack was evaluated

using Maple version 10 on a lenovo X61 laptop running Intel Core Duo CPU@1.6

GHz with 2 GB of memory.

For small values of n ≤ 50, our attack succeeds with a good probability

even if the exposed portion of the message, l, is less than n/2. On the other

hand, for practical large values of n, the attack succeeds with non negligible

probability only when l exceeds n/2. In particular, assuming that 60% of the

original plaintext is pre-exposed to the cryptanalyst, for n = 80, our attack

always succeeded in recovering the remaining (0.4× 4× 80 = 128) message bits

in about 86 minutes on average. For the suggested suggested security parameter,

n = 100, our attack succeeded in recovering the remaining 4× 40 = 160 bits of

the message for 9 out of 10 cases in about 121 minutes on average.

5 Conclusions

The security level of the quadratic compact knapsack public key cryptosystem

proposed by Wang and Hu is overestimated. In particular, for the suggested value

of the system parameters, our stereotyped message attack allows the cryptan-

alyst to efficiently recover the unknown part of the plaintext with high success

probability if about 60% of the original message was known to the attacker.
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