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Abstract

Quantum interference of particle systems results from the wave prop-
erties of the particles and are predicted theoretically from the super-
position of the wave functions. In place of wave functions we use de-
terministic chaotic maps as the underlying mechanism that produces
the observed probability density functions. Let ψi(x, t), i = 1, 2 be
two wave functions of a quantum mechanical particle system. For
each ψi(x, t) we define deterministic nonlinear point transformations
τi(x) whose unique probability density function is the observed den-
sity ρi(x, t) = ψ∗

i (x, t)ψi(x, t). We consider the wave function ψ(x, t) =
aψ1(x, t) + bψ2(x, t) and show that we can associate with ψ(x, t), a
random chaotic map that switches (probabilistically between) τ1(x),
τ2(x) and the identity map I(x) and whose probability density func-
tion ft(x) equals ψ∗(x, t)ψ(x, t),where t denotes time. This description
of quantum interference of particle systems allows a more insightful in-
terpretation than wave mechanics.

Keywords: Wave function, deterministic chaotic transformation,
position dependent random map, two-slit experiment.

1. Introduction

Chaotic maps are deterministic yet behave statistically asymptot-
ically in time. In this note we present a chaotic dynamical model
that reproduces the results of quantum interference experiments such
as the two-slit experiment. In place of wave functions we shall use
real chaotic maps as the underlying mechanism for the observed prob-
ability density functions. Let ψi(x, t), i = 1, 2 be two wave func-
tions of a quantum mechanical particle system. We associate with
each ψi(x, t) a deterministic nonlinear point transformation τi(x) whose
unique invariant probability density function is the observed density
ρi(x, t) = ψ∗

i (x, t)ψi(x, t). We consider the superposition wave func-
tion ψ(x, t) = aψ1(x, t) + bψ2(x, t) and show that we can associate
with ψ(x, t), a random chaotic map related to τ1(x)and τ2(x), whose
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probability density function ft(x) is equal to ψ∗(x, t)ψ(x, t),where t de-
notes time. The key result is that random switching between the maps
τ1(x)and τ2(x) and the identity map I(x) accomplishes the same as the
phases of the wave functions. However, the random map description
allows a physical and insightful interpretation of quantum interference
by using particle trajectories. In Section 2 we present the notation
and a review of chaotic maps. In Section 3, we review the motivation
for our discrete time model for quantum mechanics. In Section 4, we
use a result from [3] to associate a position dependent random map to
the superposition of wave functions and identify the relationship with
the individual wave functions. This identification is reversible so that
given any random map that describes interference, we can identify the
wave functions which would produce the interference using conventional
quantum mechanics. In Section 5 numerical simulation of a two-slit ex-
periment is done which shows that the random map dynamics achieves
the interference pattern accurately.

2. Notation and Review

Let R = (-∞,∞) and let T : R → R possess a unique absolutely con-
tinuous invariant measure µ which has the probability density function
(pdf) f , that is

∫

A

fdx =

∫

T−1A

fdx

for any measurable set A ⊂ R. The Frobenius-Perron PT f operator
acting on the space of integrable functions is defined by

∫

T−1A

fdx =

∫

A

PT fdx.

The operator PT transforms probability density functions into proba-
bility density functions under the transformation T , where T is assumed
to be nonsingular.

Let h : R → R be a diffeomorphism. Then τ = h ◦ T ◦ h−1 is a
transformation from R into R which is said to be differentially conjugate
to T and whose probability density function is given by

(1) k = (f ◦ h−1)· | (h−1)′ |

Let the transformation T possess the probability density function
f. Suppose we are given a probability density function g on R , can
we find a transformation τ, derived from T, such that g is the unique
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probability density function invariant under τ? The answer is yes.
Using (1), we must find h−1 such that

(2) (f ◦ h−1) · (h−1)′ = g,

where we have assumed, without loss of generality, that h−1 is an in-
creasing function on R. Now let

F (x) =

∫ x

−∞

f(y)dy

be the distribution function associated with f. Then, from (5) and the
change of variable formula, we have

F (h−1(x)) =

∫ x

−∞

g(y)dy.

Since F is a monotonically increasing function, it has a unique inverse
and

(3) h−1(x) = F−1

(
∫ x

−∞

g(y)dy

)

Thus, we have found h−1(x) and hence h(x) such that τ = h ◦
T ◦ h−1 has the unique probability density function g(x). Summariz-
ing, given any probability density function g(x), we have shown the
existence of a point transformation τ whose unique probability density
function is g(x).

3. Chaotic Dynamical System Model for Quantum Interfer-

ence

We make two general assumptions for our model:
1) Time is discrete, as implied by string theory and quantum loop

gravity. This, of course, implies that all continuous time theories such
as quantum mechanics and general relativity are at best only good
approximations to a discrete time reality.

2) Observables such as position and velocity are described by prob-
ability density functions. In classical mechanics and relativity theory,
we can view the flows as point measures rather than points, which may
be approximations to pdfs with very narrow support on R3.

Quantum mechanics formalism stipulates that the absolute value of
the wave function, ψ, is the observable pdf, f . In our model of the
underlying process for particle motion, we use a real chaotic map, τ,
that generates f,via the Birkhoff Ergodic Theorem. We postulate that
the iteration time is of the order of the Planck time, 10−44 seconds,
while the observation time is of the order of 10−10 seconds or more. The
gap in these times allows for many iterations of τ between observations
and so, by the Birkhoff Ergodic Theorem, reveals the observable pdf.
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Now let {τ1, τ2,......,τK} be a collection of 1-dimensional maps and
define a random map to be a discrete-time dynamical system in which
one of the maps is randomly selected and applied at each iteration with
constant probability pk, pk > 0,

∑K

k=1
pk = 1. A measure µ on [0, 1] is

called invariant under τ if

(4) µ(A) =
K

∑

k=1

pkµ(τ−1

k A)

for each measurable set A. In [2] it is shown that the following suffi-
cient condition is sufficient for the existence of an absolutely continuous
invariant measure for such a random map:

(5)
K

∑

k=1

pk

|τ ,
k|

≤ γ < 1

for some constant γ.
Although such dynamical systems have application in the study of

fractals [4] they are not rich enough for our purposes because they do
not generate a sufficiently large class of invariant densities. To enlarge
the class of pdfs that are attainable from random maps we allow the
probabilities of selecting the maps to be functions of position. The
main result of [3] provides a sufficient condition for the existence of an
absolutely continuous invariant measure for position dependent random
maps. The pdf f(x) of this measure is the solution of the equation:

(6)
K

∑

k=1

Pτk
(pk(x)f(x)) = f(x)

where Pτk
is the Frobenius-Perron operator associated with τk. If Γ =

{τ1, . . . , τK} is a set of maps, we denote by AΓ the set of all attainable
densities, i.e., the set of densities f which satisfy (6), for all possible
choices of probability weight {p1(x), . . . , pK(x)}. We now state the
result of [3] that is needed in the sequel.

Proposition 1. If the set of maps Γ = {τ1, . . . , τK} contains the iden-

tity map, then the set AΓ of attainable probability densities is equal to

the set of all probability densities.

Proof. The identity map preserves every probability density function.
�
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We will use the following theorem from [3].

Theorem 2. Let {τ1, . . . , τK} be a collection of maps. Let fk be a

probability density function of τk, k = 1, . . . , K. For any positive con-

stants ak, k = 1, . . . , K, there exists a system of probability functions

p1, . . . , pK such that the density f = a1f1 + · · · + aKfK is invariant

under the random map T = {τ1, . . . , τK ; p1, . . . , pK}. It is enough to

set

pk =
akfk

a1f1 + · · · + aKfK

, k = 1, 2, . . . , K,

where we assume that 0/0 = 0.

4. Quantum Interference

Let ψ1 and ψ2 be two wave functions. By the foregoing method, we
can construct point transformations τ1and τ2 whose probability density
functions ’s are ψ∗

1
ψ1 and ψ∗

2
ψ2, respectively. Interference is the result

of addition (superposition) of these wave functions, that is, ψ = aψ1 +
bψ2. Clearly ψ∗ψ is a probability density function which, in general, is
time dependent. By Proposition 1, we know that ψ∗ψ can be realized
at any time t as a position dependent random map T = {τ1,τ2, I ;
p1(x), p2(x), 1−p1(x)−p2(x)} where the weighting probabilities p1(x),
p2(x) and hence 1− p1(x)− p2(x) are determined by Theorem 2. Note
that whereas τ1, τ2 represent particle motion under the influence of one
slit or the other alone such as in the two-slit experiment, the identity
function I represents a waiting effect, where the particle may move but
during the iteration time remains in the same local position

We now ask: can this procedure be reversed. That is, given density
functions f1(x), f2(x), ft(x), can we find wave functions ψ1and ψ2 such
that f1 = ψ∗

1
ψ1, f2 = ψ∗

2
ψ2 and ft(x) = (ψ1+ψ2)

∗(ψ1+ψ2). The answer
is yes. Let ψ1 =

√
f1e

is1t and ψ2 =
√
f2e

is2t . Then

(7) (ψ1 + ψ2)
∗(ψ1 + ψ2) = f1 + f2 + 2

√

f1f2[cos(s1 − s2)t] = ft

Since f1, f2 and ft are known, (s1 − s2) can be computed from (7).
Thus, we have determined ψ1 and ψ2 up to a constant phase.

We summarize the above in our main result:

Theorem 3. Let ψ1 and ψ2 be two wave functions. We can construct

point transformations τ1and τ2 whose density functions are ψ∗

1
ψ1 and

ψ∗

2
ψ2, respectively. The density function realized from the superposed

wave function ψ = aψ1 + bψ2 can be achieved by a random map based

on τ1, τ2 and I with weighting probabilities that are determined from

ψ1 and ψ2 as in Theorem 2. Starting with observed density functions

f1, f2 and ft, the process can be reversed and wave functions ψ1and ψ2

determined.
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5. Example: Two-slit experiment

Let us consider the two-slit experiment, with slit size .01 units and
slit centers located at positions x = −1 and x = 1. We assume that the
pdf’s at the slits are Gaussian densities with variance .005 as shown in
Figures 1a) and 1b), that is,

f1(x) =
1

10
√
π

exp(−(x+ 1)2/100) ,

f2(x) =
1

10
√
π

exp(−(x− 1)2/100) ,

(8)

and their superposition is given by equation (24) of [5] which, for t = 1,
becomes

f(x) =
1

2 + exp(−1/100 − 100)

[

f1(x) + f2(x)

+
1

10
√
π

cos(2x) exp(−(x2 + 1)/100)
]

.

(9)

The random map we now construct consists of three maps, τi, i = 1, 2,
constructed as in Section 2 which have pdfs f1 and f2, respectively, and
the identity map τ3(x) = x. We can view this random map as giving
the particle a choice of moving to the left (under the influence of the
left slit), moving to the right (under the influence of the right slit) or
remaining in the same place, as reflected in the identity map τ3. If the
iteration time is some multiple of say the Planck time, then within an
iteration time a particle can move left and right a number of times and
still at the iteration time end up close to its original position.

It can be easily shown that if we set a1 = a2 = 0.1, a3 = 0.8, then

f3(x) =
1

a3

[

f(x) − f1(x) − f2(x)
]

,

is a density and the superposition density can be written as

f = a1f1 + a2f2 + a3f3.

They are shown in Figures 1 and 2. Figure 1 shows f1 in part a) and
f2 in b). Figure 2 shows f in a) and f3 in b).

According to Theorem 2 we construct the probabilities

pi(x) =
aifi(x)

f(x)
, i = 1, 2, 3 .

They are shown in Figure 3.
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Figure 1. a) shows density f1, b) shows density f2.

Figure 2. a) shows density f , b) shows density f3 .

Using the ”recipe” from Section 2 we construct maps τ1 and τ2 cor-
responding to the densities f1 and f2. We have

h−1

1
(x) =

∫ x

−∞

f1(t)dt =
1

2
+

1

2
erf(

1

10
x+

1

10
)

and

h−1

2
(x) =

∫ x

−∞

f2(t)dt =
1

2
+

1

2
erf(

1

10
x− 1

10
) ,

where

erf(x) =
2√
π

∫ x

0

exp(−t2)dt .
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Figure 3. The position dependent probabilities p1, p2, p3.

We define τi = hi ◦ T ◦ h−1

i , i = 1, 2, where T (x) = 1 − 2|x − 1/2|
is the tent map. We used τ3(x) = x as the third map. Figure 4
shows the maps τ1 (left) and τ2 (right) in part a) and in part b) the
results of numerical simulation of 2,000,000 iterations of random map
{τ1, τ2, τ3; p1, p2, p3}.

Figure 4. a) maps τ1 and τ2 b) results of numerical simulation.

6. Observations:

1) In the foregoing model of the 2-slit experiment we are not com-
pelled to say that the particle goes through both slits. Rather, we say
that the particle is a particle and passes through one slit or the other.
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But between the slit screen and the detecting screen the particles mo-
tion is governed by the spacetime geometry determined by the physical
structure of the experiment (size of 2 open slits, their separation and
distance between slit screen and detecting screen) and which is de-
scribed mathematically by the weighting probabilities for the 2 maps
in the random map. From this perspective spacetime in the quantum
setting is a complex structure which can be described probabilistically.

2) The random transformation model for quantum interference lends
itself to an interpretation of nonlocality since a jump from one transfor-
mation to another is a discontinuous effect that can propel a quantum
particle across the universe in the time span of one iteration of the
process.

3) Since the map τi is piecewise onto all of the real line R, a few, iter-
ations amount to a very small duration of time, but during this time the
particle orbit may traverse a large part of R. Also, the switching from
one map to another can cause the particle to be pushed far out. This
process, iterating at the Planck time, may explain nonlocality since
the particle may appear to be in two distant locations at once during
the observation time which is many times as large as the Planck time,
and hence during such an observation the particle may have the time
to travel back and forth between the two positions numerous times, at
(finite) speeds far greater than that of light.

4) The choice of the maps τi may not be unique. However this
would not change the foregoing theory since all we need is a dynamical
mechanism that generates the desired pdfs. How fast or slow this is
accomplished is not important since the physical process is assumed to
have a very small iteration time.
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