INVARIANT MEASURES OF STOCHASTIC PERTURBATIONS OF
DYNAMICAL SYSTEMS USING FOURIER APPROXIMATIONS

MD SHAFIQUL ISLAM AND PAWEL GORA

ABSTRACT. We consider dynamical system 7 : [0,1] — [0, 1] and its stochastic perturba-
tions ¢~ (r(x),.), N > 1. Using Fourier approximation we construct a finite dimensional
approximation Py to a perturbed Perron-Frobenius operator. Let f be an invariant density
of 7 and f% be a fixed point of Py. We show that {f%} converge in L' to f.

1. INTRODUCTION

Invariant measures of dynamical systems play important role in understanding the chaotic
nature of dynamical systems. Let (I, B, A) be a normalized measure space, where I = [0, 1], B
is a Borel o-algebra of subsets of I, A Lebesgue measure in (I, B). Let 7 : (I, B,\) — (I, B, \)
be a deterministic dynamical system. The Frobenius-Perron operator P, of 7 is a linear
operator P, : LY(I,B) — L(I,B) defined by

(1.1 [ prwne = [ @),

for any A € B. It is well known [Boyarsky and Gora, 1997] that the fixed points of the
Frobenius-Perron operator P, are the invariant densities of absolutely continuous invariant
measures of 7. Moreover, if 7 is Markov with respect to a partition {1y, Io, ...... , I} of I, then
the Frobenius-Perron operator P is a finite dimensional matrix and it is relatively easier to
study the absolutely continuous invariant measures of 7 provided they exist [Boyarsky and
Gora, 1997]. A non Markov dynamical system can be weakly approximated by Markov maps
[Boyarsky and Goéra, 1997, 2001; Billings and Bollt, 2001].

Physical systems are usually subjected to small perturbations from external noise or round-
of errors. There are well-known results [Lasota and Mackey, 1994; Boyarsky and Goéra,
1997] that study the stability of absolutely continuous invariant measures for measurable
transformations. Consider the stochastically perturbed dynamical system x — 7(z) + &
where ¢ is a additive noise which is applied once per each iteration. Let P(x,y) be the
transition density of a transition from point = to y induced by noise £. In [Bollt et al.,
2008] E. Bollt at. al. proposed a numerical method based on basis Markov partitions to
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approximate density functions of stochastically perturbed dynamical system x +— 7(z) + &.
In this paper we consider Fourier approximation of £ and obtain a finite approximation of the
Frobenius-Perron operator associated to the perturbed system. We present a convergence
analysis of our method.

The paper is organized in the following way. In Section 2 invariant measures of stochastic
perturbations of dynamical systems are discussed. In Section 3 we introduce a family of
stochastic perturbation of dynamical systems and we show that the time evolution of densities
of stochastic perturbations are given by linear operators. In Section 4 we present a matrix
representation of operators in Section 3. We present stability and convergence analysis of
our method in Section 5. Numerical examples are presented in Section 6.

2. STOCHASTIC PERTURBATION AND INVARIANT MEASURE

Let L' = LY(I,B,\) and 7 : [0,1] — [0,1] be a piecewise monotonic mapping (see [Bo-
varsky and Géra, 1997]) on a partition P = {0 = bg, b1,...,b, = 1} and P, : L' — L' be the
Frobenius-Perron operator of 7 defined in (1.1). For piecewise monotonic transformation 7
the Frobenius-Perron operator P, has the following representation.

(2.1) Pfla)= f2)

/
ze{r~1(x)} |T (Z)|
Let \/(+) be the standard one dimensional variation of a function and BV'(I) be the space of
functions of bounded variations on I equipped with the norm || - ||gy=\/(-)+ || - ||z -

We consider Lasota-Yorke (see [Lasota and Yorke, 1973]) maps 7 : [0,1] — [0, 1] such
that |7/| > 2 and for every nonnegative density function f € BV ([0, 1]) there exist constants
(>0 and 0 < a <1 such that

(2.2) \VEf<a\[F+81flw.

It was proved in [Lasota and Yorke, 1973] that Lasota-Yorke map 7 satisfying 2.2 has an in-
variant density f of bounded variation and thus, an absolutely continuous invariant measure

i=fA
For small » > 0, let w : R — R" be a bounded function satisfying the following conditions:
(1) w(t) =0 for |t]| > r,
(2) w(=t) = w(?),
(3) 7, w(t)dA(t) = 1.
It is easy to see that w becomes Dirac’s delta function as r — 0. Let ¢(x,y) be a kernel
defined by

wly — ,xer,l—r
(2.3) Q(%y):{wg_;p;er(y—x) ,a:e[l—[r,l)—r] ’

where g = —y for y € [0,7) and y = 1 + (1 — y) for y € (1 — r, 1]. The Markov process with
transition density p(z,-) = ¢(7(x),-) is called a stochastic perturbation of the map 7.
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Let Q : L' — L' be the operator induced by the kernel q(z,y) defined by
1
(2.4) @NW) = [ @i @ire)
0
It is proved by Géra in [Géra, 1984] that for any positive f € L!

(2.5) V@ <2\ r

Treating [0, 1] as a circle and defining ¢(x,y) = w(y — x) (mod 1), we show that the factor
of 2 in the above inequality does not occur.

Lemma 2.1. For any f € L' we have

@N)(y) = (f*w)(y),y €1,
where g * h is the convolution of g and h defined by

g*h(x) = /g(y)h(ﬂﬂ —y)dy = /g(af —y)h(y)dy .

Proof.

(QN)(y) = /q(fv,y)f(ﬂf)dk(fv) = /W(fv—y)f(fv)dk(f) = (fxw)(y) -

Lemma 2.2. For any positive f € L' we have

V@n <\

Proof. For a fix integer ¢ > 1 and a partition 0 =ty < t; < ... <t, = 1, we have

D QF)(t:) — (QF)(ti- 1|—Z| frw)(ts) = (f xw)(ti)]
—le*f — (w* f)(ti)]
- D Jwstt= o~ [wors - o
< / @u(ti—w—ﬂti_l—m) w(t)dt < / \/(Hrubdt = \/(f) .
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The time evolution under the densities of the stochastic perturbation p(z,-) = q(7(x), ")
of 7 is given by

(Poorcf) (1) =(/mLyﬁ@mmu>=/ﬁv@»wf@mxw

1 1

:(ﬂaﬁ@mawww=«Qdﬂﬁ®-

1

Thus,
(2.6) Poert = Q o Pr.
and
(2.7) \ Boeref =\ Qo Prf <\/Pf<a\/F+B1 flle -

Lemma 2.3. There is an f* € L'(0,1) of bounded variation such that Pyef* = f* .

Proof. From inequality (2.7), {\/ P} f}n>1 is uniformly bounded in BV. By Helly’s Theo-
rem, { P}, f} is relatively compact, which implies by Kakutani-Yoshida Theorem, that

T}L%E;Pportf:f .

for some f* € L'(0,1). It is easy to see that f* is a fixed point of P,ey and that it is of
bounded variation.
]

Theorem 2.4. Let 7 : [0,1] — [0,1] be a Lasota-Yorke (see [Lasota and Yorke, 1973])
map such that |7'| > 2 and for every nonnegative density function f € L'(]0,1]) there exist
constants 3 > 0 and 0 < a < 1 such that \/; Prf < a\/ f+ B || f |0 - If the above kernel
q(x,y) satisfies (2.3), then the stochastic perturbation p(x,.) = q(7(z),.) of the map T has
an invariant density f*.

Proof. The proof follows from Lemma 2.1, Lemma 2.2 and Lemma 2.3. 0

In the following section we consider a family ¢™(-,-), N > 1 of doubly stochastic kernels
and corresponding stochastic perturbations p™(xz,-) = ¢ (7(x), ), N > 1 of Lasota-Yorke
map 7 : [0,1] — [0,1]. They will be constructed in such a way that the corresponding
operator P,y are finite dimensional. We will prove the existence of invariant probability
measures jy of the stochastic perturbations p™(z,-) = ¢"¥(7(x),-) of the map 7. Our main
objective is to show that the limit points (limit measures) u of the set {uy : N > 1} are of

the form p = f -\, where f is the invariant density of 7.
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3. FAMILY OF STOCHASTIC PERTURBATIONS AND INVARIANT MEASURES

Now, we define a family of probability densities ¢ (z,y), N = 1,2,... as follows: let
{gn}n>1 be a sequence of C? nonnegative functions with support in [—1/2,1/2] such that gy
is symmetric with respect to y axis, gy(—1/2) = gn(1/2) for all N > 1 and which converges
to Dirac’s delta function as N — oo. Each gy, which can be also seen as a 1—periodic on
the whole real line, can be approximated by its partial Fourier sum arbitrary close in the
supremum norm. Let

s
hn(€) = cs +aon +2 Z (as.n cos(2smE) + bs y sin(2s7E)) ,

s=1

where S can be chosen independently of N, be an approximation obtained from Fourier
approximation by shifting it up by a small constant cg to ensure hy > 0 on [—1/2,1/2]. We
have cg — 0 as S — oo. We can also make hy converge to Dirac’s delta dp as N — oo. Let

L=/ 152 t)dt. Define a family of functions w”:

1
(3.1) w™ (t) = th(t), N=123,...,

Now we define a family of probability densities ¢"¥(z,y), N =1,2,... as follows:

(32) qN($>y):wN(z_y)> N:17273>""
Thus,
¢"(z,y) = w(z-y)
1 .
= 7 |es +aon +2 Z as,n cos(2sm(z — y)) + bs n sin(2s7(z — y)))]
L s=1
T S
= 7 |cs +apn +2 Z(a&N(cos(QsmE) cos(2smy) + sin(2smz) sin(2s7my))
L s=1

+ bs N (sin(2smz) cos(2smy) — cos(2smx) sin(2$7ry)))]
(3.3)
The family of transition densities p"(z,-) = ¢™(7(x),-) induces a family of stochastic

perturbation of the map 7. For N = 1,2,... let Qn : L' — L! be the operator induced by
the kernel ¢V (z,y) defined by

(3.4) (@Qnf)(y) = / (@, 9) f(2)AA(x)
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The time evolution of the densities of the stochastic perturbation p™(z,-) = ¢™(7(x),-) of
T is given by

(Pvf)(y) = / PN () (2)dA(z) = / N (r(@), ) f(@)dA ()
- / (P ) (@) (&, )dNz) = (Qu 0 P)P)(w)

1

Thus,
(35) PN:QNOPT.
From Section 2 we have
1 1 1
(3.6) \VEvf=\@QvoPf<\/Pf<a\/F+B8Iflv.
0 0 0

Thus, by Theorem 2.4, for each N > 1, the operator Py has a fixed point f3.

4. MATRIX REPRESENTATION OF Py

Let us define:

uo(x) = 1;
Ugsr1(x) = cos(2(s+ 1)mx), s=0,1,2,,...5 —1;
Ugsy2(z) = sin(2(s+ 1)mz), s =0,1,2,...5 —1;
Ugsys(z) = sin(2(s+ 1)mz), s =0,1,2,...5 —1;
Ugsra(x) = cos(2(s+ 1)mx), s=0,1,2,...5 —1;
vo(z) = 1;
vgst1(x) = cos(2(s+ mx), s=0,1,2,,...5 —1;
Vgst2(z) = sin(2(s+ D7mx), s=0,1,2,...5 — 1;
vasr3(x) = cos(2(s+ D7mx), s=0,1,2,...5 — 1;
Vgsta(z) = sin(2(s+ D7mx), s=0,1,2,...5 — 1;

(4.1)
Let K =4 S and let the matrix A = (A;un)o<mn<kx be the diagonal matrix with the diagonal

Z(CS + ao N, 2a1,n, 201N, 2b1 N, —2b1 N, 202 N, 202, N, 2ba N, —2b2 N,

e ,2&57]\[, 2&57]\[, 2()57]\[, —2()57]\1).

ThU_S, qN($> y) = Zfimzo Amnu" (I)Um(y)>

The kernel ¢V (-, -) defined above satisfies the following properties:
(1) ¢™(z,y) > 0.
(2) ¢"(-,) is measurable as functions of two variables,
(3) For every « € I we have [, ¢"(z,y)dy =1,
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4) For every y € I we have [, ¢"(z,y)dz =1,
5) ¢"(2,y) = ¢" (¥ mod 1,y mod 1),
) 6"(2,y) = 3o nmg At (1)0m(y),
7) Let B(z,r) ={y : |z—y| <r}and cy(z,r) = fl\B(m) qn(z,y)dy. Then for any r > 0,
en(r) =supen(z,r) — 0
zel
as N — +o0.
We have

[Pnfly) = / ZAmnun Nvm(y) f(x)dx

_ 7;%:0Awm L/“ un(r(z »j%z>dz}vm<y>
:ji{[mmwvwbaw

for y € I, where, o

(4.2) Un(y) = Z_ Apinom(y),n =0,1,2,... K.

Thus, any initial density f is projected by the operator Py into the vector space Ay
spanned by the functions v,,n = 0,..., K, that is,

(Pvf)(y zhn
where )
%=Awmwvwm.

We are interested in finding the matrix representation of the operator Py.
Assuming that a given density f(x) belongs to the space Ay , we can expand it in the
basis,

(4.3) @)= 3 guvula)

Let B denote a matrix of integrals,

(4.4) Bnm:/O Un (7(2))vm () dz,

where n,m = 0, ..., K. Observe that B depends directly on the system 7 and on the noise
via the basis functions v and v. Let us define

(4.5) D = BA.
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Lemma 4.1. The matriz D in (4.5) is the representation of the operator Py with respect to
the basis {v,}1,.
Proof. All we need to show is the following: ¢/, = Zgzo Dym@m, n=0,1,2,... K. Now,

Z Danm - Dn0q0 + Dn1q1 + ... DnKQK

K K K
= <Z BnlAl0> qo + <Z BnlAH) QG +...+ <Z BnlAlK> 4K

=0 =0

_ <Z{ / wn(r (@)l da:}Al(]) q0+<2{ / tn( drrMn)
<Z{ / Un (T d:v}AlK>

_ <Z{ /0 un@@))w(x)dx}/llO) 00 + <Z{ /O un(T(x))vz(x)da?}Au) Gt
L+ <Z{/O un(T(l’))’l}l(l’)de}AlK> qK
= Z DG -

O

In this way we have arrived at a representation of the operator Py f by a matrix D of size
(K 4+ 1) x (K + 1) with respect to the basis {v; }%_,, the elements of which read,

(4.6) Dy = /0 Un(7(2))Um(x)dx, n,m=0,..., K.
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5. STABILITY AND CONVERGENCE

Recall from Section 3

(@Qnf)(y) = / (2, 9) f (2)dN(z).

Lemma 5.1. For any f € L' we have Qnf — f as N — oo in the L' norm. The
convergence is uniform on relatively compact subsets of L',

Proof. Tt can be shown that for each N > 1,|| Qn |i= 1. Let f € L' and € > 0. Since

continuous functions are dense in L!, there exists a continuous function g in I such that
| g — f lli< §. Since g is continuous it is uniformly continuous in [0, 1]. Thus,

1Qnf = fIh<l@nf —Qng lh+ | Qvg =gl + 19— f 1

Now,

I Qvg —g Il

/|g — (Qng)(y)ldy = /|g /g(af)qN(af>y)d:E|dy

//Ig 2)|qV (z,y)dedy < - // :cyd:rdy—g

IN

This proves
Qnf—[fli<e.
OJ

Lemma 5.2. Let fy € Ay and fy = Z;V:O ¢jvj(x). Then Py fn = fn if and only if Dc = ¢
where ¢ is the transpose of (co,c1,...,CN) -

Proof. Let fn = Z;V:O ¢;jUj(x). Then

Pyfv = Py <Z Cj”j@“)) = Z%’PN@J’@)
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Thus, Py fy = fn if and only if

N
E Dyc; = ¢
1=0

That is,

Now we prove the main theorem of this section.

Theorem 5.3. Let 7 : [0,1] — [0,1] be a Lasota-Yorke (see [Lasota and Yorke, 1973])
map such that |7'| > 2 and for every nonnegative density function f € L'(]0,1]) there exist
constants 3 > 0 and 0 < o < 1 such that \/; P,f < a\ f+B || f o - Let fi € Ay be
an invariant density of stochastic perturbation ¢~ (7(x),-) of T such that Py f% = fx. Then
the set {fx}n>1 1s relatively compact in L' and any limit point of {fx}n>1 is a T invariant
density f.

Proof. By inequality (2.7),
Vi = V) =\ @vo P)fy <\ (Prfi) i) <a\ £+ 81| f |l

Thus, the set {fx}n>1 is uniformly bounded in variation. By Helly’s Theorem, {fx }n>1 is
relatively compact in L'. Let Jn# be a subsequence of fx and fyr — f in L. Then,

I f=Prflh < IF=Fa o+ 1 = Qu Py,
+ | QN Prfy, = QuePrf [+ || QN Prf — Pof |1
Using Lemma 5.1 and the definition of Py it is easy to see that P, f = f. 0J

1

6. EXAMPLES

Our approximation method uses as ”building blocks” trigonometric functions which have
the same values at 0 and at 1. Therefore, the method is not best suited to approximate den-
sities which do not have this property. To go around this deficiency we use a symmetrization
of the map.

Example 6.1. For 0 < a < 1,0 < p < 1,g > 0, consider the deterministic dynamical system
71 : [0,1] — [0, 1] defined by
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ap—l—(aam—p)m T € [07 Oé]
) = (1—a)(1-z)
q—qg—a+(1—q+qa)r 7 € (o, 1]
We set
1 1 6
o = — = — =
5 p 3 q
It can be shown that 7 -invariant probability density is
1+ 5
ACErE
where for our values of constants 3 = —1 [Schweiger, 1983]. Let 75 : [0,1] — [0,1] defined

by m(z) = 1 — 7 (1 — x). 72 is conjugated to 73 by homeomorphism h(z) = 1 — z. It can
be easily proved that m-invariant density is fo(z) = fi(1 — ), where f; is m-invariant. Let
7 :]0,1] — [0, 1] be defined by

%7-1(237) y T € [0> %]
T(z) =
% + %7—2(2($ - %)) , T € (%7 1]
T-invariant density is
2x , for 0<z<i;
f2(x—3)) , for <a<1.

which is symmetric with respect 2 = 1/2 so f;(0) = f,(1).

14

0.84

0.6

0.4+

0.2+

FIGURE 1. The transformation 7

Consider the stochastic perturbation of the above deterministic dynamical systems 7 by
the noise gy (£) = Ng(N€), g(€) = e ¢ restricted to [—1/2,1/2] and extended periodically
to whole real line, N > 1. In particular, we consider the dynamical systems 7 with a =

%, p = %, g = 6 and the noise gy with N = 15. The Fourier approximation of ¢;5 , with
S(15) =10 is



12 MD SHAFIQUL ISLAM AND PAWEL GORA

1.7724538509055160273 4 3.3927717579655668360cos(27E) + 2.9744301953770602156 cos(47E)
+2.3886490317466027970 cos(67E) + 1.7571155776643330699 cos(8E)
+1.1839891969854502692 cos(107E) + .73079333059516654838 cos(127E)
+.41318146889398815438cos(147€) + .21398657121314846082 cos(167E)
+.10151532964617561548 cos(187&) + 0.044113971994138164760cos(207¢),

where we have chosen Cg(15) = 0.0320895553170388570 to ensure that the Fourier approxi-
mation is positive on [—1/2,1/2]. After normalization we obtain

Pi5(€) = 1.000000000+ 1.8801275415522674707 cos(2r€)
+1.6483007197945023217 cos(4m€) + 1.3236861044793344190cos(6¢)
+.97371754628086096259 cos(87¢) + .65611566499466542801 cos(107¢)
+.40497409376532203282cos(127¢) + 228967320746 74758962 cos(14E)
+.11858211361126850736 cos(167¢) + 0.056255410258419519092cos(187€)
+0.024446057568923656717 cos(207¢)

FIGURE 2. The transition density Pi5

Pis(z —y) =1+ 1.8801275415522674707 cos(27z) cos(2my)

+1.8801275415522674707sin(27z) sin(27y) + 1.6483007197945023217 cos(4nz) cos(4my)
+1.6483007197945023217sin(4rz) sin(4my)

+1.3236861044793344190cos(67z) cos(6my) + 1.3236861044793344190sin(67x) sin(67y)
+.97371754628086096259 cos(87mx) cos(8my) + .97371754628086096259sin(87x) sin(8my)
+.65611566499466542801 cos(10mz) cos(107my) + .65611566499466542801 sin(107x) sin(107y)
+.40497409376532203282cos(127z) cos(12my) + .40497409376532203282sin(127x) sin(127y)
+.22896732074674758962cos(14mz) cos(14my) + .22896732074674758962sin(147x) sin(14my)
+.11858211361126850736 cos(16mz) cos(167y) + .11858211361126850736sin(167x) sin(167y)
+0.056255410258419519092cos(187x) cos(18my) + 0.056255410258419519092sin(187z) sin(187y)
+0.024446057568923656717 cos(20mx) cos(20my) + 0.024446057568923656717sin(207z) sin(207y)
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From equation 4.1 we obtain u’s and v’s for s = 0,1,...,20. Then, the matrix A =

(Amn)o<m.mn<20, is the diagonal matrix with diagonal
[1,1.8801275415522674707,1.8801275415522674707,1.6483007197945023217,
1.6483007197945023217, 1.3236861044793344190, 1.3236861044793344190,
97371754628086096259,.97371754628086096259,.65611566499466542801,
(65611566499466542801,.40497409376532203282, —.40497409376532203282,
22896732074674758962,.22896732074674758962, .11858211361126850736,
.11858211361126850736,.056255410258419519092, .056255410258419519092,
0.024446057568923656717,0.024446057568923656717]

and we have

Um = AmmUm, m=0,1,2,...20.
For the above perturbed dynamical system we compute the matrix D in (4.5). The eigen-
vector of the matrix D for the eigenvalue 1 is :

w = [1,-.29110520670549977218,0.0000018440003315249196190,0.069565405956335630715,
—0.0000013137353338792945233, —0.045604664886956196346, (8.0249929253956130018) x 107,
0.020642297111933035461, (—6.0489054621082258731) x 107, —0.017486330019405867864,
(4.7949021303234341827) x 107, 0.0094180878541850472866, (—4.0168209587784764254) x 1077,
—4.0168209587784764254, (—4.0168209587784764254) x 107, —4.0168209587784764254,

(—2.9853096972503892825) x 1077, —0.0054895182849284534088, (2.6379713404167750709) x 107
2.6379713404167750709, (—2.3751816076527746986) x 107 7]

)

and it provides an approximation f;; = 230 WUy to the 7—invariant density (Fig. 3) f.
Much better approximations shown in Fig. 4 and Fig. 5 are obtained by taking N = 20, 30
and S = 15, 20 respectively, which results in matrix D of size 25 + 1 = 31, 41 respectively.

Errors in L'— norms are listed in the following table.

N|S |5 =11
15 [ 10 [ 0.025044041879482

20 | 15 | 0.018413171411567 |
30 | 20 | 0.011280614132958
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2

S AN

0.5

T T T T T T
0 0.2 0.4 0.6 0.8 1
t

FIGURE 3. An approximation f;; to the invariant density f of the map 7
obtained as an invariant density of transition matrix D of size 21 x 21

T T T T T T
0 0.2 0.4 0.6 0.8 1
t

FIGURE 4. An approximation f3, to the invariant density f of the map 7
obtained as an invariant density of transition matrix D of size 31 x 31
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/
1.5
/
I' \‘
\

/

VN

0.5

T T T T T T
0 0.2 0.4 0.6 0.8 1
t

FIGURE 5. An approximation f3, to the invariant density f of the map 7
obtained as an invariant density of transition matrix D of size 41 x 41
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